O — —
Aaﬂ.ooo (), 0
° 0=

O -
O A.%
2
O 5
J

INiKive

The Def
Web Layout and Presentation

OREILLY"

CSS: The Definitive Guide

FIFTH EDITION
Web Layout and Presentation

Eric A. Meyer and Estelle Weyl

O'REILLY"

Beijing « Boston - Farnham - Sebastopol -+ Tokyo

CSS: The Definitive Guide

by Eric A. Meyer and Estelle Weyl

Copyright © 2023 Eric A. Meyer and Estelle Weyl. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://oreilly.com). For more information, contact our

corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

e Acquisitions Editor: Amanda Quinn
¢ Development Editor: Rita Fernando
¢ Production Editor: Elizabeth Faerm
e Copyeditor: Sharon Wilkey

e Proofreader: JM Olejarz

¢ Indexer: Potomac Indexing, LL.C

e Interior Designer: David Futato

e Cover Designer: Karen Montgomery

e Jllustrator: Kate Dullea

e May 2000: First Edition

e March 2004: Second Edition

e November 2006: Third Edition
e November 2017: Fourth Edition
e June 2023: Fifth Edition

http://oreilly.com

Revision History for the Fifth Edition

e 2023-05-30: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098117610 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. CSS: The Definitive Guide,

the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s
views. While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and the authors
disclaim all responsibility for errors or omissions, including without limitation responsibility for
damages resulting from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code samples or other technology
this work contains or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof complies with such

licenses and/or rights.
978-1-098-11761-0

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781098117610

Preface

If you are a web designer or document author interested in sophisticated page styling, improved
accessibility, and saving time and effort, this book is for you. All you really need to know before
starting the book is HTML 4.0. The better you know HTML, the better prepared you’ll be, but it

is not a requirement. You will need to know very little else to follow this book.

This fifth edition of the book was finished at the end of 2022 and does its best to reflect the state
of CSS at that time. Anything covered in detail either had wide browser support at the time of
writing or was known to be coming soon after publication. CSS features that were still being

developed or were known to have support dropping soon are not covered here.

Conventions Used in This Book

The following typographical conventions are used in this book (but make sure to read through

“Value Syntax Conventions” to see how some of these are modified):

Italic

Indicates new terms, URLSs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements such as
variable or function names, databases, data types, environment variables, statements, and

keywords.

Constant width italic

Shows text that should be replaced with user-supplied values or by values determined by

context.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

WARNING

This element indicates a warning or caution.

Value Syntax Conventions

Throughout this book, boxes explain a given CSS property’s details, including which values are
permitted. This content has been reproduced practically verbatim from the CSS specifications,

but some explanation of the syntax is in order.

The allowed values for each property are listed with a syntax like the following:
Value: < family-name >#

Value: <url >l <color >

Value: < url >? <color>[/<color>7]?

Value: [< Length >| thick | thin]{1,4}

Value: [< background >,]* < background-color >

Any italicized words between < and > give a type of value, or a reference to another property’s
values. For example, the property font accepts values that originally belong to the property
font-family . This is denoted by using the text < font-family >. Similarly, if a value type

like a color is permitted, it will be represented using < color >.

Any words presented in constant width are keywords that must appear literally, without

quotes. The forward slash (/) and the comma (,) must also be used literally.

Components of a value definition can be combined in numerous ways:

e Two or more keywords strung together with only space separating them means that all of
them must occur in the given order. For example, help me would mean that the property
must use those keywords in that order.

e If a vertical bar separates alternatives (X | Y'), any one of them must occur, but only one.
Given[X | Y| Z]anyoneof X, Y,or Z is permitted.

e A vertical double bar (X I Y') means that X, Y, or both must occur, but they may appear in
any order. Thus: X, Y, X Y,and Y X are all valid interpretations.

e A double ampersand (X && Y) means both X and Y must occur, though they may appear
in any order. Thus: X Y or Y X are both valid interpretations.

e Brackets ([...]) are for grouping things together. Thus [please || help | me] do this
means that the words please, help, and me can appear in any order, though each appear
only once. The words do this must always appear, in that order. Here are some examples:

please help me do this, help me please do this, me please help do
this.

Every component or bracketed group may (or may not) be followed by one of these modifiers:

e An asterisk (*) indicates that the preceding value or bracketed group is repeated zero or more
times. Thus, bucket * means that the word bucket can be used any number of times,
including zero. There is no upper limit defined on the number of times it can be used.

e A plus (+) indicates that the preceding value or bracketed group is repeated one or more
times. Thus, mop + means that the word mop must be used at least once, and potentially
many more times.

e A hash sign (#), formally called an octothorpe, indicates that the preceding value or bracketed
group is repeated one or more times, separated by commas as needed. Thus, floor # can be
floor or floor, floor, floor, and so on. This is most often used in conjunction with
bracketed groups or value types.

e A question mark (?) indicates that the preceding value or bracketed group is optional. For

example, [pine tree]? means that the words pine tree need not be used (although

they must appear in that order if they are used).

¢ An exclamation point (!) indicates that the preceding value or bracketed group is required, and
thus must result in at least one value, even if the syntax would seem to indicate otherwise. For
example, [what ? is ? happening ?]! must be at least one of the three terms marked
optional.

e A pair of numbers in curly braces ({M,N}) indicates that the preceding value or bracketed
group is repeated at least M and at most N times. For example, ha {1,3} means that there can

be one, two, or three instances of the word ha .

The following are some examples:

give | me | Liberty
At least one of the three words must be used, and they can be used in any order. For example,
give liberty, give me, liberty me give,and give me liberty are all valid

interpretations.

[I | am]? the | walrus
Either the word I or am may be used, but not both, and use of either is optional. In addition,
either the or walrus, or both, must follow in any order. Thus you could construct I the

walrus, am walrus the, am the, I walrus, walrus the, and so forth.

koo + ka-choo
One or more instances of koo must be followed by ka-choo . Therefore koo koo ka-
choo, koo koo koo ka-choo,and koo ka-choo are all legal. The number of koo s is

potentially infinite, although there are bound to be implementation-specific limits.

I really{1,4}?[Love | hate][Microsoft | Firefox | Opera | Safari |
Chrome]

The all-purpose web designer’s opinion expresser. This can be interpreted as I love
Firefox, I really love Microsoft, and similar expressions. Anywhere from zero to
four really s may be used, though they may not be separated by commas. You also get to

pick between love and hate, which really seems like some sort of metaphor.

It’s a [mad]# world
This gives the opportunity to put in as many comma-separated mad s as possible, with a
minimum of one mad . If there is only one mad, no comma is added. Thus: It’s a mad

world and It’s a mad, mad, mad, mad, mad world are both valid results.

[[Alpha | Baker | Cray],]{2,3} and Delphi

Two to three of Alpha, Baker, and Delta must be followed by and Delphi . One
possible result would be Cray, Alpha, and Delphi . In this case, the comma is placed
because of its position within the nested bracket groups. (Some older versions of CSS

enforced comma separation this way, instead of via the # modifier.)

Using Code Examples

Whenever you come across an icon that looks like ®, it means there is an associated code

example. Live examples are available at https:/meyerweb.github.io/csstdg5figs. If you are

reading this book on a device with an internet connection, you can click the ® icon to go directly

to a live version of the code example referenced.

Supplemental material—in the form of the HTML, CSS, and image files that were used to
produce nearly all of the figures in this book—is available for download at
https://github.com/meyerweb/csstdg5figs. Please be sure to read the repository’s README.md

file for any notes regarding the contents of the repository.

If you have a technical question or a problem using the code examples, please send an email to

bookqguestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered with this
book, you may use it in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require permission. Selling or

distributing examples from O’Reilly books does require permission. Answering a question by

https://meyerweb.github.io/csstdg5figs
https://github.com/meyerweb/csstdg5figs
mailto:bookquestions@oreilly.com

citing this book and quoting example code does not require permission. Incorporating a
significant amount of example code from this book into your product’s documentation does

require permission.

We appreciate, but generally do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “CSS: The Definitive Guide by Eric A. Meyer and
Estelle Weyl (O’Reilly). Copyright 2023 Eric A. Meyer and Estelle Weyl, 978-1-098-11761-0.”

If you feel your use of code examples falls outside fair use or the permission given above, feel

free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

NOTE

For more than 40 years, O’Reilly Media has provided technology and business training, knowledge, and insight to help

companies succeed.

Our unique network of experts and innovators share their knowledge and expertise through
books, articles, and our online learning platform. O’Reilly’s online learning platform gives you
on-demand access to live training courses, in-depth learning paths, interactive coding
environments, and a vast collection of text and video from O’Reilly and 200+ other publishers.

For more information, visit https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

e O’Reilly Media, Inc.

e 1005 Gravenstein Highway North

mailto:permissions@oreilly.com
https://oreilly.com
https://oreilly.com

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional

information. You can access this page at https://oreil.ly/css-the-definitive-guide-5e.

Email bookquestions@oreilly.com to comment or ask technical questions about this book.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://voutube.com/oreillymedia.

Acknowledgments

Eric Meyer

First, I want to thank all the technical reviewers of this edition, who lent their time and expertise
to the arduous task of finding out all the places I’d been wrong, and for less recompense than
they deserved. Alphabetically, by family name: Ire Aderinokun, Rachel Andrew, Adam Argyle,
Amelia Bellamy-Royds, Chen Hui Jing, Stephanie Eckles, Eva Ferreira, Mandy Michael, Schalk
Neethling, Jason Pamental, Janelle Pizarro, Eric Portis, Miriam Suzanne, Lea Verou, and Dan

Wilson. Any errors are my fault, not theirs.

Thank you as well to all the technical reviewers of past editions, who are too many to name here,

and all the people who have helped me understand various bits and bobs of CSS over the years,

https://oreil.ly/css-the-definitive-guide-5e
mailto:bookquestions@oreilly.com
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

who are also far too many to name here. If you ever explained some CSS to me, please write

your name in the following blank: , you have my gratitude.

Thank you to all the members of the CSS Working Group, past and present, who have
shepherded an amazing language to astonishing heights...even as your work means we’ll face a
real production dilemma for the next edition of this book, which is already pushing the limits of

what printing technology can reasonably manage.

Thank you to all the people who keep the Mozilla Developer Network (MDN) up and running as

well as up-to-date.

Special thanks to all the fine people at Open Web Docs for your work on MDN, and for asking

me to serve as a member of your steering committee.

To my coauthor, Estelle, thank you for all your contributions, expertise, and pushes to do what

was needed.

To all the assorted friends, colleagues, coworkers, acquaintances, and passersby who have
allowed space for my odd enthusiasms and strange demeanor, thank you for your understanding,

patience, and kindness.

And as ever, my boundless gratitude to my family—my wife, Kat, and my children, Carolyn,
Rebecca z”’l, and Joshua. You are the home that shelters me, the suns in my sky, and the stars by

which I steer. Thank you for everything you have taught me.
Cleveland Heights, OH

December 4, 2022

Estelle Weyl

I would like to acknowledge everyone who has worked to make CSS what it is today and all

those who have helped improve diversity and inclusion in tech.

Many people work tirelessly with browser vendors and developers in writing the CSS
specifications. Without the members of the CSS Working Group—past, current, and future—we
would have no specifications, no standards, and no cross-browser compatibility. I am in awe of
the thought process that goes into every CSS property and value added to, and omitted from, the
specification. People like Tab Atkins, Elika Etimad, Dave Baron, Léonie Watson, and Greg
Whitworth not only work on the specification, but also take their time to answer questions and

explain nuances to the broader CSS public, notably me.

I also acknowledge all those who, whether they participate in the CSS Working Group or not,
dive deep into CSS features and help translate the spec for the rest of us, including Sarah
Drasner, Val Head, Sara Souidan, Chris Coyier, Jen Simmons, and Rachel Andrew. In addition, I
thank the people who create tools that make all CSS developers’ lives easier, especially Alexis

Deveria for creating and maintaining the Can I Use tool.

I also appreciate all those who have contributed their time and effort to improve diversity and
inclusion in all sectors of the developer community. Yes, CSS is awesome. But it’s important to

work with great people in a great community.

When I attended my first tech conference in 2007, the lineup was 93% male and 100% white.
The audience had slightly less gender diversity and only slightly more ethnic diversity. I had
picked that conference because the lineup was more diverse than most: it actually had a woman
on it. Looking around the room, I knew things needed to change, and I realized it was something
I needed to do. What I didn’t realize then was how many unsung heroes I would meet over the
next 10 years working for diversity and inclusion in all areas of the tech sector and life in

general.

There are too many people—who work tirelessly, quietly, and often with little or no recognition
—to name them all, but I would like to highlight some. I cannot express how much of a positive
impact people like Erica Stanley of Women Who Code Atlanta, Carina Zona of Callback
Women, and Jenn Mei Wu of Oakland Maker Space have had. Groups like The Last Mile, Black
Girls Code, Girls Incorporated, Sisters Code, and so many others inspired me to create a Feeding

the Diversity Pipeline list to help ensure that the path to a career in web development is not only

https://caniuse.com
http://www.standardista.com/feeding-the-diversity-pipeline

for those with privilege.

Thank you to all of you. Thank you to everyone. Because of your efforts, more has been done

than I ever could have imagined sitting in that conference 10 years ago.

San Francisco, CA

February 14, 2023

Chapter 1. CSS Fundamentals

Cascading Style Sheets (CSS), a powerful programming language that transforms the
presentation of a document or a collection of documents, has spread to nearly every corner of the
web as well as many ostensibly nonweb environments. For example, embedded-device displays
often use CSS to style their user interfaces, many RSS clients let you apply CSS to feeds and
feed entries, and some instant message clients use CSS to format chat windows. Aspects of CSS
can be found in the syntax used by JavaScript (JS) frameworks and even in JS itself. It’s

everywhere!

A Brief History of (Web) Style

CSS was first proposed in 1994, just as the web was beginning to really catch on. At the time,
browsers gave all sorts of styling power to the user—the presentation preferences in NCSA
Mosaic, for example, permitted the user to define each element’s font family, size, and color.
None of this was available to document authors; all they could do was mark a piece of content as
a paragraph, as a heading of some level, as preformatted text, or one of a dozen other element
types. If a user configured their browser to make all level-one headings tiny and pink and all

level-six headings huge and red, well, that was their lookout.

It was into this milieu that CSS was introduced. Its goal was to provide a simple, declarative
styling language that was flexible for web page authors and, most importantly, provided styling
power to authors and users alike. By means of the cascade, these styles could be combined and
prioritized so that both site authors and readers had a say—though readers always had the last

say.

Work quickly advanced, and by late 1996, CSS1 was finished. While the newly established CSS
Working Group moved forward with CSS2, browsers struggled to implement CSS1 in an
interoperable way. Although each piece of CSS was fairly simple on its own, the combination of

those pieces created some surprisingly complex behaviors. Unfortunate missteps also occurred,

such as the infamous discrepancy in box model implementations. These problems threatened to
derail CSS altogether, but fortunately some clever proposals were implemented, and browsers
began to harmonize. Within a few years, thanks to increasing interoperability and high-profile
developments such as the CSS-based redesign of Wired magazine and the CSS Zen Garden, CSS

began to catch on.

Before all that happened, though, the CSS Working Group had finalized the CSS2 specification
in early 1998. Once CSS2 was finished, work immediately began on CSS3, as well as a clarified
version of CSS2 called CSS2.1. In keeping with the spirit of the times, what was initially coined
CSS3 was constructed as a series of (theoretically) standalone modules instead of a single
monolithic specification. This approach reflected the then-active XHTML specification, which

was split into modules for similar reasons.

The rationale for modularizing CSS was that each module could be worked on at its own pace,
and particularly critical (or popular) modules could be advanced along the World Wide Web
Consortium’s (W3C’s) progress track without being held up by others. Indeed, this has turned
out to be the case. By early 2012, three CSS Level 3 modules (along with CSS1 and CSS 2.1)
had reached full Recommendation status—CSS Color Level 3, CSS Namespaces, and Selectors
Level 3. At that same time, seven modules were at Candidate Recommendation status, and
several dozen others were in various stages of Working Draft-ness. Under the old approach,
colors, selectors, and namespaces would have had to wait for every other part of the specification
to be done or cut before they could be part of a completed specification. Thanks to

modularization, they didn’t have to wait.

So while we can’t really point to a single tome and say, “This is CSS,” we can talk of features by
the module name under which they are introduced. The flexibility permitted by modules more
than makes up for the semantic awkwardness they sometimes create. (If you want something
approximating a single monolithic specification, the CSS Working Group publishes yearly

“Snapshot” documents.)

With that established, we’re ready to start understanding CSS. Let’s start by covering the basics

of what goes inside a stylesheet.

Stylesheet Contents

Inside a stylesheet, you’ll find a number of rules that look a little something like this:

hl {color: maroon;}
body {background: yellow;}

Styles such as these make up the bulk of any stylesheet—simple or complex, short or long. But

which parts are which, and what do they represent?

Rule Structure
To illustrate the concept of rules in more detail, let’s break down the structure.

Each rule has two fundamental parts: the selector and the declaration block. The declaration
block is composed of one or more declarations, and each declaration is a pairing of a property
and a value. Every stylesheet is made up of a series of these rules. Figure 1-1 shows the parts of a

rule.

, Declaration block)
Selector Declaration | Declaration

| |
hl ' background: yeLlow;D

color: rgd;|
The selector, shown on the left side of the rule, defines which piece of the document will be

Froperty Value Property Value

Figure 1-1. The structure of a rule

selected for styling. In Figure 1-1, <h1> (heading level 1) elements are selected. If the selector

were p,thenall <p> (paragraph) elements would be selected.

The right side of the rule contains the declaration block, which is made up of one or more
declarations. Each declaration is a combination of a CSS property and a value of that property.

In Figure 1-1, the declaration block contains two declarations. The first states that this rule will

cause parts of the document to have a color of red, and the second states that part of the
document will have a background of yellow. So, all of the <h1> elements in the document

(defined by the selector) will be styled in red text with a yellow background.

Vendor Prefixing

Sometimes you’ll see pieces of CSS with hyphens and labels in front of them, like this: -o0-
border-image . These vendor prefixes were a way for browser vendors to mark properties,
values, or other bits of CSS as being experimental or proprietary (or both). As of early 2023, a

few vendor prefixes are in the wild, with the most common shown in Table 1-1.

Table 1-1. Some common vendor prefixes

Prefix Vendor
-epub- International Digital Publishing Forum ePub format
-moz- Gecko-based browsers (e.g., Mozilla Firefox)
-ms- Microsoft Internet Explorer
-0- Opera-based browsers
-webkit- WebKit-based browsers (e.g., Apple Safari and Google Chrome)

As Table 1-1 indicates, the generally accepted format of a vendor prefix is a hyphen, a label, and

a hyphen, although a few prefixes erroneously omit the first hyphen.

The uses and abuses of vendor prefixes are long, tortuous, and beyond the scope of this book.
Suffice to say that they started out as a way for vendors to test out new features, thus helping
speed interoperability without worrying about being locked into legacy behaviors that were

incompatible with other browsers. This avoided a whole class of problems that nearly strangled

CSS in its infancy. Unfortunately, prefixed properties were then publicly deployed by web

authors and ended up causing a whole new class of problems.

As of early 2023, vendor-prefixed CSS features are nearly nonexistent, with old prefixed
properties and values being slowly but steadily removed from browser implementations. You’ll
quite likely never write prefixed CSS, but you may encounter it in the wild or inherit it in a

legacy codebase. Here’s an example:

-webkit-transform-origin: 0 0;
-moz-transform-origin: 0 0;
-o-transform-origin: 0 0;
transform-origin: 0 0,

That’s saying the same thing four times: once each for the WebKit, Gecko (Firefox), and Opera
browser lines, and then finally the CSS-standard way. Again, this is no longer necessary. We’re
including it here only to give you an idea of what it might look like, should you come across this

in the future.

Whitespace Handling

CSS is basically insensitive to whitespace between rules, and largely insensitive to whitespace

within rules, although a few exceptions exist.

In general, CSS treats whitespace just like HTML does: any sequence of whitespace characters is
collapsed to a single space for parsing purposes. Thus, you can format this hypothetical

rainbow rule in the following ways,

rainbow: infrared red orange yellow green blue indigo violet

rainbow:
infrared red orange yellow green blue indigo violet ultra

rainbow:
infrared
red
orange
yellow
green
blue
indigo
violet

ultraviolet

.
J

as well as any other separation patterns you can think up. The only restriction is that the
separating characters be whitespace: an empty space, a tab, or a newline, alone or in

combination, as many as you like.

Similarly, you can format series of rules with whitespace in any fashion you like. These are just

five examples out of an effectively infinite number of possibilities:

html{color:black;}
body {background: white;}

p {

color: gray;}
h2 {
color : silver ;
ol

color

silver

As you can see from the first rule, whitespace can be largely omitted. Indeed, this is usually the
case with minified CSS, which is CSS that’s had every last possible bit of extraneous whitespace
removed, usually by an automated server-side script of some sort. The rules after the first two
use progressively more extravagant amounts of whitespace until, in the last rule, pretty much

everything that can be separated onto its own line has been.

All of these approaches are valid, so you should pick the formatting that makes the most sense—

that is, is easiest to read—in your eyes, and stick with it.

CSS Comments

CSS does allow for comments. These are very similar to C/C++ comments in that they are

surrounded by / * and * /:

/* This is a CSS comment */

Comments can span multiple lines, just as in C++:

/* This is a CSS comment, and it
can be several lines long without
any problem whatsoever. */

It’s important to remember that CSS comments cannot be nested. So, for example, this would not

be correct:

/* This is a comment, in which we find
another comment, which is WRONG
/* Another comment */
and back to the first comment, which is not a comment.*/

WARNING

One way to create “nested” comments accidentally is to temporarily comment out a large block of a stylesheet that already
contains a comment. Since CSS doesn’t permit nested comments, the “outside” comment will end where the “inside” comment

ends.

Unfortunately, there is no “rest of the line” comment pattern such as // or # (the latter of
which is reserved for ID selectors anyway). The only comment pattern in CSS is / * * /.
Therefore, if you wish to place comments on the same line as markup, you need to be careful

about how you place them. For example, this is the correct way to do it:

hl {color: gray;} /* This CSS comment is several lines */
h2 {color: silver;} /* long, but since it is alongside */
p {color: white;} /* actual styles, each line needs to */
pre {color: gray;} /* be wrapped in comment markers. */

Given this example, if each line isn’t marked off, most of the stylesheet will become part of the

comment and thus will not work:

hl {color: gray;} /* This CSS comment is several lines
h2 {color: silver;} long, but since it is not wrapped

p {color: white;} in comment markers, the last three
pre {color: gray;} styles are part of the comment. */

In this example, only the first rule (hl {color: gray;}) will be applied to the document.

The rest of the rules, as part of the comment, are ignored by the browser’s rendering engine.

NOTE

CSS comments are treated by the CSS parser as if they do not exist at all, and so do not count as whitespace for parsing purposes.

This means you can put them into the middle of rules—even right inside declarations!

Markup

There is no markup in stylesheets. This might seem obvious, but you’d be surprised. The one
exception is HTML comment markup, which is permitted inside <style> elements for

historical reasons:

<style><!--

hl {color: maroon;}

body {background: yellow;}
--></style>

That’s it, and even that isn’t recommended anymore; the browsers that needed it have faded into

near oblivion.

Speaking of markup, it’s time to take a very slight detour to talk about the elements that our CSS

will be used to style, and how those can be affected by CSS in the most fundamental ways.

Elements

Elements are the basis of document structure. In HTML, the most common elements are easily
recognizable, such as <p>, <table>, , <a>,and <article> . Every single

element in a document plays a part in its presentation.

Replaced and Nonreplaced Elements

Although CSS depends on elements, not all elements are created equal. For example, images and
paragraphs are not the same type of element. In CSS, elements generally take two forms:

replaced and nonreplaced.
Replaced elements

Replaced elements are used to indicate content that is to be replaced by something not directly
represented in the document. Probably the most familiar HTML example is the element,

which is replaced by an image file external to the document itself. In fact, has no actual

content, as you can see in this simple example:

This markup fragment contains only an element name and an attribute. The element presents
nothing unless you point it to external content (in this case, an image file whose location is given
by the src attribute). If you point to a valid image file, the image will be placed in the
document. If not, the browser will either display nothing or will show a “broken image”

placeholder.

Similarly, the input element can also be replaced—by a radio button, checkbox, text input

box, or other, depending on its type.

Nonreplaced elements

The majority of HTML elements are nonreplaced elements. Their content is presented by the
user agent (generally a browser) inside a box generated by the element itself. For example,
hi there is a nonreplaced element, and the text “hi there” will be displayed

by the user agent. This is true of paragraphs, headings, table cells, lists, and almost everything

else in HTML.

Element Display Roles

CSS has two basic display roles: block formatting context and inline formatting context. Many
more display types exist, but these are the most basic, and the types to which most, if not all,
other display types refer. The block and inline contexts will be familiar to authors who have

spent time with HTML markup and its display in web browsers. The display roles are illustrated

in Figure 1-2.

h1 (block)

This paragraph (p) element is a block-level element. The strongly emphasized text is an inline element,
and will line-wrap when necessary. The content outside of inline elements is actually part of the block
element. The content inside inline elements such as this one belong to the inline element.

Figure 1-2. Block- and inline-level elements in an HTML document
Block-level elements

By default, block-level elements generate an element box that (by default) fills its parent
element’s content area and cannot have other elements at its sides. In other words, it generates
“breaks” before and after the element box. The most familiar block elements from HTML are

<p> and <div> . Replaced elements can be block-level elements, but usually they are not.

In CSS, this is referred to as an element generating a block formatting context. It also means that
the element generates a block outer display type. The parts inside the element may have different

display types.

Inline-level elements

By default, inline-level elements generate an element box within a line of text and do not break
up the flow of that line. The best inline element example is the <a> element in HTML. Other
candidates are and . These elements do not generate a “break” before or after
themselves, so they can appear within the content of another element without disrupting its

display.

In CSS, this is referred to as an element generating an inline formatting context. It also means
that the element generates an inline outer display type. The parts inside the element may have
different display types. (In CSS, there is no restriction on how display roles can be nested within

each other.)

To see how this works, let’s consider the CSS property display .

DISPLAY

Values

Definitions

Initial value

Applies to

Computed

value

Inherited

Animatable

[<display-outside > | <display-inside >]|<display-Llist

item > | <display-internal >|<display-box>|<display-Lle

gacy >

See below

inline

All elements

As specified

No

No

<display-outside >

block | inline | run-in

<display-inside >

flow | flow-root | table | flex | grid | ruby

<display-listitem >

list-item && <display-outside >? && [flow | flow-root J?

<display-internal >
table-row-group | table-header-group | table-footer-group | table-row |
table-cell | table-column-group | table-column | table-caption | ruby-

base | ruby-text | ruby-base-container | ruby-text-container

<display-box >

contents | none

<display-Llegacy >
inline-block | inline-1list-item | inline-table | inline-flex | inline-

grid

You may have noticed that there are a lot of values here, only two of which we’ve mentioned:
block and inline . Most of these values are dealt with elsewhere in the book; for example,
grid and inline-grid are covered in Chapter 12, and the table-related values are all

covered in Chapter 13.

For now, let’s concentrate on block and inline . Consider the following markup:

<body>
<p>This is a paragraph with an inline element within it.</p
</body>

Here we have two elements (<body> and <p>) that are generating block formatting contexts,
and one element () with an inline formatting context. According to the HTML
specification, can descend from <p> , but the reverse is not true. Typically, the HTML

hierarchy works out so that inlines descend from blocks, but not the other way around.

CSS, on the other hand, has no such restrictions. You can leave the markup as it is but change the

display roles of the two elements like this:

p {display: inline;}
em {display: block;}

This causes the elements to generate a block box inside an inline box. This is perfectly legal and

violates no part of CSS.

While changing the display roles of elements can be useful in HTML documents, it becomes
downright critical for XML documents. An XML document is unlikely to have any inherent
display roles, so it’s up to the author to define them. For example, you might wonder how to lay

out the following snippet of XML:

<book>

<maintitle>The Victorian Internet</maintitle>

<subtitle>The Remarkable Story of the Telegraph and the Nineteenth ¢

On-Line Pioneers</subtitle>

<author>Tom Standage</author>

<publisher>Bloomsbury Pub Plc USA</publisher>

<pubdate>February 25, 2014</pubdate>

<isbn type="isbn-13">9781620405925</isbn>

<isbn type="isbn-10">162040592X</isbn>
</book>

Since the default value of display is inline, the content would be rendered as inline text by

default, as illustrated in Figure 1-3. This isn’t a terribly useful display.

The Victorian Internet The Remarkable Story of the Telegraph
and the Nineteenth Century's On-Line Pioneers Tom Standage
Bloomsbury Pub Plc USA February 25, 2014 9781620405925
162040592X

Figure 1-3. Default display of an XML document

You can define the basics of the layout with display :

book, maintitle, subtitle, author, isbn {display: block;}
publisher, pubdate {display: inline;}

We’ve now set five of the seven elements to be block and two to be inline. This means each of

the block elements will generate its own block formatting context, and the two inlines will

generate their own inline formatting contexts.

We could take the preceding rules as a starting point, add a few other styles for greater visual

impact, and get the result shown in Figure 1-4.

The Victorian Internet

The Remarkable Story of the Telegraph and the
Nineteenth Century's On-Line Pioneers

Tom Standage

Bloomsbury Pub Plc USA (February 25,2014)
ISBN-13 9781620405925

ISBN-10 162040592X

Figure 1-4. Styled display of an XML document

That said, before learning how to write CSS in detail, we need to look at how to associate CSS
with a document. After all, without tying the two together, there’s no way for the CSS to affect

the document. We’ll explore this in an HTML setting since it’s the most familiar.

Bringing CSS and HTML Together

We’ve mentioned that HTML documents have an inherent structure, and that’s a point worth
repeating. In fact, that’s part of the problem with web pages of old: too many of us forgot that
documents are supposed to have an internal structure, which is altogether different from a visual
structure. In our rush to create the coolest-looking pages on the web, we bent, warped, and

generally ignored the idea that pages should contain information with some structural meaning.

That structure is an inherent part of the relationship between HTML and CSS; without it, there
couldn’t be a relationship at all. To understand it better, let’s look at an example HTML

document and break it down by pieces:

<IDOCTYPE html>
<html lang="en-us">

<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width">
<title>Eric's World of Waffles</title>
<link rel="stylesheet" media="screen, print" href="sheetl.css">
<style>
/* These are my styles! Yay! */
@import url(sheet2.css);
</style>
</head>
<body>
<hl>Waffles!</h1>
<p style="color: gray;">The most wonderful of all breakfast foods
the waffle—a ridged and cratered slab of home-cooked, fluffy goodn
that makes every child's heart soar with joy. And they're so easy -
Just a simple waffle-maker and some batter, and you're ready for a
of aromatic ecstasy!
</p>
</body>
</html>

Figure 1-5 shows the result of this markup and the applied styles.

Waffles!

The most wonderful of all breakfast foods is the waffle—a ridged and
cratered slab of home-cooked, fluffy goodness that makes every child's heart soar with
joy. And they're so easy to make! Just a simple waffle-maker and some batter, and you're
ready for a morning of aromatic ecstasy!

Figure 1-5. A simple document

Now, let’s examine the various ways this document connects to CSS.

The <link> Tag

First, consider the use of the <1ink> tag:

<link rel="stylesheet" href="sheetl.css" media="screen, print">

The <1link> tag’s basic purpose is to allow HTML authors to associate other documents with

the document containing the <1ink> tag. CSS uses it to link stylesheets to the document.

These stylesheets, which are not part of the HTML document but are still used by it, are referred
to as external stylesheets. This is because they’re stylesheets that are external to the HTML

document. (Go figure.)

To successfully load an external stylesheet, <1ink> should be placed inside the <head>
element, though it can also appear inside the <body> element. This will cause the web browser
to locate and load the stylesheet and use whatever styles it contains to render the HTML

document; Figure 1-6 depicts the stylesheet called sheet1.css being linked to the document.

Also shown in Figure 1-6 is the loading of the external sheet2.css via an @import declaration.

Imports must be placed at the beginning of the stylesheet that contains them.

sheet2.css

index.htmi

Figure 1-6. A representation of how external stylesheets are applied to documents

And what is the format of an external stylesheet? It’s a list of rules, just like those you saw in the

previous section and in the example HTML document; but in this case, the rules are saved into
their own file. Just remember that no HTML or any other markup language can be included in

the stylesheet—only style rules. Here are the contents of an external stylesheet:

hl {color: red;}

h2 {color: maroon; background-color: white;}

h3 {color: white; background-color: black;
font: medium Helvetica;}

That’s all there is to it—no HTML markup or comments at all, just plain-and-simple style
declarations. These are saved into a plain-text file and are usually given an extension of .css, as

in sheetl.css.

WARNING

An external stylesheet cannot contain any document markup at all, only CSS rules and CSS comments. The presence of markup

in an external stylesheet can cause some or all of it to be ignored.

Attributes

For the rest of the <1ink> tag, the attributes and values are fairly straightforward. The rel
attribute stands for relation, and in this case, the relation is stylesheet . Note that the rel
attribute is required. CSS has an optional type attribute whose default value is text/css, so

you can include type="text/css" or leave it out, whichever you prefer.

These attribute values describe the relationship and type of data that will be loaded using the
<link> tag. That way, the web browser knows that the stylesheet is a CSS stylesheet, a fact

that will determine how the browser will deal with the data it imports. (Other style languages

may be used in the future. In such a future, if you are using a different style language, the type

attribute will need to be declared.)

Next, we find the href attribute. The value of this attribute is the URL of your stylesheet. This

URL can be either absolute or relative—that is, either relative to the URL of the document
containing the URL, or else a complete URL that points to a unique location on the web. In our
example, the URL is relative. It could have been something absolute, like

http://example.com/sheet].css.

Finally, we have a media attribute. The value of this attribute is one or more media descriptors,
which are rules regarding media types and the features of those media, with each rule separated

by a comma. Thus, for example, you can use a linked stylesheet in both screen and print media:

<link rel="stylesheet" href="visual-sheet.css" media="screen, print":

< >

Media descriptors can get quite complicated and are explained in detail in Chapter 21. For now,
we’ll stick with the basic media types shown. The default value is all , which means the CSS

will be applied in all media.

Note that more than one linked stylesheet can be associated with a document. In these cases, only
those <link> tags witha rel of stylesheet will be used in the initial display of the
document. Thus, if you wanted to link two stylesheets named basic.css and splash.css, it would

look like this:

<link rel="stylesheet" href="basic.css">
<link rel="stylesheet" href="splash.css">

This will cause the browser to load both stylesheets, combine the rules from each, and apply
them all to the document in all media types (because the media attribute is omitted, its default

value all is used). For example:

<link rel="stylesheet" href="basic.css">
<link rel="stylesheet" href="splash.css">

<p class="al">This paragraph will be gray only if styles from the

http://example.com/sheet1.css

stylesheet 'basic.css' are applied.</p>
<p class="b1">This paragraph will be gray only if styles from the
stylesheet 'splash.css' are applied.</p>

The one attribute that isn’t in this example markup, but could be, is title . This attribute is not
often used but could become important in the future and, if used improperly, can have

unexpected effects. Why? We’ll explore that in the next section.

Alternate stylesheets

It’s possible to define alternate stylesheets that users can select in some browsers. These are
defined by making the value of the rel attribute alternate stylesheet, and they are

used in document presentation only if selected by the user.

Should a browser be able to use alternate stylesheets, it will use the values of the <1ink>
element’s title attributes to generate a list of style alternatives. So you could write the

following:

<link rel="stylesheet" href="sheetl.css" title="Default">
<link rel="alternate stylesheet" href="bigtext.css" title="Big Text":
<link rel="alternate stylesheet" href="zany.css" title="Crazy colors

< >

Users could then pick the style they want to use, and the browser would switch from the first
one, labeled Default in this case, to whichever the user picked. Figure 1-7 shows one way in
which this selection mechanism might be accomplished (and in fact was, early in the resurgence

of CSS).

& File Edit : Go Bookmarks Tools Window Help

b ————| Show/Hide P himes - Mozilla {Build ID: 2002052917} —— B8
Stap
Reload %R
Waffl
Text Zoom (100%) |
: Basic Page Style
The most wof ClMwracter Coding |+ Default d and cratered slab of home-cooked,
fluffy goodned page Source U Big Text hnd they're so easy to make! Tust a
simple waffl=| page Info =] Crazy colors! vrming of aromatic ecstasy!
Apply Theme b]
_W@ |Duumnl:bm(0.l9?m) | L'I:' o

Figure 1-7. A browser offering alternate stylesheet selection

NOTE
As of early 2023, alternate stylesheets are supported in most Gecko-based browsers like Firefox. The Chromium and WebKit
families do not support selecting alternate stylesheets. Compare this to the build date of the browser shown in Figure 1-7, which

is late 2002.

It’s also possible to group alternate stylesheets together by giving them the same title wvalue.
Thus, you make it possible for the user to pick a different presentation for your site in both

screen and print media:

<link rel="stylesheet"

href="sheetl.css" title="Default" media="screen">
<link rel="stylesheet"

href="print-sheetl.css" title="Default" media="print">
<link rel="alternate stylesheet"

href="bigtext.css" title="Big Text" media="screen">
<link rel="alternate stylesheet"

href="print-bigtext.css" title="Big Text" media="print">

If a user selects Big Text from the alternate stylesheet selection mechanism in a conforming user
agent, bigtext.css will be used to style the document in the screen medium, and print-bigtext.css
will be used in the print medium. Neither sheet1.css nor print-sheet1.css will be used in any

medium.

Why is that? Because if you give a <1ink> witha rel of stylesheet atitle, you are
designating that stylesheet as a preferred stylesheet. Its use is preferred to alternate stylesheets,
and it will be used when the document is first displayed. Once you select an alternate stylesheet,

however, the preferred stylesheet will not be used.

Furthermore, if you designate a number of stylesheets as preferred, all but one of them will be

ignored. Consider the following code example:

<link rel="stylesheet"

href="sheetl.css" title="Default Layout">
<link rel="stylesheet"

href="sheet2.css" title="Default Text Sizes">
<link rel="stylesheet"

href="sheet3.css" title="Default Colors">

All three <1ink> elements now refer to preferred stylesheets, thanks to the presence of a
title attribute on all three, but only one of them will actually be used in that manner. The
other two will be ignored completely. Which two? There’s no way to be certain, as HTML
doesn’t provide a method of determining which preferred stylesheets should be ignored and

which should be used.

If you don’t give a stylesheet a title, it becomes a persistent stylesheet and is always used in the
display of the document. Often, this is exactly what an author wants, especially since alternate

stylesheets are not widely supported and are almost completely unknown to users.

The <style> Element

The <style> element is one way to include a stylesheet, and it appears in the document itself:

<style>...</style>

The styles between the opening and closing <style> tags are referred to as the document

stylesheet or the embedded stylesheet (because this kind of stylesheet is embedded within the
document). It contains styles that apply to the document, but it can also contain multiple links to

external stylesheets via the @import directive, discussed in the next section.

You can give <style> elements a media attribute, which functions in the same manner as it
does on linked stylesheets. This, for example, will restrict an embedded stylesheet’s rules to be

applied in print media only:
<style media="print">..</style>

You can also label an embedded stylesheet with a <title> element, in the same manner and

for the same reasons discussed in the previous section on alternate stylesheets.

As with the <1link> element, the <style> element can use the attribute type ;in the case of
a CSS document, the correct value is "text/css" . The type attribute is optional in HTML
as long as you’re loading CSS, because the default value for the type attribute on the

<style> elementis text/css . It would be necessary to explicitly declare a type value
only if you were using some other styling language, perhaps in a future where such a thing is

supported. For the time being, though, the attribute remains wholly optional.

The @import Directive

Now we’ll discuss the stuff that is found inside the <style> tag. First, we have something very

similar to <1ink> , the @import directive:
@import url(sheet2.css);

Just like <link>, @import can be used to direct the web browser to load an external
stylesheet and use its styles in the rendering of the HTML document. The only major difference
is in the syntax and placement of the command. As you can see, @import is found inside the

<style> element. It must be placed first, before the other CSS rules, or it won’t work at all.

Consider this example:

<style>

@import url(styles.css); /* @import comes first */
hl {color: gray;}

</style>

As with <1ink> , a document can have more than one @import statement. Unlike <1ink> ,
however, the stylesheets of every @import directive will be loaded and used; there is no way to

designate alternate stylesheets with @import . So, given the following markup:

@import url(sheet2.css);
@import url(blueworld.css);
@import url(zany.css);

...all three external stylesheets will be loaded, and all of their style rules will be used in the

display of the document.

As with <1ink> , you can restrict imported stylesheets to one or more media by providing

media descriptors after the stylesheet’s URL:

@import url(sheet2.css) all;
@import url(blueworld.css) screen;
@import url(zany.css) screen, print;

As noted in “The <link> Tag”, media descriptors can get quite complicated and are explained in
detail in Chapter 21.

The @import directive can be highly useful if you have an external stylesheet that needs to use
the styles found in other external stylesheets. Since external stylesheets cannot contain any
document markup, the <1ink> element can’t be used—but @import can. Therefore, you

might have an external stylesheet that contains the following:

@import url(http://example.org/library/layout.css);
@import url(basic-text.css);

@import url(printer.css) print;

body {color: red;}

hl {color: blue;}

Well, maybe not those exact styles, but hopefully you get the idea. Note the use of both absolute

and relative URLs in the previous example. Either URL form can be used, just as with <1ink> .

Note also that the @import directives appear at the beginning of the stylesheet, as they did in
the example document. As we said previously, CSS requires the @import directives to come
before any rules in a stylesheet, though they can be preceded by @charset and @layer
declarations. An @import that comes after other rules (e.g., body {color: red;}) will be

ignored by conforming user agents.

WARNING

Some versions of Internet Explorer for Windows did not ignore any @import directive, even those that come after other rules,

but all modern browsers do ignore improperly placed @import directives.

Another descriptor that can be added to an @import directive is a cascade layer identifier. This
assigns all of the styles in the imported stylesheet to a cascade layer, which is a concept we’ll
explore in Chapter 4. It looks like this:

@import url(basic-text.css) screen layer(basic);

That assigns the styles from basic-text.css to the basic cascade layer. If you want to assign the

styles to an unnamed layer, use layer without the parenthetical naming, like so:

@import url(basic-text.css) screen layer;

Note that this ability is a difference between @import and <link>, as the latter cannot be

labeled with a cascade layer.

HTTP Linking

In another, far more obscure way to associate CSS with a document, you can link the two via

HTTP headers.

Under Apache HTTP Server, this can be accomplished by adding a reference to the CSS file in a

.htaccess file. For example:
Header add Link "</ui/testing.css>;rel=stylesheet;type=text/css"

This will cause supporting browsers to associate the referenced stylesheet with any documents
served from under that .htaccess file. The browser will then treat it as if it were a linked
stylesheet. Alternatively, and probably more efficiently, you can add an equivalent rule to the

server’s httpd.conf file:

<Directory /path/to/ /public/html/directory>
Header add Link "</ui/testing.css>;rel=stylesheet;type=text/css"
</Directory>

The effect is exactly the same in supporting browsers. The only difference is in where you

declare the linking.

You probably noticed the use of the term “supporting browsers.” As of late 2022, the widely
used browsers that support HTTP linking of stylesheets are the Firefox family and Opera. That
restricts this technique mostly to development environments based on one of those browsers. In
such a situation, you can use HTTP linking on the test server to mark when you’re on the
development site as opposed to the public site. It’s also an interesting way to hide styles from

Chromium browsers, assuming you have a reason to do so.

NOTE

Equivalents to this linking technique are used in common scripting languages such as PHP and IIS, both of which allow the
author to emit HTTP headers. It’s also possible to use such languages to explicitly write 1ink elements into the document based
on the server offering up the document. This is a more robust approach in terms of browser support: every browser supports the

link element.

Inline Styles

If you want to just assign a few styles to one individual element, without the need for embedded

or external stylesheets, you can employ the HTML attribute style :

<p style="color: gray;">The most wonderful of all breakfast foods 1is
the waffle—a ridged and cratered slab of home-cooked, fluffy goodnes:
</p>

The style attribute can be associated with any HTML tag whatsoever, even tags found outside

of <body> (<head> or <title>, for instance).

The syntax of a style attribute is fairly ordinary. In fact, it looks very much like the
declarations found in the <style> container, except here the curly braces are replaced by
double quotation marks. So <p style="color: maroon; background: yellow;"> will
set the text color to be maroon and the background to be yellow for that paragraph only. No

other part of the document will be affected by this declaration.

Note that you can place only a declaration block, not an entire stylesheet, inside an inline
style attribute. Therefore, you can’t put an @import intoa style attribute, nor can you
include any complete rules. The only thing you can put into the value of a style attribute is

what might go between the curly braces of a rule.

Use of the style attribute is discouraged. Many of the primary advantages of CSS—the ability

to organize centralized styles that control an entire document’s appearance or the appearance of

all documents on a web server—are negated when you place styles into a style attribute. In
many ways, inline styles are not much better than the ancient tag, even if they do have

a good deal more flexibility in terms of which visual effects they can apply.

Summary

With CSS, you can completely change the way elements are presented by a user agent. You can
do this at a basic level with the display property, and in a different way by associating
stylesheets with a document. The user will never know whether this is done via an external or
embedded stylesheet, or even with an inline style. The real importance of external stylesheets is
the way in which they allow you to put all of a site’s presentation information in one place, and
point all of the documents to that place. This not only makes site updates and maintenance a
breeze, but also helps to save bandwidth, since all of the presentation is removed from

documents.

To make the most of the power of CSS, you need to know how to associate a set of styles with
the elements in a document. To fully understand how CSS can do all of this, you need a firm
grasp of the way CSS selects pieces of a document for styling, which is the subject of the next

few chapters.

Chapter 2. Selectors

One of the primary advantages of CSS is its ability to easily apply a set of styles to all elements
of the same type. Unimpressed? Consider this: by editing a single line of CSS, you can change
the colors of all your headings. Don’t like the blue you’re using? Change that one line of code,

and they can all be purple, yellow, maroon, or any other color you desire.

This capability lets you, the author, focus on design and user experience rather than tedious find-
and-replace operations. The next time you’re in a meeting and someone wants to see headings
with a different shade of green, just edit your style and hit Reload. Voila! The results are

accomplished in seconds and there for everyone to see.

Basic Style Rules

As stated, a central feature of CSS is its ability to apply certain rules to an entire set of element
types in a document. For example, let’s say that you want to make the text of all <h2> elements
appear gray. Before we had CSS, you’d have to do this by inserting ... tags inside all your <h2> elements. Applying inline styles
using the style attribute, which is also bad practice, would require you to include

style="color: gray;" inall your <h2> elements, like this:

<h2 style="color: gray;">This is h2 text</h2>

This will be a tedious process if your document contains a lot of <h2> elements. Worse, if you
later decide that you want all those <h2> s to be green instead of gray, you’d have to start the

manual tagging all over again. (Yes, this is really how it used to be done!)

CSS allows you to create rules that are simple to change, edit, and apply to all the text elements
you define (the next section explains how these rules work). For example, you can write this rule

once to make all your <h2> elements gray:

h2 {color: gray;}

Type Selectors

A type selector, previously known as an element selector, is most often an HTML element, but
not always. For example, if a CSS file contains styles for an XML document, the type selectors

might look something like this:

quote {color: gray;}

bib {color: red;}
booktitle {color: purple;}
myElement {color: red;}

In other words, the elements of the document are the node types being selected. In XML, a
selector could be anything because XML allows for the creation of new markup languages that
can have just about anything as an element name. If you’re styling an HTML document, the
selector will generally be one of the many defined HTML elements such as <p>, <h3>,

, <a>,oreven <html> itself. For example:

html {color: black;}
hl {color: gray;}
h2 {color: silver;}

Figure 2-1 shows the results of this stylesheet.

Plutonium

Useful for many applications, plutonium can also be dangerous if improperly handled.

Safety Information

‘When handling plutonium, care must be taken to avoid the formation of a critical mass.

With plutonium, the possibility of implosion is very real, and must be avoided at all
costs. This can be accomplished by keeping the various masses separate.

Comments

1t’s best to avoid using plutonium at all if it can be avoided.

Figure 2-1. Simple styling of a simple document

Once you’ve globally applied styles directly to elements, you can shift those styles from one
element to another. Let’s say you decide that the paragraph text, not the <hl> elements, in

Figure 2-1 should be gray. No problem. Just change the h1 selectorto p:

html {color: black;}

p {color: gray;}
h2 {color: silver;}

Figure 2-2 shows the results.

Plutonium

Useful for many applications, plutonium can also be dangerous if improperly handled.

Safety Information

‘When handling plutonium, care must be taken to avoid the formation of a critical mass.

With plutonium, the possibility of implosion is very real, and must be avoided at all
costs. This can be accomplished by keeping the various masses separate.

Comments

It’s best to avoid using plutonium at all if it can be avoided.

Figure 2-2. Moving a style from one element to another

Grouping

So far, you’ve seen fairly simple techniques for applying a single style to a single selector. But
what if you want the same style to apply to multiple elements? Grouping allows an author to

drastically compact certain types of style assignments, which makes for a shorter stylesheet.

Grouping Selectors

Let’s say you want both <h2> elements and paragraphs to have gray text. The easiest way to

accomplish this is to use the following declaration:
h2, p {color: gray;}

By placing the h2 and p selectors at the beginning of the rule, before the opening curly brace,
and separating them with a comma, you’ve defined a rule indicating that the style inside the
curly braces (color: gray;) applies to the elements referenced by both selectors. The comma
tells the browser that two different selectors are involved in the rule. Leaving out the comma

would give the rule a completely different meaning, which we’ll explore in “Defining

Descendant Selectors”.

These alternatives produce exactly the same result, but one is a lot easier to type:

hl {color: purple;}
h2 {color: purple;}
h3 {color: purple;}
h4 {color: purple;}
h5 {color: purple;}
hé {color: purple;}

hl, h2, h3, h4, h5, h6é {color: purple;}

The second alternative, with one grouped selector, is also a lot easier to maintain over time.

The universal selector

The universal selector, displayed as an asterisk (*), matches any element at all, much like a

wildcard. For example, to make every single element in a document bold, you would write this:

* {font-weight: bold;}

This declaration is equivalent to a grouped selector that lists every element contained within the
document. The universal selector lets you assign the font-weight value bold to every
element in the document in one efficient stroke. Beware, however: although the universal

selector is convenient because it targets everything within its declaration scope, it can have

unintended consequences, which are discussed in “Zeroed Selector Specificity”.

Grouping Declarations

Just as you can group selectors into a single rule, you can also group declarations. Assuming that
you want all <h1l> elements to appear in purple, 18-pixel-high Helvetica text on an aqua

background (and you don’t mind blinding your readers), you could write your styles like this:

hl {font: 18px Helvetica;}
hl {color: purple;}
hl {background: aqua;}

But this method is inefficient—imagine creating such a list for an element that will carry 10 or

15 styles! Instead, you can group your declarations together:
hl {font: 18px Helvetica; color: purple; background: aqua;}

This will have exactly the same effect as the three-line stylesheet just shown.

Note that using semicolons at the end of each declaration is crucial when you’re grouping them.
Browsers ignore whitespace in stylesheets, so the user agent must rely on correct syntax to parse

the stylesheet. You can fearlessly format styles like the following:

hl {
font: 18px Helvetica;
color: purple;
background: aqua;

You can also minimize your CSS, removing all unrequired spaces:

hl{font:18px Helvetica;color:purple;background:aqua;}

The last three examples are treated equally by the server, but the second one is generally
regarded as the most human-readable, and is the recommended method of writing your CSS
during development. You might choose to minimize your CSS for network-performance reasons,
but this is usually automatically handled by a build tool, server-side script, caching network, or

other service, so you’re usually better off writing your CSS in a human-readable fashion.

If the semicolon is omitted on the second statement, the user agent will interpret the stylesheet as

follows:

hl {
font: 18px Helvetica;
color: purple background: aqua;

Because background: is not a valid value for color, a user agent will ignore the color
declaration entirely (including the background: aqua part). You might think the browser

would at least render <h1> s as purple text without an aqua background, but not so. Instead, they

will be the inherited color with a transparent background. The declaration font: 18px

Helvetica will still take effect since it was correctly terminated with a semicolon.

TIP

Although following the last declaration of a rule with a semicolon is not technically necessary in CSS, doing so is generally good
practice. First, it will keep you in the habit of terminating your declarations with semicolons, the lack of which is one of the most
common causes of rendering errors. Second, if you decide to add another declaration to a rule, you won’t have to worry about

forgetting to insert an extra semicolon.

As with selector grouping, declaration grouping is a convenient way to keep your stylesheets

short, expressive, and easy to maintain.

Grouping Everything

You now know that you can group selectors and you can group declarations. By combining both
kinds of grouping in single rules, you can define very complex styles using only a few
statements. Now, what if you want to assign some complex styles to all the headings in a

document, and you want the same styles to be applied to all of them? Here’s how:

hi, h2, h3, h4, h5, h6é {color: gray; background: white; padding: 0.5
border: 1px solid black; font-family: Charcoal, sans-serif;}

Here we’ve grouped the selectors, so the styles inside the curly braces will be applied to all the
headings listed; grouping the declarations means that all of the listed styles will be applied to the

selectors on the left side of the rule. Figure 2-3 shows the result of this rule.

Plutonium

Useful for many applications, plutonium can also be dangerous if improperly handled.

Safety Information

‘When handling plutonium, care must be taken to avoid the formation of a critical mass.

With plutonium, the possibility of implosion is very real, and must be avoided at all
costs. This can be accomplished by keeping the various masses separate.

Comments

It’s best to avoid using plutonium at all if it can be avoided.

Figure 2-3. Grouping both selectors and rules

This approach is preferable to the drawn-out alternative, which would begin with something like

this:

hl {color: gray;}
h2 {color: gray;}
h3 {color: gray;}
h4 {color: gray;}
h5 {color: gray;}
hé {color: gray;}
hl {background: white;}
h2 {background: white;}
h3 {background: white;}

...and continue for many lines. You can write out your styles the long way, but we don’t

recommend it—editing them would be about as tedious as using style attributes everywhere!

Grouping allows for some interesting choices. For example, all the groups of rules in the
following example are equivalent—each merely shows a different way of grouping both

selectors and declarations:

/* group 1 */

hl {color: silver; background: white;}
h2 {color: silver; background: gray;}
h3 {color: white; background: gray;}
h4 {color: silver; background: white;}
b {color: gray; background: white;}

/* group 2 */

hl, h2, h4 {color: silver;}
h2, h3 {background: gray;}

hl, h4, b {background: white;}
h3 {color: white;}

b {color: gray;}

/* group 3 */

hl, h4 {color: silver; background: white;}
h2 {color: silver;}

h3 {color: white;}

h2, h3 {background: gray;}

b {color: gray; background: white;}

Any of these three approaches to grouping selectors and declarations will yield the result shown

in Figure 2-4.

Useful for many applications, plutonium can also be dangerous if improperly handled.

Safety Information

When handling plutonium, care must be taken to avoid the formation of a critical mass.

With plutonium, the possibility of implosion is very real, and must be avoided at all
costs. This can be accomplished by keeping the various masses separate.

omments

It’s best to avoid using plutonium at all if it can be avoided.

Figure 2-4. The result of equivalent stylesheets

Class and ID Selectors

So far, we’ve been grouping selectors and declarations together in a variety of ways, but the
selectors we’ve been using are very simple ones that refer only to document elements. Type

selectors are fine up to a point, but oftentimes you need something a little more focused.

In addition to type selectors, CSS has class selectors and ID selectors, which let you assign
styles based on HTML attributes but independent of element type. These selectors can be used
on their own or in conjunction with type selectors. However, they work only if you’ve marked up

your document appropriately, so using them generally involves a little forethought and planning.

For example, say a document contains multiple warnings. You want each warning to appear in

boldfaced text so that it will stand out. However, you don’t know which element types contain

this warning content. Some warnings could be entire paragraphs, while others could be a single
item within a lengthy list or a few words in a section of text. So, you can’t define a rule using

type selectors of any kind. Suppose you tried this route:

p{
font-weight: bold;

color: red;

All paragraphs would be red and bold, not just those that contain warnings. You need a way to
select only the text that contains warnings—or, more precisely, a way to select only those
elements that are warnings. How do you do it? You apply styles to parts of the document that
have been marked in a certain way, independent of the elements involved, by using class

selectors.

Class Selectors

The most common way to apply styles without worrying about the elements involved is to use
class selectors. Before you can use them, however, you need to modify your document markup

so that the class selectors will work. Enter the class attribute:

<p class="warning">When handling plutonium, care must be taken to aw
the formation of a critical mass.</p>

<p>With plutonium, the possibility of implosiol
very real, and must be avoided at all costs. This can be accot
by keeping the various masses separate.</p>

To associate the styles of a class selector with an element, you must assign a class attribute
the appropriate value. In the previous code block, a class value of warning is assigned to

two elements: the first paragraph and the element in the second paragraph.

To apply styles to these classed elements, you can use a compact notation in which the name of

the class is preceded by a period (.):

* . warning {font-weight: bold;}

When combined with the example markup shown earlier, this simple rule has the effect shown in

Figure 2-5. The declaration font-weight: bold will be applied to every element that carries

a class attribute with a value of warning.

As Figure 2-5 illustrates, the class selector works by directly referencing a value that will be
found in the class attribute of an element. This reference is always preceded by a period (.),
which marks it as a class selector. The period helps keep the class selector separate from
anything with which it might be combined, such as a type selector. For example, you may want

boldfaced warning text only when an entire paragraph is a warning:

p.warning {font-weight: bold;}

Ll
Plutonium
Useful for many applications, plutonium can also be dangerous if improperly handled.

Safety Information

‘When handling plutonium, care must be taken to avoid the formation of a eritical
mass.

With plutonium, the possibility of implosion is very real, and must be avoided at all
costs. This can be accomplished by keeping the various masses separate.

Comments
It’s best to avoid using plutonium at all if it can be avoided.

Figure 2-5. Using a class selector

The selector now matches any <p> elements that have a class attribute containing the word
warning, but no other elements of any kind, classed or otherwise. Since the element
is not a paragraph, the rule’s selector doesn’t match it, and it won’t be displayed using boldfaced

text.

If you wanted to assign different styles to the element, you could use the selector

span.warning:

p.warning {font-weight: bold;}
span.warning {font-style: italic;}

In this case, the warning paragraph is boldfaced, while the warning is italicized. Each

rule applies only to a specific type of element/class combination, so it does not leak over to other

elements.

Another option is to use a combination of a general class selector and an element-specific class

selector to make the styles even more useful, as in the following markup:

.warning {font-style: italic;}
span.warning {font-weight: bold;}

Figure 2-6 shows the results.

In this situation, any warning text will be italicized, but only the text within a element

witha class of warning will be both boldfaced and italicized.

Ll
Plutonium
Useful for many applications, plutonium can also be dangerous if improperly handled.

Safety Information

When handling plutonium, care must be taken fo avoid the formation of a critical mass.

With plutonium, the possibility of implosion is very real, and must be avoided at all
costs. This can be accomplished by keeping the various masses separate.

Comments

It’s best to avoid using plutonium at all if it can be avoided.

Figure 2-6. Using generic and specific selectors to combine styles

TIP
Notice the format of the general class selector used in the previous example: it’s a class name preceded by a period, and without
an element name or universal selector. If you want to select all elements that share a class name, you can omit the universal

selector from a class selector without any ill effects. Thus, *.warning and .warning will have exactly the same effect.

Another thing about class names: they should never begin with a number. Browsers will allow

you to get away with this, but CSS validators will complain, and it’s a bad habit to get into.
Thus, you should write .c8675 in your CSS and class="c8675" in your HTML, rather than
.8675 and class="8675" . If you must refer to classes that begin with numbers, put a

backslash between the period and the first number in your class selector, like so: .\8675 .

Multiple Classes

In the previous section, we dealt with class values that contain a single word. In HTML, it’s
possible to have a space-separated list of words in a single class value. For example, if you

want to mark a particular element as being both urgent and a warning, you could write this:

<p class="urgent warning">When handling plutonium, care must be takel
avoid the formation of a critical mass.</p>
<p>With plutonium, the possibility of implosiol
very real, and must be avoided at all costs. This can be accot
by keeping the various masses separate.</p>

The order of the words doesn’t matter; warning urgent would also work and would yield
precisely the same results no matter how your CSS is written. Unlike HTML tags and type

selectors, class selectors are case-sensitive.

Now let’s say you want all elements with a class of warning to be boldfaced, those with a
class of urgent to be italic, and those elements with both values to have a silver

background. This would be written as follows:

.warning {font-weight: bold;}
.urgent {font-style: italic;}
.warning.urgent {background: silver;}

By chaining two class selectors together, you can select only those elements that have both class

names, in any order. As you can see, the HTML source contains class="urgent warning",

but the CSS selector is written .warning.urgent . Regardless, the rule will still cause the
“When handling plutonium... ” paragraph to have a silver background, as illustrated in Figure 2-
7. This happens because the order in which the words are written in the source document, or in
the CSS, doesn’t matter. (This is not to say the order of classes is always irrelevant, but we’ll get

to that later in the chapter.)

-
Plutonium
Useful for many applications, plutonium can also be dangerous if improperly handled.

Safety Information

When handling plutonium, care must be taken to avoid the formation of a critical
mass

.

With plutonium, the possibility of implosion is very real, and must be avoided at all
costs. This can be accomplished by keeping the various masses separate.

Comments

It’s best to avoid using plutonium at all if it can be avoided.

Figure 2-7. Selecting elements with multiple class names

If a multiple class selector contains a name that is not in the space-separated list, the match will

fail. Consider the following rule:

p.warning.help {background: red;}
As you might expect, the selector will match only those <p> elements witha class
containing the space-separated words warning and help . Therefore, it will not match a <p>
element with just the words warning and urgent inits class attribute. It would, however,

match the following:

<p class="urgent warning help">Help me!</p>

ID Selectors

In some ways, ID selectors are similar to class selectors, but a few crucial differences exist. First,
ID selectors are preceded by a hash sign (# }—formally called an octothorpe and also known as
a pound sign (in the United States), number sign, or tic-tac-toe board—instead of a period. Thus,

you might see a rule like this one:

*#first-para {font-weight: bold;}

This rule produces boldfaced text in any element whose id attribute has a value of first-

para.

The second difference is that instead of referencing values of the class attribute, ID selectors
refer, sensibly enough, to values found in id attributes. Here’s an example of an ID selector in

action:

*#lead-para {font-weight: bold;}

<p id="lead-para">This paragraph will be boldfaced.</p>
<p>This paragraph will NOT be bold.</p>

Note that the value lead-para could have been assigned to any element within the document.
In this particular case, it is applied to the first paragraph, but we could have applied it just as

easily to the second or third paragraph. Or an unordered list. Or anything.

The third difference is that a document should have only one instance of a given ID value. If you
find yourself wanting to apply the same ID to multiple elements in a document, make it a class

instead.

As with class selectors, it is possible (and very much the norm) to omit the universal selector
from an ID selector. In the previous example, we could also have written this with the exact

same effect:

#lead-para {font-weight: bold;}

This is useful when you know that a certain ID value will appear in a document, but you don’t
know the element type on which it will appear. For example, you may know that in any given
document, there will be an element with an ID value of mostImportant . You don’t know
whether that most important thing will be a paragraph, a short phrase, a list item, or a section
heading. You know only that it will exist in each document, occur in an arbitrary element, and

appear no more than once. In that case, you would write a rule like this:

#mostImportant {color: red; background: yellow;}

This rule would match any of the following elements (which, as noted before, should not appear

together in the same document because they all have the same ID value):

<hl id="mostImportant”>This is important!</hl>
<em id="mostImportant”>This is important!
<ul id="mostImportant”>This is important!

While HTML standards say each id must be unique in a document, CSS doesn’t care. If we had
erroneously included the HTML shown just now, all three would likely be red with a yellow

background because all three match the #mostImportant selector.

NOTE

As with class names, IDs should never start with numbers. If you must refer to an ID that begins with a number and cannot

change the ID value in the markup, use a backslash before the first number, as in #\309.

Deciding Between Class and ID

You may assign classes to any number of elements, as demonstrated earlier; the class name

warning was applied to botha <p> and a element, and it could have been applied

to many more elements. ID values, on the other hand, should be used once, and only once, within
an HTML document. Therefore, if you have an element with an id value of lead-para, no

other element in that document should have an id value of lead-para.

That’s according to the HTML specification, anyway. As noted previously, CSS doesn’t care if
your HTML is valid or not: it should find however many elements a selector can match. That
means that if you sprinkle an HTML document with several elements, all of which have the same

value for their ID attributes, you should get the same styles applied to each.

NOTE

Having more than one of the same ID value in a document makes DOM scripting more difficult, since functions like

getElementById() depend on there being one, and only one, element with a given ID value.

Unlike class selectors, ID selectors can’t be combined with other IDs, since ID attributes do not
permit a space-separated list of words. An ID selector can be combined with itself, though:
#warning#warning will match the element with an id value of warning . This should

rarely, if ever, be done, but it is possible.

Another difference between class and id names is that IDs carry more weight when you’re
trying to determine which styles should be applied to a given element. This is explained in

greater detail in Chapter 4.

Also note that HTML defines class and ID values to be case-sensitive, so the capitalization of
your class and ID values must match what’s found in your documents. Thus, in the following

pairing of CSS and HTML, the element’s text will not be boldfaced:

p.criticalInfo {font-weight: bold;}

<p class="criticalinfo">Don't look down.</p>

Because of the change in case for the letter i, the selector will not match the element shown.

On a purely syntactical level, the dot-class notation (e.g., .warning) is not guaranteed to work
for XML documents. As of this writing, the dot-class notation works in HTML, Scalar Vector
Graphics (SVG), and Mathematical Markup Language (MathML), and it may well be permitted
in future languages, but it’s up to each language’s specification to decide that. The hash-ID
notation (e.g., #lead) should work in any document language that has an attribute whose value

is supposed to be unique within a document.

Attribute Selectors

With both class and ID selectors, what you’re really doing is selecting values of
elements’ attributes. The syntax used in the previous two sections is particular to HTML, SVG,
and MathML documents as of this writing. In other markup languages, these class and ID

selectors may not be available (as, indeed, those attributes may not be present).

To address this situation, CSS2 introduced attribute selectors, which can be used to select
elements based on their attributes and the values of those attributes. There are four general types
of attribute selectors: simple attribute selectors, exact attribute value selectors, partial-match

attribute value selectors, and leading-value attribute selectors.

Simple Attribute Selectors

If you want to select elements that have a certain attribute, regardless of that attribute’s value,
you can use a simple attribute selector. For example, to select all <h1> elements that have a
class attribute with any value and make their text silver, write this:

hi[class] {color: silver;}

So, given the following markup,

<hl class="hoopla">Hello</hl>
<h1>Serenity</h1>
<hl class="fancy">Fooling</h1>

you get the result shown in Figure 2-8.

Hello
Serenity

Fooling

Figure 2-8. Selecting elements based on their attributes

This strategy is very useful in XML documents, as XML languages tend to have element and
attribute names that are specific to their purpose. Consider an XML language that is used to
describe planets of the solar system (we’ll call it PlanetML). If you want to select all <pml-
planet> elements with a moons attribute and make them boldface, thus calling attention to

any planet that has moons, you would write this:
pml-planet[moons] {font-weight: bold;}

This would cause the text of the second and third elements in the following markup fragment to

be boldfaced, but not the first:

<pml-planet>Venus</pml-planet>
<pml-planet moons="1">Earth</pml-planet>
<pml-planet moons="2">Mars</pml-planet>

In HTML documents, you can use this feature in creative ways. For example, you could style all

images that have an alt attribute, thus highlighting those images that are correctly formed:

img[alt] {outline: 3px solid forestgreen;}

This particular example is generally useful more for diagnostic purposes—determining whether

images are indeed correctly marked up—than for design purposes.

If you wanted to boldface any element that includes title information, which most browsers

display as a tool tip when a cursor hovers over the element, you could write this:

*[title] {font-weight: bold;}

Similarly, you could style only those anchors (<a> elements) that have an href attribute, thus

applying the styles to any hyperlink but not to any placeholder anchors.

It is also possible to select elements based on the presence of more than one attribute. You do
this by chaining the attribute selectors together. For example, to boldface the text of any HTML

hyperlink that has both an href anda title attribute, you would write the following:

alhref][title] {font-weight: bold;}

This would boldface the first link in the following markup, but not the second or third:

W3C

Standards Info

dead.letter

Selection Based on Exact Attribute Value

You can further narrow the selection process to encompass only those elements whose attributes
are a certain value. For example, let’s say you want to boldface any hyperlink that points to a

certain document on the web server. This would look something like the following:

al[href="http://www.css-discuss.org/about.html"] {font-weight: bold;}

< >

This will boldface the text of any a element that has an href attribute with exactly the value
http://www.css-discuss.org/about.html . Any change at all, even dropping the

www. part or changing to a secure protocol with https , will prevent a match.

Any attribute and value combination can be specified for any element. However, if that exact
combination does not appear in the document, the selector won’t match anything. Again, XML
languages can benefit from this approach to styling. Let’s return to our PlanetML example.
Suppose you want to select only those planet elements that have a value of 1 for the attribute

moons :

planet[moons="1"] {font-weight: bold;}

This would boldface the text of the second element in the following markup fragment, but not

the first or third:

<planet>Venus</planet>
<planet moons="1">Earth</planet>
<planet moons="2">Mars</planet>

As with attribute selection, you can chain together multiple attribute value selectors to select a
single document. For example, to double the size of the text of any HTML hyperlink that has
both an href with a value of https://www.w3.0org/ anda title attribute with a value

of W3C Home , you would write this:

a[href="https://www.w3.0org/"][title="W3C Home"] {font-size: 200%;}

This would double the text size of the first link in the following markup, but not the second or

third:

W3C

<a href="https://developer.mozilla.org"
title="Mozilla Developer Network">Standards Info

confused.link

< >

Figure 2-9 shows the results.

Standards Info
confused.link

Figure 2-9. Selecting elements based on attributes and their values

Again, this format requires an exact match for the attribute’s value. Matching becomes an issue
when an attribute selector encounters values that can, in turn, contain a space-separated list of
values (e.g., the HTML attribute class). For example, consider the following markup
fragment:

<planet type="barren rocky">Mercury</planet>

The only way to match this element based on its exact attribute value is to write this:

planet[type="barren rocky"] {font-weight: bold;}

If you were to write planet[type="barren"], the rule would not match the example
markup and thus would fail. This is true even for the class attribute in HTML. Consider the

following:

<p class="urgent warning">When handling plutonium, care must be takel
avoid the formation of a critical mass.</p>

To select this element based on its exact attribute value, you would have to write this:

p[class="urgent warning"] {font-weight: bold;}

This is not equivalent to the dot-class notation covered earlier, as you will see in the next section.
Instead, it selects any p element whose class attribute has exactly the value urgent
warning , with the words in that order and a single space between them. It’s effectively an exact

string match, whereas when using a class selector, the class order doesn’t matter.

Also, be aware that ID selectors and attribute selectors that target the id attribute are not
precisely the same. In other words, a subtle but crucial difference exists between hl#page-

title and hl[id="page-title"] . This difference is explained in Chapter 4.

Selection Based on Partial Attribute Values

Odds are that you’ll sometimes want to select elements based on portions of their attribute
values, rather than the full value. For such situations, CSS offers a variety of options for

matching substrings in an attribute’s value. These are summarized in Table 2-1.

Table 2-1. Substring matching with attribute selectors

Type Description

[foo~="bar Selects any element with an attribute foo whose value contains the

"1 word bar in a space-separated list of words

[foo*="bar Selects any element with an attribute foo whose value contains the

"] substring bar

[foo”="bar Selects any element with an attribute foo whose value begins with bar
n]

[foo$="bar Selects any element with an attribute foo whose value ends with bar

n]

[foo|="bar Selects any element with an attribute foo whose value starts with bar
"] followed by a hyphen (U+002D) or whose value is exactly equal to bar

The last of these attribute selectors that match on a partial subset of an element’s attribute value

is easier to show than it is to describe. Consider the following rule:

*[lang|="en"] {color: white;}

This rule will select any element whose lang attribute is equal to en or begins with en- .
Therefore, the first three elements in the following example markup would be selected, but the

last two would not:

<h1l lang="en">Hello!</h1>
<p lang="en-us">Greetings!</p>
<div lang="en-au">G'day!</div>
<p lang="fr">Bonjour!</p>
<h4 lang="cy-en">Jrooanal!</h4>

In general, the form [att|="val"] can be used for any attribute and its values. Let’s say you

have a series of figures in an HTML document, each of which has a filename like figure-1.gif or

figure-3.jpg. You can match all of these images by using the following selector:
img[src|="figure"] {border: 1px solid gray;}

Or, if you’re creating a CSS framework or pattern library, instead of creating redundant classes

like "btn btn-small btn-arrow btn-active", you can declare "btn-small-arrow-

active", and target the class of elements with the following:

*[class|="btn"] { border-radius: 5px;}

<button class="btn-small-arrow-active">Click Me</button>

The most common use for this type of attribute selector is to match language values, as

demonstrated in “The :lang() and :dir() Pseudo-Classes”.

Matching one word in a space-separated list

For any attribute that accepts a space-separated list of words, you can select elements based on
the presence of any one of those words. The classic example in HTML is the class attribute,

which can accept one or more words as its value. Consider our usual example text:

<p class="urgent warning">When handling plutonium, care must be takel
avoid the formation of a critical mass.</p>

Let’s say you want to select elements whose class attribute contains the word warning . You

can do this with an attribute selector:

p[class~="warning"] {font-weight: bold;}

Note the presence of the tilde (~) in the selector. It is the key to selection based on the presence

of a space-separated word within the attribute’s value. If you omit the tilde, you would have an

exact value-matching attribute selector, as discussed in the previous section.

This selector construct is equivalent to the dot-class notation discussed in “Deciding Between
Class and ID”. Thus, p.warning and p[class~="warning"] are equivalent when applied
to HTML documents. Here’s an example that is an HTML version of the PlanetML markup seen

earlier:

Mercury
Venus
Earth

To italicize all elements with the word barren intheir class attribute, you write this:

span[class~="barren"] {font-style: italic;}

This rule’s selector will match the first two elements in the example markup and thus italicize
their text, as shown in Figure 2-10. This is the same result we would expect from writing

span.barren {font-style: italic;}.

Mercury Venus Earth

Figure 2-10. Selecting elements based on portions of attribute values

So why bother with the tilde-equals attribute selector in HTML? Because it can be used for any
attribute, not just class . For example, you might have a document that contains numerous
images, only some of which are figures. You can use a partial-match value attribute selector

aimed at the title text to select only those figures:

img[title~="Figure"] {border: 1px solid gray;}

This rule selects any image whose title text contains the word Figure (butnot figure,

as title attributes are case-sensitive). Therefore, as long as all your figures have title text that

looks something like “Figure 4. A bald-headed elder statesman,” this rule will match those
images. For that matter, the selector img[title~="Figure"] will also match a title attribute
with the value “How to Figure Out Who’s in Charge.” Any image that does not have a title

attribute, or whose title value doesn’t contain the word Figure , won’t be matched.

Matching a substring within an attribute value

Sometimes you want to select elements based on a portion of their attribute values, but the values
in question aren’t space-separated lists of words. In these cases, you can use the asterisk-equals
substring matching form [attr*="val"] to match substrings that appear anywhere inside the
attribute values. For example, the following CSS matches any element whose class

attribute contains the substring cloud , so both “cloudy” planets are matched, as shown in

Figure 2-11:

span[class*="cloud"] {font-style: italic;