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Preface

It is a new era in the design of data platform systems. Disparate data lakes and data warehouses are 
giving way to a new type of data platform system – the lakehouse. It promises to unify all data analytics 
into a single platform. Databricks, with its Databricks SQL product suite, is the hottest lakehouse 
platform out there. It harnesses the power of Apache Spark™, Delta Lake™, and other innovations that 
enable data warehousing capabilities on the lakehouse with data lake economics.

This book is a comprehensive hands-on guide that lets you explore all the advanced features, use cases, 
and technology components of Databricks SQL. You will start with the fundamentals of the lakehouse 
architecture and how Databricks SQL fits into it. Next, you will learn how to use the platform – exploring 
data, executing queries, and building reports and dashboards. Moving on, you will learn about the 
administrative aspects of the lakehouse – data security, governance, and managing the computation 
power of the lakehouse. You will delve into the core technology enablers of Databricks SQL – Delta 
Lake™ and Photon. Finally, you will get hands-on with advanced SQL commands for ingesting data 
and maintaining the lakehouse.

By the end of this book, you will have mastered Databricks SQL and be able to deploy and deliver 
fast, scalable business intelligence on the lakehouse.

Who this book is for
This book is for business intelligence practitioners, data warehouse administrators, and data engineers 
who are new to Databricks SQL and want to learn how to deliver high-quality insights, unhindered 
by the scale of data or infrastructure. This book is also perfect for anyone who wants to study the 
advanced technologies that power Databricks SQL.

Basic knowledge of data warehouses, SQL-based analytics, and optionally, the ETL processes is 
recommended to effectively learn the concepts introduced in this book and appreciate the innovation 
in the platform.

What this book covers
Chapter 1, Introduction to Databricks, introduces Databricks along three dimensions. First, it will 
introduce Databricks, the company. Second, it will introduce the Data Lakehouse architecture – the 
core data Platform design pattern enabled by Databricks. Third, it will introduce the Databricks 
Lakehouse Platform. Essentially, this is the platform that Databricks provides for your organization 
to implement the data lakehouse architecture.
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Chapter 2, The Databricks Product Suite – A Visual Tour, presents a visual tour of Databricks SQL and 
the rest of the Databricks platform. It will teach you how to navigate the platform and locate features 
of interest with ease. 

Chapter 3, The Data Catalog, introduces the data catalog of the Databricks Lakehouse platform. It will 
teach you how the data objects – catalogs, schemas, tables, and views – are represented in the data 
catalog. Finally, it will teach you how to navigate and explore the data catalog with UI interfaces and 
SQL commands. Generated and populated by data engineers and consumed by data analysts, the data 
catalog is the central pillar of all your data operations.

Chapter 4, The Security Model, discusses the Databricks data security model and teaches how to use 
it to secure the data. Databricks provides a very fine-grained, yet easily programmable data security 
model to secure all data and data-related assets. 

Chapter 5, The Workbench, introduces the Databricks workbench. The workbench is a set of capabilities 
that enable a simple, intuitive, and intelligent experience in query building and dashboarding. The 
Databricks SQL workbench provides users on the unified lakehouse platform an instant way to query 
the data and extract insights from it.

Chapter 6, The SQL Warehouses, introduces the compute power behind Databricks SQL. SQL Warehouses 
provide the elastic, scalable compute power that can execute Business Intelligence (BI) queries with 
ease, no matter the scale of the data. The cloud philosophy says storage and compute power should 
scale independently so that we can drive the maximum Return on Investment (ROI). This is exactly 
what the SQL Warehouses in Databricks SQL do. 

Chapter 7, Using Business Intelligence Tools with Databricks SQL, teaches you how to connect your 
business intelligence tool of choice to Databricks SQL. This allows you to harness the power of 
Databricks SQL from the comfort of your favorite business intelligence tool.

Chapter 8, The Delta Lake, deep dives into the default storage format of Databricks – Delta Lake. It 
adds a layer of transactional intelligence to the otherwise simple data lake. This chapter will discuss 
the Delta Lake storage format and how it enables superior out-of-the-box query performance.

Chapter 9, The Photon Engine, deep dives into the Photon engine. It is the query engine that powers 
Databricks SQL. It is written from the ground up in native C++ and uses the Apache Spark API. This 
chapter deep dives into what makes Photon so fast.

Chapter 10, Warehouse on the Lakehouse, addresses one of the biggest mental leaps that must be taken 
when adopting the data lakehouse architecture. This chapter discusses how to implement popular 
warehousing patterns on the lakehouse. 

Chapter 11, SQL Commands Part–1, introduces Databricks-specific SQL commands that are used for 
data definition and data manipulation operations.

Chapter 12, SQL Commands Part–2, introduces Databricks-specific SQL commands that are used for 
data security and metadata operations.
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Chapter 13, Playing with the TPC-DS Dataset, introduces the TPC-DS dataset. It is a popular dataset for 
benchmarking decision support systems such as data warehouses. The chapter shows how to generate 
the TPC-DS dataset in Databricks and test the various concepts learned in the past chapters at scale.

Chapter 14, Ask Me Anything, presents and answers the frequently asked questions about Databricks SQL.

To get the most out of this book
This book is about Databricks SQL as an enabler for your business intelligence practice. Hence, the 
book assumes knowledge of standard SQL and business intelligence concepts. Basic knowledge of 
data warehouses and data lakes is recommended, but it is not mandatory. Some chapters, such as 
Chapter 8, The Delta Lake, and Chapter 9, The Photon Engine, assume some familiarity with Apache 
Spark and some data engineering constructs. That said, they are optional, deep-dive chapters and do 
not affect your learning of Databricks SQL. 

Databricks SQL is a Platform-as-a-Service (PaaS) offering and is accessible via any modern internet 
browser. It does not require any installation on your machine. 

If you are using the digital version of this book, we advise you to type the code yourself or access 
the code from the book’s GitHub repository (a link is available in the next section). Doing so will 
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Business-Intelligence-with-Databricks-SQL-Analytics. 
If there’s an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book. 
You can download it here: https://packt.link/vXWLg.

Software/hardware covered in the book Operating system requirements

Databricks SQL Windows, macOS, or Linux

https://github.com/PacktPublishing/Business-Intelligence-with-Databricks-SQL-Analytics
https://github.com/PacktPublishing/Business-Intelligence-with-Databricks-SQL-Analytics
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/vXWLg
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Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file 
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Mount 
the downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

A block of code is set as follows:

OPTIMIZE table_name [WHERE predicate]

  [ZORDER BY (col_name1 [, ...] ) ]

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words 
in menus or dialog boxes appear in bold. Here is an example: “To do so, we can click on the SQL 
Editor icon on the left-hand sidebar to bring up the SQL Editor page.”

Tips or Important Notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

https://customercare@packtpub.com
https://customercare@packtpub.com
http://www.packtpub.com/support/errata
https://copyright@packt.com
https://authors.packtpub.com
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Share Your Thoughts
Once you’ve read Business Intelligence with Databricks SQL, we’d love to hear your thoughts! Please 
click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

https://packt.link/r/1803235330




Part 1:  
Databricks SQL  

on the Lakehouse

This part focuses on the features and functions of the Databricks SQL product suite, which enables 
the day-to-day workflows of business intelligence practitioners and warehouse administrators. 

This part comprises the following chapters:

•	 Chapter 1, Introduction to Databricks

•	 Chapter 2, The Databricks Product Suite – A Visual Tour

•	 Chapter 3, The Data Catalog

•	 Chapter 4, The Security Model

•	 Chapter 5, The Workbench

•	 Chapter 6, The SQL Warehouses

•	 Chapter 7, Using Business Intelligence Tools with Databricks SQL





1
Introduction to Databricks

Databricks is one of the most recognizable names in the big data industry. They are the providers of the 
lakehouse platform for data analytics and artificial intelligence (AI). This book is about Databricks 
SQL, a product within the Databricks Lakehouse platform that powers data analytics and business 
intelligence. 

Databricks SQL is a rapidly evolving product. It is not a traditional data warehouse, yet its users are 
the traditional data warehouse and business intelligence users. It claims to provide all the functionality 
of data warehouses on what is essentially a data lake. This concept can be a bit jarring. It can create 
resistance in adoption as you might be wondering if your skills are transferrable, or if your work might 
be disrupted as a result of a new learning curve. 

Hence, I am writing this book.

The primary intent of this book is to help you learn the fundamental concepts of Databricks SQL in a 
fun, follow-along interactive manner. My aim is that by the time you complete this book, you will be 
confident in your adoption of Databricks SQL as the enabler of your business intelligence.

This book does not intend to be a definitive guide or a complete reference, nor does it intend to be a 
replacement for the official documentation. It is too early for either of those. This book is your initiation 
into business intelligence on the data lakehouse, the Databricks SQL way.

Let’s begin!

In this chapter, we’ll cover the following topics:

•	 An overview of Databricks, the company

•	 An overview of the Lakehouse architecture

•	 An overview of the Databricks Lakehouse platform
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Technical requirements
There are no technical requirements for this chapter. However, familiarity with the concept of databases, 
data warehouses, and data lakes will help.

An overview of Databricks, the company
Databricks was founded in 2013 by seven researchers at the University of California, Berkeley. 

This was the time when the world was learning how the Meta, Amazon, Netflix, Google, and 
Apple (MANGA) companies had built their success by scaling up their use of AI techniques in all 
aspects of their operations. Of course, they could do this because they invested heavily in talent and 
infrastructure to build their data and AI systems. Databricks was founded with the mission to enable 
everyone else to do the same – use data and AI in service of their business, irrespective of their size, 
scale, or technological prowess. 

The mission was to democratize AI. What started as a simple platform, leveraging the open source 
technologies that the co-founders of Databricks had created, has now evolved into the lakehouse 
platform, which unifies data, analytics, and AI in one place.

As an interesting side note, and my opinion: To this date, I meet people and organizations that equate 
Databricks with Apache Spark. This is not correct. The platform indeed debuted with a cloud service 
for running Apache Spark. However, it is important to understand that Apache Spark was the enabling 
technology for the big data processing platform. It was not the product. The product is a simple 
platform that enables the democratization of data and AI. 

Databricks is a strong proponent of the open source community. A lot of popular open source 
projects trace their roots to Databricks, including MLflow, Koalas, and Delta Lake. The profile of 
these innovations demonstrates the commitment to Databricks’s mission statement of democratizing 
data and AI. MLflow is an open source technology that enables machine learning (ML) operations 
or MLOps. Delta Lake is the key innovation that brings reliability, governance, and simplification to 
data engineering and business intelligence operations on the data lake. It is the key to building the 
lakehouse on top of cloud storage systems such as Amazon Web Service’s Simple Storage Service 
(S3), Microsoft Azure’s Azure Data Lake Storage (ADLS), and Google Cloud Storage (GCS), as 
well as on-premises HDFS systems.
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Within the Databricks platform, these open source technologies are firmed up for enterprise readiness. 
They are blended with platform innovations for various data personas such as data engineers, data 
scientists, and data analysts. This means that MLflow within the Databricks Lakehouse platform powers 
enterprise-grade MLOps. Delta Lake within the Databricks Lakehouse platform powers enterprise-grade 
data engineering and data governance. With the Databricks SQL product, the Databricks Lakehouse 
platform can power all the business intelligence needs for the enterprise as well!

Technologies and Trademarks
Throughout this book we will refer to trademarked technologies and products. Some notable 
examples are Apache Spark™, Hive™, Delta Lake™, Power BI™, Tableau™ and others that are 
inadvertently mentioned.

All such trademarks are implied whenever we mention them in the book. For the sake of brevity 
and readability, I will omit the use of the ™ symbol in the rest of the book.

An overview of the Lakehouse architecture
If, at this point, you are a bit confused with so many terms such as databricks, lakehouse, Databricks 
SQL, and more – worry not. We are just at the beginning of our learning journey. We will unpack all 
of these throughout this book. 

First, what is Databricks?

Databricks is a platform that enables enterprises to quickly build their Data Lakehouse infrastructure 
and enable all data personas – data engineers, data scientists, and business intelligence personnel 
– in their organization to extract and deliver insights from the data. The platform provides a 
curated experience for each data persona, enabling them to execute their daily workflows. The 
foundational technologies that enable these experiences are open source – Apache Spark, Delta 
lake, MLflow, and more.

So, what is the Lakehouse architecture and why do we need it?

The Lakehouse architecture was formally presented at the Conference on Innovative Data Systems 
Research (CIDR) in January 2021. You can download it from https://databricks.com/
research/lakehouse-a-new-generation-of-open-platforms-that-unify-
data-warehousing-and-advanced-analytics. This is an easily digestible paper that I 
encourage you to read for the full details. That said, I will now summarize the salient points from 
this paper.

Attribution, Where it is Due
In my summary of the said research paper, I am recreating the images that were originally 
provided. Therefore, they are the intellectual property of the authors of the research paper.

https://databricks.com/research/lakehouse-a-new-generation-of-open-platforms-that-unify-data-warehousing-and-advanced-analytics
https://databricks.com/research/lakehouse-a-new-generation-of-open-platforms-that-unify-data-warehousing-and-advanced-analytics
https://databricks.com/research/lakehouse-a-new-generation-of-open-platforms-that-unify-data-warehousing-and-advanced-analytics


Introduction to Databricks6

According to the paper, most of the present-day data analytics infrastructures look like a two-tier 
system, as shown in the following diagram:

Figure 1.1 – Two-tier data analytics infrastructures

In this two-tier system, first, data from source systems is brought onto a data lake. Examples of source 
systems could be your web or mobile application, transactional databases, ERP systems, social media 
data, and more. The data lake is typically an on-premises HDFS system or cloud object storage. Data 
lakes allow you to store data in big data-optimized file formats such as Apache Parquet, ORC, and 
Avro. The use of these open file formats enables flexibility in writing to the data lake (due to schema-
on-read semantics). This flexibility enables faster ingestion of data, which, in turn, enables faster access 
to data for end users. It also enables more advanced analytics use cases in ML and AI. 

Of course, this architecture still needs to support the traditional BI workloads and decision support 
systems. Hence, a second process, typically in the form of Extract, Transform, and Load (ETL), is 
built to copy data from the data lake to a dedicated data warehouse.
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Close inspection of the two-tier architecture reveals several systemic problems:

•	 Duplication of data: This architecture requires the same data to be present in two different 
systems. This results in an increased cost of storage. Constant reconciliation between these two 
systems is of utmost importance. This results in increased ETL operations and its associated costs.

•	 Security and governance: Data lakes and data warehouses have very different approaches to 
the security of data. This results in different security mechanisms for the same data that must 
always be in synchronization to avoid data security violations.

•	 Latency in data availability: In the two-tier architecture, the data is only moved to the warehouse 
by a secondary process, which introduces latency. This means analysts do not get access to fresh 
data. This also makes it unsuitable for tactical decision support such as operations.

•	 Total cost of ownership: Enterprises end up paying double for the same data. There are two 
storage systems, two ETL processes, two engineering debts, and more.

As you can see, this is unintuitive and unsustainable. 

Hence, the paper presents the Lakehouse architecture as the way forward.

Simply put, the data lakehouse architecture is a data management system that implements all the 
features of data warehouses on data lakes. This makes the data lakehouse a single unified platform 
for business intelligence and advanced analytics. 

This means that the lakehouse platform will implement data management features such as security 
controls, ACID transaction guarantees, data versioning, and auditing. It will implement query 
performance features such as indexing, caching, and query optimizations. These features are table 
stakes for data warehouses. The Lakehouse architecture brings these features to you in the flexible, 
open format data storage of data lakes. A Lakehouse is a platform that provides data warehousing 
capabilities and advanced analytics capabilities for the same platform, with cloud data lake economics.

What is the Formal Definition of the Lakehouse?
Section 3 in the CIDR paper officially defines the Lakehouse. Check it out.
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The following is a visual depiction of the Lakehouse:

Figure 1.2 – Lakehouse architecture

The idea of the Lakehouse is deceptively simple – as all good things in life are! The Lakehouse 
architecture immediately solves the problems we highlighted about present-day two-tier architectures:

•	 A single storage layer means no duplication of data and no extra effort to reconcile data. Reduced 
ETL requirements and ACID guarantees equate to the stability and reliability of the system.

•	 A single storage layer means a single model of security and governance for all data assets. This 
reduces the risk of security breaches.

•	 A single storage layer means the availability of the freshest data possible for the consumers of 
the data.

•	 Cheap cloud storage with elastic, on-demand cloud compute reduces the total cost of ownership.

•	 Open source technologies in the storage layer reduce the chances of vendor lock-in and make 
it easy to integrate with other tools.

Of course, any implementation of the Lakehouse will have to ensure the following:

•	 Reliable data management: The Lakehouse proposes to eliminate (or reduce) data warehouses. 
Hence, the Lakehouse implementation must efficiently implement data management and 
governance – features that are table stakes in data warehouses.
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•	 SQL performance: The Lakehouse will have to provide state-of-the-art SQL performance on 
top of the open-access filesystems and file formats typical in data lakes.

This is where the Databricks Lakehouse platform, and within it, the Databricks SQL product, comes in. 

An overview of the Databricks Lakehouse platform
The Databricks Lakehouse platform enables enterprises to build their Lakehouse by providing simplified 
data engineering and data management techniques. The Databricks Lakehouse platform also provides 
one of the best ML experiences for data scientists and ML engineers. 

Finally, Databricks SQL brings in the last piece of the puzzle – a home for the business intelligence and 
data analyst personas with a first-class workbench that allows query editing, building visualizations, and 
publishing dashboards. It also allows plug-and-play with downstream business intelligence tools such as 
Power BI, Tableau, Looker, and more. All of this is backed by state-of-the-art SQL query performance.

The following diagram represents the Databricks Lakehouse platform:

Figure 1.3 – The Databricks Lakehouse platform



Introduction to Databricks10

The lakehouse platform by Databricks is a simple, open, and collaborative platform that combines the 
reliability, performance, and governance capabilities of data warehouses with the openness, flexibility, 
and economies of cloud data lakes. 

Summary
In this chapter, we learned about Databricks as a company and the Databricks Lakehouse platform as 
the product of this company, which enables the democratization of data and AI for all organizations. 
We are now ready to begin exploring Databricks SQL. 

In the next chapter, Chapter 2, The Databricks Product Suite – A Visual Tour, we will start with a tour 
of the Databricks  Lakehouse platform.



2
The Databricks Product Suite – 

A Visual Tour

The Databricks Lakehouse platform is an expansive product that caters to personas such as data 
engineers, data scientists, and business analysts. It also caters to administrator personas such as 
platform administrators and database administrators. As we discuss core concepts in subsequent 
chapters, we will have to refer to other persona-specific features. Familiarity with the platform will 
allow us to navigate to the correct feature or function when referred. 

In this chapter, we will take a visual tour of the Databricks Lakehouse platform, with an emphasis on 
the Databricks SQL product. We will use the official Lakehouse infographic from Figure 1.3 as our 
guiding light to navigate through the Databricks Lakehouse platform and introduce, at a very high 
level, the features and functionalities and how they fit together. 

We will use screenshots throughout, and you are encouraged to navigate accordingly in your instance 
of Databricks for the best orientation possible. Please note that the Databricks platform is regularly 
updated and refined, so the visuals may have evolved by the time you read this book. Once we have 
this orientation and context, we will be better placed to dive into the details of the Databricks SQL 
product suite.

In this chapter, we will cover the following topics:

•	 Basic navigation with the sidebar

•	 The SQL persona view 

•	 The Machine Learning persona view

•	 The Data Science and Engineering persona view



The Databricks Product Suite – A Visual Tour12

Technical requirements
To get the most out of this chapter, you will need to have access to the following resources:

•	 A Databricks workspace. Databricks SQL requires a Premium or higher level of subscription. 
Databricks SQL is currently available on Amazon Web Services (AWS), Microsoft Azure, and 
Google Cloud Platform (GCP). Provisioning a Databricks workspace is beyond the scope of 
this book. You can get started here: https://databricks.com/try-databricks.

•	 Any modern internet browser. Databricks workspaces are accessed via browsers. Command-
line interface and REST API-based access is also possible, but these are beyond the scope of 
this book. You can explore the CLI and REST API at your own pace by following the guide at 
https://docs.databricks.com/reference/command.html.

Note
The documentation links contain a switcher that allows you to navigate to the documentation 
links for the cloud of your choice. The core functionality of Databricks SQL is the same across 
all clouds. I will call out any cloud-specific nuances as required.

Basic navigation with the sidebar
In this section, we will learn how to navigate the Databricks platform using the left-hand sidebar. The 
left-hand sidebar contains links to all the user-facing features and functions on the platform.

First things first, we must log in to our Databricks platform. Whether you created a Databricks account 
for yourself or are using a Databricks account that your organization uses, you should have a workspace 
URL. Visit the workspace URL and log in with your credentials. For Azure Databricks users, the URL 
should be of the https://adb-<an_alphanumeric_string>.azuredatabricks.net/ 
form. For Databricks on AWS, the URL should be of the https://dbc-<an_alphanumeric_
string>.cloud.databricks.com/ form. Finally, for Databricks on GCP, the URL should be 
of the https://<an_alphanumeric_string>.gcp.databricks.com/ form.

Upon successfully logging in, you should see a sidebar on the left-hand side. This sidebar is the key 
to navigating the Databricks platform. The sidebar can be divided into three main sections. Let’s have 
a look.

https://databricks.com/try-databricks
https://docs.databricks.com/reference/command.html
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The top of the sidebar

When a Databricks workspace is launched, the user lands on their pinned persona experience. There 
are three persona experiences:

•	 Data Science & Engineering

•	 Machine Learning

•	 SQL

Each of these persona experiences enables access to tools and features relevant to that persona’s daily 
workflow. The top of the sidebar primarily allows you to switch between these persona experiences. 
The following screenshot shows the persona dropdown:

Figure 2.1 – The persona experience dropdown

Note
The landing page may differ based on how you have gained access to the Databricks workspace. If 
you have created a new trial account on either AWS or Azure, you will land on the Data Science 
& Engineering experience. If you are part of an organization that already has Databricks, you 
may have to ask them for access to the SQL experience. Once enabled, you can pin it so that 
you always land on the SQL experience upon logging in.

Since we will be primarily working with the SQL experience, it is a good idea to go ahead and 
pin the SQL persona experience as our default landing page.
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The bottom of the sidebar

Let’s discuss the options available at the bottom of the left-hand sidebar, as shown in the  
following screenshot: 

Figure 2.2 – The Settings section

As shown in the preceding screenshot, the following options are available:

•	 Partner Connect: This provides a portal where you can select the partner tool or solution you 
want to connect to. Partner Connect simplifies and accelerates the integration. We will cover 
this in Chapter 7, Using Business Intelligence Tools with Databricks SQL.

•	 Help: This provides navigation to the documentation, release notes, service status page, 
knowledge base, and more. 

•	 Settings: This provides navigation to various management capabilities, depending on your 
privilege level:

	� User Settings: This is where you can generate access tokens, toggle visual settings, and 
configure personal Git integrations. We will cover this in future chapters when we discuss 
programmatic access to Databricks SQL.

	� Admin Console: This is where users and groups can be created. It also provides access to 
self-service customization of the Databricks workspace. Any discussion on this is beyond 
the scope of this book, so you are encouraged to go through the options with the help of the 
documentation from the Help Center (https://help.databricks.com/). 

	� Manage Account: This leads to global settings that can be used to manage all the workspaces 
under your Databricks account. A discussion on the enterprise deployment architecture of 
Databricks is beyond the scope of this book. However, as a quick note – once you’ve purchased 
Databricks, you can create an account, and within that account, you can launch any number 
of workspaces. Workspaces can be aligned to projects, teams, sandboxes, business units, or 
any logical division that the organization may employ. You can learn more about enterprise 
deployment patterns at https://docs.databricks.com/getting-started/
overview.html.

https://help.databricks.com/
https://docs.databricks.com/getting-started/overview.html
https://docs.databricks.com/getting-started/overview.html
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•	 Workspace selector: This is the part in Figure 2.2 that says databricks-sql-book. This allows 
the user to seamlessly switch between various workspaces that they are part of.

The middle of the sidebar

At this point, you must be wondering why we skipped the middle of the sidebar. This is because the 
middle of the sidebar is where the persona experience really comes in. The options that we see in this 
section of the sidebar are dependent on the persona we are currently in. Hence, we will explore it as 
we deep dive into the different personas. We will start with the SQL persona and experience.

The SQL persona view
The SQL persona is the focus of this book, so let’s start with that first. The following screenshot shows 
the home page of the SQL persona. The now-familiar left-hand sidebar should be visible, with SQL 
persona-specific options in the middle section. The landing page itself should show quick links to 
daily workflow features such as Query Editor, BI Connectors, and Data Explorer. Once the Databricks 
SQL product has seen some usage, links to recent work such as queries, dashboards, and others will 
also be populated on the main page for fast access:

Figure 2.3 – The SQL persona home page
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Note for New Workspaces
The interface shown in the preceding screenshot has an additional sidebar called Get started. 
You will see this if this is the first time Databricks SQL has been accessed in the workspace. 
Depending on the user’s privileges, certain options will be provided to help them get started 
with Databricks SQL from an admin or end user perspective.

You are not discouraged from exploring the guided Get started journeys. However, we promise 
that those journeys will be explored in detail in subsequent chapters.

Recall the Lakehouse infographic that we introduced in Chapter 1, Introduction to Databricks (Figure 
1.3). To begin the visual tour, let’s start from the Open Data Lake layer with Delta Lake on top of it 
for Data Management & Governance. This is highlighted in the following diagram:

Figure 2.4 – The data layer

The data in the Lakehouse is sourced from various sources, including structured, relational data 
sources, semi-structured data sources, unstructured data sources, and streaming data sources. This is 
the Open Data Lake layer. This is powered by the Delta Lake technology (https://delta.io/), 
which abstracts the nuances and complexity of handling data on cloud object stores such as AWS S3, 
Azure ADLS, and GCP GCS.

The Data Explorer, which we will cover in the following subsections, is a visual tool that we can use 
to discover the data in the lakehouse platform.

https://delta.io/
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Data Explorer

To navigate to Data Explorer, click the Data icon, , on the left-hand sidebar to bring up the Data 
Explorer page. The following screenshot shows a section of the Data Explorer page:

Figure 2.5 – The Data Explorer page

The Data Explorer page has a three-level hierarchy – the catalog, the database, and the tables and views 
within the database. Here, database is synonymous with schema. Traditional databases or warehouses 
have a hierarchy of database.schema.table. However, in Databricks, the top level is a container 
of schemas, hence we have catalog.database/schema.table. Data Explorer lets us visually 
explore these objects. For example, in the preceding screenshot, we have navigated to the nyctaxi 
database in samples, where we are viewing the trips table. 

Note on Incidental Charges
Upon opening the Data Explorer page, the catalog will be set to Hive Metastore by default 
and the database will be set to default by default.

Databricks provides sample datasets for getting started. They are available in the samples 
catalog. The preceding screenshot shows how to explore the sample data.

Bear in mind that at the time of writing, Data Explorer requires a SQL Warehouse to be up 
and running. This will incur cloud costs, including Databricks costs and cloud compute costs 
(AWS EC2 or Azure VM). This will change soon with the introduction of a new cataloging 
technology called Unity Catalog. We will discuss Unity Catalog in Chapter 3, The Data Catalog.

Data Explorer is the portal to visually exploring the data in a Lakehouse. As we can also see, it provides 
a visual view of data management and governance as well – with Access Control Lists (ACLs), 
comments, and more. We will explore these in detail in Chapter 3, The Data Catalog.
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SQL Warehouses

Data Explorer provides features and functions for visually exploring the data available to analysts. 
Since Databricks leverages the economies and elasticity of the cloud, the storage and compute layers 
are decoupled. This means that the data in the Lakehouse (visible in Data Explorer) is sitting on the 
cloud object storage, so computation resources must be acquired to execute queries against the data 
when needed. In Databricks SQL, this compute power is acquired with SQL Warehouses. They run 
a query processing engine called the Photon engine that works with the Delta Lake layer to provide 
a seamless query experience in the Databricks SQL product. 

Note
The Photon Engine and the Delta Lake are transparent to the end user/analyst. They can query 
the data as if it were just another relational database.

If we refer to our guiding reference architecture, we are at the bounding box, as shown here:

 

Figure 2.6 – The compute layer
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To configure a SQL Warehouse, click on the SQL Warehouses icon on the left-hand sidebar, , to 
bring up the SQL Warehouses page:

Figure 2.7 – The SQL Warehouses page

Here, we can see a warehouse named sql-warehouse.  We can see that it is in a Stopped state. 
We can have multiple SQL Warehouses in our instance of Databricks. We will learn how to create and 
configure them in Chapter 6, The SQL Warehouses.

Query Editor

So far, we have learned how to explore the data visually and acquire the computation power to run 
queries against the data. The logical next step is to write some queries.

Going back to our reference architecture, we are at the consumption layer, where analysts and end 
users have access to features and tools that enable their daily workflows. The consumption layer is 
highlighted in red in the following diagram:
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Note
The rest of the visual tour of the Databricks SQL product suite will be concerned with the 
consumption layer, and hence the bounding box highlighted in the diagram.

Figure 2.8 – The consumption layer

To do so, we can click on the SQL Editor icon on the left-hand sidebar, , to bring up the SQL 
Editor page:

Figure 2.9 – The SQL Editor page
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The SQL Editor page provides an intelligent workbench to quickly author queries with typeahead 
and other features. It also provides built-in visualization capabilities for query results. Finally, it has 
an integrated view of the Schema browser, which provides a view of the catalog namespace for faster 
exploratory data analysis.

In the preceding screenshot, we are sampling some data from the trips table in the nyctaxi 
database. This Query Editor is running queries on the SQL Warehouse called sql-warehouse, 
which we visited in the previous section (not visible in the preceding screenshot).

The SQL Editor provides many more daily workflow features and functions, all of which we will 
explore in Chapter 5, The Workbench.

The Queries page

In the previous section, you may have noticed we had created a “named” query called Sample trips 
Taxi, as is visible in the Query tab. In Databricks SQL, queries can be named and saved for use with 
other features, such as dashboards and alerts. 

The named, saved queries can be explored on the Queries page as follows. Click the Queries icon, 
, in the left-hand sidebar to bring up the Queries page. The following screenshot shows a portion 

of the Queries page:

Figure 2.10 – The Queries view

The Queries view helps you discover existing queries authored by the user or by others in the team, 
hence promoting reuse and collaboration. The Queries view also provides metadata about the queries 
for better search capabilities. More on this in Chapter 5, The Workbench.
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The Query History page

The Queries view allows the user to discover or revisit named/saved queries. However, it is an 
unreasonable expectation that all the queries that are written or executed will be named or saved. 
Hence, the Query History page fills the gap in discovering past query executions. To visit the Query 
History page, click on the Query History icon, , as shown in the following screenshot:

Figure 2.11 – The Query History page

Here, we can see that the Query History page maintains a history of all the queries that have been 
executed in the SQL persona view. There are smart filters that can be applied to sift through the history. 
We will cover practical applications of this feature in Chapter 5, The Workbench.
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The Dashboards page

The queries that we author in the Databricks SQL product can be composed into dashboards. These 
dashboards can then be shared with other teams and stakeholders for their consumption. Click on 
the Dashboards icon, , on the left-hand sidebar to bring up the Dashboards page, as shown in 
the following screenshot: 

Figure 2.12 – The Dashboards page

The preceding screenshot shows a section of the Dashboards landing page where we have two 
dashboards. The first one, NYC Taxi Trip Analysis, is a sample dashboard that you can import from 
the Dashboards Gallery. 
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Users can create a new dashboard using the Create Dashboard button in the top right-hand 
corner. The following screenshot shows a section of the Creation view of the NYC Taxi Trip 
Analysis sample dashboard:

Figure 2.13 – Sample dashboard (Databricks Dashboard Gallery)

In the Dashboard Composer, we can add visualizations based on existing queries, parameterize them 
for interactivity, and compose them into useful dashboards.

More on building dashboards will be covered in Chapter 5, The Workbench.

The Alerts page

Queries are an amazing way to look at events in a retrospective manner. However, we are talking about 
the Lakehouse today, where real-time events are consumable and actionable. In this scenario, queries 
can also enable proactive analysis and mitigation. For this reason, Databricks SQL provides an Alerts 
function. Alerts can be configured to trigger when some value threshold on a named, saved query is 
breached. To reach the Alerts page, click the Alerts icon,  , on the left-hand sidebar:
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Figure 2.14 – Creating an alert

In the preceding screenshot, we are setting an alert when the revenue frequency exceeds a value of 15.

This example shows the alert behavior and the template of the alert. More on this will be covered in 
Chapter 5, The Workbench.

The Create menu

Databricks SQL also provides a handy Create menu that allows you to quickly navigate so that you 
can create the following items. We looked at these in the previous sections:

•	 Query

•	 Table

•	 Dashboard

•	 SQL Warehouses

•	 Alert
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The Create menu can be accessed by clicking on the Create icon,  , in the left-hand sidebar. It will 
open a drop-down, as shown in the following screenshot:

Figure 2.15 – The Create menu

The user can quickly navigate to the creation aspect of the available options with this menu.

Note on the Create Button
The Create menu is a persona/experience-specific menu. The Creation options will be different 
for the Machine Learning persona and the Data Science & Engineering persona.

This concludes our tour of the SQL persona. Moving on, we will take a brief tour of the Machine 
Learning persona and the Data Science & Engineering persona to complete our visual tour of the 
lakehouse platform.

The Machine Learning persona view
In this section, we will cover the Machine Learning persona. To switch to the Machine Learning 
persona, click on the Machine Learning option in the persona switching menu, as shown in the 
following screenshot:
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Figure 2.16 – Switching to the Machine Learning persona

Switching to the Machine Learning persona will bring up the landing page for Machine Learning. 
The following screenshot shows a section of the landing page:

Figure 2.17 – The Machine Learning persona landing page
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The first thing that should stand out is the familiarity of experience. The left-hand sidebar brings up 
familiar icons, such as the following:

•	 Create  : Like the SQL persona, the Create button provides easy navigation to creating 
artifacts relevant to the Machine Learning persona. These artifacts can be divided into two groups:

	� Machine Learning: Databricks AutoML Experiments, MLflow Experiments, and  
MLflow Models

	� Developer Tools: Notebooks, Tables, Clusters, and Jobs 

•	 Data : Exactly like the SQL persona, Data Explorer allows you to explore the data on 
the Lakehouse. This is in keeping with Lakehouse’s mission for a single source of truth 
for all data teams.

•	 Clusters : Like the SQL Warehouses in the SQL persona, the clusters allow data scientists 
to provision computation resources in the form of clusters with Delta Engine to execute their 
machine learning code and pipelines. It is important to note that clusters differ from SQL 
Warehouses in terms of their topology, performance, and concurrency characteristics. This 
is in keeping with Lakehouse’s mission to bring the correct computation power to the task at 
hand – be it business intelligence, machine learning, or data engineering.

Apart from the familiar Lakehouse unification features – the data and the clusters/warehouses – the 
Machine Learning experience also exposes other data science and machine learning-oriented features. 
A detailed discussion of these features is outside the scope of this book. I encourage you to explore 
these at your own pace with official product guides and the latest documentation (https://docs.
databricks.com/applications/machine-learning/index.html). However, here 
is a quick rundown of the major available tools:

•	 Workspace  : This is like a shared space or workbench where users and teams can create shared 
projects with arbitrary folder structures and author code in them with Databricks Notebooks 
and other files. Workspace also allows you to create shared code libraries and experiments.

•	 Repos  : This option allows users and teams to connect their choice of version control system 
(for example, GitHub, Bitbucket, GitLab, and so on) to their Databricks workspace. It allows 
you to author code in Databricks Notebooks and sync them with project repositories. This 
enables seamless continuous integration and continuous deployment (CI/CD) pipelines.

•	 Workflows : This option allows you to execute code in a non-interactive, scheduled way. 
We can think of Workflows as a way of creating data or task pipelines. It also allows you 
to author jobs with multiple tasks and arbitrary dependencies from the UI and via APIs. A 
practical example would be creating a job for a model pipeline involving feature engineering, 
model training, model validation, and model deployment. Another example would be a job 
for monthly predictions using a model. You can also use Workflows to schedule a periodic 
refresh of a Databricks SQL query or dashboard.

https://docs.databricks.com/applications/machine-learning/index.html
https://docs.databricks.com/applications/machine-learning/index.html
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•	 Experiments : Databricks provides a managed MLflow service (https://databricks.
com/product/managed-mlflow) that data scientists and machine learning engineers can 
use for MLOps. Experiments are a high-level concept in MLflow that corresponds to a machine 
learning project within which data scientists can record and organize their “experiments” while 
developing a model.

•	 Feature Store : Machine learning algorithms take a set of input data (features) and try to 
create a mathematical model that best explains its characteristics. These features can be raw or 
derived data. In large enterprises, features can often be reused. Feature Store enables cataloging, 
discovery, governance, and reuse of features across data science projects.

•	 Model Registry : Like Feature Store, Model Registry aims to catalog all the models that 
are developed by various teams, as well as enable their discovery and reuse.

This concludes a very brief visual tour of the Machine Learning persona. You are encouraged to 
follow the official guides and the latest documentation if you wish to explore the Machine Learning 
persona in depth.

Next, we will quickly cover the Data Science & Engineering persona in Databricks.

The Data Science and Engineering persona view
The Data Science & Engineering persona caters to data engineering personnel. It allows them to develop, 
run, and maintain data engineering pipelines that keep the Lakehouse data catalog up to date. These 
data engineering pipelines feed the data catalog with the latest data, which, in turn, is consumed by 
the SQL and Data Science & Engineering personas. In this section, we very briefly cover this persona.

To switch to the Data Science & Engineering persona, click on the Data Science & Engineering 
option in the persona menu:

Figure 2.18 – Switching to the Data Science & Engineering persona

https://databricks.com/product/managed-mlflow
https://databricks.com/product/managed-mlflow
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Switching to the Data Science & Engineering persona will bring up the following landing page:

Figure 2.19 – The Data Science & Engineering persona landing page

In keeping with the other views, we can see that we have the now-familiar Create, Workspace, Repose, 
Data, Compute, and Jobs options. 

These features are the same as what we saw in the previous section, The Machine Learning persona. 
As we can see, the only thing that’s different is a lack of machine learning-specific toolsets. This is 
because this persona is primarily concerned with data wrangling, data ingestion, and data quality and 
access. Therefore, tools such as Repos, Notebooks, and Jobs are enough for them to carry on with 
their daily workflow.

For the sake of brevity and elimination of redundancy, we will conclude this very brief visual tour of 
the data engineering experience. For details on the various left-hand sidebar menu options, please go 
to the The Machine Learning persona section.

Summary
In this chapter, we took a visual tour of the Databricks Lakehouse platform. We focused on the 
lakehouse platform primarily from the perspective of a business intelligence user – that is, the SQL 
persona. We familiarized ourselves with the various features and toolsets that the Databricks SQL 
product provides to enable the daily activities of users. 

We also briefly examined the Data Science & Engineering and Machine Learning persona views of 
the Databricks Lakehouse platform, which we will not revisit as they are not the focus of this book.
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Finally, while looking at the various features and toolsets, we learned how they map to the various 
layers of the Lakehouse architecture and how the same data is leveraged for all users of the data in 
the Lakehouse.

In the next chapter, we will start our deep dive into the features and toolsets in the Databricks SQL 
product, starting with the data catalog.
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The Data Catalog

The data catalog is the portal to the data layer of the Lakehouse. It exposes the various catalogs, 
databases, and tables to the end user for their consumption. In this chapter and the next, we will deep 
dive into the various facets of the data catalog.

In this chapter, we will explore the data catalog from the perspective of an end user. Here, end user 
refers to business intelligence analysts, data analysts, and users who are interested in exploring data 
and performing exploratory data analysis (EDA).

In this chapter, we will cover the following topics:

•	 Understanding the data organization model in Databricks SQL

•	 Exploring data visually with the data catalog

•	 Exploring data programmatically with SQL statements

Technical requirements
For this chapter, you will need the following tools and functions:

•	 A Databricks workspace that has a premium or higher subscription level. 

•	 Any modern internet browser. 

•	 VM quotas for creating a SQL Warehouse. The default small-size SQL Warehouse requires 
a minimum VM quota. If you are using your cloud account, ensure that your account has 
service limits to meet these. Having an insufficient quota will prevent the SQL Warehouses 
from starting up. You can review the required quotas at https://docs.databricks.
com/sql/admin/sql-endpoints.html#cluster-size.

https://docs.databricks.com/sql/admin/sql-endpoints.html#cluster-size
https://docs.databricks.com/sql/admin/sql-endpoints.html#cluster-size
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Understanding the data organization model in  
Databricks SQL
In this section, we will learn about how data assets are organized in Databricks SQL. We call this the 
data organization model.

The open data lake, which is the foundation of the Databricks Lakehouse platform, relies on cloud 
object storage for storing data. This data is stored in human-readable formats such as CSV, TSV, and 
JSON, or big data-optimized formats such as Apache Parquet, Apache ORC, or Delta Lake.  

A Note on Data Engineering
The data in the data lake is ingested by data engineering processes. Data engineers create data 
pipelines that bring data from source systems, clean them, transform them, and write them to 
the designated destinations in the data lake. These destinations are directories in the data lake. 
The data within the directory can be further arranged in some fashion – for example, by date.

These file formats are structured and have a defined schema. Having a schema means these files (or a 
directory of files within the same schema) can be conceptualized as a table. These tables are usually 
part of an organized collection of structured information. Hence, directories that contain data can be 
conceptualized as databases or schemas. Due to this, we have the makings of a traditional database-
like system on the data lake. Once we have these, we must catalog these databases and their tables so 
that SQL users can discover and query these tables with standard SQL. 

Databricks provides two cataloging technologies: Apache Hive Metastore and Unity Catalog.

Apache Hive Metastore

Apache Hive Metastore is a popular open source catalog for data lakes. It is part of the larger Apache 
Hive system that revolutionized the big data processing scene when it was launched in 2010. You 
can read more about Metastore’s design and concepts here: https://cwiki.apache.org/
confluence/display/hive/design#Design-Metastore. 

At the time of writing, Apache Hive Metastore is the default cataloging technology in Databricks. 
However, it will soon give way to Unity Catalog.
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Unity Catalog

Unity Catalog (https://databricks.com/product/unity-catalog) is a new data 
cataloging technology developed by Databricks that aims to meet the requirements of the Lakehouse 
(compared to a vanilla data lake). It provides significant benefits over Hive Metastore in general and 
within the context of Databricks. For example, it provides audit logging, inbuilt access control, and 
the ability to control access to cloud storage. At the time of writing, Unity Catalog is in preview in 
Databricks. It may become generally available by the time you read this book.

Note
I will introduce the differences between Hive Metastore and Unity Catalog as we proceed. However, 
I will say this – within the context of our discussion of Databricks SQL, the core concepts and 
our interactions with the data catalog will remain the same, irrespective of whether you are 
using Hive Metastore or Unity Catalog. So, you can read ahead without the fear of missing out. 
If, however, you are a data engineer, Databricks administrator, or just generally inquisitive about 
the Unity Catalog product, you can head over to https://docs.microsoft.com/en-
us/azure/databricks/data-governance/unity-catalog/key-concepts.

Regardless of the data cataloging technology, each instance of Databricks SQL is associated with an 
instance of a Metastore. 

Note
The instance of a Metastore is not to be confused with the technology Apache Hive Metastore!

A Metastore is a container that organizes the metadata for the databases and tables in a high-level 
object called a catalog.

One instance of Databricks SQL (a workspace in Databricks parlance) can only be associated with 
one Metastore. 

So, bringing it all together, we have a three-level data organization model of Databricks SQL:

•	 Tier 1: Catalogs

•	 Tier 2: Databases (equivalent to Schema) 

•	 Tier 3: Tables (as well as views and functions based on the tables)

https://databricks.com/product/unity-catalog
https://docs.microsoft.com/en-us/azure/databricks/data-governance/unity-catalog/key-concepts
https://docs.microsoft.com/en-us/azure/databricks/data-governance/unity-catalog/key-concepts
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Officially, this is called the three-level namespace and can be visualized as follows:

Figure 3.1 – Three-level namespace

The three-level namespace fits into the data catalog as follows:

•	 One organization can have any number of Metastores (1:n).

•	 One Metastore can have any number of catalogs (1:n).

•	 Each catalog can have any number of databases/schemas (1:n).

•	 Each database can have any number of tables, views, and functions (1:n).

•	 Each table points to directories in cloud storage (1:n).

The following alternative visualization should make things clearer:

Figure 3.2 – Data lake data abstraction hierarchy
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We will bring this organization model to life with an actual example shortly. However, before we do 
so, let’s quickly look at the nuances that arise from choosing between Apache Hive Metastore and 
Unity Catalog.  

Implications of choosing a cataloging technology 

Let’s look at the preceding diagram from the perspective of Apache Hive Metastore:

•	 You cannot create a new Metastore at will. Each instance of the Databricks SQL workspace will 
come with an instance of Hive Metastore. 

•	 You cannot create new catalogs in the Metastore. You will be provided with an out-of-the-box 
catalog called hive_metastore that you must use.

•	 The Metastore associated with the Databricks SQL workspace cannot be shared with other 
Databricks SQL workspaces in your organization. To circumvent this, you can have a central, 
self-maintained Apache Hive Metastore (https://docs.microsoft.com/en-us/
azure/databricks/data/metastores/external-hive-metastore) or you 
can switch to Unity Catalog.

Now, let’s look at the preceding diagram from the perspective of Unity Catalog:

•	 You can create any number of Metastores. 

•	 You can create any number of catalogs within each Metastore. 

•	 A Databricks workspace can be associated with only one Metastore at a time. You can 
change this association if required. The same Metastore can be shared across multiple 
Databricks workspaces.

•	 You will still see the hive_metastore catalog in your list of catalogs. This is to enable a 
smooth migration for organizations using Apache Hive Metastore to Unity Catalog.

You might be wondering why we need to provision multiple Metastores and multiple catalogs within 
Metastores. Well, the answer lies in how Databricks is deployed as an organization-wide data platform. 
For example, if your enterprise spans multiple countries, each country may want to organize its data 
separately for data privacy and data residency reasons. In this case, you can have a Metastore for each 
country, where all the Databricks workspaces in that country will be associated with this Metastore. 
Within a Metastore, you can have multiple catalogs. You can use catalogs as a way of aligning to 
your information architecture. For example, a catalog can correspond to a business unit, a team, or a 
project. You could have a production catalog, a staging catalog, and a development catalog. You could 
even have a business unity-specific catalog per environment, such as a production catalog for sales.

After this brief detour regarding the implications of choosing a data catalog, we are ready to bring 
the data organization model to life.

https://docs.microsoft.com/en-us/azure/databricks/data/metastores/external-hive-metastore
https://docs.microsoft.com/en-us/azure/databricks/data/metastores/external-hive-metastore
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Note
The examples and figures in the following sections have been built with Apache Hive Metastore 
since Unity Catalog is in preview at the time of writing. If you are using Unity Catalog, you 
can simply replace any occurrence of Apache Hive Metastore with Unity Catalog and any 
occurrence of the hive_metastore catalog name with the catalog name that you are using.

An example of the data organization model

Databricks provides example datasets out of the box. One such dataset is the people dataset, which 
is stored at the following location in Delta format: 

dbfs:/databricks-datasets/learning-spark-v2/people/people-10m

About DBFS
DBFS is a distributed filesystem that provides an abstraction on top of any cloud object 
storage. You can read more about it here: https://docs.databricks.com/data/
databricks-file-system.html. The path mentioned in the preceding snippet is cloud 
agnostic, so it will work irrespective of which cloud you are on.

To get started, follow these steps:

1.	 Create a database that will logically bind all the data assets to the people dataset.

Execute the following code in the SQL Editor to create a database:

CREATE DATABASE people_db;

This command will create a new database called people_db and register it in our data catalog. This 
will be the hive_metastore catalog if you are using Apache Hive Metastore. 

If you are using Unity Catalog, it will be a catalog of your choice in the Metastore associated with your 
Databricks SQL workspace. The command will be in the following form:

CREATE DATABASE <catalog-name>.people_db

How to Execute the Snippets
In Chapter 2, The Databricks Product Suite – A Visual Tour, in the Query Editor section, we briefly 
touched on how to navigate to the SQL Editor and execute queries. This includes associating the 
editor with a SQL Warehouse. If you have not already gone through that chapter, please do so 
now, as it introduces some of the features and functions that will be referenced in this chapter. 

https://docs.databricks.com/data/databricks-file-system.html
https://docs.databricks.com/data/databricks-file-system.html
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2.	 Next, we can create a TABLE in this database with the following SQL code:

CREATE TABLE people_db.people OPTIONS (PATH 'dbfs:/databricks-
datasets/learning-spark-v2/people/people-10m.delta');

As we learned earlier, TABLE is nothing but a relational abstraction of files with a defined schema. 
Using the PATH option, we are specifying that the table abstraction, called people, points to the 
data contained in the given PATH. You will also notice that this command creates this table in the 
people_db database that we just created. 

Now, the data catalog is aware of a database named people_db and a table named people 
in this database.

Do I Always Need a Location?
No, you do not. The preceding example is an example of an unmanaged table, which means 
that you are just applying the abstraction of a table to some dataset at some location. The data 
at this location is being managed by some other process or entity. The other option is that of a 
managed table, which creates a brand-new table at a location defined by Hive Metastore or Unity 
Catalog. You can read more about unmanaged tables at https://docs.databricks.
com/data/tables.html#managed-and-unmanaged-tables.

So, if we were to visualize our database and table as per Figure 3.2, it would look like this:

 

Figure 3.3 – Data lake data abstraction hierarchy for people_db

https://docs.databricks.com/data/tables.html#managed-and-unmanaged-tables
https://docs.databricks.com/data/tables.html#managed-and-unmanaged-tables
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It is important to remember that the catalog, which is hive_metastore in this case, merely holds 
the metadata about the schema. It does not store the actual data. It only hosts metadata, such as the 
physical location, schema, partitioning schemes, and data statistics, about the databases and tables 
that are registered with it. 

The following diagram shows a very simplified version of the execution model of a query in 
Databricks SQL:

Figure 3.4 – The execution model of a query

In the preceding diagram, the following process is occurring:

1.	 The user submits a query in Databricks SQL. 

2.	 The query engine of Databricks SQL, running on a SQL Warehouse, transparently queries the 
Metastore for the location of the objects referred to in the user query. 

3.	 The Metastore returns the locations of the data that needs to be read by the query submitted 
by the user.

4.	 The query engine reads the data at the received physical locations and performs the 
required query.

5.	 The results are returned to the user.
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As you can see, from the end user’s perspective, working with Databricks SQL is like working with 
any traditional data warehouse or database system. You have a catalog of available data assets. You 
write queries against them and Databricks SQL gets you the results of the query.

At this point, you might be thinking – if Databricks SQL hides all the underlying operations and 
exposes a familiar SQL experience, then why did the author burden me with the knowledge of all 
the underlying mechanics? I did so because, as with all software systems, if we have a firm handle on 
the mechanics and resulting nuances, we can get the best user experience from the software system.

Now that we understand how data is organized in the Lakehouse (and hence Databricks SQL), we 
are ready to start exploring. Let’s start by looking at the visual exploration tool in the Databricks SQL 
platform – Data Explorer.

Exploring data visually with the Data Catalog
Data Explorer is a feature of Databricks SQL that allows users to visually navigate and explore the 
data assets that are available in the data catalog.

As we saw in Chapter 2, The Databricks Product Suite – A Visual Tour, we can navigate to Data Explorer 
by clicking the Data icon, , on the left-hand sidebar. 

Data Explorer requires a running SQL Warehouse to be associated with it to be able to display the data 
catalog. If the associated SQL Warehouse is not running, it will prompt you to start the Warehouse or 
associate the explorer with a SQL Warehouse that is running. 

Note
If you are using Unity Catalog, then a running SQL Warehouse is not required.

The SQL Warehouse association can be controlled using the dropdown highlighted in the 
following screenshot:

Figure 3.5 – Associating a SQL Warehouse with Data Explorer

At this point, you can create a new SQL Warehouse or use the default out-of-the-box SQL Warehouse 
as the associated SQL Warehouse. Start the SQL Warehouse if it is not already running.
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In Chapter 2, The Databricks Product Suite – A Visual Tour, we briefly saw the samples catalog and 
the databases and tables present in it. In this chapter, we will create our own database, tables, views, 
and functions.

We will use the people dataset, which comes bundled with Databricks, to do the following:

1.	 Create a database named people_db.

2.	 Create a table named people.

3.	 Create a view named gender_distribution.

4.	 Create a function named full_name.

The following minimal starter SQL code builds the preceding process for us:

--CREATE DATABASE

CREATE DATABASE people_db;

--CREATE TABLE

CREATE TABLE people_db.people OPTIONS (PATH 'dbfs:/databricks-
datasets/learning-spark-v2/people/people-10m.delta');

--CREATE VIEW

CREATE VIEW people_db.gender_distribution AS SELECT gender, 
count(*) AS count FROM people_db.people GROUP BY gender;

--CREATE FUNCTION

CREATE FUNCTION people_db.full_name(

  firstName STRING,

  middleName STRING,

  lastName STRING

) RETURNS STRING RETURN concat(firstName, ' ', middleName, ' ', 
lastName);
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A Note on Creativity
Feel free to be creative when naming the data objects and even with the definition of views 
and functions. The preceding SQL snippet is a minimal starter and, let’s be honest, not very 
creative. However, it serves the purpose of creating data assets that will allow us to learn about 
Data Explorer, which is the true focus of this chapter.

Data Explorer consists of two view panes. The left-hand view pane contains the navigation controls. 
Let’s call it the navigation pane. The right-hand view pane is dynamic and shows content based on the 
data asset that we have navigated to. Let’s call it the details pane. For example, if we have navigated up 
to a database, the details pane will populate information about the database. Then, if we navigate to a 
table or a view in the database, the details pane will populate information about the table or the view. 

So, let’s begin our navigation and exploration, starting with Tier 1, the catalog. 

Navigating the catalogs

In the navigation pane, click on the catalog blade, which is denoted by the  icon. This will open 
a dropdown showing the available catalogs. Since we looked at the samples catalog in Chapter 
2, The Databricks Product Suite – A Visual Tour, let’s select the hive_metastore catalog. The 
hive_metastore catalog comes with a default database, creatively named default:

Figure 3.6 – Navigating the available catalogs 

The preceding screenshot shows the currently available catalogs. 
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Navigating the databases

Once we have selected (or decided upon) a catalog to explore, the databases, denoted by the icon, 
will populate the databases available in this catalog. If we select the samples catalog, we will see the 
available databases/schemas:

Figure 3.7 – Navigating the databases in a catalog

Selecting a database will do two things:

•	 The details pane will populate the details about the selected database.

•	 The navigation pane will populate the list of tables and views available in the database.

The following screenshot shows how the details pane gets populated when we select the people_db 
database:

Figure 3.8 – Exploring a database – database details
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Click on the Permissions tab, as shown in the following screenshot, to see the permissions associated 
with the database:

Figure 3.9 – Exploring a database – database permissions

Exploring databases

When we navigate to a database, the details pane shows the following four items:

•	 Owner ( ): This lists the owner of the database (if any). The owner has full privileges on the 
database and has the power to grant or revoke privileges on the database for other users. See 
Figure 3.8.

•	 Comment ( ): This is a metadata field and contains free-form text describing the database. 
See Figure 3.8. In our example, it is empty. We can modify our CREATE DATABASE statement 
(https://docs.databricks.com/sql/language-manual/index.html#ddl-
statements) so that it includes a comment. 

•	 The Details tab: In Figure 3.8, the Details tab, which can be found in the details pane, shows 
two things:

•	 Location: The location of the database on cloud storage. If you are using Unity Catalog, a 
location will only be displayed if the table is external.

•	 Properties: Any additional properties that were set with the CREATE DATABASE statement. 

•	 The Permissions tab: The Permissions tab, which can be found in the details pane, shows all 
the principals (users, groups, and service principals) that have any explicit or inherited privilege 
on the database. We will discuss principals, privileges, and the Databricks security model in 
depth in Chapter 4, The Security Model. The Permissions tab is shown in Figure 3.9.

https://docs.databricks.com/sql/language-manual/index.html#ddl-statements
https://docs.databricks.com/sql/language-manual/index.html#ddl-statements
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Note
Editable Fields: The preceding screenshots show the possibility of editing owners and permissions 
using the UI. We will cover these from a database administrator’s perspective in Chapter 4, The 
Security Model, where we will discuss the security and governance of these assets. This section 
is all about exploring, not governing, the data assets. 

Permissions: I have kept the Permissions tab empty on purpose. My reasoning behind not 
showing samples of permissions is to avoid introducing new terms that can potentially derail 
the learning objective of this chapter. That said, we will circle back to these tabs and complete 
the picture in Chapter 4, The Security Model.

Exploring tables

Once you navigate to a database, the navigation pane lists all the available tables and views.

First, let’s click on the people table. The details pane should now populate with the following view:

Figure 3.10 – Exploring a table – basic details and schema

As we can see, we get the following nine pieces of information:

•	 Data Format: The Delta symbol next to the table’s name in the Details pane specifies that this 
table is a Delta table and that the underlying data files are in Delta format.

•	 Comment ( ): This is a metadata field and contains free-form text describing the table. In 
our example, it is empty. We can modify our CREATE TABLE statement so that it includes 
a comment. 

•	 Owner ( ): This lists the owner of the table (if any). The owner has full privileges on the table 
and has the power to grant or revoke privileges on the table for other users. 
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•	 Size ( ): This lists the total size of the data (that is, the underlying files) and the total number 
of files across which the data is spread. 

•	 The Schema tab: This tab shows the schema of the table – that is, the various available columns, 
their data types, and any metadata comments for each column. 

•	 The Sample Data tab: This tab shows a sample of the dataset. This is very a very helpful feature 
to quickly get a feel of the data in the table without running any commands. See Figure 3.11.

•	 The Details tab: As seen in Figure 3.12, the Details tab shows three things:

	� Location: The location of the database on cloud storage.

	� Type: The type of the table. It could be Managed or Unmanaged. See the Do I always need 
a location? note in the preceding section for a discussion on managed versus unmanaged 
tables. Here, we can see that the type is EXTERNAL, which implies it’s an unmanaged table.

	� Table Properties: This indicates any additional properties that were set with the CREATE 
TABLE statement. 

•	 The Permissions tab: As seen in Figure 3.13, the Permissions tab shows all the principals (users 
or groups) who have any explicit or inherited privilege on the database. We will discuss principals, 
privileges, and the Databricks security model in depth in Chapter 4, The Security Model.

•	 The History tab: See Figure 3.14. The History tab shows a history of transactions on the table. 
For every transaction, you will be able to see very granular details. For end users, Data Version 
is the most pertinent column. Users can query the data as of a particular version or time. The 
rest of the columns facilitate audit and governance on the table. The following are the most 
important ones to keep in mind:

	� Version and Timestamp: These two columns uniquely identify every transaction. They can 
be used to query the snapshot of the data as it existed at that version or timestamp.

	� User Id and Username: These two columns identify the user who performed this transaction. 
This is very helpful for audit use cases.

	� Operation: This identifies the type of operation.

	� Job, Notebook, and Cluster ID: These identify whether the transaction originated from a 
scheduled job or workflow (https://docs.databricks.com/data-engineering/
jobs/jobs.html) and, if so, the code/notebook that committed the transaction, as well 
as the cluster that the transaction was executed on.

	� Operation Metrics: This provides useful statistics, such as the number of output rows.

https://docs.databricks.com/data-engineering/jobs/jobs.html
https://docs.databricks.com/data-engineering/jobs/jobs.html
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Let’s look at some screenshots to visualize what we’ve just discussed. The following screenshot shows 
a section of the Sample Data tab for the people table:

Figure 3.11 – Exploring a table – the Sample Data tab

The following screenshot shows the Details tab for the same table:

Figure 3.12 – Exploring a table – the Details tab
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The following screenshot shows the Permissions tab for the same table:

Figure 3.13 – Exploring a table – the Permissions tab

The following screenshot shows a section of the History tab for the same table:

Figure 3.14 – Exploring a table – the History tab

Note on the Rest of the History Details
The History tab of the table shows a lot of additional information about the DeltaLake transaction. 
It is not very relevant to the current discussion, so you should not be concerned about this. 
However, if you want, you can read more about it here: https://github.com/delta-
io/delta/blob/master/PROTOCOL.md.

https://github.com/delta-io/delta/blob/master/PROTOCOL.md
https://github.com/delta-io/delta/blob/master/PROTOCOL.md
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Exploring views

Views are listed along with tables in the navigation pane. To distinguish between tables and views, 
views are depicted with the Sunglasses icon: . 

The Details tab for views is the same as that for tables. Hence, for the sake of brevity, we will only 
mention the notable differences here:

•	 Size ( ): At the time of writing, Databricks SQL does not support materialized views (https://
en.wikipedia.org/wiki/Materialized_view). Hence, views are just, well, views. 
Therefore, they do not have a computed size associated with them. You should see Unknown 
in the size field.

•	 The History tab: Similar to the Size tab, since these are not materialized views, no transactions 
can be performed on them. Hence, the History tab will always be empty.

•	 The Details tab: This tab shows additional information about the view. The following important 
details are populated:

	� Created Time

	� Last Access

	� View Text: The underlying SQL query

	� View Query Output Columns

Note on the Rest of the View Details
The Details tab for the view shows a lot of additional information about Apache Hive, such as 
serialization/deserialization libraries and their formats. I do not think they are very relevant to 
the current discussion, so you should not be concerned about this either. However, if you want, 
you can read more about them here: https://cwiki.apache.org/confluence/
display/Hive/SerDe.

Exploring functions

At the time of writing, functions are not visible in Data Explorer. We will learn how to explore functions 
in the next section, where we’ll learn how to explore the data catalog programmatically.

https://en.wikipedia.org/wiki/Materialized_view
https://en.wikipedia.org/wiki/Materialized_view
https://cwiki.apache.org/confluence/display/Hive/SerDe
https://cwiki.apache.org/confluence/display/Hive/SerDe
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Exploring the data programmatically with SQL statements
Databricks SQL provides familiar SHOW and DESCRIBE commands that allow users to query the 
data catalog and discover the various databases, tables, views, and functions available to them. For 
a detailed SQL reference on the same, please see https://docs.databricks.com/sql/
language-manual/index.html#auxiliary-statements.

Let’s look at some examples of how we can use these commands to explore the data available to us. 
We will continue to use the people_db database we created in the preceding section on visual 
exploration (see Figure 3.8).

Broadly, we will use two groups of SQL statements:

•	 Show statements

•	 Describe statements

As we saw in Chapter 2, The Databricks Product Suite  – A Visual Tour, we will use the SQL Editor to 
execute our queries. Navigate to the SQL Editor by clicking the SQL Editor icon, . Associate your 
editor with a SQL Warehouse, as highlighted in the following screenshot:

Figure 3.15 – Associating a SQL Warehouse with the Query Editor

Note on the SQL Editor’s Features
The SQL Editor will be covered in depth in Chapter 5, The Workbench. For this chapter, we only 
need to know how to execute a query.

The preceding screenshot also shows the familiar navigation pane on the left-hand side, which allows 
us to browse through the catalogs, databases, tables, and views.

On the right-hand side is the Query Editor. This is where we will type in our SQL code. The Run 
button in the top right-hand corner runs the SQL code in the Query Editor. Below the Query Editor 
is the results section.

https://docs.databricks.com/sql/language-manual/index.html#auxiliary-statements
https://docs.databricks.com/sql/language-manual/index.html#auxiliary-statements
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We will begin navigating and exploring by looking at databases. 

Note
If you are using Unity Catalog, you can also explore the catalogs that are available in your 
workspace by executing SHOW CATALOGS and DESCRIBE CATALOG.

Exploring the databases

The following SHOW statement lists all the databases that we have access to:

SHOW DATABASES;

Executing the preceding command produces the following output:

Figure 3.16 – Showing databases in the Data Catalog

As we can see, once the SQL statement has been keyed in, we can click the Run button. The query 
results are then returned. As we saw previously, here, the databases are listed in the results section.



Exploring the data programmatically with SQL statements 53

To see the details about a database, we can run the DESCRIBE statement, like so:

DESCRIBE DATABASE EXTENDED people_db;

Executing the preceding command produces the following output:

Figure 3.17 – Describing a database

As we can see, the results contain the following fields:

•	 Namespace Name

•	 Comment

•	 Location

•	 Owner

•	 Properties

These are the same description fields that we saw when visually exploring the data catalog in the 
preceding section.
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A Note on the Owner Field
In Data Explorer, the Owner field shows the creator of the database as the owner. However, in 
the preceding screenshot, you will see that the owner is set to root. This is very likely due to 
some quirks of the underlying Apache Hive Metastore. In the Hive world, the owner is supposed 
to be the owner of the directory Hadoop Distributed File System (HDFS). However, there is 
no direct equivalent of the owner on cloud storage systems. Hence, it defaults to root. This 
is one of the advantages of Unity Catalog. Unity Catalog comes bundled with table ownership 
and access control tracking.

The Data Explorer UI also shows the permissions associated with the database. We can achieve the 
same programmatically by running the SHOW GRANT statement, like so:

SHOW GRANT ON DATABASE people_db;

The preceding command produces the following output:

Figure 3.18 – Showing permissions on the database

As we can see, each row lists a privilege (ActionType), the recipient of the privilege (Principal), 
and the object upon which the privilege is granted (ObjectType and ObjectKey). This is the same 
information we get when using Data Explorer.
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Exploring tables

We can list all the tables available in a database using the SHOW statement, like so:

SHOW TABLES IN people_db;

The preceding command produces the following output:

Figure 3.19 – Listing the tables in a database

As we can see, the aforementioned command returns the available tables in the tableName column.

Note
If you have been following this example carefully, you will notice that the gender_
distribution view is also listed as a table in this example. Views are only treated as tables 
in Apache Hive Metastore. 

To retrieve the details about a table, we can run the DESCRIBE statement, like so:

DESCRIBE TABLE EXTENDED people_db.people;
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The preceding command produces the following output:

Figure 3.20 – Retrieving details about a table
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Here, we can see that the results are divided into three sections (each separated by a blank row):

•	 Section 1: This is equivalent to the Schema tab in the Data Explorer UI. It provides the schema 
of the table.

•	 Section 2: This is the partitioning section. This relates to the underlying directory and file 
structure. If the data is divided into folders based on a field, such as birthDate, then that 
field becomes a partition column. The partition column is used by Query Engine to smartly 
read only the required data files. We will cover this in detail in Chapter 8, The Delta Lake. Our 
table does not have any partitions.

•	 Section 3: This is equivalent to the Details tab in the Data Explorer UI.

The Data Explorer UI also shows the permissions associated with the table. We can achieve the same 
programmatically by running the SHOW GRANT statement, like so:

SHOW GRANT ON TABLE people_db.people;

The preceding command produces the following output:

Figure 3.21 – Showing permissions on the table

The Data Explorer UI also shows the History tab, which displays all the transactions that have 
been committed on the table. We can achieve the same programmatically by running a DESCRIBE 
statement, like so:

DESCRIBE HISTORY people_db.people;
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The preceding command produces the following output:

Figure 3.22 – Showing the transaction history of the table

Exploring views

The methods of exploring views are the same as they are for tables. Hence, for the sake of brevity, 
we will just list the SQL commands here. You are encouraged to run them in your workspace and 
observe the results.

We can list the views that are available in a database by executing the following SHOW statement:

SHOW VIEWS IN people_db;

To retrieve details about a view, we can run the following DESCRIBE statement:

DESCRIBE TABLE EXTENDED people_db.gender_distribution;

Note that we are using the DESCRIBE TABLE statement to describe the view. This is because the 
DESCRIBE statement does not accept the VIEW keyword and, as you may recall, views are treated 
as equivalents of tables in Apache Hive Metastore.

To retrieve the permissions on a view, execute the SHOW GRANTS statement:

SHOW GRANTS ON people_db.gender_distribution;

Unlike tables, views do not support writes, which is they do not have an associated history.
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Exploring functions

Functions can only be explored programmatically. 

There are two categories of functions in Databricks SQL:

•	 System functions

•	 User-defined functions

To list all the available system functions, execute the following SHOW statement:

SHOW SYSTEM FUNCTIONS;

Databricks SQL supports a lot of functions. You should refer to the official documentation (https://
docs.microsoft.com/en-us/azure/databricks/sql/language-manual/) for a 
comprehensive list of functions. 

To list all the available functions in a database, execute the following SHOW statement:

USE people_db;

SHOW USER FUNCTIONS;

The preceding code produces the following output:

Figure 3.23 – Showing the available user-defined functions

https://docs.microsoft.com/en-us/azure/databricks/sql/language-manual/
https://docs.microsoft.com/en-us/azure/databricks/sql/language-manual/
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To get details about the function, we can execute the following DESCRIBE statement:

DESCRIBE FUNCTION people_db.full_name;

The preceding code produces the following output:

Figure 3.24 – Details of a function

As we can see, the details are not pretty printed, but they get the job done. We can quickly get the 
signature of the function with the Input and Output sections of the results.

Finally, we can get the permissions on the function by executing the following SHOW GRANTS statement:

SHOW GRANTS ON FUNCTION people_db.full_name;

Programmatic Access from Code
At this point, if you are a developer, you might be wondering whether you can execute these 
commands from your code in Java or Python, for example. Or, if you are an analyst with a 
preference for a specific tool, you might be wondering whether you are bound to using the 
workbench that Databricks SQL provides. The answer is that you can use any tool you want. 
We will cover access from external tools in Chapter 7, Using Business Intelligence Tools with 
Databricks SQL.
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Summary
In this action-packed chapter, we learned how data assets are arranged in the data catalog with the 
data organization model. After that, we learned how to explore and discover the data assets in the data 
catalog with the Data Explorer UI. Finally, we learned how to explore and discover the data assets in 
the data catalog with standard (and familiar) SHOW and DESCRIBE statements.

In the next chapter, we will continue looking at the data catalog. However, this time, we will put on the 
lens of a database administrator, who is responsible for the governance and security of the data assets.

 





4
The Security Model

In Chapter 3, The Data Catalog, we saw how the data catalog is the portal to the data layer of the 
Lakehouse. It exposes the various catalogs, databases, and tables to the end user for their consumption. 
This raises an important question of how to secure these data assets.

The data catalog represents all the data of your organization and it should be protected with the 
relevant and necessary controls. Securing and governing data assets in a data lake is a significant 
undertaking. Furthermore, uniform access control must be applied to all the data assets for reasons 
such as auditability and scalability. Typically, the database administrators (DBAs) are responsible 
for implementing the controls for the security and governance of the data assets. 

However, as we discussed in Chapter 3, The Data Catalog, unlike traditional databases and data 
warehouses, the DBAs will have to consider that the tables in a data lake are abstractions over files in 
cloud object storage. This means they must ensure that while access control is programmed on these 
tables, these access controls are translated to the underlying cloud object storage access.

This chapter will introduce the data security model of Databricks SQL. We will discuss how the security 
model accounts for both user-facing table access control and cloud object storage. We will also discuss 
the mechanisms to program it for all current and future data assets at scale and with simplicity.

In this chapter, we will cover the following topics:

•	 The Databricks SQL security model

•	 User-facing table access control

•	 The internals of cloud storage access
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Technical requirements
To follow this chapter effectively, ensure that you have the following:

•	 A Databricks workspace. Databricks SQL requires a premium or higher subscription level. 

•	 A basic understanding of standard SQL statements for data access control, such as GRANT, 
DENY, and REVOKE. 

•	 A fundamental understanding of cloud object storage, cloud Identity and Access Management 
(IAM), and the data lake architecture.

•	 Enough VM/EC2 quotas for creating a SQL Warehouse.

The Databricks SQL security model
The Databricks SQL security model is based on the well-established security model in SQL databases, 
which allows you to set fine-grained access permissions using standard SQL statements such 
as GRANT and REVOKE. 

In Chapter 3, The Data Catalog, in the Understanding the data organization model in Databricks SQL 
section (see Figure 3.1), we established the existence of the following data assets:

•	 Catalog

•	 Databases

•	 Tables

•	 Views

•	 Functions (named and anonymous)

•	 Any files (that is, the underlying files of a table)

These are the securable objects in the data catalog.

In Chapter 3, The Data Catalog, we also learned that we have a choice of two data cataloging technologies:

•	 Apache Hive Metastore (current default)

•	 Unity Catalog (future default)

Regardless of the catalog that you use, from a usage perspective, the security model and the means to 
program it remain the same. The difference lies in the internals of how each technology implements 
the security model. We will discuss the differences in this chapter. That said, keep in mind that while 
the underlying implementation is different, the effects and commands are the same. 
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The data catalog is responsible for storing the table access control lists (ACLs) – that is, the programmed 
permissions for users on various securable objects.

Let’s revisit our diagram of The execution model of a query from Figure 3.4 and see how the two 
cataloging technologies handle ACL information.

Access control with Apache Hive Metastore

The following diagram shows the execution of a query when Apache Hive Metastore is used. We will 
discuss the steps shortly. For now, let’s take note of the authorization flow:

Figure 4.1 – The execution model of a query with Hive Metastore

Apache Hive Metastore is only a data catalog. It does not have any built-in authorization mechanisms 
for either the tables or the underlying data storage locations. It depends on auxiliary systems to enable 
authentication and authorization. Databricks provides a separate table ACL store that complements 
Apache Hive Metastore and contains the programmed ACLs. 

In Chapter 3, The Data Catalog, we also discussed how the table ACLs and the instance of Apache Hive 
Metastore are unique to each Databricks SQL workspace. This means the ACLs must be programmed 
anew for every workspace.
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Finally, Hive Metastore does not have objects representing cloud storage paths and cloud storage 
credentials such as IAM profiles or service principals. Hence, you must separately program direct 
user access to the cloud storage using the cloud’s respective IAM controls. This scenario is less likely 
for the users of Databricks SQL, but still possible. For example, if someone requests an external table 
on a cloud storage location, your cloud IAM team may have denied the user access to that location, 
so you permit them to access it via the external table. Hence, you must keep in sync with the cloud 
IAM team at all times.

Access control with Unity Catalog

The following diagram shows the execution of a query when Unity Catalog is used. We will discuss 
the steps shortly. For now, let’s take note of the authorization flow:

Figure 4.2 – The execution model of a query with Unity Catalog

Unity Catalog contains the table ACLs within itself, along with the metadata about the securable objects. 

In Chapter 3, The Data Catalog, we learned how Unity Catalog allows you to create multiple Metastores. 
These can be assigned to one or more workspaces, allowing different projects or business units to access 
the same data catalog. This also means that the ACLs are carried over seamlessly into the workspace 
that the Metastore has been assigned to, so there is no need to reprogram the ACLs in every workspace.
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Finally, Unity Catalog also contains objects that represent cloud storage locations and cloud storage 
credentials. Hence, Unity Catalog allows you to program access to cloud storage locations with familiar 
security statements such as GRANT, DENY, and REVOKE instead of cloud-specific IAM implementations.

Query execution model

Irrespective of the data cataloging technology, you will notice that there are two distinct 
authorization events: 

•	 The access control on catalogs and objects in the catalog such as databases, tables, and views. 
This access control is user-facing – that is, it will affect the user’s permissions to interact with 
data assets (Steps 2 and 3 in Figure 4.1 and Figure 4.2).

•	 The SQL Warehouse uses its authorization on the physical data locations on the cloud storage 
to fetch the data files and serve the query (Step 5 in Figure 4.1 and Figure 4.2). The authorization 
that’s given to SQL to access the physical data locations on the cloud storage is a one-time 
administrative step. We will learn more about it in the The internals of cloud storage access section.

Let’s look at how authorization happens within the overall query execution flow:

1.	 The user submits a query in Databricks SQL. 

2.	 The query engine consults the ACLs to confirm whether the user has the necessary privileges 
to access the table or view referred to in the user query: 

	� If the privileges are insufficient, the query is blocked.

	� The query attempt is audit-logged.

3.	 The query engine transparently queries the Metastore for the location of the objects referred 
to in the user query. 

4.	 The Metastore returns the locations of the data that need to be read for the query submitted 
by the user:

	� Hive Metastore will return the paths of the data files on the cloud object storage.

	� Unity Catalog will return signed URLs for the data files on the cloud object storage. A signed 
URL is a URL to the data file that comes bundled with short-lived authorization to perform 
some action, such as GET, on the file referred to by the URL.
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5.	 The query engine reads the data at the locations returned by the Metastore in Step 4, performs 
the computations in the query, and obtains the results:

	� With Hive Metastore, the query engine transparently authenticates itself to the cloud IAM 
system and accesses the data at the location using the configured authorization. For Azure, 
this is done via Active Directory service principals. For AWS, it will be via instance profiles. 
For GCP, it will be via service accounts.

	� With Unity Catalog, the short-lived signed URLs will be used.

6.	 The results are returned to the user.

The DBAs only need to configure the privileges to the objects for users or groups of users with the 
GRANT, DENY, and REVOKE statements. The complexity of translating the table abstraction into 
cloud object storage and authenticating the cloud object storage access is handled transparently by 
the Databricks SQL system during query execution. The following diagram should clarify this further:

Figure 4.3 – User-facing table access control versus cloud storage access with Hive Metastore

As we can see, the table access control uses the standard database security statement, GRANT, to 
permit users to operate on data assets such as tables. Similarly, standard database security statements 
such as REVOKE and DENY (not mentioned in the preceding diagram) can be used to prevent access.

When a user submits a query, the permissions are checked to confirm whether the user is privileged 
to perform the operations specified in the query, upon the tables specified in the query. If the check 
goes through, Databricks SQL will use the appropriate means to read the data files of the table – 
signed URLs with Unity Catalog and a service principal/instance profile/service account with Hive 
Metastore. This step is transparent to the end user. If the end user is authorized to use the table in 
the way they have requested, the request will go through; otherwise, they will receive an error in line 
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with GRANT – for example, “The user does not have READ privileges on table departments.” They will 
not be burdened with the knowledge of the underlying cloud object permissions.

User-facing table access control
Diving further into the security model, let’s discuss table access control. In essence, table access 
control requires programming a user’s privileges to perform operations on a data object/asset. The 
owners of data objects or administrators will implement this programming with standard database 
security statements. 

First, we will discuss users, objects, operations, and privileges. Then, we will bring them all together 
and see how we can program them with user-facing table access control.

Users, groups, and service principals

Databricks SQL inherits users and groups from the Databricks Lakehouse platform. Users and groups 
can be managed from the Admin Console area of the Databricks platform.

Note to Administrators
At the time of writing, user and group management is only available from the Data Science & 
Engineering and the Machine Learning persona experiences.

If you are using Unity Catalog, you should create account-level identities so that the ACLs can be 
programmed once and carried into different workspaces automatically. See https://docs.
databricks.com/data-governance/unity-catalog/manage-identities.
html for more information.

A full discussion of user and group management is outside the scope of this book. We will only 
explore the parts that are relevant to the discussion at hand. Please see the official documentation 
at https://docs.databricks.com/administration-guide/users-groups/ for 
detailed user and group administration.

The first thing we must ensure is that the user or user group has the necessary entitlement to access 
Databricks SQL. 

An entitlement is a property that allows a user, service principal, or group to interact with Databricks 
in a specified way. We must select the Databricks SQL access entitlement for the user or group. 

To provide a user with access to Databricks SQL, go to Admin Console | Users and select the Databricks 
SQL access entitlement, as shown in the following screenshot:

https://docs.databricks.com/data-governance/unity-catalog/manage-identities.html
https://docs.databricks.com/data-governance/unity-catalog/manage-identities.html
https://docs.databricks.com/data-governance/unity-catalog/manage-identities.html
https://docs.databricks.com/administration-guide/users-groups/


The Security Model70

Figure 4.4 – Databricks SQL access entitlement for a user

To provide a user group with access to Databricks SQL, go to Admin Console | Groups and select 
the Databricks SQL access entitlement, as shown in the following screenshot:

Figure 4.5 – Databricks SQL access entitlement for a user group
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Note on Service Principals
There is a special type of user in Databricks called the service principal. The service principal 
is an API-only identity and is used for executing automated tools, jobs, and applications. This 
avoids binding a production job to an actual user. You can read more about them in the official 
documentation at https://docs.databricks.com/administration-guide/
users-groups/service-principals.html. At the time of writing, the service 
principal user cannot execute queries on Databricks SQL. It is only used for management APIs. 
Hence, this user type is not relevant to the discussion at hand.

Securable objects

The second concept is the data objects that users will access. These data objects can be anything in 
the data catalog. The following list enumerates the available data objects, along with their place in 
the hierarchy:

•	 Catalog:

	� Database:

	� Table

	� View

	� Function (named)

•	 Anonymous function: These are user-defined functions and temporary session-specific 
functions programmed in Scala, Java, or Python. At the time of writing, they are not supported 
in Databricks SQL.

•	 Any file: This is a special data object that represents direct access to the underlying cloud object 
storage. This allows access to the data files directly if such access is required.

•	 External location (Unity Catalog only).

•	 Storage credential (Unity Catalog only).

If you need a refresher, revisit the Understanding the data organization model in Databricks SQL section 
of Chapter 3, The Data Catalog, for more details on the various objects and the relevant hierarchy.

These are the objects that users (introduced in the Users, groups, and service principals section) 
will access, so they must be secured with access control and governance. Hence, we call all of them 
securable objects.

We can define securable objects as all the elements in the data catalog that must be protected and 
governed. In effect, securable objects are the data catalogs, and the data objects within those catalogs 
must be secured by the table access control system. 

https://docs.databricks.com/administration-guide/users-groups/service-principals.html
https://docs.databricks.com/administration-guide/users-groups/service-principals.html


The Security Model72

Operations

Users can execute operations on securable objects. There are different varieties, as follows : 

•	 Data Definition Language (DDL) statements such as CREATE, DROP, ALTER, COMMENT, 
and TRUNCATE

•	 Data Manipulation Language (DML) statements such as INSERT, UPDATE, DELETE, 
and MERGE

•	 Data retrieval statements such as SELECT

•	 Auxiliary statements such as SHOW, DESCRIBE, ANALYZE, and EXPLAIN

•	 Security statements such as GRANT, REVOKE, and DENY

Note
Refer to the official documentation to learn more about individual commands: https://
docs.databricks.com/sql/language-manual/ for details.

Privileges

To be able to execute operations on securable objects, users require the necessary privileges. The 
following is a list of available privileges: 

•	 ALL_PRIVILEGES: A blanket privilege that gives the recipient all the privileges in this list 
in one go.

•	 USAGE: This is a catalog/database-level privilege that is a must-have requirement for a user or 
group to be able to make use of any other privilege discussed in this list:

	� If a user is an admin or the owner of a catalog/database either directly or via a group, then 
the user has USAGE privileges.

	� For any other case, USAGE privileges must be explicitly granted. For example, to create 
a table, users should either own the database or have USAGE and CREATE privileges 
on the database.

•	 SELECT: The ability to have read access to a data object:

	� Supported on databases, tables, views, and named functions.

	� If you are using Unity Catalog, SELECT does not apply to catalogs and databases. SELECT 
must be applied at the table level.

https://docs.databricks.com/sql/language-manual/
https://docs.databricks.com/sql/language-manual/
https://docs.databricks.com/sql/language-manual/ for details
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•	 CREATE: The ability to create a data object:

	� Supported on a catalog object: This allows you to create a database in the catalog.

	� Supported on a database object: This allows you to create tables, views, and functions in 
the database.

•	 MODIFY: The ability to add data to an object, delete data from an object, and modify data in 
an object. This allows standard commands such as INSERT, DELETE, UPDATE, MERGE, and 
TRUNCATE. It also allows Delta Lake commands such as RESTORE, OPTIMIZE, VACUUM, 
and REPAIR:

	� Supported in catalogs, databases, tables, and views. However, the MODIFY privilege is very 
specific to data manipulation, which is why it’s only effective on the table object.

	� If you are using Unity Catalog, MODIFY does not apply to catalogs and schemas.

•	 READ_METADATA: The ability to view an object’s metadata. This allows you to execute 
commands to EXPLAIN a query or DESCRIBE a database, table, or function:

	� Supported on databases, tables, views, and functions.

	� If you are using Unity Catalog, READ_METADATA is not required

•	 MODIFY_CLASSPATH: The ability to add files to the Spark classpath. This allows you to 
create user-defined functions from a resource file such as a JAR file that your team will build. 
Since the resource needs to be loaded into the execution classpath, the MODIFY_CLASSPATH 
privilege is required:

	� Supported on the catalog object only

•	 READ FILES, WRITE FILES, and CREATE TABLE: The ability to read files, write files or 
create external tables on a cloud storage location. These are specific to Unity Catalog and are 
supported on external location and storage credential objects. We will learn about them in the 
Going beyond read access – part 1 section.

Bringing everything together

Now, let’s tie the four concepts that we just learned about together to achieve a coherent access control 
on the data in Lakehouse while following the principle of least privilege.

Users and groups must be provided with only the privileges on securable objects that are required 
by them to execute operations concerning their daily workflow.
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Assigning privileges to data objects can be done by two people:

•	 A Databricks workspace administrator

•	 The owner of the object

Object ownership can be achieved in three ways:

•	 By creating the object – that is, the database, table, view, or function. Here, the user becomes 
the owner of the object.

•	 The Databricks workspace administrator or owner transfers ownership of the data object to 
the user or user group. Databricks recommends assigning ownership to groups rather than 
users as a best practice.

•	 The user is a part of a group that has received ownership of the object.

An object owner (or administrator) can assign privileges with the help of the following operations:

•	 GRANT: Grants a privilege on an object to a principal (user or group)

•	 DENY: Ensures that the principal cannot access the specified object, irrespective of implicit or 
explicit GRANTs

•	 REVOKE: Rolls back an explicit GRANT or DENY on an object for the principal

•	 SHOW GRANT: Displays all inherited, denied, and granted privileges on the object

The rules of privilege inheritance should also be kept in mind:

•	 With table access control on Hive Metastore, GRANTs and DENYs are cascaded to child objects 
– that is, GRANT or DENY on CATALOG is propagated to all databases and all objects within 
the database – tables, views, and functions. A GRANT or DENY on a database is propagated to 
all the objects within the database. This cascade is not applicable in Unity Catalog.

•	 REVOKE is not cascaded. It is strictly scoped to the object specified in the command.

•	 An explicit DENY on an object overrules inherited GRANTs. For example, consider that a user 
has been granted the SELECT privilege on a database and an explicit DENY on a table in this 
database. If the user lists all the tables in the database, the table that has been denied to the 
user will not be shown in the listing. This behavior is true for all securable objects. DENY is 
not applicable in Unity Catalog as we learnt that Unity Catalog does not support cascading/
inheriting permissions.

•	 A GRANT, DENY, or REVOKE applies to one object at a time. The first two cascading rules can 
be used to propagate privileges to multiple objects in one go.

At this point, you might be overwhelmed with the theoretical brain dump. So, let’s log in to our 
Databricks SQL workspace and try out these concepts with some practical examples.
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Note on Unity Catalog
The examples in the following sections have been built using Hive Metastore since Unity 
Catalog is in preview at the time of writing. I will call out any applicable differences as we go. 

The security model in practice

In the spirit of novelty and exploration, let’s create new data assets based on the airlines dataset 
that comes bundled with Databricks. 

Use the following SQL code snippets to create the data assets to work with in this chapter:

1.	 Create the database. If you are using Unity Catalog, consider adding the catalog’s name. 
Otherwise, the database will be created in the default catalog:

CREATE DATABASE airlines;

2.	 Set airlines as the default database:

USE airlines;

3.	 Create an external table on the source planes data, which is in CSV format:

CREATE TABLE planes_csv

USING csv

OPTIONS(

  path '/databricks-datasets/asa/planes/',

  header true,

  inferSchema true

);

4.	 Create a managed delta table using the source planes data for better performance:

CREATE TABLE planes USING DELTA AS SELECT * FROM planes_csv;

5.	 Create an unmanaged table on the source flights data, which is in CSV format:

CREATE TABLE flights_csv

USING csv

OPTIONS(

  path '/databricks-datasets/asa/airlines/',

  header true,
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  inferSchema true

);

6.	 Create a managed delta table using the source flights data for better performance:

CREATE TABLE flights USING DELTA AS SELECT * FROM flights_csv;

7.	 Create a view that shows valid planes records:

CREATE VIEW airlines.clean_planes_data 

AS

SELECT * FROM airlines.planes

WHERE model IS NOT NULL AND year IS NOT NULL;

8.	 Create a function that creates date strings from individual columns:

CREATE FUNCTION airlines.create_date_string(year_num INT, 
month_num INT, day_num INT) RETURNS STRING RETURN concat(year_
num, '-', month_num, '-', day_num);

In the preceding code snippet, we are creating a tables abstraction over the source data, which is in 
CSV format. These are the planes_csv and flights_csv tables, respectively.

We are using these tables to create our final tables, which are managed and are in delta format. These 
are the planes and flights tables, respectively.

For our examples, we want our users to interact with the planes and flights tables only.

We will create two other data assets:

•	 A view called clean_planes_data on the planes table that filters our rows. These contain 
null values for important fields such as model and year.

•	 A function called create_date_string that combines individual columns for year, month, 
and day into a string in yyyy-MM-dd format.

We will need one more user in our account. We will use this user as the guinea pig for our experiments 
with the security model. In my account, I have a user with an email ID of suteja@dbsql.com. 

Note
In our examples, we are showing the programming of the security model on a user. In real life, 
Databrick’s best practices recommend programming the security model at the group level.

Now, we are ready to work with the security model on our airlines database.
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Ownership

We are the owners of the airlines database and the data assets within it on account of having 
created the airlines database and the data assets within it.

We can verify this ownership via Data Explorer:

Figure 4.6 – Verifying ownership privilege via the UI

We can also verify the ownership of the database with the following SHOW GRANTS statement:

SHOW GRANTS ON DATABASE airlines;

The preceding code will return the following output:

Figure 4.7 – Verifying database ownership privilege via SQL

Similarly, the ownership of the table can be verified with the following SQL statement:

SHOW GRANTS ON TABLE airlines.planes;

The preceding code will return the following output:

Figure 4.8 – Verifying table ownership privilege via SQL

Sharing the database 

With that, the database, the tables, views, and functions are ready. Let’s see how we can share these 
data assets with our teammate, suteja@dbsql.com, so that she can query them.
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As mentioned in the Privileges section, we have the SELECT privilege, which fits the bill here.

Let’s grant Suteja the SELECT privilege on the airlines database by running the following statement:

GRANT SELECT ON DATABASE airlines to `suteja@dbsql.com`;

At this point, if Suteja tries to run the SHOW DATABASES statement, we would expect her to be able 
to see the airlines database in the result. However, this isn’t the case.

If you go back to the Privileges section, you will find the USAGE privilege. The USAGE privilege on 
the database and the catalog is a must-have for any of the other privileges to take effect. So, we must 
add that privilege:

GRANT USAGE ON DATABASE airlines to `suteja@dbsql.com`;

Now, if Suteja runs the SHOW DATABASES statement, voila – the airlines database will show up!

Exploring the database

Now that Suteja has a working SELECT privilege on the airlines database, we must provide her 
with access to the tables and views within the database.

But how do we do this?

Again, recall the rules of privilege inheritance – all GRANTs are cascaded down. This means that 
Suteja should be able to list the tables and views in the database and be able to retrieve data from 
them, without us having to provide any further privileges.

Unity Catalog Difference
Privileges are not cascaded down in Unity Catalog! You must grant privileges explicitly. This 
makes Unity Catalog secure by default. This is a very important distinction from the table 
access control within Hive Metastore.

Let’s try this out! 

Let’s say that Suteja runs the following statement:

SHOW TABLES IN airlines;
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By doing this, she will see all the tables and views in the airlines database, as follows:

Figure 4.9 – Listing (select) privilege is cascaded

Now, let’s say she runs the following statement:

SELECT * FROM airlines.flights LIMIT 2;

She will be able to sample the flights data, as follows:

Figure 4.10 – Select (data) privilege is cascaded

So, how did this happen? We only provided the SELECT privilege on the database. How did this 
cascade work? To understand that, let’s run the following SHOW GRANT:

SHOW GRANT ON TABLE airlines.flights;
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You can choose any table or view that you like for the preceding SQL statement; the following result 
will be the same:

Figure 4.11 – Cascaded (inherited) privileges

Upon inspection, we can see the explicit GRANTs that we provided to Suteja – SELECT and USAGE 
(ActionType) on the airlines (ObjectKey) database (ObjectType).

We can also see that Suteja has inherited the SELECT privilege on the flights table, in the airlines 
database. This inheritance is underlined by the fact that ObjectKey provides a fully qualified asset 
name – that is, airlines.flights.

Also, you can see that, since we created the table, we are the default owners of the table – that is, we 
have the OWN privilege on the table.

Exploring asset metadata

Now that Suteja has her data access privilege sorted out, she wants to inspect the metadata of these 
data assets, such as tables and views. In particular, she wants to know more about the flights table.

So, she runs the following statement:

DESCRIBE EXTENDED airlines.flights;

She expects metadata details. However, what she gets is a nasty error:

Figure 4.12 – Lack of metadata privileges
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This is because the Databricks SQL security model requires an explicit READ_METADATA privilege 
for users to be able to retrieve metadata about the asset.

Unity Catalog Difference
The READ_METADATA privilege is only applicable if you are using the table access control 
with Hive Metastore. It is not required if you are using Unity Catalog.

This can easily be resolved. We, as the owners of this table, can provide her with the privilege:

GRANT READ_METADATA ON TABLE airlines.flights to `suteja@dbsql.
com`;

Now, if Suteja attempts to use DESCRIBE again, she will be presented with the required information:

Figure 4.13 – Metadata retrieval

Note
You might be tempted to just provide the READ_METADATA privilege on the airlines 
database and let it cascade. That won’t be best practice, though – privileges should always be 
granted as specifically as possible to avoid data security breaches!



The Security Model82

Revoking access

In our example scenario, Suteja has now been granted privileges to explore the tables and views 
available in our airlines database. Since she is working with the data assets, she comes to you 
with a question – what is the difference between the flights table and the flights_csv table?

Hearing this question, you remember that the flights_csv table is only supposed to be a staging 
table for internal use, and not to be exposed to end users such as Suteja.

Thankfully, we can run a REVOKE statement, like so:

REVOKE SELECT ON airlines.flights_csv FROM `suteja@dbsql.com`;

So, all done, right? 

Not so fast! This is one of the important gotchas to understand. Suteja’s SELECT privilege on the 
flights_csv table is inherited from her SELECT privilege on the airlines database. See the 
Exploring the database section to review the permissions given to Suteja. Hence, even though we can 
REVOKE the SELECT privilege, she will still be able to query data in the table. 

Unity Catalog Difference
Since privileges are not cascaded in Unity Catalog, the preceding gotcha is not applicable if 
you are using Unity Catalog.

Try it out yourself!

This is in keeping with the principle of least privilege. We granted Suteja the SELECT privilege on 
the entire airlines database. What we should have done is give her SELECT access to the data 
assets that she is privileged to work with!

The following sequence of commands should do the trick:

REVOKE SELECT ON DATABASE airlines FROM `suteja@dbsql.com`;

GRANT SELECT,READ_METADATA ON TABLE airlines.flights TO 
`suteja@dbsql.com`;

GRANT SELECT,READ_METADATA ON TABLE airlines.planes TO `suteja@
dbsql.com`;

GRANT SELECT,READ_METADATA ON TABLE airlines.clean_planes_data 
TO `suteja@dbsql.com`;

Here, we revoke the SELECT privilege that we had provided to Suteja on the airlines database. 
Then, we provide the SELECT privilege and the READ_METADATA privilege to the flights and 
planes tables and the clean_planes_data view.



User-facing table access control 83

Now, Suteja should only be able to list and query the aforementioned assets.

Remember
REVOKE only works on explicitly granted or denied privileges on a securable object from 
a principal.

Just to drive home the concept of REVOKE, let’s say that Suteja complains to you that the planes 
table has too many missing values, and she must write extra SQL to filter out these rows every time. 
You remember that you have created a view called clean_planes_data that does just this – it 
filters out rows that contain empty values. You can REVOKE Suteja’s access to the base planes table 
and ask her to use only the clean_planes_data view:

REVOKE SELECT,READ_METADATA ON TABLE airlines.planes FROM 
`suteja@dbsql.com`;

This REVOKE works because the SELECT and READ_METADATA privileges were explicitly granted 
to Suteja.

Denying access

Of course, you may not want to always use GRANTs, especially if a schema contains a lot of tables 
and views. To achieve the same results as we saw in the preceding section – that is, providing select 
access to a database while selectively revoking access to a few objects – we can use the DENY statement.

Running the following DENY statement has the same effect:

DENY SELECT, READ_METADATA ON TABLE airlines.planes TO `suteja@
dbsql.com`;

This command makes sure that the table is not visible to Suteja either via Data Explorer or 
SQL commands.

Going beyond read access – part 1

At times, end users may need to create data assets such as tables, views, or functions. However, CREATE 
privileges are not implicit to end users. 

For example, let’s say that Suteja tries to create a new view on the flights table that provides a view 
of only the flight details and arrival delay:

CREATE VIEW airlines.flights_delay AS SELECT year, month, 
flightnum, tailnum, arrdelay FROM airlines.flights;
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She will get the following error:

Figure 4.14 – Missing CREATE privilege

To remedy this, we can simply run the following GRANT statement:

GRANT CREATE ON DATABASE airlines TO `suteja@dbsql.com`;

Note
The CREATE privilege is applicable at the database level if you are using Hive Metastore, and it 
provides the privilege to create tables and views only. Functions require the CREATE_NAMED_
FUNCTION privilege. If you are creating functions that use code in Scala/Java/Python, an 
additional MODIFY_CLASSPATH privilege will be required. If you are using Unity Catalog, 
CREATE is also applicable at the catalog level. However, as we know, the privilege will not 
cascade down to databases, tables, and views.

Unity Catalog considerations

Unity Catalog introduces a securable object called external location that is relevant here. Consider 
the case where Suteja wants to create an external table for data contained on a cloud storage path. To 
complete this operation, Suteja needs the CREATE privilege at the database level and access to the 
cloud storage path. 

If we were using Hive Metastore, then granting her the CREATE privilege would have solved the first 
requirement. However, for the second requirement, she would have to ask the cloud infrastructure 
team for the necessary permissions. This is less than ideal. 

This is where external location comes in. It combines the cloud storage path with the required 
storage credentials. 

As you may have guessed by now, this means that a storage credential is also a securable object.

Consider the following SQL snippet:

CREATE EXTERNAL LOCATION airlines_loc URL 'abfss://dbsql/
airlines' WITH (CREDENTIAL airlines_cred);
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The preceding code highlights how a cloud storage path is combined with the required storage 
credentials. Since we are using an Azure example, airlines_cred CREDENTIAL will be a service 
principal that grants access to the ADLS path.

Now, Suteja can be granted one of the following privileges on the external location object or the 
credential object:

•	 READ_FILES

•	 WRITE_FILES

•	 CREATE_TABLE

This will grant her privileges to read, write, or create tables in that location, respectively. Take a look 
at the following code:

GRANT CREATE_TABLE ON EXTERNAL LOCATION airlines_loc TO suteja@
dbsql.com;

Now, Suteja can create the required external table with the familiar syntax:

CREATE TABLE planes LOCATION 'abfss://dbsql/airlines/planes';

This way, DBAs can manage the required credentials across the database and the underlying 
cloud storage.

For a full reference on creating, altering, and managing external locations and storage credentials, visit 
https://docs.databricks.com/spark/latest/spark-sql/language-manual/
sql-ref-external-locations.html. 

Going beyond read access – part 2

At times, end users will require permissions to be able to insert, update, or delete data in tables. 
These modifications could be explicit in the sense that the user is trying to actively insert, update, 
or delete data. They could also be part of optimization commands such as VACUUM, OPTIMIZE, 
or ALTER TABLE. 

Optimization Commands
As an end user, you will rarely encounter the need to use optimization commands. They 
are primarily in the domain of data engineers, who are creating these datasets and are 
responsible for optimizing the layout of the data so that you, as the end user, can have the 
best query experience. In any case, if you are interested, we will be covering this in more 
detail in Chapter 8, The Delta Lake.

https://docs.databricks.com/spark/latest/spark-sql/language-manual/sql-ref-external-locations.html
https://docs.databricks.com/spark/latest/spark-sql/language-manual/sql-ref-external-locations.html
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In either case, the user running the command must have the MODIFY privilege on the table. Let’s 
say that Suteja tries to INSERT some data into the flights table using the following statement:

INSERT INTO airlines.flights VALUES(2006,12,21,4,'1155',1200,'1
447',1457,'DL',1466,'N919DL','172','177','149','-10','-5','FLL'
,'BDL','1173','6','17',0,'',0,'0','0','0','0','0';)

She will get the following error:

Figure 4.15 – Missing MODIFY privilege

To remedy this, we, as owners of the database, can simply run the following GRANT statement:

GRANT MODIFY ON DATABASE airlines TO `suteja@dbsql.com`;

Going beyond read access – part 3

Finally, advanced users, such as data engineers, may want to insert data into tables using data from 
other files, such as CSVs or JSONs. This can be achieved using the COPY INTO statement. We will 
deep dive into this command in Chapter 11, SQL Commands – Part 1. For now, it is sufficient to note 
that this is the command that requires the SELECT privilege on ANY FILE, along with the MODIFY 
privilege on the table being inserted into (as we saw in the preceding section). 

Unity Catalog Difference
With Unity Catalog, we can use the external location and storage credentials with the READ_
FILES, WRITE_FILES, and CREATE_TABLE privileges. This is a more secure way of 
providing access to cloud storage than ANY FILE.

Summarizing the security model

Hopefully, this theoretical and practical discussion of the Databricks security model (as it pertains 
to user-facing table access control) has taught you how to navigate and implement the Databricks 
security model in your organization.
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For a comprehensive list of operations, as well as the privileges required to execute them, visit the 
official documentation at https://docs.databricks.com/security/access-control/
table-acls/object-privileges.html.

Programming the security model with standard SQL commands is great. It provides a lot of flexibility. 
That said, Databricks SQL does provide a UI-based mechanism to program the security model as well. 
We will learn about it in the next section. 

UI-based user-facing table access control

In the preceding sections, we saw many examples of applying table access control with ANSI standard 
DCL commands such as GRANT and REVOKE. 

The Data Explorer UI also enables us to apply table access control to data assets using simple UI controls.

The Permissions tab for any data asset (database, table, or view) in the Data Explorer UI does three 
things. Let’s take a look.

Show current permissions

This is equivalent to the SHOW GRANTS statement. In the following screenshot, we have navigated 
to the Permissions tab for the airlines database. Here, we can see the list of applied permissions:

Figure 4.16 – Permissions for the airlines database

https://docs.databricks.com/security/access-control/table-acls/object-privileges.html
https://docs.databricks.com/security/access-control/table-acls/object-privileges.html
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Similarly, in the following screenshot, we can see the current permissions for the flights table in 
the airline database:

Figure 4.17 – Permissions for the flights table

Granting privileges

Clicking on the Grant button for any data asset opens a pop-up window where you can select a user 
or user group and grant one or more privileges to them, as shown in the following screenshot:

Figure 4.18 – The GRANT permissions from the UI
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Revoking privileges

Clicking on an existing privilege and clicking the Revoke button revokes that specific privilege from 
that specific user or user group, as shown in the following screenshot:

Figure 4.19 – Revoking with the UI

Note
At the time of writing, access control on functions is not available via the UI. Also, note that 
we cannot perform DENY with the UI.

Now, we are fully equipped to program the access privileges to our data with our preferred method 
– SQL or UI. This covers the first section of Figure 4.3, which represents the user-facing table access 
control. In the same figure, we can see that the SQL Warehouses must be configured to access the 
cloud object storage as well. We will discuss this in the next section.

The internals of cloud storage access 
In Figure 4.1 and Figure 4.2, we discussed the execution model of a query. In the preceding section 
on user-facing table access control, we learned how table access control enables user-facing table 
access control.

This leaves us with one more authorization layer to discuss – the cloud storage access that’s given to 
SQL Warehouses. 
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Unity Catalog Consideration
If you are using Unity Catalog, or exclusively using managed tables, this section is not relevant. 
This is because with managed tables, the catalog stores the data in a location dedicated for its use. 
Further, with Unity Catalog, the query engine is provided signed, short-lived, pre-signed URLs 
to the relevant data files, even if the tables are unmanaged. This contrasts with Hive Metastore, 
where the SQL Warehouses use the relevant cloud authorization mechanism – instance profile, 
service principal, or service account – to access the relevant data files. 

To understand why this authorization layer is important, we must unpack Figure 4.1 and Figure 4.2 
a little bit more. If we look at the overall deployment architecture of Databricks (on either cloud), it 
will look as follows:

Figure 4.20 – Databricks deployment architecture
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What stands out in this reference architecture is that the actual execution layer and storage layer is 
in your cloud account, not in the Databricks cloud account. This means that to process the query, 
Databricks creates an instance of the SQL Warehouse (data processing cluster) using EC2 instances, 
Azure VMs, or GCP VMs in your cloud account. These SQL warehouses (and by association, the 
instances) will need authorization to access the cloud storage locations required to fulfill the query.

Databricks is responsible for creating and managing these SQL Warehouses in your cloud account, 
which also means it is responsible for endowing them with the required authorizations to cloud 
storage locations containing the database files. Therefore, we must authorize Databricks SQL to do 
so in a secure, governable fashion. Hence, we must learn about the internals of cloud storage access. 

Again, Databricks does not receive authorization to interact with these storage locations. It receives 
authorization to authorize the SQL Warehouses to interact with these storage locations.

Therefore, it is important to make sure that the authorization is restricted to only those buckets that 
are required to fulfill queries. No more, no less.

Remember
It is important to remember that cloud storage access is not user-facing. We do not have to map 
a table to a service principal or instance profile explicitly. Databricks SQL will automatically 
use the appropriate service principal or instance profile based on the cloud storage location of 
the table. This means that if a query accesses two tables from two storage locations, Databricks 
SQL will do the heavy lifting of authorizing itself to Microsoft Azure or AWS to gain access 
to the respective storage locations. Furthermore, it is important to remember that this stage 
is only relevant if the user submitting the query has been cleared by table access control to be 
querying these tables in the first place. See Figure 4.3 for more.

The overall mechanism for this configuration remains the same across clouds. We must create an 
identity or a proxy in the cloud’s IAM system that has privileges to work with the necessary storage 
locations. Our instance of Databricks SQL should be given the privileges to create SQL Warehouses 
that will assume this identity or use this proxy to be able to interact with storage locations in a governed 
and secured way. 

Technical Requirements
The Cloud storage access in Microsoft Azure section will require familiarity with the Azure 
Console and concepts such as Azure Active Directory service principals and storage accounts. 
The Cloud storage access in Amazon Web Services section will require familiarity with the AWS 
Console and concepts such as IAM and S3.

At this point, you might be thinking – Wait, I already created databases. Where are they stored, then?
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In the examples we’ve covered so far, we have not specified where on our cloud storage our data 
should be stored. 

If you are using Hive Metastore, it will be a default warehouse directory in the following form:

dbfs:/user/hive/warehouse/airlines.db

On the other hand, if you are using Unity Catalog, the default location will be the location associated 
with the Metastore being used by your Databricks SQL workspace (see Chapter 3, The Data Catalog).

While we are on the topic of Unity Catalog, you may recall that we already created the EXTERNAL 
LOCATION and CREDENTIAL objects and programmed the user privileges on them. So, why do 
we have to reauthorize? The reasoning is the same as we discussed earlier in this section. EXTERNAL 
LOCATION and CREDENTIAL authorize users to use a cloud storage path. The user’s queries on this 
location, however, will be executed by a different entity – the SQL Warehouse, which will also need 
access to these locations. 

Cloud storage access in Microsoft Azure

In Microsoft Azure, access to cloud storage is controlled via service principals in Azure Active 
Directory. We introduced service principals in the Users, groups, and service principals section.

In our context, we will create a service principal (which is nothing but an Active Directory application) 
that has the authorization to read data from certain storage accounts (https://docs.microsoft.
com/en-us/azure/storage/common/storage-account-overview). Our instance of 
Databricks SQL will use these service principals to get access to the required storage accounts.

Databricks recommends that we configure one service principal per storage account. 

Let’s walk through an example that’s outlined in the official documentation: 

•	 Databricks side configuration: https://docs.microsoft.com/en-us/azure/
databricks/sql/admin/data-access-configuration

•	 Azure side configuration: https://docs.microsoft.com/en-us/azure/
databricks/data/data-sources/azure/adls-gen2/azure-datalake-
gen2-sp-access

We will use the same airlines dataset that we have been using throughout this chapter.

https://docs.microsoft.com/en-us/azure/storage/common/storage-account-overview
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-overview
https://docs.microsoft.com/en-us/azure/databricks/sql/admin/data-access-configuration
https://docs.microsoft.com/en-us/azure/databricks/sql/admin/data-access-configuration
https://docs.microsoft.com/en-us/azure/databricks/data/data-sources/azure/adls-gen2/azure-datalake-gen2-sp-access
https://docs.microsoft.com/en-us/azure/databricks/data/data-sources/azure/adls-gen2/azure-datalake-gen2-sp-access
https://docs.microsoft.com/en-us/azure/databricks/data/data-sources/azure/adls-gen2/azure-datalake-gen2-sp-access
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Step 1 – creating an Active Directory application

Head over to the Azure portal and navigate to Azure Active Directory. Select App Registrations 
and create a new app registration. I am naming my app airlines-app-for-dbsql. Upon 
creating the app, copy the Application (client) ID and Directory (tenant) ID details, as shown in 
the following screenshot:

Figure 4.21 – Creating an app for cloud storage access

The application ID and directory ID collectively identify the service principal that was created by this 
Azure Active Directory application registration.

Note
You will require permissions to be able to register an application with your Azure AD tenant 
and assign the application a role in your Azure subscription. 

You must also create a client secret from the Certificates and Secrets page for this Active 
Directory application. 

Copy the client secret and add it to Databricks Secrets. See https://docs.microsoft.com/
en-us/azure/databricks/security/secrets/ for more information on Databricks 
Secrets. On your command line, execute the following code:

databricks secrets create-scope --scope airlines-app-secrets

databricks secrets put --scope airlines-app-secrets --key 
client-secret

Executing the preceding code will open an editor where you should paste the client secret. 

https://docs.microsoft.com/en-us/azure/databricks/security/secrets/
https://docs.microsoft.com/en-us/azure/databricks/security/secrets/
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Step 2 – creating a storage location on ADLS Gen2

In Azure, we must create a storage account, which I am calling airlinestorageaccount, and 
a container within that storage account, which I am calling airlines-container. Next, we 
must assign the service principal we created in the preceding step (airlines-app-for-dbsql) 
as a Storage Blob Data Contributor to this storage account, as shown in the following screenshot:

Figure 4.22 – Assigning access to the storage account

Caution
This IAM setting has been done at the storage account level, not at the container level. Setting 
it at the container level will throw 403 Forbidden errors during query executions.

Step 3 – creating a service principal in Databricks SQL

Now, we have an Azure Active Directory service principal that will allow our instance of Databricks 
SQL to work with the ADLS Gen2 storage container that we have dedicated to our airlines database.

To configure this service principal, we must navigate to the SQL Admin Console area and navigate 
to the SQL Warehouse Settings tab. Click on Add Service Principal:

Figure 4.23 – Add Service Principal
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Clicking on Add Service Principal opens a popup, in which we must add all the details we collected 
from Steps 1 and 2, like so:

Figure 4.24 – Adding the service principal’s details

Note
The Storage Account Name field tells Databricks SQL which credentials to use for which 
storage account. If this field is left blank, then these credentials will be used to access all storage 
accounts. This is discouraged as it creates security risks.

Do not forget to click on the Save Changes button!
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Step 4 – taking it out for a test drive

The settings for working with the new storage container dedicated to our airlines database are 
done. So, let’s see it in action.

We will execute the same airlines starter snippet we introduced in the The security model in practice 
section, but with one difference: the airlines database will be located on the storage container 
that we just created, as shown in the following snippet:

--create the database

CREATE DATABASE airlines LOCATION 'abfss://airlines-container@
airlinesstorageaccount.dfs.core.windows.net/';

Here, we can see that the planes and flights tables have been stored in the storage container, 
as shown in the following screenshot:

 

Figure 4.25 – The data in a location of our choosing

Unity Catalog Note
If you are using Unity Catalog, please rework the preceding example so that it uses EXTERNAL 
LOCATION and STORAGE CREDENTIAL.
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Let’s summarize this example:

•	 We created a container that will be the home of our airlines database.

•	 We created a service principal that is authorized to contribute to this database.

•	 We authorized our instance of Databricks SQL to assume the identity of this service principal 
(using the client secret) for interacting with this container.

Upon executing the data asset creation script, Databricks SQL transparently uses this authorization 
to create the airlines database on the designated containers.

Cloud storage access in Amazon Web Services

The core principle remains the same when we are working with Amazon Web Services (AWS). We 
want our instance of Databricks SQL on AWS to assume an identity that has been authorized to interact 
with the required S3 buckets. In AWS, the mechanism that allows us to do so is the instance profile.

Unlike Azure Databricks, there are three stages to configuring cloud storage access in AWS:

•	 Create and configure instance profiles on the AWS console: https://docs.databricks.
com/administration-guide/cloud-configurations/aws/instance-
profiles.html#secure-access-to-s3-buckets-using-instance-profiles 
(Steps 1 to 4).

•	 Configure the instance profiles in Databricks (the data engineering view): https://docs.
databricks.com/administration-guide/cloud-configurations/aws/
instance-profiles.html#secure-access-to-s3-buckets-using-
instance-profiles (Step 5).

•	 Configure Databricks SQL to use the instance profiles: https://docs.databricks.
com/sql/admin/data-access-configuration.html.

We will work with the same airlines dataset. However, for the sake of brevity, we will avoid listing 
out complete IAM policies. I will point you to the official documentation links for picking up the policies.

Step 1 – creating an S3 bucket

Create a new S3 bucket that will host the airlines dataset. I am calling it airlines-bucket.

https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#secure-access-to-s3-buckets-using-instance-profiles
https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#secure-access-to-s3-buckets-using-instance-profiles
https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#secure-access-to-s3-buckets-using-instance-profiles
https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#secure-access-to-s3-buckets-using-instance-profiles
https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#secure-access-to-s3-buckets-using-instance-profiles
https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#secure-access-to-s3-buckets-using-instance-profiles
https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#secure-access-to-s3-buckets-using-instance-profiles
https://docs.databricks.com/sql/admin/data-access-configuration.html
https://docs.databricks.com/sql/admin/data-access-configuration.html
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Step 2 – creating and configuring the instance profile

Create a new role with EC2 as the trusted entity (https://docs.databricks.com/
administration-guide/cloud-configurations/aws/instance-profiles.
html#step-1-create-an-instance-profile-to-access-an-s3-bucket). I am 
calling it airlines-bucket-role. Attach the IAM policy listed in Step 1 in the documentation. 
This IAM policy allows this role (or the user of this role) to perform certain operations on the 
airlines-bucket S3 bucket:

Figure 4.26 – Creating an instance profile with access to the bucket

Copy the Role ARN and Instance Profile ARN details.

Step 3 – configuring the S3 bucket

Next, we must configure the S3 bucket to accept contributions from the role we created in Step 2. 
This Bucket Policy configuration is required so that this S3 bucket accepts contributions from the 
holder of the IAM role that we created in Step 2 (airlines-bucket-role). The full policy can 
be copied from https://docs.databricks.com/administration-guide/cloud-
configurations/aws/instance-profiles.html#step-2-create-a-bucket-
policy-for-the-target-s3-bucket.

https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#step-1-create-an-instance-profile-to-access-an-s3-bucket
https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#step-1-create-an-instance-profile-to-access-an-s3-bucket
https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#step-1-create-an-instance-profile-to-access-an-s3-bucket
https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#step-2-create-a-bucket-policy-for-the-target-s3-bucket
https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#step-2-create-a-bucket-policy-for-the-target-s3-bucket
https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#step-2-create-a-bucket-policy-for-the-target-s3-bucket


The internals of cloud storage access 99

Step 4 – configuring your Databricks instance to use this role

When a Databricks workspace is created, it is provided with an IAM role that manages EC2 instances 
in the customer’s account. This IAM role can be found in the Account Management Console area. 

We must extend this IAM role to be able to pass along the S3 access role that we created in Step 2 to 
the EC2 instances that Databricks creates in the customer account.

Note
The Databricks SQL Warehouses that execute the queries are a group of EC2 instances that 
have been organized into a computing cluster. Hence, these EC2 instances should inherit the 
IAM instance profile to be able to interact with the required S3 buckets.

The modification listed at https://docs.databricks.com/administration-guide/
cloud-configurations/aws/instance-profiles.html#step-4-add-the-s3-
iam-role-to-the-ec2-policy can be a bit wordy. If you are confused by it, all you need to 
do is add the following snippet to the IAM policy:

        {

            "Effect": "Allow",

            "Action": "iam:PassRole",

            "Resource": "arn:aws:iam::xxxxxxxxxxxx:role/
airlines-bucket-role"

        }

Step 5 – configuring Databricks SQL to use this instance profile

Navigate to Settings, and then the SQL Admin Console tab, as shown in the following screenshot. 
Click on the Configure button to add the instance profile we created in Step 2 to Databricks SQL. 
This will navigate you to the dedicated page for managing instance profiles in the Data Engineering 
persona view. Once done, go back to the SQL Admin Console tab, select airlines-role from 
the dropdown, and click Save:

Figure 4.27 – Configuring the instance profile in Databricks SQL

https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#step-4-add-the-s3-iam-role-to-the-ec2-policy
https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#step-4-add-the-s3-iam-role-to-the-ec2-policy
https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#step-4-add-the-s3-iam-role-to-the-ec2-policy
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Step 6 – taking it out for a test drive

We will execute the same airlines starter snippet but with one difference: the airlines database 
will be located in airlines-bucket in S3. For the sake of brevity, I am only going to note the 
CREATE DATABASE statement here. The rest of the SQL script remains the same:

--create the database

CREATE DATABASE airlines LOCATION "s3://airlines-bucket/";

We can also observe that the planes and flights tables have been stored in the S3 bucket:

Figure 4.28 – The data in a location of our choosing

Unity Catalog Note
If you are using Unity Catalog, please rework the preceding example so that it uses EXTERNAL 
LOCATION and STORAGE CREDENTIAL.
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Let’s summarize this example: 

•	 We created an S3 bucket, which will be the home of our airlines database.

•	 We created an instance profile that is authorized to contribute to this database.

•	 We authorized our instance of Databricks SQL to assume the identity of this instance profile 
(using the PASS ROLE mechanism) for interacting with this bucket.

Upon executing the data asset creation script, Databricks SQL transparently uses this authorization 
to create the airlines database on the designated buckets.

Summary
In this rather dense chapter, we learned how data assets in the data catalog are secured with the 
data security model. We learned how user-facing table access control allows for the fine-grained 
implementation of the data security model using familiar SQL security statements such as GRANT and 
REVOKE. We also learned how Data Explorer allows visual, UI-based implementations of the table 
access control. After that, we learned about the underlying mechanics of authorizing Databricks SQL 
to cloud storage to access the necessary database files. Finally, we learned about the next-generation 
data cataloging technology known as Unity Catalog and how it improves upon the security capabilities 
of table access control with Hive Metastore.

In the next chapter, we will move on to the Databricks SQL workbench itself. Though we introduced 
the SQL Editor as part of this chapter, we will take this further and see how the SQL Editor, Dashboard 
Builder, and Query tabs all come together as the workbench for a user of Databricks SQL.





5
The Workbench

In the previous chapters, we learned how to organize our data assets, how to secure and govern them, 
and how to explore the available data assets. This means we are now ready to work on the data.

In this chapter, we will primarily focus on the perspective of the end users: business intelligence users 
and data analysts. Throughout this chapter, we will learn about workbench in Databricks SQL. 

In this chapter, we will cover the following topics:

•	 Creating and working with queries

•	 Visualizing query results

•	 Creating and publishing dashboards  

•	 Administering and governing your work

Technical requirements
To understand this chapter, we should know about the following:

•	 Standard SQL statements for data retrieval and manipulation such as SELECT, GROUP BY, 
and others

•	 The science and math behind analytical techniques and visualizations, including cohort analysis, 
funnels, pivot tables, and, of course, charts

•	 The concepts introduced in Chapter 3, The Data Catalog

Working with queries
 In Chapter 2, The Databricks Product Suite – A Visual Tour, in Figure 2.9, we briefly introduced the SQL 
Editor as the intelligent workbench that is at the center of the end user experience for day-to-day work. 

In this section, we’ll look into the capabilities that the SQL Editor brings to the table.
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In the previous chapters, we used the SQL Editor to either program the security model or explore the 
data assets visually. Hence, I’m not going to introduce the basic layout of the page and dive straight 
into the most important features.

Continuing within the spirit of the previous chapters, let’s start by incorporating another dataset from 
the bundled databricks-datasets into our data catalog for use in this chapter. Here, we will 
use the NYC Taxi Trip dataset.

Like the previous chapters, execute the following SQL snippet to register this dataset as a database:

--create the database

CREATE DATABASE nyc_taxi;

--Set nyc_taxi as the default database

USE nyc_taxi;

--create an unmanaged table on the source nyc taxi trips data 
which is in csv format

CREATE TABLE trips USING DELTA OPTIONS(

  path '/databricks-datasets/nyctaxi-with-zipcodes/subsampled/'

)

The NYC Taxi Trip dataset is simple, yet it lends to decent statistical computations. This makes it the 
perfect companion dataset to learn about queries, visualizations, and dashboards.

Now, let’s put on our data analyst hat since we’ve been tasked with building an operational dashboard 
for the NYC Taxi company. The requirements of the dashboard are as follows:

•	 Requirement 1: A view of Daily Fare Trends

•	 Requirement 2: A view of pickup volumes per hour

•	 Requirement 3: A view of drop-off volumes per hour

•	 Requirement 4: A route to revenue attribution

This dashboard will be used by NYC Taxi to optimize the placement of cabs along various routes at 
specific times so that revenue can be maximized.

Developing queries

Queries are first-class citizens in Databricks SQL and can be created, read, updated, or deleted. They 
can also be shared with other people and access controlled. Finally, visualizations on queries are the 
fundamental building block of dashboards.
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Umm... Wait
You might be thinking, hey, we have already written so many SQL queries in the previous 
chapters. Do I need to go through this chapter after all that? 

Well, yes. So far, we have been writing queries to learn about concepts such as data asset 
exploration and security programming. However, those were one-off executions, and we never 
really explored the tools and techniques available to craft queries in Databricks SQL.

Also, it is the right time to disambiguate something. When we talk about a query in the context 
of Databricks SQL, we are not referring to the SQL statement within that query. The query is 
a larger object in Databricks SQL that includes the SQL statement, its associated parameters, 
and its associated visualizations.

Let’s start by considering the case of developing Requirement 1 – that is, A view of Daily Fare Trends.

The development process starts with creating a query. This asset will host the SQL statement(s) that 
we will write to fulfill Requirement 1.

To create a query, head to the SQL Editor and click on Create a new Query. If you have been working 
on a query previously, you will see that here. Click on the + symbol in the Tabbed Editor area to 
create a new query. 

Provide the query with a logical name by clicking on the text label of the tab. By default, it should be 
New Query. I am naming my work Daily Fare Trends:

Figure 5.1 – Creating a named query

It is important to manually save the query asset by clicking the Save button. Databricks SQL does 
not have an auto-save function at the time of writing. This means that Databricks SQL will save your 
draft and it will be visible to you, but the changes won’t be visible to others until you save the query. 

Note
Databricks will automatically save a record of every execution of a query. These executions will 
be visible in the Query History tab.
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Saving a query asset is a matter of clicking the Save button, as shown in the following screenshot:

Figure 5.2 – Saving a named query

Now that we have our development placeholder, we can start developing the SQL statement that 
fulfills Requirement 1.

The first step is inevitably sampling the data to see what we are working with. To this end, we must 
write a sampling statement:

SELECT * FROM nyc_taxi.trips LIMIT 50

Live autocomplete – schema hints

The Databricks SQL workbench/SQL Editor provides a feature called Live autocomplete that creates 
typeahead hints for the schemas as you write the preceding SQL statement. 

The following screenshot shows how the Live autocomplete feature provides hints for selecting a 
database or table based on the context of a SELECT statement being typed:

Figure 5.3 – Live autocomplete for the SELECT statement

Selecting the nyc_taxi database opens the next level of typeahead hints for the selection of tables:

Fig 5.4 – Live autocomplete for table selection
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Live AutoComplete can be toggled on or off for the query by clicking the lightning icon in the SQL 
Editor, as shown in the following screenshot:

Figure 5.5 – Toggling Live autocomplete

UI tools for schema selection and sampling

An alternative to using typeaheads is to use a UI button to insert a table name into the query text. 
Hovering over a table name in the Schema Browser area brings up the Insert table name into query 
text option, as shown here:

Figure 5.6 – Insert table name into query text

As an alternative to typing out the sampling statement, hovering over a table name in the Schema 
Browser area brings up the Open a preview of this table in a new tab option. This is shown in the 
following screenshot, where clicking the button has opened a new tab and executed the sampling 
query for us:

Figure 5.7 – Open a preview of this table in a new tab
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Flashback
We covered another method of sampling/previewing data in Chapter 3, The Data Catalog. The 
data catalog allows you to preview the data in Data Explorer.

Once we execute the sampling query, we understand the values and transformations that must be 
done. In this case, we realize that we must extract the day of the week from the pickup time field, 
tpep_pickup_datetime, to build a fare trend based on distance and the day of the week.

Let’s return to the Daily Fare Trends query and develop the first cut with the following SQL snippet:

SELECT date_format(tpep_pickup_datetime, 'EEEE') as day_of_
week, trip_distance, fare_amount

FROM nyc_taxi.trips

ORDER BY day_of_week

If you browse the results in the results tab, you will notice that only a subset of the records is displayed. 
This is by design. Loading humongous volumes of data for display is arguably never required as you 
will not go through each row manually. Hence, Databricks SQL limits the results of SELECT queries 
to 1,000 rows. This ensures an optimal user experience when browsing through results or visualizing 
them. This can be toggled off for the query by checking the LIMIT 1000 checkbox after clicking the 
Run button:

Figure 5.8 – Limiting the results loaded into the browser

Note
The LIMIT 1000 checkbox is overruled by any explicit LIMIT clause in the query. 

Live autocomplete – SQL hints

Live autocomplete provides suggestions for applicable SQL commands as well. For example, as you 
type the preceding SQL statement, you will see Live autocomplete hinting at possible, applicable SQL 
commands. In this case, we can see ORDER BY:
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Figure 5.9 – Live autocomplete for SQL commands

Save Your Work
Now that you have created your first cut of the query, don’t forget to save your work!

With that, we have a working base query for Requirement 1. However, it is very inflexible – that is, 
the query does not allow us to choose filtering parameters for our Fare Trends query. For example, 
the query should provide a mechanism to filter on the desired date or date range. Alternatively, it 
should provide a mechanism to filter on the ZIP code. It could also provide a mechanism to filter on 
the day of the week. 

We can create such a dynamic view with query parameters. A query parameter is a way for the query 
to receive values during query execution. In Databricks SQL, a query parameter is created by placing 
a string between double curly braces, {{ }}, or by using the Cmd + P keyboard shortcut. Creating 
the double curly braces will automatically create an input widget above the results tab, which is where 
you set the desired parameter value.

There are three broad categories of query parameters. These are as follows:

•	 Free Form Fields: Text and numbers

•	 Temporal Fields: Date and time

•	 User-Defined Choices

Using query parameters, part 1 – text and numbers

In our working example for Requirement 1, we must have the flexibility of seeing fare trends based 
on a ZIP code. Hence, we will provide a query parameter for users to specify which pickup ZIP code 
they want to see the fare trends for. 
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Place your cursor where you want to create the query parameter. Use the Cmd + P keyboard shortcut:

Figure 5.10 – Starting the Add new parameter process

Clicking on the Add new parameter button, {}, opens a pop-up where you can configure the query 
parameter. Three configurations are required, as shown here:

Figure 5.11 – Adding a new parameter

Let’s look at these configurations in more detail:

•	 Keyword: The value in this field will represent the parameter in the query text.

•	 Title: The value in this field will be displayed as the title of the widget for this query parameter.

•	 Type: The value in this field defines the acceptable values for this query parameter.
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In tune with our example for Requirement 1, I have set Keyword to pickup_zip, Title to Pickup 
Zip Code, and Type to Number. Completing this configuration does two things:

•	 Inserts the query parameter into the query text

•	 Creates a corresponding UI widget that receives inputs for the parameter

The following screenshot shows the new state of the query we are building:

Figure 5.12 – A query built with a query parameter

Now, you can insert a value for the Pickup Zip Code query parameter and retrieve the fare trends for it. 

Default Values
While working in the Query Editor, it is important to provide values for each query parameter 
via the UI widget. This prompts the question of having default values for query parameters. 
Databricks SQL allows you to provide default values for query parameters when the query is 
part of a dashboard. This may seem odd, but think about it – the queries that we develop here 
will be part of dashboards and ETL flows where these parameterized queries will be provided 
with dynamic values; otherwise, they will use defaults. They will not be executed in isolation. 
We will learn how to use default values when we discuss dashboards.



The Workbench112

If you are feeling particularly adventurous, you can try executing the query with an empty query 
parameter value. You will get an error stating Missing value for pickup_zip parameter:

Figure 5.13 – Error due to missing parameter input

A Note on Inserting Query Parameters
It is worth highlighting that when adding a new query parameter, try to keep the cursor at the 
position where you intend the query parameter to be placed. This is important because if you 
try to cut and paste the query parameter’s text, the settings associated with the query parameter 
will be lost, which is likely to be frustrating.  

To summarize, there are two free-form query parameter types:

•	 Text:

	� Databricks SQL will add quotation marks around the user input for this query parameter 
type. For example, S123456 will become 'S123456'.

	� Databricks SQL will escape the backslash (\), single quote('), and double quote (") 
special characters.

•	 Number:

	� Databricks SQL provides basic sanity checks on the number type – that is, trying to add 
alphanumeric content for a number query parameter will result in an error.

Using query parameters, part 2 – temporal query parameters

Databricks SQL also allows you to configure temporal query parameters, of which there are two 
broad categories:

•	 Point in time:

	� Date

	� Date and time

	� Date and time with seconds
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•	 Range-based:

	� Range of dates

	� Range of dates and times

	� Range of dates and times with seconds

Let’s return to our working example for Requirement 1. Here, we should provide the user of the query 
with the power to filter the fare trends to a specific time window or a specific date. 

Creating a temporal query parameter follows the same process as that of free-form text/numbers. Let’s 
insert a new query parameter with Keyword set to pickup_time, Title set to Pickup Time, and 
Type set to Date and Time Range. The query should look as follows:

Figure 5.14 – Temporal query parameter with a date and time range

The Pickup Time query parameter is a range. Hence, it gets a Start date component and an End date 
component. In the query text, start and end can be accessed with the following syntax:

<parameter keyword>.<start/end>

Important
For temporal query parameters, the user is responsible for adding the quotes around the 
parameters in the query text. Failing to do so will result in syntax errors during runtime.

Irrespective of the temporal query parameter type (point in time or ranges), the UI widget provides 
two components: a calendar-based date-time selection tool and a dynamic tool. Let’s learn about them.
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Calendar-based selection tool

Clicking on the Start date or End date field in the UI widget will open a calendar, as shown here:

Figure 5.15 – Calendar-base selection tool

Our parameter is the date and time range. Hence, we have three selection fields – the day, the hour, 
and the minute in that order, respectively.

If our parameter was just the date range, the selection tool would not have the hour and the minute 
fields. Conversely, if our parameter was the date and time range with seconds, the selection tool would 
have an additional seconds field.

Here, Start date and End date would have to be configured individually.

So, What about Point-in-Time Query Parameters?
Great point! If your query parameter is a point in time and not a range – that is, Type is either 
Date, Date and Time, or Date and Time (with Seconds) – then the query parameter will 
not have start and end components. Also, the UI widget will not have separate Start and End 
selections. It will be just one of Date/Date and Time/Date and Time (with Seconds).
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Dynamic value selection tool

Manual selection is great, but often, temporal query parameters are known ranges such as last week, 
last month, or yesterday. Databricks SQL provides a convenient dynamic value selection tool just for 
this. Clicking on the lightning bolt on the query parameter widget brings up a list of dynamic values 
that we can select with a click:

Figure 5.16 – Dynamic value selection

As we can see, the dynamic drop-down provides a range of values for this query parameter. The word 
dynamic comes from the fact that the values of each drop-down option change based on the current date.

Again, What About Point-in-Time Parameters?
Point-in-time parameters also get the dynamic value selection option. However, logically, the 
only options possible are Today and Yesterday. Arguably, there can be more, but those options 
will be wordy. For example, One week ago wouldn’t look good in a drop-down.
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The following screenshot shows the new state of the query we are building:

Figure 5.17 – Query augmented with a parameter to pick up the time range

Using query parameters, part 3 – dropdowns

Databricks SQL provides a third variety of query parameters, which is drop-down lists of valid values. 
Free-form text/numbers and calendar tools are great, but they can be prone to misuse. For example, 
someone can enter an invalid value for a text parameter that returns no values. This can result in a 
bad experience. It also puts the responsibility on the developer to cater to all such edge cases.

The drop-down query parameter allows the developer to limit the values that can be provided as 
input to the query parameter.

There are two ways to specify the allowed list of values:

•	 Dropdown List

•	 Query Based Dropdown List

Optionally, we can also specify that the user is allowed to make multiple selections from the drop-down 
list by checking the Allow multiple values checkbox. If we enable multiple selections, we must choose 
the Quotation mechanism for the selected options – None, Single Quotes, or Double Quotes. This is 
important because internally, the multiple selections will be translated as an IN clause, as shown here: 

….WHERE day_of_week IN ('SUNDAY','MONDAY')

Let’s return to our working example for Requirement 1. We should provide the user of the query 
with the power to filter the fare to a specific day of the week. Let’s look at how we can use the two 
aforementioned options.
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Dropdown List

To create a query parameter with a drop-down list, select the Dropdown List option in the query 
parameter’s Type field:

Figure 5.18 – Dropdown List

As you can imagine, utmost care must be taken when specifying the allowed list of values. It is also 
plausible that manually creating this list is unscalable. This is because the list of allowed values might 
be long and manually typing them would be error-prone, cumbersome, and, let’s be honest, not the 
best use of your time.

This is where the second option, Query Based Dropdown List, comes in.



The Workbench118

Query Based Dropdown List

This option works exactly how it sounds. You must create a saved query that returns the list of possible 
values. Following our example for Requirement 1, the following query should do the trick:

SELECT

  DISTINCT(date_format(tpep_pickup_datetime, 'EEEE')) AS day

FROM

  nyc_taxi.trips

In my instance, I have created a saved query called List of Days in NYC Taxi.

Coming back to the query that we are developing; we must add a new Type parameter based on Query 
Based Dropdown List. The rest of the options are the same as those for Dropdown List, which we 
discussed in the preceding section.

The following screenshot shows this in action:

Figure 5.19 – Query Based Dropdown List
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Regardless of whether you use Dropdown List or Query Based Dropdown List, the end state of the 
query is the same. The only difference is the mechanism to get the list values.

Once the query parameter has been configured, the user will see a UI widget, as shown in the 
following screenshot:

Figure 5.20 – Using a drop-down query parameter

With that, we can conclude our discussion on parameterizing queries. If you have been following 
along, then you should have arrived at the following SQL query:

SELECT date_format(tpep_pickup_datetime, 'EEEE') as day_of_
week, trip_distance, fare_amount

FROM nyc_taxi.trips

WHERE pickup_zip in ({{ pickup_zip }})

AND tpep_pickup_datetime BETWEEN '{{ pickup_time.start }}' AND 
'{{ pickup_time.end }}'

AND date_format(tpep_pickup_datetime, 'EEEE') IN ({{ day_of_
week }})

ORDER BY day_of_week
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This also concludes our discussion of developing queries. In this lengthy section, we covered the 
following topics:

•	 The concept of a query as a first-class citizen in Databricks SQL

•	 Creating SQL statements within a query

•	 Parameterizing a query for runtime flexibility

Next, we will learn how to work with the results of the SQL statements within these queries.

Visualizing query results
In the previous section, we focused purely on developing the SQL/query for the requirements at hand. 
However, development does not stop at writing a SQL query that returns a bunch of rows. 

It is important to expose these results in a digestible format, and the best way to do so is via visualizations 
– graphical representations of the results.

Databricks SQL supports a variety of visualizations. We’ll discuss them in the following sections.

How Detailed Will We Get?
Visualizations provide a lot of levers for configuring and customizing the representation. We 
will not be going into explicit detail about each configuration. I am assuming that you will get 
a general sense of the configuration once you get hands-on with visualizations. The following 
discussions will get you hands-on up to that level. You can take your visualizations to the 
next level by playing with all the various configurations. At any point, if you feel lost, please 
refer to the official documentation at https://docs.databricks.com/sql/user/
visualizations/.

Tables

Yes – tables are a form of visualization as well. 

When building a SQL query, you use the SELECT statement to specify the data return format and 
the data columns to return, as well as the ORDER BY clause to specify the order of the columns and 
rows of data.

https://docs.databricks.com/sql/user/visualizations/
https://docs.databricks.com/sql/user/visualizations/
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Databricks SQL presents these results by default in a table visualization, as shown in the 
following screenshot:

Figure 5.21 – Results visualized as a table

In the preceding screenshot, we can see the results of the SQL we developed for Requirement 1, 
visualized as a table.

Since this table is a visualization, we can now edit this visualization to reorder, hide, or format the 
data that was originally returned by the SQL.
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To do so, we can click on the Edit Visualization button, as shown in the preceding screenshot. Doing 
so will open a visualization-specific pop-up that allows us to customize the visualization. In this case, 
the customization screen will look as follows:

Figure 5.22 – Customizing the table visualization
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Here, we apply a conditional color coding of rows based on the day_of_week column values 
(weekend versus weekday). Other possible customizations are as follows:

•	 Toggling the visibility of a column

•	 Formatting a numeric or temporal column, such as by limiting decimal places or using the 
ISO date format

•	 Conditional color coding of columns

It is important to highlight that Databricks SQL supports special data types:

•	 Image: Set the Display as option to Image. Databricks SQL will treat the cell value as a hyperlink 
to an image and render that image in the visualization.

•	 Link: Set the Display as option to Link. Databricks SQL will generate a clickable hyperlink 
based on a template, using the values returned in that row.

•	 JSON: Databricks SQL will pretty-print the JSON in the cell.

Charts

The next most popular visualization type is charts. In simple terms, these are any visualizations that 
use an X-axis and a Y-axis. Most of the charts are built on the same query, so you can switch between 
charts without changing the underlying data configurations. This way, you can easily find out which 
visualization conveys the meaning truthfully.

Returning to Requirement 1, we must create a fare trend analysis. This means we must visualize how 
trends vary with trip distances and how the day of the week affects it. If we were to visualize this on 
a chart, the X-axis would be the trip distance and the Y-axis would be the fare. The grouping criteria 
would be the day of the week. Let’s add this visualization.
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To add a new visualization, click on the Add Visualization button in the results pane. This will present 
a screen where we can select the type of visualization we want. Based on this selection, Databricks 
SQL will present the required configurations. On the right-hand side of this pop-up is the preview 
pane, which allows us to preview the chart based on the configurations; it updates in real time. We 
can create a scatterplot visualization like so:

Figure 5.23 – Creating a scatterplot
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Saving this configuration creates a visualization and renders it based on the results returned, like so:

Figure 5.24 – The scatterplot has been rendered

Here, we can see how the relationship between trip distance and fare amount changes when the day 
of the week changes. This is also a perfect visualization for Requirement 1 of our working example.

One Query, Multiple Visualizations
One query can be associated with multiple visualizations. This goes back to a query being a 
first-class citizen in Databricks SQL. Developers can create multiple visualizations based on 
the insight they want to deliver. Users of the query can choose which visualization to render. 
Users of the query can be actual users or developers, or they can be dashboards using the query 
to render a visualization. This enables a clear separation of responsibilities and removes any 
chance of data not being interpreted as the developer originally intended. 

Now that we have a working example of a chart, we can introduce the primary concepts surrounding 
chart visualizations.

Grouping

As we saw from our example, grouping is used to create multiple traces for the same X and Y values 
–  that is, it helps sort (x,y) tuples by certain (grouping) columns for a more succinct representation 
of data.
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Stacking

Stacking stacks the Y-axis values on top of each other based on the grouping columns. Stacking can 
be applied with bar charts and area charts. In our example, for each (x,y) – that is, (trip distance, fare 
amount) – there would be seven stacks representing each day of the week. Figure 5.25 shows a bar 
chart with stacking. Different colors in the stack represent different days of the week and the size of 
each color stack is proportional to how many instances of that (trip distance, fare amount) occurred 
during that day of the week. It is safe to say that this visualization is not even close to effective in terms 
of conveying the trend analysis. Our scatterplot was more on point:

Figure 5.25 – Stacked bar chart for fare trend analysis

Error bars

Let’s consider Requirement 1 again. Our analysis is based on the premise of accurate trip distances. 
In the real world, trip distances are based on GPS readings. The GPS devices themselves have certain 
error margins and are dependent on the route and the GPS availability throughout the route. For 
example, GPS is inaccurate inside tunnels and among high-rise buildings in business districts. This 
means that our fare trend analysis should account for this error margin. 

Our dataset does not contain this information, so we can fabricate our own for this discussion. I am 
using the following rule – 2% error for trips up to 2 miles, 5% error for trips between 3 and 10 miles, 
and 6% error for trips beyond 10 miles. For further simplicity, I am assuming that this percentage 
discrepancy in distance translates 1:1 into a percentage discrepancy in fare. The resulting table should 
look like this:
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Figure 5.26 – Fabricated error column

If we create a line chart with the error column configuration option set to fare_error, we will get 
the following visualization, which shows the degree of confidence at each data point with error bars:

Figure 5.27 – Fare trend analysis with error bars

This concludes this discussion on charts. There are more chart visualizations apart from the scatterplot, 
stacked bar chart, and line chart, as follows:

•	 Area chart

•	 Pie chart

•	 Bubble chart

•	 Box chart

•	 Heatmap

I highly encourage you to create examples of these chart types using the same dataset while following the 
official documentation: https://docs.databricks.com/sql/user/visualizations/
charts.html.

https://docs.databricks.com/sql/user/visualizations/charts.html
https://docs.databricks.com/sql/user/visualizations/charts.html
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Specialized visualization types 

Tables and charts typically suffice for most use cases. However, there can be times when more specialized 
visualizations are required. Databricks SQL provides the following specialized visualization types:

•	 Map visualization

•	 Cohort visualization

•	 Funnel visualization

•	 Pivot tables

•	 Sankey

•	 Sunburst

•	 Word cloud

We will discuss a few of these in the following sections. You are encouraged to follow the official 
documentation for the visualizations that we won’t discuss here.

Map visualization

Of course, we must start with the most exciting of the lot. You can use map visualizations to display 
the results of a query on a geographic map. For example, you can show revenue by state or country 
on a map instead of using a vanilla table. 

There are two map visualization styles, as follows:

•	 Choropleth: Choropleth allows you to work with geographic entities such as countries and 
states. At the time of writing, Choropleth supports visualizations at the country level, USA 
state level, and Japan prefecture level. Our New York Taxi dataset is not very well suited for 
this visualization. You can see this visualization in action by importing the Retail Revenue & 
Supply Chain Sample dashboard, which shows revenue by country on a world map (https://
docs.databricks.com/sql/get-started/sample-dashboards.html). 
Detailed documentation is available at https://docs.databricks.com/sql/user/
visualizations/maps.html.

•	 Map Marker: This visualization mode places markers at a specified latitude and longitude. 
These markers can be configured to provide certain information from the results, such as the 
number of taxi trips originating from this location.

Returning to our requirements, let’s work on Requirement 2 – that is, A view of pickup volumes per 
hour. We can build two visualizations for this requirement:

•	 A bar chart showing pickup volumes per hour for a pickup location

•	 A handy map visualization to show this pickup location on a map for context

https://docs.databricks.com/sql/get-started/sample-dashboards.html
https://docs.databricks.com/sql/get-started/sample-dashboards.html
https://docs.databricks.com/sql/user/visualizations/maps.html
https://docs.databricks.com/sql/user/visualizations/maps.html
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There are many ways to construct the SQL query for these visualizations. The most logical would be 
to create two separate queries. The first query will perform a count aggregate by pickup_zip and 
pickup_hour. It would look like this:

SELECT

  pickup_zip, date_format(tpep_pickup_datetime, 'HH:00') AS 
pickup_hour, count(*) AS `trip count`

FROM

  nyc_taxi.trips

WHERE

  tpep_pickup_datetime BETWEEN TIMESTAMP '{{ pickup_date.start 
}}'

  AND TIMESTAMP '{{ pickup_date.end }}'

  AND pickup_zip IN ({{ pickup_zip }})

GROUP BY pickup_zip, pickup_hour

It will be straightforward to plot this bar chart as the aggregation has already been done by us. We 
just need to set the X-axis to Pick up Hour and the Y-axis to Trip Count and Stack by Zip Code. A 
map visualization can easily be created by joining the same data to the latitudes and longitudes of 
the ZIP codes.

However, I want to take this opportunity to showcase the powerful visualization-building capabilities 
of Databricks SQL.

Hence, I will start with a simple data collection query:

SELECT

  pickup_zip, date_format(tpep_pickup_datetime, 'HH:00') AS 
`pickup_hour`, latitude, longitude

FROM

  nyc_taxi.trips

JOIN nyc_taxi.zip_codes

ON pickup_zip = zip_code

WHERE

  tpep_pickup_datetime BETWEEN TIMESTAMP '{{ pickup_date.start 
}}'

  AND TIMESTAMP '{{ pickup_date.end }}'

  AND pickup_zip IN ({{ pickup_zip }})

The query is simple – it just gets pickup_hour and pickup_zip from each row that satisfies our 
query parameters – the pickup_date range and the pickup_zip codes.
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You will notice that I am not doing any aggregation of any kind.

Note on Zip Code Coordinates
I have built a table that maps ZIP codes to their corresponding geographic coordinates – latitude 
and longitude. You can build this yourself by using the data from the US census. A quick Google 
search should get you going. I found the following GitHub Gist helpful: https://gist.
github.com/erichurst/7882666. Save the raw version of the Gist on your desktop, use 
Databricks Data Explorer to upload this data file to a table, and then join it to the existing data.

Now, let’s learn how to build two very different visualizations from this data. 

Click on Add Visualization and select Bar under Visualization Type. As shown in the following 
screenshot, we can configure our X-axis to be pickup_hour from the results of the SQL query. 
More importantly, look at the Y-axis configuration – Databricks SQL allows me to apply a Count 
aggregation based on the pickup_zip grouping: 

Figure 5.28 – Creating the pickup by hour trend

https://gist.github.com/erichurst/7882666
https://gist.github.com/erichurst/7882666
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This is very powerful as it allows the developer of the query to expose correct interpretations of the 
data. The resulting visualization will look as follows:

Figure 5.29 – Pickup hour trend distribution

Now, the same result set can also be used to create a visualization on the map. We will start by creating 
a Map (Markers) visualization and configuring the latitude and longitude columns from the result 
set, as shown here:

 Figure 5.30 – Configuring the general settings for the Map (Markers) visualization



The Workbench132

Optionally, we can configure a tooltip template that shows pertinent information if the markers on 
the map are clicked, as shown in the following screenshot. Here, we are configuring the map marker 
to show the ZIP code and pickup hour of the trip. You will also notice the use of the parameter format 
to refer to the columns in the result set. Bear in mind that these parameters are not the same as the 
query parameters:

 Figure 5.31 – Configuring the format settings for the Map (Markers) visualization

The preceding configurations result in the following map visualization: 

Figure 5.32 – Map visualization
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In summary, it is ridiculously easy to use map visualizations in Databricks SQL. 

Going back to our working example, the bar chart (Figure 5.29) and the map visualization (Figure 
5.32) satisfy Requirement 2. If you look closely, Requirement 3 is very similar. I will leave it up to you 
to construct the query and visualizations for the same.

Cohort analysis and visualization

Cohort analysis is useful when we want to measure or track a value across two different time series. 
Continuing with the Taxi example, we can define a cohort as users who signed up in a particular 
month – for example, January 2022. An example cohort analysis would have two time series:

•	 A month-on-month user signup time series.

•	 The activity level of each cohort (users who signed up in a month) across different months. For 
example, 100 users signed up in January but only 50 of those users booked a ride in January, 60 
of those booked a ride in February, and so on. Similarly, 150 users signed up in February, and 
out of those 150, only 90 booked a ride in February; 110 booked a ride in March.

Cohort analysis and visualization will combine the two time series and present a visualization 
of user engagement. 

Unfortunately, the NYC Taxi dataset does not contain user data, so performing cohort analysis on it 
will not be feasible. Due to this, we must fabricate some data. We will skip some steps and assume that 
the cohort analysis data is available. This fabricated cohort analysis works on monthly cohorts from 
January 2022 to June 2022. The following SQL snippet constructs this fabricated analysis:

CREATE TABLE cohort_analysis(

cohort_date DATE,

period INTEGER,

engaged_users INTEGER,

cohort_size DOUBLE

);

--Cohort Analysis From January to June

--In the month of January, 2022, out of the 35 people who 
signed up in January, 33 showed activity

INSERT INTO cohort_analysis VALUES('2022-01-01', 0, 33, 35);

INSERT INTO cohort_analysis VALUES('2022-01-01', 1, 33, 35);

--In the month of March, 2022, out of the 35 people who signed 
up in January, 25 showed activity

INSERT INTO cohort_analysis VALUES('2022-01-01', 2, 25, 35);
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You are encouraged to fill out the rest of the cohort analysis values. Once done, configure a cohort 
visualization type, as shown in Figure 5.33.

Consider a sample row – that is, ('2022-01-01', 2, 33, 35). This sample row says Out of 
the 35 people who signed up in January 2022, only 33 booked rides in March. This means that we are 
talking about the engagement of users who signed up in January for rides in March – that is, 2 months 
after they signed up:

•	 Date (Bucket): The cohort start date. In our example, one cohort represents the users that 
signed up in that month. This is 2022-01-01 in our sample row.

•	 Stage: This is the number of cohorts that have onboarded since this cohort (2022-01-01) started. 
This is 2 in our sample row.

•	 Bucket Population Size: This is the number of users in the cohort. In our sample, the 2022-
01-01 cohort has 35 users.

•	 Stage Value: This is the number of users who booked rides in the stage (month). In our sample 
row, only 33 users from the 2022-01-01 cohort booked rides in stage 2 (March, or 2 months 
from January):

Figure 5.33 – Configuring a cohort analysis visualization
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This configuration results in the following succinct visualization:

Figure 5.34 – Cohort analysis visualization for user engagement

Note
Databricks SQL only supports Monthly, Weekly, and Daily stages. This can be configured 
from the Options tab on the Cohort Visualization configuration page. The visualization in 
Figure 5.34 uses Monthly stages.

Funnel visualization

Consider the cohort analysis that we did in the previous section. One of the things that stands out is 
that even though we have a lot of signups in every cohort, the signup is not translating into a booked 
taxi ride. For example, 35 people signed up in January, but only 33 booked a taxi ride. Now, you have 
been tasked with understanding why this is so. 

Booking a taxi ride is a multi-step journey, starting from signup to profile creation, selecting a pickup 
location, selecting a destination, configuring a payment method, to finally making a booking. The 
users who are not active might be dropping off at any of these stages. These stages can be thought 
of as a funnel toward the final stage of making a booking. Performing funnel analysis and creating 
visualization will help you understand at which stage the user is dropping off. This will help the product 
team make decisions that can change this behavior.

Once again, we will fabricate some data. The fabricated data assumes that the funnel analysis for 
January has already been done:

CREATE TABLE funnel_analysis(

cohort DATE,

cohort_stage INT,

step STRING,

value INTEGER
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);

INSERT INTO funnel_analysis VALUES('2020-01-01', 0,'Sign Up', 
1000);

INSERT INTO funnel_analysis VALUES('2020-01-01', 0,'Create 
Demographic Profile', 990);

INSERT INTO funnel_analysis VALUES('2020-01-01', 0,'Enter 
Contact Details', 950);

INSERT INTO funnel_analysis VALUES('2020-01-01', 0,'Create 
Avatar', 950);

INSERT INTO funnel_analysis VALUES('2020-01-01', 0,'Configure 
Payment Method', 780);

INSERT INTO funnel_analysis VALUES('2020-01-01', 0,'Select 
Pickup Location', 650);

INSERT INTO funnel_analysis VALUES('2020-01-01', 0,'Select 
Destination Location', 650);

INSERT INTO funnel_analysis VALUES('2020-01-01', 0,'Select 
Destination Location', 650);

INSERT INTO funnel_analysis VALUES('2020-01-01', 0,'Finalize 
Booking', 630);

Configuring the funnel visualization is easy. As shown in the following screenshot, we must map the 
columns for the user journey step and the value – that is, the number of users who completed that step:

Figure 5.35 – Configuring the funnel analysis
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This produces the following visualization:

Figure 5.36 – Funnel visualization of the user journey

In our example, we can see a clear inflection point in the payment configuration step. This means that 
the product team needs to simplify this step.

Pivot table visualization

The pivot table visualization allows you to create aggregated displays from an unaggregated query 
result. Consider Requirement 4 – that is, A route to revenue attribution. Pivot tables will make easy 
work of this requirement. We will start by creating a query that returns unaggregated values of route 
and revenue – that is, pickup_zip, dropoff_zip, and fare_amount, where the date range 
is provided by the user as a query parameter:

SELECT pickup_zip, dropoff_zip, fare_amount

FROM nyc_taxi.trips

WHERE tpep_pickup_datetime BETWEEN "{{ pickup_time.start }}" 
AND "{{ pickup_time.end }}"
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Now, we can create a pivot table visualization that shows the total fare collected in the given time period 
for different routes. The pivot table visualization is a drag-and-drop builder. As shown in the following 
screenshot, the aggregation columns can be placed on the left. This aggregation can be selected from 
the drop-down menu. Here, the aggregation is Sum and is being used on fare_amount:

Figure 5.37 – Pivot table for route revenue attribution
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This brings us to the end of this section on visualizations. We discussed some of the more generic 
(common) chart-based visualizations such as bar charts and scatterplots. We also discussed some of 
the more specialized visualization options, such as maps, cohorts, and funnels. Finally, we learned that 
a single query can be associated with multiple visualizations, allowing developers to create multiple 
interpretations of the same data.

Now that we have learned how to develop queries and visualizations, we have one more thing left to 
learn – how to bring them all together and present a dashboard for our end users.

Creating and publishing dashboards
Simply put, a dashboard is a presentation of various visualizations that provide context to your data and 
gives the observer of the dashboard actionable insights. For example, an operations team will look at the 
route-revenue visualization to decide the localities in which to place the taxis for maximum revenue.

We will learn about the various dashboarding features by bringing the queries and visualizations we 
have built in the preceding sections together. 

Composing a dashboard

To create a new dashboard, simply open the Dashboards page and click Create Dashboard. Continuing 
with our working example, I am creating a new dashboard called New York Taxi Operational Dashboard.

The following screenshot shows the blank dashboard. We must associate a SQL Warehouse with 
the dashboard:

Figure 5.38 – Building a dashboard
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A dashboard can have as many visualizations as you need. Click on the Add Visualization button to 
add a new visualization. In the following screenshot, I am adding the visualization for Requirement 
1. Remember, a query is a first-class citizen. This is why, first, we select the query we built for this 
requirement – that is, the Daily Fare Trends query. Then, we select the pertinent visualization 
that we created for this query. Now, we can edit the query parameters. The default values are picked 
up from the last execution of the underlying query:

Figure 5.39 – Adding a visualization

It is important to focus on the Value Source column. This column allows us to configure the behavior 
of the query parameter. Clicking on the Edit button for any of the value sources opens a pop-up 
window, like so:
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Figure 5.40 – The Edit Source and Value popup

There are four options to choose from:

•	 New dashboard parameter: This will place a new global parameter widget on top of the 
Dashboards page.

•	 Existing dashboard parameter: If the parameter key already exists (perhaps from configuring 
a different visualization), then that can be reused to avoid multiple global parameters for the 
same value.

•	 Widget parameter: If global parameters cannot be used for the visualization, then this option 
can be used to create a widget just for this visualization. This widget will be placed on the 
specific visualization tile instead of the top of the Dashboards page.

•	 Static value: If you do not wish to let the user change this parameter, use a static value.

Note
At this point, I have deliberately synced the query parameters for all the queries we have built 
so far. For example, I have changed the pickup_time parameters to a data and time range 
instead of a date range. Also, I have changed the pickup_zip parameter to be a query-based 
dropdown. You might be wondering why I didn’t do that from the start – well, that is because 
I wanted to showcase different options as we go. Plus, it is a good exercise for you to revisit 
those queries and edit them for this synchronization. 
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Once we have placed all the visualizations, our shiny new operator dashboard will be ready, as 
shown here:

Figure 5.41 – NYC Taxi dashboard

As we can see, all the visualizations use global query parameters. 

If your requirements call for user inputs for different visualizations, the visualizations can be edited 
accordingly. For example, a case can be made that the Day of Week parameter is relevant only to 
Daily Fare Trends and hence should be localized. We can edit this by clicking the context menu icon 
for the visualization, . 

Change the Day of Week parameter’s Value Source to Widget Parameter from Dashboard, as 
shown here:

Figure 5.42 – NYC Taxi dashboard
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Now, our dashboard presents the user with a specific choice of day of the week for the Daily Fare 
Trends visualization, as shown here:

Figure 5.43 – NYC Taxi dashboard with local parameters

Finally, dashboards allow you to change the layout of the visualizations and resize the visualization 
tiles with a simple drag and drop interface. When in edit mode, hovering over a visualization tile 
exposes a panning cursor, . Once this cursor is exposed, you can drag the visualization around. The 
dashboard will automatically reconfigure the other visualizations relative to the movement. Similarly, 
hovering over the right-hand bottom corner of the visualization exposes a resizing icon, . To use 
this feature, keep the left mouse button pressed down and resize the visualization.

Using the dashboard

Good job on compiling your dashboard! Make sure you click the Done Editing button to save 
your work. Now, there is one thing left to do: enable the intended audience of the dashboard to 
use the dashboard.

There are many ways to do so. Let’s take a look at a few options.
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Giving users access to the dashboard

One option is to give users access to the dashboard with Can Run permissions. To do so, click on the 
Share button for the dashboard. This will open a pop-up where you can configure which users or user 
groups have access to the dashboard, as shown here:

Figure 5.44 – Sharing the dashboard

In this example, we have shared the dashboard with Suteja. She only has permission to run it. If we 
had provided her with the Can Edit privilege, she would have been able to edit the dashboard and 
its visualizations. 

Who Should Edit Dashboards?
Typically, you want to provide Can Edit privileges for fellow developers who are working on 
developing the dashboard. End users should only be able to view it.
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Another significant configuration is Sharing Settings. Here, we are specifying that when Suteja runs 
the dashboard, her credentials will be used (Run as viewer). If Suteja does not have access to the 
underlying data source – the nyc_taxi database – the visualizations will fail. This is a great security 
feature as it can mitigate unwanted edge cases around permissions. The other option is Run as owner. 
This option is, again, good for allowing fellow developers to work on the dashboard.

Scheduling with subscribers

Another option is to refresh the dashboard on a schedule. Every scheduled run can then email a report 
of the dashboard in PDF format. To do so, click on the Schedule button. Configure the schedule to 
refresh the dashboard and configure the users (Subscribers) who will receive the reports, as shown here:

Figure 5.45 – Scheduling and sharing the dashboard with subscribers

The Enabled toggle button allows you to temporarily pause the scheduled refresh of the dashboard.

Other interactions with the dashboard

Users with access to the dashboard can download a PDF report of the dashboard manually. Click on 
the context icon, , of the dashboard and click the Download as PDF option.

Users can also interact with individual visualizations. Every visualization tile exposes a menu so 
that you can download the results of the query powering the tile. Clicking the context icon for the 
visualization, , provides options for downloading the results as a comma-separated values (CSV) 
file, a tab-separated values (TSV) file, or in Excel format. There is also a link to the original query 
for quick navigation.
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Alerts

Sending refreshed dashboards is great, but actionable alerts are even better. It is possible that the 
users of the dashboard are only interested in seeing the dashboard when a particular metric on the 
dashboard has drifted away from acceptable ranges. Alerts are a great way to deliver on this. 

Continuing with our working example, let’s say that we want to have an alert if our earnings in the last 
hour have been significantly less than the historical earnings during that hour and day of the week.

DIY Please
We have not built a query that provides the analysis that we just described. Consider it an 
exercise to build it yourself. 

It is important to note that an alert expects the underlying query to return a single row. Rather, it will 
only consider the first row of the returned results. This is logical. We want to configure an alert that 
will trigger based on some value deviating from a threshold. In our example, we want to know if the 
total fares earned in the last hour have deviated from the historical trend for that hour and that day 
of the week. This must be a single row.

To configure an alert, navigate to the Alerts page by clicking on :

Figure 5.46 – Creating an alert
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Here, we have configured a Query that performs a historical analysis. The query returns a column 
called deviation that represents a percentage of the deviation from historical fares for the hour and 
the day of the week. We have configured the alert to Trigger when the deviation is greater than 30%.

Other configurations can remain as their defaults or be configured. 

The When triggered, send notification option configures the alerting behavior. You can configure 
it to send the alert Just Once or Each Time the alert is evaluated. A good in-between option is the 
At Most option. For example, you can configure the alert to send notifications At Most once Every 
hour. The once and every hour can be configured. 

The notification itself can be customized by editing the template. 

Finally, we can configure how often the alert should be evaluated or refreshed. In our case, it makes 
sense for it to be hourly since we are looking for deviations in fares hour by hour. Keep in mind that 
the refresh will require a SQL Warehouse to be turned on. It is recommended that you only configure 
alerts for desired notifications.

The alert will look as follows:

Figure 5.47 – Alert
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By default, the alert notification is sent to the owner of the alert. We can add more destinations as 
required by clicking on the Add button (not visible in the screenshot).

It is important to note that only account administrators can configure destinations from the SQL Admin 
Console. However, once a destination has been configured, it is available to all users. Databricks SQL 
supports destinations such as emails, Slack, PagerDuty, and many more.

This concludes our discussion on workbench from a developer and user perspective. Now, let’s learn 
how to administer and govern the queries, visualizations, and dashboards as a developer, as well as 
an administrator.

Administering and governing artifacts
Every query, visualization, and dashboard that we create is a crucial artifact. It should be protected 
from unauthorized consumption or sharing. On the other hand, artifacts should be shared securely 
so that others may build on existing work as well. 

Hence, Databricks SQL provides a robust governance model for securing queries (and associated 
visualizations), dashboards, and alerts.

Administration by the artifact owner

The governance model is consistent across queries, dashboards, and alerts. All three of them have a 
Share button, similar to the one shown in the following screenshot:

Figure 5.48 – The Share button

The Share button opens a pop-up where the owner of the query, dashboard, or alert can configure 
other users with Can Edit or Can Run privileges. Furthermore, the owner can configure the query or 
dashboard to run with the owner’s credentials or the viewer’s credentials. It is important to configure 
this carefully as it has security implications. 

For example, a user with Can Run privileges may not have access to the underlying data sources for 
data security reasons. If the query or dashboard has been configured to run with the owner’s privilege, 
then this user will be able to view the results and hence constitute a security breach. We saw this 
approach in Figure 5.44. 

It is important to note that only the owner has the Can Manage privilege.
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Sharing alerts has interesting dynamics. When sharing alerts, Can Edit or Can Run privileges can 
be granted. These privileges are self-explanatory. However, if a user receives Can Run privileges on 
the alert, they can still configure the alert to send them a notification when the alert is triggered. That 
said, they cannot edit the core conditions of the alert. Alerts run with the viewer’s privilege, so if the 
viewer does not have privileges on the underlying data source, it will not execute.

Administration by the account administrator

Account administrators can also govern the artifacts. They have view permissions on all dashboards. 
They also have delete permissions on all dashboards. 

This is by design. Consider the case where the owner of the artifact leaves the organization. In such a 
case, the account administrator can transfer ownership of the artifact to another resource.

That said, account administrators do not have Can Edit permissions on any artifact unless the owner 
explicitly grants such permissions.

Additional Context on Access Control
This discussion is enough to understand the access control model for queries, dashboards, 
and alerts. However, it is worth checking the official documentation, which provides a great 
tabular view of possible actions and required permissions. Check it out at https://docs.
databricks.com/sql/user/security/access-control/.

Summary
In this chapter, we put on the lens of an end user of Databricks SQL – the business analyst or the data 
analyst – and learned about the features that enable end users to go through their daily workflows.

First, we learned how to build queries and visualizations and how to compose them into usable 
dashboards. After that, we learned how to put the dashboards to use with various sharing and alerting 
features. Finally, we learned how to administer and govern all these artifacts. We learned all this while 
navigating a hands-on example and compiled our very own operational dashboard.

In this chapter, we assumed that the required computation power is available to us to build and run 
queries and dashboards. In the next chapter, where we will cover SQL Warehouses, we will go behind 
the scenes and see how this computation power comes about and how to configure it for the best 
possible end user experience.

https://docs.databricks.com/sql/user/security/access-control/
https://docs.databricks.com/sql/user/security/access-control/




6
The SQL Warehouses

In this chapter, we will focus on the compute layer of the Lakehouse architecture. The compute layer 
in Databricks SQL is called the SQL Warehouse. We will learn how to create SQL Warehouses and 
configure them for the best possible user experience. We will also learn how the computation layer is 
instantiated on demand when a user executes a query. 

The primary audience of this chapter is the Database administrators and Databricks workspace 
administrator personas. That said, Data analyst personas will also benefit from this chapter by 
learning how their queries are executed, how to avoid common pitfalls, and how to get the best 
possible performance. 

In this chapter, we will cover the following topics:

•	 Understand the SQL Warehouse architecture

•	 Creating and configuring SQL Warehouses

•	 The art of SQL Warehouse sizing

•	 Organizing and governing SQL Warehouses 

•	 Using Serverless SQL

Technical requirements
For this chapter, you will need the following:

•	 A basic understanding of the components of the cloud’s infrastructure as a service (IaaS) for 
your cloud service provider of choice

•	 An understanding of the The internals of cloud storage access section of Chapter 4, The 
Security Model
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Understanding the SQL Warehouse architecture 
The official documentation for SQL Warehouses (https://docs.databricks.com/sql/
admin/sql-endpoints.html) defines a SQL Warehouse as a computation resource that lets 
you run SQL commands on data objects within Databricks SQL. 

In practice, this computation resource manifests as a logical/virtual grouping of one or more physical 
clusters. The physical clusters are Apache Spark clusters, as provisioned by Databricks.

A single physical cluster follows the core architecture of Apache Spark, as shown in the 
following diagram:

Figure 6.1 – Physical cluster topology

As shown in the preceding diagram, two distinct processes make a cluster:

•	 Driver process: Think of this process as the brain of the cluster. It is responsible for accepting 
users’ queries, parsing them, planning them, and coordinating their distributed execution across 
the worker processes available in the cluster. The driver process runs on its own dedicated VM 
(or EC2 instance in AWS).

•	 Worker processes: Think of these processes as the muscle to the driver’s brain. They are 
responsible for accepting tasks from the driver process, completing them, and returning the 
results. If you are familiar with the execution architecture of Apache Spark, you will note that 
the worker processes correspond to executors, which delegate work to smaller processing units 
called Tasks. The worker processes reside on their own dedicated VMs (or EC2 instances). 
However, since they are responsible for executing queries, they are spawned on VMs with higher 
CPU and RAM configurations. The number of worker VMs in a single physical cluster is fixed.

https://docs.databricks.com/sql/admin/sql-endpoints.html
https://docs.databricks.com/sql/admin/sql-endpoints.html
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Should I learn Apache Spark?
You do not need to be an expert on Apache Spark to be able to work with Databricks SQL and 
SQL Warehouses. All you need to understand is that each physical cluster in the SQL Warehouse 
has one driver VM and multiple worker VMs. That said, a high-level conceptual overview will 
help you make better sense of the infrastructure requirements and performance tuning tasks. 
If you wish to deep dive into Apache Spark, follow the official guides: https://spark.
apache.org/docs/latest/cluster-overview.html.

You will also notice a lightning-like icon on the worker processes. This represents the Photon engine. 
The open source Apache Spark system uses Java Virtual Machine (JVM)-based executors, which 
are not suited for high concurrency, interactive SQL workloads. Hence Databricks augments the 
JVM-based executors with a native C++-based engine called Photon that enables SQL workloads at 
high concurrency.

Do I Need to Know About Photon?
Not really. The presence of Photon is transparent. That said, Photon is an evolving engine and 
there are some nuances in how it handles certain SQL commands. These nuances are important 
for understanding the performance implications of certain edge workloads. We will discuss 
them further in Chapter 9, The Photon Engine.

Now that we have seen what a single physical cluster looks like, it is easy to visualize a SQL Warehouse, 
as follows:

Figure 6.2 – SQL Warehouse topology

https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html
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As shown in the preceding diagram, a single SQL Warehouse is composed of one or more physical 
clusters that receive user queries and execute them. The task of routing user queries to specific physical 
clusters is done by the control processes on the SQL Warehouse. The control processes are responsible 
for the following:

•	 Load-balancing queries onto existing physical clusters in the SQL Warehouse

•	 Maintaining user-session stickiness to a physical cluster to maximize the use of caching

•	 Autoscaling the number of physical clusters in the SQL Warehouse to accommodate for the 
current and predicted query workload

It is very important to highlight that all these processes are transparent. This heavy lifting is done for 
you in the background, albeit under the control limits that you specify. 

Control limits can be specified while creating or updating SQL Warehouses, as we’ll see in the 
next section.

Creating and configuring SQL Warehouses
In this section, we’ll learn how to create or update SQL Warehouses. Specifically, we will learn about the 
configurations that are associated with SQL Warehouses. We will also learn what each configuration 
controls and how it contributes to the overall query experience. To begin, navigate to the SQL 
Warehouses page by clicking on the  icon.
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Click on the Create SQL Warehouse button to bring up the creation pop-up, like so:

Figure 6.3 – New SQL Warehouse

As you can see, there are four primary decisions to make when creating a SQL Warehouse. Let’s take 
a look.
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Cluster size

When creating a SQL Warehouse, we must select its size. More accurately, we must select the size of 
the physical clusters that will constitute the SQL Warehouse. Refer to Figure 6.2 to see how multiple 
physical clusters constitute a SQL Warehouse.

Note
Going forward, we will use the terms SQL Warehouse size and cluster size interchangeably.

Cluster sizes are represented as T-shirt sizes in Databricks SQL. Literally. You can choose from nine 
cluster T-shirt sizes, starting from 2X-Small to 4X-Large. 

Great.

But wait – what are the measurements? How do I know which size fits me best?

The answer lies in the following fitting chart:

T-Shirt Size Number of Workers

2X-Small 1

X-Small 2

Small 4

Medium 8

Large 16

X-Large 32

2X-Large 64

3X-Large 128

4X-Large 256

Each cluster is a collection of worker machines. Each T-shirt size represents the number of workers 
in the cluster and hence the available computing power in the cluster.

Again, you might be wondering, how much compute power does one worker represent? Each worker 
represents a computation resource of 8 vCPUs and 64 GB of RAM. At the time of writing, in Azure, 
this is the standard_E8ds_v4 VM type. In AWS, this is the i3.2xlarge EC2 type. In GCP, this is the 
n2-highmem-8 VM type. 
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Before running any SQL Warehouse, ensure that you have a large enough quota to support the number 
of required workers.

Note
The cluster size is proportional to the latency of an individual query (assuming that the query 
itself is not exceptionally bad in design). If individual queries are not completing fast enough, 
increase the cluster size. 

You can also think of the cluster size as the bandwidth for processing larger datasets. Larger 
cluster sizes have more CPUs and RAM and can accommodate more parallel data processing 
– if the query lends itself to parallelization.

Reiterating a crucial point, when creating and configuring SQL Warehouses, we can only select the 
T-shirt size. We cannot configure the instance types to be used. This is to keep things simple – the 
last thing you want to be doing is doing mental gymnastics with VM types, CPUs, and RAM counts.

At this point, you may again be thinking – knowing the number of workers in a T-shirt size is great, 
but how do I use that information?

Hold on to that thought – we will discuss that soon in the The art of SQL Warehouse sizing section.

Scaling

Scaling defines two things:

•	 The minimum number of physical clusters in the SQL Warehouse at any given time.

•	 The maximum number of physical clusters in the SQL Warehouse at any given time. The 
maximum number of physical clusters, per warehouse, at the time of writing, is 40.

SQL Warehouses have internal algorithms to bring the warehouses to the correct number of physical 
clusters, depending on the workloads. We will discuss the algorithm in the Rules of query routing, 
queuing, and cluster autoscaling section.

Note
The scaling configuration is proportional to the concurrency of queries that the SQL Warehouse 
will handle. If individual queries are queued for too long, you should increase the scaling range 
– that is, the maximum number of physical clusters in the warehouse.

Of course, there are more nuances when choosing the scaling range, as we will see in the The art of 
SQL Warehouse sizing section.
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Spot instance policy

All the public clouds offer spot instances (by one name or other). Spot instances are unused compute 
resources in the cloud’s data centers that the cloud provider offers at deeply discounted rates. You 
can read more about them at https://aws.amazon.com/ec2/spot/ for AWS, https://
azure.microsoft.com/en-us/services/virtual-machines/spot/ for Azure, and 
https://cloud.google.com/compute/docs/instances/preemptible for GCP.

Using spot instances to build SQL Warehouses is an attractive proposition as it allows you to massively 
reduce the cost of running the SQL Warehouses. The only caveat is that spot instances can be reclaimed 
by the cloud provider with very short notice (for example, 2 minutes in AWS), which can undermine 
the stability of the SQL Warehouse. 

Databricks SQL mitigates the problem of instability transparently. For example, if we choose the 
Cost Optimized policy, Databricks SQL will provision physical clusters whose target is to use spot 
instances for all workers, except one. Consider a Large T-shirt size cluster. The target would be to use 
15 spot instance-based workers and one on-demand instance. This is to ensure that if a catastrophic 
event occurs, such as all spot instances being claimed back by the cloud provider, there is at least one 
worker still trying to clear the query backlog. However, the mitigation does not stop there. When 
a spot instance-based worker is reclaimed, it is immediately replaced by an on-demand worker to 
ensure continuity. 

The Cost Optimized policy is great for workloads that can tolerate some SLA misses or for 
development workloads.

For production workloads, it is recommended to use the Reliability Optimized policy. This 
policy uses on-demand instances only and, as its name suggests, a more reliable, SLA-bound 
execution of workloads.

Auto Stop

The Auto Stop function, as its name suggests, terminates the SQL Warehouse (and the underlying 
physical clusters) after a configured period of inactivity. It is important to configure this correctly for 
a good user experience.

For example, if the auto stop time is too aggressive, the cluster will terminate after short periods of 
inactivity. Now, if a new query comes in, the SQL Warehouse needs to be brought up again, which, 
for a classic cluster, takes around 4 to 5 minutes. With an aggressive auto stop policy, there is an 
increased chance of new queries always having to wait for cluster startup, which is likely to result in 
a sub-optimal user experience. 

Note
The use of Serverless SQL Warehouses mitigates this problem of startup and shutdown. We 
will learn more about them in the Using Serverless SQL section.

https://aws.amazon.com/ec2/spot/
https://azure.microsoft.com/en-us/services/virtual-machines/spot/
https://azure.microsoft.com/en-us/services/virtual-machines/spot/
https://cloud.google.com/compute/docs/instances/preemptible
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On the other hand, if the auto stop time is very lax, the cluster will remain idle and report poor levels 
of utilization, resulting in a bad return on investment.

Configuring auto stop is reasonably straightforward. The SQL Warehouse monitoring tools profile 
the workloads by time. This is a great tool to inform your auto-stop configuration. We will discuss 
this more in the Monitoring the SQL Warehouse section.

The rest of the configuration options are self-explanatory:

•	 Tags: These are key-value pairs of information that you can attach to the SQL Warehouse. 
These key-value pairs are propagated down to the VMs as well. This means you can monitor 
the usage and cost using these custom tags. Databricks SQL attaches some default tags to the 
SQL Warehouse, such as the Warehouse ID.

•	 Channel: Databricks SQL is evolving rapidly, and new features are introduced at a regular 
cadence. The Preview channel option allows you to run your workloads with the newer features 
ahead of them becoming generally available.

Now that we understand the various levers that we can adjust in a SQL Warehouse, let’s learn how to 
configure them for the best possible user experience. In the next section, we will learn about the art 
of SQL Warehouse sizing.

The art of SQL Warehouse sizing
Warehouse sizing requires calibrating the cluster size and the scaling range. Simply put, we must configure 
the speed and concurrency with which the SQL Warehouse will process queries submitted by users.

That said, it is important to understand that speed and concurrency are not entirely independent 
metrics. For example, if you process your queries faster, then the overall throughput of queries will 
be higher and the amount of time a query spends in a queued state will be shorter. This will avoid 
having to scale the concurrency of the SQL Warehouse by increasing the cluster size.

So, let’s start by understanding the mechanics of query routing, queuing, and cluster autoscaling.

Rules for query routing, queuing, and cluster autoscaling

The control processes in the SQL Warehouse follow a very simple decision tree for performing query 
routing, query queuing, and cluster autoscaling.

The 10-Query Rule
The core rule (at the time of writing) is that a single physical cluster in a SQL Warehouse can 
have, at most, 10 queries assigned to it. This is not configurable. This is to allow load balancing 
across the clusters in the warehouse and to avoid hotspotting within the warehouse.
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Note the use of the word assigned instead of running. This is important and must be understood with 
case studies.

Case 1 – SQL Warehouse is not running

Consider a SQL Warehouse that is in a stopped state and has been configured to have a minimum 
of one (default) physical cluster(s). When users start submitting their queries, the SQL Warehouse 
will enter a starting state. However, the cluster(s) in the SQL Warehouse must be in the running 
state before any query can be executed. Hence, during this brief starting period, any queries that are 
submitted are assigned to the physical cluster and will be executed when the cluster (and hence the 
SQL Warehouse) is running. 

Case 2 – SQL Warehouse is running

Similarly, consider that the same SQL Warehouse has entered the running state and has one physical 
cluster running and executing user queries. Consider that there are 10 queries already assigned to this 
cluster and that 10 more queries get submitted. The control process will decide to upscale the SQL 
Warehouse by adding more physical clusters in the SQL Warehouse. However, as in Case 1 – SQL 
Warehouse is not running, the new clusters will take some time to come into a running state, so they 
will have the queries assigned to them. As in Case 1 – SQL Warehouse is not running, they will be 
executed when the new cluster is running.

Hopefully, these case studies help you understand the nuance of assigned queries.

With this nuance clarified, let’s discuss the rules for auto-upscaling.

Rules for upscaling 

Databricks considers the following metrics to make upscaling decisions:

•	 TC: Forecasted time to execute current running queries

•	 TQ: Forecasted time to execute all queued queries

•	 TI: Forecasted time to execute all incoming queries in the next 2 minutes

SQL Warehouses run an internal algorithm that considers the forecasted time to execute current running 
queries, all queued queries, and expected incoming queries. This algorithm can’t be configured. For 
the sake of brevity, let’s call this algorithm Festimate (TC, TQ, TI).
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These metrics come together, as shown in the following decision tree:

 

Figure 6.4 – Upscaling decision tree

The preceding decision tree shows the following rules:

•	 If all the clusters in the SQL Warehouse have 10 queries assigned to them and Festimate is less 
than 2 minutes, do not upscale.

•	 If all the clusters in the SQL Warehouse have 10 queries assigned to them and Festimate is 
between 2 and 6 minutes, add one cluster.

•	 If all the clusters in the SQL Warehouse have 10 queries assigned to them and Festimate is 
between 6 and 12 minutes, add two clusters.

•	 If all the clusters in the warehouse have 10 queries assigned to them and Festimate is between 
12 and 22 minutes, add three clusters.

•	 If all the clusters in the warehouse have 10 queries assigned to them and Festimate is more than 
22 minutes, add three clusters right away. Then, add one physical cluster for every additional 
15 minutes of expected query load. 
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Finally, if any query remains queued for more than 5 minutes, upscaling is unconditionally triggered. 
Of course, the scaling has its lower and upper bounds as defined in the SQL Warehouse configuration.

Rules for downscaling

Downscaling decisions, by contrast, are simpler. If the current and forecasted workload is deemed 
low for the past 15 minutes, then downscaling the SQL Warehouse is initiated. Like the upscaling 
algorithm, the downscaling algorithm defines what constitutes a low workload and maintains enough 
capacity (number of clusters) to handle the next 15 minutes of the expected workload.

At this point, you must be thinking – the upscaling and downscaling rules seem to only consider the 
number of queries and their expected query completion time. How come they do not mention the 
computation power of individual physical clusters? 

Excellent question – let’s discuss this next.

Sizing the SQL Warehouse

To understand the art of sizing, let’s start by discussing two very simple scenarios.

Scenario A – memory-bound workloads

There is a business table of 400 GB, and it is expected that there will be two concurrent users querying 
the whole table. Also, there might be other users querying subsets of the business table, but the size 
(total data scanned) of those queries is inconsequential.

In this case, we can see that the maximum memory usage at any given time will be 800 GB. Hence, 
we should choose the Large T-shirt size, which has 1,024 GB of RAM. This should be enough to 
accommodate for the required concurrency of 2.

This cluster size is 128 vCPUs since it has 16 workers and, as you may recall, each worker has 8 vCPUs. 
If the users feel that the queries are not executing fast enough, then we should increase the vCPU 
count. This can be done by selecting a higher T-shirt size. In this case, we should select the X-Large 
T-shirt size.

The workload suggests that the maximum query concurrency will rarely exceed 10, hence we can 
leave the scaling range to the default – no scaling.
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Scenario B – CPU-bound workloads

Now, consider the scenario of CPU-bound workloads. There is a business table that’s 40 GB in size, 
and it is expected that 10 people will be querying the whole table all the time. 

In this case, we can see that the maximum memory usage will be 400 GB. Hence, we should choose 
the Medium T-shirt size, which has 512 GB of RAM. This should be enough to accommodate for the 
worst case of 10 concurrent queries, each scanning the full table.

This cluster has 64 vCPUs as well. If the users feel that the queries are not executing fast enough, then, 
as in the previous scenario, we should increase the T-shirt size. 

The workload suggests that queries will come at a more interactive pace and that there is the possibility 
of getting more than 10 queries at the same time. Hence, we can start with a scaling range where there’s 
a minimum of 1 and a maximum of 2 to accommodate for up to 20 concurrent queries.

These two scenarios are unapologetically simplified. 

In the real world, this is not so simple:

•	 Users can submit queries at varying speeds based on the work they are doing. Hence, it is 
difficult to preempt the concurrency required.

•	 Queries often reference more than one table with varying filters and operations, leading to varying 
data scan volumes. Hence, it is difficult to preempt the amount of memory and vCPU required.

•	 SQL Warehouses are shared by multiple users running queries of different profiles. Hence, 
it is hard to establish a uniform query SLA for everyone without the risk of under or over-
provisioning resources.

Does this mean that SQL Warehouse sizing is all about trial and error?

No. If you think about it, you do not need to pinpoint metrics about memory usage, vCPU count, 
and concurrency. You just need broad indicative signals on whether queries are being completed in a 
reasonable time. If not, is the reason that the queries are being executed slowly or excessive queuing? 
Thankfully, Databricks SQL has built-in instrumentation to get these signals. Now, let’s discuss the 
different signals and how to inform our configurations with these signals.
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Signal 1 – concurrency of queries

On the SQL Warehouses page, click on the SQL Warehouse you want to tune and navigate to the 
Monitoring tab. You should see a graph similar to the following:

Figure 6.5 – Monitoring a SQL Warehouse

This is the monitoring graph of a medium-sized SQL Warehouse with a scaling range of 1 to 5 over 
7 days. 7 days allows us to capture query concurrency patterns with a fair degree of accuracy. As we 
can see, whenever the number of concurrent queries shoots up significantly or there is significant 
queueing, the SQL Warehouse auto-scales and adds a new physical cluster to accommodate for the 
additional workloads. Keep in mind that each bar in the 7-day graph represents a time band of 1 
hour. You can inspect the peak concurrency during that time band by hovering on the respective bar.

A closer inspection of the graph reveals three distinct cases, as denoted in the preceding screenshot.
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Case 1

In this case, more than 60 queries are processed in 1 hour. There is no queuing, and there is no 
autoscaling event.

Case 2

In this case, more than 30 queries are queries processed in 1 hour. There is definite queuing, but this 
does not lead to an autoscaling event. If you recall the rules of autoscaling, this corresponds to the 
first rule, where all the clusters in the SQL Warehouse have 10 queries assigned to them and Festimate 
is less than 2 minutes, so no upscaling happens.

Case 3

In this case, more than 30 queries are processed in 1 hour. There is definite queuing, which leads to 
an autoscaling event. In this case, there are some longer-running queries and the queue buildup at 
a point in time is high. This leads to a forecasted time of completion of running and queued queries 
greater than 2 minutes, but less than 6 minutes. This corresponds to the second rule, so an upscaling 
event occurs, with one cluster being added to the SQL Warehouse.

These three cases show you how to interpret the concurrency requirements for the workloads running 
on this cluster. 

In this setup, the scaling factor of the SQL Warehouse is well configured: 

•	 There are few queuing events.

•	 Fewer queuing events means fewer upscaling events.

•	 The upscaling events are within the configured bounds.

This is not to say that upscaling is bad! It is a delicate line to thread. If there are fewer upscaling events, 
it just means that you forecasted the workload well. If you are unable to forecast the workload, leave 
it to autoscaling to figure out what is best.

Keep in mind that upscaling decisions anticipate expected incoming workloads. However, 
upscaling still requires time in the order of 3 to 4 minutes, which could potentially lead to long 
query times. If your SQL Warehouse is exhibiting frequent auto-upscaling events, you should 
re-evaluate the scaling minimum.

The following would have happened if the SQL Warehouse had been ill-configured:

•	 We would have seen frequent queuing events.

•	 The queuing events would lead to frequent upscaling events.

•	 The frequent upscaling events would have hit the scaling maximum.
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So, to summarize, we can say the following:

•	 Initially, start with a wide band of scaling. Monitor the SQL Warehouse progressively to make 
corrections as required.

•	 If the cluster count is predictably higher than the configured minimum most of the time, 
consider increasing the minimum cluster count.

•	 If the cluster count is at the configured maximum most of the time, and there is noticeable 
queuing of queries, consider increasing the minimum and maximum cluster counts.

•	 If there is a consistent behavior of rapid upscaling and downscaling, consider increasing the 
minimum cluster count to avoid the wait for new clusters and query queuing.

•	 If there are no definite patterns to the autoscaling and there are a few stray events of hitting 
the maximum count with queuing, use your best judgment.

Use this guide to broadly read the concurrency indication signals. However, keep in mind that this is 
more art than science. Try not to get mired in the details of every single query execution. If the scaling 
limits are reasonably configured, the autoscaling algorithm will take care of catering to the workloads.

Signal 2 – execution speed of queries

The next signal is the execution speed of queries. This should be used in conjunction with the signals 
from the Monitoring tab.

For example, consider the monitoring signals in the following screenshot:

Figure 6.6 – Inspecting a queuing event
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As we can see, on April 6, between 5:35 A.M. and 5:40 A.M., there was a big queuing event that 
triggered an autoscaling event. You, as an administrator, want to see if this could have been avoided 
with a bigger SQL Warehouse size, or whether this was a one-off case.

To do so, you can go to the Query History page and filter the queries on the SQL Warehouse during 
this time window, as shown in the following screenshot:

Figure 6.7 – Inspecting the query execution times

Closer inspection shows that there are indeed more than 10 queries running at a point in time, which 
warrants the upscaling event. Furthermore, we can see that the queries are taking inordinately long, 
so the upscaling event seems to be valid.

Now, depending on what we see here, if we decide that the queries are sufficiently well designed and 
yet running slow, we can decide to increase the T-shirt size of the SQL Warehouse. In this case, we 
can see that, at 5:38 A.M., there are a lot of long-running queries that are sufficiently well designed 
but take a lot of time to execute. If we increase the T-shirt size, these queries will finish faster and 
reduce the queueing.

On the other hand, if we see that the queries are poorly designed and the slow execution times are 
not a sustained event, we can brush this off as a one-off event.

What is a Well-Designed Query?
A well-designed query is a query that lends itself to parallel execution and avoids expensive 
operations such as cross joins as much as possible. You do not have to read the query to know 
if it is well designed. Clicking on a query in the History tab opens the query profiling tool, 
which provides a high-level view of what is happening in the query. You can read more about 
it at https://docs.databricks.com/sql/admin/query-profile.html.

Avoid the temptation to look at micro details. When looking at the query execution speeds, try to 
look at broad patterns and decide if increasing the T-shirt size is a valid strategy.

https://docs.databricks.com/sql/admin/query-profile.html
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If you are struggling to find an initial size, use this very rough guide to start:

Workload Size

10 GB / 1 – 10 million rows S

100 GB / >10 million rows M

250 GB / >100 million rows L

500 GB / 1 billion rows XL

If this is not possible, start with a medium-sized SQL Warehouse with scaling limits of 1 to 5.

That said, in either case, you should progressively monitor the SQL Warehouse signals to 
make corrections.

So, to summarize, we can say the following:

•	 If you see a lot of queuing in the Monitoring tab and corresponding slow queries in the Query 
History tab, consider increasing the SQL Warehouse’s T-shirt size.

•	 Don’t let cost be the only factor when it comes to cluster sizing. User experience is of equal 
importance. For example, for the same workload, a smaller SQL Warehouse will run for longer, 
while a larger SQL Warehouse will run for a shorter duration. The end cost will be the same. 
The user experience will be vastly different. It’s possible that, for your workload patterns, it is 
not any more expensive to use a larger cluster for a workload than it is to use a smaller one. 
It’s just faster.

This brings us to the end of our discussion on the art of SQL Warehouse sizing. Use the available 
signals, individually and together, to iterate over SQL Warehouse configurations. 

Knowing how to configure a single SQL Warehouse is essential. However, it is only a part of the larger 
activity of organizing and assigning SQL Warehouses to various analysts. We will discuss this in the 
next section.

Organizing and governing SQL Warehouses
Organizations tend to have a sizeable number of data analysts working on various projects at the same 
time. Depending on the project, access to different data sources with varying data volumes will have 
to be accounted for. Depending on the staffing of the project, the number of concurrent users will 
also need to be accounted for. Depending on the sensitivity of the project, the access control to the 
work on the project will have to be accounted for. Finally, each project should be held accountable 
for the computation resources they incur. 
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The Databricks SQL platform is very flexible and accommodates all these considerations. Let’s start 
by looking at how SQL Warehouses are distributed to various users or projects.

SQL Warehouse assignment strategy

There are no set rules on how SQL Warehouses should be assigned to users. Databricks certainly 
does not want to restrict assignment strategies either. There are two levels to the assignment strategy:

•	 Assigning users to workspaces.

•	 Assigning users in workspaces to SQL Warehouses in the workspace.

•	 When it comes to assigning users to workspaces, I recommend considering the Business Unit 
Subscription design pattern. If you want a refresher on what a Databricks workspace is, visit 
the official documentation: https://docs.databricks.com/getting-started/
concepts.html.

Let’s learn how to assign SQL Warehouses within the workspace.

Assignment criteria 1 – workload type

The first level of assignment should be on the lines of the type of the workload: production 
versus development.

Production workloads are scheduled workloads. A workload could be a Report, a Dashboard, or a 
Scheduled Query. A Report or a Dashboard can be composed of one or more queries.

Production workloads should be run on SQL Warehouses with the Reliability Optimized strategy. It is 
also recommended that production workloads run in a separate workspace dedicated to production 
workloads only – to reduce the possibility of human errors interfering with production workloads.

Development workloads, on the other hand, are more forgiving and flexible. They can be run on SQL 
Warehouses with the Cost Optimized strategy. 

Assignment criteria 2 – sharing resources

The second level of assignment should be along the lines of resource sharing – should the workload 
be run on a dedicated SQL Warehouse or a shared SQL Warehouse?

Let’s begin by talking about production workloads.

Dedicated SQL Warehouses mean that all the computation resources in the Warehouse will be used 
by the workload and guarantee the best possible performance for that one workload. 

On the other hand, a shared SQL Warehouse will mean that the different workloads will be able to 
benefit from the caching of data that’s triggered by each workload. This can help with the overall 
execution of all the workloads, not just one. 

https://docs.databricks.com/getting-started/concepts.html
https://docs.databricks.com/getting-started/concepts.html
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So, you must weigh the variables of the compute resources that are required, the shared data sources, 
and the workload SLAs to decide on the dedicated versus shared strategy.

Development workloads are usually executed on shared SQL Warehouses to maximize Warehouse 
utilization. There is the added benefit of caching data that’s been triggered by various workloads to 
uplift the query performances in general. A case can always be made to have a single SQL Warehouse 
for a single user, but the administrative overhead that will build up if every user gets a dedicated SQL 
Warehouse should be kept in mind.

Assignment criteria 3 – projects and groups

Sharing SQL Warehouses is great, but there should be a method to this sharing. Ideally, users working 
on a particular project should share the same SQL Warehouses. A particular project can have multiple 
SQL Warehouses associated with it as well. The reasons for doing so can be varied – it could be that 
SQL Warehouses of different sizes are required for different developer groups in the project. It could 
also be that different developer groups need to work on different datasets. So, to maximize the benefits 
of caching, developer groups working on the same datasets use the same SQL Warehouse. This also 
enables easy chargeback processes. We will discuss this in more detail in the Chargeback section.

By now, it should be clear that there is no one correct assignment strategy. It depends on your 
organization’s operating model. However, you can use the discussed assignment criteria to broadly 
consider how to assign users to SQL Warehouses.

Now that we have an idea of how to assign users to SQL Warehouses, the next question is, how do 
you enforce it? The answer lies in the access control feature of SQL Warehouses.

Access control in SQL Warehouses

Access control in SQL Warehouses is similar to the data security model we introduced in Chapter 4, 
The Security Model.

Like the data security model, there are four concepts:

•	 Users, groups, and service principals

•	 The SQL Warehouse is the securable object

•	 Privileges

•	 Operations

As with the data security model, users are granted certain privileges on the SQL Warehouse that allow 
them to conduct certain operations on or with the SQL Warehouse.

Now, let’s discuss privileges and operations in more detail.
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Privileges

There are three possible privilege levels:

•	 No Permissions: This privilege level means that the user cannot see the SQL Warehouse and 
cannot execute any queries on that SQL Warehouse. If a user has access to a report, dashboard, 
or a saved query that uses this SQL Warehouse, then the user will not be able to execute them 
and will have to use a SQL Warehouse that is available to them.

•	 Can Use: This privilege level means that the user can view the SQL Warehouse, start the SQL 
Warehouse, execute queries on it, and view their query history on it.

•	 Can Manage: This privilege level grants the user to view, use, and manage the SQL Warehouse. 
This is the highest level of privilege and allows for all possible operations on the SQL Warehouse.

Operations

Nine possible operations can be performed on a SQL Warehouse:

•	 View your queries on the Warehouse.

•	 View query details.

•	 View queries for all users on the Warehouse.

•	 View Warehouse details.

•	 Start Warehouse.

•	 Stop Warehouse.

•	 Delete Warehouse.

•	 Edit Warehouse.

•	 Modify permissions.

The Can Manage privilege allows you to perform all of these operations. The Can Use privilege 
allows you to view your queries, view the Warehouse’s details, and start the Warehouse. Finally, the 
No Permissions privilege only allows you to view your queries.
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Programming access control

Programming access control – that is, assigning a privilege to a SQL Warehouse for users and user 
groups – can easily be done via the UI:

•	 Navigate to the SQL Warehouse and click on the Permissions button to bring up the Manage 
Permissions UI, like so:

Figure 6.8 – The Manage Permissions UI

This UI shows the current permissions on the SQL Warehouse. The permissions for the owner of the 
SQL Warehouse – that is, the user that created the SQL Warehouse – can’t be edited. Interestingly, 
however, the admins group can be restricted to the Can use privilege:

•	 To add a new permission, simply click on the search box to type or select the user that you 
want to give permissions to. The following screenshot illustrates this:

Figure 6.9 – Granting a new user privileges



Organizing and governing SQL Warehouses 173

The new user can be given the Can use or Can manage privilege: 

•	 Permissions can be edited by clicking on the permissions dropdown for a user, as shown in 
the following screenshot:

Figure 6.10 – Modifying a user’s privileges

•	 Finally, permissions can also be revoked by simply clicking on the Remove button in the 
Manage Permissions UI.

As you can see, programming access control is very simple. Combined with a sound user group strategy, 
it is easy to scale the access control programming to cover all your analyst users.

Now that we have discussed strategies for assigning users to SQL Warehouses and how to enforce 
those strategies, let’s discuss the final component of governance – chargeback.

Chargeback

Simply put, chargeback means accounting for how much cost (in $) was incurred by a particular user, 
group, or project. This is very important to keep teams accountable for the resources they are using, 
and to evaluate the return on investment on a project.

If we have a good user assignment strategy in place, chargeback boils down to the cost incurred by 
the SQL Warehouse(s) that the user, group, or project was using.
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Databricks Pricing
To deep dive into Databricks pricing, head over to the official documentation: https://
databricks.com/product/pricing.

In the Azure portal, you can head over to the Cost Analysis tool (https://docs.microsoft.com/
en-us/azure/cost-management-billing/costs/quick-acm-cost-analysis) to 
view the costs. First, you must add two Meter Categories – Virtual Machines and Azure Databricks 
– and apply the Tags filter. Each SQL Warehouse gets a Cluster ID tag that uniquely identifies it. Filter 
on the clusterid tag that you wish to charge back on. The Cluster ID tag can be found in the SQL 
Warehouse Overview tab in the Name field. The cost analysis setup should look as follows:

Figure 6.11 – Setting up cost analysis

Once this has been set up, the cost analysis dashboard should populate the accumulated costs, like so:

Figure 6.12 – Accumulated cost

It should also populate breakdowns of the Databricks cost and the underlying VM cost, like so:

Figure 6.13 – Cost breakdown

https://databricks.com/product/pricing
https://databricks.com/product/pricing
https://docs.microsoft.com/en-us/azure/cost-management-billing/costs/quick-acm-cost-analysis
https://docs.microsoft.com/en-us/azure/cost-management-billing/costs/quick-acm-cost-analysis
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If you are an AWS user, you might be expecting something similar in the Billing and Cost Management 
console. However, that is not the case. Databricks is a first-party service in Azure, so its billing is 
tightly integrated. We can see the Databricks billing in the cost analysis portal. Databricks is not a 
first-party service in AWS.

AWS users can see the Databricks spend on their Databricks account console, as documented here: 
https://docs.databricks.com/administration-guide/account-settings-e2/
usage.html. 

You will also notice that the console does not show the underlying VM costs. You must get those costs 
from the Billing and Cost Management console using cluster tags since they are propagated to the 
underlying VMs. You can read more about cluster tags and tag propagation here: https://docs.
databricks.com/administration-guide/account-settings/usage-detail-
tags-aws.html.

GCP users can see their spending on their account console, as documented here: https://docs.
gcp.databricks.com/administration-guide/account-settings-gcp/usage.
html.

In summary, a reliable chargeback is important, and reliability comes from having a sound user 
assignment strategy and strategy enforcement. Databricks SQL provides all the tools to implement 
this, and we discussed all the nuances in depth in this section.

Using Serverless SQL
It would be remiss not to introduce the Serverless SQL offering in Databricks SQL. SQL Warehouses 
– the classic SQL Warehouses that we have discussed so far – reside in your cloud account. That is, 
the workers of the warehouses are VMs in your cloud account. This has two implications:

•	 You incur the cost of Databricks and the cost of the VMs that Databricks uses to power the 
SQL Warehouses.

•	 You incur some latency in cluster cold starts and upscaling events.

Databricks SQL offers Serverless SQL to circumvent this. In Serverless SQL, the SQL Warehouses are 
provisioned in Databricks’s account from a pool of pre-provisioned compute resources. This solves 
both the aforementioned implications:

•	 The cost of Databricks SQL Warehouses includes the VM costs, and you pay for only one line item

•	 Since Databricks uses a pool of pre-provisioned compute, no latency is incurred in cold starts, 
as well as when upscaling events

https://docs.databricks.com/administration-guide/account-settings-e2/usage.html
https://docs.databricks.com/administration-guide/account-settings-e2/usage.html
https://docs.databricks.com/administration-guide/account-settings/usage-detail-tags-aws.html
https://docs.databricks.com/administration-guide/account-settings/usage-detail-tags-aws.html
https://docs.databricks.com/administration-guide/account-settings/usage-detail-tags-aws.html
https://docs.gcp.databricks.com/administration-guide/account-settings-gcp/usage.html
https://docs.gcp.databricks.com/administration-guide/account-settings-gcp/usage.html
https://docs.gcp.databricks.com/administration-guide/account-settings-gcp/usage.html
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Apart from the location of the SQL Warehouse, everything else remains the same, as we discussed 
in the previous sections. However, this is a new implication of data security as the serverless SQL 
Warehouses are provisioned from a shared pool of compute resources. Serverless SQL uses a combination 
of network policies and security groups to isolate SQL Warehouses. 

I haven’t provided a detailed explanation of Serverless SQL as it is still a preview feature, and the 
product may change as it enters general availability. Perhaps a future revision of this book will contain 
a detailed exploration. You can read more about it here: https://docs.databricks.com/
serverless-compute/index.html.

Summary
In this chapter, we put on the lens of a Database administrator and learned about SQL Warehouses 
in depth.

First, we learned how SQL Warehouses can be created, configured, and governed. We discussed the inner 
workings of SQL Warehouses so that we can configure them to get the best possible user experience. 
We discussed various strategies for assigning users to SQL Warehouses. Finally, we discussed how we 
can charge back users for their usage and create accountability.

SQL Warehouses are used within the Databricks SQL UI. However, they can also be leveraged from 
outside the Databricks environment with specialized BI tools. 

In Chapter 7, Using Business Intelligence Tools with Databricks SQL, we will learn how to do 
this and elevate the analyst experience.

https://docs.databricks.com/serverless-compute/index.html
https://docs.databricks.com/serverless-compute/index.html
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Using Business Intelligence 

Tools with Databricks SQL

Databricks SQL is a well-rounded, self-contained data analytics platform. It provides users such as 
analysts and data administrators with all the tools that are required for them to conduct their daily 
workflows. As we saw in the preceding chapters, pretty much everything can be done on Databricks 
SQL – exploratory data analysis, reports, dashboards, alerts, and more.

Despite all that, though, it is by no means a replacement for dedicated Business Intelligence (BI) 
tools such as Power BI, Tableau, Looker, or Qlik. 

These BI tools can connect with Databricks SQL with simple, transparent mechanisms to query the 
data on the data lakehouse. In this chapter, we will focus on how to connect Databricks SQL to BI 
tools of your choice. 

The primary audience of this chapter is analysts who want to use BI tools of their choice with Databricks 
SQL. The database administrator personas will also benefit from this chapter as it pertains to data 
access from outside the Databricks SQL platform.

In this chapter, we will cover the following topics:

•	 Connecting from validated BI tools

•	 Connecting from non-validated BI tools

•	 Connecting programmatically

•	 Databricks Partner Connect
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Technical requirements
To understand this chapter, you must ensure the following:

•	 You must have gone through Chapter 6, The SQL Warehouses, before reading this chapter.

•	 You must have the BI tools that you intend to use, installed on your workstation.

•	 You must have the Can Use privilege on a SQL Warehouse.

Connecting from validated BI tools
Databricks SQL is an open platform, which means it supports integrations with all BI tools using 
open standards such as JDBC and ODBC. That said, there are certain BI tools and platforms that 
natively support connections to Databricks SQL. These are what we refer to as validated BI tools. In 
this section, we will learn how to connect validated BI tools to Databricks SQL. We will also learn 
what’s meant by a connection to Databricks SQL.

Note
I will refer to business intelligence software as BI tools or BI platforms interchangeably 
in this chapter.

Databricks SQL supports validated integrations from various BI platforms. This list is constantly 
evolving and can be found at https://docs.microsoft.com/en-us/azure/databricks/
integrations/partners#--bi-and-visualization.

How does a connection from an external BI tool to Databricks SQL work?

Recall from the previous chapters that Databricks SQL has three distinct layers: 

•	 The data layer, which we covered in Chapter 3, The Data Catalog

•	 The compute layer, which we covered in Chapter 6, The SQL Warehouses

•	 The consumption layer, which we covered in Chapter 5, The Workbench

In those chapters, we learned how users submit queries from the workbench, and that the queries get 
executed on the SQL Warehouses. The data in the tables that’s referred to in the queries is retrieved 
from the data layer.

When visualizing how connections from external BI platforms work, just imagine that you are 
replacing the default consumption layer – the workbench – with a workbench of your choice – that 
is, the BI platform.

https://docs.microsoft.com/en-us/azure/databricks/integrations/partners#--bi-and-visualization
https://docs.microsoft.com/en-us/azure/databricks/integrations/partners#--bi-and-visualization


Connecting from validated BI tools 179

When a BI tool is marked as validated by Databricks, you can expect the BI tool to have built-in driver 
connectors for Databricks and a named data source. For example, the following screenshot shows the 
named Databricks source on Tableau Desktop:

Figure 7.1 – Databricks connector in Tableau Desktop

Similarly, the following screenshot shows the named Databricks source in Power BI Desktop:

Figure 7.2 – Databricks connector in Power BI Desktop
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Every validated BI tool will have a named Databricks connector and often, it will have the Databricks 
Driver Connector bundled in. There can be notable exceptions to the driver bundling. For example, 
Tableau Desktop requires that the driver connector be explicitly downloaded and installed before the 
Databricks connector is used. This does not mean that the integration is subpar – it is most likely a 
technicality of licensing and distributing the driver connector. 

Moving on, making the connection is easy. Click on the Databricks data source to proceed to the 
required connection configuration. Let’s use Tableau Desktop as an example:

Figure 7.3 – Configuring a Databricks connector in Tableau Desktop

Tableau Desktop requires two sets of connection configurations – the details of the SQL Warehouse 
and the details of authenticating to the SQL Warehouse. Let’s dive into these configurations.

SQL Warehouse details

The SQL Warehouse details identify the SQL Warehouse that will be used by this connection to execute 
user queries. The following SQL Warehouse details are required:

•	 Server Hostname: This identifies your Databricks workspace.

•	 HTTP Path: This identifies the SQL Warehouse within the Databricks workspace.
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The Server hostname and HTTP path details can be obtained from the SQL Warehouse’s Connection 
Details tab, as shown in the following screenshot:

Figure 7.4 – Retrieving the connection details for a SQL Warehouse

Simply copy and paste the Server hostname and HTTP path details to the respective fields.

Note
Connections to Databricks SQL require that you know which SQL Warehouse you are assigned 
to use. The connections do not allow for a generic configuration that allows you to change the 
SQL Warehouse during an active session. Changing the SQL Warehouse will require you to 
reset the connection.

From a database administrator’s perspective, you can see how users can only access the SQL Warehouses 
assigned to them. A user requires the Can Use privilege on a SQL Warehouse to be able to connect 
to it from an external BI tool. This means that the governance strategy for assigning users to SQL 
Warehouses, which we discussed in Chapter 6, The SQL Warehouses, in the SQL Warehouse assignment 
strategy section, is respected even when accessing Databricks SQL from external tools. 
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Authentication details

The next configuration is the authentication details. There are three possible authentication modes, 
as we will discuss now. Bear in mind that the way the three authentication modes are presented to 
you will differ across BI tools.

Databricks personal access token

A Databricks personal access token can be used to access Databricks SQL from external BI tools, as 
well as REST API functions. A personal access token is just an authentication mechanism to identify 
yourself to the Databricks SQL authentication and authorization mechanism. 

Getting a personal access token is simple. Navigate to the Personal access tokens tab on the User 
Settings page and click on the Generate new token button, as shown in the following screenshot: 

Figure 7.5 – Generating a personal access token

Optionally, you can configure the number of days this token will be valid. Ensure that you copy and 
save the generated token in a secure location since you will not be able to see it once you leave the page.

You can read more about personal access tokens and how to create them here: https://docs.
databricks.com/sql/user/security/personal-access-tokens.html.

Databricks username and password

This is a self-explanatory authentication mechanism. Simply use the same username and password 
that you use to log into Databricks.

Azure Active Directory

If your organization enforces the use of Azure Active Directory authentication, use this option. Different 
tools may have different flows for this. For example, in Tableau Desktop, you will be prompted for the 
authentication endpoint, while in Power BI, you will be automatically navigated to your organization’s 
login.

https://docs.databricks.com/sql/user/security/personal-access-tokens.html
https://docs.databricks.com/sql/user/security/personal-access-tokens.html
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From a database administrator’s perspective, you should note that the choice of authentication 
mechanism should be in line with your organization’s security policies. For example, if the policies 
disallow the usage of personal access tokens, the administrator can disable the usage of personal 
access tokens in the workspace. This way users don't get a chance to create a personal token, instead 
they will have to use the other authentication mechanisms. Further, it is important to note that all 
three mechanisms authenticate that a user is indeed a valid member of this installation of Databricks 
SQL. This means that the security model that’s implemented in this installation, as we discussed in 
Chapter 4, The Security Model, is respected even when accessing Databricks SQL from external tools. 

To complete the authentication configuration, select the applicable authentication mechanism and 
key in the details. Once all the configurations have been completed and you have clicked the Sign In 
button, the connection will be attempted. If you are authorized to use the SQL Warehouse, and your 
authentication credentials are correct, you will be signed in. 

Note
It is important to note that the Sign In activity will power on the SQL Warehouse if it is not 
already running.

And that’s it! The data lakehouse data catalog should be visible in the BI tool. If you are following this 
example with Tableau, you should see a catalog similar to the following:

Figure 7.6 – Exploring the airlines database from Tableau Desktop
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Now, you can start querying! 

Note
One important thing to keep in mind is that each BI tool will have nuances on how to work with 
the data. For example, Power BI has two modes – Direct Query and Import Mode. Consult the 
official documentation based on your BI tool for details at https://docs.databricks.
com/integrations/partners.html#bi-and-visualization.

And that’s it. It is that simple to connect to Databricks SQL from validated BI tools. Now, let’s turn 
our attention to non-validated BI tools and, subsequently, programmatic access.

Connecting from non-validated BI tools
There are plenty of popular SQL database tools that are not (yet) validated – that is, they do not have 
a named Databricks connector. In this section, we will learn how to connect these non-validated BI 
tools to Databricks SQL using Databricks JDBC and ODBC drivers.

Non-validated BI tools do not come with bundled driver connectors and may or may not support 
all three authentication mechanisms supported by validated BI tools. However, Databricks SQL 
Warehouses support JDBC and ODBC connections. We can leverage these connections to connect 
from non-validated tools. Full documentation on JDBC and ODBC connections is available at 
https://docs.databricks.com/integrations/bi/jdbc-odbc-bi.html. They 
are straightforward and do not warrant detailed unpacking. 

There are three steps:

1.	 Download the JDBC or ODBC driver as applicable.

2.	 Install the driver in the BI/SQL database tool.

3.	 Configure the SQL Warehouse connection.

Let’s take the example of SQLWorkbench/J (https://www.sql-workbench.eu/), a popular, 
DBMS-independent, cross-platform SQL query tool.

Step 1 – download the driver

Download the latest JDBC driver from https://docs.microsoft.com/en-us/azure/
databricks/integrations/bi/jdbc-odbc-bi#download-the-jdbc-driver. 
Unzip the file to extract the JAR file.

https://docs.databricks.com/integrations/partners.html#bi-and-visualization
https://docs.databricks.com/integrations/partners.html#bi-and-visualization
https://docs.databricks.com/integrations/bi/jdbc-odbc-bi.html
https://www.sql-workbench.eu/
https://docs.microsoft.com/en-us/azure/databricks/integrations/bi/jdbc-odbc-bi#download-the-jdbc-driver
https://docs.microsoft.com/en-us/azure/databricks/integrations/bi/jdbc-odbc-bi#download-the-jdbc-driver
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Step 2 – install the driver 

In SQLWorkbench/J, navigate to File | Connect Window | Manage Drivers. Provide an appropriate 
name. I have named it Databricks SQL JDBC Driver. Finally, point it to the JAR file that we 
extracted in Step 1 – download the driver, as shown in the following screenshot:

Figure 7.7 – Installing the JDBC driver

As you can see, I have configured the driver to use the JAR file of the driver. The Classname area 
should be automatically populated.
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Step 3 – configure the SQL Warehouse connection

In the Connect window, create a new connection profile. As shown in the following screenshot, configure 
it to use the new driver we installed. In the URL field, copy and paste the JDBC URL from Figure 7.4. 
Finally, in the Username and Password fields, key in the username and password that you use to log 
into Databricks SQL. You can also use personal access tokens instead of your username and password. 
To use them, set Username to “token” and paste your personal access token in the Password field.

Figure 7.8 – Creating a connection to Databricks SQL from SQLWorkbench/J

Now, you can test the connection and save the connection profile. If you have the Can Use privilege on 
the SQL Warehouse and you have provided the correct authentication credentials, the connection will 
be successful, and you will be able to explore the data on the data lakehouse. The following screenshot 
shows how we can explore the airlines database that we created in the preceding chapters:

Figure 7.9 – Exploring the airlines database in SQLWorkbench/J
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And that’s it! With a few extra manual steps, you can connect your BI tool of choice to your instance of 
Databricks SQL. You can even perform these steps in a validated BI tool that has a named Databricks 
connector. Try it out! 

Connecting programmatically
While we are discussing JDBC and ODBC Driver Connectors, we must make an honorable mention 
of a very important use case. This use case is how application programs access the data on the data 
lakehouse via Databricks SQL. For example, consider the dashboard that we compiled in Figure 5.41 
in Chapter 5, The Workbench. The taxi company may build a desktop or a web application that renders 
this dashboard. To do so, the application must issue SQL queries to the tables via a connection to 
Databricks SQL. These applications can be programmed in any of the modern languages, such as Java, 
Python, and Scala, to name a few, using their constructs for working with JDBC and ODBC drivers.

Note
A note of caution: Databricks SQL and the data lakehouse are not a replacement for your 
relational database management systems or online transactional processing systems.

Application programmers are not the intended audience for this book; however, Databricks SQL 
can hold use for them. Hence, I am going to conclude this section by providing a link to the official 
documentation for using JDBC and ODBC drivers with Databricks SQL: https://docs.
databricks.com/dev-tools/python-sql-connector.html.

Databricks Partner Connect
The steps that we employed to connect to validated tools in the Connecting from validated BI tools 
section are simple and clear. However, they were still manual steps that required copying and pasting. 
The steps are simple and clear, but the user experience is not – that is, having to juggle between the 
SQL Warehouse overview page and the BI tool. Databricks Partner Connect is a tool that aims to 
improve this experience. Let’s learn how.

https://docs.databricks.com/dev-tools/python-sql-connector.html
https://docs.databricks.com/dev-tools/python-sql-connector.html
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To access Databricks Partner Connect, follow these steps:

1.	 Click on the  icon to bring up the Partner Connect landing page. Navigate to the BI and 
Visualization section, as shown in the following screenshot:

Figure 7.10 – The Partner Connect landing page

2.	 Click on the tile representing your BI tool. It will download a connection file to your desktop. 
The connection file is specific to the BI tool. For example, a Tableau data source .tds file 
(https://help.tableau.com/current/pro/desktop/en-us/environ_
filesandfolders.htm) is downloaded for Tableau and a Power BI data source .pbids 
file (https://docs.microsoft.com/en-us/power-bi/connect-data/
desktop-data-sources#using-pbids-files-to-get-data) is downloaded 
for Microsoft Power BI. Let’s continue with our example of Tableau Desktop. Clicking on the 
Tableau tile prompts the download, like so:

Figure 7.11 – Downloading the Tableau .tds connection file

https://help.tableau.com/current/pro/desktop/en-us/environ_filesandfolders.htm
https://help.tableau.com/current/pro/desktop/en-us/environ_filesandfolders.htm
https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-data-sources#using-pbids-files-to-get-data
https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-data-sources#using-pbids-files-to-get-data
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3.	 Double-click on the downloaded .tds connection file. It will open Tableau Desktop and ask 
you for your credentials, as shown in the following screenshot:

Figure 7.12 – Connecting with the .tds file

4.	 Key your personal access token in the Password field and start exploring. If you need to change 
the authentication mechanism, click the Edit Connection button to choose the relevant one.

And that’s it! All you must do is key in your credentials. Contrast this to the other mechanisms where 
we had to manually figure out the SQL Warehouse details. Partner connect makes the experience 
seamless. From an administration perspective, it simplifies and secures the connection process – instead 
of users searching for and choosing SQL Warehouses, administrators can download the connection 
files on behalf of the users and share them with them.
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The internals of a data source file

If you are curious, you can open the .tds file with any text editor. It will show that the SQL Warehouse 
connection information has been compiled for you into a format understood by the BI tool. In this 
case, this is an XML file, as shown in the following screenshot:

Figure 7.13 – Inspecting the .tds file

As you can see, the connection construct instructs Tableau to consider this a Databricks data source 
by setting the class field to Databricks. A Databricks connection will require the server hostname and 
HTTP path values for the SQL Warehouse. Hence, they are applied to the server and dbname 
fields, respectively. Finally, the authentication is set to personal access tokens by default, as seen 
in the authentication field. Tableau understands the datasource construct and creates a 
connection to Databricks.

The data source file for each BI tool is different. If you are working with a different data source file, you 
will likely see a different format. For example, the Power BI .pbids file represents the connection 
information in JSON format.

That said, you don’t need to know what is inside the data source file to be able to use it. Just double-
click and start exploring!
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Summary
In this short but very important chapter, we learned how we can connect our preferred BI tools to 
Databricks SQL and query the data on the data lakehouse.

First, we learned about the various connection configurations that must be made. Then, we learned 
about the differences between validated and non-validated BI tool integrations. Finally, we learned 
about the Databricks Partner Connect feature, which simplifies the process of connecting our preferred 
BI tool with Databricks SQL.

Now, you should have a working understanding of Databricks SQL from an end user perspective, as 
well as an administrator’s perspective. You should be good to start working with Databricks SQL. Now, 
we will turn our attention to the core technology enablers that power Databricks SQL.

In the next chapter, Chapter 8, The Delta Lake, we will unpack the internals of the storage layer of the 
lakehouse and focus on the Delta Lake storage format. We will learn how it enables Data Warehouse-
like performance on the data lake.





Part 2:  
Internals of  

Databricks SQL

This part focuses on the internals of Databricks SQL. It unpacks the concepts and workings of the 
revolutionary technologies that enable business intelligence and data warehousing in a data lakehouse!

This part comprises the following chapters:

•	 Chapter 8, The Delta Lake

•	 Chapter 9, The Photon Engine

•	 Chapter 10, Warehouse on the Lakehouse





8
The Delta Lake

Up until this chapter, we were singularly focused on enabling you to use Databricks SQL. Now that 
we have accomplished that, let’s investigate the technologies that enable Databricks SQL to run your 
data warehousing workloads on what seems to be a data lake.

In this chapter, we will focus on the primary storage format of the Databricks Lakehouse —Delta Lake. 
Why should you care? You should care because, unlike other cloud data warehouses, the Databricks 
Lakehouse stores data in open storage formats such as Delta Lake, Parquet, Optimized Row Columnar 
(ORC), comma-separated values (CSV), and so on, instead of proprietary formats. 

We will begin by understanding the challenges posed by using other storage formats, how they 
affect the business intelligence (BI) experience on traditional data lakes, and how the Delta 
Lake format addresses them. Then, we will learn about the performance boosters available with 
Delta Lake in Databricks. 

The primary audience of this chapter is data engineers, data administrators, and data modelers who 
will be collectively responsible for ingesting the data into the Lakehouse in the most optimal data 
layout for the best BI experience. 

In this chapter about Delta Lake, we will learn about the following topics:

•	 Fundamentals of the Delta Lake storage format

•	 Built-in performance-boosting features of Delta Lake

•	 Configurable performance-boosting features of Delta Lake

Technical requirements
To make the most of this chapter, you must ensure the following:

•	 You have access to a working Databricks SQL workspace to execute the examples.

•	 You have knowledge of data engineering pipelines for data lakes with Apache Spark.
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•	 You have knowledge of the execution model of Apache Spark.

•	 You have access to the GitHub repository for the book, available at the following link: 

https://github.com/PacktPublishing/Business-Intelligence-with-
Databricks-SQL-Analytics.

Fundamentals of the Delta Lake storage format
In this section, we will learn about the Delta Lake storage format and its core objectives. To do so, 
we will first detour into the realm of data engineering, which will provide the context for the core 
objectives. Finally, we will see how the Delta Lake format achieves the core objectives and simplifies 
the data engineering process.

Delta Lake (https://delta.io/) is an open source storage format that enables an organization’s 
data engineering teams to build the Lakehouse (see Chapter 1, Introduction to Databricks). Delta Lake 
aims to bring the following data warehousing characteristics to your data lake:

•	 Reliability

•	 Simplicity 

•	 Performance

•	 Governance

To understand why this is a big deal, we must understand how data engineering on data lakes is currently 
done, how it affects BI users, and why these characteristics are the holy grail for data engineering teams. 

Data engineering before Delta Lake

Data engineering on a data lake is the process of collecting data from various data sources—internal 
or external—converting them into usable information, and storing them on the lake for data scientists 
and business analysts to interpret. 

On the one hand, data engineers must read and wrangle data from a wide variety of data sources. Data 
sources can range from transactional systems of records such as relational databases to application logs, 
click streams and event streams, files, and extracts from application programming interface (API) 
calls. Each data source produces data in a different volume and different velocity. The semantics of 
the data could be different as well—for example, the source system might allow updates and deletes to 
existing data. In this case, the updates and deletes must also be efficiently reflected onto the data lake.

On the other hand, data engineers must write the wrangled data and information onto cloud object 
stores that are not filesystems and do not support any notion of transactions or random file access.

https://github.com/PacktPublishing/Business-Intelligence-with-Databricks-SQL-Analytics
https://github.com/PacktPublishing/Business-Intelligence-with-Databricks-SQL-Analytics
https://delta.io/
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Combined, the reading and writing steps create multiple challenges that data engineers must solve. 
Let’s broadly categorize the workflow steps that data engineers take, and the challenges associated 
with them.

Extracting and writing data

Data sources such as databases constantly get new records inserted and existing records updated or 
deleted. Other data sources, such as log files, event streams, and so on, only get new records. Hence, 
the data engineering pipelines must be able to extract, insert, update, and delete events in the source 
systems and replicate them in the data lake. There are two challenges involved here, as follows:

•	 Append-only file formats

Popular data lake file formats such as Apache Parquet or Apache ORC are append-only file 
formats. This means that once a file is written in one of these formats, it cannot be modified. 
Any modification to any record within the file requires reading the file into memory, applying 
the changes in memory, deleting the physical file, and finally writing a new file in its place.

Hence, while appending new records (INSERT events) is supported by creating a new file for 
new records, updating or deleting records requires custom tooling and separate data pipelines 
to be built by the data engineers.

•	 Object stores

Data lakes are built on cloud object stores such as Amazon Simple Storage Service (Amazon 
S3), Azure Data Lake Storage (ADLS), or Google Cloud Platform Google Cloud Storage 
(GCP GCS). However, they are not filesystems, hence they do not provide any transactional 
guarantees or random lookup capabilities on the objects stored in them—the objects being 
the files that we are writing.

This causes a lot of problems, as noted here:

	� Consider the scenario where a particular transaction is writing multiple files and the write 
fails midway. Depending on the reason for failure, the files that have already been written 
may or may not be deleted. This will leave the data lake in an inconsistent, possibly corrupt, 
state. This is the problem of atomicity. To counter this, data engineers must create customized 
tooling to clean up the failed write and roll back any changes.

	� Consider the scenario where a user tries to read data while a data pipeline is writing to the 
same dataset. Typically, during a read, the reader lists all the available files and then scans 
them to compute the results. Now, if the data pipeline is performing appends (insert events) 
and is in the process of writing the files, it is likely that the user will also read the partial 
outputs of ongoing events. Similarly, if the data pipeline is performing updates or deletes, 
it is likely that the user will try to read a file that was deleted as part of the update or delete. 
In either case, the user will likely get incorrect results. This is the problem of isolation. To 
counter this, data engineers must run pipelines when no one is using those tables or create 
methods that hide new files as they are being written.
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•	 Consider the scenario where there is a multistep data pipeline currently executing and an outage 
then happens. When the system comes back online, which step should the reprocessing start 
from? This is the problem of durability. To counter this, data engineers must create custom 
tooling to record the state of the data after each step so that rollback or partial rerun can be 
achieved.

•	 Consider the scenario where multiple data streams are writing into a single table. It is important 
that each write should build on the transactions committed on the data in the past so that no 
data is lost. This is the requirement of consistency. To counter this, data engineers must write 
different streams to different tables before reconciling them into a single table as a batch operation.

•	 As a thought exercise, consider how you would perform updates and deletes. Cloud object 
stores do not support random-access reads in files, nor do they support any index of which 
file contains which ranges of data. This will make it very hard for you to pinpoint which data 
files are relevant for the update or delete. This leads to rewriting data at a partition level, or 
worse, at the table level.

Optimizing the data layout

An important aspect of writing data to a data lake is the data layout. As we saw in the previous section, 
cloud object stores and append-only file formats prohibit the random lookup of data. Further, traditional 
indexes are not very efficient or widely available on data lakes. 

This means that data engineers must organize the data in such a way that readers of the data (query 
engines) can reduce the number of files being scanned. This is crucial for efficient querying of the data.

Why Are Traditional Indexes Not Popular?
A. �The volume and velocity of the data. Updating indices is a computationally expensive task. 

Traditional indexes will not scale well with big data. 

B. �The immutability of the files. Any update or delete will delete existing data files. This means 
the full index will have to be recomputed every time. 

C. �The decoupling of compute and storage. Indexing works best when designed with the query 
engine in mind. On a data lake, this is difficult with a wide variety of query engines.

Apart from using columnar or binary file formats to minimize the input/output (I/O), there are 
four methods usually employed by data engineers to optimize the layout. Let’s discuss these in the 
following subsections.
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Partitioning

A partition is a subset of rows in a table that share the same value for a predefined set of columns. For 
example, consider the following Structured Query Language (SQL) table definition:

CREATE TABLE museum_visitors(

  name STRING,

  id_type STRING,

  id_number STRING,

  country STRING

) PARTITIONED BY (date DATE)

In this case, when records are written into the table—that is, files are written into the folder hosting the 
table data—the records will be arranged into subdirectories. Each subdirectory will be representing 
museum visitors for a date associated with that subdirectory—for example, s3://museum_
visitors/date=2022-04-16 or s3://museum_visitors/date=2022-04-17. Now, 
when a user queries the museum visitors for April 16, 2022, the query engine will only read the 
files in the subdirectory for this date, hence skipping data that is not relevant to the query and thus 
improving query runtime.

Now, there is an obvious flaw in this mechanism. Data engineers must know the query patterns 
beforehand to create the correct partitioning scheme. Further, any query that does not use partition 
filters will end up with a full table scan. Hence, defining the perfect partition scheme is nearly impossible.

Clustering

Clustering is a complementary method to partitioning. It helps reduce the number of files scanned 
within a partition. Clustering groups together all data that shares the same value for a predefined 
column. For example, consider the following SQL table definition:

CREATE TABLE museum_visitors(

  name STRING,

  id_type STRING,

  id_number STRING,

  country STRING

) USING PARQUET PARTITIONED BY (date DATE) CLUSTERED BY 
(country) INTO 5 BUCKETS LOCATION 's3://museum_visitors/';

In this case, within the directory for each date, the visitors for each country are grouped together. 
Hence, when a user queries for visitors from Singapore on April 16, 2022, the query engine will scan 
only the relevant files in the partition for the date April 16, 2022.  



The Delta Lake200

Note
If you are executing the preceding code snippet in the Databricks SQL workbench, ensure that 
your SQL warehouse is configured with an instance profile that has access to the S3 location. 
Likewise, if you are using Azure, the SQL warehouse should have access to the ADLS location. 
See Chapter 4, The Security Model, for a refresher on how to configure this access. Finally, if 
you are using Unity Catalog, use external locations and storage credentials to work with cloud 
storage locations.

As with the partitioning method, there are obvious flaws in this mechanism as well. Data engineers 
must know the query patterns beforehand to create the correct partitioning and clustering scheme. 
Further, any query that does not use partition and clustering filters will end up with a full table scan. 
Hence, defining the perfect partition and clustering scheme is nearly impossible.

Statistics collections

Another method employed by data engineers is to collect statistics on all the files on the data lake. 
An example of a statistic is the minimum and maximum value of an integer column in a particular 
file. If the query engine has this information, it will avoid scanning all files that do not contain the 
required integer value. For example, consider the flights table that we introduced in Chapter 
4, The Security Model. We believe that most of the queries against this table filter on the year and 
tailnum columns. Hence, the following ANALYZE command can be used to selectively compute 
statistics for these columns:

ANALYZE TABLE flights COMPUTE STATISTICS FOR COLUMNS year, 
tailnum

There are significant challenges with these statistics, though. First, collecting statistics is an expensive 
operation that must be run separately after every write. Second, the effectiveness of statistics is dependent 
on the query engine understanding those statistics. Hence, data engineers should selectively choose 
which tables to run statistics collections on. This is less than ideal.

Optimal file sizes

Query engines on data lakes work best if the individual files that make up a table are of consistent 
size and within an optimal size range. However, this is very hard to achieve as the amount of data 
extracted from a source per extraction might not be as high as to create data files of optimal sizes. 
This is exacerbated even more in streaming scenarios. 

To counter this, data engineers often run compaction pipelines that combine the files written on the 
lake into optimal-sized files. For example, consider the following Python code:

spark.read.parquet('/path/to/data/partition').
repartiton(<repartition_count>).write.mode('overwrite').
parquet('/path/to/data/partition')
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In this case, the code will do the following: 

1.	 Read the data partition that contains data files of suboptimal file sizes.

2.	 Compute the total size of the data files.

3.	 Compute the optimal file count as repartition count = (total size)/(desired optimal file size).

4.	 Repartition the data accordingly and overwrite the partition.

Obviously, this is not optimal as it must be run when no one is using the table, and utmost care should 
be taken to avoid any corruption or loss of data.

Synchronizing data warehouses

The discussion in the previous two sections highlights the fact that due to the limitations of data layout 
optimizations, the data will never be accessible with the performance required for interactive querying. 
Therefore, a common approach was to selectively ship data on the data lake to data warehouses to 
support the querying requirements of BI users.

This creates a whole new set of challenges for data engineers as they must create and manage pipelines 
that synchronize data in the warehouse with data in the lake. Any mistake in the synchronization 
will cast doubts on the reliability of the data in either system. It also creates two copies of the same 
data in two different systems with different governance mechanisms. This also creates a challenge of 
synchronizing governance and access control across disparate systems.

The Delta Lake storage format

The discussion in the previous section should help you appreciate why I said that the quad of reliability, 
simplicity, performance, and governance is so hard to achieve. 

The Delta Lake storage format aims to achieve this quad and solve the challenges discussed in the 
previous section. 

The Delta Lake storage format builds on the goodness of Apache Parquet. The core innovation of Delta 
Lake is the introduction of a transaction log to accompany Parquet data in the table. A transaction log 
is the linear, immutable record of all modifications against a table. Modifications are inserts, updates, 
and deletes performed on a table. For all intents and purposes, if a modification is not recorded on 
the transaction log, it did not happen. The transaction log also stores statistics about each file that 
was written as part of the respective modification. 
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So, how does a transaction log work, and what does it look like?

Note 
In this section, we will deep dive into file layouts of tables by executing Python commands. 
Hence, we must switch to the Data Science & Engineering persona view and create a notebook 
for us to execute our commands.

When we create a table with Delta Lake, the table’s transaction log is automatically created. The 
transaction log is hosted in the _delta_log subdirectory of the table location.

To see the workings of the transaction log, let’s consider the example of museum visitors from the 
previous section and perform the following steps: 

1.	 Inspect the storage location of the museum_visitors table before any data is written to 
it. You can see this presented in the following screenshot. Since we did not specify a storage 
format when creating the table, Databricks created the table in Delta Lake format, which is 
the default storage format:

Figure 8.1 – The transaction log for a table

As you can see in Figure 8.1, we have not inserted any records into the table yet. Hence, there 
are no data files present yet. However, if you inspect the _delta_log folder, you will find a 
00000.json transaction log file that has captured a CREATE TABLE event. You can use 
the dbutils.fs.head() command to inspect the contents of the log file.

2.	 Now, make a modification by inserting a record into the table, as follows:

INSERT INTO museum_visitors VALUES('Vihag Gupta', 'Passport', 
'Z123456', 'India', date '2022-04-16')
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Running the display command from Figure 8.1 will now show the data file containing this 
record, as shown in the following screenshot. The exact name of the file will be different for 
you, so let’s call this file file-1:

Figure 8.2 – Data files after first insert

An inspection of the _delta_log folder will also reveal a second transaction log, 00001.
json, which records the INSERT statement that we just executed. Use the dbutils.
fs.head() command to inspect the contents of the log file. You will see details of the insert 
activity recorded, including the minimum and maximum value of columns.

3.	 Next, let’s insert another record, like so:

INSERT INTO museum_visitors VALUES('Suteja Kanuri', 'Passport', 
'A123456', 'India', date '2022-04-16')

There will now be two data files making up the current state of the table, as shown in the following 
screenshot. Let’s abbreviate the new file as file-2:

Figure 8.3 – Data files after second insert

At this point, any reader attempting to query the museum_visitors table will first consult 
the transaction logs and conclude that it must read file-1 and file-2 to get the latest 
records in the table.

4.	 Finally, let’s modify our visit record by updating the identifier (ID) number, like so:

UPDATE museum_visitors SET id_number = 'Z567890' WHERE id_
number = 'Z123456'
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As we learned earlier, Parquet files are immutable, hence a new file must be created with the updated 
record. Inspecting the table path will show the new file, which will abbreviate as file-3. You can 
see an illustration of this in the following screenshot:

Figure 8.4 – Data files after record update

At this point, any reader attempting to query the museum_visitors table will, first, consult the 
transaction logs and conclude that it must read file-2 and file-3 only to get the latest records 
in the table. file-1 now contains an outdated record that is no longer included in the latest version 
of the dataset, and hence it must not be read.

And so, all modification events—that is, the addition of new files and the marking of old files as 
obsolete—are captured in the transaction log. 

Down in the Weeds
For an in-depth discussion of the Delta Lake storage format and its associated protocols, 
I highly recommend that you read the whitepaper published by the authors of Delta Lake 
at https://docs.delta.io/latest/delta-resources.html.

In the next section, we will see how the Delta Lake storage format, with this simple atomic activity of 
capturing transactions as immutable logs, allows Delta Lake to solve all the challenges we discussed 
in the previous section and hence deliver on the quad of goals. 

Data engineering after Delta Lake

Using the Delta Lake storage format is very simple. Simply create a destination table with the Delta 
format. In Databricks, the default format is Delta, but you can make it explicit, like so:

CREATE TABLE museum_visitors(

  name STRING,

  id_type STRING,

  id_number STRING,

  country STRING,

  `date` DATE

) USING delta

https://docs.delta.io/latest/delta-resources.html
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Any modification to this table—inserts, updates, or deletes—will automatically use the atomicity, 
consistency, isolation, and durability (ACID) capabilities available with the Delta format. 
Further, the table will automatically inherit the out-of-the-box performance-boosting features 
available in the Delta format. 

Let’s now look at how data engineering problems are solved with Delta Lake.

Extracting and writing data

Delta continues to use the Apache Parquet file format and cloud object stores for the data file format 
and data file storage, respectively. It cannot change the immutability of Parquet files, nor can it convert 
cloud object stores into filesystems with transactional guarantees or random lookup capabilities.

What it does is abstract the heavy lifting of the workarounds we discussed in the previous section 
behind simple INSERT, UPDATE, and DELETE statements. This abstraction ensures that these 
modifications are optimized for performance and correctness so that you do not have to engineer them.

We will go through case studies that show the simplification of extraction and writing data in Chapter 
11, SQL Commands Part-1. However, as a quick demonstration, consider the following SQL command:

MERGE INTO user_details target USING (

  select id, name, email, zip, operation, rec_update_time

  from (SELECT *, ROW_NUMBER() OVER (PARTITION BY id ORDER BY 
rec_update_time DESC) as rank from user_details_cdc)

  where rank = 1

) as source 

ON source.id = target.id

WHEN MATCHED AND source.operation = 'DELETE' THEN DELETE

WHEN MATCHED AND source.operation = 'UPDATE' THEN UPDATE SET *

WHEN NOT MATCHED AND source.operation = 'INSERT' THEN INSERT *

In this example, user_details_cdc is a table in which each row represents a modification 
event (insert, update, or delete) that has occurred in the source data system. Using the rank() and 
row_number() functions, we get the latest operation for a given user ID. Based on the type of 
modification, which is captured in the operation column, we instruct the command to replicate 
the modification on our table in the Lakehouse. If the operation type is INSERT, then the command 
inserts the data as a new record in the user_details table. If the operation type is UPDATE, then 
the command updates the corresponding record in the user_details table (as identified by the 
id column). Similarly, a DELETE event results in the deletion of the corresponding record.

This should suffice to show how Delta Lake simplifies extracting and writing data using SQL primitives. 
This is just not possible with other file formats.
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Solving append-only file formats

When presented with UPDATE, DELETE, or MERGE commands, Delta Lake simply recomputes a 
new data file with the required modifications and saves it to the object store. Any reader of the file 
simply consults the transaction log of Delta Lake and reads only the files that represent the current 
state of the table. We saw this in action in Figure 8.4.

You might be wondering how this operation is optimized. Does Delta Lake rewrite the entire dataset 
or just file(s) with UPDATE or DELETE targets? The answer is simple—the transaction log. The 
transaction log records the minimum and maximum values of columns in each file. By consulting the 
transaction log, Delta Lake can pinpoint which files contain records that are targeted by the command. 
Delta Lake then proceeds to rewrite the affected files.

Solving object store limitations

Simplifying writes to the data lake solves one half of the challenges associated with extracting and 
writing data. Without transactional guarantees, even with the ability to perform updates and deletes, 
data engineers will have to run commands in sequence to not corrupt an ongoing command. Let’s 
revisit the transactional scenarios to learn how Delta Lake solves them, as follows:

•	 Atomicity: Whenever a modification happens, be it inserts, updates, or deletes, the writing 
process creates and executes a transaction. Upon successful completion of all steps of the 
transaction, the transaction is recorded as a commit in the transaction log. If any step fails, the 
transaction will not be recorded as a commit in the transaction log. This ensures that readers 
will always see a consistent state of the data, and data engineers do not have code-expensive 
rollback and rerun pipelines.

•	 Isolation: Whenever a transaction is in progress (which means it is computing new data files), 
it is not visible as a committed transaction. So, any reader who is reading data from the table 
while a write is happening will not see the partial results of the write. This is because prior to 
the read, the reader would have consulted the transaction log and got a list of data files in the 
latest committed version. This list will not contain uncommitted data files from the ongoing 
write. This enables data engineers to run data through the pipelines as it arrives, instead of 
waiting for consumption on the table to stop. Seasoned engineers will understand that isolation 
guarantees can come at a compromise of performance. Delta Lake provides two levels of isolation: 
WriteSerializable (default) and Serializable. For a deep dive, head over to https://docs.
databricks.com/delta/optimizations/isolation-level.html.

•	 Consistency: Whenever there are two competing writes—that is, two writes submitted at 
the exact same time—the write processes should not leave the lake in an inconsistent state. 
Delta Lake uses optimistic concurrency control (https://docs.databricks.com/
delta/concurrency-control.html) to avoid this. With optimistic concurrency 
control, a new transaction works in three stages. First, it consults the transaction log of a table 
to identify which files need to be modified. This is the read phase. Second, the operations of 
the transaction are executed in isolation and the results are staged in new files. This is the write 

https://docs.databricks.com/delta/optimizations/isolation-level.html
https://docs.databricks.com/delta/optimizations/isolation-level.html
https://docs.databricks.com/delta/concurrency-control.html
https://docs.databricks.com/delta/concurrency-control.html
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phase. Finally, before the staged changes are committed to the table, Delta Lake checks whether 
the staged changes conflict with other concurrent transactions. An example of a conflict would 
be a transaction inserting data into a partition while a concurrent transaction is deleting data 
from the same partition. An example of a non-conflict would be two transactions inserting 
data into the same partition. If there are no conflicts, all the staged changes are committed. If 
there are conflicts, the write operation is failed. If the semantics allow for it, it will be retried 
automatically. This enables transactions on Delta Lake, which in turn allows robust data 
engineering—for example, it enables writing batch and stream data into the same table at the 
same time. Another application is the ability to correct data on the fly while new data is being 
streamed in without halting the entire data pipeline.

•	 Durability: Transactions, once committed, are durable as they are on the cloud storage and 
inherit cloud storage durability guarantees. This means that even if multistep pipelines fail 
midway, the last known transaction enables selective reprocessing of the pipeline.

As you can see, Delta Lake allows data engineers to bring the data to the data lakehouse for consumption 
with reliable and simple data pipelines. 

However, as we saw in the data engineering challenges, another big component is preparing the data for 
optimal consumption—that is, the performance of user queries. Let’s look at how Delta Lake enables 
data warehouse-like query performance by optimizing the storage layer while avoiding proprietary 
file formats.

Built-in performance-boosting features of Delta Lake
Delta Lake provides built-in performance boosters that complement the data layout strategies that 
we discussed in the Optimizing the data layout section. If there is a well-working data layout strategy 
in place, performance is accelerated further. If the data layout strategy is lacking or limited due to a 
wide variety of query-filtering patterns on the data, then the boosters make sure that performance is 
still improved by reducing unnecessary I/O. Let’s learn about these performance boosters.

Automatic statistics collection

The first, and arguably the most important, performance booster is automatic statistics collection (stats 
collection for short), which enables a process called data skipping. Stats collection is an automatic 
process on Delta Lake. For every data file written, the stats collection process computes the minimum 
and maximum values for the columns present in the file. 

By default, stats collection will be done on the first 32 columns of a table.
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How does this help? Let’s see an example here: 

1.	 Consider a table representing a chess board. Each record in the table represents the coordinates 
of the cell and its current occupant. The table definition is shown here:

CREATE TABLE chess_cells(x INT, y INT, occupant STRING);

2.	 Since there are only three columns, stats will be collected for all three columns. For this 
demonstration, let’s ensure that stats are not collected for the y and occupant columns by 
executing the following command:

ALTER TABLE chess_cells SET TBLPROPERTIES ('delta.
dataSkippingNumIndexedCols' = '1');

Next, let’s insert some data so that we can see stats collection in action. Please note that this 
will have to be run in a notebook in the Data Science & Engineering persona. The code is 
illustrated in the following snippet:

val schema = StructType( Array(

                 StructField(" x" , IntegerType,true),

                 StructField(" y" , IntegerType,true),

                 StructField(" occupant" , StringType,true)

             ))

val rowData1= Seq(

                 Row(1,1," white_queens_rook" ), 

                 Row(1,2," white_queens_knight" ), 

                 Row(1,3," white_queens_bishop" ),

                 Row(1,4," white_queen" ),

                )

var df1 = spark.createDataFrame(rowData1,schema).coalesce(1)

df1.write.format(" delta" ).mode(" append" ).saveAsTable(" 
chess_cells" )

By executing the preceding code, we are inserting four records at a time, which ensures there 
are four records in each file. Since this is a chess board representation, the total number of 
records should be 64, and the total number of files across which these 64 files are spread should 
be 16  (64/4).
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Note
The source code in the preceding snippet is Scala code. It also represents only four cells. You 
are encouraged to extend this code to cover all 64 cells. If you are feeling lazy, you can refer to 
the book’s GitHub repository for the full code.

3.	 You can verify the file count by executing the following line of code:

dbutils.fs.ls('dbfs:/user/hive/warehouse/chess_cells/')

4.	 Now, we have the data ready. Let’s execute a query that uses the y column as a filter, as shown 
in the following screenshot:

Figure 8.5 – SQL query without stats collection

5.	 Click on the View link on the latest Spark job. This will open the Spark user interface (UI), 
where you can click on the link titled Associated SQL Query to bring up the following query-
plan visualization UI:

Figure 8.6 – SQL query without stats collection (continued)
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6.	 We are interested in the Scan phase. Expand the details tab and navigate to the rows 
pertaining to the number of files, as shown in the following screenshot:

Figure 8.7 – Number of files scanned with no stats

As we can see the whole table, all files in the table were scanned to find records where y = 4. However, 
we know that only 8 of 16 files contain records where y = 4. 

If we re-execute the preceding steps, without disabling the stats collection for the y column, we will 
see the following information in the details of the Scan phase:

Figure 8.8 – Number of files scanned with stats

As we can see, the number of files is just 8 now. This is a 50% reduction in I/O without any partitioning 
or clustering involved!

This is the magic of automatic stats collection. It allows the query engine to smartly read only the files 
that are required to serve the query. Statistics are captured when transactions are committed. The 
captured statistics are stored in the transaction log. Since statistics are captured at the transaction level 
(and not at the table or partition level), the operation is relatively inexpensive. Also, since statistics 
are tagged with transaction logs, reverting back changes or new modifications does not require full 
table statistics recollection. This makes the process optimized and scalable.

If tables are partitioned, stats collection complements the partitioning scheme. For example, when a 
query has filters belonging to both partitioning and non-partitioning columns, the query engine can 
skip (prune) irrelevant partitions and check statistics only in the relevant partitions.

Finally, as a best practice, avoid running stats collection on string columns as they are very expensive and 
might not give enough return on investment (ROI). To avoid running stats collection on strings, make 
sure that string columns are at the end of the table and the delta.dataSkippingNumIndexedCols 
configuration is less than the index of the first string column.

In summary, the query engine’s optimization component uses information on the minimum and 
maximum values of columns within any file to determine whether the file should be read. 
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Next, we will discuss the performance booster that optimizes the file sizes themselves to maximize 
the distributed processing capabilities of Delta Engine.

Automatic Compaction and Optimized Writes

Data engineers can opt in for Automatic Compaction and Optimized Writes for the tables on the data 
lakehouse. When enabled, these two properties ensure that the writes to a table generate optimal-sized 
files. Here, optimal refers to optimal query processing speeds and minimum computation resource waste.

To see the effects of Automatic Compaction and Optimized Writes, we need a bigger dataset. Thankfully, 
we created one such dataset—airlines, in Chapter 4, The Security Model, in the The security model 
in practice section:

1.	 Consider the flights table. The flights table was generated without any Automatic 
Compaction and Optimized Writes. If we execute the dbutils.fs.ls() command on 
the flights table location, you will see precisely 99 data files.

2.	 Now, let’s change the table definition to enable Automatic Compaction and Optimized Writes 
with the following statement:

CREATE TABLE flights USING DELTA TBLPROPERTIES (delta.
autoOptimize.optimizeWrite = true, delta.autoOptimize.
autoCompact = true) AS SELECT * FROM flights_csv;

Executing the dbutils.fs.ls() command will reveal that only 19 data files were generated.

3.	 At this point, I encourage you to execute this very simple query against the two variations of 
the tables:

SELECT Month, Origin, count(*) as TotalFlights 

FROM flights_optimized

WHERE DayOfWeek = 1 

GROUP BY Month, Origin 

ORDER BY TotalFlights DESC

LIMIT 20;

You will notice a very drastic increase in query performance when this query is run on the table with 
Optimized Writes. In my case, on a 2XS-size SQL warehouse, a cold query ran in 3.6 seconds on the 
table with Optimized Writes versus 7 seconds on the table without Optimized Writes.

How did this drastic increase in performance happen? What did the automatic Optimized Writes do?
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Optimized Writes works at two levels, as outlined here:

•	 Automatic Optimized Writes: Right before the write stage, the optimized write dynamically 
changes the dataframe’s partition sizes, either increasing them or decreasing them to reach a 
target file size—128 megabytes (MB) by default.

•	 Automatic Compaction: After the write is completed, existing files in the table directory are 
checked. If there is an opportunity to merge newly created files with existing files in pursuit of 
the target file size, then a merge is performed. For example, even after an optimized write, it 
is likely that there is not enough data to reach the target file size. In this case, during the next 
write, new files will be merged with older ones to create files closer to the target.

Automatic Compaction and Optimized Writes are both enabled on our flights table, and hence 
we can see that individual files with sizes closer to the target are created. 

Since the data files are of optimal size, the query engine can optimally distribute the work across the 
workers of the SQL warehouse and achieve enhanced performance.

This concludes our discussion on the performance-enhancing effects of optimized writes. For a detailed 
commentary on when and how to use Automatic Compaction and Optimized Writes in your data 
engineering pipelines, see the official documentation at https://docs.databricks.com/
delta/optimizations/auto-optimize.html. 

Automatic caching

With Databricks SQL, you get Delta caching out of the box. Very simply, whenever a query first executes 
against data it has not encountered since the warehouse started, it retrieves files from the cloud object 
storage. This retrieval is limited by the speed of the network over which the retrieval happens. To 
avoid this, Databricks SQL uses Delta caching, which simply caches any new file retrieved from the 
cloud object storage as part of any query onto the SQL warehouse’s local solid-state drives (SSDs) 
in an optimized format. The next time a query executes that needs access to the same file, it simply 
reads the optimized file from the local SSD, which will always be faster than reading over the network. 

Delta caching ensures the freshness of the cache. This is attributable to the transaction log. If a file 
in the Delta cache is marked as invalid in the transaction log, the file can be immediately evicted.

Let’s see this in action. Recall our chess example from the previous section. Proceed as follows:

1.	 First, let’s execute a cold query—that is, the first query after the SQL warehouse is started. 
This will ensure that there are no entries in the cache. The following statement should suffice:

SELECT * FROM chess_cells WHERE occupant LIKE '%kings%'

2.	 If we navigate to the Query History page and click on the entry corresponding to this execution, 
it will bring up the Query Profile view. We are interested in the IO section, which will show 
that no data was read from the cache. The Query Profile view should look like this:

https://docs.databricks.com/delta/optimizations/auto-optimize.html
https://docs.databricks.com/delta/optimizations/auto-optimize.html
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Figure 8.9 – Query with no cache hits

3.	 Next, execute another command that references the same table, but with a different filter 
predicate. The following statement should suffice:

SELECT * FROM chess_cells WHERE occupant LIKE '%queens%'

We will see that the files are read directly from the cache:

Figure 8.10 – Query with cache hits

The usage of the cache is reflected in the query performance as well. On a 2XS-size SQL warehouse, 
the cold query took 3 seconds, and the subsequent query took merely 620 milliseconds!

As an exercise, I encourage you to update the table and see its effect on cache hits— does the query 
use stale data or fresh data? If it uses fresh data, how is this reflected in the cache I/O details?

As we have seen through this section, Delta Lake boosts the performance of queries with the smart 
use of transaction logs and out-of-the-box enhancements.  

That’s not all, though—Delta Lake has some more features that can be strategically configured to 
accelerate the performance of queries even further. Let’s learn more about them in the next section.
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Configurable performance-boosting features of Delta Lake
Delta Lake in Databricks has features that allow you to accelerate query performance further based 
on your knowledge of specific query patterns. Let’s learn about them here.

Z-ordering

Automatic stats collection is a great performance accelerator. However, it is effective only when the 
minimum-maximum (min-max) ranges of the query filter column(s) in each data file are narrow 
and optimally overlapping across data files. What does this mean? 

Consider a high-cardinality column such as the TailNum column in our flights table, which 
has a cardinality of 13150. The tail number is like a registration number for airplanes. Consider a 
short-haul flight that does many round trips a day. This means that the tail number of this flight will 
be present across a lot of time bands and hence across a lot of data files. So, if we try to query the 
flights table with a selective filter on TailNum, it will not be able to effectively skip irrelevant 
data files. For example, run the following query:

SELECT * FROM flights WHERE tailnum = 'N641DL'

During the execution of this query, 29 of 99 files are pruned (skipped)—that is, 70% of the dataset is read.

Now, imagine having multiple such columns in your dataset that are not natural partitioning columns 
but are frequently filtered on (together)—for example, Distance and CRSElapsedTime. 

The effectiveness of the automatic stats collection will be further reduced as there are no guarantees 
that the min-max ranges of these columns will coincide in the same data files—meaning files will not 
be skipped effectively.

Let’s unpack this with an example. The distance and elapsed time are correlated. The tail number is 
sort of correlated as there might be many tail numbers with similar distance and elapsed time values. 
However, it is very likely that records for such tail numbers will be spread across multiple data files. 
So, a query with predicates such as where distance between or where crselapsedtime 
between will have to scan through a lot of files. What if we could reorder the data such that records 
with similar values of distance and crselapsedtime are in the same data files? This would 
drastically improve the performance of queries with the preceding predicates.

This is where ZORDER comes in. ZORDER rearranges the data in such a way that the statistics for the 
columns in question are useful. ZORDER makes statistics great again.

ZORDER is an optimization technique akin to multidimensional clustering. It optimizes the number 
of data files and ensures that related information across the required dimensions—columns—is 
collocated on the same data file. Let’s look at this super-simplified diagram:
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Figure 8.11 – The concept behind ZORDER

In Figure 8.11, we are assuming that we perform a ZORDER operation on three columns—TailNum, 
CRSElapsedTime, and Distance. ZORDER will map current records and the respective data files 
onto the three-dimensional (3D) space based on the values of the three columns. This mapping is 
then projected onto a single dimension, as illustrated in the preceding diagram. This projection reveals 
clusters of records that are related along these three dimensions. Using this technique, records that are 
now found to have related and similar values for the three dimensions can be clubbed together—in 
short, multidimensional clustering. 

Of course, in practice, things are not so simple, and the simple act of projection itself requires complex 
algorithms. Databricks uses the Hilbert curve, a space-filling curve algorithm, to implement ZORDER. 

Since the clusters will have closely related information, the probability that a filter across the dimensions 
will be served by the data in this cluster is increased. This makes the statistics on these files for these 
columns effective again.

Continuing our example, we will run ZORDER on TailNum like so:

OPTIMIZE flights ZORDER BY talinum
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ZORDER rewrites the records to represent the clusters and optimize the layout. It also uses this 
opportunity to compact the files to ideal file sizes. Now, instead of 99 data files, the table is represented 
by five data files that respect the ZORDER. Running the same query as before, we will see that only one 
of the five data files is read to execute the query—that is, only 25% of the data files are read. This is a 
45% improvement in data skipping. Keep in mind that we are looking at data-skipping effectiveness 
as our metric. 

ZORDER by Default
ZORDER is not automatic. You must run an OPTIMIZE command whenever ZORDER is 
required. To find out more about this, read https://docs.databricks.com/delta/
optimizations/file-mgmt.html#optimize-faq.

At this point, I must point out two things, as follows:

•	 My explanation of ZORDER is overly simplistic and will probably offend mathematicians all over.

•	 I am cutting corners in the ZORDER example by not applying traditional partition layouts with 
columns such as year and month before applying the ZORDER operation.

This is because of the following:

•	 Implementation of space-filling curve algorithms is an involved mathematical concept that 
Databricks has applied onto the Delta Lake filesystem. We are not interested in the math of it 
or the implementation of it. We are interested in the benefits of it.

•	 Showing ZORDER effectiveness at scale and along multiple dimensions requires a large dataset. 
Performing this experiment at scale will prove too costly to you. 

Hence, I humbly redirect you to this blog by Databricks: https://databricks.com/
blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-
databricks-delta.html. 

This blog does the following:

•	 It explains how ZORDER works.

•	 It shows the effects of ZORDER at scale with proper instrumentation to showcase the benefits 
of ZORDER.

So, in summary, ZORDER allows you to optimize a dataset to handle queries with filters beyond what 
traditional partitions and stats collections can optimize for. It does so by applying a multidimensional 
clustering mechanism called Z-order curves to collocate related information on the same data file. This 
creates narrow min-max ranges that are non-overlapping and delivers the best possible file skipping.

https://docs.databricks.com/delta/optimizations/file-mgmt.html#optimize-faq
https://docs.databricks.com/delta/optimizations/file-mgmt.html#optimize-faq
https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html
https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html
https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html
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Finally, before leaving this topic, I will say two things about not abusing the powers of ZORDER, 
as follows:

•	 The effectiveness of ZORDER reduces with the number of dimensions—this should be apparent 
in the diagram in Figure 8.11. Too many dimensions will reduce the size of clusters to the 
point where there is no effective data locality, and hence data skipping won’t be effective. Four 
columns are a good upper limit. 

•	 ZORDER depends on statistics collections. Hence, it inherits the limitation that statistics 
collections on long strings will be expensive. Try not to apply ZORDER on long strings.

Bloom filter indexes

You must have noticed by now that we have been working with purely numeric columns. We even 
ended the previous discussion with a warning on long strings. So, how does Delta Lake help improve 
queries that require arbitrary string searches? 

The answer is Bloom filter indexes.

Bloom filters aim at improving data skipping or file pruning for columns that are not well suited for 
automatic stats collection. Bloom filters create index files for every data file in the table. The index is 
consulted by the data-skipping algorithm during query time. The index provides one of the two data 
points in either of the following cases:

•	 Whether the searched string is 100% not present in the file

•	 Whether there is a probability that the searched string is in the file, and what the probability 
is that this is a false alarm

The data-skipping algorithm uses the data point and decides whether to read the file.

At this point, ideally, I would walk you through a practical example that shows how this Bloom filter 
index improves the performance. But this time, I leave it up to you to try it out.

Here are a few hints for you with regards to testing Bloom filter indexes:

•	 First, ensure that you disable stats collection on the column you are planning to create the 
index on. This will help you observe a Bloom filter in isolation.

•	 Second, the syntax to create the index looks like this:

CREATE BLOOMFILTER INDEX

ON TABLE flights

FOR COLUMNS(TailNum OPTIONS (fpp=0.1, numItems=20000))
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Fair warning, though—TailNum is not a good candidate for observing the benefits of Bloom 
filter indexes.

•	 Third, use data-skipping metrics such as files pruned or parquet groups read to measure 
improvement. Query execution time can be misleading as it depends on the load on the SQL 
warehouse and query result caching.

•	 Finally, if you’re feeling really lazy, head over to the official documentation. They have an 
excellent notebook that walks you through the effects of Bloom filters with relevant examples: 
https://docs.databricks.com/delta/optimizations/bloom-filters.
html#notebook.

CACHE SELECT

Last, but not least, we have explicit data caching. Automatic Delta caching caches tables read during 
actual queries submitted by users. However, automatic Delta caching still faces the cold-start problem 
where the first query on any table will have to do the dual tasks of fetching data files from the cloud 
object store and populating the local Delta cache while executing the user query. This leads to slower 
first queries. By running an explicit CACHE SELECT statement, we can cache certain datasets 
beforehand and avoid cold-start problems. A practical use case would be caching data from various 
tables before a long-running report or dashboard. Another could be caching data for interactive 
reports or dashboards so that users get instantaneous responses. 

Using CACHE SELECT is easy. For example, if we had to cache the flights table, we would execute 
the following line of code:

CACHE SELECT * FROM airlines.flights

Any query on the flights table will read data from the cache. 

A pro tip: CACHE SELECT statements are a great way to schedule an automatic start of SQL 
warehouses before the workday begins—that way, the SQL warehouse startup time and cold-query 
latency are avoided in one go.

This brings us to the end of the discussion on configurable performance boosters in Delta Lake, and 
the end of the chapter as well.

https://docs.databricks.com/delta/optimizations/bloom-filters.html#notebook
https://docs.databricks.com/delta/optimizations/bloom-filters.html#notebook
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Summary
In this chapter, we deviated from our usual personas of data analysts and database administrators. 
Instead, we put on the hat of data engineers who are responsible for delivering data to analysts and 
administrators. Data engineers are wholly responsible for optimizing the data layout on the Lakehouse 
so that data analysts get the best possible query experience. 

That said, we saw how the inputs of data analysts will be integral to getting the data layout correct. 
Inputs on query-filtering patterns, ordering of data columns, and frequency of optimizations are 
required for data engineers to make the best decisions.

In this chapter, we learned how Delta Lake is the storage layer for Databricks SQL. We learned how it 
provides the best out-of-the-box query experience. We also learned about additional features in Delta 
Lake that can elevate query performance even more. Finally, we discussed the internal workings of 
Delta Lake and how it enables all the features that Delta Lake provides. 

In the next chapter, we will look at the accompanying compute layer in Databricks SQL.





9
The Photon Engine

In this chapter, we will turn our attention back to SQL Warehouses. This time, however, we will focus 
on the query engine running on SQL Warehouses. The query engine is known as Photon Engine. We 
will begin by learning about Photon Engine and its place in the Apache Spark framework. Going ahead, 
we will understand the core engineering philosophy of Photon Engine. Finally, we will go through its 
limitations and the roadmap to overcome them.

I do want to highlight that you don’t need to learn the details of Photon Engine to work with 
Databricks SQL. This chapter is intended for those who are interested in how Databricks 
SQL achieves record-beating query performances on the Lakehouse setup with open source 
storage formats.

In this chapter, we will cover the following topics:

•	 Understanding Photon Engine

•	 Understanding vectorization

•	 Discussing the Photon product roadmap

Technical requirements
Before reading this chapter, you must ensure the following:

•	 You have access to a working Databricks SQL workspace to execute the examples

•	 You understand the execution model of Apache Spark 

•	 You are familiar with data structures such as trees and matrices

Understanding Photon Engine
In this section, we will learn about Photon Engine. We will begin by understanding its place in the 
Databricks SQL ecosystem. Then, we will get a bit more technical and see how Databricks SQL uses 
Photon Engine with Apache Spark to provide the speed and concurrency that it proclaims to have.
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What is Photon?

Photon (https://databricks.com/product/photon) is a vectorized query engine that 
is written in C++ that can leverage the data and instruction-level parallelism available in modern-
day CPUs. 

Photon is 100% compatible with Apache Spark APIs. This means you do not have to learn any new 
language or programming paradigm or rewrite your code to be able to leverage Photon. 

The mission of Photon is simple: eliminate the need for data warehouses by providing the same or 
better performance than data warehouses while querying data in open file formats over cheap, elastic 
cloud storage. 

It is the compute complement to the Delta Lake file format we discussed in Chapter 8, The Delta 
Lake. Delta Lake aims to optimize the data layout and data retrieval process. Photon Engine, which 
is optimized for Delta Lake, in turn, aims to make quick work of the user queries on the retrieved 
data with speeds expected by BI users.

Photon is the query engine built into SQL Warehouses and incurs no additional cost apart from the 
regular Databricks SQL pricing. However, you can also use Photon in Databricks data engineering 
and data science clusters by clicking on the Photon checkbox when selecting the Databricks runtime 
version of your cluster. Since a discussion of data engineering and data science clusters is outside the 
scope of this book, I will point you to https://docs.databricks.com/runtime/photon.
html for reference as well as the following screenshot, which shows that enabling Photon is a matter 
of switching on a checkbox. Bear in mind that Photon on data engineering and data science clusters 
incurs additional costs. See https://databricks.com/product/pricing for more details:

 

Figure 9.1 – Enabling Photon in data science and data engineering clusters

https://databricks.com/product/photon
https://docs.databricks.com/runtime/photon.html
https://docs.databricks.com/runtime/photon.html
https://databricks.com/product/pricing
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Before we continue, I must tell you that Photon is one of the ingredients of the secret sauce that makes 
Databricks SQL as performant as data warehouses while operating on the decoupled compute and 
storage architecture of data lakes. I cannot give away the secret sauce. The content in this chapter is 
based on what is publicly known about Photon Engine from documentation and public talks. I aim 
to simplify and explain the concept of vectorization and how Photon leverages it within the Apache 
Spark execution model.

Let’s begin our deep dive into Photon with a quick discussion of the Apache Spark execution model. 

The Apache Spark execution model

In this section, we will briefly learn about the journey of a query from submission to execution as it 
happens in Apache Spark. 

The following diagram represents the first step where the user query is converted into machine-
readable code, ready for execution:

Figure 9.2 – Phases of the Catalyst optimizer

This step is the responsibility of the Catalyst optimizer. At its core, Catalyst is a general library for 
representing trees and manipulating them. 

Why Trees?
The tree data structure is a popular and powerful way to represent a user query – SQL or otherwise. 

The Catalyst tree transformation framework is used in four phases. Let’s take a look.

Analysis

When a query is submitted, it is nothing but text. When this text enters Catalyst, it is converted into 
an unresolved logical plan. It is a simple tree representation of the query. 

At this stage, we do not know anything about the attributes in the query. In the analysis phase, the 
tables are validated, and the data types of direct and composite attributes are resolved. This is done 
by consulting the schema metadata in the data catalog. 
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For example, consider the airlines dataset we built earlier in this book. Let’s say we were to write the 
SQL query:

SELECT tailNum, Year+1 as y FROM flights

The analysis phase will consult the data catalog to resolve the existence of the table flights in the 
database being used in the current session and record that this table is in fact airlines.flights. 
Then, it will resolve the tailNum and y columns. It will resolve tailNum as a string column in 
the airlines.flights table. Finally, it will resolve that y is an integer since it is calculated as an 
integer literal being added to the y integer column – year.

At the end of the analysis phase, we get a logical plan that has annotated the simple tree with information 
about the tables and columns being represented by various nodes in the trees.

Logical optimizations

In this phase, a standard set of rule-based optimizations is applied to the logical plan. In essence, it 
will look for operators that can be rewritten in known optimal ways. 

For example, consider the following SQL query:

SELECT tailNum FROM flights WHERE tailNum LIKE 'ND%'

In this case, the logical optimization phase will see that it has the rule to replace the inefficient LIKE 
operator with a more efficient String.startsWith("ND") implementation.

At the end of the logical optimizations phase, the logical plan from the analysis phase is transformed 
into an optimized logical plan using known, standard plan optimization techniques. Examples of 
such techniques include Boolean expression simplification, predicate pushdown, projection pruning, 
and more. 

Physical planning

In this phase, the optimized logical plan is converted into multiple candidate physical plans. A physical 
plan is generated from a logical plan by replacing the operators in the logical plan with matching 
operations in the Spark execution engine. 

For example, consider the following SQL query:

SELECT f.FlightNum, f.tailNum, p.manufacturer, p.model FROM 
flights f LEFT OUTER JOIN planes p ON f.tailNum = p.tailNum
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When this query enters the physical planning phase, multiple physical plans will be computed. For 
this query, the different plans will be based on the JOIN operator implementation. In Spark, it could 
be a broadcast join, sort merge join, or a shuffle hash join. The physical planning process will use cost 
models to decide the best join implementation. In this case, if you observed the query stages in the 
Query UI, the physical plan with broadcast joins was chosen.

At the end of the physical planning stage, the logical plan from the logical optimization phase is 
converted into a viable, optimal physical plan that is ready for execution.

Code generation

This is the final phase of query optimization. In this phase, bytecode (https://en.wikipedia.
org/wiki/Java_bytecode) is generated for the physical plan based on what was selected from 
the physical planning phase. Notably, during the bytecode generation phase, the code generation 
operation fuses multiple operations in a stage to produce an optimized operation. This fusion eliminates 
the virtual function calls and limits the data exchanges to inter-stage shuffles only. This results in the 
overall execution being sped up. This process is called WholeStateCodeGen. 

Note
The purpose of this chapter is to discuss the Spark execution components in a simplified manner 
so that we can contrast the changes when Photon is introduced. For an in-depth discussion on 
these components, for example, how WholeStateCodeGen works with Just-in-Time (JIT) 
compilation, please refer to the official Apache Spark documentation.

Execution

Finally, the specialized code generated by the compiler must be executed. The Spark code that was 
submitted (the SQL query, in this case) is called a job. A job contains multiple stages. To execute a 
stage, multiple tasks are spawned. Each task runs the same code – that is, the code that was generated 
in the code generation phase. However, each task runs the code on a subset of the data, which makes it 
the smallest unit of parallel execution. Each task is run within a construct called the executor, which 
provides the task with physical resources such as CPU cores and RAM to execute the code.

Consider the following SQL query:

SELECT f.FlightNum, f.TailNum, p.manufacturer, p.model FROM 
flights f LEFT OUTER JOIN planes p WHERE f.FlightNum between 
1460 and 1470;

https://en.wikipedia.org/wiki/Java_bytecode
https://en.wikipedia.org/wiki/Java_bytecode
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When the code generation happens for this query, it will fuse the filter and broadcast loop instead of 
having them as separate operators. You can visit the Spark UI for the query to observe this:

Figure 9.3 – Whole stage code generation

As you can see, the query has two stages, both of which are code-generated.

Now, let’s talk about Photon and its place in the Apache Spark execution model. We can think of 
Photon as replacing the steps that start from the code generation phase:

•	 Instead of the whole state code generation of Java bytecode, Photon creates C++-based vectorized 
native engine implementations. 

•	 During the execution of tasks, Photon provides native executors instead of the traditional 
JVM-based ones to run the native engine implementations.
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The following diagram should help make this clear:

Figure 9.4 – Photon’s place in the Spark execution model

So, what is vectorization? Why does Photon use it instead of the tried and tested Spark code generation? 
Let’s dive in!

Understanding vectorization
To understand Photon, we must understand the different query execution philosophies. There are 
three popular query execution models. We will learn about them now. To keep it simple, let’s learn 
about them with a non-data example.

Consider the simple task of increasing the brightness of a photograph. This task will involve increasing 
the brightness of every single pixel in the photograph. Modern cameras can easily capture photographs 
with pixel counts in millions. Let's also assume that our processor can handle eight parallel tasks at 
a time. 

Finally, let’s assume three functions will help with this task:

function getPixelRGB(PixelAddress): PixelRGB

function addBrightness(PixelRGB, BrightnessFactor): PixelRGB

function setPixelRGB(PixelAddress, PixelRGB)

There are three ways that the controller can be programmed to do this function.
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Volcano model

In this model, we increase the brightness of the photograph one pixel at a time. A pseudocode 
implementation will look like this:

for pixel in pixels:

  pixelRGB_current = getPixelRGB(pixel)

  pixelRGB_new = addBrightness(pixelRGB_current, 1)

  setPixelRGB(pixelAddress, pixelRGB_new)

In this implementation, we loop over all the available pixels and execute the three functions to increase 
the brightness of each pixel, one at a time. There are glaring flaws in this implementation:

•	 At each step, the executing process must evaluate the next function to be called and call the 
function. Further function calls will require data objects to be created and then passed as 
parameters or returned as results. This is wasteful.

•	 The steps can’t be chained together by the processor either as function evaluation must happen 
with every iteration. This is suboptimal.

Previously, we mentioned that our processor can handle eight parallel tasks. So, one redemption is 
that we can assign each processor a unique range of pixels to work on. However, that still does not 
remove the actual issue that each processor is spending more time on interpreting the steps rather 
than executing the simple task of adding 1 to the brightness.

Code generation

In this model, we still increase the brightness of the photograph one pixel at a time, but we depend 
on the processor to fuse the three functions into one “generated” function. Consider the following 
pseudocode implementation:

for pixel in pixels:

increasePixelBrightness(pixel, 1)

In this implementation, we still loop over all the available pixels, but we “fuse” the different steps into 
one function. This addresses a major flaw of the volcano model – that is, there is just one function call 
and no intermediate data objects are created. There is an input as well as an output. The processing 
of each pixel will be much faster now.

This can be combined with the parallel capabilities of the processor. Each processor will be able to 
complete its range of pixels much faster. That said, the processing is still done one pixel at a time, 
which is still slow. 
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This is the same code generation philosophy that Apache Spark uses as part of the Catalyst optimizer. 
Multiple tasks running across the various workers in the cluster execute the generated code against 
their assigned range of data. This is the key to the speed of execution in Apache Spark.

Vectorization

This model solves the pixel-at-a-time problem. Consider the following pseudocode implementation:

for pixel_batch in pixels:

  pixelRGB_current = getPixelRGB(pixel_batch)

  pixelRGB_new = addBrightness(pixelRGB_current, 1)

  setPixelRGB(pixelAddress, pixelRGB_new)

In this implementation, we return to the simple, clean, modular functions of the volcano model. 
However, instead of processing a pixel at a time, we modify the functions to work with a batch of 
pixels. A batch is represented as an array or 1D matrix or a vector. So, the first function will obtain 
the RGB values for a vector of pixels. Similarly, the second function receives a vector of RGB values 
and adds 1 to all of them. Finally, the third function receives the vector of new RGB values and sets 
them onto the respective pixels.

The implementation still requires the next function to be evaluated, but because we are processing 
batches of one pixel at a time, the number of evaluations is dramatically reduced. 

This is the core philosophy of Photon as a vectorized query engine.

Let’s get a bit more technical here. Vectorization works best when we work on one column at a time, 
with a simple operation. Hence, in the vectorized implementation, we returned to using modular 
functions. These functions take one vector (column) at a time and apply a simple operation to it. 
Today’s CPUs provide specialized processing powers for vector processing. For example, consider 
the addBrightness() function. It could be implemented as pixelRGB_current[:]+1, 
meaning a matrix operation where each element has 1 added to it. The vector processing capabilities 
allow CPUs to add 1 to each element in the array in parallel instead of looping over the array. Even if 
we implement it as a loop over the array elements, the loop will be “unrolled” into a vector operation 
since it applies a simple operation on one column.

Note
There is much more to implementations of query execution models than my overly simplistic 
explanations of the three models. I just wanted to convey the core philosophy. Feel free to 
deep-dive into these topics outside of this book. 
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Now that we understand the core concept of vectorization, let’s look at vectorization from a query 
processing lens. Let’s return to our beloved airlines dataset with the following SQL query:

SELECT Year, TailNum, SUM(Distance)

FROM airlines.flights

WHERE ArrDelay+DepDelay > 0

GROUP BY Year, TailNum

There are three operators in action here:

•	 Scan the flights table in the airlines database.

•	 Filter out records that are on time or before time.

•	 Aggregate the total distance covered by each flight in a year with delays.

We can visualize these as follows:

Figure 9.5 – Flow of operators in the query
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Let’s examine the Filter operation shown in the preceding diagram. The following diagram shows the 
evaluation tree of the Filter operation:

Figure 9.6 – Evaluation tree of the Filter operation

As we can see, Photon focuses on executing simple operations on columnar batches of data. Photon 
provides vectorized implementations of such operations. In this case, the addition operator (+) and 
the greater than operator (>) are Photon-vectorized implementations or kernels. 

Let’s zoom in on the addition kernel. The kernel accepts the vectors of data of two columns – ArrDelay 
and DepDelay. The kernel uses CPU-level data parallelism to execute the operation. This is called 
Single Instruction Multiple Data (SIMD) in the hardware world – that is, the ability to execute an 
instruction against multiple data entries in a truly parallel fashion.

Consider a modern multi-core CPU. Each core has an independent SIMD execution unit. The kernel 
will get the core to hold the two vectors on its on-chip memory and the SIMD execution unit will 
simultaneously apply the addition operation to the data elements in the two vectors in one CPU cycle. 
Now, the bigger the CPU register, the higher the number of data elements that will be processed in 
one CPU cycle!

Furthermore, because the kernel processes a single instruction, there can be CPU-level data pipelining. 
With every cycle, the core can process the vector in memory while simultaneously fetching the next 
batch of data (from RAM) to be loaded into its memory. This eliminates the wastage of CPU cycles. 
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Finally, Photon optimizes the data representation. In Figure 9.6, there’s a second vector of data next to 
the Out stage. This is Photon’s way of representing the data that was filtered out. Instead of recreating 
the whole dataset of filtered values (which could be hundreds of columns), it just adds a marker vector 
that denotes which rows are active after the filter. This avoids unnecessary intermediate data object 
(re)creation. It enables better memory management and eliminates CPU cycle wastage.

All these optimizations are possible due to the native implementation of Photon in C++. This is in 
stark contrast with the execution of tasks in the traditional Apache Spark execution, where the tasks 
are cocooned inside a Java Virtual Machine (JVM) and do not have access to CPU instruction set 
level optimizations. This is what makes Photon so fast.

Let’s look at side-by-side comparisons of traditional code-generated DAGs versus Photon vectorized 
DAGs for our example query:

Figure 9.7 – Comparison of stage 1 
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Here, we are looking at stage 1 of the query, which scans the data, performs the necessary filtering, and 
performs local aggregation. The left-hand side shows the traditional Apache Spark code-generated 
stage. The right-hand side shows the same stage in Photon. Though it is not apparent, traditional 
Spark has fused the filter, project, and local aggregate operators. Photon does not do so since it does 
not use WholeStageCodeGen:

Figure 9.8 – Comparison of stage 2

Here, we are looking at stage 2 of the query, which receives all the local aggregates and combines them 
into the final global aggregate. Once again, though it is not apparent, traditional Spark has fused the 
filter, project, and local aggregate operators.

Now, let’s zoom out a bit. Consider a medium T-shirt-size SQL Warehouse in a Databricks on AWS 
setup. It has eight workers of the i3.2xlarge EC2 instance type. Each i3.2xlarge EC2 instance 
has 8 CPUs with 4 CPU cores each – that is, 32 cores. For the sake of this discussion, let’s assume that 
each core supports SIMD. Now, when a query is executed, Spark will schedule tasks and these tasks 
will be executed by Photon, as shown in Figure 9.3. If the query uses the whole cluster, we can assume 
that 32 x 8 = 256 Photon tasks are executing. Each is executing on one core. Each task also gets a 
partition of data to work on. As we saw previously, each Photon task will further use CPU-level data 
parallelism to execute the operation on its data partition, hence achieving the maximum possible speed. 

Compare this to the JVM-based task execution. Each task is still executed on a core, but the task 
executes the operation one row at a time. This does not make use of CPU-level data parallelism or 
instruction-level parallelism, which avoids idle CPU cycles.

Hence, Photon is fast. In Databricks SQL, Photon is combined with Delta Lake, which reduces the 
amount of data to be processed using techniques such as data skipping, caching, and indexing. This 
is where the data warehouse-beating performance of Databricks SQL comes from.
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With this, I hope you understand the concept behind Photon. Of course, there are more nuances to 
implementing a vectorized engine, but hopefully, this discussion has enabled you to think about how 
operators can be vectorized and how they make Photon so fast.

Hey, Why Don’t You Explain the Aggregate Operator?
I am going to leave that to you. Talking about the aggregate operator will open the rabbit hole 
of discussing hash aggregation algorithms and data structures. If you are so inclined, you can 
refer to the sources mentioned in the Further reading section at the end of this chapter.

Discussing the Photon product roadmap
Photon is a brand-new query engine. As we saw in the previous section, it must implement vectorized 
kernels for all operations that are possible in Apache Spark. At the time of writing, there are still a few 
operations that are not available with Photon: 

•	 Photon Scan and Write operators work with Delta and Parquet files only

•	 Window and Sort operations are not yet supported

•	 User-defined functions are not yet supported

•	 Spark Structured Streaming is not yet supported

Work is in progress on all of these and I recommend that you visit https://docs.databricks.
com/runtime/photon.html#limitations for the latest status.

That said, does this mean that you cannot use Window and Sort operations with Databricks SQL or 
that you cannot use your own user-defined functions in Databricks SQL? 

You can! Recall Figure 9.3. It shows that the tasks scheduled by Spark are executed by Photon or 
JVM-Core as applicable. If an operation is not supported by Photon yet, that operation is scheduled 
on JVM-Core. This is transparent to the user, but it can be seen on the Spark UI. Let’s quickly see this 
in action. Consider the following SQL query:

SELECT

  TailNum,

  flightNum,

  DepTime,

  DayOfMonth,

  RANK() OVER (

    PARTITION BY DayOfMonth,

    TailNum

    ORDER BY

https://docs.databricks.com/runtime/photon.html#limitations
https://docs.databricks.com/runtime/photon.html#limitations
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      DepTime ASC

  ) AS rank

FROM

  airlines.flights

where

  year = 2004

  and month = 12; 

This query is ranking the flights that have been made by a particular aircraft by the aircraft’s departure 
time. In the Query UI, you will see the distinction between the Photon executed stages and the 
non-Photon stages. The following snippets from the full UI should help you understand this:

Figure 9.9 – Photon stage
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The preceding diagram shows the directed acyclic graph (DAG) portion of the query that is executed 
by Photon. We can see that Photon is performing the Scanning and Filter operations. 

As per the query, the scanned and filtered rows must now be sorted and ranked. Both functions are 
not supported by Photon yet, so the DAG clearly shows them being executed with traditional Spark 
JVM-Cores:

Figure 9.10 – Non-Photon stages

The preceding diagram shows that Spark used non-Photon execution for the Sort and Window 
operations. This is marked using yellow for Photon stages and blue for non-Photon stages. Another 
telltale sign is the WholeStageCodegen tag in the non-Photon stages.
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Using Photon for Data Engineering
You might be thinking, if it is so fast, why not use Photon for data engineering and data science 
workloads as well? The answer is that you absolutely should! Just bear in mind that Photon is 
not free in data engineering and data science clusters. However, it is free in Databricks SQL.

This brings us to the end of our discussion on Photon. Hopefully, you have a better understanding of 
the core concept behind Photon and why it is so fast.

Summary
In this chapter, we dove headfirst into Photon Engine. We discussed the standard Apache Spark 
execution model and what has made Apache Spark so fast. Then, we discussed the prevalent query 
engine design models and why the vectorization model was chosen to replace the code generation 
design of Apache Spark. We learned about the core concept of vectorization and how it enables Photon 
to be as fast as it is. Finally, we discussed what Photon can and cannot do now and what its known 
feature roadmap is. 

Before we end this chapter, I will provide you with one final reminder – the aim of this chapter is only 
to give you a conceptual idea of how Photon works and why is it so fast. All the concepts have been 
simplified for better understanding. To deep dive into the nuances, follow the content in the section 
Further Reading.

With that, we have a complete understanding of the Databricks SQL toolset and its storage and 
computation technologies. In the next chapter, we will discuss the concept of the data warehouse and 
how to translate our understanding of various data warehousing components into the data lakehouse.

Further reading
I have used publicly available information sources for this chapter, without which this chapter would 
not have been possible. I wish to acknowledge them here:

•	 A talk by Alex Behm at the Data and AI Summit: https://databricks.com/session_
eu20/photon-technical-deep-dive-how-to-think-vectorized

•	 White paper on Photon submitted at SIGMOD-2022: https://cs.stanford.edu/
people/matei/papers/2022/sigmod_photon.pdf

•	 Master's thesis by Giorgi Kikolashvili at the University of Amsterdam – On the design of a 
JVM-based vectorized Spark query engine: https://homepages.cwi.nl/~boncz/
msc/2019-GiorgiKikolashvili.pdf

If you are interested in deep -diving further into Photon, then use these resources.

https://databricks.com/session_eu20/photon-technical-deep-dive-how-to-think-vectorized
https://databricks.com/session_eu20/photon-technical-deep-dive-how-to-think-vectorized
https://cs.stanford.edu/people/matei/papers/2022/sigmod_photon.pdf
https://cs.stanford.edu/people/matei/papers/2022/sigmod_photon.pdf
https://homepages.cwi.nl/~boncz/msc/2019-GiorgiKikolashvili.pdf
https://homepages.cwi.nl/~boncz/msc/2019-GiorgiKikolashvili.pdf
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Warehouse on the Lakehouse

Traditional data warehousing implementations are comprised of different components such as a 
staging area, operational data store, enterprise data warehouse, and data marts. Depending on the 
implementation of the system, these components may or may not be transparent to the user. One 
of the biggest mental leaps you must take when adopting the Lakehouse is how to translate these 
components to the Lakehouse. 

In this chapter, we will learn how to design and implement these components on the Lakehouse using 
Delta Lake features and ETL design patterns of the Lakehouse.

In this chapter, we will cover the following topics:

•	 Organizing data on the Lakehouse 

•	 Implementing data modeling techniques

The primary audience of this chapter is database administrators and data engineers who will 
be responsible for designing and implementing the data models corresponding to the different 
architectural components. 

Technical requirements
To make the most of this chapter, you must ensure the following:

•	 You know about data modeling techniques such as Kimball, Inmon, Data Vault, and others.

•	 You have read Chapter 8, The Delta Lake, and Chapter 9, The Photon Engine, of this book.
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Organizing data on the Lakehouse
In this section, we will discuss the architectural components of a traditional data warehousing 
infrastructure/system and how these components can be designed and implemented on the Lakehouse. 
This is particularly interesting because, as we learned in Chapter 8, The Delta Lake, there is a single data 
layer on the Lakehouse known as Delta Lake. It does not have purpose-built database-like components 
that can be used for data warehousing components such as the operational data store or data marts.

Let’s start with a brief overview of the components of a generic data warehousing system implementation.

Components of a warehouse system

The following diagram shows the various components of a generic data warehouse system:

Figure 10.1 – Data warehouse infrastructure components 
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The data that is captured from source data systems enters the data warehousing system at the staging 
area. The data in the staging area is free of any form of processing and is a faithful as-is replica of the 
data in the source system. 

The data in the staging area is continuously moved to the operational data store (ODS). Depending 
on the capability of the implementation, this process may or may not be real time in nature. Due to 
the continuous data influx, the ODS is a snapshot of data from source systems, optionally consolidated 
into a more sophisticated representation, and supports tactical business intelligence.

The data in the ODS is moved to the enterprise data warehouse (EDW) at a fixed schedule. The 
ODS can contain multiple changes to the same data entity that may have occurred throughout the 
day. When the ODS data is moved to the EDW, only the latest state of the data entity is moved. This 
is done through processes such as de-duplication, merging, consolidating, and cleaning records in 
the ODS. The data in this layer is still non-aggregated and at a line-item level.

It is also possible that the data in the staging area is directly processed into the EDW component. This 
scenario is likely when there is no visible need for an ODS for tactical business intelligence. 

The ODS and EDW systems are usually a third normal form representation of data, based on the 
design of the source systems and any domain-specific data model being used in the enterprise.

Finally, the data in the EDW is moved to the data marts. Data marts represent summarized and 
aggregated data, perhaps in a dimensional data model. These data marts can be department or project-
specific and are used for analysis and reporting from the consumption layer, which could be an array 
of business intelligence tools and suites. 

Depending on the implementation of the system, these components may have different names – they 
may even have more intermediate components. The components may use dedicated, specialized 
software and hardware stacks as well. What remains the same is the journey of the data as it transforms 
from a raw representation, to a refined and cleaned representation, to an enriched, aggregated, and 
summarized representation.

The Databricks Lakehouse allows you to build this journey for the data as well. Let’s learn how.

The Medallion architecture

In the Lakehouse architecture, the storage and compute layers are decoupled. That is, the Lakehouse 
has a single storage layer that stores data in Delta format and has a single compute layer represented 
by SQL Warehouses (see Chapter 6, The SQL Warehouses) running Photon Engine.

What this means is that on the Lakehouse, the staging, ODS, EDW, and data marts are simply collections 
(schemas) of Delta tables residing on cloud storage. Each collection conforms to the data quality 
characteristics and data modeling techniques appropriate to the component it represents. 
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From a Databricks lens, the journey of the data through these layers is called the Medallion architecture 
(https://databricks.com/glossary/medallion-architecture). In the Medallion 
architecture, the first data layer, also known as the bronze layer, is an as-is replica of the source data 
systems. The data that’s captured from the source data systems enters the Lakehouse at the bronze 
layer. In an ideal setting, the replica of the source data systems in the bronze layer will be Delta tables. 
However, the change data capture (CDC) system in your setting may not support writing data in 
Delta format, in which case you can have an intermediate step in the bronze layer that converts the 
data into Delta format. The following diagram should make this clearer:

Figure 10.2 – The bronze layer

Converting the data into Delta format in the bronze layer is especially useful if you intend to perform 
near real-time reporting on the data. Delta format, as we saw in Chapter 8, The Delta Lake, comes 
with many features that will ensure optimal reporting performance. Databricks provides a mechanism 
called the Autoloader (https://docs.databricks.com/ingestion/auto-loader/
index.html) that can automatically sense the arrival of new data in the original capture format 
table and process it into the bronze delta table. 

The bronze layer can be equated to the staging area component. This is because the bronze layer data 
model is a faithful as-is replica of the source systems where data continually flows in. This makes it a 
reliable archive of all data. Any reprocessing of data can use data in this layer instead of querying source 
systems. Using Delta tables at this layer will ensure optimal near real-time reporting performance.

The data in the bronze layer is de-duplicated, cleaned, consolidated, and merged into a third normal 
form such as a data model or a domain-specific logical model. This is the silver layer of the Medallion 
architecture, and it can be equated to a combination of the ODS and EDW components. The bronze 
layer data is continually streamed into the ODS representation. Next, all enterprise-level business 
rules and transformations are applied to the ODS representation to create the EDW representation. 
The EDW is the key enabler of self-service analytics, reporting, and advanced analytics.

https://databricks.com/glossary/medallion-architecture
https://docs.databricks.com/ingestion/auto-loader/index.html
https://docs.databricks.com/ingestion/auto-loader/index.html
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The following diagram should make this clearer:

Figure 10.3 – The silver layer

This flow is made possible by the Delta Lake format. Delta Lake tables can inherently behave as 
streaming data sources. Delta tables can be configured to continually emit what is called a change 
data feed, which essentially represents events such as inserts, updates, and deletes in the table. This 
means the following:

•	 The changes in the bronze/staging layer can be streamed into the silver/ODS representation, 
enabling the freshest snapshot of operational data for tactical business intelligence.

•	 The change in the silver/ODS layer can be streamed or batch-processed into the silver/EDW 
representation, as per business requirements.

We will see examples of change data feeds in action in Chapter 11, SQL Commands – Part 1. 

Note
This is a good time to mention the fact that the bronze, silver, and gold layers are design patterns 
that reflect the progressive refinement of the structure, quality, and performance of the dataset. 
They are not enforceable entities. I am only drawing analogies of data warehouse components 
to these layers for ease of understanding. You can call them whatever you like.

Finally, the silver/EDW representation is summarized, aggregated, and modeled into data marts or 
dimensional models based on individual project requirements. These tables are referred to as the 
gold layer in the Medallion architecture. This layer can be equated to the data marts component. The 
following diagram should make this clearer:

Figure 10.4 – The gold layer

As with the silver layer tables, the gold layer tables can be created in batch mode or streaming or 
near-real-time mode, as per the business requirements.
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Bringing this all together, we can superimpose the Medallion architecture on the generic data warehouse 
system architecture to show how the Lakehouse can be used to build a warehouse:

Figure 10.5 – The warehouse on the Lakehouse

With this, it should be clear how a warehouse can be architected on the Lakehouse and how your existing 
understanding of warehousing infrastructure can be ported over to the Lakehouse architecture. Once 
you have grasped this component mapping, all that remains is to define your data models as per the 
warehouse component or Medallion layer with standard DDL commands. The compute layer – that 
is, the SQL Warehouse running Photon Engine – will allow users to query all these components on 
demand, hence behaving as traditional warehouse systems.

In the next section, we will learn about the considerations when implementing the layers and how to 
use the performance-optimizing features of Delta Lake for an optimal setup. 

Implementing data modeling techniques
In this section, we will look at the layers of the Medallion architecture. We will discuss the design 
considerations for the layers, possible data modeling techniques to employ, and how to apply Delta 
Lake features.
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Consider the airlines dataset example that we have been working on throughout this book. Let’s 
extend that example here to visualize how the various layers can be brought to life on the Lakehouse.

The bronze layer

As we discussed in the previous section, the bronze layer is an as-is replica of source systems and 
hence the data models will follow that of source systems. Also, the bronze layer tables should ideally 
be in Delta format for optimal near-real-time query experience and data versioning.

A typical airlines system will contain source systems for functions such as booking, ticketing, check-in, 
flights, loyalty, and more. Each source system will contain a host of tables.

Consider the following diagram:

Figure 10.6 – The bronze layer of the airlines dataset

This is a replica of the source systems in the bronze layer. For example, the booking system will contain 
tables for agents, operating and marketing flights, class, frequent fliers, seat details, special requests, 
group bookings, and more. Similarly, the check-in system will contain tables for carriers, check-in 
channels, agents, segments, boarding status, baggage status, and more.

The silver layer

The silver layer is very active since it is receiving and processing data constantly. This means that speed 
and agility in ingesting data are prime requirements. While speed can be considered a function of 
the processing engine and the computing power, a case can also be made that the data model that the 
data is being written into will also affect the speed of ingestion. 

From this perspective, a write-performant data modeling technique such as Data Vault (https://
en.wikipedia.org/wiki/Data_vault_modeling) is a good candidate for the tables in 
the silver layer. Let’s see why.

https://en.wikipedia.org/wiki/Data_vault_modeling
https://en.wikipedia.org/wiki/Data_vault_modeling
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Data Vault defines three key entities:

•	 Hubs: These represent core business entities. They will have a natural key that identifies them.

•	 Links: These are entities that represent the relationship between two or more hubs. They just 
contain the join keys to the hubs.

•	 Satellites: These are entities that represent additional attributes of hubs or links. 

The clean separation of business entities from relationship to entities means that ETL processes will 
be simple as there won’t be any complex preprocessing before records are written. Also, new entities 
can easily be added without the need to touch existing entities or processes. This means it delivers on 
both the speed and agility requirements of the silver layer.

Data Vaults require a staging zone, which is a natural fit for the bronze layer of the Medallion architecture. 
Furthermore, Data Vaults have a raw vault. The raw vault receives the staging zone data in the hub, 
link, and satellite entities. The business rules are then applied to the raw data vault to generate the 
business vault. When combined, the raw and business vaults make up the silver layer. 

Let’s return to our airlines example. Consider the following diagram:

Figure 10.7 – The silver layer of the airlines dataset

In this entity-relationship (ER) diagram, we can see how a sample silver layer can be built. There is 
a raw vault that is built from data in our bronze layer. 
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When building the raw vault from the data in the bronze layer, we can build it in scheduled batch 
mode or a streaming fashion. This is one of the defining reasons why the Lakehouse is an excellent 
platform to build your warehouse on – the ability to process ETL data as fast as possible and make 
it consumable.

Here, we can see two hubs – Customer and Flight. They are connected by a link – Ticket. The 
hubs and links are also augmented by satellite tables, which contain descriptors for the hubs and 
links, respectively.

There is also a business vault that has been built by applying business rules for data quality and 
other transformations.

Note
This is not to say that Data Vault is the only viable data modeling technique for the silver layer. 
Consider your requirements to make an informed decision on the data modeling technique to 
use. A case can be made that if we have a mutable file format such as Delta Lake, do we need 
the Data Vault pattern?

Finally, ensure that the implementation makes the most of Delta Lake. Here are some basic guidelines:

•	 Z-Order the join keys of the hubs, links, and satellites.

•	 Resist the urge for fine-grained partitions for naturally small tables such as satellite tables.

•	 If there are current-flag columns for changing dimensions, consider adding Bloom filter 
indexes to them. Keep in mind that Bloom filters can slow down the write processes, so use 
them with caution.

The gold layer

The gold layer needs to be read optimized to be able to deliver the best possible experience to the 
BI practitioners. This translates to a more denormalized data organization that reduces the need for 
expensive join operations. Hence, dimensional modeling techniques such as the Star schema (https://
en.wikipedia.org/wiki/Star_schema) are the best candidates for tables in this layer. 

The Star schema is a very well-known technique. Since Star schemas are denormalized, the requirement 
to perform joins (which are computationally expensive) is reduced. It also lends itself to faster 
aggregations. That is – the design of the Star schema itself lends to great performance, regardless of 
the computing platform. 

https://en.wikipedia.org/wiki/Star_schema
https://en.wikipedia.org/wiki/Star_schema
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Let’s return to our airlines example. Consider the following diagram:

Figure 10.8 – The gold layer of the airlines dataset

In this ER diagram, we can see how a gold layer can be built. There is a dimensional model for flight 
bookings that is derived from the business vault of the silver layer. There are also aggregations built 
on top of this dimensional model. We can also have some derivations such as seasonal trend reports 
and customer lifetime value built from the dimensional model.

With Databricks SQL, we can use certain techniques to further improve the performance of queries 
on the gold layer. Here are some basic guidelines:

•	 Create Z-Orders on your fact tables. Limit the Z-Ordering columns to the top four columns 
that are used in query predicates. In practice, this might involve limiting the foreign keys to 
the largest dimension tables.

•	 Create Z-Orders on your dimension key fields. In practice, this might be a surrogate key. Limit 
the Z-Ordering columns to the top four columns that are used in query predicates.

•	 Use the materialized views capability to create gold layer tables that can reflect near real 
time updates

•	 Run periodic ANALYZE processes on the tables involved in complex joins. The ANALYZE 
command will be discussed in detail in Chapter 12, SQL Commands – Part 2.
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This brings us to the end of our discussion on implementing a data warehouse architecture on 
the Lakehouse. 

Note
Please bear in mind that the discussion of Data Vault or dimensional data modeling techniques 
in different layers is not prescriptive. Consider your requirements and choose the data modeling 
technique that suits them. 

Hopefully, by now, you have a firm understanding of how you can implement warehousing components, 
the necessary architecture, and the processes with ease on the Lakehouse.

Summary
In this chapter, we learned about the general components of a data warehousing system and how those 
components can be implemented in the Databricks Lakehouse with the Medallion architecture. We also 
learned about the best practices for implementing popular data modeling techniques on the Lakehouse.

This brings us to the end of Part 2 of this book, which focused on the core technology enablers of 
Databricks SQL. In the next chapter, which also marks the beginning of Part 3 of this book, we will 
discuss the SQL commands that are available in Databricks SQL, starting with commands that allow 
us to manipulate and work with our data.





Part 3:  
Databricks SQL  

Commands

This part focuses on the SQL commands available in Databricks SQL. It introduces Databricks 
SQL-specific commands that enable advanced usage patterns in a data lakehouse. This part is not 
intended to be a complete SQL reference.

This part comprises the following chapters:

•	 Chapter 11, SQL Commands – Part 1

•	 Chapter 12, SQL Commands – Part 2
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Databricks SQL supports ANSI SQL and all standard SQL commands are available and applicable. It 
also exposes additional commands for Lakehouse-specific capabilities. In this chapter, we will focus 
on these Lakehouse-specific SQL commands and learn their practical usage with scenario-based 
examples. We will start by exploring the commands for the data definition language (DDL). Then, 
we will explore commands for the data manipulation language. Finally, we will learn about functions 
that handle semi-structured data and unlock advanced data manipulation.

In this chapter, we will cover the following topics:

•	 Working with data definition language commands

•	 Working with data manipulation language commands

•	 Working with the built-in functions in Databricks SQL

Note
This chapter is not intended as a complete SQL command reference. We will cover the practical 
usage of SQL commands that are specific to Databricks SQL and Lakehouse. The rest of the 
standard SQL commands can be studied at https://docs.databricks.com/sql/
language-manual/.

Technical requirements
To complete this chapter, you must ensure the following:

•	 Familiarity or experience with SQL and writing SQL queries

•	 You have reviewed the official general reference (https://docs.databricks.com/
sql/language-manual/#general-reference)

https://docs.databricks.com/sql/language-manual/
https://docs.databricks.com/sql/language-manual/
https://docs.databricks.com/sql/language-manual/#general-reference
https://docs.databricks.com/sql/language-manual/#general-reference
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Working with data definition language commands
In this section, we will learn about data definition commands that are specific to Databricks SQL and 
Lakehouse. Specifically, we will focus on commands that allow administrators to manage data catalogs, 
cloud storage locations, and Delta Sharing.

Databricks SQL supports the common data definition commands such as the following:

•	 CREATE/ALTER/DROP database/schema

•	 CREATE/ALTER/DROP/TRUNCATE table

•	 CREATE/ALTER/DROP view

These are standard commands in the database and data warehouse world. They have the same semantics 
in Databricks SQL and do not require detailed unpacking. However, as we learned in Chapter 3, The 
Data Catalog, Databricks SQL encapsulates database objects in a new type of object called the catalog. 
Let’s learn how to create catalog objects and work with them.

DDL for catalogs

Databricks SQL supports a three-level namespace, with the catalog being the highest-level namespace. 
As a reminder, a catalog is a securable object that is used to organize your data assets. Also, creating 
new catalogs is only supported if you are using the Unity Catalog.

Creating catalogs

A catalog can be created with the following command:

CREATE CATALOG [ IF NOT EXISTS ] catalog_name [ COMMENT comment 
]

For example, we can create a catalog called airlines_dev_catalog as follows:

CREATE CATALOG airlines_dev_catalog

This command only has two customizations:

•	 IF NOT EXISTS: This is a common clause and specifies that if the catalog exists, do not 
try to create the catalog. Applying this clause ensures that the command exits gracefully if the 
catalog already exists instead of throwing an error. 

•	 COMMENT: This is a clause that specifies a comment for the catalog. The comment is free-form 
text and can be used to supply important contextual metadata about the catalog.
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Altering catalogs

An existing catalog can be altered with the following command:

ALTER CATALOG [ catalog_name ] OWNER TO principal

In contrast to other data objects such as tables and views, the only alteration that is possible on 
catalogs is the change of ownership. principal represents a user, user group, or service principal, 
as discussed in Chapter 4, The Security Model.

Dropping catalogs

Finally, an existing catalog can be deleted or dropped using the following command:

DROP CATALOG [ IF EXISTS ] catalog_name [ RESTRICT | CASCADE ]

This command has two customizations:

•	 CASCADE: Like dropping or deleting databases, dropping a catalog is not allowed if the catalog 
is not empty. If you wish to override this behavior, you can specify the clause. The RESTRICT 
clause is the opposite of the CASCADE clause and will cause the command to error out if there 
are databases in the catalog. 

•	 IF EXISTS: If you wish for the command to exit gracefully if the catalog does not exist, 
specify the IF EXISTS clause.

Finally, bear in mind that a catalog can only be created, altered, and dropped by metastore administrators 
(https://docs.databricks.com/data-governance/unity-catalog/key-concepts.
html).

DDL for external locations

In Chapter 4, The Security Model, we learned how Unity Catalog allows you to manage cloud storage 
locations. It does so by exposing two new objects:

•	 External Location: A data object that represents a cloud storage location

•	 Security Credential: A data object that represents the security credential to access the 
storage location

This is a very powerful capability as it allows database administrators to program access to cloud storage 
locations with universal SQL commands and semantics instead of cloud-specific IAM constructs. For 
the end users, it means easy, self-service access to data files available on the cloud storage if that data 
has not been cataloged as a relational table.

https://docs.databricks.com/data-governance/unity-catalog/key-concepts.html
https://docs.databricks.com/data-governance/unity-catalog/key-concepts.html
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Note
The power of the external location construct is most applicable for data engineers and data 
scientists who require direct access to certain locations. An example would be to access non-
relational data that cannot be cataloged as a relational table. Databricks recommends giving 
users access to the location object rather than the security credential object. 

Now, let’s learn how to create the external location objects and work with them.

Creating external locations

An external location can be created with the following command:

CREATE EXTERNAL LOCATION [IF NOT EXISTS] location_name URL url 
WITH STORAGE CREDENTIAL credential_name [COMMENT comment]

Before we talk about the configurations of this command, we must talk about the other data object 
referred to in the command syntax: STORAGE CREDENTIAL. 

To create an external location, we must specify the cloud credentials that can be used to access this 
location. In AWS, this will be an IAM role, while in Azure, this will be an Azure Service Principal. 

At the time of writing, the storage credential cannot be created with SQL. The DBA must run a 
Databricks command-line utility (https://docs.databricks.com/dev-tools/cli/
index.html) to create a storage credential; for example:

databricks unity-catalog create-storage-credential --json 
'{ "name ":  "airlines_cred ",  "azure_service_principal ": 
{ "directory_id ":  "dir-id ",  "application_id ":  "app-id 
",  "client_secret ":  "secret "}}'

Here, the Azure service principal will hold the necessary privileges that allow access to the required 
location on Azure Data Lake Storage.

Note
If you are using Databricks on AWS, you will use S3 locations and IAM policies. Similarly, with 
Databricks on GCP, you will use GCS buckets and service accounts.

Now that the storage credential has been sorted, let’s look at the CREATE command concerning 
the example we introduced in Chapter 4, The Security Model, in the Going beyond Read Access 
– part 1 section:

•	 LOCATION: This is the identifier or name that you must give to the external location object; 
for example, airlines_loc.

https://docs.databricks.com/dev-tools/cli/index.html
https://docs.databricks.com/dev-tools/cli/index.html
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•	 URL: This is the absolute path of the cloud storage location that the external location object 
refers to; for example, abfss://dbsql/airlines/planes.

•	 STORAGE CREDENTIAL: This is the identifier or name of the storage credential that contains 
IAM policies to allow access to our S3 path; for example, airlines_cred.

Bringing this all together, an example invocation of the command would be as follows:

CREATE EXTERNAL LOCATION airlines_loc URL abfss://dbsql/
airlines' WITH (STORAGE CREDENTIAL airlines_cred);

Altering external locations

An external location can be altered by changing the following fields:

•	 URL

•	 Storage credential

•	 Owner

•	 Name

The ALTER command syntax is as follows:

ALTER EXTERNAL LOCATION location_name

   { RENAME TO to_location_name |

     SET URL url [FORCE] |

     SET STORAGE CREDENTIAL credential_name |

     OWNER TO principal } 

You can alter one or more fields in one command. The two options of note are as follows:

•	 Notice how the name change requires the use of the RENAME TO clause instead of the SET 
clause, which is typical to ALTER commands.

•	 Note the FORCE option when changing the URL. By default, if the external location is already in 
use, then altering the URL is not allowed. The FORCE option is used to override this behavior. 
At the time of writing, there is no way to enumerate where the external location is in use.

Altering storage credentials

An existing storage credential can be altered by changing the following:

•	 Name

•	 Owner
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The ALTER command syntax is as follows:

ALTER STORAGE CREDENTAL credential_name

  { RENAME TO to_credential_name |

    OWNER TO principal }

You can alter one or both configurable fields in one command – that is, the name of the credential or 
the owner of the credential.

Dropping external locations

An external location can be dropped with the following command:

DROP EXTERNAL LOCATION [ IF EXISTS ] location_name [ FORCE ]

By default, if the external location is in use, then dropping it is not allowed. Use the FORCE option 
to override this behavior.

Dropping storage credentials

A storage credential can be dropped with the following command:

DROP STORAGE CREDENTIAL [ IF EXISTS ] credential_name [ FORCE ]

By default, if the storage credential is in use by one or more external locations, then dropping it is not 
allowed. Use the FORCE option to override this behavior.

DDL for Delta Sharing

One of the key capabilities introduced with Unity Catalog in Databricks is a feature called Delta 
Sharing (https://databricks.com/product/delta-sharing). 

Simply put, Delta Sharing is a protocol for sharing your data assets with other organizations. Delta 
Sharing stands apart from other sharing technologies because of the following reasons:

•	 It is an open protocol, which means the recipients of the shared data can use any computing 
platform. It does not have to be another Databricks installation. 

•	 It is a real-time share. This means that no copies of the data are made for sharing.

Databricks with Unity Catalog provides enterprise-grade security controls on Delta Sharing. The 
following diagram should clarify this:

https://databricks.com/product/delta-sharing
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Figure 11.1 – Sharing data with Delta Sharing

As you can see, with Delta Sharing, the Data Provider creates a Share data object, which is a container 
for data assets that need to be shared. The Data Provider then creates a Recipient of this Share. The 
Recipient is the organization or individual who has requested this data. Finally, the Data Provider 
grants privileges on the Share to the Recipient. 

Databricks does provide a UI to support this, which makes it extremely easy to configure data sharing 
between Databricks accounts. That said, let’s look at the commands concerning the flights table 
in the airlines database we created in Chapter 4, The Security Model.

Bear in mind that shares and recipients can only be created, altered, and dropped by metastore 
administrators.

Creating data-sharing objects

As we discussed in the Delta Sharing flow, we must start by creating a data share. We’ll learn how to 
create a share and a recipient in the following sub-sections.

Create a share

The CREATE command for SHARE has the following syntax:

CREATE SHARE [ IF NOT EXISTS ] share_name [ COMMENT comment ] 

The following is an example of its usage:

CREATE SHARE IF NOT EXISTS airlines_share



SQL Commands – Part 1260

Executing this statement will create a data sharing object called airlines_share that will hold 
all the data we want to share with recipients. Note that this data-sharing object is not shared with the 
intended recipients yet! 

Next, we must create a recipient of the share.

Create a recipient

The CREATE command for RECIPIENT has the following syntax:

CREATE RECPIENT [ IF NOT EXISTS ] recipient_name [ COMMENT 
comment ]

The following is an example of its usage:

CREATE RECIPIENT IF NOT EXISTS airlines_recipient

The thing to note here is the output. The output will contain an activation_link field that 
must be securely shared with the recipient. The recipient must follow the activation link to activate 
the sharing. Once activated, they can register the data assets in the share into their data catalog or 
use them directly. 

Now, we can grant the select privilege to the recipient with the following command:

GRANT SELECT ON SHARE airlines_share TO RECIPIENT airlines_
recipient;

Executing this command will ensure that the intended recipient, airlines_recipient, has read 
privileges on the data shared in the airlines_share data sharing object. Note that without this 
bit of security programming, the recipient will not be able to access the shared data!

Altering data-sharing objects

The next step in the process is to add data assets to the SHARE object so that the recipient can access 
them. This can be done via the ALTER command, which has the following syntax:

ALTER share_name { alter_table | REMOVE TABLE clause }

The command has two possible operations, as discussed in the following sub-sections.

ADD TABLE

In this operation, a table or partitions of a table are added to the data share and hence made available 
to the recipient.
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Here is an example:

ALTER SHARE airlines_share ADD TABLE airlines.flights

Our flights table does not have any partitions. But if it had partitions – for example, on the Year 
and Month columns – we could specify specific partitions to be shared. Partitions must be specified 
as a comma-separated list of key=value pairs; for example:

ALTER SHARE airlines_share ADD TABLE airlines.flights 
PARTITION(year=2008, month=10)

Finally, we can specify an alias for the shared table with the AS clause, like so:

ALTER SHARE airlines_share ADD TABLE airlines.flights AS 
shared_data.flights_shared

REMOVE TABLE

In this operation, the share is altered by removing a previously shared table object. This is not to be 
confused with dropping a share. The following is an example:

ALTER SHARE airlines_share REMOVE TABLE airlines.flights;

Executing this statement will remove the airlines.flights table from the airlines_share 
data sharing object. The recipients of this share will not have access to the flights table anymore. 
Any other tables that are a part of the share will continue to be accessible by the recipients of the share.

Dropping data-sharing objects

The DROP command for dropping a SHARE object is as follows:

DROP SHARE [ IF EXISTS ] share_name

The following is an example of its usage:

DROP SHARE IF EXISTS airlines_share

Simple.

The DROP command for dropping a RECIPIENT object is as follows:

DROP RECIPIENT [ IF EXISTS ] recipient_name

The following is an example of its usage:

DROP RECIPIENT IF EXISTS airlines_recipient
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Executing this command will remove the airlines_recipient object from the data sharing 
system. The recipient will no longer have access to any data that was previously shared with them.

Working with data manipulation language commands
Databricks SQL supports the following common data manipulation commands:

•	 INSERT INTO

•	 UPDATE

•	 DELETE FROM

These are standard commands in the database and data warehouse world and do not require 
detailed unpacking.

Instead, we will learn about certain SQL commands in Databricks SQL that accommodate the data 
processing patterns specific to Lakehouse and Databricks SQL. Let’s start with the very versatile 
MERGE INTO command.

MERGE INTO

MERGE INTO is technically not a Databricks-specific command, but it is an important command as 
it allows you to process Slowly Changing Dimensions (SCDs) and the Change Data Capture (CDC), 
as well as perform data deduplication. Let’s learn about this command concerning these processes. 
MERGE INTO is an advanced command which will appeal more to data engineers than data analysts. 
That said, if you are responsible for engineering data sets, you will find this section useful.

Data deduplication

Duplicate data in tables is undesirable. Duplicating data at a big data scale is even more undesirable 
as it can have disastrous performance effects. Consider one of the most commonly ingested forms 
of data in data lakes: logs generated from applications. However, logs are prone to having duplicates. 
Hence, our data ingestion process must cater to deduplicating data. Let’s look at an example with the 
following architecture:

Figure 11.2 – Data deduplication architecture
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In this architecture, our source application is generating logs that are prone to duplication. So, we 
receive all the logs in a staging area – the logs_staging table. Finally, we use the MERGE INTO 
command to write only the logs that are not duplicated into the logs table. We call a record a duplicate 
if the value of the log_id field is already present in the table.

Now, let’s work through an example of data deduplication:

1.	 Initialize the logs table, as follows:

insert into logs values(1, 1, 'l1');

insert into logs values(2, 2, 'l2');

insert into logs values(3, 3, 'l3');

2.	 Simulate a new log arrival by initializing the logs_staging table, as follows:

insert into logs_staging values(2, 2, 'l2_dup');

insert into logs_staging values(4, 4, 'l4');

insert into logs_staging values(5, 5, 'l5');

Here, we have a duplicate entry for log_id = 2.

3.	 De-duplicate the data with a MERGE INTO statement, as follows:

MERGE INTO logs

USING logs_staging

ON logs.log_id = logs_staging.log_id

WHEN NOT MATCHED THEN INSERT *

Here, the ON clause specifies the merge condition. In our example, we are specifying the merge behavior 
if log_id in a staging table record matches a record in the destination table. 

The WHEN NOT MATCHED clause corresponds to the case when log_id of a staging table record 
does not match any record in the destination table. Since our task requires that we forward log records 
from staging to the destination if they are not already present in the destination, we use the WHEN 
NOT MATCHED clause instead of the WHEN MATCHED clause. As part of the clause, we instruct the 
command to insert the records into the destination table. 

Now, this is only a toy example, and it can be expanded further on many lines. For example, how do 
we ensure that only new records in the staging table are processed instead of the entire staging table 
every time? You can take it up as an exercise to try that out or read on!
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Change Data Capture and Slowly Changing Dimensions

Another common operation in data lakes is capturing change data from source systems – for example, 
capturing a change event that represents the creation of a new user entry in a source database, a change 
event that represents a user updating their email address, or a change event that represents the user 
asking to be forgotten (deleted) from the system. Let’s look at an example with the following architecture:

Figure 11.3 – Change Data Capture architecture

In this architecture, the source application is receiving new user sign-ups and modifications for existing 
user records. We assume there’s a change event capture mechanism in the source system that emits 
the events as they happen. The events capture the operation type – Insert/Update/Delete – as 
well as the operation timestamp.

Now, let’s work through an example of change capture:

1.	 Initialize the user_details table, as follows:

insert into user_details values(1,'User 1','user1@org.
com', 'Z1', 1);

insert into user_details values(2,'User 2','user2@org.
com', 'Z2', 2);

insert into user_details values(3,'User 3','user3@org.
com', 'Z3', 3);

insert into user_details values(4,'User 4','user4@org.
com', 'Z4', 4);

insert into user_details values(5,'User 5','user5@org.
com', 'Z5', 5);

2.	 Simulate new change event arrivals by initializing the user_details_cdc table, as follows:

insert into user_details_cdc values(1,'User 1','user1@
org.com', 'Z1-new-1', 'UPDATE', 6);

insert into user_details_cdc values(1,'User 1','user1-
new@org.com', 'Z1-new-1', 'UPDATE', 7);

insert into user_details_cdc values(3,'User 3','user3@
org.com', 'Z3', 'DELETE', 7);

insert into user_details_cdc values(6,'User 6','user6@
org.com', 'Z6', 'INSERT', 10);
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insert into user_details_cdc values(7,'User 7','user7@
org.com', 'Z7', 'INSERT', 11);

Here, we have two updates for User 1. The first update changes their zip code, while the 
second update changes their email address. Hence, our change data capture must get the latest 
update to User 1. We also have an event for deleting the records of User 3. Finally, we have 
two new users in the system – User 6 and User 7.

3.	 Capture the change data with a MERGE INTO statement, as follows:

MERGE INTO user_details target USING (

  select id, name, email, zip, operation, rec_update_time

  from (SELECT *, ROW_NUMBER() OVER (PARTITION BY id 
ORDER BY rec_update_time DESC) as rank from user_details_
cdc)

  where rank = 1

) as source 

ON source.id = target.id

WHEN MATCHED AND source.operation = 'DELETE' THEN DELETE

WHEN MATCHED AND source.operation = 'UPDATE' THEN UPDATE 
SET *

WHEN NOT MATCHED AND source.operation = 'INSERT' THEN 
INSERT *

As with the previous example, the ON clause specifies the merge behavior based on whether the ID 
matches the source table and the target table. The WHEN MATCHED clause handles the Update and 
Delete cases as any update or delete will require the existence of the ID in the target table. The 
WHEN NOT MATCHED clause handles the Insert cases. This is because if the ID matches, it is an 
update to an existing record, not a new record.

The case of slowly changing dimensions can be handled similarly. If we consider the preceding example, 
if we were to implement Slowly Changing Dimension Type 2, then we must have three records 
for User 1 in our user_details table as we have the baseline record and then two updates to 
the record. Out of the three, only the third and latest record should be marked as current. This can 
be achieved by making small changes to the MERGE INTO statement. I will leave it up to you to 
complete this exercise. If you require hints, see https://docs.databricks.com/delta/
delta-update.html#slowly-changing-data-scd-type-2-operation-into-
delta-tables. Slowly changing dimensions are supported natively by the Delta Live Tables (DLT) 
product of Databricks. DLT is a mechanism to define data pipelines declaratively with SQL or python.

https://docs.databricks.com/delta/delta-update.html#slowly-changing-data-scd-type-2-operation-into-delta-tables
https://docs.databricks.com/delta/delta-update.html#slowly-changing-data-scd-type-2-operation-into-delta-tables
https://docs.databricks.com/delta/delta-update.html#slowly-changing-data-scd-type-2-operation-into-delta-tables
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Incremental data processing with a Change Data Feed

One last use case of the MERGE INTO command is incremental data processing. Let’s continue with 
the user details example from the previous section. The change capture from the source system to the 
data lakehouse was well implemented. 

However, it’s likely that the user_details table is also used to feed other tables on Lakehouse – for 
example, a marketing mailing list. Consider the case of updating the ZIP code and email address of 
User 1 and removing User 3 from the system. This must be captured in the user_details 
table and reflected in the mailing_list table. One way to achieve this is to have a periodic job 
that goes through each record in the mailing_list table and consults the user_details table 
if the email address and ZIP code are outdated and updates the record accordingly. 

There are many flaws with this design. It is slow and inefficient, and it doesn't work in real time.

To this end, Delta Tables emit what is called a Change Data Feed or CDF (https://docs.
databricks.com/delta/delta-change-data-feed.html). The CDF records all the 
insert, update, and delete events happening on a Delta table. We can use this change feed to identify 
which user records have been changed and what has changed in those records. This will enable us to 
propagate our changes incrementally. Let’s apply this to our mailing list example, which has the 
following architecture:

Figure 11.4 – Incremental data processing

In this architecture, user_details_cdc receives change events from the source application. These 
change events are propagated to the user_details table with the MERGE INTO command. Finally, 
we use the CDF emitted by the user_details table to incrementally update the mailing_list 
table. 

We will enable CDF on the user_details table by attaching the following clause to the CREATE 
statement of the user_details table: 

TBLPROPERTIES (delta.enableChangeDataFeed = true);

https://docs.databricks.com/delta/delta-change-data-feed.html
https://docs.databricks.com/delta/delta-change-data-feed.html
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This will ensure that the user_details table emits the CDF – that is, the updates to this table after 
every MERGE operation from the user_details_cdc table. We will use this feed to do the following:

•	 Insert new mailing targets if new user records have been inserted.

•	 Update existing mailing targets if user records have been modified.

•	 Delete mailing targets if the user records have been deleted from the system.

Let’s simulate this with an example. Follow the same initialization and change the data simulation 
steps from the previous example:

1.	 Perform the initial data load.

2.	 Perform the CDC simulation.

3.	 Process the incremental data with the following MERGE INTO statement:

MERGE INTO mailing_list

USING (

  SELECT * 

  FROM (SELECT *, ROW_NUMBER() OVER (PARTITION BY id ORDER BY 
rec_update_time, _commit_version DESC) as rank FROM table_
changes('user_details',<start_timestamp>,<end_timestamp>))

  WHERE rank = 1

) AS user_cdf

ON mailing_list.id = user_cdf.id

WHEN MATCHED AND user_cdf._change_type = 'update_postimage' 
THEN UPDATE SET *

WHEN MATCHED AND user_cdf._change_type = 'delete' THEN DELETE

WHEN NOT MATCHED THEN INSERT (id, name, email, zip) VALUES (id, 
name, email, zip);

To understand how this MERGE INTO command functions, we must understand the use of the 
table_changes() function, which returns the CDF between two timestamps or commit versions. 

Let’s query table_changes after the CDC simulation, as follows:

SELECT * FROM table_changes('user_details', 0,10)
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We will see the following output:

Figure 11.5 – Change Data Feed

If we correlate this with the MERGE INTO query, we will see that the CDF provides a _change_type 
field that specifies the event type as an Update, Insert, or Delete. We can also use _commit_
version, _commit_timestamp, or any user-defined field to calculate the most recent change 
event for any user. As we saw in the previous section, we can use the event type in the MERGE INTO 
statement to process the changes. You will notice that the CDF does not include rows for records that 
did not change. This is the key to efficient incremental processing.

COPY INTO

The COPY INTO command (https://docs.databricks.com/sql/language-manual/
delta-copy-into.html) is best understood as a bulk load command for Delta tables. There are 
a lot of cases where organizations receive data files and they must be loaded into user-facing tables 
for further querying. There can be other such cases as well. 

The COPY INTO command can pick up such files and then insert the records into the target table.

For example, our airlines dataset contains data up to the year 2008. Now, we receive the new 
data from the years 2008 to 2020 as a collection of CSV files. Here, we can run a command similar 
to the following:

COPY INTO airlines.flights

FROM (SELECT * FROM 'abfss://airlines-container@
airlinesstorageaccount.dfs.core.windows.net/flights_2008_2020')

FILEFORMAT = CSV

PATTERN = 'file_[0-9].csv'

FORMAT_OPTIONS('header' = 'true')

The syntax in the preceding code block is straightforward:

•	 COPY INTO requires the target table or target cloud storage location. In this example, we use 
the table name.

•	 The FROM keyword specifies the subquery that reads the data files that need to be copied into 
the target table. Here, we are running a blanket SELECT statement over the files present in the 

https://docs.databricks.com/sql/language-manual/delta-copy-into.html
https://docs.databricks.com/sql/language-manual/delta-copy-into.html
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ADLS location. As you may recall, this is the storage container we created in Chapter 4, The 
Security Model, in the The internals of cloud storage access section.

•	 The subquery must also supply options to FILEFORMAT, such as the file glob PATTERN to 
match the correct files and other FORMAT_OPTIONS such as the header and delimiter.

There is, however, the important consideration of access to the cloud storage location. If you are using 
Unity Catalog, you have the external location mechanism at your disposal to control access to the 
cloud location. You must have the WRITE FILES privilege on the external location. See the Data 
definition commands section for more details. 

If you are using Hive Metastore, you can specify your credentials inline in the command, like so:

COPY INTO airlines.flights

FROM (SELECT * FROM 'abfss://airlines-container@
airlinesstorageaccount.dfs.core.windows.net/flights_2008_2020') 
(WITH CREDENTIAL (AZURE_SAS_TOKEN = '…'))

FILEFORMAT = CSV

PATTERN = 'file_[0-9].csv'

FORMAT_OPTIONS('header' = 'true')

In this command, we are copying the new flights data, which was received in the flights_2008_2020 
ADLS location, into our existing flights table. We are also specifying our credentials to be able 
to work with the ADLS location using the Azure SAS token specified in the WITH CREDENTIAL 
clause. Upon execution, our flights table will reflect this new data. 

Working with the inbuilt functions in Databricks SQL
Databricks SQL has a very comprehensive list of inbuilt functions (https://docs.databricks.
com/sql/language-manual/sql-ref-functions-builtin.html) to cater to a variety 
of processing needs. If you are coming from a database or data warehouse world, you might not find 
an exact 1:1 mapping for certain functions in their names. However, by and large, you should be able 
to find the function for your needs. Covering all the functions is not possible in a book, nor is it of 
any additional value. Instead, I am going to talk about two standout powerful function families.

JSON 

JavaScript Object Notation (JSON) is a versatile semi-structured file format that is often found in 
the data lake world. However, this versatility often gets abused in the form of very intricate schemas 
and arbitrary levels of data nesting, and, at times, arbitrary schemas as well. This makes relation 
processing of JSONs difficult at times.

Databricks SQL provides a way to query this semi-structured data. This is a very powerful feature that 
often gets overlooked, which is why I am including a discussion here. 

https://docs.databricks.com/sql/language-manual/sql-ref-functions-builtin.html
https://docs.databricks.com/sql/language-manual/sql-ref-functions-builtin.html
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Returning to our tradition of finding new datasets to work with, this time, we will use the Our World in 
Data dataset on the COVID-19 pandemic (https://ourworldindata.org/coronavirus). 
It provides data about the pandemic in JSON format. 

Attribution
This data has been collected, aggregated, and documented by Cameron Appel, Diana Beltekian, 
Daniel Gavrilov, Charlie Giattino, Joe Hasell, Bobbie Macdonald, Edouard Mathieu, Esteban 
Ortiz-Ospina, Hannah Ritchie, Lucas Rodés-Guirao, and Max Roser. Please attribute them 
as per https://github.com/owid/covid-19-data/tree/master/public/
data#license if you are using this dataset.

You can download the dataset from https://github.com/owid/covid-19-data/
tree/master/public/data and upload it to a cloud storage location of your choice to 
follow the discussion. 

Note
Ensure that your SQL Warehouse has access to the cloud storage location. If you are using 
Unity Catalog, ensure that you have READ FILE permissions on the external location object 
referring to this cloud storage location.

For this discussion, we are going to suspend our knowledge of the JSON data source capability in 
Databricks, where we can just run the following line of code and Databricks SQL will infer the full 
schema of the JSON dataset:

select * from json.`abfss://covid19@owidcovid.dfs.core.windows.
net/owid-covid-data.json` 

Instead, we will read the JSON dataset as a text file and use the JSON path expressions to query and 
discover the data. Let’s start. 

Extracting values using identifiers

The dataset is organized by ISO codes of countries – that is, each country will have a nested JSON 
containing the data for that country. I am interested in the data for my home country, India, which bears 
the ISO code IND. So, I can extract the information for India by executing the following command:

select value:IND from text.` abfss://covid19@owidcovid.dfs.
core.windows.net/owid-covid-data.json`

In this query, value is the default name of the column into which all the JSON data is read as text. 
By using the : delimiter, we are extracting the top-level field, which contains the IND key.

https://ourworldindata.org/coronavirus
https://github.com/owid/covid-19-data/tree/master/public/data#license
https://github.com/owid/covid-19-data/tree/master/public/data#license
https://github.com/owid/covid-19-data/tree/master/public/data
https://github.com/owid/covid-19-data/tree/master/public/data
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Since the top-level field is a field and not an array, we can also use value:['IND'] to the same effect.

Upon executing this query, we will see that there are multiple nested fields, such as continent, 
location, and population_density, as well as an array called data that contains multiple 
JSON entries representing data for each date since the data about the pandemic was collected. Let’s 
learn how to query them using JSON path expressions.

Extracting nested fields

One of the major causes of the massive spread of COVID is the population density of countries. We 
can extract the population density by executing the following command:

select value:IND.population_density from text.` abfss://
covid19@owidcovid.dfs.core.windows.net/owid-covid-data.json`

In this query, we used dot (.) notation to instruct Databricks SQL to follow the top-level IND field 
and extract the value for the population_density key. As mentioned previously, since this is a 
field, we can use the square-bracket notation (value:['IND']['population_density']) 
to the same effect.

Extracting values from arrays

The actual field we are interested in is the data field, which is an array. To extract the data array, 
we can execute the following command:

select value:IND.data[99] from text.` abfss://covid19@
owidcovid.dfs.core.windows.net/owid-covid-data.json`

In this query, we are using the index notation on the data element (which we now know to be an 
array) to retrieve the data from the 100th day of the pandemic (array indexes start from 0).

Of course, this query returns another JSON representation of the data, so we can execute further 
nested queries to retrieve the information, like so:

select value:IND.data[100].date, value:IND.data[100].new_cases 
from text.` abfss://covid19@owidcovid.dfs.core.windows.net/
owid-covid-data.json`

And that’s it. As you can see, the ability to query semi-structured data in a relational context with 
intuitive dot and index notations is a very powerful tool. You can use it to explore columns in tables 
containing free-form JSON text, or parse massive datasets and extract only the information you need. 
You can consult the official reference for JSON handling at https://docs.databricks.com/
sql/language-manual/sql-ref-json-path-expression.html to check for new 
capabilities as and when they are added by Databricks.

https://docs.databricks.com/sql/language-manual/sql-ref-json-path-expression.html
https://docs.databricks.com/sql/language-manual/sql-ref-json-path-expression.html
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Lambda functions

Databricks SQL has a lot of powerful functions that require the use of Lambda functions (https://
docs.databricks.com/sql/language-manual/sql-ref-lambda-functions.
html). In essence, Lambda functions are simple, short, inline, anonymous functions. They are best 
understood through an example.

Let’s consider the array_sort(array, lambda_function) function. This function sorts 
the elements of an array for you. However, you must define how the sorting should happen. You 
must define this because it is plausible that your array is not an array of primitive data types, but a 
custom data type. You will need to define how to use the members of the custom data type to order 
the elements. This is where Lambda functions come in. 

Let’s work through an example invocation of array_sort to see Lambda functions in action. 
Consider the following SQL command:

SELECT

  array_sort(

    array(struct(1,2), struct(3,4), struct(-1,4)),

    (p1, p2) -> CASE

      WHEN p1.col1 = p2.col1 THEN 0

      WHEN p1.col1 < p2.col1 THEN -1

      ELSE 1

    END

  );

In this example, we have the following:

1.	 Our array, which we want to sort, consists of a custom data type with two columns – col1 
and col2. 

2.	 We define our Lambda function in such a way that it receives two elements from the array at 
a time in the p1 and p2 parameters.

3.	 Then, it compares the values of col1 in p1 and p2 and returns -1, 0, or +1, depending on 
whether p1 < p2 or p1 = p2 or p1 > p2. The array_sort() function uses this return 
value to perform the ordering. If you wish to reverse the ordering, just change the condition 
upon which -1 is returned.

As you can see, Lambda functions are very powerful. They are used across a lot of other function 
families such as aggregation, filtering, and more. 

https://docs.databricks.com/sql/language-manual/sql-ref-lambda-functions.html
https://docs.databricks.com/sql/language-manual/sql-ref-lambda-functions.html
https://docs.databricks.com/sql/language-manual/sql-ref-lambda-functions.html


Summary 273

Summary
In this chapter, we learned how to consult the official SQL command reference for Databricks SQL. 
More importantly, we learned about some of the Databricks SQL-specific commands. We also learned 
more about Unity Catalog and the concept of Delta Sharing while learning about various data definition 
commands. After that, we learned how to implement real-life data engineering and BI engineering 
use cases while learning about data manipulation commands. Finally, we learned how to query semi-
structured data and the power of Lambda functions.

In the next chapter, we will continue our investigation of Lakehouse-specific SQL commands – 
specifically, commands for administrating Lakehouse.
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SQL Commands – Part 2

Maintaining and managing data and data access in any database system is a continuous process. 
The Lakehouse is no different. In this chapter, we will focus on the SQL commands that help us 
maintain and manage our Lakehouse. We will also learn about Lakehouse-specific SQL commands 
for discovering data assets. Finally, we will learn about advanced security programming techniques 
available on the Lakehouse.

In this chapter, we will cover the following main topics:

•	 Working with Delta Lake maintenance commands

•	 Working with data security commands

•	 Working with metadata commands

Note
This chapter is not intended as a complete SQL command reference. We will cover the practical 
usage of SQL commands that are specific to Databricks SQL and the Lakehouse. The rest of the 
standard SQL commands can be studied at https://docs.databricks.com/sql/
language-manual/index.html.

Technical requirements
To complete this chapter, you must ensure the following:

•	 You have familiarity or experience with SQL and writing SQL queries.

•	 You have reviewed the official general reference (https://docs.microsoft.com/
en-us/azure/databricks/sql/language-manual/#general-reference).

https://docs.databricks.com/sql/language-manual/index.html
https://docs.databricks.com/sql/language-manual/index.html
https://docs.microsoft.com/en-us/azure/databricks/sql/language-manual/#general-reference
https://docs.microsoft.com/en-us/azure/databricks/sql/language-manual/#general-reference
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Working with Delta Lake maintenance commands
Like any system, be it hardware or software, Delta Lake also requires periodic maintenance. In this 
section, we will learn about some of the commands to use for different maintenance operations. These 
commands are relevant to data engineering and data science teams. Business intelligence users need 
not concern themselves with these activities.

Vacuuming your Delta Lake

As we learned in Chapter 8, The Delta Lake, with every data insert, update, or delete, new files are 
created. After each such activity, the transaction log of the delta table is updated to reflect the set of 
files that constitute the table’s current or latest version. So, while the execution of user queries will 
ignore the non-current files, those files still exist on your cloud storage and are incurring costs. While 
these are not excessive costs, they can grow over time if left unchecked. This is where the VACUUM 
command comes in. True to its name, it vacuums these non-current files.

Now, before you go ahead and vacuum your Lakehouse, keep in mind that some retention is not a 
bad thing. The non-current files are a history of how your data table evolved. This allows Delta Lake 
tables to travel back in time and read data as of a particular time or version. They are required for 
transactional guarantees and are very helpful in audits, data fixes, and rollbacks. 

Hence, selective vacuuming is the way to go. The command is as follows:

VACUUM table_name [RETAIN num HOURS] [DRY RUN]

The RETAIN clause in the preceding command defines how many hours of history to retain on the 
table; it specifies the not-current files from the inception of the table up to current time – retention hours. 

If you wish to do a dry run, or just see a list of files that will be deleted should you run this command, 
include the DRY RUN clause.

It is worth noting that if you try to retain data for less than 7 days or 168 hours, Databricks SQL will 
deny your request. If you are running this command in the Data Engineering persona on a notebook, 
then you have the option of switching off this behavior by executing the following command:

%sql SET spark.databricks.delta.retentionDurationCheck.
enabled=false;

Consider the user_details table from Chapter 11, SQL Commands – Part 1. If we wish to dry- 
run our vacuum operation on it, we must execute the following command:

VACUUM user_details DRY RUN

Executing this command will list the files that will be vacuumed away, as shown in the 
following screenshot:
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Figure 12.1 – Dry -running a vacuum operation

There are the following points you must make a note of concerning vacuuming:

•	 You must have an organizational policy on history retention. Databricks recommends at least 
7 days of retention. You must gauge your requirements based on the uses of the data and the 
stability of the data pipelines. For example, consider the case of streaming data pipelines. They 
tend to create small files at an alarming rate. Even if you have optimized writes and automatic 
compactions are turned on (see Chapter 8, The Delta Lake), the files that make up the current 
state of the table are optimally sized, but the small files that were originally written are still 
around and you will want to keep cleaning them up at a faster schedule. Another scenario could 
be that you find a logical error in your data pipeline that was introduced by a code change 1 
month ago. Now, if you have only 7 days of retention, you will not be able to restore your table 
to how it was 1 month ago. Instead, you will have to reprocess all your data instead of selectively 
reprocessing 1 month’s worth of data. 

•	 Vacuuming is not going to increase the performance of user queries since Delta Engine will 
automatically ignore the non-current files.

•	 Consider the cost of vacuuming versus the cost savings it drives. Vacuuming has a lot of fixed 
operations such as listing files, computing which files fall within retention versus outside of it, 
and more. So, if your tables do not receive frequent updates, consider running VACUUM at a 
lower frequency. On the flip side, if you have a streaming pipeline, the number of files generated 
and hence the cost associated with that can justify frequent vacuuming.

•	 Consider the other Delta Lake maintenance commands running in your Lakehouse. If you are 
running OPTIMIZE commands regularly, you can consider chaining the VACUUM command 
with it. 
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•	 Avoid running VACUUM before or in the middle of any data pipelines. It can slow down the 
processing. More importantly, it will only add time to the pipeline’s execution and provide no 
performance benefits. Hence, it can be done as part of a separate maintenance activity.

Time -traveling in your Delta Lake

As we discussed in the previous section, non-current files represent the history of your table. This 
means you can time -travel and see the snapshot of the table as of a particular time or even restore 
the table to that snapshot.

Why would you want to do this? There can be many reasons, including when you want to roll back 
some logic changes in your data processing or roll back due to some logical errors.

First, we must view the history of the table and determine which time/version we want to view or restore.

Let’s consider the user_details table from the incremental processing example from Chapter 11, 
SQL Commands – Part 1. We can run a DESCRIBE HISTORY command on this table, as follows:

DESCRIBE HISTORY user_details

This will result in an output similar to the following:

Figure 12.2 – Viewing the table history

Here, we can see the exact operation that brings about a new commit version. timestamp and version 
are also recorded. We can use either of these two to time -travel or restore.

To view a particular version of the table, simply run the following query:

SELECT * FROM user_details VERSION AS OF 4

You can replace VERSION with your TIMESTAMP of choice as well.

To restore the table to a particular version, simply run the following query:

RESTORE user_details TO VERSION AS OF 4



Working with Delta Lake maintenance commands 279

Yes – it is that simple. 

There are two things we must make a note of with regards to restoring:

•	 Restoring the table does not wipe out the history. Restoring just changes the current files listed 
in the transaction log (see Chapter 8, The Delta Lake, to read about the transaction log).

•	 The ability to restore depends on the available history. So, vacuum with care!

Repairing your Delta Lake

It is plausible that some of the data files are manually deleted from the table’s location. Why would 
that happen? This could be due to human error, errant data pipeline logic, archival policies on cloud 
storage, and more. If this were to occur, our transaction log may point to non-existent files. This means 
that a user query may try to look up non-existent files and error out. 

If this happens, you must run the FSCK REPAIR TABLE command. This removes the filename 
entries for the missing files from the transaction log. It has a very simple syntax, as shown here:

FSCK REPAIR TABLE table_name [DRY RUN]

Now, an argument can be made that if certain data files are manually deleted, then what is the point 
of repairing them? 

For starters, at least you will be able to access the data that you have. Furthermore, perhaps a non-current 
file was deleted, say by some archival policies on the cloud storage. However, there could still be users 
using the past data versions of the table. In this case, the repair job makes some sense. 

Now, the durability guarantees of cloud storage make an event such as this highly unlikely and we can 
minimize the remaining risk by reducing external access to the data. This can be achieved by using 
managed tables. Here, we can use the access control mechanisms to restrict external tooling from 
modifying storage locations. If you are using Unity Catalog, ensure that external tooling has read-only 
access to the location objects to minimize this risk.

Optimizing your Delta Lake

The OPTIMIZE command is a maintenance command that can be used to optimize the layout of data 
in your tables. As you may recall, we discussed the OPTIMIZE command concerning Z-Ordering 
in Chapter 8, The Delta Lake.

However, OPTIMIZE can be used without Z-Ordering as well. The following is the command syntax 
for the OPTIMIZE command:

OPTIMIZE table_name [WHERE predicate]

  [ZORDER BY (col_name1 [, ...] ) ]
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If we do not specify the ZORDER clause, the OPTIMIZE command will try to recreate the data files 
in such a way that all the files are of an even size. This is especially useful when there are frequent 
updates to the data tables, and you have disabled auto-optimized writes to avoid write-time latencies.

Running the OPTIMIZE command is a compute-intensive activity, so you must ensure that you are 
running it as efficiently as possible. You can use the WHERE predicate to indicate the desired portions 
of the dataset that you want to run the OPTIMIZE command on.

Keep in mind that running OPTIMIZE on an already optimized partition will not have any effect. 

This wraps up our discussion on maintenance commands for the Lakehouse. Next, we will discuss 
some advanced security programming techniques we can perform to protect our data assets.

Working with data security commands
We covered data security commands such as GRANT, REVOKE, and DENY (Hive Metastore only) in 
significant detail in Chapter 4, The Security Model. If you want to consult the official command reference 
for these commands, visit https://docs.databricks.com/sql/language-manual/
index.html#security-statements. In this section, we will focus on an advanced bit of 
security programming and learn about row-level and column-level permissions in Databricks SQL.

Dynamic view functions

At the time of writing, Databricks SQL does not have table bindings for expressing row-level or 
column-level permissions for users and user groups. Instead, it uses the concept of views and dynamic 
view functions.

Databricks SQL exposes two dynamic view functions:

•	 Current_user(): This returns the username of the user executing the query.

•	 is_member(group_name): This returns a Boolean value indicating whether the current 
user is a member of the group.

For example, consider a user group called pii-group that only I am a part of. This means that the 
other user in my organization, Suteja, is not a part of this group:

https://docs.databricks.com/sql/language-manual/index.html#security-statements
https://docs.databricks.com/sql/language-manual/index.html#security-statements
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Figure 12.3 – pii-users group members

If I execute the preceding dynamic view functions as the following query, the is_pii_user column 
will return true:

SELECT current_user, is_member(" pii-users" ) as is_pii_user

In contrast, if Suteja runs the same query, the is_pii_user column will display false, as shown 
in the following screenshot:

Figure 12.4 – Result of Suteja running the is_member() dynamic view function

Controlling access to columns

In this section, we will use a dynamic view function to create a view that selectively hides or shows 
columns. We will use the people_db database that we created in Chapter 3, The Data Catalog. For 
this discussion, we will tag the ssn and birthDate fields as personally identifiable information 
(PII) fields.
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The following VIEW definition dynamically masks the PII columns in our data – that is, ssn 
and birthDate:

CREATE VIEW people_protected AS

SELECT

  id, firstName, middleName, lastName, gender, salary,

  CASE WHEN is_member('pii-users') THEN ssn 

  ELSE 'REDACTED'

  END AS ssn,

  CASE WHEN is_member('pii-users') THEN birthDate 

  ELSE 'REDACTED'

  END AS birthDate

FROM people

Note how we use the is_member() function to determine whether the user should receive redacted 
values for the PII fields.

Now, if Suteja selects data from this table, she will see redacted values for ssn and birthDate, as 
shown here:

Figure 12.5 – Redacted values for non-members

In contrast, I, who am a member of the pii-users group, will see the plaintext values instead of 
redacted values, as shown here:

Figure 12.6 – Actual values for non-members

And that’s it! An argument can be made that creating such views for each table will not be scalable, 
especially if a lot of tables must be access controlled this way. That’s fair. Unity Catalog has introduced 
a feature called attribute-based access control in its roadmap. This feature allows you to annotate 
columns and data assets with tags. Therefore, creating policies for access to these tags will be possible, 
thus making this process maintainable. 
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Controlling access to rows

In this section, we will use a dynamic view function to create a view that selectively hides or shows 
rows. We will continue building on the same example. Consider that there is a user group called 
marketing-users that is only allowed to see details of users who are 30 years or older. I am a 
part of this group; Suteja is not.

The following VIEW definition dynamically excludes the records that are not supposed to be read by 
marketing folk:

CREATE VIEW people_reachable AS

SELECT *

FROM people

WHERE

  CASE

    WHEN is_member('marketing-users') AND (months_
between(current_date,birthDate) > 360) THEN TRUE

    WHEN !is_member('marketing-users') THEN TRUE

    ELSE FALSE

  END;

Again, note the use of the is_member() function in the CASE statement to set the rule that marketing 
folks can only reach users who are older than 30.

Now, if Suteja, who is not part of the marketing-users group, selects data from this table, she 
will see all the records, as evident by the min and max birth dates:

Figure 12.7 – All records can be viewed by non-members

In contrast, I, who am a member of the marketing-users group, will not see users who are 
younger than 30:

Figure 12.8 – Limited records can be viewed by members
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And that’s about it. As mentioned previously, an argument can be made about the scalability of this 
approach. That said, there is a feature called attribute-based access control in the development roadmap 
that will allow a table-bound row access policy to be used. 

This wraps up our discussion of advanced security programming. Next, we will discuss the metadata 
commands that are available with Databricks SQL to search for and discover our data assets.

Working with metadata commands
In this section, we will learn about metadata commands, which allow you to list and describe data 
assets, set configurations, and explore metadata about the data assets. You will be able to use these 
commands to search for and discover data assets and gain deeper insights into them.

Listing data assets

Two commands can be used to list data assets:

•	 SHOW 

•	 LIST

The SHOW command is the standard SQL SHOW command. In Databricks, it supports the catalog, 
database, table, view, and function objects. For example, we can list the tables in the airlines 
dataset with the following statement:

SHOW TABLES IN airlines;

For an extensive discussion of the SHOW command for the data objects, please revisit Chapter 3, The 
Data Catalog.

The SHOW statement also supports listing users and groups. It also supports Unity Catalog-specific 
data assets – external location and storage credential. Please refer to Chapter 11, SQL Commands – 
Part 1, for a detailed discussion on them. 

The LIST command, which is available with Unity Catalog, can be used to list all the files available 
in a cloud storage location. For example, to see the files in a hypothetical storage container where the 
airlines data is stored, we can execute the following command:

LIST 'abfss://flights@airlines.dfs.core.windows.net/'

If the user running this command has the READ FILE privilege on the external location data object 
referring to the ADLS URL, then the command will list the objects at this path.

The SHOW statement also supports Delta Sharing-specific data assets – that is, share and recipient. 
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Two specific SHOW statements stand out:

•	 SHOW PARTITIONS: This lists all the available partitions on a table. Alternatively, you can use 
it to list the exact partition as a key-value pair to check the existence of a particular partition.

•	 SHOW TBLPROPERTIES: This lists all the extra table properties we have enabled on a table. 
Recall that in Chapter 11, SQL Commands – Part 1, we enabled a table property to enable a 
change data feed on a table. Such table properties will be listed with this command. You can 
also list the value of a property by specifying it as a key-value pair in the command.

These are standard commands and very intuitive. If required, you can refer to the official command 
reference at https://docs.databricks.com/sql/language-manual/index.
html#show-statements.

Describing data assets

The DESCRIBE command enables us to describe the details of a data asset– for example, the structure 
of a table, the location of a database, or the signature of a function. 

The DESCRIBE statement in Databricks supports the standard catalog, database, table, and function 
data objects. Keep in mind that there is no DESCRIBE VIEW. Use DESCRIBE TABLE to describe 
a view.

The DESCRIBE statement also supports Unity Catalog-specific data assets, such as external locations 
and storage credentials. 

The DESCRIBE statement also supports Delta Sharing-specific data assets, such as share and 
recipient. 

Each data asset responds differently to the DESCRIBE command. Furthermore, some data assets can 
also have options such as DESCRIBE, FORMATTED, and EXTENDED, which control how granular 
information is displayed. For example, a DESCRIBE table will display column-level statistics if we 
enable the EXTENDED option.

Please revisit Chapter 3, The Data Catalog, for detailed usage examples of the DESCRIBE command.

Analyzing Delta tables

The final metadata command that I want to talk about is the ANALYZE command. This is because its 
existence is a bit counterintuitive to what we learned in Chapter 8, The Delta Lake. There, we learned 
that Delta automatically calculates statistics on data files to enable automatic file skipping.

https://docs.databricks.com/sql/language-manual/index.html#show-statements
https://docs.databricks.com/sql/language-manual/index.html#show-statements
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The ANALYZE command also collects statistics on a specific table. It has the following syntax:

ANALYZE TABLE table_name [ PARTITION clause ]

    COMPUTE STATISTICS [ NOSCAN | FOR COLUMNS col1 [, ...] | 
FOR ALL COLUMNS ]

Before we discuss the options available to this command, first, let’s discuss how it differs from the 
automatic statistics collection in Delta tables. As you may recall, the automatic statistics collection in 
Delta tables only computes the minimum and maximum values of the columns where it collects the 
statistics. By default, the statistics are computed for the first 32 columns, and it is advisable to compute 
statistics only for columns of non-string primitive data types.

The ANALYZE command goes beyond that. It computes deep statistics about the table and the columns 
beyond the minimum and maximum values of those columns. 

For example, it will calculate the number of rows with null values, the cardinality of the column, the 
average length of records in the column, the maximum length of records in the column, and more.

These statistics are used by the optimizer to come up with better query execution plans. 

However, there is a big catch. The ANALYZE command must be run after every new batch of data is 
written. It is not automatic as it is computationally expensive. You must check whether this command 
applies to your databases and tables. This means establishing that the cost of performing the analysis 
is worth the gains in performance. If so, schedule a regular analysis job. If not, automatic statistics 
collection should suffice.

With that cleared up, let’s look at the various options for the ANALYZE command:

•	 PARTITION: This clause specifies the partitions where the analysis must be performed. This 
can reduce the compute footprint of the analysis job.

•	 FOR COLUMNS: This clause specifies the columns where the analysis must be performed. This 
helps keep the analysis targeted to specific query patterns, especially in the case of wide tables.

•	 NOSCAN: This clause specifies that the analysis should only scan the file sizes and not the 
individual records. Hence, the deep analysis metrics will not be computed. 

For example, if we were to analyze our favorite flights table, we would have to run the 
following command: 

ANALYZE TABLE flights COMPUTE STATISTICS FOR COLUMNS year, 
tailnum

Statistics make the most sense when they’re read at an individual column level. Hence, you can run 
the following command:

DESCRIBE EXTENDED flights tailnum;
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In the preceding command, we are asking the DESCRIBE statement to display EXTENDED information 
about the tailnum column in the flights table.

The observed output is as follows:

Figure 12.9 – Computed statistics

And with this, we have finished discussing the available metadata commands of note.

Summary
In this chapter, we learned how to consult the official SQL command reference for Databricks SQL. 
More importantly, we learned about some of the Databricks SQL-specific commands. First, we learned 
about Delta Lake maintenance commands such as VACUUM and RESTORE. We also learned how to 
control user access at the row and column levels using dynamic view functions. Finally, we learned 
how to list and describe various data assets using metadata commands.

This brings us to the end of our discussion regarding the concepts, features, and functions of the 
Databricks SQL platform. In the next chapter, we will learn how to test these concepts, features, and 
functions at scale with the TPC-DS dataset.





Part 4:  
TPC-DS, Experiments, and 

Frequently Asked Questions

This part focuses on putting the concepts learned in Part 2 and Part 3 to the test, using the TPC-DS 
benchmark. This part also rounds up the book with a compilation of commonly asked questions and 
uncertainties about what Databricks SQL is and what it can and cannot do.

This part comprises the following chapters:

•	 Chapter 13, Playing with the TPC-DS Dataset

•	 Chapter 14, Ask Me Anything
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Playing with the  

TPC-DS Dataset

In this chapter, we will get acquainted with the TPC-DS dataset. Lakehouse platforms, including 
Databricks, use TPC-DS benchmarks to prove their capabilities. Hence, it is important to know about 
it. In this chapter, we will learn about the TPC-DS dataset, the TPC-DS benchmark, and how to use 
the TPC-DS dataset to validate some of the concepts we learned about in the previous chapters.  

This chapter is only for advanced users who wish to build a larger dataset to test out Databricks SQL 
features. If you already have access to such a dataset, or you don’t want to test with bigger datasets, 
there is no need to go through this chapter. 

In this chapter, we will cover the following topics:

•	 Understanding the TPC-DS dataset

•	 Generating TPC-DS data

•	 Running automated benchmarks 

•	 Experimenting with TPC-DS in Databricks SQL

Technical requirements
To follow this chapter, you must have the following:

•	 Working knowledge of Scala and Apache Spark

•	 Access to a Databricks workspace

•	 Access to an IDE with Scala plugins or familiarity with terminal-based commands for compiling 
Scala projects

•	 Have read Chapter 8, The Delta Lake, and Chapter 9, The Photon Engine, of this book
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Understanding the TPC-DS dataset
Transaction Processing Performance Council (TPC®) is a non-profit corporation and a worldwide 
consortium. It was founded in 1985 and has major hardware and software vendors as full-time members.

Their mission is two-fold:

•	 Develop data-centric benchmark standards for various systems.

•	 Disseminate objective, verifiable benchmarking data to the industry.

TPC-DS (https://www.tpc.org/tpcds/) stands for Transaction Processing Performance 
Council – Decision Support. It is a benchmarking standard for creating verifiable, objective performance 
data about decision support systems (DSSs).

DSSs are software systems that sift and analyze massive amounts of data and can compile comprehensive 
information that can be used in decision-making. For example, a DSS can compile projected revenue 
or inventory management information for an enterprise operation.

TPC-DS consists of two things of interest to us:

•	 A software that allows us to generate data that is used for TPC-DS benchmarking at any 
scale. Please download the TPC-DS specifications from https://www.tpc.org/tpc_
documents_current_versions/current_specifications5.asp and study 
the Entity Relation diagram of the TPC-DS data.

•	 A set of standard benchmarking queries that can be used against this data.

Databricks and Databricks SQL also come under the umbrella of decision support systems since 
organizations use them to store data and run business-critical data analytics on them to help make 
business decisions.

In November 2021, Databricks released a statement that it had broken TPC-DS records for data 
warehouse performance, and it was verified by the TPC themselves. 

If you wish, you can read all about it at https://databricks.com/blog/2021/11/02/
databricks-sets-official-data-warehousing-performance-record.html.

We are not interested in recreating those benchmarks – there is no point. We are more interested 
in seeing if we can get the TPC-DS data and use it to see some of the performance optimizations in 
action. As you may recall, in Chapter 8, The Delta Lake, I called out the fact that we do not have big 
enough example datasets. Well, TPC-DS is here to give you datasets of any size so that you can test 
the various performance-boosting features that we talked about in Chapter 8, The Delta Lake, and 
Chapter 9, The Photon Engine. 

So, let’s get right into it. First, let’s learn how to generate TPC-DS data. 

https://www.tpc.org/tpcds/
https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
https://databricks.com/blog/2021/11/02/databricks-sets-official-data-warehousing-performance-record.html
https://databricks.com/blog/2021/11/02/databricks-sets-official-data-warehousing-performance-record.html
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Generating TPC-DS data
We will stick to our tradition of finding tools within the Databricks ecosystem. The good folks of 
Databricks have created an open source project called spark-sql-perf (https://github.com/
databricks/spark-sql-perf) that has everything we will need to generate the TPC-DS data. 
Let’s begin.

Building the spark-sql-perf library

The first thing we must do is compile the spark-sql-perf library. I will be using the IntelliJ IDEA 
Integrated Development Environment (IDE). You can use any IDE of your choice or even compile 
the library from your terminal.

If you do not want to compile the library, you can head over to the GitHub repository for this book, 
download the JAR file, and move to the next step. However, note that the JAR file has been built for 
Spark 3.2.1 and Scala 2.12.10:

Note
Ensure that you install the necessary JDK and Scala versions onto your machine before 
commencing these steps. If you are using an IDE, it should guide you through the installation.

1.	 Import the spark-sql-perf library using the following Git web URL: https://github.
com/databricks/spark-sql-perf.git.

2.	 Open the build.sbt file in the project’s root folder and edit the scalaVersion and 
sparkVersion fields so that they match the Scala and Spark versions of the Databricks 
runtime you intend to use. The following screenshot is based on a cluster using DBR 10.4 LTS 
with Photon, which uses Spark 3.2.1 and Scala 2.12.10:

Figure 13.1 – Editing the build.sbt file

https://github.com/databricks/spark-sql-perf
https://github.com/databricks/spark-sql-perf
https://github.com/databricks/spark-sql-perf.git
https://github.com/databricks/spark-sql-perf.git
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3.	 Build the package by running the sbt +package command in the terminal. The following 
screenshot shows the execution of the command in the terminal provided by the IDE:

Figure 13.2 – Building the project

After successfully executing the sbt +package command, the built library – a Java JAR file – will 
be ready in the target directory in the project’s root folder, as shown in the following screenshot:

 Figure 13.3 – The built library 

Now, we must install this JAR file as a library in our Databricks workspace. 
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Installing the spark-sql-perf library

We must install the spark-sql-perf JAR file as a workspace library (https://docs.
databricks.com/libraries/workspace-libraries.html). You must be in the Data 
Science Engineering persona view to do this:

1.	 Navigate to a folder of choice in your workspace and create a new Library, as shown in the 
following screenshot:

Figure 13.4 – Creating a workspace library 

2.	 In the ensuing Create Library page, give your library an appropriate name and drop/select the 
JAR file we built in the previous section, as shown in the following screenshot: 

Figure 13.5 – Installing the JAR file in the workspace library 

https://docs.databricks.com/libraries/workspace-libraries.html
https://docs.databricks.com/libraries/workspace-libraries.html
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Now, we must create a Databricks cluster that will be used to generate the TPC-DS data and install 
this workspace library onto it.

Creating a data generation cluster

In this step, we will create a cluster to create the TPC-DS data. For the sake of simplicity, I will reuse 
the same cluster to show the automated benchmarking process as well. You should create a different 
cluster with different specifications suited to the test you are undertaking. Follow these steps:

1.	 Create a new cluster, as outlined here: https://docs.databricks.com/clusters/
create.html. Ensure that you uncheck the Enable autoscaling checkbox. The Workers count 
should be based on the scale of data you wish to generate and how fast you want to generate 
it. The speed of generation will be directly proportional to the worker count. The following 
screenshot shows a cluster being created with a runtime suitable for the library:

Figure 13.6 – Creating the benchmarking cluster

https://docs.databricks.com/clusters/create.html
https://docs.databricks.com/clusters/create.html
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2.	 Install the workspace library in this cluster by clicking on the Install New button in the Libraries 
tab of the cluster you created in the previous step, as follows:

Figure 13.7 – Installing the workspace library in the cluster

Before we move on to the next step, why did I ask you to disable autoscaling? This is because we 
know the workload and that it requires a certain amount of compute power. Hence, it makes sense to 
configure the compute power right away.

The following are some pro tips for you:

•	 If you are looking to build TPC-DS datasets of higher scale factors, which will be a time-
consuming process, consider using an all-on-demand cluster (no Spot VMs) so that you don’t 
risk preemption of workers.

•	 Ensure that the workspace library is in an Installed state on the cluster before running the data 
generation commands. Otherwise, the commands will fail.
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Importing the spark-sql-perf repository

The spark-sql-perf project on GitHub contains handy Databricks notebooks that we can use 
for performing the TPC-DS data generation. We will use the Repos feature (https://docs.
databricks.com/repos/index.html) in Databricks to import the entire repository into our 
workspace. As shown in the following screenshot, click on the Add Repo button in the Repos menu 
and paste the Git repository URL details of the spark-sql-perf repository:

Figure 13.8 – Importing the spark-sql-perf repository

Running the data generation notebook

Once the repository has been added, navigate to the notebook at spark-sql-perf/src/main/
notebooks/tpcds_datagen. 

This notebook is a bit rough around the edges, as shown in the following screenshot, but don’t worry 
– I will walk you through it:

Figure 13.9 – The data generation notebook

https://docs.databricks.com/repos/index.html
https://docs.databricks.com/repos/index.html
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Why Am I Not Creating Clean Notebooks for You?
Fair point. But I don’t want to do that. I want you to be comfortable with the library as the 
Databricks team may add changes to the repository that you will want to use later. For example, 
the repository does not have automated benchmarking notebooks for SQL Warehouses. If they 
add it one day, I want you to be able to just consult this repository and get working instead of 
waiting on me to update my copy of things.

Let’s go through the commands in the notebook, as shown in Figure 13.6, that you must work with. 
Keep in mind that the command numbers are true at the time of writing and may change in the future:

1.	 Cmd 2: Update num_workers to the number of workers in your data generation cluster. 

2.	 Cmd 3: Mount a cloud storage location of your choice. To keep it simple, use the /mnt/
performance-datasets mount point as it is hardcoded in other commands. To learn 
more about mounting, see https://docs.databricks.com/data/databricks-
file-system.html#databricks-file-system-dbfs.

3.	 Cmd 4: 

	� Update scaleFactor to the size of the desired TPC-DS dataset. Scale 1 means 1 Gb, 
Scale 10 means 10 Gb, and so on.

	� Update format to the format of choice. For example, if you want to test the performance 
of the Parquet format before testing the Delta format, set it to parquet.

	� Update rootDir if you selected a different mount point in Cmd 3.

	� Update useDecimal and useDate if you want to use decimal and date data types 
instead of strings. Using specific data types can bring about performance boosts that you 
may want to test.

	� Make a note of databaseName and optionally add a prefix to it. All the TPC-DS tables 
will be created in this database.

4.	 Cmd 15: Update discoverPartitions to false if you are creating the data in Delta 
format. This is because discoverPartitions is implemented as an ALTER TABLE 
RECOVER PARTITIONS command, which is not valid in Delta. Delta automatically discovers 
and tracks partitions.

5.	 Cmd 17: Comment out the table.analyzeTables() function if you are creating data in 
Delta format. This is because Delta automatically discovers and maintains table and column-
level statistics. 

https://docs.databricks.com/data/databricks-file-system.html#databricks-file-system-dbfs
https://docs.databricks.com/data/databricks-file-system.html#databricks-file-system-dbfs
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That’s it! Attach this notebook to the data generation cluster and run the notebook. Once completed, you 
should be able to see the TPC-DS data generated in the Data tab, as shown in the following screenshot:

Figure 13.10 – Generated data in the Databricks SQL Data Explorer

As you can see, I have prefixed my database name with vg_; the notebook automatically adds descriptive 
postfixes based on our configurations. Every new data generation activity will create a new database. 

You can study the Entity Relation diagram of the data by downloading the TPC-DS specifications 
from https://www.tpc.org/tpc_documents_current_versions/current_
specifications5.asp.

Keep in mind that the notebook creates external tables. So, if you want to delete any database or tables, 
make sure that you drop them in the Databricks portal and delete the actual files in the cloud portal.

Now, you have a TPC-DS dataset that you can use to run benchmarking exercises or just experiment 
in general. Let’s start by seeing how we can run benchmarking tests.

Running automated benchmarks
The spark-sql-perf library allows you to run automated benchmarks against the queries of the 
TPC-DS specifications. If you are interested in studying the queries, you can study the query templates 
that are bundled in the specifications. If you are interested in studying the Databricks SQL versions of 
these queries, you can navigate to spark-sql-perf/src/main/resources/tpcds_2_4. 
The following screenshot shows how to navigate the IDE:

https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
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Figure 13.11 – TPC-DS benchmark queries

As we noted in the Understanding the TPC-DS dataset section, we are not interested in recreating 
benchmarks. However, if you do want to do so, you can do so by following the README file of spark-
sql-perf. Let me quickly show you how to run a benchmark in a Databricks workspace.

Note
The spark-sql-perf library can only run benchmarks against a Spark cluster. It does not 
have provisions to execute the automated benchmark on SQL Warehouses.

We will use the bundled notebooks available in the spark-sql-perf project. Navigate to the 
notebook at spark-sql-perf/src/main/notebooks/tpcds_run.

You must update certain values based on what you set in the data generation step, as follows:

•	 Cmd 2:

I.	 Update scaleFactor to scaleFactor of the generated data.

II.	 Update the useDecimal and useDate fields to the values used in the data generation 
process.

III.	 Add the filterNull variable if it’s not present.

IV.	 Update databaseName with any custom prefixes.

V.	 Set the iterations to the desired number of iterations of the benchmark. This is important 
because subsequent iterations can benefit from caching and warm JVMs.
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That’s it! Now, you can execute the notebook. The last command, Cmd 7, will display the execution 
results of the benchmark, as follows:

Figure 13.12– TPC-DS benchmark results 

The benchmark results are self-explanatory. They are just the execution speeds of each query in 
the benchmark suite. The smaller the query runtime, the better. Of course, the runtime needs to be 
compared against that of an incumbent system.

Now that we know how to run the automated TPC-DS benchmarks, we can move on to experimenting 
with TPC-DS data by ourselves. Experiments could be of any form – you might wish to run your own 
benchmarking queries, or you may wish to test some Databricks SQL features. Let’s see how.

Experimenting with TPC-DS in Databricks SQL
Now that we have the TPC-DS data generated and ready to query, you are free to experiment and 
validate everything that we’ve learned in the previous chapters – especially Chapter 8, The Delta Lake.

If you intend to use the TPC-DS benchmarking queries themselves, please note that you will have to 
import the Databricks versions of the queries into Databricks SQL manually. See Figure 13.11 to learn 
how to obtain the queries. Otherwise, you can refer to the TPC-DS specification on the ER diagram 
and row counts to craft your own queries of varying complexity that test the features you want to test.

Keep the metrics you want to measure in mind. A measure such as speed requires that you keep the 
cluster configuration constant and account for the fact that Databricks SQL will cache table data and 
query results. Depending on the test, data skipping effectiveness might be a better metric to measure.

As we saw in the Generating TPC-DS data section, there are many possible TPC-DS dataset configurations, 
each of which can produce a different insight. Let’s look at a few possible and relevant case studies 
for you to explore.
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Case study 1 – the effect of file formats

In this case study, you should keep your scaleFactor, useDecimal, useDate, and useNull 
configurations constant and test the benchmark queries for file formats such as CSV, Parquet, Parquet 
with Analyze Tables and Columns, ORC, and Delta. You should observe how the performance of Parquet 
based tables and Parquet based tables on which statistics collection have been run, compare to Delta 
based tables. Recall that the ANALYZE TABLE command can be used to perform explicit statistics 
collection. This will help you validate the concepts of automatic statistics collection and data skipping.

An added variant would be to increase scaleFactor exponentially and see if a significant performance 
gap arises between the various file formats.

Case study 2 – the effect of specialized data types

Often, organizations will mark all the fields in tables as strings to avoid complex data quality enforcement 
engineering and faster availability of data for querying. However, this can have a detrimental effect 
on queries as automatic statistics collections and data skipping will be less effective. 

You can keep the scaleFactor, format, and useNull configurations constant and toggle the 
useDecimal and useDate configurations to see the difference in the performance of filtering 
queries on columns with these data types.

An added variant would be changing the format and seeing if Delta still manages to collect meaningful 
statistics and improve performance over Parquet based tables upon which statistics collection has 
been performed.

Finally, scaleFactor can be increased exponentially to see if there is a significant performance 
disparity.

Case study 3 – the effect of NULLs

Nulls are notorious. They can proliferate very easily in Data Lakes as the data quality enforcement can 
be lax. They also can have very detrimental effects on querying by making data skipping and clustering 
methods such as ZORDER less effective.

You can toggle the useNull configuration to introduce null values in the generated dataset, while 
keeping everything else constant. You can also try to ZORDER certain columns while enabling null 
values and see if the data skipping is less effective.

A reasonable variant would be increasing scaleFactor to see if NULLs cause severe performance 
drops at higher scales.
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Case study 4 – ZORDER and partitions

You can test the effects of ZORDER with and without partitions. The following tables are good candidates 
for partitioning due to their data volume: inventory, web_returns, catalog_returns, 
store_returns, web_sales, catalog_sales, and store_sales. You can run simple 
filtering queries on any of these tables at a high scale factor to see how the partitions and ZORDER 
change the data skipping performance. If you want a refresher on ZORDER and partitions, please 
see Chapter 8, The Delta Lake.

Case study 5 – Bloom filter indexes

You can test the performance of needle-in-a-haystack queries by toggling Bloom filter indexes on 
datasets with high scale factors.

Hopefully, these case studies will keep you busy for a long time. More importantly, I hope that they 
will help you test the various performance-boosting features of Databricks SQL to your satisfaction.

That said, before concluding this chapter, I want to say that benchmarks are great, but the real test of any 
product is against your data. Test Databricks SQL against your data and draw your own conclusions. 
And just as a cautionary note, even if you run the benchmarking suites as per the steps noted in the 
chapter, please do not consider them formal benchmarks. Formal benchmarks are a scientific exercise 
that requires a lot of preconditions, checks, and balances to be followed to ensure the fairness and 
reproducibility of results.

Summary
In this chapter, we learned about the TPC-DS benchmark and the TPC-DS dataset. We learned how to 
generate TPC-DS data at any scale. Then, we learned how to execute the automated TPC-DS benchmark 
suites in the spark-sql-perf library in our Databricks workspace. Finally, we discussed the various 
ways in which TPC-DS data can be used to test the performance-boosting features of Databricks SQL. 

With this, we have come to the end of the primary topics of this book on Databricks SQL. I am sure 
that you still have some questions. Hence, in the next chapter, we will go through some of the most 
commonly asked questions about Databricks SQL!



14
Ask Me Anything

As we come to the end of this book, I thought it would be a good idea to compile a list of questions 
that get asked about Databricks SQL.

In this chapter, we will go through some of the common questions that we get asked about Databricks 
SQL and Databricks in general.

We will cover the following topic:

•	 Frequently asked questions

Frequently asked questions 
Databricks SQL is part of an entirely new product category called the Lakehouse. The Lakehouse is 
an alternative to data lakes and data warehouses. This prompts a lot of interest and questions from 
prospective customers. I am sure that you will also have a lot of questions, even after spending time 
reading this book. 

So, here is a list of such questions and their answers, in no particular order.

How does Databricks SQL define small, medium, and large table sizes? 

If we think about defining the size of tables on traditional systems, it could depend on the number of 
rows, the length of the records, or the number of nodes that the table is sharded across.

Since the Lakehouse enables big data processing, it can accommodate all sizes of datasets. You do not 
have to provision computation resources separately for small, medium, and large tables. Tuning the 
warehouse’s size is easy as well – if queries are running slow, increase the warehouse T-shirt size. If 
queries are getting queued, increase the maximum number of clusters in the warehouse.
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That said, if we were to see current trends in performance, anything with a compressed data size of 1 
GB or less is very small. Let me provide a sense of scale. When we run the OPTIMIZE command, it 
creates data files that are 1 GB each. It is not recommended to partition a table under 5 to 10 GB (this 
number keeps increasing as Databricks brings more innovations). The out-of-the-box data skipping 
is just fine for handling this.

If you were to ask me to give you table T-shirt sizes, I would say the following:

•	 Small:  ~ 10 to 100 GB 

•	 Medium: ~100 GB to a few TB 

•	 Large: 100 TB+  

How does Databricks SQL define long and thin tables and long and broad tables?

This is like the previous question. The Lakehouse is not bound by the traditional definitions of long, 
thin, and broad tables. It can accommodate data tables of all shapes and sizes with equal ease.

How does Databricks SQL support normalization and denormalization?

The Lakehouse inherits the flexibility of data lakes in terms of data modeling. In essence, it is modeling-
agnostic. You can implement any modeling technique with Databricks SQL and the Lakehouse. For 
example, you can implement Kimball-style star schema data models, Inmon-style data marts, or a 
Data Vault. 

This is because, at the end of the day, the data model is implemented via table DDLs or in semantic 
layers on the reporting side. Databricks SQL supports primary keys, surrogate keys, and foreign keys. 
That said, primary keys and foreign keys are currently not enforced – they are supported to allow 
interrogation from other tools.

ETL best practices for big data and Online Analytical Processing (OLAP) systems recommend 
disabling these keys for faster ingestion and independent ingestion of datasets. The key definition is 
mainly maintained in data modeling tools or semantic layers on the reporting side.  

Databricks SQL fully supports SQL syntax, so loading a normalized or denormalized table will happen 
just like in any other SQL database. You can read about it further in Bill Inmon’s e-book at https://
databricks.com/p/ebook/building-the-data-lakehouse.

How does Databricks SQL perform Change Data Capture (CDC)?

CDC is an essential activity on the Lakehouse. ETL processes on the Lakehouse conform to the medallion 
architecture pattern, which we discussed at length in Chapter 10, Warehouse on the Lakehouse. In the 
medallion architecture, the first data layer is an as-is replica of the source data systems. The CDC 
process defines how fast the changes on the source data systems are replicated on the Lakehouse. 
Databricks can support CDC as fast as the source data system can emit changes. This is made possible 

https://databricks.com/p/ebook/building-the-data-lakehouse
https://databricks.com/p/ebook/building-the-data-lakehouse
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by support for real-time stream processing and ACID transactions with Delta. As per the medallion 
architecture, this data layer can be called bronze or raw. This layer contains data that has not been 
processed in any form. Hence, it is also a historical archive of source data. 

Note
Keep in mind that the medallion architecture is just a design pattern. It is not an enforceable 
feature or framework. So, when we say bronze or raw data layers, it just means that the data 
is unprocessed.

Many CDC design patterns are supported:

•	 Pull Pattern: This uses JDBC/ODBC to connect to any database and extract new records based 
on a timestamp data column. Learn more here: https://docs.databricks.com/
data/data-sources/sql-databases.html.

•	 Push Pattern: This uses CDC extraction tooling such as Oracle Goldengate or Debezium to 
push the captured change data as data files to cloud storage. You can use Databricks Autoloader 
to automatically process these files into the Lakehouse.

•	 Databricks Partner Ingestion Hub: Databricks has a large ecosystem of ISV partners that can 
simplify data ingestion from a variety of sources. The full list can be found here: https://
docs.databricks.com/integrations/partners.html. 

Landing the data is only one part of the process. The change data must also be processed into the 
rest of the medallion architecture. First, the bronze layer’s data must be conformed and cleaned 
into a logical data model. These data models could be domain/industry-specific data models that 
represent standard definitions of key business entities and their relationships. This data layer 
is the silver layer. The silver layer is constructed by extracting source data changes, as captured 
in the bronze layer, and transformed into data models. These data models could be of the third 
normal form, similar to data models. 

Most self-service analytics is served from the silver layer. This involves getting change data to this 
layer as fast as possible. Since this layer contains a data model that is often constructed with values 
from multiple bronze tables, there is always a wait for all related records to be captured before a row 
is written in the silver layer. This is made easy in Databricks by streaming change data between the 
bronze and silver layers with technology such as Change Data Feed. Finally, since this is a very write-
heavy data layer, Data Vault-like write-performant data models can be used in this layer.

Finally, the silver layer’s data must be moved to more consumption-ready “project-specific” denormalized 
and read-optimized data models. This is known as the gold layer. The gold layer’s primary focus is on 
reporting use cases. The presentation layer of projects fits in this layer. Kimball-style star schema data 
models or Inmon-style data marts are best suited for data modeling in this layer.

https://docs.databricks.com/data/data-sources/sql-databases.html
https://docs.databricks.com/data/data-sources/sql-databases.html
https://docs.databricks.com/integrations/partners.html
https://docs.databricks.com/integrations/partners.html
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Databricks has tools such as Delta Live Tables and Change Data Feed that allow you to efficiently process 
captured change data through the bronze, silver, and gold layers. See Chapter 11, SQL Commands – 
Part 1 for detailed case studies on CDC.

You can learn more about Delta Live Tables here: https://docs.microsoft.com/en-us/
azure/databricks/data-engineering/delta-live-tables/delta-live-
tables-cdc.

How does indexing work in Databricks SQL?

Delta Lake automatically captures column statistics for every data file, which is used in effective data 
skipping. You can consider this the equivalent of automatic indexing. Then, there are tools such as 
ZORDER and Bloom filter indexes, which can be used for more pointed indexing. ZORDER is analogous 
to clustered indexes in the database world. Bloom filter indexes are useful for needle-in-the-haystack 
searches, especially for strings.

I recommend revisiting Chapter 8, The Delta Lake, for further reading on ZORDER and Bloom filter 
indexes.

How does Databricks SQL handle time series data?

You can create any data structure of your choosing, including temporal data structures. There are 
out-of-the-box functions that can help you process time series data. However, depending on your 
requirements, a specialized time series store may also be considered.

How does Databricks SQL partition data across nodes?

Databricks does not run on on-premise servers. Revisit Chapter 3, The Data Catalog, to see how storage 
and computation are decoupled in the Lakehouse. The storage is on cloud object stores, and the data 
processing clusters are provisioned ephemerally as required. 

On the cloud object store, the data can be partitioned based on certain fields. When the data is 
processed for querying, the Apache Spark framework automatically distributes the data across the 
various nodes (workers) in the cluster. It is transparent.

How does Databricks SQL handle authentication and authorization?

Revisit Chapter 4, The Security Model, for a full discussion. In summary, you can program your 
data security with SQL security statements such as GRANT, REVOKE, and DENY. There are various 
authentication mechanisms, including SSO, Personal Access Tokens, and Azure Active Directory.

It is recommended that you stay updated with the Unity Catalog product in Databricks as that is poised 
to be the default catalog of the Lakehouse; Hive Metastore will be phased out. See https://docs.
databricks.com/data-governance/unity-catalog/ for more details.

Does Databricks SQL support business keys or surrogate keys?

https://docs.microsoft.com/en-us/azure/databricks/data-engineering/delta-live-tables/delta-live-tables-cdc
https://docs.microsoft.com/en-us/azure/databricks/data-engineering/delta-live-tables/delta-live-tables-cdc
https://docs.microsoft.com/en-us/azure/databricks/data-engineering/delta-live-tables/delta-live-tables-cdc
https://docs.databricks.com/data-governance/unity-catalog/
https://docs.databricks.com/data-governance/unity-catalog/
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Yes, it does. Databricks supports identity columns, which will be automatically assigned unique, 
statistically increasing values with new record inserts. You can learn more here: https://docs.
databricks.com/sql/language-manual/sql-ref-syntax-ddl-create-table-
using.html.

Does Databricks SQL support applications with ACID requirements?

Databricks Lakehouse does support ACID guarantees. This support enables the Lakehouse 
architecture to bring together the best of data lakes and data warehouses. However, since it is 
an analytics tooling, it is best used for Online Analytical Processing (OLAP) and not Online 
Transactional Processing (OLTP). 

Does Databricks SQL have drag and drop wizards?

No. However, you can use any of the Databricks partners for visual data ingestion, preparation, and 
transformation. You can find the list of available partners here: https://databricks.com/
company/partners/technology.

Does Databricks SQL support cursor operations?

Cursors are an anti-pattern in Databricks SQL. Revisit Chapter 9, The Photon Engine, to learn how 
your data is processed in parallel across machines, without you having to manually loop over records. 
Databricks SQL can query petabyte scale data and express all ETL without creating and looping 
through cursors.

Does Databricks SQL support updates? 

Yes – you can perform inserts, updates, and deletes with Databricks SQL. If you are curious about the 
mechanics of these operations on Delta Lake, please revisit Chapter 8, The Delta Lake. 

Depending on your requirements, you can also consider the MERGE INTO statement, which merges 
a set of inserts, updates, and deletes from a source to a target table in one operation rather than one 
operation per transaction. It is faster and more efficient. We discussed practical uses of the MERGE 
command in Chapter 11, SQL Commands – Part 1.

Does Databricks SQL support real-time and streaming data?

Yes. The underlying big data processing framework, Apache Spark, supports batch, near-real-time, 
and real-time data processing. You can start your streaming journey here: https://docs.
databricks.com/delta/delta-streaming.html.

Does Databricks SQL support primitive data types?

Yes. See https://docs.databricks.com/sql/language-manual/sql-ref-
datatypes.html for more details.
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Does Databricks SQL support complex data types?

Yes. See https://docs.databricks.com/sql/language-manual/sql-ref-
datatypes.html for more details.

Does Databricks SQL support query federation?

It does. You can connect to multiple data sources directly and use them in a federated query. The 
question is, why would you want to do that? Querying source transaction systems can be a very 
bad idea as it may affect the performance of live systems. You can make a case for querying other 
specialized analytical data stores in a federated mechanism – but again, you must be careful when 
mixing data from potentially non-relational data with relational data as it may mess up the semantics 
of the query and the results.

Does Databricks SQL support materialized views?

Support for materialized views has just been announced. It will be built on the Delta Live Tables product 
to accelerate queries and reduce infrastructure costs with efficient and incremental computation.

Does Databricks SQL charge for Photon Query Engine?

No. It is enabled by default on SQL Warehouses.

What are the performance limits of Databricks SQL?

I recommend revisiting Chapter 6, SQL Warehouses, to learn how to scale Databricks SQL to queries 
of any size at any concurrency level. In short, the Apache Spark big data processing framework, which 
forms the basis of Databricks SQL, can easily scale to petabytes of data and any number of joins.

Of course, as with all software systems, you must define the precise metrics of performance that you 
are interested in to correctly gauge a system.

What is the learning curve for existing data warehouse users?

Virtually none. Databricks SQL is ANSI-SQL compliant, so your existing SQL skills are transferrable. 
Similarly, database administrators will find standard data definition statements and data security 
statements, making their skills transferrable as well. 

Some recalibration might be required to move away from the cursor-oriented processing of stored 
procedures and adapt to different utility functions, but these can easily be found in the Databricks 
SQL Reference.

How can I write stored procedures in Databricks SQL?

You cannot write stored procedures in the traditional sense. One of the reasons for this is that stored 
procedures tend to be cursor-driven and process records in a loop, which is not suitable for big data 
workloads. What you can do is define user-defined functions, or create Python code that achieves 
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the same effect. You can learn more at https://docs.databricks.com/sql/language-
manual/sql-ref-syntax-ddl-create-sql-function.html and https://docs.
databricks.com/dev-tools/pyodbc.html.

How can I create a star schema in Databricks SQL?

Please revisit Chapter 10, Warehouse on the Lakehouse for details on this. Another good resource is 
this official blog by Databricks: https://databricks.com/blog/2022/05/20/five-
simple-steps-for-implementing-a-star-schema-in-databricks-with-
delta-lake.html.

Use Delta tables for your fact and dimension tables to get the best performance. For further performance 
improvements, ensure that your fact tables are Z-ordered. Also, Z-order your dimension key fields. 
Ensure that your fact tables are Z-ordered. Finally, make use of the primary and foreign key support 
so that your BI tools can interrogate the data for the relationships. 

How can I connect Databricks SQL queries to my VCS/Git?

You cannot at the time of writing.

How can I handle slowly changing dimensions in Databricks SQL?

Many mechanisms can be employed. See https://docs.databricks.com/data-
engineering/delta-live-tables/delta-live-tables-cdc.html for more details. 
In summary, an SCD of any type can be achieved with a combination of inserts, updates, deletes, and 
merges along with using a Change Data Feed of Delta tables.

I already have Spark SQL; why do I need Databricks SQL?

Do not confuse SQL on Spark with Databricks SQL. SQL on Spark is simply a SQL layer over Apache 
Spark. Databricks SQL is a full product that caters to business intelligence workflows. Furthermore, 
the topology of compute clusters is very different in Databricks SQL versus traditional Spark clusters 
meant for data engineers and analysts. See Chapter 6, The SQL Warehouses, for more information.

Are column names case-sensitive in Databricks SQL?

No, they are not. 

Summary
In this chapter, we covered some frequently asked questions about Databricks SQL. Hopefully, this 
answered any remaining questions you may have had about Databricks SQL. That said, Databricks 
SQL is constantly evolving, so I recommend staying updated with the latest documentation and release 
notes. And if these are not enough, reach out to your Databricks representative!
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