

Business Intelligence
with Databricks SQL

Concepts, tools, and techniques for scaling business
intelligence on the data lakehouse

Vihag Gupta

BIRMINGHAM—MUMBAI

Business Intelligence with Databricks SQL
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author(s), nor Packt Publishing or its dealers and distributors, will be held
liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Reshma Raman
Publishing Product Manager: Heramb Bhavsar
Senior Editor: Nazia Shaikh
Technical Editor: Sweety Pagaria
Copy Editor: Safis Editing
Project Coordinator: Farheen Fathima
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Vijay Kamble
Marketing Coordinator: Nivedita Singh

First published: September 2022
Production reference: 1260822

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80323-533-2

www.packt.com

http://www.packt.com

This book came into life with the eternal blessings from Dada Ji & Dadi Ji
&

Love from Mom, Dad, Utkarsh, Suteja, Toffee
&

 Love for the One who is arriving.

– Vihag Gupta

C o n t r i b u t o r s

About the author
Vihag Gupta is a solutions architect with a specialization in cloud data platform architecture and
design. He has a background in data engineering and a professional interest in machine learning.
He loves getting hands-on and solving real business problems with technology. He graduated with
a degree in information technology from PES University, Bengaluru, in 2011 and earned a degree
in information systems management from Carnegie Mellon University, Pittsburgh, in 2016. He has
worked at companies including Deloitte Consulting, DataSpark, and Qubole. He currently works at
Databricks, helping clients bring their lakehouse platforms for analytics to life.

Originally from Jharkhand, India, Vihag currently lives in Singapore with his wife and dog.

About the reviewers
Jerrold Law currently works at Databricks as a specialist solutions architect, specializing in data
engineering and streaming. He helps organizations all over the world to adopt scalable big data
processing use cases with the Lakehouse architecture. Prior to Databricks, he worked for Confluent,
helping enterprise organizations to enable their real-time streaming use cases as part of the solutions
engineering field team.

Ivan Tang is a solutions architect at Databricks, helping enterprises in the ASEAN region in their cloud
transformation journey. Previously, he worked with Confluent Professional Services, where he helped
enterprises from the APAC region to design, build, operate, and maintain event streaming platforms
using Apache Kafka and Confluent. Prior to that, he was wrangling data and building models while
being an architect, builder, and user of distributed systems, including Hadoop, Storm, Kafka, and Spark.
Prior to that, he worked for Confluent, GIC (Singapore’s sovereign wealth fund), and other firms.

With over 15 years of experience working as a solutions architect for some of the largest and most
innovative companies in the world, including Amazon, Bridgewater, and Bloomberg, Tomasz Kurzydym
is a strong supporter and advocate for constant learning, experimentation, and curiosity. His work has
taken him from his native country of Poland to the USA and UK, and he now lives with his family
in Singapore working for Databricks – a data and AI company. In his spare time, Tomasz enjoys
traveling, skiing, and photography.

Mahdi Askari is a lead solutions architect at Databricks. He is a software engineer at heart, and has
been working in the data and big data space since 2010. He has worked across different industries with
customers and prospects using Databricks Lakehouse to derive insight from their data.

Roja Boina is an engineering senior advisor. She provides data-driven solutions to enterprises. She
takes pride in her get-it-done attitude. She enjoys defining requirements, designing, developing, testing,
and delivering backend applications, and communicating data through visualizations. She is very
passionate about being a Women in Tech (WIT) advocate and being a part of WIT communities.
Outside of her 9-5, she loves to volunteer for non-profits and mentor fellow women in STEM. She
believes in having a growth mindset.

Table of Contents

Preface	 xiii

Part 1: Databricks SQL on the Lakehouse

1
Introduction to Databricks	 3

Technical requirements� 4
An overview of Databricks,
the company� 4
An overview of the
Lakehouse architecture� 5

An overview of the Databricks
Lakehouse platform� 9
Summary� 10

2
The Databricks Product Suite – A Visual Tour	 11

Technical requirements� 12
Basic navigation with the sidebar� 12
The top of the sidebar� 13
The bottom of the sidebar� 14
The middle of the sidebar� 15

The SQL persona view� 15
The Machine Learning persona view� 26
The Data Science and
Engineering persona view� 29
Summary� 30

3
The Data Catalog	 33

Technical requirements� 33 Understanding the data organization
model in Databricks SQL� 34

Table of Contentsviii

Apache Hive Metastore� 34
Unity Catalog� 35
Implications of choosing
a cataloging technology � 37
An example of the data organization model� 38

Exploring data visually with
the Data Catalog� 41
Exploring the data programmatically
with SQL statements� 51
Summary� 61

4
The Security Model	 63

Technical requirements� 64
The Databricks SQL security model� 64
Access control with Apache Hive Metastore� 65
Access control with Unity Catalog� 66
Query execution model� 67

User-facing table access control� 69
Users, groups, and service principals� 69
Securable objects� 71
Operations� 72
Privileges� 72
Bringing everything together� 73
The security model in practice� 75
Ownership� 77
Sharing the database � 77

Exploring the database� 78
Exploring asset metadata� 80
Revoking access� 82
Denying access� 83
Going beyond read access – part 1� 83
Going beyond read access – part 2� 85
Going beyond read access – part 3� 86
Summarizing the security model� 86
UI-based user-facing table access control� 87

The internals of cloud
storage access � 89
Cloud storage access in Microsoft Azure� 92
Cloud storage access in
Amazon Web Services� 97

Summary� 101

5
The Workbench	 103

Technical requirements� 103
Working with queries� 103
Developing queries� 104

Visualizing query results� 120

Creating and publishing dashboards� 139
Administering and
governing artifacts� 148
Summary� 149

Table of Contents ix

6
The SQL Warehouses	 151

Technical requirements� 151
Understanding the
SQL Warehouse architecture � 152
Creating and configuring
SQL Warehouses� 154
Cluster size� 156
Scaling� 157
Spot instance policy� 158
Auto Stop� 158

The art of SQL Warehouse sizing� 159

Rules for query routing, queuing,
and cluster autoscaling� 159
Sizing the SQL Warehouse� 162

Organizing and governing
SQL Warehouses� 168
SQL Warehouse assignment strategy� 169
Access control in SQL Warehouses� 170
Chargeback� 173

Using Serverless SQL� 175
Summary� 176

7
Using Business Intelligence Tools with Databricks SQL	 177

Technical requirements� 178
Connecting from validated BI tools� 178
SQL Warehouse details� 180
Authentication details� 182

Connecting from
non-validated BI tools� 184
Step 1 – download the driver� 184

Step 2 – install the driver � 185
Step 3 – configure the SQL
Warehouse connection� 186

Connecting programmatically� 187
Databricks Partner Connect� 187
The internals of a data source file� 190

Summary� 191

Part 2: Internals of Databricks SQL

8
The Delta Lake	 195

Technical requirements� 195
Fundamentals of the
Delta Lake storage format� 196

Data engineering before Delta Lake� 196
The Delta Lake storage format� 201
Data engineering after Delta Lake� 204

Table of Contentsx

Built-in performance-boosting
features of Delta Lake� 207
Automatic statistics collection� 207
Automatic Compaction and
Optimized Writes� 211
Automatic caching� 212

Configurable performance-boosting
features of Delta Lake� 214
Z-ordering� 214
Bloom filter indexes� 217
CACHE SELECT� 218

Summary� 218

9
The Photon Engine	 221

Technical requirements� 221
Understanding Photon Engine� 221
What is Photon?� 222
The Apache Spark execution model� 223

Understanding vectorization� 227
Volcano model� 228

Code generation� 228
Vectorization� 229

Discussing the Photon
product roadmap� 234
Summary� 237
Further reading� 237

10
Warehouse on the Lakehouse	 239

Technical requirements� 239
Organizing data on the Lakehouse� 240
Components of a warehouse system� 240
The Medallion architecture� 241

Implementing data modeling

techniques� 244
The bronze layer� 245
The silver layer� 245
The gold layer� 247

Summary� 249

Part 3: Databricks SQL Commands

11
SQL Commands – Part 1	 253

Technical requirements� 253
Working with data definition
language commands� 254

DDL for catalogs� 254
DDL for external locations� 255
DDL for Delta Sharing� 258

Table of Contents xi

Working with data manipulation
language commands� 262
MERGE INTO� 262
COPY INTO� 268

Working with the inbuilt functions in

Databricks SQL� 269
JSON � 269
Lambda functions� 272

Summary� 273

12
SQL Commands – Part 2	 275

Technical requirements� 275
Working with Delta Lake
maintenance commands� 276
Vacuuming your Delta Lake� 276
Time -traveling in your Delta Lake� 278
Repairing your Delta Lake� 279
Optimizing your Delta Lake� 279

Working with data
security commands� 280

Dynamic view functions� 280
Controlling access to columns� 281
Controlling access to rows� 283

Working with metadata commands� 284
Listing data assets� 284
Describing data assets� 285
Analyzing Delta tables� 285

Summary� 287

Part 4: TPC-DS, Experiments, and
Frequently Asked Questions

13
Playing with the TPC-DS Dataset	 291

Technical requirements� 291
Understanding the TPC-DS dataset� 292
Generating TPC-DS data� 293
Building the spark-sql-perf library� 293
Installing the spark-sql-perf library� 295
Creating a data generation cluster� 296
Importing the spark-sql-perf repository� 298
Running the data generation notebook� 298

Running automated benchmarks� 300

Experimenting with
TPC-DS in Databricks SQL� 302
Case study 1 – the effect of file formats� 303
Case study 2 – the effect of specialized
data types� 303
Case study 3 – the effect of NULLs� 303
Case study 4 – ZORDER and partitions� 304
Case study 5 – Bloom filter indexes� 304

Summary� 304

Table of Contentsxii

14
Ask Me Anything	 305

Frequently asked questions � 305 Summary� 311

Index	 313

Other Books You May Enjoy	 326

Preface

It is a new era in the design of data platform systems. Disparate data lakes and data warehouses are
giving way to a new type of data platform system – the lakehouse. It promises to unify all data analytics
into a single platform. Databricks, with its Databricks SQL product suite, is the hottest lakehouse
platform out there. It harnesses the power of Apache Spark™, Delta Lake™, and other innovations that
enable data warehousing capabilities on the lakehouse with data lake economics.

This book is a comprehensive hands-on guide that lets you explore all the advanced features, use cases,
and technology components of Databricks SQL. You will start with the fundamentals of the lakehouse
architecture and how Databricks SQL fits into it. Next, you will learn how to use the platform – exploring
data, executing queries, and building reports and dashboards. Moving on, you will learn about the
administrative aspects of the lakehouse – data security, governance, and managing the computation
power of the lakehouse. You will delve into the core technology enablers of Databricks SQL – Delta
Lake™ and Photon. Finally, you will get hands-on with advanced SQL commands for ingesting data
and maintaining the lakehouse.

By the end of this book, you will have mastered Databricks SQL and be able to deploy and deliver
fast, scalable business intelligence on the lakehouse.

Who this book is for
This book is for business intelligence practitioners, data warehouse administrators, and data engineers
who are new to Databricks SQL and want to learn how to deliver high-quality insights, unhindered
by the scale of data or infrastructure. This book is also perfect for anyone who wants to study the
advanced technologies that power Databricks SQL.

Basic knowledge of data warehouses, SQL-based analytics, and optionally, the ETL processes is
recommended to effectively learn the concepts introduced in this book and appreciate the innovation
in the platform.

What this book covers
Chapter 1, Introduction to Databricks, introduces Databricks along three dimensions. First, it will
introduce Databricks, the company. Second, it will introduce the Data Lakehouse architecture – the
core data Platform design pattern enabled by Databricks. Third, it will introduce the Databricks
Lakehouse Platform. Essentially, this is the platform that Databricks provides for your organization
to implement the data lakehouse architecture.

Prefacexiv

Chapter 2, The Databricks Product Suite – A Visual Tour, presents a visual tour of Databricks SQL and
the rest of the Databricks platform. It will teach you how to navigate the platform and locate features
of interest with ease.

Chapter 3, The Data Catalog, introduces the data catalog of the Databricks Lakehouse platform. It will
teach you how the data objects – catalogs, schemas, tables, and views – are represented in the data
catalog. Finally, it will teach you how to navigate and explore the data catalog with UI interfaces and
SQL commands. Generated and populated by data engineers and consumed by data analysts, the data
catalog is the central pillar of all your data operations.

Chapter 4, The Security Model, discusses the Databricks data security model and teaches how to use
it to secure the data. Databricks provides a very fine-grained, yet easily programmable data security
model to secure all data and data-related assets.

Chapter 5, The Workbench, introduces the Databricks workbench. The workbench is a set of capabilities
that enable a simple, intuitive, and intelligent experience in query building and dashboarding. The
Databricks SQL workbench provides users on the unified lakehouse platform an instant way to query
the data and extract insights from it.

Chapter 6, The SQL Warehouses, introduces the compute power behind Databricks SQL. SQL Warehouses
provide the elastic, scalable compute power that can execute Business Intelligence (BI) queries with
ease, no matter the scale of the data. The cloud philosophy says storage and compute power should
scale independently so that we can drive the maximum Return on Investment (ROI). This is exactly
what the SQL Warehouses in Databricks SQL do.

Chapter 7, Using Business Intelligence Tools with Databricks SQL, teaches you how to connect your
business intelligence tool of choice to Databricks SQL. This allows you to harness the power of
Databricks SQL from the comfort of your favorite business intelligence tool.

Chapter 8, The Delta Lake, deep dives into the default storage format of Databricks – Delta Lake. It
adds a layer of transactional intelligence to the otherwise simple data lake. This chapter will discuss
the Delta Lake storage format and how it enables superior out-of-the-box query performance.

Chapter 9, The Photon Engine, deep dives into the Photon engine. It is the query engine that powers
Databricks SQL. It is written from the ground up in native C++ and uses the Apache Spark API. This
chapter deep dives into what makes Photon so fast.

Chapter 10, Warehouse on the Lakehouse, addresses one of the biggest mental leaps that must be taken
when adopting the data lakehouse architecture. This chapter discusses how to implement popular
warehousing patterns on the lakehouse.

Chapter 11, SQL Commands Part–1, introduces Databricks-specific SQL commands that are used for
data definition and data manipulation operations.

Chapter 12, SQL Commands Part–2, introduces Databricks-specific SQL commands that are used for
data security and metadata operations.

To get the most out of this book xv

Chapter 13, Playing with the TPC-DS Dataset, introduces the TPC-DS dataset. It is a popular dataset for
benchmarking decision support systems such as data warehouses. The chapter shows how to generate
the TPC-DS dataset in Databricks and test the various concepts learned in the past chapters at scale.

Chapter 14, Ask Me Anything, presents and answers the frequently asked questions about Databricks SQL.

To get the most out of this book
This book is about Databricks SQL as an enabler for your business intelligence practice. Hence, the
book assumes knowledge of standard SQL and business intelligence concepts. Basic knowledge of
data warehouses and data lakes is recommended, but it is not mandatory. Some chapters, such as
Chapter 8, The Delta Lake, and Chapter 9, The Photon Engine, assume some familiarity with Apache
Spark and some data engineering constructs. That said, they are optional, deep-dive chapters and do
not affect your learning of Databricks SQL.

Databricks SQL is a Platform-as-a-Service (PaaS) offering and is accessible via any modern internet
browser. It does not require any installation on your machine.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Business-Intelligence-with-Databricks-SQL-Analytics.
If there’s an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/vXWLg.

Software/hardware covered in the book Operating system requirements

Databricks SQL Windows, macOS, or Linux

https://github.com/PacktPublishing/Business-Intelligence-with-Databricks-SQL-Analytics
https://github.com/PacktPublishing/Business-Intelligence-with-Databricks-SQL-Analytics
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/vXWLg

Prefacexvi

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Mount
the downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

A block of code is set as follows:

OPTIMIZE table_name [WHERE predicate]

 [ZORDER BY (col_name1 [, ...])]

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “To do so, we can click on the SQL
Editor icon on the left-hand sidebar to bring up the SQL Editor page.”

Tips or Important Notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

https://customercare@packtpub.com
https://customercare@packtpub.com
http://www.packtpub.com/support/errata
https://copyright@packt.com
https://authors.packtpub.com

Share Your Thoughts xvii

Share Your Thoughts
Once you’ve read Business Intelligence with Databricks SQL, we’d love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/1803235330

Part 1:
Databricks SQL

on the Lakehouse

This part focuses on the features and functions of the Databricks SQL product suite, which enables
the day-to-day workflows of business intelligence practitioners and warehouse administrators.

This part comprises the following chapters:

•	 Chapter 1, Introduction to Databricks

•	 Chapter 2, The Databricks Product Suite – A Visual Tour

•	 Chapter 3, The Data Catalog

•	 Chapter 4, The Security Model

•	 Chapter 5, The Workbench

•	 Chapter 6, The SQL Warehouses

•	 Chapter 7, Using Business Intelligence Tools with Databricks SQL

1
Introduction to Databricks

Databricks is one of the most recognizable names in the big data industry. They are the providers of the
lakehouse platform for data analytics and artificial intelligence (AI). This book is about Databricks
SQL, a product within the Databricks Lakehouse platform that powers data analytics and business
intelligence.

Databricks SQL is a rapidly evolving product. It is not a traditional data warehouse, yet its users are
the traditional data warehouse and business intelligence users. It claims to provide all the functionality
of data warehouses on what is essentially a data lake. This concept can be a bit jarring. It can create
resistance in adoption as you might be wondering if your skills are transferrable, or if your work might
be disrupted as a result of a new learning curve.

Hence, I am writing this book.

The primary intent of this book is to help you learn the fundamental concepts of Databricks SQL in a
fun, follow-along interactive manner. My aim is that by the time you complete this book, you will be
confident in your adoption of Databricks SQL as the enabler of your business intelligence.

This book does not intend to be a definitive guide or a complete reference, nor does it intend to be a
replacement for the official documentation. It is too early for either of those. This book is your initiation
into business intelligence on the data lakehouse, the Databricks SQL way.

Let’s begin!

In this chapter, we’ll cover the following topics:

•	 An overview of Databricks, the company

•	 An overview of the Lakehouse architecture

•	 An overview of the Databricks Lakehouse platform

Introduction to Databricks4

Technical requirements
There are no technical requirements for this chapter. However, familiarity with the concept of databases,
data warehouses, and data lakes will help.

An overview of Databricks, the company
Databricks was founded in 2013 by seven researchers at the University of California, Berkeley.

This was the time when the world was learning how the Meta, Amazon, Netflix, Google, and
Apple (MANGA) companies had built their success by scaling up their use of AI techniques in all
aspects of their operations. Of course, they could do this because they invested heavily in talent and
infrastructure to build their data and AI systems. Databricks was founded with the mission to enable
everyone else to do the same – use data and AI in service of their business, irrespective of their size,
scale, or technological prowess.

The mission was to democratize AI. What started as a simple platform, leveraging the open source
technologies that the co-founders of Databricks had created, has now evolved into the lakehouse
platform, which unifies data, analytics, and AI in one place.

As an interesting side note, and my opinion: To this date, I meet people and organizations that equate
Databricks with Apache Spark. This is not correct. The platform indeed debuted with a cloud service
for running Apache Spark. However, it is important to understand that Apache Spark was the enabling
technology for the big data processing platform. It was not the product. The product is a simple
platform that enables the democratization of data and AI.

Databricks is a strong proponent of the open source community. A lot of popular open source
projects trace their roots to Databricks, including MLflow, Koalas, and Delta Lake. The profile of
these innovations demonstrates the commitment to Databricks’s mission statement of democratizing
data and AI. MLflow is an open source technology that enables machine learning (ML) operations
or MLOps. Delta Lake is the key innovation that brings reliability, governance, and simplification to
data engineering and business intelligence operations on the data lake. It is the key to building the
lakehouse on top of cloud storage systems such as Amazon Web Service’s Simple Storage Service
(S3), Microsoft Azure’s Azure Data Lake Storage (ADLS), and Google Cloud Storage (GCS), as
well as on-premises HDFS systems.

An overview of the Lakehouse architecture 5

Within the Databricks platform, these open source technologies are firmed up for enterprise readiness.
They are blended with platform innovations for various data personas such as data engineers, data
scientists, and data analysts. This means that MLflow within the Databricks Lakehouse platform powers
enterprise-grade MLOps. Delta Lake within the Databricks Lakehouse platform powers enterprise-grade
data engineering and data governance. With the Databricks SQL product, the Databricks Lakehouse
platform can power all the business intelligence needs for the enterprise as well!

Technologies and Trademarks
Throughout this book we will refer to trademarked technologies and products. Some notable
examples are Apache Spark™, Hive™, Delta Lake™, Power BI™, Tableau™ and others that are
inadvertently mentioned.

All such trademarks are implied whenever we mention them in the book. For the sake of brevity
and readability, I will omit the use of the ™ symbol in the rest of the book.

An overview of the Lakehouse architecture
If, at this point, you are a bit confused with so many terms such as databricks, lakehouse, Databricks
SQL, and more – worry not. We are just at the beginning of our learning journey. We will unpack all
of these throughout this book.

First, what is Databricks?

Databricks is a platform that enables enterprises to quickly build their Data Lakehouse infrastructure
and enable all data personas – data engineers, data scientists, and business intelligence personnel
– in their organization to extract and deliver insights from the data. The platform provides a
curated experience for each data persona, enabling them to execute their daily workflows. The
foundational technologies that enable these experiences are open source – Apache Spark, Delta
lake, MLflow, and more.

So, what is the Lakehouse architecture and why do we need it?

The Lakehouse architecture was formally presented at the Conference on Innovative Data Systems
Research (CIDR) in January 2021. You can download it from https://databricks.com/
research/lakehouse-a-new-generation-of-open-platforms-that-unify-
data-warehousing-and-advanced-analytics. This is an easily digestible paper that I
encourage you to read for the full details. That said, I will now summarize the salient points from
this paper.

Attribution, Where it is Due
In my summary of the said research paper, I am recreating the images that were originally
provided. Therefore, they are the intellectual property of the authors of the research paper.

https://databricks.com/research/lakehouse-a-new-generation-of-open-platforms-that-unify-data-warehousing-and-advanced-analytics
https://databricks.com/research/lakehouse-a-new-generation-of-open-platforms-that-unify-data-warehousing-and-advanced-analytics
https://databricks.com/research/lakehouse-a-new-generation-of-open-platforms-that-unify-data-warehousing-and-advanced-analytics

Introduction to Databricks6

According to the paper, most of the present-day data analytics infrastructures look like a two-tier
system, as shown in the following diagram:

Figure 1.1 – Two-tier data analytics infrastructures

In this two-tier system, first, data from source systems is brought onto a data lake. Examples of source
systems could be your web or mobile application, transactional databases, ERP systems, social media
data, and more. The data lake is typically an on-premises HDFS system or cloud object storage. Data
lakes allow you to store data in big data-optimized file formats such as Apache Parquet, ORC, and
Avro. The use of these open file formats enables flexibility in writing to the data lake (due to schema-
on-read semantics). This flexibility enables faster ingestion of data, which, in turn, enables faster access
to data for end users. It also enables more advanced analytics use cases in ML and AI.

Of course, this architecture still needs to support the traditional BI workloads and decision support
systems. Hence, a second process, typically in the form of Extract, Transform, and Load (ETL), is
built to copy data from the data lake to a dedicated data warehouse.

An overview of the Lakehouse architecture 7

Close inspection of the two-tier architecture reveals several systemic problems:

•	 Duplication of data: This architecture requires the same data to be present in two different
systems. This results in an increased cost of storage. Constant reconciliation between these two
systems is of utmost importance. This results in increased ETL operations and its associated costs.

•	 Security and governance: Data lakes and data warehouses have very different approaches to
the security of data. This results in different security mechanisms for the same data that must
always be in synchronization to avoid data security violations.

•	 Latency in data availability: In the two-tier architecture, the data is only moved to the warehouse
by a secondary process, which introduces latency. This means analysts do not get access to fresh
data. This also makes it unsuitable for tactical decision support such as operations.

•	 Total cost of ownership: Enterprises end up paying double for the same data. There are two
storage systems, two ETL processes, two engineering debts, and more.

As you can see, this is unintuitive and unsustainable.

Hence, the paper presents the Lakehouse architecture as the way forward.

Simply put, the data lakehouse architecture is a data management system that implements all the
features of data warehouses on data lakes. This makes the data lakehouse a single unified platform
for business intelligence and advanced analytics.

This means that the lakehouse platform will implement data management features such as security
controls, ACID transaction guarantees, data versioning, and auditing. It will implement query
performance features such as indexing, caching, and query optimizations. These features are table
stakes for data warehouses. The Lakehouse architecture brings these features to you in the flexible,
open format data storage of data lakes. A Lakehouse is a platform that provides data warehousing
capabilities and advanced analytics capabilities for the same platform, with cloud data lake economics.

What is the Formal Definition of the Lakehouse?
Section 3 in the CIDR paper officially defines the Lakehouse. Check it out.

Introduction to Databricks8

The following is a visual depiction of the Lakehouse:

Figure 1.2 – Lakehouse architecture

The idea of the Lakehouse is deceptively simple – as all good things in life are! The Lakehouse
architecture immediately solves the problems we highlighted about present-day two-tier architectures:

•	 A single storage layer means no duplication of data and no extra effort to reconcile data. Reduced
ETL requirements and ACID guarantees equate to the stability and reliability of the system.

•	 A single storage layer means a single model of security and governance for all data assets. This
reduces the risk of security breaches.

•	 A single storage layer means the availability of the freshest data possible for the consumers of
the data.

•	 Cheap cloud storage with elastic, on-demand cloud compute reduces the total cost of ownership.

•	 Open source technologies in the storage layer reduce the chances of vendor lock-in and make
it easy to integrate with other tools.

Of course, any implementation of the Lakehouse will have to ensure the following:

•	 Reliable data management: The Lakehouse proposes to eliminate (or reduce) data warehouses.
Hence, the Lakehouse implementation must efficiently implement data management and
governance – features that are table stakes in data warehouses.

An overview of the Databricks Lakehouse platform 9

•	 SQL performance: The Lakehouse will have to provide state-of-the-art SQL performance on
top of the open-access filesystems and file formats typical in data lakes.

This is where the Databricks Lakehouse platform, and within it, the Databricks SQL product, comes in.

An overview of the Databricks Lakehouse platform
The Databricks Lakehouse platform enables enterprises to build their Lakehouse by providing simplified
data engineering and data management techniques. The Databricks Lakehouse platform also provides
one of the best ML experiences for data scientists and ML engineers.

Finally, Databricks SQL brings in the last piece of the puzzle – a home for the business intelligence and
data analyst personas with a first-class workbench that allows query editing, building visualizations, and
publishing dashboards. It also allows plug-and-play with downstream business intelligence tools such as
Power BI, Tableau, Looker, and more. All of this is backed by state-of-the-art SQL query performance.

The following diagram represents the Databricks Lakehouse platform:

Figure 1.3 – The Databricks Lakehouse platform

Introduction to Databricks10

The lakehouse platform by Databricks is a simple, open, and collaborative platform that combines the
reliability, performance, and governance capabilities of data warehouses with the openness, flexibility,
and economies of cloud data lakes.

Summary
In this chapter, we learned about Databricks as a company and the Databricks Lakehouse platform as
the product of this company, which enables the democratization of data and AI for all organizations.
We are now ready to begin exploring Databricks SQL.

In the next chapter, Chapter 2, The Databricks Product Suite – A Visual Tour, we will start with a tour
of the Databricks Lakehouse platform.

2
The Databricks Product Suite –

A Visual Tour

The Databricks Lakehouse platform is an expansive product that caters to personas such as data
engineers, data scientists, and business analysts. It also caters to administrator personas such as
platform administrators and database administrators. As we discuss core concepts in subsequent
chapters, we will have to refer to other persona-specific features. Familiarity with the platform will
allow us to navigate to the correct feature or function when referred.

In this chapter, we will take a visual tour of the Databricks Lakehouse platform, with an emphasis on
the Databricks SQL product. We will use the official Lakehouse infographic from Figure 1.3 as our
guiding light to navigate through the Databricks Lakehouse platform and introduce, at a very high
level, the features and functionalities and how they fit together.

We will use screenshots throughout, and you are encouraged to navigate accordingly in your instance
of Databricks for the best orientation possible. Please note that the Databricks platform is regularly
updated and refined, so the visuals may have evolved by the time you read this book. Once we have
this orientation and context, we will be better placed to dive into the details of the Databricks SQL
product suite.

In this chapter, we will cover the following topics:

•	 Basic navigation with the sidebar

•	 The SQL persona view

•	 The Machine Learning persona view

•	 The Data Science and Engineering persona view

The Databricks Product Suite – A Visual Tour12

Technical requirements
To get the most out of this chapter, you will need to have access to the following resources:

•	 A Databricks workspace. Databricks SQL requires a Premium or higher level of subscription.
Databricks SQL is currently available on Amazon Web Services (AWS), Microsoft Azure, and
Google Cloud Platform (GCP). Provisioning a Databricks workspace is beyond the scope of
this book. You can get started here: https://databricks.com/try-databricks.

•	 Any modern internet browser. Databricks workspaces are accessed via browsers. Command-
line interface and REST API-based access is also possible, but these are beyond the scope of
this book. You can explore the CLI and REST API at your own pace by following the guide at
https://docs.databricks.com/reference/command.html.

Note
The documentation links contain a switcher that allows you to navigate to the documentation
links for the cloud of your choice. The core functionality of Databricks SQL is the same across
all clouds. I will call out any cloud-specific nuances as required.

Basic navigation with the sidebar
In this section, we will learn how to navigate the Databricks platform using the left-hand sidebar. The
left-hand sidebar contains links to all the user-facing features and functions on the platform.

First things first, we must log in to our Databricks platform. Whether you created a Databricks account
for yourself or are using a Databricks account that your organization uses, you should have a workspace
URL. Visit the workspace URL and log in with your credentials. For Azure Databricks users, the URL
should be of the https://adb-<an_alphanumeric_string>.azuredatabricks.net/
form. For Databricks on AWS, the URL should be of the https://dbc-<an_alphanumeric_
string>.cloud.databricks.com/ form. Finally, for Databricks on GCP, the URL should be
of the https://<an_alphanumeric_string>.gcp.databricks.com/ form.

Upon successfully logging in, you should see a sidebar on the left-hand side. This sidebar is the key
to navigating the Databricks platform. The sidebar can be divided into three main sections. Let’s have
a look.

https://databricks.com/try-databricks
https://docs.databricks.com/reference/command.html

Basic navigation with the sidebar 13

The top of the sidebar

When a Databricks workspace is launched, the user lands on their pinned persona experience. There
are three persona experiences:

•	 Data Science & Engineering

•	 Machine Learning

•	 SQL

Each of these persona experiences enables access to tools and features relevant to that persona’s daily
workflow. The top of the sidebar primarily allows you to switch between these persona experiences.
The following screenshot shows the persona dropdown:

Figure 2.1 – The persona experience dropdown

Note
The landing page may differ based on how you have gained access to the Databricks workspace. If
you have created a new trial account on either AWS or Azure, you will land on the Data Science
& Engineering experience. If you are part of an organization that already has Databricks, you
may have to ask them for access to the SQL experience. Once enabled, you can pin it so that
you always land on the SQL experience upon logging in.

Since we will be primarily working with the SQL experience, it is a good idea to go ahead and
pin the SQL persona experience as our default landing page.

The Databricks Product Suite – A Visual Tour14

The bottom of the sidebar

Let’s discuss the options available at the bottom of the left-hand sidebar, as shown in the
following screenshot:

Figure 2.2 – The Settings section

As shown in the preceding screenshot, the following options are available:

•	 Partner Connect: This provides a portal where you can select the partner tool or solution you
want to connect to. Partner Connect simplifies and accelerates the integration. We will cover
this in Chapter 7, Using Business Intelligence Tools with Databricks SQL.

•	 Help: This provides navigation to the documentation, release notes, service status page,
knowledge base, and more.

•	 Settings: This provides navigation to various management capabilities, depending on your
privilege level:

	� User Settings: This is where you can generate access tokens, toggle visual settings, and
configure personal Git integrations. We will cover this in future chapters when we discuss
programmatic access to Databricks SQL.

	� Admin Console: This is where users and groups can be created. It also provides access to
self-service customization of the Databricks workspace. Any discussion on this is beyond
the scope of this book, so you are encouraged to go through the options with the help of the
documentation from the Help Center (https://help.databricks.com/).

	� Manage Account: This leads to global settings that can be used to manage all the workspaces
under your Databricks account. A discussion on the enterprise deployment architecture of
Databricks is beyond the scope of this book. However, as a quick note – once you’ve purchased
Databricks, you can create an account, and within that account, you can launch any number
of workspaces. Workspaces can be aligned to projects, teams, sandboxes, business units, or
any logical division that the organization may employ. You can learn more about enterprise
deployment patterns at https://docs.databricks.com/getting-started/
overview.html.

https://help.databricks.com/
https://docs.databricks.com/getting-started/overview.html
https://docs.databricks.com/getting-started/overview.html

The SQL persona view 15

•	 Workspace selector: This is the part in Figure 2.2 that says databricks-sql-book. This allows
the user to seamlessly switch between various workspaces that they are part of.

The middle of the sidebar

At this point, you must be wondering why we skipped the middle of the sidebar. This is because the
middle of the sidebar is where the persona experience really comes in. The options that we see in this
section of the sidebar are dependent on the persona we are currently in. Hence, we will explore it as
we deep dive into the different personas. We will start with the SQL persona and experience.

The SQL persona view
The SQL persona is the focus of this book, so let’s start with that first. The following screenshot shows
the home page of the SQL persona. The now-familiar left-hand sidebar should be visible, with SQL
persona-specific options in the middle section. The landing page itself should show quick links to
daily workflow features such as Query Editor, BI Connectors, and Data Explorer. Once the Databricks
SQL product has seen some usage, links to recent work such as queries, dashboards, and others will
also be populated on the main page for fast access:

Figure 2.3 – The SQL persona home page

The Databricks Product Suite – A Visual Tour16

Note for New Workspaces
The interface shown in the preceding screenshot has an additional sidebar called Get started.
You will see this if this is the first time Databricks SQL has been accessed in the workspace.
Depending on the user’s privileges, certain options will be provided to help them get started
with Databricks SQL from an admin or end user perspective.

You are not discouraged from exploring the guided Get started journeys. However, we promise
that those journeys will be explored in detail in subsequent chapters.

Recall the Lakehouse infographic that we introduced in Chapter 1, Introduction to Databricks (Figure
1.3). To begin the visual tour, let’s start from the Open Data Lake layer with Delta Lake on top of it
for Data Management & Governance. This is highlighted in the following diagram:

Figure 2.4 – The data layer

The data in the Lakehouse is sourced from various sources, including structured, relational data
sources, semi-structured data sources, unstructured data sources, and streaming data sources. This is
the Open Data Lake layer. This is powered by the Delta Lake technology (https://delta.io/),
which abstracts the nuances and complexity of handling data on cloud object stores such as AWS S3,
Azure ADLS, and GCP GCS.

The Data Explorer, which we will cover in the following subsections, is a visual tool that we can use
to discover the data in the lakehouse platform.

https://delta.io/

The SQL persona view 17

Data Explorer

To navigate to Data Explorer, click the Data icon, , on the left-hand sidebar to bring up the Data
Explorer page. The following screenshot shows a section of the Data Explorer page:

Figure 2.5 – The Data Explorer page

The Data Explorer page has a three-level hierarchy – the catalog, the database, and the tables and views
within the database. Here, database is synonymous with schema. Traditional databases or warehouses
have a hierarchy of database.schema.table. However, in Databricks, the top level is a container
of schemas, hence we have catalog.database/schema.table. Data Explorer lets us visually
explore these objects. For example, in the preceding screenshot, we have navigated to the nyctaxi
database in samples, where we are viewing the trips table.

Note on Incidental Charges
Upon opening the Data Explorer page, the catalog will be set to Hive Metastore by default
and the database will be set to default by default.

Databricks provides sample datasets for getting started. They are available in the samples
catalog. The preceding screenshot shows how to explore the sample data.

Bear in mind that at the time of writing, Data Explorer requires a SQL Warehouse to be up
and running. This will incur cloud costs, including Databricks costs and cloud compute costs
(AWS EC2 or Azure VM). This will change soon with the introduction of a new cataloging
technology called Unity Catalog. We will discuss Unity Catalog in Chapter 3, The Data Catalog.

Data Explorer is the portal to visually exploring the data in a Lakehouse. As we can also see, it provides
a visual view of data management and governance as well – with Access Control Lists (ACLs),
comments, and more. We will explore these in detail in Chapter 3, The Data Catalog.

The Databricks Product Suite – A Visual Tour18

SQL Warehouses

Data Explorer provides features and functions for visually exploring the data available to analysts.
Since Databricks leverages the economies and elasticity of the cloud, the storage and compute layers
are decoupled. This means that the data in the Lakehouse (visible in Data Explorer) is sitting on the
cloud object storage, so computation resources must be acquired to execute queries against the data
when needed. In Databricks SQL, this compute power is acquired with SQL Warehouses. They run
a query processing engine called the Photon engine that works with the Delta Lake layer to provide
a seamless query experience in the Databricks SQL product.

Note
The Photon Engine and the Delta Lake are transparent to the end user/analyst. They can query
the data as if it were just another relational database.

If we refer to our guiding reference architecture, we are at the bounding box, as shown here:

Figure 2.6 – The compute layer

The SQL persona view 19

To configure a SQL Warehouse, click on the SQL Warehouses icon on the left-hand sidebar, , to
bring up the SQL Warehouses page:

Figure 2.7 – The SQL Warehouses page

Here, we can see a warehouse named sql-warehouse. We can see that it is in a Stopped state.
We can have multiple SQL Warehouses in our instance of Databricks. We will learn how to create and
configure them in Chapter 6, The SQL Warehouses.

Query Editor

So far, we have learned how to explore the data visually and acquire the computation power to run
queries against the data. The logical next step is to write some queries.

Going back to our reference architecture, we are at the consumption layer, where analysts and end
users have access to features and tools that enable their daily workflows. The consumption layer is
highlighted in red in the following diagram:

The Databricks Product Suite – A Visual Tour20

Note
The rest of the visual tour of the Databricks SQL product suite will be concerned with the
consumption layer, and hence the bounding box highlighted in the diagram.

Figure 2.8 – The consumption layer

To do so, we can click on the SQL Editor icon on the left-hand sidebar, , to bring up the SQL
Editor page:

Figure 2.9 – The SQL Editor page

The SQL persona view 21

The SQL Editor page provides an intelligent workbench to quickly author queries with typeahead
and other features. It also provides built-in visualization capabilities for query results. Finally, it has
an integrated view of the Schema browser, which provides a view of the catalog namespace for faster
exploratory data analysis.

In the preceding screenshot, we are sampling some data from the trips table in the nyctaxi
database. This Query Editor is running queries on the SQL Warehouse called sql-warehouse,
which we visited in the previous section (not visible in the preceding screenshot).

The SQL Editor provides many more daily workflow features and functions, all of which we will
explore in Chapter 5, The Workbench.

The Queries page

In the previous section, you may have noticed we had created a “named” query called Sample trips
Taxi, as is visible in the Query tab. In Databricks SQL, queries can be named and saved for use with
other features, such as dashboards and alerts.

The named, saved queries can be explored on the Queries page as follows. Click the Queries icon,
, in the left-hand sidebar to bring up the Queries page. The following screenshot shows a portion

of the Queries page:

Figure 2.10 – The Queries view

The Queries view helps you discover existing queries authored by the user or by others in the team,
hence promoting reuse and collaboration. The Queries view also provides metadata about the queries
for better search capabilities. More on this in Chapter 5, The Workbench.

The Databricks Product Suite – A Visual Tour22

The Query History page

The Queries view allows the user to discover or revisit named/saved queries. However, it is an
unreasonable expectation that all the queries that are written or executed will be named or saved.
Hence, the Query History page fills the gap in discovering past query executions. To visit the Query
History page, click on the Query History icon, , as shown in the following screenshot:

Figure 2.11 – The Query History page

Here, we can see that the Query History page maintains a history of all the queries that have been
executed in the SQL persona view. There are smart filters that can be applied to sift through the history.
We will cover practical applications of this feature in Chapter 5, The Workbench.

The SQL persona view 23

The Dashboards page

The queries that we author in the Databricks SQL product can be composed into dashboards. These
dashboards can then be shared with other teams and stakeholders for their consumption. Click on
the Dashboards icon, , on the left-hand sidebar to bring up the Dashboards page, as shown in
the following screenshot:

Figure 2.12 – The Dashboards page

The preceding screenshot shows a section of the Dashboards landing page where we have two
dashboards. The first one, NYC Taxi Trip Analysis, is a sample dashboard that you can import from
the Dashboards Gallery.

The Databricks Product Suite – A Visual Tour24

Users can create a new dashboard using the Create Dashboard button in the top right-hand
corner. The following screenshot shows a section of the Creation view of the NYC Taxi Trip
Analysis sample dashboard:

Figure 2.13 – Sample dashboard (Databricks Dashboard Gallery)

In the Dashboard Composer, we can add visualizations based on existing queries, parameterize them
for interactivity, and compose them into useful dashboards.

More on building dashboards will be covered in Chapter 5, The Workbench.

The Alerts page

Queries are an amazing way to look at events in a retrospective manner. However, we are talking about
the Lakehouse today, where real-time events are consumable and actionable. In this scenario, queries
can also enable proactive analysis and mitigation. For this reason, Databricks SQL provides an Alerts
function. Alerts can be configured to trigger when some value threshold on a named, saved query is
breached. To reach the Alerts page, click the Alerts icon, , on the left-hand sidebar:

The SQL persona view 25

Figure 2.14 – Creating an alert

In the preceding screenshot, we are setting an alert when the revenue frequency exceeds a value of 15.

This example shows the alert behavior and the template of the alert. More on this will be covered in
Chapter 5, The Workbench.

The Create menu

Databricks SQL also provides a handy Create menu that allows you to quickly navigate so that you
can create the following items. We looked at these in the previous sections:

•	 Query

•	 Table

•	 Dashboard

•	 SQL Warehouses

•	 Alert

The Databricks Product Suite – A Visual Tour26

The Create menu can be accessed by clicking on the Create icon, , in the left-hand sidebar. It will
open a drop-down, as shown in the following screenshot:

Figure 2.15 – The Create menu

The user can quickly navigate to the creation aspect of the available options with this menu.

Note on the Create Button
The Create menu is a persona/experience-specific menu. The Creation options will be different
for the Machine Learning persona and the Data Science & Engineering persona.

This concludes our tour of the SQL persona. Moving on, we will take a brief tour of the Machine
Learning persona and the Data Science & Engineering persona to complete our visual tour of the
lakehouse platform.

The Machine Learning persona view
In this section, we will cover the Machine Learning persona. To switch to the Machine Learning
persona, click on the Machine Learning option in the persona switching menu, as shown in the
following screenshot:

The Machine Learning persona view 27

Figure 2.16 – Switching to the Machine Learning persona

Switching to the Machine Learning persona will bring up the landing page for Machine Learning.
The following screenshot shows a section of the landing page:

Figure 2.17 – The Machine Learning persona landing page

The Databricks Product Suite – A Visual Tour28

The first thing that should stand out is the familiarity of experience. The left-hand sidebar brings up
familiar icons, such as the following:

•	 Create : Like the SQL persona, the Create button provides easy navigation to creating
artifacts relevant to the Machine Learning persona. These artifacts can be divided into two groups:

	� Machine Learning: Databricks AutoML Experiments, MLflow Experiments, and
MLflow Models

	� Developer Tools: Notebooks, Tables, Clusters, and Jobs

•	 Data : Exactly like the SQL persona, Data Explorer allows you to explore the data on
the Lakehouse. This is in keeping with Lakehouse’s mission for a single source of truth
for all data teams.

•	 Clusters : Like the SQL Warehouses in the SQL persona, the clusters allow data scientists
to provision computation resources in the form of clusters with Delta Engine to execute their
machine learning code and pipelines. It is important to note that clusters differ from SQL
Warehouses in terms of their topology, performance, and concurrency characteristics. This
is in keeping with Lakehouse’s mission to bring the correct computation power to the task at
hand – be it business intelligence, machine learning, or data engineering.

Apart from the familiar Lakehouse unification features – the data and the clusters/warehouses – the
Machine Learning experience also exposes other data science and machine learning-oriented features.
A detailed discussion of these features is outside the scope of this book. I encourage you to explore
these at your own pace with official product guides and the latest documentation (https://docs.
databricks.com/applications/machine-learning/index.html). However, here
is a quick rundown of the major available tools:

•	 Workspace : This is like a shared space or workbench where users and teams can create shared
projects with arbitrary folder structures and author code in them with Databricks Notebooks
and other files. Workspace also allows you to create shared code libraries and experiments.

•	 Repos : This option allows users and teams to connect their choice of version control system
(for example, GitHub, Bitbucket, GitLab, and so on) to their Databricks workspace. It allows
you to author code in Databricks Notebooks and sync them with project repositories. This
enables seamless continuous integration and continuous deployment (CI/CD) pipelines.

•	 Workflows : This option allows you to execute code in a non-interactive, scheduled way.
We can think of Workflows as a way of creating data or task pipelines. It also allows you
to author jobs with multiple tasks and arbitrary dependencies from the UI and via APIs. A
practical example would be creating a job for a model pipeline involving feature engineering,
model training, model validation, and model deployment. Another example would be a job
for monthly predictions using a model. You can also use Workflows to schedule a periodic
refresh of a Databricks SQL query or dashboard.

https://docs.databricks.com/applications/machine-learning/index.html
https://docs.databricks.com/applications/machine-learning/index.html

The Data Science and Engineering persona view 29

•	 Experiments : Databricks provides a managed MLflow service (https://databricks.
com/product/managed-mlflow) that data scientists and machine learning engineers can
use for MLOps. Experiments are a high-level concept in MLflow that corresponds to a machine
learning project within which data scientists can record and organize their “experiments” while
developing a model.

•	 Feature Store : Machine learning algorithms take a set of input data (features) and try to
create a mathematical model that best explains its characteristics. These features can be raw or
derived data. In large enterprises, features can often be reused. Feature Store enables cataloging,
discovery, governance, and reuse of features across data science projects.

•	 Model Registry : Like Feature Store, Model Registry aims to catalog all the models that
are developed by various teams, as well as enable their discovery and reuse.

This concludes a very brief visual tour of the Machine Learning persona. You are encouraged to
follow the official guides and the latest documentation if you wish to explore the Machine Learning
persona in depth.

Next, we will quickly cover the Data Science & Engineering persona in Databricks.

The Data Science and Engineering persona view
The Data Science & Engineering persona caters to data engineering personnel. It allows them to develop,
run, and maintain data engineering pipelines that keep the Lakehouse data catalog up to date. These
data engineering pipelines feed the data catalog with the latest data, which, in turn, is consumed by
the SQL and Data Science & Engineering personas. In this section, we very briefly cover this persona.

To switch to the Data Science & Engineering persona, click on the Data Science & Engineering
option in the persona menu:

Figure 2.18 – Switching to the Data Science & Engineering persona

https://databricks.com/product/managed-mlflow
https://databricks.com/product/managed-mlflow

The Databricks Product Suite – A Visual Tour30

Switching to the Data Science & Engineering persona will bring up the following landing page:

Figure 2.19 – The Data Science & Engineering persona landing page

In keeping with the other views, we can see that we have the now-familiar Create, Workspace, Repose,
Data, Compute, and Jobs options.

These features are the same as what we saw in the previous section, The Machine Learning persona.
As we can see, the only thing that’s different is a lack of machine learning-specific toolsets. This is
because this persona is primarily concerned with data wrangling, data ingestion, and data quality and
access. Therefore, tools such as Repos, Notebooks, and Jobs are enough for them to carry on with
their daily workflow.

For the sake of brevity and elimination of redundancy, we will conclude this very brief visual tour of
the data engineering experience. For details on the various left-hand sidebar menu options, please go
to the The Machine Learning persona section.

Summary
In this chapter, we took a visual tour of the Databricks Lakehouse platform. We focused on the
lakehouse platform primarily from the perspective of a business intelligence user – that is, the SQL
persona. We familiarized ourselves with the various features and toolsets that the Databricks SQL
product provides to enable the daily activities of users.

We also briefly examined the Data Science & Engineering and Machine Learning persona views of
the Databricks Lakehouse platform, which we will not revisit as they are not the focus of this book.

Summary 31

Finally, while looking at the various features and toolsets, we learned how they map to the various
layers of the Lakehouse architecture and how the same data is leveraged for all users of the data in
the Lakehouse.

In the next chapter, we will start our deep dive into the features and toolsets in the Databricks SQL
product, starting with the data catalog.

3
The Data Catalog

The data catalog is the portal to the data layer of the Lakehouse. It exposes the various catalogs,
databases, and tables to the end user for their consumption. In this chapter and the next, we will deep
dive into the various facets of the data catalog.

In this chapter, we will explore the data catalog from the perspective of an end user. Here, end user
refers to business intelligence analysts, data analysts, and users who are interested in exploring data
and performing exploratory data analysis (EDA).

In this chapter, we will cover the following topics:

•	 Understanding the data organization model in Databricks SQL

•	 Exploring data visually with the data catalog

•	 Exploring data programmatically with SQL statements

Technical requirements
For this chapter, you will need the following tools and functions:

•	 A Databricks workspace that has a premium or higher subscription level.

•	 Any modern internet browser.

•	 VM quotas for creating a SQL Warehouse. The default small-size SQL Warehouse requires
a minimum VM quota. If you are using your cloud account, ensure that your account has
service limits to meet these. Having an insufficient quota will prevent the SQL Warehouses
from starting up. You can review the required quotas at https://docs.databricks.
com/sql/admin/sql-endpoints.html#cluster-size.

https://docs.databricks.com/sql/admin/sql-endpoints.html#cluster-size
https://docs.databricks.com/sql/admin/sql-endpoints.html#cluster-size

The Data Catalog34

Understanding the data organization model in
Databricks SQL
In this section, we will learn about how data assets are organized in Databricks SQL. We call this the
data organization model.

The open data lake, which is the foundation of the Databricks Lakehouse platform, relies on cloud
object storage for storing data. This data is stored in human-readable formats such as CSV, TSV, and
JSON, or big data-optimized formats such as Apache Parquet, Apache ORC, or Delta Lake.

A Note on Data Engineering
The data in the data lake is ingested by data engineering processes. Data engineers create data
pipelines that bring data from source systems, clean them, transform them, and write them to
the designated destinations in the data lake. These destinations are directories in the data lake.
The data within the directory can be further arranged in some fashion – for example, by date.

These file formats are structured and have a defined schema. Having a schema means these files (or a
directory of files within the same schema) can be conceptualized as a table. These tables are usually
part of an organized collection of structured information. Hence, directories that contain data can be
conceptualized as databases or schemas. Due to this, we have the makings of a traditional database-
like system on the data lake. Once we have these, we must catalog these databases and their tables so
that SQL users can discover and query these tables with standard SQL.

Databricks provides two cataloging technologies: Apache Hive Metastore and Unity Catalog.

Apache Hive Metastore

Apache Hive Metastore is a popular open source catalog for data lakes. It is part of the larger Apache
Hive system that revolutionized the big data processing scene when it was launched in 2010. You
can read more about Metastore’s design and concepts here: https://cwiki.apache.org/
confluence/display/hive/design#Design-Metastore.

At the time of writing, Apache Hive Metastore is the default cataloging technology in Databricks.
However, it will soon give way to Unity Catalog.

Understanding the data organization model in Databricks SQL 35

Unity Catalog

Unity Catalog (https://databricks.com/product/unity-catalog) is a new data
cataloging technology developed by Databricks that aims to meet the requirements of the Lakehouse
(compared to a vanilla data lake). It provides significant benefits over Hive Metastore in general and
within the context of Databricks. For example, it provides audit logging, inbuilt access control, and
the ability to control access to cloud storage. At the time of writing, Unity Catalog is in preview in
Databricks. It may become generally available by the time you read this book.

Note
I will introduce the differences between Hive Metastore and Unity Catalog as we proceed. However,
I will say this – within the context of our discussion of Databricks SQL, the core concepts and
our interactions with the data catalog will remain the same, irrespective of whether you are
using Hive Metastore or Unity Catalog. So, you can read ahead without the fear of missing out.
If, however, you are a data engineer, Databricks administrator, or just generally inquisitive about
the Unity Catalog product, you can head over to https://docs.microsoft.com/en-
us/azure/databricks/data-governance/unity-catalog/key-concepts.

Regardless of the data cataloging technology, each instance of Databricks SQL is associated with an
instance of a Metastore.

Note
The instance of a Metastore is not to be confused with the technology Apache Hive Metastore!

A Metastore is a container that organizes the metadata for the databases and tables in a high-level
object called a catalog.

One instance of Databricks SQL (a workspace in Databricks parlance) can only be associated with
one Metastore.

So, bringing it all together, we have a three-level data organization model of Databricks SQL:

•	 Tier 1: Catalogs

•	 Tier 2: Databases (equivalent to Schema)

•	 Tier 3: Tables (as well as views and functions based on the tables)

https://databricks.com/product/unity-catalog
https://docs.microsoft.com/en-us/azure/databricks/data-governance/unity-catalog/key-concepts
https://docs.microsoft.com/en-us/azure/databricks/data-governance/unity-catalog/key-concepts

The Data Catalog36

Officially, this is called the three-level namespace and can be visualized as follows:

Figure 3.1 – Three-level namespace

The three-level namespace fits into the data catalog as follows:

•	 One organization can have any number of Metastores (1:n).

•	 One Metastore can have any number of catalogs (1:n).

•	 Each catalog can have any number of databases/schemas (1:n).

•	 Each database can have any number of tables, views, and functions (1:n).

•	 Each table points to directories in cloud storage (1:n).

The following alternative visualization should make things clearer:

Figure 3.2 – Data lake data abstraction hierarchy

Understanding the data organization model in Databricks SQL 37

We will bring this organization model to life with an actual example shortly. However, before we do
so, let’s quickly look at the nuances that arise from choosing between Apache Hive Metastore and
Unity Catalog.

Implications of choosing a cataloging technology

Let’s look at the preceding diagram from the perspective of Apache Hive Metastore:

•	 You cannot create a new Metastore at will. Each instance of the Databricks SQL workspace will
come with an instance of Hive Metastore.

•	 You cannot create new catalogs in the Metastore. You will be provided with an out-of-the-box
catalog called hive_metastore that you must use.

•	 The Metastore associated with the Databricks SQL workspace cannot be shared with other
Databricks SQL workspaces in your organization. To circumvent this, you can have a central,
self-maintained Apache Hive Metastore (https://docs.microsoft.com/en-us/
azure/databricks/data/metastores/external-hive-metastore) or you
can switch to Unity Catalog.

Now, let’s look at the preceding diagram from the perspective of Unity Catalog:

•	 You can create any number of Metastores.

•	 You can create any number of catalogs within each Metastore.

•	 A Databricks workspace can be associated with only one Metastore at a time. You can
change this association if required. The same Metastore can be shared across multiple
Databricks workspaces.

•	 You will still see the hive_metastore catalog in your list of catalogs. This is to enable a
smooth migration for organizations using Apache Hive Metastore to Unity Catalog.

You might be wondering why we need to provision multiple Metastores and multiple catalogs within
Metastores. Well, the answer lies in how Databricks is deployed as an organization-wide data platform.
For example, if your enterprise spans multiple countries, each country may want to organize its data
separately for data privacy and data residency reasons. In this case, you can have a Metastore for each
country, where all the Databricks workspaces in that country will be associated with this Metastore.
Within a Metastore, you can have multiple catalogs. You can use catalogs as a way of aligning to
your information architecture. For example, a catalog can correspond to a business unit, a team, or a
project. You could have a production catalog, a staging catalog, and a development catalog. You could
even have a business unity-specific catalog per environment, such as a production catalog for sales.

After this brief detour regarding the implications of choosing a data catalog, we are ready to bring
the data organization model to life.

https://docs.microsoft.com/en-us/azure/databricks/data/metastores/external-hive-metastore
https://docs.microsoft.com/en-us/azure/databricks/data/metastores/external-hive-metastore

The Data Catalog38

Note
The examples and figures in the following sections have been built with Apache Hive Metastore
since Unity Catalog is in preview at the time of writing. If you are using Unity Catalog, you
can simply replace any occurrence of Apache Hive Metastore with Unity Catalog and any
occurrence of the hive_metastore catalog name with the catalog name that you are using.

An example of the data organization model

Databricks provides example datasets out of the box. One such dataset is the people dataset, which
is stored at the following location in Delta format:

dbfs:/databricks-datasets/learning-spark-v2/people/people-10m

About DBFS
DBFS is a distributed filesystem that provides an abstraction on top of any cloud object
storage. You can read more about it here: https://docs.databricks.com/data/
databricks-file-system.html. The path mentioned in the preceding snippet is cloud
agnostic, so it will work irrespective of which cloud you are on.

To get started, follow these steps:

1.	 Create a database that will logically bind all the data assets to the people dataset.

Execute the following code in the SQL Editor to create a database:

CREATE DATABASE people_db;

This command will create a new database called people_db and register it in our data catalog. This
will be the hive_metastore catalog if you are using Apache Hive Metastore.

If you are using Unity Catalog, it will be a catalog of your choice in the Metastore associated with your
Databricks SQL workspace. The command will be in the following form:

CREATE DATABASE <catalog-name>.people_db

How to Execute the Snippets
In Chapter 2, The Databricks Product Suite – A Visual Tour, in the Query Editor section, we briefly
touched on how to navigate to the SQL Editor and execute queries. This includes associating the
editor with a SQL Warehouse. If you have not already gone through that chapter, please do so
now, as it introduces some of the features and functions that will be referenced in this chapter.

https://docs.databricks.com/data/databricks-file-system.html
https://docs.databricks.com/data/databricks-file-system.html

Understanding the data organization model in Databricks SQL 39

2.	 Next, we can create a TABLE in this database with the following SQL code:

CREATE TABLE people_db.people OPTIONS (PATH 'dbfs:/databricks-
datasets/learning-spark-v2/people/people-10m.delta');

As we learned earlier, TABLE is nothing but a relational abstraction of files with a defined schema.
Using the PATH option, we are specifying that the table abstraction, called people, points to the
data contained in the given PATH. You will also notice that this command creates this table in the
people_db database that we just created.

Now, the data catalog is aware of a database named people_db and a table named people
in this database.

Do I Always Need a Location?
No, you do not. The preceding example is an example of an unmanaged table, which means
that you are just applying the abstraction of a table to some dataset at some location. The data
at this location is being managed by some other process or entity. The other option is that of a
managed table, which creates a brand-new table at a location defined by Hive Metastore or Unity
Catalog. You can read more about unmanaged tables at https://docs.databricks.
com/data/tables.html#managed-and-unmanaged-tables.

So, if we were to visualize our database and table as per Figure 3.2, it would look like this:

Figure 3.3 – Data lake data abstraction hierarchy for people_db

https://docs.databricks.com/data/tables.html#managed-and-unmanaged-tables
https://docs.databricks.com/data/tables.html#managed-and-unmanaged-tables

The Data Catalog40

It is important to remember that the catalog, which is hive_metastore in this case, merely holds
the metadata about the schema. It does not store the actual data. It only hosts metadata, such as the
physical location, schema, partitioning schemes, and data statistics, about the databases and tables
that are registered with it.

The following diagram shows a very simplified version of the execution model of a query in
Databricks SQL:

Figure 3.4 – The execution model of a query

In the preceding diagram, the following process is occurring:

1.	 The user submits a query in Databricks SQL.

2.	 The query engine of Databricks SQL, running on a SQL Warehouse, transparently queries the
Metastore for the location of the objects referred to in the user query.

3.	 The Metastore returns the locations of the data that needs to be read by the query submitted
by the user.

4.	 The query engine reads the data at the received physical locations and performs the
required query.

5.	 The results are returned to the user.

Exploring data visually with the Data Catalog 41

As you can see, from the end user’s perspective, working with Databricks SQL is like working with
any traditional data warehouse or database system. You have a catalog of available data assets. You
write queries against them and Databricks SQL gets you the results of the query.

At this point, you might be thinking – if Databricks SQL hides all the underlying operations and
exposes a familiar SQL experience, then why did the author burden me with the knowledge of all
the underlying mechanics? I did so because, as with all software systems, if we have a firm handle on
the mechanics and resulting nuances, we can get the best user experience from the software system.

Now that we understand how data is organized in the Lakehouse (and hence Databricks SQL), we
are ready to start exploring. Let’s start by looking at the visual exploration tool in the Databricks SQL
platform – Data Explorer.

Exploring data visually with the Data Catalog
Data Explorer is a feature of Databricks SQL that allows users to visually navigate and explore the
data assets that are available in the data catalog.

As we saw in Chapter 2, The Databricks Product Suite – A Visual Tour, we can navigate to Data Explorer
by clicking the Data icon, , on the left-hand sidebar.

Data Explorer requires a running SQL Warehouse to be associated with it to be able to display the data
catalog. If the associated SQL Warehouse is not running, it will prompt you to start the Warehouse or
associate the explorer with a SQL Warehouse that is running.

Note
If you are using Unity Catalog, then a running SQL Warehouse is not required.

The SQL Warehouse association can be controlled using the dropdown highlighted in the
following screenshot:

Figure 3.5 – Associating a SQL Warehouse with Data Explorer

At this point, you can create a new SQL Warehouse or use the default out-of-the-box SQL Warehouse
as the associated SQL Warehouse. Start the SQL Warehouse if it is not already running.

The Data Catalog42

In Chapter 2, The Databricks Product Suite – A Visual Tour, we briefly saw the samples catalog and
the databases and tables present in it. In this chapter, we will create our own database, tables, views,
and functions.

We will use the people dataset, which comes bundled with Databricks, to do the following:

1.	 Create a database named people_db.

2.	 Create a table named people.

3.	 Create a view named gender_distribution.

4.	 Create a function named full_name.

The following minimal starter SQL code builds the preceding process for us:

--CREATE DATABASE

CREATE DATABASE people_db;

--CREATE TABLE

CREATE TABLE people_db.people OPTIONS (PATH 'dbfs:/databricks-
datasets/learning-spark-v2/people/people-10m.delta');

--CREATE VIEW

CREATE VIEW people_db.gender_distribution AS SELECT gender,
count(*) AS count FROM people_db.people GROUP BY gender;

--CREATE FUNCTION

CREATE FUNCTION people_db.full_name(

 firstName STRING,

 middleName STRING,

 lastName STRING

) RETURNS STRING RETURN concat(firstName, ' ', middleName, ' ',
lastName);

Exploring data visually with the Data Catalog 43

A Note on Creativity
Feel free to be creative when naming the data objects and even with the definition of views
and functions. The preceding SQL snippet is a minimal starter and, let’s be honest, not very
creative. However, it serves the purpose of creating data assets that will allow us to learn about
Data Explorer, which is the true focus of this chapter.

Data Explorer consists of two view panes. The left-hand view pane contains the navigation controls.
Let’s call it the navigation pane. The right-hand view pane is dynamic and shows content based on the
data asset that we have navigated to. Let’s call it the details pane. For example, if we have navigated up
to a database, the details pane will populate information about the database. Then, if we navigate to a
table or a view in the database, the details pane will populate information about the table or the view.

So, let’s begin our navigation and exploration, starting with Tier 1, the catalog.

Navigating the catalogs

In the navigation pane, click on the catalog blade, which is denoted by the icon. This will open
a dropdown showing the available catalogs. Since we looked at the samples catalog in Chapter
2, The Databricks Product Suite – A Visual Tour, let’s select the hive_metastore catalog. The
hive_metastore catalog comes with a default database, creatively named default:

Figure 3.6 – Navigating the available catalogs

The preceding screenshot shows the currently available catalogs.

The Data Catalog44

Navigating the databases

Once we have selected (or decided upon) a catalog to explore, the databases, denoted by the icon,
will populate the databases available in this catalog. If we select the samples catalog, we will see the
available databases/schemas:

Figure 3.7 – Navigating the databases in a catalog

Selecting a database will do two things:

•	 The details pane will populate the details about the selected database.

•	 The navigation pane will populate the list of tables and views available in the database.

The following screenshot shows how the details pane gets populated when we select the people_db
database:

Figure 3.8 – Exploring a database – database details

Exploring data visually with the Data Catalog 45

Click on the Permissions tab, as shown in the following screenshot, to see the permissions associated
with the database:

Figure 3.9 – Exploring a database – database permissions

Exploring databases

When we navigate to a database, the details pane shows the following four items:

•	 Owner (): This lists the owner of the database (if any). The owner has full privileges on the
database and has the power to grant or revoke privileges on the database for other users. See
Figure 3.8.

•	 Comment (): This is a metadata field and contains free-form text describing the database.
See Figure 3.8. In our example, it is empty. We can modify our CREATE DATABASE statement
(https://docs.databricks.com/sql/language-manual/index.html#ddl-
statements) so that it includes a comment.

•	 The Details tab: In Figure 3.8, the Details tab, which can be found in the details pane, shows
two things:

•	 Location: The location of the database on cloud storage. If you are using Unity Catalog, a
location will only be displayed if the table is external.

•	 Properties: Any additional properties that were set with the CREATE DATABASE statement.

•	 The Permissions tab: The Permissions tab, which can be found in the details pane, shows all
the principals (users, groups, and service principals) that have any explicit or inherited privilege
on the database. We will discuss principals, privileges, and the Databricks security model in
depth in Chapter 4, The Security Model. The Permissions tab is shown in Figure 3.9.

https://docs.databricks.com/sql/language-manual/index.html#ddl-statements
https://docs.databricks.com/sql/language-manual/index.html#ddl-statements

The Data Catalog46

Note
Editable Fields: The preceding screenshots show the possibility of editing owners and permissions
using the UI. We will cover these from a database administrator’s perspective in Chapter 4, The
Security Model, where we will discuss the security and governance of these assets. This section
is all about exploring, not governing, the data assets.

Permissions: I have kept the Permissions tab empty on purpose. My reasoning behind not
showing samples of permissions is to avoid introducing new terms that can potentially derail
the learning objective of this chapter. That said, we will circle back to these tabs and complete
the picture in Chapter 4, The Security Model.

Exploring tables

Once you navigate to a database, the navigation pane lists all the available tables and views.

First, let’s click on the people table. The details pane should now populate with the following view:

Figure 3.10 – Exploring a table – basic details and schema

As we can see, we get the following nine pieces of information:

•	 Data Format: The Delta symbol next to the table’s name in the Details pane specifies that this
table is a Delta table and that the underlying data files are in Delta format.

•	 Comment (): This is a metadata field and contains free-form text describing the table. In
our example, it is empty. We can modify our CREATE TABLE statement so that it includes
a comment.

•	 Owner (): This lists the owner of the table (if any). The owner has full privileges on the table
and has the power to grant or revoke privileges on the table for other users.

Exploring data visually with the Data Catalog 47

•	 Size (): This lists the total size of the data (that is, the underlying files) and the total number
of files across which the data is spread.

•	 The Schema tab: This tab shows the schema of the table – that is, the various available columns,
their data types, and any metadata comments for each column.

•	 The Sample Data tab: This tab shows a sample of the dataset. This is very a very helpful feature
to quickly get a feel of the data in the table without running any commands. See Figure 3.11.

•	 The Details tab: As seen in Figure 3.12, the Details tab shows three things:

	� Location: The location of the database on cloud storage.

	� Type: The type of the table. It could be Managed or Unmanaged. See the Do I always need
a location? note in the preceding section for a discussion on managed versus unmanaged
tables. Here, we can see that the type is EXTERNAL, which implies it’s an unmanaged table.

	� Table Properties: This indicates any additional properties that were set with the CREATE
TABLE statement.

•	 The Permissions tab: As seen in Figure 3.13, the Permissions tab shows all the principals (users
or groups) who have any explicit or inherited privilege on the database. We will discuss principals,
privileges, and the Databricks security model in depth in Chapter 4, The Security Model.

•	 The History tab: See Figure 3.14. The History tab shows a history of transactions on the table.
For every transaction, you will be able to see very granular details. For end users, Data Version
is the most pertinent column. Users can query the data as of a particular version or time. The
rest of the columns facilitate audit and governance on the table. The following are the most
important ones to keep in mind:

	� Version and Timestamp: These two columns uniquely identify every transaction. They can
be used to query the snapshot of the data as it existed at that version or timestamp.

	� User Id and Username: These two columns identify the user who performed this transaction.
This is very helpful for audit use cases.

	� Operation: This identifies the type of operation.

	� Job, Notebook, and Cluster ID: These identify whether the transaction originated from a
scheduled job or workflow (https://docs.databricks.com/data-engineering/
jobs/jobs.html) and, if so, the code/notebook that committed the transaction, as well
as the cluster that the transaction was executed on.

	� Operation Metrics: This provides useful statistics, such as the number of output rows.

https://docs.databricks.com/data-engineering/jobs/jobs.html
https://docs.databricks.com/data-engineering/jobs/jobs.html

The Data Catalog48

Let’s look at some screenshots to visualize what we’ve just discussed. The following screenshot shows
a section of the Sample Data tab for the people table:

Figure 3.11 – Exploring a table – the Sample Data tab

The following screenshot shows the Details tab for the same table:

Figure 3.12 – Exploring a table – the Details tab

Exploring data visually with the Data Catalog 49

The following screenshot shows the Permissions tab for the same table:

Figure 3.13 – Exploring a table – the Permissions tab

The following screenshot shows a section of the History tab for the same table:

Figure 3.14 – Exploring a table – the History tab

Note on the Rest of the History Details
The History tab of the table shows a lot of additional information about the DeltaLake transaction.
It is not very relevant to the current discussion, so you should not be concerned about this.
However, if you want, you can read more about it here: https://github.com/delta-
io/delta/blob/master/PROTOCOL.md.

https://github.com/delta-io/delta/blob/master/PROTOCOL.md
https://github.com/delta-io/delta/blob/master/PROTOCOL.md

The Data Catalog50

Exploring views

Views are listed along with tables in the navigation pane. To distinguish between tables and views,
views are depicted with the Sunglasses icon: .

The Details tab for views is the same as that for tables. Hence, for the sake of brevity, we will only
mention the notable differences here:

•	 Size (): At the time of writing, Databricks SQL does not support materialized views (https://
en.wikipedia.org/wiki/Materialized_view). Hence, views are just, well, views.
Therefore, they do not have a computed size associated with them. You should see Unknown
in the size field.

•	 The History tab: Similar to the Size tab, since these are not materialized views, no transactions
can be performed on them. Hence, the History tab will always be empty.

•	 The Details tab: This tab shows additional information about the view. The following important
details are populated:

	� Created Time

	� Last Access

	� View Text: The underlying SQL query

	� View Query Output Columns

Note on the Rest of the View Details
The Details tab for the view shows a lot of additional information about Apache Hive, such as
serialization/deserialization libraries and their formats. I do not think they are very relevant to
the current discussion, so you should not be concerned about this either. However, if you want,
you can read more about them here: https://cwiki.apache.org/confluence/
display/Hive/SerDe.

Exploring functions

At the time of writing, functions are not visible in Data Explorer. We will learn how to explore functions
in the next section, where we’ll learn how to explore the data catalog programmatically.

https://en.wikipedia.org/wiki/Materialized_view
https://en.wikipedia.org/wiki/Materialized_view
https://cwiki.apache.org/confluence/display/Hive/SerDe
https://cwiki.apache.org/confluence/display/Hive/SerDe

Exploring the data programmatically with SQL statements 51

Exploring the data programmatically with SQL statements
Databricks SQL provides familiar SHOW and DESCRIBE commands that allow users to query the
data catalog and discover the various databases, tables, views, and functions available to them. For
a detailed SQL reference on the same, please see https://docs.databricks.com/sql/
language-manual/index.html#auxiliary-statements.

Let’s look at some examples of how we can use these commands to explore the data available to us.
We will continue to use the people_db database we created in the preceding section on visual
exploration (see Figure 3.8).

Broadly, we will use two groups of SQL statements:

•	 Show statements

•	 Describe statements

As we saw in Chapter 2, The Databricks Product Suite – A Visual Tour, we will use the SQL Editor to
execute our queries. Navigate to the SQL Editor by clicking the SQL Editor icon, . Associate your
editor with a SQL Warehouse, as highlighted in the following screenshot:

Figure 3.15 – Associating a SQL Warehouse with the Query Editor

Note on the SQL Editor’s Features
The SQL Editor will be covered in depth in Chapter 5, The Workbench. For this chapter, we only
need to know how to execute a query.

The preceding screenshot also shows the familiar navigation pane on the left-hand side, which allows
us to browse through the catalogs, databases, tables, and views.

On the right-hand side is the Query Editor. This is where we will type in our SQL code. The Run
button in the top right-hand corner runs the SQL code in the Query Editor. Below the Query Editor
is the results section.

https://docs.databricks.com/sql/language-manual/index.html#auxiliary-statements
https://docs.databricks.com/sql/language-manual/index.html#auxiliary-statements

The Data Catalog52

We will begin navigating and exploring by looking at databases.

Note
If you are using Unity Catalog, you can also explore the catalogs that are available in your
workspace by executing SHOW CATALOGS and DESCRIBE CATALOG.

Exploring the databases

The following SHOW statement lists all the databases that we have access to:

SHOW DATABASES;

Executing the preceding command produces the following output:

Figure 3.16 – Showing databases in the Data Catalog

As we can see, once the SQL statement has been keyed in, we can click the Run button. The query
results are then returned. As we saw previously, here, the databases are listed in the results section.

Exploring the data programmatically with SQL statements 53

To see the details about a database, we can run the DESCRIBE statement, like so:

DESCRIBE DATABASE EXTENDED people_db;

Executing the preceding command produces the following output:

Figure 3.17 – Describing a database

As we can see, the results contain the following fields:

•	 Namespace Name

•	 Comment

•	 Location

•	 Owner

•	 Properties

These are the same description fields that we saw when visually exploring the data catalog in the
preceding section.

The Data Catalog54

A Note on the Owner Field
In Data Explorer, the Owner field shows the creator of the database as the owner. However, in
the preceding screenshot, you will see that the owner is set to root. This is very likely due to
some quirks of the underlying Apache Hive Metastore. In the Hive world, the owner is supposed
to be the owner of the directory Hadoop Distributed File System (HDFS). However, there is
no direct equivalent of the owner on cloud storage systems. Hence, it defaults to root. This
is one of the advantages of Unity Catalog. Unity Catalog comes bundled with table ownership
and access control tracking.

The Data Explorer UI also shows the permissions associated with the database. We can achieve the
same programmatically by running the SHOW GRANT statement, like so:

SHOW GRANT ON DATABASE people_db;

The preceding command produces the following output:

Figure 3.18 – Showing permissions on the database

As we can see, each row lists a privilege (ActionType), the recipient of the privilege (Principal),
and the object upon which the privilege is granted (ObjectType and ObjectKey). This is the same
information we get when using Data Explorer.

Exploring the data programmatically with SQL statements 55

Exploring tables

We can list all the tables available in a database using the SHOW statement, like so:

SHOW TABLES IN people_db;

The preceding command produces the following output:

Figure 3.19 – Listing the tables in a database

As we can see, the aforementioned command returns the available tables in the tableName column.

Note
If you have been following this example carefully, you will notice that the gender_
distribution view is also listed as a table in this example. Views are only treated as tables
in Apache Hive Metastore.

To retrieve the details about a table, we can run the DESCRIBE statement, like so:

DESCRIBE TABLE EXTENDED people_db.people;

The Data Catalog56

The preceding command produces the following output:

Figure 3.20 – Retrieving details about a table

Exploring the data programmatically with SQL statements 57

Here, we can see that the results are divided into three sections (each separated by a blank row):

•	 Section 1: This is equivalent to the Schema tab in the Data Explorer UI. It provides the schema
of the table.

•	 Section 2: This is the partitioning section. This relates to the underlying directory and file
structure. If the data is divided into folders based on a field, such as birthDate, then that
field becomes a partition column. The partition column is used by Query Engine to smartly
read only the required data files. We will cover this in detail in Chapter 8, The Delta Lake. Our
table does not have any partitions.

•	 Section 3: This is equivalent to the Details tab in the Data Explorer UI.

The Data Explorer UI also shows the permissions associated with the table. We can achieve the same
programmatically by running the SHOW GRANT statement, like so:

SHOW GRANT ON TABLE people_db.people;

The preceding command produces the following output:

Figure 3.21 – Showing permissions on the table

The Data Explorer UI also shows the History tab, which displays all the transactions that have
been committed on the table. We can achieve the same programmatically by running a DESCRIBE
statement, like so:

DESCRIBE HISTORY people_db.people;

The Data Catalog58

The preceding command produces the following output:

Figure 3.22 – Showing the transaction history of the table

Exploring views

The methods of exploring views are the same as they are for tables. Hence, for the sake of brevity,
we will just list the SQL commands here. You are encouraged to run them in your workspace and
observe the results.

We can list the views that are available in a database by executing the following SHOW statement:

SHOW VIEWS IN people_db;

To retrieve details about a view, we can run the following DESCRIBE statement:

DESCRIBE TABLE EXTENDED people_db.gender_distribution;

Note that we are using the DESCRIBE TABLE statement to describe the view. This is because the
DESCRIBE statement does not accept the VIEW keyword and, as you may recall, views are treated
as equivalents of tables in Apache Hive Metastore.

To retrieve the permissions on a view, execute the SHOW GRANTS statement:

SHOW GRANTS ON people_db.gender_distribution;

Unlike tables, views do not support writes, which is they do not have an associated history.

Exploring the data programmatically with SQL statements 59

Exploring functions

Functions can only be explored programmatically.

There are two categories of functions in Databricks SQL:

•	 System functions

•	 User-defined functions

To list all the available system functions, execute the following SHOW statement:

SHOW SYSTEM FUNCTIONS;

Databricks SQL supports a lot of functions. You should refer to the official documentation (https://
docs.microsoft.com/en-us/azure/databricks/sql/language-manual/) for a
comprehensive list of functions.

To list all the available functions in a database, execute the following SHOW statement:

USE people_db;

SHOW USER FUNCTIONS;

The preceding code produces the following output:

Figure 3.23 – Showing the available user-defined functions

https://docs.microsoft.com/en-us/azure/databricks/sql/language-manual/
https://docs.microsoft.com/en-us/azure/databricks/sql/language-manual/

The Data Catalog60

To get details about the function, we can execute the following DESCRIBE statement:

DESCRIBE FUNCTION people_db.full_name;

The preceding code produces the following output:

Figure 3.24 – Details of a function

As we can see, the details are not pretty printed, but they get the job done. We can quickly get the
signature of the function with the Input and Output sections of the results.

Finally, we can get the permissions on the function by executing the following SHOW GRANTS statement:

SHOW GRANTS ON FUNCTION people_db.full_name;

Programmatic Access from Code
At this point, if you are a developer, you might be wondering whether you can execute these
commands from your code in Java or Python, for example. Or, if you are an analyst with a
preference for a specific tool, you might be wondering whether you are bound to using the
workbench that Databricks SQL provides. The answer is that you can use any tool you want.
We will cover access from external tools in Chapter 7, Using Business Intelligence Tools with
Databricks SQL.

Summary 61

Summary
In this action-packed chapter, we learned how data assets are arranged in the data catalog with the
data organization model. After that, we learned how to explore and discover the data assets in the data
catalog with the Data Explorer UI. Finally, we learned how to explore and discover the data assets in
the data catalog with standard (and familiar) SHOW and DESCRIBE statements.

In the next chapter, we will continue looking at the data catalog. However, this time, we will put on the
lens of a database administrator, who is responsible for the governance and security of the data assets.

4
The Security Model

In Chapter 3, The Data Catalog, we saw how the data catalog is the portal to the data layer of the
Lakehouse. It exposes the various catalogs, databases, and tables to the end user for their consumption.
This raises an important question of how to secure these data assets.

The data catalog represents all the data of your organization and it should be protected with the
relevant and necessary controls. Securing and governing data assets in a data lake is a significant
undertaking. Furthermore, uniform access control must be applied to all the data assets for reasons
such as auditability and scalability. Typically, the database administrators (DBAs) are responsible
for implementing the controls for the security and governance of the data assets.

However, as we discussed in Chapter 3, The Data Catalog, unlike traditional databases and data
warehouses, the DBAs will have to consider that the tables in a data lake are abstractions over files in
cloud object storage. This means they must ensure that while access control is programmed on these
tables, these access controls are translated to the underlying cloud object storage access.

This chapter will introduce the data security model of Databricks SQL. We will discuss how the security
model accounts for both user-facing table access control and cloud object storage. We will also discuss
the mechanisms to program it for all current and future data assets at scale and with simplicity.

In this chapter, we will cover the following topics:

•	 The Databricks SQL security model

•	 User-facing table access control

•	 The internals of cloud storage access

The Security Model64

Technical requirements
To follow this chapter effectively, ensure that you have the following:

•	 A Databricks workspace. Databricks SQL requires a premium or higher subscription level.

•	 A basic understanding of standard SQL statements for data access control, such as GRANT,
DENY, and REVOKE.

•	 A fundamental understanding of cloud object storage, cloud Identity and Access Management
(IAM), and the data lake architecture.

•	 Enough VM/EC2 quotas for creating a SQL Warehouse.

The Databricks SQL security model
The Databricks SQL security model is based on the well-established security model in SQL databases,
which allows you to set fine-grained access permissions using standard SQL statements such
as GRANT and REVOKE.

In Chapter 3, The Data Catalog, in the Understanding the data organization model in Databricks SQL
section (see Figure 3.1), we established the existence of the following data assets:

•	 Catalog

•	 Databases

•	 Tables

•	 Views

•	 Functions (named and anonymous)

•	 Any files (that is, the underlying files of a table)

These are the securable objects in the data catalog.

In Chapter 3, The Data Catalog, we also learned that we have a choice of two data cataloging technologies:

•	 Apache Hive Metastore (current default)

•	 Unity Catalog (future default)

Regardless of the catalog that you use, from a usage perspective, the security model and the means to
program it remain the same. The difference lies in the internals of how each technology implements
the security model. We will discuss the differences in this chapter. That said, keep in mind that while
the underlying implementation is different, the effects and commands are the same.

The Databricks SQL security model 65

The data catalog is responsible for storing the table access control lists (ACLs) – that is, the programmed
permissions for users on various securable objects.

Let’s revisit our diagram of The execution model of a query from Figure 3.4 and see how the two
cataloging technologies handle ACL information.

Access control with Apache Hive Metastore

The following diagram shows the execution of a query when Apache Hive Metastore is used. We will
discuss the steps shortly. For now, let’s take note of the authorization flow:

Figure 4.1 – The execution model of a query with Hive Metastore

Apache Hive Metastore is only a data catalog. It does not have any built-in authorization mechanisms
for either the tables or the underlying data storage locations. It depends on auxiliary systems to enable
authentication and authorization. Databricks provides a separate table ACL store that complements
Apache Hive Metastore and contains the programmed ACLs.

In Chapter 3, The Data Catalog, we also discussed how the table ACLs and the instance of Apache Hive
Metastore are unique to each Databricks SQL workspace. This means the ACLs must be programmed
anew for every workspace.

The Security Model66

Finally, Hive Metastore does not have objects representing cloud storage paths and cloud storage
credentials such as IAM profiles or service principals. Hence, you must separately program direct
user access to the cloud storage using the cloud’s respective IAM controls. This scenario is less likely
for the users of Databricks SQL, but still possible. For example, if someone requests an external table
on a cloud storage location, your cloud IAM team may have denied the user access to that location,
so you permit them to access it via the external table. Hence, you must keep in sync with the cloud
IAM team at all times.

Access control with Unity Catalog

The following diagram shows the execution of a query when Unity Catalog is used. We will discuss
the steps shortly. For now, let’s take note of the authorization flow:

Figure 4.2 – The execution model of a query with Unity Catalog

Unity Catalog contains the table ACLs within itself, along with the metadata about the securable objects.

In Chapter 3, The Data Catalog, we learned how Unity Catalog allows you to create multiple Metastores.
These can be assigned to one or more workspaces, allowing different projects or business units to access
the same data catalog. This also means that the ACLs are carried over seamlessly into the workspace
that the Metastore has been assigned to, so there is no need to reprogram the ACLs in every workspace.

The Databricks SQL security model 67

Finally, Unity Catalog also contains objects that represent cloud storage locations and cloud storage
credentials. Hence, Unity Catalog allows you to program access to cloud storage locations with familiar
security statements such as GRANT, DENY, and REVOKE instead of cloud-specific IAM implementations.

Query execution model

Irrespective of the data cataloging technology, you will notice that there are two distinct
authorization events:

•	 The access control on catalogs and objects in the catalog such as databases, tables, and views.
This access control is user-facing – that is, it will affect the user’s permissions to interact with
data assets (Steps 2 and 3 in Figure 4.1 and Figure 4.2).

•	 The SQL Warehouse uses its authorization on the physical data locations on the cloud storage
to fetch the data files and serve the query (Step 5 in Figure 4.1 and Figure 4.2). The authorization
that’s given to SQL to access the physical data locations on the cloud storage is a one-time
administrative step. We will learn more about it in the The internals of cloud storage access section.

Let’s look at how authorization happens within the overall query execution flow:

1.	 The user submits a query in Databricks SQL.

2.	 The query engine consults the ACLs to confirm whether the user has the necessary privileges
to access the table or view referred to in the user query:

	� If the privileges are insufficient, the query is blocked.

	� The query attempt is audit-logged.

3.	 The query engine transparently queries the Metastore for the location of the objects referred
to in the user query.

4.	 The Metastore returns the locations of the data that need to be read for the query submitted
by the user:

	� Hive Metastore will return the paths of the data files on the cloud object storage.

	� Unity Catalog will return signed URLs for the data files on the cloud object storage. A signed
URL is a URL to the data file that comes bundled with short-lived authorization to perform
some action, such as GET, on the file referred to by the URL.

The Security Model68

5.	 The query engine reads the data at the locations returned by the Metastore in Step 4, performs
the computations in the query, and obtains the results:

	� With Hive Metastore, the query engine transparently authenticates itself to the cloud IAM
system and accesses the data at the location using the configured authorization. For Azure,
this is done via Active Directory service principals. For AWS, it will be via instance profiles.
For GCP, it will be via service accounts.

	� With Unity Catalog, the short-lived signed URLs will be used.

6.	 The results are returned to the user.

The DBAs only need to configure the privileges to the objects for users or groups of users with the
GRANT, DENY, and REVOKE statements. The complexity of translating the table abstraction into
cloud object storage and authenticating the cloud object storage access is handled transparently by
the Databricks SQL system during query execution. The following diagram should clarify this further:

Figure 4.3 – User-facing table access control versus cloud storage access with Hive Metastore

As we can see, the table access control uses the standard database security statement, GRANT, to
permit users to operate on data assets such as tables. Similarly, standard database security statements
such as REVOKE and DENY (not mentioned in the preceding diagram) can be used to prevent access.

When a user submits a query, the permissions are checked to confirm whether the user is privileged
to perform the operations specified in the query, upon the tables specified in the query. If the check
goes through, Databricks SQL will use the appropriate means to read the data files of the table –
signed URLs with Unity Catalog and a service principal/instance profile/service account with Hive
Metastore. This step is transparent to the end user. If the end user is authorized to use the table in
the way they have requested, the request will go through; otherwise, they will receive an error in line

User-facing table access control 69

with GRANT – for example, “The user does not have READ privileges on table departments.” They will
not be burdened with the knowledge of the underlying cloud object permissions.

User-facing table access control
Diving further into the security model, let’s discuss table access control. In essence, table access
control requires programming a user’s privileges to perform operations on a data object/asset. The
owners of data objects or administrators will implement this programming with standard database
security statements.

First, we will discuss users, objects, operations, and privileges. Then, we will bring them all together
and see how we can program them with user-facing table access control.

Users, groups, and service principals

Databricks SQL inherits users and groups from the Databricks Lakehouse platform. Users and groups
can be managed from the Admin Console area of the Databricks platform.

Note to Administrators
At the time of writing, user and group management is only available from the Data Science &
Engineering and the Machine Learning persona experiences.

If you are using Unity Catalog, you should create account-level identities so that the ACLs can be
programmed once and carried into different workspaces automatically. See https://docs.
databricks.com/data-governance/unity-catalog/manage-identities.
html for more information.

A full discussion of user and group management is outside the scope of this book. We will only
explore the parts that are relevant to the discussion at hand. Please see the official documentation
at https://docs.databricks.com/administration-guide/users-groups/ for
detailed user and group administration.

The first thing we must ensure is that the user or user group has the necessary entitlement to access
Databricks SQL.

An entitlement is a property that allows a user, service principal, or group to interact with Databricks
in a specified way. We must select the Databricks SQL access entitlement for the user or group.

To provide a user with access to Databricks SQL, go to Admin Console | Users and select the Databricks
SQL access entitlement, as shown in the following screenshot:

https://docs.databricks.com/data-governance/unity-catalog/manage-identities.html
https://docs.databricks.com/data-governance/unity-catalog/manage-identities.html
https://docs.databricks.com/data-governance/unity-catalog/manage-identities.html
https://docs.databricks.com/administration-guide/users-groups/

The Security Model70

Figure 4.4 – Databricks SQL access entitlement for a user

To provide a user group with access to Databricks SQL, go to Admin Console | Groups and select
the Databricks SQL access entitlement, as shown in the following screenshot:

Figure 4.5 – Databricks SQL access entitlement for a user group

User-facing table access control 71

Note on Service Principals
There is a special type of user in Databricks called the service principal. The service principal
is an API-only identity and is used for executing automated tools, jobs, and applications. This
avoids binding a production job to an actual user. You can read more about them in the official
documentation at https://docs.databricks.com/administration-guide/
users-groups/service-principals.html. At the time of writing, the service
principal user cannot execute queries on Databricks SQL. It is only used for management APIs.
Hence, this user type is not relevant to the discussion at hand.

Securable objects

The second concept is the data objects that users will access. These data objects can be anything in
the data catalog. The following list enumerates the available data objects, along with their place in
the hierarchy:

•	 Catalog:

	� Database:

	� Table

	� View

	� Function (named)

•	 Anonymous function: These are user-defined functions and temporary session-specific
functions programmed in Scala, Java, or Python. At the time of writing, they are not supported
in Databricks SQL.

•	 Any file: This is a special data object that represents direct access to the underlying cloud object
storage. This allows access to the data files directly if such access is required.

•	 External location (Unity Catalog only).

•	 Storage credential (Unity Catalog only).

If you need a refresher, revisit the Understanding the data organization model in Databricks SQL section
of Chapter 3, The Data Catalog, for more details on the various objects and the relevant hierarchy.

These are the objects that users (introduced in the Users, groups, and service principals section)
will access, so they must be secured with access control and governance. Hence, we call all of them
securable objects.

We can define securable objects as all the elements in the data catalog that must be protected and
governed. In effect, securable objects are the data catalogs, and the data objects within those catalogs
must be secured by the table access control system.

https://docs.databricks.com/administration-guide/users-groups/service-principals.html
https://docs.databricks.com/administration-guide/users-groups/service-principals.html

The Security Model72

Operations

Users can execute operations on securable objects. There are different varieties, as follows :

•	 Data Definition Language (DDL) statements such as CREATE, DROP, ALTER, COMMENT,
and TRUNCATE

•	 Data Manipulation Language (DML) statements such as INSERT, UPDATE, DELETE,
and MERGE

•	 Data retrieval statements such as SELECT

•	 Auxiliary statements such as SHOW, DESCRIBE, ANALYZE, and EXPLAIN

•	 Security statements such as GRANT, REVOKE, and DENY

Note
Refer to the official documentation to learn more about individual commands: https://
docs.databricks.com/sql/language-manual/ for details.

Privileges

To be able to execute operations on securable objects, users require the necessary privileges. The
following is a list of available privileges:

•	 ALL_PRIVILEGES: A blanket privilege that gives the recipient all the privileges in this list
in one go.

•	 USAGE: This is a catalog/database-level privilege that is a must-have requirement for a user or
group to be able to make use of any other privilege discussed in this list:

	� If a user is an admin or the owner of a catalog/database either directly or via a group, then
the user has USAGE privileges.

	� For any other case, USAGE privileges must be explicitly granted. For example, to create
a table, users should either own the database or have USAGE and CREATE privileges
on the database.

•	 SELECT: The ability to have read access to a data object:

	� Supported on databases, tables, views, and named functions.

	� If you are using Unity Catalog, SELECT does not apply to catalogs and databases. SELECT
must be applied at the table level.

https://docs.databricks.com/sql/language-manual/
https://docs.databricks.com/sql/language-manual/
https://docs.databricks.com/sql/language-manual/ for details

User-facing table access control 73

•	 CREATE: The ability to create a data object:

	� Supported on a catalog object: This allows you to create a database in the catalog.

	� Supported on a database object: This allows you to create tables, views, and functions in
the database.

•	 MODIFY: The ability to add data to an object, delete data from an object, and modify data in
an object. This allows standard commands such as INSERT, DELETE, UPDATE, MERGE, and
TRUNCATE. It also allows Delta Lake commands such as RESTORE, OPTIMIZE, VACUUM,
and REPAIR:

	� Supported in catalogs, databases, tables, and views. However, the MODIFY privilege is very
specific to data manipulation, which is why it’s only effective on the table object.

	� If you are using Unity Catalog, MODIFY does not apply to catalogs and schemas.

•	 READ_METADATA: The ability to view an object’s metadata. This allows you to execute
commands to EXPLAIN a query or DESCRIBE a database, table, or function:

	� Supported on databases, tables, views, and functions.

	� If you are using Unity Catalog, READ_METADATA is not required

•	 MODIFY_CLASSPATH: The ability to add files to the Spark classpath. This allows you to
create user-defined functions from a resource file such as a JAR file that your team will build.
Since the resource needs to be loaded into the execution classpath, the MODIFY_CLASSPATH
privilege is required:

	� Supported on the catalog object only

•	 READ FILES, WRITE FILES, and CREATE TABLE: The ability to read files, write files or
create external tables on a cloud storage location. These are specific to Unity Catalog and are
supported on external location and storage credential objects. We will learn about them in the
Going beyond read access – part 1 section.

Bringing everything together

Now, let’s tie the four concepts that we just learned about together to achieve a coherent access control
on the data in Lakehouse while following the principle of least privilege.

Users and groups must be provided with only the privileges on securable objects that are required
by them to execute operations concerning their daily workflow.

The Security Model74

Assigning privileges to data objects can be done by two people:

•	 A Databricks workspace administrator

•	 The owner of the object

Object ownership can be achieved in three ways:

•	 By creating the object – that is, the database, table, view, or function. Here, the user becomes
the owner of the object.

•	 The Databricks workspace administrator or owner transfers ownership of the data object to
the user or user group. Databricks recommends assigning ownership to groups rather than
users as a best practice.

•	 The user is a part of a group that has received ownership of the object.

An object owner (or administrator) can assign privileges with the help of the following operations:

•	 GRANT: Grants a privilege on an object to a principal (user or group)

•	 DENY: Ensures that the principal cannot access the specified object, irrespective of implicit or
explicit GRANTs

•	 REVOKE: Rolls back an explicit GRANT or DENY on an object for the principal

•	 SHOW GRANT: Displays all inherited, denied, and granted privileges on the object

The rules of privilege inheritance should also be kept in mind:

•	 With table access control on Hive Metastore, GRANTs and DENYs are cascaded to child objects
– that is, GRANT or DENY on CATALOG is propagated to all databases and all objects within
the database – tables, views, and functions. A GRANT or DENY on a database is propagated to
all the objects within the database. This cascade is not applicable in Unity Catalog.

•	 REVOKE is not cascaded. It is strictly scoped to the object specified in the command.

•	 An explicit DENY on an object overrules inherited GRANTs. For example, consider that a user
has been granted the SELECT privilege on a database and an explicit DENY on a table in this
database. If the user lists all the tables in the database, the table that has been denied to the
user will not be shown in the listing. This behavior is true for all securable objects. DENY is
not applicable in Unity Catalog as we learnt that Unity Catalog does not support cascading/
inheriting permissions.

•	 A GRANT, DENY, or REVOKE applies to one object at a time. The first two cascading rules can
be used to propagate privileges to multiple objects in one go.

At this point, you might be overwhelmed with the theoretical brain dump. So, let’s log in to our
Databricks SQL workspace and try out these concepts with some practical examples.

User-facing table access control 75

Note on Unity Catalog
The examples in the following sections have been built using Hive Metastore since Unity
Catalog is in preview at the time of writing. I will call out any applicable differences as we go.

The security model in practice

In the spirit of novelty and exploration, let’s create new data assets based on the airlines dataset
that comes bundled with Databricks.

Use the following SQL code snippets to create the data assets to work with in this chapter:

1.	 Create the database. If you are using Unity Catalog, consider adding the catalog’s name.
Otherwise, the database will be created in the default catalog:

CREATE DATABASE airlines;

2.	 Set airlines as the default database:

USE airlines;

3.	 Create an external table on the source planes data, which is in CSV format:

CREATE TABLE planes_csv

USING csv

OPTIONS(

 path '/databricks-datasets/asa/planes/',

 header true,

 inferSchema true

);

4.	 Create a managed delta table using the source planes data for better performance:

CREATE TABLE planes USING DELTA AS SELECT * FROM planes_csv;

5.	 Create an unmanaged table on the source flights data, which is in CSV format:

CREATE TABLE flights_csv

USING csv

OPTIONS(

 path '/databricks-datasets/asa/airlines/',

 header true,

The Security Model76

 inferSchema true

);

6.	 Create a managed delta table using the source flights data for better performance:

CREATE TABLE flights USING DELTA AS SELECT * FROM flights_csv;

7.	 Create a view that shows valid planes records:

CREATE VIEW airlines.clean_planes_data

AS

SELECT * FROM airlines.planes

WHERE model IS NOT NULL AND year IS NOT NULL;

8.	 Create a function that creates date strings from individual columns:

CREATE FUNCTION airlines.create_date_string(year_num INT,
month_num INT, day_num INT) RETURNS STRING RETURN concat(year_
num, '-', month_num, '-', day_num);

In the preceding code snippet, we are creating a tables abstraction over the source data, which is in
CSV format. These are the planes_csv and flights_csv tables, respectively.

We are using these tables to create our final tables, which are managed and are in delta format. These
are the planes and flights tables, respectively.

For our examples, we want our users to interact with the planes and flights tables only.

We will create two other data assets:

•	 A view called clean_planes_data on the planes table that filters our rows. These contain
null values for important fields such as model and year.

•	 A function called create_date_string that combines individual columns for year, month,
and day into a string in yyyy-MM-dd format.

We will need one more user in our account. We will use this user as the guinea pig for our experiments
with the security model. In my account, I have a user with an email ID of suteja@dbsql.com.

Note
In our examples, we are showing the programming of the security model on a user. In real life,
Databrick’s best practices recommend programming the security model at the group level.

Now, we are ready to work with the security model on our airlines database.

User-facing table access control 77

Ownership

We are the owners of the airlines database and the data assets within it on account of having
created the airlines database and the data assets within it.

We can verify this ownership via Data Explorer:

Figure 4.6 – Verifying ownership privilege via the UI

We can also verify the ownership of the database with the following SHOW GRANTS statement:

SHOW GRANTS ON DATABASE airlines;

The preceding code will return the following output:

Figure 4.7 – Verifying database ownership privilege via SQL

Similarly, the ownership of the table can be verified with the following SQL statement:

SHOW GRANTS ON TABLE airlines.planes;

The preceding code will return the following output:

Figure 4.8 – Verifying table ownership privilege via SQL

Sharing the database

With that, the database, the tables, views, and functions are ready. Let’s see how we can share these
data assets with our teammate, suteja@dbsql.com, so that she can query them.

The Security Model78

As mentioned in the Privileges section, we have the SELECT privilege, which fits the bill here.

Let’s grant Suteja the SELECT privilege on the airlines database by running the following statement:

GRANT SELECT ON DATABASE airlines to `suteja@dbsql.com`;

At this point, if Suteja tries to run the SHOW DATABASES statement, we would expect her to be able
to see the airlines database in the result. However, this isn’t the case.

If you go back to the Privileges section, you will find the USAGE privilege. The USAGE privilege on
the database and the catalog is a must-have for any of the other privileges to take effect. So, we must
add that privilege:

GRANT USAGE ON DATABASE airlines to `suteja@dbsql.com`;

Now, if Suteja runs the SHOW DATABASES statement, voila – the airlines database will show up!

Exploring the database

Now that Suteja has a working SELECT privilege on the airlines database, we must provide her
with access to the tables and views within the database.

But how do we do this?

Again, recall the rules of privilege inheritance – all GRANTs are cascaded down. This means that
Suteja should be able to list the tables and views in the database and be able to retrieve data from
them, without us having to provide any further privileges.

Unity Catalog Difference
Privileges are not cascaded down in Unity Catalog! You must grant privileges explicitly. This
makes Unity Catalog secure by default. This is a very important distinction from the table
access control within Hive Metastore.

Let’s try this out!

Let’s say that Suteja runs the following statement:

SHOW TABLES IN airlines;

User-facing table access control 79

By doing this, she will see all the tables and views in the airlines database, as follows:

Figure 4.9 – Listing (select) privilege is cascaded

Now, let’s say she runs the following statement:

SELECT * FROM airlines.flights LIMIT 2;

She will be able to sample the flights data, as follows:

Figure 4.10 – Select (data) privilege is cascaded

So, how did this happen? We only provided the SELECT privilege on the database. How did this
cascade work? To understand that, let’s run the following SHOW GRANT:

SHOW GRANT ON TABLE airlines.flights;

The Security Model80

You can choose any table or view that you like for the preceding SQL statement; the following result
will be the same:

Figure 4.11 – Cascaded (inherited) privileges

Upon inspection, we can see the explicit GRANTs that we provided to Suteja – SELECT and USAGE
(ActionType) on the airlines (ObjectKey) database (ObjectType).

We can also see that Suteja has inherited the SELECT privilege on the flights table, in the airlines
database. This inheritance is underlined by the fact that ObjectKey provides a fully qualified asset
name – that is, airlines.flights.

Also, you can see that, since we created the table, we are the default owners of the table – that is, we
have the OWN privilege on the table.

Exploring asset metadata

Now that Suteja has her data access privilege sorted out, she wants to inspect the metadata of these
data assets, such as tables and views. In particular, she wants to know more about the flights table.

So, she runs the following statement:

DESCRIBE EXTENDED airlines.flights;

She expects metadata details. However, what she gets is a nasty error:

Figure 4.12 – Lack of metadata privileges

User-facing table access control 81

This is because the Databricks SQL security model requires an explicit READ_METADATA privilege
for users to be able to retrieve metadata about the asset.

Unity Catalog Difference
The READ_METADATA privilege is only applicable if you are using the table access control
with Hive Metastore. It is not required if you are using Unity Catalog.

This can easily be resolved. We, as the owners of this table, can provide her with the privilege:

GRANT READ_METADATA ON TABLE airlines.flights to `suteja@dbsql.
com`;

Now, if Suteja attempts to use DESCRIBE again, she will be presented with the required information:

Figure 4.13 – Metadata retrieval

Note
You might be tempted to just provide the READ_METADATA privilege on the airlines
database and let it cascade. That won’t be best practice, though – privileges should always be
granted as specifically as possible to avoid data security breaches!

The Security Model82

Revoking access

In our example scenario, Suteja has now been granted privileges to explore the tables and views
available in our airlines database. Since she is working with the data assets, she comes to you
with a question – what is the difference between the flights table and the flights_csv table?

Hearing this question, you remember that the flights_csv table is only supposed to be a staging
table for internal use, and not to be exposed to end users such as Suteja.

Thankfully, we can run a REVOKE statement, like so:

REVOKE SELECT ON airlines.flights_csv FROM `suteja@dbsql.com`;

So, all done, right?

Not so fast! This is one of the important gotchas to understand. Suteja’s SELECT privilege on the
flights_csv table is inherited from her SELECT privilege on the airlines database. See the
Exploring the database section to review the permissions given to Suteja. Hence, even though we can
REVOKE the SELECT privilege, she will still be able to query data in the table.

Unity Catalog Difference
Since privileges are not cascaded in Unity Catalog, the preceding gotcha is not applicable if
you are using Unity Catalog.

Try it out yourself!

This is in keeping with the principle of least privilege. We granted Suteja the SELECT privilege on
the entire airlines database. What we should have done is give her SELECT access to the data
assets that she is privileged to work with!

The following sequence of commands should do the trick:

REVOKE SELECT ON DATABASE airlines FROM `suteja@dbsql.com`;

GRANT SELECT,READ_METADATA ON TABLE airlines.flights TO
`suteja@dbsql.com`;

GRANT SELECT,READ_METADATA ON TABLE airlines.planes TO `suteja@
dbsql.com`;

GRANT SELECT,READ_METADATA ON TABLE airlines.clean_planes_data
TO `suteja@dbsql.com`;

Here, we revoke the SELECT privilege that we had provided to Suteja on the airlines database.
Then, we provide the SELECT privilege and the READ_METADATA privilege to the flights and
planes tables and the clean_planes_data view.

User-facing table access control 83

Now, Suteja should only be able to list and query the aforementioned assets.

Remember
REVOKE only works on explicitly granted or denied privileges on a securable object from
a principal.

Just to drive home the concept of REVOKE, let’s say that Suteja complains to you that the planes
table has too many missing values, and she must write extra SQL to filter out these rows every time.
You remember that you have created a view called clean_planes_data that does just this – it
filters out rows that contain empty values. You can REVOKE Suteja’s access to the base planes table
and ask her to use only the clean_planes_data view:

REVOKE SELECT,READ_METADATA ON TABLE airlines.planes FROM
`suteja@dbsql.com`;

This REVOKE works because the SELECT and READ_METADATA privileges were explicitly granted
to Suteja.

Denying access

Of course, you may not want to always use GRANTs, especially if a schema contains a lot of tables
and views. To achieve the same results as we saw in the preceding section – that is, providing select
access to a database while selectively revoking access to a few objects – we can use the DENY statement.

Running the following DENY statement has the same effect:

DENY SELECT, READ_METADATA ON TABLE airlines.planes TO `suteja@
dbsql.com`;

This command makes sure that the table is not visible to Suteja either via Data Explorer or
SQL commands.

Going beyond read access – part 1

At times, end users may need to create data assets such as tables, views, or functions. However, CREATE
privileges are not implicit to end users.

For example, let’s say that Suteja tries to create a new view on the flights table that provides a view
of only the flight details and arrival delay:

CREATE VIEW airlines.flights_delay AS SELECT year, month,
flightnum, tailnum, arrdelay FROM airlines.flights;

The Security Model84

She will get the following error:

Figure 4.14 – Missing CREATE privilege

To remedy this, we can simply run the following GRANT statement:

GRANT CREATE ON DATABASE airlines TO `suteja@dbsql.com`;

Note
The CREATE privilege is applicable at the database level if you are using Hive Metastore, and it
provides the privilege to create tables and views only. Functions require the CREATE_NAMED_
FUNCTION privilege. If you are creating functions that use code in Scala/Java/Python, an
additional MODIFY_CLASSPATH privilege will be required. If you are using Unity Catalog,
CREATE is also applicable at the catalog level. However, as we know, the privilege will not
cascade down to databases, tables, and views.

Unity Catalog considerations

Unity Catalog introduces a securable object called external location that is relevant here. Consider
the case where Suteja wants to create an external table for data contained on a cloud storage path. To
complete this operation, Suteja needs the CREATE privilege at the database level and access to the
cloud storage path.

If we were using Hive Metastore, then granting her the CREATE privilege would have solved the first
requirement. However, for the second requirement, she would have to ask the cloud infrastructure
team for the necessary permissions. This is less than ideal.

This is where external location comes in. It combines the cloud storage path with the required
storage credentials.

As you may have guessed by now, this means that a storage credential is also a securable object.

Consider the following SQL snippet:

CREATE EXTERNAL LOCATION airlines_loc URL 'abfss://dbsql/
airlines' WITH (CREDENTIAL airlines_cred);

User-facing table access control 85

The preceding code highlights how a cloud storage path is combined with the required storage
credentials. Since we are using an Azure example, airlines_cred CREDENTIAL will be a service
principal that grants access to the ADLS path.

Now, Suteja can be granted one of the following privileges on the external location object or the
credential object:

•	 READ_FILES

•	 WRITE_FILES

•	 CREATE_TABLE

This will grant her privileges to read, write, or create tables in that location, respectively. Take a look
at the following code:

GRANT CREATE_TABLE ON EXTERNAL LOCATION airlines_loc TO suteja@
dbsql.com;

Now, Suteja can create the required external table with the familiar syntax:

CREATE TABLE planes LOCATION 'abfss://dbsql/airlines/planes';

This way, DBAs can manage the required credentials across the database and the underlying
cloud storage.

For a full reference on creating, altering, and managing external locations and storage credentials, visit
https://docs.databricks.com/spark/latest/spark-sql/language-manual/
sql-ref-external-locations.html.

Going beyond read access – part 2

At times, end users will require permissions to be able to insert, update, or delete data in tables.
These modifications could be explicit in the sense that the user is trying to actively insert, update,
or delete data. They could also be part of optimization commands such as VACUUM, OPTIMIZE,
or ALTER TABLE.

Optimization Commands
As an end user, you will rarely encounter the need to use optimization commands. They
are primarily in the domain of data engineers, who are creating these datasets and are
responsible for optimizing the layout of the data so that you, as the end user, can have the
best query experience. In any case, if you are interested, we will be covering this in more
detail in Chapter 8, The Delta Lake.

https://docs.databricks.com/spark/latest/spark-sql/language-manual/sql-ref-external-locations.html
https://docs.databricks.com/spark/latest/spark-sql/language-manual/sql-ref-external-locations.html

The Security Model86

In either case, the user running the command must have the MODIFY privilege on the table. Let’s
say that Suteja tries to INSERT some data into the flights table using the following statement:

INSERT INTO airlines.flights VALUES(2006,12,21,4,'1155',1200,'1
447',1457,'DL',1466,'N919DL','172','177','149','-10','-5','FLL'
,'BDL','1173','6','17',0,'',0,'0','0','0','0','0';)

She will get the following error:

Figure 4.15 – Missing MODIFY privilege

To remedy this, we, as owners of the database, can simply run the following GRANT statement:

GRANT MODIFY ON DATABASE airlines TO `suteja@dbsql.com`;

Going beyond read access – part 3

Finally, advanced users, such as data engineers, may want to insert data into tables using data from
other files, such as CSVs or JSONs. This can be achieved using the COPY INTO statement. We will
deep dive into this command in Chapter 11, SQL Commands – Part 1. For now, it is sufficient to note
that this is the command that requires the SELECT privilege on ANY FILE, along with the MODIFY
privilege on the table being inserted into (as we saw in the preceding section).

Unity Catalog Difference
With Unity Catalog, we can use the external location and storage credentials with the READ_
FILES, WRITE_FILES, and CREATE_TABLE privileges. This is a more secure way of
providing access to cloud storage than ANY FILE.

Summarizing the security model

Hopefully, this theoretical and practical discussion of the Databricks security model (as it pertains
to user-facing table access control) has taught you how to navigate and implement the Databricks
security model in your organization.

User-facing table access control 87

For a comprehensive list of operations, as well as the privileges required to execute them, visit the
official documentation at https://docs.databricks.com/security/access-control/
table-acls/object-privileges.html.

Programming the security model with standard SQL commands is great. It provides a lot of flexibility.
That said, Databricks SQL does provide a UI-based mechanism to program the security model as well.
We will learn about it in the next section.

UI-based user-facing table access control

In the preceding sections, we saw many examples of applying table access control with ANSI standard
DCL commands such as GRANT and REVOKE.

The Data Explorer UI also enables us to apply table access control to data assets using simple UI controls.

The Permissions tab for any data asset (database, table, or view) in the Data Explorer UI does three
things. Let’s take a look.

Show current permissions

This is equivalent to the SHOW GRANTS statement. In the following screenshot, we have navigated
to the Permissions tab for the airlines database. Here, we can see the list of applied permissions:

Figure 4.16 – Permissions for the airlines database

https://docs.databricks.com/security/access-control/table-acls/object-privileges.html
https://docs.databricks.com/security/access-control/table-acls/object-privileges.html

The Security Model88

Similarly, in the following screenshot, we can see the current permissions for the flights table in
the airline database:

Figure 4.17 – Permissions for the flights table

Granting privileges

Clicking on the Grant button for any data asset opens a pop-up window where you can select a user
or user group and grant one or more privileges to them, as shown in the following screenshot:

Figure 4.18 – The GRANT permissions from the UI

The internals of cloud storage access 89

Revoking privileges

Clicking on an existing privilege and clicking the Revoke button revokes that specific privilege from
that specific user or user group, as shown in the following screenshot:

Figure 4.19 – Revoking with the UI

Note
At the time of writing, access control on functions is not available via the UI. Also, note that
we cannot perform DENY with the UI.

Now, we are fully equipped to program the access privileges to our data with our preferred method
– SQL or UI. This covers the first section of Figure 4.3, which represents the user-facing table access
control. In the same figure, we can see that the SQL Warehouses must be configured to access the
cloud object storage as well. We will discuss this in the next section.

The internals of cloud storage access
In Figure 4.1 and Figure 4.2, we discussed the execution model of a query. In the preceding section
on user-facing table access control, we learned how table access control enables user-facing table
access control.

This leaves us with one more authorization layer to discuss – the cloud storage access that’s given to
SQL Warehouses.

The Security Model90

Unity Catalog Consideration
If you are using Unity Catalog, or exclusively using managed tables, this section is not relevant.
This is because with managed tables, the catalog stores the data in a location dedicated for its use.
Further, with Unity Catalog, the query engine is provided signed, short-lived, pre-signed URLs
to the relevant data files, even if the tables are unmanaged. This contrasts with Hive Metastore,
where the SQL Warehouses use the relevant cloud authorization mechanism – instance profile,
service principal, or service account – to access the relevant data files.

To understand why this authorization layer is important, we must unpack Figure 4.1 and Figure 4.2
a little bit more. If we look at the overall deployment architecture of Databricks (on either cloud), it
will look as follows:

Figure 4.20 – Databricks deployment architecture

The internals of cloud storage access 91

What stands out in this reference architecture is that the actual execution layer and storage layer is
in your cloud account, not in the Databricks cloud account. This means that to process the query,
Databricks creates an instance of the SQL Warehouse (data processing cluster) using EC2 instances,
Azure VMs, or GCP VMs in your cloud account. These SQL warehouses (and by association, the
instances) will need authorization to access the cloud storage locations required to fulfill the query.

Databricks is responsible for creating and managing these SQL Warehouses in your cloud account,
which also means it is responsible for endowing them with the required authorizations to cloud
storage locations containing the database files. Therefore, we must authorize Databricks SQL to do
so in a secure, governable fashion. Hence, we must learn about the internals of cloud storage access.

Again, Databricks does not receive authorization to interact with these storage locations. It receives
authorization to authorize the SQL Warehouses to interact with these storage locations.

Therefore, it is important to make sure that the authorization is restricted to only those buckets that
are required to fulfill queries. No more, no less.

Remember
It is important to remember that cloud storage access is not user-facing. We do not have to map
a table to a service principal or instance profile explicitly. Databricks SQL will automatically
use the appropriate service principal or instance profile based on the cloud storage location of
the table. This means that if a query accesses two tables from two storage locations, Databricks
SQL will do the heavy lifting of authorizing itself to Microsoft Azure or AWS to gain access
to the respective storage locations. Furthermore, it is important to remember that this stage
is only relevant if the user submitting the query has been cleared by table access control to be
querying these tables in the first place. See Figure 4.3 for more.

The overall mechanism for this configuration remains the same across clouds. We must create an
identity or a proxy in the cloud’s IAM system that has privileges to work with the necessary storage
locations. Our instance of Databricks SQL should be given the privileges to create SQL Warehouses
that will assume this identity or use this proxy to be able to interact with storage locations in a governed
and secured way.

Technical Requirements
The Cloud storage access in Microsoft Azure section will require familiarity with the Azure
Console and concepts such as Azure Active Directory service principals and storage accounts.
The Cloud storage access in Amazon Web Services section will require familiarity with the AWS
Console and concepts such as IAM and S3.

At this point, you might be thinking – Wait, I already created databases. Where are they stored, then?

The Security Model92

In the examples we’ve covered so far, we have not specified where on our cloud storage our data
should be stored.

If you are using Hive Metastore, it will be a default warehouse directory in the following form:

dbfs:/user/hive/warehouse/airlines.db

On the other hand, if you are using Unity Catalog, the default location will be the location associated
with the Metastore being used by your Databricks SQL workspace (see Chapter 3, The Data Catalog).

While we are on the topic of Unity Catalog, you may recall that we already created the EXTERNAL
LOCATION and CREDENTIAL objects and programmed the user privileges on them. So, why do
we have to reauthorize? The reasoning is the same as we discussed earlier in this section. EXTERNAL
LOCATION and CREDENTIAL authorize users to use a cloud storage path. The user’s queries on this
location, however, will be executed by a different entity – the SQL Warehouse, which will also need
access to these locations.

Cloud storage access in Microsoft Azure

In Microsoft Azure, access to cloud storage is controlled via service principals in Azure Active
Directory. We introduced service principals in the Users, groups, and service principals section.

In our context, we will create a service principal (which is nothing but an Active Directory application)
that has the authorization to read data from certain storage accounts (https://docs.microsoft.
com/en-us/azure/storage/common/storage-account-overview). Our instance of
Databricks SQL will use these service principals to get access to the required storage accounts.

Databricks recommends that we configure one service principal per storage account.

Let’s walk through an example that’s outlined in the official documentation:

•	 Databricks side configuration: https://docs.microsoft.com/en-us/azure/
databricks/sql/admin/data-access-configuration

•	 Azure side configuration: https://docs.microsoft.com/en-us/azure/
databricks/data/data-sources/azure/adls-gen2/azure-datalake-
gen2-sp-access

We will use the same airlines dataset that we have been using throughout this chapter.

https://docs.microsoft.com/en-us/azure/storage/common/storage-account-overview
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-overview
https://docs.microsoft.com/en-us/azure/databricks/sql/admin/data-access-configuration
https://docs.microsoft.com/en-us/azure/databricks/sql/admin/data-access-configuration
https://docs.microsoft.com/en-us/azure/databricks/data/data-sources/azure/adls-gen2/azure-datalake-gen2-sp-access
https://docs.microsoft.com/en-us/azure/databricks/data/data-sources/azure/adls-gen2/azure-datalake-gen2-sp-access
https://docs.microsoft.com/en-us/azure/databricks/data/data-sources/azure/adls-gen2/azure-datalake-gen2-sp-access

The internals of cloud storage access 93

Step 1 – creating an Active Directory application

Head over to the Azure portal and navigate to Azure Active Directory. Select App Registrations
and create a new app registration. I am naming my app airlines-app-for-dbsql. Upon
creating the app, copy the Application (client) ID and Directory (tenant) ID details, as shown in
the following screenshot:

Figure 4.21 – Creating an app for cloud storage access

The application ID and directory ID collectively identify the service principal that was created by this
Azure Active Directory application registration.

Note
You will require permissions to be able to register an application with your Azure AD tenant
and assign the application a role in your Azure subscription.

You must also create a client secret from the Certificates and Secrets page for this Active
Directory application.

Copy the client secret and add it to Databricks Secrets. See https://docs.microsoft.com/
en-us/azure/databricks/security/secrets/ for more information on Databricks
Secrets. On your command line, execute the following code:

databricks secrets create-scope --scope airlines-app-secrets

databricks secrets put --scope airlines-app-secrets --key
client-secret

Executing the preceding code will open an editor where you should paste the client secret.

https://docs.microsoft.com/en-us/azure/databricks/security/secrets/
https://docs.microsoft.com/en-us/azure/databricks/security/secrets/

The Security Model94

Step 2 – creating a storage location on ADLS Gen2

In Azure, we must create a storage account, which I am calling airlinestorageaccount, and
a container within that storage account, which I am calling airlines-container. Next, we
must assign the service principal we created in the preceding step (airlines-app-for-dbsql)
as a Storage Blob Data Contributor to this storage account, as shown in the following screenshot:

Figure 4.22 – Assigning access to the storage account

Caution
This IAM setting has been done at the storage account level, not at the container level. Setting
it at the container level will throw 403 Forbidden errors during query executions.

Step 3 – creating a service principal in Databricks SQL

Now, we have an Azure Active Directory service principal that will allow our instance of Databricks
SQL to work with the ADLS Gen2 storage container that we have dedicated to our airlines database.

To configure this service principal, we must navigate to the SQL Admin Console area and navigate
to the SQL Warehouse Settings tab. Click on Add Service Principal:

Figure 4.23 – Add Service Principal

The internals of cloud storage access 95

Clicking on Add Service Principal opens a popup, in which we must add all the details we collected
from Steps 1 and 2, like so:

Figure 4.24 – Adding the service principal’s details

Note
The Storage Account Name field tells Databricks SQL which credentials to use for which
storage account. If this field is left blank, then these credentials will be used to access all storage
accounts. This is discouraged as it creates security risks.

Do not forget to click on the Save Changes button!

The Security Model96

Step 4 – taking it out for a test drive

The settings for working with the new storage container dedicated to our airlines database are
done. So, let’s see it in action.

We will execute the same airlines starter snippet we introduced in the The security model in practice
section, but with one difference: the airlines database will be located on the storage container
that we just created, as shown in the following snippet:

--create the database

CREATE DATABASE airlines LOCATION 'abfss://airlines-container@
airlinesstorageaccount.dfs.core.windows.net/';

Here, we can see that the planes and flights tables have been stored in the storage container,
as shown in the following screenshot:

Figure 4.25 – The data in a location of our choosing

Unity Catalog Note
If you are using Unity Catalog, please rework the preceding example so that it uses EXTERNAL
LOCATION and STORAGE CREDENTIAL.

The internals of cloud storage access 97

Let’s summarize this example:

•	 We created a container that will be the home of our airlines database.

•	 We created a service principal that is authorized to contribute to this database.

•	 We authorized our instance of Databricks SQL to assume the identity of this service principal
(using the client secret) for interacting with this container.

Upon executing the data asset creation script, Databricks SQL transparently uses this authorization
to create the airlines database on the designated containers.

Cloud storage access in Amazon Web Services

The core principle remains the same when we are working with Amazon Web Services (AWS). We
want our instance of Databricks SQL on AWS to assume an identity that has been authorized to interact
with the required S3 buckets. In AWS, the mechanism that allows us to do so is the instance profile.

Unlike Azure Databricks, there are three stages to configuring cloud storage access in AWS:

•	 Create and configure instance profiles on the AWS console: https://docs.databricks.
com/administration-guide/cloud-configurations/aws/instance-
profiles.html#secure-access-to-s3-buckets-using-instance-profiles
(Steps 1 to 4).

•	 Configure the instance profiles in Databricks (the data engineering view): https://docs.
databricks.com/administration-guide/cloud-configurations/aws/
instance-profiles.html#secure-access-to-s3-buckets-using-
instance-profiles (Step 5).

•	 Configure Databricks SQL to use the instance profiles: https://docs.databricks.
com/sql/admin/data-access-configuration.html.

We will work with the same airlines dataset. However, for the sake of brevity, we will avoid listing
out complete IAM policies. I will point you to the official documentation links for picking up the policies.

Step 1 – creating an S3 bucket

Create a new S3 bucket that will host the airlines dataset. I am calling it airlines-bucket.

https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#secure-access-to-s3-buckets-using-instance-profiles
https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#secure-access-to-s3-buckets-using-instance-profiles
https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#secure-access-to-s3-buckets-using-instance-profiles
https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#secure-access-to-s3-buckets-using-instance-profiles
https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#secure-access-to-s3-buckets-using-instance-profiles
https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#secure-access-to-s3-buckets-using-instance-profiles
https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#secure-access-to-s3-buckets-using-instance-profiles
https://docs.databricks.com/sql/admin/data-access-configuration.html
https://docs.databricks.com/sql/admin/data-access-configuration.html

The Security Model98

Step 2 – creating and configuring the instance profile

Create a new role with EC2 as the trusted entity (https://docs.databricks.com/
administration-guide/cloud-configurations/aws/instance-profiles.
html#step-1-create-an-instance-profile-to-access-an-s3-bucket). I am
calling it airlines-bucket-role. Attach the IAM policy listed in Step 1 in the documentation.
This IAM policy allows this role (or the user of this role) to perform certain operations on the
airlines-bucket S3 bucket:

Figure 4.26 – Creating an instance profile with access to the bucket

Copy the Role ARN and Instance Profile ARN details.

Step 3 – configuring the S3 bucket

Next, we must configure the S3 bucket to accept contributions from the role we created in Step 2.
This Bucket Policy configuration is required so that this S3 bucket accepts contributions from the
holder of the IAM role that we created in Step 2 (airlines-bucket-role). The full policy can
be copied from https://docs.databricks.com/administration-guide/cloud-
configurations/aws/instance-profiles.html#step-2-create-a-bucket-
policy-for-the-target-s3-bucket.

https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#step-1-create-an-instance-profile-to-access-an-s3-bucket
https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#step-1-create-an-instance-profile-to-access-an-s3-bucket
https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#step-1-create-an-instance-profile-to-access-an-s3-bucket
https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#step-2-create-a-bucket-policy-for-the-target-s3-bucket
https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#step-2-create-a-bucket-policy-for-the-target-s3-bucket
https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#step-2-create-a-bucket-policy-for-the-target-s3-bucket

The internals of cloud storage access 99

Step 4 – configuring your Databricks instance to use this role

When a Databricks workspace is created, it is provided with an IAM role that manages EC2 instances
in the customer’s account. This IAM role can be found in the Account Management Console area.

We must extend this IAM role to be able to pass along the S3 access role that we created in Step 2 to
the EC2 instances that Databricks creates in the customer account.

Note
The Databricks SQL Warehouses that execute the queries are a group of EC2 instances that
have been organized into a computing cluster. Hence, these EC2 instances should inherit the
IAM instance profile to be able to interact with the required S3 buckets.

The modification listed at https://docs.databricks.com/administration-guide/
cloud-configurations/aws/instance-profiles.html#step-4-add-the-s3-
iam-role-to-the-ec2-policy can be a bit wordy. If you are confused by it, all you need to
do is add the following snippet to the IAM policy:

 {

 "Effect": "Allow",

 "Action": "iam:PassRole",

 "Resource": "arn:aws:iam::xxxxxxxxxxxx:role/
airlines-bucket-role"

 }

Step 5 – configuring Databricks SQL to use this instance profile

Navigate to Settings, and then the SQL Admin Console tab, as shown in the following screenshot.
Click on the Configure button to add the instance profile we created in Step 2 to Databricks SQL.
This will navigate you to the dedicated page for managing instance profiles in the Data Engineering
persona view. Once done, go back to the SQL Admin Console tab, select airlines-role from
the dropdown, and click Save:

Figure 4.27 – Configuring the instance profile in Databricks SQL

https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#step-4-add-the-s3-iam-role-to-the-ec2-policy
https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#step-4-add-the-s3-iam-role-to-the-ec2-policy
https://docs.databricks.com/administration-guide/cloud-configurations/aws/instance-profiles.html#step-4-add-the-s3-iam-role-to-the-ec2-policy

The Security Model100

Step 6 – taking it out for a test drive

We will execute the same airlines starter snippet but with one difference: the airlines database
will be located in airlines-bucket in S3. For the sake of brevity, I am only going to note the
CREATE DATABASE statement here. The rest of the SQL script remains the same:

--create the database

CREATE DATABASE airlines LOCATION "s3://airlines-bucket/";

We can also observe that the planes and flights tables have been stored in the S3 bucket:

Figure 4.28 – The data in a location of our choosing

Unity Catalog Note
If you are using Unity Catalog, please rework the preceding example so that it uses EXTERNAL
LOCATION and STORAGE CREDENTIAL.

Summary 101

Let’s summarize this example:

•	 We created an S3 bucket, which will be the home of our airlines database.

•	 We created an instance profile that is authorized to contribute to this database.

•	 We authorized our instance of Databricks SQL to assume the identity of this instance profile
(using the PASS ROLE mechanism) for interacting with this bucket.

Upon executing the data asset creation script, Databricks SQL transparently uses this authorization
to create the airlines database on the designated buckets.

Summary
In this rather dense chapter, we learned how data assets in the data catalog are secured with the
data security model. We learned how user-facing table access control allows for the fine-grained
implementation of the data security model using familiar SQL security statements such as GRANT and
REVOKE. We also learned how Data Explorer allows visual, UI-based implementations of the table
access control. After that, we learned about the underlying mechanics of authorizing Databricks SQL
to cloud storage to access the necessary database files. Finally, we learned about the next-generation
data cataloging technology known as Unity Catalog and how it improves upon the security capabilities
of table access control with Hive Metastore.

In the next chapter, we will move on to the Databricks SQL workbench itself. Though we introduced
the SQL Editor as part of this chapter, we will take this further and see how the SQL Editor, Dashboard
Builder, and Query tabs all come together as the workbench for a user of Databricks SQL.

5
The Workbench

In the previous chapters, we learned how to organize our data assets, how to secure and govern them,
and how to explore the available data assets. This means we are now ready to work on the data.

In this chapter, we will primarily focus on the perspective of the end users: business intelligence users
and data analysts. Throughout this chapter, we will learn about workbench in Databricks SQL.

In this chapter, we will cover the following topics:

•	 Creating and working with queries

•	 Visualizing query results

•	 Creating and publishing dashboards

•	 Administering and governing your work

Technical requirements
To understand this chapter, we should know about the following:

•	 Standard SQL statements for data retrieval and manipulation such as SELECT, GROUP BY,
and others

•	 The science and math behind analytical techniques and visualizations, including cohort analysis,
funnels, pivot tables, and, of course, charts

•	 The concepts introduced in Chapter 3, The Data Catalog

Working with queries
 In Chapter 2, The Databricks Product Suite – A Visual Tour, in Figure 2.9, we briefly introduced the SQL
Editor as the intelligent workbench that is at the center of the end user experience for day-to-day work.

In this section, we’ll look into the capabilities that the SQL Editor brings to the table.

The Workbench104

In the previous chapters, we used the SQL Editor to either program the security model or explore the
data assets visually. Hence, I’m not going to introduce the basic layout of the page and dive straight
into the most important features.

Continuing within the spirit of the previous chapters, let’s start by incorporating another dataset from
the bundled databricks-datasets into our data catalog for use in this chapter. Here, we will
use the NYC Taxi Trip dataset.

Like the previous chapters, execute the following SQL snippet to register this dataset as a database:

--create the database

CREATE DATABASE nyc_taxi;

--Set nyc_taxi as the default database

USE nyc_taxi;

--create an unmanaged table on the source nyc taxi trips data
which is in csv format

CREATE TABLE trips USING DELTA OPTIONS(

 path '/databricks-datasets/nyctaxi-with-zipcodes/subsampled/'

)

The NYC Taxi Trip dataset is simple, yet it lends to decent statistical computations. This makes it the
perfect companion dataset to learn about queries, visualizations, and dashboards.

Now, let’s put on our data analyst hat since we’ve been tasked with building an operational dashboard
for the NYC Taxi company. The requirements of the dashboard are as follows:

•	 Requirement 1: A view of Daily Fare Trends

•	 Requirement 2: A view of pickup volumes per hour

•	 Requirement 3: A view of drop-off volumes per hour

•	 Requirement 4: A route to revenue attribution

This dashboard will be used by NYC Taxi to optimize the placement of cabs along various routes at
specific times so that revenue can be maximized.

Developing queries

Queries are first-class citizens in Databricks SQL and can be created, read, updated, or deleted. They
can also be shared with other people and access controlled. Finally, visualizations on queries are the
fundamental building block of dashboards.

Working with queries 105

Umm... Wait
You might be thinking, hey, we have already written so many SQL queries in the previous
chapters. Do I need to go through this chapter after all that?

Well, yes. So far, we have been writing queries to learn about concepts such as data asset
exploration and security programming. However, those were one-off executions, and we never
really explored the tools and techniques available to craft queries in Databricks SQL.

Also, it is the right time to disambiguate something. When we talk about a query in the context
of Databricks SQL, we are not referring to the SQL statement within that query. The query is
a larger object in Databricks SQL that includes the SQL statement, its associated parameters,
and its associated visualizations.

Let’s start by considering the case of developing Requirement 1 – that is, A view of Daily Fare Trends.

The development process starts with creating a query. This asset will host the SQL statement(s) that
we will write to fulfill Requirement 1.

To create a query, head to the SQL Editor and click on Create a new Query. If you have been working
on a query previously, you will see that here. Click on the + symbol in the Tabbed Editor area to
create a new query.

Provide the query with a logical name by clicking on the text label of the tab. By default, it should be
New Query. I am naming my work Daily Fare Trends:

Figure 5.1 – Creating a named query

It is important to manually save the query asset by clicking the Save button. Databricks SQL does
not have an auto-save function at the time of writing. This means that Databricks SQL will save your
draft and it will be visible to you, but the changes won’t be visible to others until you save the query.

Note
Databricks will automatically save a record of every execution of a query. These executions will
be visible in the Query History tab.

The Workbench106

Saving a query asset is a matter of clicking the Save button, as shown in the following screenshot:

Figure 5.2 – Saving a named query

Now that we have our development placeholder, we can start developing the SQL statement that
fulfills Requirement 1.

The first step is inevitably sampling the data to see what we are working with. To this end, we must
write a sampling statement:

SELECT * FROM nyc_taxi.trips LIMIT 50

Live autocomplete – schema hints

The Databricks SQL workbench/SQL Editor provides a feature called Live autocomplete that creates
typeahead hints for the schemas as you write the preceding SQL statement.

The following screenshot shows how the Live autocomplete feature provides hints for selecting a
database or table based on the context of a SELECT statement being typed:

Figure 5.3 – Live autocomplete for the SELECT statement

Selecting the nyc_taxi database opens the next level of typeahead hints for the selection of tables:

Fig 5.4 – Live autocomplete for table selection

Working with queries 107

Live AutoComplete can be toggled on or off for the query by clicking the lightning icon in the SQL
Editor, as shown in the following screenshot:

Figure 5.5 – Toggling Live autocomplete

UI tools for schema selection and sampling

An alternative to using typeaheads is to use a UI button to insert a table name into the query text.
Hovering over a table name in the Schema Browser area brings up the Insert table name into query
text option, as shown here:

Figure 5.6 – Insert table name into query text

As an alternative to typing out the sampling statement, hovering over a table name in the Schema
Browser area brings up the Open a preview of this table in a new tab option. This is shown in the
following screenshot, where clicking the button has opened a new tab and executed the sampling
query for us:

Figure 5.7 – Open a preview of this table in a new tab

The Workbench108

Flashback
We covered another method of sampling/previewing data in Chapter 3, The Data Catalog. The
data catalog allows you to preview the data in Data Explorer.

Once we execute the sampling query, we understand the values and transformations that must be
done. In this case, we realize that we must extract the day of the week from the pickup time field,
tpep_pickup_datetime, to build a fare trend based on distance and the day of the week.

Let’s return to the Daily Fare Trends query and develop the first cut with the following SQL snippet:

SELECT date_format(tpep_pickup_datetime, 'EEEE') as day_of_
week, trip_distance, fare_amount

FROM nyc_taxi.trips

ORDER BY day_of_week

If you browse the results in the results tab, you will notice that only a subset of the records is displayed.
This is by design. Loading humongous volumes of data for display is arguably never required as you
will not go through each row manually. Hence, Databricks SQL limits the results of SELECT queries
to 1,000 rows. This ensures an optimal user experience when browsing through results or visualizing
them. This can be toggled off for the query by checking the LIMIT 1000 checkbox after clicking the
Run button:

Figure 5.8 – Limiting the results loaded into the browser

Note
The LIMIT 1000 checkbox is overruled by any explicit LIMIT clause in the query.

Live autocomplete – SQL hints

Live autocomplete provides suggestions for applicable SQL commands as well. For example, as you
type the preceding SQL statement, you will see Live autocomplete hinting at possible, applicable SQL
commands. In this case, we can see ORDER BY:

Working with queries 109

Figure 5.9 – Live autocomplete for SQL commands

Save Your Work
Now that you have created your first cut of the query, don’t forget to save your work!

With that, we have a working base query for Requirement 1. However, it is very inflexible – that is,
the query does not allow us to choose filtering parameters for our Fare Trends query. For example,
the query should provide a mechanism to filter on the desired date or date range. Alternatively, it
should provide a mechanism to filter on the ZIP code. It could also provide a mechanism to filter on
the day of the week.

We can create such a dynamic view with query parameters. A query parameter is a way for the query
to receive values during query execution. In Databricks SQL, a query parameter is created by placing
a string between double curly braces, {{ }}, or by using the Cmd + P keyboard shortcut. Creating
the double curly braces will automatically create an input widget above the results tab, which is where
you set the desired parameter value.

There are three broad categories of query parameters. These are as follows:

•	 Free Form Fields: Text and numbers

•	 Temporal Fields: Date and time

•	 User-Defined Choices

Using query parameters, part 1 – text and numbers

In our working example for Requirement 1, we must have the flexibility of seeing fare trends based
on a ZIP code. Hence, we will provide a query parameter for users to specify which pickup ZIP code
they want to see the fare trends for.

The Workbench110

Place your cursor where you want to create the query parameter. Use the Cmd + P keyboard shortcut:

Figure 5.10 – Starting the Add new parameter process

Clicking on the Add new parameter button, {}, opens a pop-up where you can configure the query
parameter. Three configurations are required, as shown here:

Figure 5.11 – Adding a new parameter

Let’s look at these configurations in more detail:

•	 Keyword: The value in this field will represent the parameter in the query text.

•	 Title: The value in this field will be displayed as the title of the widget for this query parameter.

•	 Type: The value in this field defines the acceptable values for this query parameter.

Working with queries 111

In tune with our example for Requirement 1, I have set Keyword to pickup_zip, Title to Pickup
Zip Code, and Type to Number. Completing this configuration does two things:

•	 Inserts the query parameter into the query text

•	 Creates a corresponding UI widget that receives inputs for the parameter

The following screenshot shows the new state of the query we are building:

Figure 5.12 – A query built with a query parameter

Now, you can insert a value for the Pickup Zip Code query parameter and retrieve the fare trends for it.

Default Values
While working in the Query Editor, it is important to provide values for each query parameter
via the UI widget. This prompts the question of having default values for query parameters.
Databricks SQL allows you to provide default values for query parameters when the query is
part of a dashboard. This may seem odd, but think about it – the queries that we develop here
will be part of dashboards and ETL flows where these parameterized queries will be provided
with dynamic values; otherwise, they will use defaults. They will not be executed in isolation.
We will learn how to use default values when we discuss dashboards.

The Workbench112

If you are feeling particularly adventurous, you can try executing the query with an empty query
parameter value. You will get an error stating Missing value for pickup_zip parameter:

Figure 5.13 – Error due to missing parameter input

A Note on Inserting Query Parameters
It is worth highlighting that when adding a new query parameter, try to keep the cursor at the
position where you intend the query parameter to be placed. This is important because if you
try to cut and paste the query parameter’s text, the settings associated with the query parameter
will be lost, which is likely to be frustrating.

To summarize, there are two free-form query parameter types:

•	 Text:

	� Databricks SQL will add quotation marks around the user input for this query parameter
type. For example, S123456 will become 'S123456'.

	� Databricks SQL will escape the backslash (\), single quote('), and double quote (")
special characters.

•	 Number:

	� Databricks SQL provides basic sanity checks on the number type – that is, trying to add
alphanumeric content for a number query parameter will result in an error.

Using query parameters, part 2 – temporal query parameters

Databricks SQL also allows you to configure temporal query parameters, of which there are two
broad categories:

•	 Point in time:

	� Date

	� Date and time

	� Date and time with seconds

Working with queries 113

•	 Range-based:

	� Range of dates

	� Range of dates and times

	� Range of dates and times with seconds

Let’s return to our working example for Requirement 1. Here, we should provide the user of the query
with the power to filter the fare trends to a specific time window or a specific date.

Creating a temporal query parameter follows the same process as that of free-form text/numbers. Let’s
insert a new query parameter with Keyword set to pickup_time, Title set to Pickup Time, and
Type set to Date and Time Range. The query should look as follows:

Figure 5.14 – Temporal query parameter with a date and time range

The Pickup Time query parameter is a range. Hence, it gets a Start date component and an End date
component. In the query text, start and end can be accessed with the following syntax:

<parameter keyword>.<start/end>

Important
For temporal query parameters, the user is responsible for adding the quotes around the
parameters in the query text. Failing to do so will result in syntax errors during runtime.

Irrespective of the temporal query parameter type (point in time or ranges), the UI widget provides
two components: a calendar-based date-time selection tool and a dynamic tool. Let’s learn about them.

The Workbench114

Calendar-based selection tool

Clicking on the Start date or End date field in the UI widget will open a calendar, as shown here:

Figure 5.15 – Calendar-base selection tool

Our parameter is the date and time range. Hence, we have three selection fields – the day, the hour,
and the minute in that order, respectively.

If our parameter was just the date range, the selection tool would not have the hour and the minute
fields. Conversely, if our parameter was the date and time range with seconds, the selection tool would
have an additional seconds field.

Here, Start date and End date would have to be configured individually.

So, What about Point-in-Time Query Parameters?
Great point! If your query parameter is a point in time and not a range – that is, Type is either
Date, Date and Time, or Date and Time (with Seconds) – then the query parameter will
not have start and end components. Also, the UI widget will not have separate Start and End
selections. It will be just one of Date/Date and Time/Date and Time (with Seconds).

Working with queries 115

Dynamic value selection tool

Manual selection is great, but often, temporal query parameters are known ranges such as last week,
last month, or yesterday. Databricks SQL provides a convenient dynamic value selection tool just for
this. Clicking on the lightning bolt on the query parameter widget brings up a list of dynamic values
that we can select with a click:

Figure 5.16 – Dynamic value selection

As we can see, the dynamic drop-down provides a range of values for this query parameter. The word
dynamic comes from the fact that the values of each drop-down option change based on the current date.

Again, What About Point-in-Time Parameters?
Point-in-time parameters also get the dynamic value selection option. However, logically, the
only options possible are Today and Yesterday. Arguably, there can be more, but those options
will be wordy. For example, One week ago wouldn’t look good in a drop-down.

The Workbench116

The following screenshot shows the new state of the query we are building:

Figure 5.17 – Query augmented with a parameter to pick up the time range

Using query parameters, part 3 – dropdowns

Databricks SQL provides a third variety of query parameters, which is drop-down lists of valid values.
Free-form text/numbers and calendar tools are great, but they can be prone to misuse. For example,
someone can enter an invalid value for a text parameter that returns no values. This can result in a
bad experience. It also puts the responsibility on the developer to cater to all such edge cases.

The drop-down query parameter allows the developer to limit the values that can be provided as
input to the query parameter.

There are two ways to specify the allowed list of values:

•	 Dropdown List

•	 Query Based Dropdown List

Optionally, we can also specify that the user is allowed to make multiple selections from the drop-down
list by checking the Allow multiple values checkbox. If we enable multiple selections, we must choose
the Quotation mechanism for the selected options – None, Single Quotes, or Double Quotes. This is
important because internally, the multiple selections will be translated as an IN clause, as shown here:

….WHERE day_of_week IN ('SUNDAY','MONDAY')

Let’s return to our working example for Requirement 1. We should provide the user of the query
with the power to filter the fare to a specific day of the week. Let’s look at how we can use the two
aforementioned options.

Working with queries 117

Dropdown List

To create a query parameter with a drop-down list, select the Dropdown List option in the query
parameter’s Type field:

Figure 5.18 – Dropdown List

As you can imagine, utmost care must be taken when specifying the allowed list of values. It is also
plausible that manually creating this list is unscalable. This is because the list of allowed values might
be long and manually typing them would be error-prone, cumbersome, and, let’s be honest, not the
best use of your time.

This is where the second option, Query Based Dropdown List, comes in.

The Workbench118

Query Based Dropdown List

This option works exactly how it sounds. You must create a saved query that returns the list of possible
values. Following our example for Requirement 1, the following query should do the trick:

SELECT

 DISTINCT(date_format(tpep_pickup_datetime, 'EEEE')) AS day

FROM

 nyc_taxi.trips

In my instance, I have created a saved query called List of Days in NYC Taxi.

Coming back to the query that we are developing; we must add a new Type parameter based on Query
Based Dropdown List. The rest of the options are the same as those for Dropdown List, which we
discussed in the preceding section.

The following screenshot shows this in action:

Figure 5.19 – Query Based Dropdown List

Working with queries 119

Regardless of whether you use Dropdown List or Query Based Dropdown List, the end state of the
query is the same. The only difference is the mechanism to get the list values.

Once the query parameter has been configured, the user will see a UI widget, as shown in the
following screenshot:

Figure 5.20 – Using a drop-down query parameter

With that, we can conclude our discussion on parameterizing queries. If you have been following
along, then you should have arrived at the following SQL query:

SELECT date_format(tpep_pickup_datetime, 'EEEE') as day_of_
week, trip_distance, fare_amount

FROM nyc_taxi.trips

WHERE pickup_zip in ({{ pickup_zip }})

AND tpep_pickup_datetime BETWEEN '{{ pickup_time.start }}' AND
'{{ pickup_time.end }}'

AND date_format(tpep_pickup_datetime, 'EEEE') IN ({{ day_of_
week }})

ORDER BY day_of_week

The Workbench120

This also concludes our discussion of developing queries. In this lengthy section, we covered the
following topics:

•	 The concept of a query as a first-class citizen in Databricks SQL

•	 Creating SQL statements within a query

•	 Parameterizing a query for runtime flexibility

Next, we will learn how to work with the results of the SQL statements within these queries.

Visualizing query results
In the previous section, we focused purely on developing the SQL/query for the requirements at hand.
However, development does not stop at writing a SQL query that returns a bunch of rows.

It is important to expose these results in a digestible format, and the best way to do so is via visualizations
– graphical representations of the results.

Databricks SQL supports a variety of visualizations. We’ll discuss them in the following sections.

How Detailed Will We Get?
Visualizations provide a lot of levers for configuring and customizing the representation. We
will not be going into explicit detail about each configuration. I am assuming that you will get
a general sense of the configuration once you get hands-on with visualizations. The following
discussions will get you hands-on up to that level. You can take your visualizations to the
next level by playing with all the various configurations. At any point, if you feel lost, please
refer to the official documentation at https://docs.databricks.com/sql/user/
visualizations/.

Tables

Yes – tables are a form of visualization as well.

When building a SQL query, you use the SELECT statement to specify the data return format and
the data columns to return, as well as the ORDER BY clause to specify the order of the columns and
rows of data.

https://docs.databricks.com/sql/user/visualizations/
https://docs.databricks.com/sql/user/visualizations/

Visualizing query results 121

Databricks SQL presents these results by default in a table visualization, as shown in the
following screenshot:

Figure 5.21 – Results visualized as a table

In the preceding screenshot, we can see the results of the SQL we developed for Requirement 1,
visualized as a table.

Since this table is a visualization, we can now edit this visualization to reorder, hide, or format the
data that was originally returned by the SQL.

The Workbench122

To do so, we can click on the Edit Visualization button, as shown in the preceding screenshot. Doing
so will open a visualization-specific pop-up that allows us to customize the visualization. In this case,
the customization screen will look as follows:

Figure 5.22 – Customizing the table visualization

Visualizing query results 123

Here, we apply a conditional color coding of rows based on the day_of_week column values
(weekend versus weekday). Other possible customizations are as follows:

•	 Toggling the visibility of a column

•	 Formatting a numeric or temporal column, such as by limiting decimal places or using the
ISO date format

•	 Conditional color coding of columns

It is important to highlight that Databricks SQL supports special data types:

•	 Image: Set the Display as option to Image. Databricks SQL will treat the cell value as a hyperlink
to an image and render that image in the visualization.

•	 Link: Set the Display as option to Link. Databricks SQL will generate a clickable hyperlink
based on a template, using the values returned in that row.

•	 JSON: Databricks SQL will pretty-print the JSON in the cell.

Charts

The next most popular visualization type is charts. In simple terms, these are any visualizations that
use an X-axis and a Y-axis. Most of the charts are built on the same query, so you can switch between
charts without changing the underlying data configurations. This way, you can easily find out which
visualization conveys the meaning truthfully.

Returning to Requirement 1, we must create a fare trend analysis. This means we must visualize how
trends vary with trip distances and how the day of the week affects it. If we were to visualize this on
a chart, the X-axis would be the trip distance and the Y-axis would be the fare. The grouping criteria
would be the day of the week. Let’s add this visualization.

The Workbench124

To add a new visualization, click on the Add Visualization button in the results pane. This will present
a screen where we can select the type of visualization we want. Based on this selection, Databricks
SQL will present the required configurations. On the right-hand side of this pop-up is the preview
pane, which allows us to preview the chart based on the configurations; it updates in real time. We
can create a scatterplot visualization like so:

Figure 5.23 – Creating a scatterplot

Visualizing query results 125

Saving this configuration creates a visualization and renders it based on the results returned, like so:

Figure 5.24 – The scatterplot has been rendered

Here, we can see how the relationship between trip distance and fare amount changes when the day
of the week changes. This is also a perfect visualization for Requirement 1 of our working example.

One Query, Multiple Visualizations
One query can be associated with multiple visualizations. This goes back to a query being a
first-class citizen in Databricks SQL. Developers can create multiple visualizations based on
the insight they want to deliver. Users of the query can choose which visualization to render.
Users of the query can be actual users or developers, or they can be dashboards using the query
to render a visualization. This enables a clear separation of responsibilities and removes any
chance of data not being interpreted as the developer originally intended.

Now that we have a working example of a chart, we can introduce the primary concepts surrounding
chart visualizations.

Grouping

As we saw from our example, grouping is used to create multiple traces for the same X and Y values
– that is, it helps sort (x,y) tuples by certain (grouping) columns for a more succinct representation
of data.

The Workbench126

Stacking

Stacking stacks the Y-axis values on top of each other based on the grouping columns. Stacking can
be applied with bar charts and area charts. In our example, for each (x,y) – that is, (trip distance, fare
amount) – there would be seven stacks representing each day of the week. Figure 5.25 shows a bar
chart with stacking. Different colors in the stack represent different days of the week and the size of
each color stack is proportional to how many instances of that (trip distance, fare amount) occurred
during that day of the week. It is safe to say that this visualization is not even close to effective in terms
of conveying the trend analysis. Our scatterplot was more on point:

Figure 5.25 – Stacked bar chart for fare trend analysis

Error bars

Let’s consider Requirement 1 again. Our analysis is based on the premise of accurate trip distances.
In the real world, trip distances are based on GPS readings. The GPS devices themselves have certain
error margins and are dependent on the route and the GPS availability throughout the route. For
example, GPS is inaccurate inside tunnels and among high-rise buildings in business districts. This
means that our fare trend analysis should account for this error margin.

Our dataset does not contain this information, so we can fabricate our own for this discussion. I am
using the following rule – 2% error for trips up to 2 miles, 5% error for trips between 3 and 10 miles,
and 6% error for trips beyond 10 miles. For further simplicity, I am assuming that this percentage
discrepancy in distance translates 1:1 into a percentage discrepancy in fare. The resulting table should
look like this:

Visualizing query results 127

Figure 5.26 – Fabricated error column

If we create a line chart with the error column configuration option set to fare_error, we will get
the following visualization, which shows the degree of confidence at each data point with error bars:

Figure 5.27 – Fare trend analysis with error bars

This concludes this discussion on charts. There are more chart visualizations apart from the scatterplot,
stacked bar chart, and line chart, as follows:

•	 Area chart

•	 Pie chart

•	 Bubble chart

•	 Box chart

•	 Heatmap

I highly encourage you to create examples of these chart types using the same dataset while following the
official documentation: https://docs.databricks.com/sql/user/visualizations/
charts.html.

https://docs.databricks.com/sql/user/visualizations/charts.html
https://docs.databricks.com/sql/user/visualizations/charts.html

The Workbench128

Specialized visualization types

Tables and charts typically suffice for most use cases. However, there can be times when more specialized
visualizations are required. Databricks SQL provides the following specialized visualization types:

•	 Map visualization

•	 Cohort visualization

•	 Funnel visualization

•	 Pivot tables

•	 Sankey

•	 Sunburst

•	 Word cloud

We will discuss a few of these in the following sections. You are encouraged to follow the official
documentation for the visualizations that we won’t discuss here.

Map visualization

Of course, we must start with the most exciting of the lot. You can use map visualizations to display
the results of a query on a geographic map. For example, you can show revenue by state or country
on a map instead of using a vanilla table.

There are two map visualization styles, as follows:

•	 Choropleth: Choropleth allows you to work with geographic entities such as countries and
states. At the time of writing, Choropleth supports visualizations at the country level, USA
state level, and Japan prefecture level. Our New York Taxi dataset is not very well suited for
this visualization. You can see this visualization in action by importing the Retail Revenue &
Supply Chain Sample dashboard, which shows revenue by country on a world map (https://
docs.databricks.com/sql/get-started/sample-dashboards.html).
Detailed documentation is available at https://docs.databricks.com/sql/user/
visualizations/maps.html.

•	 Map Marker: This visualization mode places markers at a specified latitude and longitude.
These markers can be configured to provide certain information from the results, such as the
number of taxi trips originating from this location.

Returning to our requirements, let’s work on Requirement 2 – that is, A view of pickup volumes per
hour. We can build two visualizations for this requirement:

•	 A bar chart showing pickup volumes per hour for a pickup location

•	 A handy map visualization to show this pickup location on a map for context

https://docs.databricks.com/sql/get-started/sample-dashboards.html
https://docs.databricks.com/sql/get-started/sample-dashboards.html
https://docs.databricks.com/sql/user/visualizations/maps.html
https://docs.databricks.com/sql/user/visualizations/maps.html

Visualizing query results 129

There are many ways to construct the SQL query for these visualizations. The most logical would be
to create two separate queries. The first query will perform a count aggregate by pickup_zip and
pickup_hour. It would look like this:

SELECT

 pickup_zip, date_format(tpep_pickup_datetime, 'HH:00') AS
pickup_hour, count(*) AS `trip count`

FROM

 nyc_taxi.trips

WHERE

 tpep_pickup_datetime BETWEEN TIMESTAMP '{{ pickup_date.start
}}'

 AND TIMESTAMP '{{ pickup_date.end }}'

 AND pickup_zip IN ({{ pickup_zip }})

GROUP BY pickup_zip, pickup_hour

It will be straightforward to plot this bar chart as the aggregation has already been done by us. We
just need to set the X-axis to Pick up Hour and the Y-axis to Trip Count and Stack by Zip Code. A
map visualization can easily be created by joining the same data to the latitudes and longitudes of
the ZIP codes.

However, I want to take this opportunity to showcase the powerful visualization-building capabilities
of Databricks SQL.

Hence, I will start with a simple data collection query:

SELECT

 pickup_zip, date_format(tpep_pickup_datetime, 'HH:00') AS
`pickup_hour`, latitude, longitude

FROM

 nyc_taxi.trips

JOIN nyc_taxi.zip_codes

ON pickup_zip = zip_code

WHERE

 tpep_pickup_datetime BETWEEN TIMESTAMP '{{ pickup_date.start
}}'

 AND TIMESTAMP '{{ pickup_date.end }}'

 AND pickup_zip IN ({{ pickup_zip }})

The query is simple – it just gets pickup_hour and pickup_zip from each row that satisfies our
query parameters – the pickup_date range and the pickup_zip codes.

The Workbench130

You will notice that I am not doing any aggregation of any kind.

Note on Zip Code Coordinates
I have built a table that maps ZIP codes to their corresponding geographic coordinates – latitude
and longitude. You can build this yourself by using the data from the US census. A quick Google
search should get you going. I found the following GitHub Gist helpful: https://gist.
github.com/erichurst/7882666. Save the raw version of the Gist on your desktop, use
Databricks Data Explorer to upload this data file to a table, and then join it to the existing data.

Now, let’s learn how to build two very different visualizations from this data.

Click on Add Visualization and select Bar under Visualization Type. As shown in the following
screenshot, we can configure our X-axis to be pickup_hour from the results of the SQL query.
More importantly, look at the Y-axis configuration – Databricks SQL allows me to apply a Count
aggregation based on the pickup_zip grouping:

Figure 5.28 – Creating the pickup by hour trend

https://gist.github.com/erichurst/7882666
https://gist.github.com/erichurst/7882666

Visualizing query results 131

This is very powerful as it allows the developer of the query to expose correct interpretations of the
data. The resulting visualization will look as follows:

Figure 5.29 – Pickup hour trend distribution

Now, the same result set can also be used to create a visualization on the map. We will start by creating
a Map (Markers) visualization and configuring the latitude and longitude columns from the result
set, as shown here:

 Figure 5.30 – Configuring the general settings for the Map (Markers) visualization

The Workbench132

Optionally, we can configure a tooltip template that shows pertinent information if the markers on
the map are clicked, as shown in the following screenshot. Here, we are configuring the map marker
to show the ZIP code and pickup hour of the trip. You will also notice the use of the parameter format
to refer to the columns in the result set. Bear in mind that these parameters are not the same as the
query parameters:

 Figure 5.31 – Configuring the format settings for the Map (Markers) visualization

The preceding configurations result in the following map visualization:

Figure 5.32 – Map visualization

Visualizing query results 133

In summary, it is ridiculously easy to use map visualizations in Databricks SQL.

Going back to our working example, the bar chart (Figure 5.29) and the map visualization (Figure
5.32) satisfy Requirement 2. If you look closely, Requirement 3 is very similar. I will leave it up to you
to construct the query and visualizations for the same.

Cohort analysis and visualization

Cohort analysis is useful when we want to measure or track a value across two different time series.
Continuing with the Taxi example, we can define a cohort as users who signed up in a particular
month – for example, January 2022. An example cohort analysis would have two time series:

•	 A month-on-month user signup time series.

•	 The activity level of each cohort (users who signed up in a month) across different months. For
example, 100 users signed up in January but only 50 of those users booked a ride in January, 60
of those booked a ride in February, and so on. Similarly, 150 users signed up in February, and
out of those 150, only 90 booked a ride in February; 110 booked a ride in March.

Cohort analysis and visualization will combine the two time series and present a visualization
of user engagement.

Unfortunately, the NYC Taxi dataset does not contain user data, so performing cohort analysis on it
will not be feasible. Due to this, we must fabricate some data. We will skip some steps and assume that
the cohort analysis data is available. This fabricated cohort analysis works on monthly cohorts from
January 2022 to June 2022. The following SQL snippet constructs this fabricated analysis:

CREATE TABLE cohort_analysis(

cohort_date DATE,

period INTEGER,

engaged_users INTEGER,

cohort_size DOUBLE

);

--Cohort Analysis From January to June

--In the month of January, 2022, out of the 35 people who
signed up in January, 33 showed activity

INSERT INTO cohort_analysis VALUES('2022-01-01', 0, 33, 35);

INSERT INTO cohort_analysis VALUES('2022-01-01', 1, 33, 35);

--In the month of March, 2022, out of the 35 people who signed
up in January, 25 showed activity

INSERT INTO cohort_analysis VALUES('2022-01-01', 2, 25, 35);

The Workbench134

You are encouraged to fill out the rest of the cohort analysis values. Once done, configure a cohort
visualization type, as shown in Figure 5.33.

Consider a sample row – that is, ('2022-01-01', 2, 33, 35). This sample row says Out of
the 35 people who signed up in January 2022, only 33 booked rides in March. This means that we are
talking about the engagement of users who signed up in January for rides in March – that is, 2 months
after they signed up:

•	 Date (Bucket): The cohort start date. In our example, one cohort represents the users that
signed up in that month. This is 2022-01-01 in our sample row.

•	 Stage: This is the number of cohorts that have onboarded since this cohort (2022-01-01) started.
This is 2 in our sample row.

•	 Bucket Population Size: This is the number of users in the cohort. In our sample, the 2022-
01-01 cohort has 35 users.

•	 Stage Value: This is the number of users who booked rides in the stage (month). In our sample
row, only 33 users from the 2022-01-01 cohort booked rides in stage 2 (March, or 2 months
from January):

Figure 5.33 – Configuring a cohort analysis visualization

Visualizing query results 135

This configuration results in the following succinct visualization:

Figure 5.34 – Cohort analysis visualization for user engagement

Note
Databricks SQL only supports Monthly, Weekly, and Daily stages. This can be configured
from the Options tab on the Cohort Visualization configuration page. The visualization in
Figure 5.34 uses Monthly stages.

Funnel visualization

Consider the cohort analysis that we did in the previous section. One of the things that stands out is
that even though we have a lot of signups in every cohort, the signup is not translating into a booked
taxi ride. For example, 35 people signed up in January, but only 33 booked a taxi ride. Now, you have
been tasked with understanding why this is so.

Booking a taxi ride is a multi-step journey, starting from signup to profile creation, selecting a pickup
location, selecting a destination, configuring a payment method, to finally making a booking. The
users who are not active might be dropping off at any of these stages. These stages can be thought
of as a funnel toward the final stage of making a booking. Performing funnel analysis and creating
visualization will help you understand at which stage the user is dropping off. This will help the product
team make decisions that can change this behavior.

Once again, we will fabricate some data. The fabricated data assumes that the funnel analysis for
January has already been done:

CREATE TABLE funnel_analysis(

cohort DATE,

cohort_stage INT,

step STRING,

value INTEGER

The Workbench136

);

INSERT INTO funnel_analysis VALUES('2020-01-01', 0,'Sign Up',
1000);

INSERT INTO funnel_analysis VALUES('2020-01-01', 0,'Create
Demographic Profile', 990);

INSERT INTO funnel_analysis VALUES('2020-01-01', 0,'Enter
Contact Details', 950);

INSERT INTO funnel_analysis VALUES('2020-01-01', 0,'Create
Avatar', 950);

INSERT INTO funnel_analysis VALUES('2020-01-01', 0,'Configure
Payment Method', 780);

INSERT INTO funnel_analysis VALUES('2020-01-01', 0,'Select
Pickup Location', 650);

INSERT INTO funnel_analysis VALUES('2020-01-01', 0,'Select
Destination Location', 650);

INSERT INTO funnel_analysis VALUES('2020-01-01', 0,'Select
Destination Location', 650);

INSERT INTO funnel_analysis VALUES('2020-01-01', 0,'Finalize
Booking', 630);

Configuring the funnel visualization is easy. As shown in the following screenshot, we must map the
columns for the user journey step and the value – that is, the number of users who completed that step:

Figure 5.35 – Configuring the funnel analysis

Visualizing query results 137

This produces the following visualization:

Figure 5.36 – Funnel visualization of the user journey

In our example, we can see a clear inflection point in the payment configuration step. This means that
the product team needs to simplify this step.

Pivot table visualization

The pivot table visualization allows you to create aggregated displays from an unaggregated query
result. Consider Requirement 4 – that is, A route to revenue attribution. Pivot tables will make easy
work of this requirement. We will start by creating a query that returns unaggregated values of route
and revenue – that is, pickup_zip, dropoff_zip, and fare_amount, where the date range
is provided by the user as a query parameter:

SELECT pickup_zip, dropoff_zip, fare_amount

FROM nyc_taxi.trips

WHERE tpep_pickup_datetime BETWEEN "{{ pickup_time.start }}"
AND "{{ pickup_time.end }}"

The Workbench138

Now, we can create a pivot table visualization that shows the total fare collected in the given time period
for different routes. The pivot table visualization is a drag-and-drop builder. As shown in the following
screenshot, the aggregation columns can be placed on the left. This aggregation can be selected from
the drop-down menu. Here, the aggregation is Sum and is being used on fare_amount:

Figure 5.37 – Pivot table for route revenue attribution

Creating and publishing dashboards 139

This brings us to the end of this section on visualizations. We discussed some of the more generic
(common) chart-based visualizations such as bar charts and scatterplots. We also discussed some of
the more specialized visualization options, such as maps, cohorts, and funnels. Finally, we learned that
a single query can be associated with multiple visualizations, allowing developers to create multiple
interpretations of the same data.

Now that we have learned how to develop queries and visualizations, we have one more thing left to
learn – how to bring them all together and present a dashboard for our end users.

Creating and publishing dashboards
Simply put, a dashboard is a presentation of various visualizations that provide context to your data and
gives the observer of the dashboard actionable insights. For example, an operations team will look at the
route-revenue visualization to decide the localities in which to place the taxis for maximum revenue.

We will learn about the various dashboarding features by bringing the queries and visualizations we
have built in the preceding sections together.

Composing a dashboard

To create a new dashboard, simply open the Dashboards page and click Create Dashboard. Continuing
with our working example, I am creating a new dashboard called New York Taxi Operational Dashboard.

The following screenshot shows the blank dashboard. We must associate a SQL Warehouse with
the dashboard:

Figure 5.38 – Building a dashboard

The Workbench140

A dashboard can have as many visualizations as you need. Click on the Add Visualization button to
add a new visualization. In the following screenshot, I am adding the visualization for Requirement
1. Remember, a query is a first-class citizen. This is why, first, we select the query we built for this
requirement – that is, the Daily Fare Trends query. Then, we select the pertinent visualization
that we created for this query. Now, we can edit the query parameters. The default values are picked
up from the last execution of the underlying query:

Figure 5.39 – Adding a visualization

It is important to focus on the Value Source column. This column allows us to configure the behavior
of the query parameter. Clicking on the Edit button for any of the value sources opens a pop-up
window, like so:

Creating and publishing dashboards 141

Figure 5.40 – The Edit Source and Value popup

There are four options to choose from:

•	 New dashboard parameter: This will place a new global parameter widget on top of the
Dashboards page.

•	 Existing dashboard parameter: If the parameter key already exists (perhaps from configuring
a different visualization), then that can be reused to avoid multiple global parameters for the
same value.

•	 Widget parameter: If global parameters cannot be used for the visualization, then this option
can be used to create a widget just for this visualization. This widget will be placed on the
specific visualization tile instead of the top of the Dashboards page.

•	 Static value: If you do not wish to let the user change this parameter, use a static value.

Note
At this point, I have deliberately synced the query parameters for all the queries we have built
so far. For example, I have changed the pickup_time parameters to a data and time range
instead of a date range. Also, I have changed the pickup_zip parameter to be a query-based
dropdown. You might be wondering why I didn’t do that from the start – well, that is because
I wanted to showcase different options as we go. Plus, it is a good exercise for you to revisit
those queries and edit them for this synchronization.

The Workbench142

Once we have placed all the visualizations, our shiny new operator dashboard will be ready, as
shown here:

Figure 5.41 – NYC Taxi dashboard

As we can see, all the visualizations use global query parameters.

If your requirements call for user inputs for different visualizations, the visualizations can be edited
accordingly. For example, a case can be made that the Day of Week parameter is relevant only to
Daily Fare Trends and hence should be localized. We can edit this by clicking the context menu icon
for the visualization, .

Change the Day of Week parameter’s Value Source to Widget Parameter from Dashboard, as
shown here:

Figure 5.42 – NYC Taxi dashboard

Creating and publishing dashboards 143

Now, our dashboard presents the user with a specific choice of day of the week for the Daily Fare
Trends visualization, as shown here:

Figure 5.43 – NYC Taxi dashboard with local parameters

Finally, dashboards allow you to change the layout of the visualizations and resize the visualization
tiles with a simple drag and drop interface. When in edit mode, hovering over a visualization tile
exposes a panning cursor, . Once this cursor is exposed, you can drag the visualization around. The
dashboard will automatically reconfigure the other visualizations relative to the movement. Similarly,
hovering over the right-hand bottom corner of the visualization exposes a resizing icon, . To use
this feature, keep the left mouse button pressed down and resize the visualization.

Using the dashboard

Good job on compiling your dashboard! Make sure you click the Done Editing button to save
your work. Now, there is one thing left to do: enable the intended audience of the dashboard to
use the dashboard.

There are many ways to do so. Let’s take a look at a few options.

The Workbench144

Giving users access to the dashboard

One option is to give users access to the dashboard with Can Run permissions. To do so, click on the
Share button for the dashboard. This will open a pop-up where you can configure which users or user
groups have access to the dashboard, as shown here:

Figure 5.44 – Sharing the dashboard

In this example, we have shared the dashboard with Suteja. She only has permission to run it. If we
had provided her with the Can Edit privilege, she would have been able to edit the dashboard and
its visualizations.

Who Should Edit Dashboards?
Typically, you want to provide Can Edit privileges for fellow developers who are working on
developing the dashboard. End users should only be able to view it.

Creating and publishing dashboards 145

Another significant configuration is Sharing Settings. Here, we are specifying that when Suteja runs
the dashboard, her credentials will be used (Run as viewer). If Suteja does not have access to the
underlying data source – the nyc_taxi database – the visualizations will fail. This is a great security
feature as it can mitigate unwanted edge cases around permissions. The other option is Run as owner.
This option is, again, good for allowing fellow developers to work on the dashboard.

Scheduling with subscribers

Another option is to refresh the dashboard on a schedule. Every scheduled run can then email a report
of the dashboard in PDF format. To do so, click on the Schedule button. Configure the schedule to
refresh the dashboard and configure the users (Subscribers) who will receive the reports, as shown here:

Figure 5.45 – Scheduling and sharing the dashboard with subscribers

The Enabled toggle button allows you to temporarily pause the scheduled refresh of the dashboard.

Other interactions with the dashboard

Users with access to the dashboard can download a PDF report of the dashboard manually. Click on
the context icon, , of the dashboard and click the Download as PDF option.

Users can also interact with individual visualizations. Every visualization tile exposes a menu so
that you can download the results of the query powering the tile. Clicking the context icon for the
visualization, , provides options for downloading the results as a comma-separated values (CSV)
file, a tab-separated values (TSV) file, or in Excel format. There is also a link to the original query
for quick navigation.

The Workbench146

Alerts

Sending refreshed dashboards is great, but actionable alerts are even better. It is possible that the
users of the dashboard are only interested in seeing the dashboard when a particular metric on the
dashboard has drifted away from acceptable ranges. Alerts are a great way to deliver on this.

Continuing with our working example, let’s say that we want to have an alert if our earnings in the last
hour have been significantly less than the historical earnings during that hour and day of the week.

DIY Please
We have not built a query that provides the analysis that we just described. Consider it an
exercise to build it yourself.

It is important to note that an alert expects the underlying query to return a single row. Rather, it will
only consider the first row of the returned results. This is logical. We want to configure an alert that
will trigger based on some value deviating from a threshold. In our example, we want to know if the
total fares earned in the last hour have deviated from the historical trend for that hour and that day
of the week. This must be a single row.

To configure an alert, navigate to the Alerts page by clicking on :

Figure 5.46 – Creating an alert

Creating and publishing dashboards 147

Here, we have configured a Query that performs a historical analysis. The query returns a column
called deviation that represents a percentage of the deviation from historical fares for the hour and
the day of the week. We have configured the alert to Trigger when the deviation is greater than 30%.

Other configurations can remain as their defaults or be configured.

The When triggered, send notification option configures the alerting behavior. You can configure
it to send the alert Just Once or Each Time the alert is evaluated. A good in-between option is the
At Most option. For example, you can configure the alert to send notifications At Most once Every
hour. The once and every hour can be configured.

The notification itself can be customized by editing the template.

Finally, we can configure how often the alert should be evaluated or refreshed. In our case, it makes
sense for it to be hourly since we are looking for deviations in fares hour by hour. Keep in mind that
the refresh will require a SQL Warehouse to be turned on. It is recommended that you only configure
alerts for desired notifications.

The alert will look as follows:

Figure 5.47 – Alert

The Workbench148

By default, the alert notification is sent to the owner of the alert. We can add more destinations as
required by clicking on the Add button (not visible in the screenshot).

It is important to note that only account administrators can configure destinations from the SQL Admin
Console. However, once a destination has been configured, it is available to all users. Databricks SQL
supports destinations such as emails, Slack, PagerDuty, and many more.

This concludes our discussion on workbench from a developer and user perspective. Now, let’s learn
how to administer and govern the queries, visualizations, and dashboards as a developer, as well as
an administrator.

Administering and governing artifacts
Every query, visualization, and dashboard that we create is a crucial artifact. It should be protected
from unauthorized consumption or sharing. On the other hand, artifacts should be shared securely
so that others may build on existing work as well.

Hence, Databricks SQL provides a robust governance model for securing queries (and associated
visualizations), dashboards, and alerts.

Administration by the artifact owner

The governance model is consistent across queries, dashboards, and alerts. All three of them have a
Share button, similar to the one shown in the following screenshot:

Figure 5.48 – The Share button

The Share button opens a pop-up where the owner of the query, dashboard, or alert can configure
other users with Can Edit or Can Run privileges. Furthermore, the owner can configure the query or
dashboard to run with the owner’s credentials or the viewer’s credentials. It is important to configure
this carefully as it has security implications.

For example, a user with Can Run privileges may not have access to the underlying data sources for
data security reasons. If the query or dashboard has been configured to run with the owner’s privilege,
then this user will be able to view the results and hence constitute a security breach. We saw this
approach in Figure 5.44.

It is important to note that only the owner has the Can Manage privilege.

Summary 149

Sharing alerts has interesting dynamics. When sharing alerts, Can Edit or Can Run privileges can
be granted. These privileges are self-explanatory. However, if a user receives Can Run privileges on
the alert, they can still configure the alert to send them a notification when the alert is triggered. That
said, they cannot edit the core conditions of the alert. Alerts run with the viewer’s privilege, so if the
viewer does not have privileges on the underlying data source, it will not execute.

Administration by the account administrator

Account administrators can also govern the artifacts. They have view permissions on all dashboards.
They also have delete permissions on all dashboards.

This is by design. Consider the case where the owner of the artifact leaves the organization. In such a
case, the account administrator can transfer ownership of the artifact to another resource.

That said, account administrators do not have Can Edit permissions on any artifact unless the owner
explicitly grants such permissions.

Additional Context on Access Control
This discussion is enough to understand the access control model for queries, dashboards,
and alerts. However, it is worth checking the official documentation, which provides a great
tabular view of possible actions and required permissions. Check it out at https://docs.
databricks.com/sql/user/security/access-control/.

Summary
In this chapter, we put on the lens of an end user of Databricks SQL – the business analyst or the data
analyst – and learned about the features that enable end users to go through their daily workflows.

First, we learned how to build queries and visualizations and how to compose them into usable
dashboards. After that, we learned how to put the dashboards to use with various sharing and alerting
features. Finally, we learned how to administer and govern all these artifacts. We learned all this while
navigating a hands-on example and compiled our very own operational dashboard.

In this chapter, we assumed that the required computation power is available to us to build and run
queries and dashboards. In the next chapter, where we will cover SQL Warehouses, we will go behind
the scenes and see how this computation power comes about and how to configure it for the best
possible end user experience.

https://docs.databricks.com/sql/user/security/access-control/
https://docs.databricks.com/sql/user/security/access-control/

6
The SQL Warehouses

In this chapter, we will focus on the compute layer of the Lakehouse architecture. The compute layer
in Databricks SQL is called the SQL Warehouse. We will learn how to create SQL Warehouses and
configure them for the best possible user experience. We will also learn how the computation layer is
instantiated on demand when a user executes a query.

The primary audience of this chapter is the Database administrators and Databricks workspace
administrator personas. That said, Data analyst personas will also benefit from this chapter by
learning how their queries are executed, how to avoid common pitfalls, and how to get the best
possible performance.

In this chapter, we will cover the following topics:

•	 Understand the SQL Warehouse architecture

•	 Creating and configuring SQL Warehouses

•	 The art of SQL Warehouse sizing

•	 Organizing and governing SQL Warehouses

•	 Using Serverless SQL

Technical requirements
For this chapter, you will need the following:

•	 A basic understanding of the components of the cloud’s infrastructure as a service (IaaS) for
your cloud service provider of choice

•	 An understanding of the The internals of cloud storage access section of Chapter 4, The
Security Model

The SQL Warehouses152

Understanding the SQL Warehouse architecture
The official documentation for SQL Warehouses (https://docs.databricks.com/sql/
admin/sql-endpoints.html) defines a SQL Warehouse as a computation resource that lets
you run SQL commands on data objects within Databricks SQL.

In practice, this computation resource manifests as a logical/virtual grouping of one or more physical
clusters. The physical clusters are Apache Spark clusters, as provisioned by Databricks.

A single physical cluster follows the core architecture of Apache Spark, as shown in the
following diagram:

Figure 6.1 – Physical cluster topology

As shown in the preceding diagram, two distinct processes make a cluster:

•	 Driver process: Think of this process as the brain of the cluster. It is responsible for accepting
users’ queries, parsing them, planning them, and coordinating their distributed execution across
the worker processes available in the cluster. The driver process runs on its own dedicated VM
(or EC2 instance in AWS).

•	 Worker processes: Think of these processes as the muscle to the driver’s brain. They are
responsible for accepting tasks from the driver process, completing them, and returning the
results. If you are familiar with the execution architecture of Apache Spark, you will note that
the worker processes correspond to executors, which delegate work to smaller processing units
called Tasks. The worker processes reside on their own dedicated VMs (or EC2 instances).
However, since they are responsible for executing queries, they are spawned on VMs with higher
CPU and RAM configurations. The number of worker VMs in a single physical cluster is fixed.

https://docs.databricks.com/sql/admin/sql-endpoints.html
https://docs.databricks.com/sql/admin/sql-endpoints.html

Understanding the SQL Warehouse architecture 153

Should I learn Apache Spark?
You do not need to be an expert on Apache Spark to be able to work with Databricks SQL and
SQL Warehouses. All you need to understand is that each physical cluster in the SQL Warehouse
has one driver VM and multiple worker VMs. That said, a high-level conceptual overview will
help you make better sense of the infrastructure requirements and performance tuning tasks.
If you wish to deep dive into Apache Spark, follow the official guides: https://spark.
apache.org/docs/latest/cluster-overview.html.

You will also notice a lightning-like icon on the worker processes. This represents the Photon engine.
The open source Apache Spark system uses Java Virtual Machine (JVM)-based executors, which
are not suited for high concurrency, interactive SQL workloads. Hence Databricks augments the
JVM-based executors with a native C++-based engine called Photon that enables SQL workloads at
high concurrency.

Do I Need to Know About Photon?
Not really. The presence of Photon is transparent. That said, Photon is an evolving engine and
there are some nuances in how it handles certain SQL commands. These nuances are important
for understanding the performance implications of certain edge workloads. We will discuss
them further in Chapter 9, The Photon Engine.

Now that we have seen what a single physical cluster looks like, it is easy to visualize a SQL Warehouse,
as follows:

Figure 6.2 – SQL Warehouse topology

https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html

The SQL Warehouses154

As shown in the preceding diagram, a single SQL Warehouse is composed of one or more physical
clusters that receive user queries and execute them. The task of routing user queries to specific physical
clusters is done by the control processes on the SQL Warehouse. The control processes are responsible
for the following:

•	 Load-balancing queries onto existing physical clusters in the SQL Warehouse

•	 Maintaining user-session stickiness to a physical cluster to maximize the use of caching

•	 Autoscaling the number of physical clusters in the SQL Warehouse to accommodate for the
current and predicted query workload

It is very important to highlight that all these processes are transparent. This heavy lifting is done for
you in the background, albeit under the control limits that you specify.

Control limits can be specified while creating or updating SQL Warehouses, as we’ll see in the
next section.

Creating and configuring SQL Warehouses
In this section, we’ll learn how to create or update SQL Warehouses. Specifically, we will learn about the
configurations that are associated with SQL Warehouses. We will also learn what each configuration
controls and how it contributes to the overall query experience. To begin, navigate to the SQL
Warehouses page by clicking on the icon.

Creating and configuring SQL Warehouses 155

Click on the Create SQL Warehouse button to bring up the creation pop-up, like so:

Figure 6.3 – New SQL Warehouse

As you can see, there are four primary decisions to make when creating a SQL Warehouse. Let’s take
a look.

The SQL Warehouses156

Cluster size

When creating a SQL Warehouse, we must select its size. More accurately, we must select the size of
the physical clusters that will constitute the SQL Warehouse. Refer to Figure 6.2 to see how multiple
physical clusters constitute a SQL Warehouse.

Note
Going forward, we will use the terms SQL Warehouse size and cluster size interchangeably.

Cluster sizes are represented as T-shirt sizes in Databricks SQL. Literally. You can choose from nine
cluster T-shirt sizes, starting from 2X-Small to 4X-Large.

Great.

But wait – what are the measurements? How do I know which size fits me best?

The answer lies in the following fitting chart:

T-Shirt Size Number of Workers

2X-Small 1

X-Small 2

Small 4

Medium 8

Large 16

X-Large 32

2X-Large 64

3X-Large 128

4X-Large 256

Each cluster is a collection of worker machines. Each T-shirt size represents the number of workers
in the cluster and hence the available computing power in the cluster.

Again, you might be wondering, how much compute power does one worker represent? Each worker
represents a computation resource of 8 vCPUs and 64 GB of RAM. At the time of writing, in Azure,
this is the standard_E8ds_v4 VM type. In AWS, this is the i3.2xlarge EC2 type. In GCP, this is the
n2-highmem-8 VM type.

Creating and configuring SQL Warehouses 157

Before running any SQL Warehouse, ensure that you have a large enough quota to support the number
of required workers.

Note
The cluster size is proportional to the latency of an individual query (assuming that the query
itself is not exceptionally bad in design). If individual queries are not completing fast enough,
increase the cluster size.

You can also think of the cluster size as the bandwidth for processing larger datasets. Larger
cluster sizes have more CPUs and RAM and can accommodate more parallel data processing
– if the query lends itself to parallelization.

Reiterating a crucial point, when creating and configuring SQL Warehouses, we can only select the
T-shirt size. We cannot configure the instance types to be used. This is to keep things simple – the
last thing you want to be doing is doing mental gymnastics with VM types, CPUs, and RAM counts.

At this point, you may again be thinking – knowing the number of workers in a T-shirt size is great,
but how do I use that information?

Hold on to that thought – we will discuss that soon in the The art of SQL Warehouse sizing section.

Scaling

Scaling defines two things:

•	 The minimum number of physical clusters in the SQL Warehouse at any given time.

•	 The maximum number of physical clusters in the SQL Warehouse at any given time. The
maximum number of physical clusters, per warehouse, at the time of writing, is 40.

SQL Warehouses have internal algorithms to bring the warehouses to the correct number of physical
clusters, depending on the workloads. We will discuss the algorithm in the Rules of query routing,
queuing, and cluster autoscaling section.

Note
The scaling configuration is proportional to the concurrency of queries that the SQL Warehouse
will handle. If individual queries are queued for too long, you should increase the scaling range
– that is, the maximum number of physical clusters in the warehouse.

Of course, there are more nuances when choosing the scaling range, as we will see in the The art of
SQL Warehouse sizing section.

The SQL Warehouses158

Spot instance policy

All the public clouds offer spot instances (by one name or other). Spot instances are unused compute
resources in the cloud’s data centers that the cloud provider offers at deeply discounted rates. You
can read more about them at https://aws.amazon.com/ec2/spot/ for AWS, https://
azure.microsoft.com/en-us/services/virtual-machines/spot/ for Azure, and
https://cloud.google.com/compute/docs/instances/preemptible for GCP.

Using spot instances to build SQL Warehouses is an attractive proposition as it allows you to massively
reduce the cost of running the SQL Warehouses. The only caveat is that spot instances can be reclaimed
by the cloud provider with very short notice (for example, 2 minutes in AWS), which can undermine
the stability of the SQL Warehouse.

Databricks SQL mitigates the problem of instability transparently. For example, if we choose the
Cost Optimized policy, Databricks SQL will provision physical clusters whose target is to use spot
instances for all workers, except one. Consider a Large T-shirt size cluster. The target would be to use
15 spot instance-based workers and one on-demand instance. This is to ensure that if a catastrophic
event occurs, such as all spot instances being claimed back by the cloud provider, there is at least one
worker still trying to clear the query backlog. However, the mitigation does not stop there. When
a spot instance-based worker is reclaimed, it is immediately replaced by an on-demand worker to
ensure continuity.

The Cost Optimized policy is great for workloads that can tolerate some SLA misses or for
development workloads.

For production workloads, it is recommended to use the Reliability Optimized policy. This
policy uses on-demand instances only and, as its name suggests, a more reliable, SLA-bound
execution of workloads.

Auto Stop

The Auto Stop function, as its name suggests, terminates the SQL Warehouse (and the underlying
physical clusters) after a configured period of inactivity. It is important to configure this correctly for
a good user experience.

For example, if the auto stop time is too aggressive, the cluster will terminate after short periods of
inactivity. Now, if a new query comes in, the SQL Warehouse needs to be brought up again, which,
for a classic cluster, takes around 4 to 5 minutes. With an aggressive auto stop policy, there is an
increased chance of new queries always having to wait for cluster startup, which is likely to result in
a sub-optimal user experience.

Note
The use of Serverless SQL Warehouses mitigates this problem of startup and shutdown. We
will learn more about them in the Using Serverless SQL section.

https://aws.amazon.com/ec2/spot/
https://azure.microsoft.com/en-us/services/virtual-machines/spot/
https://azure.microsoft.com/en-us/services/virtual-machines/spot/
https://cloud.google.com/compute/docs/instances/preemptible

The art of SQL Warehouse sizing 159

On the other hand, if the auto stop time is very lax, the cluster will remain idle and report poor levels
of utilization, resulting in a bad return on investment.

Configuring auto stop is reasonably straightforward. The SQL Warehouse monitoring tools profile
the workloads by time. This is a great tool to inform your auto-stop configuration. We will discuss
this more in the Monitoring the SQL Warehouse section.

The rest of the configuration options are self-explanatory:

•	 Tags: These are key-value pairs of information that you can attach to the SQL Warehouse.
These key-value pairs are propagated down to the VMs as well. This means you can monitor
the usage and cost using these custom tags. Databricks SQL attaches some default tags to the
SQL Warehouse, such as the Warehouse ID.

•	 Channel: Databricks SQL is evolving rapidly, and new features are introduced at a regular
cadence. The Preview channel option allows you to run your workloads with the newer features
ahead of them becoming generally available.

Now that we understand the various levers that we can adjust in a SQL Warehouse, let’s learn how to
configure them for the best possible user experience. In the next section, we will learn about the art
of SQL Warehouse sizing.

The art of SQL Warehouse sizing
Warehouse sizing requires calibrating the cluster size and the scaling range. Simply put, we must configure
the speed and concurrency with which the SQL Warehouse will process queries submitted by users.

That said, it is important to understand that speed and concurrency are not entirely independent
metrics. For example, if you process your queries faster, then the overall throughput of queries will
be higher and the amount of time a query spends in a queued state will be shorter. This will avoid
having to scale the concurrency of the SQL Warehouse by increasing the cluster size.

So, let’s start by understanding the mechanics of query routing, queuing, and cluster autoscaling.

Rules for query routing, queuing, and cluster autoscaling

The control processes in the SQL Warehouse follow a very simple decision tree for performing query
routing, query queuing, and cluster autoscaling.

The 10-Query Rule
The core rule (at the time of writing) is that a single physical cluster in a SQL Warehouse can
have, at most, 10 queries assigned to it. This is not configurable. This is to allow load balancing
across the clusters in the warehouse and to avoid hotspotting within the warehouse.

The SQL Warehouses160

Note the use of the word assigned instead of running. This is important and must be understood with
case studies.

Case 1 – SQL Warehouse is not running

Consider a SQL Warehouse that is in a stopped state and has been configured to have a minimum
of one (default) physical cluster(s). When users start submitting their queries, the SQL Warehouse
will enter a starting state. However, the cluster(s) in the SQL Warehouse must be in the running
state before any query can be executed. Hence, during this brief starting period, any queries that are
submitted are assigned to the physical cluster and will be executed when the cluster (and hence the
SQL Warehouse) is running.

Case 2 – SQL Warehouse is running

Similarly, consider that the same SQL Warehouse has entered the running state and has one physical
cluster running and executing user queries. Consider that there are 10 queries already assigned to this
cluster and that 10 more queries get submitted. The control process will decide to upscale the SQL
Warehouse by adding more physical clusters in the SQL Warehouse. However, as in Case 1 – SQL
Warehouse is not running, the new clusters will take some time to come into a running state, so they
will have the queries assigned to them. As in Case 1 – SQL Warehouse is not running, they will be
executed when the new cluster is running.

Hopefully, these case studies help you understand the nuance of assigned queries.

With this nuance clarified, let’s discuss the rules for auto-upscaling.

Rules for upscaling

Databricks considers the following metrics to make upscaling decisions:

•	 TC: Forecasted time to execute current running queries

•	 TQ: Forecasted time to execute all queued queries

•	 TI: Forecasted time to execute all incoming queries in the next 2 minutes

SQL Warehouses run an internal algorithm that considers the forecasted time to execute current running
queries, all queued queries, and expected incoming queries. This algorithm can’t be configured. For
the sake of brevity, let’s call this algorithm Festimate (TC, TQ, TI).

The art of SQL Warehouse sizing 161

These metrics come together, as shown in the following decision tree:

Figure 6.4 – Upscaling decision tree

The preceding decision tree shows the following rules:

•	 If all the clusters in the SQL Warehouse have 10 queries assigned to them and Festimate is less
than 2 minutes, do not upscale.

•	 If all the clusters in the SQL Warehouse have 10 queries assigned to them and Festimate is
between 2 and 6 minutes, add one cluster.

•	 If all the clusters in the SQL Warehouse have 10 queries assigned to them and Festimate is
between 6 and 12 minutes, add two clusters.

•	 If all the clusters in the warehouse have 10 queries assigned to them and Festimate is between
12 and 22 minutes, add three clusters.

•	 If all the clusters in the warehouse have 10 queries assigned to them and Festimate is more than
22 minutes, add three clusters right away. Then, add one physical cluster for every additional
15 minutes of expected query load.

The SQL Warehouses162

Finally, if any query remains queued for more than 5 minutes, upscaling is unconditionally triggered.
Of course, the scaling has its lower and upper bounds as defined in the SQL Warehouse configuration.

Rules for downscaling

Downscaling decisions, by contrast, are simpler. If the current and forecasted workload is deemed
low for the past 15 minutes, then downscaling the SQL Warehouse is initiated. Like the upscaling
algorithm, the downscaling algorithm defines what constitutes a low workload and maintains enough
capacity (number of clusters) to handle the next 15 minutes of the expected workload.

At this point, you must be thinking – the upscaling and downscaling rules seem to only consider the
number of queries and their expected query completion time. How come they do not mention the
computation power of individual physical clusters?

Excellent question – let’s discuss this next.

Sizing the SQL Warehouse

To understand the art of sizing, let’s start by discussing two very simple scenarios.

Scenario A – memory-bound workloads

There is a business table of 400 GB, and it is expected that there will be two concurrent users querying
the whole table. Also, there might be other users querying subsets of the business table, but the size
(total data scanned) of those queries is inconsequential.

In this case, we can see that the maximum memory usage at any given time will be 800 GB. Hence,
we should choose the Large T-shirt size, which has 1,024 GB of RAM. This should be enough to
accommodate for the required concurrency of 2.

This cluster size is 128 vCPUs since it has 16 workers and, as you may recall, each worker has 8 vCPUs.
If the users feel that the queries are not executing fast enough, then we should increase the vCPU
count. This can be done by selecting a higher T-shirt size. In this case, we should select the X-Large
T-shirt size.

The workload suggests that the maximum query concurrency will rarely exceed 10, hence we can
leave the scaling range to the default – no scaling.

The art of SQL Warehouse sizing 163

Scenario B – CPU-bound workloads

Now, consider the scenario of CPU-bound workloads. There is a business table that’s 40 GB in size,
and it is expected that 10 people will be querying the whole table all the time.

In this case, we can see that the maximum memory usage will be 400 GB. Hence, we should choose
the Medium T-shirt size, which has 512 GB of RAM. This should be enough to accommodate for the
worst case of 10 concurrent queries, each scanning the full table.

This cluster has 64 vCPUs as well. If the users feel that the queries are not executing fast enough, then,
as in the previous scenario, we should increase the T-shirt size.

The workload suggests that queries will come at a more interactive pace and that there is the possibility
of getting more than 10 queries at the same time. Hence, we can start with a scaling range where there’s
a minimum of 1 and a maximum of 2 to accommodate for up to 20 concurrent queries.

These two scenarios are unapologetically simplified.

In the real world, this is not so simple:

•	 Users can submit queries at varying speeds based on the work they are doing. Hence, it is
difficult to preempt the concurrency required.

•	 Queries often reference more than one table with varying filters and operations, leading to varying
data scan volumes. Hence, it is difficult to preempt the amount of memory and vCPU required.

•	 SQL Warehouses are shared by multiple users running queries of different profiles. Hence,
it is hard to establish a uniform query SLA for everyone without the risk of under or over-
provisioning resources.

Does this mean that SQL Warehouse sizing is all about trial and error?

No. If you think about it, you do not need to pinpoint metrics about memory usage, vCPU count,
and concurrency. You just need broad indicative signals on whether queries are being completed in a
reasonable time. If not, is the reason that the queries are being executed slowly or excessive queuing?
Thankfully, Databricks SQL has built-in instrumentation to get these signals. Now, let’s discuss the
different signals and how to inform our configurations with these signals.

The SQL Warehouses164

Signal 1 – concurrency of queries

On the SQL Warehouses page, click on the SQL Warehouse you want to tune and navigate to the
Monitoring tab. You should see a graph similar to the following:

Figure 6.5 – Monitoring a SQL Warehouse

This is the monitoring graph of a medium-sized SQL Warehouse with a scaling range of 1 to 5 over
7 days. 7 days allows us to capture query concurrency patterns with a fair degree of accuracy. As we
can see, whenever the number of concurrent queries shoots up significantly or there is significant
queueing, the SQL Warehouse auto-scales and adds a new physical cluster to accommodate for the
additional workloads. Keep in mind that each bar in the 7-day graph represents a time band of 1
hour. You can inspect the peak concurrency during that time band by hovering on the respective bar.

A closer inspection of the graph reveals three distinct cases, as denoted in the preceding screenshot.

The art of SQL Warehouse sizing 165

Case 1

In this case, more than 60 queries are processed in 1 hour. There is no queuing, and there is no
autoscaling event.

Case 2

In this case, more than 30 queries are queries processed in 1 hour. There is definite queuing, but this
does not lead to an autoscaling event. If you recall the rules of autoscaling, this corresponds to the
first rule, where all the clusters in the SQL Warehouse have 10 queries assigned to them and Festimate
is less than 2 minutes, so no upscaling happens.

Case 3

In this case, more than 30 queries are processed in 1 hour. There is definite queuing, which leads to
an autoscaling event. In this case, there are some longer-running queries and the queue buildup at
a point in time is high. This leads to a forecasted time of completion of running and queued queries
greater than 2 minutes, but less than 6 minutes. This corresponds to the second rule, so an upscaling
event occurs, with one cluster being added to the SQL Warehouse.

These three cases show you how to interpret the concurrency requirements for the workloads running
on this cluster.

In this setup, the scaling factor of the SQL Warehouse is well configured:

•	 There are few queuing events.

•	 Fewer queuing events means fewer upscaling events.

•	 The upscaling events are within the configured bounds.

This is not to say that upscaling is bad! It is a delicate line to thread. If there are fewer upscaling events,
it just means that you forecasted the workload well. If you are unable to forecast the workload, leave
it to autoscaling to figure out what is best.

Keep in mind that upscaling decisions anticipate expected incoming workloads. However,
upscaling still requires time in the order of 3 to 4 minutes, which could potentially lead to long
query times. If your SQL Warehouse is exhibiting frequent auto-upscaling events, you should
re-evaluate the scaling minimum.

The following would have happened if the SQL Warehouse had been ill-configured:

•	 We would have seen frequent queuing events.

•	 The queuing events would lead to frequent upscaling events.

•	 The frequent upscaling events would have hit the scaling maximum.

The SQL Warehouses166

So, to summarize, we can say the following:

•	 Initially, start with a wide band of scaling. Monitor the SQL Warehouse progressively to make
corrections as required.

•	 If the cluster count is predictably higher than the configured minimum most of the time,
consider increasing the minimum cluster count.

•	 If the cluster count is at the configured maximum most of the time, and there is noticeable
queuing of queries, consider increasing the minimum and maximum cluster counts.

•	 If there is a consistent behavior of rapid upscaling and downscaling, consider increasing the
minimum cluster count to avoid the wait for new clusters and query queuing.

•	 If there are no definite patterns to the autoscaling and there are a few stray events of hitting
the maximum count with queuing, use your best judgment.

Use this guide to broadly read the concurrency indication signals. However, keep in mind that this is
more art than science. Try not to get mired in the details of every single query execution. If the scaling
limits are reasonably configured, the autoscaling algorithm will take care of catering to the workloads.

Signal 2 – execution speed of queries

The next signal is the execution speed of queries. This should be used in conjunction with the signals
from the Monitoring tab.

For example, consider the monitoring signals in the following screenshot:

Figure 6.6 – Inspecting a queuing event

The art of SQL Warehouse sizing 167

As we can see, on April 6, between 5:35 A.M. and 5:40 A.M., there was a big queuing event that
triggered an autoscaling event. You, as an administrator, want to see if this could have been avoided
with a bigger SQL Warehouse size, or whether this was a one-off case.

To do so, you can go to the Query History page and filter the queries on the SQL Warehouse during
this time window, as shown in the following screenshot:

Figure 6.7 – Inspecting the query execution times

Closer inspection shows that there are indeed more than 10 queries running at a point in time, which
warrants the upscaling event. Furthermore, we can see that the queries are taking inordinately long,
so the upscaling event seems to be valid.

Now, depending on what we see here, if we decide that the queries are sufficiently well designed and
yet running slow, we can decide to increase the T-shirt size of the SQL Warehouse. In this case, we
can see that, at 5:38 A.M., there are a lot of long-running queries that are sufficiently well designed
but take a lot of time to execute. If we increase the T-shirt size, these queries will finish faster and
reduce the queueing.

On the other hand, if we see that the queries are poorly designed and the slow execution times are
not a sustained event, we can brush this off as a one-off event.

What is a Well-Designed Query?
A well-designed query is a query that lends itself to parallel execution and avoids expensive
operations such as cross joins as much as possible. You do not have to read the query to know
if it is well designed. Clicking on a query in the History tab opens the query profiling tool,
which provides a high-level view of what is happening in the query. You can read more about
it at https://docs.databricks.com/sql/admin/query-profile.html.

Avoid the temptation to look at micro details. When looking at the query execution speeds, try to
look at broad patterns and decide if increasing the T-shirt size is a valid strategy.

https://docs.databricks.com/sql/admin/query-profile.html

The SQL Warehouses168

If you are struggling to find an initial size, use this very rough guide to start:

Workload Size

10 GB / 1 – 10 million rows S

100 GB / >10 million rows M

250 GB / >100 million rows L

500 GB / 1 billion rows XL

If this is not possible, start with a medium-sized SQL Warehouse with scaling limits of 1 to 5.

That said, in either case, you should progressively monitor the SQL Warehouse signals to
make corrections.

So, to summarize, we can say the following:

•	 If you see a lot of queuing in the Monitoring tab and corresponding slow queries in the Query
History tab, consider increasing the SQL Warehouse’s T-shirt size.

•	 Don’t let cost be the only factor when it comes to cluster sizing. User experience is of equal
importance. For example, for the same workload, a smaller SQL Warehouse will run for longer,
while a larger SQL Warehouse will run for a shorter duration. The end cost will be the same.
The user experience will be vastly different. It’s possible that, for your workload patterns, it is
not any more expensive to use a larger cluster for a workload than it is to use a smaller one.
It’s just faster.

This brings us to the end of our discussion on the art of SQL Warehouse sizing. Use the available
signals, individually and together, to iterate over SQL Warehouse configurations.

Knowing how to configure a single SQL Warehouse is essential. However, it is only a part of the larger
activity of organizing and assigning SQL Warehouses to various analysts. We will discuss this in the
next section.

Organizing and governing SQL Warehouses
Organizations tend to have a sizeable number of data analysts working on various projects at the same
time. Depending on the project, access to different data sources with varying data volumes will have
to be accounted for. Depending on the staffing of the project, the number of concurrent users will
also need to be accounted for. Depending on the sensitivity of the project, the access control to the
work on the project will have to be accounted for. Finally, each project should be held accountable
for the computation resources they incur.

Organizing and governing SQL Warehouses 169

The Databricks SQL platform is very flexible and accommodates all these considerations. Let’s start
by looking at how SQL Warehouses are distributed to various users or projects.

SQL Warehouse assignment strategy

There are no set rules on how SQL Warehouses should be assigned to users. Databricks certainly
does not want to restrict assignment strategies either. There are two levels to the assignment strategy:

•	 Assigning users to workspaces.

•	 Assigning users in workspaces to SQL Warehouses in the workspace.

•	 When it comes to assigning users to workspaces, I recommend considering the Business Unit
Subscription design pattern. If you want a refresher on what a Databricks workspace is, visit
the official documentation: https://docs.databricks.com/getting-started/
concepts.html.

Let’s learn how to assign SQL Warehouses within the workspace.

Assignment criteria 1 – workload type

The first level of assignment should be on the lines of the type of the workload: production
versus development.

Production workloads are scheduled workloads. A workload could be a Report, a Dashboard, or a
Scheduled Query. A Report or a Dashboard can be composed of one or more queries.

Production workloads should be run on SQL Warehouses with the Reliability Optimized strategy. It is
also recommended that production workloads run in a separate workspace dedicated to production
workloads only – to reduce the possibility of human errors interfering with production workloads.

Development workloads, on the other hand, are more forgiving and flexible. They can be run on SQL
Warehouses with the Cost Optimized strategy.

Assignment criteria 2 – sharing resources

The second level of assignment should be along the lines of resource sharing – should the workload
be run on a dedicated SQL Warehouse or a shared SQL Warehouse?

Let’s begin by talking about production workloads.

Dedicated SQL Warehouses mean that all the computation resources in the Warehouse will be used
by the workload and guarantee the best possible performance for that one workload.

On the other hand, a shared SQL Warehouse will mean that the different workloads will be able to
benefit from the caching of data that’s triggered by each workload. This can help with the overall
execution of all the workloads, not just one.

https://docs.databricks.com/getting-started/concepts.html
https://docs.databricks.com/getting-started/concepts.html

The SQL Warehouses170

So, you must weigh the variables of the compute resources that are required, the shared data sources,
and the workload SLAs to decide on the dedicated versus shared strategy.

Development workloads are usually executed on shared SQL Warehouses to maximize Warehouse
utilization. There is the added benefit of caching data that’s been triggered by various workloads to
uplift the query performances in general. A case can always be made to have a single SQL Warehouse
for a single user, but the administrative overhead that will build up if every user gets a dedicated SQL
Warehouse should be kept in mind.

Assignment criteria 3 – projects and groups

Sharing SQL Warehouses is great, but there should be a method to this sharing. Ideally, users working
on a particular project should share the same SQL Warehouses. A particular project can have multiple
SQL Warehouses associated with it as well. The reasons for doing so can be varied – it could be that
SQL Warehouses of different sizes are required for different developer groups in the project. It could
also be that different developer groups need to work on different datasets. So, to maximize the benefits
of caching, developer groups working on the same datasets use the same SQL Warehouse. This also
enables easy chargeback processes. We will discuss this in more detail in the Chargeback section.

By now, it should be clear that there is no one correct assignment strategy. It depends on your
organization’s operating model. However, you can use the discussed assignment criteria to broadly
consider how to assign users to SQL Warehouses.

Now that we have an idea of how to assign users to SQL Warehouses, the next question is, how do
you enforce it? The answer lies in the access control feature of SQL Warehouses.

Access control in SQL Warehouses

Access control in SQL Warehouses is similar to the data security model we introduced in Chapter 4,
The Security Model.

Like the data security model, there are four concepts:

•	 Users, groups, and service principals

•	 The SQL Warehouse is the securable object

•	 Privileges

•	 Operations

As with the data security model, users are granted certain privileges on the SQL Warehouse that allow
them to conduct certain operations on or with the SQL Warehouse.

Now, let’s discuss privileges and operations in more detail.

Organizing and governing SQL Warehouses 171

Privileges

There are three possible privilege levels:

•	 No Permissions: This privilege level means that the user cannot see the SQL Warehouse and
cannot execute any queries on that SQL Warehouse. If a user has access to a report, dashboard,
or a saved query that uses this SQL Warehouse, then the user will not be able to execute them
and will have to use a SQL Warehouse that is available to them.

•	 Can Use: This privilege level means that the user can view the SQL Warehouse, start the SQL
Warehouse, execute queries on it, and view their query history on it.

•	 Can Manage: This privilege level grants the user to view, use, and manage the SQL Warehouse.
This is the highest level of privilege and allows for all possible operations on the SQL Warehouse.

Operations

Nine possible operations can be performed on a SQL Warehouse:

•	 View your queries on the Warehouse.

•	 View query details.

•	 View queries for all users on the Warehouse.

•	 View Warehouse details.

•	 Start Warehouse.

•	 Stop Warehouse.

•	 Delete Warehouse.

•	 Edit Warehouse.

•	 Modify permissions.

The Can Manage privilege allows you to perform all of these operations. The Can Use privilege
allows you to view your queries, view the Warehouse’s details, and start the Warehouse. Finally, the
No Permissions privilege only allows you to view your queries.

The SQL Warehouses172

Programming access control

Programming access control – that is, assigning a privilege to a SQL Warehouse for users and user
groups – can easily be done via the UI:

•	 Navigate to the SQL Warehouse and click on the Permissions button to bring up the Manage
Permissions UI, like so:

Figure 6.8 – The Manage Permissions UI

This UI shows the current permissions on the SQL Warehouse. The permissions for the owner of the
SQL Warehouse – that is, the user that created the SQL Warehouse – can’t be edited. Interestingly,
however, the admins group can be restricted to the Can use privilege:

•	 To add a new permission, simply click on the search box to type or select the user that you
want to give permissions to. The following screenshot illustrates this:

Figure 6.9 – Granting a new user privileges

Organizing and governing SQL Warehouses 173

The new user can be given the Can use or Can manage privilege:

•	 Permissions can be edited by clicking on the permissions dropdown for a user, as shown in
the following screenshot:

Figure 6.10 – Modifying a user’s privileges

•	 Finally, permissions can also be revoked by simply clicking on the Remove button in the
Manage Permissions UI.

As you can see, programming access control is very simple. Combined with a sound user group strategy,
it is easy to scale the access control programming to cover all your analyst users.

Now that we have discussed strategies for assigning users to SQL Warehouses and how to enforce
those strategies, let’s discuss the final component of governance – chargeback.

Chargeback

Simply put, chargeback means accounting for how much cost (in $) was incurred by a particular user,
group, or project. This is very important to keep teams accountable for the resources they are using,
and to evaluate the return on investment on a project.

If we have a good user assignment strategy in place, chargeback boils down to the cost incurred by
the SQL Warehouse(s) that the user, group, or project was using.

The SQL Warehouses174

Databricks Pricing
To deep dive into Databricks pricing, head over to the official documentation: https://
databricks.com/product/pricing.

In the Azure portal, you can head over to the Cost Analysis tool (https://docs.microsoft.com/
en-us/azure/cost-management-billing/costs/quick-acm-cost-analysis) to
view the costs. First, you must add two Meter Categories – Virtual Machines and Azure Databricks
– and apply the Tags filter. Each SQL Warehouse gets a Cluster ID tag that uniquely identifies it. Filter
on the clusterid tag that you wish to charge back on. The Cluster ID tag can be found in the SQL
Warehouse Overview tab in the Name field. The cost analysis setup should look as follows:

Figure 6.11 – Setting up cost analysis

Once this has been set up, the cost analysis dashboard should populate the accumulated costs, like so:

Figure 6.12 – Accumulated cost

It should also populate breakdowns of the Databricks cost and the underlying VM cost, like so:

Figure 6.13 – Cost breakdown

https://databricks.com/product/pricing
https://databricks.com/product/pricing
https://docs.microsoft.com/en-us/azure/cost-management-billing/costs/quick-acm-cost-analysis
https://docs.microsoft.com/en-us/azure/cost-management-billing/costs/quick-acm-cost-analysis

Using Serverless SQL 175

If you are an AWS user, you might be expecting something similar in the Billing and Cost Management
console. However, that is not the case. Databricks is a first-party service in Azure, so its billing is
tightly integrated. We can see the Databricks billing in the cost analysis portal. Databricks is not a
first-party service in AWS.

AWS users can see the Databricks spend on their Databricks account console, as documented here:
https://docs.databricks.com/administration-guide/account-settings-e2/
usage.html.

You will also notice that the console does not show the underlying VM costs. You must get those costs
from the Billing and Cost Management console using cluster tags since they are propagated to the
underlying VMs. You can read more about cluster tags and tag propagation here: https://docs.
databricks.com/administration-guide/account-settings/usage-detail-
tags-aws.html.

GCP users can see their spending on their account console, as documented here: https://docs.
gcp.databricks.com/administration-guide/account-settings-gcp/usage.
html.

In summary, a reliable chargeback is important, and reliability comes from having a sound user
assignment strategy and strategy enforcement. Databricks SQL provides all the tools to implement
this, and we discussed all the nuances in depth in this section.

Using Serverless SQL
It would be remiss not to introduce the Serverless SQL offering in Databricks SQL. SQL Warehouses
– the classic SQL Warehouses that we have discussed so far – reside in your cloud account. That is,
the workers of the warehouses are VMs in your cloud account. This has two implications:

•	 You incur the cost of Databricks and the cost of the VMs that Databricks uses to power the
SQL Warehouses.

•	 You incur some latency in cluster cold starts and upscaling events.

Databricks SQL offers Serverless SQL to circumvent this. In Serverless SQL, the SQL Warehouses are
provisioned in Databricks’s account from a pool of pre-provisioned compute resources. This solves
both the aforementioned implications:

•	 The cost of Databricks SQL Warehouses includes the VM costs, and you pay for only one line item

•	 Since Databricks uses a pool of pre-provisioned compute, no latency is incurred in cold starts,
as well as when upscaling events

https://docs.databricks.com/administration-guide/account-settings-e2/usage.html
https://docs.databricks.com/administration-guide/account-settings-e2/usage.html
https://docs.databricks.com/administration-guide/account-settings/usage-detail-tags-aws.html
https://docs.databricks.com/administration-guide/account-settings/usage-detail-tags-aws.html
https://docs.databricks.com/administration-guide/account-settings/usage-detail-tags-aws.html
https://docs.gcp.databricks.com/administration-guide/account-settings-gcp/usage.html
https://docs.gcp.databricks.com/administration-guide/account-settings-gcp/usage.html
https://docs.gcp.databricks.com/administration-guide/account-settings-gcp/usage.html

The SQL Warehouses176

Apart from the location of the SQL Warehouse, everything else remains the same, as we discussed
in the previous sections. However, this is a new implication of data security as the serverless SQL
Warehouses are provisioned from a shared pool of compute resources. Serverless SQL uses a combination
of network policies and security groups to isolate SQL Warehouses.

I haven’t provided a detailed explanation of Serverless SQL as it is still a preview feature, and the
product may change as it enters general availability. Perhaps a future revision of this book will contain
a detailed exploration. You can read more about it here: https://docs.databricks.com/
serverless-compute/index.html.

Summary
In this chapter, we put on the lens of a Database administrator and learned about SQL Warehouses
in depth.

First, we learned how SQL Warehouses can be created, configured, and governed. We discussed the inner
workings of SQL Warehouses so that we can configure them to get the best possible user experience.
We discussed various strategies for assigning users to SQL Warehouses. Finally, we discussed how we
can charge back users for their usage and create accountability.

SQL Warehouses are used within the Databricks SQL UI. However, they can also be leveraged from
outside the Databricks environment with specialized BI tools.

In Chapter 7, Using Business Intelligence Tools with Databricks SQL, we will learn how to do
this and elevate the analyst experience.

https://docs.databricks.com/serverless-compute/index.html
https://docs.databricks.com/serverless-compute/index.html

7
Using Business Intelligence

Tools with Databricks SQL

Databricks SQL is a well-rounded, self-contained data analytics platform. It provides users such as
analysts and data administrators with all the tools that are required for them to conduct their daily
workflows. As we saw in the preceding chapters, pretty much everything can be done on Databricks
SQL – exploratory data analysis, reports, dashboards, alerts, and more.

Despite all that, though, it is by no means a replacement for dedicated Business Intelligence (BI)
tools such as Power BI, Tableau, Looker, or Qlik.

These BI tools can connect with Databricks SQL with simple, transparent mechanisms to query the
data on the data lakehouse. In this chapter, we will focus on how to connect Databricks SQL to BI
tools of your choice.

The primary audience of this chapter is analysts who want to use BI tools of their choice with Databricks
SQL. The database administrator personas will also benefit from this chapter as it pertains to data
access from outside the Databricks SQL platform.

In this chapter, we will cover the following topics:

•	 Connecting from validated BI tools

•	 Connecting from non-validated BI tools

•	 Connecting programmatically

•	 Databricks Partner Connect

Using Business Intelligence Tools with Databricks SQL178

Technical requirements
To understand this chapter, you must ensure the following:

•	 You must have gone through Chapter 6, The SQL Warehouses, before reading this chapter.

•	 You must have the BI tools that you intend to use, installed on your workstation.

•	 You must have the Can Use privilege on a SQL Warehouse.

Connecting from validated BI tools
Databricks SQL is an open platform, which means it supports integrations with all BI tools using
open standards such as JDBC and ODBC. That said, there are certain BI tools and platforms that
natively support connections to Databricks SQL. These are what we refer to as validated BI tools. In
this section, we will learn how to connect validated BI tools to Databricks SQL. We will also learn
what’s meant by a connection to Databricks SQL.

Note
I will refer to business intelligence software as BI tools or BI platforms interchangeably
in this chapter.

Databricks SQL supports validated integrations from various BI platforms. This list is constantly
evolving and can be found at https://docs.microsoft.com/en-us/azure/databricks/
integrations/partners#--bi-and-visualization.

How does a connection from an external BI tool to Databricks SQL work?

Recall from the previous chapters that Databricks SQL has three distinct layers:

•	 The data layer, which we covered in Chapter 3, The Data Catalog

•	 The compute layer, which we covered in Chapter 6, The SQL Warehouses

•	 The consumption layer, which we covered in Chapter 5, The Workbench

In those chapters, we learned how users submit queries from the workbench, and that the queries get
executed on the SQL Warehouses. The data in the tables that’s referred to in the queries is retrieved
from the data layer.

When visualizing how connections from external BI platforms work, just imagine that you are
replacing the default consumption layer – the workbench – with a workbench of your choice – that
is, the BI platform.

https://docs.microsoft.com/en-us/azure/databricks/integrations/partners#--bi-and-visualization
https://docs.microsoft.com/en-us/azure/databricks/integrations/partners#--bi-and-visualization

Connecting from validated BI tools 179

When a BI tool is marked as validated by Databricks, you can expect the BI tool to have built-in driver
connectors for Databricks and a named data source. For example, the following screenshot shows the
named Databricks source on Tableau Desktop:

Figure 7.1 – Databricks connector in Tableau Desktop

Similarly, the following screenshot shows the named Databricks source in Power BI Desktop:

Figure 7.2 – Databricks connector in Power BI Desktop

Using Business Intelligence Tools with Databricks SQL180

Every validated BI tool will have a named Databricks connector and often, it will have the Databricks
Driver Connector bundled in. There can be notable exceptions to the driver bundling. For example,
Tableau Desktop requires that the driver connector be explicitly downloaded and installed before the
Databricks connector is used. This does not mean that the integration is subpar – it is most likely a
technicality of licensing and distributing the driver connector.

Moving on, making the connection is easy. Click on the Databricks data source to proceed to the
required connection configuration. Let’s use Tableau Desktop as an example:

Figure 7.3 – Configuring a Databricks connector in Tableau Desktop

Tableau Desktop requires two sets of connection configurations – the details of the SQL Warehouse
and the details of authenticating to the SQL Warehouse. Let’s dive into these configurations.

SQL Warehouse details

The SQL Warehouse details identify the SQL Warehouse that will be used by this connection to execute
user queries. The following SQL Warehouse details are required:

•	 Server Hostname: This identifies your Databricks workspace.

•	 HTTP Path: This identifies the SQL Warehouse within the Databricks workspace.

Connecting from validated BI tools 181

The Server hostname and HTTP path details can be obtained from the SQL Warehouse’s Connection
Details tab, as shown in the following screenshot:

Figure 7.4 – Retrieving the connection details for a SQL Warehouse

Simply copy and paste the Server hostname and HTTP path details to the respective fields.

Note
Connections to Databricks SQL require that you know which SQL Warehouse you are assigned
to use. The connections do not allow for a generic configuration that allows you to change the
SQL Warehouse during an active session. Changing the SQL Warehouse will require you to
reset the connection.

From a database administrator’s perspective, you can see how users can only access the SQL Warehouses
assigned to them. A user requires the Can Use privilege on a SQL Warehouse to be able to connect
to it from an external BI tool. This means that the governance strategy for assigning users to SQL
Warehouses, which we discussed in Chapter 6, The SQL Warehouses, in the SQL Warehouse assignment
strategy section, is respected even when accessing Databricks SQL from external tools.

Using Business Intelligence Tools with Databricks SQL182

Authentication details

The next configuration is the authentication details. There are three possible authentication modes,
as we will discuss now. Bear in mind that the way the three authentication modes are presented to
you will differ across BI tools.

Databricks personal access token

A Databricks personal access token can be used to access Databricks SQL from external BI tools, as
well as REST API functions. A personal access token is just an authentication mechanism to identify
yourself to the Databricks SQL authentication and authorization mechanism.

Getting a personal access token is simple. Navigate to the Personal access tokens tab on the User
Settings page and click on the Generate new token button, as shown in the following screenshot:

Figure 7.5 – Generating a personal access token

Optionally, you can configure the number of days this token will be valid. Ensure that you copy and
save the generated token in a secure location since you will not be able to see it once you leave the page.

You can read more about personal access tokens and how to create them here: https://docs.
databricks.com/sql/user/security/personal-access-tokens.html.

Databricks username and password

This is a self-explanatory authentication mechanism. Simply use the same username and password
that you use to log into Databricks.

Azure Active Directory

If your organization enforces the use of Azure Active Directory authentication, use this option. Different
tools may have different flows for this. For example, in Tableau Desktop, you will be prompted for the
authentication endpoint, while in Power BI, you will be automatically navigated to your organization’s
login.

https://docs.databricks.com/sql/user/security/personal-access-tokens.html
https://docs.databricks.com/sql/user/security/personal-access-tokens.html

Connecting from validated BI tools 183

From a database administrator’s perspective, you should note that the choice of authentication
mechanism should be in line with your organization’s security policies. For example, if the policies
disallow the usage of personal access tokens, the administrator can disable the usage of personal
access tokens in the workspace. This way users don't get a chance to create a personal token, instead
they will have to use the other authentication mechanisms. Further, it is important to note that all
three mechanisms authenticate that a user is indeed a valid member of this installation of Databricks
SQL. This means that the security model that’s implemented in this installation, as we discussed in
Chapter 4, The Security Model, is respected even when accessing Databricks SQL from external tools.

To complete the authentication configuration, select the applicable authentication mechanism and
key in the details. Once all the configurations have been completed and you have clicked the Sign In
button, the connection will be attempted. If you are authorized to use the SQL Warehouse, and your
authentication credentials are correct, you will be signed in.

Note
It is important to note that the Sign In activity will power on the SQL Warehouse if it is not
already running.

And that’s it! The data lakehouse data catalog should be visible in the BI tool. If you are following this
example with Tableau, you should see a catalog similar to the following:

Figure 7.6 – Exploring the airlines database from Tableau Desktop

Using Business Intelligence Tools with Databricks SQL184

Now, you can start querying!

Note
One important thing to keep in mind is that each BI tool will have nuances on how to work with
the data. For example, Power BI has two modes – Direct Query and Import Mode. Consult the
official documentation based on your BI tool for details at https://docs.databricks.
com/integrations/partners.html#bi-and-visualization.

And that’s it. It is that simple to connect to Databricks SQL from validated BI tools. Now, let’s turn
our attention to non-validated BI tools and, subsequently, programmatic access.

Connecting from non-validated BI tools
There are plenty of popular SQL database tools that are not (yet) validated – that is, they do not have
a named Databricks connector. In this section, we will learn how to connect these non-validated BI
tools to Databricks SQL using Databricks JDBC and ODBC drivers.

Non-validated BI tools do not come with bundled driver connectors and may or may not support
all three authentication mechanisms supported by validated BI tools. However, Databricks SQL
Warehouses support JDBC and ODBC connections. We can leverage these connections to connect
from non-validated tools. Full documentation on JDBC and ODBC connections is available at
https://docs.databricks.com/integrations/bi/jdbc-odbc-bi.html. They
are straightforward and do not warrant detailed unpacking.

There are three steps:

1.	 Download the JDBC or ODBC driver as applicable.

2.	 Install the driver in the BI/SQL database tool.

3.	 Configure the SQL Warehouse connection.

Let’s take the example of SQLWorkbench/J (https://www.sql-workbench.eu/), a popular,
DBMS-independent, cross-platform SQL query tool.

Step 1 – download the driver

Download the latest JDBC driver from https://docs.microsoft.com/en-us/azure/
databricks/integrations/bi/jdbc-odbc-bi#download-the-jdbc-driver.
Unzip the file to extract the JAR file.

https://docs.databricks.com/integrations/partners.html#bi-and-visualization
https://docs.databricks.com/integrations/partners.html#bi-and-visualization
https://docs.databricks.com/integrations/bi/jdbc-odbc-bi.html
https://www.sql-workbench.eu/
https://docs.microsoft.com/en-us/azure/databricks/integrations/bi/jdbc-odbc-bi#download-the-jdbc-driver
https://docs.microsoft.com/en-us/azure/databricks/integrations/bi/jdbc-odbc-bi#download-the-jdbc-driver

Connecting from non-validated BI tools 185

Step 2 – install the driver

In SQLWorkbench/J, navigate to File | Connect Window | Manage Drivers. Provide an appropriate
name. I have named it Databricks SQL JDBC Driver. Finally, point it to the JAR file that we
extracted in Step 1 – download the driver, as shown in the following screenshot:

Figure 7.7 – Installing the JDBC driver

As you can see, I have configured the driver to use the JAR file of the driver. The Classname area
should be automatically populated.

Using Business Intelligence Tools with Databricks SQL186

Step 3 – configure the SQL Warehouse connection

In the Connect window, create a new connection profile. As shown in the following screenshot, configure
it to use the new driver we installed. In the URL field, copy and paste the JDBC URL from Figure 7.4.
Finally, in the Username and Password fields, key in the username and password that you use to log
into Databricks SQL. You can also use personal access tokens instead of your username and password.
To use them, set Username to “token” and paste your personal access token in the Password field.

Figure 7.8 – Creating a connection to Databricks SQL from SQLWorkbench/J

Now, you can test the connection and save the connection profile. If you have the Can Use privilege on
the SQL Warehouse and you have provided the correct authentication credentials, the connection will
be successful, and you will be able to explore the data on the data lakehouse. The following screenshot
shows how we can explore the airlines database that we created in the preceding chapters:

Figure 7.9 – Exploring the airlines database in SQLWorkbench/J

Connecting programmatically 187

And that’s it! With a few extra manual steps, you can connect your BI tool of choice to your instance of
Databricks SQL. You can even perform these steps in a validated BI tool that has a named Databricks
connector. Try it out!

Connecting programmatically
While we are discussing JDBC and ODBC Driver Connectors, we must make an honorable mention
of a very important use case. This use case is how application programs access the data on the data
lakehouse via Databricks SQL. For example, consider the dashboard that we compiled in Figure 5.41
in Chapter 5, The Workbench. The taxi company may build a desktop or a web application that renders
this dashboard. To do so, the application must issue SQL queries to the tables via a connection to
Databricks SQL. These applications can be programmed in any of the modern languages, such as Java,
Python, and Scala, to name a few, using their constructs for working with JDBC and ODBC drivers.

Note
A note of caution: Databricks SQL and the data lakehouse are not a replacement for your
relational database management systems or online transactional processing systems.

Application programmers are not the intended audience for this book; however, Databricks SQL
can hold use for them. Hence, I am going to conclude this section by providing a link to the official
documentation for using JDBC and ODBC drivers with Databricks SQL: https://docs.
databricks.com/dev-tools/python-sql-connector.html.

Databricks Partner Connect
The steps that we employed to connect to validated tools in the Connecting from validated BI tools
section are simple and clear. However, they were still manual steps that required copying and pasting.
The steps are simple and clear, but the user experience is not – that is, having to juggle between the
SQL Warehouse overview page and the BI tool. Databricks Partner Connect is a tool that aims to
improve this experience. Let’s learn how.

https://docs.databricks.com/dev-tools/python-sql-connector.html
https://docs.databricks.com/dev-tools/python-sql-connector.html

Using Business Intelligence Tools with Databricks SQL188

To access Databricks Partner Connect, follow these steps:

1.	 Click on the icon to bring up the Partner Connect landing page. Navigate to the BI and
Visualization section, as shown in the following screenshot:

Figure 7.10 – The Partner Connect landing page

2.	 Click on the tile representing your BI tool. It will download a connection file to your desktop.
The connection file is specific to the BI tool. For example, a Tableau data source .tds file
(https://help.tableau.com/current/pro/desktop/en-us/environ_
filesandfolders.htm) is downloaded for Tableau and a Power BI data source .pbids
file (https://docs.microsoft.com/en-us/power-bi/connect-data/
desktop-data-sources#using-pbids-files-to-get-data) is downloaded
for Microsoft Power BI. Let’s continue with our example of Tableau Desktop. Clicking on the
Tableau tile prompts the download, like so:

Figure 7.11 – Downloading the Tableau .tds connection file

https://help.tableau.com/current/pro/desktop/en-us/environ_filesandfolders.htm
https://help.tableau.com/current/pro/desktop/en-us/environ_filesandfolders.htm
https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-data-sources#using-pbids-files-to-get-data
https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-data-sources#using-pbids-files-to-get-data

Databricks Partner Connect 189

3.	 Double-click on the downloaded .tds connection file. It will open Tableau Desktop and ask
you for your credentials, as shown in the following screenshot:

Figure 7.12 – Connecting with the .tds file

4.	 Key your personal access token in the Password field and start exploring. If you need to change
the authentication mechanism, click the Edit Connection button to choose the relevant one.

And that’s it! All you must do is key in your credentials. Contrast this to the other mechanisms where
we had to manually figure out the SQL Warehouse details. Partner connect makes the experience
seamless. From an administration perspective, it simplifies and secures the connection process – instead
of users searching for and choosing SQL Warehouses, administrators can download the connection
files on behalf of the users and share them with them.

Using Business Intelligence Tools with Databricks SQL190

The internals of a data source file

If you are curious, you can open the .tds file with any text editor. It will show that the SQL Warehouse
connection information has been compiled for you into a format understood by the BI tool. In this
case, this is an XML file, as shown in the following screenshot:

Figure 7.13 – Inspecting the .tds file

As you can see, the connection construct instructs Tableau to consider this a Databricks data source
by setting the class field to Databricks. A Databricks connection will require the server hostname and
HTTP path values for the SQL Warehouse. Hence, they are applied to the server and dbname
fields, respectively. Finally, the authentication is set to personal access tokens by default, as seen
in the authentication field. Tableau understands the datasource construct and creates a
connection to Databricks.

The data source file for each BI tool is different. If you are working with a different data source file, you
will likely see a different format. For example, the Power BI .pbids file represents the connection
information in JSON format.

That said, you don’t need to know what is inside the data source file to be able to use it. Just double-
click and start exploring!

Summary 191

Summary
In this short but very important chapter, we learned how we can connect our preferred BI tools to
Databricks SQL and query the data on the data lakehouse.

First, we learned about the various connection configurations that must be made. Then, we learned
about the differences between validated and non-validated BI tool integrations. Finally, we learned
about the Databricks Partner Connect feature, which simplifies the process of connecting our preferred
BI tool with Databricks SQL.

Now, you should have a working understanding of Databricks SQL from an end user perspective, as
well as an administrator’s perspective. You should be good to start working with Databricks SQL. Now,
we will turn our attention to the core technology enablers that power Databricks SQL.

In the next chapter, Chapter 8, The Delta Lake, we will unpack the internals of the storage layer of the
lakehouse and focus on the Delta Lake storage format. We will learn how it enables Data Warehouse-
like performance on the data lake.

Part 2:
Internals of

Databricks SQL

This part focuses on the internals of Databricks SQL. It unpacks the concepts and workings of the
revolutionary technologies that enable business intelligence and data warehousing in a data lakehouse!

This part comprises the following chapters:

•	 Chapter 8, The Delta Lake

•	 Chapter 9, The Photon Engine

•	 Chapter 10, Warehouse on the Lakehouse

8
The Delta Lake

Up until this chapter, we were singularly focused on enabling you to use Databricks SQL. Now that
we have accomplished that, let’s investigate the technologies that enable Databricks SQL to run your
data warehousing workloads on what seems to be a data lake.

In this chapter, we will focus on the primary storage format of the Databricks Lakehouse —Delta Lake.
Why should you care? You should care because, unlike other cloud data warehouses, the Databricks
Lakehouse stores data in open storage formats such as Delta Lake, Parquet, Optimized Row Columnar
(ORC), comma-separated values (CSV), and so on, instead of proprietary formats.

We will begin by understanding the challenges posed by using other storage formats, how they
affect the business intelligence (BI) experience on traditional data lakes, and how the Delta
Lake format addresses them. Then, we will learn about the performance boosters available with
Delta Lake in Databricks.

The primary audience of this chapter is data engineers, data administrators, and data modelers who
will be collectively responsible for ingesting the data into the Lakehouse in the most optimal data
layout for the best BI experience.

In this chapter about Delta Lake, we will learn about the following topics:

•	 Fundamentals of the Delta Lake storage format

•	 Built-in performance-boosting features of Delta Lake

•	 Configurable performance-boosting features of Delta Lake

Technical requirements
To make the most of this chapter, you must ensure the following:

•	 You have access to a working Databricks SQL workspace to execute the examples.

•	 You have knowledge of data engineering pipelines for data lakes with Apache Spark.

The Delta Lake196

•	 You have knowledge of the execution model of Apache Spark.

•	 You have access to the GitHub repository for the book, available at the following link:

https://github.com/PacktPublishing/Business-Intelligence-with-
Databricks-SQL-Analytics.

Fundamentals of the Delta Lake storage format
In this section, we will learn about the Delta Lake storage format and its core objectives. To do so,
we will first detour into the realm of data engineering, which will provide the context for the core
objectives. Finally, we will see how the Delta Lake format achieves the core objectives and simplifies
the data engineering process.

Delta Lake (https://delta.io/) is an open source storage format that enables an organization’s
data engineering teams to build the Lakehouse (see Chapter 1, Introduction to Databricks). Delta Lake
aims to bring the following data warehousing characteristics to your data lake:

•	 Reliability

•	 Simplicity

•	 Performance

•	 Governance

To understand why this is a big deal, we must understand how data engineering on data lakes is currently
done, how it affects BI users, and why these characteristics are the holy grail for data engineering teams.

Data engineering before Delta Lake

Data engineering on a data lake is the process of collecting data from various data sources—internal
or external—converting them into usable information, and storing them on the lake for data scientists
and business analysts to interpret.

On the one hand, data engineers must read and wrangle data from a wide variety of data sources. Data
sources can range from transactional systems of records such as relational databases to application logs,
click streams and event streams, files, and extracts from application programming interface (API)
calls. Each data source produces data in a different volume and different velocity. The semantics of
the data could be different as well—for example, the source system might allow updates and deletes to
existing data. In this case, the updates and deletes must also be efficiently reflected onto the data lake.

On the other hand, data engineers must write the wrangled data and information onto cloud object
stores that are not filesystems and do not support any notion of transactions or random file access.

https://github.com/PacktPublishing/Business-Intelligence-with-Databricks-SQL-Analytics
https://github.com/PacktPublishing/Business-Intelligence-with-Databricks-SQL-Analytics
https://delta.io/

Fundamentals of the Delta Lake storage format 197

Combined, the reading and writing steps create multiple challenges that data engineers must solve.
Let’s broadly categorize the workflow steps that data engineers take, and the challenges associated
with them.

Extracting and writing data

Data sources such as databases constantly get new records inserted and existing records updated or
deleted. Other data sources, such as log files, event streams, and so on, only get new records. Hence,
the data engineering pipelines must be able to extract, insert, update, and delete events in the source
systems and replicate them in the data lake. There are two challenges involved here, as follows:

•	 Append-only file formats

Popular data lake file formats such as Apache Parquet or Apache ORC are append-only file
formats. This means that once a file is written in one of these formats, it cannot be modified.
Any modification to any record within the file requires reading the file into memory, applying
the changes in memory, deleting the physical file, and finally writing a new file in its place.

Hence, while appending new records (INSERT events) is supported by creating a new file for
new records, updating or deleting records requires custom tooling and separate data pipelines
to be built by the data engineers.

•	 Object stores

Data lakes are built on cloud object stores such as Amazon Simple Storage Service (Amazon
S3), Azure Data Lake Storage (ADLS), or Google Cloud Platform Google Cloud Storage
(GCP GCS). However, they are not filesystems, hence they do not provide any transactional
guarantees or random lookup capabilities on the objects stored in them—the objects being
the files that we are writing.

This causes a lot of problems, as noted here:

	� Consider the scenario where a particular transaction is writing multiple files and the write
fails midway. Depending on the reason for failure, the files that have already been written
may or may not be deleted. This will leave the data lake in an inconsistent, possibly corrupt,
state. This is the problem of atomicity. To counter this, data engineers must create customized
tooling to clean up the failed write and roll back any changes.

	� Consider the scenario where a user tries to read data while a data pipeline is writing to the
same dataset. Typically, during a read, the reader lists all the available files and then scans
them to compute the results. Now, if the data pipeline is performing appends (insert events)
and is in the process of writing the files, it is likely that the user will also read the partial
outputs of ongoing events. Similarly, if the data pipeline is performing updates or deletes,
it is likely that the user will try to read a file that was deleted as part of the update or delete.
In either case, the user will likely get incorrect results. This is the problem of isolation. To
counter this, data engineers must run pipelines when no one is using those tables or create
methods that hide new files as they are being written.

The Delta Lake198

•	 Consider the scenario where there is a multistep data pipeline currently executing and an outage
then happens. When the system comes back online, which step should the reprocessing start
from? This is the problem of durability. To counter this, data engineers must create custom
tooling to record the state of the data after each step so that rollback or partial rerun can be
achieved.

•	 Consider the scenario where multiple data streams are writing into a single table. It is important
that each write should build on the transactions committed on the data in the past so that no
data is lost. This is the requirement of consistency. To counter this, data engineers must write
different streams to different tables before reconciling them into a single table as a batch operation.

•	 As a thought exercise, consider how you would perform updates and deletes. Cloud object
stores do not support random-access reads in files, nor do they support any index of which
file contains which ranges of data. This will make it very hard for you to pinpoint which data
files are relevant for the update or delete. This leads to rewriting data at a partition level, or
worse, at the table level.

Optimizing the data layout

An important aspect of writing data to a data lake is the data layout. As we saw in the previous section,
cloud object stores and append-only file formats prohibit the random lookup of data. Further, traditional
indexes are not very efficient or widely available on data lakes.

This means that data engineers must organize the data in such a way that readers of the data (query
engines) can reduce the number of files being scanned. This is crucial for efficient querying of the data.

Why Are Traditional Indexes Not Popular?
A. �The volume and velocity of the data. Updating indices is a computationally expensive task.

Traditional indexes will not scale well with big data.

B. �The immutability of the files. Any update or delete will delete existing data files. This means
the full index will have to be recomputed every time.

C. �The decoupling of compute and storage. Indexing works best when designed with the query
engine in mind. On a data lake, this is difficult with a wide variety of query engines.

Apart from using columnar or binary file formats to minimize the input/output (I/O), there are
four methods usually employed by data engineers to optimize the layout. Let’s discuss these in the
following subsections.

Fundamentals of the Delta Lake storage format 199

Partitioning

A partition is a subset of rows in a table that share the same value for a predefined set of columns. For
example, consider the following Structured Query Language (SQL) table definition:

CREATE TABLE museum_visitors(

 name STRING,

 id_type STRING,

 id_number STRING,

 country STRING

) PARTITIONED BY (date DATE)

In this case, when records are written into the table—that is, files are written into the folder hosting the
table data—the records will be arranged into subdirectories. Each subdirectory will be representing
museum visitors for a date associated with that subdirectory—for example, s3://museum_
visitors/date=2022-04-16 or s3://museum_visitors/date=2022-04-17. Now,
when a user queries the museum visitors for April 16, 2022, the query engine will only read the
files in the subdirectory for this date, hence skipping data that is not relevant to the query and thus
improving query runtime.

Now, there is an obvious flaw in this mechanism. Data engineers must know the query patterns
beforehand to create the correct partitioning scheme. Further, any query that does not use partition
filters will end up with a full table scan. Hence, defining the perfect partition scheme is nearly impossible.

Clustering

Clustering is a complementary method to partitioning. It helps reduce the number of files scanned
within a partition. Clustering groups together all data that shares the same value for a predefined
column. For example, consider the following SQL table definition:

CREATE TABLE museum_visitors(

 name STRING,

 id_type STRING,

 id_number STRING,

 country STRING

) USING PARQUET PARTITIONED BY (date DATE) CLUSTERED BY
(country) INTO 5 BUCKETS LOCATION 's3://museum_visitors/';

In this case, within the directory for each date, the visitors for each country are grouped together.
Hence, when a user queries for visitors from Singapore on April 16, 2022, the query engine will scan
only the relevant files in the partition for the date April 16, 2022.

The Delta Lake200

Note
If you are executing the preceding code snippet in the Databricks SQL workbench, ensure that
your SQL warehouse is configured with an instance profile that has access to the S3 location.
Likewise, if you are using Azure, the SQL warehouse should have access to the ADLS location.
See Chapter 4, The Security Model, for a refresher on how to configure this access. Finally, if
you are using Unity Catalog, use external locations and storage credentials to work with cloud
storage locations.

As with the partitioning method, there are obvious flaws in this mechanism as well. Data engineers
must know the query patterns beforehand to create the correct partitioning and clustering scheme.
Further, any query that does not use partition and clustering filters will end up with a full table scan.
Hence, defining the perfect partition and clustering scheme is nearly impossible.

Statistics collections

Another method employed by data engineers is to collect statistics on all the files on the data lake.
An example of a statistic is the minimum and maximum value of an integer column in a particular
file. If the query engine has this information, it will avoid scanning all files that do not contain the
required integer value. For example, consider the flights table that we introduced in Chapter
4, The Security Model. We believe that most of the queries against this table filter on the year and
tailnum columns. Hence, the following ANALYZE command can be used to selectively compute
statistics for these columns:

ANALYZE TABLE flights COMPUTE STATISTICS FOR COLUMNS year,
tailnum

There are significant challenges with these statistics, though. First, collecting statistics is an expensive
operation that must be run separately after every write. Second, the effectiveness of statistics is dependent
on the query engine understanding those statistics. Hence, data engineers should selectively choose
which tables to run statistics collections on. This is less than ideal.

Optimal file sizes

Query engines on data lakes work best if the individual files that make up a table are of consistent
size and within an optimal size range. However, this is very hard to achieve as the amount of data
extracted from a source per extraction might not be as high as to create data files of optimal sizes.
This is exacerbated even more in streaming scenarios.

To counter this, data engineers often run compaction pipelines that combine the files written on the
lake into optimal-sized files. For example, consider the following Python code:

spark.read.parquet('/path/to/data/partition').
repartiton(<repartition_count>).write.mode('overwrite').
parquet('/path/to/data/partition')

Fundamentals of the Delta Lake storage format 201

In this case, the code will do the following:

1.	 Read the data partition that contains data files of suboptimal file sizes.

2.	 Compute the total size of the data files.

3.	 Compute the optimal file count as repartition count = (total size)/(desired optimal file size).

4.	 Repartition the data accordingly and overwrite the partition.

Obviously, this is not optimal as it must be run when no one is using the table, and utmost care should
be taken to avoid any corruption or loss of data.

Synchronizing data warehouses

The discussion in the previous two sections highlights the fact that due to the limitations of data layout
optimizations, the data will never be accessible with the performance required for interactive querying.
Therefore, a common approach was to selectively ship data on the data lake to data warehouses to
support the querying requirements of BI users.

This creates a whole new set of challenges for data engineers as they must create and manage pipelines
that synchronize data in the warehouse with data in the lake. Any mistake in the synchronization
will cast doubts on the reliability of the data in either system. It also creates two copies of the same
data in two different systems with different governance mechanisms. This also creates a challenge of
synchronizing governance and access control across disparate systems.

The Delta Lake storage format

The discussion in the previous section should help you appreciate why I said that the quad of reliability,
simplicity, performance, and governance is so hard to achieve.

The Delta Lake storage format aims to achieve this quad and solve the challenges discussed in the
previous section.

The Delta Lake storage format builds on the goodness of Apache Parquet. The core innovation of Delta
Lake is the introduction of a transaction log to accompany Parquet data in the table. A transaction log
is the linear, immutable record of all modifications against a table. Modifications are inserts, updates,
and deletes performed on a table. For all intents and purposes, if a modification is not recorded on
the transaction log, it did not happen. The transaction log also stores statistics about each file that
was written as part of the respective modification.

The Delta Lake202

So, how does a transaction log work, and what does it look like?

Note
In this section, we will deep dive into file layouts of tables by executing Python commands.
Hence, we must switch to the Data Science & Engineering persona view and create a notebook
for us to execute our commands.

When we create a table with Delta Lake, the table’s transaction log is automatically created. The
transaction log is hosted in the _delta_log subdirectory of the table location.

To see the workings of the transaction log, let’s consider the example of museum visitors from the
previous section and perform the following steps:

1.	 Inspect the storage location of the museum_visitors table before any data is written to
it. You can see this presented in the following screenshot. Since we did not specify a storage
format when creating the table, Databricks created the table in Delta Lake format, which is
the default storage format:

Figure 8.1 – The transaction log for a table

As you can see in Figure 8.1, we have not inserted any records into the table yet. Hence, there
are no data files present yet. However, if you inspect the _delta_log folder, you will find a
00000.json transaction log file that has captured a CREATE TABLE event. You can use
the dbutils.fs.head() command to inspect the contents of the log file.

2.	 Now, make a modification by inserting a record into the table, as follows:

INSERT INTO museum_visitors VALUES('Vihag Gupta', 'Passport',
'Z123456', 'India', date '2022-04-16')

Fundamentals of the Delta Lake storage format 203

Running the display command from Figure 8.1 will now show the data file containing this
record, as shown in the following screenshot. The exact name of the file will be different for
you, so let’s call this file file-1:

Figure 8.2 – Data files after first insert

An inspection of the _delta_log folder will also reveal a second transaction log, 00001.
json, which records the INSERT statement that we just executed. Use the dbutils.
fs.head() command to inspect the contents of the log file. You will see details of the insert
activity recorded, including the minimum and maximum value of columns.

3.	 Next, let’s insert another record, like so:

INSERT INTO museum_visitors VALUES('Suteja Kanuri', 'Passport',
'A123456', 'India', date '2022-04-16')

There will now be two data files making up the current state of the table, as shown in the following
screenshot. Let’s abbreviate the new file as file-2:

Figure 8.3 – Data files after second insert

At this point, any reader attempting to query the museum_visitors table will first consult
the transaction logs and conclude that it must read file-1 and file-2 to get the latest
records in the table.

4.	 Finally, let’s modify our visit record by updating the identifier (ID) number, like so:

UPDATE museum_visitors SET id_number = 'Z567890' WHERE id_
number = 'Z123456'

The Delta Lake204

As we learned earlier, Parquet files are immutable, hence a new file must be created with the updated
record. Inspecting the table path will show the new file, which will abbreviate as file-3. You can
see an illustration of this in the following screenshot:

Figure 8.4 – Data files after record update

At this point, any reader attempting to query the museum_visitors table will, first, consult the
transaction logs and conclude that it must read file-2 and file-3 only to get the latest records
in the table. file-1 now contains an outdated record that is no longer included in the latest version
of the dataset, and hence it must not be read.

And so, all modification events—that is, the addition of new files and the marking of old files as
obsolete—are captured in the transaction log.

Down in the Weeds
For an in-depth discussion of the Delta Lake storage format and its associated protocols,
I highly recommend that you read the whitepaper published by the authors of Delta Lake
at https://docs.delta.io/latest/delta-resources.html.

In the next section, we will see how the Delta Lake storage format, with this simple atomic activity of
capturing transactions as immutable logs, allows Delta Lake to solve all the challenges we discussed
in the previous section and hence deliver on the quad of goals.

Data engineering after Delta Lake

Using the Delta Lake storage format is very simple. Simply create a destination table with the Delta
format. In Databricks, the default format is Delta, but you can make it explicit, like so:

CREATE TABLE museum_visitors(

 name STRING,

 id_type STRING,

 id_number STRING,

 country STRING,

 `date` DATE

) USING delta

https://docs.delta.io/latest/delta-resources.html

Fundamentals of the Delta Lake storage format 205

Any modification to this table—inserts, updates, or deletes—will automatically use the atomicity,
consistency, isolation, and durability (ACID) capabilities available with the Delta format.
Further, the table will automatically inherit the out-of-the-box performance-boosting features
available in the Delta format.

Let’s now look at how data engineering problems are solved with Delta Lake.

Extracting and writing data

Delta continues to use the Apache Parquet file format and cloud object stores for the data file format
and data file storage, respectively. It cannot change the immutability of Parquet files, nor can it convert
cloud object stores into filesystems with transactional guarantees or random lookup capabilities.

What it does is abstract the heavy lifting of the workarounds we discussed in the previous section
behind simple INSERT, UPDATE, and DELETE statements. This abstraction ensures that these
modifications are optimized for performance and correctness so that you do not have to engineer them.

We will go through case studies that show the simplification of extraction and writing data in Chapter
11, SQL Commands Part-1. However, as a quick demonstration, consider the following SQL command:

MERGE INTO user_details target USING (

 select id, name, email, zip, operation, rec_update_time

 from (SELECT *, ROW_NUMBER() OVER (PARTITION BY id ORDER BY
rec_update_time DESC) as rank from user_details_cdc)

 where rank = 1

) as source

ON source.id = target.id

WHEN MATCHED AND source.operation = 'DELETE' THEN DELETE

WHEN MATCHED AND source.operation = 'UPDATE' THEN UPDATE SET *

WHEN NOT MATCHED AND source.operation = 'INSERT' THEN INSERT *

In this example, user_details_cdc is a table in which each row represents a modification
event (insert, update, or delete) that has occurred in the source data system. Using the rank() and
row_number() functions, we get the latest operation for a given user ID. Based on the type of
modification, which is captured in the operation column, we instruct the command to replicate
the modification on our table in the Lakehouse. If the operation type is INSERT, then the command
inserts the data as a new record in the user_details table. If the operation type is UPDATE, then
the command updates the corresponding record in the user_details table (as identified by the
id column). Similarly, a DELETE event results in the deletion of the corresponding record.

This should suffice to show how Delta Lake simplifies extracting and writing data using SQL primitives.
This is just not possible with other file formats.

The Delta Lake206

Solving append-only file formats

When presented with UPDATE, DELETE, or MERGE commands, Delta Lake simply recomputes a
new data file with the required modifications and saves it to the object store. Any reader of the file
simply consults the transaction log of Delta Lake and reads only the files that represent the current
state of the table. We saw this in action in Figure 8.4.

You might be wondering how this operation is optimized. Does Delta Lake rewrite the entire dataset
or just file(s) with UPDATE or DELETE targets? The answer is simple—the transaction log. The
transaction log records the minimum and maximum values of columns in each file. By consulting the
transaction log, Delta Lake can pinpoint which files contain records that are targeted by the command.
Delta Lake then proceeds to rewrite the affected files.

Solving object store limitations

Simplifying writes to the data lake solves one half of the challenges associated with extracting and
writing data. Without transactional guarantees, even with the ability to perform updates and deletes,
data engineers will have to run commands in sequence to not corrupt an ongoing command. Let’s
revisit the transactional scenarios to learn how Delta Lake solves them, as follows:

•	 Atomicity: Whenever a modification happens, be it inserts, updates, or deletes, the writing
process creates and executes a transaction. Upon successful completion of all steps of the
transaction, the transaction is recorded as a commit in the transaction log. If any step fails, the
transaction will not be recorded as a commit in the transaction log. This ensures that readers
will always see a consistent state of the data, and data engineers do not have code-expensive
rollback and rerun pipelines.

•	 Isolation: Whenever a transaction is in progress (which means it is computing new data files),
it is not visible as a committed transaction. So, any reader who is reading data from the table
while a write is happening will not see the partial results of the write. This is because prior to
the read, the reader would have consulted the transaction log and got a list of data files in the
latest committed version. This list will not contain uncommitted data files from the ongoing
write. This enables data engineers to run data through the pipelines as it arrives, instead of
waiting for consumption on the table to stop. Seasoned engineers will understand that isolation
guarantees can come at a compromise of performance. Delta Lake provides two levels of isolation:
WriteSerializable (default) and Serializable. For a deep dive, head over to https://docs.
databricks.com/delta/optimizations/isolation-level.html.

•	 Consistency: Whenever there are two competing writes—that is, two writes submitted at
the exact same time—the write processes should not leave the lake in an inconsistent state.
Delta Lake uses optimistic concurrency control (https://docs.databricks.com/
delta/concurrency-control.html) to avoid this. With optimistic concurrency
control, a new transaction works in three stages. First, it consults the transaction log of a table
to identify which files need to be modified. This is the read phase. Second, the operations of
the transaction are executed in isolation and the results are staged in new files. This is the write

https://docs.databricks.com/delta/optimizations/isolation-level.html
https://docs.databricks.com/delta/optimizations/isolation-level.html
https://docs.databricks.com/delta/concurrency-control.html
https://docs.databricks.com/delta/concurrency-control.html

Built-in performance-boosting features of Delta Lake 207

phase. Finally, before the staged changes are committed to the table, Delta Lake checks whether
the staged changes conflict with other concurrent transactions. An example of a conflict would
be a transaction inserting data into a partition while a concurrent transaction is deleting data
from the same partition. An example of a non-conflict would be two transactions inserting
data into the same partition. If there are no conflicts, all the staged changes are committed. If
there are conflicts, the write operation is failed. If the semantics allow for it, it will be retried
automatically. This enables transactions on Delta Lake, which in turn allows robust data
engineering—for example, it enables writing batch and stream data into the same table at the
same time. Another application is the ability to correct data on the fly while new data is being
streamed in without halting the entire data pipeline.

•	 Durability: Transactions, once committed, are durable as they are on the cloud storage and
inherit cloud storage durability guarantees. This means that even if multistep pipelines fail
midway, the last known transaction enables selective reprocessing of the pipeline.

As you can see, Delta Lake allows data engineers to bring the data to the data lakehouse for consumption
with reliable and simple data pipelines.

However, as we saw in the data engineering challenges, another big component is preparing the data for
optimal consumption—that is, the performance of user queries. Let’s look at how Delta Lake enables
data warehouse-like query performance by optimizing the storage layer while avoiding proprietary
file formats.

Built-in performance-boosting features of Delta Lake
Delta Lake provides built-in performance boosters that complement the data layout strategies that
we discussed in the Optimizing the data layout section. If there is a well-working data layout strategy
in place, performance is accelerated further. If the data layout strategy is lacking or limited due to a
wide variety of query-filtering patterns on the data, then the boosters make sure that performance is
still improved by reducing unnecessary I/O. Let’s learn about these performance boosters.

Automatic statistics collection

The first, and arguably the most important, performance booster is automatic statistics collection (stats
collection for short), which enables a process called data skipping. Stats collection is an automatic
process on Delta Lake. For every data file written, the stats collection process computes the minimum
and maximum values for the columns present in the file.

By default, stats collection will be done on the first 32 columns of a table.

The Delta Lake208

How does this help? Let’s see an example here:

1.	 Consider a table representing a chess board. Each record in the table represents the coordinates
of the cell and its current occupant. The table definition is shown here:

CREATE TABLE chess_cells(x INT, y INT, occupant STRING);

2.	 Since there are only three columns, stats will be collected for all three columns. For this
demonstration, let’s ensure that stats are not collected for the y and occupant columns by
executing the following command:

ALTER TABLE chess_cells SET TBLPROPERTIES ('delta.
dataSkippingNumIndexedCols' = '1');

Next, let’s insert some data so that we can see stats collection in action. Please note that this
will have to be run in a notebook in the Data Science & Engineering persona. The code is
illustrated in the following snippet:

val schema = StructType(Array(

 StructField(" x" , IntegerType,true),

 StructField(" y" , IntegerType,true),

 StructField(" occupant" , StringType,true)

))

val rowData1= Seq(

 Row(1,1," white_queens_rook"),

 Row(1,2," white_queens_knight"),

 Row(1,3," white_queens_bishop"),

 Row(1,4," white_queen"),

)

var df1 = spark.createDataFrame(rowData1,schema).coalesce(1)

df1.write.format(" delta").mode(" append").saveAsTable("
chess_cells")

By executing the preceding code, we are inserting four records at a time, which ensures there
are four records in each file. Since this is a chess board representation, the total number of
records should be 64, and the total number of files across which these 64 files are spread should
be 16 (64/4).

Built-in performance-boosting features of Delta Lake 209

Note
The source code in the preceding snippet is Scala code. It also represents only four cells. You
are encouraged to extend this code to cover all 64 cells. If you are feeling lazy, you can refer to
the book’s GitHub repository for the full code.

3.	 You can verify the file count by executing the following line of code:

dbutils.fs.ls('dbfs:/user/hive/warehouse/chess_cells/')

4.	 Now, we have the data ready. Let’s execute a query that uses the y column as a filter, as shown
in the following screenshot:

Figure 8.5 – SQL query without stats collection

5.	 Click on the View link on the latest Spark job. This will open the Spark user interface (UI),
where you can click on the link titled Associated SQL Query to bring up the following query-
plan visualization UI:

Figure 8.6 – SQL query without stats collection (continued)

The Delta Lake210

6.	 We are interested in the Scan phase. Expand the details tab and navigate to the rows
pertaining to the number of files, as shown in the following screenshot:

Figure 8.7 – Number of files scanned with no stats

As we can see the whole table, all files in the table were scanned to find records where y = 4. However,
we know that only 8 of 16 files contain records where y = 4.

If we re-execute the preceding steps, without disabling the stats collection for the y column, we will
see the following information in the details of the Scan phase:

Figure 8.8 – Number of files scanned with stats

As we can see, the number of files is just 8 now. This is a 50% reduction in I/O without any partitioning
or clustering involved!

This is the magic of automatic stats collection. It allows the query engine to smartly read only the files
that are required to serve the query. Statistics are captured when transactions are committed. The
captured statistics are stored in the transaction log. Since statistics are captured at the transaction level
(and not at the table or partition level), the operation is relatively inexpensive. Also, since statistics
are tagged with transaction logs, reverting back changes or new modifications does not require full
table statistics recollection. This makes the process optimized and scalable.

If tables are partitioned, stats collection complements the partitioning scheme. For example, when a
query has filters belonging to both partitioning and non-partitioning columns, the query engine can
skip (prune) irrelevant partitions and check statistics only in the relevant partitions.

Finally, as a best practice, avoid running stats collection on string columns as they are very expensive and
might not give enough return on investment (ROI). To avoid running stats collection on strings, make
sure that string columns are at the end of the table and the delta.dataSkippingNumIndexedCols
configuration is less than the index of the first string column.

In summary, the query engine’s optimization component uses information on the minimum and
maximum values of columns within any file to determine whether the file should be read.

Built-in performance-boosting features of Delta Lake 211

Next, we will discuss the performance booster that optimizes the file sizes themselves to maximize
the distributed processing capabilities of Delta Engine.

Automatic Compaction and Optimized Writes

Data engineers can opt in for Automatic Compaction and Optimized Writes for the tables on the data
lakehouse. When enabled, these two properties ensure that the writes to a table generate optimal-sized
files. Here, optimal refers to optimal query processing speeds and minimum computation resource waste.

To see the effects of Automatic Compaction and Optimized Writes, we need a bigger dataset. Thankfully,
we created one such dataset—airlines, in Chapter 4, The Security Model, in the The security model
in practice section:

1.	 Consider the flights table. The flights table was generated without any Automatic
Compaction and Optimized Writes. If we execute the dbutils.fs.ls() command on
the flights table location, you will see precisely 99 data files.

2.	 Now, let’s change the table definition to enable Automatic Compaction and Optimized Writes
with the following statement:

CREATE TABLE flights USING DELTA TBLPROPERTIES (delta.
autoOptimize.optimizeWrite = true, delta.autoOptimize.
autoCompact = true) AS SELECT * FROM flights_csv;

Executing the dbutils.fs.ls() command will reveal that only 19 data files were generated.

3.	 At this point, I encourage you to execute this very simple query against the two variations of
the tables:

SELECT Month, Origin, count(*) as TotalFlights

FROM flights_optimized

WHERE DayOfWeek = 1

GROUP BY Month, Origin

ORDER BY TotalFlights DESC

LIMIT 20;

You will notice a very drastic increase in query performance when this query is run on the table with
Optimized Writes. In my case, on a 2XS-size SQL warehouse, a cold query ran in 3.6 seconds on the
table with Optimized Writes versus 7 seconds on the table without Optimized Writes.

How did this drastic increase in performance happen? What did the automatic Optimized Writes do?

The Delta Lake212

Optimized Writes works at two levels, as outlined here:

•	 Automatic Optimized Writes: Right before the write stage, the optimized write dynamically
changes the dataframe’s partition sizes, either increasing them or decreasing them to reach a
target file size—128 megabytes (MB) by default.

•	 Automatic Compaction: After the write is completed, existing files in the table directory are
checked. If there is an opportunity to merge newly created files with existing files in pursuit of
the target file size, then a merge is performed. For example, even after an optimized write, it
is likely that there is not enough data to reach the target file size. In this case, during the next
write, new files will be merged with older ones to create files closer to the target.

Automatic Compaction and Optimized Writes are both enabled on our flights table, and hence
we can see that individual files with sizes closer to the target are created.

Since the data files are of optimal size, the query engine can optimally distribute the work across the
workers of the SQL warehouse and achieve enhanced performance.

This concludes our discussion on the performance-enhancing effects of optimized writes. For a detailed
commentary on when and how to use Automatic Compaction and Optimized Writes in your data
engineering pipelines, see the official documentation at https://docs.databricks.com/
delta/optimizations/auto-optimize.html.

Automatic caching

With Databricks SQL, you get Delta caching out of the box. Very simply, whenever a query first executes
against data it has not encountered since the warehouse started, it retrieves files from the cloud object
storage. This retrieval is limited by the speed of the network over which the retrieval happens. To
avoid this, Databricks SQL uses Delta caching, which simply caches any new file retrieved from the
cloud object storage as part of any query onto the SQL warehouse’s local solid-state drives (SSDs)
in an optimized format. The next time a query executes that needs access to the same file, it simply
reads the optimized file from the local SSD, which will always be faster than reading over the network.

Delta caching ensures the freshness of the cache. This is attributable to the transaction log. If a file
in the Delta cache is marked as invalid in the transaction log, the file can be immediately evicted.

Let’s see this in action. Recall our chess example from the previous section. Proceed as follows:

1.	 First, let’s execute a cold query—that is, the first query after the SQL warehouse is started.
This will ensure that there are no entries in the cache. The following statement should suffice:

SELECT * FROM chess_cells WHERE occupant LIKE '%kings%'

2.	 If we navigate to the Query History page and click on the entry corresponding to this execution,
it will bring up the Query Profile view. We are interested in the IO section, which will show
that no data was read from the cache. The Query Profile view should look like this:

https://docs.databricks.com/delta/optimizations/auto-optimize.html
https://docs.databricks.com/delta/optimizations/auto-optimize.html

Built-in performance-boosting features of Delta Lake 213

Figure 8.9 – Query with no cache hits

3.	 Next, execute another command that references the same table, but with a different filter
predicate. The following statement should suffice:

SELECT * FROM chess_cells WHERE occupant LIKE '%queens%'

We will see that the files are read directly from the cache:

Figure 8.10 – Query with cache hits

The usage of the cache is reflected in the query performance as well. On a 2XS-size SQL warehouse,
the cold query took 3 seconds, and the subsequent query took merely 620 milliseconds!

As an exercise, I encourage you to update the table and see its effect on cache hits— does the query
use stale data or fresh data? If it uses fresh data, how is this reflected in the cache I/O details?

As we have seen through this section, Delta Lake boosts the performance of queries with the smart
use of transaction logs and out-of-the-box enhancements.

That’s not all, though—Delta Lake has some more features that can be strategically configured to
accelerate the performance of queries even further. Let’s learn more about them in the next section.

The Delta Lake214

Configurable performance-boosting features of Delta Lake
Delta Lake in Databricks has features that allow you to accelerate query performance further based
on your knowledge of specific query patterns. Let’s learn about them here.

Z-ordering

Automatic stats collection is a great performance accelerator. However, it is effective only when the
minimum-maximum (min-max) ranges of the query filter column(s) in each data file are narrow
and optimally overlapping across data files. What does this mean?

Consider a high-cardinality column such as the TailNum column in our flights table, which
has a cardinality of 13150. The tail number is like a registration number for airplanes. Consider a
short-haul flight that does many round trips a day. This means that the tail number of this flight will
be present across a lot of time bands and hence across a lot of data files. So, if we try to query the
flights table with a selective filter on TailNum, it will not be able to effectively skip irrelevant
data files. For example, run the following query:

SELECT * FROM flights WHERE tailnum = 'N641DL'

During the execution of this query, 29 of 99 files are pruned (skipped)—that is, 70% of the dataset is read.

Now, imagine having multiple such columns in your dataset that are not natural partitioning columns
but are frequently filtered on (together)—for example, Distance and CRSElapsedTime.

The effectiveness of the automatic stats collection will be further reduced as there are no guarantees
that the min-max ranges of these columns will coincide in the same data files—meaning files will not
be skipped effectively.

Let’s unpack this with an example. The distance and elapsed time are correlated. The tail number is
sort of correlated as there might be many tail numbers with similar distance and elapsed time values.
However, it is very likely that records for such tail numbers will be spread across multiple data files.
So, a query with predicates such as where distance between or where crselapsedtime
between will have to scan through a lot of files. What if we could reorder the data such that records
with similar values of distance and crselapsedtime are in the same data files? This would
drastically improve the performance of queries with the preceding predicates.

This is where ZORDER comes in. ZORDER rearranges the data in such a way that the statistics for the
columns in question are useful. ZORDER makes statistics great again.

ZORDER is an optimization technique akin to multidimensional clustering. It optimizes the number
of data files and ensures that related information across the required dimensions—columns—is
collocated on the same data file. Let’s look at this super-simplified diagram:

Configurable performance-boosting features of Delta Lake 215

Figure 8.11 – The concept behind ZORDER

In Figure 8.11, we are assuming that we perform a ZORDER operation on three columns—TailNum,
CRSElapsedTime, and Distance. ZORDER will map current records and the respective data files
onto the three-dimensional (3D) space based on the values of the three columns. This mapping is
then projected onto a single dimension, as illustrated in the preceding diagram. This projection reveals
clusters of records that are related along these three dimensions. Using this technique, records that are
now found to have related and similar values for the three dimensions can be clubbed together—in
short, multidimensional clustering.

Of course, in practice, things are not so simple, and the simple act of projection itself requires complex
algorithms. Databricks uses the Hilbert curve, a space-filling curve algorithm, to implement ZORDER.

Since the clusters will have closely related information, the probability that a filter across the dimensions
will be served by the data in this cluster is increased. This makes the statistics on these files for these
columns effective again.

Continuing our example, we will run ZORDER on TailNum like so:

OPTIMIZE flights ZORDER BY talinum

The Delta Lake216

ZORDER rewrites the records to represent the clusters and optimize the layout. It also uses this
opportunity to compact the files to ideal file sizes. Now, instead of 99 data files, the table is represented
by five data files that respect the ZORDER. Running the same query as before, we will see that only one
of the five data files is read to execute the query—that is, only 25% of the data files are read. This is a
45% improvement in data skipping. Keep in mind that we are looking at data-skipping effectiveness
as our metric.

ZORDER by Default
ZORDER is not automatic. You must run an OPTIMIZE command whenever ZORDER is
required. To find out more about this, read https://docs.databricks.com/delta/
optimizations/file-mgmt.html#optimize-faq.

At this point, I must point out two things, as follows:

•	 My explanation of ZORDER is overly simplistic and will probably offend mathematicians all over.

•	 I am cutting corners in the ZORDER example by not applying traditional partition layouts with
columns such as year and month before applying the ZORDER operation.

This is because of the following:

•	 Implementation of space-filling curve algorithms is an involved mathematical concept that
Databricks has applied onto the Delta Lake filesystem. We are not interested in the math of it
or the implementation of it. We are interested in the benefits of it.

•	 Showing ZORDER effectiveness at scale and along multiple dimensions requires a large dataset.
Performing this experiment at scale will prove too costly to you.

Hence, I humbly redirect you to this blog by Databricks: https://databricks.com/
blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-
databricks-delta.html.

This blog does the following:

•	 It explains how ZORDER works.

•	 It shows the effects of ZORDER at scale with proper instrumentation to showcase the benefits
of ZORDER.

So, in summary, ZORDER allows you to optimize a dataset to handle queries with filters beyond what
traditional partitions and stats collections can optimize for. It does so by applying a multidimensional
clustering mechanism called Z-order curves to collocate related information on the same data file. This
creates narrow min-max ranges that are non-overlapping and delivers the best possible file skipping.

https://docs.databricks.com/delta/optimizations/file-mgmt.html#optimize-faq
https://docs.databricks.com/delta/optimizations/file-mgmt.html#optimize-faq
https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html
https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html
https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html

Configurable performance-boosting features of Delta Lake 217

Finally, before leaving this topic, I will say two things about not abusing the powers of ZORDER,
as follows:

•	 The effectiveness of ZORDER reduces with the number of dimensions—this should be apparent
in the diagram in Figure 8.11. Too many dimensions will reduce the size of clusters to the
point where there is no effective data locality, and hence data skipping won’t be effective. Four
columns are a good upper limit.

•	 ZORDER depends on statistics collections. Hence, it inherits the limitation that statistics
collections on long strings will be expensive. Try not to apply ZORDER on long strings.

Bloom filter indexes

You must have noticed by now that we have been working with purely numeric columns. We even
ended the previous discussion with a warning on long strings. So, how does Delta Lake help improve
queries that require arbitrary string searches?

The answer is Bloom filter indexes.

Bloom filters aim at improving data skipping or file pruning for columns that are not well suited for
automatic stats collection. Bloom filters create index files for every data file in the table. The index is
consulted by the data-skipping algorithm during query time. The index provides one of the two data
points in either of the following cases:

•	 Whether the searched string is 100% not present in the file

•	 Whether there is a probability that the searched string is in the file, and what the probability
is that this is a false alarm

The data-skipping algorithm uses the data point and decides whether to read the file.

At this point, ideally, I would walk you through a practical example that shows how this Bloom filter
index improves the performance. But this time, I leave it up to you to try it out.

Here are a few hints for you with regards to testing Bloom filter indexes:

•	 First, ensure that you disable stats collection on the column you are planning to create the
index on. This will help you observe a Bloom filter in isolation.

•	 Second, the syntax to create the index looks like this:

CREATE BLOOMFILTER INDEX

ON TABLE flights

FOR COLUMNS(TailNum OPTIONS (fpp=0.1, numItems=20000))

The Delta Lake218

Fair warning, though—TailNum is not a good candidate for observing the benefits of Bloom
filter indexes.

•	 Third, use data-skipping metrics such as files pruned or parquet groups read to measure
improvement. Query execution time can be misleading as it depends on the load on the SQL
warehouse and query result caching.

•	 Finally, if you’re feeling really lazy, head over to the official documentation. They have an
excellent notebook that walks you through the effects of Bloom filters with relevant examples:
https://docs.databricks.com/delta/optimizations/bloom-filters.
html#notebook.

CACHE SELECT

Last, but not least, we have explicit data caching. Automatic Delta caching caches tables read during
actual queries submitted by users. However, automatic Delta caching still faces the cold-start problem
where the first query on any table will have to do the dual tasks of fetching data files from the cloud
object store and populating the local Delta cache while executing the user query. This leads to slower
first queries. By running an explicit CACHE SELECT statement, we can cache certain datasets
beforehand and avoid cold-start problems. A practical use case would be caching data from various
tables before a long-running report or dashboard. Another could be caching data for interactive
reports or dashboards so that users get instantaneous responses.

Using CACHE SELECT is easy. For example, if we had to cache the flights table, we would execute
the following line of code:

CACHE SELECT * FROM airlines.flights

Any query on the flights table will read data from the cache.

A pro tip: CACHE SELECT statements are a great way to schedule an automatic start of SQL
warehouses before the workday begins—that way, the SQL warehouse startup time and cold-query
latency are avoided in one go.

This brings us to the end of the discussion on configurable performance boosters in Delta Lake, and
the end of the chapter as well.

https://docs.databricks.com/delta/optimizations/bloom-filters.html#notebook
https://docs.databricks.com/delta/optimizations/bloom-filters.html#notebook

Summary 219

Summary
In this chapter, we deviated from our usual personas of data analysts and database administrators.
Instead, we put on the hat of data engineers who are responsible for delivering data to analysts and
administrators. Data engineers are wholly responsible for optimizing the data layout on the Lakehouse
so that data analysts get the best possible query experience.

That said, we saw how the inputs of data analysts will be integral to getting the data layout correct.
Inputs on query-filtering patterns, ordering of data columns, and frequency of optimizations are
required for data engineers to make the best decisions.

In this chapter, we learned how Delta Lake is the storage layer for Databricks SQL. We learned how it
provides the best out-of-the-box query experience. We also learned about additional features in Delta
Lake that can elevate query performance even more. Finally, we discussed the internal workings of
Delta Lake and how it enables all the features that Delta Lake provides.

In the next chapter, we will look at the accompanying compute layer in Databricks SQL.

9
The Photon Engine

In this chapter, we will turn our attention back to SQL Warehouses. This time, however, we will focus
on the query engine running on SQL Warehouses. The query engine is known as Photon Engine. We
will begin by learning about Photon Engine and its place in the Apache Spark framework. Going ahead,
we will understand the core engineering philosophy of Photon Engine. Finally, we will go through its
limitations and the roadmap to overcome them.

I do want to highlight that you don’t need to learn the details of Photon Engine to work with
Databricks SQL. This chapter is intended for those who are interested in how Databricks
SQL achieves record-beating query performances on the Lakehouse setup with open source
storage formats.

In this chapter, we will cover the following topics:

•	 Understanding Photon Engine

•	 Understanding vectorization

•	 Discussing the Photon product roadmap

Technical requirements
Before reading this chapter, you must ensure the following:

•	 You have access to a working Databricks SQL workspace to execute the examples

•	 You understand the execution model of Apache Spark

•	 You are familiar with data structures such as trees and matrices

Understanding Photon Engine
In this section, we will learn about Photon Engine. We will begin by understanding its place in the
Databricks SQL ecosystem. Then, we will get a bit more technical and see how Databricks SQL uses
Photon Engine with Apache Spark to provide the speed and concurrency that it proclaims to have.

The Photon Engine222

What is Photon?

Photon (https://databricks.com/product/photon) is a vectorized query engine that
is written in C++ that can leverage the data and instruction-level parallelism available in modern-
day CPUs.

Photon is 100% compatible with Apache Spark APIs. This means you do not have to learn any new
language or programming paradigm or rewrite your code to be able to leverage Photon.

The mission of Photon is simple: eliminate the need for data warehouses by providing the same or
better performance than data warehouses while querying data in open file formats over cheap, elastic
cloud storage.

It is the compute complement to the Delta Lake file format we discussed in Chapter 8, The Delta
Lake. Delta Lake aims to optimize the data layout and data retrieval process. Photon Engine, which
is optimized for Delta Lake, in turn, aims to make quick work of the user queries on the retrieved
data with speeds expected by BI users.

Photon is the query engine built into SQL Warehouses and incurs no additional cost apart from the
regular Databricks SQL pricing. However, you can also use Photon in Databricks data engineering
and data science clusters by clicking on the Photon checkbox when selecting the Databricks runtime
version of your cluster. Since a discussion of data engineering and data science clusters is outside the
scope of this book, I will point you to https://docs.databricks.com/runtime/photon.
html for reference as well as the following screenshot, which shows that enabling Photon is a matter
of switching on a checkbox. Bear in mind that Photon on data engineering and data science clusters
incurs additional costs. See https://databricks.com/product/pricing for more details:

Figure 9.1 – Enabling Photon in data science and data engineering clusters

https://databricks.com/product/photon
https://docs.databricks.com/runtime/photon.html
https://docs.databricks.com/runtime/photon.html
https://databricks.com/product/pricing

Understanding Photon Engine 223

Before we continue, I must tell you that Photon is one of the ingredients of the secret sauce that makes
Databricks SQL as performant as data warehouses while operating on the decoupled compute and
storage architecture of data lakes. I cannot give away the secret sauce. The content in this chapter is
based on what is publicly known about Photon Engine from documentation and public talks. I aim
to simplify and explain the concept of vectorization and how Photon leverages it within the Apache
Spark execution model.

Let’s begin our deep dive into Photon with a quick discussion of the Apache Spark execution model.

The Apache Spark execution model

In this section, we will briefly learn about the journey of a query from submission to execution as it
happens in Apache Spark.

The following diagram represents the first step where the user query is converted into machine-
readable code, ready for execution:

Figure 9.2 – Phases of the Catalyst optimizer

This step is the responsibility of the Catalyst optimizer. At its core, Catalyst is a general library for
representing trees and manipulating them.

Why Trees?
The tree data structure is a popular and powerful way to represent a user query – SQL or otherwise.

The Catalyst tree transformation framework is used in four phases. Let’s take a look.

Analysis

When a query is submitted, it is nothing but text. When this text enters Catalyst, it is converted into
an unresolved logical plan. It is a simple tree representation of the query.

At this stage, we do not know anything about the attributes in the query. In the analysis phase, the
tables are validated, and the data types of direct and composite attributes are resolved. This is done
by consulting the schema metadata in the data catalog.

The Photon Engine224

For example, consider the airlines dataset we built earlier in this book. Let’s say we were to write the
SQL query:

SELECT tailNum, Year+1 as y FROM flights

The analysis phase will consult the data catalog to resolve the existence of the table flights in the
database being used in the current session and record that this table is in fact airlines.flights.
Then, it will resolve the tailNum and y columns. It will resolve tailNum as a string column in
the airlines.flights table. Finally, it will resolve that y is an integer since it is calculated as an
integer literal being added to the y integer column – year.

At the end of the analysis phase, we get a logical plan that has annotated the simple tree with information
about the tables and columns being represented by various nodes in the trees.

Logical optimizations

In this phase, a standard set of rule-based optimizations is applied to the logical plan. In essence, it
will look for operators that can be rewritten in known optimal ways.

For example, consider the following SQL query:

SELECT tailNum FROM flights WHERE tailNum LIKE 'ND%'

In this case, the logical optimization phase will see that it has the rule to replace the inefficient LIKE
operator with a more efficient String.startsWith("ND") implementation.

At the end of the logical optimizations phase, the logical plan from the analysis phase is transformed
into an optimized logical plan using known, standard plan optimization techniques. Examples of
such techniques include Boolean expression simplification, predicate pushdown, projection pruning,
and more.

Physical planning

In this phase, the optimized logical plan is converted into multiple candidate physical plans. A physical
plan is generated from a logical plan by replacing the operators in the logical plan with matching
operations in the Spark execution engine.

For example, consider the following SQL query:

SELECT f.FlightNum, f.tailNum, p.manufacturer, p.model FROM
flights f LEFT OUTER JOIN planes p ON f.tailNum = p.tailNum

Understanding Photon Engine 225

When this query enters the physical planning phase, multiple physical plans will be computed. For
this query, the different plans will be based on the JOIN operator implementation. In Spark, it could
be a broadcast join, sort merge join, or a shuffle hash join. The physical planning process will use cost
models to decide the best join implementation. In this case, if you observed the query stages in the
Query UI, the physical plan with broadcast joins was chosen.

At the end of the physical planning stage, the logical plan from the logical optimization phase is
converted into a viable, optimal physical plan that is ready for execution.

Code generation

This is the final phase of query optimization. In this phase, bytecode (https://en.wikipedia.
org/wiki/Java_bytecode) is generated for the physical plan based on what was selected from
the physical planning phase. Notably, during the bytecode generation phase, the code generation
operation fuses multiple operations in a stage to produce an optimized operation. This fusion eliminates
the virtual function calls and limits the data exchanges to inter-stage shuffles only. This results in the
overall execution being sped up. This process is called WholeStateCodeGen.

Note
The purpose of this chapter is to discuss the Spark execution components in a simplified manner
so that we can contrast the changes when Photon is introduced. For an in-depth discussion on
these components, for example, how WholeStateCodeGen works with Just-in-Time (JIT)
compilation, please refer to the official Apache Spark documentation.

Execution

Finally, the specialized code generated by the compiler must be executed. The Spark code that was
submitted (the SQL query, in this case) is called a job. A job contains multiple stages. To execute a
stage, multiple tasks are spawned. Each task runs the same code – that is, the code that was generated
in the code generation phase. However, each task runs the code on a subset of the data, which makes it
the smallest unit of parallel execution. Each task is run within a construct called the executor, which
provides the task with physical resources such as CPU cores and RAM to execute the code.

Consider the following SQL query:

SELECT f.FlightNum, f.TailNum, p.manufacturer, p.model FROM
flights f LEFT OUTER JOIN planes p WHERE f.FlightNum between
1460 and 1470;

https://en.wikipedia.org/wiki/Java_bytecode
https://en.wikipedia.org/wiki/Java_bytecode

The Photon Engine226

When the code generation happens for this query, it will fuse the filter and broadcast loop instead of
having them as separate operators. You can visit the Spark UI for the query to observe this:

Figure 9.3 – Whole stage code generation

As you can see, the query has two stages, both of which are code-generated.

Now, let’s talk about Photon and its place in the Apache Spark execution model. We can think of
Photon as replacing the steps that start from the code generation phase:

•	 Instead of the whole state code generation of Java bytecode, Photon creates C++-based vectorized
native engine implementations.

•	 During the execution of tasks, Photon provides native executors instead of the traditional
JVM-based ones to run the native engine implementations.

Understanding vectorization 227

The following diagram should help make this clear:

Figure 9.4 – Photon’s place in the Spark execution model

So, what is vectorization? Why does Photon use it instead of the tried and tested Spark code generation?
Let’s dive in!

Understanding vectorization
To understand Photon, we must understand the different query execution philosophies. There are
three popular query execution models. We will learn about them now. To keep it simple, let’s learn
about them with a non-data example.

Consider the simple task of increasing the brightness of a photograph. This task will involve increasing
the brightness of every single pixel in the photograph. Modern cameras can easily capture photographs
with pixel counts in millions. Let's also assume that our processor can handle eight parallel tasks at
a time.

Finally, let’s assume three functions will help with this task:

function getPixelRGB(PixelAddress): PixelRGB

function addBrightness(PixelRGB, BrightnessFactor): PixelRGB

function setPixelRGB(PixelAddress, PixelRGB)

There are three ways that the controller can be programmed to do this function.

The Photon Engine228

Volcano model

In this model, we increase the brightness of the photograph one pixel at a time. A pseudocode
implementation will look like this:

for pixel in pixels:

 pixelRGB_current = getPixelRGB(pixel)

 pixelRGB_new = addBrightness(pixelRGB_current, 1)

 setPixelRGB(pixelAddress, pixelRGB_new)

In this implementation, we loop over all the available pixels and execute the three functions to increase
the brightness of each pixel, one at a time. There are glaring flaws in this implementation:

•	 At each step, the executing process must evaluate the next function to be called and call the
function. Further function calls will require data objects to be created and then passed as
parameters or returned as results. This is wasteful.

•	 The steps can’t be chained together by the processor either as function evaluation must happen
with every iteration. This is suboptimal.

Previously, we mentioned that our processor can handle eight parallel tasks. So, one redemption is
that we can assign each processor a unique range of pixels to work on. However, that still does not
remove the actual issue that each processor is spending more time on interpreting the steps rather
than executing the simple task of adding 1 to the brightness.

Code generation

In this model, we still increase the brightness of the photograph one pixel at a time, but we depend
on the processor to fuse the three functions into one “generated” function. Consider the following
pseudocode implementation:

for pixel in pixels:

increasePixelBrightness(pixel, 1)

In this implementation, we still loop over all the available pixels, but we “fuse” the different steps into
one function. This addresses a major flaw of the volcano model – that is, there is just one function call
and no intermediate data objects are created. There is an input as well as an output. The processing
of each pixel will be much faster now.

This can be combined with the parallel capabilities of the processor. Each processor will be able to
complete its range of pixels much faster. That said, the processing is still done one pixel at a time,
which is still slow.

Understanding vectorization 229

This is the same code generation philosophy that Apache Spark uses as part of the Catalyst optimizer.
Multiple tasks running across the various workers in the cluster execute the generated code against
their assigned range of data. This is the key to the speed of execution in Apache Spark.

Vectorization

This model solves the pixel-at-a-time problem. Consider the following pseudocode implementation:

for pixel_batch in pixels:

 pixelRGB_current = getPixelRGB(pixel_batch)

 pixelRGB_new = addBrightness(pixelRGB_current, 1)

 setPixelRGB(pixelAddress, pixelRGB_new)

In this implementation, we return to the simple, clean, modular functions of the volcano model.
However, instead of processing a pixel at a time, we modify the functions to work with a batch of
pixels. A batch is represented as an array or 1D matrix or a vector. So, the first function will obtain
the RGB values for a vector of pixels. Similarly, the second function receives a vector of RGB values
and adds 1 to all of them. Finally, the third function receives the vector of new RGB values and sets
them onto the respective pixels.

The implementation still requires the next function to be evaluated, but because we are processing
batches of one pixel at a time, the number of evaluations is dramatically reduced.

This is the core philosophy of Photon as a vectorized query engine.

Let’s get a bit more technical here. Vectorization works best when we work on one column at a time,
with a simple operation. Hence, in the vectorized implementation, we returned to using modular
functions. These functions take one vector (column) at a time and apply a simple operation to it.
Today’s CPUs provide specialized processing powers for vector processing. For example, consider
the addBrightness() function. It could be implemented as pixelRGB_current[:]+1,
meaning a matrix operation where each element has 1 added to it. The vector processing capabilities
allow CPUs to add 1 to each element in the array in parallel instead of looping over the array. Even if
we implement it as a loop over the array elements, the loop will be “unrolled” into a vector operation
since it applies a simple operation on one column.

Note
There is much more to implementations of query execution models than my overly simplistic
explanations of the three models. I just wanted to convey the core philosophy. Feel free to
deep-dive into these topics outside of this book.

The Photon Engine230

Now that we understand the core concept of vectorization, let’s look at vectorization from a query
processing lens. Let’s return to our beloved airlines dataset with the following SQL query:

SELECT Year, TailNum, SUM(Distance)

FROM airlines.flights

WHERE ArrDelay+DepDelay > 0

GROUP BY Year, TailNum

There are three operators in action here:

•	 Scan the flights table in the airlines database.

•	 Filter out records that are on time or before time.

•	 Aggregate the total distance covered by each flight in a year with delays.

We can visualize these as follows:

Figure 9.5 – Flow of operators in the query

Understanding vectorization 231

Let’s examine the Filter operation shown in the preceding diagram. The following diagram shows the
evaluation tree of the Filter operation:

Figure 9.6 – Evaluation tree of the Filter operation

As we can see, Photon focuses on executing simple operations on columnar batches of data. Photon
provides vectorized implementations of such operations. In this case, the addition operator (+) and
the greater than operator (>) are Photon-vectorized implementations or kernels.

Let’s zoom in on the addition kernel. The kernel accepts the vectors of data of two columns – ArrDelay
and DepDelay. The kernel uses CPU-level data parallelism to execute the operation. This is called
Single Instruction Multiple Data (SIMD) in the hardware world – that is, the ability to execute an
instruction against multiple data entries in a truly parallel fashion.

Consider a modern multi-core CPU. Each core has an independent SIMD execution unit. The kernel
will get the core to hold the two vectors on its on-chip memory and the SIMD execution unit will
simultaneously apply the addition operation to the data elements in the two vectors in one CPU cycle.
Now, the bigger the CPU register, the higher the number of data elements that will be processed in
one CPU cycle!

Furthermore, because the kernel processes a single instruction, there can be CPU-level data pipelining.
With every cycle, the core can process the vector in memory while simultaneously fetching the next
batch of data (from RAM) to be loaded into its memory. This eliminates the wastage of CPU cycles.

The Photon Engine232

Finally, Photon optimizes the data representation. In Figure 9.6, there’s a second vector of data next to
the Out stage. This is Photon’s way of representing the data that was filtered out. Instead of recreating
the whole dataset of filtered values (which could be hundreds of columns), it just adds a marker vector
that denotes which rows are active after the filter. This avoids unnecessary intermediate data object
(re)creation. It enables better memory management and eliminates CPU cycle wastage.

All these optimizations are possible due to the native implementation of Photon in C++. This is in
stark contrast with the execution of tasks in the traditional Apache Spark execution, where the tasks
are cocooned inside a Java Virtual Machine (JVM) and do not have access to CPU instruction set
level optimizations. This is what makes Photon so fast.

Let’s look at side-by-side comparisons of traditional code-generated DAGs versus Photon vectorized
DAGs for our example query:

Figure 9.7 – Comparison of stage 1

Understanding vectorization 233

Here, we are looking at stage 1 of the query, which scans the data, performs the necessary filtering, and
performs local aggregation. The left-hand side shows the traditional Apache Spark code-generated
stage. The right-hand side shows the same stage in Photon. Though it is not apparent, traditional
Spark has fused the filter, project, and local aggregate operators. Photon does not do so since it does
not use WholeStageCodeGen:

Figure 9.8 – Comparison of stage 2

Here, we are looking at stage 2 of the query, which receives all the local aggregates and combines them
into the final global aggregate. Once again, though it is not apparent, traditional Spark has fused the
filter, project, and local aggregate operators.

Now, let’s zoom out a bit. Consider a medium T-shirt-size SQL Warehouse in a Databricks on AWS
setup. It has eight workers of the i3.2xlarge EC2 instance type. Each i3.2xlarge EC2 instance
has 8 CPUs with 4 CPU cores each – that is, 32 cores. For the sake of this discussion, let’s assume that
each core supports SIMD. Now, when a query is executed, Spark will schedule tasks and these tasks
will be executed by Photon, as shown in Figure 9.3. If the query uses the whole cluster, we can assume
that 32 x 8 = 256 Photon tasks are executing. Each is executing on one core. Each task also gets a
partition of data to work on. As we saw previously, each Photon task will further use CPU-level data
parallelism to execute the operation on its data partition, hence achieving the maximum possible speed.

Compare this to the JVM-based task execution. Each task is still executed on a core, but the task
executes the operation one row at a time. This does not make use of CPU-level data parallelism or
instruction-level parallelism, which avoids idle CPU cycles.

Hence, Photon is fast. In Databricks SQL, Photon is combined with Delta Lake, which reduces the
amount of data to be processed using techniques such as data skipping, caching, and indexing. This
is where the data warehouse-beating performance of Databricks SQL comes from.

The Photon Engine234

With this, I hope you understand the concept behind Photon. Of course, there are more nuances to
implementing a vectorized engine, but hopefully, this discussion has enabled you to think about how
operators can be vectorized and how they make Photon so fast.

Hey, Why Don’t You Explain the Aggregate Operator?
I am going to leave that to you. Talking about the aggregate operator will open the rabbit hole
of discussing hash aggregation algorithms and data structures. If you are so inclined, you can
refer to the sources mentioned in the Further reading section at the end of this chapter.

Discussing the Photon product roadmap
Photon is a brand-new query engine. As we saw in the previous section, it must implement vectorized
kernels for all operations that are possible in Apache Spark. At the time of writing, there are still a few
operations that are not available with Photon:

•	 Photon Scan and Write operators work with Delta and Parquet files only

•	 Window and Sort operations are not yet supported

•	 User-defined functions are not yet supported

•	 Spark Structured Streaming is not yet supported

Work is in progress on all of these and I recommend that you visit https://docs.databricks.
com/runtime/photon.html#limitations for the latest status.

That said, does this mean that you cannot use Window and Sort operations with Databricks SQL or
that you cannot use your own user-defined functions in Databricks SQL?

You can! Recall Figure 9.3. It shows that the tasks scheduled by Spark are executed by Photon or
JVM-Core as applicable. If an operation is not supported by Photon yet, that operation is scheduled
on JVM-Core. This is transparent to the user, but it can be seen on the Spark UI. Let’s quickly see this
in action. Consider the following SQL query:

SELECT

 TailNum,

 flightNum,

 DepTime,

 DayOfMonth,

 RANK() OVER (

 PARTITION BY DayOfMonth,

 TailNum

 ORDER BY

https://docs.databricks.com/runtime/photon.html#limitations
https://docs.databricks.com/runtime/photon.html#limitations

Discussing the Photon product roadmap 235

 DepTime ASC

) AS rank

FROM

 airlines.flights

where

 year = 2004

 and month = 12;

This query is ranking the flights that have been made by a particular aircraft by the aircraft’s departure
time. In the Query UI, you will see the distinction between the Photon executed stages and the
non-Photon stages. The following snippets from the full UI should help you understand this:

Figure 9.9 – Photon stage

The Photon Engine236

The preceding diagram shows the directed acyclic graph (DAG) portion of the query that is executed
by Photon. We can see that Photon is performing the Scanning and Filter operations.

As per the query, the scanned and filtered rows must now be sorted and ranked. Both functions are
not supported by Photon yet, so the DAG clearly shows them being executed with traditional Spark
JVM-Cores:

Figure 9.10 – Non-Photon stages

The preceding diagram shows that Spark used non-Photon execution for the Sort and Window
operations. This is marked using yellow for Photon stages and blue for non-Photon stages. Another
telltale sign is the WholeStageCodegen tag in the non-Photon stages.

Summary 237

Using Photon for Data Engineering
You might be thinking, if it is so fast, why not use Photon for data engineering and data science
workloads as well? The answer is that you absolutely should! Just bear in mind that Photon is
not free in data engineering and data science clusters. However, it is free in Databricks SQL.

This brings us to the end of our discussion on Photon. Hopefully, you have a better understanding of
the core concept behind Photon and why it is so fast.

Summary
In this chapter, we dove headfirst into Photon Engine. We discussed the standard Apache Spark
execution model and what has made Apache Spark so fast. Then, we discussed the prevalent query
engine design models and why the vectorization model was chosen to replace the code generation
design of Apache Spark. We learned about the core concept of vectorization and how it enables Photon
to be as fast as it is. Finally, we discussed what Photon can and cannot do now and what its known
feature roadmap is.

Before we end this chapter, I will provide you with one final reminder – the aim of this chapter is only
to give you a conceptual idea of how Photon works and why is it so fast. All the concepts have been
simplified for better understanding. To deep dive into the nuances, follow the content in the section
Further Reading.

With that, we have a complete understanding of the Databricks SQL toolset and its storage and
computation technologies. In the next chapter, we will discuss the concept of the data warehouse and
how to translate our understanding of various data warehousing components into the data lakehouse.

Further reading
I have used publicly available information sources for this chapter, without which this chapter would
not have been possible. I wish to acknowledge them here:

•	 A talk by Alex Behm at the Data and AI Summit: https://databricks.com/session_
eu20/photon-technical-deep-dive-how-to-think-vectorized

•	 White paper on Photon submitted at SIGMOD-2022: https://cs.stanford.edu/
people/matei/papers/2022/sigmod_photon.pdf

•	 Master's thesis by Giorgi Kikolashvili at the University of Amsterdam – On the design of a
JVM-based vectorized Spark query engine: https://homepages.cwi.nl/~boncz/
msc/2019-GiorgiKikolashvili.pdf

If you are interested in deep -diving further into Photon, then use these resources.

https://databricks.com/session_eu20/photon-technical-deep-dive-how-to-think-vectorized
https://databricks.com/session_eu20/photon-technical-deep-dive-how-to-think-vectorized
https://cs.stanford.edu/people/matei/papers/2022/sigmod_photon.pdf
https://cs.stanford.edu/people/matei/papers/2022/sigmod_photon.pdf
https://homepages.cwi.nl/~boncz/msc/2019-GiorgiKikolashvili.pdf
https://homepages.cwi.nl/~boncz/msc/2019-GiorgiKikolashvili.pdf

10
Warehouse on the Lakehouse

Traditional data warehousing implementations are comprised of different components such as a
staging area, operational data store, enterprise data warehouse, and data marts. Depending on the
implementation of the system, these components may or may not be transparent to the user. One
of the biggest mental leaps you must take when adopting the Lakehouse is how to translate these
components to the Lakehouse.

In this chapter, we will learn how to design and implement these components on the Lakehouse using
Delta Lake features and ETL design patterns of the Lakehouse.

In this chapter, we will cover the following topics:

•	 Organizing data on the Lakehouse

•	 Implementing data modeling techniques

The primary audience of this chapter is database administrators and data engineers who will
be responsible for designing and implementing the data models corresponding to the different
architectural components.

Technical requirements
To make the most of this chapter, you must ensure the following:

•	 You know about data modeling techniques such as Kimball, Inmon, Data Vault, and others.

•	 You have read Chapter 8, The Delta Lake, and Chapter 9, The Photon Engine, of this book.

Warehouse on the Lakehouse240

Organizing data on the Lakehouse
In this section, we will discuss the architectural components of a traditional data warehousing
infrastructure/system and how these components can be designed and implemented on the Lakehouse.
This is particularly interesting because, as we learned in Chapter 8, The Delta Lake, there is a single data
layer on the Lakehouse known as Delta Lake. It does not have purpose-built database-like components
that can be used for data warehousing components such as the operational data store or data marts.

Let’s start with a brief overview of the components of a generic data warehousing system implementation.

Components of a warehouse system

The following diagram shows the various components of a generic data warehouse system:

Figure 10.1 – Data warehouse infrastructure components

Organizing data on the Lakehouse 241

The data that is captured from source data systems enters the data warehousing system at the staging
area. The data in the staging area is free of any form of processing and is a faithful as-is replica of the
data in the source system.

The data in the staging area is continuously moved to the operational data store (ODS). Depending
on the capability of the implementation, this process may or may not be real time in nature. Due to
the continuous data influx, the ODS is a snapshot of data from source systems, optionally consolidated
into a more sophisticated representation, and supports tactical business intelligence.

The data in the ODS is moved to the enterprise data warehouse (EDW) at a fixed schedule. The
ODS can contain multiple changes to the same data entity that may have occurred throughout the
day. When the ODS data is moved to the EDW, only the latest state of the data entity is moved. This
is done through processes such as de-duplication, merging, consolidating, and cleaning records in
the ODS. The data in this layer is still non-aggregated and at a line-item level.

It is also possible that the data in the staging area is directly processed into the EDW component. This
scenario is likely when there is no visible need for an ODS for tactical business intelligence.

The ODS and EDW systems are usually a third normal form representation of data, based on the
design of the source systems and any domain-specific data model being used in the enterprise.

Finally, the data in the EDW is moved to the data marts. Data marts represent summarized and
aggregated data, perhaps in a dimensional data model. These data marts can be department or project-
specific and are used for analysis and reporting from the consumption layer, which could be an array
of business intelligence tools and suites.

Depending on the implementation of the system, these components may have different names – they
may even have more intermediate components. The components may use dedicated, specialized
software and hardware stacks as well. What remains the same is the journey of the data as it transforms
from a raw representation, to a refined and cleaned representation, to an enriched, aggregated, and
summarized representation.

The Databricks Lakehouse allows you to build this journey for the data as well. Let’s learn how.

The Medallion architecture

In the Lakehouse architecture, the storage and compute layers are decoupled. That is, the Lakehouse
has a single storage layer that stores data in Delta format and has a single compute layer represented
by SQL Warehouses (see Chapter 6, The SQL Warehouses) running Photon Engine.

What this means is that on the Lakehouse, the staging, ODS, EDW, and data marts are simply collections
(schemas) of Delta tables residing on cloud storage. Each collection conforms to the data quality
characteristics and data modeling techniques appropriate to the component it represents.

Warehouse on the Lakehouse242

From a Databricks lens, the journey of the data through these layers is called the Medallion architecture
(https://databricks.com/glossary/medallion-architecture). In the Medallion
architecture, the first data layer, also known as the bronze layer, is an as-is replica of the source data
systems. The data that’s captured from the source data systems enters the Lakehouse at the bronze
layer. In an ideal setting, the replica of the source data systems in the bronze layer will be Delta tables.
However, the change data capture (CDC) system in your setting may not support writing data in
Delta format, in which case you can have an intermediate step in the bronze layer that converts the
data into Delta format. The following diagram should make this clearer:

Figure 10.2 – The bronze layer

Converting the data into Delta format in the bronze layer is especially useful if you intend to perform
near real-time reporting on the data. Delta format, as we saw in Chapter 8, The Delta Lake, comes
with many features that will ensure optimal reporting performance. Databricks provides a mechanism
called the Autoloader (https://docs.databricks.com/ingestion/auto-loader/
index.html) that can automatically sense the arrival of new data in the original capture format
table and process it into the bronze delta table.

The bronze layer can be equated to the staging area component. This is because the bronze layer data
model is a faithful as-is replica of the source systems where data continually flows in. This makes it a
reliable archive of all data. Any reprocessing of data can use data in this layer instead of querying source
systems. Using Delta tables at this layer will ensure optimal near real-time reporting performance.

The data in the bronze layer is de-duplicated, cleaned, consolidated, and merged into a third normal
form such as a data model or a domain-specific logical model. This is the silver layer of the Medallion
architecture, and it can be equated to a combination of the ODS and EDW components. The bronze
layer data is continually streamed into the ODS representation. Next, all enterprise-level business
rules and transformations are applied to the ODS representation to create the EDW representation.
The EDW is the key enabler of self-service analytics, reporting, and advanced analytics.

https://databricks.com/glossary/medallion-architecture
https://docs.databricks.com/ingestion/auto-loader/index.html
https://docs.databricks.com/ingestion/auto-loader/index.html

Organizing data on the Lakehouse 243

The following diagram should make this clearer:

Figure 10.3 – The silver layer

This flow is made possible by the Delta Lake format. Delta Lake tables can inherently behave as
streaming data sources. Delta tables can be configured to continually emit what is called a change
data feed, which essentially represents events such as inserts, updates, and deletes in the table. This
means the following:

•	 The changes in the bronze/staging layer can be streamed into the silver/ODS representation,
enabling the freshest snapshot of operational data for tactical business intelligence.

•	 The change in the silver/ODS layer can be streamed or batch-processed into the silver/EDW
representation, as per business requirements.

We will see examples of change data feeds in action in Chapter 11, SQL Commands – Part 1.

Note
This is a good time to mention the fact that the bronze, silver, and gold layers are design patterns
that reflect the progressive refinement of the structure, quality, and performance of the dataset.
They are not enforceable entities. I am only drawing analogies of data warehouse components
to these layers for ease of understanding. You can call them whatever you like.

Finally, the silver/EDW representation is summarized, aggregated, and modeled into data marts or
dimensional models based on individual project requirements. These tables are referred to as the
gold layer in the Medallion architecture. This layer can be equated to the data marts component. The
following diagram should make this clearer:

Figure 10.4 – The gold layer

As with the silver layer tables, the gold layer tables can be created in batch mode or streaming or
near-real-time mode, as per the business requirements.

Warehouse on the Lakehouse244

Bringing this all together, we can superimpose the Medallion architecture on the generic data warehouse
system architecture to show how the Lakehouse can be used to build a warehouse:

Figure 10.5 – The warehouse on the Lakehouse

With this, it should be clear how a warehouse can be architected on the Lakehouse and how your existing
understanding of warehousing infrastructure can be ported over to the Lakehouse architecture. Once
you have grasped this component mapping, all that remains is to define your data models as per the
warehouse component or Medallion layer with standard DDL commands. The compute layer – that
is, the SQL Warehouse running Photon Engine – will allow users to query all these components on
demand, hence behaving as traditional warehouse systems.

In the next section, we will learn about the considerations when implementing the layers and how to
use the performance-optimizing features of Delta Lake for an optimal setup.

Implementing data modeling techniques
In this section, we will look at the layers of the Medallion architecture. We will discuss the design
considerations for the layers, possible data modeling techniques to employ, and how to apply Delta
Lake features.

Implementing data modeling techniques 245

Consider the airlines dataset example that we have been working on throughout this book. Let’s
extend that example here to visualize how the various layers can be brought to life on the Lakehouse.

The bronze layer

As we discussed in the previous section, the bronze layer is an as-is replica of source systems and
hence the data models will follow that of source systems. Also, the bronze layer tables should ideally
be in Delta format for optimal near-real-time query experience and data versioning.

A typical airlines system will contain source systems for functions such as booking, ticketing, check-in,
flights, loyalty, and more. Each source system will contain a host of tables.

Consider the following diagram:

Figure 10.6 – The bronze layer of the airlines dataset

This is a replica of the source systems in the bronze layer. For example, the booking system will contain
tables for agents, operating and marketing flights, class, frequent fliers, seat details, special requests,
group bookings, and more. Similarly, the check-in system will contain tables for carriers, check-in
channels, agents, segments, boarding status, baggage status, and more.

The silver layer

The silver layer is very active since it is receiving and processing data constantly. This means that speed
and agility in ingesting data are prime requirements. While speed can be considered a function of
the processing engine and the computing power, a case can also be made that the data model that the
data is being written into will also affect the speed of ingestion.

From this perspective, a write-performant data modeling technique such as Data Vault (https://
en.wikipedia.org/wiki/Data_vault_modeling) is a good candidate for the tables in
the silver layer. Let’s see why.

https://en.wikipedia.org/wiki/Data_vault_modeling
https://en.wikipedia.org/wiki/Data_vault_modeling

Warehouse on the Lakehouse246

Data Vault defines three key entities:

•	 Hubs: These represent core business entities. They will have a natural key that identifies them.

•	 Links: These are entities that represent the relationship between two or more hubs. They just
contain the join keys to the hubs.

•	 Satellites: These are entities that represent additional attributes of hubs or links.

The clean separation of business entities from relationship to entities means that ETL processes will
be simple as there won’t be any complex preprocessing before records are written. Also, new entities
can easily be added without the need to touch existing entities or processes. This means it delivers on
both the speed and agility requirements of the silver layer.

Data Vaults require a staging zone, which is a natural fit for the bronze layer of the Medallion architecture.
Furthermore, Data Vaults have a raw vault. The raw vault receives the staging zone data in the hub,
link, and satellite entities. The business rules are then applied to the raw data vault to generate the
business vault. When combined, the raw and business vaults make up the silver layer.

Let’s return to our airlines example. Consider the following diagram:

Figure 10.7 – The silver layer of the airlines dataset

In this entity-relationship (ER) diagram, we can see how a sample silver layer can be built. There is
a raw vault that is built from data in our bronze layer.

Implementing data modeling techniques 247

When building the raw vault from the data in the bronze layer, we can build it in scheduled batch
mode or a streaming fashion. This is one of the defining reasons why the Lakehouse is an excellent
platform to build your warehouse on – the ability to process ETL data as fast as possible and make
it consumable.

Here, we can see two hubs – Customer and Flight. They are connected by a link – Ticket. The
hubs and links are also augmented by satellite tables, which contain descriptors for the hubs and
links, respectively.

There is also a business vault that has been built by applying business rules for data quality and
other transformations.

Note
This is not to say that Data Vault is the only viable data modeling technique for the silver layer.
Consider your requirements to make an informed decision on the data modeling technique to
use. A case can be made that if we have a mutable file format such as Delta Lake, do we need
the Data Vault pattern?

Finally, ensure that the implementation makes the most of Delta Lake. Here are some basic guidelines:

•	 Z-Order the join keys of the hubs, links, and satellites.

•	 Resist the urge for fine-grained partitions for naturally small tables such as satellite tables.

•	 If there are current-flag columns for changing dimensions, consider adding Bloom filter
indexes to them. Keep in mind that Bloom filters can slow down the write processes, so use
them with caution.

The gold layer

The gold layer needs to be read optimized to be able to deliver the best possible experience to the
BI practitioners. This translates to a more denormalized data organization that reduces the need for
expensive join operations. Hence, dimensional modeling techniques such as the Star schema (https://
en.wikipedia.org/wiki/Star_schema) are the best candidates for tables in this layer.

The Star schema is a very well-known technique. Since Star schemas are denormalized, the requirement
to perform joins (which are computationally expensive) is reduced. It also lends itself to faster
aggregations. That is – the design of the Star schema itself lends to great performance, regardless of
the computing platform.

https://en.wikipedia.org/wiki/Star_schema
https://en.wikipedia.org/wiki/Star_schema

Warehouse on the Lakehouse248

Let’s return to our airlines example. Consider the following diagram:

Figure 10.8 – The gold layer of the airlines dataset

In this ER diagram, we can see how a gold layer can be built. There is a dimensional model for flight
bookings that is derived from the business vault of the silver layer. There are also aggregations built
on top of this dimensional model. We can also have some derivations such as seasonal trend reports
and customer lifetime value built from the dimensional model.

With Databricks SQL, we can use certain techniques to further improve the performance of queries
on the gold layer. Here are some basic guidelines:

•	 Create Z-Orders on your fact tables. Limit the Z-Ordering columns to the top four columns
that are used in query predicates. In practice, this might involve limiting the foreign keys to
the largest dimension tables.

•	 Create Z-Orders on your dimension key fields. In practice, this might be a surrogate key. Limit
the Z-Ordering columns to the top four columns that are used in query predicates.

•	 Use the materialized views capability to create gold layer tables that can reflect near real
time updates

•	 Run periodic ANALYZE processes on the tables involved in complex joins. The ANALYZE
command will be discussed in detail in Chapter 12, SQL Commands – Part 2.

Summary 249

This brings us to the end of our discussion on implementing a data warehouse architecture on
the Lakehouse.

Note
Please bear in mind that the discussion of Data Vault or dimensional data modeling techniques
in different layers is not prescriptive. Consider your requirements and choose the data modeling
technique that suits them.

Hopefully, by now, you have a firm understanding of how you can implement warehousing components,
the necessary architecture, and the processes with ease on the Lakehouse.

Summary
In this chapter, we learned about the general components of a data warehousing system and how those
components can be implemented in the Databricks Lakehouse with the Medallion architecture. We also
learned about the best practices for implementing popular data modeling techniques on the Lakehouse.

This brings us to the end of Part 2 of this book, which focused on the core technology enablers of
Databricks SQL. In the next chapter, which also marks the beginning of Part 3 of this book, we will
discuss the SQL commands that are available in Databricks SQL, starting with commands that allow
us to manipulate and work with our data.

Part 3:
Databricks SQL

Commands

This part focuses on the SQL commands available in Databricks SQL. It introduces Databricks
SQL-specific commands that enable advanced usage patterns in a data lakehouse. This part is not
intended to be a complete SQL reference.

This part comprises the following chapters:

•	 Chapter 11, SQL Commands – Part 1

•	 Chapter 12, SQL Commands – Part 2

11
SQL Commands – Part 1

Databricks SQL supports ANSI SQL and all standard SQL commands are available and applicable. It
also exposes additional commands for Lakehouse-specific capabilities. In this chapter, we will focus
on these Lakehouse-specific SQL commands and learn their practical usage with scenario-based
examples. We will start by exploring the commands for the data definition language (DDL). Then,
we will explore commands for the data manipulation language. Finally, we will learn about functions
that handle semi-structured data and unlock advanced data manipulation.

In this chapter, we will cover the following topics:

•	 Working with data definition language commands

•	 Working with data manipulation language commands

•	 Working with the built-in functions in Databricks SQL

Note
This chapter is not intended as a complete SQL command reference. We will cover the practical
usage of SQL commands that are specific to Databricks SQL and Lakehouse. The rest of the
standard SQL commands can be studied at https://docs.databricks.com/sql/
language-manual/.

Technical requirements
To complete this chapter, you must ensure the following:

•	 Familiarity or experience with SQL and writing SQL queries

•	 You have reviewed the official general reference (https://docs.databricks.com/
sql/language-manual/#general-reference)

https://docs.databricks.com/sql/language-manual/
https://docs.databricks.com/sql/language-manual/
https://docs.databricks.com/sql/language-manual/#general-reference
https://docs.databricks.com/sql/language-manual/#general-reference

SQL Commands – Part 1254

Working with data definition language commands
In this section, we will learn about data definition commands that are specific to Databricks SQL and
Lakehouse. Specifically, we will focus on commands that allow administrators to manage data catalogs,
cloud storage locations, and Delta Sharing.

Databricks SQL supports the common data definition commands such as the following:

•	 CREATE/ALTER/DROP database/schema

•	 CREATE/ALTER/DROP/TRUNCATE table

•	 CREATE/ALTER/DROP view

These are standard commands in the database and data warehouse world. They have the same semantics
in Databricks SQL and do not require detailed unpacking. However, as we learned in Chapter 3, The
Data Catalog, Databricks SQL encapsulates database objects in a new type of object called the catalog.
Let’s learn how to create catalog objects and work with them.

DDL for catalogs

Databricks SQL supports a three-level namespace, with the catalog being the highest-level namespace.
As a reminder, a catalog is a securable object that is used to organize your data assets. Also, creating
new catalogs is only supported if you are using the Unity Catalog.

Creating catalogs

A catalog can be created with the following command:

CREATE CATALOG [IF NOT EXISTS] catalog_name [COMMENT comment
]

For example, we can create a catalog called airlines_dev_catalog as follows:

CREATE CATALOG airlines_dev_catalog

This command only has two customizations:

•	 IF NOT EXISTS: This is a common clause and specifies that if the catalog exists, do not
try to create the catalog. Applying this clause ensures that the command exits gracefully if the
catalog already exists instead of throwing an error.

•	 COMMENT: This is a clause that specifies a comment for the catalog. The comment is free-form
text and can be used to supply important contextual metadata about the catalog.

Working with data definition language commands 255

Altering catalogs

An existing catalog can be altered with the following command:

ALTER CATALOG [catalog_name] OWNER TO principal

In contrast to other data objects such as tables and views, the only alteration that is possible on
catalogs is the change of ownership. principal represents a user, user group, or service principal,
as discussed in Chapter 4, The Security Model.

Dropping catalogs

Finally, an existing catalog can be deleted or dropped using the following command:

DROP CATALOG [IF EXISTS] catalog_name [RESTRICT | CASCADE]

This command has two customizations:

•	 CASCADE: Like dropping or deleting databases, dropping a catalog is not allowed if the catalog
is not empty. If you wish to override this behavior, you can specify the clause. The RESTRICT
clause is the opposite of the CASCADE clause and will cause the command to error out if there
are databases in the catalog.

•	 IF EXISTS: If you wish for the command to exit gracefully if the catalog does not exist,
specify the IF EXISTS clause.

Finally, bear in mind that a catalog can only be created, altered, and dropped by metastore administrators
(https://docs.databricks.com/data-governance/unity-catalog/key-concepts.
html).

DDL for external locations

In Chapter 4, The Security Model, we learned how Unity Catalog allows you to manage cloud storage
locations. It does so by exposing two new objects:

•	 External Location: A data object that represents a cloud storage location

•	 Security Credential: A data object that represents the security credential to access the
storage location

This is a very powerful capability as it allows database administrators to program access to cloud storage
locations with universal SQL commands and semantics instead of cloud-specific IAM constructs. For
the end users, it means easy, self-service access to data files available on the cloud storage if that data
has not been cataloged as a relational table.

https://docs.databricks.com/data-governance/unity-catalog/key-concepts.html
https://docs.databricks.com/data-governance/unity-catalog/key-concepts.html

SQL Commands – Part 1256

Note
The power of the external location construct is most applicable for data engineers and data
scientists who require direct access to certain locations. An example would be to access non-
relational data that cannot be cataloged as a relational table. Databricks recommends giving
users access to the location object rather than the security credential object.

Now, let’s learn how to create the external location objects and work with them.

Creating external locations

An external location can be created with the following command:

CREATE EXTERNAL LOCATION [IF NOT EXISTS] location_name URL url
WITH STORAGE CREDENTIAL credential_name [COMMENT comment]

Before we talk about the configurations of this command, we must talk about the other data object
referred to in the command syntax: STORAGE CREDENTIAL.

To create an external location, we must specify the cloud credentials that can be used to access this
location. In AWS, this will be an IAM role, while in Azure, this will be an Azure Service Principal.

At the time of writing, the storage credential cannot be created with SQL. The DBA must run a
Databricks command-line utility (https://docs.databricks.com/dev-tools/cli/
index.html) to create a storage credential; for example:

databricks unity-catalog create-storage-credential --json
'{ "name ": "airlines_cred ", "azure_service_principal ":
{ "directory_id ": "dir-id ", "application_id ": "app-id
", "client_secret ": "secret "}}'

Here, the Azure service principal will hold the necessary privileges that allow access to the required
location on Azure Data Lake Storage.

Note
If you are using Databricks on AWS, you will use S3 locations and IAM policies. Similarly, with
Databricks on GCP, you will use GCS buckets and service accounts.

Now that the storage credential has been sorted, let’s look at the CREATE command concerning
the example we introduced in Chapter 4, The Security Model, in the Going beyond Read Access
– part 1 section:

•	 LOCATION: This is the identifier or name that you must give to the external location object;
for example, airlines_loc.

https://docs.databricks.com/dev-tools/cli/index.html
https://docs.databricks.com/dev-tools/cli/index.html

Working with data definition language commands 257

•	 URL: This is the absolute path of the cloud storage location that the external location object
refers to; for example, abfss://dbsql/airlines/planes.

•	 STORAGE CREDENTIAL: This is the identifier or name of the storage credential that contains
IAM policies to allow access to our S3 path; for example, airlines_cred.

Bringing this all together, an example invocation of the command would be as follows:

CREATE EXTERNAL LOCATION airlines_loc URL abfss://dbsql/
airlines' WITH (STORAGE CREDENTIAL airlines_cred);

Altering external locations

An external location can be altered by changing the following fields:

•	 URL

•	 Storage credential

•	 Owner

•	 Name

The ALTER command syntax is as follows:

ALTER EXTERNAL LOCATION location_name

 { RENAME TO to_location_name |

 SET URL url [FORCE] |

 SET STORAGE CREDENTIAL credential_name |

 OWNER TO principal }

You can alter one or more fields in one command. The two options of note are as follows:

•	 Notice how the name change requires the use of the RENAME TO clause instead of the SET
clause, which is typical to ALTER commands.

•	 Note the FORCE option when changing the URL. By default, if the external location is already in
use, then altering the URL is not allowed. The FORCE option is used to override this behavior.
At the time of writing, there is no way to enumerate where the external location is in use.

Altering storage credentials

An existing storage credential can be altered by changing the following:

•	 Name

•	 Owner

SQL Commands – Part 1258

The ALTER command syntax is as follows:

ALTER STORAGE CREDENTAL credential_name

 { RENAME TO to_credential_name |

 OWNER TO principal }

You can alter one or both configurable fields in one command – that is, the name of the credential or
the owner of the credential.

Dropping external locations

An external location can be dropped with the following command:

DROP EXTERNAL LOCATION [IF EXISTS] location_name [FORCE]

By default, if the external location is in use, then dropping it is not allowed. Use the FORCE option
to override this behavior.

Dropping storage credentials

A storage credential can be dropped with the following command:

DROP STORAGE CREDENTIAL [IF EXISTS] credential_name [FORCE]

By default, if the storage credential is in use by one or more external locations, then dropping it is not
allowed. Use the FORCE option to override this behavior.

DDL for Delta Sharing

One of the key capabilities introduced with Unity Catalog in Databricks is a feature called Delta
Sharing (https://databricks.com/product/delta-sharing).

Simply put, Delta Sharing is a protocol for sharing your data assets with other organizations. Delta
Sharing stands apart from other sharing technologies because of the following reasons:

•	 It is an open protocol, which means the recipients of the shared data can use any computing
platform. It does not have to be another Databricks installation.

•	 It is a real-time share. This means that no copies of the data are made for sharing.

Databricks with Unity Catalog provides enterprise-grade security controls on Delta Sharing. The
following diagram should clarify this:

https://databricks.com/product/delta-sharing

Working with data definition language commands 259

Figure 11.1 – Sharing data with Delta Sharing

As you can see, with Delta Sharing, the Data Provider creates a Share data object, which is a container
for data assets that need to be shared. The Data Provider then creates a Recipient of this Share. The
Recipient is the organization or individual who has requested this data. Finally, the Data Provider
grants privileges on the Share to the Recipient.

Databricks does provide a UI to support this, which makes it extremely easy to configure data sharing
between Databricks accounts. That said, let’s look at the commands concerning the flights table
in the airlines database we created in Chapter 4, The Security Model.

Bear in mind that shares and recipients can only be created, altered, and dropped by metastore
administrators.

Creating data-sharing objects

As we discussed in the Delta Sharing flow, we must start by creating a data share. We’ll learn how to
create a share and a recipient in the following sub-sections.

Create a share

The CREATE command for SHARE has the following syntax:

CREATE SHARE [IF NOT EXISTS] share_name [COMMENT comment]

The following is an example of its usage:

CREATE SHARE IF NOT EXISTS airlines_share

SQL Commands – Part 1260

Executing this statement will create a data sharing object called airlines_share that will hold
all the data we want to share with recipients. Note that this data-sharing object is not shared with the
intended recipients yet!

Next, we must create a recipient of the share.

Create a recipient

The CREATE command for RECIPIENT has the following syntax:

CREATE RECPIENT [IF NOT EXISTS] recipient_name [COMMENT
comment]

The following is an example of its usage:

CREATE RECIPIENT IF NOT EXISTS airlines_recipient

The thing to note here is the output. The output will contain an activation_link field that
must be securely shared with the recipient. The recipient must follow the activation link to activate
the sharing. Once activated, they can register the data assets in the share into their data catalog or
use them directly.

Now, we can grant the select privilege to the recipient with the following command:

GRANT SELECT ON SHARE airlines_share TO RECIPIENT airlines_
recipient;

Executing this command will ensure that the intended recipient, airlines_recipient, has read
privileges on the data shared in the airlines_share data sharing object. Note that without this
bit of security programming, the recipient will not be able to access the shared data!

Altering data-sharing objects

The next step in the process is to add data assets to the SHARE object so that the recipient can access
them. This can be done via the ALTER command, which has the following syntax:

ALTER share_name { alter_table | REMOVE TABLE clause }

The command has two possible operations, as discussed in the following sub-sections.

ADD TABLE

In this operation, a table or partitions of a table are added to the data share and hence made available
to the recipient.

Working with data definition language commands 261

Here is an example:

ALTER SHARE airlines_share ADD TABLE airlines.flights

Our flights table does not have any partitions. But if it had partitions – for example, on the Year
and Month columns – we could specify specific partitions to be shared. Partitions must be specified
as a comma-separated list of key=value pairs; for example:

ALTER SHARE airlines_share ADD TABLE airlines.flights
PARTITION(year=2008, month=10)

Finally, we can specify an alias for the shared table with the AS clause, like so:

ALTER SHARE airlines_share ADD TABLE airlines.flights AS
shared_data.flights_shared

REMOVE TABLE

In this operation, the share is altered by removing a previously shared table object. This is not to be
confused with dropping a share. The following is an example:

ALTER SHARE airlines_share REMOVE TABLE airlines.flights;

Executing this statement will remove the airlines.flights table from the airlines_share
data sharing object. The recipients of this share will not have access to the flights table anymore.
Any other tables that are a part of the share will continue to be accessible by the recipients of the share.

Dropping data-sharing objects

The DROP command for dropping a SHARE object is as follows:

DROP SHARE [IF EXISTS] share_name

The following is an example of its usage:

DROP SHARE IF EXISTS airlines_share

Simple.

The DROP command for dropping a RECIPIENT object is as follows:

DROP RECIPIENT [IF EXISTS] recipient_name

The following is an example of its usage:

DROP RECIPIENT IF EXISTS airlines_recipient

SQL Commands – Part 1262

Executing this command will remove the airlines_recipient object from the data sharing
system. The recipient will no longer have access to any data that was previously shared with them.

Working with data manipulation language commands
Databricks SQL supports the following common data manipulation commands:

•	 INSERT INTO

•	 UPDATE

•	 DELETE FROM

These are standard commands in the database and data warehouse world and do not require
detailed unpacking.

Instead, we will learn about certain SQL commands in Databricks SQL that accommodate the data
processing patterns specific to Lakehouse and Databricks SQL. Let’s start with the very versatile
MERGE INTO command.

MERGE INTO

MERGE INTO is technically not a Databricks-specific command, but it is an important command as
it allows you to process Slowly Changing Dimensions (SCDs) and the Change Data Capture (CDC),
as well as perform data deduplication. Let’s learn about this command concerning these processes.
MERGE INTO is an advanced command which will appeal more to data engineers than data analysts.
That said, if you are responsible for engineering data sets, you will find this section useful.

Data deduplication

Duplicate data in tables is undesirable. Duplicating data at a big data scale is even more undesirable
as it can have disastrous performance effects. Consider one of the most commonly ingested forms
of data in data lakes: logs generated from applications. However, logs are prone to having duplicates.
Hence, our data ingestion process must cater to deduplicating data. Let’s look at an example with the
following architecture:

Figure 11.2 – Data deduplication architecture

Working with data manipulation language commands 263

In this architecture, our source application is generating logs that are prone to duplication. So, we
receive all the logs in a staging area – the logs_staging table. Finally, we use the MERGE INTO
command to write only the logs that are not duplicated into the logs table. We call a record a duplicate
if the value of the log_id field is already present in the table.

Now, let’s work through an example of data deduplication:

1.	 Initialize the logs table, as follows:

insert into logs values(1, 1, 'l1');

insert into logs values(2, 2, 'l2');

insert into logs values(3, 3, 'l3');

2.	 Simulate a new log arrival by initializing the logs_staging table, as follows:

insert into logs_staging values(2, 2, 'l2_dup');

insert into logs_staging values(4, 4, 'l4');

insert into logs_staging values(5, 5, 'l5');

Here, we have a duplicate entry for log_id = 2.

3.	 De-duplicate the data with a MERGE INTO statement, as follows:

MERGE INTO logs

USING logs_staging

ON logs.log_id = logs_staging.log_id

WHEN NOT MATCHED THEN INSERT *

Here, the ON clause specifies the merge condition. In our example, we are specifying the merge behavior
if log_id in a staging table record matches a record in the destination table.

The WHEN NOT MATCHED clause corresponds to the case when log_id of a staging table record
does not match any record in the destination table. Since our task requires that we forward log records
from staging to the destination if they are not already present in the destination, we use the WHEN
NOT MATCHED clause instead of the WHEN MATCHED clause. As part of the clause, we instruct the
command to insert the records into the destination table.

Now, this is only a toy example, and it can be expanded further on many lines. For example, how do
we ensure that only new records in the staging table are processed instead of the entire staging table
every time? You can take it up as an exercise to try that out or read on!

SQL Commands – Part 1264

Change Data Capture and Slowly Changing Dimensions

Another common operation in data lakes is capturing change data from source systems – for example,
capturing a change event that represents the creation of a new user entry in a source database, a change
event that represents a user updating their email address, or a change event that represents the user
asking to be forgotten (deleted) from the system. Let’s look at an example with the following architecture:

Figure 11.3 – Change Data Capture architecture

In this architecture, the source application is receiving new user sign-ups and modifications for existing
user records. We assume there’s a change event capture mechanism in the source system that emits
the events as they happen. The events capture the operation type – Insert/Update/Delete – as
well as the operation timestamp.

Now, let’s work through an example of change capture:

1.	 Initialize the user_details table, as follows:

insert into user_details values(1,'User 1','user1@org.
com', 'Z1', 1);

insert into user_details values(2,'User 2','user2@org.
com', 'Z2', 2);

insert into user_details values(3,'User 3','user3@org.
com', 'Z3', 3);

insert into user_details values(4,'User 4','user4@org.
com', 'Z4', 4);

insert into user_details values(5,'User 5','user5@org.
com', 'Z5', 5);

2.	 Simulate new change event arrivals by initializing the user_details_cdc table, as follows:

insert into user_details_cdc values(1,'User 1','user1@
org.com', 'Z1-new-1', 'UPDATE', 6);

insert into user_details_cdc values(1,'User 1','user1-
new@org.com', 'Z1-new-1', 'UPDATE', 7);

insert into user_details_cdc values(3,'User 3','user3@
org.com', 'Z3', 'DELETE', 7);

insert into user_details_cdc values(6,'User 6','user6@
org.com', 'Z6', 'INSERT', 10);

Working with data manipulation language commands 265

insert into user_details_cdc values(7,'User 7','user7@
org.com', 'Z7', 'INSERT', 11);

Here, we have two updates for User 1. The first update changes their zip code, while the
second update changes their email address. Hence, our change data capture must get the latest
update to User 1. We also have an event for deleting the records of User 3. Finally, we have
two new users in the system – User 6 and User 7.

3.	 Capture the change data with a MERGE INTO statement, as follows:

MERGE INTO user_details target USING (

 select id, name, email, zip, operation, rec_update_time

 from (SELECT *, ROW_NUMBER() OVER (PARTITION BY id
ORDER BY rec_update_time DESC) as rank from user_details_
cdc)

 where rank = 1

) as source

ON source.id = target.id

WHEN MATCHED AND source.operation = 'DELETE' THEN DELETE

WHEN MATCHED AND source.operation = 'UPDATE' THEN UPDATE
SET *

WHEN NOT MATCHED AND source.operation = 'INSERT' THEN
INSERT *

As with the previous example, the ON clause specifies the merge behavior based on whether the ID
matches the source table and the target table. The WHEN MATCHED clause handles the Update and
Delete cases as any update or delete will require the existence of the ID in the target table. The
WHEN NOT MATCHED clause handles the Insert cases. This is because if the ID matches, it is an
update to an existing record, not a new record.

The case of slowly changing dimensions can be handled similarly. If we consider the preceding example,
if we were to implement Slowly Changing Dimension Type 2, then we must have three records
for User 1 in our user_details table as we have the baseline record and then two updates to
the record. Out of the three, only the third and latest record should be marked as current. This can
be achieved by making small changes to the MERGE INTO statement. I will leave it up to you to
complete this exercise. If you require hints, see https://docs.databricks.com/delta/
delta-update.html#slowly-changing-data-scd-type-2-operation-into-
delta-tables. Slowly changing dimensions are supported natively by the Delta Live Tables (DLT)
product of Databricks. DLT is a mechanism to define data pipelines declaratively with SQL or python.

https://docs.databricks.com/delta/delta-update.html#slowly-changing-data-scd-type-2-operation-into-delta-tables
https://docs.databricks.com/delta/delta-update.html#slowly-changing-data-scd-type-2-operation-into-delta-tables
https://docs.databricks.com/delta/delta-update.html#slowly-changing-data-scd-type-2-operation-into-delta-tables

SQL Commands – Part 1266

Incremental data processing with a Change Data Feed

One last use case of the MERGE INTO command is incremental data processing. Let’s continue with
the user details example from the previous section. The change capture from the source system to the
data lakehouse was well implemented.

However, it’s likely that the user_details table is also used to feed other tables on Lakehouse – for
example, a marketing mailing list. Consider the case of updating the ZIP code and email address of
User 1 and removing User 3 from the system. This must be captured in the user_details
table and reflected in the mailing_list table. One way to achieve this is to have a periodic job
that goes through each record in the mailing_list table and consults the user_details table
if the email address and ZIP code are outdated and updates the record accordingly.

There are many flaws with this design. It is slow and inefficient, and it doesn't work in real time.

To this end, Delta Tables emit what is called a Change Data Feed or CDF (https://docs.
databricks.com/delta/delta-change-data-feed.html). The CDF records all the
insert, update, and delete events happening on a Delta table. We can use this change feed to identify
which user records have been changed and what has changed in those records. This will enable us to
propagate our changes incrementally. Let’s apply this to our mailing list example, which has the
following architecture:

Figure 11.4 – Incremental data processing

In this architecture, user_details_cdc receives change events from the source application. These
change events are propagated to the user_details table with the MERGE INTO command. Finally,
we use the CDF emitted by the user_details table to incrementally update the mailing_list
table.

We will enable CDF on the user_details table by attaching the following clause to the CREATE
statement of the user_details table:

TBLPROPERTIES (delta.enableChangeDataFeed = true);

https://docs.databricks.com/delta/delta-change-data-feed.html
https://docs.databricks.com/delta/delta-change-data-feed.html

Working with data manipulation language commands 267

This will ensure that the user_details table emits the CDF – that is, the updates to this table after
every MERGE operation from the user_details_cdc table. We will use this feed to do the following:

•	 Insert new mailing targets if new user records have been inserted.

•	 Update existing mailing targets if user records have been modified.

•	 Delete mailing targets if the user records have been deleted from the system.

Let’s simulate this with an example. Follow the same initialization and change the data simulation
steps from the previous example:

1.	 Perform the initial data load.

2.	 Perform the CDC simulation.

3.	 Process the incremental data with the following MERGE INTO statement:

MERGE INTO mailing_list

USING (

 SELECT *

 FROM (SELECT *, ROW_NUMBER() OVER (PARTITION BY id ORDER BY
rec_update_time, _commit_version DESC) as rank FROM table_
changes('user_details',<start_timestamp>,<end_timestamp>))

 WHERE rank = 1

) AS user_cdf

ON mailing_list.id = user_cdf.id

WHEN MATCHED AND user_cdf._change_type = 'update_postimage'
THEN UPDATE SET *

WHEN MATCHED AND user_cdf._change_type = 'delete' THEN DELETE

WHEN NOT MATCHED THEN INSERT (id, name, email, zip) VALUES (id,
name, email, zip);

To understand how this MERGE INTO command functions, we must understand the use of the
table_changes() function, which returns the CDF between two timestamps or commit versions.

Let’s query table_changes after the CDC simulation, as follows:

SELECT * FROM table_changes('user_details', 0,10)

SQL Commands – Part 1268

We will see the following output:

Figure 11.5 – Change Data Feed

If we correlate this with the MERGE INTO query, we will see that the CDF provides a _change_type
field that specifies the event type as an Update, Insert, or Delete. We can also use _commit_
version, _commit_timestamp, or any user-defined field to calculate the most recent change
event for any user. As we saw in the previous section, we can use the event type in the MERGE INTO
statement to process the changes. You will notice that the CDF does not include rows for records that
did not change. This is the key to efficient incremental processing.

COPY INTO

The COPY INTO command (https://docs.databricks.com/sql/language-manual/
delta-copy-into.html) is best understood as a bulk load command for Delta tables. There are
a lot of cases where organizations receive data files and they must be loaded into user-facing tables
for further querying. There can be other such cases as well.

The COPY INTO command can pick up such files and then insert the records into the target table.

For example, our airlines dataset contains data up to the year 2008. Now, we receive the new
data from the years 2008 to 2020 as a collection of CSV files. Here, we can run a command similar
to the following:

COPY INTO airlines.flights

FROM (SELECT * FROM 'abfss://airlines-container@
airlinesstorageaccount.dfs.core.windows.net/flights_2008_2020')

FILEFORMAT = CSV

PATTERN = 'file_[0-9].csv'

FORMAT_OPTIONS('header' = 'true')

The syntax in the preceding code block is straightforward:

•	 COPY INTO requires the target table or target cloud storage location. In this example, we use
the table name.

•	 The FROM keyword specifies the subquery that reads the data files that need to be copied into
the target table. Here, we are running a blanket SELECT statement over the files present in the

https://docs.databricks.com/sql/language-manual/delta-copy-into.html
https://docs.databricks.com/sql/language-manual/delta-copy-into.html

Working with the inbuilt functions in Databricks SQL 269

ADLS location. As you may recall, this is the storage container we created in Chapter 4, The
Security Model, in the The internals of cloud storage access section.

•	 The subquery must also supply options to FILEFORMAT, such as the file glob PATTERN to
match the correct files and other FORMAT_OPTIONS such as the header and delimiter.

There is, however, the important consideration of access to the cloud storage location. If you are using
Unity Catalog, you have the external location mechanism at your disposal to control access to the
cloud location. You must have the WRITE FILES privilege on the external location. See the Data
definition commands section for more details.

If you are using Hive Metastore, you can specify your credentials inline in the command, like so:

COPY INTO airlines.flights

FROM (SELECT * FROM 'abfss://airlines-container@
airlinesstorageaccount.dfs.core.windows.net/flights_2008_2020')
(WITH CREDENTIAL (AZURE_SAS_TOKEN = '…'))

FILEFORMAT = CSV

PATTERN = 'file_[0-9].csv'

FORMAT_OPTIONS('header' = 'true')

In this command, we are copying the new flights data, which was received in the flights_2008_2020
ADLS location, into our existing flights table. We are also specifying our credentials to be able
to work with the ADLS location using the Azure SAS token specified in the WITH CREDENTIAL
clause. Upon execution, our flights table will reflect this new data.

Working with the inbuilt functions in Databricks SQL
Databricks SQL has a very comprehensive list of inbuilt functions (https://docs.databricks.
com/sql/language-manual/sql-ref-functions-builtin.html) to cater to a variety
of processing needs. If you are coming from a database or data warehouse world, you might not find
an exact 1:1 mapping for certain functions in their names. However, by and large, you should be able
to find the function for your needs. Covering all the functions is not possible in a book, nor is it of
any additional value. Instead, I am going to talk about two standout powerful function families.

JSON

JavaScript Object Notation (JSON) is a versatile semi-structured file format that is often found in
the data lake world. However, this versatility often gets abused in the form of very intricate schemas
and arbitrary levels of data nesting, and, at times, arbitrary schemas as well. This makes relation
processing of JSONs difficult at times.

Databricks SQL provides a way to query this semi-structured data. This is a very powerful feature that
often gets overlooked, which is why I am including a discussion here.

https://docs.databricks.com/sql/language-manual/sql-ref-functions-builtin.html
https://docs.databricks.com/sql/language-manual/sql-ref-functions-builtin.html

SQL Commands – Part 1270

Returning to our tradition of finding new datasets to work with, this time, we will use the Our World in
Data dataset on the COVID-19 pandemic (https://ourworldindata.org/coronavirus).
It provides data about the pandemic in JSON format.

Attribution
This data has been collected, aggregated, and documented by Cameron Appel, Diana Beltekian,
Daniel Gavrilov, Charlie Giattino, Joe Hasell, Bobbie Macdonald, Edouard Mathieu, Esteban
Ortiz-Ospina, Hannah Ritchie, Lucas Rodés-Guirao, and Max Roser. Please attribute them
as per https://github.com/owid/covid-19-data/tree/master/public/
data#license if you are using this dataset.

You can download the dataset from https://github.com/owid/covid-19-data/
tree/master/public/data and upload it to a cloud storage location of your choice to
follow the discussion.

Note
Ensure that your SQL Warehouse has access to the cloud storage location. If you are using
Unity Catalog, ensure that you have READ FILE permissions on the external location object
referring to this cloud storage location.

For this discussion, we are going to suspend our knowledge of the JSON data source capability in
Databricks, where we can just run the following line of code and Databricks SQL will infer the full
schema of the JSON dataset:

select * from json.`abfss://covid19@owidcovid.dfs.core.windows.
net/owid-covid-data.json`

Instead, we will read the JSON dataset as a text file and use the JSON path expressions to query and
discover the data. Let’s start.

Extracting values using identifiers

The dataset is organized by ISO codes of countries – that is, each country will have a nested JSON
containing the data for that country. I am interested in the data for my home country, India, which bears
the ISO code IND. So, I can extract the information for India by executing the following command:

select value:IND from text.` abfss://covid19@owidcovid.dfs.
core.windows.net/owid-covid-data.json`

In this query, value is the default name of the column into which all the JSON data is read as text.
By using the : delimiter, we are extracting the top-level field, which contains the IND key.

https://ourworldindata.org/coronavirus
https://github.com/owid/covid-19-data/tree/master/public/data#license
https://github.com/owid/covid-19-data/tree/master/public/data#license
https://github.com/owid/covid-19-data/tree/master/public/data
https://github.com/owid/covid-19-data/tree/master/public/data

Working with the inbuilt functions in Databricks SQL 271

Since the top-level field is a field and not an array, we can also use value:['IND'] to the same effect.

Upon executing this query, we will see that there are multiple nested fields, such as continent,
location, and population_density, as well as an array called data that contains multiple
JSON entries representing data for each date since the data about the pandemic was collected. Let’s
learn how to query them using JSON path expressions.

Extracting nested fields

One of the major causes of the massive spread of COVID is the population density of countries. We
can extract the population density by executing the following command:

select value:IND.population_density from text.` abfss://
covid19@owidcovid.dfs.core.windows.net/owid-covid-data.json`

In this query, we used dot (.) notation to instruct Databricks SQL to follow the top-level IND field
and extract the value for the population_density key. As mentioned previously, since this is a
field, we can use the square-bracket notation (value:['IND']['population_density'])
to the same effect.

Extracting values from arrays

The actual field we are interested in is the data field, which is an array. To extract the data array,
we can execute the following command:

select value:IND.data[99] from text.` abfss://covid19@
owidcovid.dfs.core.windows.net/owid-covid-data.json`

In this query, we are using the index notation on the data element (which we now know to be an
array) to retrieve the data from the 100th day of the pandemic (array indexes start from 0).

Of course, this query returns another JSON representation of the data, so we can execute further
nested queries to retrieve the information, like so:

select value:IND.data[100].date, value:IND.data[100].new_cases
from text.` abfss://covid19@owidcovid.dfs.core.windows.net/
owid-covid-data.json`

And that’s it. As you can see, the ability to query semi-structured data in a relational context with
intuitive dot and index notations is a very powerful tool. You can use it to explore columns in tables
containing free-form JSON text, or parse massive datasets and extract only the information you need.
You can consult the official reference for JSON handling at https://docs.databricks.com/
sql/language-manual/sql-ref-json-path-expression.html to check for new
capabilities as and when they are added by Databricks.

https://docs.databricks.com/sql/language-manual/sql-ref-json-path-expression.html
https://docs.databricks.com/sql/language-manual/sql-ref-json-path-expression.html

SQL Commands – Part 1272

Lambda functions

Databricks SQL has a lot of powerful functions that require the use of Lambda functions (https://
docs.databricks.com/sql/language-manual/sql-ref-lambda-functions.
html). In essence, Lambda functions are simple, short, inline, anonymous functions. They are best
understood through an example.

Let’s consider the array_sort(array, lambda_function) function. This function sorts
the elements of an array for you. However, you must define how the sorting should happen. You
must define this because it is plausible that your array is not an array of primitive data types, but a
custom data type. You will need to define how to use the members of the custom data type to order
the elements. This is where Lambda functions come in.

Let’s work through an example invocation of array_sort to see Lambda functions in action.
Consider the following SQL command:

SELECT

 array_sort(

 array(struct(1,2), struct(3,4), struct(-1,4)),

 (p1, p2) -> CASE

 WHEN p1.col1 = p2.col1 THEN 0

 WHEN p1.col1 < p2.col1 THEN -1

 ELSE 1

 END

);

In this example, we have the following:

1.	 Our array, which we want to sort, consists of a custom data type with two columns – col1
and col2.

2.	 We define our Lambda function in such a way that it receives two elements from the array at
a time in the p1 and p2 parameters.

3.	 Then, it compares the values of col1 in p1 and p2 and returns -1, 0, or +1, depending on
whether p1 < p2 or p1 = p2 or p1 > p2. The array_sort() function uses this return
value to perform the ordering. If you wish to reverse the ordering, just change the condition
upon which -1 is returned.

As you can see, Lambda functions are very powerful. They are used across a lot of other function
families such as aggregation, filtering, and more.

https://docs.databricks.com/sql/language-manual/sql-ref-lambda-functions.html
https://docs.databricks.com/sql/language-manual/sql-ref-lambda-functions.html
https://docs.databricks.com/sql/language-manual/sql-ref-lambda-functions.html

Summary 273

Summary
In this chapter, we learned how to consult the official SQL command reference for Databricks SQL.
More importantly, we learned about some of the Databricks SQL-specific commands. We also learned
more about Unity Catalog and the concept of Delta Sharing while learning about various data definition
commands. After that, we learned how to implement real-life data engineering and BI engineering
use cases while learning about data manipulation commands. Finally, we learned how to query semi-
structured data and the power of Lambda functions.

In the next chapter, we will continue our investigation of Lakehouse-specific SQL commands –
specifically, commands for administrating Lakehouse.

12
SQL Commands – Part 2

Maintaining and managing data and data access in any database system is a continuous process.
The Lakehouse is no different. In this chapter, we will focus on the SQL commands that help us
maintain and manage our Lakehouse. We will also learn about Lakehouse-specific SQL commands
for discovering data assets. Finally, we will learn about advanced security programming techniques
available on the Lakehouse.

In this chapter, we will cover the following main topics:

•	 Working with Delta Lake maintenance commands

•	 Working with data security commands

•	 Working with metadata commands

Note
This chapter is not intended as a complete SQL command reference. We will cover the practical
usage of SQL commands that are specific to Databricks SQL and the Lakehouse. The rest of the
standard SQL commands can be studied at https://docs.databricks.com/sql/
language-manual/index.html.

Technical requirements
To complete this chapter, you must ensure the following:

•	 You have familiarity or experience with SQL and writing SQL queries.

•	 You have reviewed the official general reference (https://docs.microsoft.com/
en-us/azure/databricks/sql/language-manual/#general-reference).

https://docs.databricks.com/sql/language-manual/index.html
https://docs.databricks.com/sql/language-manual/index.html
https://docs.microsoft.com/en-us/azure/databricks/sql/language-manual/#general-reference
https://docs.microsoft.com/en-us/azure/databricks/sql/language-manual/#general-reference

SQL Commands – Part 2276

Working with Delta Lake maintenance commands
Like any system, be it hardware or software, Delta Lake also requires periodic maintenance. In this
section, we will learn about some of the commands to use for different maintenance operations. These
commands are relevant to data engineering and data science teams. Business intelligence users need
not concern themselves with these activities.

Vacuuming your Delta Lake

As we learned in Chapter 8, The Delta Lake, with every data insert, update, or delete, new files are
created. After each such activity, the transaction log of the delta table is updated to reflect the set of
files that constitute the table’s current or latest version. So, while the execution of user queries will
ignore the non-current files, those files still exist on your cloud storage and are incurring costs. While
these are not excessive costs, they can grow over time if left unchecked. This is where the VACUUM
command comes in. True to its name, it vacuums these non-current files.

Now, before you go ahead and vacuum your Lakehouse, keep in mind that some retention is not a
bad thing. The non-current files are a history of how your data table evolved. This allows Delta Lake
tables to travel back in time and read data as of a particular time or version. They are required for
transactional guarantees and are very helpful in audits, data fixes, and rollbacks.

Hence, selective vacuuming is the way to go. The command is as follows:

VACUUM table_name [RETAIN num HOURS] [DRY RUN]

The RETAIN clause in the preceding command defines how many hours of history to retain on the
table; it specifies the not-current files from the inception of the table up to current time – retention hours.

If you wish to do a dry run, or just see a list of files that will be deleted should you run this command,
include the DRY RUN clause.

It is worth noting that if you try to retain data for less than 7 days or 168 hours, Databricks SQL will
deny your request. If you are running this command in the Data Engineering persona on a notebook,
then you have the option of switching off this behavior by executing the following command:

%sql SET spark.databricks.delta.retentionDurationCheck.
enabled=false;

Consider the user_details table from Chapter 11, SQL Commands – Part 1. If we wish to dry-
run our vacuum operation on it, we must execute the following command:

VACUUM user_details DRY RUN

Executing this command will list the files that will be vacuumed away, as shown in the
following screenshot:

Working with Delta Lake maintenance commands 277

Figure 12.1 – Dry -running a vacuum operation

There are the following points you must make a note of concerning vacuuming:

•	 You must have an organizational policy on history retention. Databricks recommends at least
7 days of retention. You must gauge your requirements based on the uses of the data and the
stability of the data pipelines. For example, consider the case of streaming data pipelines. They
tend to create small files at an alarming rate. Even if you have optimized writes and automatic
compactions are turned on (see Chapter 8, The Delta Lake), the files that make up the current
state of the table are optimally sized, but the small files that were originally written are still
around and you will want to keep cleaning them up at a faster schedule. Another scenario could
be that you find a logical error in your data pipeline that was introduced by a code change 1
month ago. Now, if you have only 7 days of retention, you will not be able to restore your table
to how it was 1 month ago. Instead, you will have to reprocess all your data instead of selectively
reprocessing 1 month’s worth of data.

•	 Vacuuming is not going to increase the performance of user queries since Delta Engine will
automatically ignore the non-current files.

•	 Consider the cost of vacuuming versus the cost savings it drives. Vacuuming has a lot of fixed
operations such as listing files, computing which files fall within retention versus outside of it,
and more. So, if your tables do not receive frequent updates, consider running VACUUM at a
lower frequency. On the flip side, if you have a streaming pipeline, the number of files generated
and hence the cost associated with that can justify frequent vacuuming.

•	 Consider the other Delta Lake maintenance commands running in your Lakehouse. If you are
running OPTIMIZE commands regularly, you can consider chaining the VACUUM command
with it.

SQL Commands – Part 2278

•	 Avoid running VACUUM before or in the middle of any data pipelines. It can slow down the
processing. More importantly, it will only add time to the pipeline’s execution and provide no
performance benefits. Hence, it can be done as part of a separate maintenance activity.

Time -traveling in your Delta Lake

As we discussed in the previous section, non-current files represent the history of your table. This
means you can time -travel and see the snapshot of the table as of a particular time or even restore
the table to that snapshot.

Why would you want to do this? There can be many reasons, including when you want to roll back
some logic changes in your data processing or roll back due to some logical errors.

First, we must view the history of the table and determine which time/version we want to view or restore.

Let’s consider the user_details table from the incremental processing example from Chapter 11,
SQL Commands – Part 1. We can run a DESCRIBE HISTORY command on this table, as follows:

DESCRIBE HISTORY user_details

This will result in an output similar to the following:

Figure 12.2 – Viewing the table history

Here, we can see the exact operation that brings about a new commit version. timestamp and version
are also recorded. We can use either of these two to time -travel or restore.

To view a particular version of the table, simply run the following query:

SELECT * FROM user_details VERSION AS OF 4

You can replace VERSION with your TIMESTAMP of choice as well.

To restore the table to a particular version, simply run the following query:

RESTORE user_details TO VERSION AS OF 4

Working with Delta Lake maintenance commands 279

Yes – it is that simple.

There are two things we must make a note of with regards to restoring:

•	 Restoring the table does not wipe out the history. Restoring just changes the current files listed
in the transaction log (see Chapter 8, The Delta Lake, to read about the transaction log).

•	 The ability to restore depends on the available history. So, vacuum with care!

Repairing your Delta Lake

It is plausible that some of the data files are manually deleted from the table’s location. Why would
that happen? This could be due to human error, errant data pipeline logic, archival policies on cloud
storage, and more. If this were to occur, our transaction log may point to non-existent files. This means
that a user query may try to look up non-existent files and error out.

If this happens, you must run the FSCK REPAIR TABLE command. This removes the filename
entries for the missing files from the transaction log. It has a very simple syntax, as shown here:

FSCK REPAIR TABLE table_name [DRY RUN]

Now, an argument can be made that if certain data files are manually deleted, then what is the point
of repairing them?

For starters, at least you will be able to access the data that you have. Furthermore, perhaps a non-current
file was deleted, say by some archival policies on the cloud storage. However, there could still be users
using the past data versions of the table. In this case, the repair job makes some sense.

Now, the durability guarantees of cloud storage make an event such as this highly unlikely and we can
minimize the remaining risk by reducing external access to the data. This can be achieved by using
managed tables. Here, we can use the access control mechanisms to restrict external tooling from
modifying storage locations. If you are using Unity Catalog, ensure that external tooling has read-only
access to the location objects to minimize this risk.

Optimizing your Delta Lake

The OPTIMIZE command is a maintenance command that can be used to optimize the layout of data
in your tables. As you may recall, we discussed the OPTIMIZE command concerning Z-Ordering
in Chapter 8, The Delta Lake.

However, OPTIMIZE can be used without Z-Ordering as well. The following is the command syntax
for the OPTIMIZE command:

OPTIMIZE table_name [WHERE predicate]

 [ZORDER BY (col_name1 [, ...])]

SQL Commands – Part 2280

If we do not specify the ZORDER clause, the OPTIMIZE command will try to recreate the data files
in such a way that all the files are of an even size. This is especially useful when there are frequent
updates to the data tables, and you have disabled auto-optimized writes to avoid write-time latencies.

Running the OPTIMIZE command is a compute-intensive activity, so you must ensure that you are
running it as efficiently as possible. You can use the WHERE predicate to indicate the desired portions
of the dataset that you want to run the OPTIMIZE command on.

Keep in mind that running OPTIMIZE on an already optimized partition will not have any effect.

This wraps up our discussion on maintenance commands for the Lakehouse. Next, we will discuss
some advanced security programming techniques we can perform to protect our data assets.

Working with data security commands
We covered data security commands such as GRANT, REVOKE, and DENY (Hive Metastore only) in
significant detail in Chapter 4, The Security Model. If you want to consult the official command reference
for these commands, visit https://docs.databricks.com/sql/language-manual/
index.html#security-statements. In this section, we will focus on an advanced bit of
security programming and learn about row-level and column-level permissions in Databricks SQL.

Dynamic view functions

At the time of writing, Databricks SQL does not have table bindings for expressing row-level or
column-level permissions for users and user groups. Instead, it uses the concept of views and dynamic
view functions.

Databricks SQL exposes two dynamic view functions:

•	 Current_user(): This returns the username of the user executing the query.

•	 is_member(group_name): This returns a Boolean value indicating whether the current
user is a member of the group.

For example, consider a user group called pii-group that only I am a part of. This means that the
other user in my organization, Suteja, is not a part of this group:

https://docs.databricks.com/sql/language-manual/index.html#security-statements
https://docs.databricks.com/sql/language-manual/index.html#security-statements

Working with data security commands 281

Figure 12.3 – pii-users group members

If I execute the preceding dynamic view functions as the following query, the is_pii_user column
will return true:

SELECT current_user, is_member(" pii-users") as is_pii_user

In contrast, if Suteja runs the same query, the is_pii_user column will display false, as shown
in the following screenshot:

Figure 12.4 – Result of Suteja running the is_member() dynamic view function

Controlling access to columns

In this section, we will use a dynamic view function to create a view that selectively hides or shows
columns. We will use the people_db database that we created in Chapter 3, The Data Catalog. For
this discussion, we will tag the ssn and birthDate fields as personally identifiable information
(PII) fields.

SQL Commands – Part 2282

The following VIEW definition dynamically masks the PII columns in our data – that is, ssn
and birthDate:

CREATE VIEW people_protected AS

SELECT

 id, firstName, middleName, lastName, gender, salary,

 CASE WHEN is_member('pii-users') THEN ssn

 ELSE 'REDACTED'

 END AS ssn,

 CASE WHEN is_member('pii-users') THEN birthDate

 ELSE 'REDACTED'

 END AS birthDate

FROM people

Note how we use the is_member() function to determine whether the user should receive redacted
values for the PII fields.

Now, if Suteja selects data from this table, she will see redacted values for ssn and birthDate, as
shown here:

Figure 12.5 – Redacted values for non-members

In contrast, I, who am a member of the pii-users group, will see the plaintext values instead of
redacted values, as shown here:

Figure 12.6 – Actual values for non-members

And that’s it! An argument can be made that creating such views for each table will not be scalable,
especially if a lot of tables must be access controlled this way. That’s fair. Unity Catalog has introduced
a feature called attribute-based access control in its roadmap. This feature allows you to annotate
columns and data assets with tags. Therefore, creating policies for access to these tags will be possible,
thus making this process maintainable.

Working with data security commands 283

Controlling access to rows

In this section, we will use a dynamic view function to create a view that selectively hides or shows
rows. We will continue building on the same example. Consider that there is a user group called
marketing-users that is only allowed to see details of users who are 30 years or older. I am a
part of this group; Suteja is not.

The following VIEW definition dynamically excludes the records that are not supposed to be read by
marketing folk:

CREATE VIEW people_reachable AS

SELECT *

FROM people

WHERE

 CASE

 WHEN is_member('marketing-users') AND (months_
between(current_date,birthDate) > 360) THEN TRUE

 WHEN !is_member('marketing-users') THEN TRUE

 ELSE FALSE

 END;

Again, note the use of the is_member() function in the CASE statement to set the rule that marketing
folks can only reach users who are older than 30.

Now, if Suteja, who is not part of the marketing-users group, selects data from this table, she
will see all the records, as evident by the min and max birth dates:

Figure 12.7 – All records can be viewed by non-members

In contrast, I, who am a member of the marketing-users group, will not see users who are
younger than 30:

Figure 12.8 – Limited records can be viewed by members

SQL Commands – Part 2284

And that’s about it. As mentioned previously, an argument can be made about the scalability of this
approach. That said, there is a feature called attribute-based access control in the development roadmap
that will allow a table-bound row access policy to be used.

This wraps up our discussion of advanced security programming. Next, we will discuss the metadata
commands that are available with Databricks SQL to search for and discover our data assets.

Working with metadata commands
In this section, we will learn about metadata commands, which allow you to list and describe data
assets, set configurations, and explore metadata about the data assets. You will be able to use these
commands to search for and discover data assets and gain deeper insights into them.

Listing data assets

Two commands can be used to list data assets:

•	 SHOW

•	 LIST

The SHOW command is the standard SQL SHOW command. In Databricks, it supports the catalog,
database, table, view, and function objects. For example, we can list the tables in the airlines
dataset with the following statement:

SHOW TABLES IN airlines;

For an extensive discussion of the SHOW command for the data objects, please revisit Chapter 3, The
Data Catalog.

The SHOW statement also supports listing users and groups. It also supports Unity Catalog-specific
data assets – external location and storage credential. Please refer to Chapter 11, SQL Commands –
Part 1, for a detailed discussion on them.

The LIST command, which is available with Unity Catalog, can be used to list all the files available
in a cloud storage location. For example, to see the files in a hypothetical storage container where the
airlines data is stored, we can execute the following command:

LIST 'abfss://flights@airlines.dfs.core.windows.net/'

If the user running this command has the READ FILE privilege on the external location data object
referring to the ADLS URL, then the command will list the objects at this path.

The SHOW statement also supports Delta Sharing-specific data assets – that is, share and recipient.

Working with metadata commands 285

Two specific SHOW statements stand out:

•	 SHOW PARTITIONS: This lists all the available partitions on a table. Alternatively, you can use
it to list the exact partition as a key-value pair to check the existence of a particular partition.

•	 SHOW TBLPROPERTIES: This lists all the extra table properties we have enabled on a table.
Recall that in Chapter 11, SQL Commands – Part 1, we enabled a table property to enable a
change data feed on a table. Such table properties will be listed with this command. You can
also list the value of a property by specifying it as a key-value pair in the command.

These are standard commands and very intuitive. If required, you can refer to the official command
reference at https://docs.databricks.com/sql/language-manual/index.
html#show-statements.

Describing data assets

The DESCRIBE command enables us to describe the details of a data asset– for example, the structure
of a table, the location of a database, or the signature of a function.

The DESCRIBE statement in Databricks supports the standard catalog, database, table, and function
data objects. Keep in mind that there is no DESCRIBE VIEW. Use DESCRIBE TABLE to describe
a view.

The DESCRIBE statement also supports Unity Catalog-specific data assets, such as external locations
and storage credentials.

The DESCRIBE statement also supports Delta Sharing-specific data assets, such as share and
recipient.

Each data asset responds differently to the DESCRIBE command. Furthermore, some data assets can
also have options such as DESCRIBE, FORMATTED, and EXTENDED, which control how granular
information is displayed. For example, a DESCRIBE table will display column-level statistics if we
enable the EXTENDED option.

Please revisit Chapter 3, The Data Catalog, for detailed usage examples of the DESCRIBE command.

Analyzing Delta tables

The final metadata command that I want to talk about is the ANALYZE command. This is because its
existence is a bit counterintuitive to what we learned in Chapter 8, The Delta Lake. There, we learned
that Delta automatically calculates statistics on data files to enable automatic file skipping.

https://docs.databricks.com/sql/language-manual/index.html#show-statements
https://docs.databricks.com/sql/language-manual/index.html#show-statements

SQL Commands – Part 2286

The ANALYZE command also collects statistics on a specific table. It has the following syntax:

ANALYZE TABLE table_name [PARTITION clause]

 COMPUTE STATISTICS [NOSCAN | FOR COLUMNS col1 [, ...] |
FOR ALL COLUMNS]

Before we discuss the options available to this command, first, let’s discuss how it differs from the
automatic statistics collection in Delta tables. As you may recall, the automatic statistics collection in
Delta tables only computes the minimum and maximum values of the columns where it collects the
statistics. By default, the statistics are computed for the first 32 columns, and it is advisable to compute
statistics only for columns of non-string primitive data types.

The ANALYZE command goes beyond that. It computes deep statistics about the table and the columns
beyond the minimum and maximum values of those columns.

For example, it will calculate the number of rows with null values, the cardinality of the column, the
average length of records in the column, the maximum length of records in the column, and more.

These statistics are used by the optimizer to come up with better query execution plans.

However, there is a big catch. The ANALYZE command must be run after every new batch of data is
written. It is not automatic as it is computationally expensive. You must check whether this command
applies to your databases and tables. This means establishing that the cost of performing the analysis
is worth the gains in performance. If so, schedule a regular analysis job. If not, automatic statistics
collection should suffice.

With that cleared up, let’s look at the various options for the ANALYZE command:

•	 PARTITION: This clause specifies the partitions where the analysis must be performed. This
can reduce the compute footprint of the analysis job.

•	 FOR COLUMNS: This clause specifies the columns where the analysis must be performed. This
helps keep the analysis targeted to specific query patterns, especially in the case of wide tables.

•	 NOSCAN: This clause specifies that the analysis should only scan the file sizes and not the
individual records. Hence, the deep analysis metrics will not be computed.

For example, if we were to analyze our favorite flights table, we would have to run the
following command:

ANALYZE TABLE flights COMPUTE STATISTICS FOR COLUMNS year,
tailnum

Statistics make the most sense when they’re read at an individual column level. Hence, you can run
the following command:

DESCRIBE EXTENDED flights tailnum;

Summary 287

In the preceding command, we are asking the DESCRIBE statement to display EXTENDED information
about the tailnum column in the flights table.

The observed output is as follows:

Figure 12.9 – Computed statistics

And with this, we have finished discussing the available metadata commands of note.

Summary
In this chapter, we learned how to consult the official SQL command reference for Databricks SQL.
More importantly, we learned about some of the Databricks SQL-specific commands. First, we learned
about Delta Lake maintenance commands such as VACUUM and RESTORE. We also learned how to
control user access at the row and column levels using dynamic view functions. Finally, we learned
how to list and describe various data assets using metadata commands.

This brings us to the end of our discussion regarding the concepts, features, and functions of the
Databricks SQL platform. In the next chapter, we will learn how to test these concepts, features, and
functions at scale with the TPC-DS dataset.

Part 4:
TPC-DS, Experiments, and

Frequently Asked Questions

This part focuses on putting the concepts learned in Part 2 and Part 3 to the test, using the TPC-DS
benchmark. This part also rounds up the book with a compilation of commonly asked questions and
uncertainties about what Databricks SQL is and what it can and cannot do.

This part comprises the following chapters:

•	 Chapter 13, Playing with the TPC-DS Dataset

•	 Chapter 14, Ask Me Anything

13
Playing with the

TPC-DS Dataset

In this chapter, we will get acquainted with the TPC-DS dataset. Lakehouse platforms, including
Databricks, use TPC-DS benchmarks to prove their capabilities. Hence, it is important to know about
it. In this chapter, we will learn about the TPC-DS dataset, the TPC-DS benchmark, and how to use
the TPC-DS dataset to validate some of the concepts we learned about in the previous chapters.

This chapter is only for advanced users who wish to build a larger dataset to test out Databricks SQL
features. If you already have access to such a dataset, or you don’t want to test with bigger datasets,
there is no need to go through this chapter.

In this chapter, we will cover the following topics:

•	 Understanding the TPC-DS dataset

•	 Generating TPC-DS data

•	 Running automated benchmarks

•	 Experimenting with TPC-DS in Databricks SQL

Technical requirements
To follow this chapter, you must have the following:

•	 Working knowledge of Scala and Apache Spark

•	 Access to a Databricks workspace

•	 Access to an IDE with Scala plugins or familiarity with terminal-based commands for compiling
Scala projects

•	 Have read Chapter 8, The Delta Lake, and Chapter 9, The Photon Engine, of this book

Playing with the TPC-DS Dataset292

Understanding the TPC-DS dataset
Transaction Processing Performance Council (TPC®) is a non-profit corporation and a worldwide
consortium. It was founded in 1985 and has major hardware and software vendors as full-time members.

Their mission is two-fold:

•	 Develop data-centric benchmark standards for various systems.

•	 Disseminate objective, verifiable benchmarking data to the industry.

TPC-DS (https://www.tpc.org/tpcds/) stands for Transaction Processing Performance
Council – Decision Support. It is a benchmarking standard for creating verifiable, objective performance
data about decision support systems (DSSs).

DSSs are software systems that sift and analyze massive amounts of data and can compile comprehensive
information that can be used in decision-making. For example, a DSS can compile projected revenue
or inventory management information for an enterprise operation.

TPC-DS consists of two things of interest to us:

•	 A software that allows us to generate data that is used for TPC-DS benchmarking at any
scale. Please download the TPC-DS specifications from https://www.tpc.org/tpc_
documents_current_versions/current_specifications5.asp and study
the Entity Relation diagram of the TPC-DS data.

•	 A set of standard benchmarking queries that can be used against this data.

Databricks and Databricks SQL also come under the umbrella of decision support systems since
organizations use them to store data and run business-critical data analytics on them to help make
business decisions.

In November 2021, Databricks released a statement that it had broken TPC-DS records for data
warehouse performance, and it was verified by the TPC themselves.

If you wish, you can read all about it at https://databricks.com/blog/2021/11/02/
databricks-sets-official-data-warehousing-performance-record.html.

We are not interested in recreating those benchmarks – there is no point. We are more interested
in seeing if we can get the TPC-DS data and use it to see some of the performance optimizations in
action. As you may recall, in Chapter 8, The Delta Lake, I called out the fact that we do not have big
enough example datasets. Well, TPC-DS is here to give you datasets of any size so that you can test
the various performance-boosting features that we talked about in Chapter 8, The Delta Lake, and
Chapter 9, The Photon Engine.

So, let’s get right into it. First, let’s learn how to generate TPC-DS data.

https://www.tpc.org/tpcds/
https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
https://databricks.com/blog/2021/11/02/databricks-sets-official-data-warehousing-performance-record.html
https://databricks.com/blog/2021/11/02/databricks-sets-official-data-warehousing-performance-record.html

Generating TPC-DS data 293

Generating TPC-DS data
We will stick to our tradition of finding tools within the Databricks ecosystem. The good folks of
Databricks have created an open source project called spark-sql-perf (https://github.com/
databricks/spark-sql-perf) that has everything we will need to generate the TPC-DS data.
Let’s begin.

Building the spark-sql-perf library

The first thing we must do is compile the spark-sql-perf library. I will be using the IntelliJ IDEA
Integrated Development Environment (IDE). You can use any IDE of your choice or even compile
the library from your terminal.

If you do not want to compile the library, you can head over to the GitHub repository for this book,
download the JAR file, and move to the next step. However, note that the JAR file has been built for
Spark 3.2.1 and Scala 2.12.10:

Note
Ensure that you install the necessary JDK and Scala versions onto your machine before
commencing these steps. If you are using an IDE, it should guide you through the installation.

1.	 Import the spark-sql-perf library using the following Git web URL: https://github.
com/databricks/spark-sql-perf.git.

2.	 Open the build.sbt file in the project’s root folder and edit the scalaVersion and
sparkVersion fields so that they match the Scala and Spark versions of the Databricks
runtime you intend to use. The following screenshot is based on a cluster using DBR 10.4 LTS
with Photon, which uses Spark 3.2.1 and Scala 2.12.10:

Figure 13.1 – Editing the build.sbt file

https://github.com/databricks/spark-sql-perf
https://github.com/databricks/spark-sql-perf
https://github.com/databricks/spark-sql-perf.git
https://github.com/databricks/spark-sql-perf.git

Playing with the TPC-DS Dataset294

3.	 Build the package by running the sbt +package command in the terminal. The following
screenshot shows the execution of the command in the terminal provided by the IDE:

Figure 13.2 – Building the project

After successfully executing the sbt +package command, the built library – a Java JAR file – will
be ready in the target directory in the project’s root folder, as shown in the following screenshot:

 Figure 13.3 – The built library

Now, we must install this JAR file as a library in our Databricks workspace.

Generating TPC-DS data 295

Installing the spark-sql-perf library

We must install the spark-sql-perf JAR file as a workspace library (https://docs.
databricks.com/libraries/workspace-libraries.html). You must be in the Data
Science Engineering persona view to do this:

1.	 Navigate to a folder of choice in your workspace and create a new Library, as shown in the
following screenshot:

Figure 13.4 – Creating a workspace library

2.	 In the ensuing Create Library page, give your library an appropriate name and drop/select the
JAR file we built in the previous section, as shown in the following screenshot:

Figure 13.5 – Installing the JAR file in the workspace library

https://docs.databricks.com/libraries/workspace-libraries.html
https://docs.databricks.com/libraries/workspace-libraries.html

Playing with the TPC-DS Dataset296

Now, we must create a Databricks cluster that will be used to generate the TPC-DS data and install
this workspace library onto it.

Creating a data generation cluster

In this step, we will create a cluster to create the TPC-DS data. For the sake of simplicity, I will reuse
the same cluster to show the automated benchmarking process as well. You should create a different
cluster with different specifications suited to the test you are undertaking. Follow these steps:

1.	 Create a new cluster, as outlined here: https://docs.databricks.com/clusters/
create.html. Ensure that you uncheck the Enable autoscaling checkbox. The Workers count
should be based on the scale of data you wish to generate and how fast you want to generate
it. The speed of generation will be directly proportional to the worker count. The following
screenshot shows a cluster being created with a runtime suitable for the library:

Figure 13.6 – Creating the benchmarking cluster

https://docs.databricks.com/clusters/create.html
https://docs.databricks.com/clusters/create.html

Generating TPC-DS data 297

2.	 Install the workspace library in this cluster by clicking on the Install New button in the Libraries
tab of the cluster you created in the previous step, as follows:

Figure 13.7 – Installing the workspace library in the cluster

Before we move on to the next step, why did I ask you to disable autoscaling? This is because we
know the workload and that it requires a certain amount of compute power. Hence, it makes sense to
configure the compute power right away.

The following are some pro tips for you:

•	 If you are looking to build TPC-DS datasets of higher scale factors, which will be a time-
consuming process, consider using an all-on-demand cluster (no Spot VMs) so that you don’t
risk preemption of workers.

•	 Ensure that the workspace library is in an Installed state on the cluster before running the data
generation commands. Otherwise, the commands will fail.

Playing with the TPC-DS Dataset298

Importing the spark-sql-perf repository

The spark-sql-perf project on GitHub contains handy Databricks notebooks that we can use
for performing the TPC-DS data generation. We will use the Repos feature (https://docs.
databricks.com/repos/index.html) in Databricks to import the entire repository into our
workspace. As shown in the following screenshot, click on the Add Repo button in the Repos menu
and paste the Git repository URL details of the spark-sql-perf repository:

Figure 13.8 – Importing the spark-sql-perf repository

Running the data generation notebook

Once the repository has been added, navigate to the notebook at spark-sql-perf/src/main/
notebooks/tpcds_datagen.

This notebook is a bit rough around the edges, as shown in the following screenshot, but don’t worry
– I will walk you through it:

Figure 13.9 – The data generation notebook

https://docs.databricks.com/repos/index.html
https://docs.databricks.com/repos/index.html

Generating TPC-DS data 299

Why Am I Not Creating Clean Notebooks for You?
Fair point. But I don’t want to do that. I want you to be comfortable with the library as the
Databricks team may add changes to the repository that you will want to use later. For example,
the repository does not have automated benchmarking notebooks for SQL Warehouses. If they
add it one day, I want you to be able to just consult this repository and get working instead of
waiting on me to update my copy of things.

Let’s go through the commands in the notebook, as shown in Figure 13.6, that you must work with.
Keep in mind that the command numbers are true at the time of writing and may change in the future:

1.	 Cmd 2: Update num_workers to the number of workers in your data generation cluster.

2.	 Cmd 3: Mount a cloud storage location of your choice. To keep it simple, use the /mnt/
performance-datasets mount point as it is hardcoded in other commands. To learn
more about mounting, see https://docs.databricks.com/data/databricks-
file-system.html#databricks-file-system-dbfs.

3.	 Cmd 4:

	� Update scaleFactor to the size of the desired TPC-DS dataset. Scale 1 means 1 Gb,
Scale 10 means 10 Gb, and so on.

	� Update format to the format of choice. For example, if you want to test the performance
of the Parquet format before testing the Delta format, set it to parquet.

	� Update rootDir if you selected a different mount point in Cmd 3.

	� Update useDecimal and useDate if you want to use decimal and date data types
instead of strings. Using specific data types can bring about performance boosts that you
may want to test.

	� Make a note of databaseName and optionally add a prefix to it. All the TPC-DS tables
will be created in this database.

4.	 Cmd 15: Update discoverPartitions to false if you are creating the data in Delta
format. This is because discoverPartitions is implemented as an ALTER TABLE
RECOVER PARTITIONS command, which is not valid in Delta. Delta automatically discovers
and tracks partitions.

5.	 Cmd 17: Comment out the table.analyzeTables() function if you are creating data in
Delta format. This is because Delta automatically discovers and maintains table and column-
level statistics.

https://docs.databricks.com/data/databricks-file-system.html#databricks-file-system-dbfs
https://docs.databricks.com/data/databricks-file-system.html#databricks-file-system-dbfs

Playing with the TPC-DS Dataset300

That’s it! Attach this notebook to the data generation cluster and run the notebook. Once completed, you
should be able to see the TPC-DS data generated in the Data tab, as shown in the following screenshot:

Figure 13.10 – Generated data in the Databricks SQL Data Explorer

As you can see, I have prefixed my database name with vg_; the notebook automatically adds descriptive
postfixes based on our configurations. Every new data generation activity will create a new database.

You can study the Entity Relation diagram of the data by downloading the TPC-DS specifications
from https://www.tpc.org/tpc_documents_current_versions/current_
specifications5.asp.

Keep in mind that the notebook creates external tables. So, if you want to delete any database or tables,
make sure that you drop them in the Databricks portal and delete the actual files in the cloud portal.

Now, you have a TPC-DS dataset that you can use to run benchmarking exercises or just experiment
in general. Let’s start by seeing how we can run benchmarking tests.

Running automated benchmarks
The spark-sql-perf library allows you to run automated benchmarks against the queries of the
TPC-DS specifications. If you are interested in studying the queries, you can study the query templates
that are bundled in the specifications. If you are interested in studying the Databricks SQL versions of
these queries, you can navigate to spark-sql-perf/src/main/resources/tpcds_2_4.
The following screenshot shows how to navigate the IDE:

https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp

Running automated benchmarks 301

Figure 13.11 – TPC-DS benchmark queries

As we noted in the Understanding the TPC-DS dataset section, we are not interested in recreating
benchmarks. However, if you do want to do so, you can do so by following the README file of spark-
sql-perf. Let me quickly show you how to run a benchmark in a Databricks workspace.

Note
The spark-sql-perf library can only run benchmarks against a Spark cluster. It does not
have provisions to execute the automated benchmark on SQL Warehouses.

We will use the bundled notebooks available in the spark-sql-perf project. Navigate to the
notebook at spark-sql-perf/src/main/notebooks/tpcds_run.

You must update certain values based on what you set in the data generation step, as follows:

•	 Cmd 2:

I.	 Update scaleFactor to scaleFactor of the generated data.

II.	 Update the useDecimal and useDate fields to the values used in the data generation
process.

III.	 Add the filterNull variable if it’s not present.

IV.	 Update databaseName with any custom prefixes.

V.	 Set the iterations to the desired number of iterations of the benchmark. This is important
because subsequent iterations can benefit from caching and warm JVMs.

Playing with the TPC-DS Dataset302

That’s it! Now, you can execute the notebook. The last command, Cmd 7, will display the execution
results of the benchmark, as follows:

Figure 13.12– TPC-DS benchmark results

The benchmark results are self-explanatory. They are just the execution speeds of each query in
the benchmark suite. The smaller the query runtime, the better. Of course, the runtime needs to be
compared against that of an incumbent system.

Now that we know how to run the automated TPC-DS benchmarks, we can move on to experimenting
with TPC-DS data by ourselves. Experiments could be of any form – you might wish to run your own
benchmarking queries, or you may wish to test some Databricks SQL features. Let’s see how.

Experimenting with TPC-DS in Databricks SQL
Now that we have the TPC-DS data generated and ready to query, you are free to experiment and
validate everything that we’ve learned in the previous chapters – especially Chapter 8, The Delta Lake.

If you intend to use the TPC-DS benchmarking queries themselves, please note that you will have to
import the Databricks versions of the queries into Databricks SQL manually. See Figure 13.11 to learn
how to obtain the queries. Otherwise, you can refer to the TPC-DS specification on the ER diagram
and row counts to craft your own queries of varying complexity that test the features you want to test.

Keep the metrics you want to measure in mind. A measure such as speed requires that you keep the
cluster configuration constant and account for the fact that Databricks SQL will cache table data and
query results. Depending on the test, data skipping effectiveness might be a better metric to measure.

As we saw in the Generating TPC-DS data section, there are many possible TPC-DS dataset configurations,
each of which can produce a different insight. Let’s look at a few possible and relevant case studies
for you to explore.

Experimenting with TPC-DS in Databricks SQL 303

Case study 1 – the effect of file formats

In this case study, you should keep your scaleFactor, useDecimal, useDate, and useNull
configurations constant and test the benchmark queries for file formats such as CSV, Parquet, Parquet
with Analyze Tables and Columns, ORC, and Delta. You should observe how the performance of Parquet
based tables and Parquet based tables on which statistics collection have been run, compare to Delta
based tables. Recall that the ANALYZE TABLE command can be used to perform explicit statistics
collection. This will help you validate the concepts of automatic statistics collection and data skipping.

An added variant would be to increase scaleFactor exponentially and see if a significant performance
gap arises between the various file formats.

Case study 2 – the effect of specialized data types

Often, organizations will mark all the fields in tables as strings to avoid complex data quality enforcement
engineering and faster availability of data for querying. However, this can have a detrimental effect
on queries as automatic statistics collections and data skipping will be less effective.

You can keep the scaleFactor, format, and useNull configurations constant and toggle the
useDecimal and useDate configurations to see the difference in the performance of filtering
queries on columns with these data types.

An added variant would be changing the format and seeing if Delta still manages to collect meaningful
statistics and improve performance over Parquet based tables upon which statistics collection has
been performed.

Finally, scaleFactor can be increased exponentially to see if there is a significant performance
disparity.

Case study 3 – the effect of NULLs

Nulls are notorious. They can proliferate very easily in Data Lakes as the data quality enforcement can
be lax. They also can have very detrimental effects on querying by making data skipping and clustering
methods such as ZORDER less effective.

You can toggle the useNull configuration to introduce null values in the generated dataset, while
keeping everything else constant. You can also try to ZORDER certain columns while enabling null
values and see if the data skipping is less effective.

A reasonable variant would be increasing scaleFactor to see if NULLs cause severe performance
drops at higher scales.

Playing with the TPC-DS Dataset304

Case study 4 – ZORDER and partitions

You can test the effects of ZORDER with and without partitions. The following tables are good candidates
for partitioning due to their data volume: inventory, web_returns, catalog_returns,
store_returns, web_sales, catalog_sales, and store_sales. You can run simple
filtering queries on any of these tables at a high scale factor to see how the partitions and ZORDER
change the data skipping performance. If you want a refresher on ZORDER and partitions, please
see Chapter 8, The Delta Lake.

Case study 5 – Bloom filter indexes

You can test the performance of needle-in-a-haystack queries by toggling Bloom filter indexes on
datasets with high scale factors.

Hopefully, these case studies will keep you busy for a long time. More importantly, I hope that they
will help you test the various performance-boosting features of Databricks SQL to your satisfaction.

That said, before concluding this chapter, I want to say that benchmarks are great, but the real test of any
product is against your data. Test Databricks SQL against your data and draw your own conclusions.
And just as a cautionary note, even if you run the benchmarking suites as per the steps noted in the
chapter, please do not consider them formal benchmarks. Formal benchmarks are a scientific exercise
that requires a lot of preconditions, checks, and balances to be followed to ensure the fairness and
reproducibility of results.

Summary
In this chapter, we learned about the TPC-DS benchmark and the TPC-DS dataset. We learned how to
generate TPC-DS data at any scale. Then, we learned how to execute the automated TPC-DS benchmark
suites in the spark-sql-perf library in our Databricks workspace. Finally, we discussed the various
ways in which TPC-DS data can be used to test the performance-boosting features of Databricks SQL.

With this, we have come to the end of the primary topics of this book on Databricks SQL. I am sure
that you still have some questions. Hence, in the next chapter, we will go through some of the most
commonly asked questions about Databricks SQL!

14
Ask Me Anything

As we come to the end of this book, I thought it would be a good idea to compile a list of questions
that get asked about Databricks SQL.

In this chapter, we will go through some of the common questions that we get asked about Databricks
SQL and Databricks in general.

We will cover the following topic:

•	 Frequently asked questions

Frequently asked questions
Databricks SQL is part of an entirely new product category called the Lakehouse. The Lakehouse is
an alternative to data lakes and data warehouses. This prompts a lot of interest and questions from
prospective customers. I am sure that you will also have a lot of questions, even after spending time
reading this book.

So, here is a list of such questions and their answers, in no particular order.

How does Databricks SQL define small, medium, and large table sizes?

If we think about defining the size of tables on traditional systems, it could depend on the number of
rows, the length of the records, or the number of nodes that the table is sharded across.

Since the Lakehouse enables big data processing, it can accommodate all sizes of datasets. You do not
have to provision computation resources separately for small, medium, and large tables. Tuning the
warehouse’s size is easy as well – if queries are running slow, increase the warehouse T-shirt size. If
queries are getting queued, increase the maximum number of clusters in the warehouse.

Ask Me Anything306

That said, if we were to see current trends in performance, anything with a compressed data size of 1
GB or less is very small. Let me provide a sense of scale. When we run the OPTIMIZE command, it
creates data files that are 1 GB each. It is not recommended to partition a table under 5 to 10 GB (this
number keeps increasing as Databricks brings more innovations). The out-of-the-box data skipping
is just fine for handling this.

If you were to ask me to give you table T-shirt sizes, I would say the following:

•	 Small: ~ 10 to 100 GB

•	 Medium: ~100 GB to a few TB

•	 Large: 100 TB+

How does Databricks SQL define long and thin tables and long and broad tables?

This is like the previous question. The Lakehouse is not bound by the traditional definitions of long,
thin, and broad tables. It can accommodate data tables of all shapes and sizes with equal ease.

How does Databricks SQL support normalization and denormalization?

The Lakehouse inherits the flexibility of data lakes in terms of data modeling. In essence, it is modeling-
agnostic. You can implement any modeling technique with Databricks SQL and the Lakehouse. For
example, you can implement Kimball-style star schema data models, Inmon-style data marts, or a
Data Vault.

This is because, at the end of the day, the data model is implemented via table DDLs or in semantic
layers on the reporting side. Databricks SQL supports primary keys, surrogate keys, and foreign keys.
That said, primary keys and foreign keys are currently not enforced – they are supported to allow
interrogation from other tools.

ETL best practices for big data and Online Analytical Processing (OLAP) systems recommend
disabling these keys for faster ingestion and independent ingestion of datasets. The key definition is
mainly maintained in data modeling tools or semantic layers on the reporting side.

Databricks SQL fully supports SQL syntax, so loading a normalized or denormalized table will happen
just like in any other SQL database. You can read about it further in Bill Inmon’s e-book at https://
databricks.com/p/ebook/building-the-data-lakehouse.

How does Databricks SQL perform Change Data Capture (CDC)?

CDC is an essential activity on the Lakehouse. ETL processes on the Lakehouse conform to the medallion
architecture pattern, which we discussed at length in Chapter 10, Warehouse on the Lakehouse. In the
medallion architecture, the first data layer is an as-is replica of the source data systems. The CDC
process defines how fast the changes on the source data systems are replicated on the Lakehouse.
Databricks can support CDC as fast as the source data system can emit changes. This is made possible

https://databricks.com/p/ebook/building-the-data-lakehouse
https://databricks.com/p/ebook/building-the-data-lakehouse

Frequently asked questions 307

by support for real-time stream processing and ACID transactions with Delta. As per the medallion
architecture, this data layer can be called bronze or raw. This layer contains data that has not been
processed in any form. Hence, it is also a historical archive of source data.

Note
Keep in mind that the medallion architecture is just a design pattern. It is not an enforceable
feature or framework. So, when we say bronze or raw data layers, it just means that the data
is unprocessed.

Many CDC design patterns are supported:

•	 Pull Pattern: This uses JDBC/ODBC to connect to any database and extract new records based
on a timestamp data column. Learn more here: https://docs.databricks.com/
data/data-sources/sql-databases.html.

•	 Push Pattern: This uses CDC extraction tooling such as Oracle Goldengate or Debezium to
push the captured change data as data files to cloud storage. You can use Databricks Autoloader
to automatically process these files into the Lakehouse.

•	 Databricks Partner Ingestion Hub: Databricks has a large ecosystem of ISV partners that can
simplify data ingestion from a variety of sources. The full list can be found here: https://
docs.databricks.com/integrations/partners.html.

Landing the data is only one part of the process. The change data must also be processed into the
rest of the medallion architecture. First, the bronze layer’s data must be conformed and cleaned
into a logical data model. These data models could be domain/industry-specific data models that
represent standard definitions of key business entities and their relationships. This data layer
is the silver layer. The silver layer is constructed by extracting source data changes, as captured
in the bronze layer, and transformed into data models. These data models could be of the third
normal form, similar to data models.

Most self-service analytics is served from the silver layer. This involves getting change data to this
layer as fast as possible. Since this layer contains a data model that is often constructed with values
from multiple bronze tables, there is always a wait for all related records to be captured before a row
is written in the silver layer. This is made easy in Databricks by streaming change data between the
bronze and silver layers with technology such as Change Data Feed. Finally, since this is a very write-
heavy data layer, Data Vault-like write-performant data models can be used in this layer.

Finally, the silver layer’s data must be moved to more consumption-ready “project-specific” denormalized
and read-optimized data models. This is known as the gold layer. The gold layer’s primary focus is on
reporting use cases. The presentation layer of projects fits in this layer. Kimball-style star schema data
models or Inmon-style data marts are best suited for data modeling in this layer.

https://docs.databricks.com/data/data-sources/sql-databases.html
https://docs.databricks.com/data/data-sources/sql-databases.html
https://docs.databricks.com/integrations/partners.html
https://docs.databricks.com/integrations/partners.html

Ask Me Anything308

Databricks has tools such as Delta Live Tables and Change Data Feed that allow you to efficiently process
captured change data through the bronze, silver, and gold layers. See Chapter 11, SQL Commands –
Part 1 for detailed case studies on CDC.

You can learn more about Delta Live Tables here: https://docs.microsoft.com/en-us/
azure/databricks/data-engineering/delta-live-tables/delta-live-
tables-cdc.

How does indexing work in Databricks SQL?

Delta Lake automatically captures column statistics for every data file, which is used in effective data
skipping. You can consider this the equivalent of automatic indexing. Then, there are tools such as
ZORDER and Bloom filter indexes, which can be used for more pointed indexing. ZORDER is analogous
to clustered indexes in the database world. Bloom filter indexes are useful for needle-in-the-haystack
searches, especially for strings.

I recommend revisiting Chapter 8, The Delta Lake, for further reading on ZORDER and Bloom filter
indexes.

How does Databricks SQL handle time series data?

You can create any data structure of your choosing, including temporal data structures. There are
out-of-the-box functions that can help you process time series data. However, depending on your
requirements, a specialized time series store may also be considered.

How does Databricks SQL partition data across nodes?

Databricks does not run on on-premise servers. Revisit Chapter 3, The Data Catalog, to see how storage
and computation are decoupled in the Lakehouse. The storage is on cloud object stores, and the data
processing clusters are provisioned ephemerally as required.

On the cloud object store, the data can be partitioned based on certain fields. When the data is
processed for querying, the Apache Spark framework automatically distributes the data across the
various nodes (workers) in the cluster. It is transparent.

How does Databricks SQL handle authentication and authorization?

Revisit Chapter 4, The Security Model, for a full discussion. In summary, you can program your
data security with SQL security statements such as GRANT, REVOKE, and DENY. There are various
authentication mechanisms, including SSO, Personal Access Tokens, and Azure Active Directory.

It is recommended that you stay updated with the Unity Catalog product in Databricks as that is poised
to be the default catalog of the Lakehouse; Hive Metastore will be phased out. See https://docs.
databricks.com/data-governance/unity-catalog/ for more details.

Does Databricks SQL support business keys or surrogate keys?

https://docs.microsoft.com/en-us/azure/databricks/data-engineering/delta-live-tables/delta-live-tables-cdc
https://docs.microsoft.com/en-us/azure/databricks/data-engineering/delta-live-tables/delta-live-tables-cdc
https://docs.microsoft.com/en-us/azure/databricks/data-engineering/delta-live-tables/delta-live-tables-cdc
https://docs.databricks.com/data-governance/unity-catalog/
https://docs.databricks.com/data-governance/unity-catalog/

Frequently asked questions 309

Yes, it does. Databricks supports identity columns, which will be automatically assigned unique,
statistically increasing values with new record inserts. You can learn more here: https://docs.
databricks.com/sql/language-manual/sql-ref-syntax-ddl-create-table-
using.html.

Does Databricks SQL support applications with ACID requirements?

Databricks Lakehouse does support ACID guarantees. This support enables the Lakehouse
architecture to bring together the best of data lakes and data warehouses. However, since it is
an analytics tooling, it is best used for Online Analytical Processing (OLAP) and not Online
Transactional Processing (OLTP).

Does Databricks SQL have drag and drop wizards?

No. However, you can use any of the Databricks partners for visual data ingestion, preparation, and
transformation. You can find the list of available partners here: https://databricks.com/
company/partners/technology.

Does Databricks SQL support cursor operations?

Cursors are an anti-pattern in Databricks SQL. Revisit Chapter 9, The Photon Engine, to learn how
your data is processed in parallel across machines, without you having to manually loop over records.
Databricks SQL can query petabyte scale data and express all ETL without creating and looping
through cursors.

Does Databricks SQL support updates?

Yes – you can perform inserts, updates, and deletes with Databricks SQL. If you are curious about the
mechanics of these operations on Delta Lake, please revisit Chapter 8, The Delta Lake.

Depending on your requirements, you can also consider the MERGE INTO statement, which merges
a set of inserts, updates, and deletes from a source to a target table in one operation rather than one
operation per transaction. It is faster and more efficient. We discussed practical uses of the MERGE
command in Chapter 11, SQL Commands – Part 1.

Does Databricks SQL support real-time and streaming data?

Yes. The underlying big data processing framework, Apache Spark, supports batch, near-real-time,
and real-time data processing. You can start your streaming journey here: https://docs.
databricks.com/delta/delta-streaming.html.

Does Databricks SQL support primitive data types?

Yes. See https://docs.databricks.com/sql/language-manual/sql-ref-
datatypes.html for more details.

https://docs.databricks.com/sql/language-manual/sql-ref-syntax-ddl-create-table-using.html
https://docs.databricks.com/sql/language-manual/sql-ref-syntax-ddl-create-table-using.html
https://docs.databricks.com/sql/language-manual/sql-ref-syntax-ddl-create-table-using.html
https://databricks.com/company/partners/technology
https://databricks.com/company/partners/technology
https://docs.databricks.com/delta/delta-streaming.html
https://docs.databricks.com/delta/delta-streaming.html
https://docs.databricks.com/sql/language-manual/sql-ref-datatypes.html
https://docs.databricks.com/sql/language-manual/sql-ref-datatypes.html

Ask Me Anything310

Does Databricks SQL support complex data types?

Yes. See https://docs.databricks.com/sql/language-manual/sql-ref-
datatypes.html for more details.

Does Databricks SQL support query federation?

It does. You can connect to multiple data sources directly and use them in a federated query. The
question is, why would you want to do that? Querying source transaction systems can be a very
bad idea as it may affect the performance of live systems. You can make a case for querying other
specialized analytical data stores in a federated mechanism – but again, you must be careful when
mixing data from potentially non-relational data with relational data as it may mess up the semantics
of the query and the results.

Does Databricks SQL support materialized views?

Support for materialized views has just been announced. It will be built on the Delta Live Tables product
to accelerate queries and reduce infrastructure costs with efficient and incremental computation.

Does Databricks SQL charge for Photon Query Engine?

No. It is enabled by default on SQL Warehouses.

What are the performance limits of Databricks SQL?

I recommend revisiting Chapter 6, SQL Warehouses, to learn how to scale Databricks SQL to queries
of any size at any concurrency level. In short, the Apache Spark big data processing framework, which
forms the basis of Databricks SQL, can easily scale to petabytes of data and any number of joins.

Of course, as with all software systems, you must define the precise metrics of performance that you
are interested in to correctly gauge a system.

What is the learning curve for existing data warehouse users?

Virtually none. Databricks SQL is ANSI-SQL compliant, so your existing SQL skills are transferrable.
Similarly, database administrators will find standard data definition statements and data security
statements, making their skills transferrable as well.

Some recalibration might be required to move away from the cursor-oriented processing of stored
procedures and adapt to different utility functions, but these can easily be found in the Databricks
SQL Reference.

How can I write stored procedures in Databricks SQL?

You cannot write stored procedures in the traditional sense. One of the reasons for this is that stored
procedures tend to be cursor-driven and process records in a loop, which is not suitable for big data
workloads. What you can do is define user-defined functions, or create Python code that achieves

https://docs.databricks.com/sql/language-manual/sql-ref-datatypes.html
https://docs.databricks.com/sql/language-manual/sql-ref-datatypes.html

Summary 311

the same effect. You can learn more at https://docs.databricks.com/sql/language-
manual/sql-ref-syntax-ddl-create-sql-function.html and https://docs.
databricks.com/dev-tools/pyodbc.html.

How can I create a star schema in Databricks SQL?

Please revisit Chapter 10, Warehouse on the Lakehouse for details on this. Another good resource is
this official blog by Databricks: https://databricks.com/blog/2022/05/20/five-
simple-steps-for-implementing-a-star-schema-in-databricks-with-
delta-lake.html.

Use Delta tables for your fact and dimension tables to get the best performance. For further performance
improvements, ensure that your fact tables are Z-ordered. Also, Z-order your dimension key fields.
Ensure that your fact tables are Z-ordered. Finally, make use of the primary and foreign key support
so that your BI tools can interrogate the data for the relationships.

How can I connect Databricks SQL queries to my VCS/Git?

You cannot at the time of writing.

How can I handle slowly changing dimensions in Databricks SQL?

Many mechanisms can be employed. See https://docs.databricks.com/data-
engineering/delta-live-tables/delta-live-tables-cdc.html for more details.
In summary, an SCD of any type can be achieved with a combination of inserts, updates, deletes, and
merges along with using a Change Data Feed of Delta tables.

I already have Spark SQL; why do I need Databricks SQL?

Do not confuse SQL on Spark with Databricks SQL. SQL on Spark is simply a SQL layer over Apache
Spark. Databricks SQL is a full product that caters to business intelligence workflows. Furthermore,
the topology of compute clusters is very different in Databricks SQL versus traditional Spark clusters
meant for data engineers and analysts. See Chapter 6, The SQL Warehouses, for more information.

Are column names case-sensitive in Databricks SQL?

No, they are not.

Summary
In this chapter, we covered some frequently asked questions about Databricks SQL. Hopefully, this
answered any remaining questions you may have had about Databricks SQL. That said, Databricks
SQL is constantly evolving, so I recommend staying updated with the latest documentation and release
notes. And if these are not enough, reach out to your Databricks representative!

https://docs.databricks.com/sql/language-manual/sql-ref-syntax-ddl-create-sql-function.html
https://docs.databricks.com/sql/language-manual/sql-ref-syntax-ddl-create-sql-function.html
https://docs.databricks.com/dev-tools/pyodbc.html
https://docs.databricks.com/dev-tools/pyodbc.html
https://databricks.com/blog/2022/05/20/five-simple-steps-for-implementing-a-star-schema-in-databricks-with-delta-lake.html
https://databricks.com/blog/2022/05/20/five-simple-steps-for-implementing-a-star-schema-in-databricks-with-delta-lake.html
https://databricks.com/blog/2022/05/20/five-simple-steps-for-implementing-a-star-schema-in-databricks-with-delta-lake.html
https://docs.databricks.com/data-engineering/delta-live-tables/delta-live-tables-cdc.html
https://docs.databricks.com/data-engineering/delta-live-tables/delta-live-tables-cdc.html

Index

Symbols
10-Query Rule 159

A
access

denying 83
revoking 82

access control
with Apache Hive™ Metastore 65, 66
with Unity Catalog 66

access control lists (ACLs) 65
access control, SQL Warehouse

about 170
chargeback 173-175
operations 171
privileges 171
programming access control 172, 173

Active Directory application
creating 93

ADLS Gen2
storage location, creating 94, 95

aggregate operator 234
Alerts page 24, 25
Amazon Web Services (AWS)

about 12, 97

cloud storage access 97
ANALYZE command

about 286
FOR COLUMN clause 286
NOSCAN clause 286
PARTITION clause 286

Apache Hive™ Metastore
about 34
access control 65, 66

Apache Spark 153
Apache Spark™ execution model

about 223, 227
analysis 223, 224
code generation 225
execution 225, 226
logical plan, optimizing 224
physical plan 224, 225

append-only file formats 197
application programming interface (API) 196
artifacts

administration, by account
administrator 148, 149

administration, by owner 148
governing 148

asset Metadata
exploring 80, 81

Index314

assignment strategy criteria, SQL Warehouse
projects and groups 170
resources, sharing 169
workload type 169

atomicity 197, 206
authentication modes, validated

BI tools connection
Azure Active Directory 182-184
configurations 182
Databricks personal access token 182
Databricks username and password 182

Autoloader
reference link 242

automated benchmarks
running 300-302

Auto Stop function 158
auxiliary statements

about 72
reference link 51

AWS console, instance profiles configuration
reference link 97

Azure Active Directory 92
Azure Active Directory authentication

using 182-184
Azure Databricks 12
Azure Data Lake Storage (ADLS) 4
Azure side configuration

reference link 92
Azure storage account

reference link 92

B
Bloom filter indexes

about 217
testing 217

bottom of sidebar
about 14
Help option 14
Partner Connect option 14
Settings option 14
Workspace selector option 15

bronze layer, Medallion architecture 242, 245
built-in performance-boosting

features, Delta Lake
about 207
automatic caching 212, 213
Automatic Compaction 211, 212
automatic statistics collection 207- 210
Optimized Writes 211, 212

business vault 246
bytecode

reference link 225

C
calendar-based selection tool 114
cataloging technology

selecting, implications 37
catalogs

about 35
altering 255
creating 254
dropping 255

Catalyst optimizer 223
Change Data Capture (CDC) 262, 306
Change Data Capture (CDC), design patterns

Databricks Partner Ingestion Hub 307
Pull Pattern 307
Push Pattern 307

Change Data Feed (CDF)
about 266
reference link 266

Choropleth 128

Index 315

cloud storage access 89-92
cloud storage access, in Amazon

Web Services (AWS)
about 97
Databricks instance, configuring

to use IAM role 99
Databricks SQL, configuring to

use instance profile 99
instance profile, configuring 98
instance profile, creating 98
S3 bucket, configuring 98
S3 bucket, creating 97
stages, configuring 97
storage container, testing 100, 101

cloud storage access, in Microsoft Azure
about 92
Active Directory application, creating 93
storage container, testing 96, 97
storage location, creating on

ADLS Gen2 94, 95
cluster tags and tag propagation

reference link 175
code generation 228
cohort analysis 133-135
cohort visualization 133-135
comma-separated values (CSV) file 145
Conference on Innovative Data

Systems Research (CIDR) 5
configurable performance-boosting

features, Delta Lake
Bloom filter indexes 217
CACHE SELECT 218
z-ordering 214-216

consistency 198, 206, 207
COPY INTO command

about 268, 269
reference link 268

Cost Analysis tool
reference link 174

Cost Optimized policy 158
Create menu 25, 26
CREATE privilege 84
cursors 309

D
dashboards

alerts 146-148
composing 139-143
creating 139
interacting with 145
publishing 139
scheduling with 145
users access, obtaining to 144, 145
using 143

Dashboards page 23, 24
data

organizing, on Lakehouse 240
data assets

describing 285
listing 284, 285

database
about 34
exploring 78-80
sharing 77, 78

database administrators (DBAs) 63
Databricks

about 5
overview 4, 5
reference link 12

Databricks, cataloging technologies
Apache Hive™ Metastore 34
Unity Catalog 35

Databricks CLI and utilities
reference link 12

Index316

Databricks Help Center
reference link 14

Databricks instance
configuring, to use IAM role 99

Databricks, instance profiles configuration
reference link 97

Databricks Lakehouse platform
overview 9

Databricks Partner Connect
about 187
accessing 188, 189
data source file 190

Databricks partners
reference link 307

Databricks personal access token
reference link 182
using 182

Databricks pricing
reference link 174, 222

Databricks Secrets
reference link 93

Databricks side configuration
reference link 92

Databricks SQL
about 178, 269, 306, 310
configuring, to use instance profile 99
data organization model 34
data types 123
inbuilt functions, working with 269
three-level data organization model 35
TPC-DS data, experimenting 302

Databricks SQL, instance profiles
configuration

reference link 97
Databricks SQL, JSON path expression

reference link 271

Databricks SQL security model
about 64
access control, with Apache

Hive™ Metastore 65, 66
access control, with Unity Catalog 66
query execution model 67, 68

Databricks Technology Partners
reference link 309

data catalog
about 33, 65
three-level namespace 36

data catalog, for exploring data visually
about 41-43
catalogs, navigating 43
databases, exploring 45
databases, navigating 44
tables, exploring 46-49
views, exploring 50

data definition language (DDL)
catalogs, altering 255
catalogs, creating 254
catalogs, dropping 255
Delta Sharing 258, 259
external locations, altering 257
external locations, creating 256, 257
external locations, dropping 258
for catalogs 254
for external locations 255, 256
statements 72
storage credentials, altering 257, 258
storage credentials, dropping 258

data definition language (DDL) commands
working with 254

data engineering, post Delta Lake
about 204
append-only file formats, solving 206
data, extracting 205

Index 317

data, writing 205
object store limitations, solving 206, 207

data engineering, prior to Delta Lake
data, extracting 197, 198
data layout, optimizing 198
data warehouses, synchronizing 201
data, writing 197, 198

Data Explorer 17, 41
Data Explorer, hierarchy

catalog 17
database 17
tables and views, within database 17

data generation cluster
creating 296, 297

data generation notebook
running 298-300

Data Lake
about 34
data abstraction hierarchy 37

data layout optimization
about 198
clustering 199
optimal file sizes 200, 201
partitioning 199
statistics collections 200

data manipulation language commands
COPY INTO 268, 269
MERGE INTO 262
working with 262

Data Manipulation Language
(DML) statements 72

data marts 241
data modeling techniques

implementing 244
data object privileges

reference link 87

data organization model
about 34
example 38-41

data retrieval statements 72
Data Science and Engineering persona

about 29
features 30

data security commands
column access, controlling with 281
dynamic view functions 280, 281
row access, controlling with 283
working with 280

data-sharing objects
altering 260
creating 259
dropping 261, 262
recipient, creating 260
share, creating 259
TABLE, adding 260, 261
TABLE, removing 261

data skipping 207
Data Vault

about 247
reference link 245

Data Vault, entities
hubs 246
links 246
satellites 246

DDL, for Delta Sharing
data-sharing objects, altering 260
data-sharing objects, creating 259
data-sharing objects, dropping 261, 262

Delta caching 212
Delta Engine 18
Delta Lake

about 18, 240, 308
built-in performance-boosting features 207

Index318

configurable performance-
boosting features 214

guidelines 247
optimizing 279
repairing 279
storage format 201-204
storage format, fundamentals 196
time traveling 278, 279
URL 16
vacuuming 276, 277

Delta Lake maintenance commands
DESCRIBE HISTORY command 278, 279
FSCK REPAIR TABLE command 279
OPTIMIZE command 279
VACUUM command 276, 277
working with 276

Delta Live Tables
reference link 308

Delta Sharing
about 258
reference link 258

Delta tables
about 311
analyzing 285-287

DESCRIBE command 285
DESCRIBE HISTORY command 278, 279
directed acyclic graph (DAG) 236
distributed filesystem (DBFS)

about 38
reference link 38

dropdowns
Dropdown List option 117
Query Based Dropdown List option 118-120
using 116

durability 198, 207
dynamic value selection tool 115, 116

dynamic view functions
current_user() 280
is_member(group_name) 280

E
enterprise data warehouse (EDW) 241, 242
enterprise deployment patterns

reference link 14
entity-relationship (ER) diagram 246
Excel format 145
executor 225
external Apache Hive metastore

reference link 37
external locations

about 84, 255
altering 257
creating 256, 257
dropping 258

external locations and storage credentials
reference link 85

Extract, Transform, and Load (ETL) 6

F
FSCK REPAIR TABLE command 279
funnel visualization 135-137

G
generic data warehouse system

components 240, 241
gold layer 307
gold layer, Medallion architecture

about 243, 247, 248
guidelines 248

Google Cloud Platform (GCP) 12
Google Cloud Storage (GCS) 4

Index 319

H
Hive Metastore 75

I
IAM role

used, for configuring Databricks instance 99
Identity and Access Management (IAM) 64
identity columns 309
inbuilt functions, in Databricks SQL

JSON 269, 270
Lambda functions 272
reference link 269
working with 269

instance profile
configuring 98
creating 98
used, for configuring Databricks SQL 99

Integrated Development
Environment (IDE) 293

isolation
about 197, 206
Serializable level 206
WriteSerializable level 206

J
JAR file 73
JavaScript Object Notation (JSON)

about 269, 270
nested fields, extracting 271
values from arrays, extracting 271
values using identifiers, extracting 270

Java Virtual Machine (JVM) 153, 232
job 225
Just-in-Time (JIT) 225

L
Lakehouse

about 305, 306
data, organizing 240

Lakehouse architecture
implementation 8
issues 7
issues, solving 8
overview 5-7
reliable data management 8
SQL performance 9
visual representation 8

Lambda functions
reference link 272

least privilege 73, 74
LIST command 284
Live Autocomplete 106
logical plan 224

M
machine learning (ML) operations 4
Machine Learning persona

about 26-29
icons 28
reference link 28

managed MLflow service
reference link 29

Map Marker 128-132
map visualization

about 128, 129
styles 128

materialized views
reference link 50

Medallion architecture
about 241, 244
bronze layer 242

Index320

gold layer 243
reference link 242
silver layer 242

MERGE INTO command
about 262
Data Capture, changing 264, 265
data deduplication 262, 263
Dimensions, changing slowly 264, 265
incremental data processing, with

Change Data Feed (CDF) 266-268
Meta, Amazon, Netflix, Google,

and Apple (MANGA) 4
metadata commands

ANALYZE command 285, 286
DESCRIBE command 285
SHOW command 284
working with 284

Metastore
about 35
reference link, for design and concepts 34

Microsoft Azure
cloud storage access 92

middle of sidebar 15
minimum-maximum (min-max) ranges 214

N
non-validated BI tools connection

about 184
driver, downloading 184
driver, installing 185
SQL Warehouse connection,

configuring 186
numbers query parameters

using 109-112

O
Online Analytical Processing (OLAP) 309
Online Transactional Processing (OLTP) 309
operational data store (ODS) 241, 242
operations

executing 72
optimistic concurrency control

reference link 206
OPTIMIZE command 279

reference link 216
optimized logical plan 224
ownership 77

P
personally identifiable information

(PII) fields 281
Photon

about 153, 222, 223
for data engineering 237
reference link 222

Photon Engine 221
Photon product roadmap 234, 236
Photon runtime

reference link 222
Photon vectorized DAGs

versus traditional code-generated
DAGs 233, 234

physical plan 224, 225
pivot table visualization 137, 139
point-in-time parameters 115
Point-in-Time Query Parameters 114
Power BI™ Desktop 179
principle of least privilege 82
privileges

about 72
ALL_PRIVILEGES 72

Index 321

CREATE 73
CREATE TABLE 73
MODIFY 73
MODIFY_CLASSPATH 73
READ FILES 73
READ_METADATA 73
SELECT 72
USAGE 72
WRITE FILES 73

Q
queries

developing 104-106
working with 103, 104

Queries page 21
Query Based Dropdown List option 118-120
Query Editor 19, 21
query execution model

about 67, 68
authorization events 67
authorizing 67, 68

Query History page 22
query parameters 109
query profile

reference link 167
query results, chart visualizations

error bars 126, 127
grouping 125
stacking 126

query results, specialized visualization types
about 128
cohort analysis 133-135
cohort visualization 133-135
funnel visualization 135-137
map visualization 128-132
pivot table visualization 137, 139

query results, visualization type
about 120
charts 123, 125
tables 120-123

R
raw vault 246, 247
read access 83-86
recipient

creating 260
Reliability Optimized policy 158
return on investment (ROI) 210

S
S3 bucket

configuring 98
creating 97

S3 IAM role, adding to EC2 policy
reference link 99

Sample trips Taxi query 21
schema hints 106
schemas 34
securable objects 64, 71
Security Credential 255
security model

about 75, 76
summarizing 86

Security statements 72
SerDe

reference link 50
Serverless SQL

using 175
service principal 71
SHOW command 284
SHOW PARTITIONS statement 285
SHOW TBLPROPERTIES statement 285

Index322

sidebar navigation
about 12
bottom of sidebar 14
middle of sidebar 15
top of sidebar 13

silver layer, Medallion architecture
about 242, 245

Simple Storage Service (S3) 4
Single Instruction Multiple Data (SIMD) 231
sizing scenarios, SQL Warehouse

CPU-bound workloads 163
memory-bound workloads 162

Slowly Changing Dimensions (SCDs) 262
solid-state drives (SSDs) 212
spark-sql-perf library

building 293, 294
installing 295, 296
reference link 293

spark-sql-perf repository
importing 298

SQL commands 108, 275
SQL databases, using JDBC

reference link 307
SQL persona

about 15, 16
Alerts page 24, 25
Create menu 25, 26
Dashboards page 23, 24
Data Explorer 17
Queries page 21
Query Editor 19, 21
Query History page 22
SQL Warehouses 18, 19

SQL reference, for Databricks SQL
reference link 59

SQL statements, for exploring
data programmatically

about 51
databases, exploring 52-54
functions, exploring 59, 60
tables, exploring 55-57
views, exploring 58

SQL Warehouses
about 18, 19
access control 170
assignment strategy 169
Auto Stop function 158, 159
cluster autoscaling 159
cluster size, selecting 156, 157
creating 154
details, configuring 180, 181
downscaling rules 162
governing 168
organizing 168
query routing 159
queuing 159
running state 160
scaling 157
sizing 159, 162
spot instance policy 158
starting state 160
stopped state 160
upscaling rules 160, 162

SQL Warehouse, signals
concurrency of queries 164
concurrency of queries, cases 165
execution speed of queries 166-168

staging area 241, 242
standard plan optimization techniques 224
Star schema

about 247
reference link 247

Index 323

statistics collection (stats collection) 207
storage container

testing 96, 97
storage credentials

altering 257, 258
dropping 258

storage location
creating, on ADLS Gen2 94, 95

Structured Query Language (SQL) 199

T
Tableau Desktop™ 180
tables 34
tab-separated values (TSV) file 145
temporal query parameters

calendar-based selection tool 114
dynamic value selection tool 115, 116
using 112, 113

text query parameters
using 109-112

third normal form 241
three-dimensional (3D) space 215
top of sidebar

about 13
Data Science & Engineering 13
Machine Learning 13
SQL 13

TPC-DS data
data generation cluster, creating 296, 297
experimenting, in Databricks SQL 302
generating 293
spark-sql-perf library, building 293, 294
spark-sql-perf library, installing 295
spark-sql-perf repository,

importing 298, 299, 300
TPC-DS dataset 292

TPC-DS in Databricks SQL, case study
Bloom filter indexes 304
effect, of file formats 303
effect, of NULLs 303
effect, of specialized data types 303
partitions 304
ZORDER 304

traditional code-generated DAGs
versus Photon vectorized DAGs 233, 234

Traditional Indexes 198
Transaction Processing Performance

Council - Decision Support (TPC-DS)
about 292
URL 292

tree data structure 223

U
UI-based user-facing table access control

about 87
current permissions, displaying 87, 88
privileges, granting 88
privileges, revoking 89

UI tools
using, for schema selection and

sampling 107, 108
Unity Catalog

about 17, 35
access control 66
consideration 84, 85
reference link 308
URL 35

Unity Catalog identities
reference link 69

Unity Catalog product
reference link 35

unmanaged tables
reference link 39

Index324

unresolved logical plan 223
user and group administration

reference link 69
user-facing table access control

about 69
access, denying 83
access, revoking 82
asset Metadata, exploring 80, 81
database, exploring 78-80
database, sharing 77, 78
groups principal 69-71
least privilege 73, 74
operations 72
ownership 77
privileges 72
read access 83-86
securable objects 71
security model 75, 76
security model, summarizing 86
service principal 69-71
users principal 69-71

V
VACUUM command 276, 277
validated BI tools connection

about 178
authentication details 182
examples 179, 180
programmatic connection 187
SQL Warehouse details 180, 181

vectorization
about 227-229
code generation 228
volcano model 228
working 229

vectorization, operators
about 230
aggregate 230
filter 230
scan 230
tree evaluation 231, 232

vectorized query engine 222
volcano model 228

W
well-designed query 167
WholeStageCodeGen tag 236
WholeStateCodeGen tag 225, 236

Z
Z-order curves 216

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packt.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packt.com
https://packt.com
https://customercare@packtpub.com
https://customercare@packtpub.com
https://www.packt.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Simplifying Data Engineering and Analytics with Delta

Anindita Mahapatra

ISBN: 9781801814867

•	 Explore the key challenges of traditional data lakes

•	 Appreciate the unique features of Delta that come out of the box

•	 Address reliability, performance, and governance concerns using Delta

•	 Analyze the open data format for an extensible and pluggable architecture

•	 Handle multiple use cases to support BI, AI, streaming, and data discovery

•	 Discover how common data and machine learning design patterns are executed on Delta

•	 Build and deploy data and machine learning pipelines at scale using Delta

https://packt.link/9781801814867

Other Books You May Enjoy 327

Microsoft Power BI Cookbook - Second Edition

Greg Deckler, Brett Powell

ISBN: 9781801813044

•	 Cleanse, stage, and integrate your data sources with Power Query (M)

•	 Remove data complexities and provide users with intuitive, self-service BI capabilities

•	 Build business logic and analysis into your solutions via the DAX programming language and
dashboard-ready calculations

•	 Implement aggregation tables to accelerate query performance over large data sources

•	 Create and integrate paginated reports

•	 Understand the differences and implications of DirectQuery, live connections, Import, and
Composite model datasets

•	 Integrate other Microsoft data tools into your Power BI solution

https://packt.link/9781801813044

328

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Business Intelligence with Databricks SQL, we’d love to hear your thoughts! If you
purchased the book from Amazon, please click here to go straight to the Amazon review page for this
book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://authors.packtpub.com
https://packt.link/r/1803235330

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Part 1:
Databricks SQL
on the Lakehouse
	Chapter 1: Introduction to Databricks
	Technical requirements
	An overview of Databricks, the company
	An overview of the Lakehouse architecture
	An overview of the Databricks Lakehouse platform
	Summary

	Chapter 2: The Databricks Product Suite – A Visual Tour
	Technical requirements
	Basic navigation with the sidebar
	The top of the sidebar
	The bottom of the sidebar
	The middle of the sidebar

	The SQL persona view
	The Machine Learning persona view
	The Data Science and Engineering persona view
	Summary

	Chapter 3: The Data Catalog
	Technical requirements
	Understanding the data organization model in
Databricks SQL
	Apache Hive Metastore
	Unity Catalog
	Implications of choosing a cataloging technology
	An example of the data organization model

	Exploring data visually with the Data Catalog
	Exploring the data programmatically with SQL statements
	Summary

	Chapter 4: The Security Model
	Technical requirements
	The Databricks SQL security model
	Access control with Apache Hive Metastore
	Access control with Unity Catalog
	Query execution model

	User-facing table access control
	Users, groups, and service principals
	Securable objects
	Operations
	Privileges
	Bringing everything together
	The security model in practice
	Ownership
	Sharing the database
	Exploring the database
	Exploring asset metadata
	Revoking access
	Denying access
	Going beyond read access – part 1
	Going beyond read access – part 2
	Going beyond read access – part 3
	Summarizing the security model
	UI-based user-facing table access control

	The internals of cloud storage access
	Cloud storage access in Microsoft Azure
	Cloud storage access in Amazon Web Services

	Summary

	Chapter 5: The Workbench
	Technical requirements
	Working with queries
	Developing queries

	Visualizing query results
	Creating and publishing dashboards
	Administering and governing artifacts
	Summary

	Chapter 6: The SQL Warehouses
	Technical requirements
	Understanding the SQL Warehouse architecture
	Creating and configuring SQL Warehouses
	Cluster size
	Scaling
	Spot instance policy
	Auto Stop

	The art of SQL Warehouse sizing
	Rules for query routing, queuing, and cluster autoscaling
	Sizing the SQL Warehouse

	Organizing and governing SQL Warehouses
	SQL Warehouse assignment strategy
	Access control in SQL Warehouses
	Chargeback

	Using Serverless SQL
	Summary

	Chapter 7: Using Business Intelligence Tools with Databricks SQL
	Technical requirements
	Connecting from validated BI tools
	SQL Warehouse details
	Authentication details

	Connecting from non-validated BI tools
	Step 1 – download the driver
	Step 2 – install the driver
	Step 3 – configure the SQL Warehouse connection

	Connecting programmatically
	Databricks Partner Connect
	The internals of a data source file

	Summary

	Part 2:
Internals of
Databricks SQL
	Chapter 8: The Delta Lake
	Technical requirements
	Fundamentals of the Delta Lake storage format
	Data engineering before Delta Lake
	The Delta Lake storage format
	Data engineering after Delta Lake

	Built-in performance-boosting features of Delta Lake
	Automatic statistics collection
	Automatic Compaction and Optimized Writes
	Automatic caching

	Configurable performance-boosting features of Delta Lake
	Z-ordering
	Bloom filter indexes
	CACHE SELECT

	Summary

	Chapter 9: The Photon Engine
	Technical requirements
	Understanding Photon Engine
	What is Photon?
	The Apache Spark execution model

	Understanding vectorization
	Volcano model
	Code generation
	Vectorization

	Discussing the Photon product roadmap
	Summary
	Further reading

	Chapter 10: Warehouse on the Lakehouse
	Technical requirements
	Organizing data on the Lakehouse
	Components of a warehouse system
	The Medallion architecture

	Implementing data modeling techniques
	The bronze layer
	The silver layer
	The gold layer

	Summary

	Part 3:
Databricks SQL
Commands
	Chapter 11: SQL Commands – Part 1
	Technical requirements
	Working with data definition language commands
	DDL for catalogs
	DDL for external locations
	DDL for Delta Sharing

	Working with data manipulation language commands
	MERGE INTO
	COPY INTO

	Working with the inbuilt functions in Databricks SQL
	JSON
	Lambda functions

	Summary

	Chapter 12: SQL Commands – Part 2
	Technical requirements
	Working with Delta Lake maintenance commands
	Vacuuming your Delta Lake
	Time -traveling in your Delta Lake
	Repairing your Delta Lake
	Optimizing your Delta Lake

	Working with data security commands
	Dynamic view functions
	Controlling access to columns
	Controlling access to rows

	Working with metadata commands
	Listing data assets
	Describing data assets
	Analyzing Delta tables

	Summary

	Part 4:
TPC-DS, Experiments, and Frequently Asked Questions
	Chapter 13: Playing with the
TPC-DS Dataset
	Technical requirements
	Understanding the TPC-DS dataset
	Generating TPC-DS data
	Building the spark-sql-perf library
	Installing the spark-sql-perf library
	Creating a data generation cluster
	Importing the spark-sql-perf repository
	Running the data generation notebook

	Running automated benchmarks
	Experimenting with TPC-DS in Databricks SQL
	Case study 1 – the effect of file formats
	Case study 2 – the effect of specialized data types
	Case study 3 – the effect of NULLs
	Case study 4 – ZORDER and partitions
	Case study 5 – Bloom filter indexes

	Summary

	Chapter 14: Ask Me Anything
	Frequently asked questions
	Summary

	Index
	Other Books You May Enjoy

