(/GnITE

Technol

Android Penetration Testing

APK Reverse
Engineering

WWW.HACKINGARTICLES.IN

https://www.ignitetechnologies.in
https://www.hackingarticles.in

Contents

Y ¢ 13 1 - T ot N 3
Reverse ENgIiNeeriNg.....ccciciieiiuiieiieiiniieiieieieiiiiiiesiesiesiasissnansansanes 4
Installation......ccuuiieeiiiiiiiirr 4
(DT=ToloT 9] 1 F- 1 4T] FSF0S 5
Smali files and modification.......cccccceireiiiiniiiniiiiiiiniiiiciiiciiniinnen, 6
Signing APK and Rebuildingccccceeeeieiieiiieiiecenreirecenrenrecenrenneees 10
SOIVING ChalleNge ..c..eeeereiieice et rcecerrececereceereraceesansenes 14

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Abstract

Android reverse engineering refers to the process of decompiling the APK for the purpose of investigating
the source code that is running in the background of an application. An attacker would ideally be able to
change the lines of bytecode to make the application behave in the way that the attacker wants. However,
as easily as it is put, reversing and rebuilding an APK takes more than just a shallow statement. In this
article, we'll be looking at the basics of decompilation, rebuilding, signing and changing the behavior of
an application while we do this.

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Reverse Engineering

Installation

Uncrackable is an intentionally vulnerable APK created by Bernhard Mueller which was later undertaken
by the OWASP MSTG project. Level 1 of the 4 levelled challenge of APKs focuses on the basics of root
detection bypass and hooking to find a secret encryption key. To install this application, follow here.

) owasp-mstg/UnCrackabl: x +

< C & github.com/OWASP/owasp-mstg/blob/master/Crackmes/Android/Level_01/UnCrackable-Level1.apk i e H

O ‘ Sign up | —

H OWASP / owasp-mstg (JSponsor | @Waich | 363 ¥y Star | 69 % Fok 15k
<> Code Issues 104 Pull requests & Actions Projects 1 Security Insights
#* master -~ Owasp-mstg / Crackmes / Android / Level_01/UnCrackable-Levell.apk -+ Go to file
e commjoen #992: spelling fixes Latest commit f56eccd on 14 Sep 2018 (%) History

Ax 2 contributors e ‘

65.1 KB Download ~ {J

After you download the apk and install using adb in your genymotion emulator, you’d see something like

this:

rGNITE

Technologies

www.hackingarticles.in

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://github.com/OWASP/owasp-mstg/blob/master/Crackmes/Android/Level_01/UnCrackable-Level1.apk
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Google Pixel 2 (1080x1920, 420dpi) - 192.168.57.101 - Genymotion — [

10:45 Ciu

Root detected!

This is unacceptable. The app is now going
to exit.

OK

This means that the application has some kind of logic hardcoded that prevents it from opening in rooted
devices and since genymotion’s android APls are root by default this is presenting the user with this
problem. In real life environment, you’ll see many applications in which developers code this root
detection logic as a security measure to prevent aid to an attacker in his campaign and thus safeguard
Plls. However, this could also pose the possibility of poor coding practice and is exploitable. There are
multiple ways to solve this first hurdle; hooking and removing this restriction while runtime is one option,
making the application debuggable and injecting while executing is also one method but we’ll follow the
third method, which is reversing method. We’d decompile the application and remove the exit logic of
the application to prevent exit.

Decompilation

The Android decompilation process is fairly simple and resembles java decompilation in many ways. Basics
of the decompilation process have already been covered in a previous article here. It is highly
recommended you read para 3 of the article mentioned first and then resume this part.

It is to be noted that Dalvik bytecode is stored in *.dex format. This dex is the compiled version of source
code which is further packed with resources, manifest, META-INF (certificate) into a zip file also known as
an android app with an extension *.apk.

This *.dex file can be decompiled using dexdump which is provided in android SDK. In articles prior to this,
we’ve used the dex2jar tool to convert dex files in readable jar format. This same was done by first
unpacking the APK using apktool and then further converting classes.dex file into readable jar variant. So,
let’s unpack the APK first:

I apktool d -f -r UnCrackable-Levell.apk \

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.hackingarticles.in/android-application-framework-beginners-guide/
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Here is something different from previous time; -r option has automatically converted classes.dex into
smali files.

Smali files and modification

Smali in android is similar to what Assembly in Windows is. This is the human-readable version of dalvik
bytecode. Baksmali is the tool which decompiles dex into smali files. Here, note that baksmali has
converted classes.dex in smali files.

: Using Apktool 2.4.0- dirty on UnCrackable-Levelil. apL

: Copying raw resources...

: Baksmaling classes.d

: Copying assets and 11 5

: Copying unknown files...

: Copying original files...
root@hex: /home/hex/Downloads# cd UnCrackable-Levell
root@hex: /home/hex/Downloads/UnCrackable-Levell# 1s
AndroidManifest.xml apktool.yml resources.arsc
root@hex: /home/hex/Downloads/UnCrackable-Levell# cd smali/
root@hex: /home/hex/Downloads/UnCrackable-Levell/smali# 1s

root@hex: /home/hex/Downloads/UnCrackable-Levell/smali# cd sg/vantagepoint/uncrackablel/
root@hex: /home/hex/Downloads/UnCrackable-Levell/smali/sqg/vantagepoint/uncrackablei# 1s
a.smali 'MainActivitySi.smali' 'MainActivityS$2.smali' MainActivity.smali

root@hex: /home/hex/Downloads/UnCrackable-Levell/smali/sqg/vantagepoint/uncrackablei# I

A nifty little tool known as bytecode viewer converts APK directly into readable format java code thus
eliminating the need to use apktool then dex2jar and then jd-gui to view a readable java format. Here is
how the application looks decompiled in bytecode viewer.

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Bytecode Viewer 2.9.22 - https://bytecodeviewer.com | https://the.bytecode.club - @Konloch

File View Settings Plugins

[Files [work Space

i UnCrackable-Level1.apk
b # DecodedResources

sg/vantagepoint/a/a.class = | sg/vantagepoint/uncrackable1/MainActivity$1.class = | sg/vantagep

b = META-INF sg/vantagepoint/uncrackable1/MainActivity.class * sg/vantagepoint/a/c.class *
p Cires 3 +
v #isg

. FernFlower Decompiler - Editable; False
~ i vantagepoint 3E import android.app.Activity;
v #a 4 dimport android.app.AlertDialog:

= a.class 5 dimport android.app.AlertDialog.Builder;
= bl 5 dimport android.os.Bundle:
(class 7 import android.view.view;
= c.class 5 import android.widget.EditText;
w B uncrackabled %mpurt sq.vantagepo?nt‘a‘b:
5 a.class import sg.vantagepoint.a.c;

; » import sg.vantagepoint.uncrackablel.MainActivity.1;

= MainActivity$1.class import sg.vantagepoint.uncrackablel.MainActivity, 2;

= MainActivity$2.class ffE‘ blic class MatnActivity extends Activity {
MainActivity.dass- 7E‘pu ic class MainActivity extends Activity

. N private void a(String varl)
& AndroidManifest.xml (new Builder(this)).create():
resources.arsc

1 AlertDialog var2
1 var2.setTitle(varl);

18 var2.setMessage ("This is unacceptable. The app is now going to exit.");
19 var2,setButton(-3, "OK", new 1(this)):

- o Fil e elencinn 0 var2.setCancelable(false);
- R 2 var2.show();
Exact -+ b '
246 protected void onCreate(Bundle varl) {
[Jsearch 256 if (c.al) [| c.b() || c.e()) {
26 this.a("Root detected!"):
Search from All_Classes v 27
Strings M | B2l if (b.a(this.getApplicationContext())) {
Search String: 30 this.a("App 1s debuggable!"):
: 31 1
Exac super.onCreate (varl);
Search 34 this.setContentView(2130903040);
35 }
Results

public void verify(View varl) {
String var3 = ((EditText)this.findviewById(2130837505)).getText().toString();
AlertDialog var2 = (new Builder(this)).create():
if (a.a(var3)) {
var2.setTitle("Success!");
var3 = "This is the correct secret.”:
} else {
var2,setTitle("Mope...");
var3 = "That's not it. Try again.";

var2.setMessage (var3);
var2.setButton(-3, "OK", new 2(this)):
var2.show();

Refresh

Oh, wait, while just decompiling this APK, my eye went on an interesting piece of code under
MainActivity$1.class.

One thing to be noted is that since this application was obfuscated while building, it is forcing it to display
ambiguous information like same class name multiple times, change of name of methods etc. This is due
to Proguard obfuscation technique, which, is not properly implemented since the code is still pretty much
readable. Strong obfuscation makes it a headache to reverse an application and makes it near impossible
for an average attacker to patch APKs.

Now, let’s have a look at MainActivity$1.class

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

sg/vantagepoint/uncrackablet/MainActivity$1.class *

3 * Exa

FernFlower Decompiler - Editable: False
1 package sg.vantagepoint.uncrackablel;
= import android.content.DialogInterface;
import android.content.DialogInterface. OnClickListener;

o class MainActivity$l implements OnClicklListener {
7 // SFF: synthetic field
3 final MainActivity a:

10 MainActivity$l (MainActivity warl) {

11 this.a = varl;

12 T

146 public void onClick(DialogInterface varl, int var2) { --ff——r
15 System.exit (0);

16 }

A

Did you note as well that application is exiting using an onClick popup? Ahh! This popup is the popup that
we saw in our installation step where the application is detecting whether the device is the root or not.
So, hypothetically speaking, if | remove the logic to detect SU binaries, the system won’t exist. Yes, that is
one correct method, but | leave it to you readers to do and implement that. Other easier method is to
remove the exit dialogue itself. This way, even if the application detects SU binaries, it will still not exit
since system.exit won’t be existing now.

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

To do that, | need to open the smali file of this class.

e ny
29 invoke-direct {pe}, Ljavas/lang/Object;-><init=()Vv

31 return-void
32 .end method

35 # virtual methods

36 .method public onClick(Landroid/content/DialogInterface;I)V

37 .locals ©

38

39 const/4 pl, Ox0

40

41 invoke-static {p1l}, Ljava/lang/System;-»exit(I)V -f——n-—
42

43 return-void

44 .end method

Do you see the line where I've marked red? This is the same system.exit logic that we just saw. Now, it
takes a little practice to understand smali instructions and is certainly not possible to understand this in a
day or two but with a little smart work, we can make our way around to bypass root detection. Here,
invoke-static refers to a function being invoked, that is defined in the very adjoining line of code:
Ljava/lang/System. This is the path where a package of the system is stored. Next, exit(l) corresponds to
exit() method of System, with | as in integer as a value which is denoted by V. Pretty simple right? Now
let’s delete this line altogether!

33

34

35 # virtual methods

36 .method public onClick(Landroid/content/DialogInterface;I)V

37 .locals @

38

39 const/4 pl, @x@8

40

41 -+
42

43 return-void

44 .end method

That’s more than just pretty. This way we can rely on return-void instruction to return null value every
time application detects a SU package and so, whole logic is rendered useless just by this alteration. Let’s
try to rebuild this APK now.

I apktool b UnCrackable-Levell -o new_uncrackable.apk |

root@hex: fhome/hex/Downloads# apktool b UnCrackable-Levell -o new_uncrackable.apk
I: Using Apktool 2.4.0-dirty

I: Checking whether sources has changed...

I: Checking whether resources has changed...

I: Building apk file...
I
I:
r

: Copying unknown files/dir..
Built apk..
oot@hex: fhomcfhcxfnownloads# 1s | grep new_
uncrackable.apk
root@hex: fhome fhex /Downloads# I

rGNITE www.hackingarticles.in

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

And just like that, we’ve built a new application. Let’s try to install this new application in our genymotion
device.

radb install new_uncrackable.apk

OOPS! That’s peculiar. Did this work for you? Probably not. Let’s understand why.

root@hex: /home/hex/Downloads# adb install new_uncrackable.apk
Performing Streamed Install
adb: failed to install new_uncrackable.apk: Failure [INSTALL_PARSE_FAILED_NO_CERTIFICATES: Failed

to collect certificates from fdata/app/vmdl49007080.tmp/base.apk: Attempt to get length of null
array]
root@hex: /home /hex/Downloads# I

Signing APK and Rebuilding

The error |, and by extension, you must have received is a certificate error. Android uses something called
a certificate and a Keystore. A public-key certificate, also known as a digital certificate or an identity
certificate, contains the public key of a public/private key pair, as well as some other metadata identifying
the owner of the key (for example, name and location). The owner of the certificate holds the
corresponding private key.

When you sign an APK, the signing tool attaches the public-key certificate to the APK. The public-key
certificate serves as a “fingerprint” that uniquely associates the APK to you and your corresponding private
key. This helps Android ensure that any future updates to your APK are authentic and come from the
original author. The key used to create this certificate is called the app signing key.

A Keystore is a binary file that contains one or more private keys.

Every app must use the same certificate throughout its lifespan in order for users to be able to install new
versions as updates to the app.

When running or debugging your project from the IDE, Android Studio automatically signs your APK with
a debug certificate generated by the Android SDK tools. The first time you run or debug your project in
Android Studio, the IDE automatically creates the debug Keystore and certificate in
SHOME/.android/debug. Keystore, and sets the Keystore and key passwords.

Because the debug certificate is created by the build tools and is insecure by design, most app stores
(including the Google Play Store) will not accept an APK signed with a debug certificate for publishing.
But you must be wondering WHY IS THIS IMPORTANT?

We'd be creating our own Keystore and signing our APK using it. To do this we’ll use a tool called keytool.

keytool -genkey -v -keystore harshit_key.keystore -alias harsh_key
-keyalg RSA -keysize 2048 -validity 10000

TGNITE www.hackingarticles.in Page | 10

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

After that, you need to fill up your keystore password, name, org, city details and you’d have prepared
yourself a keystore.

root@hex: f/home /hex/Downloads# keytool -genkey -v -keystore harshit_key.keystore -alias harsh_k
ey -keyalg RSA -keysize 2848 -validity 10000
Enter keystore password:
Re-enter new password:
What is your first and last name?
[Unknown]: harshit rajpal
What is the name of your organizational unit?
[Unknown]: 1ignite
What is the name of your organization?
[Unknown]: 1ignite
What is the name of your City or Locality?
[Unknown]: New Delhi
What is the name of your State or Province?
[Unknown]: Delhi
What is the two-letter country code for this unit?
[Unknown]: 1IN
Is CN=harshit rajpal, OU=ignite, O=ignite, L=New Delhi, ST=Delhi, C=IN correct?
[no]: vyes

Generating 2,048 bit RSA key pair and self-signed certificate (SHA256withRSA) with a validity
of 10,000 days
for: CN=harshit rajpal, OU=ignite, O=ignite, L=New Delhi, ST=Delhi, C=IN
[Storing harshit_key.keystore]
root@hex: fhome/hex/Downloads# 1s | grep harshit
_key.keystore
root@hex: /home /hex/Downloads# I

Basically, your keystore now saves a self-signed certificate with 10,000 days of validity, which is an RSA
2048 bit key. Now, let’s sign our patched app using this key.

jarsigner -verbose -sigalg SHA1lwithRSA -digestalg SHA1l -keystore
harshit_key.keystore new_uncrackable.apk harsh_key

TGNITE www.hackingarticles.in Page | 11

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

root@hex: /home /hex/Downloads# jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -keystore
harshit_key.keystore new uncrackable.apk harsh_key
Enter Passphrase for keystore:
adding: META-INF/MANIFEST.MF
adding: META-INF/HARSH_KE.SF
adding: META-INF/HARSH_KE.RSA
signing: classes.dex
signing: resources.arsc
signing: res/layout/activity_main.xml
signing: res/mipmap-mdpi-v4/ic_launcher.png
signing: res/mipmap-xxxhdpi-v4/ic_launcher.png
signing: res/mipmap-xhdpi-v4/ic_launcher.png
signing: res/mipmap-xxhdpi-v4/ic_launcher.png
signing: res/mipmap-hdpi-v4/ic_launcher.png
signing: res/menu/menu_main.xml
signing: AndroidManifest.xml

>>> Signer
X.589, CN=harshit rajpal, OuU=ignite, O=ignite, L=New Delhi, ST=Delhi, C=IN
[trusted certificate]

jar signed.

Warning:

The signer's certificate is self-signed.

The SHA1 algorithm specified for the -digestalg option is considered a security risk. This alg
orithm will be disabled in a future update.

The SHA1withRSA algorithm specified for the -sigalg option is considered a security risk. This
algorithm will be disabled in a future update.

root@hex: fhome /hex/Downloads# I

Now, let’s try once again to install our apk in genymotion device using adb and see if this time it throws

an error or not.
I adb install new_uncrackable.apk |

root@hex: /home/hex/Downloads# adb install new uncrackable.apk
Performing Streamed Install

Success
root@hex: fhome /hex/Downloads# I

Perfect! Now that we’ve installed this, let’s test run our application.

TGNITE www.hackingarticles.in Page | 12

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Google Pixel 2 (1080x1920, 420dpi) - 192.... -

10:25 vin

Uncrackable1

VERIFY

With special thanks to Bernhard Mueller for creating the app
ntained by the MSTG project. Want more? Check the
MSTG playground

Voila! We’ve done it successfully. Let’s finish the challenge now by using Frida hooking technique.

TGNITE www.hackingarticles.in Page | 13

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Solving Challenge

Now, the challenge is to extract the secret string and get it validated as a flag. Upon further investigating
it came to our notice that method a() is returning the value of the secret string. Ha! This is poor practice
but helpful for our case.

[IFiles [work Space
w it UnCrackable-Level1.apk
» # DecodedResources

sg/vantagepoint/a/a.class %

» META-INF b4 b 4
L res FernFlower Decompiler - Editable: false
v i sg 1 package sg.vantagepoint.a;
w 3 vantagepoint <
v @a g=p 3Elimport javax.crypto.Cipher:
4 import javax.crypto.spec.SecretKeySpec:
5
- b.class SElpublic class a {
= L 7E public static byte[] a(byte[] var0, byte[] varl) {
C.class : SecretKeySpec var3 = new SecretKeySpec(var®, "AES/ECE/PKCS7Padding");
b £ uncrackable1 s Cipher var2 = Cipher.getInstance("AES");
4 AndroidManifest.xml L0 var2.init(2, var3); .
= 11 return var2.doFinal(varl);
resources. arsc 12 }

Now, all we need to do is to draft out a javascript hook for frida that will change the implementation of
this a() and give the secret as an output in our very own console. Huge shoutout to Odaylabs for giving the

code for this hook. Here is the code:
r

Java.perform(function () {

var aes = Java.use("sg.vantagepoint.a.a");

// Hook the function inside the class.
aes.a.implementation = function(var@, varl) {

// Calling the function itself to get its return value
var decrypt = this.a(vare, varl);

var flag = "";

// Converting the returned byte array to ascii and appending to a
string

for(var i = @; i < decrypt.length; i++) {
flag += String.fromCharCode(decrypt[i]);
}

// Leaking our secret

console.log(flag);

return decrypt;

TGNITE www.hackingarticles.in Page | 14

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Now, we need to run this code using frida and check the output.

frida -U -f owasp.mstg.uncrackablel -l expl.js --no-pause

(frida# cat expl.]js
(function (]

et its return value

a string

(frida# frida -U -f owasp.mstg.uncrackablel - js --no-pause

Frida 14.2.10 - A world-class dynamic instrumentation toolkit

More info at https 0 :
‘owasp.mstg.uncrackablel”. Resuming main thread
:owasp.mstg.uncrackablel]-> I want to beli

As you can see that the output is successfully dumped now! Let’s see what the output is in the genymotion
device.

Google Pixel 2 (1080x1920, 420dpi) - 192.16...
12:37

Success!

This is the correct secret.

TGNITE www.hackingarticles.in Page | 15

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

And just like that, we’ve solved this challenge. Thanks for reading.

TGNITE www.hackingarticles.in Page | 16

Technologies

https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in

Technologies
JO R

TRAINING PROGRAMS

(BEGINNER)

< Bug Bounty > Network Security
<Ethica| Hacking> Essentials

<Network Pentest>

< Wireless Pentest >

< Red Team Operation >7

—< Privilege Escalation>

2 _
_ -
_

www.ignitetechnologies.in y ™ in @

http://bit.ly/ignitetechnologies
https://www.ignitetechnologies.in
https://www.ignitetechnologies.in
https://twitter.com/hackinarticles
info@ignitetechnologies.in
https://in.linkedin.com/company/hackingarticles
https://github.com/Ignitetechnologies

