
Two years ago, when I embarked on my journey into malware analysis, I sought to enhance my
skills through various courses and resources available on the internet. However, I soon
encountered numerous challenges and gaps in knowledge that weren't adequately addressed
in these materials. This journey has been one of persistence and dedication, and I've come to
realize that successful malware analysis hinges on having the right resources, putting in
consistent effort, and dedicating time to the practice.
Throughout my two-year journey, I've connected with malware analyst experts from around
the globe, including Spain, Brazil, the Philippines, Egypt, and Ireland. Their insights and
experiences have been invaluable in shaping my understanding and approach to malware
analysis. Inspired by the collective wisdom and the shared challenges faced by many in this
field, I decided to create an all-in-one malware analysis cheat sheet roadmap.
This roadmap is designed for those who, like me, have found themselves stuck and unsure of
what to learn or where to start. It aims to consolidate essential resources, techniques, and
best practices in one place, making the path to proficiency in malware analysis more
accessible and structured. Whether you are a beginner or someone looking to refine your
skills, this cheat sheet will guide you through the key steps and tools necessary for effective
malware analysis.

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Introduction

Malfav

In this guidebook, you will discover a thorough compilation of both essential and advanced resources, along
with valuable suggestions to enhance your malware analysis skills. The guide covers:

Essential Tools for Basic Static and Dynamic Analysis:1.
A detailed overview of indispensable tools for both static and dynamic analysis, suitable for all skill
levels.

Windows Internals:1.
In-depth information on the internal mechanisms of the Windows operating system, crucial for
understanding malware behavior.

Windows API Functions:1.
Comprehensive details on important Windows API functions and their implications for malware analysis.

Networking for Malware Analysis:1.
Key networking concepts and practices essential for analyzing malware’s network activities.

Cheat Sheet for Document Malware Analysis:1.
A practical cheat sheet for analyzing malware embedded in documents, with actionable tips and
techniques.

Toolkit for Malicious APK Analysis:1.
A curated set of tools and methods for analyzing malicious Android applications (APKs)

.
Toolkit for Rootkit Detection:1.

Resources and techniques specifically designed to identify and analyze rootkits.
List of Malicious API Functions:1.

A comprehensive list of API functions commonly used by malware, aiding in detection and analysis.

List of Suspicious Strings:1.
A compilation of strings that are often associated with malicious activity, useful for spotting potential
threats.

Miscellaneous:2.

Additional resources and tips that don’t fit into the other categories but are valuable for a holistic
approach to malware analysis.

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

What available in this guidebook

Malfav

Introduction

When analyzing malware, it's crucial to focus on key aspects to ensure an effective investigation and avoid
unnecessary detours. This checklist helps streamline your analysis by addressing the most important questions:

Determine the Malware’s Purpose:1.
What is the primary goal of the malware (e.g., data theft, disruption)?
Who are the intended targets?

Identify the Infection Vector:1.
How does the malware initially infect the system (e.g., phishing, vulnerabilities)?
What are the delivery methods?

Analyze the Malware’s Behavior:1.
What actions does the malware perform once executed (e.g., file modifications, network activity)?
Does it use persistence mechanisms?

Evaluate the Impact:1.
What potential damage does the malware cause?
Are there known indicators of compromise (IOCs)?

Investigate Command and Control (C2) Infrastructure:2.

How does the malware communicate with its C2 servers?
What is the purpose of this communication?

Examine Evasion Techniques:1.
What methods does the malware use to avoid detection (e.g., obfuscation, anti-debugging)?
Does it employ anti-analysis measures?

Identify and Document Components:1.
What are the key components of the malware (e.g., dropper files, payloads)?
How do these components interact?

Review Historical Context:2.
Is there relevant threat intelligence about this malware?
How does it fit into known attack patterns or threat actor profiles?

By addressing these key aspects, you can effectively focus your analysis and avoid getting sidetracked by less
important details.

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

https://fareedfauzi.github.io/

Flow of Analysis:

Retrieve Samples:
-Collect malware samples from various sources for analysis.

OSINT Samples and Reports:
-Gather open-source intelligence (OSINT) on the samples and review existing reports for
context.

Automate Analysis:
-Utilize automated tools to perform initial scans and preliminary analysis.

Maldoc or Fileless Analysis:
-Analyze document-based malware (maldocs) or fileless malware for specific characteristics
and behaviors.

Static Analysis:
-Examine the malware without executing it to understand its structure and code.

Behavior Analysis:
-Observe and analyze the malware’s behavior during execution to identify actions and impacts.

Reverse Engineering:
Deconstruct the malware to understand its inner workings and techniques used.

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

https://fareedfauzi.github.io/

Sample Sources:

From Client:

Directly obtained from clients or affected organizations.
Internet:

Collected from various online sources, including forums and threat intelligence websites
.
VirusTotal:

Samples available through VirusTotal's public analysis and repository.

MalwareBazaar:

A platform for sharing and obtaining malware samples.
GitHub:

Repositories where malware samples or related tools may be hosted.

Malshare:

A repository providing access to a wide range of malware samples.

Any.run:

Interactive malware analysis platform offering samples and analysis results.

Honeypot:

Samples collected from honeypots set up to attract and capture malware.

Internal Database:

Samples stored within your organization’s own malware database.

DFIR Activities:

Samples obtained through digital forensics and incident response (DFIR) activities.

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

https://fareedfauzi.github.io/

OSINT samples, reports, analysis:

OSINT Samples, Reports, and Analysis

Hash Lookups: Verify sample hashes.

VirusTotal: Check analysis results and reputation.

Any.Run: Interactive malware analysis.

Tri.age: Analyze malware samples.

s.threatbook.com: Threat intelligence reports.

HybridAnalysis: Dynamic and static analysis results.

JoeSandbox: Advanced malware analysis.

Metadefender: Multi-engine malware scanning.

ti.qianxin.com: Threat intelligence insights.

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

https://fareedfauzi.github.io/

Analysis Results and IOC Network Analysis:

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

AbuseIPDB: Check IP reputation.

Censys: Search for exposed devices.

Passive DNS via VT: Analyze DNS records.

Shodan: Discover internet-connected devices.

FOFA: Search for exposed services.

Validin: Validate domain and IP data.

URLhaus: Track malicious URLs.

urlscan.io: Analyze URL behavior.

AlienVault: Threat intelligence and IOCs.

threatbook.io: Threat intelligence reports
.
GitHub Search: Search for related samples.

Google Search: Find additional information.

Twitter Search: Monitor social media for relevant data.

https://fareedfauzi.github.io/

Automate and AV Analysis:

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

Any.Run: Interactive analysis environment.

VirusTotal: Multi-engine scanning and reports.

Tri.age: Malware analysis and threat intelligence.

Threatbook: Threat analysis and reports.

AntiScan.me: Multi-engine scanning service.

FileScan: Analyze files and malware behavior.

HybridAnalysis: Detailed dynamic and static analysis.
Intezer: Code reuse detection and malware analysis.

JoeSandbox: Advanced malware analysis.

Metadefender: Multi-engine malware scanning.

-Local Sandboxes and AV Scanners:

CAPE: Customizable malware analysis platform.

Saferwall: Community-driven malware analysis.

MultiAV: Scans files with multiple antivirus engines.

Note: Analyze all findings and understand the context of the malware before proceeding with reverse
engineering.

-Online Sandboxes:

https://fareedfauzi.github.io/

Read the Code: Examine the script or code directly.

Beautify: Format the code for better readability.

Deobfuscate: Remove obfuscation to reveal the true code.

PSUnveil: Tool for analyzing obfuscated PowerShell scripts.

Manual Analysis: Inspect the code and behavior manually.

CMDWatcher: Monitor and analyze command-line activities.

Refer to Behavior Analysis: Cross-check with behavioral analysis findings
for context.

Fileless Analysis:

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

https://fareedfauzi.github.io/

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

Static Analysis:

Static Analysis involves examining the malware's code or binary without executing it.
This process includes reviewing the code structure, identifying strings and metadata,
and comparing against known signatures. Analyzing imports and dependencies,
understanding control flow, and decompiling when needed are also crucial. Additionally,
static analysis may involve examining any network packets or encoded data within the
sample.

Static Analysis Flow :

Examine Code: Review the code or script without execution.

Identify Strings: Search for readable text within the code.

Analyze Metadata: Check file properties and headers for insights.

Check for Known Signatures: Compare against known malware signatures.

Review Imports/Dependencies: Look at libraries and APIs used by the malware.

Understand Control Flow: Map out the logical structure and flow of the code.

Decompile: Convert binary code into a readable format if necessary.

Analyze Packets: Examine any network packets or encoded data.

Note : Static Analysis Flow added by Malfav

https://fareedfauzi.github.io/

Tool activity Description

file Determines the file type of a file.

TRiD
File identification tool using a database of file
signatures.

Exiftool
Tool for reading, writing, and editing metadata in
various file types.

DIE (Detect It Easy)
Detects and identifies packer, compiler, and
other characteristics of executable files.

EXEinfoPE
Analyzes and detects various properties of PE
(Portable Executable) files.

PEStudio
Analyzes PE files to identify anomalies,
suspicious patterns, and potential malware
indicators.

PEBear
Analyzes PE files and extracts information about
their structure, sections, imports, and more.

CAPA
Analyzes malware behavior and identifies code
patterns using static analysis techniques.

Floss
Extracts strings from malware samples and
analyzes their behavior.

strings - -a
Extracts printable strings from binary files,
including malware samples.

xorsearch Searches for XOR-encoded strings in binary files.

base64dump
Decodes and extracts base64-encoded strings
from binary files.

Resource Hacker
Views, modifies, adds, and deletes resources in
Windows executables.

SSDeep
can help in classifying and categorizing malware
samples based on similarities in their content

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

Static Analysis Tools :

https://fareedfauzi.github.io/

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

Behavior Analysis :

Behavior Analysis involves running the malware in a controlled environment to observe its
actions and understand its functionality. This approach helps identify the real-world impact
of the malware and how it operates once executed. By monitoring the malware in a sandbox
or isolated virtual machine, analysts can safely study its behavior without risking infection
of the host system. Key activities to observe include changes to the file system, registry
modifications, network communications, and processes created or terminated. This
analysis helps uncover the malware’s persistence mechanisms, data exfiltration methods,
and command-and-control interactions. By understanding these behaviors, analysts can
develop effective detection and mitigation strategies.

Behavior Analysis Components:

Process Monitoring: Observe the creation, modification, and termination of processes, including
commands executed by the malware.

Network Monitoring: Track network activity, such as connections to remote servers and data
exfiltration.

File System Monitoring: Monitor changes to the file system, including creation, modification, and
deletion of files.

Registry Monitoring: Watch for modifications to the system registry, including new or altered
keys and values.

Logging and Detection: Record and analyze logs to detect malicious activity and gather forensic
evidence.

WinAPI Monitoring: Track Windows API calls made by the malware to understand its interactions
with the operating system.

https://fareedfauzi.github.io/

All-in-One Process Monitoring Network Monitoring File System Monitoring Registry Monitoring

ProcMon Process Hacker ProcessHacker ProcMon Regshot

SysAnalyzer Process Explorer TCPView ProcDot

CMDWatcher FakeNet DirWatch

ProcWatch Wireshark

HollowsHunter Fiddler

PECapture TCPDump

WriteProcessMemory

Moneta

Logging and Detection API Monitoring

Sysmon APIMonitor

Powershell APILogger

Auditd

SysmonForLinux

Aurora

EDR

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

Behavior Analysis Toolkit:

Loggin and Detection:

https://fareedfauzi.github.io/

Reverse engineering is inherently subjective, with approaches varying among analysts. When I
perform reverse engineering, I start by understanding the malware sample, including its origin
and initial behavior. I conduct static analysis to examine the code, strings, functions, and
embedded resources without executing the malware. This involves disassembling or
decompiling the code to understand its logic.

Next, I perform dynamic analysis by executing the malware in a controlled environment to
observe its behavior, including interactions with the operating system, network activity, and
changes to the file system or registry. I also conduct behavioral analysis to understand its
objectives, such as persistence mechanisms and data exfiltration methods.

I dive deeper into the code through detailed analysis, identifying key functions and obfuscation
techniques, often using a debugger. API monitoring helps track the malware's interactions with
the operating system, while memory analysis uncovers hidden or obfuscated code. Logging and
detection tools capture detailed logs of the malware’s activity, which I correlate with known
indicators of compromise. I document all findings and prepare comprehensive reports for
stakeholders, ensuring a thorough understanding of the malware.

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

Reverse Engineering:

Reverse Engineering Toolkit:
Note : This section added by Malfav

IDA: Interactive Disassembler, a powerful tool for reverse engineering
binary code.

Ghidra: A free and open-source software reverse engineering suite
developed by the NSA.

Cutter: A GUI frontend for the radare2 framework, designed for ease of use
in reverse engineering.

Binary Ninja: A reverse engineering platform with a focus on interactivity
and ease of use.

https://fareedfauzi.github.io/

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

What looking for in IDA:

Find Main function: Locate the primary entry point.

Strings reference: Identify useful strings in the code.

Decompile: Convert binary to readable code.

Watch Graph View: View code flow graphically.

Relabel functions: Rename functions for clarity.

Insert comments: Add notes to the code.

Focus on WinAPIs: Examine Windows API calls.

Research API documentation: Look up API details.

Research hardcoded strings: Find embedded text.

List functions: Enumerate function names.

Pull Lumina: Retrieve Lumina data.

Ask ChatGPT: Seek help with ChatGPT.

Run Flare CAPA Explorer plugin: Use CAPA plugin for analysis.

Run IDAClu: Execute IDAClu tool.

Run IDA-names: Use IDA-names for renaming

Run FindCrypt: Use FindCrypt tool.

Run AntiVM: Check for virtual machine detection.

Run AntiDebugSeeker: Search for debugging checks.

Rebase segment via debugger: Adjust code base in debugger.

Github/GitLab research: Search for code on GitHub/GitLab.

Search unique hex values online: Look up hex values online.

https://fareedfauzi.github.io/

x64Dbg is an advanced, open-source debugger for Windows that supports both 32-bit and
64-bit applications. It provides a comprehensive suite of tools for analyzing and debugging
software, making it particularly useful for reverse engineering and malware analysis. With
x64Dbg, users can examine and manipulate program execution in detail, set breakpoints,
step through code, and inspect memory and register states.

The debugger features a user-friendly interface with multiple views and panels, including
disassembly, memory, and stack traces, which allow for in-depth code analysis. It supports
a range of debugging techniques, such as single-stepping through instructions, examining
variables, and analyzing call stacks. Additionally, x64Dbg offers powerful scripting
capabilities and plugin support, enabling users to extend its functionality and automate
repetitive tasks. This versatility makes x64Dbg a valuable tool for both novice and expert
analysts in understanding and dissecting complex software behaviors.

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

x64Dbg :

https://fareedfauzi.github.io/

Breakpoint on interesting function: Set breakpoint on key functions.

Breakpoint on unpack stuff: Break on unpacking functions like VirtualAlloc.

Dump unpack stuff: Extract unpacked data.

Dump shellcode stuff: Extract shellcode.

Watch return value of function: Monitor function returns.

Enable ScyllaHide: Use ScyllaHide for anti-debugging.

Use graph view: Visualize code flow.

Find strings reference: Locate string references.

Use xAnalyzer: Analyze with xAnalyzer.

Setting the events to Break on: Configure entry breakpoints.

Add Exception filters: Set exception filters to 00000000-FFFFFFFF.

Follow in dump, memory: Analyze memory dumps.

Watch call stack: Monitor call stack.

Watch Threads: Observe threads.

Watch Handles: Track handles.

Use RunDLL32 command: Run DLLs with RunDLL32.

Supply parameter: Provide necessary parameters.

Research WinAPI param and return value: Check API parameters and returns.

Watch function input (param) and output (return value on EAX): Monitor function inputs and outputs
.

Disable ASLR: Turn off ASLR.

Self injection: Dump process with Process Hacker.

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

What Looking for inx64Dbg :

https://fareedfauzi.github.io/

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

API Hooking to analysis

API hooking is a technique used in malware analysis to monitor and intercept calls made
to specific functions in the Windows API. By setting breakpoints on these API functions,
analysts can observe how the malware interacts with the operating system. This
approach is particularly useful for understanding the behavior of malware that relies
heavily on API calls for its operation.

To analyze malware using API hooking, an analyst may set breakpoints on a range of
APIs that are relevant to the suspected behavior of the malware. This often involves
identifying and hooking functions involved in file operations, network communications,
process creation, and other critical activities. By "blindly" hooking these APIs, analysts
can capture and inspect function calls regardless of the specific intent or behavior of
the malware.

The process typically involves loading the malware into a debugger or hooking
framework and setting breakpoints on API functions. When the malware executes and
makes calls to these functions, the debugger halts execution, allowing the analyst to
examine the parameters and return values. This can reveal key details about the
malware's actions, such as file modifications, registry changes, or network connections.

API hooking provides a powerful way to monitor the interactions between malware and
the system, offering insights into its operational logic and potential impacts. However,
it requires careful selection of APIs to avoid overwhelming amounts of data and to focus
on functions that are most likely to reveal critical information.

https://fareedfauzi.github.io/

Typically for unpacking:
VirtualAlloc: Memory allocation
VirtualProtect: Memory protection changes

AntiDebug:
 IsDebuggerPresent: Debugger presence check

Enum process:
CreateToolhelp32Snapshot: Process snapshot creation
Process32First: First process enumeration
 Process32Next: Next process enumeration

Check file what file being written
 CreateFileW: File creation (wide chars)
 CreateFileA: File creation (ANSI)

Execute unpacked code:
 CreateProcessInternalW: Process creation
 NtWriteVirtualMemory: Memory write operations
 NtResumeThread: Thread resume
 CreateRemoteThread: Remote thread creation
 CreateThread: Thread creation

API Hashing:
GetProcAddress: Procedure address retrieval
LoadLibraryA: Library loading (ANSI)

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

API Hooking to analysis malware

https://fareedfauzi.github.io/

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

API Hooking to analysis malware

Downloader:
urldownloadtofile: Download files from the internet
shellexec: Execute files or commands

Dropper:
findresource: Locate a resource in an executable
loadresource: Load a resource into memory
lockresource: Lock a resource for access
sizeofresource: Get the size of a resource

Keylogger
getkeystate: Get the state of a key
getasynckeystate: Get the state of a key asynchronously
setwindowshook: Install a hook procedure for input events

C2 Server
internetopenurla: Open a URL for internet communication
socket: Create a network socket for communication

 Note: This Section Added by Malfav

https://fareedfauzi.github.io/

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

API Hooking to analysis malware

 Note: This Section Added by Malfav

Encryption:
cryptacquirecontext: Acquire a handle to a cryptographic context
cryptgenkey: Generate a cryptographic key
cryptencrypt: Encrypt data
cryptdecrypt: Decrypt data

Resource Management:
findresource: Locate a resource in an executable
loadresource: Load a resource into memory
lockresource: Lock a resource for access
sizeofresource: Get the size of a resource

Data Transfer:
internetopen: Initialize an internet session
internetconnect: Connect to a specified server
httprequest: Send HTTP requests
send: Send data over a network connection
recv: Receive data from a network connection

Data Wiping:
deletefile: Delete a specified file
setfilepointer: Move the file pointer to a specified location
writefile: Write data to a file (can be used to overwrite file content)

Data Exfiltration:
createthread: Create a new thread (can be used to exfiltrate data in the background)
writeprocessmemory: Write data to another process's memory
readprocessmemory: Read data from another process's memory
urlmon: Download and upload data over HTTP/HTTPS

https://fareedfauzi.github.io/

Registry Manipulation:
regcreatekeyex: Create or open a registry key
regsetvalueex: Set the value of a registry key
regqueryvalueex: Query the value of a registry key
regdeletekey: Delete a registry key
regdeletevalue: Delete a value from a registry key

File System Changes:
createfile: Create or open a file
writefile: Write data to a file
deletefile: Delete a file
movefile: Move or rename a file
copyfile: Copy a file from one location to another

These APIs cover a range of functionalities that malware might use to perform actions such as
encrypting data, managing resources, transferring data over networks, wiping data, exfiltrating
information, manipulating the registry, and making changes to the file system.

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

API Hooking to analysis malware

 Note: This Section Added by Malfav

https://fareedfauzi.github.io/

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

Common Assembly Instructions:

 Note: This Section Added by Malfav

MOV: Move data from one location to another.

PUSH: Push data onto the stack.

POP: Pop data from the stack.

CALL: Call a procedure or function.

RET: Return from a procedure or function.

JMP: Jump to a specified address (unconditional jump).

JE/JZ: Jump if equal/zero (conditional jump).

JNE/JNZ: Jump if not equal/not zero (conditional jump).

CMP: Compare two values.

ADD: Add two values.

SUB: Subtract one value from another.

MUL: Multiply two values.

DIV: Divide one value by another.

AND: Perform a bitwise AND operation.

OR: Perform a bitwise OR operation.

XOR: Perform a bitwise XOR operation.

NOT: Perform a bitwise NOT operation (invert bits).

INT: Generate a software interrupt.

NOP: No operation (does nothing).

https://fareedfauzi.github.io/

In malware analysis, it's crucial to understand that the use of Windows APIs alone does
not indicate malicious behavior. To accurately assess whether API usage is part of a
malicious activity, you must analyze several key aspects.

Firstly, examine the context of API usage. This involves understanding the overall
purpose and behavior of the malware. Are the APIs being used in a way that aligns with
known malicious activities, such as data exfiltration, system manipulation, or stealth
operations? The context provides insights into why certain APIs are called and what the
malware aims to achieve.

Secondly, review the parameters supplied to each API. The parameters can offer detailed
information about the specific actions being performed. For instance, if an API call
involves file operations, the parameters might indicate the file paths or operations
being executed, such as reading, writing, or deleting files.

Finally, analyze the sequence of API calls. Malware often relies on a series of API calls to
perform complex tasks. By examining the order and combination of API calls, you can
discern patterns and identify how the malware progresses through its various stages,
such as downloading a payload, setting up persistence, or exfiltrating data.

Together, these elements—context, parameters, and sequence—help in discerning
whether the API usage is part of a malicious strategy or just routine system operations.
This comprehensive approach is essential for accurate malware analysis and detection.

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

WinAPI In Malware

https://fareedfauzi.github.io/

Registry operations Mutexes Processes and Threads File operations Windows Services

RegCreateKey CreateMutex CreateProcess CreateFile OpenSCManager

RegDeleteKey OpenMutex ExitProcess WriteFile CreateService

RegSetValue CreateRemoteThread ReadFile OpenService

RegOpenKey CreateThread SetFilePointer
ChangeServiceConfig2
W

RegGetValue GetThreadContext DeleteFile StartService

SetThreadContext CloseFile

TerminateProcess MoveFile

CreateProcessInternalw GetTempPath

ShellExecute

WinExed

ResumeThread

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

 Common operations:

https://fareedfauzi.github.io/

Description WinAPI Function

Installs a
hook procedure that
monitors key presses.

SetWindowsHookEx

Retrieves
the current state of the
specified virtual key.

GetAsyncKeyState

Retrieves
the status of the specified
virtual key.

GetKeyState

Retrieves
the status of all virtual
keys.

GetKeyboardState

Retrieves
a handle to the
foreground window.

GetForegroundWindo
w

Retrieves
the text of the specified
window's title bar.

GetWindowText

Retrieves
the text description of a
key.

GetKeyNameText

Retrieves
the active input locale
identifier (formerly called

GetKeyboardLayout
Retrieves the active input
locale identifier (formerly
called the keyboard layout).

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

 Common operations: Keylogging

https://fareedfauzi.github.io/

WinAPI Function Description

WSAStartup Initiates the use of the Winsock DLL by a process.

socket
Creates a socket that is bound to a specific transport
service provider.

bind Associates a local address with a socket.

listen
Places a socket in a state where it is listening for an
incoming connection.

accept Accepts a connection on a socket.

connect Attempts to make a connection to another socket.

send Sends data on a connected socket.

recv Receives data from a connected socket.

read Reads data from a file descriptor.

write Writes data to a file descriptor.

shutdown Disables sends or receives on a socket.

closesocket Closes an existing socket.

WSACleanup Terminates use of the Winsock DLL.

InternetOpen Initializes an application’s use of the WinINet functions.

InternetConnect Initiates a connection to the specified URL.

InternetOpenUrl Opens a URL on the internet.

InternetReadFile
Reads data from a handle opened by the InternetOpenUrl
or InternetConnect function.

InternetCloseHandle Closes a single Internet handle.

WinHttpOpen Initializes the use of WinHTTP functions.

WinHttpConnect Connects to an HTTP server.

WinHttpOpenRequest Initializes an HTTP request handle.

WinHttpSendRequest Sends the specified request to the HTTP server.

WinHttpReceiveResponse Waits to receive the response to the HTTP request.

WinHttpQueryDataAvailable
Retrieves the amount of data available to be read by a
specified request.

WinHttpReadData Reads data from a specified request.

WinHttpCloseHandle Closes an open handle.

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

 Common operations: Backdoor connection

https://fareedfauzi.github.io/

DLL Injection PE Injection Reflective Injection

OpenProcess OpenThread CreateFileMapping

VirtualAllocEx SuspendThread Nt/MapViewOfFile

WriteProcessMemory VirtualAllocEx memcpy

CreateRemoteThread WriteProcessMemory Nt/MapViewOfSection

NtCreateThread SetThreatContext CreateThread

RtlCreateUserThread ResumeThread NtQueueApcThread

 NtResumeThread CreateRemoteThread

 RtlCreateUserThread

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

 Common operations: Process Injection

https://fareedfauzi.github.io/

APC Injection
Hollowing/Process
Replacement

AtomBombing

SleepEx CreateProcess GlobalGetAtomName

SignalObjectAndWait NtQueryProcessInformation NtQueueApcThread

MsgWaitForMultipleObjectsE
x

Zw/NtUnmapViewOfSection GlobalAddAtom

WaitForMultipleObjectsEx VirtualAllocEx GlobalGetAtomName

WaitForSingleObjectEx WriteProcessMemory QueueUserAPC

Process32First GetModuleHandle

Process32Next WriteProcessMemory

Thread32First GetThreadContext

Thread32Next ResumeThread

QueueUserAPC

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

 Common operations: Process Injection

https://fareedfauzi.github.io/

Process Doppelgänging Hooking Injection Propagate Injection
Extra Windows Memory
Injection

CreateTransaction LoadLibraryW FindWindow FindWindowsA

CreateFileTransaction GetProcAdress FindWindowEx GetWindowThreadProcessId

NtCreateSection SetWindowsHookEx GetProp OpenProcess

NtCreateProcessEx PostThreadMessage OpenProcess VirtualAllocEx

NtQueryInformationProcess GetProp WriteProcessMemory

NtCreateThreadEx SendNotify SetWindowLongPtrA

RollbackTransaction VirtualAllocEx ReadProcessMemory

 WriteProcessMemory

 SetProp

 PostMessage

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

 Common operations: Process Injection

https://fareedfauzi.github.io/

WinAPI Function Description

SetWindowsHookEx
Installs an application-defined hook procedure into a
hook chain.

UnhookWindowsHookEx
Removes a hook procedure installed in a hook chain by
the SetWindowsHookEx function.

GetWindowLongPtr Retrieves information about the specified window.

SetWindowLongPtr Changes an attribute of the specified window.

SetWindowsHookEx
Installs an application-defined hook procedure into a
hook chain.

CallNextHookEx
Passes the hook information to the next hook procedure
in the current hook chain.

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

 Common operations: Process Hooking

https://fareedfauzi.github.io/

WinAPI Function Description

LoadResource
Retrieves a handle that can be used to obtain a
pointer to the first byte of the specified resource
in memory.

FindResource
Determines the location of a resource with the
specified type and name in the specified module.

SizeofResource
Retrieves the size, in bytes, of the specified
resource.

LockResource
Retrieves a pointer to the specified resource in
memory.

EnumResourceTypes
Enumerates all resource types within a binary
module.

EnumResourceNames
Enumerates all resource names of a specified
type within a binary module.

EnumResourceLanguages
Enumerates all the language identifiers for the
resources of a specified type within a binary
module.

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

 Common operations: Resource Related

https://fareedfauzi.github.io/

WinAPI Function Description

EnumProcesses Enumerates all processes currently running on the system.

EnumProcessModules Enumerates all modules (DLLs) loaded into a specified process.

CreateToolhelp32Snapshot
Creates a snapshot of the system, including all processes, threads, and
modules.

Process32First
Retrieves information about the first process encountered in a system
snapshot taken with CreateToolhelp32Snapshot.

Process32Next
Retrieves information about the next process encountered in a system
snapshot taken with CreateToolhelp32Snapshot.

Module32First
Retrieves information about the first module associated with a process
in a system snapshot taken with CreateToolhelp32Snapshot.

Module32Next
Retrieves information about the next module associated with a
process in a system snapshot taken with CreateToolhelp32Snapshot.

EnumWindows
Enumerates all top-level windows on the screen by passing the handle
to each window, in turn, to an application-defined callback function.

FindWindow
Retrieves the handle to the top-level window whose class name and
window name match the specified strings.

FindWindowEx
Retrieves the handle to a window whose class name and window name
match the specified strings. The function searches child windows,
beginning with the one following the specified child window.

EnumDesktopWindows
Enumerates all top-level windows associated with the specified
desktop.

RegEnumKey Enumerates the subkeys of the specified open registry key.

RegEnumValue Enumerates the values for the specified open registry key.

NetShareEnum Retrieves information about all shared resources on a server.

NetServerEnum
Retrieves information about all servers of the specified type that are
visible in a domain or workgroup.

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

 Common operations: Enumeration

https://fareedfauzi.github.io/

Unpacking API Description

CreateProcessInternalW
Creates a new process for unpacking the packed
executable.

VirtualAlloc or VirtualAllocEx Allocates memory for the unpacked code and data.

VirtualProtect or ZwProtectVirtualMemory
Changes the protection of a region of memory, often
used for code injection.

WriteProcessMemory or NtWriteProcessMemory Writes data to the memory of another process.

ResumeThread or NtResumeThread Resumes the execution of a suspended thread.

CryptDecrypt or RtlDecompressBuffer Decrypts or decompresses packed data.

NtCreateSection + MapViewOfSection or ZwMapView
OfSection

Creates a section object and maps a view of a section
into the address space of a process.

UnmapViewOfSection or ZwUnmapViewOfSection
Unmaps a mapped view of a section from the
address space of a process.

NtWriteVirtualMemory Writes data to the memory of a specified process.

NtReadVirtualMemory Reads data from the memory of a specified process.

NtMapViewOfSection
Maps a view of a section of a file into the address
space of a process.

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

 Common operations: Unpacking API

https://fareedfauzi.github.io/

Anti-debug Description

IsDebuggerPresent Checks if the current process is being debugged.

CheckRemoteDebuggerPresent Checks if a remote process is being debugged.

NtQueryInformationProcess
Retrieves information about a process, including
debug flags.

OutputDebugString Sends a string to the debugger for display.

BeingDebuggeed in PEB
Checks if the process is being debugged by
inspecting the Process Environment Block (PEB).

Check ProcessHeap flag
Checks the Process Heap flags for signs of a
debugger.

NtGlobalFlag
Retrieves the global debug flag for the current
process.

LookupPrivilegeValue
Retrieves the locally unique identifier (LUID) for a
privilege.

BlockInput Blocks keyboard and mouse input to the system.

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

 Common operations: Anti-Debugging

https://fareedfauzi.github.io/

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

Anti Malware Analysis:

Signatures: Use tools like PEiD to identify known packers through signature
matching.

Strings: Lack of readable strings in the executable often suggests packing.

Imports: Few or no import functions may indicate the file is packed.

Sections: Unusual section names, like "UPX," can signal packing.

Entropy: High entropy values suggest encrypted or compressed data.

Raw/Virtual Sizes: Significant differences between raw and virtual sizes can indicate
packing.

Statically: Involves reverse engineering the entire unpacking routine from the executable.
This

 method can be complex and time-consuming, often proving to be less practical.

Dynamically: Uses a debugger to monitor and control the execution of the malware.
Breakpoints are set on common unpacking functions like VirtualAlloc, VirtualProtect, and
others to observe and extract the unpacked payload during runtime.

Automated: Utilizes tools and services designed to automate the unpacking process.
Examples include Unpac.me, PE-sieve, MalUnpack, and specialized sandboxes that
automatically handle the unpacking and analysis of malware.

Method to Unpack :

https://fareedfauzi.github.io/

API Hashing Description

LoadLibraryA
Loads a dynamic-link library (DLL) into the
address space of the calling process.

GetProcAddress
Retrieves the address of an exported function or
variable from a specified DLL.

LdrGetProcedureAddress
Retrieves the address of an exported function or
variable using the LDT.

GetModuleHandleA
Retrieves a handle to the specified module (DLL
or executable file).

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

API Hashing:

API hashing is a technique used in malware analysis to identify and verify API functions by
creating hash values of their names or addresses. This process involves computing a unique
hash for each API function used by the malware and comparing these hashes against known
values to detect obfuscated or dynamically resolved functions. By analyzing these hashes,
analysts can uncover hidden or encrypted API calls, aiding in the reverse engineering and
understanding of malware behavior. This method is valuable for recognizing how malware
interacts with system functions, especially when these interactions are not immediately
apparent due to obfuscation.

Shellcode often uses a precalculated hash to resolve APIs. The process involves:

Iterating through all loaded modules.

Hashing each module's name and its exported function names

Combining these hashes and comparing them to the given hash.

If a match is found, the function's address is resolved; otherwise, the process continues
with the next module.

https://fareedfauzi.github.io/

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

Ransomware 101:

Ransomware is a type of malicious software designed to block access to a victim’s files
or system until a ransom is paid. Typically, ransomware encrypts the victim's data,
rendering it inaccessible without a decryption key. Once the data is encrypted, the
malware displays a ransom note demanding payment, usually in cryptocurrency, in
exchange for the decryption key.

The methods ransomware uses to infiltrate systems are diverse. It can spread through
phishing emails, where malicious attachments or links are disguised as legitimate
content, or through malicious downloads that exploit software vulnerabilities.
Additionally, ransomware can propagate across networks by exploiting weak security
measures or unpatched software.

The impact of a ransomware attack can be devastating, affecting individuals,
businesses, and organizations by disrupting operations, causing financial losses, and
potentially leading to data breaches. In response, effective prevention strategies include
maintaining regular backups, applying timely security patches, and implementing
comprehensive awareness training to reduce the risk of infection and mitigate potential
damage.

https://fareedfauzi.github.io/

Collect PC Information: Gather system details.

Target Files: Identify files and directories to encrypt using blacklists or whitelists.

Locate Files: Find and target specified files, including network shares.

Generate Key: Create an encryption key.

Encrypt Files: Encrypt files, either by overwriting or creating new ones and deleting
originals.

Append Extension: Add a ransomware-specific extension to encrypted files.

Drop Ransom Note: Place a text file with ransom instructions.

Optional Actions:
Delete Shadow Copies: Remove backups.
Disable Lock Files: Ensure ransom note visibility.
Change Wallpaper: Display ransom instructions.
Connect to C2 Server: Report the attack.
Enumerate Network Shares: Scan for additional targets.
Exploit Vulnerabilities: Use system weaknesses.
Create Persistence: Maintain access.
Stop Services: Halt critical services.
Terminate Processes: Kill interfering processes.

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

Ransomware Flow 101:

https://fareedfauzi.github.io/

CryptoAPI Function Description

CryptAcquireContext
Acquires a handle to a Cryptographic Service Provider (CSP) for
cryptographic operations.

CryptImportKey
Imports an embedded public key into the cryptographic context
for use in encryption.

CryptGenRandom
Generates random bytes suitable for cryptographic purposes,
typically used for initialization vectors (IVs).

rand
Generates pseudo-random bytes, often used for generating IVs
as an alternative to CryptGenRandom.

GetTickCount
Retrieves the number of milliseconds that have elapsed since
the system was started, sometimes used for generating IVs.

CryptGenKey
Generates a symmetric key for use in cryptographic operations
such as encryption and decryption.

CryptSetKeyParam
Modifies various aspects of a cryptographic key, such as the
key’s operation mode or parameters.

CryptExportKey
Exports a cryptographic key, often used for sharing public keys
generated by CryptGenKey.

CryptEncrypt
Encrypts data using the specified cryptographic key and
algorithm obtained from CryptImportKey and
CryptAcquireContext.

CryptDestroyKey Destroys the cryptographic key by freeing its resources.

CryptDeriveKey Derives a key from a specified hash value or password.

CryptDecrypt
Decrypts data using the specified cryptographic key and
algorithm obtained from CryptImportKey and
CryptAcquireContext.

CryptReleaseContext
Releases the handle to a cryptographic service provider (CSP)
obtained from CryptAcquireContext.

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

Ransomware : Common CryptoAPI encryption

https://fareedfauzi.github.io/

File Encryption APIs Description

CreateFile Opens or creates a file for reading, writing, or both.

SetFilePointer Moves the file pointer within a file to a specified location.

SetFilePointerEx
Extended version of SetFilePointer with support for large
files.

WriteFile
Writes data to a file, typically used for writing encrypted
content and key information.

ReadFile
Reads data from a file, usually used for reading the
original file contents.

CloseFile Closes the file handle, releasing system resources.

MoveFile
Renames or moves a file, often used to update file
extensions after encryption.

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

Ransomware : File encryption APIs

https://fareedfauzi.github.io/

Ransomware : Common algorithm of data

Despite reviewing API documentation, understanding algorithm patterns, and conducting
preliminary Google searches, fully deciphering malware behavior often requires more in-depth
techniques. Tools such as CAPA Scanner and KANAL become invaluable in this context. CAPA
Scanner excels in identifying and classifying code patterns, while KANAL specializes in
recognizing and mapping out the various functions and their relationships within the malware.
These tools automate the detection of common tactics, techniques, and procedures (TTPs),
which can be crucial for revealing complex behaviors and hidden functionalities. They help by
providing comprehensive analyses of code and identifying key indicators that manual
inspection might overlook. By integrating these tools into your analysis workflow, you can
achieve a more nuanced understanding of the malware, streamline the identification of its
capabilities, and enhance the overall effectiveness of your investigation. This approach not
only improves accuracy but also accelerates the process of developing effective
countermeasures.

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

https://fareedfauzi.github.io/

CryptoAPI Function Description

CryptAcquireContext
Acquires a handle to a Cryptographic
Service Provider (CSP) for cryptographic
operations. Required to use CryptoAPI

CryptEncrypt

Encrypts data using the specified
cryptographic key and algorithm
obtained from CryptImportKey and
CryptAcquireContext.

CryptDeriveKey
Derives a key from a specified hash
value or password. Parameter Algid is
crucial.

CryptDecrypt

Decrypts data using the specified
cryptographic key and algorithm
obtained from CryptImportKey and
CryptAcquireContext.

Ransomware : Encryption

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

AES (Advanced Encryption Standard): A widely used encryption algorithm known for its
security and efficiency, operating on block sizes of 128, 192, or 256 bits.

RC4 (Rivest Cipher 4): A stream cipher known for its simplicity and speed, though less
commonly used today due to security vulnerabilities.

Serpent: A block cipher designed to be highly secure, using a 128-bit block size and key
sizes of 128, 192, or 256 bits, known for its strong cryptographic properties.

Blowfish: A fast and flexible block cipher with a variable key length, offering 64-bit block
size encryption, and known for its efficiency and security.

RSA

https://fareedfauzi.github.io/

API Function Description

CryptAcquireContext

Acquires a handle to a
Cryptographic Service
Provider (CSP) for
cryptographic operations.
Required to use CryptoAPI

CryptCreateHash

Initiates the hashing of a
stream of data.
Parameter Algid is
crucial.

Ransomware : Hashing

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

MD5 (Message Digest Algorithm 5): Produces a 128-bit hash value, often used for data
integrity checks, though it's considered weak against collision attacks.

SHA (Secure Hash Algorithm): A family of cryptographic hash functions, including
SHA-1, SHA-256, and SHA-3, providing varying levels of security and hash lengths,
with SHA-256 and SHA-3 being commonly used for secure hashing.

CRC (Cyclic Redundancy Check): A non-cryptographic hash function designed for
detecting accidental changes to raw data, commonly used in error-checking
scenarios.

https://fareedfauzi.github.io/

API Function Description

RtlCompressBuffer
Compresses a given
buffer of data

RtlDecompressBuffer
Decompresses a given
buffer of compressed data

Ransomware : Compression

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

APLib (Advanced Packer Library): A lossless compression algorithm known for its efficiency in
compressing executable files, often used in software packing and protection.

LZNT (Lempel-Ziv NT): A variant of Lempel-Ziv compression used in Windows NT-based
operating systems, effective for compressing data with moderate compression ratios.

LZMA (Lempel-Ziv-Markov chain algorithm): A high-compression, lossless algorithm used in
formats like 7z and xz, known for its high compression ratios and slower compression and
decompression speeds compared to other algorithms.

https://fareedfauzi.github.io/

 Shellcode:

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

Shellcode is a small piece of code used as the payload in an exploit, typically designed to
execute a specific function or command within the context of a compromised system. It
often operates as a series of instructions intended to be injected into a running process
or memory space, allowing an attacker to execute arbitrary commands or gain control
over the system. Shellcode can be written in various assembly languages and is
frequently used in exploits to bypass security mechanisms, escalate privileges, or
achieve persistence.

Due to its compact size and specific functionality, shellcode is often employed in buffer
overflow attacks and other vulnerabilities where it needs to be both small and efficient.
Its primary role is to initiate further malicious activities, such as creating backdoors,
downloading additional malware, or establishing a command and control channel.
Understanding shellcode is crucial for malware analysis and reverse engineering, as it
reveals how attackers exploit vulnerabilities and what actions they aim to perform once
they gain access.

Shellcode: A sequence of bytes representing assembly instructions
designed for execution within a compromised system.
Allocation: Often uses VirtualAlloc to allocate memory for execution.
NOP Sled: Look for the NOP (0x90) sled at the start and 00 byte values at
the end, indicating its probable boundaries.
DLL Loading: Frequently seeks kernel32.dll for functions like LoadLibrary
and GetProcAddress to load DLLs and resolve API function names.
PEB Lookup: Uses the Process Environment Block (PEB) to locate
kernel32.dll in the memory space of the exploited application.

Shellcode Flow:

https://fareedfauzi.github.io/

Opcode Description

FC
This translates to the instruction CLD (clear
direction flag).

EB
This is the opcode for a relative jump
instruction.

E8 This is the opcode for a CALL instruction.

55 8B EC

This translates to the instructions push ebp
and mov ebp,esp, commonly seen at the
beginning of a function (i.e., the function
prologue) in x86.

 Shellcode: Shellcode common opcodes

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

https://fareedfauzi.github.io/

 Shellcode: Tips

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

To rebase shellcode addresses, use the formula: Base Address of Image - Entry Point of Shellcode.

Tools and Methods:
Execution: Use shellcode2exe.py to convert and analyze the shellcode. Follow up with debugging or behavior
analysis using tools like jmp2it or shellcode_launcher.

Disassembly: Utilize tools like IDA Pro (press C to convert undefined data to code), Ghidra (select the
appropriate compiler for language), and x64Dbg (step through code in the debugger).

Emulation: Employ tools like scdbg and speakeasy for emulation.
Pattern Search: Use xorsearch with parameters -W -d 3 to identify shellcode patterns within binary files.

https://fareedfauzi.github.io/

Toolkit for Malicious APK Analysis:

APKTool: Useful for decompiling and reassembling APK files. It can decode
resources to nearly original form and rebuild them after modification.

JD-GUI: A Java decompiler that can be used to decompile the .dex files
inside an APK to view the source code.

Dex2Jar: Converts Android .dex (Dalvik Executable) files to Java .class files,
which can then be analyzed using Java decompilers like JD-GUI.

Androguard: A comprehensive tool for analyzing Android applications. It
supports various static analysis tasks, including decompiling .dex files and
analyzing the APK's structure.

APKToolBox: A tool for analyzing and decompiling APK files, which includes
various modules for different analysis needs.

VirusTotal: Although not a static analysis tool per se, VirusTotal can be
used to quickly check the reputation of APK files and see if they are flagged
by antivirus engines.

JADX: A decompiler for Android APK files that generates Java source code
from .dex files.

Static Analysis Toolkit (SAT): This tool provides a set of utilities for static
analysis of Android applications, including functionalities for APK
extraction and analysis.

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : malfav.gitbook.io

https://fareedfauzi.github.io/

Toolkit for Rootkit Detection

TDSSKiller: Detects and removes TDSS rootkits and other types of malware.

GMER: Provides comprehensive rootkit detection and removal, including hidden
processes and files.

ASWMbR: A tool from Avast that detects and removes rootkits and bootkits.

Sanity: Offers a range of rootkit detection features, including hidden files and
registry entries.

Rootkit Revealer: A utility from Microsoft that identifies rootkits and hidden files.

Rootkit Buster: Detects and removes rootkits and advanced malware.

Tuluka: Provides detection capabilities for rootkits and suspicious system behavior.

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : malfav.gitbook.io

https://fareedfauzi.github.io/

Cheat Sheet: Document Malicious Analysis:

URLs: Links used to download second-stage payloads, such as fileless
commands or executables.

Commands: Includes PowerShell, JavaScript, and wscript commands used
for further actions.

Filenames: Names and download paths of files retrieved during the attack.

Embedded File Signatures: PE headers with MZ magic bytes indicating
executable files.

Encoded Files/Commands: Data or commands encoded to evade detection
and analysis.

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

What to look for in Maldoc analysis:?

Interesting VBA Functions/Code:

AutoOpen()
AutoExec()
AutoClose()
Chr()
Shell()
Private Declare Function WINAPIFUNC Lib DLLNAME

https://fareedfauzi.github.io/
https://fareedfauzi.github.io/

Cheat Sheet: PDF Malware Analysis

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://fareedfauzi.github.io

Interesting PDF keywords:

/OpenAction: Action triggered when a PDF or document is opened.
/AA: Adobe Acrobat-specific action.
/Javascript: Indicates the use of JavaScript within a document.
/JS: Abbreviation for JavaScript.
/Names: Refers to a dictionary of names or identifiers.
/EmbeddedFile: File embedded within a document.
/URI: Uniform Resource Identifier, used to reference URLs.
/SubmitForm: Action to submit form data.
/Launch: Command to execute or open a file.
/ASCIIHexDecode: Decoding method for ASCII hex-encoded data.
/LZWDecode: Lempel-Ziv-Welch algorithm for decoding compressed data.
/FlateDecode: Flate (zlib) compression/decompression.
/ASCII85Decode: Decoding method for ASCII85-encoded data.
/Crypt: Indicates encryption or cryptographic functions.

Common tools to analysis malicious PDF:

PDFiD: Identifies suspicious elements in a PDF.
pdf-parser: Analyzes and parses PDF files to reveal hidden objects and data.
PDFtk: Manipulates and inspects PDF files.
peepdf: Analyzes PDF files, focusing on security aspects.
pdf stream dumper : is a tool used to extract and analyze streams of data embedded within a
PDF file.

https://fareedfauzi.github.io/
https://fareedfauzi.github.io/

Windows Internal:

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://malfav.gitbook.io

"Windows Internals" refers to the detailed workings and architecture of the Windows operating
system, including its core components, subsystems, and underlying mechanisms.
Understanding Windows internals is crucial for advanced troubleshooting, system
optimization, and security analysis.

Why Windows Internal:?

Understanding Windows Internals is crucial for several reasons, especially for
professionals involved in system administration, software development, and
cybersecurity. Here’s why a deep knowledge of Windows Internals is important:

Troubleshooting: Helps diagnose and resolve complex system issues and
crashes.
Performance Optimization: Enables better resource management and
system tuning.
Security and Forensics: Assists in malware analysis, incident response, and
understanding attack vectors.
Software Development: Improves API usage and driver development.
System Architecture: Clarifies component interactions and system design.
Configuration and Management: Supports advanced configurations,
scripting, and automation.
Cybersecurity: Aids in vulnerability assessment and exploit development.
System Recovery: Facilitates effective use of restore points and backups.
Compliance: Ensures systems meet regulatory requirements.
Continuous Learning: Keeps professionals updated with evolving
technologies.

https://fareedfauzi.github.io/
https://fareedfauzi.github.io/

In Windows Internals, a process is a fundamental concept representing an instance of a running
application. It includes all the necessary components required for executing a program, such as code,
data, and system resources. Understanding processes in Windows involves knowing how they are
managed, their lifecycle, and their interaction with other system components.

Key Concepts of Windows Processes
Process Basics:

Definition: A process is an executing instance of an application, including its code, data, and system
resources. It represents a single running application or task.

Process ID (PID): A unique identifier assigned to each process by the Windows operating system. It allows
the system and applications to refer to a specific process.

Process Structure

Process Control Block (PCB): A data structure used by the operating system to store information about a
process. It includes details like process ID, state, priority, and resource usage.

Process Environment Block (PEB): A data structure that holds information about the process’s
environment, including the process’s configuration, loaded modules, and initialization parameters.

Process Components

Executable Code: The actual code of the application that gets executed by the processor.

Memory Space: The virtual memory allocated for the process, including code, data, stack, and heap.

Handles: References to system resources like files, registry keys, and synchronization objects that the
process uses.

Windows Internal : Process

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://malfav.gitbook.io

https://fareedfauzi.github.io/
https://fareedfauzi.github.io/

In Windows Internals, a thread is the smallest unit of execution within a process. It
represents a single sequence of instructions that the operating system's scheduler can
execute independently. Threads are fundamental to multitasking in modern operating
systems, allowing multiple operations to be performed concurrently within a single
process.

Key Concepts of Threads in Windows
Thread Basics:

Definition: A thread is an execution context within a process. It has its own stack,
registers, and execution state, but shares the process’s memory and resources with other
threads within the same process.

Thread ID (TID): A unique identifier assigned to each thread by the operating system. It
allows the system and applications to reference and manage specific threads.

Thread Components

Stack: Each thread has its own stack for storing function call information, local variables,
and return addresses.

Thread Context: Includes the thread's state, such as register values, program counter, and
other execution-related data.

Thread State: Represents the current status of the thread, such as running, ready, or
waiting.

Windows Internal : Thread

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://malfav.gitbook.io

https://fareedfauzi.github.io/
https://fareedfauzi.github.io/

In Windows Internals, a handle is an abstract reference used by the operating system to manage and interact with
system resources. Handles provide a way for applications and system components to access and manipulate resources
such as files, processes, threads, registry keys, and other objects without directly dealing with their underlying
implementations.

Key Concepts of Handles in Windows
Definition:

Handle: A handle is a numeric identifier or pointer provided by the Windows operating system that represents an
object or resource. Applications use handles to perform operations on these resources.

Types of Handles

File Handles: Used to access and manipulate files and directories.

Process Handles: Used to manage and interact with processes.

Thread Handles: Used to control and manage threads.

Registry Handles: Used to access and modify Windows Registry keys and values.

Synchronization Handles: Used for synchronization objects like mutexes, semaphores, and events.

Handle Creation

Handles are created by system functions when resources are opened or created. For example:

CreateFile creates a handle to a file or device.

OpenProcess creates a handle to an existing process.

CreateSemaphore creates a handle to a semaphore object.

Windows Internal : Handle

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://malfav.gitbook.io

https://fareedfauzi.github.io/
https://fareedfauzi.github.io/

Suspicious Strings Category

C:\Windows\System32; C:\Users\Public; temp;
setup.exe

Filepaths and Filenames

http://; https://;www.;api/;cmd.exe Command and Control

(C2)

GET / POST /; socket; IP Network Activity

; proxy

VirtualAlloc; CreateRemoteThread; LoadLibrary;
GetProcAddress;

Malicious Function Names

WriteProcessMemory

base64; xor; decrypt; encode; crypt Decryption and Encoding

RunOnce; Startup; Registry; ScheduledTask;
AutoRun

Persistence Mechanisms

eval(; exec(; decodeURIComponent;
document.write

Obfuscation

Strings : Suspicious String Lists

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://malfav.gitbook.io

In malware analysis, strings are sequences of readable text embedded within binary files
or memory. Analyzing these strings can reveal valuable information about the malware’s
behavior, capabilities, and goals. Strings often include filenames, URLs, error messages,
command-line arguments, and other data that can provide insights into how the
malware operates or communicates.

https://fareedfauzi.github.io/
https://fareedfauzi.github.io/

Guide from Experts in different countries:

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://malfav.gitbook.io

Initial Analysis and Tools:
String and API Search: Begin by searching for strings and APIs within the malware
sample.
Injection Detection: Look for VirtualAlloc and VirtualProtect APIs to detect injection
techniques.
Process Manipulation: Identify CreateProcess for process-related actions.
Practical Malware Analysis: Study resources like the "Practical Malware Analysis"
book for comprehensive learning and exercises.

2. Using IDA and Sandboxing
In IDA: Depending on your goal, search for network-related APIs to understand
communications. Trace the subroutines from the API calls back to the main function
to understand their role and responses.
Sandboxing: Run the malware in a sandbox to observe its behavior and interactions
with the system. This approach helps identify how it operates and what APIs it uses.

3. Analysis Approach
Methodology: Depending on your goal, whether it's triage, deep analysis, or
extracting C2s, tailor your approach. Use tools like Python for automation
and create behavioral rules based on your findings.
Static vs. Dynamic Analysis: Use static analysis for disassembly (e.g., IDA
Pro) and dynamic analysis for observing real-time behavior in a controlled
environment (e.g., using a sandbox or VM).

4. System Changes and Observations
System Changes: Monitor the registry, file system, and network activity for
any modifications or new entries.
Key Areas to Check: Look at processes, services, file system changes, and
registry modifications to identify persistence mechanisms.

https://fareedfauzi.github.io/
https://fareedfauzi.github.io/

Guide from Experts in different countries:

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Cheatsheet: Windows Malware Analysis and Reversing

Malfav

Source : https://malfav.gitbook.io

5. Understanding Code and Behavior
Code Analysis: In static analysis, focus on strings, functions, and APIs.
Detect obfuscation or encryption routines and analyze the control flow.
Behavioral Observation: In dynamic analysis, observe network traffic, file
system changes, and new processes or services.

6. Advanced Techniques and Tools
Tools for System Changes: Use tools like Procmon and Regshot to monitor
changes in the registry and file system.
API Monitoring: Tools like API Monitor can help track API calls made by the
malware.
Network Traffic: Use Wireshark to analyze network activity generated by
the malware.

7. Overall Strategy
Initial Steps: Gain as much information as possible without executing the malware. Check for
strings, hashes, section entropy, and APIs.
Behavior Analysis: Observe specific behaviors, check for process spawning, and analyze
execution paths.

8. Function Analysis and Renaming
Function Analysis: When dealing with code, focus on understanding suspicious functions.
Rename them if needed to clarify their purpose and facilitate easier analysis.

Note : This structured approach ensures a comprehensive analysis of malware, from initial
discovery to in-depth understanding and behavior observation.

https://fareedfauzi.github.io/
https://fareedfauzi.github.io/

All in One Malware Analysis
Cheat Sheat & Roadmap

w w w . g i t h u b . c o m / m a l f a v

Malfav

"Thanks to everyone who helped make it happen. Jazak Allah Khair."

