

Cloud Security
Handbook

Find out how to effectively secure cloud
environments using AWS, Azure, and GCP

Eyal Estrin

BIRMINGHAM—MUMBAI

Cloud Security Handbook
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Rahul Nair
Publishing Product Manager: Rahul Nair
Senior Editor: Arun Nadar
Content Development Editor: Sulagna Mohanty
Technical Editor: Arjun Varma
Copy Editor: Safis Editing
Project Coordinator: Shagun Saini
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Joshua Misquitta
Marketing Coordinator: Hemangi Lotlikar

First published: March 2022
Production reference: 1100322

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80056-919-5
www.packt.com

I wish to dedicate this book to my loving wife for all the support she
provided me with during the long hours spent writing this book.

– Eyal Estrin

Contributors

About the author
Eyal Estrin is a cloud security architect who has been working with cloud services since
2015. He has been involved in the design and implementation of cloud environments
from both the IT and security aspects.

He has worked with AWS, Azure, and Google Cloud in a number of different
organizations (in the banking, academia, and healthcare sectors).

He has attained several top cloud security certifications – CCSP, CCSK, and AWS.

He shares his knowledge through social media (LinkedIn, Twitter, Medium, and more) for
the benefit of cloud experts around the world.

About the reviewers
Randy M. Black is a 25-year veteran in the IT industry and an early adopter of DevOps.
Randy has spent the last decade working in some form or other of cloud technology and
security. He abhors the silos that traditional IT creates and the detriment they pose to
organizations. Randy is a strong advocate of transferring knowledge without fear of being
transparent, misunderstood, or seemingly odd.

To Jesus, my rock and salvation, for His grace and peace in accompanying
me through this crazy, upside-down world. And to my wife, Jill, who

has supported and stood by me in everything that I do, and who is the
cornerstone of my success. And finally, to my four children, who don't

always understand what I do, but appreciate the fact that I am doing it.

Timothy Orr (@easttim0r on Twitter) designs, builds, and operates secure systems in
complex cloud environments. He supports customers with cloud security automation,
serverless architecture, threat detection and response, security analysis, and multi-tenant
cloud brokering and governance. Tim holds a master's degree in InfoSec, CISSP, AWS
Security Specialty, AWS Solutions Architect Professional, and AWS SysOps Administrator
Associate certifications.

Table of Contents

Preface

Section 1: Securing Infrastructure Cloud
Services

1
Introduction to Cloud Security

Technical requirements� 4
What is a cloud service?� 5
What are the cloud
deployment models?� 5
What are the cloud service
models?� 6
Why we need security� 7
What is the shared
responsibility model?� 8

AWS and the shared responsibility
model� 10
Azure and the shared
responsibility model� 11
GCP and the shared
responsibility model� 12

Command-line tools� 13
AWS CLI� 13
Azure CLI� 14
Google Cloud SDK� 14

Summary� 14

2
Securing Compute Services

Technical requirements� 16
Securing VMs� 16
Securing Amazon Elastic
Compute Cloud (EC2)� 16
Securing Azure Virtual Machines� 22

Securing Google Compute Engine
(GCE) and VM instances� 29

Securing managed
database services� 33
Securing Amazon RDS for MySQL� 35

viii Table of Contents

Securing Azure Database for
MySQL� 39
Securing Google Cloud SQL for
MySQL� 43

Securing containers� 46
Securing Amazon Elastic
Container Service (ECS)� 49
Securing Amazon Elastic
Kubernetes Service (EKS)� 52
Securing Azure Container
Instances (ACI)� 57

Securing Azure Kubernetes
Service (AKS)� 60
Securing Google Kubernetes
Engine (GKE)� 64

Securing serverless/function
as a service� 69
Securing AWS Lambda� 70
Securing Azure Functions� 74
Securing Google Cloud Functions� 79

Summary� 82

3
Securing Storage Services

Technical requirements� 84
Securing object storage� 84
Securing Amazon Simple
Storage Service� 85
Securing Azure Blob storage� 90
Securing Google Cloud Storage� 93

Securing block storage� 96
Best practices for securing
Amazon Elastic Block Store� 97
Best practices for securing Azure
managed disks� 98
Best practices for securing Google
Persistent Disk� 99

Summary� 100

Securing file storage� 100
Securing Amazon Elastic
File System � 101
Securing Azure Files� 104
Securing Google Filestore� 108

Securing the CSI� 109
Securing CSI on AWS� 110
Securing CSI on Azure� 111
Securing CSI on GCP� 112

Summary� 113

4
Securing Networking Services

Technical requirements� 116
Securing virtual networking� 116
Securing Amazon Virtual Private
Cloud� 117
Securing Azure VNet� 121
Securing Google Cloud VPC� 124

Securing DNS services� 127
Securing Amazon Route 53� 127
Securing Azure DNS� 129
Securing Google Cloud DNS� 130

Securing CDN services� 131

Table of Contents ix

Securing Amazon CloudFront� 131
Securing Azure CDN� 133
Securing Google Cloud CDN� 134

Securing VPN services� 135
Securing AWS Site-to-Site VPN� 135
Securing AWS Client VPN� 137
Securing Azure VPN Gateway
(Site-to-Site)� 138
Securing Azure VPN Gateway
(Point-to-Site)� 139
Securing Google Cloud VPN� 141

Securing DDoS protection
services� 142
Securing AWS Shield� 142
Securing Azure DDoS Protection� 144
Securing Google Cloud Armor� 146

Securing WAF services� 148
Securing AWS WAF� 148
Securing Azure WAF� 149

Summary� 151

Section 2: Deep Dive into IAM, Auditing, and
Encryption

5
Effective Strategies to Implement IAM Solutions

Technical requirements� 156
Introduction to IAM� 157
Failing to manage
identities� 158
Securing cloud-based
IAM services� 159
Securing AWS IAM� 160
Auditing AWS IAM� 162
Securing Azure AD� 164
Auditing Azure AD� 166
Securing Google Cloud IAM� 168

Auditing Google Cloud IAM� 170

Securing directory
services� 171
Securing AWS Directory Service� 172
Securing Azure Active Directory
Domain Services (Azure AD DS)� 174
Securing Google Managed
Service for Microsoft AD� 176

Configuring MFA� 178
Summary� 181

6
Monitoring and Auditing Your Cloud Environments

Technical requirements� 184
Conducting security
monitoring and audit trails� 185

Security monitoring and audit
trails using AWS CloudTrail� 185
Security monitoring using
AWS Security Hub� 188

x Table of Contents

Best practices for using AWS
Security Hub� 188
Security monitoring and audit
trails using Azure Monitor� 190
Best practices for using
Azure Monitor� 190
Security monitoring and approval
process using Customer Lockbox� 192
Best practices for using
Customer Lockbox� 193
Security monitoring and audit
trail using Google Cloud Logging� 194
Security monitoring using Google
Security Command Center� 196
Security monitoring and approval
process using Access
Transparency and Access
Approval� 197

Conducting threat detection
and response� 199
Using Amazon Detective for
threat detection� 199

Using Amazon GuardDuty for
threat detection� 200
Security monitoring using
Microsoft Defender for Cloud� 202
Using Azure Sentinel for threat
detection� 204
Using Azure Defender for threat
detection� 206
Using Google Security Command
Center for threat detection and
prevention� 207

Conducting incident
response and digital
forensics� 209
Conducting incident response
in AWS� 210
Conducting incident response
in Azure� 212
Conducting incident response
in Google Cloud Platform� 213

Summary� 214

7
Applying Encryption in Cloud Services

Technical requirements� 216
Introduction to encryption� 216
Symmetric encryption� 218
Asymmetric encryption� 219

Best practices for
deploying KMSes� 221
AWS Key Management Service
(KMS)� 222
AWS CloudHSM� 226
Azure Key Vault� 229
Azure Dedicated/Managed HSM� 232
Google Cloud Key Management
Service (KMS)� 234

Best practices for deploying
secrets management
services� 236
AWS Secrets Manager� 237
Google Secret Manager� 239

Best practices for using
encryption in transit� 241
IPSec� 241
Transport Layer Security (TLS)� 241

Best practices for using
encryption at rest� 244
Object storage encryption� 244

Table of Contents xi

Block storage encryption� 247
Full database encryption� 250
Row-level security� 253

Encryption in use� 254

AWS Nitro Enclaves� 255
Azure Confidential Computing� 255
Google Confidential Computing� 255

Summary� 256

Section 3: Threats and Compliance
Management

8
Understanding Common Security Threats to Cloud Services

Technical requirements� 260
The MITRE ATT&CK
framework� 260
Detecting and mitigating
data breaches in cloud
services� 262
Common consequences of data
breaches� 263
Best practices for detecting and
mitigating data breaches in cloud
environments� 263
Common AWS services to assist in
the detection and mitigation of
data breaches� 265
Common Azure services to assist in
the detection and mitigation of
data breaches� 265
Common GCP services to assist in
the detection and mitigation of
data breaches� 266

Detecting and mitigating
misconfigurations in cloud
services� 267
Common AWS services to assist
in the detection and mitigation of
misconfigurations� 269

Common Azure services to assist in
the detection and mitigation
of misconfigurations� 270
Common GCP services to assist in
the detection and mitigation
of misconfigurations� 270

Detecting and mitigating
insufficient IAM and key
management in cloud
services� 271
Common AWS services to assist in
the detection and mitigation of
insufficient IAM and key
management� 273
Common Azure services to assist in
the detection and mitigation of
insufficient IAM and key
management� 274
Common GCP services to assist in
the detection and mitigation of
insufficient IAM and key
management� 274

Detecting and mitigating
account hijacking in cloud
services� 276

xii Table of Contents

Common AWS services to assist in
the detection and mitigation of
account hijacking� 277
Common Azure services to assist
in the detection and mitigation of
account hijacking� 278
Common GCP services to assist in
the detection and mitigation of
account hijacking� 278

Detecting and mitigating
insider threats in cloud
services� 279
Common AWS services to assist in
the detection and mitigation of
insider threats� 281
Common Azure services to assist
in the detection and mitigation of
insider threats� 281
Common GCP services to assist in
the detection and mitigation of
insider threats� 282
Detecting and mitigating
insecure APIs in cloud
services� 283

Common AWS services to assist in
the detection and mitigation of
insecure APIs� 284
Common Azure services to assist in
the detection and mitigation of
insecure APIs� 285
Common GCP services to
assist in the detection and
mitigation of insecure
APIs� 285

Detecting and mitigating
the abuse of cloud
services� 286
Common AWS services to assist
in the detection and mitigation of
the abuse of cloud services� 287
Common Azure services to assist
in the detection and mitigation of
the abuse of cloud services� 287
Common GCP services to assist
in the detection and mitigation of
the abuse of cloud services� 288

Summary� 289

9
Handling Compliance and Regulation

Technical requirements� 292
Compliance and the shared
responsibility model� 292
Introduction to compliance
with regulatory requirements
and industry best practices� 293
How to maintain compliance
in AWS� 293
How to maintain compliance
in Azure� 294
How to maintain compliance
in GCP� 294

Summary� 295

What are the common
ISO standards related to
cloud computing?� 295
ISO/IEC 27001 standard� 295
ISO 27017 standard� 296
ISO 27018 standard� 297
Summary� 298

What is a SOC report?� 299
Summary� 300

Table of Contents xiii

What is the CSA STAR
program?� 300
STAR Level 1� 301
STAR Level 2� 301
Summary� 301

What is PCI DSS?� 302
Summary� 303

What is the GDPR?� 303
Summary� 305

What is HIPAA?� 305
Summary� 306

Summary� 307

10
Engaging with Cloud Providers

Technical requirements� 310
Choosing a cloud provider� 310
What is the most suitable cloud
service model for our needs?� 311
Data privacy and data
sovereignty� 313
Auditing and monitoring� 314
Migration capabilities� 315
Authentication� 315
Summary� 315

What is a cloud provider
questionnaire?� 316

Summary� 322

Tips for contracts with
cloud providers� 322
Summary� 324

Conducting penetration
testing in cloud
environments� 324
Summary� 326

Summary� 326

Section 4: Advanced Use of Cloud Services

11
Managing Hybrid Clouds

Technical requirements� 332
Hybrid cloud strategy� 332
Cloud bursting� 332
Backup and disaster recovery� 333
Archive and data retention� 333
Distributed data processing� 333
Application modernization� 333
Summary� 334

Identity management
over hybrid cloud
environments� 334
How to manage identity
over hybrid AWS environments� 335
How to manage identity
over hybrid Azure environments� 336

xiv Table of Contents

How to manage identity over GCP
hybrid environments� 337
Best practices for managing
identities in hybrid environments� 337
Summary� 338

Network architecture for
hybrid cloud environments� 338
How to connect the on-premises
environment to AWS� 339
How to connect the on-premises
environment
to Azure� 340
How to connect the on-premises
environment to GCP� 341
Summary� 342

Storage services for hybrid
cloud environments� 342
How to connect to storage services
over AWS hybrid environments� 342
How to connect to storage
services over Azure hybrid
environments� 344

How to connect to storage services
over GCP hybrid environments� 345
Summary� 345

Compute services for hybrid
cloud environments� 345
Using compute services over
AWS hybrid environments� 346
Using compute services over
Azure hybrid environments� 347
Using compute services over
GCP hybrid environments� 348
Summary� 349

Securing hybrid cloud
environments� 349
How to secure AWS hybrid
environments� 349
How to secure Azure hybrid
environments� 351
How to secure GCP hybrid
environments� 352
Summary� 353

Summary� 353

12
Managing Multi-Cloud Environments

Technical requirements� 356
Multi-cloud strategy� 356
Freedom to select a cloud
provider� 356
Freedom to select your services� 357
Reduced cost� 357
Data sovereignty� 357
Backup and disaster recovery� 357
Improving reliability� 357
Identity management� 358
Data security� 358
Asset management� 359

Skills gap� 359
Summary� 359

Identity management over
multi-cloud environments� 360
How to manage identity in AWS
over multi-cloud environments� 360
How to manage identity in Azure
over multi-cloud environments� 362
How to manage identity in GCP
over multi-cloud environments� 363
Summary� 364

Table of Contents xv

Network architecture for
multi-cloud environments� 364
How to create network connectivity
between AWS and GCP� 366
How to create network connectivity
between AWS and Azure� 367
How to create network connectivity
between Azure and GCP� 367
Summary� 368

Data security in multi-cloud
environments� 368
Encryption in transit� 368
Encryption at rest� 369
Encryption in use� 369
Summary� 370

Cost management in multi-
cloud environments� 370
Summary� 372

Cloud Security Posture
Management (CSPM)� 372
Summary� 373

Cloud Infrastructure
Entitlement Management
(CIEM) � 374
Summary� 374

Patch and configuration
management in multi-cloud
environments� 375
Summary� 377

The monitoring and
auditing of multi-cloud
environments� 377
Summary� 378

Summary� 378

13
Security in Large-Scale Environments

Technical requirements� 382
Managing governance
and policies at a large
scale� 382
Governance in AWS� 384
Governance in Azure� 388
Governance in Google Cloud� 392

Automation using IaC� 395
AWS CloudFormation� 396
Azure Resource Manager (ARM)
templates� 397
Google Cloud Deployment
Manager� 397
HashiCorp Terraform� 398
Summary� 399

Security in large-scale cloud
environments� 399
Managing security at a large
scale while working with AWS� 399
Managing security at a large
scale while working with Azure� 402
Managing security at a large
scale while working with
Google Cloud� 403

Summary� 404
What's next?� 404
Plan ahead� 404
Automate� 405
Think big� 405
Continue learning� 405

xvi Table of Contents

Index
Other Books You May Enjoy

Preface
Cloud Security Handbook provides complete coverage of security aspects when designing,
building, and maintaining environments in the cloud. This book is filled with best
practices to help you smoothly transition to the public cloud, while keeping your
environments secure. You do not have to read everything - simply find out which cloud
provider is common at your workplace, or which cloud provider you wish to focus on,
and feel free to skip the rest.

Who this book is for
This book is for IT or information security personnel taking their first steps in the public
cloud or migrating existing environments to the cloud. DevOps professionals, cloud
engineers, or cloud architects maintaining production environments in the cloud will also
benefit from this book.

What this book covers
Chapter 1, Introduction to Cloud Security, in order to give you a solid understanding of
cloud security, helps you to understand concepts such as Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), private cloud, public
cloud, hybrid cloud, multi-cloud, and the Shared Responsibility Model. This and the rest
of the chapters in this book will allow you to understand how to implement security in
various cloud environments.

Chapter 2, Securing Compute Services, covers how Amazon Web Services (AWS),
Microsoft Azure, and Google Cloud Platform (GCP) implement virtual machines,
managed databases, containers, Kubernetes, and serverless architectures, and what the
best practices for securing those services are.

Chapter 3, Securing Storage Services, covers how AWS, Microsoft Azure, and GCP
implement object storage, block storage, and managed file storage, and what the best
practices for securing those services are.

xviii Preface

Chapter 4, Securing Network Services, covers how AWS, Microsoft Azure, and GCP
implement virtual networks, security groups, DNS services, CDN, VPN services, DDoS
protection services, and web application firewalls, and what the best practices for securing
those services are.

Chapter 5, Effective Strategies to Implement IAM Solutions, covers how AWS, Microsoft
Azure, and GCP implement directory services, how these cloud providers implement
identity and access management for modern cloud applications, how to implement multi-
factor authentication, and how to secure all these services.

Chapter 6, Monitoring and Auditing of Your Cloud Environment, covers how AWS,
Microsoft Azure, and GCP implement audit mechanisms, how to detect threats in
automated and large-scale environments, and how to capture network traffic for
troubleshooting and security incident detection (digital forensics).

Chapter 7, Applying Encryption in Cloud Services, covers when to use symmetric and
asymmetric encryption in a cloud environment, what the various alternatives for key
management services in AWS, Azure, and GCP are, what the alternatives and best
practices for storing secrets in code are, and how to implement encryption in traffic and
encryption at rest on the AWS, Azure, and GCP cloud services.

Chapter 8, Understanding Common Security Threats to Cloud Computing, covers what the
common security threats in public cloud environments are, how to detect those threats,
and what the countermeasures to mitigate such threats using built-in services in AWS,
Azure, and GCP are.

Chapter 9, Handling Compliance and Regulation, covers what the common security
standards related to cloud environments are, what the different levels of Security
Operations Center (SOC) are, and how to use cloud services to comply with the
European data privacy regulation, GDPR.

Chapter 10, Engaging with Cloud Providers, covers how to conduct a risk assessment in
a public cloud environment, what the important questions to ask a cloud provider prior
to the engagement phase are, and what important topics to embed inside a contractual
agreement with the cloud provider.

Chapter 11, Managing Hybrid Clouds, covers how to implement common features such
as identity and access management, patch management, vulnerability management,
configuration management, monitoring, and network security aspects in hybrid
cloud environments.

Preface xix

Chapter 12, Managing Multi-Cloud Environments, covers how to implement common
topics such as identity and access management, patch management, vulnerability
management, configuration management, monitoring, and network security aspects in
multi-cloud environments.

Chapter 13, Security in Large-Scale Environments, covers what the common Infrastructure
as a Code (IaC) alternatives are, how to implement patch management in a centralized
manner, how to control configuration and compliance management, and how to detect
vulnerabilities in cloud environments (managed services and sample tools) in a large
production environment.

To get the most out of this book
The following are some of the requirements to get the most out of the book:

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800569195_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "If a resource node has set inheritFromParent = true, then
the effective policy of the parent resource is inherited."

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Azure Event Hubs: This is for sending audit logs to an external SIEM system for
further analysis."

xx Preface

Tips or Important Notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share your thoughts
Once you've read Cloud Security Handbook, we'd love to hear your thoughts! Please click
here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

On completion of this part, you will have a solid understanding of how to secure the
basic building blocks of cloud services (cloud deployment and service models, compute,
storage, and network)

This part of the book comprises the following chapters:

•	 Chapter 1, Introduction to Cloud Security

•	 Chapter 2, Securing Compute Services

•	 Chapter 3, Securing Storage Services

•	 Chapter 4, Securing Network Services

Section 1:
Securing

Infrastructure
Cloud Services

1
Introduction to
Cloud Security

This book, Cloud Security Techniques and Best Practices, is meant for various audiences.
You could be taking your first steps working with cloud services, or you could be coming
from an IT perspective and want to know about various compute and storage services
and how to configure them securely. Or, you might be working in information security
and want to know the various authentication, encryption, and audit services and how to
configure them securely, or you might be working with architecture and want to know
how to design large-scale environments in the cloud in a secure way.

Reading this book will allow you to make the most of cloud services while focusing on
security aspects. Before discussing cloud services in more detail, let me share my opinion
regarding cloud services.

The world of IT is changing. For decades, organizations used to purchase physical
hardware, install operating systems, and deploy software. This routine required a lot of
ongoing maintenance (for patch deployment, backup, monitoring, and so on).

The cloud introduced a new paradigm – that is, the ability to consume managed services
to achieve the same goal of running software (from file servers to Enterprise Resource
Planning (ERP) or Customer Relationship Management (CRM) products), while using
the expertise of the hyper-scale cloud providers.

4 Introduction to Cloud Security

Some well-known use cases of cloud computing are as follows:

•	 Netflix – one of the largest video streaming services world-wide. It uses AWS to run
its media streaming services:

https://aws.amazon.com/solutions/case-studies/netflix-
case-study

•	 Mercedes-Benz – one of the most famous automotive brands. It uses Azure to run
its research and development:

https://customers.microsoft.com/en-us/story/784791-
mercedes-benz-r-and-d-creates-container-driven-cars-
powered-by-microsoft-azure

•	 Home Depot – the largest home improvement retailer in the United States. It uses
Google Cloud to run its online stores:

https://cloud.google.com/customers/featured/the-home-depot

In this book, we will compare various aspects of cloud computing (from fundamental
services such as compute, storage, and networking, to compliance management and best
practices for building and maintaining large-scale environments in a secure way), while
reviewing the different alternatives offered by Amazon Web Services (AWS), Microsoft
Azure, and Google Cloud Platform (GCP).

It does not matter which organization you are coming from – this book will allow you
to have a better understanding of how to achieve security in any of the large hyper-scale
cloud providers.

You do not have to read everything – simply find out which cloud provider is common at
your workplace or which cloud provider you wish to focus on, and feel free to skip the rest.

In this chapter, we will cover the following topics:

•	 Why we need security

•	 Cloud service models

•	 Cloud deployment models

•	 The shared responsibility model

Technical requirements
This chapter is an introduction to cloud security, so there are no technical requirements.

What is a cloud service? 5

What is a cloud service?
As part of this introduction, let's define the terminology to make sure we are all on the
same page.

The National Institute of Standards and Technology (NIST) defines cloud as a
technology that has the following five characteristics:

•	 On-demand self-service: Imagine you wish to open a blog and you need compute
resources. Instead of purchasing hardware and waiting for the vendor to ship it
to your office and having to deploy software, the easier alternative can be a self-
service portal, where you can select a pre-installed operating system and content
management system that you can deploy within a few minutes by yourself.

•	 Broad network access: Consider having enough network access (the type that
large Internet Service Providers (ISPs) have) to serve millions of end users with
your application.

•	 Resource pooling: Consider having thousands of computers, running in a large
server farm, and being able to maximize their use (from CPU, memory, and storage
capacity), instead of having a single server running 10% of its CPU utilization.

•	 Rapid elasticity: Consider having the ability to increase and decrease the amount of
compute resources (from a single server to thousands of servers, and then back to a
single server), all according to your application or service needs.

•	 Measured service: Consider having the ability to pay for only the resources you
consumed and being able to generate a billing report that shows which resources
have been used and how much you must pay for the resources.

Further details relating to the NIST definition can be found at the following link:

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-145.pdf

What are the cloud deployment models?
Now that we understand what the cloud characteristics are, let's talk about cloud
deployment models:

•	 Private cloud: An infrastructure deployed and maintained by a single organization.
Let's say we are a large financial organization (such as a bank or insurance
organization), we would like to serve various departments in our organization
(from HR, IT, sales, and so on), and we might have regulatory requirements to keep
customers' data on-premises – a private cloud can be a suitable solution.

6 Introduction to Cloud Security

•	 Public cloud: An infrastructure deployed and maintained by a service provider for
serving multiple customers and organizations, mostly accessible over the internet.
Naturally, this book will focus on the public cloud model, with reference to various
services offered by AWS, Azure, and GCP.

•	 Hybrid cloud: A combination of a private cloud (or on-premises cloud) and at least
one public cloud infrastructure. I like to consider the hybrid cloud as an extension
of the local data center. We should not consider this extension as something
separate, and we should protect it the same way we protect our local data center.

•	 Multi-cloud: A scenario where our organization is either using multiple managed
services (see the definition of SaaS in the next section) or using multiple public
cloud infrastructure (see the definitions of IaaS and PaaS in the next section).

What are the cloud service models?
An essential part of understanding clouds is understanding the three cloud
service models:

•	 Infrastructure as a Service (IaaS): This is the most fundamental service model,
where a customer can select the virtual machine size (in terms of the amount of
CPU and memory), select a pre-configured operating system, and deploy software
inside the virtual machine instance according to business needs (services such as
Amazon EC2, Azure Virtual Machines, and Google Compute Engine).

•	 Platform as a Service (PaaS): This type of service model varies from managed
database services to managed application services (where a customer can import
code and run it inside a managed environment) and more (services such as AWS
Elastic Beanstalk, Azure Web Apps, and Google App Engine).

•	 Software as a Service (SaaS): This is the most widely used service model – a fully
managed software environment where, as a customer, you usually open a web
browser, log in to an application, and consume services. These could be messaging
services, ERP, CRM, business analytics, and more (services such as Microsoft Office
365, Google Workspaces, Salesforce CRM, SAP SuccessFactors, and Oracle
Cloud HCM).

Understanding the cloud service models will allow you to understand your role as a
customer, explained later in the What is the shared responsibility model? section.

Why we need security 7

Why we need security
As mentioned previously, we can see clear benefits of using cloud services that enable our
business to focus on what brings us value (from conducting research in a pharmaceutical
lab, to selling products on a retail site, and so on).

But what about security? And, specifically, cloud security?

Why should our organization focus on the overhead called information security (and, in
the context of this book, cloud security)?

The cloud has changed the paradigm of organizations controlling their data on-premises
(from HR data to customers' data) and investing money in maintaining data centers,
servers, storage, network equipment, and the application tier.

Using public clouds has changed the way organizations look at information security (in
the context of this book, cloud security).

The following are a few common examples of the difference between on-premises data
solutions and the cloud:

Table 1.1 – Differences between on-premises data solutions and the cloud

Organizations are often unwilling to migrate to a public cloud for security reasons because
the physical servers are located outside of the organization's direct control, and sometimes
even outside their physical geography.

8 Introduction to Cloud Security

Here are a few questions often asked by organizations' management:

•	 Are my servers going to behave the same as if they were on-premises?

•	 How do I protect my servers outside my data center from a data breach?

•	 How do I know the cloud provider will not have access to my data?

•	 Do my employees have enough knowledge to work in new environments such as the
public cloud?

Perhaps the most obvious question asked is – is the public cloud secure enough to store
my data?

From my personal experience, the answer is yes.

By design, the hyper-scale cloud providers invest billions of dollars protecting their data
centers, building secure services, investing in employee training, and locating security
incidents and remediating them fast. This is all with much higher investment, attention,
and expertise than most organizations can dedicate to protecting their local data centers.

The reason for this is simple – if a security breach happens to one of the hyper-scale
cloud providers, their customers' trust will be breached, and the cloud providers will run
out of business.

At the end of the day, cloud security enables our organization to achieve (among other
things) the following:

•	 Decreased attack surface: Using central authentication, data encryption, DDoS
protection services, and more

•	 Compliance with regulation: Deploying environments according to best practices

•	 Standardization and best practices: Enforcing security using automated tools
and services

Reading this book will allow you to have a better understanding of various methods to
secure your cloud environments – most of them using the cloud vendor's built-in services
and capabilities.

What is the shared responsibility model?
When speaking about cloud security and cloud service models (IaaS/PaaS/SaaS), the
thing that we all hear about is the shared responsibility model, which tries to draw a line
between the cloud provider and the customer's responsibilities regarding security.

What is the shared responsibility model? 9

As you can see in the following diagram, the cloud provider is always responsible for
the lower layers – from the physical security of their data centers, through networking,
storage, host servers, and the virtualization layers:

Figure 1.1 – The shared responsibility model

Above the virtualization layer is where the responsibility begins to change.

When working with IaaS, we, as the customers, can select a pre-installed image of an
operating system (with or without additional software installed inside the image), deploy
our applications, and manage permissions to access our data.

When working with PaaS, we, as the customers, may have the ability to control code in
a managed environment (services such as AWS Elastic Beanstalk, Azure Web Apps, and
Google App Engine) and manage permissions to access our data.

When working with SaaS, we, as the customers, received a fully managed service, and all
we can do is manage permissions to access our data.

In the next sections, we will look at how the various cloud providers (AWS, Azure, and
GCP) look at the shared responsibility model from their own perspective.

10 Introduction to Cloud Security

For more information on the shared responsibility model, you can check the following
link: https://tutorials4sharepoint.wordpress.com/2020/04/24/
shared-responsibility-model/.

AWS and the shared responsibility model
Looking at the shared responsibility model from AWS's point of view, we can see the
clear distinction between AWS's responsibility for the security of the cloud (physical
hardware and the lower layers such as host servers, storage, database, and network) and
the customer's responsibility for security in the cloud (everything the customer controls
– operating system, data encryption, network firewall rules, and customer data). The
following diagram depicts AWS and the shared responsibility model:

Figure 1.2 – AWS and the shared responsibility model

As a customer of AWS, reading this book will allow you to gain the essential knowledge
and best practices for using common AWS services (including compute, storage,
networking, authentication, and so on) in a secure way.

What is the shared responsibility model? 11

More information on the AWS shared responsibility model can be found at the following
link: https://aws.amazon.com/blogs/industries/applying-the-aws-
shared-responsibility-model-to-your-gxp-solution/.

Azure and the shared responsibility model
Looking at the shared responsibility model from Azure's point of view, we can see the
distinction between Azure's responsibility for its data centers (physical layers) and the
customer's responsibility at the top layers (identities, devices, and customers' data). In the
middle layers (operating system, network controls, and applications) the responsibility
changes between Azure and the customers, according to various service types. The
following diagram depicts Azure and the shared responsibility model:

Figure 1.3 – Azure and the shared responsibility model

As a customer of Azure, reading this book will allow you to gain the essential knowledge
and best practices for using common Azure services (including compute, storage,
networking, authentication, and others) in a secure way.

More information on the Azure shared responsibility model can be found at the
following link: https://docs.microsoft.com/en-us/azure/security/
fundamentals/shared-responsibility.

12 Introduction to Cloud Security

GCP and the shared responsibility model
Looking at the shared responsibility model from GCP's point of view, we can see
that Google would like to emphasize that it builds its own hardware, which enables
the company to control the hardware, boot, and kernel of its platform, including the
storage layer encryption, network equipment, and logging of everything that Google is
responsible for.

When looking at things that the customer is responsible for we can see a lot more
layers, including everything from the guest operating system, network security rules,
authentication, identity, and web application security, to things such as deployment, usage,
access policies, and content (customers' data). The following diagram depicts GCP and the
shared responsibility model:

Figure 1.4 – GCP and the shared responsibility model

Command-line tools 13

As a customer of GCP, reading this book will allow you to gain the essential knowledge
and best practices for using common GCP services (including compute, storage,
networking, authentication, and more) in a secure way.

More information about the GCP shared responsibility model can be found at the
following link: https://services.google.com/fh/files/misc/google-
cloud-security-foundations-guide.pdf.

As a customer, understanding the shared responsibility model allows you, at any given
time, to understand which layers are under the cloud vendor's responsibility and which
layers are under the customer's responsibility.

Command-line tools
One of the things that makes cloud environments so robust is the ability to control almost
anything using the Application Programming Interface (API) or using the command line.

Most mature cloud providers have already published and maintain their own Command-
Line Interface (CLI) to allow customers to perform actions in an easy and standard way.

An alternative to using the command line to interact with the cloud provider's API is using
a Software Developer Kit (SDK) – a method to control actions (from deploying a virtual
machine to encrypting storage), query information from a service (checking whether
auditing is enabled for my customers logging into my web application), and more.

Since this book doesn't require previous development experience, I will provide examples
for performing actions using the command-line tools.

During various chapters of this book, I will provide you with examples of commands
that will allow you to easily implement the various security controls over AWS, Azure,
and GCP.

I highly recommend that you become familiar with those tools.

AWS CLI
AWS CLI can be installed on Windows (64 bit), Linux (both x86 and ARM processors),
macOS, and even inside a Docker container.

The AWS CLI documentation explains how to install the tool and provides a detailed
explanation of how to use it.

The documentation can be found at https://aws.amazon.com/cli.

14 Introduction to Cloud Security

Azure CLI
Azure CLI can be installed on Windows, Linux (Ubuntu, Debian, RHEL, CentOS,
Fedora, openSUSE), and macOS.

The Azure CLI documentation explains how to install the tool and provides a detailed
explanation of how to use it.

The documentation can be found at https://docs.microsoft.com/en-us/cli/
azure.

Google Cloud SDK
The Google command-line tool (gcloud CLI) can be installed on Windows, Linux
(Ubuntu, Debian, RHEL, CentOS, Fedora), and macOS.

The Google Cloud SDK documentation explains how to install the tool and provides a
detailed explanation of how to use it.

The documentation can be found at https://cloud.google.com/sdk.

Summary
In the first chapter of this book, we learned the definition of a cloud, the different cloud
deployment models, and the different cloud service models.

We also learned what the shared cloud responsibility model is, and how AWS, Azure, and
GCP look at this concept from their own point of view.

Lastly, we had a short introduction to the AWS, Azure, and GCP built-in command-
line tools, and, during the next chapters, I will provide you with examples of how to
implement various tasks using the command-line tools.

This introduction will be referred to in the following chapters, where we will dive
deeper into the best practices for securing cloud services using (in most cases) the cloud
providers' built-in capabilities.

Securing cloud environments can be challenging, depending on your previous knowledge
in IT or information security or cloud services in general.

Reading this book will assist you in gaining the necessary knowledge of how to secure cloud
environments, regardless of your role in the organization or your previous experience.

In the next chapter, we will review the various compute services in the cloud (including
virtual machines, managed databases, container services, and finally serverless services).

2
Securing Compute

Services
Speaking about cloud services, specifically Infrastructure as a Service (IaaS), the
most common resource everyone talks about is compute – from the traditional virtual
machines (VMs), through managed databases (run on VMs on the backend), to modern
compute architecture such as containers and eventually serverless.

This chapter will cover all types of compute services and provide you with best practices
on how to securely deploy and manage each of them.

In this chapter, we will cover the following topics:

•	 Securing VMs (authentication, network access control, metadata, serial console
access, patch management, and backups)

•	 Securing Managed Database Services (identity management, network access
control, data protection, and auditing and monitoring)

•	 Securing Containers (identity management, network access control, auditing and
monitoring, and compliance)

•	 Securing serverless/function as a service (identity management, network access
control, auditing and monitoring, compliance, and configuration change)

16 Securing Compute Services

Technical requirements
For this chapter, you need to have an understanding of VMs, what managed databases
are, and what containers (and Kubernetes) are, as well as a fundamental understanding
of serverless.

Securing VMs
Each cloud provider has its own implementation of VMs (or virtual servers), but at the
end of the day, the basic idea is the same:

1.	 Select a machine type (or size) – a ratio between the amount of virtual CPU
(vCPU) and memory, according to their requirements (general-purpose, compute-
optimized, memory-optimized, and so on).

2.	 Select a preinstalled image of an operating system (from Windows to Linux flavors).
3.	 Configure storage (adding additional volumes, connecting to file sharing services,

and others).
4.	 Configure network settings (from network access controls to micro-segmentation,

and others).
5.	 Configure permissions to access cloud resources.
6.	 Deploy an application.
7.	 Begin using the service.
8.	 Carry out ongoing maintenance of the operating system.

According to the shared responsibility model, when using IaaS, we (as the customers) are
responsible for the deployment and maintenance of virtual servers, as explained in the
coming section.

Next, we are going to see what the best practices are for securing common VM services in
AWS, Azure, and GCP.

Securing Amazon Elastic Compute Cloud (EC2)
Amazon EC2 is the Amazon VM service.

General best practices for EC2 instances
Following are some of the best practices to keep in mind:

•	 Use only trusted AMI when deploying EC2 instances.

Securing VMs 17

•	 Use a minimal number of packages inside an AMI, to lower the attack surface.

•	 Use Amazon built-in agents for EC2 instances (backup, patch management,
hardening, monitoring, and others).

•	 Use the new generation of EC2 instances, based on the AWS Nitro System, which
offloads virtualization functions (such as network, storage, and security) to
dedicated software and hardware chips. This allows the customer to get much better
performance, with much better security and isolation of customers' data.

For more information, please refer the following resources:

Best practices for building AMIs:

https://docs.aws.amazon.com/marketplace/latest/userguide/best-
practices-for-building-your-amis.html

Amazon Linux AMI:

https://aws.amazon.com/amazon-linux-2/

AWS Nitro System:

https://aws.amazon.com/ec2/nitro/

Best practices for authenticating to an instance
AWS does not have access to customers' VMs.

It doesn't matter whether you choose to deploy a Windows or a Linux machine, by running
the EC2 launch deployment wizard, you must choose either an existing key pair or create
a new key. This set of private/public keys is generated at the client browser – AWS does not
have any access to these keys, and therefore cannot log in to your EC2 instance.

For Linux instances, the key pair is used for logging in to the machine via the SSH protocol.

Refer to the following link: https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/ec2-key-pairs.html.

For Windows instances, the key pair is used to retrieve the built-in administrator's password.

Refer to the following link: https://docs.amazonaws.cn/en_us/AWSEC2/
latest/WindowsGuide/ec2-windows-passwords.html.

18 Securing Compute Services

The best practices are as follows:

•	 Keep your private keys in a secured location. A good alternative for storing and
retrieving SSH keys is to use AWS Secrets Manager.

•	 Avoid storing private keys on a bastion host or any instance directly exposed to the
internet. A good alternative to logging in using SSH, without an SSH key, is to use
AWS Systems Manager, through Session Manager.

•	 Join Windows or Linux instances to an Active Directory (AD) domain and use
your AD credentials to log in to the EC2 instances (and avoid using local credentials
or SSH keys completely).

For more information, please refer the following resources:

How to use AWS Secrets Manager to securely store and rotate SSH key pairs:

https://aws.amazon.com/blogs/security/how-to-use-aws-secrets-
manager-securely-store-rotate-ssh-key-pairs/

Allow SSH connections through Session Manager:

https://docs.aws.amazon.com/systems-manager/latest/userguide/
session-manager-getting-started-enable-ssh-connections.html

Seamlessly join a Windows EC2 instance:

https://docs.aws.amazon.com/directoryservice/latest/admin-
guide/launching_instance.html

Seamlessly join a Linux EC2 instance to your AWS-managed Microsoft AD directory:

https://docs.aws.amazon.com/directoryservice/latest/admin-
guide/seamlessly_join_linux_instance.html

Best practices for securing network access to an instance
Access to AWS resources and services such as EC2 instances is controlled via security
groups (at the EC2 instance level) or a network access control list (NACL) (at the
subnet level), which are equivalent to the on-premises layer 4 network firewall or access
control mechanism.

As a customer, you configure parameters such as source IP (or CIDR), destination IP (or
CIDR), destination port (or predefined protocol), and whether the port is TCP or UDP.

You may also use another security group as either the source or destination in a
security group.

Securing VMs 19

For remote access and management of Linux machines, limit inbound network access to
TCP port 22.

For remote access and management of Windows machines, limit inbound network access
to TCP port 3389.

The best practices are as follows:

•	 For remote access protocols (SSH/RDP), limit the source IP (or CIDR) to well-
known addresses. Good alternatives for allowing remote access protocols to an EC2
instance are to use a VPN tunnel, use a bastion host, or use AWS Systems Manager
Session Manager.

•	 For file sharing protocols (CIFS/SMB/FTP), limit the source IP (or CIDR) to well-
known addresses.

•	 Set names and descriptions for security groups to allow a better understanding of
the security group's purpose.

•	 Use tagging (that is, labeling) for security groups to allow a better understanding of
which security group belongs to which AWS resources.

•	 Limit the number of ports allowed in a security group to the minimum required
ports for allowing your service or application to function.

For more information, please refer the following resources:

Amazon EC2 security groups for Linux instances: https://docs.aws.amazon.
com/AWSEC2/latest/UserGuide/ec2-security-groups.html

Security groups for your virtual private cloud (VPC): https://docs.aws.amazon.
com/vpc/latest/userguide/VPC_SecurityGroups.html

AWS Systems Manager Session Manager:

https://docs.aws.amazon.com/systems-manager/latest/userguide/
session-manager.html

Compare security groups and network ACLs:

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Security.
html#VPC_Security_Comparison

Best practices for securing instance metadata
Instance metadata is a method to retrieve information about a running instance, such as
the hostname and internal IP address.

20 Securing Compute Services

An example of metadata about a running instance can be retrieved from within an instance,
by either opening a browser from within the operating system or using the command line, to
a URL such as http://169.254.169.254/latest/meta-data/.

Even though the IP address is an internal IP (meaning it cannot be accessed from outside
the instance), the information, by default, can be retrieved locally without authentication.

AWS allows you to enforce authenticated or session-oriented requests to the instance
metadata, also known as Instance Metadata Service Version 2 (IMDSv2).

The following command uses the AWS CLI tool to enforce IMDSv2 on an existing instance:

aws ec2 modify-instance-metadata-options \

 --instance-id <INSTANCE-ID> \

 --http-endpoint enabled --http-tokens required

For more information, please refer the following resource:

Configure the instance metadata service:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
configuring-instance-metadata-service.html

Best practices for securing a serial console connection
For troubleshooting purposes, AWS allows you to connect using a serial console (a similar
concept to what we used to have in the physical world with network equipment) to resolve
network or operating system problems when SSH or RDP connections are not available.

The following command uses the AWS CLI tool to allow serial access at the AWS account
level to a specific AWS Region:

aws ec2 enable-serial-console-access --region <Region_Code>

Since this type of remote connectivity exposes your EC2 instance, it is recommended to
follow the following best practices:

•	 Access to the EC2 serial console should be limited to the group of individuals using
identity and access management (IAM) roles.

•	 Only allow access to EC2 serial console when required.

•	 Always set a user password on an instance before allowing the EC2 serial console.

Securing VMs 21

For more information, please refer the following resource:

Configure access to the EC2 serial console:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configure-
access-to-serial-console.html

Best practices for conducting patch management
Patch management is a crucial part of every instance of ongoing maintenance.

To deploy security patches for either Windows or Linux-based instances in a standard
manner, it is recommended to use AWS Systems Manager Patch Manager, following
this method:

1.	 Configure the patch baseline.
2.	 Scan your EC2 instances for deviation from the patch baseline at a scheduled interval.
3.	 Install missing security patches on your EC2 instances.
4.	 Review the Patch Manager reports.

The best practices are as follows:

•	 Use AWS Systems Manager Compliance to make sure all your EC2 instances are up
to date.

•	 Create a group with minimal IAM privileges to allow only relevant team members
to conduct patch deployment.

•	 Use tagging (that is, labeling) for your EC2 instances to allow patch deployment
groups per tag (for example, prod versus dev environments).

•	 For stateless EC2 instances (where no user session data is stored inside an EC2
instance), replace an existing EC2 instance with a new instance, created from an
up-to-date operating system image.

For more information, please refer the following resource:

Software patching with AWS Systems Manager:

https://aws.amazon.com/blogs/mt/software-patching-with-aws-
systems-manager/

22 Securing Compute Services

Best practices for securing backups
Backing up is crucial for EC2 instance recovery.

The AWS Backup service encrypts your backups in transit and at rest using AWS
encryption keys, stored in AWS Key Management Service (KMS) (as explained
in Chapter 7, Applying Encryption in Cloud Services), as an extra layer of security,
independent of your Elastic Block Store (EBS) volume or snapshot encryption keys.

The best practices are as follows:

•	 Configure the AWS Backup service with an IAM role to allow access to the
encryption keys stored inside AWS KMS.

•	 Configure the AWS Backup service with an IAM role to allow access to your
backup vault.

•	 Use tagging (that is, labeling) for backups to allow a better understanding of which
backup belongs to which EC2 instance.

•	 Consider replicating your backups to another region.

For more information, please refer the following resources:

Protecting your data with AWS Backup:

https://aws.amazon.com/blogs/storage/protecting-your-data-
with-aws-backup/

Creating backup copies across AWS Regions:

https://docs.aws.amazon.com/aws-backup/latest/devguide/cross-
region-backup.html

Summary
In this section, we have learned how to securely maintain a VM, based on AWS
infrastructure – from logging in to securing network access, troubleshooting using a serial
console, patch management, and backup.

Securing Azure Virtual Machines
Azure Virtual Machines is the Azure VM service.

Securing VMs 23

General best practices for Azure Virtual Machines
Following are some of the best practices to keep in mind:

•	 Use only trusted images when deploying Azure Virtual Machines.

•	 Use a minimal number of packages inside an image, to lower the attack surface.

•	 Use Azure built-in agents for Azure Virtual Machines (backup, patch management,
hardening, monitoring, and others).

•	 For highly sensitive environments, use Azure confidential computing images, to
ensure security and isolation of customers' data.

For more information, please refer the following resources:

Azure Image Builder overview:

https://docs.microsoft.com/en-us/azure/virtual-machines/image-
builder-overview

Using Azure for cloud-based confidential computing:

https://docs.microsoft.com/en-us/azure/confidential-computing/
overview#using-azure-for-cloud-based-confidential-computing-

Best practices for authenticating to a VM
Microsoft does not have access to customers' VMs.

It doesn't matter whether you choose to deploy a Windows or a Linux machine, by
running the create a virtual machine wizard, to deploy a new Linux machine, by default,
you must choose either an existing key pair or create a new key pair.

This set of private/public keys is generated at the client side – Azure does not have any
access to these keys, and therefore cannot log in to your Linux VM.

For Linux instances, the key pair is used for logging in to the machine via the SSH protocol.

For more information, please refer the following resource:

Generate and store SSH keys in the Azure portal:

https://docs.microsoft.com/en-us/azure/virtual-machines/
ssh-keys-portal

24 Securing Compute Services

For Windows machines, when running the create a new virtual machine wizard, you are
asked to specify your own administrator account and password to log in to the machine
via the RDP protocol.

For more information, please refer the following resource:

Create a Windows VM:

https://docs.microsoft.com/en-us/azure/virtual-machines/
windows/quick-create-portal#create-virtual-machine

The best practices are as follows:

•	 Keep your credentials in a secured location.

•	 Avoid storing private keys on a bastion host (VMs directly exposed to the internet).

•	 Join Windows or Linux instances to an AD domain and use your AD credentials to
log in to the VMs (and avoid using local credentials or SSH keys completely).

For more information, please refer the following resources:

Azure Bastion:

https://azure.microsoft.com/en-us/services/azure-bastion

Join a Windows Server VM to an Azure AD Domain Services-managed domain using a
Resource Manager template:

https://docs.microsoft.com/en-us/azure/active-directory-
domain-services/join-windows-vm-template

Join a Red Hat Enterprise Linux VM to an Azure AD Domain Services-managed domain:

https://docs.microsoft.com/en-us/azure/active-directory-
domain-services/join-rhel-linux-vm

Best practices for securing network access to a VM
Access to Azure resources and services such as VMs is controlled via network security
groups, which are equivalent to the on-premises layer 4 network firewall or access
control mechanism.

As a customer, you configure parameters such as source IP (or CIDR), destination IP (or
CIDR), source port (or a predefined protocol), destination port (or a predefined protocol),
whether the port is TCP or UDP, and the action to take (either allow or deny).

Securing VMs 25

For remote access and management of Linux machines, limit inbound network access to
TCP port 22.

For remote access and management of Windows machines, limit inbound network access
to TCP port 3389.

The best practices are as follows:

•	 For remote access protocols (SSH/RDP), limit the source IP (or CIDR) to well-
known addresses. Good alternatives for allowing remote access protocols to an
Azure VM is to use a VPN tunnel, use Azure Bastion, or use Azure Privileged
Identity Management (PIM) to allow just-in-time access to a remote VM.

•	 For file sharing protocols (CIFS/SMB/FTP), limit the source IP (or CIDR) to well-
known addresses.

•	 Set names for network security groups to allow a better understanding of the
security group's purpose.

•	 Use tagging (that is, labeling) for network security groups to allow a better
understanding of which network security group belongs to which Azure resources.

•	 Limit the number of ports allowed in a network security group to the minimum
required ports for allowing your service or application to function.

For more information, please refer the following resources:

Network security groups:

https://docs.microsoft.com/en-us/azure/virtual-network/
network-security-groups-overview

How to open ports to a VM with the Azure portal:

https://docs.microsoft.com/en-us/azure/virtual-machines/
windows/nsg-quickstart-portal

Azure Bastion:

https://azure.microsoft.com/en-us/services/azure-bastion

What is Azure AD PIM?

https://docs.microsoft.com/en-us/azure/active-directory/
privileged-identity-management/pim-configure

26 Securing Compute Services

Best practices for securing a serial console connection
For troubleshooting purposes, Azure allows you to connect using a serial console (a similar
concept to what we used to have in the physical world with network equipment) to resolve
network or operating system problems when SSH or RDP connections are not available.

The following commands use the Azure CLI tool to allow serial access for the entire Azure
subscription level:

subscriptionId=$(az account show --output=json | jq -r .id)

az resource invoke-action --action enableConsole \

 --ids "/subscriptions/$subscriptionId/providers/
Microsoft.SerialConsole/consoleServices/default" --api-
version="2018-05-01"

Since this type of remote connectivity exposes your VMs, it is recommended to follow the
following best practices:

•	 Access to the serial console should be limited to the group of individuals with the
Virtual Machine Contributor role for the VM and the Boot diagnostics storage account.

•	 Always set a user password on the target VM before allowing access to the
serial console.

For more information, please refer the following resources:

Azure serial console for Linux:

https://docs.microsoft.com/en-us/troubleshoot/azure/virtual-
machines/serial-console-linux

Azure serial console for Windows:

https://docs.microsoft.com/en-us/troubleshoot/azure/virtual-
machines/serial-console-windows

Best practices for conducting patch management
Patch management is a crucial part of every instance of ongoing maintenance.

Securing VMs 27

To deploy security patches for either Windows or Linux-based instances in a standard
manner, it is recommended to use Azure Automation Update Management, using the
following method:

1.	 Create an automation account.
2.	 Enable Update Management for all Windows and Linux machines.
3.	 Configure the schedule settings and reboot options.
4.	 Install missing security patches on your VMs.
5.	 Review the deployment status.

The best practices are as follows:

•	 Use minimal privileges for the account using Update Management to deploy
security patches.

•	 Use update classifications to define which security patches to deploy.

•	 When using an Azure Automation account, encrypt sensitive data (such as
variable assets).

•	 When using an Azure Automation account, use private endpoints to disable public
network access.

•	 Use tagging (that is, labeling) for your VMs to allow defining dynamic groups of
VMs (for example, prod versus dev environments).

•	 For stateless VMs (where no user session data is stored inside an Azure VM),
replace an existing Azure VM with a new instance, created from an up-to-date
operating system image.

For more information, please refer the following resources:

Azure Automation Update Management:

https://docs.microsoft.com/en-us/azure/architecture/hybrid/
azure-update-mgmt

Manage updates and patches for your VMs:

https://docs.microsoft.com/en-us/azure/automation/update-
management/manage-updates-for-vm

Update management permissions:

https://docs.microsoft.com/en-us/azure/automation/automation-
role-based-access-control#update-management-permissions

28 Securing Compute Services

Best practices for securing backups
Backing up is crucial for VM recovery.

The Azure Backup service encrypts your backups in transit and at rest using Azure Key
Vault (as explained in Chapter 7, Applying Encryption in Cloud Services).

The best practices are as follows:

•	 Use Azure role-based access control (RBAC) to configure Azure Backup to have
minimal access to your backups.

•	 For sensitive environments, encrypt data at rest using customer-managed keys.

•	 Use private endpoints to secure access between your data and the recovery
service vault.

•	 If you need your backups to be compliant with a regulatory standard, use Regulatory
Compliance in Azure Policy.

•	 Use Azure security baselines for Azure Backup (Azure Security Benchmark).

•	 Enable the soft delete feature to protect your backups from accidental deletion.

•	 Consider replicating your backups to another region.

For more information, please refer the following resources:

Security features to help protect hybrid backups that use Azure Backup:

https://docs.microsoft.com/en-us/azure/backup/backup-azure-
security-feature

Use Azure RBAC to manage Azure backup recovery points:

https://docs.microsoft.com/en-us/azure/backup/backup-rbac-rs-
vault

Azure Policy Regulatory Compliance controls for Azure Backup:

https://docs.microsoft.com/en-us/azure/backup/security-
controls-policy

Soft delete for Azure Backup:

https://docs.microsoft.com/en-us/azure/backup/backup-azure-
security-feature-cloud

Securing VMs 29

Cross Region Restore (CRR) for Azure Virtual Machines using Azure Backup:

https://azure.microsoft.com/en-us/blog/cross-region-restore-
crr-for-azure-virtual-machines-using-azure-backup/

Summary
In this section, we have learned how to securely maintain a VM, based on Azure
infrastructure – from logging in to securing network access, troubleshooting using a serial
console, patch management, and backup.

Securing Google Compute Engine (GCE) and VM
instances
GCE is Google's VM service.

General best practices for Google VMs
Following are some of the best practices to keep in mind:

•	 Use only trusted images when deploying Google VMs.

•	 Use a minimal number of packages inside an image, to lower the attack surface.

•	 Use GCP built-in agents for Google VMs (patch management, hardening,
monitoring, and so on).

•	 For highly sensitive environments, use Google Confidential Computing images, to
ensure security and isolation of customers' data.

For more information, please refer the following resources:

List of public images available on GCE:

https://cloud.google.com/compute/docs/images

Confidential Computing:

https://cloud.google.com/confidential-computing

Best practices for authenticating to a VM instance
Google does not have access to customers' VM instances.

When you run the create instance wizard, no credentials are generated.

30 Securing Compute Services

For Linux instances, you need to manually create a key pair and add the public key to
either the instance metadata or the entire GCP project metadata to log in to the machine
instance via the SSH protocol.

For more information, please refer the following resource:

Managing SSH keys in metadata:

https://cloud.google.com/compute/docs/instances/adding-
removing-ssh-keys

For Windows machine instances, you need to manually reset the built-in administrator's
password to log in to the machine instance via the RDP protocol.

For more information, please refer the following resource:

Creating passwords for Windows VMs:

https://cloud.google.com/compute/docs/instances/windows/
creating-passwords-for-windows-instances

The best practices are as follows:

•	 Keep your private keys in a secured location.

•	 Avoid storing private keys on a bastion host (machine instances directly exposed to
the internet).

•	 Periodically rotate SSH keys used to access compute instances.

•	 Periodically review public keys inside the compute instance or GCP project-level
SSH key metadata and remove unneeded public keys.

•	 Join Windows or Linux instances to an AD domain and use your AD credentials to
log in to the VMs (and avoid using local credentials or SSH keys completely).

For more information, please refer the following resources:

Quickstart: Joining a Windows VM to a domain:

https://cloud.google.com/managed-microsoft-ad/docs/quickstart-
domain-join-windows

Quickstart: Joining a Linux VM to a domain:

https://cloud.google.com/managed-microsoft-ad/docs/quickstart-
domain-join-linux

Securing VMs 31

Best practices for securing network access to a VM instance
Access to GCP resources and services such as VM instances is controlled via VPC
firewall rules, which are equivalent to the on-premises layer 4 network firewall or access
control mechanism.

As a customer, you configure parameters such as the source IP (or CIDR), source service,
source tags, destination port (or a predefined protocol), whether the port is TCP or UDP,
whether the traffic direction is ingress or egress, and the action to take (either allow
or deny).

For remote access and management of Linux machines, limit inbound network access to
TCP port 22.

For remote access and management of Windows machines, limit inbound network access
to TCP port 3389.

The best practices are as follows:

•	 For remote access protocols (SSH/RDP), limit the source IP (or CIDR) to well-
known addresses.

•	 For file sharing protocols (CIFS/SMB/FTP), limit the source IP (or CIDR) to well-
known addresses.

•	 Set names and descriptions for firewall rules to allow a better understanding of the
security group's purpose.

•	 Use tagging (that is, labeling) for firewall rules to allow a better understanding of
which firewall rule belongs to which GCP resources.

•	 Limit the number of ports allowed in a firewall rule to the minimum required ports
for allowing your service or application to function.

For more information, please refer the following resource:

Use fewer, broader firewall rule sets when possible:

https://cloud.google.com/architecture/best-practices-vpc-
design#fewer-firewall-rules

Best practices for securing a serial console connection
For troubleshooting purposes, GCP allows you to connect using a serial console (a similar
concept to what we used to have in the physical world with network equipment) to resolve
network or operating system problems when SSH or RDP connections are not available.

32 Securing Compute Services

The following command uses the Google Cloud SDK to allow serial access on the entire
GCP project:

gcloud compute project-info add-metadata \

 --metadata serial-port-enable=TRUE

Since this type of remote connectivity exposes your VMs, it is recommended to follow
these best practices:

•	 Configure password-based login to allow users access to the serial console.

•	 Disable interactive serial console login per compute instance when not required.

•	 Enable disconnection when the serial console connection is idle.

•	 Access to the serial console should be limited to the required group of individuals
using Google Cloud IAM roles.

•	 Always set a user password on the target VM instance before allowing access to the
serial console.

For more information, please refer the following resource:

Troubleshooting using the serial console:

https://cloud.google.com/compute/docs/troubleshooting/
troubleshooting-using-serial-console

Best practices for conducting patch management
Patch management is a crucial part of every instance of ongoing maintenance.

To deploy security patches for either Windows- or Linux-based instances, in a standard
manner, it is recommended to use Google operating system patch management, using the
following method:

1.	 Deploy the operating system config agent on the target instances.
2.	 Create a patch job.
3.	 Run patch deployment.
4.	 Schedule patch deployment.
5.	 Review the deployment status inside the operating system patch

management dashboard.

Securing managed database services 33

The best practices are as follows:

•	 Use minimal privileges for the accounts using operating system patch management
to deploy security patches, according to Google Cloud IAM roles.

•	 Gradually deploy security patches zone by zone and region by region.

•	 Use tagging (that is, labeling) for your VM instances to allow defining groups of VM
instances (for example, prod versus dev environments).

•	 For stateless VMs (where no user session data is stored inside a Google VM),
replace an existing Google VM with a new instance, created from an up-to-date
operating system image.

For more information, please refer the following resources:

Operating system patch management:

https://cloud.google.com/compute/docs/os-patch-management

Creating patch jobs:

https://cloud.google.com/compute/docs/os-patch-management/
create-patch-job

Best practices for operating system updates at scale:

https://cloud.google.com/blog/products/management-tools/best-
practices-for-os-patch-management-on-compute-engine

Summary
In this section, we have learned how to securely maintain a VM, based on GCP
infrastructure – from logging in to securing network access, troubleshooting using the
serial console, and patch management.

Securing managed database services
Each cloud provider has its own implementation of managed databases.

According to the shared responsibility model, if we choose to use a managed database, the
cloud provider is responsible for the operating system and database layers of the managed
database (including patch management, backups, and auditing).

34 Securing Compute Services

If we have the requirement to deploy a specific build of a database, we can always deploy
it inside a VM, but according to the shared responsibility model, we will oversee the
entire operating system and database maintenance (including hardening, backup, patch
management, and monitoring).

A managed solution for running the database engine – either a common database engine
such as MySQL, PostgreSQL, Microsoft SQL Server, an Oracle Database server, or
proprietary databases such as Amazon DynamoDB, Azure Cosmos DB, or Google Cloud
Spanner, but at the end of the day, the basic idea is the same:

1.	 Select the database type according to its purpose or use case (relational database,
NoSQL database, graph database, in-memory database, and others).

2.	 Select a database engine (for example, MySQL, PostgreSQL, Microsoft SQL Server,
or Oracle Database server).

3.	 For relational databases, select a machine type (or size) – a ratio between the
amount of vCPU and memory, according to their requirements (general-purpose,
memory-optimized, and so on).

4.	 Choose whether high availability is required.
5.	 Deploy a managed database instance (or cluster).
6.	 Configure network access control from your cloud environment to your

managed database.
7.	 Enable logging for any access attempt or configuration changes in your

managed database.
8.	 Configure backups on your managed database for recovery purposes.
9.	 Connect your application to the managed database and begin using the service.

There are various reasons for choosing a managed database solution:

•	 Maintenance of the database is under the responsibility of the cloud provider.

•	 Security patch deployment is under the responsibility of the cloud provider.

•	 Availability of the database is under the responsibility of the cloud provider.

•	 Backups are included as part of the service (up to a certain amount of storage and
amount of backup history).

•	 Encryption in transit and at rest are embedded as part of a managed solution.

•	 Auditing is embedded as part of a managed solution.

Since there is a variety of database types and several database engines, in this chapter, we
will focus on a single, popular relational database engine – MySQL.

Securing managed database services 35

This chapter will not be focusing on non-relational databases.

Next, we are going to see what the best practices are for securing common managed
MySQL database services from AWS, Azure, and GCP.

Securing Amazon RDS for MySQL
Amazon Relational Database Service (RDS) for MySQL is the Amazon-managed
MySQL service.

Best practices for configuring IAM for a managed MySQL
database service
MySQL supports the following types of authentication methods:

•	 Local username/password authentication against MySQL's built-in
authentication mechanism.

•	 AWS IAM database authentication.

•	 AWS Directory Service for Microsoft AD authentication.

The best practices are as follows:

•	 For the local MySQL master user, create a strong and complex password (at least
15 characters, made up of lowercase and uppercase letters, numbers, and special
characters), and keep the password in a secured location.

•	 For end users who need direct access to the managed database, the preferred method
is to use the AWS IAM service, since it allows you to centrally manage all user
identities, control their password policy, conduct an audit on their actions (that is, API
calls), and, in the case of a suspicious security incident, disable the user identity.

•	 If you manage your user identities using AWS Directory Service for Microsoft AD
(AWS-managed Microsoft AD), use this service to authenticate your end users
using the Kerberos protocol.

For more information, please refer the following resources:

IAM database authentication for MySQL:

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/
UsingWithRDS.IAMDBAuth.html

36 Securing Compute Services

Using Kerberos authentication for MySQL:

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql-
kerberos.html

Best practices for securing network access to a managed MySQL
database service
Access to a managed MySQL database service is controlled via database security groups,
which are equivalent to security groups and the on-premises layer 4 network firewall or
access control mechanism.

As a customer, you configure parameters such as the source IP (or CIDR) of your web or
application servers and the destination IP (or CIDR) of your managed MySQL database
service, and AWS configures the port automatically.

The best practices are as follows:

•	 Managed databases must never be accessible from the internet or a publicly
accessible subnet – always use private subnets to deploy your databases.

•	 Configure security groups for your web or application servers and set the security
group as target CIDR when creating a database security group.

•	 If you need to manage the MySQL database service, either use an EC2 instance (or
bastion host) to manage the MySQL database remotely or create a VPN tunnel from
your remote machine to the managed MySQL database.

•	 Since Amazon RDS is a managed service, it is located outside the customer's VPC.
An alternative to secure access from your VPC to the managed RDS environment
is to use AWS PrivateLink, which avoids sending network traffic outside your VPC,
through a secure channel, using an interface VPC endpoint.

•	 Set names and descriptions for the database security groups to allow a better
understanding of the database security group's purpose.

•	 Use tagging (that is, labeling) for database security groups to allow a better
understanding of which database security group belongs to which AWS resources.

For more information, please refer the following resources:

Controlling access to RDS with security groups:

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/
Overview.RDSSecurityGroups.html

Securing managed database services 37

Amazon RDS API and interface VPC endpoints (AWS PrivateLink):

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/
vpc-interface-endpoints.html

Best practices for protecting data stored in a managed MySQL
database service
A database is meant to store data.

In many cases, a database (and, in this case, a managed MySQL database) may contain
sensitive customer data (from a retail store containing customers' data to an organization's
sensitive HR data).

To protect customers' data, it is recommended to encrypt data both in transport (when data
passes through the network), to avoid detection by an external party, and at rest (data stored
inside a database), to avoid data being revealed, even by an internal database administrator.

Encryption allows you to maintain data confidentiality and data integrity (make sure your
data is not changed by an untrusted party).

The best practices are as follows:

•	 Enable SSL/ TLS 1.2 transport layer encryption to your database.

•	 For non-sensitive environments, encrypt data at rest using AWS KMS (as explained
in Chapter 7, Applying Encryption in Cloud Services).

•	 For sensitive environments, encrypt data at rest using customer master key (CMK)
management (as explained in Chapter 7, Applying Encryption in Cloud Services).

For more information, please refer the following resources:

Using SSL with a MySQL database instance:

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_
MySQL.html#MySQL.Concepts.SSLSupport

Updating applications to connect to MySQL database instances using new
SSL/TLS certificates:

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/
ssl-certificate-rotation-mysql.html

38 Securing Compute Services

Select the right encryption options for Amazon RDS database engines:

https://aws.amazon.com/blogs/database/selecting-the-right-
encryption-options-for-amazon-rds-and-amazon-aurora-database-
engines/

CMK management:

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/
Overview.Encryption.Keys.html

Best practices for conducting auditing and monitoring for a
managed MySQL database service
Auditing is a crucial part of data protection.

As with any other managed service, AWS allows you to enable logging and auditing using
two built-in services:

•	 Amazon CloudWatch: A service that allows you to log database activities and
raise an alarm according to predefined thresholds (for example, a high number of
failed logins)

•	 AWS CloudTrail: A service that allows you to monitor API activities (basically, any
action performed as part of the AWS RDS API)

The best practices are as follows:

•	 Enable Amazon CloudWatch alarms for high-performance usage (which may
indicate anomalies in the database behavior).

•	 Enable AWS CloudTrail for any database, to log any activity performed on the
database by any user, role, or AWS service.

•	 Limit access to the CloudTrail logs to the minimum number of employees –
preferably in an AWS management account, outside the scope of your end users
(including outside the scope of your database administrators), to avoid possible
deletion or changes to the audit logs.

For more information, please refer the following resources:

Using Amazon RDS event notifications:

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_
Events.html

Securing managed database services 39

Working with AWS CloudTrail and Amazon RDS:

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/
logging-using-cloudtrail.html

Summary
In this section, we have learned how to securely maintain a managed MySQL database,
based on AWS infrastructure – from logging in, to securing network access, to data
encryption (in transit and at rest), and logging and auditing.

Securing Azure Database for MySQL
Azure Database for MySQL is the Azure-managed MySQL service.

Best practices for configuring IAM for a managed MySQL
database service
MySQL supports the following types of authentication methods:

•	 Local username/password authentication against the MySQL built-in
authentication mechanism

•	 Azure AD authentication

The best practices are as follows:

•	 For the local MySQL master user, create a strong and complex password (at least
15 characters, made up of lowercase and uppercase letters, numbers, and special
characters), and keep the password in a secured location.

•	 For end users who need direct access to the managed database, the preferred method
is to use Azure AD authentication, since it allows you to centrally manage all user
identities, control their password policy, conduct an audit on their actions (that is, API
calls), and, in the case of a suspicious security incident, disable the user identity.

For more information, please refer the following resources:

Use Azure AD for authenticating with MySQL:

https://docs.microsoft.com/en-us/azure/mysql/concepts-azure-
ad-authentication

40 Securing Compute Services

Use Azure AD for authentication with MySQL:

https://docs.microsoft.com/en-us/azure/mysql/howto-configure-
sign-in-azure-ad-authentication

Best practices for securing network access to a managed MySQL
database service
Access to a managed MySQL database service is controlled via firewall rules, which allows
you to configure which IP addresses (or CIDR) are allowed to access your managed
MySQL database.

The best practices are as follows:

•	 Managed databases must never be accessible from the internet or a publicly
accessible subnet – always use private subnets to deploy your databases.

•	 Configure the start IP and end IP of your web or application servers, to limit access
to your managed database.

•	 If you need to manage the MySQL database service, either use an Azure VM (or
bastion host) to manage the MySQL database remotely or create a VPN tunnel from
your remote machine to the managed MySQL database.

•	 Since Azure Database for MySQL is a managed service, it is located outside the
customer's virtual network (VNet). An alternative to secure access from your VNet
to Azure Database for MySQL is to use a VNet service endpoint, which avoids
sending network traffic outside your VNet, through a secure channel.

For more information, please refer the following resources:

Azure Database for MySQL server firewall rules:

https://docs.microsoft.com/en-us/azure/mysql/concepts-
firewall-rules

Use VNet service endpoints and rules for Azure Database for MySQL:

https://docs.microsoft.com/en-us/azure/mysql/concepts-data-
access-and-security-vnet

Best practices for protecting data stored in a managed MySQL
database service
A database is meant to store data.

Securing managed database services 41

In many cases, a database (and, in this case, a managed MySQL database) may contain
sensitive customer data (from a retail store containing customers' data to an organization's
sensitive HR data).

To protect customers' data, it is recommended to encrypt data both in transport
(when the data passes through the network), to avoid detection by an external party, and
at rest (data stored inside a database), to avoid data being revealed, even by an internal
database administrator.

Encryption allows you to maintain data confidentiality and data integrity (make sure your
data is not changed by an untrusted party).

The best practices are as follows:

•	 Enable TLS 1.2 transport layer encryption to your database.

•	 For sensitive environments, encrypt data at rest using customer-managed keys
stored inside the Azure Key Vault service (as explained in Chapter 7, Applying
Encryption in Cloud Services).

•	 Keep your customer-managed keys in a secured location for backup purposes.

•	 Enable the soft delete and purge protection features on Azure Key Vault to avoid
accidental key deletion (which will harm your ability to access your encrypted data).

•	 Enable auditing on all activities related to encryption keys.

For more information, please refer the following resources:

Azure Database for MySQL data encryption with a customer-managed key:

https://docs.microsoft.com/en-us/azure/mysql/concepts-data-
encryption-mysql

Azure security baseline for Azure Database for MySQL:

https://docs.microsoft.com/en-us/security/benchmark/azure/
baselines/mysql-security-baseline

Best practices for conducting auditing and monitoring for a
managed MySQL database service
Auditing is a crucial part of data protection.

42 Securing Compute Services

As with any other managed service, Azure allows you to enable logging and auditing using
two built-in services:

•	 Built-in Azure Database for MySQL audit logs

•	 Azure Monitor logs

The best practices are as follows:

•	 Enable audit logs for MySQL.

•	 Use the Azure Monitor service to detect failed connections.

•	 Limit access to the Azure Monitor service data to the minimum number of
employees to avoid possible deletion or changes to the audit logs.

•	 Use Advanced Threat Protection for Azure Database for MySQL to detect anomalies
or unusual activity in the MySQL database.

For more information, please refer the following resources:

Audit logs in Azure Database for MySQL:

https://docs.microsoft.com/en-us/azure/mysql/concepts-audit-
logs

Configure and access audit logs for Azure Database for MySQL in the Azure portal:

https://docs.microsoft.com/en-us/azure/mysql/howto-configure-
audit-logs-portal

Best practices for alerting on metrics with Azure Database for MySQL monitoring:

https://azure.microsoft.com/en-us/blog/best-practices-for-
alerting-on-metrics-with-azure-database-for-mysql-monitoring/

Security considerations for monitoring data:

https://docs.microsoft.com/en-us/azure/azure-monitor/roles-
permissions-security#security-considerations-for-monitoring-
data

Summary
In this section, we have learned how to securely maintain a managed MySQL database,
based on Azure infrastructure – from logging in, to securing network access, to data
encryption (in transit and at rest), and logging and auditing.

Securing managed database services 43

Securing Google Cloud SQL for MySQL
Google Cloud SQL for MySQL is the Google-managed MySQL service.

Best practices for configuring IAM for a managed MySQL
database service
MySQL supports the following types of authentication methods:

•	 Local username/password authentication against the MySQL built-in
authentication mechanism

•	 Google Cloud IAM authentication

The best practices are as follows:

•	 For the local MySQL master user, create a strong and complex password (at least
15 characters, made up of lowercase and uppercase letters, numbers, and special
characters), and keep the password in a secured location.

•	 For end users who need direct access to the managed database, the preferred
method is to use Google Cloud IAM authentication, since it allows you to centrally
manage all user identities, control their password policy, conduct an audit on their
actions (that is, API calls), and, in the case of a suspicious security incident, disable
the user identity.

For more information, please refer the following resources:

Creating and managing MySQL users:

https://cloud.google.com/sql/docs/mysql/create-manage-users

MySQL users:

https://cloud.google.com/sql/docs/mysql/users

Roles and permissions in Cloud SQL:

https://cloud.google.com/sql/docs/mysql/roles-and-permissions

44 Securing Compute Services

Best practices for securing network access to a managed MySQL
database service
Access to a managed MySQL database service is controlled via one of the following options:

•	 Authorized networks: Allows you to configure which IP addresses (or CIDR) are
allowed to access your managed MySQL database

•	 Cloud SQL Auth proxy: Client installed on your application side, which
handles authentication to the Cloud SQL for MySQL database in a secure and
encrypted tunnel

The best practices are as follows:

•	 Managed databases must never be accessible from the internet or a publicly
accessible subnet – always use private subnets to deploy your databases.

•	 If possible, the preferred option is to use the Cloud SQL Auth proxy.

•	 Configure authorized networks for your web or application servers to allow them
access to your Cloud SQL for MySQL.

•	 If you need to manage the MySQL database service, use either a GCE VM instance
to manage the MySQL database remotely or a Cloud VPN (configures an IPSec
tunnel to a VPN gateway device).

For more information, please refer the following resources:

Authorizing with authorized networks:

https://cloud.google.com/sql/docs/mysql/authorize-networks

Connecting using the Cloud SQL Auth proxy:

https://cloud.google.com/sql/docs/mysql/connect-admin-proxy

Cloud VPN overview:

https://cloud.google.com/network-connectivity/docs/vpn/
concepts/overview

Best practices for protecting data stored in a managed MySQL
database service
A database is meant to store data.

Securing managed database services 45

In many cases, a database (and, in this case, a managed MySQL database) may contain
sensitive customer data (from a retail store containing customer data to an organization's
sensitive HR data).

To protect customers' data, it is recommended to encrypt data both in transport (when
the data passes through the network), to avoid detection by an external party, and at rest
(data stored inside a database), to avoid data being revealed, even by an internal
database administrator.

Encryption allows you to maintain data confidentiality and data integrity (make sure your
data is not changed by an untrusted party).

The best practices are as follows:

•	 Enforce TLS 1.2 transport layer encryption on your database.

•	 For sensitive environments, encrypt data at rest using customer-managed
encryption keys (CMEKs) stored inside the Google Cloud KMS service (as
explained in Chapter 7, Applying Encryption in Cloud Services).

•	 When using CMEKs, create a dedicated service account, and grant permission to
the customers to access the encryption keys inside Google Cloud KMS.

•	 Enable auditing on all activities related to encryption keys.

For more information, please refer the following resources:

Configuring SSL/TLS certificates:

https://cloud.google.com/sql/docs/mysql/configure-ssl-
instance#enforce-ssl

Client-side encryption:

https://cloud.google.com/sql/docs/mysql/client-side-encryption

Overview of CMEKs:

https://cloud.google.com/sql/docs/mysql/cmek

Using CMEKs:

https://cloud.google.com/sql/docs/mysql/configure-cmek

46 Securing Compute Services

Best practices for conducting auditing and monitoring for a
managed MySQL database service
Auditing is a crucial part of data protection.

As with any other managed service, GCP allows you to enable logging and auditing using
Google Cloud Audit Logs.

The best practices are as follows:

•	 Admin activity audit logs are enabled by default and cannot be disabled.

•	 Explicitly enable data access audit logs to log activities performed on the database.

•	 Limit the access to audit logs to the minimum number of employees to avoid
possible deletion or changes to the audit logs.

For more information, please refer the following resources:

Audit logs:

https://cloud.google.com/sql/docs/mysql/audit-logging

Cloud Audit Logs:

https://cloud.google.com/logging/docs/audit

Configuring data access audit logs:

https://cloud.google.com/logging/docs/audit/configure-data-
access

Permissions and roles:

https://cloud.google.com/logging/docs/access-
control#permissions_and_roles

Summary
In this section, we have learned how to securely maintain a managed MySQL database,
based on GCP infrastructure – from logging in, to securing network access, to data
encryption (in transit and at rest), and logging and auditing.

Securing containers 47

Securing containers
Following VMs, the next evolution in the compute era is containers.

Containers behave like VMs, but with a much smaller footprint.

Instead of having to deploy an application above an entire operating system, you could
use containers to deploy your required application, with only the minimum required
operating system libraries and binaries.

Containers have the following benefits over VMs:

•	 Small footprint: Only required libraries and binaries are stored inside a container.

•	 Portability: You can develop an application inside a container on your laptop and
run it at a large scale in a production environment with hundreds or thousands of
container instances.

•	 Fast deployment and updates compared to VMs.

The following diagram presents the architectural differences between VMs and containers:

Figure 2.1 – VMs versus containers

If you are still in the development phase, you can install a container engine on your laptop
and create a new container (or download an existing container) locally, until you complete
the development phase.

48 Securing Compute Services

When you move to production and have a requirement to run hundreds of container
instances, you need an orchestrator – a mechanism (or a managed service) for managing
container deployment, health check monitoring, container recycling, and more.

Docker was adopted by the industry as a de facto standard for wrapping containers, and
in the past couple of years, more and more cloud vendors have begun to support a new
initiative for wrapping containers called the Open Container Initiative (OCI).

Kubernetes is an open source project (developed initially by Google) and is now
considered the industry de facto standard for orchestrating, deploying, scaling, and
managing containers.

In this section, I will present the most common container orchestrators available as
managed services.

For more information, please refer the following resources:

What is a container?

https://www.docker.com/resources/what-container

Open Container Initiative:

https://opencontainers.org/

OCI artifact support in Amazon ECR:

https://aws.amazon.com/blogs/containers/oci-artifact-support-
in-amazon-ecr/

Azure and OCI images:

https://docs.microsoft.com/en-us/azure/container-registry/
container-registry-image-formats#oci-images

GCP and OCI image format:

https://cloud.google.com/artifact-registry/docs/supported-
formats#oci

The Kubernetes project:

https://kubernetes.io/

Next, we are going to see what the best practices are for securing common container and
Kubernetes services from AWS, Azure, and GCP.

Securing containers 49

Securing Amazon Elastic Container Service (ECS)
ECS is the Amazon-managed container orchestration service.

It can integrate with other AWS services such as Amazon Elastic Container Registry
(ECR) for storing containers, AWS IAM for managing permissions to ECS, and Amazon
CloudWatch for monitoring ECS.

Best practices for configuring IAM for Amazon ECS
AWS IAM is the supported service for managing permissions to access and run containers
through Amazon ECS.

The best practices are as follows:

•	 Grant minimal IAM permissions for the Amazon ECS service (for running tasks,
accessing S3 buckets, monitoring using CloudWatch Events, and so on).

•	 If you are managing multiple AWS accounts, use temporary credentials (using AWS
Security Token Service or the AssumeRole capability) to manage ECS on the target
AWS account with credentials from a source AWS account.

•	 Use service roles to allow the ECS service to assume your role and access resources
such as S3 buckets, RDS databases, and so on.

•	 Use IAM roles to control access to Amazon Elastic File System (EFS) from ECS.

•	 Enforce multi-factor authentication (MFA) for end users who have access to the
AWS console and perform privileged actions such as managing the ECS service.

•	 Enforce policy conditions such as requiring end users to connect to the ECS service
using a secured channel (SSL/TLS), connecting using MFA, log in at specific hours
of the day, and so on.

•	 Store your container images inside Amazon ECR and grant minimal IAM
permissions for accessing and managing Amazon ECR.

For more information, please refer the following resources:

Amazon ECS container instance IAM role:

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/
instance_IAM_role.html

IAM roles for tasks:

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/
task-iam-roles.html

50 Securing Compute Services

Authorization based on Amazon ECS tags:

https://docs.aws.amazon.com/AmazonECS/latest/userguide/
security_iam_service-with-iam.html#security_iam_service-with-
iam-tags

Using IAM to control filesystem data access:

https://docs.aws.amazon.com/efs/latest/ug/iam-access-control-
nfs-efs.html

Amazon ECS task and container security:

https://docs.aws.amazon.com/AmazonECS/latest/
bestpracticesguide/security-tasks-containers.html

Best practices for securing network access to Amazon ECS
Since Amazon ECS is a managed service, it is located outside the customer's VPC. An
alternative to secure access from your VPC to the managed ECS environment is to use
AWS PrivateLink, which avoids sending network traffic outside your VPC, through a
secure channel, using an interface VPC endpoint.

The best practices are as follows:

•	 Use a secured channel (TLS 1.2) to control Amazon ECS using API calls.

•	 Use VPC security groups to allow access from your VPC to the Amazon ECS
VPC endpoint.

•	 If you use AWS Secrets Manager to store sensitive data (such as credentials)
from Amazon ECS, use a Secrets Manager VPC endpoint when configuring
security groups.

•	 If you use AWS Systems Manager to remotely execute commands on Amazon ECS,
use Systems Manager VPC endpoints when configuring security groups.

•	 Store your container images inside Amazon ECR and for non-sensitive
environments, encrypt your container images inside Amazon ECR using AWS KMS
(as explained in Chapter 7, Applying Encryption in Cloud Services).

•	 For sensitive environments, encrypt your container images inside Amazon
ECR using CMK management (as explained in Chapter 7, Applying Encryption in
Cloud Services).

•	 If you use Amazon ECR to store your container images, use VPC security groups to
allow access from your VPC to the Amazon ECR interface's VPC endpoint.

Securing containers 51

For more information, please refer the following resource:

Amazon ECS interface VPC endpoints (AWS PrivateLink):

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/
vpc-endpoints.html

Best practices for conducting auditing and monitoring in
Amazon ECS
Auditing is a crucial part of data protection.

As with any other managed service, AWS allows you to enable logging and auditing using
two built-in services:

•	 Amazon CloudWatch: A service that allows you to log containers' activities and
raise an alarm according to predefined thresholds (for example, low memory
resources or high CPU, which requires up-scaling your ECS cluster)

•	 AWS CloudTrail: A service that allows you to monitor API activities (basically, any
action performed on the ECS cluster)

The best practices are as follows:

•	 Enable Amazon CloudWatch alarms for high-performance usage (which may
indicate an anomaly in the ECS cluster behavior).

•	 Enable AWS CloudTrail for any action performed on the ECS cluster.

•	 Limit the access to the CloudTrail logs to the minimum number of employees –
preferably in an AWS management account, outside the scope of your end users
(including outside the scope of your ECS cluster administrators), to avoid possible
deletion or changes to the audit logs.

For more information, please refer the following resources:

Logging and monitoring in Amazon ECS:

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/
ecs-logging-monitoring.html

Logging Amazon ECS API calls with AWS CloudTrail:

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/
logging-using-cloudtrail.html

52 Securing Compute Services

Best practices for enabling compliance on Amazon ECS
Security configuration is a crucial part of your infrastructure.

Amazon allows you to conduct ongoing compliance checks against well-known security
standards (such as the Center for Internet Security Benchmarks).

The best practices are as follows:

•	 Use only trusted image containers and store them inside Amazon ECR – a private
repository for storing your organizational images.

•	 Run the Docker Bench for Security tool on a regular basis to check for compliance
with CIS Benchmarks for Docker containers.

•	 Build your container images from scratch (to avoid malicious code in preconfigured
third-party images).

•	 Scan your container images for vulnerabilities in libraries and binaries and update
your images on a regular basis.

•	 Configure your images with a read-only root filesystem to avoid unintended upload
of malicious code into your images.

For more information, please refer the following resources:

Docker Bench for Security:

https://github.com/docker/docker-bench-security

Amazon ECR private repositories:

https://docs.aws.amazon.com/AmazonECR/latest/userguide/
Repositories.html

Summary
In this section, we have learned how to securely maintain Amazon ECS, based on AWS
infrastructure – from logging in, to securing network access, to logging and auditing, and
security compliance.

Securing Amazon Elastic Kubernetes Service (EKS)
EKS is the Amazon-managed Kubernetes orchestration service.

It can integrate with other AWS services, such as Amazon ECR for storing containers, AWS
IAM for managing permissions to EKS, and Amazon CloudWatch for monitoring EKS.

Securing containers 53

Best practices for configuring IAM for Amazon EKS
AWS IAM is the supported service for managing permissions to access and run containers
through Amazon EKS.

The best practices are as follows:

•	 Grant minimal IAM permissions for accessing and managing Amazon EKS.

•	 If you are managing multiple AWS accounts, use temporary credentials (using AWS
Security Token Service or the AssumeRole capability) to manage EKS on the target
AWS account with credentials from a source AWS account.

•	 Use service roles to allow the EKS service to assume your role and access resources
such as S3 buckets and RDS databases.

•	 For authentication purposes, avoid using service account tokens.

•	 Create an IAM role for each newly created EKS cluster.

•	 Create a service account for each newly created application.

•	 Always run applications using a non-root user.

•	 Use IAM roles to control access to storage services (such as Amazon EBS, Amazon
EFS, and Amazon FSx for Lustre) from EKS.

•	 Enforce MFA for end users who have access to the AWS console and perform
privileged actions such as managing the EKS service.

•	 Store your container images inside Amazon ECR and grant minimal IAM
permissions for accessing and managing Amazon ECR.

For more information, please refer the following resources:

How Amazon EKS works with IAM:

https://docs.aws.amazon.com/eks/latest/userguide/security_iam_
service-with-iam.html

IAM roles for service accounts:

https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-
for-service-accounts.html

IAM:

https://aws.github.io/aws-eks-best-practices/security/docs/
iam/

54 Securing Compute Services

Best practices for securing network access to Amazon EKS
Since Amazon EKS is a managed service, it is located outside the customer's VPC. An
alternative to secure access from your VPC to the managed EKS environment is to use
AWS PrivateLink, which avoids sending network traffic outside your VPC, through a
secure channel, using an interface VPC endpoint.

The best practices are as follows:

•	 Use TLS 1.2 to control Amazon EKS using API calls.

•	 Use TLS 1.2 when configuring Amazon EKS behind AWS Application Load
Balancer or AWS Network Load Balancer.

•	 Use TLS 1.2 between your EKS control plane and the EKS cluster's worker nodes.

•	 Use VPC security groups to allow access from your VPC to the Amazon EKS
VPC endpoint.

•	 Use VPC security groups between your EKS control plane and the EKS cluster's
worker nodes.

•	 Use VPC security groups to protect access to your EKS Pods.

•	 Disable public access to your EKS API server – either use an EC2 instance (or
bastion host) to manage the EKS cluster remotely or create a VPN tunnel from your
remote machine to your EKS cluster.

•	 If you use AWS Secrets Manager to store sensitive data (such as credentials)
from Amazon EKS, use a Secrets Manager VPC endpoint when configuring
security groups.

•	 Store your container images inside Amazon ECR, and for non-sensitive
environments, encrypt your container images inside Amazon ECR using AWS KMS
(as explained in Chapter 7, Applying Encryption in Cloud Services).

•	 For sensitive environments, encrypt your container images inside Amazon ECR
using CMK management (as explained in Chapter 7, Applying Encryption in
Cloud Services).

•	 If you use Amazon ECR to store your container images, use VPC security groups to
allow access from your VPC to the Amazon ECR interface VPC endpoint.

For more information, please refer the following resources:

Network security:

https://aws.github.io/aws-eks-best-practices/security/docs/
network

Securing containers 55

Amazon EKS networking:

https://docs.aws.amazon.com/eks/latest/userguide/
eks-networking.html

Introducing security groups for Pods:

https://aws.amazon.com/blogs/containers/introducing-security-
groups-for-pods/

EKS best practice guides:

https://aws.github.io/aws-eks-best-practices/

Best practices for conducting auditing and monitoring in Amazon
EKS
Auditing is a crucial part of data protection.

As with any other managed service, AWS allows you to enable logging and auditing using
two built-in services:

•	 Amazon CloudWatch: A service that allows you to log EKS cluster activities and
raise an alarm according to predefined thresholds (for example, low memory
resources or high CPU, which requires up-scaling your EKS cluster).

•	 AWS CloudTrail: A service that allows you to monitor API activities (basically, any
action performed on the EKS cluster).

The best practices are as follows:

•	 Enable the Amazon EKS control plane when logging in to Amazon CloudWatch –
this allows you to log API calls, audit, and authentication information from your
EKS cluster.

•	 Enable AWS CloudTrail for any action performed on the EKS cluster.

•	 Limit the access to the CloudTrail logs to the minimum number of employees –
preferably in an AWS management account, outside the scope of your end users
(including outside the scope of your EKS cluster administrators), to avoid possible
deletion or changes to the audit logs.

56 Securing Compute Services

For more information, please refer the following resources:

Amazon EKS control plane logging:

https://docs.aws.amazon.com/eks/latest/userguide/control-
plane-logs.html

Auditing and logging:

https://aws.github.io/aws-eks-best-practices/security/docs/
detective/

Best practices for enabling compliance on Amazon EKS
Security configuration is a crucial part of your infrastructure.

Amazon allows you to conduct ongoing compliance checks against well-known security
standards (such as CIS Benchmarks).

The best practices are as follows:

•	 Use only trusted image containers and store them inside Amazon ECR – a private
repository for storing your organizational images.

•	 Run the kube-bench tool on a regular basis to check for compliance with CIS
Benchmarks for Kubernetes.

•	 Run the Docker Bench for Security tool on a regular basis to check for compliance
with CIS Benchmarks for Docker containers.

•	 Build your container images from scratch (to avoid malicious code in preconfigured
third-party images).

•	 Scan your container images for vulnerabilities in libraries and binaries and update
your images on a regular basis.

•	 Configure your images with a read-only root filesystem to avoid unintended upload
of malicious code into your images.

For more information, please refer the following resources:

Configuration and vulnerability analysis in Amazon EKS:

https://docs.aws.amazon.com/eks/latest/userguide/
configuration-vulnerability-analysis.html

Securing containers 57

Introducing the CIS Amazon EKS Benchmark:

https://aws.amazon.com/blogs/containers/introducing-cis-
amazon-eks-benchmark/

Compliance:

https://aws.github.io/aws-eks-best-practices/security/docs/
compliance/

Image security:

https://aws.github.io/aws-eks-best-practices/security/docs/
image/

Pod security:

https://aws.github.io/aws-eks-best-practices/security/docs/
pods/

kube-bench:

https://github.com/aquasecurity/kube-bench

Docker Bench for Security:

https://github.com/docker/docker-bench-security

Amazon ECR private repositories:

https://docs.aws.amazon.com/AmazonECR/latest/userguide/
Repositories.html

Summary
In this section, we have learned how to securely maintain Amazon EKS, based on AWS
infrastructure – from logging in, to securing network access, to logging and auditing, and
security compliance.

Securing Azure Container Instances (ACI)
ACI is the Azure-managed container orchestration service.

It can integrate with other Azure services, such as Azure Container Registry (ACR) for
storing containers, Azure AD for managing permissions to ACI, Azure Files for persistent
storage, and Azure Monitor.

58 Securing Compute Services

Best practices for configuring IAM for ACI
Although ACI does not have its own authentication mechanism, it is recommended to use
ACR to store your container images in a private registry.

ACR supports the following authentication methods:

•	 Managed identity: A user or system account from Azure AD

•	 Service principal: An application, service, or platform that needs access to ACR

The best practices are as follows:

•	 Grant minimal permissions for accessing and managing ACR, using Azure RBAC.

•	 When passing sensitive information (such as credential secrets), make sure the
traffic is encrypted in transit through a secure channel (TLS).

•	 If you need to store sensitive information (such as credentials), store it inside the
Azure Key Vault service.

•	 For sensitive environments, encrypt information (such as credentials) using
customer-managed keys, stored inside the Azure Key Vault service.

•	 Disable the ACR built-in admin user.

For more information, please refer the following resources:

Authenticate with ACR:

https://docs.microsoft.com/en-us/azure/container-registry/
container-registry-authentication

ACR roles and permissions:

https://docs.microsoft.com/en-us/azure/container-registry/
container-registry-roles

Encrypt a registry using a customer-managed key:

https://docs.microsoft.com/en-us/azure/container-registry/
container-registry-customer-managed-keys

Best practices for conducting auditing and monitoring in ACI
Auditing is a crucial part of data protection.

Securing containers 59

As with any other managed service, Azure allows you to enable logging and auditing using
Azure Monitor for containers – a service that allows you to log container-related activities
and raise an alarm according to predefined thresholds (for example, low memory
resources or high CPU, which requires up-scaling your container environment).

The best practices are as follows:

•	 Enable audit logging for Azure resources, using Azure Monitor, to log
authentication-related activities of your ACR.

•	 Limit the access to the Azure Monitor logs to the minimum number of employees
to avoid possible deletion or changes to the audit logs.

For more information, please refer the following resources:

Container insights overview:

https://docs.microsoft.com/en-us/azure/azure-monitor/
containers/container-insights-overview

Container monitoring solution in Azure Monitor:

https://docs.microsoft.com/en-us/azure/azure-monitor/
containers/containers

Best practices for enabling compliance on ACI
Security configuration is a crucial part of your infrastructure.

Azure allows you to conduct ongoing compliance checks against well-known security
standards (such as CIS Benchmarks).

The best practices are as follows:

•	 Use only trusted image containers and store them inside ACR – a private repository
for storing your organizational images.

•	 Integrate ACR with Azure Security Center, to detect non-compliant images (from
the CIS standard).

•	 Build your container images from scratch (to avoid malicious code in preconfigured
third-party images).

•	 Scan your container images for vulnerabilities in libraries and binaries and update
your images on a regular basis.

60 Securing Compute Services

For more information, please refer the following resources:

Azure security baseline for ACI:

https://docs.microsoft.com/en-us/security/benchmark/azure/
baselines/container-instances-security-baseline

Azure security baseline for ACR:

https://docs.microsoft.com/en-us/security/benchmark/azure/
baselines/container-registry-security-baseline

Security considerations for ACI:

https://docs.microsoft.com/en-us/azure/container-instances/
container-instances-image-security

Introduction to private Docker container registries in Azure:

https://docs.microsoft.com/en-us/azure/container-registry/
container-registry-intro

Summary
In this section, we have learned how to securely maintain ACI, based on Azure
infrastructure – from logging in to auditing and monitoring and security compliance.

Securing Azure Kubernetes Service (AKS)
AKS is the Azure-managed Kubernetes orchestration service.

It can integrate with other Azure services, such as ACR for storing containers, Azure AD
for managing permissions to AKS, Azure Files for persistent storage, and Azure Monitor.

Best practices for configuring IAM for Azure AKS
Azure AD is the supported service for managing permissions to access and run containers
through Azure AKS.

The best practices are as follows:

•	 Enable Azure AD integration for any newly created AKS cluster.

•	 Grant minimal permissions for accessing and managing AKS, using Azure RBAC.

•	 Grant minimal permissions for accessing and managing ACR, using Azure RBAC.

•	 Create a unique service principal for each newly created AKS cluster.

Securing containers 61

•	 When passing sensitive information (such as credential secrets), make sure the
traffic is encrypted in transit through a secure channel (TLS).

•	 If you need to store sensitive information (such as credentials), store it inside the
Azure Key Vault service.

•	 For sensitive environments, encrypt information (such as credentials) using
customer-managed keys, stored inside the Azure Key Vault service.

For more information, please refer the following resources:

AKS-managed Azure AD integration:

https://docs.microsoft.com/en-us/azure/aks/managed-aad

Best practices for authentication and authorization in AKS:

https://docs.microsoft.com/en-us/azure/aks/operator-best-
practices-identity

Best practices for securing network access to Azure AKS
Azure AKS exposes services to the internet – for that reason, it is important to plan before
deploying each Azure AKS cluster.

The best practices are as follows:

•	 Avoid exposing the AKS cluster control plane (API server) to the public internet –
create a private cluster with an internal IP address and use authorized IP ranges to
define which IPs can access your API server.

•	 Use the Azure Firewall service to restrict outbound traffic from AKS cluster nodes
to external DNS addresses (for example, software updates from external sources).

•	 Use TLS 1.2 to control Azure AKS using API calls.

•	 Use TLS 1.2 when configuring Azure AKS behind Azure Load Balancer.

•	 Use TLS 1.2 between your AKS control plane and the AKS cluster's nodes.

•	 For small AKS deployments, use the kubenet plugin to implement network
policies and protect the AKS cluster.

•	 For large production deployments, use the Azure CNI Kubernetes plugin to
implement network policies and protect the AKS cluster.

•	 Use Azure network security groups to block SSH traffic to the AKS cluster nodes,
from the AKS subnets only.

62 Securing Compute Services

•	 Use network policies to protect the access between the Kubernetes Pods.

•	 Disable public access to your AKS API server – either use an Azure VM (or Azure
Bastion) to manage the AKS cluster remotely or create a VPN tunnel from your
remote machine to your AKS cluster.

•	 Disable or remove the HTTP application routing add-on.

•	 If you need to store sensitive information (such as credentials), store it inside the
Azure Key Vault service.

•	 For sensitive environments, encrypt information (such as credentials) using
customer-managed keys, stored inside the Azure Key Vault service.

For more information, please refer the following resources:

Best practices for network connectivity and security in AKS:

https://docs.microsoft.com/en-us/azure/aks/operator-best-
practices-network

Best practices for cluster isolation in AKS:

https://docs.microsoft.com/en-us/azure/aks/operator-best-
practices-cluster-isolation

Create a private AKS cluster:

https://docs.microsoft.com/en-us/azure/aks/private-clusters

Best practices for conducting auditing and monitoring in Azure AKS
Auditing is a crucial part of data protection.

As with any other managed service, Azure allows you to enable logging and auditing using
Azure Monitor for containers – a service that allows you to log container-related activities
and raise an alarm according to predefined thresholds (for example, low memory
resources or high CPU, which requires up-scaling your container environment).

The best practices are as follows:

•	 Enable audit logging for Azure resources, using Azure Monitor, to log
authentication-related activities of your ACR.

•	 Limit the access to the Azure Monitor logs to the minimum number of employees
to avoid possible deletion or changes to the audit logs.

Securing containers 63

For more information, please refer the following resources:

ACI overview:

https://docs.microsoft.com/en-us/azure/azure-monitor/
containers/container-insights-overview

Container monitoring solution in Azure Monitor:

https://docs.microsoft.com/en-us/azure/azure-monitor/
containers/containers

Best practices for enabling compliance on Azure AKS
Security configuration is a crucial part of your infrastructure.

Azure allows you to conduct ongoing compliance checks against well-known security
standards (such as CIS Benchmarks).

The best practices are as follows:

•	 Use only trusted image containers and store them inside ACR – a private repository
for storing your organizational images.

•	 Use Azure Defender for Kubernetes to protect Kubernetes clusters
from vulnerabilities.

•	 Use Azure Defender for container registries to detect and remediate vulnerabilities
in container images.

•	 Integrated Azure Container Registry with Azure Security Center to detect
non-compliant images (from the CIS standard).

•	 Build your container images from scratch (to avoid malicious code in preconfigured
third-party images).

•	 Scan your container images for vulnerabilities in libraries and binaries and update
your images on a regular basis.

For more information, please refer the following resources:

Introduction to Azure Defender for Kubernetes:

https://docs.microsoft.com/en-us/azure/security-center/
defender-for-kubernetes-introduction

64 Securing Compute Services

Use Azure Defender for container registries to scan your images for vulnerabilities:

https://docs.microsoft.com/en-us/azure/security-center/
defender-for-container-registries-usage

Azure security baseline for ACI:

https://docs.microsoft.com/en-us/security/benchmark/azure/
baselines/container-instances-security-baseline

Azure security baseline for ACR:

https://docs.microsoft.com/en-us/security/benchmark/azure/
baselines/container-registry-security-baseline

Security considerations for ACI:

https://docs.microsoft.com/en-us/azure/container-instances/
container-instances-image-security

Introduction to private Docker container registries in Azure:

https://docs.microsoft.com/en-us/azure/container-registry/
container-registry-intro

Summary
In this section, we have learned how to securely maintain AKS, based on Azure
infrastructure – from logging in, to network access, to auditing and monitoring, and
security compliance.

Securing Google Kubernetes Engine (GKE)
GKE is the Google-managed Kubernetes orchestration service.

It can integrate with other GCP services, such as Google Container Registry for storing
containers, Google Cloud IAM for managing permissions to GKE, Google Filestore for
persistent storage, and Google Cloud operations for monitoring.

Best practices for configuring IAM for GKE
Google Cloud IAM is the supported service for managing permissions to access and run
containers through GKE.

Securing containers 65

The best practices are as follows:

•	 Grant minimal permissions for accessing and managing the Google Cloud IAM
service, using Kubernetes RBAC.

•	 Use Google Groups to manage permissions to your GKE cluster.

•	 Use the Google IAM recommender to set the minimal permissions for your
GKE cluster.

•	 Create a unique service account with minimal permissions for any newly created
GKE cluster.

•	 Enforce the use of MFA for any user who needs access to manage your GKE cluster.

•	 If you need to store sensitive information (such as credentials), store it inside the
Google Cloud KMS service.

•	 For sensitive environments, encrypt information (such as credentials) using CMEKs
stored inside the Google Cloud KMS service.

For more information, please refer the following resources:

Creating IAM policies:

https://cloud.google.com/kubernetes-engine/docs/how-to/iam

Configuring RBAC:

https://cloud.google.com/kubernetes-engine/docs/how-to/role-
based-access-control

Enforce least privilege with recommendations:

https://cloud.google.com/iam/docs/recommender-overview

Use least privilege Google service accounts:

https://cloud.google.com/kubernetes-engine/docs/how-to/
hardening-your-cluster#permissions

Secret management:

https://cloud.google.com/kubernetes-engine/docs/how-to/
hardening-your-cluster#secret_management

66 Securing Compute Services

Best practices for securing network access to GKE
GKE exposes services to the internet – for that reason, it is important to plan before
deploying each GKE cluster.

The best practices are as follows:

•	 Create private GKE clusters to avoid exposing the GKE cluster control plane (API
server) to the public internet – use alias IP ranges to configure which IPs can access
your GKE cluster.

•	 Use authorized networks to configure who can access your GKE cluster control plane.

•	 Use VPC-native networking to protect the access between the Kubernetes Pods.

•	 Use network policies for Kubernetes to protect the access between the
Kubernetes Pods.

•	 Use shielded GKE nodes as an additional layer of protection to your GKE
cluster nodes.

•	 Create separate namespaces for your applications, according to RBAC requirements.

•	 Enable a GKE sandbox to achieve better isolation of your GKE cluster Pods.

•	 Use TLS 1.2 to control your GKE cluster using API calls.

•	 Use TLS 1.2 between your GKE control plane and the GKE cluster's nodes.

•	 Use TLS 1.2 when configuring the GKE cluster behind Google Load Balancer.

•	 Disable public access to your GKE cluster API server – use a Google VM (or a
Bastion host) to manage the GKE cluster remotely.

For more information, please refer the following resources:

Creating a private cluster:

https://cloud.google.com/kubernetes-engine/docs/how-to/
private-clusters

Restrict network access to the control plane and nodes:

https://cloud.google.com/kubernetes-engine/docs/how-to/
hardening-your-cluster#restrict_network_access_to_the_control_
plane_and_nodes

Securing containers 67

Restrict traffic among Pods with a network policy:

https://cloud.google.com/kubernetes-engine/docs/how-to/
hardening-your-cluster#restrict_with_network_policy

Network security:

https://cloud.google.com/kubernetes-engine/docs/concepts/
security-overview#network_security

Harden workload isolation with a GKE sandbox:

https://cloud.google.com/kubernetes-engine/docs/how-to/
sandbox-pods

Best practices for conducting auditing and monitoring in GKE
Auditing is a crucial part of data protection.

As with any other managed service, Google allows you to enable logging and auditing
using the Google Cloud Logging service – a service that allows you to audit container-
related activities.

The best practices are as follows:

•	 Enable logging for any newly created GKE cluster and integrate the item with the
Google Cloud Logging service, to log all audit activities related to your GKE cluster.

•	 When using a container-optimized operating system image, make sure you send its
Linux audit logs to the Google Cloud Logging service.

•	 Limit the access to the Google Cloud Logging service logs to the minimum number
of employees to avoid possible deletion or changes to the audit logs.

For more information, please refer the following resources:

Audit policy:

https://cloud.google.com/kubernetes-engine/docs/concepts/
audit-policy

Overview of Google Cloud's operations suite for GKE:

https://cloud.google.com/stackdriver/docs/solutions/gke

68 Securing Compute Services

Remediating security health analytics findings:

https://cloud.google.com/security-command-center/docs/how-to-
remediate-security-health-analytics-findings#container_
vulnerability_findings

Best practices for enabling compliance in GKE
Security configuration is a crucial part of your infrastructure.

Google allows you to conduct ongoing compliance checks against well-known security
standards (such as CIS Benchmarks).

The best practices are as follows:

•	 Use only trusted image containers and store them inside Google Container Registry
– a private repository for storing your organizational images.

•	 Always use the latest build of Kubernetes on both your GKE cluster and
cluster nodes.

•	 Use the GKE auditor to detect GKE misconfigurations.

•	 Use container-optimized operating systems when creating new container images,
for better security.

•	 Build your container images from scratch (to avoid malicious code in preconfigured
third-party images).

•	 Scan your container images for vulnerabilities in libraries and binaries and update
your images on a regular basis.

•	 Use Google Binary Authorization to make sure you use only signed container
images from trusted authorities.

•	 Use container threat detection to detect attacks against your container images in
real time.

Securing serverless/function as a service 69

For more information, please refer the following resources:

Container threat detection conceptual overview:

https://cloud.google.com/security-command-center/docs/
concepts-container-threat-detection-overview

GKE CIS 1.1.0 Benchmark Inspec Profile:

https://github.com/GoogleCloudPlatform/inspec-gke-cis-
benchmark

GKE auditor:

https://github.com/google/gke-auditor

Node images:

https://cloud.google.com/kubernetes-engine/docs/concepts/node-
images#containerd_node_images

Binary authorization:

https://cloud.google.com/binary-authorization

Container Registry:

https://cloud.google.com/container-registry

Summary
In this section, we have learned how to securely maintain the Google Kubernetes service,
based on GCP infrastructure – from logging in, to network access, to auditing and
monitoring, and security compliance.

Securing serverless/function as a service
Although the name implies that there are no servers, the term serverless or function as a
service means that you, as a customer of the service, are not in charge of the underlying
compute infrastructure (operating system maintenance, scale, runtime management,
and so on) – you simply import your code (according to the supported language by each
cloud provider), select your preferred runtime, select the amount of required memory per
function (which affects the amount of CPU), and set the trigger to invoke the function.

70 Securing Compute Services

The following diagram presents the architectural differences between VMs, containers,
and serverless:

Figure 2.2 – VMs versus containers versus serverless

In this section, I will present the most common serverless/function as a service platforms.

Then, we are going to see what the best practices are for securing common serverless
services from AWS, Azure, and GCP.

Securing AWS Lambda
AWS Lambda is the Amazon serverless service.

It can integrate with other AWS services, such as AWS IAM for managing permissions to
AWS Lambda, Amazon CloudWatch for monitoring AWS Lambda, and Amazon S3 and
Amazon EFS for persistent storage.

Best practices for configuring IAM for AWS Lambda
AWS IAM is the supported service for managing permissions to AWS Lambda.

The best practices are as follows:

•	 Grant minimal IAM permissions for any newly created AWS Lambda function (for
running tasks, accessing S3 buckets, monitoring using CloudWatch Events, and so
on) – match a specific IAM role to any newly created AWS Lambda function.

•	 Use open source tools such as serverless-puresec-cli to generate IAM roles
for your function.

•	 Avoid storing credentials inside AWS Lambda code.

Securing serverless/function as a service 71

•	 If you need to store sensitive data (such as credentials), use AWS Secrets Manager.

•	 For better protection of your Lamba functions, configure AWS Lambda behind
Amazon API Gateway.

•	 For sensitive environments, encrypt Lambda environment variables using CMK
management (as explained in Chapter 7, Applying Encryption in Cloud Services).

•	 Use TLS 1.2 to encrypt sensitive data over the network.

•	 Enforce MFA for end users who have access to the AWS API (console, CLI, and
SDK) and perform privileged actions such as managing the Lambda service.

For more information, please refer the following resources:

Identity-based IAM policies for Lambda:

https://docs.aws.amazon.com/lambda/latest/dg/access-control-
identity-based.html

Security best practices:

https://docs.aws.amazon.com/whitepapers/latest/serverless-
architectures-lambda/security-best-practices.html

Encrypting Lambda environment variables:

https://docs.aws.amazon.com/whitepapers/latest/kms-best-
practices/encrypting-lambda-environment-variables.html

serverless-puresec-cli:

https://github.com/puresec/serverless-puresec-cli

Best practices for securing network access to AWS Lambda
AWS Lambda can be deployed either as an external resource outside your VPC or inside
your VPC – for that reason, it is important to plan before deploying each Lambda function.

The best practices are as follows:

•	 Use Amazon API Gateway to restrict access to your Lambda function, from a
specific IP address or CIDR.

72 Securing Compute Services

•	 If your Lambda function is located outside a VPC, and the Lambda function needs
access to resources inside your VPC, use AWS PrivateLink, which avoids sending
network traffic outside your VPC, through a secure channel, using an interface
VPC endpoint.

•	 If your Lambda function is located inside your VPC, and the Lambda function needs
access to external resources on the internet, use the NAT gateway to give your Lambda
function the required access, without exposing Lambda to the internet directly.

•	 Use TLS 1.2 to encrypt traffic to and from your Lambda functions.

For more information, please refer the following resources:

Data protection in AWS Lambda:

https://docs.aws.amazon.com/lambda/latest/dg/security-
dataprotection.html

AWS Lambda now supports AWS PrivateLink:

https://aws.amazon.com/about-aws/whats-new/2020/10/aws-lambda-
now-supports-aws-privatelink/

Configuring a Lambda function to access resources in a VPC:

https://docs.aws.amazon.com/lambda/latest/dg/configuration-
vpc.html

How do I give internet access to a Lambda function that's connected to an Amazon VPC?

https://aws.amazon.com/premiumsupport/knowledge-center/
internet-access-lambda-function/

Best practices for conducting auditing and monitoring in AWS
Lambda
Auditing is a crucial part of data protection.

As with any other managed service, AWS allows you to enable auditing using the AWS
CloudTrail service – a service that allows you to audit API-related activities.

The best practices are as follows:

•	 Enable enhanced monitoring of your Lambda functions.

•	 Use Amazon CloudWatch to detect spikes in Lambda usage.

•	 Use AWS CloudTrail to monitor API activities related to your Lambda function.

Securing serverless/function as a service 73

For more information, please refer the following resources:

Using AWS Lambda with AWS CloudTrail:

https://docs.aws.amazon.com/lambda/latest/dg/with-cloudtrail.
html

Using AWS Lambda with Amazon CloudWatch Events:

https://docs.aws.amazon.com/lambda/latest/dg/services-
cloudwatchevents.html

Best practices for conducting compliance, configuration change, and
secure coding in AWS Lambda
Serverless, or function as a service, is mainly code running inside a closed
managed environment.

As a customer, you cannot control the underlying infrastructure – as a result, you must
invest in secure coding to avoid attackers breaking into your application and causing harm
that AWS cannot protect.

The best practices are as follows:

•	 Follow the OWASP Serverless Top 10 project documentation when writing your
Lambda function code.

•	 Enable versions in your Lambda functions, to be able to roll back to previous code.

•	 Use AWS Signer to sign your Lambda function code and make sure you only run
signed code.

•	 If you use Amazon API Gateway in front of your Lambda functions, use the API
Gateway Lambda authorizer as an extra layer of protection for authorizing access to
your Lambda functions.

•	 Use AWS Config to check for changes in your Lambda functions.

•	 Use Amazon Inspector assessment templates to detect non-compliance or the use of
old versions of a runtime in your Lambda functions.

74 Securing Compute Services

For more information, please refer the following resources:

Using AWS Lambda with AWS Config:

https://docs.aws.amazon.com/lambda/latest/dg/services-config.
html

Lambda function versions:

https://docs.aws.amazon.com/lambda/latest/dg/configuration-
versions.html

Use API Gateway Lambda authorizers:

https://docs.aws.amazon.com/apigateway/latest/developerguide/
apigateway-use-lambda-authorizer.html

Setting up automatic assessment runs through a Lambda function:

https://docs.aws.amazon.com/inspector/latest/userguide/
inspector_assessments.html#assessment_runs-schedule

Configuring code signing for AWS Lambda:

https://docs.aws.amazon.com/lambda/latest/dg/configuration-
codesigning.html

OWASP Serverless Top 10:

https://owasp.org/www-project-serverless-top-10/

Summary
In this section, we have learned how to securely maintain the AWS Lambda service, based
on AWS infrastructure – from logging in, to network access, to auditing and monitoring,
and security compliance.

Securing Azure Functions
Azure Functions is the Azure function as a service.

It can integrate with other Azure services, such as Azure AD for managing permissions to
Azure Functions, Azure Monitor Application Insights for monitoring Azure Functions,
and Azure Blob storage for persistent storage.

Securing serverless/function as a service 75

Best practices for configuring IAM for Azure Functions
Azure AD is the supported service for managing permissions to your Azure Functions.

The best practices are as follows:

•	 Enable Azure AD authentication for any newly created Azure function by turning
on Azure App Service authentication.

•	 Avoid allowing anonymous access to your Azure function – require clients to
authenticate before using Azure Functions.

•	 Grant minimal permissions for any newly created Azure function using
Azure RBAC.

•	 Prefer to use temporary credentials to your Azure function – use Shared Access
Signature (SAS) tokens to achieve this task.

•	 Where possible, prefer to use client certificates to authenticate clients to your
Azure functions.

•	 To allow your Azure functions access to Azure resources, use a system-assigned
managed identity from Azure AD.

•	 If you need to store sensitive data (such as credentials), use Azure Key Vault.

•	 For sensitive environments, encrypt the Azure Functions application settings using
customer-managed key management inside Azure Key Vault (as explained in
Chapter 7, Applying Encryption in Cloud Services).

For more information, please refer the following resources:

How to use managed identities for App Service and Azure Functions:

https://docs.microsoft.com/en-us/azure/app-service/overview-
managed-identity?toc=/azure/azure-functions/toc.json

Azure Functions authorizations:

https://docs.microsoft.com/en-us/azure/api-management/import-
function-app-as-api#authorization

Use Key Vault references for App Service and Azure Functions:

https://docs.microsoft.com/en-us/azure/app-service/
app-service-key-vault-references

76 Securing Compute Services

Best practices for securing data and network access to Azure
Functions
Azure Functions can access resources in your Azure subscription – for that reason, it is
important to plan before deploying each Azure function.

The best practices are as follows:

•	 For better protection of your Azure functions, configure the Azure function behind
Azure API Gateway.

•	 Use TLS 1.2 to encrypt sensitive data over the network.

•	 Create a separate Azure storage account for any newly created Azure function.

•	 Use Azure network security groups to block outbound traffic from your Azure
functions (when internet access is not required).

•	 Use the Azure VNet service endpoint to control access to your Azure functions.

•	 Use Azure App Service static IP restrictions to control access to your Azure functions.

•	 Use either an Azure App Service Standard plan or an Azure App Service Premium
plan to configure network isolations of your Azure functions.

•	 Use Azure Defender for App Service as an extra layer of protection for your Azure
functions that have inbound access from the internet.

•	 Use Azure Web Application Firewall as an extra layer of protection for your Azure
functions that have inbound access from the internet.

•	 Disable and block the use of the FTP protocol with your Azure functions.

For more information, please refer the following resources:

Azure Functions networking options:

https://docs.microsoft.com/en-us/azure/azure-functions/
functions-networking-options

Secure an HTTP endpoint in production:

https://docs.microsoft.com/en-us/azure/azure-functions/
functions-bindings-http-webhook-trigger?tabs=csharp#secure-an-
http-endpoint-in-production

Securing serverless/function as a service 77

IP address restrictions:

https://docs.microsoft.com/en-us/azure/azure-functions/
ip-addresses#ip-address-restrictions

Azure Functions and FTP:

https://docs.microsoft.com/en-us/azure/azure-functions/
functions-deployment-technologies#ftp

Protect your web apps and APIs:

https://docs.microsoft.com/en-us/azure/security-center/
defender-for-app-service-introduction

Best practices for conducting auditing and monitoring in Azure
Functions
Auditing is a crucial part of data protection.

As with any other managed service, Azure allows you to enable logging and auditing using
the Azure Monitor service.

The best practices are as follows:

•	 Use the Azure Monitor service to log authentication-related activities of your
Azure functions.

•	 Use the Security Center threat detection capability (Azure Defender).

For more information, please refer the following resources:

Logging and threat detection:

https://docs.microsoft.com/en-us/security/benchmark/azure/
baselines/functions-security-baseline#logging-and-threat-
detection

Azure security baseline for Azure Functions:

https://docs.microsoft.com/en-us/azure/azure-functions/
security-baseline#logging-and-monitoring

78 Securing Compute Services

Best practices for conducting compliance, configuration change, and
secure coding in Azure Functions
Serverless, or function as a service, is mainly code running inside a closed,
managed environment.

As a customer, you cannot control the underlying infrastructure – as a result, you must
invest in secure coding to avoid attackers breaking into your application and causing harm
that Azure cannot protect against.

The best practices are as follows:

•	 Follow the OWASP Serverless Top 10 project documentation when writing your
Azure Functions code.

•	 Use the Azure security baseline for Azure Functions (Azure Security Benchmark).

•	 Use the Security Center threat detection capability (Azure Defender).

For more information, please refer the following resources:

Azure security baseline for Azure Functions:

https://docs.microsoft.com/en-us/security/benchmark/azure/
baselines/functions-security-baseline

Posture and vulnerability management:

https://docs.microsoft.com/en-us/security/benchmark/
azure/baselines/functions-security-baseline#posture-and-
vulnerability-management

OWASP Serverless Top 10:

https://owasp.org/www-project-serverless-top-10/

Summary
In this section, we have learned how to securely maintain the Azure Functions service,
based on Azure infrastructure – from logging in, to network access, to auditing and
monitoring, and security compliance.

Securing serverless/function as a service 79

Securing Google Cloud Functions
Google Cloud Functions is the GCP function as a service.

It can integrate with other GCP services, such as Google Cloud IAM for managing
permissions to Google Cloud Functions, Google Cloud Audit Logs for monitoring Google
Cloud Functions, and Google Cloud Storage for persistent storage.

Best practices for configuring IAM for Google Cloud Functions
Google Cloud IAM is the supported service for managing permissions on your Google
Cloud Functions.

The best practices are as follows:

•	 Use Google Cloud IAM to manage permissions to your Google Cloud functions.

•	 Grant minimal permissions for accessing and managing the Google Cloud
IAM service.

•	 Create a unique service account for each newly created Google Cloud function with
minimal permissions using the Google Cloud IAM service.

For more information, please refer the following resources:

Authorizing access via IAM:

https://cloud.google.com/functions/docs/securing/managing-
access-iam

Authenticating for invocation:

https://cloud.google.com/functions/docs/securing/
authenticating

Securing access with identity:

https://cloud.google.com/functions/docs/securing#identity

