

 Page 2 of 36

Contents

Introduction to Wfuzz ... 3

Setup .. 3

Wfpayload and Wfencode .. 5

Docker run wfuzz .. 7

Payloads ... 8

Subdomain Fuzzing ... 10

Directory Fuzzing .. 12

Saving fuzzing output .. 13

Basic wordlist filters .. 14

Double fuzzing .. 16

Login bruteforce ... 16

Cookie fuzzing ... 18

Header fuzzing .. 19

HTTP OPTIONS fuzzing .. 20

Fuzzing through Proxy ... 21

Authentication fuzz ... 23

Recursive fuzz ... 23

Printers and output ... 24

Encoders ... 25

Storing and restoring fuzz from recipes ... 27

Ignoring exceptions and errors ... 28

Filtering results ... 29

Sessions in wfuzz .. 32

Conclusion .. 35

 Page 3 of 36

Introduction

Many tools have been developed that create an HTTP request and allow a user to modify their

contents. Fuzzing works the same way. A user can send a similar request multiple times to the

server with a certain section of the request changed. When that certain section is replaced by a

variable from a list or directory, it is called fuzzing.

In this article, we will learn how we can use wfuzz, which states for “Web Application Fuzzer”,

which is an interesting open-source web fuzzing tool. Since its release, many people have

gravitated towards wfuzz, particularly in the bug bounty scenario. So, let’s dive into this

learning process.

Introduction to Wfuzz
Wfuzz is a python coded application to fuzz web applications with a plethora of options. It

offers various filters that allow one to replace a simple web request with a required word by

replacing it with the variable “FUZZ.”

Setup
To install wfuzz using pip, we can:

The same could be achieved by installing from the source using git.

pip3 install wfuzz

git clone https://github.com/xmendez/wfuzz.git

 Page 4 of 36

The help menu to see all the working options is as follows:

 wfuzz -h

wfuzz --help

 Page 5 of 36

You can use a module by using “-z”

Wfpayload and Wfencode
When you install the tool from source, compiled executables called wfpayload and wfencode

are available. These are responsible for payload generation and encoding. They can be

individually used. For example, command to generate digits from 0 to 15 is as follows:

./wfpayload -z range,0-15

 Page 6 of 36

As you can see, there is a pycurl error. It can go away like so:

apt --purge remove python3-pycurl && apt install libcurl4-openssl-dev libssl-dev && pip3 i

 Page 7 of 36

Now, when you run wfencode, which is a module to encode a supplied input using a hash

algorithm, there is no pycurl error now.

Docker run wfuzz
Wfuzz can also be launched using docker in the following way using the repo ghcr.io. The

respective command can be run by replacing the last variable wfuzz.

./wfencode -e md5 ignite

docker run -v $(pwd)/wordlist:/wordlist/ -it ghcr.io/xmendez/wfuzz wfuzz

 Page 8 of 36

Payloads
A payload in Wfuzz is a source of input data. The available payloads can be listed by executing:

wfuzz -e payloads

 Page 9 of 36

The detailed view can also be looked using the slice filter:

wfuzz -z help --slice "list"

 Page 10 of 36

Subdomain Fuzzing
Subdomain discovery is extremely helpful in pentesting scenarios. Often, attackers launch

attacks on subdomains rather than main domains and it can be fuzzed like so:

Here, -c color codes the output response codes

-Z specifies a URL to be input in scan mode and ignores any connection error

-w specifies the wordlist use while subdomain bruteforce.

wfuzz -c -Z -w subdomains.txt http://FUZZ.vulnweb.com

 Page 11 of 36

The same can be achieved by providing the subdomain list inline too. Only, the payload (-z

option) should be supplied in with “list” as an input. The list is supplied in the format ITEM1-

ITEM2-ITEM3 like so:

wfuzz -z list,CVS-testphp-admin-svn http://testphp.vulnweb.com/FUZZ

wfuzz -z list,CVS-testphp-admin-svn http://FUZZ.vulnweb.com/

 Page 12 of 36

Directory Fuzzing
Directories can be enumerated using wfuzz just like with gobuster by using a supplied wordlist.

This can be done using a -w flag and input the path of the wordlist:

As you can see in the above screenshot, all the results including page not found have been

dumped which makes it tedious to go through the results and find pin in a haystack. Therefore,

to sort the results out we can see the show code flag (--sc). Other such flags are:

 --hc/sc CODE #Hide/Show by code in response

 --hl/sl NUM #ide/Show by number of lines in response

 --hw/sw NUM #ide/Show by number of words in response

 --hc/sc NUM #ide/Show by number of chars in response

wfuzz -w wordlist/general/common.txt http://testphp.vulnweb.com/FUZZ

wfuzz -w wordlist/general/common.txt --sc 200,301 http://testphp.vulnweb.com/FUZZ

 Page 13 of 36

Saving fuzzing output
Wfuzz output can also be saved in multiple formats using the -f option.

-f option allows a user to input a file path and specify a printer (which formats the output) after

a comma.

wfuzz -w wordlist/general/common.txt -f /tmp/output,csv --sc 200,301

http://testphp.vulnweb.com/FUZZ

cat /tmp/output

 Page 14 of 36

In place of csv, you can specify any one of the printers

Basic wordlist filters
There are certain sub-arguments that can be preceded by -z or -w filter to play around more

with. These filters are:

--zP <params>: Arguments for the specified payload

--zD <default>: Default parameter for the specified payload

wfuzz -e printers

 Page 15 of 36

--zE <encoder>: Encoder for the specified payload

So, to specify a wordlist with the payload, we can do it like so:

To hide the HTTP response code 404, the same can be obtained like so:

wfuzz -z file --zD wordlist/general/common.txt --sc 200,301 http://testphp.vulnweb.com/FUZZ

wfuzz -z file --zD wordlist/general/common.txt --hc 404 http://testphp.vulnweb.com/FUZZ

 Page 16 of 36

Double fuzzing
Just like a parameter in a payload can be fuzzed using the keyword “FUZZ” multiple fuzzing is

also possible by specifying keywords:

 FUZ2Z - 2nd parameter

 FUZ3Z - 3rd parameter

 FUZ4Z - 4th parameter

And each parameter can be allotted its own wordlist. The first “-w” stands for first FUZZ.

Second “-w” holds for second FUZ2Z and so on.

Login bruteforce
HTTP responses can be brute-forced using wfuzz. For example, testphp’s website makes a POST

request to the backend and passes “uname” and “pass” as the arguments to a page

userinfo.php

wfuzz -w wordlist/general/common.txt -w wordlist/general/common.txt --hc 404

http://testphp.vulnweb.com/FUZZ/FUZ2Z

 Page 17 of 36

The same can be implemented using wfuzz like so:

-d argument specifies the post data to be sent along the request

As you can see, the correct credentials “test-test” have been found. We used a common file for

both username and password. The same can be done by providing different files for both

usernames and passwords like so:

-c is to color code the output response which can be skipped.

wfuzz -z file,wordlist/others/common_pass.txt -d "uname=FUZZ&pass=FUZZ" --hc

302 http://testphp.vulnweb.com/userinfo.php

wfuzz -z file,users.txt -z file,pass.txt --sc 200 -d "uname=FUZZ&pass=FUZ2Z"

http://testphp.vulnweb.com/userinfo.php

 Page 18 of 36

Cookie fuzzing
To send a custom cookie along a request to different fuzzed directories we can use the “-b”

plug. This would add a cookie to the sent HTTP request.

Scenario useful:

 Cookie poisoning

 Session hijacking

 Privilege Escalation

wfuzz -z file,wordlist/general/common.txt -b cookie=secureadmin -b cookie2=value2 --hc

404 http://testphp.vulnweb.com/FUZZ

 Page 19 of 36

In the above scenario, we have added 2 static cookies on multiple directories. Now, we can also

fuzz the cookie parameter too like so:

Header fuzzing
HTTP header can be added in a request being sent out by wfuzz. HTTP headers can change the

behavior of an entire web page. Custom headers can be fuzzed or injected in an outgoing

request

Scenarios useful:

 HTTP Header Injections

 SQL Injections

 Host Header Injections

wfuzz -z file,wordlist/general/common.txt -b cookie=FUZZ http://testphp.vulnweb.com/

wfuzz -z file,wordlist/general/common.txt -H "X-Forwarded-By: 127.0.0.1" -H "User-

Agent: Firefox" http://testphp.vulnweb.com/FUZZ

 Page 20 of 36

HTTP OPTIONS fuzzing
There are various HTTP Request/Options methods available which can be specified by using the

“-X” flag. In the following example, We have inserted the following options in a text file called

options.txt

 GET

 HEAD

 POST

 PUT

 DELETE

 CONNECT

 OPTIONS

 TRACE

 PATCH

wfuzz -c -w options.txt --sc 200 -X FUZZ “http://testphp.vulnweb.com”

 Page 21 of 36

As you could see, three valid options returned a 200 response code.

The same can be input inline using the “list” payload like so:

Fuzzing through Proxy
Wfuzz can also route the requests through a proxy. In the following example, a Burp proxy is

active on port 8080 and the request intercepted in the burp intercept as you can see.

wfuzz -z list,GET-HEAD-POST-TRACE-OPTIONS -X FUZZ http://testphp.vulnweb.com/

 Page 22 of 36

The same can also be achieved with SOCKS proxy like so:

wfuzz -z file,wordlist/general/common.txt -p localhost:8080 http://testphp.vulnweb.com/FUZZ

wfuzz -z file,wordlist/general/common.txt -p localhost:9500:SOCKS5

http://testphp.vulnweb.com/FUZZ

 Page 23 of 36

Authentication fuzz
Wfuzz can also set authentication headers and provide means of authentication through HTTP

requests.

Flags:

 --basic: provides basic Username and Password auth

 --ntlm: windows auth

 --digest: web server negotiation through digest access

In the following example, I am providing a list inline with two variables and --basic input to

bruteforce a website httpwatch.com

Recursive fuzz
-R switch can specify the levels of recursion while fuzzing directories or parameters. Recursion

in simple terms means fuzzing at multiple different levels of directories like /dir/dir/dir etc

In the following example, we are recursing at level 1 with a list inline containing 3 directories:

admin, CVS and cgi-bin. Note how a directory with - in its name can be supplied inline

wfuzz -z list,nonvalid-httpwatch --basic FUZZ:FUZZ

https://www.httpwatch.com/httpgallery/authentication/authenticatedimage/default.aspx

wfuzz -z list,"admin-CVS-cgi\-bin" -R1 http://testphp.vulnweb.com/FUZZ

 Page 24 of 36

Printers and output
Printers in wfuzz refers to all the formats a payload’s output can be processed as. It can be

viewed using -e succeeded by printers argument. Furthermore, “-o” flag can specify the format

of the output too

wfuzz -e printers

wfuzz -o json -w wordlist/general/common.txt http://testphp.vulnweb.com/FUZZ

 Page 25 of 36

Encoders
Various encoders are available in wfuzz. One such encoder we saw earlier was md5. Other

encoders can be viewed by using “-e” flag with encoders argument.

wfuzz -e encoders

 Page 26 of 36

One can fuzz a website for directories by using MD5 output like so:
wfuzz -z file,wordlist/general/common.txt,md5 http://testphp.vulnweb.com/FUZZ

 Page 27 of 36

Storing and restoring fuzz from recipes
To make scanning easy, wfuzz can save and restore sessions using the “--dump-recipe” and “--

recipe” flag.

wfuzz -w wordlist/general/common.txt --dump-recipe /tmp/recipe --sc 200,301

http://testphp.vulnweb.com/FUZZ

wfuzz --recipe /tmp/recipe

 Page 28 of 36

Ignoring exceptions and errors
Often while fuzzing, there are various errors and exceptions that a website can throw. “-Z”

option can make wfuzz ignore these errors and exceptions. First, we run a normal subdomain

fuzzing routine and then with -Z option:

As you could see, -Z ignores that error on the bottom. Further, any invalid response can also be

hidden like so:

wfuzz -z list,support-web-none http://FUZZ.google.com/

wfuzz -z list,support-web-none -Z http://FUZZ.google.com/

wfuzz -z list,support-web-none -Z --hc “XXX” http://FUZZ.google.com/

 Page 29 of 36

Filtering results
There are many filters available to manipulate a payload or output.

wfuzz --filter-help

 Page 30 of 36

These can be manipulated using “--filter, --slice, --field and --efield” arguments.

For example, to view raw responses of the payload sent and the complete HTTP request made,

you can use “--efield r” option

wfuzz -z range --zD 0-1 -u http://testphp.vulnweb.com/artists.php?artist=FUZZ --efield r

 Page 31 of 36

However, if only the intended URL is needed, one can do it by providing --efield url input.

Similarly, to filter out results based on the response code and the length of the page (lines

greater than 97), you can do it like:

wfuzz -z range --zD 0-1 -u http://testphp.vulnweb.com/artists.php?artist=FUZZ --efield url --efield h

 Page 32 of 36

A detailed table of all the filters for the payloads can be found here.

Sessions in wfuzz
A session in wfuzz is a temporary file which can be saved and later picked up, re-processed and

post-processed. This is helpful in situations where one result saved already needs alterations or

an analyst needs to look for something in the results. “--oF” filter can save the session output to

a file.

wfuzz -z range,0-10 --filter "c=200 and l>97" http://testphp.vulnweb.com/listproducts.php?cat=FUZZ

wfuzz --oF /tmp/session -z range,0-10 http://testphp.vulnweb.com/listproducts.php?cat=FUZZ

 Page 33 of 36

This session file can now be opened up again and consumed using the “wfuzzp” payload like so:

wfuzz -z wfuzzp,/tmp/session FUZZ

 Page 34 of 36

One such example of this filteration from a previously saved session is as follows where we find

an SQL injection vulnerability by utilizing a Pytho regex designed to read responses after a

request modifies a parameter by adding apostrophe (‘) and fuzzing again. “-A” displays a

verbose output.

The regex r.params.get=+’\’ adds apostrophe (‘) in the get parameter. r stands for raw

response.

wfuzz -z range,1-5 --oF /tmp/session http://testphp.vulnweb.com/artists.php?artist=FUZZ

wfuzz -z wfuzzp,/tmp/session --prefilter "r.params.get=+'\''" -A FUZZ

 Page 35 of 36

As you can see, request number 4 throws an SQL error which indicates SQL injection. For more

regex operations refer here.

Conclusion
Wfuzz is a versatile tool that can perform more than just directory enumeration and truly help a

pentester in his analyses. It’s a fast scanner which is easy to use and coded in python for

portability. Hope you liked the article. Thanks for reading.

JOIN OUR
TRAINING PROGRAMS

www.ignitetechnologies.in

BEGINNER

Network Pentest

Bug Bounty

Wireless Pentest

Network Security
EssentialsEthical Hacking

ADVANCED

EXPERT

Burp Suite Pro

CTF

Windows

Linux

Pro
Infrastructure VAPT

APT’s - MITRE Attack Tactics

MSSQL Security Assessment

Active Directory Attack

Red Team Operation

Privilege Escalation

Web
Services-API

Android Pentest

Computer
Forensics

Advanced
Metasploit

CLICK HERE

	Introduction to Wfuzz
	Setup
	Wfpayload and Wfencode
	Docker run wfuzz
	Payloads
	Subdomain Fuzzing
	Directory Fuzzing
	Saving fuzzing output
	Basic wordlist filters
	Double fuzzing
	Login bruteforce
	Cookie fuzzing
	Header fuzzing
	HTTP OPTIONS fuzzing
	Fuzzing through Proxy
	Authentication fuzz
	Recursive fuzz
	Printers and output
	Encoders
	Storing and restoring fuzz from recipes
	Ignoring exceptions and errors
	Filtering results
	Sessions in wfuzz
	Conclusion

