

Computer Networks
Tanenbaum • Feamster • Wetherall

SIXTH EDITION

GLOBAL
EDITION

COMPUTER NETWORKS
SIXTH EDITION

This page is intentionally left blank

COMPUTER NETWORKS

SIXTH EDITION

Global Edition

ANDREW S. TANENBAUM
Vrije Universiteit

Amsterdam, The Netherlands

NICK FEAMSTER
University of Chicago

Chicago, IL

DAVID WETHERALL
Google

 Please contact https://support.pearson.com/getsupport/s/contactsupport

 Pearson Education Limited
KAO Two
KAO Park
Hockham Way
Harlow
CM17 9SR
United Kingdom

and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsonglobaleditions.com

© Pearson Education Limited, 2021

The rights of Andrew S. Tanenbaum, Nick Feamster, and David Wetherall to be identified as the authors of
this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Computer Networks, 6th Edition, ISBN 978-
0-13-676405-2 by Andrew S. Tanenbaum, Nick Feamster, and David Wetherall, published by Pearson
Education © 2020.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without either the prior written permission of the publisher or a license permitting restricted copying in the
United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street,
London EC 1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text
does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the
use of such trademarks imply any affiliation with or endorsement of this book by such owners. For
information regarding permissions, request forms, and the appropriate contacts within the Pearson
Education Global Rights and Permissions department, please visit www.pearsoned.com/permissions.

This eBook is a standalone product and may or may not include all assets that were part of the print
version. It also does not provide access to other Pearson digital products like MyLab and Mastering. The
publisher reserves the right to remove any material in this eBook at any time.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

ISBN 10: 1-292-37406-3
ISBN 13: 978-1-292-37406-2
eBook ISBN 13: 9781292374017

To Suzanne, Barbara, Daniel, Aron, Nathan, Marvin, Matilde, Olivia, and Mirte (AST)

To Marshini, Mila, and Kira (NF)

To Katrin, Lucy, and Pepper (DJW)

This page is intentionally left blank

CONTENTS

PREFACE xix

1 INTRODUCTION 1

1.1 USES OF COMPUTER NETWORKS 1
1.1.1 Access to Information 2
1.1.2 Person-to-Person Communication 5
1.1.3 Electronic Commerce 6
1.1.4 Entertainment 6
1.1.5 The Internet of Things 7

1.2 TYPES OF COMPUTER NETWORKS 7
1.2.1 Broadband Access Networks 8
1.2.2 Mobile and Wireless Access Networks 8
1.2.3 Content Provider Networks 11
1.2.4 Transit Networks 12
1.2.5 Enterprise Networks 13

1.3 NETWORK TECHNOLOGY, FROM LOCAL TO GLOBAL 15
1.3.1 Personal Area Networks 15
1.3.2 Local Area Networks 16
1.3.3 Home Networks 18
1.3.4 Metropolitan Area Networks 20
1.3.5 Wide Area Networks 21
1.3.6 Internetworks 25

vii

viii CONTENTS

1.4 EXAMPLES OF NETWORKS 26
1.4.1 The Internet 26
1.4.2 Mobile Networks 36
1.4.3 Wireless Networks (WiFi) 43

1.5 NETWORK PROTOCOLS 47
1.5.1 Design Goals 47
1.5.2 Protocol Layering 49
1.5.3 Connections and Reliability 53
1.5.4 Service Primitives 56
1.5.5 The Relationship of Services to Protocols 58

1.6 REFERENCE MODELS 59
1.6.1 The OSI Reference Model 59
1.6.2 The TCP/IP Reference Model 61
1.6.3 A Critique of the OSI Model and Protocols 64
1.6.4 A Critique of the TCP/IP Reference Model and Protocols 66
1.6.5 The Model Used in This Book 67

1.7 STANDARDIZATION 68
1.7.1 Standardization and Open Source 68
1.7.2 Who’s Who in the Telecommunications World 69
1.7.3 Who’s Who in the International Standards World 71
1.7.4 Who’s Who in the Internet Standards World 72

1.8 POLICY, LEGAL, AND SOCIAL ISSUES 75
1.8.1 Online Speech 75
1.8.2 Net Neutrality 76
1.8.3 Security 77
1.8.4 Privacy 78
1.8.5 Disinformation 79

1.9 METRIC UNITS 80

1.10 OUTLINE OF THE REST OF THE BOOK 81

1.11 SUMMARY 82

CONTENTS ix

2 THE PHYSICAL LAYER 89

2.1 GUIDED TRANSMISSION MEDIA 90
2.1.1 Persistent Storage 90
2.1.2 Twisted Pairs 91
2.1.3 Coaxial Cable 93
2.1.4 Power Lines 94
2.1.5 Fiber Optics 95

2.2 WIRELESS TRANSMISSION 100
2.2.1 The Electromagnetic Spectrum 101
2.2.2 Frequency Hopping Spread Spectrum 103
2.2.3 Direct Sequence Spread Spectrum 103
2.2.4 Ultra-Wideband Communication 104

2.3 USING THE SPECTRUM FOR TRANSMISSION 104
2.3.1 Radio Transmission 104
2.3.2 Microwave Transmission 106
2.3.3 Infrared Transmission 107
2.3.4 Light Transmission 108

2.4 FROM WAVEFORMS TO BITS 109
2.4.1 The Theoretical Basis for Data Communication 110
2.4.2 The Maximum Data Rate of a Channel 114
2.4.3 Digital Modulation 115
2.4.4 Multiplexing 123

2.5 THE PUBLIC SWITCHED TELEPHONE NETWORK 131
2.5.1 Structure of the Telephone System 131
2.5.2 The Local Loop: Telephone Modems, ADSL, and Fiber 134
2.5.3 Trunks and Multiplexing 143
2.5.4 Switching 149

2.6 CELLULAR NETWORKS 154
2.6.1 Common Concepts: Cells, Handoff, Paging 155
2.6.2 First-Generation (1G) Technology: Analog Voice 156
2.6.3 Second-Generation (2G) Technology: Digital Voice 158
2.6.4 GSM: The Global System for Mobile Communications 159
2.6.5 Third-Generation (3G) Technology: Digital Voice and Data 162
2.6.6 Fourth-Generation (4G) Technology: Packet Switching 166
2.6.7 Fifth-Generation (5G) Technology 168

x CONTENTS

2.7 CABLE NETWORKS 169
2.7.1 A History of Cable Networks: Community Antenna Television 170
2.7.2 Broadband Internet Access Over Cable: HFC Networks 170
2.7.3 DOCSIS 173
2.7.4 Resource Sharing in DOCSIS Networks: Nodes and Minislots 174

2.8 COMMUNICATION SATELLITES 176
2.8.1 Geostationary Satellites 177
2.8.2 Medium-Earth Orbit Satellites 181
2.8.3 Low-Earth Orbit Satellites 181

2.9 COMPARING DIFFERENT ACCESS NETWORKS 184
2.9.1 Terrestrial Access Networks: Cable, Fiber, and ADSL 184
2.9.2 Satellites Versus Terrestrial Networks 186

2.10 POLICY AT THE PHYSICAL LAYER 187
2.10.1 Spectrum Allocation 187
2.10.2 The Cellular Network 190
2.10.3 The Telephone Network 192

2.11 SUMMARY 194

3 THE DATA LINK LAYER 201

3.1 DAT A LINK LAYER DESIGN ISSUES 202
3.1.1 Services Provided to the Network Layer 203
3.1.2 Framing 205
3.1.3 Error Control 208
3.1.4 Flow Control 209

3.2 ERROR DETECTION AND CORRECTION 210
3.2.1 Error-Correcting Codes 212
3.2.2 Error-Detecting Codes 217

3.3 ELEMENTARY DAT A LINK PROTOCOLS 223
3.3.1 Initial Simplifying Assumptions 223
3.3.2 Basic Transmission and Receipt 224
3.3.3 Simplex Link-Layer Protocols 228

CONTENTS xi

3.4 IMPROVING EFFICIENCY 234
3.4.1 Goal: Bidirectional Transmission, Multiple Frames in Flight 234
3.4.2 Examples of Full-Duplex, Sliding Window Protocols 238

3.5 DAT A LINK PROTOCOLS IN PRACTICE 252
3.5.1 Packet over SONET 253
3.5.2 ADSL (Asymmetric Digital Subscriber Loop) 256
3.5.3 Data Over Cable Service Interface Specification (DOCSIS) 259

3.6 SUMMARY 261

4 THE MEDIUM ACCESS CONTROL SUBLAYER 267

4.1 THE CHANNEL ALLOCATION PROBLEM 268
4.1.1 Static Channel Allocation 268
4.1.2 Assumptions for Dynamic Channel Allocation 270

4.2 MULTIPLE ACCESS PROTOCOLS 271
4.2.1 ALOHA 272
4.2.2 Carrier Sense Multiple Access Protocols 276
4.2.3 Collision-Free Protocols 279
4.2.4 Limited-Contention Protocols 283
4.2.5 Wireless LAN Protocols 287

4.3 ETHERNET 290
4.3.1 Classic Ethernet Physical Layer 290
4.3.2 Classic Ethernet MAC Sublayer Protocol 292
4.3.3 Ethernet Performance 296
4.3.4 Switched Ethernet 297
4.3.5 Fast Ethernet 300
4.3.6 Gigabit Ethernet 302
4.3.7 10-Gigabit Ethernet 306
4.3.8 40- and 100-Gigabit Ethernet 307
4.3.9 Retrospective on Ethernet 308

4.4 WIRELESS LANS 309
4.4.1 The 802.11 Architecture and Protocol Stack 310
4.4.2 The 802.11 Physical Layer 311

xii CONTENTS

4.4.3 The 802.11 MAC Sublayer Protocol 314
4.4.4 The 802.11 Frame Structure 321
4.4.5 Services 322

4.5 BLUETOOTH 324
4.5.1 Bluetooth Architecture 325
4.5.2 Bluetooth Applications 326
4.5.3 The Bluetooth Protocol Stack 327
4.5.4 The Bluetooth Radio Layer 328
4.5.5 The Bluetooth Link Layers 329
4.5.6 The Bluetooth Frame Structure 330
4.5.7 Bluetooth 5 331

4.6 DOCSIS 332
4.6.1 Overview 332
4.6.2 Ranging 333
4.6.3 Channel Bandwidth Allocation 333

4.7 DAT A LINK LAYER SWITCHING 334
4.7.1 Uses of Bridges 335
4.7.2 Learning Bridges 336
4.7.3 Spanning-Tree Bridges 339
4.7.4 Repeaters, Hubs, Bridges, Switches, Routers, and Gateways 342
4.7.5 Virtual LANs 345

4.8 SUMMARY 351

5 THE NETWORK LAYER 359

5.1 NETWORK LAYER DESIGN ISSUES 360
5.1.1 Store-and-Forward Packet Switching 360
5.1.2 Services Provided to the Transport Layer 361
5.1.3 Implementation of Connectionless Service 362
5.1.4 Implementation of Connection-Oriented Service 363
5.1.5 Comparison of Virtual-Circuit and Datagram Networks 365

5.2 ROUTING ALGORITHMS IN A SINGLE NETWORK 366
5.2.1 The Optimality Principle 368
5.2.2 Shortest Path Algorithm 370

CONTENTS xiii

5.2.3 Flooding 372
5.2.4 Distance Vector Routing 374
5.2.5 Link State Routing 377
5.2.6 Hierarchical Routing within a Network 382
5.2.7 Broadcast Routing 384
5.2.8 Multicast Routing 386
5.2.9 Anycast Routing 389

5.3 TRAFFIC MANAGEMENT AT THE NETWORK LAYER 390
5.3.1 The Need for Traffic Management: Congestion 390
5.3.2 Approaches to Traffic Management 393

5.4 QUALITY OF SERVICE AND APPLICATION QOE 406
5.4.1 Application QoS Requirements 406
5.4.2 Overprovisioning 409
5.4.3 Packet Scheduling 410
5.4.4 Integrated Services 417
5.4.5 Differentiated Services 420

5.5 INTERNETWORKING 423
5.5.1 Internetworks: An Overview 423
5.5.2 How Networks Differ 424
5.5.3 Connecting Heterogeneous Networks 425
5.5.4 Connecting Endpoints Across Heterogeneous Networks 428
5.5.5 Internetwork Routing: Routing Across Multiple Networks 430
5.5.6 Supporting Different Packet Sizes: Packet Fragmentation 431

5.6 SOFTWARE-DEFINED NETWORKING 435
5.6.1 Overview 435
5.6.2 The SDN Control Plane: Logically Centralized Software Control 436
5.6.3 The SDN Data Plane: Programmable Hardware 438
5.6.4 Programmable Network Telemetry 440

5.7 THE NETWORK LAYER IN THE INTERNET 441
5.7.1 The IP Version 4 Protocol 444
5.7.2 IP Addresses 448
5.7.3 IP Version 6 461
5.7.4 Internet Control Protocols 470
5.7.5 Label Switching and MPLS 476
5.7.6 OSPF—An Interior Gateway Routing Protocol 479
5.7.7 BGP—The Exterior Gateway Routing Protocol 484
5.7.8 Internet Multicasting 491

xiv CONTENTS

5.8 POLICY AT THE NETWORK LAYER 492
5.8.1 Peering Disputes 492
5.8.2 Traffic Prioritization 493

5.9 SUMMARY 494

6 THE TRANSPORT LAYER 501

6.1 THE TRANSPORT SERVICE 501
6.1.1 Services Provided to the Upper Layers 502
6.1.2 Transport Service Primitives 504
6.1.3 Berkeley Sockets 506
6.1.4 An Example of Socket Programming: An Internet File Server 509

6.2 ELEMENTS OF TRANSPORT PROTOCOLS 513
6.2.1 Addressing 514
6.2.2 Connection Establishment 517
6.2.3 Connection Release 523
6.2.4 Error Control and Flow Control 528
6.2.5 Multiplexing 533
6.2.6 Crash Recovery 533

6.3 CONGESTION CONTROL 536
6.3.1 Desirable Bandwidth Allocation 536
6.3.2 Regulating the Sending Rate 540
6.3.3 Wireless Issues 544

6.4 THE INTERNET TRANSPORT PROTOCOLS: UDP 546
6.4.1 Introduction to UDP 547
6.4.2 Remote Procedure Call 549
6.4.3 Real-Time Transport Protocols 552

6.5 THE INTERNET TRANSPORT PROTOCOLS: TCP 557
6.5.1 Introduction to TCP 558
6.5.2 The TCP Service Model 558
6.5.3 The TCP Protocol 561
6.5.4 The TCP Segment Header 562
6.5.5 TCP Connection Establishment 565
6.5.6 TCP Connection Release 567

CONTENTS xv

6.5.7 TCP Connection Management Modeling 567
6.5.8 TCP Sliding Window 570
6.5.9 TCP Timer Management 573
6.5.10 TCP Congestion Control 576
6.5.11 TCP CUBIC 586

6.6 TRANSPORT PROTOCOLS AND CONGESTION CONTROL 587
6.6.1 QUIC: Quick UDP Internet Connections 587
6.6.2 BBR: Congestion Control Based on Bottleneck Bandwidth 588
6.6.3 The Future of TCP 590

6.7 PERFORMANCE ISSUES 590
6.7.1 Performance Problems in Computer Networks 591
6.7.2 Network Performance Measurement 592
6.7.3 Measuring Access Network Throughput 593
6.7.4 Measuring Quality of Experience 594
6.7.5 Host Design for Fast Networks 595
6.7.6 Fast Segment Processing 598
6.7.7 Header Compression 601
6.7.8 Protocols for Long Fat Networks 603

6.8 SUMMARY 607

7 THE APPLICATION LAYER 613

7.1 THE DOMAIN NAME SYSTEM (DNS) 613
7.1.1 History and Overview 614
7.1.2 The DNS Lookup Process 614
7.1.3 The DNS Name Space and Hierarchy 617
7.1.4 DNS Queries and Responses 620
7.1.5 Name Resolution 627
7.1.6 Hands on with DNS 629
7.1.7 DNS Privacy 629
7.1.8 Contention Over Names 631

7.2 ELECTRONIC MAIL 632
7.2.1 Architecture and Services 633
7.2.2 The User Agent 635
7.2.3 Message Formats 637

xvi CONTENTS

7.2.4 Message Transfer 642
7.2.5 Final Delivery 647

7.3 THE WORLD WIDE WEB 650
7.3.1 Architectural Overview 651
7.3.2 Static Web Objects 659
7.3.3 Dynamic Web Pages and Web Applications 660
7.3.4 HTTP and HTTPS 664
7.3.5 Web Privacy 676

7.4 STREAMING AUDIO AND VIDEO 680
7.4.1 Digital Audio 682
7.4.2 Digital Video 684
7.4.3 Streaming Stored Media 687
7.4.4 Real-Time Streaming 694

7.5 CONTENT DELIVERY 703
7.5.1 Content and Internet Traffic 705
7.5.2 Server Farms and Web Proxies 707
7.5.3 Content Delivery Networks 711
7.5.4 Peer-to-Peer Networks 715
7.5.5 Evolution of the Internet 721

7.6 SUMMARY 725

8 NETWORK SECURITY 731

8.1 FUNDAMENTALS OF NETWORK SECURITY 733
8.1.1 Fundamental Security Principles 734
8.1.2 Fundamental Attack Principles 736
8.1.3 From Threats to Solutions 738

8.2 THE CORE INGREDIENTS OF AN ATTACK 739
8.2.1 Reconnaissance 739
8.2.2 Sniffing and Snooping (with a Dash of Spoofing) 742
8.2.3 Spoofing (beyond ARP) 744
8.2.4 Disruption 755

CONTENTS xvii

8.3 FIREWALLS AND INTRUSION DETECTION SYSTEMS 759
8.3.1 Firewalls 760
8.3.2 Intrusion Detection and Prevention 762

8.4 CRYPTOGRAPHY 766
8.4.1 Introduction to Cryptography 767
8.4.2 Two Fundamental Cryptographic Principles 769
8.4.3 Substitution Ciphers 771
8.4.4 Transposition Ciphers 773
8.4.5 One-Time Pads 774

8.5 SYMMETRIC-KEY ALGORITHMS 779
8.5.1 The Data Encryption Standard 780
8.5.2 The Advanced Encryption Standard 781
8.5.3 Cipher Modes 783

8.6 PUBLIC-KEY ALGORITHMS 787
8.6.1 RSA 788
8.6.2 Other Public-Key Algorithms 790

8.7 DIGITAL SIGNATURES 791
8.7.1 Symmetric-Key Signatures 791
8.7.2 Public-Key Signatures 793
8.7.3 Message Digests 795
8.7.4 The Birthday Attack 797

8.8 MANAGEMENT OF PUBLIC KEYS 799
8.8.1 Certificates 799
8.8.2 X.509 801
8.8.3 Public Key Infrastructures 802

8.9 AUTHENTICATION PROTOCOLS 805
8.9.1 Authentication Based on a Shared Secret Key 806
8.9.2 Establishing a Shared Key: The Diffie-Hellman Key Exchange 811
8.9.3 Authentication Using a Key Distribution Center 813
8.9.4 Authentication Using Kerberos 816
8.9.5 Authentication Using Public-Key Cryptography 819

8.10 COMMUNICATION SECURITY 819
8.10.1 IPsec 820
8.10.2 Virtual Private Networks 824
8.10.3 Wireless Security 825

xviii CONTENTS

8.11 EMAIL SECURITY 829
8.11.1 Pretty Good Privacy 829
8.11.2 S/MIME 833

8.12 WEB SECURITY 834
8.12.1 Threats 834
8.12.2 Secure Naming and DNSSEC 835
8.12.3 Transport Layer Security 838
8.12.4 Running Untrusted Code 842

8.13 SOCIAL ISSUES 844
8.13.1 Confidential and Anonymous Communication 844
8.13.2 Freedom of Speech 847
8.13.3 Copyright 851

8.14 SUMMARY 854

9 READING LIST AND BIBLIOGRAPHY 863

9.1 SUGGESTIONS FOR FURTHER READING 863
9.1.1 Introduction and General Works 864
9.1.2 The Physical Layer 865
9.1.3 The Data Link Layer 866
9.1.4 The Medium Access Control Sublayer 867
9.1.5 The Network Layer 868
9.1.6 The Transport Layer 869
9.1.7 The Application Layer 870
9.1.8 Network Security 871

9.2 ALPHABETICAL BIBLIOGRAPHY 872

INDEX 891

PREFACE

This book is now in its sixth edition. Each edition has corresponded to a dif-
ferent phase in the way computer networks were used. When the first edition
appeared in 1980, networks were an academic curiosity. When the second edition
appeared in 1988, networks were used by universities and large businesses. When
the third edition appeared in 1996, computer networks, especially the Internet, had
become a daily reality for millions of people. By the fourth edition, in 2003, wire-
less networks and mobile computers had become commonplace for accessing the
Web and the Internet. By the fifth edition, networks were about content distribu-
tion (especially videos using CDNs and peer-to-peer networks) and mobile phones.
Now in the sixth edition, industry emphasis on is very high performance, with 5G
cellular networks, 100-gigabit Ethernet, and 802.11ax WiFi at speeds up to 11
Gbps just around the corner.

New in the Sixth Edition
Among the many changes in this book, the most important one is the addition

of Prof. Nick Feamster as a co-author. Prof. Feamster has a Ph.D. from M.I.T. and
is now a full professor at the University of Chicago.

Another important change is that Chapter 8 (on security) has been very heavily
modified by Prof. Herbert Bos of the Vrije Universiteit in Amsterdam. The focus
has moved from cryptography to network security. The issues of hacking, DoS
attacks and so much more is front-and-center in the news almost every day, so we
are very grateful that Prof. Bos has redone the chapter to deal with these important
issues in detail. The chapter discusses vulnerabilities, how to fix them, how hack-
ers respond to the fixes, how the defenders react, and so on ad infinitum. The
material on cryptography has been reduced somewhat to make room for the large
amount of new material on network security.

Of course, the book also has many other changes to keep up with the ever-
changing world of computer networks. A chapter-by-chapter list of the major
changes follows.

xix

xx PREFACE

Chapter 1 serves the same introductory function as in previous editions, but the
contents have been revised and brought up to date. Specific updates including
adding additional discussions on the Internet of Things and modern cellular archi-
tectures, including 4G and 5G networks. Much of the discussion on Internet policy
has also been updated, particularly the discussion on net neutrality.

Chapter 2 has been updated to include discussion of more prevalent physical
media in access networks, such as DOCSIS and fiber arhictectures. Treatment of
modern cellular network architectures and technologies was added, and the section
on satellite networks was also substantially updated. Emerging technologies such
as virtualization were added, including discussions on mobile virtual network oper-
ators and cellular network slicing. The policy discussion was reorganized and
updated to include discussion on policy questions in the wireless arena, such as
spectrum.

Chapter 3 has been updated to include DOCSIS as a protocol example, as it is
a widely used access technology. Much of the error correction codes are, of course,
timeless.

Chapter 4 has been brought up to date, with new material on 40- and 100-giga-
bit Ethernet, 802.11.ac, 802.11ad, and 802.11ax. New material has been added on
DOCSIS, explaining the MAC sublayer in cable networks. The material on 802.16
has been removed as it now appears that this technology is going to lose out to the
cellular 4G and 5G technologies. The section on RFID has also been removed to
make space for new material, but also because it was not directly network related.

Chapter 5 has been updated to clarify and modernize the discussions on con-
gestion management. The sections on traffic management have been updated and
clarified, and the discussions on traffic shaping and traffic engineering have been
updated. The chapter includes an entirely new section on software-defined net-
working (SDN), including OpenFlow and programmable hardware (e.g., Tofino).
The chapter also includes discussion on emerging applications of SDN, such as in-
band network telemetry. Some of the discussion on IPv6 has also been updated.

Chapter 6 has been extensively edited to include new material on modern
transport protocols, including TCP CUBIC, QUIC, and BBR. The material on per-
formance measurement has been completely rewritten to focus on the measurement
of throughput in computer networks, including an extensive discussion on the chal-
lenges of measuring access network throughout as speeds in access ISPs increase.
The chapter also includes new material on measuring user quality of experience, an
emerging area in performance measurement.

Chapter 7 has been heavily edited. Over 60 pages of material that is no longer
relevant to a book on computer networks has been removed. The material on DNS
has been almost completely rewritten to reflect modern developments in DNS,
including the ongoing trends to encrypt DNS and generally improve its privacy
characteristics. Emerging protocols such as DNS-over-HTTPS and other privacy-
preserving techniques for DNS are discussed. The discussion of the Web has been
extensively updated, to reflect the increasing deployment of encryption on the Web,

PREFACE xxi

as well as extensive privacy issues (e.g., tracking) that are now pervasive on the
Web. The chapter includes a completely new section on Web privacy, more exten-
sive discussions of modern content delivery technology (e.g., content delivery net-
works), and an expanded discussion on peer-to-peer networks. The section on the
evolution of the Internet has also been edited to reflect trends towards distributed
cloud services.

Chapter 8 has been completely overhauled. In previous editions, the focus of
the security chapter was almost exclusively on information security by means of
cryptography. However, cryptography is only one aspect of network security and if
we look at security incidents in practice, it is generally not the aspect where the
problems are. To remedy this, we added new content on security principles, funda-
mental attack techniques, defenses, and a wide range of systems-related security
issues. Moreover, we updated the existing sections by dropping some encryption
techniques that are now obsolete and introducing more modern versions of proto-
cols and standards.

Chapter 9 contains a renewed list of suggested readings and a comprehensive
bibliography.

In addition, dozens of new exercises and dozens of new references have been
added.

List of Acronyms
Computer books are full of acronyms. This one is no exception. By the time

you are completely finished reading this one, the following should ring a bell:
AES, AMI, ARP, ARQ, ASK, BGP, BSC, CCK, CDM, CDN, CRL, DCF, DES,
DIS, DMT, DMZ, DNS, EAP, ECN, EDE, EPC, FDD, FDM, FEC, FSK, GEO,
GSM, HFC, HLR, HLS, HSS, IAB, IDS, IGP, IKE, IPS, ISM, ISO, ISP, ITU, IXC,
IXP, KDC, LAN, LCP, LEC, LEO, LER, LLD, LSR, LTE, MAN, MEO, MFJ,
MGW, MIC, MME, MPD, MSC, MSS, MTU, NAP, NAT, NAV, NCP, NFC, NIC,
NID, NRZ, ONF, OSI, PAR, PCF, PCM, PCS, PGP, PHP, PIM, PKI, PON, POP,
PPP, PSK, RAS, RCP, RED, RIP, RMT, RNC, RPC, RPR, RTO, RTP, SCO, SDH,
SDN, SIP, SLA, SNR, SPE, SSL, TCG, TCM, TCP, TDM, TLS, TPM, UDP, URL,
USB, UTP, UWB, VLR, VPN, W3C, WAF, WAN, WDM, WEP, WFQ and WPA.
But don’t worry. Each will appear in boldface type and be carefully defined before
it is used. As a fun test, see how many you can identify before reading the book,
write the number in the margin, then try again after reading the book.

Instructors’ Resource Materials
The following protected instructors’ resource materials are available on the

publisher’s Web site at www.pearsonglobaleditions.com. For a user-name and
password, please contact your local Pearson representative.

• Solutions manual
• PowerPoint lecture slides

xxii PREFACE

Students’ Resource Materials
Resources for students are available through the open-access Companion Web

site link on www.pearsonglobaleditions.com, including
• Figures, tables, and programs from the book
• Steganography demo
• Protocol simulators

Acknowledgements
Many people helped us during the course of the sixth edition. We would espe-

cially like to thank Phyllis Davis (St. Louis Community College), Farah Kandah
(University of Tennessee, Chattanooga), Jason Livingood (Comcast), Louise
Moser (University of California, Santa Barbara), Jennifer Rexford (Princeton),
Paul Schmitt (Princeton), Doug Sicker (CMU), Wenye Wang (North Carolina State
University), and Greg White (Cable Labs).

Some of Prof. Tanenbaum’s students have given valuable feedback on the man-
uscript, including: Ece Doganer, Yael Goede, Bruno Hoevelaken, Elena Ibi, Oskar
Klonowski, Johanna Sänger, Theresa Schantz, Karlis Svilans, Mascha van der
Marel, Anthony Wilkes, for providing ideas and feedback.

Jesse Donkervliet (Vrije Universiteit) thought of many new end-of-chapter
exercises to challenge the reader.

Paul Nagin (Chimborazo Publishing, Inc.) produced the Power Point slides for
instructors.

Our editor at Pearson, Tracy Johnson, was her usual helpful self in many ways
large and small. Without her advice, drive, and persistence, this edition might
never have happened. Thank you Tracy. We really appreciate your help.

Finally, we come to the most important people. Suzanne has been through this
23 times now and still has endless patience and love. Barbara and Marvin now
know the difference between good textbooks and bad ones and are always an inspi-
ration to produce good ones. Daniel and Matilde are wonderful additions to our
family. Aron, Nathan, Olivia, and Mirte probably aren’t going to read this edition,
but they inspire me and make me hopeful about the future (AST). Marshini, Mila,
and Kira: My favorite network is the one we have built together. Thank you for
your support and love (NF). Katrin and Lucy provided endless support and always
managed to keep a smile on my face. Thank you (DJW).

ANDREW S. TANENBAUM

NICK FEAMSTER

DAVID J. WETHERALL

1
INTRODUCTION

Each of the past three centuries was dominated by a single new technology.
The 18th century was the era of the great mechanical systems accompanying the
Industrial Revolution. The 19th century was the age of the steam engine. During
the 20th century, the key technology was information gathering, processing, and
distribution. Among other developments, we saw the deployment of worldwide
telephone networks, the invention of radio and television, the birth and unprece-
dented growth of the computer industry, the launching of communication satellites,
and, of course, the Internet. Who knows what miracles the 21st century will bring?

As a result of this rapid technological progress, these areas are rapidly con-
verging in the 21st century, and the differences between collecting, transporting,
storing, and processing information are quickly disappearing. Organizations with
hundreds of offices spread over a wide geographical area routinely expect to be
able to examine the current status of even their most remote outpost at the push of
a button. As our ability to gather, process, and distribute information grows, the
demand for more sophisticated information processing grows even faster.

1.1 USES OF COMPUTER NETWORKS

Although the computing industry is still young compared to other technical
industries such as automobiles and air transportation, computers have made spec-
tacular progress in a short time. During the first two decades of their existence,

1

2 INTRODUCTION CHAP. 1

computer systems were highly centralized, usually within a single room. Often,
this room had glass windows, through which visitors could gawk at the great elec-
tronic wonder inside. A medium-sized company or university might have had one
or two computers, while large institutions had at most a few dozen. The idea that
within fifty years vastly more powerful computers smaller than postage stamps
would be mass produced by the billions was science fiction.

The convergence of computers and communications has had a profound influ-
ence on the organization of computer systems. The once-dominant concept of the
‘‘computer center’’ as a room with a single large computer to which users bring
their work for processing is now obsolete (although data centers holding hundreds
of thousands of Internet servers are common). The old model of a single computer
serving all of the organization’s computational needs has been replaced by one in
which a large number of separate but interconnected computers do the job. These
systems are called computer networks. The design and organization of these net-
works are the subjects of this book.

Throughout the book, we will use the term ‘‘computer network’’ to mean a col-
lection of interconnected, autonomous computing devices. Two computers are said
to be interconnected if they can exchange information. Interconnection can take
place over a variety of transmission media including copper wire, fiber optic cable,
and radio waves (e.g., microwave, infrared, communication satellites). Networks
come in many sizes, shapes, and forms, as we will explore throughout the book.
They are usually connected to make larger networks, with the Internet being the
most well-known example of a network of networks.

1.1.1 Access to Information

Access to information comes in many forms. A common method of accessing
information via the Internet is using a Web browser, which allows a user to retrieve
information from various Web sites, including increasingly popular social media
sites. Mobile applications on smartphones now also allow users to access remote
information. Topics include the arts, business, cooking, government, health, his-
tory, hobbies, recreation, science, sports, travel, and many others. Fun comes in
too many ways to mention, plus some ways that are better left unmentioned.

News organizations have largely migrated online, with some even ceasing print
operations entirely. Access to information, including the news, is increasingly per-
sonalizable. Some online publications even allow you to tell them that you are in-
terested in corrupt politicians, big fires, scandals involving celebrities, and epi-
demics, but no football, thank you. This trend certainly threatens the employment
of 12-year-old paperboys, but online distribution has allowed the distribution of
news to reach far larger and broader audiences.

Increasingly, news is also being curated by social media platforms, where users
can post and share news content from a variety of sources, and where the news that
any given user sees is prioritized and personalized based on both explicit user

SEC. 1.1 USES OF COMPUTER NETWORKS 3

preferences and complex machine learning algorithms that predict user preferences
based on the user’s history. Online publishing and content curation on social
media platforms supports a funding model that depends largely on highly targeted
behavioral advertising, which necessarily implies gathering data about the behavior
of individual users. This information has sometimes been misused.

Online digital libraries and retail sites now host digital versions of content
ranging from academic journals to books. Many professional organizations, such
as the ACM (www.acm.org) and the IEEE Computer Society (www.computer.org),
already have all their journals and conference proceedings online. Electronic book
readers and online libraries may someday make printed books obsolete. Skeptics
should take note of the effect the printing press had on the medieval illuminated
manuscript.

Much information on the Internet is accessed using a client-server model,
where a client explicitly requests information from a server that hosts that infor-
mation, as illustrated in Fig. 1-1.

Client

Server

Network

Figure 1-1. A network with two clients and one server.

The client-server model is widely used and forms the basis of much network
usage. The most popular realization is that of a Web application, where a server
generates Web pages based on its database in response to client requests that may
update the database. The client-server model is applicable not only when the client
and server are both in the same building (and belong to the same company), but
also when they are far apart. For example, when a person at home accesses a page
on the World Wide Web, the same model is employed, with the remote Web server
being the server and the user’s personal computer being the client. Under most
conditions, one server can handle a large number (hundreds or thousands) of cli-
ents simultaneously.

If we look at the client-server model, to a first approximation we see that two
processes (running programs) are involved, one on the client machine and one on
the server machine. Communication takes the form of the client process sending a

4 INTRODUCTION CHAP. 1

message over the network to the server process. The client process then waits for a
reply message. When the server process gets the request, it performs the requested
work or looks up the requested data and sends back a reply. These messages are
shown in Fig. 1-2.

Client process Server process

Client machine

Network

Reply

Request
Server machine

Figure 1-2. The client-server model involves requests and replies.

Another popular model for accessing information is peer-to-peer communica-
tion (Parameswaran et al., 2001). In this form, individuals who form a loose group
can communicate with others in the group, as shown in Fig. 1-3. Every person can,
in principle, communicate with one or more other people; there is no fixed division
into clients and servers.

Figure 1-3. In a peer-to-peer system, there are no fixed clients and servers.

Many peer-to-peer systems, such as BitTorrent (Cohen, 2003), do not have a
central database of content. Instead, each user maintains a local database of con-
tent, as well as a list of other members of the system. A new user can then go to
any existing member to see what he has and get the names of other members to
inspect for more content and more names. This lookup process can be repeated
indefinitely to build up a large local database of what is out there. It is an activity
that would get tedious for people, but computers excel at it.

SEC. 1.1 USES OF COMPUTER NETWORKS 5

Peer-to-peer communication is often used to share music and videos. It really
hit the big time around 2000 with a music sharing service called Napster, which
was shut down after a monumental copyright infringement case (Lam and Tan,
2001; and Macedonia, 2000). Legal applications for peer-to-peer communication
now exist. These include fans sharing public domain music, families sharing pho-
tos and movies, and users downloading public software packages. In fact, one of
the most popular Internet applications of all, email, is (conceptually) peer-to-peer.
This form of communication is likely to grow considerably in the future.

1.1.2 Person-to-Person Communication

Person-to-person communication is the 21st century’s answer to the 19th cen-
tury’s telephone. Email is already used on a daily basis by millions of people all
over the world and its use is growing rapidly. It already routinely contains audio
and video as well as text and pictures. Smell may take a while.

Many Internet users now rely on some form of instant messaging to commun-
icate with other people on the Internet. This facility, derived from the UNIX talk
program in use since around 1970, allows two people to type messages at each
other in real time. There are also multi-person messaging services too, such as the
Twitter service, which lets people send short messages (possibly including video)
called ‘‘tweets’’ to their circle of friends or other followers or the whole world.

The Internet can be used by applications to carry audio (e.g., Internet radio sta-
tions, streaming music services) and video (e.g., Netflix, YouTube). Besides being
an inexpensive way to communicate with your distant friends, these applications
can provide rich experiences such as distance learning, meaning attending 8 A.M.
classes without the inconvenience of having to get out of bed first. In the long run,
the use of networks to enhance human-to-human communication may prove more
important than any of the others. It may become hugely important to people who
are geographically challenged, giving them the same access to services as people
living in the middle of a big city.

Between person-to-person communications and accessing information are
social network applications. In these applications, the flow of information is
driven by the relationships that people declare between each other. One of the
most popular social networking sites is Facebook. It lets people create and update
their personal profiles and shares the updates with other people who they have
declared to be their friends. Other social networking applications can make intro-
ductions via friends of friends, send news messages to friends, such as Twitter
above, and much more.

Even more loosely, groups of people can work together to create content. A
wiki, for example, is a collaborative Web site that the members of a community
edit. The most famous wiki is the Wikipedia, an encyclopedia anyone can read or
edit, but there are thousands of other wikis.

6 INTRODUCTION CHAP. 1

1.1.3 Electronic Commerce

Online shopping is already popular; users can browse the online catalogs of
thousands of companies and have products shipped right to their doorsteps. After
the customer buys a product electronically but cannot figure out how to use it,
online technical support may be consulted.

Another area in which e-commerce is widely used is access to financial institu-
tions. Many people already pay their bills, manage their bank accounts, and even
handle their investments electronically. Financial technology or ‘‘fintech’’ applica-
tions allow users to conduct a wide variety of financial transactions online, includ-
ing transferring money between bank accounts, or even between friends.

Online auctions of second-hand goods have become a massive industry.
Unlike traditional e-commerce, which follows the client-server model, online auc-
tions are peer-to-peer in the sense that consumers can act as both buyers and sell-
ers, although there is a central server that holds the database of products for sale.

Some of these forms of e-commerce have acquired cute little tags based on the
fact that ‘‘to’’ and ‘‘2’’ are pronounced the same. The most popular ones are listed
in Fig. 1-4.

Tag Full name Example
B2C Business-to-consumer Ordering books online
B2B Business-to-business Car manufacturer ordering tires from a supplier
G2C Government-to-consumer Government distributing tax forms electronically
C2C Consumer-to-consumer Auctioning second-hand products online
P2P Peer-to-peer Music or file sharing; Skype

Figure 1-4. Some forms of e-commerce.

1.1.4 Entertainment

Our fourth category is entertainment. This has made huge strides in the home
in recent years, with the distribution of music, radio and television programs, and
movies over the Internet beginning to rival that of traditional mechanisms. Users
can find, buy, and download MP3 songs and high-definition movies and add them
to their personal collection. TV shows now reach many homes via IPTV (IP Tele-
vision) systems that are based on IP technology instead of cable TV or radio trans-
missions. Media streaming applications let users tune to Internet radio stations or
watch recent episodes of their favorite TV shows or movies. Naturally, all of this
content can be moved around your house between different devices, displays, and
speakers, usually via a wireless network.

Soon, it may be possible to search for any movie or television program ever
made, in any country, and have it be displayed on your screen instantly. New films

SEC. 1.1 USES OF COMPUTER NETWORKS 7

may become interactive, where the user is occasionally prompted for the story di-
rection (should Macbeth murder the king or just bide his time?) with alternative
scenarios provided for all cases. Live television may also become interactive, with
the audience participating in quiz shows, choosing among contestants, and so on.

Another form of entertainment is game playing. Already we have multi-person
real-time simulation games, like hide-and-seek in a virtual dungeon, and flight
simulators with the players on one team trying to shoot down the players on the
opposing team. Virtual worlds provide a persistent setting in which thousands of
users can experience a shared reality with three-dimensional graphics.

1.1.5 The Internet of Things

Ubiquitous computing entails computing that is embedded in everyday life,
as in the vision of Mark Weiser (1991). Many homes are already wired with secu-
rity systems that include door and window sensors. Also, there are many more
sensors that can be folded into a smart home monitor, such as energy consumption.
Smart electricity, gas, and water meters report usage over the network. This func-
tionality saves the company money as there is then no need to send people to read
the meters. Smoke detectors can call the fire department instead of just making a
big noise (which has little value if no one is home). Smart refrigerators could or-
der more milk when it is almost gone. As the cost of sensing and communication
drops, more and more measurement and reporting will be done with networks. This
ongoing revolution, often referred to as the IoT (Internet of Things), is poised to
connect just about every electronic device we purchase to the Internet.

Increasingly, consumer electronic devices are networked. For example, some
high-end cameras already have a wireless network capability and use it to send
photos to a nearby display for viewing. Professional sports photographers can also
send their photos to their editors in real-time, first wirelessly to an access point
then over the Internet. Devices such as televisions that plug into the wall can use
power-line networks to send information throughout the house over the wires that
carry electricity. It may not be very surprising to have these objects on the net-
work, but objects that we do not think of as computers may sense and communi-
cate information too. For example, your shower may record water usage, give you
visual feedback while you lather up, and report to a home environmental moni-
toring application when you are done to help save on your water bill.

1.2 TYPES OF COMPUTER NETWORKS

There are many distinct types of computer networks. This section provides an
overview of a few of these networks, including those we commonly use to access
the Internet (mobile and broadband access networks); those that house the data and

8 INTRODUCTION CHAP. 1

applications we use every day (data-center networks); those that connect access
networks to data centers (transit networks); and those that we use on a campus,
office building, or other organization (enterprise networks).

1.2.1 Broadband Access Networks

In 1977, Ken Olsen was president of the Digital Equipment Corporation, then
the number two computer vendor in the world (after IBM). When asked why Digi-
tal was not going after the personal computer market in a big way, he said: ‘‘There
is no reason for any individual to have a computer in his home.’’ History showed
otherwise and Digital no longer exists. People initially bought computers for word
processing and games. Now the prevailing reason to buy a home computer is to
get Internet access. Also, many consumer electronic devices, such as set-top box-
es, game consoles, television sets, and even door locks, come with embedded com-
puters that access computer networks, especially wireless networks. Home net-
works are broadly used for entertainment, including listening to, looking at, and
creating music, photos, and videos.

Internet access provides home users with connectivity to remote computers.
As with companies, home users can access information, communicate with other
people, and buy products and services. The main benefit now comes from con-
necting these devices to other destinations outside of the home. Bob Metcalfe, the
inventor of Ethernet, hypothesized that the value of a network is proportional to the
square of the number of users because this is roughly the number of different con-
nections that may be made (Gilder, 1993). This hypothesis is known as ‘‘Met-
calfe’s law.’’ It helps to explain how the tremendous popularity of the Internet
comes from its size.

Today, broadband access networks are proliferating. In many parts of the
world, broadband access is delivered to homes through copper (e.g., telephone
lines), coaxial cable (e.g., cable), or optical fiber. The speeds of broadband Internet
access continue to increase as well, with many broadband access providers in de-
veloped countries delivering a gigabit per second to individual homes. In some
parts of the world, particularly in developing regions, the predominant mode of In-
ternet access is mobile.

1.2.2 Mobile and Wireless Access Networks

Mobile computers, such as laptops, tablets, and smartphones, are one of the
fastest-growing segments of the computer industry. Their sales have already over-
taken those of desktop computers. Why would anyone want one? People on the
go often want to use their mobile devices to read and send email, tweet, watch
movies, download music, play games, look at maps, or simply to surf the Web for
information or fun. They want to do all of the things they do at home and in the
office. Naturally, they want to do them from anywhere on land, sea, or in the air.

SEC. 1.2 TYPES OF COMPUTER NETWORKS 9

Connectivity to the Internet enables many of these mobile uses. Since having a
wired connection is impossible in cars, boats, and airplanes, there is a lot of inter-
est in wireless networks. Cellular networks operated by telephone companies are
one familiar kind of wireless network that blankets us with coverage for mobile
phones. Wireless hotspots based on the 802.11 standard are another kind of wire-
less network for mobile computers and portable devices such as phones and tablets.
They have sprung up everywhere that people go, resulting in a patchwork of cover-
age at cafes, hotels, airports, schools, trains, and planes. Anyone with a mobile de-
vice and a wireless modem can just turn on their computer and be connected to the
Internet through the hotspot as though the computer were plugged into a wired net-
work.

Wireless networks are of great value to fleets of trucks, taxis, delivery vehicles,
and repair-persons for keeping in contact with their home base. For example, in
many cities, taxi drivers are independent businessmen, rather than being employees
of a taxi company. In some of these cities, the taxis have a display the driver can
see. When a customer calls up, a central dispatcher types in the pickup and desti-
nation points. This information is displayed on the drivers’ displays and a beep
sounds. The first driver to hit a button on the display gets the call. The rise of
mobile and wireless networking has also led to a revolution in ground tran-
sportation itself, with the ‘‘sharing economy’’ allowing drivers to use their on
phones as a dispatch device, as with ride-sharing companies such as Uber and Lyft.

Wireless networks are also important to the military. If you have to be able to
fight a war anywhere on Earth at short notice, counting on using the local network-
ing infrastructure is probably not a good idea. It is better to bring your own.

Although wireless networking and mobile computing are often related, they
are not identical, as Fig. 1-5 shows. Here, we see a distinction between fixed wire-
less and mobile wireless networks. Even notebook computers are sometimes
wired. For example, if a traveler plugs a laptop computer into the wired network
jack in a hotel room, he has mobility without a wireless network. The growing per-
vasiveness of wireless networks is making this situation increasingly rare, although
for high performance, wired networks are always better.

Wireless Mobile Typical applications
No No Desktop computers in offices
No Yes A laptop computer used in a hotel room
Yes No Networks in unwired buildings
Yes Yes Store inventory with a handheld computer

Figure 1-5. Combinations of wireless networks and mobile computing.

Conversely, some wireless computers are not mobile. In people’s homes, and
in offices or hotels that lack suitable cabling, it can be more convenient to connect
desktop computers or media players wirelessly than to install wires. Installing a

10 INTRODUCTION CHAP. 1

wireless network may require simply buying a small box with some electronics in
it, unpacking it, and plugging it in. This solution may be far cheaper than having
workmen put in cable ducts to wire the building.

Finally, there are also true mobile, wireless applications, such as people walk-
ing around stores with handheld computers recording inventory. At many busy air-
ports, car rental return clerks work in the parking lot with wireless mobile com-
puters. They scan the barcodes or RFID chips of returning cars, and their mobile
device, which has a built-in printer, calls the main computer, gets the rental infor-
mation, and prints out the bill on the spot.

A key driver of mobile, wireless applications is the mobile phone. The conver-
gence between telephones and the Internet is accelerating the growth of mobile ap-
plications. Smartphones, such as Apple’s iPhone and Samsung’s Galaxy, com-
bine aspects of mobile phones and mobile computers. These phones connect to
wireless hotspots, too, and automatically switch between networks to choose the
best option for the user. Text messaging or texting (or Short Message Service as
it is known outside the U.S.) over the cellular network was tremendously popular
at its outset. It lets a mobile phone user type a short message that is then delivered
by the cellular network to another mobile subscriber. Texting is extremely profi-
itable since it costs the carrier but a tiny fraction of one cent to relay a text mes-
sage, a service for which it charges far more. Typing short text messages on mo-
bile phones was, for a time, an immense money maker for mobile carriers. Now,
many alternatives that use either the phone’s cellular data plan or wireless network,
including WhatsApp, Signal, and Facebook Messenger, have overtaken SMS.

Other consumer electronics devices can also use cellular and hotspot networks
to stay connected to remote computers. Tablets and electronic book readers can
download a newly purchased book or the next edition of a magazine or today’s
newspaper wherever they roam. Electronic picture frames can update their displays
on cue with fresh images.

Mobile phones typically know their own locations. GPS (Global Positioning
System) can directly locate a device, and mobile phones often also triangulate be-
tween Wi-Fi hotspots with known locations to determine their location. Some ap-
plications are location-dependent. Mobile maps and directions are an obvious can-
didate as your GPS-enabled phone and car probably have a better idea of where
you are than you do. So, too, are searches for a nearby bookstore or Chinese
restaurant, or a local weather forecast. Other services may record location, such as
annotating photos and videos with the place at which they were made. This anno-
tation is known as geo-tagging.

Mobile phones are being increasingly used in m-commerce (mobile-com-
merce) (Senn, 2000). Short text messages from the mobile are used to authorize
payments for food in vending machines, movie tickets, and other small items in-
stead of cash and credit cards. The charge then appears on the mobile phone bill.
When equipped with NFC (Near Field Communication), technology the mobile
can act as an RFID smartcard and interact with a nearby reader for payment. The

SEC. 1.2 TYPES OF COMPUTER NETWORKS 11

driving forces behind this phenomenon are the mobile device makers and network
operators, who are trying hard to figure out how to get a piece of the e-commerce
pie. From the store’s point of view, this scheme may save them most of the credit
card company’s fee, which can be several percent. Of course, this plan may back-
fire, since customers in a store might use the RFID or barcode readers on their
mobile devices to check out competitors’ prices before buying and use them to get
a detailed report on where else an item can be purchased nearby and at what price.

One huge thing that m-commerce has going for it is that mobile phone users
are accustomed to paying for everything (in contrast to Internet users, who expect
everything to be free). If an Internet Web site charged a fee to allow its customers
to pay by credit card, there would be an immense bellowing from the users. If,
however, a mobile phone operator let its customers pay for items in a store by
waving the phone at the cash register and then tacks on a small fee for this con-
venience, it would probably be accepted as normal. Time will tell.

The uses of mobile and wireless computers will grow rapidly in the future as
the size of computers shrinks, probably in ways no one can now foresee. Let us
take a quick look at some possibilities. Sensor networks have nodes that gather
and relay information they sense about the state of the physical world. The nodes
may be embedded in familiar devices such as cars or phones, or they may be small
separate devices. For example, your car might gather data on its location, speed,
vibration, and fuel efficiency from its on-board diagnostic system and upload this
information to a database (Hull et al., 2006). Those data can help find potholes,
plan trips around congested roads, and tell you if you are a ‘‘gas guzzler’’ com-
pared to other drivers on the same stretch of road.

Sensor networks are revolutionizing science by providing a wealth of data on
behavior that could not previously be observed. One example is tracking the
migration of individual zebras by placing a small sensor on each animal (Juang et
al., 2002). Researchers have packed a wireless computer into a single square cubic
millimeter (Warneke et al., 2001). With mobile computers this small, even small
birds, rodents, and insects can be tracked.

Wireless parking meters can accept credit or debit card payments with instant
verification over the wireless link. They can also report when they are in use,
which can let drivers download a recent parking map to their car so they can find
an available spot more easily. Of course, when a meter expires, it might also check
for the presence of a car (by bouncing a signal off it) and report the expiration to
parking enforcement. It has been estimated that city governments in the U.S. alone
could collect an additional $10 billion this way (Harte et al., 2000).

1.2.3 Content Provider Networks

Many Internet services are now served from ‘‘the cloud,’’ or a data-center net-
work. Modern data center networks have hundreds of thousands or millions of
servers in a single location, usually in a very dense configuration of rows of racks

12 INTRODUCTION CHAP. 1

in buildings that can be more than a kilometer long. Data center networks serve the
increasingly growing demands of cloud computing and are designed to move
large amounts of data between servers in the data center, as well as between the
data center and the rest of the Internet.

Today, many of the applications and services you use, ranging from the Web
sites you visit to the cloud-based document editor you use to take notes, store data
in a data center network. Data center networks face challenges of scale, both for
network throughput and for energy usage. One of the main network throughput
challenges is the so-called ‘‘cross-section bandwidth,’’ which is the data rate that
can be delivered between any two servers in the network. Early data-center net-
work designs were based on a simple tree topology, with three layers of switches:
access, aggregate, and core; this simple design did not scale well, and was also to
be subject to faults.

Many popular Internet services need to deliver content to users around the
world. To do so, many sites and services on the Internet use a CDN (Content
Delivery Network). A CDN is a large collection of servers that are geographically
distributed in such a way that content is placed as close as possible to the users that
are requesting it. Large content providers such as Google, Facebook, and Netflix
operate their own CDNs. Some CDNs, such as Akamai and Cloudflare, offer host-
ing services to smaller services that do not have their own CDN.

Content that users want to access, ranging from static files to streaming video,
may be replicated in many locations across a single CDN. When a user requests
content, the CDN must decide which replica it should serve to that user. This proc-
ess must consider the distance from each replica to the client, the load on each
CDN server, and traffic load and congestion on the network itself.

1.2.4 Transit Networks

Internet travels over many independently operated networks. The network run
by your Internet service provider is typically not the same network as the one that
hosts the content for the Web sites that you commonly visit. Typically, content and
applications are hosted in data-center networks, and you may be accessing that
content from an access network. Content must thus traverse the Internet from the
data center to the access network, and ultimately to your device.

When the content provider and your ISP (Internet Service Provider) are not
directly connected, they often rely on a transit network to carry the traffic be-
tween them. Transit networks typically charge both the ISP and the content pro-
vider for carrying traffic from end-to-end. If the network hosting the content and
the access network exchange enough traffic between them, they may decide to
interconnect directly. One example where direct interconnection is common is be-
tween large ISPs and large content providers, such as Google or Netflix. In these
cases, the ISP and the content provider must build and maintain network infrastruc-
ture to facilitate interconnecting directly, often in many geographic locations.

SEC. 1.2 TYPES OF COMPUTER NETWORKS 13

Transit networks are traditionally called backbone networks because they
have had the role of carrying traffic between two endpoints. Many years ago, tran-
sit networks were hugely profitable because every other network would rely on
them (and pay them) to connect to the rest of the Internet.

The last decade, however, has witnessed two trends. The first trend is the con-
solidation of content in a handful of large content providers, spawned by the prolif-
eration of cloud-hosted services and large content delivery networks. The second
trend is the expansion of the footprint of individual access ISP networks: whereas
access ISPs may have once been small and regional, many access ISPs have na-
tional (or even international) footprints, which has increased both the range of geo-
graphic locations where they can connect to other networks as well as their sub-
scriber base. As the size (and negotiating power) of the access networks and the
content provider networks continues to increase, the larger networks have come to
rely less on transit networks to deliver their traffic, preferring often to directly
interconnect and rely on the transit network only as a backup.

1.2.5 Enterprise Networks

Most organizations (e.g., companies, universities) have many computers. Each
employee may use a computer to perform tasks ranging from product design to
payroll. In the common case, these machines are connected on a common net-
work, which allows the employees to share data, information, and compute re-
sources with one another.

Resource sharing makes programs, equipment, and especially data available
to other users on the network without regard to the physical location of the re-
source or the user. One widespread example is having a group of office workers
share a common printer. Many employees do not need a private printer and a
high-volume networked printer is often less expensive, faster, and easier to main-
tain than a large collection of individual printers.

Probably, even more important than sharing physical resources such as printers
and backup systems is sharing information. Most companies have customer
records, product information, inventories, financial statements, tax information,
and much more online. If all of its computers suddenly went down, a bank could
not last more than five minutes. A modern manufacturing plant, with a com-
puter-controlled assembly line, would not last even five seconds. Even a small
travel agency or three-person law firm is now highly dependent on computer net-
works for allowing employees to access relevant information and documents in-
stantly.

For smaller companies, the computers may be located in a single office even a
single building; in the case of larger companies, the computers and employees may
be scattered over dozens of offices and plants in many countries. Nevertheless, a
salesperson in New York might sometimes need access to a product inventory data-
base in Singapore. Networks called VPNs (Virtual Private Networks) connect

14 INTRODUCTION CHAP. 1

the individual networks at different sites into one logical network. In other words,
the mere fact that a user happens to be 15,000 km away from his data should not
prevent him from using the data as though they were local. This goal may be sum-
marized by saying that it is an attempt to end the ‘‘tyranny of geography.’’

In the simplest of terms, one can imagine a company’s information system as
consisting of one or more databases with company information and some number
of employees who need to access them remotely. In this model, the data are stored
on powerful computers called servers. Often, these are centrally housed and main-
tained by a system administrator. In contrast, the employees have simpler ma-
chines, called clients, on their desks, with which they access remote data, for ex-
ample, to include in spreadsheets they are constructing. (Sometimes we will refer
to the human user of the client machine as the ‘‘client,’’ but it should be clear from
the context whether we mean the computer or its user.) The client and server ma-
chines are connected by a network, as illustrated in Fig. 1-1. Note that we have
shown the network as a simple oval, without any detail. We will use this form
when we mean a network in the most abstract sense. When more detail is required,
it will be provided.

A second goal of setting up an enterprise computer network has to do with
people rather than information or even computers. A computer network can pro-
vide a powerful communication medium among employees. Virtually every
company that has two or more computers now has email (electronic mail), which
employees generally use for a great deal of daily communication. In fact, a com-
mon gripe around the water cooler is how much email everyone has to deal with,
much of it quite meaningless because bosses have discovered that they can send
the same (often content-free) message to all their subordinates at the push of a but-
ton.

Telephone calls between employees may be carried by the computer network
instead of by the phone company. This technology is called IP telephony or VoIP
(Voice over IP) when Internet technology is used. The microphone and speaker at
each end may belong to a VoIP-enabled phone or the employee’s computer. Com-
panies find this a wonderful way to save on their telephone bills.

Other, much richer forms of communication are made possible by computer
networks. Video can be added to audio so that multiple employees at distant loca-
tions can see and hear each other as they hold a meeting. This technique is a pow-
erful tool for eliminating the cost and time previously devoted to travel. Desktop
sharing lets remote workers see and interact with a graphical computer screen.
This makes it easy for two or more people who work far apart to read and write a
shared blackboard or write a report together. When one worker makes a change to
an online document, the others can see the change immediately, instead of waiting
several days for a letter. Such a speedup makes cooperation among far-flung
groups of people easy where it previously had been impossible. More ambitious
forms of remote coordination such as telemedicine are only now starting to be used
(e.g., remote patient monitoring) but may become much more important. It is

SEC. 1.2 TYPES OF COMPUTER NETWORKS 15

sometimes said that communication and transportation are having a race, and
whichever wins will make the other obsolete.

A third goal for many companies is doing business electronically, especially
with customers and also suppliers. Airlines, bookstores, and other retailers have
discovered that many customers like the convenience of shopping from home.
Consequently, many companies provide catalogs of their goods and services online
and take orders online. Manufacturers of automobiles, aircraft, and computers,
among others, buy subsystems from many suppliers and then assemble the parts.
Using computer networks, manufacturers can place orders electronically as need-
ed. This reduces the need for large inventories and enhances efficiency.

1.3 NETWORK TECHNOLOGY, FROM LOCAL TO GLOBAL

Networks can range from small and personal to large and global. In this sec-
tion, we explore the various networking technologies that implement networks at
different sizes and scales.

1.3.1 Personal Area Networks

PANs (Personal Area Networks) let devices communicate over the range of a
person. A common example is a wireless network that connects a computer with
its peripherals. Other examples include the network that connects your wireless
headphones and your watch to your smartphone. It is also often used to connect a
headset to a mobile phone without cords, and it can allow your digital music player
to connect to your car merely being brought within range.

Almost every computer has an attached monitor, keyboard, mouse, and printer.
Without using wireless, this connection must be done with cables. Many new
users have so much trouble finding the right cables and plugging them into the
right little holes (even though they are usually shape and color coded) that most
computer vendors offer the option of sending a technician to the user’s home to do
it. To help these users, some companies got together to design a short-range wire-
less network called Bluetooth to connect these components without wires. The
idea is that if your devices have Bluetooth, then you do not need to deal with
cables. You just put them down, turn them on, and they begin communicating. For
many people, this ease of operation is a big plus.

In the simplest form, Bluetooth networks use the master-slave paradigm shown
in Fig. 1-6. The system unit (the PC) is normally the master, talking to the mouse
or keyboard as slaves. The master tells the slaves what addresses to use, when they
can transmit, how long they can transmit, what frequencies they can use, and so on.
We will discuss Bluetooth in more detail in Chap. 4.

PANs can also be built with a variety of other technologies that communicate
over short ranges, as we will discuss in Chap. 4.

16 INTRODUCTION CHAP. 1

Figure 1-6. Bluetooth PAN configuration.

1.3.2 Local Area Networks

A LAN (Local Area Network) is a private network that operates within and
nearby a single building such as a home, office, or factory. LANs are widely used
to connect personal computers and consumer electronics to let them share re-
sources (e.g., printers) and exchange information.

Wireless LANs are pervasive today. They initially gained popularity in homes,
older office buildings, cafeterias, and other places where installing cables intro-
duced too much cost. In these systems, every computer has a radio modem and an
antenna that it uses to communicate with other computers. In most cases, each
computer talks to a device called an AP (Access Point), wireless router, or base
station, as shown in Fig. 1-7(a). This device relays packets between the wireless
computers and also between them and the Internet. Being the AP is like being the
popular kid at school because everyone wants to talk to you. Another common
scenario entails nearby devices relaying packets for one another in a so-called
mesh network configuration. In some cases, the relays are the same nodes as the
endpoints; more commonly, however, a mesh network will include a separate col-
lection of nodes whose sole responsibility is relaying traffic. Mesh network set-
tings are common in developing regions where deploying connectivity across a re-
gion may be cumbersome or costly. They are also becoming increasingly popular
for home networks, particularly in large homes.

There is a popular standard for wireless LANs called IEEE 802.11, commonly
called WiFi . It runs at speeds from 11 Mbps (802.11b) to 7 Gbps (802.11ad).
Please note that in this book we will adhere to tradition and measure line speeds in
megabits/sec, where 1 Mbps is 1,000,000 bits/sec, and gigabits/sec, where 1 Gbps
is 1,000,000,000 bits/sec. Powers of two are used only for storage, where a 1 MB
memory is 220 or 1,048,576 bytes. We will discuss 802.11 in Chap. 4.

SEC. 1.3 NETWORK TECHNOLOGY, FROM LOCAL TO GLOBAL 17

Ethernet
switchPorts To rest of

network

To wired networkAccess
point

Figure 1-7. Wireless and wired LANs. (a) 802.11. (b) Switched Ethernet.

Wired LANs use many different transmission technologies; common physical
modes of transmission are copper, coaxial cable, and optical fiber. LANs have lim-
ited size, which means that the worst-case transmission time is bounded and known
in advance. Knowing these bounds helps with the task of designing network proto-
cols. Typically, wired LANs can run at speeds ranging from 100 Mbps to 40 Gbps.
They also have low latency (never more than tens of milliseconds, and often much
less) and transmission errors are infrequent. Wired LANs typically have lower la-
tency, lower packet loss, and higher throughput than wireless LANs, but over time
this performance gap has narrowed. It is far easier to send signals over a wire or
through a fiber than through the air.

Many wired LANs comprise point-to-point wired links. IEEE 802.3, popularly
called Ethernet, is by far the most common type of wired LAN. Fig. 1-7(b) shows
an example switched Ethernet topology. Each computer speaks the Ethernet pro-
tocol and connects to a device called a switch with a point-to-point link. The job
of the switch is to relay packets between computers that are attached to it, using the
address in each packet to determine which computer to send it to.

A switch has multiple ports, each of which can connect to one other device,
such as a computer or even another switch. To build larger LANs, switches can be
plugged into each other using their ports. What happens if you plug them together
in a loop? Will the network still work? Luckily, someone thought of this case, and
now all switches in the world use her anti-looping algorithm (Perlman, 1985). It is
the job of the protocol to sort out what paths packets should travel to safely reach
the intended computer. We will see how this works in Chap. 4.

It is also possible to divide one large physical LAN into two smaller logical
LANs. You might wonder why this would be useful. Sometimes, the layout of the
network equipment does not match the organization’s structure. For example, the
engineering and finance departments of a company might have computers on the
same physical LAN because they are in the same wing of the building, but it might
be easier to manage the system if engineering and finance logically each had its

18 INTRODUCTION CHAP. 1

own network VLAN (Virtual LAN). In this design, each port is tagged with a
‘‘color,’’ say green for engineering and red for finance. The switch then forwards
packets so that computers attached to the green ports are separated from the com-
puters attached to the red ports. Broadcast packets sent on a red port, for example,
will not be received on a green port, just as though there were two separate physi-
cal LANs. We will cover VLANs at the end of Chap. 4.

There are other wired LAN topologies, too. In fact, switched Ethernet is a
modern version of the original Ethernet design that broadcasts all packets over a
single linear cable. At most one machine could successfully transmit at a time, and
a distributed arbitration mechanism was used to resolve conflicts. It used a simple
algorithm: computers could transmit whenever the cable was idle. If two or more
packets collided, each computer just waited a random time and tried later. We will
call that version classic Ethernet for clarity, and as you no doubt suspected, you
will learn about it in Chap. 4.

Both wireless and wired broadcast LANs can allocate resources statically or
dynamically. A typical static allocation would be to divide time into discrete inter-
vals and use a round-robin algorithm, allowing each machine to broadcast only
when its time slot comes up. Static allocation wastes channel capacity when a ma-
chine has nothing to transmit or receive during its allocated slot, so most systems
attempt to allocate the channel dynamically (i.e., on demand).

Dynamic allocation methods for a common channel are either centralized or
decentralized. In a centralized channel allocation method, there is a single entity,
for example, the base station in cellular networks, which determines who goes
next. It might do so by accepting multiple packets and prioritizing them according
to some internal algorithm. In a decentralized channel allocation method, there is
no central entity; each machine must decide for itself whether to transmit. You
might think that this approach would lead to chaos, but later we will study many
algorithms designed to bring order out of the potential chaos—provided, of course,
that all the machines obey the rules.

1.3.3 Home Networks

It is worth giving specific attention to LANs in the home, or home networks.
Home networks are a type of LAN; they may have a broad, diverse range of Inter-
net-connected devices, and must be particularly easy to manage, dependable, and
secure, especially in the hands of nontechnical users.

Many years ago, a home network would probably have consisted of a few lap-
tops on a wireless LAN. Today, a home network may include devices such as
smartphones, wireless printers, thermostats, burglar alarms, smoke detectors, light-
bulbs, cameras, televisions, stereos, smart speakers, refrigerators, and so on. The
proliferation of Internet-connected appliances and consumer electronics, often call-
ed the Internet of things, makes it possible to connect just about any electronic

SEC. 1.3 NETWORK TECHNOLOGY, FROM LOCAL TO GLOBAL 19

device (including sensors of many types) to the Internet. This huge scale and di-
versity of Internet connected devices introduces new challenges for designing,
managing, and securing a home network. Remote monitoring of the home is
becoming increasingly common, with applications ranging from security moni-
toring to maintenance to aging in place, as many grown children are willing to
spend some money to help their aging parents live safely in their own homes.

Although the home network is just another LAN, in practice it is likely to have
different properties than other LANs, for several reasons. First, the devices that
people connect to their home network need to be easy to install and maintain.
Wireless routers were at one point very commonly returned to stores because peo-
ple bought them expecting to have a wireless network work ‘‘out of the box’’ but
instead found themselves confronted with the prospect of many calls to technical
support. The devices need to be foolproof and work without requiring the user to
read and fully understand a 50-page manual.

Second, security and reliability have higher stakes because insecurity of the de-
vices may introduce direct threats to consumer health and safety. Losing a few
files to an email virus is one thing; having a burglar disarm your security system
from his phone and then plunder your house is something quite different. The past
few years have seen countless examples of insecure or malfunctioning IoT devices
that have resulted in everything from frozen pipes to remote control of devices
through malicious third-party scripts. The lack of serious security on many of
these devices has made it possible for an eavesdropper to observe details about
user activity in the home; even when the contents of the communication are en-
crypted, simply knowing the type of device that is communicating and the volumes
and times of traffic can reveal a lot about private user behavior.

Third, home networks evolve organically, as people buy various consumer
electronics devices and connect them to the network. As a result, in contrast to a
more homogeneous enterprise LAN, the set of technologies connected to the home
network may be significantly more diverse. Yet, despite this diversity, people
expect these devices to be able to interact (e.g., they want to be able to use the
voice assistant manufactured by one vendor to control the lights from another ven-
dor). Once installed, the devices may remain connected for years (or decades).
This means no interface wars: Telling consumers to buy peripherals with IEEE
1394 (FireWire) interfaces and a few years later retracting that and saying USB 3.0
is the interface-of-the-month and then switching that to 802.11g—oops, no, make
that 802.11n—no wait, 802.11ac—sorry, we mean 802.11ax, is not tenable.

Finally, profit margins are small in consumer electronics, so many devices aim
to be as inexpensive as possible. When confronted with a choice about which Inter-
net-connected digital photo frame to buy, many users may opt for the less-expen-
sive one. The pressure to reduce consumer device costs makes achieving the above
goals even more difficult. Security, reliability, and interoperability all ultimately
cost money. In some cases, manufacturers or consumers may need powerful incen-
tives to make and stick to recognized standards.

20 INTRODUCTION CHAP. 1

Home networks typically operate over wireless networks. Convenience and
cost favors wireless networking because there are no wires to fit, or worse, retrofit.
As Internet-connected devices proliferate, it becomes increasingly inconvenient to
drop a wired network port everywhere in the home where there is a power outlet.
Wireless networks are more convenient and more cost-effective. Reliance on wire-
less networks in the home, however, does introduce unique performance and secu-
rity challenges. First, as users exchange more traffic on their home networks and
connect more devices to them, the home wireless network is increasingly becom-
ing a performance bottleneck. When the home network is performing poorly, a
common pastime is to blame the ISP for the poor performance. ISPs tend not to
like this so much.

Second, wireless radio waves can travel through walls (in the popular 2.4 GHz
band, but less so at 5 GHz). Although wireless security has improved substantially
over the last decade, it still has been subject to many attacks that allow eavesdrop-
ping, and certain aspects of the traffic, such as device hardware addresses and traf-
fic volume, remain unencrypted. In Chap. 8, we will study how encryption can be
used to provide security, but it is easier said than done with inexperienced users.

Power-line networks can also let devices that plug into outlets broadcast
information throughout the house. You have to plug in the TV anyway, and this
way it can get Internet connectivity at the same time. These networks carry both
power and data signals at the same time; part of the solution is to run these two
functions on different frequency bands.

1.3.4 Metropolitan Area Networks

A MAN (Metropolitan Area Network) covers a city. The best-known ex-
amples of MANs are the cable television networks. These systems grew from ear-
lier community antenna systems used in areas with poor over-the-air television
reception. In those early systems, a large antenna was placed on top of a nearby
hill and a signal was then piped to the subscribers’ houses.

At first, these networks were locally designed, ad hoc systems. Then, com-
panies began jumping into the business, getting contracts from local governments
to wire up entire cities. The next step was television programming and even entire
channels designed for cable only. Often, these channels were highly specialized,
such as all news, all sports, all cooking, all gardening, and so on. But from their
inception until the late 1990s, they were intended for television reception only.

When the Internet began attracting a mass audience, the cable TV network op-
erators began to realize that with some changes to the system, they could provide
two-way Internet service in unused parts of the spectrum. At that point, the cable
TV system began to morph from simply a way to distribute television to a metro-
politan area network. To a first approximation, a MAN might look something like
the system shown in Fig. 1-8. In this figure, we see both television signals and In-
ternet being fed into the centralized cable head-end, (or cable modem termination

SEC. 1.3 NETWORK TECHNOLOGY, FROM LOCAL TO GLOBAL 21

system) for subsequent distribution to people’s homes. We will come back to this
subject in detail in Chap. 2.

Internet

Antenna

Junction
box

Head end

Figure 1-8. A metropolitan area network based on cable TV.

Cable television is not the only MAN. Recent developments in high-speed
wireless Internet access have resulted in another MAN, which has been stan-
dardized as IEEE 802.16 and is popularly known as WiMAX. It does not seem to
be catching on, however. Other wireless technologies, LTE (Long Term Evolu-
tion) and 5G, will also be covered there.

1.3.5 Wide Area Networks

A WAN (Wide Area Network) spans a large geographical area, often a coun-
try, a continent, or even multiple continents. A WAN may serve a private organiza-
tion, as in the case of an enterprise WAN, or it may be a commercial service offer-
ing, as in the case of a transit network.

We will begin our discussion with wired WANs, using the example of a com-
pany with branch offices in different cities. The WAN in Fig. 1-9 connects offices
in Perth, Melbourne, and Brisbane. Each of these offices contains computers in-
tended for running user (i.e., application) programs. We will follow conventional
usage and call these machines hosts. The rest of the network that connects these
hosts is then called the communication subnet, or just subnet for short. The sub-
net carries messages from host to host, just as the telephone system carries words
(really just sounds) from speaker to listener.

In most WANs, the subnet consists of two distinct components: transmission
lines and switching elements. Transmission lines move bits between machines.

22 INTRODUCTION CHAP. 1

Subnet

Router

Perth

Brisbane

Melbourne

Transmission
line

Figure 1-9. WAN that connects three branch offices in Australia.

They can be made of copper wire, coaxial cable, optical fiber, or radio links. Most
organizations do not have transmission lines lying about, so instead they use the
lines from a telecommunications company. Switching elements, or switches, are
specialized devices that connect two or more transmission lines. When data arrive
on an incoming line, the switching element must choose an outgoing line on which
to forward them. These switching computers have been called by various names in
the past; the name router is now most commonly used. Unfortunately, some peo-
ple pronounce it ‘‘rooter’’ while others have it rhyme with ‘‘doubter.’’ Determining
the correct pronunciation will be left as an exercise for the reader. (Note: the per-
ceived correct answer may depend on where you live.)

In most WANs, the network contains many transmission lines, each connecting
a pair of routers. Two routers that do not share a transmission line must do so via
other routers. There may be many paths in the network that connect these two rout-
ers. How the network makes the decision as to which path to use is called a rout-
ing algorithm. How each router makes the decision as to where to send a packet
next is called a forwarding algorithm. We will study some of both types in detail
in Chap. 5.

A short comment about the term ‘‘subnet’’ is in order here. Originally, its only
meaning was the collection of routers and communication lines that moved packets
from the source host to the destination host. Readers should be aware that it has
acquired a second, more recent meaning in conjunction with network addressing.

SEC. 1.3 NETWORK TECHNOLOGY, FROM LOCAL TO GLOBAL 23

We will discuss that meaning in Chap. 5 and stick with the original meaning (a col-
lection of lines and routers) until then.

The WAN as we have described it looks similar to a large wired LAN, but
there are some important differences that go beyond long wires. Usually in a
WAN, the hosts and subnet are owned and operated by different people. In our ex-
ample, the employees might be responsible for their own computers, while the
company’s IT department is in charge of the rest of the network. We will see
clearer boundaries in the coming examples, in which the network provider or tele-
phone company operates the subnet. Separation of the pure communication as-
pects of the network (the subnet) from the application aspects (the hosts) greatly
simplifies the overall network design.

A second difference is that the routers will usually connect different kinds of
networking technology. The networks inside the offices may be switched Ethernet,
for example, while the long-distance transmission lines may be SONET links
(which we will cover in Chap. 2). Some device needs to join them. The astute
reader will notice that this goes beyond our definition of a network. This means
that many WANs will in fact be internetworks, or composite networks that com-
prise more than one network. We will have more to say about internetworks in the
next section.

A final difference is in what is connected to the subnet. This could be individ-
ual computers, as was the case for connecting to LANs, or it could be entire LANs.
This is how larger networks are built from smaller ones. As far as the subnet is
concerned, it does the same job.

Virtual Private Networks and SD-WANs

Rather than lease dedicated transmission lines, an organization might rely on
Internet connectivity to connect its offices. This allows connections to be made be-
tween the offices as virtual links that use the underlying capacity of the Internet.
As mentioned earlier, this arrangement, shown in Fig. 1-10, is called a virtual pri-
vate network. In contrast to a network with dedicated physical links, a VPN has
the usual advantage of virtualization, which is that it provides flexible reuse of a
resource (Internet connectivity). A VPN also has the usual disadvantage of virtu-
alization, which is a lack of control over the underlying resources. With a dedicat-
ed line, the capacity is clear. With a VPN, performance may vary with that of the
underlying Internet connectivity. The network itself may also be operated by a
commercial Internet service provider (ISP). Fig. 1-11 shows this structure, which
connects the WAN sites to each other, as well as to the rest of the Internet.

Other kinds of WANs make heavy use of wireless technologies. In satellite
systems, each computer on the ground has an antenna through which it can ex-
change data with a satellite in orbit. All computers can hear the output from the
satellite, and in some cases, they can also hear the upward transmissions of their

24 INTRODUCTION CHAP. 1

Internet

Perth

Brisbane

Melbourne

Link via the
internet

Figure 1-10. WAN using a virtual private network.

fellow computers to the satellite as well. Satellite networks are inherently broad-
cast and are most useful when broadcast is important or no ground-based
infrastructure is present (think: oil companies exploring in an isolated desert).

The cellular telephone network is another example of a WAN that uses wire-
less technology. This system has already gone through five generations. The first
generation was analog and for voice only. The second generation was digital and
for voice only. The third generation is digital and is for both voice and data. The
fourth generation is purely digital, even for voice. The fifth generation is also pure
digital and much faster than the fourth, with lower delays as well.

Each cellular base station covers a distance much larger than a wireless LAN,
with a range measured in kilometers rather than tens of meters. The base stations
are connected to each other by a backbone network that is usually wired. The data
rates of cellular networks are often on the order of 100 Mbps, much smaller than a
wireless LAN that can range up to on the order of 7 Gbps. We will have a lot to
say about these networks in Chap. 2.

More recently, organizations that are distributed across geographic regions and
need to connect sites are designing and deploying so-called software-defined
WANs or SD-WANs, which use different, complementary technologies to connect
disjoint sites but provide a single SLA (Service-Level Agreement) across the net-
work. For example, a network might possibly use a combination of more-expensive
dedicated leased lines to connect multiple remote locations and complementary,

SEC. 1.3 NETWORK TECHNOLOGY, FROM LOCAL TO GLOBAL 25

ISP network

Perth

Brisbane

Melbourne

Transmission
line

Customer
network

Figure 1-11. WAN using an ISP network.

less-expensive commodity Internet connectivity to connect these locations. Logic
written in software reprograms the switching elements in real time to optimize the
network for both cost and performance. SD-WANs are one example of an SDN
(Software-Defined Network), a technology that has gained momentum over the
last decade and generally describes network architectures that control the network
using a combination of programmable switches with control logic implemented as
a separate software program.

1.3.6 Internetworks

Many networks exist in the world, and they often use different hardware and
software technologies. People connected to one network often want to communi-
cate with people attached to a different one. The fulfillment of this desire requires
that different, and frequently incompatible, networks be connected. A collection of
interconnected networks is called an internetwork or internet. We will use these
terms in a generic sense, in contrast to the global Internet (which is one specific
internet), which we will always capitalize. The Internet connects content pro-
viders, access networks, enterprise networks, home networks, and many other net-
works to one another. We will look at the Internet in great detail later in this book.

A network comprises the combination of a subnet and its hosts. However, the
word ‘‘network’’ is often used in a loose (and confusing) sense as well. A subnet
might be described as a network, as in the case of the ‘‘ISP network’’ of Fig. 1-11.

26 INTRODUCTION CHAP. 1

An internetwork might also be described as a network, as in the case of the WAN
in Fig. 1-9. We will follow similar practice, and if we are distinguishing a network
from other arrangements, we will stick with our original definition of a collection
of computers interconnected by a single technology.

An internet entails the interconnection of distinct, independently operated net-
works. In our view, connecting a LAN and a WAN or connecting two LANs is the
usual way to form an internetwork, but there is little agreement over terminology in
this area. Generally speaking, if two or more independently operated networks pay
to interconnect, or if two or more networks use fundamentally different underlying
technology (e.g., broadcast versus point-to-point and wired versus wireless), we
probably have an internetwork.

The device that makes a connection between two or more networks and pro-
vides the necessary translation, both in terms of hardware and software, is a gate-
way. Gateways are distinguished by the layer at which they operate in the protocol
hierarchy. We will have much more to say about layers and protocol hierarchies in
the next section, but for now imagine that higher layers are more tied to applica-
tions, such as the Web, and lower layers are more tied to transmission links, such
as Ethernet. Because the benefit of forming an internet is to connect computers a-
cross networks, we do not want to use too low-level a gateway or we will be unable
to make connections between different kinds of networks. We do not want to use
too high-level a gateway either, or the connection will only work for particular ap-
plications. The level in the middle that is ‘‘just right’’ is often called the network
layer, and a router is a gateway that switches packets at the network layer. Gener-
ally speaking, an internetwork will be connected by network-layer gateways, or
routers; however, even a single large network often contains many routers.

1.4 EXAMPLES OF NETWORKS

The subject of computer networking covers many different kinds of networks,
large and small, well known and less well known. They have different goals,
scales, and technologies. In the following sections, we will look at some examples,
to get an idea of the variety one finds in the area of computer networking.

We will start with the Internet, probably the best-known ‘‘network,’’ and look
at its history, evolution, and technology. Then, we will consider the mobile phone
network. Technically, it is quite different from the Internet. Next, we will intro-
duce IEEE 802.11, the dominant standard for wireless LANs.

1.4.1 The Internet

The Internet is a vast collection of different networks that use certain common
protocols and provide certain common services. It is an unusual system in that it
was not planned by any single organization, and it is not controlled by any single

SEC. 1.4 EXAMPLES OF NETWORKS 27

organization, either. To better understand it, let us start from the beginning and see
how it has developed and why. For a wonderful history of how the Internet devel-
oped, John Naughton’s (2000) book is highly recommended. It is one of those rare
books that is not only fun to read but also has 20 pages of ibid.’s and op. cit.’s for
the serious historian. Some of the material in this section is based on this book.
For a more recent history, try Brian McCullough’s book (2018).

Of course, countless technical books have been written about the Internet, its
history, and its protocols as well. For more information, see, for example, Sever-
ance (2015).

The ARPANET

The story begins in the late 1950s. At the height of the Cold War, the U.S.
DoD (Department of Defense) wanted a command-and-control network that could
survive a nuclear war. At that time, all military communications used the public
telephone network, which was considered vulnerable. The reason for this belief
can be gleaned from Fig. 1-12(a). Here the black dots represent telephone switch-
ing offices, each of which was connected to thousands of telephones. These
switching offices were, in turn, connected to higher-level switching offices (toll of-
fices), to form a national hierarchy with only a small amount of redundancy. The
vulnerability of the system was that the destruction of a few key toll offices could
fragment it into many isolated islands so that generals in the Pentagon could not
call a base in Los Angeles.

(a)

Toll
office

Switching
office

(b)

Figure 1-12. (a) Structure of the telephone system. (b) Baran’s proposal.

Around 1960, the DoD awarded a contract to the RAND Corporation to find a
solution. One of its employees, Paul Baran, came up with the highly distributed

28 INTRODUCTION CHAP. 1

and fault-tolerant design of Fig. 1-12(b). Since the paths between any two switch-
ing offices were now much longer than analog signals could travel without distor-
tion, Baran proposed using digital packet-switching technology. Baran wrote sev-
eral reports for the DoD describing his ideas in detail (Baran, 1964). Officials at
the Pentagon liked the concept and asked AT&T, then the U.S.’ national telephone
monopoly, to build a prototype. AT&T dismissed Baran’s ideas out of hand. The
biggest and richest corporation in the world was not about to allow some young
whippersnapper (out in California, no less—AT&T was then an East Coast com-
pany) tell it how to build a telephone system. They said Baran’s network could not
be built and the idea was killed.

Several years went by and still the DoD did not have a better command-and--
control system. To understand what happened next, we have to go back all the way
to October 1957, when the Soviet Union beat the U.S. into space with the launch of
the first artificial satellite, Sputnik. When President Dwight Eisenhower tried to
find out who was asleep at the switch, he was appalled to find the Army, Navy, and
Air Force squabbling over the Pentagon’s research budget. His immediate re-
sponse was to create a single defense research organization, ARPA, the Advanced
Research Projects Agency. ARPA had no scientists or laboratories; in fact, it had
nothing more than an office and a small (by Pentagon standards) budget. It did its
work by issuing grants and contracts to universities and companies whose ideas
looked promising to it.

For the first few years, ARPA tried to figure out what its mission should be. In
1967, the attention of Larry Roberts, a program manager at ARPA who was trying
to figure out how to provide remote access to computers, turned to networking. He
contacted various experts to decide what to do. One of them, Wesley Clark, sug-
gested building a packet-switched subnet, connecting each host to its own router.

After some initial skepticism, Roberts bought the idea and presented a some-
what vague paper about it at the ACM SIGOPS Symposium on Operating System
Principles held in Gatlinburg, Tennessee, in late 1967 (Roberts, 1967). Much to
Roberts’ surprise, another paper at the conference described a similar system that
had not only been designed but actually fully implemented under the direction of
Donald Davies at the National Physical Laboratory in England. The NPL system
was not a national system by any means. It just connected several computers on the
NPL campus. Nevertheless, it convinced Roberts that packet switching could be
made to work. Furthermore, it cited Baran’s now discarded earlier work. Roberts
came away from Gatlinburg determined to build what later became known as the
ARPANET.

In the plan that was developed, the subnet would consist of minicomputers
called IMPs (Interface Message Processors) connected by then-state-of-the-art
56-kbps transmission lines. For high reliability, each IMP would be connected to
at least two other IMPs. Each packet sent across the subnet was to contain the full
destination address, so if some lines and IMPs were destroyed, subsequent packets
could be automatically rerouted along alternative paths.

SEC. 1.4 EXAMPLES OF NETWORKS 29

Each node of the network was to consist of an IMP and a host, in the same
room, connected by a short wire. A host could send messages of up to 8063 bits to
its IMP, which would then break these up into packets of at most 1008 bits and for-
ward them independently toward the destination. Each packet was received in its
entirety before being forwarded, so the subnet was the first electronic store-and--
forward packet-switching network.

ARPA then put out a tender for building the subnet. Twelve companies bid for
it. After evaluating all the proposals, ARPA selected BBN, a consulting firm based
in Cambridge, Massachusetts, and in December 1968 awarded it a contract to build
the subnet and write the subnet software. BBN chose to use specially modified
Honeywell DDP-316 minicomputers with 12K 16-bit words of magnetic core
memory as the IMPs. The IMPs did not have disks since moving parts were con-
sidered unreliable. The IMPs were interconnected by 56-kbps lines leased from
telephone companies. Although 56 kbps is now often the only choice of people in
rural areas, back then, it was the best money could buy.

The software was split into two parts: subnet and host. The subnet software
consisted of the IMP end of the host-IMP connection, the IMP-IMP protocol, and a
source IMP to destination IMP protocol designed to improve reliability. The origi-
nal ARPANET design is shown in Fig. 1-13.

Host-IMP
protocol

Host-host protocol

Source IMP to destination IMP protocol

IMP-IMP protocol
IMP-IMP

protocol

Host

IMP

Subnet

Figure 1-13. The original ARPANET design.

Outside the subnet, software was also needed, namely, the host end of the host-
IMP connection, the host-host protocol, and the application software. It soon
became clear that BBN was of the opinion that when it had accepted a message on
a host-IMP wire and placed it on the host-IMP wire at the destination, its job was
done.

Roberts had a problem, though: the hosts needed software too. To deal with it,
he convened a meeting of network researchers, mostly graduate students, at Snow-
bird, Utah, in the summer of 1969. The graduate students expected some network

30 INTRODUCTION CHAP. 1

expert to explain the grand design of the network and its software to them and then
assign each of them the job of writing part of it. They were astounded when there
was no network expert and no grand design. They had to figure out what to do on
their own.

Nevertheless, somehow an experimental network went online in December
1969 with four nodes: at UCLA, UCSB, SRI, and the University of Utah. These
four were chosen because all had a large number of ARPA contracts, and all had
different and completely incompatible host computers (just to make it more fun).
The first host-to-host message had been sent two months earlier from the UCLA
node by a team led by Len Kleinrock (a pioneer of the theory of packet switching)
to the SRI node. The network grew quickly as more IMPs were delivered and in-
stalled; it soon spanned the United States. Figure 1-14 shows how rapidly the
ARPANET grew in the first 3 years.

MIT

BBNRANDUCLAUCLA

SRI UTAH ILLINOIS MIT LINCOLN CASE

CARN

HARVARD BURROUGHSBBNRAND

SDC
STAN

UCLA

SRI UTAH

UCSB SDC UCSB

SRI UTAH

UCSB

NCAR GWC LINCOLN CASE

MITRE

ETAC

HARVARD NBSBBNTINKERRAND

SDC

USCAMES

STAN

UCLA

CARN

SRI UTAH

MCCLELLAN

UCSB

ILLINOIS
LINC

RADC

MIT

ILLINOIS MIT

LINC

RADC

UTAH

TINKER
RAND

MCCLELLANLBLSRI

AMES TIP

AMES IMP
X-PARC

FNWC

UCSB UCSD

STANFORD

CCA
BBN

HARVARD
ABERDEEN

NBS
ETAC

ARPA
MITRE

SAAC
BELVOIR

CMU

GWC CASENOAAUSCSDCUCLA

(a)

(d)

(b) (c)

(e)

Figure 1-14. Growth of the ARPANET. (a) December 1969. (b) July 1970.
(c) March 1971. (d) April 1972. (e) September 1972.

In addition to helping the fledgling ARPANET grow, ARPA also funded re-
search on the use of satellite networks and mobile packet radio networks. In one
now-famous demonstration, a big truck driving around in California used the pack-
et radio network to send messages to SRI, which were then forwarded over the
ARPANET to the East Coast, where they were then shipped to University College

SEC. 1.4 EXAMPLES OF NETWORKS 31

in London over the satellite network. This allowed a researcher in the truck to use
a computer in London while driving around in California.

This experiment also demonstrated that the existing ARPANET protocols were
not suitable for running over different networks. This observation led to more re-
search on protocols, culminating with the invention of the TCP/IP protocols (Cerf
and Kahn, 1974). TCP/IP was specifically designed to handle communication over
internetworks, something becoming increasingly important as more and more net-
works were hooked up to the ARPANET.

To encourage adoption of these new protocols, ARPA awarded several con-
tracts to implement TCP/IP on different computer platforms, including IBM, DEC,
and HP systems, as well as for Berkeley UNIX. Researchers at the University of
California at Berkeley rewrote TCP/IP with a new programming interface called
sockets for the upcoming 4.2BSD release of Berkeley UNIX. They also wrote
many application, utility, and management programs to show how convenient it
was to use the network with sockets.

The timing was perfect. Many universities had just acquired a second or third
VAX computer and a LAN to connect them, but they had no networking software.
When 4.2BSD came along, with TCP/IP, sockets, and many network utilities, the
complete package was adopted immediately. Furthermore, with TCP/IP, it was
easy for the LANs to connect to the ARPANET, and many did. As a result,
TCP/IP use grew rapidly during the mid-1970s.

NSFNET

By the late 1970s, NSF (the U.S. National Science Foundation) saw the enor-
mous impact the ARPANET was having on university research, allowing scientists
across the country to share data and collaborate on research projects. However, to
get on the ARPANET a university had to have a research contract with the DoD.
Many did not have a contract. NSF’s initial response was to fund CSNET (Com-
puter Science Network) in 1981. It connected computer science departments and
industrial research labs to the ARPANET via dial-up and leased lines. In the late
1980s, the NSF went further and decided to design a successor to the ARPANET
that would be open to all university research groups.

To have something concrete to start with, NSF decided to build a backbone
network to connect its six supercomputer centers, in San Diego, Boulder, Cham-
paign, Pittsburgh, Ithaca, and Princeton. Each supercomputer was given a little
brother, consisting of an LSI-11 microcomputer called a fuzzball. The fuzzballs
were connected with 56-kbps leased lines and formed the subnet, the same hard-
ware technology the ARPANET used. The software technology was different,
however: the fuzzballs spoke TCP/IP right from the start, making it the first
TCP/IP WAN.

NSF also funded some (eventually about 20) regional networks that connected
to the backbone to allow users at thousands of universities, research labs, libraries,

32 INTRODUCTION CHAP. 1

and museums to access any of the supercomputers and to communicate with one
another. The complete network, including backbone and the regional networks,
was called NSFNET (National Science Foundation Network). It connected to
the ARPANET through a link between an IMP and a fuzzball in the Carnegie-Mel-
lon machine room. The first NSFNET backbone is illustrated in Fig. 1-15 super-
imposed on a map of the United States.

NSF Supercomputer center
NSF Midlevel network

Both

Figure 1-15. The NSFNET backbone in 1988.

NSFNET was an instantaneous success and was overloaded from the word go.
NSF immediately began planning its successor and awarded a contract to the
Michigan-based MERIT consortium to run it. Fiber optic channels at 448 kbps
were leased from MCI (which was purchased by Verizon in 2006) to provide the
version 2 backbone. IBM PC-RTs were used as routers. This, too, was soon over-
whelmed, and by 1990, the second backbone was upgraded to 1.5 Mbps.

As growth continued, NSF realized that the government could not continue
financing networking forever. Furthermore, commercial organizations wanted to
join but were forbidden by NSF’s charter from using networks NSF paid for. Con-
sequently, NSF encouraged MERIT, MCI, and IBM to form a nonprofit corpora-
tion, ANS (Advanced Networks and Services), as the first step along the road to
commercialization. In 1990, ANS took over NSFNET and upgraded the 1.5-Mbps
links to 45 Mbps to form ANSNET. This network operated for 5 years and was
then sold to America Online. But by then, various companies were offering com-
mercial IP service and it was clear that the government should now get out of the
networking business.

To ease the transition and make sure every regional network could communi-
cate with every other regional network, NSF awarded contracts to four different
network operators to establish a NAP (Network Access Point). These operators

SEC. 1.4 EXAMPLES OF NETWORKS 33

were PacBell (San Francisco), Ameritech (Chicago), MFS (Washington, D.C.), and
Sprint (New York City, where for NAP purposes, Pennsauken, New Jersey counts
as New York City). Every network operator that wanted to provide backbone ser-
vice to the NSF regional networks had to connect to all the NAPs.

This arrangement meant that a packet originating on any regional network had
a choice of backbone carriers to get from its NAP to the destination’s NAP. Conse-
quently, the backbone carriers were forced to compete for the regional networks’
business on the basis of service and price, which was the idea, of course. As a re-
sult, the concept of a single default backbone was replaced by a commercially
driven competitive infrastructure. Many people like to criticize the federal govern-
ment for not being innovative, but in the area of networking, it was DoD and NSF
that created the infrastructure that formed the basis for the Internet and then
handed it over to industry to operate. This happened because when DoD asked
AT&T to build the ARPANET, it saw no value in computer networks and refused
to do it.

During the 1990s, many other countries and regions also built national research
networks, often patterned on the ARPANET and NSFNET. These included
EuropaNET and EBONE in Europe, which started out with 2-Mbps lines and then
upgraded to 34-Mbps lines. Eventually, the network infrastructure in Europe was
handed over to industry as well.

The Internet has changed a great deal since those early days. It exploded in
size with the emergence of the World Wide Web (WWW) in the early 1990s.
Recent data from the Internet Systems Consortium puts the number of visible In-
ternet hosts at over 600 million. This guess is only a low-ball estimate, but it far
exceeds the few million hosts that were around when the first conference on the
WWW was held at CERN in 1994.

The way we use the Internet has also changed radically. Initially, applications
such as email-for-academics, newsgroups, remote login, and file transfer domi-
nated. Later, it switched to email-for-everyman, then the Web, and peer-to-peer
content distribution, such as the now-shuttered Napster. Now real-time media dis-
tribution and social media (e.g., Twitter, Facebook) are mainstays. The dominant
form of traffic on the Internet now is, by far, streaming video (e.g., Netflix and
YouTube). These developments brought richer kinds of media to the Internet and
hence much more traffic, which have also had implications for the Internet archi-
tecture itself.

The Internet Architecture

The architecture of the Internet has also changed a great deal as it has grown
explosively. In this section, we will attempt to give a brief overview of what it
looks like today. The picture is complicated by continuous upheavals in the busi-
nesses of telephone companies (telcos), cable companies, and ISPs that often make
it hard to tell who is doing what. One driver of these upheavals is convergence in

34 INTRODUCTION CHAP. 1

the telecommunications industry, in which one network is used for previously dif-
ferent uses. For example, in a ‘‘triple play,’’ one company sells you telephony, TV,
and Internet service over the same network connection for a lower price than the
three services would cost individually. Consequently, the description given here
will be a simplified version of reality. And what is true today may not be true
tomorrow.

Fig. 1-16 shows a high-level overview of the Internet architecture. Let us ex-
amine this figure piece by piece, starting with a computer at home (at the edges of
the figure). To join the Internet, the computer is connected to an internet service
provider from whom the user purchases Internet access. This lets the computer ex-
change packets with all of the other accessible hosts on the Internet. There are
many kinds of Internet access, and they are usually distinguished by how much
bandwidth they provide and how much they cost, but the most important attribute
is connectivity.

Data
Center

Fiber
(FTTX)

DSL
Cable

Mobile Device

Internet Service Provider

Interconnection
(Peering)

Point of Presence
(POP)

Data
path

Router

Cable
modem

CMTS

Backbone Network

DSLAM

DSL modem

Content Delivery Network/
Distributed Cloud

Figure 1-16. Overview of the Internet architecture.

A common method for connecting to the Internet from your home is to send
signals over the cable television infrastructure. The cable network, sometimes call-
ed an HFC (Hybrid Fiber-Coaxial) network, is a single integrated infrastructure
that uses a packet-based transport called DOCSIS (Data Over Cable Service
Interface Specification) to transmit a variety of data services, including television
channels, high-speed data, and voice. The device at the home end is called a cable
modem, and the device at the cable headend is called the CMTS (Cable Modem
Termination System). The word modem is short for ‘‘modulator demodulator’’
and refers to any device that converts between digital bits and analog signals.

Access networks are limited by the bandwidth of the ‘‘last mile’’ or last leg of
transmission. Over the last decade, the DOCSIS standard has advanced to enable

SEC. 1.4 EXAMPLES OF NETWORKS 35

significantly higher throughput to home networks. The most recent standard, DOC-
SIS 3.1 full duplex, introduces support for symmetric upstream and downstream
data rates, with a maximum capacity of 10 Gbps. Another option for last-mile
deployment involves running optical fiber to residences using a technology called
FTTH (Fiber to the Home). For businesses in commercial areas, it may make
sense to lease a dedicated high-speed transmission line from the offices to the near-
est ISP. In large cities in some parts of the world, leased lines of up to 10 Gbps are
available; lower speeds are also available. For example, a T3 line runs at roughly
45 Mbps. In other parts of the world, especially in developing regions, there is nei-
ther cable nor fiber deployed; some of these regions are jumping straight to high-
er-speed wireless or mobile networks as the predominant means of Internet access.
We will provide an overview of mobile Internet access in the next section.

We can now move packets between the home and the ISP. We call the location
at which customer packets enter the ISP network for service the ISP’s POP (Point
of Presence). We will next explain how packets are moved between the POPs of
different ISPs. From this point on, the system is fully digital and packet switched.

ISP networks may be regional, national, or international. We have already
seen that their architecture includes long-distance transmission lines that intercon-
nect routers at POPs in the different cities that the ISPs serve. This equipment is
called the backbone of the ISP. If a packet is destined for a host served directly by
the ISP, that packet is routed over the backbone and delivered to the host. Other-
wise, it must be handed over to another ISP.

ISPs connect their networks to exchange traffic at IXPs (Internet eXchange
Points). The connected ISPs are said to peer with each other. There are many
IXPs in cities around the world. They are drawn vertically in Fig. 1-16 because
ISP networks overlap geographically. Basically, an IXP is a building full of rout-
ers, at least one per ISP. A very fast optical LAN in the room connects all the rout-
ers, so packets can be forwarded from any ISP backbone to any other ISP back-
bone. IXPs can be large and independently owned facilities that compete with
each other for business. One of the largest is the Amsterdam Internet Exchange
(AMS-IX), to which over 800 ISPs connect and through which they exchange over
4000 gigabits (4 terabits) worth of traffic every second.

Peering at IXPs depends on the business relationships between ISPs. There are
many possible relationships. For example, a small ISP might pay a larger ISP for
Internet connectivity to reach distant hosts, much as a customer purchases service
from an Internet provider. In this case, the small ISP is said to pay for transit. Al-
ternatively, two large ISPs might decide to exchange traffic so that each ISP can
deliver some traffic to the other ISP without having to pay for transit. One of the
many paradoxes of the Internet is that ISPs who publicly compete with one another
for customers often privately cooperate to do peering (Metz, 2001).

The path a packet takes through the Internet depends on the peering choices of
the ISPs. If the ISP that is delivering a packet peers with the destination ISP, it
might deliver the packet directly to its peer. Otherwise, it might route the packet to

36 INTRODUCTION CHAP. 1

the nearest place at which it connects to a paid transit provider so that provider can
deliver the packet. Two example paths across ISPs are shown in Fig. 1-16. Often,
the path a packet takes will not be the shortest path through the Internet. It could
be the least congested or the cheapest for the ISPs.

A small handful of transit providers, including AT&T and Level 3, operate
large international backbone networks with thousands of routers connected by
high-bandwidth fiber-optic links. These ISPs do not pay for transit. They are
usually called tier-1 ISPs and are said to form the backbone of the Internet, since
everyone else must connect to them to be able to reach the entire Internet.

Companies that provide lots of content, such as Facebook and Netflix, locate
their servers in data centers that are well-connected to the rest of the Internet.
These data centers are designed for computers, not humans, and may be filled with
rack upon rack of machines. Such an installation is called a server farm. Coloca-
tion or hosting data centers let customers put equipment such as servers at ISP
POPs so that short, fast connections can be made between the servers and the ISP
backbones. The Internet hosting industry has become increasingly virtualized so
that it is now common to rent a virtual machine that is run on a server farm instead
of installing a physical computer. These data centers are so large (hundreds of
thousands or millions of machines) that electricity is a major cost, so data centers
are sometimes built in areas where electricity is cheap. For example, Google built
a $2 billion data center in The Dalles, Oregon, because it is close to a huge hydro-
electric dam on the mighty Columbia River that supplies it with cheap green elec-
tric power.

Conventionally, the Internet architecture has been viewed as a hierarchy, with
the tier-1 providers at the top of the hierarchy and other networks further down the
hierarchy, depending on whether they are large regional networks or smaller access
networks, as shown in Fig. 1-17. Over the past decade, however, this hierarchy has
evolved and ‘‘flattened’’ dramatically, as shown in Fig. 1-18. The impetus for this
shakeup has been the rise of ‘‘hyper-giant’’ content providers, including Google,
Netflix, Twitch, and Amazon, as well as large, globally distributed CDNs such as
Akamai, Limelight, and Cloudflare. They have changed the Internet architecture
once again. Whereas in the past, these content providers would have had to rely on
transit networks to deliver content to local access ISPs, both the access ISPs and
the content providers have proliferated and become so large that they often connect
directly to one another in many distinct locations. In many cases, the common In-
ternet path will be directly from your access ISP to the content provider. In some
cases, the content provider will even host servers inside the access ISP’s network.

1.4.2 Mobile Networks

Mobile networks have more than five billion subscribers worldwide. To put
this number in perspective, it is roughly 65% of the world’s population. Many, if
not most, of these subscribers have Internet access using their mobile device (ITU,

SEC. 1.4 EXAMPLES OF NETWORKS 37

National
Backbone
Operators

Backbone Provider Backbone Provider

Regional ISP

ISP 1 ISP 2 ISP 3 ISP 4 ...

Regional ISP

Consumers and Business Customers

Regional ISP

Regional
Access

Providers

Local
Access

Providers

Customer IP
Networks

Peering
Transit

Figure 1-17. The Internet architecture through the 1990s followed a hierarchical structure.

2016). In 2018, mobile Internet traffic became more than half of global online traf-
fic. Consequently, studying the mobile phone system is up next.

Mobile Network Architecture

The architecture of the mobile phone network is very different than that of the
Internet. It has several parts, as shown in the simplified version of the 4G LTE ar-
chitecture in Fig. 1-19. This is one of the more common mobile network standards
and will continue to be until it is replaced by 5G, the fifth generation network. We
will discuss the history of the various generations shortly.

First, there is the E-UTRAN (Evolved UMTS Terrestrial Radio Access Net-
work) which is a fancy name for the radio communication protocol that is used
over the air between the mobile device (e.g., the cell phone) and the cellular base
station, which is now called an eNodeB. UMTS (Universal Mobile Telecommu-
nications System) is the formal name for the cellular phone network. Advances in
the air interface over the past decades have greatly increased wireless data rates
(and are still increasing them). The air interface is based on CDMA (Code Divi-
sion Multiple Access), a technique that we will study in Chap. 2.

38 INTRODUCTION CHAP. 1

National
Backbone
Operators

Backbone Provider Backbone Provider

Regional ISP

Large C
ontent, Consum

er, H
osting C

D
N

National
ISP

Consumers and Business Customers

Regional
Access

Providers

Peering
Transit

Customer IP
Networks

CDN

Regional ISP
CDN

CDN

Regional ISP
CDN

Regional ISP
CDN

Figure 1-18. Flattening of the Internet hierarchy.

The cellular base station together with its controller forms the radio access
network. This part is the wireless side of the mobile phone network. The con-
troller node or RNC (Radio Network Controller) controls how the spectrum is
used. The base station implements the air interface.

The rest of the mobile phone network carries the traffic for the radio access
network. It is called the core network. In 4G networks, the core network became
packet-switched, and is now called the EPC (Evolved Packet Core). The 3G
UMTS core network evolved from the core network used for the 2G GSM system
that came before it; the 4G EPC completed the transition to a fully packet-switched
core network. The 5G system is also fully digital, too. There is no going back now.
Analog is as dead as the dodo.

Data services have become a much more important part of the mobile phone
network than they used to be, starting with text messaging and early packet data
services such as GPRS (General Packet Radio Service) in the GSM system.
These older data services ran at tens of kbps, but users wanted even higher speeds..
Newer mobile phone networks support rates of multiple Mbps. For comparison, a
voice call is carried at a nominal rate of 64 kbps, typically 3–4x less with compres-
sion.

To carry all of this data, the UMTS core network nodes connect directly to a
packet-switched network. The S-GW (Serving Network Gateway) and the P-
GW (Packet Data Network Gateway) deliver data packets to and from mobiles
and interface to external packet networks such as the Internet.

SEC. 1.4 EXAMPLES OF NETWORKS 39

Figure 1-19. Simplified 4G LTE network architecture.

This transition is set to continue in future mobile phone networks. Internet
protocols are even used on mobiles to set up connections for voice calls over a
packet data network, in the manner of voice over IP. IP and packets are used all the
way from the radio access through to the core network. Of course, the way that IP
networks are designed is also changing to support better quality of service. If it did
not, then problems with chopped-up audio and jerky video would not impress pay-
ing customers. We will return to this subject in Chap. 5.

Another difference between mobile phone networks and the conventional Inter-
net is mobility. When a user moves out of the range of one cellular base station and
into the range of another one, the flow of data must be re-routed from the old to the
new cell base station. This technique is known as handover or handoff, and it is
illustrated in Fig. 1-20.

(a) (b)

Figure 1-20. Mobile phone handover (a) before. (b) after.

Either the mobile device or the base station may request a handover when the
quality of the signal drops. In some cell networks, usually those based on CDMA

40 INTRODUCTION CHAP. 1

technology, it is possible to connect to the new base station before disconnecting
from the old base station. This improves the connection quality for the mobile be-
cause there is no break in service; the mobile is actually connected to two base sta-
tions for a short while. This way of doing a handover is called a soft handover to
distinguish it from a hard handover, in which the mobile disconnects from the old
base station before connecting to the new one.

A related issue is how to find a mobile in the first place when there is an in-
coming call. Each mobile phone network has a HSS (Home Subscriber Server) in
the core network that knows the location of each subscriber, as well as other profile
information that is used for authentication and authorization. In this way, each
mobile can be found by contacting the HSS.

A final area to discuss is security. Historically, phone companies have taken
security much more seriously than Internet companies because they needed to bill
for service and avoid (payment) fraud. Unfortunately, that is not saying much.
Nevertheless, in the evolution from 1G through 5G technologies, mobile phone
companies have been able to roll out some basic security mechanisms for mobiles.

Starting with the 2G GSM system, the mobile phone was divided into a hand-
set and a removable chip containing the subscriber’s identity and account infor-
mation. The chip is informally called a SIM card, short for Subscriber Identity
Module. SIM cards can be switched to different handsets to activate them, and
they provide a basis for security. When GSM customers travel to other countries on
vacation or business, they often bring their handsets but buy a new SIM card for
few dollars upon arrival in order to make local calls with no roaming charges.

To reduce fraud, information on SIM cards is also used by the mobile phone
network to authenticate subscribers and check that they are allowed to use the net-
work. With UMTS, the mobile also uses the information on the SIM card to check
that it is talking to a legitimate network.

Privacy is another important consideration. Wireless signals are broadcast to
all nearby receivers, so to make it difficult to eavesdrop on conversations, crypto-
graphic keys on the SIM card are used to encrypt transmissions. This approach
provides much better privacy than in 1G systems, which were easily tapped, but is
not a panacea due to weaknesses in the encryption schemes.

Packet Switching and Circuit Switching

Since the beginning of networking, a war has been going on between the peo-
ple who support packet-switched networks (which are connectionless) and the peo-
ple who support circuit-switched networks (which are connection-oriented). The
main proponents of packet switching come from the Internet community. In a
connectionless design, every packet is routed independently of every other packet.
As a consequence, if some routers go down during a session, no harm will be done
as long as the system can dynamically reconfigure itself so that subsequent packets
can find some other route to the destination, even if it is different from that which

SEC. 1.4 EXAMPLES OF NETWORKS 41

previous packets used. In a packet-switched network, if too many packets arrive at
the a router during a particular time interval, the router will choke and probably
lose packets. The sender will eventually notice this and resend the data, but the
quality of service may be poor unless the applications account for this variability.

The circuit switching camp comes from the world of telephone companies. In
the telephone system, a caller must dial the called party’s number and wait for a
connection before talking or sending data. This connection setup establishes a
route through the telephone system that is maintained until the call is terminated.
All words or packets follow the same route. If a line or switch on the path goes
down, the call is aborted, making it less fault tolerant than a connectionless design.

Circuit switching can support quality of service more easily. By setting up a
connection in advance, the subnet can reserve link bandwidth, switch buffer space,
and CPU time. If an attempt is made to set up a call and insufficient resources are
available, the call is rejected and the caller gets a kind of busy signal. In this way,
once a connection has been set up, the connection will get good service.

The surprise in Fig. 1-19 is that there is both packet- and circuit-switched
equipment in the core network. This shows that the mobile phone network is in
transition, with mobile phone companies able to implement one or sometimes both
of the alternatives. Older mobile phone networks used a circuit-switched core in
the style of the traditional phone network to carry voice calls. This legacy is seen in
the UMTS network with the MSC (Mobile Switching Center), GMSC (Gateway
Mobile Switching Center), and MGW (Media Gateway) elements that set up
connections over a circuit-switched core network such as the PSTN (Public
Switched Telephone Network).

Early Generation Mobile Networks: 1G, 2G, and 3G

The architecture of the mobile network has changed greatly over the past 50
years along with its tremendous growth. First-generation mobile phone systems
transmitted voice calls as continuously varying (analog) signals rather than se-
quences of (digital) bits. AMPS (Advanced Mobile Phone System), which was
deployed in the United States in 1982, was a widely used first-generation system.
Second-generation mobile phone systems switched to transmitting voice calls in
digital form to increase capacity, improve security, and offer text messaging. GSM
(Global System for Mobile communications), which was deployed starting in
1991 and has become widely used worldwide. It is a 2G system.

The third generation, or 3G, systems were initially deployed in 2001 and offer
both digital voice and broadband digital data services. They also come with a lot
of jargon and many different standards to choose from. 3G is loosely defined by
the ITU (an international standards body we will discuss later on in this chapter))
as providing rates of at least 2 Mbps for stationary or walking users and 384 kbps
in a moving vehicle. UMTS is the main 3G system that is deployed worldwide. It
is also the basis for its various successors. It can provide up to 14 Mbps on the

42 INTRODUCTION CHAP. 1

downlink and almost 6 Mbps on the uplink. Future releases will use multiple an-
tennas and radios to provide even greater speeds for users.

The scarce resource in 3G systems, as in 2G and 1G systems before them, is
radio spectrum. Governments license the right to use parts of the spectrum to the
mobile phone network operators, often using a spectrum auction in which network
operators submit bids. Having a piece of licensed spectrum makes it easier to de-
sign and operate systems, since no one else is allowed to transmit on that spectrum,
but it often costs a serious amount of money. In the United Kingdom in 2000, for
example, five 3G licenses were auctioned for a total of about $40 billion.

It is the scarcity of spectrum that led to the cellular network design shown in
Fig. 1-21 that is now used for mobile phone networks. To manage the radio inter-
ference between users, the coverage area is divided into cells. Within a cell, users
are assigned channels that do not interfere with each other and do not cause too
much interference for adjacent cells. This allows for good reuse of the spectrum,
or frequency reuse, in the neighboring cells, which increases the capacity of the
network. In 1G systems, which carried each voice call on a specific frequency
band, the frequencies were carefully chosen so that they did not conflict with
neighboring cells. In this way, a given frequency might only be reused once in sev-
eral cells. Modern 3G systems allow each cell to use all frequencies, but in a way
that results in a tolerable level of interference to the neighboring cells. There are
variations on the cellular design, including the use of directional or sectored anten-
nas on cell towers to further reduce interference, but the basic idea is the same.

Cells
Base station

Figure 1-21. Cellular design of mobile phone networks.

Modern Mobile Networks: 4G and 5G

Mobile phone networks are destined to play a big role in future networks. They
are now more about mobile broadband applications (e.g., accessing the Web from a
phone) than voice calls, and this has major implications for the air interfaces, core

SEC. 1.4 EXAMPLES OF NETWORKS 43

network architecture, and security of future networks. The 4G, later 4G (LTE
(Long Term Evolution) technologies offer faster speeds, emerged in the late 2000s.

4G LTE networks very quickly became the predominant mode of mobile Inter-
net access in the late 2000s, outpacing competitors like 802.16, sometimes called
WiMAX. 5G technologies are promising faster speeds—up to 10 Gbps—and are
now set for large-scale deployment in the early 2020s. One of the main distinctions
between these technologies is the frequency spectrum that they rely on. For ex-
ample, 4G uses frequency bands up to 20 MHz; in contrast, 5G is designed to oper-
ate in much higher frequency bands, of up to 6 GHz. The challenge when moving
to higher frequencies is that the higher frequency signals do not travel as far as
lower frequencies, so the technology must account for signal attenuation, inter-
ference, and errors using newer algorithms and technologies, including multiple
input multiple output (MIMO) antenna arrays. The short microwaves at these fre-
quencies are also absorbed easily by water, requiring special efforts to have them
work when it is raining.

1.4.3 Wireless Networks (WiFi)

Almost as soon as laptops appeared, many people dreamed of walking into an
office and magically having their laptop computer be connected to the Internet.
Various groups worked for years to accomplish this goal. The most practical ap-
proach is to equip both the office and the laptop computers with short-range radio
transmitters and receivers to allow them to talk.

Work in this field rapidly led to wireless LANs being marketed by a variety of
companies. The trouble was that no two of them were compatible. The prolifera-
tion of standards meant that a computer equipped with a brand X radio would not
work in a room equipped with a brand Y base station. In the mid 1990s, the indus-
try decided that a wireless LAN standard might be a good idea, so the IEEE com-
mittee that had standardized wired LANs was given the task of drawing up a wire-
less LAN standard.

The first decision was the easiest: what to call it. All the other LAN standards
produced by IEEE’s 802 standards committee had numbers like 802.1, 802.2, and
802.3, up to 802.10, so the wireless LAN standard was dubbed 802.11. Truly bril-
liant. A common slang name for it is WiFi, but it is an important standard and
deserves respect, so we will call it by its more formal name, 802.11. Many variants
and versions of the 802.11 standard have emerged and evolved over the years.

After settling on the name, the rest was harder. The first problem was to find a
suitable frequency band that was available, preferably worldwide. The approach
taken was the opposite of that used in mobile phone networks. Instead of expen-
sive, licensed spectrum, 802.11 systems operate in unlicensed bands such as the
ISM (Industrial, Scientific, and Medical) bands defined by ITU-R (e.g.,
902-928 MHz, 2.4-2.5 GHz, 5.725-5.825 GHz). All devices are allowed to use this

44 INTRODUCTION CHAP. 1

spectrum provided that they limit their transmit power to let different devices coex-
ist. Of course, this means that 802.11 radios may find themselves competing with
cordless phones, garage door openers, and microwave ovens. So unless designers
think people want to call to their garage doors, it is important to get this right.

802.11 networks have clients, such as laptops and mobile phones, as well as
infrastructure called APs (access points) that is installed in buildings. Access
points are sometimes called base stations. The access points connect to the wired
network, and all communication between clients goes through an access point. It
is also possible for clients that are in radio range to talk directly, such as two com-
puters in an office without an access point. This arrangement is called an ad hoc
network. It is used much less often than the access point mode. Both modes are
shown in Fig. 1-22.

(a) (b)

To wired networkAccess
point

Figure 1-22. (a) Wireless network with an access point. (b) Ad hoc network.

802.11 transmission is complicated by wireless conditions that vary with even
small changes in the environment. At the frequencies used for 802.11, radio sig-
nals can be reflected off solid objects so that multiple echoes of a transmission may
reach a receiver along different paths. The echoes can cancel or reinforce each
other, causing the received signal to fluctuate greatly. This phenomenon is called
multipath fading, and it is shown in Fig. 1-23.

The key idea for overcoming variable wireless conditions is path diversity, or
the sending of information along multiple, independent paths. In this way, the
information is likely to be received even if one of the paths happens to be poor due
to a fade. These independent paths are typically built into the digital modulation
scheme used in the hardware. Options include using different frequencies across
the allowed band, following different spatial paths between different pairs of anten-
nas, or repeating bits over different periods of time.

Different versions of 802.11 have used all of these techniques. The initial
(1997) standard defined a wireless LAN that ran at either 1 Mbps or 2 Mbps by
hopping between frequencies or spreading the signal across the allowed spectrum.
Almost immediately, people complained that it was too slow, so work began on
faster standards. The spread spectrum design was later extended and became the

SEC. 1.4 EXAMPLES OF NETWORKS 45

Faded signalReflector

Wireless
transmitter

Non-faded signal

Multiple paths

Wireless
receiver

Figure 1-23. Multipath fading.

802.11b standard (1999) running at rates up to 11 Mbps. The 802.11a (1999) and
802.11g (2003) standards then switched to a different modulation scheme called
OFDM (Orthogonal Frequency Division Multiplexing). It divides a wide band
of spectrum into many narrow slices over which different bits are sent in parallel.
This improved scheme, which we will study in Chap. 2, boosted the 802.11a/g bit
rates up to 54 Mbps. That is a significant increase, but people still wanted more
throughput to support more demanding uses. More recent versions of the standard
offer higher data rates. The commonly deployed 802.11ac can run at 3.5 Gbps.
The newer 802.11ad can run at 7 Gbps, but only indoors within a single room since
the radio waves at the frequencies it uses do not penetrate walls very well.

Since wireless is inherently a broadcast medium, 802.11 radios also have to
deal with the problem that multiple transmissions that are sent at the same time
will collide, which may interfere with reception. To handle this problem, 802.11
uses a CSMA (Carrier Sense Multiple Access) scheme that draws on ideas from
classic wired Ethernet, which, ironically, drew from an early wireless network de-
veloped in Hawaii called ALOHA. Computers wait for a short random interval
before transmitting and defer their transmissions if they hear that someone else is
already transmitting. This scheme makes it less likely that two computers will send
at the same time. It does not work as well as in the case of wired networks,
though. To see why, examine Fig. 1-24. Suppose that computer A is transmitting
to computer B, but the radio range of A’s transmitter is too short to reach computer
C. If C wants to transmit to B, it can listen before starting, but the fact that it does
not hear anything does not mean that its transmission will succeed. The inability
of C to hear A before starting causes some collisions to occur. After any collision,
the sender then waits another, longer, random delay and retransmits the packet.
Despite this and some other issues, the scheme works well enough in practice.

Mobility presents another challenge. If a mobile client is moved away from
the access point it is using and into the range of a different access point, some way

46 INTRODUCTION CHAP. 1

A CB

Range
of A’s
radio

Range
of C’s
radio

Figure 1-24. The range of a single radio may not cover the entire system.

of handing it off is needed. The solution is that an 802.11 network can consist of
multiple cells, each with its own access point, and a distribution system that con-
nects the cells. The distribution system is often switched Ethernet, but it can use
any technology. As the clients move, they may find another access point with a
better signal than the one they are currently using and change their association.
From the outside, the entire system looks like a single wired LAN.

That said, mobility in 802.11 has been of limited value so far compared to
mobility in the mobile phone network. Typically, 802.11 is used by nomadic cli-
ents that go from one fixed location to another, rather than being used on-the-go.
Mobility is not really needed for nomadic usage. Even when 802.11 mobility is
used, it extends over a single 802.11 network, which might cover at most a large
building. Future schemes will need to provide mobility across different networks
and across different technologies (e.g., 802.21, which deals with the handover be-
tween wired and wireless networks).

Finally, there is the problem of security. Since wireless transmissions are
broadcast, it is easy for nearby computers to receive packets of information that
were not intended for them. To prevent this, the 802.11 standard included an en-
cryption scheme known as WEP (Wired Equivalent Privacy). The idea was to
make wireless security like that of wired security. It is a good idea, but unfortun-
ately, the scheme was flawed and soon broken (Borisov et al., 2001). It has since
been replaced with newer schemes that have different cryptographic details in the
802.11i standard, called WiFi Protected Access, initially called WPA (WiFi Pro-
tected Access) but now replaced by WPA2, and even more sophisticated protocols
such as 802.1X, which allows certificated-based authentication of the access point
to the client, as well as a variety of different ways for the client to authenticate it-
self to the access point.

802.11 has caused a revolution in wireless networking that is set to continue.
Beyond buildings, it is now prevalent in trains, planes, boats, and automobiles so
that people can surf the Internet wherever they go. Mobile phones and all manner

SEC. 1.4 EXAMPLES OF NETWORKS 47

of consumer electronics, from game consoles to digital cameras, can communicate
with it. There is even a convergence of 802.11 with other types of mobile technolo-
gies; a prominent example of this convergence is LTE-Unlicensed (LTE-U) which
is an adaptation of 4G LTE cellular network technology that would allow it to op-
erate in the unlicensed spectrum, as an alternative to ISP-owned WiFi ‘‘hotspots.’’
We will return to all of these mobile and cellular network technologies in Chap. 4.

1.5 NETWORK PROTOCOLS

We begin this section with a discussion of the design goals of various network
protocols. We then explore a central concept in network protocol design: layering.
Then, we talk about connection-oriented vs. connectionless services, as well as the
specific service primitives that support these services.

1.5.1 Design Goals

Network protocols often share a common set of design goals, which include
reliability (the ability to recover from errors, faults, or failures); resource allocation
(sharing access to a common, limited resource); evolvability (allowing for incre-
mental deployment of protocol improvements over time); and security (defending
the network against various types of attacks). In this section, we explore each of
these goals at a high level.

Reliability

Some of the key design issues that occur in computer networks will come up in
layer after layer. Below, we will briefly mention the more important ones.

Reliability is the design issue of making a network that operates correctly even
though it is comprised of a collection of components that are themselves unre-
liable. Think about the bits of a packet traveling through the network. There is a
chance that some of these bits will be received damaged (inverted) due to fluke
electrical noise, random wireless signals, hardware flaws, software bugs, and so
on. How is it possible that we find and fix these errors?

One mechanism for finding errors in received information uses codes for error
detection. Information that is incorrectly received can then be retransmitted until
it is received correctly. More powerful codes allow for error correction, where
the correct message is recovered from the possibly incorrect bits that were origi-
nally received. Both of these mechanisms work by adding redundant information.
They are used at low layers, to protect packets sent over individual links, and high
layers, to check that the right contents were received.

Another reliability issue is finding a working path through a network. Often,
there are multiple paths between a source and destination, and in a large network,

48 INTRODUCTION CHAP. 1

there may be some links or routers that are broken. Suppose for example, that the
network is down in Berlin. Packets sent from London to Rome via Berlin will not
get through, but we could instead send packets from London to Rome via Paris.
The network should automatically make this decision. This topic is called routing.

Resource Allocation

A second design issue is resource allocation. When networks get large, new
problems arise. Cities can have traffic jams, a shortage of telephone numbers, and
it is easy to get lost. Not many people have these problems in their own neighbor-
hood, but citywide they may be a big issue. Designs that continue to work well
when the network gets large are said to be scalable. Networks provide a service to
hosts using their underlying resources, such as the capacity of transmission lines.
To do this well, they need mechanisms that divide their resources so that one host
does not interfere with another too much.

Many designs share network bandwidth dynamically, according to the short-
term needs of hosts, rather than by giving each host a fixed fraction of the band-
width that it may or may not use. This design is called statistical multiplexing,
meaning sharing based on the statistics of demand. It can be applied at low layers
for a single link, or at high layers for a network or even applications that use the
network.

An allocation problem that occurs at every level is how to keep a fast sender
from swamping a slow receiver with data. Feedback from the receiver to the send-
er is often used. This subject is called flow control. Sometimes the problem is
that the network is oversubscribed because too many computers want to send too
much traffic, and the network cannot deliver it all. This overloading of the network
is called congestion. One strategy is for each computer to reduce its demand for
resources (e.g., bandwidth) when it experiences congestion. It, too, can be used in
all layers.

It is interesting to observe that the network has more resources to offer than
simply bandwidth. For uses such as carrying live video, the timeliness of delivery
matters a great deal. Most networks must provide service to applications that want
this real-time delivery at the same time that they provide service to applications
that want high throughput. Quality of service is the name given to mechanisms
that reconcile these competing demands.

Evolvability

Another design issue concerns the evolution of the network. Over time, net-
works grow larger and new designs emerge that need to be connected to the exist-
ing network. We have recently seen the key structuring mechanism used to support
change by dividing the overall problem and hiding implementation details: proto-
col layering. There are many other strategies available to designers as well.

SEC. 1.5 NETWORK PROTOCOLS 49

Since there are many computers on the network, every layer needs a mechan-
ism for identifying the senders and receivers that are involved in a particular mes-
sage. This mechanism is called addressing or naming, in the low and high layers,
respectively.

An aspect of growth is that different network technologies often have different
limitations. For example, not all communication channels preserve the order of
messages sent on them, leading to solutions that number messages. Another ex-
ample is differences in the maximum size of a message that the networks can trans-
mit. This leads to mechanisms for disassembling, transmitting, and then reassem-
bling messages. This overall topic is called internetworking.

Security

The last major design issue is to secure the network by defending it against dif-
ferent kinds of threats. One of the threats we have mentioned previously is that of
eavesdropping on communications. Mechanisms that provide confidentiality
defend against this threat, and they are used in multiple layers. Mechanisms for
authentication prevent someone from impersonating someone else. They might
be used to tell fake banking Web sites from the real one, or to let the cellular net-
work check that a call is really coming from your phone so that you will pay the
bill. Other mechanisms for integrity prevent surreptitious changes to messages,
such as altering ‘‘debit my account $10’’ to ‘‘debit my account $1000.’’ All of
these designs are based on cryptography, which we shall study in Chap. 8.

1.5.2 Protocol Layering

To reduce their design complexity, most networks are organized as a stack of
layers or levels, each one built upon the one below it. The number of layers, the
name of each layer, the contents of each layer, and the function of each layer differ
from network to network. The purpose of each layer is to offer certain services to
the higher layers while shielding those layers from the details of how the offered
services are actually implemented. In a sense, each layer is a kind of virtual ma-
chine, offering certain services to the layer above it.

This concept is actually a familiar one and is used throughout computer sci-
ence, where it is variously known as information hiding, abstract data types, data
encapsulation, and object-oriented programming. The fundamental idea is that a
particular piece of software (or hardware) provides a service to its users but keeps
the details of its internal state and algorithms hidden from them.

When layer n on one machine carries on a conversation with layer n on another
machine, the rules and conventions used in this conversation are collectively
known as the layer n protocol. Basically, a protocol is an agreement between the
communicating parties on how communication is to proceed. As an analogy, when
a woman is introduced to a man, she may choose to stick out her hand. He, in turn,

50 INTRODUCTION CHAP. 1

may decide to either shake it or kiss it, depending, for example, on whether she is
an American lawyer at a business meeting or a European princess at a formal ball.
Violating the protocol will make communication more difficult, if not completely
impossible.

A five-layer network is illustrated in Fig. 1-25. The entities comprising the
corresponding layers on different machines are called peers. The peers may be
software processes, hardware devices, or even human beings. In other words, it is
the peers that communicate by using the protocol to talk to each other.

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Host 1

Layer 4/5 interface

Layer 3/4 interface

Layer 2/3 interface

Layer 1/2 interface

Layer 5 protocol
Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Host 2

Layer 4 protocol

Layer 3 protocol

Layer 2 protocol

Layer 1 protocol

Physical medium

Figure 1-25. Layers, protocols, and interfaces.

In reality, no data are directly transferred from layer n on one machine to layer
n on another machine. Instead, each layer passes data and control information to
the layer immediately below it, until the lowest layer is reached. Below layer 1 is
the physical medium through which actual communication occurs. In Fig. 1-25,
virtual communication is shown by dashed lines and physical communication by
solid lines.

Between each pair of adjacent layers is an interface. The interface defines
which primitive operations and services the lower layer makes available to the
upper one. When network designers decide how many layers to include in a net-
work and what each one should do, one of the most important considerations is
defining clean interfaces between the layers. Doing so, in turn, requires that each
layer performs a specific collection of well-understood functions. In addition to
minimizing the amount of information that must be passed between layers, clear

SEC. 1.5 NETWORK PROTOCOLS 51

interfaces also make it simpler to replace one layer with a completely different pro-
tocol or implementation. For example, imagine replacing all the telephone lines by
satellite channels because all that is required of the new protocol or implemen-
tation is that it offers exactly the same set of services to its upstairs neighbor as the
old one did. It is common that different hosts use different implementations of the
same protocol (often written by different companies) In fact, the protocol itself can
change in some layer without the layers above and below it even noticing.

A set of layers and protocols is called a network architecture. The specif-
ication of an architecture must contain enough information to allow an imple-
menter to write the program or build the hardware for each layer so that it will cor-
rectly obey the appropriate protocol. However, neither the details of the imple-
mentation nor the specification of the interfaces is part of the architecture because
these are hidden away inside the machines and not visible from the outside. It is
not even necessary that the interfaces on all machines in a network be the same,
provided that each machine can correctly use all the protocols. A list of the proto-
cols used by a certain system, one protocol per layer, is called a protocol stack.
Network architectures, protocol stacks, and the protocols themselves are the princi-
pal subjects of this book.

An analogy may help explain the idea of multilayer communication. Imagine
two philosophers (peer processes in layer 3), one of whom speaks Urdu and Eng-
lish and one of whom speaks Chinese and French. Since they have no common
language, they each engage a translator (peer processes at layer 2), each of whom
in turn contacts a secretary (peer processes in layer 1). Philosopher 1 wishes to
convey his affection for oryctolagus cuniculus to his peer. To do so, he passes a
message (in English) across the 2/3 interface to his translator, saying ‘‘I like rab-
bits,’’ as illustrated in Fig. 1-26. The translators have agreed on a neutral language
known to both of them, Dutch, so the message is converted to ‘‘Ik vind konijnen
leuk.’’ The choice of the language is the layer 2 protocol and is up to the layer 2
peer processes.

The translator then gives the message to a secretary for transmission, for ex-
ample, by fax (the layer 1 protocol). When the message arrives at the other secre-
tary, it is passed to the local translator, who translates it into French and passes it a-
cross the 2/3 interface to the second philosopher. Note that each protocol is com-
pletely independent of the other ones as long as the interfaces are not changed.
The translators can switch from Dutch to, say, Finnish, at will, provided that they
both agree and neither changes his interface with either layer 1 or layer 3. Simi-
larly, the secretaries can switch from email to telephone without disturbing (or
even informing) the other layers. Each process may add some information intend-
ed only for its peer. This information is not passed up to the layer above.

Now consider a more technical example: how to provide communication to the
top layer of the five-layer network in Fig. 1-27. A message, M, is produced by an
application process running in layer 5 and given to layer 4 for transmission. Layer
4 puts a header in front of the message to identify the message and then passes the

52 INTRODUCTION CHAP. 1

I like
rabbits

Location A

3

2

1

3

2

1

Location B

Message Philosopher

Translator

Secretary

Information
for the remote
translator

Information
for the remote
secretary

L: Dutch
Ik vind
konijnen
leuk

Fax #---
L: Dutch
Ik vind
konijnen
leuk

J'aime
bien les
lapins

L: Dutch
Ik vind
konijnen
leuk

Fax #---
L: Dutch
Ik vind
konijnen
leuk

Figure 1-26. The philosopher-translator-secretary architecture.

result to layer 3. The header includes control information, such as addresses, to
allow layer 4 on the destination machine to deliver the message. Other examples
of control information used in some layers are sequence numbers (in case the
lower layer does not preserve message order), sizes, and times.

In many networks, no limit is placed on the size of messages transmitted in the
layer 4 protocol, but there is nearly always a limit imposed by the layer 3 protocol.
Consequently, layer 3 must break up the incoming messages into smaller units,
packets, prepending a layer 3 header to each packet. In this example, M is split
into two parts, M1 and M2 , that will be transmitted separately.

Layer 3 decides which of the outgoing lines to use and passes the packets to
layer 2. Layer 2 adds to each piece not only a header but also a trailer and gives
the resulting unit to layer 1 for physical transmission. At the receiving machine,
the message moves upward, from layer to layer, with headers being stripped off as
it progresses. None of the headers for layers below n are passed up to layer n.

SEC. 1.5 NETWORK PROTOCOLS 53

H2 H3 H4 M1 T2 H2 H3 M2 T2 H2 H3 H4 M1 T2 H2 H3 M2 T2

H3 H4 M1 H3 M2 H3 H4 M1 H3 M2

H4 M H4 M

M M

Layer 2
protocol

2

Layer 3
protocol

Layer 4 protocol

Layer 5 protocol

3

4

5

1

Layer

Source machine Destination machine

Figure 1-27. Example information flow supporting virtual communication in
layer 5.

The important thing to understand about Fig. 1-27 is the relation between the
virtual and actual communication and the difference between protocols and inter-
faces. The peer processes in layer 4, for example, conceptually think of their com-
munication as being ‘‘horizontal,’’ using the layer 4 protocol. Each one is likely to
have procedures called something like SendToOtherSide and GetFromOtherSide,
even though these procedures actually communicate with lower layers across the
3/4 interface, and not with the other side.

The peer process abstraction is crucial to all network design. Using it, the
unmanageable task of designing the complete network can be broken into several
smaller, manageable design problems, namely, the design of the individual layers.
As a consequence, all real networks use layering.

It is worth pointing out that the lower layers of a protocol hierarchy are fre-
quently implemented in hardware or firmware. Nevertheless, complex protocol al-
gorithms are involved, even if they are embedded (in whole or in part) in hardware.

1.5.3 Connections and Reliability

Layers offer two types of service to the layers above them: connection-oriented
and connectionless. They may also offer various levels of reliability.

54 INTRODUCTION CHAP. 1

Connection-Oriented Service

Connection-oriented service is modeled after the telephone system. To talk
to someone, you pick up the phone, key in the number, talk, and then hang up.
Similarly, to use a connection-oriented network service, the service user first estab-
lishes a connection, uses the connection, and then releases the connection. The es-
sential aspect of a connection is that it acts like a tube: the sender pushes objects
(bits) in at one end, and the receiver takes them out at the other end. In most cases,
the order is preserved so that the bits arrive in the order they were sent.

In some cases when a connection is established, the sender, receiver, and sub-
net conduct a negotiation about the parameters to be used, such as maximum mes-
sage size, quality of service required, and other issues. Typically, one side makes a
proposal and the other side can accept it, reject it, or make a counterproposal. A
circuit is another name for a connection with associated resources, such as a fixed
bandwidth. This dates from the telephone network in which a circuit was a path
over copper wire that carried a phone conversation.

Connectionless Service

In contrast to connection-oriented service, connectionless service is modeled
after the postal system. Each message (letter) carries the full destination address,
and each one is routed through the intermediate nodes inside the system indepen-
dent of all the subsequent messages. There are different names for messages in
different contexts; a packet is a message at the network layer. When the interme-
diate nodes receive a message in full before sending it on to the next node, this is
called store-and-forward switching. The alternative, in which the onward trans-
mission of a message at a node starts before it is completely received by the node,
is called cut-through switching. Normally, when two messages are sent to the
same destination, the first one sent will be the first one to arrive. However, it is
possible that the first one sent can be delayed so that the second one arrives first.

Not all applications require connections. For example, spammers send elec-
tronic junk mail to many recipients. Unreliable (meaning not acknowledged) con-
nectionless service is often called datagram service, in analogy with telegram ser-
vice, which also does not return an acknowledgement to the sender.

Reliability

Connection-oriented and connectionless services can each be characterized by
their reliability. Some services are reliable in the sense that they never lose data.
Usually, a reliable service is implemented by having the receiver acknowledge the
receipt of each message so the sender is sure that it arrived. The acknowledgement
process introduces overhead and delays, which are often worth it but sometimes
the price that has to be paid for reliability is too high.

SEC. 1.5 NETWORK PROTOCOLS 55

A typical situation when a reliable connection-oriented service is appropriate is
file transfer. The owner of the file wants to be sure that all the bits arrive correctly
and in the same order they were sent. Very few file transfer customers would pre-
fer a service that occasionally scrambles or loses a few bits, even if it were much
faster.

Reliable connection-oriented service has two minor variations: message se-
quences and byte streams. In the former variant, the message boundaries are pre-
served. When two 1024-byte messages are sent, they arrive as two distinct
1024-byte messages, never as one 2048-byte message. In the latter, the connection
is simply a stream of bytes, with no message boundaries. When 2048 bytes arrive
at the receiver, there is no way to tell if they were sent as one 2048-byte message,
two 1024-byte messages, or 2048 1-byte messages. If the pages of a book are sent
over a network to a photo-typesetter as separate messages, it might be important to
preserve the message boundaries. On the other hand, to download a movie, a byte
stream from the server to the user’s computer is all that is needed. Message bound-
aries (different scenes) within the movie are not relevant.

In some situations, the convenience of not having to establish a connection to
send one message is desired, but reliability is essential. The acknowledged data-
gram service can be provided for these applications. It is like sending a registered
letter and requesting a return receipt. When the receipt comes back, the sender is
absolutely sure that the letter was delivered to the intended party and not lost along
the way. Text messaging on mobile phones is an example.

The concept of using unreliable communication may be confusing at first.
After all, why would anyone actually prefer unreliable communication to reliable
communication? First of all, reliable communication (in our sense, that is,
acknowledged) may not be available in a given layer. For example, Ethernet does
not provide reliable communication. Packets can occasionally be damaged in tran-
sit. It is up to higher protocol levels to recover from this problem. In particular,
many reliable services are built on top of an unreliable datagram service. Second,
the delays inherent in providing a reliable service may be unacceptable, especially
in real-time applications such as multimedia. For these reasons, both reliable and
unreliable communication coexist.

In some applications, the transit delays introduced by acknowledgements are
unacceptable. One such application is digitized voice traffic (VoIP). It is less dis-
ruptive for VoIP users to hear a bit of noise on the line from time to time than to
experience a delay waiting for acknowledgements. Similarly, when transmitting a
video conference, having a few pixels wrong is no problem, but having the image
jerk along as the flow stops and starts to correct errors, or having to wait longer for
a perfect video stream to arrive, is irritating.

Still another service is the request-reply service. In this service, the sender
transmits a single datagram containing a request; the reply contains the answer.
Request-reply is commonly used to implement communication in the client-server
model: the client issues a request and then the server responds to it. For example, a

56 INTRODUCTION CHAP. 1

mobile phone client might send a query to a map server asking for a list of nearby
Chinese restaurants, with the server sending the list.

Figure 1-28 summarizes the types of services discussed above.

Reliable message stream

Reliable byte stream

Unreliable connection

Unreliable datagram

Acknowledged datagram

Request-reply

Service

Connection-
oriented

Connection-
less

Sequence of pages

Movie download

Voice over IP

Electronic junk mail

Text messaging

Database query

Example

Figure 1-28. Six different types of service.

1.5.4 Service Primitives

A service is formally specified by a set of primitives (operations) available to
user processes to access the service. These primitives tell the service to perform
some action or report on an action taken by a peer entity. If the protocol stack is
located in the operating system, as it often is, the primitives are normally system
calls. These calls cause a trap to kernel mode, which then turns control of the ma-
chine over to the operating system to send the necessary packets.

The set of primitives available depends on the nature of the service being pro-
vided. The primitives for connection-oriented service are different from those of
connectionless service. As a minimal example of the service primitives that might
provide a reliable byte stream, consider the primitives listed in Fig. 1-29. They
will be familiar to fans of the Berkeley socket interface, as the primitives are a sim-
plified version of that interface.

These primitives might be used for a request-reply interaction in a client-server
environment. To illustrate how, we sketch a simple protocol that implements the
service using acknowledged datagrams.

First, the server executes LISTEN to indicate that it is prepared to accept incom-
ing connections. A common way to implement LISTEN is to make it a blocking
system call. After executing the primitive, the server process is blocked (sus-
pended) until a request for connection appears.

Next, the client process executes CONNECT to establish a connection with the
server. The CONNECT call needs to specify who to connect to, so it might have a
parameter giving the server’s address. The operating system then typically sends a

SEC. 1.5 NETWORK PROTOCOLS 57

Primitive Meaning
LISTEN Block waiting for an incoming connection
CONNECT Establish a connection with a waiting peer
ACCEPT Accept an incoming connection from a peer
RECEIVE Block waiting for an incoming message
SEND Send a message to the peer
DISCONNECT Terminate a connection

Figure 1-29. Six service primitives that provide a simple connection-oriented
service.

packet to the peer asking it to connect, as shown by (1) in Fig. 1-30. The client
process is suspended until there is a response.

Client machine (1) Connect request
(2) Accept response

System
calls

KernelOperating
system

Client
process

DriversProtocol
stack

Server machine

System
process

Kernel DriversProtocol
stack

(3) Request for data
(4) Reply

(5) Disconnect
(6) Disconnect

Figure 1-30. A simple client-server interaction using acknowledged datagrams.

When the packet arrives at the server, the operating system sees that the packet
is requesting a connection. It checks to see if there is a listener, and if so, it
unblocks the listener. The server process can then establish the connection with
the ACCEPT call. This sends a response (2) back to the client process to accept the
connection. The arrival of this response then releases the client. At this point, the
client and server are both running and they have a connection established.

An obvious analogy between this protocol and real life is a customer (client)
calling a company’s customer service manager. At the start of the day, the service
manager sits next to her telephone in case it rings. Later, a client places a call.
When the manager picks up the phone, the connection is established.

The next step is for the server to execute RECEIVE to prepare to accept the first
request. Normally, the server does this immediately upon being released from the
LISTEN, before the acknowledgement can get back to the client. The RECEIVE call
blocks the server.

Then the client executes SEND to transmit its request (3) followed by the execu-
tion of RECEIVE to get the reply. The arrival of the request packet at the server ma-
chine unblocks the server so it can handle the request. After it has done the work,

58 INTRODUCTION CHAP. 1

the server uses SEND to return the answer to the client (4). The arrival of this pack-
et unblocks the client, which can now inspect the answer. If the client has addi-
tional requests, it can make them now.

When the client is done, it executes DISCONNECT to terminate the connection
(5). Usually, an initial DISCONNECT is a blocking call, suspending the client, and
sending a packet to the server saying that the connection is no longer needed.
When the server gets the packet, it also issues a DISCONNECT of its own, acknowl-
edging the client and releasing the connection (6). When the server’s packet gets
back to the client machine, the client process is released and the connection is bro-
ken. In a nutshell, this is how connection-oriented communication works.

Of course, life is not so simple. Many things can go wrong here. The timing
can be wrong (e.g., the CONNECT is done before the LISTEN), packets can get lost,
and much more. We will look at these issues in great detail later, but for the mo-
ment, Fig. 1-30 briefly summarizes how client-server communication might work
with acknowledged datagrams so that we can ignore lost packets.

Given that six packets are required to complete this protocol, one might won-
der why a connectionless protocol is not used instead. The answer is that in a per-
fect world it could be, in which case only two packets would be needed: one for the
request and one for the reply. However, in the face of large messages in either di-
rection (e.g., a megabyte file), transmission errors, and lost packets, the situation
changes. If the reply consisted of hundreds of packets, some of which could be
lost during transmission, how would the client know if some pieces were missing?
How would the client know whether the last packet actually received was really the
last packet sent? Suppose the client wanted a second file. How could it tell packet
1 from the second file from a lost packet 1 from the first file that suddenly found
its way to the client? In short, in the real world, a simple request-reply protocol
over an unreliable network is often inadequate. In Chap. 3, we will study a variety
of protocols in detail that overcome these and other problems. For the moment,
suffice it to say that having a reliable, ordered byte stream between processes is
sometimes very convenient.

1.5.5 The Relationship of Services to Protocols

Services and protocols are distinct concepts. This distinction is so important
that we emphasize it again here. A service is a set of primitives (operations) that a
layer provides to the layer above it. The service defines what operations the layer
is able to perform on behalf of its users, but it says nothing at all about how these
operations are implemented. A service relates to an interface between two layers,
with the lower layer being the service provider and the upper layer being the ser-
vice user. The service uses the lower layer to allow the upper layer to do its work.

A protocol, in contrast, is a set of rules governing the format and meaning of
the packets, or messages that are exchanged by the peer entities within a layer.
Entities use protocols in order to implement their service definitions. They are free

SEC. 1.5 NETWORK PROTOCOLS 59

to change their protocols at will, provided they do not change the service visible to
their users. In this way, the service and the protocol are completely decoupled.
This is a key concept that any network designer should understand well.

To repeat this crucial point, services relate to the interfaces between layers, as
illustrated in Fig. 1-31. In contrast, protocols relate to the packets sent between
peer entities on different machines. It is very important not to confuse the two.

Layer k

Layer k + 1

Layer k - 1

Protocol

Service provided by layer k

Layer k

Layer k + 1

Layer k - 1

Figure 1-31. The relationship between a service and a protocol.

An analogy with programming languages is worth making. A service is like
an abstract data type or an object in an object-oriented language. It defines opera-
tions that can be performed on an object but does not specify how these operations
are implemented. In contrast, a protocol relates to the implementation of the ser-
vice and as such is not visible to the user of the service.

Many older protocols did not distinguish the service from the protocol. In ef-
fect, a typical layer might have had a service primitive SEND PACKET with the user
providing a pointer to a fully assembled packet. This arrangement meant that all
changes to the protocol were immediately visible to the users. Most network de-
signers now regard such a design as a serious blunder.

1.6 REFERENCE MODELS

Layered protocol design is one of the key abstractions in network design. One
of the main questions is defining the functionality of each layer and the interac-
tions between them. Two prevailing models are the TCP/IP reference model and
the OSI reference model. We discuss each of them below, as well as the model we
use for the rest of this book, which strikes a middle ground between them.

1.6.1 The OSI Reference Model

The OSI model (minus the physical medium) is shown in Fig. 1-32. This
model is based on a proposal developed by the International Standards Organiza-
tion (ISO) as a first step toward international standardization of the protocols used

60 INTRODUCTION CHAP. 1

in the various layers (Day and Zimmermann, 1983). It was revised in 1995 (Day,
1995). It is called the ISO OSI (Open Systems Interconnection) Reference Mod-
el because it deals with connecting open systems—that is, systems that are open
for communication with other systems. We will call it the OSI model for short.
Layer

Presentation

Application

Session

Transport

Network

Data link

Physical

7

6

5

4

3

2

1

Interface

Host A

Name of unit
exchanged

APDU

PPDU

SPDU

TPDU

Packet

Frame

Bit

Presentation

Application

Session

Transport

Network

Data link

Physical

Host B

Network Network

Data link Data link

Physical Physical

Router Router

Internal subnet protocol

Application protocol

Presentation protocol

Transport protocol

Session protocol

Communication subnet boundary

Network layer host-router protocol
Data link layer host-router protocol
Physical layer host-router protocol

Figure 1-32. The OSI reference model.

The OSI model has seven layers. The principles that were applied to arrive at
the seven layers can be briefly summarized as follows:

1. A layer should be created where a different abstraction is needed.

2. Each layer should perform a well-defined function.

3. The function of each layer should be chosen with an eye toward
defining internationally standardized protocols.

4. The layer boundaries should be chosen to minimize the information
flow across the interfaces.

SEC. 1.6 REFERENCE MODELS 61

5. The number of layers should be large enough that distinct functions
need not be thrown together in the same layer out of necessity and
small enough that the architecture does not become unwieldy.

Three concepts are central to the OSI model:

1. Services.

2. Interfaces.

3. Protocols.

Probably, the biggest contribution of the OSI model is that it makes the distinction
between these three concepts explicit. Each layer performs some services for the
layer above it. The service definition tells what the layer does, not how entities
above it access it or how the layer works.

The TCP/IP model did not originally clearly distinguish between services, in-
terfaces, and protocols, although people have tried to retrofit it after the fact to
make it more OSI-like.

1.6.2 The TCP/IP Reference Model

The TCP/IP reference model is used in the grandparent of all wide area com-
puter networks, the ARPANET, and its successor, the worldwide Internet. As de-
scribed earlier, the ARPANET was a research network sponsored by the DoD. It
eventually connected hundreds of universities and government installations, using
leased telephone lines. When satellite and radio networks were added later, the
existing protocols had trouble interworking with them, so a new reference architec-
ture was needed. Thus, from nearly the beginning, the ability to connect multiple
networks in a seamless way was one of the major design goals. This architecture
later became known as the TCP/IP Reference Model, after its two primary proto-
cols. It was first described by Cerf and Kahn (1974), and later refined and defined
as a standard in the Internet community (Braden, 1989). The design philosophy
behind the model is discussed by Clark (1988).

Given the DoD’s worry that some of its precious hosts, routers, and internet-
work gateways might get blown to pieces at a moment’s notice by an attack from
the Soviet Union, another major goal was that the network be able to survive the
loss of subnet hardware, without existing conversations being broken off. In other
words, the DoD wanted connections to remain intact as long as the source and
destination machines were functioning, even if some of the machines or transmis-
sion lines in between were suddenly put out of operation. Furthermore, since ap-
plications with divergent requirements were envisioned, ranging from transferring
files to real-time speech transmission, a flexible architecture was needed.

62 INTRODUCTION CHAP. 1

The Link Layer

These requirements led to the choice of a packet-switching network based on a
connectionless layer that runs across different networks. The lowest layer in the
model, the link layer, describes what links such as serial lines and classic Ethernet
must do to meet the needs of this connectionless internet layer. It is not really a
layer at all, in the normal sense of the term, but rather an interface between hosts
and transmission links. Early material on the TCP/IP model ignored it.

The Internet Layer

The internet layer is the linchpin that holds the whole architecture together. It
is shown in Fig. 1-33. Its job is to permit hosts to inject packets into any network
and have them travel independently to the destination (potentially on a different
network). They may even arrive in a completely different order than they were
sent, in which case it is the job of higher layers to rearrange them, if in-order deliv-
ery is desired. Note that ‘‘internet’’ is used here in a generic sense, even though
this layer is present in the Internet.

TCP/IPOSI

Application

Presentation

Session

Transport

Network

Data link

Physical

7

6

5

4

3

2

1

Application

Transport

Internet

Link

Not present
in the model

Figure 1-33. The TCP/IP reference model.

The analogy here is with the (snail) mail system. A person can drop a se-
quence of international letters into a mailbox in one country, and with a little luck,
most of them will be delivered to the correct address in the destination country.
The letters will probably travel through one or more international mail gateways
along the way, but this is transparent to the users. Furthermore, the fact that each
country (i.e., each network) has its own stamps, preferred envelope sizes, and de-
livery rules is hidden from the users.

The internet layer defines an official packet format and protocol called IP
(Internet Protocol), plus a companion protocol called ICMP (Internet Control
Message Protocol) that helps it function. The job of the internet layer is to deliver
IP packets where they are supposed to go. Packet routing is clearly a major issue

SEC. 1.6 REFERENCE MODELS 63

here, as is congestion management. The routing problem has largely been solved,
but congestion can only be handled with help from higher layers.

The Transport Layer

The layer above the internet layer in the TCP/IP model is now usually called
the transport layer. It is designed to allow peer entities on the source and destina-
tion hosts to carry on a conversation, just as in the OSI transport layer. Two end-
to-end transport protocols have been defined here. The first one, TCP (Transmis-
sion Control Protocol), is a reliable connection-oriented protocol that allows a
byte stream originating on one machine to be delivered without error on any other
machine in the internet. It segments the incoming byte stream into discrete mes-
sages and passes each one on to the internet layer. At the destination, the receiving
TCP process reassembles the received messages into the output stream. TCP also
handles flow control to make sure a fast sender cannot swamp a slow receiver with
more messages than it can handle.

The second protocol in this layer, UDP (User Datagram Protocol), is an unre-
liable, connectionless protocol for applications that do not want TCP’s sequencing
or flow control and wish to provide their own (if any). It is also widely used for
one-shot, client-server-type request-reply queries and applications in which prompt
delivery is more important than accurate delivery, such as transmitting speech or
video. The relation of IP, TCP, and UDP is shown in Fig. 1-34. Since the model
was developed, IP has been implemented on many other networks.

Link Ethernet802.11SONETDSL

IP ICMP

HTTP RTPSMTP DNS

TCP UDP

Internet

Transport

Layers Protocols

Application

Figure 1-34. The TCP/IP model with some protocols we will study.

The Application Layer

The TCP/IP model does not have session or presentation layers. No need for
them was perceived. Instead, applications simply include any session and pres-
entation functions that they require. Experience has proven this view correct:
these layers are of little use to most applications so they are basically gone forever.

64 INTRODUCTION CHAP. 1

On top of the transport layer is the application layer. It contains all the high-
er-level protocols. The early ones included virtual terminal (TELNET), file trans-
fer (FTP), and electronic mail (SMTP). Many other protocols have been added to
these over the years. Some important ones that we will study, shown in Fig. 1-34,
include the Domain Name System (DNS), for mapping host names onto their net-
work addresses, HTTP, the protocol for fetching pages on the World Wide Web,
and RTP, the protocol for delivering real-time media such as voice or movies.

1.6.3 A Critique of the OSI Model and Protocols

Neither the OSI model and its protocols nor the TCP/IP model and its proto-
cols are perfect. Quite a bit of criticism can be, and has been, directed at both of
them. In this section, and the next one, we will look at some of these criticisms.
We will begin with OSI and examine TCP/IP afterward.

At the time the second edition of this book was published (1989), it appeared
to many experts in the field that the OSI model and its protocols were going to take
over the world and push everything else out of their way. This did not happen.
Why? A look back at some of the reasons may be useful. They can be summa-
rized as: bad timing, bad design, bad implementations, and bad politics.

Bad Timing

First let us look at reason one: bad timing. The time at which a standard is es-
tablished is absolutely critical to its success. David Clark of M.I.T. has a theory of
standards that he calls the apocalypse of the two elephants, which is illustrated in
Fig. 1-35.

Time

Ac
tiv

ity

Research

Standards

Billion dollar
investment

Figure 1-35. The apocalypse of the two elephants.

This figure shows the amount of activity surrounding a new subject. When the
subject is first discovered, there is a giant burst of research activity in the form of

SEC. 1.6 REFERENCE MODELS 65

research, discussions, papers, and meetings. After a while this activity subsides,
corporations discover the subject, and the billion-dollar wave of investment hits.

It is essential that the standards be written in the trough in between the two
‘‘elephants.’’ If they are written too early (before the research results are well es-
tablished), the subject may still be poorly understood; the result is a bad standard.
If they are written too late, so many companies may have already made major
investments in different ways of doing things that the standards are effectively
ignored. If the interval between the two elephants is very short (because everyone
is in a hurry to get started), the people developing the standards may get crushed.

It now appears that the standard OSI protocols got crushed. The competing
TCP/IP protocols were already in widespread use by research universities by the
time the OSI protocols appeared. While the billion-dollar wave of investment had
not yet hit, the academic market was large enough that many vendors had begun
cautiously offering TCP/IP products. When OSI came around, they did not want to
support a second protocol stack until they were forced to, so there were no initial
offerings. With every company waiting for every other company to go first, no
company went first and OSI never happened.

Bad Design

The second reason that OSI never caught on is that both the model and the pro-
tocols are flawed. The choice of seven layers was more political than technical,
and two of the layers (session and presentation) are nearly empty, whereas two
other ones (data link and network) are overfull.

The OSI model, along with its associated service definitions and protocols, is
extraordinarily complex. When piled up, the printed standards occupy a significant
fraction of a meter of paper. They are also difficult to implement and inefficient in
operation. In this context, a riddle posed by Paul Mockapetris and cited by Rose
(1993) comes to mind:

Q: What do you get when you cross a mobster with an international standard?
A: Someone who makes you an offer you can’t understand.

In addition to being incomprehensible, another problem with OSI is that some
functions, such as addressing, flow control, and error control, reappear again and
again in each layer. Saltzer et al. (1984), for example, have pointed out that to be
effective, error control must be done in the highest layer, so that repeating it over
and over in each of the lower layers is often unnecessary and inefficient.

Bad Implementations

Given the enormous complexity of the model and the protocols, it will come as
no surprise that the initial implementations were huge, unwieldy, and slow. Every-
one who tried them got burned. It did not take long for people to associate ‘‘OSI’’

66 INTRODUCTION CHAP. 1

with ‘‘poor quality.’’ Although the products improved in the course of time, the
image stuck. Once people think something is bad, its goose is cooked.

In contrast, one of the first implementations of TCP/IP was part of Berkeley
UNIX and was quite good (not to mention, free). People began using it quickly,
which led to a large user community, which led to improvements and which led to
an even larger community. Here, the spiral was upward instead of downward.

Bad Politics

On account of the initial implementation, many people, especially in academia,
thought of TCP/IP as part of UNIX, and UNIX in the 1980s in academia was not
unlike parenthood (then incorrectly called motherhood) and apple pie.

OSI, on the other hand, was widely thought to be the creature of the European
telecommunication ministries, the European Community, and later the U.S. Gov-
ernment. This belief was only partly true, but the very idea of a bunch of govern-
ment bureaucrats trying to shove a technically inferior standard down the throats of
the poor researchers and programmers down in the trenches actually developing
computer networks did not aid OSI’s cause. Some people viewed this development
in the same light as IBM announcing in the 1960s that PL/I was the language of the
future, or the DoD correcting this later by announcing that it was actually Ada.

1.6.4 A Critique of the TCP/IP Reference Model and Protocols

The TCP/IP model and protocols also have their problems. First, the model
does not clearly distinguish the concepts of services, interfaces, and protocols.
Good software engineering practice requires differentiating between the specif-
ication and the implementation, something that OSI does very carefully, but
TCP/IP does not. Consequently, the TCP/IP model is not much of a guide for de-
signing new networks using new technologies.

Second, the TCP/IP model is not at all general and is poorly suited to describ-
ing any protocol stack other than TCP/IP. Trying to use the TCP/IP model to de-
scribe Bluetooth, for example, is completely impossible.

Third, the link layer is not really a layer at all in the normal sense of the term
as used in the context of layered protocols. It is an interface (between the network
and data link layers). The distinction between an interface and a layer is crucial,
and one should not be sloppy about it.

Fourth, the TCP/IP model does not distinguish between the physical and data
link layers. These are completely different. The physical layer has to do with the
transmission characteristics of copper wire, fiber optics, and wireless communica-
tion. The data link layer’s job is to delimit the start and end of frames and get them
from one side to the other with the desired degree of reliability. A proper model
should include both as separate layers. The TCP/IP model does not do this.

Finally, although the IP and TCP protocols were carefully thought out and well
implemented, many of the other early protocols were ad hoc, generally produced

SEC. 1.6 REFERENCE MODELS 67

by a couple of graduate students hacking away until they got tired. The protocol
implementations were then distributed free, which resulted in them becoming
widely used, deeply entrenched, and thus hard to replace. Some of them are a bit
of an embarrassment now. For example, the virtual terminal protocol, TELNET
was designed for a ten-character-per-second mechanical Teletype terminal. It
knows nothing of graphical user interfaces and mice. Nevertheless, it is still in use
50 years later.

1.6.5 The Model Used in This Book

As mentioned earlier, the strength of the OSI reference model is the model it-
self (minus the presentation and session layers), which has proven to be ex-
ceptionally useful for discussing computer networks. In contrast, the strength of
the TCP/IP reference model is the protocols, which have been widely used for
many years. Since computer scientists like to have their cake and eat it, too, we
will use the hybrid model of Fig. 1-36 as the framework for this book.

5 Application
4 Transport
3 Network
2 Link
1 Physical

Figure 1-36. The reference model used in this book.

This model has five layers, running from the physical layer up through the link,
network and transport layers to the application layer. The physical layer specifies
how to transmit bits across different kinds of media as electrical (or other analog)
signals. The link layer is concerned with how to send finite-length messages be-
tween directly connected computers with specified levels of reliability. Ethernet
and 802.11 are examples of link layer protocols.

The network layer deals with how to combine multiple links into networks,
and networks of networks, into internetworks so that we can send packets between
distant computers. This includes the task of finding the path along which to send
the packets. IP is the main example protocol we will study for this layer. The tran-
sport layer strengthens the delivery guarantees of the Network layer, usually with
increased reliability, and provide delivery abstractions, such as a reliable byte
stream, that match the needs of different applications. TCP is an important ex-
ample of a transport layer protocol.

Finally, the application layer contains programs that make use of the network.
Many, but not all, networked applications have user interfaces, such as a Web
browser. Our concern, however, is with the portion of the program that uses the
network. This is the HTTP protocol in the case of the Web browser. There are also

68 INTRODUCTION CHAP. 1

important support programs in the application layer, such as the DNS, that are used
by many applications. These form the glue that makes the network function.

Our chapter sequence is based on this model. In this way, we retain the value
of the OSI model for understanding network architectures, but concentrate primar-
ily on protocols that are important in practice, from TCP/IP and related protocols
to newer ones such as 802.11, SONET, and Bluetooth.

1.7 STANDARDIZATION

Innovation in Internet technology often depends as much on policy and legal
issues as it does on the technology itself. Traditionally, Internet protocols have ad-
vanced through a standardization process, which we will now explore.

1.7.1 Standardization and Open Source

Many network vendors and suppliers exist, each with its own ideas of how
things should be done. Without coordination, there would be complete chaos, and
users would get nothing done. The only way out is to agree on some network stan-
dards. Not only do good standards allow different computers to communicate, but
they also increase the market for products adhering to the standards. A larger mar-
ket leads to mass production, economies of scale in manufacturing, better imple-
mentations, and other benefits that decrease price and further increase acceptance.

In this section, we will take a quick look at the important but little-known,
world of international standardization. But let us first discuss what belongs in a
standard. A reasonable person might assume that a standard tells you how a proto-
col should work so that you can do a good job of implementing it. That person
would be wrong.

Standards define what is needed for interoperability: no more, no less. That
lets the larger market emerge and also lets companies compete on the basis of how
good their products are. For example, the 802.11 standard defines many transmis-
sion rates but does not say when a sender should use which rate, which is a key
factor in good performance. That is up to whoever makes the product. Often get-
ting to interoperability this way is difficult, since there are many implementation
choices and standards that usually define many options. For 802.11, there were so
many problems that, in a strategy that has become common practice, a trade group
called the WiFi Alliance was started to work on interoperability within the 802.11
standard. In the context of software-defined networking, the ONF (Open Net-
working Foundation) aims to develop both standards and open-source software
implementations of those standards to ensure the interoperability of protocols to
control programmable network switches.

A protocol standard defines the protocol over the wire but not the service inter-
face inside the box, except to help explain the protocol. Real service interfaces are

SEC. 1.7 STANDARDIZATION 69

often proprietary. For example, the way TCP interfaces to IP within a computer
does not matter for talking to a remote host. It only matters that the remote host
speaks TCP/IP. In fact, TCP and IP are commonly implemented together without
any distinct interface. That said, good service interfaces, like good APIs (Applica-
tion Programming Interfaces). are valuable for getting protocols used, and the
best ones (such as Berkeley sockets) can become very popular.

Standards fall into two categories: de facto and de jure. De facto (Latin for
‘‘from the fact’’) standards are those that have just happened, without any formal
plan. HTTP, the protocol on which the Web runs, started life as a de facto stan-
dard. It was part of early WWW browsers developed by Tim Berners-Lee at
CERN, and its use took off with the growth of the Web. Bluetooth is another ex-
ample. It was originally developed by Ericsson but now everyone is using it.

De jure (Latin for ‘‘by law’’) standards, in contrast, are adopted through the
rules of some formal standardization body. International standardization authori-
ties are generally divided into two classes: those established by treaty among na-
tional governments and those comprising voluntary, non-treaty organizations. In
the area of computer network standards, there are several organizations of each
type, notably ITU, ISO, IETF, and IEEE, all of which we will discuss below.

In practice, the relationships between standards, companies, and stan-
dardization bodies are complicated. De facto standards often evolve into de jure
standards, especially if they are successful. This happened in the case of HTTP,
which was quickly picked up by IETF. Standards bodies often ratify each others’
standards, in what looks like patting one another on the back, to increase the mar-
ket for a technology. These days, many ad hoc business alliances that are formed
around particular technologies also play a significant role in developing and refin-
ing network standards. For example, 3GPP (Third Generation Partnership
Project) was a collaboration among telecommunications associations that drives
the UMTS 3G mobile phone standards.

1.7.2 Who’s Who in the Telecommunications World

The legal status of the world’s telephone companies varies considerably from
country to country. At one extreme is the United States, which has many (mostly
very small) privately owned telephone companies. A few more were added with
the breakup of AT&T in 1984 (which was then the world’s largest corporation, pro-
viding telephone service to about 80 percent of America’s telephones), and the
Telecommunications Act of 1996 that overhauled regulation to foster competition.
The idea of fostering competition didn’t turn out as planned though. Large tele-
phone companies bought up smaller ones until in most areas there was only one (or
at most, two) left.

At the other extreme are countries in which the national government has a
complete legal monopoly on all communication, including the mail, telegraph,

70 INTRODUCTION CHAP. 1

telephone, and often radio and television. Much of the world falls into this cate-
gory. In some cases, the telecommunication authority is a nationalized company,
and in others it is simply a branch of the government, usually known as the PTT
(Post, Telegraph & Telephone administration). Worldwide, the trend is toward
liberalization and competition and away from government monopoly. Most Euro-
pean countries have now (partially) privatized their PTTs, but elsewhere the proc-
ess is still only slowly gaining steam.

With all these different suppliers of services, there is clearly a need to provide
compatibility on a worldwide scale to ensure that people (and computers) in one
country can call their counterparts in another one. Actually, this need has existed
for a long time. In 1865, representatives from many European governments met to
form the predecessor to today’s ITU (International Telecommunication Union).
Its job was to standardize international telecommunications, which in those days
meant telegraphy.

Even then it was clear that if half the countries used Morse code and the other
half used some other code, there was going to be a problem. When the telephone
was put into international service, ITU took over the job of standardizing telephony
(pronounced te-LEF-ony) as well. In 1947, ITU became an agency of the United
Nations.

ITU has about 200 governmental members, including almost every member of
the United Nations. Since the United States does not have a PTT, somebody else
had to represent it in ITU. This task fell to the State Department, probably on the
grounds that ITU had to do with foreign countries, the State Department’s spe-
cialty. ITU also has more than 700 sector and associate members. They include
telephone companies (e.g., AT&T, Vodafone, Sprint), telecom equipment manu-
facturers (e.g., Cisco, Nokia, Nortel), computer vendors (e.g., Microsoft, Dell,
Toshiba), chip manufacturers (e.g., Intel, Motorola, TI), and other interested com-
panies (e.g., Boeing, CBS, VeriSign).

ITU has three main sectors. We will focus primarily on ITU-T, the Telecom-
munications Standardization Sector, which is concerned with telephone and data
communication systems. Before 1993, this sector was called CCITT, which is an
acronym for its French name, Comité Consultatif International Télégraphique et
Téléphonique. ITU-R, the Radiocommunications Sector, is concerned with coor-
dinating the use by competing interest groups of radio frequencies worldwide. The
other sector is ITU-D, the Development Sector. It promotes the development of
information and communication technologies in order to narrow the ‘‘digital
divide’’ among countries with effective access to the information technologies and
countries with limited access.

ITU-T’s task is to make technical recommendations about telephone, tele-
graph, and data communication interfaces. These often become internationally
recognized standards, though technically the recommendations are only sugges-
tions that governments can adopt or ignore, as they wish (because governments are
like 13-year-old boys—they do not take kindly to being given orders). In practice,

SEC. 1.7 STANDARDIZATION 71

a country that wishes to adopt a telephone standard different from that used by the
rest of the world is free to do so, but at the price of cutting itself off from everyone
else so no one can call in and no one can call out. This might work for North
Korea, but elsewhere it would be a real problem.

The real work of ITU-T is done in its Study Groups. There are currently 11
Study Groups, often as large as 400 people, that cover topics ranging from tele-
phone billing to multimedia services to security. SG 15, for example, standardizes
fiber-optic connections to the home. This makes it possible for manufacturers to
produce products that work anywhere. To make it possible to get anything at all
done, the Study Groups are divided into Working Parties, which are in turn divided
into Expert Teams, which are in turn divided into ad hoc groups. Once a bureau-
cracy, always a bureaucracy.

Despite all this, ITU-T actually does get things done. Since its inception, it
has produced more than 3000 recommendations, many of which are widely used in
practice. For example, Recommendation H.264 (also an ISO standard known as
MPEG-4 AVC) is widely used for video compression, and X.509 public key certifi-
cates are used for secure Web browsing and digitally signed email.

As the field of telecommunications completes the transition started in the
1980s from being entirely national to being entirely global, standards will become
increasingly important, and more and more organizations will want to become in-
volved in setting them. For more information about ITU, see Irmer (1994).

1.7.3 Who’s Who in the International Standards World

International standards are produced and published by ISO (International
Standards Organization†), a voluntary non-treaty organization founded in 1946.
Its members are the national standards organizations of the 161 member countries.
These members include ANSI (U.S.), BSI (Great Britain), AFNOR (France), DIN
(Germany), and 157 others.

ISO issues standards on a truly vast number of subjects, ranging from nuts and
bolts (literally) to telephone pole coatings [not to mention cocoa beans (ISO 2451),
fishing nets (ISO 1530), women’s underwear (ISO 4416), and quite a few other
subjects one might not think were subject to standardization]. On issues of
telecommunication standards, ISO and ITU-T often cooperate (ISO is a member of
ITU-T) to avoid the irony of two official and mutually incompatible international
standards.

Over 21,000 standards have been issued, including the OSI standards. ISO has
over 200 Technical Committees (TCs), numbered in the order of their creation,
each dealing with some specific subject. TC1 literally deals with the nuts and bolts
(standardizing screw thread pitches). JTC1 deals with information technology, in-
cluding networks, computers, and software. It is the first (and so far only) Joint
Technical Committee, created in 1987 by merging TC97 with activities in IEC, yet

72 INTRODUCTION CHAP. 1

another standardization body. Each TC has multiple subcommittees (SCs) that are
divided into working groups (WGs).

The real work is done largely in the WGs by over 100,000 volunteers world-
wide. Many of these ‘‘volunteers’’ are assigned to work on ISO matters by their
employers, whose products are being standardized. Others are government offic-
ials keen on having their country’s way of doing things become the international
standard. Academic experts also are active in many of the WGs.

The procedure used by ISO for adopting standards has been designed to
achieve as broad a consensus as possible. The process begins when one of the na-
tional standards organizations feels the need for an international standard in some
area. A working group is then formed to come up with a CD (Committee Draft).
The CD is then circulated to all the member bodies, which get 6 months to criticize
it. If a substantial majority approves, a revised document, called a DIS (Draft
International Standard), is produced and circulated for comments and voting.
Based on the results of this round, the final text of the IS (International Stan-
dard) is prepared, approved, and published. In areas of great controversy, a CD or
DIS may have to go through several versions before acquiring enough votes. The
whole process can take years.

NIST (National Institute of Standards and Technology) is part of the U.S.
Department of Commerce. It used to be called the National Bureau of Standards.
It issues standards that are mandatory for purchases made by the U.S. Govern-
ment, except for those of the Department of Defense, which defines its own stan-
dards.

Another major player in the standards world is IEEE (Institute of Electrical
and Electronics Engineers), the largest professional organization in the world. In
addition to publishing scores of journals and running hundreds of conferences each
year, IEEE has a standardization group that develops standards in the area of elec-
trical engineering and computing. IEEE’s 802 committee has standardized many
kinds of LANs. We will study some of its output later in this book. The actual
work is done by a collection of working groups, which are listed in Fig. 1-37. The
success rate of the various 802 working groups has been low; having an 802.x
number is no guarantee of success. Still, the impact of the success stories (espe-
cially 802.3 and 802.11) on the industry and the world has been enormous.

1.7.4 Who’s Who in the Internet Standards World

The worldwide Internet has its own standardization mechanisms, very different
from those of ITU-T and ISO. The difference can be crudely summed up by say-
ing that the people who come to ITU or ISO standardization meetings wear suits,
while the people who come to Internet standardization meetings wear jeans (except
when they meet in San Diego, when they wear shorts and T-shirts).

ITU-T and ISO meetings are populated by corporate officials and government
civil servants for whom standardization is their job. They regard standardization as

SEC. 1.7 STANDARDIZATION 73

Number Topic
802.1 Overview and architecture of LANs
802.2 Logical link control
802.3 * Ethernet
802.4 † Token bus (was briefly used in manufacturing plants)
802.5 † Token ring (IBM’s entry into the LAN world)
802.6 † Dual queue dual bus (early metropolitan area network)
802.7 † Technical advisory group on broadband technologies
802.8 † Technical advisory group on fiber-optic technologies
802.9 † Isochronous LANs (for real-time applications)
802.10 † Virtual LANs and security
802.11 * Wireless LANs (WiFi)
802.12 † Demand priority (Hewlett-Packard’s AnyLAN)
802.13 Unlucky number; nobody wanted it
802.14 † Cable modems (defunct: an industry consortium got there first)
802.15 * Personal area networks (Bluetooth, Zigbee)
802.16 † Broadband wireless (WiMAX)
802.17 † Resilient packet ring
802.18 Technical advisory group on radio regulatory issues
802.19 Technical advisory group on coexistence of all these standards
802.20 Mobile broadband wireless (similar to 802.16e)
802.21 Media independent handoff (for roaming over technologies)
802.22 Wireless regional area network

Figure 1-37. The 802 working groups. The important ones are marked with *.
The ones marked with † gave up and stopped.

a Good Thing and devote their lives to it. Internet people, on the other hand, prefer
anarchy as a matter of principle. However, with hundreds of millions of people all
doing their own thing, little communication can occur. Thus, standards, however
regrettable, are sometimes needed. In this context, David Clark of M.I.T. once
made a now-famous remark about Internet standardization consisting of ‘‘rough
consensus and running code.’’

When the ARPANET was set up, DoD created an informal committee to over-
see it. In 1983, the committee was renamed the IAB (Internet Activities Board)
and was given a slighter broader mission, namely, to keep the researchers involved
with the ARPANET and the Internet pointed more or less in the same direction, an
activity not unlike herding cats. The meaning of the acronym ‘‘IAB’’ was later
changed to Internet Architecture Board.

Each of the approximately ten members of the IAB headed a task force on
some issue of importance. The IAB met several times a year to discuss results and

74 INTRODUCTION CHAP. 1

to give feedback to the DoD and NSF, which were providing most of the funding at
this time. When a standard was needed (e.g., a new routing algorithm), the IAB
members would thrash it out and then announce the change so the graduate stu-
dents (who were the heart of the software effort) could implement it. Communica-
tion was done by a series of technical reports called RFCs (Request For Com-
ments). RFCs are stored online and can be fetched by anyone interested in them
from www.ietf.org/rfc. They are numbered in chronological order of creation.
Over 8000 now exist. We will refer to many RFCs in this book.

By 1989, the Internet had grown so large that this highly informal style no
longer worked. Many vendors by then offered TCP/IP products and did not want
to change them just because ten researchers had thought of a better idea. In the
summer of 1989, the IAB was reorganized again. The researchers were moved to
the IRTF (Internet Research Task Force), which was made subsidiary to IAB,
along with the IETF (Internet Engineering Task Force). The IAB was populated
with people representing a broader range of organizations than just the research
community. It was initially a self-perpetuating group, with members serving for a
2-year term and new members being appointed by the old ones. Later, the Inter-
net Society was created, populated by people interested in the Internet. The Inter-
net Society is thus in a sense comparable to ACM or IEEE. It is governed by
elected trustees who appoint the IAB’s members.

The idea of this split was to have the IRTF concentrate on long-term research
while the IETF dealt with short-term engineering issues. That way they would stay
outof each other’s way. The IETF was divided up into working groups, each with a
specific problem to solve. The chairs of these working groups initially met as a
steering committee to direct the engineering effort. The working group topics in-
clude new applications, user information, OSI integration, routing and addressing,
security, network management, and standards. Eventually, so many working
groups were formed (more than 70) that they were grouped into areas and the area
chairs met as the steering committee.

In addition, a more formal standardization process was adopted, patterned after
ISOs. To become a Proposed Standard, the basic idea must be explained in an
RFC and have sufficient interest in the community to warrant consideration. To
advance to the Draft Standard stage, a working implementation must have been
rigorously tested by at least two independent sites for at least 4 months. If the IAB
is convinced that the idea is sound and the software works, it can declare the RFC
to be an Internet Standard. Some Internet Standards have become DoD stan-
dards (MIL-STD), making them mandatory for DoD suppliers.

For Web standards, the World Wide Web Consortium (W3C) develops pro-
tocols and guidelines to facilitate the long-term growth of the Web. It is an indus-
try consortium led by Tim Berners-Lee and set up in 1994 as the Web really begun
to take off. W3C now has almost 500 companies, universities, and other organiza-
tions as members and has produced well over 100 W3C Recommendations, as its
standards are called, covering topics such as HTML and Web privacy.

SEC. 1.8 POLICY, LEGAL, AND SOCIAL ISSUES 75

1.8 POLICY, LEGAL, AND SOCIAL ISSUES

Like the printing press 500 years ago, computer networks allow ordinary citi-
zens to distribute and view content in ways that were not previously possible. But
along with the good comes the bad, as these new capabilities are accompanied by
many unsolved social, political, and ethical issues. We will provide a brief survey
in this section; in each chapter in the book, we will provide some specific policy,
legal, and social issues that pertain to specific technologies, where appropriate.
Here, we introduce some of the higher level policy and legal concerns that are now
affecting a range of areas in Internet technology, including traffic prioritization,
data collection and privacy, and control over free speech online.

1.8.1 Online Speech

Social networks, message boards, content sharing sites, and a host of other ap-
plications allow people to share their views with like-minded individuals. As long
as the subjects are restricted to technical topics or hobbies like gardening, not too
many problems will arise.

The trouble comes with topics that people actually care about, like politics,
religion, or sex. Views that are publicly posted may be deeply offensive to some
people. Furthermore, opinions need not be limited to text; people can easily share
high-resolution color photographs and video clips on these platforms. In some
cases, such as child pornography or incitement to terrorism, the speech may also be
illegal.

The ability of social media and so-called user-generated content platforms to
act as a conduit for illegal or offensive speech has raised important questions con-
cerning the role of these platforms in moderating the content that is hosted on these
platforms. For a long time, platforms such as Facebook, Twitter, YouTube, and
other user-generated content platforms have enjoyed considerable immunity from
prosecution when this content is hosted on their sites. In the United States, for ex-
ample, Section 230 of the Communications Decency Act protects these platforms
from federal criminal prosecution should any illegal content be found on their sites.
For many years, these social media platforms have claimed that they are merely a
platform for information, akin to a printing press, and should not be held liable for
the content that they host. As these platforms have increasingly curated, priori-
tized, and personalized the content that they show to individual users, however, the
argument that these sites are merely ‘‘platforms’’ has begun to erode.

In both the United States and Europe, for example, the pendulum is beginning
to swing, with laws being passed that would hold these platforms accountable for
certain genres of illegal online content, such as that related to online sex traf-
ficking. The rise of automated, machine-learning-based content classification algo-
rithms is also leading some advocates to hold the social media platforms ac-
countable for a wider range of content, since these algorithms purport to be able to

76 INTRODUCTION CHAP. 1

automatically detect unwanted content, from copyright violations to hate speech.
The reality, however, is more complicated because these algorithms can generate
false positives. If a platform’s algorithm falsely classifies content as offensive or
illegal and automatically takes it down, this action may be considered an censor-
ship or an affront to free speech. If the laws mandate that the platforms take these
types of automated actions, then they may ultimately be automating censorship.

The recording and film industries often advocate for laws that would require
the use of automated content moderation technologies. In the United States,
representatives from these industries regularly issue DMCA takedown notices
(after the Digital Millennium Copyright Act), which threaten legal action if the
party in question does not take action and remove the content. Importantly, the ISP
or content provider is not held liable for copyright infringement if they pass on the
takedown notice to the person who infringed. The ISP or content provider does not
actively have to seek out content that violates copyright—that onus falls on the
copyright holder (e.g., the record label or movie producer). Because it is challeng-
ing to find and identify copyrighted content, the copyright holders understandably
continue to push for laws that would shift the onus back to the ISPs and content
providers.

1.8.2 Net Neutrality

One of the more prominent legal and policy questions over the past fifteen
years has been the extent to which ISPs can block or prioritize content on their own
networks. The notion that ISPs should provide equal quality of service to a given
type of application traffic, regardless of who is sending that content, is often
referred to as network neutrality (Wu, 2003).

The basic tenets of net neutrality amount to the following four rules: (1) No
blocking, (2) No throttling, (3) No paid prioritization, and (4) Transparency about
reasonable network management practices that might be seen as violating any of
the first three rules. Note that net neutrality does not prevent an ISP from prioritiz-
ing any traffic. As we will see in later chapters, in some cases it may make sense
for an ISP to prioritize real-time traffic (e.g., gaming and video conferencing) over
other non-interactive traffic (e.g., a large file backup). The rules typically make ex-
ception for such ‘‘reasonable network management practices.’’ What is a ‘‘rea-
sonable’’ network management practice may be arguable, of course. What the
rules are intended to prevent are situations where an ISP blocks or throttles traffic
as an anti-competitive practice. Specifically, the rules are intended to prevent an
ISP from blocking or throttling VoIP traffic if it competes with its own Internet te-
lephony offering (as occurred when AT&T blocked Apple’s FaceTime), or when a
video service (e.g., Netflix) competes with its own video-on-demand offering.

Although at first the principle of net neutrality may appear straightforward, the
legal and policy nuances are significantly more complicated, especially given how

SEC. 1.8 POLICY, LEGAL, AND SOCIAL ISSUES 77

laws and networks differ between countries. For example, one of the legal ques-
tions in the United States concerns who has the authority to enforce net neutrality
rules. For example, various court rulings over the past decade have granted and
subsequently revoked the authority of the Federal Communications Commission
(FCC) to enforce net neutrality rules on ISPs. Much of the debate in the United
States centers on whether an ISP should be classified as a ‘‘common carrier’’ ser-
vice, akin to a public utility, or whether it should be considered an information ser-
vice, with the likes of Google and Facebook. As many of these companies offer
products in an increasingly diverse set of markets, it is becoming harder to classify
a company into one category or another. On June 11, 2018, net neutrality was
abolished in the entire United States by order of the FCC. However, some states
may adopt their own net neutrality rules statewide.

A topic that relates to network neutrality and is prominent in many countries
around the world is the practice of zero rating, whereby an ISP might charge its
subscribers according to data usage but grant an exemption (i.e., ‘‘zero rate’’) for a
particular service. For example, the ISP might charge its subscribers for streaming
Netflix, but allow unlimited streaming of other video services that it wants to pro-
mote. In some countries, mobile carriers use zero rating as a differentiator: for ex-
ample, a mobile carrier might zero rate Twitter as a promotion to try to attract sub-
scribers from other carriers. Another example of zero rating is Facebook’s ‘‘Free
Basics’’ service, which allows ISP subscribers free, unmetered access to a bundle
of sites and services that Facebook packages as part of a free offering. Many par-
ties see these offerings as running afoul of net neutrality, since they offer preferen-
tial access to some services and applications over others.

1.8.3 Security

The Internet was designed so that anyone could easily connect to it and begin
sending traffic. This open design not only spurred a wave of innovation, but it also
has made the Internet a platform for attacks of unprecedented scale and scope. We
will explore security in detail in Chap. 8.

One of the most prevalent and pernicious type of attack is a DDoS (Distrib-
uted Denial of Service) attack, whereby many machines on the network send traf-
fic towards a victim machine in an attempt to exhaust its resources. There are many
different types of DDoS attacks. The simplest form of DDoS attack is one where a
large number of compromised machines, sometimes referred to as a botnet, all
send traffic towards a single victim. DDoS attacks have typically been launched
from compromised general-purpose machines (e.g., laptops and servers), but the
proliferation of insecure IoT devices has now created a brand-new vector for
launching DDoS attacks. Can a coordinated attack by a million Internet-connected
smart toasters take down Google? Unfortunately, much of the IoT industry in par-
ticular is unconcerned with software security, and so defending against attacks
coming from these highly insecure devices currently falls on network operators.

78 INTRODUCTION CHAP. 1

New incentive or regulatory structures may be necessary to discourage users from
connecting insecure IoT devices to the network. In general, many Internet security
problems are related to incentives.

Spam email (or unwanted electronic mail) now constitutes more than 90% of
all email traffic because spammers have collected millions of email addresses and
would-be marketers can cheaply send computer-generated messages to them. For-
tunately, filtering software is able to read and discard the spam generated by other
computers. Early spam filtering software relied largely on the contents of email
messages to differentiate unwanted spam from legitimate emails, but spammers
quickly found their way around those filters, since it is relatively easy to generate
100 ways of spelling Viagra. On the other hand, properties of the email message
such as the IP address of the sender and receiver, as well as email sending patterns,
turn out to be useful distinguishing characteristics that are much more robust to
evasion.

Some email spam is simply annoying. Other email messages, on the other
hand, may be attempts to launch large-scale scams or steal your personal infor-
mation, such as your passwords or bank account information. Phishing messages
masquerade as originating from a trustworthy party, for example, your bank, to try
to trick you into revealing sensitive information, for example, credit card numbers.
Identity theft is becoming a serious problem as thieves collect enough information
about a victim to obtain credit cards and other documents in the victim’s name.

1.8.4 Privacy

As computer networks and the devices that we connect to them proliferate, it is
becoming increasingly easier for various parties to collect data about how each of
us uses the network. Computer networks make it very easy to communicate, but
they also make it easy for the people who run the network to snoop on the traffic.
A wide range of parties can collect data about your Internet use, including your In-
ternet service provider, your mobile phone carrier, applications, Web sites, cloud
hosting services, content delivery networks, device manufacturers, advertisers, and
Web tracking software vendors.

One prominent practice by many Web sites and application providers is the
practice of profiling and tracking users by collecting data about their network be-
havior over time. One way that advertisers track users is by placing small files
called cookies that Web browsers store on users’ computers. Cookies allow adver-
tisers and tracking companies to track users’ browsing behavior and activities from
one site to another. More sophisticated tracking mechanisms have also been devel-
oped in recent years, such as browser fingerprinting; it turns out that the configu-
ration of your browser is unique enough to you that a company can use code on its
Web page to extract your browser settings and determine your unique identity with
high probability. Companies that provide Web-based services also maintain large
amounts of personal information about their users that allows them to study user

SEC. 1.8 POLICY, LEGAL, AND SOCIAL ISSUES 79

activities directly. For example, Google can read your email and show you adver-
tisements based on your interests if you use its email service, Gmail.

The rise of mobile services has also made location privacy a growing concern
(Beresford and Stajano, 2003). Your mobile operating system vendor has access to
precise location information, including your geographic coordinates and even your
altitude, by virtue of the readings from the phone’s barometric pressure sensor. For
example, a vendor of the Android mobile phone operating system, Google, can de-
termine that your precise location within a building or shopping mall so that it can
serve you advertisements based on the store that you’re walking past. Mobile car-
riers can also get information about your geographic location by determining
which cellular tower that your phone is communicating with.

Various technologies, ranging from VPNs to anonymous browsing software
such as the Tor browser, aim to improve user privacy by obfuscating the source of
user traffic. The level of protection that each of these systems provides depends on
the properties of the system. For example, a VPN provider may prevent your ISP
from seeing any of your unencrypted Internet traffic, but the operator of the VPN
service can still see the unencrypted traffic. Tor may offer an additional layer of
protection, but there are varying assessments of its effectiveness, and many re-
searchers have noted its weaknesses, particularly when a single entity controls
large parts of the infrastructure. Anonymous communication may provide stu-
dents, employees, and citizens a way to blow the whistle on illegal behavior with-
out fear of reprisal. On the other hand, in the United States and most other democ-
racies, the law specifically permits an accused person the right to confront and
challenge his accuser in court so anonymous accusations cannot be used as evi-
dence. Computer networks raise new legal problems when they interact with old
laws. One interesting ongoing legal question concerns access to data. For example,
what determines whether a government should be able to access data about its citi-
zens? If the data resides in another country, is that data protected from search? If
data traverses a country, to what extent does it become subject to those countries’
laws? Microsoft grappled with these questions in a Supreme Court case, where the
U.S. government is attempting to gain access about U.S. citizens on Microsoft ser-
vers located in Ireland. It is likely that the ‘‘borderless’’ nature of the Internet will
continue to raise questions at the intersection of law and technology for years to
come.

1.8.5 Disinformation

The Internet makes it possible to find information quickly, but a great deal of it
is ill-considered, misleading, or downright wrong. That medical advice you
plucked from the Internet about the pain in your chest may have come from a
Nobel Prize winner or from a high-school dropout. There is increasing concern
about how citizens around the world find information about news and current
events. The 2016 presidential election in the United States, for example, saw the

80 INTRODUCTION CHAP. 1

rise of so-called ‘‘fake news,’’ whereby certain parties explicitly crafted false sto-
ries with the goal of tricking readers into believing things that never happened.
Disinformation campaigns have presented network and platform operators with
new challenges. First, how does one define disinformation in the first place? Sec-
ond, can disinformation be reliably detected? Finally, what should a network or
platform operator do about it once it is detected?

1.9 METRIC UNITS

To avoid any confusion, it is worth stating explicitly that in this book, as in
computer science in general, metric units are used instead of traditional English
units (the furlong-stone-fortnight system). The principal metric prefixes are listed
in Fig. 1-38. The prefixes are typically abbreviated by their first letters, with the
units greater than 1 capitalized (KB, MB, etc.). One exception (for historical rea-
sons) is kbps for kilobits/sec. Thus, a 1-Mbps communication line transmits 106

bits/sec and a 100-psec (or 100-ps) clock ticks every 10<10 seconds. Since milli
and micro both begin with the letter ‘‘m,’’ a choice had to be made. Normally,
‘‘m’’ is used for milli and ‘‘µ’’ (the Greek letter mu) is used for micro.

Exp. Explicit Prefix Exp. Explicit Prefix

10<3 0.001 milli 103 1,000 Kilo

10<6 0.000001 micro 106 1,000,000 Mega
10<9 0.000000001 nano 109 1,000,000,000 Giga

10<12 0.000000000001 pico 1012 1,000,000,000,000 Tera
10<15 0.000000000000001 femto 1015 1,000,000,000,000,000 Peta

10<18 0.0000000000000000001 atto 1018 1,000,000,000,000,000,000 Exa
10<21 0.0000000000000000000001 zepto 1021 1,000,000,000,000,000,000,000 Zetta
10<24 0.0000000000000000000000001 yocto 1024 1,000,000,000,000,000,000,000,000 Yotta

Figure 1-38. The principal metric prefixes.

It is also worth pointing out that for measuring memory, disk, file, and data-
base sizes, in common industry practice, the units have slightly different meanings.
There, kilo means 210 (1024) rather than 103 (1000) because memories are always
a power of two. Thus, a 1-KB memory contains 1024 bytes, not 1000 bytes. Note
also the capital ‘‘B’’ in that usage to mean ‘‘bytes’’ (units of eight bits), instead of a
lowercase ‘‘b’’ that means ‘‘bits.’’ Similarly, a 1-MB memory contains 220

(1,048,576) bytes, a 1-GB memory contains 230 (1,073,741,824) bytes, and a 1-TB
database contains 240 (1,099,511,627,776) bytes. However, a 1-kbps communica-
tion line transmits 1000 bits per second and a 10-Mbps LAN runs at 10,000,000
bits/sec because these speeds are not powers of two. Unfortunately, many people

SEC. 1.9 METRIC UNITS 81

tend to mix up these two systems, especially for disk sizes. To avoid ambiguity, in
this book, we will use the symbols KB, MB, GB, and TB for 210, 220, 230, and 240

bytes, respectively, and the symbols kbps, Mbps, Gbps, and Tbps for 103, 106, 109 ,
and 1012 bits/sec, respectively.

1.10 OUTLINE OF THE REST OF THE BOOK

This book discusses both the principles and practice of computer networking.
Most chapters start with a discussion of the relevant principles, followed by a num-
ber of examples that illustrate these principles. These examples are usually taken
from the Internet and wireless networks such as the mobile phone network since
these are both important and very different. Other examples will be given where
relevant.

The book is structured according to the hybrid model of Fig. 1-36. Starting
with Chapyer 2, we begin working our way up the protocol hierarchy beginning at
the bottom. We provide some background in the field of data communication that
covers both wired and wireless transmission systems. This material is concerned
with how to deliver information over physical channels, although we cover only
the architectural rather than the hardware aspects. Several examples of the physi-
cal layer, such as the public switched telephone network, the mobile telephone net-
work, and the cable television network are also discussed.

Chapters 3 and 4 discuss the data link layer in two parts. Chapter 3 looks at
the problem of how to send packets across a link, including error detection and cor-
rection. We look at DSL (used for broadband Internet access over phone lines) as a
real-world example of a data link protocol.

In Chapter 4, we examine the medium access sublayer. This is the part of the
data link layer that deals with how to share a channel between multiple computers.
The examples we look at include wireless, such as 802.11 and wired LANs such as
Ethernet. Link layer switches that connect LANs, such as switched Ethernet, are
also discussed here.

Chapter 5 deals with the network layer, especially routing. Many routing algo-
rithms, both static and dynamic, are covered. Even with good routing algorithms,
though, if more traffic is offered than the network can handle, some packets will be
delayed or discarded. We discuss this issue from how to prevent congestion to how
to guarantee a certain quality of service. Connecting heterogeneous networks to
form internetworks also leads to numerous problems that are discussed here. The
network layer in the Internet is given extensive coverage.

Chapter 6 deals with the transport layer. Much of the emphasis is on con-
nection-oriented protocols and reliability, since many applications need these.
Both Internet transport protocols, UDP and TCP, are covered in detail, as are their
performance issues, especially that of TCP, one of the Internet’s key protocols.

82 INTRODUCTION CHAP. 1

Chapter 7 deals with the application layer, its protocols, and its applications.
The first topic is DNS, which is the Internet’s telephone book. Next comes email,
including a discussion of its protocols. Then we move on to the Web, with detailed
discussions of static and dynamic content, and what happens on the client and ser-
ver sides. We follow this with a look at networked multimedia, including stream-
ing audio and video. Finally, we discuss content-delivery networks, including
peer-to-peer technology.

Chapter 8 is about network security. This topic has aspects that relate to all
layers, so it is easiest to treat it after all the layers have been thoroughly explained.
The chapter starts with an introduction to cryptography. Later, it shows how
cryptography can be used to secure communication, email, and the Web. The
chapter ends with a discussion of some areas in which security collides with pri-
vacy, freedom of speech, censorship, and other social issues.

Chapter 9 contains an annotated list of suggested readings arranged by chapter.
It is intended to help those readers who would like to pursue their study of net-
working further. The chapter also has an alphabetical bibliography of all the refer-
ences cited in this book.

The authors’ Web sites:

https://www.pearsonhighered.com/tanenbaum (https://www.pearsonhighered.com/tanenbaum)
https://computernetworksbook.com

have additional information that may be of interest.

1.11 SUMMARY
Computer networks have many uses, both for companies and for individuals, in

the home and while on the move. Companies use networks of computers to share
corporate information, typically using the client-server model with employee desk-
tops acting as clients accessing powerful servers in the machine room. For individ-
uals, networks offer access to a variety of information and entertainment resources,
as well as a way to buy and sell products and services. Individuals often access the
Internet via their phone or cable providers at home, though increasingly wireless
access is used for laptops and phones. Technology advances are enabling new
kinds of mobile applications and networks with computers embedded in appliances
and other consumer devices. The same advances raise social issues such as privacy
concerns.

Roughly speaking, networks can be divided into LANs, MANs, WANs, and in-
ternetworks. LANs typically cover a building and operate at high speeds. MANs
usually cover a city. An example is the cable television system, which is now used
by many people to access the Internet. WANs may cover a country or a continent.
Some of the technologies used to build these networks are point-to-point (e.g., a
cable) while others are broadcast (e.g., wireless). Networks can be interconnected
with routers to form internetworks, of which the Internet is the largest and most

SEC. 1.11 SUMMARY 83

important example. Wireless networks, for example, 802.11 LANs and 4G mobile
telephony, are also becoming extremely popular.

Network software is built around protocols, which are rules by which proc-
esses communicate. Most networks support protocol hierarchies, with each layer
providing services to the layer above it and insulating them from the details of the
protocols used in the lower layers. Protocol stacks are typically based either on the
OSI model or on the TCP/IP model. Both have link, network, transport, and appli-
cation layers, but they differ on the other layers. Design issues include reliability,
resource allocation, growth, security, and more. Much of this book deals with pro-
tocols and their design.

Networks provide various services to their users. These services can range
from connectionless best-efforts packet delivery to connection-oriented guaranteed
delivery. In some networks, connectionless service is provided in one layer and
connection-oriented service is provided in the layer above it.

Well-known networks include the Internet, the mobile telephone network, and
802.11 LANs. The Internet evolved from the ARPANET, to which other networks
were added to form an internetwork. The present-day Internet is actually a collec-
tion of many thousands of networks that use the TCP/IP protocol stack. The
mobile telephone network provides wireless and mobile access to the Internet at
speeds of multiple Mbps, and, of course, carries voice calls as well. Wireless
LANs based on the IEEE 802.11 standard are deployed in many homes, hotels, air-
ports, and restaurants, and can provide connectivity at rates of 1 Gbps or more.
Wireless networks are also seeing an element of convergence, as evident in propos-
als such as LTE-U, which would allow cellular network protocols to operate in the
unlicensed spectrum alongside 802.11.

Enabling multiple computers to talk to each other requires a large amount of
standardization, both in the hardware and software. Organizations such as ITU-T,
ISO, IEEE, and IAB manage different parts of the standardization process.

PROBLEMS

1. Imagine that you have trained your St. Bernard, Bernie, to carry a box of three 8-mm
tapes instead of a flask of brandy. (When your disk fills up, you consider that an emer-
gency.) These tapes each contain 10 gigabytes. The dog can travel to your side, wher-
ever you may be, at 18 km/hour. For what range of distances does Bernie have a high-
er data rate than a transmission line whose data rate (excluding overhead) is 150
Mbps? How does your answer change if (i) Bernie’s speed is doubled; (ii) each tape
capacity is doubled; (iii) the data rate of the transmission line is doubled.

2. An alternative to a LAN is simply a big timesharing system with terminals for all
users. Give two advantages of a client-server system using a LAN.

3. The performance of a client-server system is strongly influenced by two major network
characteristics: the bandwidth of the network (i.e., how many bits/sec it can transport)
and the latency (i.e., how many seconds it takes for the first bit to get from the client to

84 INTRODUCTION CHAP. 1

the server). Give an example of a network that exhibits high bandwidth but also high
latency. Then give an example of one that has both low bandwidth and low latency.

4. Besides bandwidth and latency, what other parameter is needed to give a good charac-
terization of the quality of service offered by a network used for (i) digitized voice traf-
fic? (ii) video traffic? (iii) financial transaction traffic?

5. A factor in the delay of a store-and-forward packet-switching system is how long it
takes to store and forward a packet through a switch. If switching time is 20 µsec, is
this likely to be a major factor in the response of a client-server system where the client
is in New York and the server is in California? Assume the propagation speed in cop-
per and fiber to be 2/3 the speed of light in vacuum.

6. A client-server system uses a satellite network, with the satellite at a height of 40,000
km. What is the best-case delay in response to a request?

7. Now that almost everyone has a home computer or mobile device connected to a com-
puter network, instant public referendums on important pending legislation will be-
come possible. Ultimately, existing legislatures could be eliminated, to let the will of
the people be expressed directly. The positive aspects of such a direct democracy are
fairly obvious; discuss some of the negative aspects.

8. Five routers are to be connected in a point-to-point subnet. Between each pair of rout-
ers, the designers may put a high-speed line, a medium-speed line, a low-speed line, or
no line. If it takes 50 ms of computer time to generate and inspect each topology, how
long will it take to inspect all of them?

9. A group of 2n < 1 routers are interconnected in a centralized binary tree, with a router
at each tree node. Router i communicates with router j by sending a message to the
root of the tree. The root then sends the message back down to j. Derive an approxi-
mate expression for the mean number of hops per message for large n, assuming that
all router pairs are equally likely.

10. A disadvantage of a broadcast subnet is the capacity wasted when multiple hosts at-
tempt to access the channel at the same time. As a simplistic example, suppose that
time is divided into discrete slots, with each of the n hosts attempting to use the chan-
nel with probability p during each slot. What fraction of the slots will be wasted due to
collisions?

11. What are two reasons for using layered protocols? What is one possible disadvantage
of using layered protocols?

12. Match the layers—Link, Network, and Transport—with the guarantees that each layer
could provide to higher layers.

Guarantee Layer
Best effort delivery Network
Reliable Delivery Transport
In-order Delivery Transport
Byte-stream abstraction Transport
Point-to-point link abstraction Data link

CHAP. 1 PROBLEMS 85

13. Suppose that two network endpoints have a round-trip time of 100 milliseconds, and
that the sender transmits five packets every round trip. What will be the sender’s trans-
mission rate for this round-trip time, assuming 1500-byte packets? Give your answer in
bytes per second

14. The president of the Specialty Paint Corp. gets the idea to work with a local beer
brewer to produce an invisible beer can (as an anti-litter measure). The president tells
her legal department to look into it, and they in turn ask engineering for help. As a re-
sult, the chief engineer calls his counterpart at the brewery to discuss the technical as-
pects of the project. The engineers then report back to their respective legal depart-
ments, which then confer by telephone to arrange the legal aspects. Finally, the two
corporate presidents discuss the financial side of the deal. What principle of a multi-
layer protocol in the sense of the OSI model does this communication mechanism vio-
late?

15. What is the principal difference between connectionless communication and con-
nection-oriented communication? Give one example of a protocol that uses (i) con-
nectionless communication; (ii) connection-oriented communication.

16. Two networks each provide reliable connection-oriented service. One of them offers a
reliable byte stream and the other offers a reliable message stream. Are these identi-
cal? If so, why is the distinction made? If not, give an example of how they differ.

17. What does ‘‘negotiation’’ mean when discussing network protocols? Give an example.

18. In Fig. 1-31, a service is shown. Are any other services implicit in this figure? If so,
where? If not, why not?

19. In some networks, the data link layer handles transmission errors by requesting that
damaged frames be retransmitted. If the probability of a frame’s being damaged is p,
what is the mean number of transmissions required to send a frame? Assume that ac-
knowledgements are never lost.

20. Which of the OSI layers and TCP/IP layers handles each of the following:
(a) Dividing the transmitted bit stream into frames.
(b) Determining which route through the subnet to use.

21. If the unit exchanged at the data link level is called a frame and the unit exchanged at
the network level is called a packet, do frames encapsulate packets or do packets
encapsulate frames? Explain your answer.

22. A system has an n-layer protocol hierarchy. Applications generate messages of length
M bytes. At each of the layers, an h-byte header is added. What fraction of the net-
work bandwidth is filled with headers?

23. List two ways in which the OSI reference model and the TCP/IP reference model are
the same. Now list two ways in which they differ.

24. What is the main difference between TCP and UDP?

25. The subnet of Fig. 1-12(b) was designed to withstand a nuclear war. How many bombs
would it take to partition the nodes into two disconnected sets? Assume that any bomb
wipes out a node and all of the links connected to it.

86 INTRODUCTION CHAP. 1

26. The Internet is roughly doubling in size every 18 months. Although no one really
knows for sure, one estimate put the number of hosts on it a 1 billion in 2018. Use
these data to compute the expected number of Internet hosts in the year 2027. Do you
believe this? Explain why or why not.

27. When a file is transferred between two computers, two acknowledgement strategies are
possible. In the first one, the file is chopped up into packets, which are individually
acknowledged by the receiver, but the file transfer as a whole is not acknowledged. In
the second one, the packets are not acknowledged individually, but the entire file is
acknowledged when it arrives. Discuss these two approaches.

28. Mobile phone network operators need to know where their subscribers’ mobile phones
(hence their users) are located. Explain why this is bad for users. Now give reasons
why this is good for users.

29. How long was a bit in the original 802.3 standard in meters? Use a transmission speed
of 10 Mbps and assume the propagation speed of the signal in coax is 2/3 the speed of
light in vacuum.

30. An image is 1600 × 1200 pixels with 3 bytes/pixel. Assume the image is uncom-
pressed. How long does it take to transmit it over a 56-kbps modem channel? Over a
1-Mbps cable modem? Over a 10-Mbps Ethernet? Over 100-Mbps Ethernet? Over
gigabit Ethernet?

31. Ethernet and wireless networks have some similarities and some differences. One
property of Ethernet is that only one frame at a time can be transmitted on an Ethernet.
Does 802.11 share this property with Ethernet? Discuss your answer.

32. Wireless networks are easy to install, which makes them inexpensive since installation
costs usually far overshadow equipment costs. Nevertheless, they also have some
disadvantages. Name two of them.

33. List two advantages and two disadvantages of having international standards for net-
work protocols.

34. When a system has a permanent part and a removable part (such as a CD-ROM drive
and the CD-ROM), it is important that the system be standardized, so that different
companies can make both the permanent and removable parts and everything still
works together. Give three examples outside the computer industry where such inter-
national standards exist. Now give three areas outside the computer industry where
they do not exist.

35. Suppose the algorithms used to implement the operations at layer k is changed. How
does this impact operations at layers k < 1 and k + 1?

36. Suppose there is a change in the service (set of operations) provided by layer k. How
does this impact services at layers k-1 and k+1?

37. Match each of the protocols visible in Fig. 1-0 with the correct layer in Fig. 1-36.
Explain your answers.

38. Provide a list of reasons for why the response time of a client may be larger than the
best-case delay.

CHAP. 1 PROBLEMS 87

39. Find out what networks are used at your school or place of work. Describe the net-
work types, topologies, and switching methods used there.

40. The ping program allows you to send a test packet to a given location and see how long
it takes to get there and back. Try using ping to see how long it takes to get from your
location to several known locations. From these data, plot the one-way transit time
over the Internet as a function of distance. It is best to use universities since the loca-
tion of their servers is known very accurately. For example, berkeley.edu is in Berke-
ley, California; mit.edu is in Cambridge, Massachusetts; vu.nl is in Amsterdam; The
Netherlands; www.usyd.edu.au is in Sydney, Australia; and www.uct.ac.za is in Cape
Town, South Africa.

41. Go to IETF’s Web site, www.ietf.org, to see what they are doing. Pick a project you
like and write a half-page report on the problem and the proposed solution.

42. Standardization is very important in the network world. ITU and ISO are the main of-
ficial standardization organizations. Go to their respective Web sites, www.itu.org and
www.iso.org, and learn about their standardization work. Write a short report about the
kinds of things they have standardized.

43. The Internet has a large number of networks. Their arrangement determines the topo-
logy of the Internet. A considerable amount of information about the Internet topology
is available on line. Use a search engine to find out more about the Internet topology
and write a short report summarizing your findings.

44. Search the Internet to find out some of the important peering points used for routing
packets in the Internet at present.

45. Write a program that implements message flow from the top layer to the bottom layer
of the 7-layer protocol model. Your program should include a separate protocol func-
tion for each layer. Protocol headers are sequence up to 64 characters. Each protocol
function has two parameters: a message passed from the higher layer protocol (a char
buffer) and the size of the message. This function attaches its header in front of the
message, prints the new message on the standard output, and then invokes the protocol
function of the lower-layer protocol. Program input is an application message.

88

This page is intentionally left blank

2
THE PHYSICAL LAYER

In this chapter, we look at the lowest layer in our reference model, the physical
layer. It defines the electrical, timing, and other interfaces by which bits are sent as
signals over channels. The physical layer is the foundation on which the network
is built. The properties of different kinds of physical channels determine the per-
formance (e.g., throughput, latency, and error rate) so it is a good place to start our
journey into network-land.

We will begin by introducing three kinds of transmission media: guided or
wired (e.g., copper, coaxial cable, fiber optics), wireless (terrestrial radio), and sat-
ellite. Each of these technologies has different properties that affect the design and
performance of the networks that use them. This material provides background
information on the key transmission technologies used in modern networks.

We then cover a theoretical analysis of data transmission, only to discover that
Mother (Parent?) Nature puts some limits on what can be sent over a communica-
tions channel (i.e., a physical transmission medium used to send bits). Next comes
digital modulation, which is all about how analog signals are converted into digital
bits and back. After that we will look at multiplexing schemes, exploring how
multiple conversations can be put on the same transmission medium at the same
time without interfering with one another.

Finally, we will look at three examples of communication systems used in
practice for wide area computer networks: the (fixed) telephone system, the mobile
phone system, and the cable television system. Each of these is important in prac-
tice, so we will devote a fair amount of space to each one.

89

90 THE PHYSICAL LAYER CHAP. 2

2.1 GUIDED TRANSMISSION MEDIA

The purpose of the physical layer is to transport bits from one machine to an-
other. Various physical media can be used for the actual transmission. Transmis-
sion media that rely on a physical cable or wire are often called guided transmis-
sion media because the signal transmissions are guided along a path with a physi-
cal cable or wire. The most common guided transmission media are copper cable
(in the form of coaxial cable or twisted pair) and fiber optics. Each type of guided
transmission media has its own set of trade-offs in terms of frequency, bandwidth,
delay, cost, and ease of installation and maintenance. Bandwidth is a measure of
the carrying capacity of a medium. It is measured in Hz (or MHz or GHz). It is
named in honor of the German physicist Heinrich Hertz. We will discuss this in
detail later in this chapter.

2.1.1 Persistent Storage

One of the most common ways to transport data from one device to another is
to write them onto persistent storage, such as magnetic or solid-state storage (e.g.,
recordable DVDs), physically transport the tape or disks to the destination ma-
chine, and read them back in again. Although this method is not as sophisticated
as using a geosynchronous communication satellite, it is often more cost effective,
especially for applications where a high data rate or cost per bit transported is the
key factor.

A simple calculation will make this point clear. An industry-standard Ultrium
tape can hold 30 terabytes. A box 60 × 60 × 60 cm can hold about 1000 of these
tapes, for a total capacity of 800 terabytes, or 6400 terabits (6.4 petabits). A box of
tapes can be delivered anywhere in the United States in 24 hours by Federal
Express and other companies. The effective bandwidth of this transmission is
6400 terabits/86,400 sec, or a bit over 70 Gbps. If the destination is only an hour
away by road, the bandwidth is increased to over 1700 Gbps. No computer net-
work can even approach this. Of course, networks are getting faster, but tape den-
sities are increasing, too.

If we now look at cost, we get a similar picture. The cost of an Ultrium tape is
around $40 when bought in bulk. A tape can be reused at least 10 times, so the
tape cost is maybe $4000 per box per usage. Add to this another $1000 for ship-
ping (probably much less), and we have a cost of roughly $5000 to ship 800 TB.
This amounts to shipping a gigabyte for a little over half a cent. No network can
beat that. The moral of the story is:

Never underestimate the bandwidth of a station wagon full of tapes hurtling
down the highway.
For moving very large amounts of data, this is often the best solution. Amazon

has what it calls the ‘‘Snowmobile,’’ which is a large truck filled with thousands of

SEC. 2.1 GUIDED TRANSMISSION MEDIA 91

hard disks, all connected to a high-speed network inside the truck. The total capac-
ity of the truck is 100 PB (100,000 TB or 100 million GB). When a company has
a huge amount of data to move, it can have the truck come to its premises and plug
into the company’s fiber-optic network, then suck out all the data into the truck.
Once that it is done, the truck drives to another location and disgorges all the data.
For example, a company wishing to replace its own massive datacenter with the
Amazon cloud might be interested in this service. For very large volumes of data,
no other method of data transport can even approach this.

2.1.2 Twisted Pairs

Although the bandwidth characteristics of persistent storage are excellent, the
delay characteristics are poor: Transmission time is measured in hours or days, not
milliseconds. Many applications, including the Web, video conferencing, and
online gaming, rely on transmitting data with low delay. One of the oldest and still
most common transmission media is twisted pair. A twisted pair consists of two
insulated copper wires, typically about 1 mm thick. The wires are twisted together
in a helical form, similar to a DNA molecule. Two parallel wires constitute a fine
antenna; when the wires are twisted, the waves from different twists cancel out, so
the wire radiates less effectively. A signal is usually carried as the difference in
voltage between the two wires in the pair. Transmitting the signal as the difference
between the two voltage levels, as opposed to an absolute voltage, provides better
immunity to external noise because the noise tends to affect the voltage traveling
through both wires in the same way, leaving the differential relatively unchanged.

The most common application of the twisted pair is the telephone system.
Nearly all telephones are connected to the telephone company (telco) office by a
twisted pair. Both telephone calls and ADSL Internet access run over these lines.
Twisted pairs can run several kilometers without amplification, but for longer dis-
tances the signal becomes too attenuated and repeaters are needed. When many
twisted pairs run in parallel for a substantial distance, such as all the wires coming
from an apartment building to the telephone company office, they are bundled to-
gether and encased in a protective sheath. The pairs in these bundles would inter-
fere with one another if it were not for the twisting. In parts of the world where
telephone lines run on poles above ground, it is common to see bundles several
centimeters in diameter.

Twisted pairs can be used for transmitting either analog or digital information.
The bandwidth depends on the thickness of the wire and the distance traveled, but
hundreds of megabits/sec can be achieved for a few kilometers, in many cases, and
more when various tricks are used. Due to their adequate performance, widespread
availability, and low cost, twisted pairs are widely used and are likely to remain so
for years to come.

Twisted-pair cabling comes in several varieties. One common variety of twist-
ed-pair cables now deployed in many buildings is called Category 5e cabling, or

92 THE PHYSICAL LAYER CHAP. 2

‘‘Cat 5e.’’ A Category 5e twisted pair consists of two insulated wires gently twisted
together. Four such pairs are typically grouped in a plastic sheath to protect the
wires and keep them together. This arrangement is shown in Fig. 2-1.

Twisted pair

Figure 2-1. Category 5e UTP cable with four twisted pairs. These cables can be
used for local area networks.

Different LAN standards may use the twisted pairs differently. For example,
100-Mbps Ethernet uses two (out of the four) pairs, one pair for each direction. To
reach higher speeds, 1-Gbps Ethernet uses all four pairs in both directions simul-
taneously, which requires the receiver to factor out the signal that is transmitted.

Some general terminology is now in order. Links that can be used in both di-
rections at the same time, like a two-lane road, are called full-duplex links. In
contrast, links that can be used in either direction, but only one way at a time, like
a single-track railroad line, are called half-duplex links. A third category consists
of links that allow traffic in only one direction, like a one-way street. They are call-
ed simplex links.

Returning to twisted pair, Cat 5 replaced earlier Category 3 cables with a simi-
lar cable that uses the same connector, but has more twists per meter. More twists
result in less crosstalk and a better-quality signal over longer distances, making the
cables more suitable for high-speed computer communication, especially
100-Mbps and 1-Gbps Ethernet LANs.

New wiring is more likely to be Category 6 or even Category 7. These cate-
gories have more stringent specifications to handle signals with greater band-
widths. Some cables in Category 6 and above can support the 10-Gbps links that
are now commonly deployed in many networks, such as in new office buildings.
Category 8 wiring runs at higher speeds than the lower categories, but operates
only at short distances of around 30 meters and is thus only suitable in data cen-
ters. The Category 8 standard has two options: Class I, which is compatible with
Category 6A; and Class II, which is compatible with Category 7A.

Through Category 6, these wiring types are referred to as UTP (Unshielded
Twisted Pair) as they consist simply of wires and insulators. In contrast to these,
Category 7 cables have shielding on the individual twisted pairs, as well as around
the entire cable (but inside the plastic protective sheath). Shielding reduces the
susceptibility to external interference and crosstalk with other nearby cables to
meet demanding performance specifications. The cables are reminiscent of the

SEC. 2.1 GUIDED TRANSMISSION MEDIA 93

high-quality, but bulky and expensive shielded twisted pair cables that IBM intro-
duced in the early 1980s. However, these did not prove popular outside of IBM in-
stallations. Evidently, it is time to try again.

2.1.3 Coaxial Cable

Another common transmission medium is the coaxial cable (known to its
many friends as just ‘‘coax’’ and pronounced ‘‘co-ax’’). It has better shielding and
greater bandwidth than unshielded twisted pairs, so it can span longer distances at
higher speeds. Two kinds of coaxial cable are widely used. One kind, 50-ohm
cable, is commonly used when it is intended for digital transmission from the start.
The other kind, 75-ohm cable, is commonly used for analog transmission and cable
television. This distinction is based on historical, rather than technical, factors
(e.g., early dipole antennas had an impedance of 300 ohms, and it was easy to use
existing 4:1 impedance-matching transformers). Starting in the mid-1990s, cable
TV operators began to provide Internet access over cable, which has made 75-ohm
cable more important for data communication.

A coaxial cable consists of a stiff copper wire as the core, surrounded by an
insulating material. The insulator is encased by a cylindrical conductor, often as a
closely woven braided mesh. The outer conductor is covered in a protective plastic
sheath. A cutaway view of a coaxial cable is shown in Fig. 2-2.

Copper
core

Insulating
material

Braided
outer
conductor

Protective
plastic
covering

Figure 2-2. A coaxial cable.

The construction and shielding of the coaxial cable give it a good combination
of high bandwidth and excellent noise immunity (e.g., from garage door openers,
microwave ovens, and more). The bandwidth possible depends on the cable quali-
ty and length. Coaxial cable has extremely wide bandwidth; modern cables have a
bandwidth of up to 6 GHz, thus allowing many conversations to be simultaneously
transmitted over a single coaxial cable (a single television program might occupy
approximately 3.5 MHz). Coaxial cables were once widely used within the tele-
phone system for long-distance lines but have now largely been replaced by fiber
optics on long-haul routes. Coax is still widely used for cable television and met-
ropolitan area networks and is also used for delivering high-speed Internet con-
nectivity to homes in many parts of the world.

94 THE PHYSICAL LAYER CHAP. 2

2.1.4 Power Lines

The telephone and cable television networks are not the only sources of wiring
that can be reused for data communication. There is a yet more common kind of
wiring: electrical power lines. Power lines deliver electrical power to houses, and
electrical wiring within houses distributes the power to electrical outlets.

The use of power lines for data communication is an old idea. Power lines
have been used by electricity companies for low-rate communication such as re-
mote metering for many years, as well in the home to control devices (e.g., the X10
standard). In recent years there has been renewed interest in high-rate communica-
tion over these lines, both inside the home as a LAN and outside the home for
broadband Internet access. We will concentrate on the most common scenario:
using electrical wires inside the home.

The convenience of using power lines for networking should be clear. Simply
plug a TV and a receiver into the wall, which you must do anyway because they
need power, and they can send and receive movies over the electrical wiring. This
configuration is shown in Fig. 2-3. There is no other plug or radio. The data signal
is superimposed on the low-frequency power signal (on the active or ‘‘hot’’ wire)
as both signals use the wiring at the same time.

Power signal

Data signalElectric cable

Figure 2-3. A network that uses household electrical wiring.

The difficulty with using household electrical wiring for a network is that it
was designed to distribute power signals. This task is quite distinct from distribut-
ing data signals, at which household wiring does a horrible job. Electrical signals
are sent at 50–60 Hz and the wiring attenuates the much higher frequency (MHz)
signals needed for high-rate data communication. The electrical properties of the
wiring vary from one house to the next and change as appliances are turned on and
off, which causes data signals to bounce around the wiring. Transient currents
when appliances switch on and off create electrical noise over a wide range of fre-
quencies. And without the careful twisting of twisted pairs, electrical wiring acts as
a fine antenna, picking up external signals and radiating signals of its own. This be-
havior means that to meet regulatory requirements, the data signal must avoid
licensed frequencies such as the amateur radio bands.

SEC. 2.1 GUIDED TRANSMISSION MEDIA 95

Despite these difficulties, it is practical to send at least 500 Mbps short dis-
tances over typical household electrical wiring by using communication schemes
that resist impaired frequencies and bursts of errors. Many products use proprietary
standards for power-line networking, but standards are being developed.

2.1.5 Fiber Optics

More than a few people in the computer industry take enormous pride in how
fast computer technology is improving as it follows Moore’s law, which predicts a
doubling of the number of transistors per chip roughly every 2 years (Kuszyk and
Hammoudeh, 2018). The original (1981) IBM PC ran at a clock speed of 4.77
MHz. Forty years later, PCs could run a four-core CPU at 3 GHz. This increase is
of a factor of around 2500. Impressive.

In the same period, wide area communication links went from 45 Mbps (a T3
line in the telephone system) to 100 Gbps (a modern long-distance line). This gain
is similarly impressive, more than a factor of 2000, while at the same time the error
rate went from 10<5 per bit to almost zero. In the past decade, single CPUs have
approached physical limits, which is why the number of CPU cores per chip is
being increased. In contrast, the achievable bandwidth with fiber technology is in
excess of 50,000 Gbps (50 Tbps) and we are nowhere near reaching these limits.
The current practical limit of around 100 Gbps is simply due to our inability to
convert between electrical and optical signals any faster. To build higher-capacity
links, many channels are simply carried in parallel over a single fiber.

In this section, we will study fiber optics to learn how that transmission tech-
nology works. In the ongoing race between computing and communication, com-
munication may yet win because of fiber-optic networks. The implication of this
would be essentially infinite bandwidth and a new conventional wisdom that com-
puters are hopelessly slow so that networks should try to avoid computation at all
costs, no matter how much bandwidth that wastes. This change will take a while to
sink in to a generation of computer scientists and engineers taught to think in terms
of the low transmission limits imposed by copper wires.

Of course, this scenario does not tell the whole story because it does not in-
clude cost. The cost to install fiber over the last mile to reach consumers and
bypass the low bandwidth of wires and limited availability of spectrum is tremen-
dous. It also costs more energy to move bits than to compute. We may always have
islands of inequities where either computation or communication is essentially
free. For example, at the edge of the Internet we apply computation and storage to
the problem of compressing and caching content, all to make better use of Internet
access links. Within the Internet, we may do the reverse, with companies such as
Google moving huge amounts of data across the network to where it is cheaper to
perform storage or computation.

Fiber optics are used for long-haul transmission in network backbones, high-
speed LANs (although so far, copper has often managed to catch up eventually),

96 THE PHYSICAL LAYER CHAP. 2

and high-speed Internet access such as fiber to the home. An optical transmission
system has three key components: the light source, the transmission medium, and
the detector. Conventionally, a pulse of light indicates a 1 bit and the absence of
light indicates a 0 bit. The transmission medium is an ultra-thin fiber of glass. The
detector generates an electrical pulse when light falls on it. By attaching a light
source to one end of an optical fiber and a detector to the other, we have a unidirec-
tional (i.e., simplex) data transmission system that accepts an electrical signal, con-
verts and transmits it by light pulses, and then reconverts the output to an electrical
signal at the receiving end.

This transmission system would leak light and be useless in practice were it
not for an interesting principle of physics. When a light ray passes from one
medium to another—for example, from fused silica (glass) to air—the ray is
refracted (bent) at the silica/air boundary, as shown in Fig. 2-4(a). Here we see a
light ray incident on the boundary at an angle _ 1 emerging at an angle ` 1. The
amount of refraction depends on the properties of the two media (in particular,
their indices of refraction). For angles of incidence above a certain critical value,
the light is refracted back into the silica; none of it escapes into the air. Thus, a
light ray incident at or above the critical angle is trapped inside the fiber, as shown
in Fig. 2-4(b), and can propagate for many kilometers with virtually no loss.

Total internal
reflection

Air/silica
boundary

Light sourceSilica

Air

(a) (b)

`1 `2 `3

_1 _2 _3

Figure 2-4. (a) Three examples of a light ray from inside a silica fiber impinging
on the air/silica boundary at different angles. (b) Light trapped by total internal
reflection.

The sketch of Fig. 2-4(b) shows only one trapped ray, but since any light ray
incident on the boundary above the critical angle will be reflected internally, many
different rays will be bouncing around at different angles. Each ray is said to have
a different mode, so a fiber having this property is called a multimode fiber. If the
fiber’s diameter is reduced to a few wavelengths of light (less than 10 microns, as
opposed to more than 50 microns for multimode fiber), the fiber acts like a
waveguide and the light can propagate only in a straight line, without bouncing,
yielding a single-mode fiber. Single-mode fibers are more expensive but are
widely used for longer distances; they can transmit signals approximately 50 times

SEC. 2.1 GUIDED TRANSMISSION MEDIA 97

farther than multimode fibers. Currently available single-mode fibers can transmit
data at 100 Gbps for 100 km without amplification. Even higher data rates have
been achieved in the laboratory for shorter distances. The choice between sin-
gle-mode or multimode fiber depends on the application. Multimode fiber can be
used for transmissions of up to about 15 km and can allow the use of relatively less
expensive fiber-optic equipment. On the other hand, the bandwidth of multimode
fiber becomes more limited as distance increases.

Transmission of Light Through Fiber

Optical fibers are made of glass, which, in turn, is made from sand, an inex-
pensive raw material available in unlimited amounts. Glassmaking was known to
the ancient Egyptians, but their glass had to be no more than 1 mm thick or the
light could not shine through. Glass transparent enough to be useful for windows
was developed during the Renaissance. The glass used for modern optical fibers is
so transparent that if the oceans were full of it instead of water, the seabed would
be as visible from the surface as the ground is from an airplane on a clear day.

The attenuation of light through glass depends on the wavelength of the light
(as well as on some of the physical properties of the glass). It is defined as the
ratio of input to output signal power. For the kind of glass used in fibers, the atten-
uation is shown in Fig. 2-5 in units of decibels (dB) per linear kilometer of fiber.
As an example, a factor of two loss of signal power corresponds to an attenuation
of 10 log10 2 = 3 dB. We will discuss decibels shortly. In brief, it is a logarithmic
way to measure power ratios, with 3 dB meaning a factor of two power ratio. The
figure shows the near-infrared part of the spectrum, which is what is used in prac-
tice. Visible light has slightly shorter wavelengths, from about 0.4 to 0.7 microns.
(1 micron is 10<6 meters.) The true metric purist would refer to these wavelengths
as 400 nm to 700 nm, but we will stick with traditional usage.

Three wavelength bands are most commonly used at present for optical com-
munication. They are centered at 0.85, 1.30, and 1.55 microns, respectively. All
three bands are 25,000 to 30,000 GHz wide. The 0.85-micron band was used first.
It has higher attenuation and so is used for shorter distances, but at that wavelength
the lasers and electronics could be made from the same material (gallium arsen-
ide). The last two bands have good attenuation properties (less than 5% loss per
kilometer). The 1.55-micron band is now widely used with erbium-doped ampli-
fiers that work directly in the optical domain.

Light pulses sent down a fiber spread out in length as they propagate. This
spreading is called chromatic dispersion. The amount of it is wavelength depen-
dent. One way to keep these spread-out pulses from overlapping is to increase the
distance between them, but this can be done only by reducing the signaling rate.
Fortunately, it has been discovered that making the pulses in a special shape related
to the reciprocal of the hyperbolic cosine causes nearly all the dispersion effects to
cancel out, so it is now possible to send pulses for thousands of kilometers without

98 THE PHYSICAL LAYER CHAP. 2

0.80 0.9

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

1.0 1.1 1.2 1.3
Wavelength (microns)

0.85µ
Band

1.30µ
Band

1.55µ
Band

At
te

nu
at

io
n

(d
B/

km
)

1.4 1.5 1.6 1.7 1.8

Figure 2-5. Attenuation of light through fiber in the infrared region.

appreciable shape distortion. These pulses are called solitons. They are starting to
be widely used in practice.

Fiber Cables

Fiber-optic cables are similar to coax, except without the braid. Figure 2-6(a)
shows a single fiber viewed from the side. At the center is the glass core through
which the light propagates. In multimode fibers, the core is typically around 50
microns in diameter, about the thickness of a human hair. In single-mode fibers,
the core is 8 to 10 microns.

Jacket
(plastic) Core Cladding

Sheath Jacket

Cladding
(glass)

Core
(glass)

(a) (b)

Figure 2-6. (a) Side view of a single fiber. (b) End view of a sheath with three fibers.

The core is surrounded by a glass cladding with a lower index of refraction
than the core, to keep all the light in the core. Next comes a thin plastic jacket to

SEC. 2.1 GUIDED TRANSMISSION MEDIA 99

protect the cladding. Fibers are typically grouped in bundles, protected by an outer
sheath. Figure 2-6(b) shows a sheath with three fibers.

Terrestrial fiber sheaths are normally laid in the ground within a meter of the
surface, where they are occasionally subject to attacks by backhoes or gophers.
Near the shore, transoceanic fiber sheaths are buried in trenches by a kind of sea-
plow. In deep water, they just lie on the bottom, where they can be snagged by
fishing trawlers or attacked by a giant squid.

Fibers can be connected in three different ways. First, they can terminate in
connectors and be plugged into fiber sockets. Connectors lose about 10 to 20% of
the light, but they make it easy to reconfigure systems. Second, they can be spliced
mechanically. Mechanical splices just lay the two carefully cut ends next to each
other in a special sleeve and clamp them in place. Alignment can be improved by
passing light through the junction and then making small adjustments to maximize
the signal. Mechanical splices take trained personnel about 5 minutes and result in
a 10% light loss. Third, two pieces of fiber can be fused (melted) to form a solid
connection. A fusion splice is almost as good as a single drawn fiber, but even
here, a small amount of attenuation occurs. For all three kinds of splices, reflec-
tions can occur at the point of the splice and the reflected energy can interfere with
the signal.

Two kinds of light sources are typically used to do the signaling: LEDs (Light
Emitting Diodes) and semiconductor lasers. They have different properties, as
shown in Fig. 2-7. They can be tuned in wavelength by inserting Fabry-Perot or
Mach-Zehnder interferometers between the source and the fiber. Fabry-Perot inter-
ferometers are simple resonant cavities consisting of two parallel mirrors. The
light is incident perpendicular to the mirrors. The length of the cavity selects out
those wavelengths that fit inside an integral number of times. Mach-Zehnder inter-
ferometers separate the light into two beams. The two beams travel slightly dif-
ferent distances. They are recombined at the end and are in phase for only certain
wavelengths.

Item LED Semiconductor laser
Data rate Low High
Fiber type Multi-mode Multi-mode or single-mode
Distance Short Long
Lifetime Long life Short life
Temperature sensitivity Minor Substantial
Cost Low cost Expensive

Figure 2-7. A comparison of semiconductor diodes and LEDs as light sources.

The receiving end of an optical fiber consists of a photodiode, which gives off
an electrical pulse when struck by light. The response time of photodiodes, which
convert the signal from the optical to the electrical domain, limits data rates to

100 THE PHYSICAL LAYER CHAP. 2

about 100 Gbps. Thermal noise is also an issue, so a pulse of light must carry
enough energy to be detected. By making the pulses powerful enough, the error
rate can be made arbitrarily small.

Comparison of Fiber Optics and Copper Wire

It is instructive to compare fiber to copper. Fiber has many advantages. To
start with, it can handle much higher bandwidths than copper. This alone would
require its use in high-end networks. Due to the low attenuation, repeaters are
needed only about every 50 km on long lines, versus about every 5 km for copper,
resulting in a big cost saving. Fiber also has the advantage of not being affected by
power surges, electromagnetic interference, or power failures. Nor is it affected by
corrosive chemicals in the air, important for harsh factory environments.

Oddly enough, telephone companies like fiber for a completely different rea-
son: it is thin and lightweight. Many existing cable ducts are completely full, so
there is no room to add new capacity. Removing all the copper and replacing it
with fiber empties the ducts, and the copper has excellent resale value to copper
refiners who regard it as very high-grade ore. Also, fiber is much lighter than cop-
per. One thousand twisted pairs 1 km long weigh 8000 kg. Two fibers have more
capacity and weigh only 100 kg, which reduces the need for expensive mechanical
support systems that must be maintained. For new routes, fiber wins hands down
due to its much lower installation cost. Finally, fibers do not leak light and are dif-
ficult to tap. These properties give fiber good security against wiretappers.

On the downside, fiber is a less familiar technology requiring skills not all en-
gineers have, and fibers can be damaged easily by being bent too much. Since op-
tical transmission is inherently unidirectional, two-way communication requires ei-
ther two fibers or two frequency bands on one fiber. Finally, fiber interfaces cost
more than electrical interfaces. Nevertheless, the future of all fixed data communi-
cation over more than short distances is clearly with fiber. For a discussion of
many aspects of fiber optics and their networks, see Pearson (2015).

2.2 WIRELESS TRANSMISSION

Many people now have wireless connectivity to many devices, from laptops
and smartphones, to smart watches and smart refrigerators. All of these devices
rely on wireless communication to transmit information to other devices and end-
points on the network.

In the following sections, we will look at wireless communication in general,
which has many other important applications besides providing connectivity to
users who want to surf the Web from the beach. Wireless has advantages for even
fixed devices in some circumstances. For example, if running a fiber to a building
is difficult due to the terrain (mountains, jungles, swamps, etc.), wireless may be

SEC. 2.2 WIRELESS TRANSMISSION 101

more appropriate. It is noteworthy that modern wireless digital communication
began as a research project of Prof. Norman Abramson of the University of Hawaii
in the 1970s where the Pacific Ocean separated the users from their computer cen-
ter, and the telephone system was inadequate. We will discuss this system,
ALOHA, in Chap. 4.

2.2.1 The Electromagnetic Spectrum

When electrons move, they create electromagnetic waves that can propagate
through space (even in a vacuum). These waves were predicted by the British
physicist James Clerk Maxwell in 1865 and first observed by the German physicist
Heinrich Hertz in 1887. The number of oscillations per second of a wave is called
its frequency, f, and is measured in Hz. The distance between two consecutive
maxima (or minima) is called the wavelength, which is universally designated by
the Greek letter h (lambda).

When an antenna of the appropriate size is attached to an electrical circuit, the
electromagnetic waves can be broadcast efficiently and received by a receiver some
distance away. All wireless communication is based on this principle.

In a vacuum, all electromagnetic waves travel at the same speed, no matter
what their frequency. This speed, usually called the speed of light, c, is approxi-
mately 3 × 108 m/sec, or about 1 foot (30 cm) per nanosecond. (A case could be
made for redefining the foot as the distance light travels in a vacuum in 1 nsec rath-
er than basing it on the shoe size of some long-dead king.) In copper or fiber, the
speed slows to about 2/3 of this value and becomes slightly frequency dependent.
The speed of light is the universe’s ultimate speed limit. No object or signal can
ever move faster than it.

The fundamental relation between f , h, and c (in a vacuum) is

h f = c (2-1)

Since c is a constant, if we know f , we can find h, and vice versa. As a rule of
thumb, when h is in meters and f is in MHz, h f 5 300. For example, 100-MHz
waves are about 3 meters long, 1000-MHz waves are 0.3 meters long, and
0.1-meter waves have a frequency of 3000 MHz.

The electromagnetic spectrum is shown in Fig. 2-8. The radio, microwave, in-
frared, and visible light portions of the spectrum can all be used for transmitting
information by modulating the amplitude, frequency, or phase of the waves. Ultra-
violet light, X-rays, and gamma rays would be even better, due to their higher fre-
quencies, but they are hard to produce and modulate, do not propagate well
through buildings, and are dangerous to living things.

The bands listed at the bottom of Fig. 2-8 are the official ITU (International
Telecommunication Union) names and are based on the wavelengths, so the LF
band goes from 1 km to 10 km (approximately 30 kHz to 300 kHz). The terms LF,

102 THE PHYSICAL LAYER CHAP. 2

100 102 104 106 108 1010 1012 1014 1016 1018 1020 1022 1024

Radio Microwave Infrared UV X-ray Gamma ray

f (Hz)

Visible
light

104 105 106 107 108 109 1010 1011 1012 1013 1014 1015 1016

f (Hz)

Twisted pair
Coax

Satellite

TV

Terrestrial
microwave

Fiber
optics

Maritime
AM

radio
FM

radio

Band LF MF HF VHF UHF SHF EHF THF

Figure 2-8. The electromagnetic spectrum and its uses for communication.

MF, and HF refer to Low, Medium, and High Frequency, respectively. Clearly,
when the names were assigned nobody expected to go above 10 MHz, so the high-
er bands were later named the Very, Ultra, Super, Extremely, and Tremendously
High Frequency bands. Beyond that, there are no names, but Incredibly, Astonish-
ingly, and Prodigiously High Frequency (IHF, AHF, and PHF) would sound nice.
Above 1012 Hz, we get into the infrared, where the comparison is typically to light,
not radio.

The theoretical basis for communication, which we will discuss later in this
chapter, tells us the amount of information that a signal such as an electromagnetic
wave can carry depends on the received power and is proportional to its bandwidth.
From Fig. 2-8, it should now be obvious why networking people like fiber optics
so much. Many GHz of bandwidth are available to tap for data transmission in the
microwave band, and even more bandwidth is available in fiber because it is further
to the right in our logarithmic scale. As an example, consider the 1.30-micron
band of Fig. 2-5, which has a width of 0.17 microns. If we use Eq. (2-1) to find the
start and end frequencies from the start and end wavelengths, we find the frequen-
cy range to be about 30,000 GHz. With a reasonable signal-to-noise ratio of 10 dB,
this is 300 Tbps.

Most transmissions use a relatively narrow frequency band, in other words,
6 f /f << 1). They concentrate their signal power in this narrow band to use the
spectrum efficiently and obtain reasonable data rates by transmitting with enough
power. The rest of this section describes three different types of transmission that
make use of wider frequency bands.

SEC. 2.2 WIRELESS TRANSMISSION 103

2.2.2 Frequency Hopping Spread Spectrum

In frequency hopping spread spectrum, a transmitter hops from frequency to
frequency hundreds of times per second. It is popular for military communication
because it makes transmissions hard to detect and next to impossible to jam. It
also offers good resistance to fading due to signals taking different paths from
source to destination and interfering after recombining. It also offers resistance to
narrowband interference because the receiver will not be stuck on an impaired fre-
quency for long enough to shut down communication. This robustness makes it
useful for crowded parts of the spectrum, such as the ISM bands we will describe
shortly. This technique is used commercially, for example, in Bluetooth and older
versions of 802.11.

As a curious footnote, the technique was co-invented by the Austrian-born film
star Hedy Lamarr, who was famous for acting in European films in the 1930s
under her birth name of Hedwig (Hedy) Kiesler. Her first husband was a wealthy
armaments manufacturer who told her how easy it was to block the radio signals
then used to control torpedoes. When she discovered that he was selling weapons
to Hitler, she was horrified, disguised herself as a maid to escape him, and fled to
Hollywood to continue her career as a movie actress. In her spare time, she invent-
ed frequency hopping to help the Allied war effort.

Her scheme used 88 frequencies, the number of keys (and frequencies) on the
piano. For their invention, she and her friend, the musical composer George
Antheil, received U.S. patent 2,292,387. However, they were unable to convince
the U.S. Navy that their invention had any practical use and never received any
royalties. Only years after the patent expired was the technique rediscovered and
used in mobile electronic devices rather than for blocking signals to torpedoes dur-
ing war time.

2.2.3 Direct Sequence Spread Spectrum

A second form of spread spectrum, direct sequence spread spectrum, uses a
code sequence to spread the data signal over a wider frequency band. It is widely
used commercially as a spectrally efficient way to let multiple signals share the
same frequency band. These signals can be given different codes, a method called
code division multiple access that we will return to later in this chapter. This meth-
od is shown in contrast with frequency hopping in Fig. 2-9. It forms the basis of
3G mobile phone networks and is also used in GPS (Global Positioning System).
Even without different codes, direct sequence spread spectrum, like frequency hop-
ping spread spectrum, can tolerate interference and fading because only a fraction
of the desired signal is lost. It is used in this role in older versions of the 802.11b
wireless LANs protocol. For a fascinating and detailed history of spread spectrum
communication, see Walters (2013).

104 THE PHYSICAL LAYER CHAP. 2

Ultrawideband
underlay

(CDMA user with
different code)

Direct
sequence

spread
spectrum

Frequency
hopping
spread

spectrum

Frequency

(CDMA user with
different code)

Figure 2-9. Spread spectrum and ultra-wideband (UWB) communication.

2.2.4 Ultra-Wideband Communication

UWB (Ultra-WideBand) communication sends a series of low-energy rapid
pulses, varying their carrier frequencies to communicate information. The rapid
transitions lead to a signal that is spread thinly over a very wide frequency band.
UWB is defined as signals that have a bandwidth of at least 500 MHz or at least
20% of the center frequency of their frequency band. UWB is also shown in
Fig. 2-9. With this much bandwidth, UWB has the potential to communicate at
several hundred megabits per second. Because it is spread across a wide band of
frequencies, it can tolerate a substantial amount of relatively strong interference
from other narrowband signals. Just as importantly, since UWB has very little en-
ergy at any given frequency when used for short-range transmission, it does not
cause harmful interference to those other narrowband radio signals. In contrast to
spread spectrum transmission, UWB transmits in ways that do not interfere with
the carrier signals in the same frequency band. It can also be used for imaging
through solid objects (ground, walls, and bodies) or as part of precise location sys-
tems. The technology is popular for short-distance indoor applications, as well as
precision radar imaging and location-tracking technologies.

2.3 USING THE SPECTRUM FOR TRANSMISSION

We will now discuss how the various parts of the electromagnetic spectrum of
Fig. 2-8 are used, starting with radio. We will assume that all transmissions use a
narrow frequency band unless otherwise stated.

2.3.1 Radio Transmission

Radio frequency (RF) waves are easy to generate, can travel long distances,
and can penetrate buildings easily, so they are widely used for communication,
both indoors and outdoors. Radio waves also are omnidirectional, meaning that

SEC. 2.3 USING THE SPECTRUM FOR TRANSMISSION 105

they travel in all directions from the source, so the transmitter and receiver do not
have to be carefully aligned physically.

Sometimes omni-directional radio is good, but sometimes it is bad. In the
1970s, General Motors decided to equip all its new Cadillacs with computer-con-
trolled anti-lock brakes. When the driver stepped on the brake pedal, the computer
pulsed the brakes on and off instead of locking them on hard. One fine day an
Ohio Highway Patrolman began using his new mobile radio to call headquarters,
and suddenly the Cadillac next to him began behaving like a bucking bronco.
When the officer pulled the car over, the driver claimed that he had done nothing
and that the car had gone crazy.

Eventually, a pattern began to emerge: Cadillacs would sometimes go berserk,
but only on major highways in Ohio and then only when the Highway Patrol was
there watching. For a long, long time General Motors could not understand why
Cadillacs worked fine in all the other states and also on minor roads in Ohio. Only
after much searching did they discover that the Cadillac’s wiring made a fine an-
tenna for the frequency used by the Ohio Highway Patrol’s new radio system.

The properties of radio waves are frequency dependent. At low frequencies,
radio waves pass through obstacles well, but the power falls off sharply with dis-
tance from the source—at least as fast as 1/r2 in air—as the signal energy is spread
more thinly over a larger surface. This attenuation is called path loss. At high fre-
quencies, radio waves tend to travel in straight lines and bounce off obstacles. Path
loss still reduces power, though the received signal can depend strongly on reflec-
tions as well. High-frequency radio waves are also absorbed by rain and other
obstacles to a larger extent than are low-frequency ones. At all frequencies, radio
waves are subject to interference from motors and other electrical equipment.

It is interesting to compare the attenuation of radio waves to that of signals in
guided media. With fiber, coax, and twisted pair, the signal drops by the same frac-
tion per unit distance, for example, 20 dB per 100 m for twisted pair. With radio,
the signal drops by the same fraction as the distance doubles, for example 6 dB per
doubling in free space. This behavior means that radio waves can travel long dis-
tances, and interference between users is a problem. For this reason, all govern-
ments tightly regulate the use of radio transmitters, with few notable exceptions,
which are discussed later in this chapter.

In the VLF, LF, and MF bands, radio waves follow the ground, as illustrated in
Fig. 2-10(a). These waves can be detected for perhaps 1000 km at the lower fre-
quencies, less at the higher ones. AM radio broadcasting uses the MF band, which
is why the ground waves from Boston AM radio stations cannot be heard easily in
New York. Radio waves in these bands pass through buildings easily, which is
why radios work indoors. The main problem with using these bands for data com-
munication is their low bandwidth.

In the HF and VHF bands, the ground waves tend to be absorbed by the earth.
However, the waves that reach the ionosphere, a layer of charged particles circling
the earth at a height of 100 to 500 km, are refracted by it and sent back to earth, as

106 THE PHYSICAL LAYER CHAP. 2

erehpsonoI

Earth's surface Earth's surface
(a) (b)

Ground
wave

Figure 2-10. (a) In the VLF, LF, and MF bands, radio waves follow the curvature
of the earth. (b) In the HF band, they bounce off the ionosphere.

shown in Fig. 2-10(b). Under certain atmospheric conditions, the signals can
bounce several times. Amateur radio operators (hams) use these bands to talk long
distance. The military also uses the HF and VHF bands for communication.

2.3.2 Microwave Transmission

Above 100 MHz, the waves travel in nearly straight lines and can therefore be
narrowly focused. Concentrating all the energy into a small beam by means of a
parabolic antenna (like the familiar satellite TV dish) gives a much higher sig-
nal-to-noise ratio, but the transmitting and receiving antennas must be accurately
aligned with each other. In addition, this directionality allows multiple transmitters
lined up in a row to communicate with multiple receivers in a row without inter-
ference, provided some minimum spacing rules are observed. Before fiber optics,
for decades these microwaves formed the heart of the long-distance telephone
transmission system. In fact, MCI, one of AT&T’s first competitors after it was
deregulated, built its entire system with microwave communications passing be-
tween towers tens of kilometers apart. Even the company’s name reflected this
(MCI stood for Microwave Communications, Inc.). MCI has since gone over to
fiber and through a long series of corporate mergers and bankruptcies in the
telecommunications shuffle has become part of Verizon.

Microwaves are directional: they travel in a straight line, so if the towers are
too far apart, the earth will get in the way (think about a Seattle-to-Amsterdam
link). Thus, repeaters are needed periodically. The higher the towers are, the far-
ther apart they can be. The distance between repeaters goes up roughly with the
square root of the tower height. For 100-meter towers, repeaters can be 80 km
apart.

Unlike radio waves at lower frequencies, microwaves do not pass through
buildings well. In addition, even though the beam may be well focused at the
transmitter, there is still some divergence in space. Some waves may be refracted
off low-lying atmospheric layers and may take slightly longer to arrive than the

SEC. 2.3 USING THE SPECTRUM FOR TRANSMISSION 107

direct waves. The delayed waves may arrive out of phase with the direct wave and
thus cancel the signal. This effect is called multipath fading and is often a serious
problem. It is weather and frequency dependent. Some operators keep 10% of
their channels idle as spares to switch on when multipath fading temporarily wipes
out a particular frequency band.

The demand for higher data rates is driving wireless network operators to yet
higher frequencies. Bands up to 10 GHz are now in routine use, but at around
4 GHz, a new problem sets in: absorption by water. These waves are only a few
centimeters long and are absorbed by rain. This effect would be fine if one were
planning to build a huge outdoor microwave oven for roasting passing birds, but
for communication it is a severe problem. As with multipath fading, the only solu-
tion is to shut off links that are being rained on and route around them.

In summary, microwave communication is so widely used for long-distance
telephone communication, mobile phones, television distribution, and other pur-
poses that a severe shortage of spectrum has developed. It has several key advan-
tages over fiber. The main one is that no right of way is needed to lay down cables.
By buying a small plot of ground every 50 km and putting a microwave tower on it,
one can bypass the telephone system entirely. This is how MCI managed to get
started as a new long-distance telephone company so quickly. (Sprint, another
early competitor to the deregulated AT&T, went a completely different route: it
was formed by the Southern Pacific Railroad, which already owned a large amount
of right of way and just buried fiber next to the tracks.)

Microwave is also relatively inexpensive. Putting up two simple towers (which
can be just big poles with four guy wires) and putting antennas on each one may be
cheaper than burying 50 km of fiber through a congested urban area or up over a
mountain, and it may also be cheaper than leasing the telephone company’s fiber,
especially if the telephone company has not yet even fully paid for the copper it
ripped out when it put in the fiber.

2.3.3 Infrared Transmission

Unguided infrared waves are widely used for short-range communication. The
remote controls used for televisions, Blu-ray players, and stereos all use infrared
communication. They are relatively directional, cheap, and easy to build but have
a major drawback: they do not pass through solid objects. (Try standing between
your remote control and your television and see if it still works.) In general, as we
go from long-wave radio toward visible light, the waves behave more and more
like light and less and less like radio.

On the other hand, the fact that infrared waves do not pass through solid walls
well is also a plus. It means that an infrared system in one room of a building will
not interfere with a similar system in adjacent rooms or buildings: you cannot con-
trol your neighbor’s television with your remote control. Furthermore, security of
infrared systems against eavesdropping is better than that of radio systems on

108 THE PHYSICAL LAYER CHAP. 2

account of this reason. Therefore, no government license is needed to operate an
infrared system, in contrast to radio systems, which must be licensed outside the
ISM bands. Infrared communication has a limited use on the desktop, for example,
to connect notebook computers and printers with the IrDA (Infrared Data Associ-
ation) standard, but it is not a major player in the communication game.

2.3.4 Light Transmission

Unguided optical signaling or free-space optics has been in use for centuries.
Paul Revere used binary optical signaling from the Old North Church just prior to
his famous ride. A more modern application is to connect the LANs in two build-
ings via lasers mounted on their rooftops. Optical signaling using lasers is inher-
ently unidirectional, so each end needs its own laser and its own photodetector.
This scheme offers very high bandwidth at very low cost and is relatively secure
because it is difficult to tap a narrow laser beam. It is also relatively easy to install
and, unlike microwave transmission, does not require a license from the FCC
(Federal Communications Commission) in the United States and analogous gov-
ernment bodies in other countries.

The laser’s strength, a very narrow beam, is also its weakness here. Aiming a
laser beam 1 mm wide at a target the size of a pin head 500 meters away requires
the marksmanship of a latter-day Annie Oakley. Usually, lenses are put into the
system to defocus the beam slightly. To add to the difficulty, wind and temperature
changes can distort the beam and laser beams also cannot penetrate rain or thick
fog, although they normally work well on sunny days. However, many of these
factors are not an issue when the use is to connect two spacecraft.

One of the authors (AST) once attended a conference at a modern hotel in
Europe in the 1990s at which the conference organizers thoughtfully provided a
room full of terminals to allow the attendees to read their email during boring pres-
entations. Since the local phone company was unwilling to install a large number
of telephone lines for just 3 days, the organizers put a laser on the roof and aimed it
at their university’s computer science building a few kilometers away. They tested
it the night before the conference and it worked perfectly. At 9 A.M. the next day,
which was bright and sunny, the link failed completely and stayed down all day.
The pattern repeated itself the next 2 days. It was not until after the conference
that the organizers discovered the problem: heat from the sun during the daytime
caused convection currents to rise up from the roof of the building, as shown in
Fig. 2-11. This turbulent air diverted the beam and made it dance around the
detector, much like a shimmering road on a hot day. The lesson here is that to
work well in difficult conditions as well as good conditions, unguided optical links
need to be engineered with a sufficient margin of error.

Unguided optical communication may seem like an exotic networking technol-
ogy today, but it might soon become much more prevalent. In many places, we are
surrounded by cameras (that sense light) and displays (that emit light using LEDs

SEC. 2.3 USING THE SPECTRUM FOR TRANSMISSION 109

Laser beam
misses the detector

Laser
Photodetector Region of

turbulent seeing

Heat rising
off the building

Figure 2-11. Convection currents can interfere with laser communication sys-
tems. A bidirectional system with two lasers is pictured here.

and other technology). Data communication can be layered on top of these displays
by encoding information in the pattern at which LEDs turn on and off that is below
the threshold of human perception. Communicating with visible light in this way is
inherently safe and creates a low-speed network in the immediate vicinity of the
display. This could enable all sorts of fanciful ubiquitous computing scenarios.
The flashing lights on emergency vehicles might alert nearby traffic lights and
vehicles to help clear a path. Informational signs might broadcast maps. Even fes-
tive lights might broadcast songs that are synchronized with their display.

2.4 FROM WAVEFORMS TO BITS

In this section, we describe how signals are transmitted over the physical
media we have discussed. We begin with a discussion of the theoretical basis for
data communication, and follow with a discussion of modulation (the process of
converting analog waveforms to bits) and multiplexing (which allows a single
physical medium to carry multiple simultaneous transmissions).

110 THE PHYSICAL LAYER CHAP. 2

2.4.1 The Theoretical Basis for Data Communication

Information can be transmitted on wires by varying some physical property
such as voltage or current. By representing the value of this voltage or current as a
single-valued function of time, f (t), we can model the behavior of the signal and
analyze it mathematically. This analysis is the subject of the following sections.

Fourier Analysis

In the early 19th century, the French mathematician Jean-Baptiste Fourier
proved that any reasonably behaved periodic function, g(t) with period T, can be
constructed as the sum of a (possibly infinite) number of sines and cosines:

g(t) = 1
2

c +
'

n=1
Y an sin(2/ nft) +

'

n=1
Y bn cos(2/ nft) (2-2)

where f = 1/T is the fundamental frequency, an and bn are the sine and cosine am-
plitudes of the nth harmonics (terms), and c is a constant that determines the mean
value of the function. Such a decomposition is called a Fourier series. From the
Fourier series, the function can be reconstructed. That is, if the period, T, is known
and the amplitudes are given, the original function of time can be found by per-
forming the sums of Eq. (2-2).

A data signal that has a finite duration, which all of them do, can be handled
by just imagining that it repeats the entire pattern over and over forever (i.e., the in-
terval from T to 2T is the same as from 0 to T, etc.).

The an amplitudes can be computed for any given g(t) by multiplying both
sides of Eq. (2-2) by sin(2/ kft) and then integrating from 0 to T. Since

T

0
0 sin(2/ kft) sin(2/ nft) dt =

¨
©
ª

0 for k & n
T /2 for k = n

only one term of the summation survives: an . The bn summation vanishes com-
pletely. Similarly, by multiplying Eq. (2-2) by cos(2/ kft) and integrating between
0 and T, we can derive bn. By just integrating both sides of the equation as it
stands, we can find c. The results of performing these operations are as follows:

an =
2
T

T

0
0 g(t) sin(2/ nft) dt bn =

2
T

T

0
0 g(t) cos(2/ nft) dt c = 2

T

T

0
0 g(t) dt

Bandwidth-Limited Signals

The relevance of all of this to data communication is that real channels affect
different frequency signals differently. Let us consider a specific example: the
transmission of the ASCII character ‘‘b’’ encoded in an 8-bit byte. The bit pattern

SEC. 2.4 FROM WAVEFORMS TO BITS 111

that is to be transmitted is 01100010. The left-hand part of Fig. 2-12(a) shows the
voltage output by the transmitting computer. The Fourier analysis of this signal
yields the coefficients:

an =
1
/ n [cos(/ n/4) < cos(3/ n/4) + cos(6/ n/4) < cos(7/ n/4)]

bn =
1
/ n [sin(3/ n/4) < sin(/ n/4) + sin(7/ n/4) < sin(6/ n/4)]

c = 3/4.

The root-mean-square amplitudes, 3}}}}}a2
n + b2

n , for the first few terms are shown on
the right-hand side of Fig. 2-12(a). These values are of interest because their
squares are proportional to the energy transmitted at the corresponding frequency.

No transmission facility can transmit signals without losing some power in the
process. If all the Fourier components were equally diminished, the resulting sig-
nal would be reduced in amplitude but not distorted [i.e., it would have the same
nice squared-off shape as Fig. 2-12(a)]. Unfortunately, all transmission facilities
diminish different Fourier components by different amounts, thus introducing dis-
tortion. Usually, for a wire, the amplitudes are transmitted mostly undiminished
from 0 up to some frequency fc (measured in Hz) with all frequencies above this
cutoff frequency attenuated. The width of the frequency range transmitted without
being strongly attenuated is called the bandwidth. In practice, the cutoff is not
really sharp, so often the quoted bandwidth is from 0 to the frequency at which the
received power has fallen by half.

The bandwidth is a physical property of the transmission medium that depends
on, for example, the construction, thickness, length, and material of a wire or fiber.
Filters are often used to further limit the bandwidth of a signal. 802.11 wireless
channels generally use roughly 20 MHz, for example, so 802.11 radios filter the
signal bandwidth to this size (although in some cases an 80-MHz band is used).

As another example, traditional (analog) television channels occupy 6 MHz
each, on a wire or over the air. This filtering lets more signals share a given region
of spectrum, which improves the overall efficiency of the system. It means that the
frequency range for some signals will not start at zero, but at some higher number.
However, this does not matter. The bandwidth is still the width of the band of fre-
quencies that are passed, and the information that can be carried depends only on
this width and not on the starting and ending frequencies. Signals that run from 0
up to a maximum frequency are called baseband signals. Signals that are shifted to
occupy a higher range of frequencies, as is the case for all wireless transmissions,
are called passband signals.

Now let us consider how the signal of Fig. 2-12(a) would look if the bandwidth
were so low that only the lowest frequencies were transmitted [i.e., if the function
were being approximated by the first few terms of Eq. (2-2)]. Figure 2-12(b)
shows the signal that results from a channel that allows only the first harmonic (the

112 THE PHYSICAL LAYER CHAP. 2

0 1 1 0 0 0 1 0
1

0 Time T

1

0

1

0

1

0

1

0
Time

rm
s

am
pl

itu
de

1 152 3 4 5 6 7 9 10111213 148

0.50

0.25

Harmonic number

1 harmonic

2 harmonics

4 harmonics

8 harmonics

1

1 2

1 2 3 4

1 2 3 4 5 6 7 8
Harmonic number

(a)

(b)

(c)

(d)

(e)

Figure 2-12. (a) A binary signal and its root-mean-square Fourier amplitudes.
(b)–(e) Successive approximations to the original signal.

SEC. 2.4 FROM WAVEFORMS TO BITS 113

fundamental, f) to pass through. Similarly, Fig. 2-12(c)–(e) show the spectra and
reconstructed functions for higher-bandwidth channels. For digital transmission,
the goal is to receive a signal with just enough fidelity to reconstruct the sequence
of bits that was sent. We can already do this easily in Fig. 2-12(e), so it is wasteful
to use more harmonics to receive a more accurate replica.

Given a bit rate of b bits/sec, the time required to send the 8 bits in our ex-
ample 1 bit at a time is 8/b sec, so the frequency of the first harmonic of this signal
is b/8 Hz. An ordinary telephone line, often called a voice-grade line, has an arti-
ficially introduced cutoff frequency just above 3000 Hz. The presence of this
restriction means that the number of the highest harmonic passed through is rough-
ly 3000/(b/8), or 24, 000/b (the cutoff is not sharp).

For some data rates, the numbers work out as shown in Fig. 2-13. From these
numbers, it is clear that trying to send at 9600 bps over a voice-grade telephone
line will transform Fig. 2-12(a) into something looking like Fig. 2-12(c), making
accurate reception of the original binary bit stream tricky. It should be obvious that
at data rates much higher than 38.4 kbps, there is no hope at all for binary signals,
even if the transmission facility is completely noiseless. In other words, limiting
the bandwidth limits the data rate, even for perfect channels. However, coding
schemes that make use of several voltage levels do exist and can achieve higher
data rates. We will discuss these later in this chapter.

Bps T (msec) First harmonic (Hz) # Harmonics sent
300 26.67 37.5 80
600 13.33 75 40

1200 6.67 150 20
2400 3.33 300 10
4800 1.67 600 5
9600 0.83 1200 2

19200 0.42 2400 1
38400 0.21 4800 0

Figure 2-13. Relation between data rate and harmonics for our very simple ex-
ample.

There is much confusion about bandwidth because it means different things to
electrical engineers and to computer scientists. To electrical engineers, (analog)
bandwidth is (as we have described above) a quantity measured in Hz. To com-
puter scientists, (digital) bandwidth is the maximum data rate of a channel, a quan-
tity measured in bits/sec. That data rate is the end result of using the analog band-
width of a physical channel for digital transmission, and the two are related, as we
discuss next. In this book, it will be clear from the context whether we mean ana-
log bandwidth (Hz) or digital bandwidth (bits/sec).

114 THE PHYSICAL LAYER CHAP. 2

2.4.2 The Maximum Data Rate of a Channel

As early as 1924, an AT&T engineer, Harry Nyquist, realized that even a per-
fect channel has a finite transmission capacity. He derived an equation expressing
the maximum data rate for a finite-bandwidth noiseless channel. In 1948, Claude
Shannon carried Nyquist’s work further and extended it to the case of a channel
subject to random (i.e., thermodynamic) noise (Shannon, 1948). This paper is the
most important paper in all of information theory. We will just briefly summarize
their now classical results here.

Nyquist proved that if an arbitrary signal has been run through a low-pass filter
of bandwidth B, the filtered signal can be completely reconstructed by making only
2B (exact) samples per second. Sampling the line faster than 2B times per second
is pointless because the higher-frequency components that such sampling could
recover have already been filtered out. If the signal consists of V discrete levels,
Nyquist’s theorem states:

Maximum data rate = 2B log2 V bits/sec (2-3)

For example, a noiseless 3-kHz channel cannot transmit binary (i.e., two-level) sig-
nals at a rate exceeding 6000 bps.

So far we have considered only noiseless channels. If random noise is present,
the situation deteriorates rapidly. And there is always random (thermal) noise pres-
ent due to the motion of the molecules in the system. The amount of thermal noise
present is measured by the ratio of the signal power to the noise power, called the
SNR (Signal-to-Noise Ratio). If we denote the signal power by S and the noise
power by N, the signal-to-noise ratio is S/N. Usually, the ratio is expressed on a
log scale as the quantity 10 log10 S/N because it can vary over a tremendous range.
The units of this log scale are called decibels (dB), with ‘‘deci’’ meaning 10 and
‘‘bel’’ chosen to honor Alexander Graham Bell, who first patented the telephone.
An S/N ratio of 10 is 10 dB, a ratio of 100 is 20 dB, a ratio of 1000 is 30 dB, and
so on. The manufacturers of stereo amplifiers often characterize the bandwidth
(frequency range) over which their products are linear by giving the 3-dB frequen-
cy on each end. These are the points at which the amplification factor has been
approximately halved (because 10 log10 0. 5 5 < 3).

Shannon’s major result is that the maximum data rate or capacity of a noisy
channel whose bandwidth is B Hz and whose signal-to-noise ratio is S/N, is given
by:

Maximum data rate = B log2 (1 + S/N)bits/sec (2-4)

This equation tells us the best capacities that real channels can have. For example,
ADSL (Asymmetric Digital Subscriber Line), which provides Internet access over
normal telephone lines, uses a bandwidth of around 1 MHz. The SNR depends
strongly on the distance of the home from the telephone exchange, and an SNR of
around 40 dB for short lines of 1 to 2 km is very good. With these characteristics,

SEC. 2.4 FROM WAVEFORMS TO BITS 115

the channel can never transmit much more than 13 Mbps, no matter how many or
how few signal levels are used and no matter how often or how infrequently sam-
ples are taken. The original ADSL was specified up to 12 Mbps, though users
sometimes saw lower rates. This data rate was actually very good for its time, with
over 60 years of communications techniques having greatly reduced the gap be-
tween the Shannon capacity and the capacity of real systems.

Shannon’s result was derived from information-theory arguments and applies
to any channel subject to thermal noise. Counterexamples should be treated in the
same category as perpetual motion machines. For ADSL to exceed 12 Mbps, it
must either improve the SNR (for example by inserting digital repeaters in the lines
closer to the customers) or use more bandwidth, as is done with the evolution to
ASDL2+.

2.4.3 Digital Modulation

Now that we have studied the properties of wired and wireless channels, we
turn our attention to the problem of sending digital information. Wires and wire-
less channels carry analog signals such as continuously varying voltage, light
intensity, or sound intensity. To send digital information, we must devise analog
signals to represent bits. The process of converting between bits and signals that
represent them is called digital modulation.

We will start with schemes that directly convert bits into a signal. These
schemes result in baseband transmission, in which the signal occupies frequen-
cies from zero up to a maximum that depends on the signaling rate. It is common
for wires. Then we will consider schemes that regulate the amplitude, phase, or
frequency of a carrier signal to convey bits. These schemes result in passband
transmission, in which the signal occupies a band of frequencies around the fre-
quency of the carrier signal. It is common for wireless and optical channels for
which the signals must reside in a given frequency band.

Channels are often shared by multiple signals. After all, it is much more con-
venient to use a single wire to carry several signals than to install a wire for every
signal. This kind of sharing is called multiplexing. It can be accomplished in sev-
eral different ways. We will present methods for time, frequency, and code division
multiplexing.

The modulation and multiplexing techniques we describe in this section are all
widely used for wires, fiber, terrestrial wireless, and satellite channels.

Baseband Transmission

The most straightforward form of digital modulation is to use a positive volt-
age to represent a 1 bit and a negative voltage to represent a 0 bit, as can be seen in

116 THE PHYSICAL LAYER CHAP. 2

Fig. 2-14(a). For an optical fiber, the presence of light might represent a 1 and the
absence of light might represent a 0. This scheme is called NRZ (Non-Return-to-
Zero). The odd name is for historical reasons, and simply means that the signal
follows the data. An example is shown in Fig. 2-14(b).

(Clock that is XORed with bits)

(a) Bit stream

(b) Non-Return to Zero (NRZ)

(c) NRZ Invert (NRZI)

(d) Manchester

(e) Bipolar encoding
(also Alternate Mark
Inversion, AMI)

1 0 0 0 0 1 0 1 1 1 1

Figure 2-14. Line codes: (a) Bits, (b) NRZ, (c) NRZI, (d) Manchester, (e) Bipo-
lar or AMI.

Once sent, the NRZ signal propagates down the wire. At the other end, the re-
ceiver converts it into bits by sampling the signal at regular intervals of time. This
signal will not look exactly like the signal that was sent. It will be attenuated and
distorted by the channel and noise at the receiver. To decode the bits, the receiver
maps the signal samples to the closest symbols. For NRZ, a positive voltage will
be taken to indicate that a 1 was sent and a negative voltage will be taken to indi-
cate that a 0 was sent.

NRZ is a good starting point for our studies because it is simple, but it is sel-
dom used by itself in practice. More complex schemes can convert bits to signals
that better meet engineering considerations. These schemes are called line codes.
Below, we describe line codes that help with bandwidth efficiency, clock recovery,
and DC balance.

Bandwidth Efficiency

With NRZ, the signal may cycle between the positive and negative levels up to
every 2 bits (in the case of alternating 1s and 0s). This means that we need a band-
width of at least B/2 Hz when the bit rate is B bits/sec. This relation comes from
the Nyquist rate [Eq. (2-3)]. It is a fundamental limit, so we cannot run NRZ faster
without using additional bandwidth. Bandwidth is often a limited resource, even

SEC. 2.4 FROM WAVEFORMS TO BITS 117

for wired channels. Higher-frequency signals are increasingly attenuated, making
them less useful, and higher-frequency signals also require faster electronics.

One strategy for using limited bandwidth more efficiently is to use more than
two signaling levels. By using four voltages, for instance, we can send 2 bits at
once as a single symbol. This design will work as long as the signal at the receiver
is sufficiently strong to distinguish the four levels. The rate at which the signal
changes is then half the bit rate, so the needed bandwidth has been reduced.

We call the rate at which the signal changes the symbol rate to distinguish it
from the bit rate. The bit rate is the symbol rate multiplied by the number of bits
per symbol. An older name for the symbol rate, particularly in the context of de-
vices called telephone modems that convey digital data over telephone lines, is the
baud rate. In the literature, the terms ‘‘bit rate’’ and ‘‘baud rate’’ are often used
incorrectly.

Note that the number of signal levels does not need to be a power of two. Often
it is not, with some of the levels used for protecting against errors and simplifying
the design of the receiver.

Clock Recovery

For all schemes that encode bits into symbols, the receiver must know when
one symbol ends and the next symbol begins to correctly decode the bits. With
NRZ, in which the symbols are simply voltage levels, a long run of 0s or 1s leaves
the signal unchanged. After a while, it is hard to tell the bits apart, as 15 zeros
look much like 16 zeros unless you have a very accurate clock.

Accurate clocks would help with this problem, but they are an expensive solu-
tion for commodity equipment. Remember, we are timing bits on links that run at
many megabits/sec, so the clock would have to drift less than a fraction of a
microsecond over the longest permitted run. This might be reasonable for slow
links or short messages, but it is not a general solution.

One strategy is to send a separate clock signal to the receiver. Another clock
line is no big deal for computer buses or short cables in which there are many lines
in parallel, but it is wasteful for most network links since if we had another line to
send a signal we could use it to send data. A clever trick here is to mix the clock
signal with the data signal by XORing them together so that no extra line is need-
ed. The results are shown in Fig. 2-14(d). The clock makes a clock transition in
every bit time, so it runs at twice the bit rate. When it is XORed with the 0 level, it
makes a low-to-high transition that is simply the clock. This transition is a logical
0. When it is XORed with the 1 level it is inverted and makes a high-to-low tran-
sition. This transition is a logical 1. This scheme is called Manchester encoding
and was used for classic Ethernet.

The downside of Manchester encoding is that it requires twice as much band-
width as NRZ due to the clock, and we have learned that bandwidth often matters.
A different strategy is based on the idea that we should code the data to ensure that

118 THE PHYSICAL LAYER CHAP. 2

there are enough transitions in the signal. Consider that NRZ will have clock re-
covery problems only for long runs of 0s and 1s. If there are frequent transitions, it
will be easy for the receiver to stay synchronized with the incoming stream of
symbols.

As a step in the right direction, we can simplify the situation by coding a 1 as a
transition and a 0 as no transition, or vice versa. This coding is called NRZI (Non-
Return-to-Zero Inverted), a twist on NRZ. An example is shown in Fig. 2-14(c).
The popular USB (Universal Serial Bus) standard for connecting computer per-
ipherals uses NRZI. With it, long runs of 1s do not cause a problem.

Of course, long runs of 0s still cause a problem that we must fix. If we were
the telephone company, we might simply require that the sender not transmit too
many 0s. Older digital telephone lines in the United States, called T1 lines (dis-
cussed later) did, in fact, require that no more than 15 consecutive 0s be sent for
them to work correctly. To really fix the problem, we can break up runs of 0s by
mapping small groups of bits to be transmitted so that groups with successive 0s
are mapped to slightly longer patterns that do not have too many consecutive 0s.

A well-known code to do this is called 4B/5B. Every 4 bits is mapped into a
5-bit pattern with a fixed translation table. The five bit patterns are chosen so that
there will never be a run of more than three consecutive 0s. The mapping is shown
in Fig. 2-15. This scheme adds 25% overhead, which is better than the 100% over-
head of Manchester encoding. Since there are 16 input combinations and 32 output
combinations, some of the output combinations are not used. Putting aside the
combinations with too many successive 0s, there are still some codes left. As a
bonus, we can use these nondata codes to represent physical layer control signals.
For example, in some uses, ‘‘11111’’ represents an idle line and ‘‘11000’’ repres-
ents the start of a frame.

Data (4B) Codeword (5B) Data (4B) Codeword (5B)
0000 11110 1000 10010
0001 01001 1001 10011
0010 10100 1010 10110
0011 10101 1011 10111
0100 01010 1100 11010
0101 01011 1101 11011
0110 01110 1110 11100
0111 01111 1111 11101

Figure 2-15. 4B/5B mapping.

An alternative approach is to make the data look random, known as scram-
bling. In this case, it is very likely that there will be frequent transitions. A
scrambler works by XORing the data with a pseudorandom sequence before it is
transmitted. This kind of mixing will make the data themselves as random as the

SEC. 2.4 FROM WAVEFORMS TO BITS 119

pseudorandom sequence (assuming it is independent of the pseudorandom
sequence). The receiver then XORs the incoming bits with the same pseudoran-
dom sequence to recover the real data. For this to be practical, the pseudorandom
sequence must be easy to create. It is commonly given as the seed to a simple ran-
dom number generator.

Scrambling is attractive because it adds no bandwidth or time overhead. In
fact, it often helps to condition the signal so that it does not have its energy in dom-
inant frequency components (caused by repetitive data patterns) that might radiate
electromagnetic interference. Scrambling helps because random signals tend to be
‘‘white,’’ or have energy spread across the frequency components.

However, scrambling does not guarantee that there will be no long runs. It is
possible to get unlucky occasionally. If the data are the same as the pseudorandom
sequence, they will XOR to all 0s. This outcome does not generally occur with a
long pseudorandom sequence that is difficult to predict. However, with a short or
predictable sequence, it might be possible for malicious users to send bit patterns
that cause long runs of 0s after scrambling and cause links to fail. Early versions
of the standards for sending IP packets over SONET links in the telephone system
had this defect (Malis and Simpson, 1999). It was possible for users to send cer-
tain ‘‘killer packets’’ that were guaranteed to cause problems.

Balanced Signals

Signals that have as much positive voltage as negative voltage even over short
periods of time are called balanced signals. They average to zero, which means
that they have no DC electrical component. The lack of a DC component is an ad-
vantage because some channels, such as coaxial cable or lines with transformers,
strongly attenuate a DC component due to their physical properties. Also, one
method of connecting the receiver to the channel called capacitive coupling passes
only the AC portion of a signal. In either case, if we send a signal whose average
is not zero, we waste energy as the DC component will be filtered out.

Balancing helps to provide transitions for clock recovery since there is a mix
of positive and negative voltages. It also provides a simple way to calibrate re-
ceivers because the average of the signal can be measured and used as a decision
threshold to decode symbols. With unbalanced signals, the average may drift away
from the true decision level due to a density of 1s, for example, which would cause
more symbols to be decoded with errors.

A straightforward way to construct a balanced code is to use two voltage levels
to represent a logical 1 and a logical zero. For example, +1 V for a 1 bit and <1 V
for a 0 bit. To send a 1, the transmitter alternates between the +1 V and <1 V lev-
els so that they always average out. This scheme is called bipolar encoding. In
telephone networks, it is called AMI (Alternate Mark Inversion), building on old
terminology in which a 1 is called a ‘‘mark’’ and a 0 is called a ‘‘space.’’ An ex-
ample is given in Fig. 2-14(e).

120 THE PHYSICAL LAYER CHAP. 2

Bipolar encoding adds a voltage level to achieve balance. Alternatively, we
can use a mapping like 4B/5B to achieve balance (as well as transitions for clock
recovery). An example of this kind of balanced code is the 8B/10B line code. It
maps 8 bits of input to 10 bits of output, so it is 80% efficient, just like the 4B/5B
line code. The 8 bits are split into a group of 5 bits, which is mapped to 6 bits, and
a group of 3 bits, which is mapped to 4 bits. The 6-bit and 4-bit symbols are then
concatenated. In each group, some input patterns can be mapped to balanced out-
put patterns that have the same number of 0s and 1s. For example, ‘‘001’’ is map-
ped to ‘‘1001,’’ which is balanced. But there are not enough combinations for all
output patterns to be balanced. For these cases, each input pattern is mapped to
two output patterns. One will have an extra 1 and the alternate will have an extra
0. For example, ‘‘000’’ is mapped to both ‘‘1011’’ and its complement ‘‘0100.’’ As
input bits are mapped to output bits, the encoder remembers the disparity from the
previous symbol. The disparity is the total number of 0s or 1s by which the signal
is out of balance. The encoder then selects either an output pattern or its alternate
to reduce the disparity. With 8B/10B, the disparity will be at most 2 bits. Thus,
the signal will never be far from balanced. There will also never be more than five
consecutive 1s or 0s, to help with clock recovery.

Passband Transmission

Communication over baseband frequencies is most appropriate for wired trans-
missions, such as twisted pair, coax, or fiber. In other circumstances, particularly
those involving wireless networks and radio transmissions, we need to use a range
of frequencies that does not start at zero to send information across a channel.
Specifically, for wireless channels, it is not practical to send very low frequency
signals because the size of the antenna needs to be a fraction of the signal
wavelength, which becomes large at high transmission frequencies. In any case,
regulatory constraints and the need to avoid interference usually dictate the choice
of frequencies. Even for wires, placing a signal in a given frequency band is useful
to let different kinds of signals coexist on the channel. This kind of transmission is
called passband transmission because an arbitrary band of frequencies is used to
pass the signal.

Fortunately, our fundamental results from earlier in the chapter are all in terms
of bandwidth, or the width of the frequency band. The absolute frequency values
do not matter for capacity. This means that we can take a baseband signal that
occupies 0 to B Hz and shift it up to occupy a passband of S to S + B Hz without
changing the amount of information that it can carry, even though the signal will
look different. To process a signal at the receiver, we can shift it back down to
baseband, where it is more convenient to detect symbols.

Digital modulation is accomplished with passband transmission by modulating
a carrier signal that sits in the passband. We can modulate the amplitude, frequen-
cy, or phase of the carrier signal. Each of these methods has a corresponding name.

SEC. 2.4 FROM WAVEFORMS TO BITS 121

In ASK (Amplitude Shift Keying), two different amplitudes are used to represent
0 and 1. An example with a nonzero and a zero level is shown in Fig. 2-16(b).
More than two levels can be used to encode multiple bits per symbol.

Phase changes

0

(a)

(b)

(c)

(d)

1 0 1 1 0 0 1 0 0 1 0 0

Figure 2-16. (a) A binary signal. (b) Amplitude shift keying. (c) Frequency
shift keying. (d) Phase shift keying.

Similarly, with FSK (Frequency Shift Keying), two or more different tones
are used. The example in Fig. 2-16(c) uses just two frequencies. In the simplest
form of PSK (Phase Shift Keying), the carrier wave is systematically shifted 0 or
180 degrees at each symbol period. Because there are two phases, it is called
BPSK (Binary Phase Shift Keying). ‘‘Binary’’ here refers to the two symbols,
not that the symbols represent 2 bits. An example is shown in Fig. 2-16(d). A bet-
ter scheme that uses the channel bandwidth more efficiently is to use four shifts,
e.g., 45, 135, 225, or 315 degrees, to transmit 2 bits of information per symbol.
This version is called QPSK (Quadrature Phase Shift Keying).

We can combine these schemes and use more levels to transmit more bits per
symbol. Only one of frequency and phase can be modulated at a time because they

122 THE PHYSICAL LAYER CHAP. 2

are related, with frequency being the rate of change of phase over time. Usually,
amplitude and phase are modulated in combination. Three examples are shown in
Fig. 2-17. In each example, the points give the legal amplitude and phase combi-
nations of each symbol. In Fig. 2-17(a), we see equidistant dots at 45, 135, 225,
and 315 degrees. The phase of a dot is indicated by the angle a line from it to the
origin makes with the positive x-axis. The amplitude of a dot is the distance from
the origin. This figure is a graphical representation of QPSK.

270

(a)

90

0 180

270

(b)

90

0

270

(c)

90

0 180

Figure 2-17. (a) QPSK. (b) QAM-16. (c) QAM-64.

This kind of diagram is called a constellation diagram. In Fig. 2-17(b) we
see a modulation scheme with a denser constellation. Sixteen combinations of am-
plitudes and phase are used here, so the modulation scheme can be used to transmit
4 bits per symbol. It is called QAM-16, where QAM stands for Quadrature Am-
plitude Modulation. Figure 2-17(c) is a still denser modulation scheme with 64
different combinations, so 6 bits can be transmitted per symbol. It is called
QAM-64. Even higher-order QAMs are used too. As you might suspect from
these constellations, it is easier to build electronics to produce symbols as a combi-
nation of values on each axis than as a combination of amplitude and phase values.
That is why the patterns look like squares rather than concentric circles.

The constellations we have seen so far do not show how bits are assigned to
symbols. When making the assignment, an important consideration is that a small
burst of noise at the receiver not lead to many bit errors. This might happen if we
assigned consecutive bit values to adjacent symbols. With QAM-16, for example,
if one symbol stood for 0111 and the neighboring symbol stood for 1000, if the re-
ceiver mistakenly picks the adjacent symbol, it will cause all of the bits to be
wrong. A better solution is to map bits to symbols so that adjacent symbols differ
in only 1 bit position. This mapping is called a Gray code. Figure 2-18 shows a
QAM-16 constellation that has been Gray coded. Now if the receiver decodes the
symbol in error, it will make only a single bit error in the expected case that the
decoded symbol is close to the transmitted symbol.

SEC. 2.4 FROM WAVEFORMS TO BITS 123

A

B

C

D

E

When 1101 is sent:
Point Decodes as Bit errors

A 1101 0
B 1100 1
C 1001 1
D 1111 1
E 0101 1

1100 1000

1101 1001

1111 1011

1110 1010

0011 0111

0010 0110

0000 0100

0001 0101

Q

I

Figure 2-18. Gray-coded QAM-16.

2.4.4 Multiplexing

The modulation schemes we have seen let us send one signal to convey bits
along a wired or wireless link, but they only describe how to transmit one bitstream
at a time. In practice, economies of scale play an important role in how we use
networks: It costs essentially the same amount of money to install and maintain a
high-bandwidth transmission line as a low-bandwidth line between two different
offices (i.e., the costs come from having to dig the trench and not from what kind
of cable or fiber goes into it). Consequently, multiplexing schemes have been de-
veloped to share lines among many signals. The three main ways to multiplex a
single physical line are time, frequency, and code; there is also a technique called
wavelength division multiplexing, which is essentially an optical form of frequency
division multiplexing. We discuss each of these techniques below.

Frequency Division Multiplexing

FDM (Frequency Division Multiplexing) takes advantage of passband trans-
mission to share a channel. It divides the spectrum into frequency bands, with
each user having exclusive possession of some band in which to send a signal. AM
radio broadcasting illustrates FDM. The allocated spectrum is about 1 MHz,
roughly 500 to 1500 kHz. Different frequencies are allocated to different logical
channels (stations), each operating in a portion of the spectrum, with the interchan-
nel separation great enough to prevent interference.

For a more detailed example, in Fig. 2-19 we see three voice-grade telephone
channels multiplexed using FDM. Filters limit the usable bandwidth to roughly
3100 Hz per voice-grade channel. When many channels are multiplexed together,
4000 Hz is allocated per channel. The excess bandwidth is called a guard band.

124 THE PHYSICAL LAYER CHAP. 2

It keeps the channels well separated. First, the voice channels are raised in fre-
quency, each by a different amount. Then they can be combined because no two
channels now occupy the same portion of the spectrum. Notice that even though
there are gaps between the channels thanks to the guard bands, there is some over-
lap between adjacent channels. The overlap is there because real filters do not
have ideal sharp edges. This means that a strong spike at the edge of one channel
will be felt in the adjacent one as nonthermal noise.

300 3100

Channel 3

Channel 2

Channel 1

1

1

1

At
te

nu
at

io
n

fa
ct

or

64

Frequency (kHz)

(c)

Channel 1 Channel 3
Channel 2

68 72

60 64

Frequency (kHz)

(b)

Frequency (Hz)

(a)

68 72

60

Figure 2-19. Frequency division multiplexing. (a) The original bandwidths.
(b) The bandwidths raised in frequency. (c) The multiplexed channel.

This scheme has been used to multiplex calls in the telephone system for many
years, but multiplexing in time is now preferred instead. However, FDM continues
to be used in telephone networks, as well as cellular, terrestrial wireless, and satel-
lite networks at a higher level of granularity.

When sending digital data, it is possible to divide the spectrum efficiently
without using guard bands. In OFDM (Orthogonal Frequency Division Multi-
plexing), the channel bandwidth is divided into many subcarriers that indepen-
dently send data (e.g., with QAM). The subcarriers are packed tightly together in
the frequency domain. Thus, signals from each subcarrier extend into adjacent
ones. However, as seen in Fig. 2-20, the frequency response of each subcarrier is
designed so that it is zero at the center of the adjacent subcarriers. The subcarriers
can therefore be sampled at their center frequencies without interference from their
neighbors. To make this work, a guard time is needed to repeat a portion of the
symbol signals in time so that they have the desired frequency response. However,
this overhead is much less than is needed for many guard bands.

SEC. 2.4 FROM WAVEFORMS TO BITS 125

Frequency

Power

f3 f4f2f1 f5

Separation
f

One OFDM subcarrier(shaded)

Figure 2-20. Orthogonal frequency division multiplexing (OFDM).

OFDM has been around for a long time, but it only began to be adopted in the
early 2000s, following the realization that it is possible to implement OFDM ef-
ficiently in terms of a Fourier transform of digital data over all subcarriers (instead
of separately modulating each subcarrier). OFDM is used in 802.11, cable net-
works, power-line networking, and fourth-generation (4G) cellular systems. Most
often, one high-rate stream of digital information is split into a number of low-rate
streams that are transmitted on the subcarriers in parallel. This division is valuable
because degradations of the channel are easier to cope with at the subcarrier level;
some subcarriers may be very degraded and excluded in favor of subcarriers that
are received well.

Time Division Multiplexing

An alternative to FDM is TDM (Time Division Multiplexing). Here, the
users take turns (in a round-robin fashion), each one periodically getting the entire
bandwidth for a certain time interval. An example of three streams being multi-
plexed with TDM is shown in Fig. 2-21. Bits from each input stream are taken in a
fixed time slot and output to the aggregate stream. This stream runs at the sum rate
of the individual streams. For this to work, the streams must be synchronized in
time. Small intervals of guard time (analogous to a frequency guard band) may be
added to accommodate small timing variations.

TDM is used widely as key technique in the telephone and cellular networks.
To avoid one point of confusion, let us be clear that it is quite different from the al-
ternative STDM (Statistical Time Division Multiplexing). The prefix ‘‘statisti-
cal’’ is added to indicate that the individual streams contribute to the multiplexed
stream not on a fixed schedule, but according to the statistics of their demand.
STDM is fundamentally like packet switching under another name.

126 THE PHYSICAL LAYER CHAP. 2

1

2

3

Round-robin
TDM

multiplexer
32312 1

Guard time

2

Figure 2-21. Time Division Multiplexing (TDM).

Code Division Multiplexing

There is a third kind of multiplexing that works in a completely different way
than FDM and TDM. CDM (Code Division Multiplexing) is a form of spread
spectrum communication in which a narrowband signal is spread out over a wider
frequency band. This can make it more tolerant of interference, as well as allowing
multiple signals from different users to share the same frequency band. Because
code division multiplexing is mostly used for the latter purpose it is commonly
called CDMA (Code Division Multiple Access).

CDMA allows each station to transmit over the entire frequency spectrum all
the time. Multiple simultaneous transmissions are separated using coding theory.
Before getting into the algorithm, let us consider an analogy: an airport lounge
with many pairs of people conversing. TDM is comparable to pairs of people in
the room taking turns speaking. FDM is comparable to the pairs of people speak-
ing at different pitches, some high-pitched and some low-pitched such that each
pair can hold its own conversation at the same time as but independently of the oth-
ers. CDMA is somewhat comparable to each pair of people talking at once, but in
a different language. The French-speaking couple just hones in on the French,
rejecting everything that is not French as noise. Thus, the key to CDMA is to be
able to extract the desired signal while rejecting everything else as random noise.
A somewhat simplified description of CDMA follows.

In CDMA, each bit time is subdivided into m short intervals called chips,
which are multiplied against the original data sequence (the chips are a bit se-
quence, but are called chips so that the are not confused with the bits of the actual
message). Typically, there are 64 or 128 chips per bit, but in the example given
here we will use 8 chips/bit for simplicity. Each station is assigned a unique m-bit
code called a chip sequence. For pedagogical purposes, it is convenient to write
these codes as sequences of <1 and +1. We will show chip sequences in par-
entheses.

To transmit a 1 bit, a station sends its chip sequence. To transmit a 0 bit, it
sends the negation of its chip sequence. No other patterns are permitted. Thus, for
m = 8, if station A is assigned the chip sequence (<1 < 1 < 1 + 1 + 1 < 1 + 1 + 1), it
can send a 1 bit by transmitting the chip sequence and a 0 by transmitting its com-
plement: (+1 + 1 + 1 < 1 < 1 + 1 < 1 < 1). It is really voltage levels that are sent,
but it is sufficient for us to think in terms of the sequences.

SEC. 2.4 FROM WAVEFORMS TO BITS 127

Increasing the amount of information to be sent from b bits/sec to mb
chips/sec for each station means that the bandwidth needed for CDMA is greater
by a factor of m than the bandwidth needed for a station not using CDMA (assum-
ing no changes in the modulation or encoding techniques). If we have a 1-MHz
band available for 100 stations, with FDM each one would have 10 kHz and could
send at 10 kbps (assuming 1 bit per Hz). With CDMA, each station uses the full
1 MHz, so the chip rate is 100 chips per bit to spread the station’s bit rate of 10
kbps across the channel.

In Fig. 2-22(a) and (b), we show the chip sequences assigned to four example
stations and the signals that they represent. Each station has its own unique chip
sequence. Let us use the symbol S to indicate the m-chip vector for station S, and
S for its negation. All chip sequences are pairwise orthogonal, by which we mean
that the normalized inner product of any two distinct chip sequences, S and T
(written as S•T), is 0. It is known how to generate such orthogonal chip sequences
using a method known as Walsh codes. In mathematical terms, orthogonality of
the chip sequences can be expressed as follows:

S•T >
1
m

m

i=1
Y Si Ti = 0 (2-5)

In plain English, as many pairs are the same as are different. This orthogonality
property will prove crucial later. Note that if S•T = 0, then S•T is also 0. The nor-
malized inner product of any chip sequence with itself is 1:

S•S =
1
m

m

i=1
Y Si Si =

1
m

m

i=1
Y S2

i =
1
m

m

i=1
Y(±1)2 = 1

0.20v This follows because each of the m terms in the inner product is 1, so the
sum is m. Also, note that S•S = < 1.

(b)

A = (–1 –1 –1 +1 +1 –1 +1 +1)
B = (–1 –1 +1 –1 +1 +1 +1 –1)
C = (–1 +1 –1 +1 +1 +1 –1 –1)
D = (–1 +1 –1 –1 –1 –1 +1 –1)

(a)

(c) (d)

S1 = C = (–1 +1 –1 +1 +1 +1 –1 –1)
S2 = B+C = (–2 0 0 0 +2 +2 0 –2)
S3 = A+B = (0 0 –2 +2 0 –2 0 +2)
S4 = A+B+C = (–1 +1 –3 +3 +1 –1 –1 +1)
S5 = A+B+C+D = (–4 0 –2 0 +2 0 +2 –2)
S6 = A+B+C+D = (–2 –2 0 –2 0 –2 +4 0)

S1 C = [1+1+1+1+1+1+1+1]/8 = 1
S2 C = [2+0+0+0+2+2+0+2]/8 = 1
S3 C = [0+0+2+2+0–2+0–2]/8 = 0
S4 C = [1+1+3+3+1–1+1–1]/8 = 1
S5 C = [4+0+2+0+2+0–2+2]/8 = 1
S6 C = [2–2+0–2+0–2–4+0]/8 = –1

Figure 2-22. (a) Chip sequences for four stations. (b) Signals the sequences
represent (c) Six examples of transmissions. (d) Recovery of station C’s signal.

128 THE PHYSICAL LAYER CHAP. 2

During each bit time, a station can transmit a 1 (by sending its chip sequence),
it can transmit a 0 (by sending the negative of its chip sequence), or it can be silent
and transmit nothing. We assume for now that all stations are synchronized in time,
so all chip sequences begin at the same instant. When two or more stations trans-
mit simultaneously, their bipolar sequences add linearly. For example, if in one
chip period three stations output +1 and one station outputs <1, +2 will be re-
ceived. One can think of this as signals that add as voltages superimposed on the
channel: three stations output +1 V and one station outputs <1 V, so that 2 V is re-
ceived. For instance, in Fig. 2-22(c) we see six examples of one or more stations
transmitting 1 bit at the same time. In the first example, C transmits a 1 bit, so we
just get C’s chip sequence. In the second example, both B and C transmit 1 bits, so
we get the sum of their bipolar chip sequences, namely:

(<1 < 1 + 1 < 1 + 1 + 1 + 1 < 1) + (<1 + 1 < 1 + 1 + 1 + 1 < 1 < 1) = (<2 0 0 0 + 2 + 2 0 < 2)

To recover the bit stream of an individual station, the receiver must know that
station’s chip sequence in advance. It does the recovery by computing the nor-
malized inner product of the received chip sequence and the chip sequence of the
station whose bit stream it is trying to recover. If the received chip sequence is S
and the receiver is trying to listen to a station whose chip sequence is C, it just
computes the normalized inner product, S•C.

To see why this works, just imagine that two stations, A and C, both transmit a
1 bit at the same time that B transmits a 0 bit, as in the third example. The receiver
sees the sum, S = A + B + C, and computes

S•C = (A + B + C)•C = A•C + B•C + C•C = 0 + 0 + 1 = 1

The first two terms vanish because all pairs of chip sequences have been carefully
chosen to be orthogonal, as shown in Eq. (2-5). Now it should be clear why this
property must be imposed on the chip sequences.

To make the decoding process more concrete, we show six examples in
Fig. 2-22(d). Suppose that the receiver is interested in extracting the bit sent by
station C from each of the six signals S1 through S6. It calculates the bit by sum-
ming the pairwise products of the received S and the C vector of Fig. 2-22(a) and
then taking 1/8 of the result (since m = 8 here). The examples include cases where
C is silent, sends a 1 bit, and sends a 0 bit, individually and in combination with
other transmissions. As shown, the correct bit is decoded each time. It is just like
speaking French.

In principle, given enough computing capacity, the receiver can listen to all the
senders at once by running the decoding algorithm for each of them in parallel. In
real life, suffice it to say that this is easier said than done, and it is useful to know
which senders might be transmitting.

In the ideal, noiseless CDMA system we have studied here, the number of sta-
tions that send concurrently can be made arbitrarily large by using longer chip se-
quences. For 2n stations, Walsh codes can provide 2n orthogonal chip sequences

SEC. 2.4 FROM WAVEFORMS TO BITS 129

of length 2n . However, one significant limitation is that we have assumed that all
the chips are synchronized in time at the receiver. This synchronization is not even
approximately true in some applications, such as cellular networks (in which
CDMA has been widely deployed starting in the 1990s). It leads to different de-
signs.

As well as cellular networks, CDMA is used by satellites and cable networks.
We have glossed over many complicating factors in this brief introduction. Engin-
eers who want to gain a deep understanding of CDMA should read Viterbi (1995)
and Harte et al. (2012). These references require quite a bit of background in com-
munication engineering, however.

Wavelength Division Multiplexing

WDM (Wavelength Division Multiplexing) is a form of frequency division
multiplexing that multiplexes multiple signals onto an optical fiber using different
wavelengths of light. In Fig. 2-23, four fibers come together at an optical com-
biner, each with its energy present at a different wavelength. The four beams are
combined onto a single shared fiber for transmission to a distant destination. At the
far end, the beam is split up over as many fibers as there were on the input side.
Each output fiber contains a short, specially constructed core that filters out all but
one wavelength. The resulting signals can be routed to their destination or recom-
bined in different ways for additional multiplexed transport.

Spectrum
on the
shared fiber

Po
we

r

h

Fiber 4
spectrum

Po
we

r

h

Fiber 3
spectrum

Po
we

r

h

Fiber 2
spectrum

Po
we

r

h

h1

h1+h2+h3+h4

Fiber 1
spectrum

Po
we

r

h

Fiber 1
h2

Fiber 2
h3

Fiber 3
Combiner Splitter

Long-haul shared fiberh4

h2

h4

h1

h3Fiber 4

Filter

Figure 2-23. Wavelength division multiplexing.

There is really nothing new here. This way of operating is just frequency di-
vision multiplexing at very high frequencies, with the term WDM referring to the

130 THE PHYSICAL LAYER CHAP. 2

description of fiber optic channels by their wavelength or ‘‘color’’ rather than fre-
quency. As long as each channel has its own dedicated frequency (that is, its own
wavelength) range and all the ranges are disjoint, they can be multiplexed together
on the long-haul fiber. The only difference with electrical FDM is that an optical
system using a diffraction grating is completely passive and thus highly reliable.

The reason WDM is popular is that the energy on a single channel is typically
only a few gigahertz wide because that is the current limit of how fast we can con-
vert between electrical and optical signals. By running many channels in parallel
on different wavelengths, the aggregate bandwidth is increased linearly with the
number of channels. Since the bandwidth of a single fiber band is ca. 25,000 GHz
(see Fig. 2-5), there is theoretically room for 2500 10-Gbps channels even at 1
bit/Hz (and higher rates are also possible).

WDM technology has been progressing at a rate that puts computer technology
to shame. WDM was invented around 1990. The first commercially available sys-
tems had eight channels of 2.5 Gbps per channel; by 1998, systems with 40 chan-
nels of 2.5 Gbps were on the market and rapidly being adopted; by 2006, there
were products with 192 channels of 10 Gbps and 64 channels of 40 Gbps, capable
of moving up to 2.56 Tbps; by 2019, there were systems that can handle up to 160
channels, supporting more than 16 Tbps over a single fiber pair. That is 800 times
more capacity than the 1990 systems. The channels are also packed tightly on the
fiber, with 200, 100, or as little as 50 GHz of separation.

Narrowing the spacing to 12.5 GHz makes it possible to support 320 channels
on a single fiber, further increasing transmission capacity. Such systems with a
large number of channels and little space between each channel are referred to as
DWDM (Dense WDM). DWDM systems tend to be more expensive because they
must maintain stable wavelengths and frequencies, due to the close spacing of each
channel. As a result, these systems closely regulate their temperature to ensure that
frequencies are accurate.

One of the drivers of WDM technology is the development of all-optical com-
ponents. Previously, every 100 km it was necessary to split up all the channels and
convert each one to an electrical signal for amplification separately before recon-
verting them to optical signals and combining them. Nowadays, all-optical ampli-
fiers can regenerate the entire signal once every 1000 km without the need for mul-
tiple opto-electrical conversions.

In the example of Fig. 2-23, we have a fixed-wavelength system. Bits from
input fiber 1 go to output fiber 3, bits from input fiber 2 go to output fiber 1, etc.
However, it is also possible to build WDM systems that are switched in the optical
domain. In such a device, the output filters are tunable using Fabry-Perot or Mach-
Zehnder interferometers. These devices allow the selected frequencies to be
changed dynamically by a control computer. This ability provides a large amount
of flexibility to provision many different wavelength paths through the telephone
network from a fixed set of fibers. For more information about optical networks
and WDM, see Grobe and Eiselt (2013).

SEC. 2.5 THE PUBLIC SWITCHED TELEPHONE NETWORK 131

2.5 THE PUBLIC SWITCHED TELEPHONE NETWORK

When two computers that are physically close to each other need to communi-
cate, it is often easiest just to run a cable between them. Local Area Networks
(LANs) work this way. However, when the distances are large or there are many
computers or the cables have to pass through a public road or other public right of
way, the costs of running private cables are usually prohibitive. Furthermore, in
just about every country in the world, stringing private transmission lines across (or
underneath) public property is illegal. Consequently, the network designers must
rely on the existing telecommunication facilities, such as the telephone network,
the cellular network, or the cable television network.

The limiting factor for data networking has long been the ‘‘last mile’’ over
which customers connect, which might rely on any one of these physical technolo-
gies, as opposed to the so-called ‘‘backbone’’ infrastructure for the rest of the ac-
cess network. Over the past decade, this situation has changed dramatically, with
speeds of 1 Gbps to the home becoming increasingly commonplace. Although one
contributor to faster last-mile speeds is the continued rollout of fiber at the edge of
the network, perhaps an even more significant contributor in some countries is the
sophisticated engineering of the existing telephone and cable networks to squeeze
increasingly more bandwidth out of the existing infrastructure. It turns out that en-
gineering the existing physical infrastructure to increase transmission speeds is a
lot less expensive than putting new (fiber) cables in the ground to everyone’s
homes. We now explore the architectures and characteristics of each of these phys-
ical communications infrastructures.

These existing facilities, especially the PSTN (Public Switched Telephone
Network), were usually designed many years ago, with a completely different goal
in mind: transmitting the human voice in a more-or-less recognizable form. A
cable running between two computers can transfer data at 10 Gbps or more; the
phone network thus has its work cut out for it in terms of transmitting bits at high
rates. Early Digital Subscriber Line (DSL) technologies could only transmit data at
rates of a few Mbps; now, more modern versions of DSL, can achieve rates ap-
proaching 1 Gbps. In the following sections, we will describe the telephone sys-
tem and show how it works. For additional information about the innards of the
telephone system, see Laino (2017).

2.5.1 Structure of the Telephone System

Soon after Alexander Graham Bell patented the telephone in 1876 (just a few
hours ahead of his rival, Elisha Gray), there was an enormous demand for his new
invention. The initial market was for the sale of telephones, which came in pairs.
It was up to the customer to string a single wire between them. If a telephone
owner wanted to talk to n other telephone owners, separate wires had to be strung
to all n houses. Within a year, the cities were covered with wires passing over

132 THE PHYSICAL LAYER CHAP. 2

houses and trees in a wild jumble. It became immediately obvious that the model
of connecting every telephone to every other telephone, as shown in Fig. 2-24(a),
was not going to work.

(a) (b) (c)

Figure 2-24. (a) Fully interconnected network. (b) Centralized switch.
(c) Two-level hierarchy.

To his credit, Bell saw this problem early on and formed the Bell Telephone
Company, which opened its first switching office (in New Haven, Connecticut) in
1878. The company ran a wire to each customer’s house or office. To make a call,
the customer would crank the phone to make a ringing sound in the telephone com-
pany office to attract the attention of an operator, who would then manually con-
nect the caller to the callee by using a short jumper cable. The model of a single
switching office is illustrated in Fig. 2-24(b).

Pretty soon, Bell System switching offices were springing up everywhere and
people wanted to make long-distance calls between cities, so the Bell System
began to connect the switching offices. The original problem soon returned: to
connect every switching office to every other switching office by means of a wire
between them quickly became unmanageable, so second-level switching offices
were invented. After a while, multiple second-level offices were needed, as illus-
trated in Fig. 2-24(c). Eventually, the hierarchy grew to five levels.

By 1890, the three major parts of the telephone system were in place: the
switching offices, the wires between the customers and the switching offices (by
now balanced, insulated, twisted pairs instead of open wires with an earth return),
and the long-distance connections between the switching offices. For a short tech-
nical history of the telephone system, see Hawley (1991).

While there have been improvements in all three areas since then, the basic
Bell System model has remained essentially intact for over 100 years. The follow-
ing description is highly simplified but gives the essential flavor nevertheless.
Each telephone has two copper wires coming out of it that go directly to the tele-
phone company’s nearest end office (also called a local central office). The dis-
tance is typically around 1 to 10 km, being shorter in cities than in rural areas. In

SEC. 2.5 THE PUBLIC SWITCHED TELEPHONE NETWORK 133

the United States alone there are about 22,000 end offices. The two-wire con-
nections between each subscriber’s telephone and the end office are known in the
trade as the local loop. If the world’s local loops were stretched out end to end,
they would extend to the moon and back 1000 times.

At one time, 80% of AT&T’s capital value was the copper in the local loops.
AT&T was then, in effect, the world’s largest copper mine. Fortunately, this fact
was not well known in the investment community. Had it been known, some cor-
porate raider might have bought AT&T, ended all telephone service in the United
States, ripped out all the wire, and sold it to a copper refiner for a quick payback.

If a subscriber attached to a given end office calls another subscriber attached
to the same end office, the switching mechanism within the office sets up a direct
electrical connection between the two local loops. This connection remains intact
for the duration of the call.

If the called telephone is attached to another end office, a different procedure
has to be used. Each end office has a number of outgoing lines to one or more
nearby switching centers, called toll offices (or, if they are within the same local
area, tandem offices). These lines are called toll connecting trunks. The number
of different kinds of switching centers and their topology varies from country to
country depending on the country’s telephone density.

If both the caller’s and callee’s end offices happen to have a toll connecting
trunk to the same toll office (a likely occurrence if they are relatively close by), the
connection may be established within the toll office. A telephone network consist-
ing only of telephones (the small dots), end offices (the large dots), and toll offices
(the squares) is shown in Fig. 2-24(c).

If the caller and callee do not have a toll office in common, a path will have to
be established between two toll offices. The toll offices communicate with each
other via high-bandwidth intertoll trunks (also called interoffice trunks). Prior
to the 1984 breakup of AT&T, the U.S. telephone system used hierarchical routing
to find a path, going to higher levels of the hierarchy until there was a switching
office in common. This was then replaced with more flexible, non-hierarchical
routing. Figure 2-25 shows how a long-distance connection might be routed.

Telephone End
office

Toll
office

Intermediate
switching
office(s)

TelephoneEnd
office

Toll
office

Local
loop

Toll
connecting

trunk

Very high
bandwidth

intertoll
trunks

Toll
connecting

trunk

Local
loop

Figure 2-25. A typical circuit route for a long-distance call.

134 THE PHYSICAL LAYER CHAP. 2

A variety of transmission media are used for telecommunication. Unlike mod-
ern office buildings, where the wiring is commonly Category 5 or Category 6, local
loops to homes mostly consist of Category 3 twisted pairs, although some local
loops are now fiber, as well. Coaxial cables, microwaves, and especially fiber
optics are widely used between switching offices.

In the past, transmission throughout the telephone system was analog, with the
actual voice signal being transmitted as an electrical voltage from source to desti-
nation. With the advent of fiber optics, digital electronics, and computers, all the
trunks and switches are now digital, leaving the local loop as the last piece of ana-
log technology in the system. Digital transmission is preferred because it is not
necessary to accurately reproduce an analog waveform after it has passed through
many amplifiers on a long call. Being able to correctly distinguish a 0 from a 1 is
enough. This property makes digital transmission more reliable than analog. It is
also cheaper and easier to maintain.

In summary, the telephone system consists of three major components:

1. Local loops (analog twisted pairs between end offices and local
houses and businesses).

2. Trunks (very high-bandwidth digital fiber-optic links connecting the
switching offices).

3. Switching offices (where calls are moved from one trunk to another
either electrically or optically).

The local loops provide everyone access to the whole system, so they are critical.
Unfortunately, they are also the weakest link in the system. The main challenge
for long-haul trunks involves collecting multiple calls and sending them out over
the same fiber, which is done using wavelength division multiplexing (WDM).
Finally, there are two fundamentally different ways of doing switching: circuit
switching and packet switching. We will look at both.

2.5.2 The Local Loop: Telephone Modems, ADSL, and Fiber

In this section, we will study the local loop, both old and new. We will cover
telephone modems, ADSL, and fiber to the home. In some places, the local loop
has been modernized by installing optical fiber to (or at least very close to) the
home. These installations support computer networks from the ground up, with the
local loop having ample bandwidth for data services. Unfortunately, the cost of
laying fiber to homes is substantial. Sometimes, it is done when local city streets
are dug up for other purposes; some municipalities, especially in densely populated
urban areas, have fiber local loops. By and large, however, fiber local loops are the
exception, but they are clearly the future.

SEC. 2.5 THE PUBLIC SWITCHED TELEPHONE NETWORK 135

Telephone Modems

Most people are familiar with the two-wire local loop coming from a telephone
company end office into houses. The local loop is also frequently referred to as the
‘‘last mile,’’ although the length can be up to several miles. Much effort has been
devoted to squeezing data networking out of the copper local loops that are already
deployed. Telephone modems send digital data between computers over the nar-
row channel the telephone network provides for a voice call. They were once
widely used, but have been largely displaced by broadband technologies such as
ADSL that reuse the local loop to send digital data from a customer to the end
office, where they are siphoned off to the Internet. Both modems and ADSL must
deal with the limitations of old local loops: relatively narrow bandwidth, attenua-
tion and distortion of signals, and susceptibility to electrical noise such as
crosstalk.

To send bits over the local loop, or any other physical channel for that matter,
they must be converted to analog signals that can be transmitted over the channel.
This conversion is accomplished using the methods for digital modulation that we
studied in the previous section. At the other end of the channel, the analog signal
is converted back to bits.

A device that converts between a stream of digital bits and an analog signal
that represents the bits is called a modem, which is short for ‘‘modulator demodu-
lator.’’ Modems come in many varieties, including telephone modems, DSL
modems, cable modems, and wireless modems. In the case of a cable or DSL
modem, the device is typically a separate piece of hardware that sits in between the
physical line coming into the house and the rest of the network inside the home.
Wireless devices typically have their own built-in modems. Logically, the modem
is inserted between the (digital) computer and the (analog) telephone system, as
seen in Fig. 2-26.

End
office

CodecModem

Computer
Local loop
(analog)

Trunk (digital, fiber) Digital line

Analog line

Codec Modem

ISP 1

ISP 2

Figure 2-26. The use of both analog and digital transmission for a com-
puter-to-computer call. Conversion is done by the modems and codecs.

Telephone modems are used to send bits between two computers over a voice-
grade telephone line, in place of the conversation that usually fills the line. The

136 THE PHYSICAL LAYER CHAP. 2

main difficulty in doing so is that a voice-grade telephone line is limited to only
3100 Hz, about what is sufficient to carry a conversation. This bandwidth is more
than four orders of magnitude less than the bandwidth that is used for Ethernet or
802.11 (WiFi). Unsurprisingly, the data rates of telephone modems are also four
orders of magnitude less than that of Ethernet and 802.11.

Let us run the numbers to see why this is the case. The Nyquist theorem tells
us that even with a perfect 3000-Hz line (which a telephone line is decidedly not),
there is no point in sending symbols at a rate faster than 6000 baud. Let us consid-
er, for example, an older modem sending at a rate of 2400 symbols/sec, (2400
baud) and focus on getting multiple bits per symbol while allowing traffic in both
directions at the same time (by using different frequencies for different directions).

The humble 2400-bps modem uses 0 volts for a logical 0 and 1 volt for a logi-
cal 1, with 1 bit per symbol. One step up, it can use four different symbols, as in
the four phases of QPSK, so with 2 bits/symbol it can get a data rate of 4800 bps.

A long progression of higher rates has been achieved as technology has im-
proved. Higher rates require a larger set of symbols (see Fig. 2-17). With many
symbols, even a small amount of noise in the detected amplitude or phase can re-
sult in an error. To reduce the chance of errors, standards for the higher-speed
modems use some of the symbols for error correction. The schemes are known as
TCM (Trellis Coded Modulation). Some common modem standards are shown
in Fig. 2-27.

Modem standard Baud Bits/symbol Bps
V.32 2400 4 9600
V.32 bis 2400 6 14,400
V.34 2400 12 28,800
V.34 bis 2400 14 33,600

Figure 2-27. Some modem standards and their bit rate.

Why does it stop at 33,600 bps? The reason is that the Shannon limit for the
telephone system is about 35 kbps based on the average length and quality of local
loops. Going faster than this would violate the laws of physics (department of
thermodynamics) or require new local loops (which is gradually being done).

However, there is one way we can change the situation. At the telephone com-
pany end office, the data are converted to digital form for transmission within the
telephone network (the core of the telephone network converted from analog to
digital long ago). The 35-kbps limit is for the situation in which there are two
local loops, one at each end. Each of these adds noise to the signal. If we could get
rid of one of these local loops, we would increase the SNR and the maximum rate
would be doubled.

This approach is how 56-kbps modems are made to work. One end, typically
an ISP (Internet Service Provider), gets a high-quality digital feed from the nearest

SEC. 2.5 THE PUBLIC SWITCHED TELEPHONE NETWORK 137

end office. Thus, when one end of the connection is a high-quality signal, as it is
with most ISPs now, the maximum data rate can be as high as 70 kbps. Between
two home users with modems and analog lines, the maximum is still 33.6 kbps.

The reason that 56-kbps modems (rather than 70-kbps modems) are in use has
to do with the Nyquist theorem. A telephone channel is carried inside the tele-
phone system as digital samples. Each telephone channel is 4000 Hz wide when
the guard bands are included. The number of samples per second needed to recon-
struct it is thus 8000. The number of bits per sample in North America is 8, of
which one is used for control purposes, allowing 56,000 bits/sec of user data. In
Europe, all 8 bits are available to users, so 64,000-bit/sec modems could have been
used, but to get international agreement on a standard, 56,000 was chosen.

The end result is the V.90 and V.92 modem standards. They provide for a
56-kbps downstream channel (ISP to user) and a 33.6-kbps and 48-kbps upstream
channel (user to ISP), respectively. The asymmetry is because there is usually
more data transported from the ISP to the user than the other way. It also means
that more of the limited bandwidth can be allocated to the downstream channel to
increase the chances of it actually working at 56 kbps.

Digital Subscriber Lines (DSL)

When the telephone industry finally got to 56 kbps, it patted itself on the back
for a job well done. Meanwhile, the cable TV industry was offering speeds up to
10 Mbps on shared cables. As Internet access became an increasingly important
part of their business, the local telephone companies began to realize they needed a
more competitive product. Their answer was to offer new digital services over the
local loop.

Initially, there were many overlapping high-speed offerings, all under the gen-
eral name of xDSL (Digital Subscriber Line), for various x. Services with more
bandwidth than standard telephone service are sometimes referred to as broad-
band, although the term really is more of a marketing concept than a specific tech-
nical concept. Later, we will discuss what has become the most popular of these
services, ADSL (Asymmetric DSL). We will also use the term DSL or xDSL as
shorthand for all flavors.

The reason that modems are so slow is that telephones were invented for carry-
ing the human voice, and the entire system has been carefully optimized for this
purpose. Data have always been stepchildren. At the point where each local loop
terminates in the end office, the wire runs through a filter that attenuates all fre-
quencies below 300 Hz and above 3400 Hz. The cutoff is not sharp—300 Hz and
3400 Hz are the 3-dB points—so the bandwidth is usually quoted as 4000 Hz even
though the distance between the 3 dB points is 3100 Hz. Data on the wire are thus
also restricted to this narrow band.

The trick that makes xDSL work is that when a customer subscribes to it, the
incoming line is connected to a different kind of switch that does not have this

138 THE PHYSICAL LAYER CHAP. 2

filter, thus making the entire capacity of the local loop available. The limiting fac-
tor then becomes the physics of the local loop, which supports roughly 1 MHz, not
the artificial 3100 Hz bandwidth created by the filter.

Unfortunately, the capacity of the local loop falls rather quickly with distance
from the end office as the signal is increasingly degraded along the wire. It also
depends on the thickness and general quality of the twisted pair. A plot of the po-
tential bandwidth as a function of distance is given in Fig. 2-28. This figure as-
sumes that all the other factors are optimal (new wires, modest bundles, etc.).

50

40

20

30

10

0
0 1000 2000 3000 4000

Meters
5000 6000

M
bp

s

Figure 2-28. Bandwidth versus distance over Category 3 UTP for DSL.

The implication of this figure creates a problem for the telephone company.
When it picks a speed to offer, it is simultaneously picking a radius from its end of-
fices beyond which the service cannot be offered. This means that when distant
customers try to sign up for the service, they may be told ‘‘Thanks a lot for your
interest, but you live 100 meters too far from the nearest end office to get this ser-
vice. Could you please move?’’ The lower the chosen speed is, the larger the ra-
dius and the more customers are covered. But the lower the speed, the less attrac-
tive the service is and the fewer the people who will be willing to pay for it. This
is where business meets technology.

The xDSL services have all been designed with certain goals in mind. First,
the services must work over the existing Category 3 twisted-pair local loops. Sec-
ond, they must not affect customers’ existing telephones and fax machines. Third,
they must be much faster than 56 kbps. Fourth, they should be always on, with just
a monthly charge and no per-minute charge.

To meet the technical goals, the available 1.1-MHz spectrum on the local loop
is divided into 256 independent channels of 4312.5 Hz each. This arrangement is
shown in Fig. 2-29. The OFDM scheme, which we saw in the previous section, is
used to send data over these channels, though it is often called DMT (Discrete
MultiTone) in the context of ADSL. Channel 0 is used for POTS (Plain Old

SEC. 2.5 THE PUBLIC SWITCHED TELEPHONE NETWORK 139

Telephone Service). Channels 1–5 are not used, to keep the voice and data signals
from interfering with each other. Of the remaining 250 channels, one is used for
upstream control and one is used for downstream control. The rest are available
for user data.

Po
we

r

Voice Upstream Downstream

256 4-kHz Channels

0 25 1100 kHz

Figure 2-29. Operation of ADSL using discrete multitone modulation.

In principle, each of the remaining channels can be used for a full-duplex data
stream, but harmonics, crosstalk, and other effects keep practical systems well
below the theoretical limit. It is up to the provider to determine how many chan-
nels are available for upstream and how many for downstream. A 50/50 mix of
upstream and downstream is technically possible, but most providers allocate
something like 80–90% of the bandwidth to the downstream channel since most
users download more data than they upload. This choice gives rise to the ‘‘A’’ in
ADSL. A common split is 32 channels for upstream and the rest downstream. It is
also possible to have a few of the highest upstream channels be bidirectional for in-
creased bandwidth, although making this optimization requires adding a special
circuit to cancel echoes.

The international ADSL standard, known as G.dmt, was approved in 1999. It
allows speeds of as much as 8 Mbps downstream and 1 Mbps upstream. It was
superseded by a second generation in 2002, called ADSL2, with various im-
provements to allow speeds of as much as 12 Mbps downstream and 1 Mbps
upstream. ADSL2+ doubles the downstream throughput to 24 Mbps by doubling
the bandwidth to use 2.2 MHz over the twisted pair.

The next improvement (in 2006) was VDSL, which pushed the data rate over
the shorter local loops to 52 Mbps downstream and 3 Mbps upstream. Then, a
series of new standards from 2007 to 2011, going under the name of VDSL2, on
high-quality local loops managed to use 12-MHz bandwidth and achieve data rates
of 200 Mbps downstream and 100 Mbps upstream. In 2015, Vplus was proposed
for local loops shorter than 250 m. In principle, it can achieve 300 Mbps down-
stream and 100 Mbps upstream, but making it work in practice is not easy. We may
be near the end of the line here for existing Category 3 wiring, except maybe for
even shorter distances.

Within each channel, QAM modulation is used at a rate of roughly 4000 symb-
ols/sec. The line quality in each channel is constantly monitored and the data rate

140 THE PHYSICAL LAYER CHAP. 2

is adjusted by using a larger or smaller constellation, like those in Fig. 2-17. Dif-
ferent channels may have different data rates, with up to 15 bits per symbol sent on
a channel with a high SNR, and down to 2, 1, or no bits per symbol sent on a chan-
nel with a low SNR depending on the standard.

A typical ADSL arrangement is shown in Fig. 2-30. In this scheme, a tele-
phone company technician must install a NID (Network Interface Device) on the
customer’s premises. This small plastic box marks the end of the telephone com-
pany’s property and the start of the customer’s property. Close to the NID (or
sometimes combined with it) is a splitter, an analog filter that separates the
0–4000-Hz band used by POTS from the data. The POTS signal is routed to the
existing telephone or fax machine. The data signal is routed to an ADSL modem,
which uses digital signal processing to implement OFDM. Since most ADSL
modems are external, the computer must be connected to them at high speed.
Usually, this is done using Ethernet, a USB cable, or 802.11.

DSLAM

Splitter

Codec

Splitter

Telephone

To ISP

ADSL
modem

Ethernet

Computer

Telephone
line

Telephone company end office Customer premises

Voice
switch

NID

Figure 2-30. A typical ADSL equipment configuration.

At the other end of the wire, on the end office side, a corresponding splitter is
installed. Here, the voice portion of the signal is filtered out and sent to the normal
voice switch. The signal above 26 kHz is routed to a new kind of device called a
DSLAM (Digital Subscriber Line Access Multiplexer), which contains the same
kind of digital signal processor as the ADSL modem. The DSLAM converts the
signal to bits and sends packets to the Internet service provider’s data network.

This complete separation between the voice system and ADSL makes it rel-
atively easy for a telephone company to deploy ADSL. All that is needed is buy-
ing a DSLAM and splitter and attaching the ADSL subscribers to the splitter.

SEC. 2.5 THE PUBLIC SWITCHED TELEPHONE NETWORK 141

Other high-bandwidth services delivered over the telephone network (e.g., ISDN)
require the telephone company to make much greater changes to the existing
switching equipment.

The next frontier for DSL deployments is to reach transmission speeds of
1 Gbps and higher. These efforts are focusing on a variety of complementary tech-
niques, including a technique called bonding, which creates a single virtual DSL
connection by combining two or more physical DSL connections. Obviously, if
one combines two twisted pairs, one should be able to double the bandwidth. In
some places, the telephone wires entering houses use a cable that in fact has two
twisted pairs. The original idea was to allow two separate telephone lines and num-
bers in the house, but by using pair bonding, a single higher-speed Internet con-
nection can be achieved. Increasing numbers of ISPs in Europe, Australia, Cana-
da, and the United States are already deploying a technology called G.fast that
uses pair bonding. As with other forms of DSL, the performance of G.fast depends
on the distance of the transmission; recent tests have seen symmetric speeds ap-
proaching 1 Gbps at distances of 100 meters. When coupled with a fiber deploy-
ment known as FTTdp (Fiber to the Distribution Point), which brings fiber to a
distribution point of several hundred subscribers and uses copper to transmit data
the rest of the way to the home (in VDSL2, this may be up to 1 kilometer, although
at lower speeds). FTTdp is just one type of fiber deployment that takes fiber from
the core of the network to some point close to the network edge. The next section
describes various modes of fiber deployment.

Fiber To The X (FTTX)

The speed of last-mile networks is often constrained by the copper cables used
in conventional telephone networks, which cannot transmit data at high rates over
as long a distance as fiber. Thus, an ultimate goal, where it is cost effective, is to
bring fiber all the way to a customer home, sometimes called FTTH (Fiber to the
Home). Telephone companies continue to try to improve the performance of the
local loop, often by deploying fiber as far as they can to the home. If not directly to
the home itself, the company may provide FTTN (Fiber to the Node) (or neigh-
borhood), whereby fiber is terminated in a cabinet on a street sometimes several
miles from the customer home. Fiber to the Distribution Point (FTTdp), as men-
tioned above, moves fiber one step closer to the customer home, often bringing
fiber to within a few meters of the customer premises. In between these options is
FTTC (Fiber to the Curb). All of these FTTX (Fiber to the X) designs are
sometimes also called ‘‘fiber in the loop’’ because some amount of fiber is used in
the local loop.

Several variations of the form ‘‘FTTX’’ (where X stands for the basement,
curb, or neighborhood) exist. They are used to note that the fiber deployment may
reach close to the house. In this case, copper (twisted pair or coaxial cable) pro-
vides fast enough speeds over the last short distance. The choice of how far to lay

142 THE PHYSICAL LAYER CHAP. 2

the fiber is an economic one, balancing cost with expected revenue. In any case,
the point is that optical fiber has crossed the traditional barrier of the ‘‘last mile.’’
We will focus on FTTH in our discussion.

Like the copper wires before it, the fiber local loop is passive, which means no
powered equipment is required to amplify or otherwise process signals. The fiber
simply carries signals between the home and the end office. This, in turn, reduces
cost and improves reliability. Usually, the fibers from the houses are joined toget-
her so that only a single fiber reaches the end office per group of up to 100 houses.
In the downstream direction, optical splitters divide the signal from the end office
so that it reaches all the houses. Encryption is needed for security if only one
house should be able to decode the signal. In the upstream direction, optical com-
biners merge the signals from the houses into a single signal that is received at the
end office.

This architecture is called a PON (Passive Optical Network), and it is shown
in Fig. 2-31. It is common to use one wavelength shared between all the houses
for downstream transmission, and another wavelength for upstream transmission.

Fiber

Optical
splitter/combinerEnd office

Rest of
network

Figure 2-31. Passive optical network for Fiber To The Home.

Even with the splitting, the tremendous bandwidth and low attenuation of fiber
mean that PONs can provide high rates to users over distances of up to 20 km. The
actual data rates and other details depend on the type of PON. Two kinds are com-
mon. GPONs (Gigabit-capable PONs) come from the world of telecommunica-
tions, so they are defined by an ITU standard. EPONs (Ethernet PONs) are more
in tune with the world of networking, so they are defined by an IEEE standard.
Both run at around a gigabit and can carry traffic for different services, including
Internet, video, and voice. For example, GPONs provide 2.4 Gbps downstream
and 1.2 or 2.4 Gbps upstream.

Additional protocols are needed to share the capacity of the single fiber at the
end office between the different houses. The downstream direction is quite easy.
The end office can send messages to each different house in whatever order it likes.
In the upstream direction, however, messages from different houses cannot be sent
at the same time, or different signals would collide. The houses also cannot hear
each other’s transmissions so they cannot listen before transmitting. The solution

SEC. 2.5 THE PUBLIC SWITCHED TELEPHONE NETWORK 143

is that equipment at the houses requests and is granted time slots to use by equip-
ment in the end office. For this to work, there is a ranging process to adjust the
transmission times from the houses so that all the signals received at the end office
are synchronized. The design is similar to cable modems, which we cover later in
this chapter. For more information on PONs, see Grobe and Elbers (2008) or
Andrade et al. (2014).

2.5.3 Trunks and Multiplexing

Trunks in the telephone network are not only much faster than the local loops,
they are different in two other respects. The core of the telephone network carries
digital information, not analog information; that is, bits not voice. This necessi-
tates a conversion at the end office to digital form for transmission over the long-
haul trunks. The trunks carry thousands, even millions, of calls simultaneously.
This sharing is important for achieving economies of scale, since it costs essen-
tially the same amount of money to install and maintain a high-bandwidth trunk as
a low-bandwidth trunk between two switching offices. It is accomplished with ver-
sions of TDM and FDM.

Below, we will briefly examine how voice signals are digitized so that they can
be transported by the telephone network. After that, we will see how TDM is used
to carry bits on trunks, including the TDM system used for fiber optics (SONET).
Then, we will turn to FDM as it is applied to fiber optics, which is called
wavelength division multiplexing.

Digitizing Voice Signals

Early in the development of the telephone network, the core handled voice
calls as analog information. FDM techniques were used for many years to multi-
plex 4000-Hz voice channels (each comprising 3100 Hz plus guard bands) into
larger and larger units. For example, 12 calls in the 60 kHz–to–108 kHz band are
known as a group, five groups (a total of 60 calls) are known as a supergroup, and
so on. These FDM methods are still used over some copper wires and microwave
channels. However, FDM requires analog circuitry and is not amenable to being
done by a computer. In contrast, TDM can be handled entirely by digital elec-
tronics, so it has become far more widespread in recent years. Since TDM can
only be used for digital data and the local loops produce analog signals, a conver-
sion is needed from analog to digital in the end office, where all the individual
local loops come together to be combined onto outgoing trunks.

The analog signals are digitized in the end office by a device called a codec
(short for ‘‘coder-decoder’’) using a technique is called PCM (Pulse Code Modu-
lation), which forms the heart of the modern telephone system. The codec makes
8000 samples per second (125 µsec/sample) because the Nyquist theorem says that
this is sufficient to capture all the information from the 4-kHz telephone channel

144 THE PHYSICAL LAYER CHAP. 2

bandwidth. At a lower sampling rate, information would be lost; at a higher one,
no extra information would be gained. Almost all time intervals within the tele-
phone system are multiples of 125 µsec. The standard uncompressed data rate for
a voice-grade telephone call is thus 8 bits every 125 µsec, or 64 kbps.

Each sample of the amplitude of the signal is quantized to an 8-bit number. To
reduce the error due to quantization, the quantization levels are unevenly spaced. A
logarithmic scale is used that gives relatively more bits to smaller signal ampli-
tudes and relatively fewer bits to large signal amplitudes. In this way, the error is
proportional to the signal amplitude. Two versions of quantization are widely
used: µ-law, used in North America and Japan, and A-law, used in Europe and the
rest of the world. Both versions are specified in standard ITU G.711. An equiv-
alent way to think about this process is to imagine that the dynamic range of the
signal (or the ratio between the largest and smallest possible values) is compressed
before it is (evenly) quantized, and then expanded when the analog signal is
recreated. For this reason, it is called companding. It is also possible to compress
the samples after they are digitized so that they require much less than 64 kbps.
However, we will leave this topic for when we explore audio applications such as
voice over IP.

At the other end of the call, an analog signal is recreated from the quantized
samples by playing them out (and smoothing them) over time. It will not be exact-
ly the same as the original analog signal, even though we sampled at the Nyquist
rate, because the samples were quantized.

T-Carrier: Multiplexing Digital Signals on the Phone Network

The T-Carrier is a specification for transmitting multiple TDM channels over
a single circuit. TDM with PCM is used to carry multiple voice calls over trunks
by sending a sample from each call every 125 µsec. When digital transmission
began emerging as a feasible technology, ITU (then called CCITT) was unable to
reach agreement on an international standard for PCM. Consequently, a variety of
incompatible schemes are now in use in different countries around the world.

The method used in North America and Japan is the T1 carrier, depicted in
Fig. 2-32. (Technically speaking, the format is called DS1 and the carrier is called
T1, but following widespread industry tradition, we will not make that subtle dis-
tinction here.) The T1 carrier consists of 24 voice channels multiplexed together.
Each of the 24 channels, in turn, gets to insert 8 bits into the output stream. The
T1 carrier was introduced in 1962.

A frame consists of 24 × 8 = 192 bits plus one extra bit for control purposes,
yielding 193 bits every 125 µsec. This gives a gross data rate of 1.544 Mbps, of
which 8 kbps is for signaling. The 193rd bit is used for frame synchronization and
signaling. In one variation, the 193rd bit is used across a group of 24 frames called
an extended superframe. Six of the bits, in the 4th, 8th, 12th, 16th, 20th, and
24th positions, take on the alternating pattern 001011 Normally, the receiver

SEC. 2.5 THE PUBLIC SWITCHED TELEPHONE NETWORK 145

Channel
1

Channel
2

Channel
3

Channel
4

Channel
24

193-bit frame (125 µsec)

7 Data
bits per
channel

per sample

Bit 1 is
a framing
code

Bit 8 is for
signaling

0

1

Figure 2-32. The T1 carrier (1.544 Mbps).

keeps checking for this pattern to make sure that it has not lost synchronization.
Six more bits are used to send an error check code to help the receiver confirm that
it is synchronized. If it does get out of sync, the receiver can scan for the pattern
and validate the error check code to get resynchronized. The remaining 12 bits are
used for control information for operating and maintaining the network, such as
performance reporting from the remote end.

The T1 format has several variations. The earlier versions sent signaling infor-
mation in-band, meaning in the same channel as the data, by using some of the
data bits. This design is one form of channel-associated signaling, because each
channel has its own private signaling subchannel. In one arrangement, the least
significant bit out of an 8-bit sample on each channel is used in every sixth frame.
It has the colorful name of robbed-bit signaling. The idea is that a few stolen bits
will not matter for voice calls. No one will hear the difference.

For data, however, it is another story. Delivering the wrong bits is unhelpful,
to say the least. If older versions of T1 are used to carry data, only 7 of 8 bits, or
56 kbps, can be used in each of the 24 channels. Instead, newer versions of T1
provide clear channels in which all of the bits may be used to send data. Clear
channels are what businesses who lease a T1 line want when they send data across
the telephone network in place of voice samples. Signaling for any voice calls is
then handled out-of-band, meaning in a separate channel from the data. Often, the
signaling is done with common-channel signaling in which there is a shared sig-
naling channel. One of the 24 channels may be used for this purpose.

Outside of North America and Japan, the 2.048-Mbps E1 carrier is used in-
stead of T1. This carrier has 32 8-bit data samples packed into the basic 125-µsec
frame. Thirty of the channels are used for information and up to two are used for
signaling. Each group of four frames provides 64 signaling bits, half of which are

146 THE PHYSICAL LAYER CHAP. 2

used for signaling (whether channel-associated or common-channel) and half of
which are used for frame synchronization or are reserved for each country to use as
it wishes.

Time division multiplexing allows multiple T1 carriers to be multiplexed into
higher-order carriers. Figure 2-33 shows how this can be done. At the left, we see
four T1 channels being multiplexed into one T2 channel. The multiplexing at T2
and above is done bit for bit, rather than byte for byte with the 24 voice channels
that make up a T1 frame. Four T1 streams at 1.544 Mbps really ought to generate
6.176 Mbps, but T2 is actually 6.312 Mbps. The extra bits are used for framing
and recovery in case the carrier slips.

6 5 4 3 2 1 0
5 1

4 0

6 2

7 3

6:17:14:1

4 T1 streams in

1 T2 stream out

6.312 Mbps

T2

1.544 Mbps

T1

44.736 Mbps

T3

274.176 Mbps

T4

7 T2 streams in 6 T3 streams in

Figure 2-33. Multiplexing T1 streams into higher carriers.

At the next level, seven T2 streams are combined bitwise to form a T3 stream.
Then, six T3 streams are joined to form a T4 stream. At each step, a small amount
of overhead is added for framing and recovery in case the synchronization between
sender and receiver is lost. T1 and T3 are widely used by customers, whereas T2
and T4 are only used within the telephone system itself, so they are not well-
known.

Just as there is little agreement on the basic carrier between the United States
and the rest of the world, there is equally little agreement on how it is to be multi-
plexed into higher-bandwidth carriers. The U.S. scheme of stepping up by 4, 7,
and 6 did not strike everyone else as the way to go, so the ITU standard calls for
multiplexing four streams into one stream at each level. Also, the framing and re-
covery data are different in the U.S. and ITU standards. The ITU hierarchy for 32,
128, 512, 2048, and 8192 channels runs at speeds of 2.048, 8.848, 34.304,
139.264, and 565.148 Mbps.

Multiplexing Optical Networks: SONET/SDH

In the early days of fiber optics, every telephone company had its own propri-
etary optical TDM system. After the U.S. government broke up AT&T in 1984,
local telephone companies had to connect to multiple long-distance carriers, all

SEC. 2.5 THE PUBLIC SWITCHED TELEPHONE NETWORK 147

with optical TDM systems from different vendors and suppliers, so the need for
standardization became obvious. In 1985, Bellcore, the research arm of the Re-
gional Bell Operating Companies (RBOCs), began working on a standard, called
SONET (Synchronous Optical NETwork).

Later, ITU joined the effort, which resulted in a SONET standard and a set of
parallel ITU recommendations (G.707, G.708, and G.709) in 1989. The ITU rec-
ommendations are called SDH (Synchronous Digital Hierarchy) but differ from
SONET only in minor ways. Virtually all of the long-distance telephone traffic in
the United States, and much of it elsewhere, now uses trunks running SONET in
the physical layer. For additional information about SONET, see Perros (2005).

The SONET design had four major goals:

1. Carrier interoperability: SONET had to make it possible for different
carriers to interoperate. Achieving this goal required defining a com-
mon signaling standard with respect to wavelength, timing, framing
structure, and other issues.

2. Unification across regions: some means was needed to unify the U.S.,
European, and Japanese digital systems, all of which were based on
64-kbps PCM channels but combined them in different (and incom-
patible) ways.

3. Multiplexing digital channels: SONET had to provide a way to multi-
plex multiple digital channels. At the time SONET was devised, the
highest-speed digital carrier actually used widely in the United States
was T3, at 44.736 Mbps. T4 was defined, but not used much, and
nothing was even defined above T4 speed. Part of SONET’s mission
was to continue the hierarchy to gigabits/sec and beyond. A standard
way to multiplex slower channels into one SONET channel was also
needed.

4. Management support: SONET had to provide support for operations,
administration, and maintenance (OAM), which are needed to man-
age the network. Previous systems did not do this very well.

An early decision was to make SONET a conventional TDM system, with the
entire bandwidth of the fiber devoted to one channel containing time slots for the
various subchannels. As such, SONET is a synchronous system. Each sender and
receiver is tied to a common clock. The master clock that controls the system has
an accuracy of about 1 part in 109. Bits on a SONET line are sent out at extremely
precise intervals, controlled by the master clock.

The basic SONET frame is a block of 810 bytes put out every 125 µsec. Since
SONET is synchronous, frames are emitted whether or not there are any useful
data to send. Having 8000 frames/sec exactly matches the sampling rate of the
PCM channels used in all digital telephony systems.

148 THE PHYSICAL LAYER CHAP. 2

The 810-byte SONET frames are best thought of as a rectangle of bytes, 90
columns wide by 9 rows high. Thus, 8 × 810 = 6480 bits are transmitted 8000
times per second, for a gross data rate of 51.84 Mbps. This layout is the basic
SONET channel, called STS-1 (Synchronous Transport Signal-1). All SONET
trunks are multiples of STS-1.

The first three columns of each frame are reserved for system management
information, as illustrated in Fig. 2-34. In this block, the first three rows contain
the section overhead; the next six contain the line overhead. The section overhead
is generated and checked at the start and end of each section, whereas the line over-
head is generated and checked at the start and end of each line.

Sonet
frame
(125 µsec)

Sonet
frame
(125 µsec)

9
Rows

. . .

. . .

87 Columns

3 Columns
for overhead

SPESection
overhead

Line
overhead

Path
overhead

Figure 2-34. Two back-to-back SONET frames.

A SONET transmitter sends back-to-back 810-byte frames, without gaps be-
tween them, even when there are no data (in which case it sends dummy data).
From the receiver’s point of view, all it sees is a continuous bit stream, so how does
it know where each frame begins? The answer is that the first 2 bytes of each
frame contain a fixed pattern that the receiver searches for. If it finds this pattern in
the same place in a large number of consecutive frames, it assumes that it is in sync
with the sender. In theory, a user could insert this pattern into the payload in a reg-
ular way, but in practice, it cannot be done due to the multiplexing of multiple
users into the same frame and other reasons.

The final 87 columns of each frame hold 87 × 9 × 8 × 8000 = 50. 112 Mbps of
user data. This user data could be voice samples, T1 and other carriers, or packets.
SONET is simply a container for transporting bits. The SPE (Synchronous Pay-
load Envelope), which carries the user data does not always begin in row 1, col-
umn 4. The SPE can begin anywhere within the frame. A pointer to the first byte
is contained in the first row of the line overhead. The first column of the SPE is
the path overhead (i.e., the header for the end-to-end path sublayer protocol).

SEC. 2.5 THE PUBLIC SWITCHED TELEPHONE NETWORK 149

The ability to allow the SPE to begin anywhere within the SONET frame and
even to span two frames, as shown in Fig. 2-34, gives added flexibility to the sys-
tem. For example, if a payload arrives at the source while a dummy SONET frame
is being constructed, it can be inserted into the current frame instead of being held
until the start of the next one.

The SONET/SDH multiplexing hierarchy is shown in Fig. 2-35. Rates from
STS-1 to STS-768 have been defined, ranging from roughly a T3 line to 40 Gbps.
Even higher rates will surely be defined over time, with OC-3072 at 160 Gbps
being the next in line if and when it becomes technologically feasible. The optical
carrier corresponding to STS-n is called OC-n but is bit for bit the same except for
a certain bit reordering needed for synchronization. The SDH names are different,
and they start at OC-3 because ITU-based systems do not have a rate near 51.84
Mbps. We have shown the common rates, which proceed from OC-3 in multiples
of four. The gross data rate includes all the overhead. The SPE data rate excludes
the line and section overhead. The user data rate excludes all three kinds of over-
head and counts only the 86 payload columns.

SONET SDH Data rate (Mbps)
Electrical Optical Optical Gross SPE User
STS-1 OC-1 51.84 50.112 49.536
STS-3 OC-3 STM-1 155.52 150.336 148.608
STS-12 OC-12 STM-4 622.08 601.344 594.432
STS-48 OC-48 STM-16 2488.32 2405.376 2377.728
STS-192 OC-192 STM-64 9953.28 9621.504 9510.912
STS-768 OC-768 STM-256 39813.12 38486.016 38043.648

Figure 2-35. SONET and SDH multiplex rates.

As an aside, when a carrier, such as OC-3, is not multiplexed, but carries the
data from only a single source, the letter c (for concatenated) is appended to the de-
signation, so OC-3 indicates a 155.52-Mbps carrier consisting of three separate
OC-1 carriers, but OC-3c indicates a data stream from a single source at 155.52
Mbps. The three OC-1 streams within an OC-3c stream are interleaved by col-
umn—first column 1 from stream 1, then column 1 from stream 2, then column 1
from stream 3, followed by column 2 from stream 1, and so on—leading to a frame
270 columns wide and 9 rows deep.

2.5.4 Switching

From the point of view of the average telephone engineer, the phone system
has two principal parts: outside plant (the local loops and trunks, since they are
physically outside the switching offices) and inside plant (the switches, which are

150 THE PHYSICAL LAYER CHAP. 2

inside the switching offices). We have just looked at the outside plant. Now, it is
time to examine the inside plant.

Two different switching techniques are used by the network nowadays: circuit
switching and packet switching. The traditional telephone system is based on cir-
cuit switching, although voice over IP technology relies on packet switching. We
will go into circuit switching in some detail and contrast it with packet switching.
Both kinds of switching are important enough that we will come back to them
when we get to the network layer.

Circuit Switching

Traditionally, when you or your computer placed a telephone call, the switch-
ing equipment within the telephone system sought out a physical path all the way
from your telephone to the receiver’s telephone and maintained it for the duration
of the call. This technique is called circuit switching. It is shown schematically
in Fig. 2-36(a). Each of the six rectangles represents a carrier switching office
(end office, toll office, etc.). In this example, each office has three incoming lines
and three outgoing lines. When a call passes through a switching office, a physical
connection is established between the line on which the call came in and one of the
output lines, as shown by the dotted lines.

In the early days of the telephone, the connection was made by the operator
plugging a jumper cable into the input and output sockets. In fact, a surprising lit-
tle story is associated with the invention of automatic circuit-switching equipment.
It was invented by a 19th-century Missouri undertaker named Almon B. Strowger.
Shortly after the telephone was invented, when someone died, one of the survivors
would call the town operator and say ‘‘Please connect me to an undertaker.’’ Unfor-
tunately for Mr. Strowger, there were two undertakers in his town, and the other
one’s wife was the town telephone operator. He quickly saw that either he was
going to have to invent automatic telephone switching equipment or he was going
to go out of business. He chose the first option. For nearly 100 years, the cir-
cuit-switching equipment used worldwide was known as Strowger gear. (History
does not record whether the now-unemployed switchboard operator got a job as an
information operator, answering questions such as ‘‘What is the phone number of
an undertaker?’’)

The model shown in Fig. 2-36(a) is highly simplified, of course, because parts
of the physical path between the two telephones may, in fact, be microwave or fiber
links onto which thousands of calls are multiplexed. Nevertheless, the basic idea is
valid: once a call has been set up, a dedicated path between both ends exists and
will continue to exist until the call is finished.

An important property of circuit switching is the need to set up an end-to-end
path before any data can be sent. The elapsed time between the end of dialing and
the start of ringing can sometimes be 10 seconds, more on long-distance or interna-
tional calls. During this time interval, the telephone system is hunting for a path,

SEC. 2.5 THE PUBLIC SWITCHED TELEPHONE NETWORK 151

(a)

(b)

Switching office

Physical (copper)
connection set up
when call is made

Packets queued
for subsequent
transmission

Computer

Computer

Figure 2-36. (a) Circuit switching. (b) Packet switching.

as shown in Fig. 2-37(a). Note that before data transmission can even begin, the
call request signal must propagate all the way to the destination and be acknow-
ledged. For many computer applications (e.g., point-of-sale credit verification),
long setup times are undesirable.

As a consequence of the reserved path between the calling parties, once the
setup has been completed, the only delay for data is the propagation time for the
electromagnetic signal: about 5 milliseconds per 1000 km. Also, as a consequence
of the established path, there is no danger of congestion—that is, once the call has
been put through, you never get busy signals. Of course, you might get one before
the connection has been established due to lack of switching or trunk capacity.

Packet Switching

The alternative to circuit switching is packet switching, shown in Fig. 2-36(b)
and described in Chap. 1. With this technology, packets are sent as soon as they
are available. In contrast to circuit switching, there is no need to set up a dedicated
path in advance. Packet switching is analogous to sending a series of letters using
the postal system: each one travels independently of the others. It is up to routers

152 THE PHYSICAL LAYER CHAP. 2

Call request signal

Data

AB
trunk

A B C
(a)

D A B C
(b)

D

BC
trunk

CD
trunk

Call
accept
signal

Propagation
delay Queueing

delay

Pkt 1

Pkt 2

Pkt 3
Pkt 1

Pkt 2

Pkt 3
Pkt 1

Pkt 2

Pkt 3

Time
spent

hunting
for an

outgoing
trunk

Ti
m

e

Figure 2-37. Timing of events in (a) circuit switching, (b) packet switching.

to use store-and-forward transmission to send each packet on its way toward the
destination on its own. This procedure is unlike circuit switching, where the result
of the connection setup is the reservation of bandwidth all the way from the sender
to the receiver and all data on the circuit follows this path. In circuit switching,
having all the data follow the same path means that it cannot arrive out of order.
With packet switching, there is no fixed path, so different packets can follow dif-
ferent paths, depending on network conditions at the time they are sent, and they
may arrive out of order.

Packet-switching networks place a tight upper limit on the size of packets.
This ensures that no user can monopolize any transmission line for very long (e.g.,
many milliseconds), so that packet-switched networks can handle interactive traf-
fic. It also reduces delay since the first packet of a long message can be forwarded
before the second one has fully arrived. However, the store-and-forward delay of
accumulating a packet in the router’s memory before it is sent on to the next router

SEC. 2.5 THE PUBLIC SWITCHED TELEPHONE NETWORK 153

exceeds that of circuit switching. With circuit switching, the bits just flow through
the wire continuously. Nothing is ever stored and forwarded later.

Packet and circuit switching also differ in other ways. Because no bandwidth
is reserved with packet switching, packets may have to wait to be forwarded. This
introduces queueing delay and congestion if many packets are sent at the same
time. On the other hand, there is no danger of getting a busy signal and being
unable to use the network. Thus, congestion occurs at different times with circuit
switching (at setup time) and packet switching (when packets are sent).

If a circuit has been reserved for a particular user and there is no traffic, its
bandwidth is wasted. It cannot be used for other traffic. Packet switching does not
waste bandwidth and thus is more efficient from a system perspective. Under-
standing this trade-off is crucial for comprehending the difference between circuit
switching and packet switching. The trade-off is between guaranteed service and
wasting resources versus not guaranteeing service and not wasting resources.

Packet switching is more fault tolerant than circuit switching. In fact, that is
why it was invented. If a switch goes down, all of the circuits using it are termi-
nated and no more traffic can be sent on any of them. With packet switching,
packets can be routed around dead switches.

Another difference between circuit and packet switching is how traffic is
billed. With circuit switching (i.e., for voice telephone calls over the PSTN),
billing has historically been based on distance and time. For mobile voice, dis-
tance usually does not play a role, except for international calls, and time plays
only a coarse role (e.g., a calling plan with 2000 free minutes costs more than one
with 1000 free minutes and sometimes nights or weekends are cheap). With pack-
et-switched networks, including both fixed-line and mobile networks, time con-
nected is not an issue, but the volume of traffic is. For home users in the United
States and Europe, ISPs usually charge a flat monthly rate because it is less work
for them and their customers can understand this model. In some developing coun-
tries, billing is often still volume-based: users may purchase a ‘‘data bundle’’ of a
certain size and use that data over the course of a billing cycle. Certain times of
day, or even certain destinations, may be free of charge or not count against the
data cap or quota; these services are sometimes called zero-rated services. Gener-
ally, carrier Internet service providers in the Internet backbone charge based on
traffic volumes. A typical billing model is based on the 95th percentile of five-
minute samples: on a given link, an ISP will measure the volume of traffic that has
passed over the link in the last five minutes. A 30-day billing cycle will have 8640
such five-minute intervals, and the ISP will bill based on the 95th percentile of
these samples. This technique is often called 95th percentile billing.

The differences between circuit switching and packet switching are summa-
rized in Fig. 2-38. Traditionally, telephone networks have used circuit switching to
provide high-quality telephone calls, and computer networks have used packet
switching for simplicity and efficiency. However, there are notable exceptions.
Some older computer networks have been circuit switched under the covers (e.g.,

154 THE PHYSICAL LAYER CHAP. 2

X.25) and some newer telephone networks use packet switching with voice over IP
technology. This looks just like a standard telephone call on the outside to users,
but inside the network packets of voice data are switched. This approach has let
upstarts market cheap international calls via calling cards, though perhaps with
lower call quality than the incumbents.

Item Circuit switched Packet switched
Call setup Required Not needed
Dedicated physical path Yes No
Each packet follows the same route Yes No
Packets arrive in order Yes No
Is a switch crash fatal Yes No
Bandwidth available Fixed Dynamic
Time of possible congestion At setup time On every packet
Potentially wasted bandwidth Yes No
Store-and-forward transmission No Yes
Charging Per minute Per byte

Figure 2-38. A comparison of circuit-switched and packet-switched networks.

2.6 CELLULAR NETWORKS

Even if the conventional telephone system someday gets multigigabit end-to-
end fiber, people now expect to make phone calls and to use their phones to check
email and surf the Web from airplanes, cars, swimming pools, and while jogging in
the park. Consequently, there is a tremendous amount of interest (and investment)
in wireless telephony.

The mobile phone system is used for wide area voice and data communication.
Mobile phones (sometimes called cell phones) have gone through five distinct
generations, widely called 1G, 2G, 3G, 4G, and 5G. The initial three generations
provided analog voice, digital voice, and both digital voice and data (Internet,
email, etc.), respectively. 4G technology adds additional capabilities, including ad-
ditional physical layer transmission techniques (e.g., OFDM uplink transmissions),
and IP-based femtocells (home cellular nodes that are connected to fixed-line Inter-
net infrastructure). 4G does not support circuit-switched telephony, unlike its pre-
decessors; it is based on packet switching only. 5G is being rolled out now, but it
will take years before it completely replaces the earlier generations everywhere.
5G technology will support up to 20 Gbps transmissions, as well as denser deploy-
ments. There is also some focus on reducing network latency to support a wider
range of applications, for example, highly interactive gaming.

SEC. 2.6 CELLULAR NETWORKS 155

2.6.1 Common Concepts: Cells, Handoff, Paging

In all mobile phone systems, a geographic region is divided up into cells,
which is why the handsets are sometimes called cell phones. Each cell uses some
set of frequencies not used by any of its neighbors. The key idea that gives cellular
systems far more capacity than previous systems is the use of relatively small cells
and the reuse of transmission frequencies in nearby (but not adjacent) cells. The
cellular design increases the system capacity as the cells get smaller. Furthermore,
smaller cells mean that less power is needed, which leads to smaller and cheaper
transmitters and handsets.

Cells allow for frequency reuse, which is illustrated in Fig. 2-39(a). The cells
are normally roughly circular, but they are easier to model as hexagons. In
Fig. 2-39(a), the cells are all the same size. They are grouped in units of seven
cells. Each letter indicates a group of frequencies. Notice that for each frequency
set, there is a buffer about two cells wide where that frequency is not reused, pro-
viding for good separation and low interference.

G

F
A

B
C

D
E

G

F
A

B
C

D
E

G

F
A

B
C

D
E

(a) (b)

Figure 2-39. (a) Frequencies are not reused in adjacent cells. (b) To add more
users, smaller cells can be used.

In an area where the number of users has grown to the point that the system is
overloaded, the power can be reduced and the overloaded cells split into smaller
microcells to permit more frequency reuse, as shown in Fig. 2-39(b). Telephone
companies sometimes create temporary microcells, using portable towers with sat-
ellite links at sporting events, rock concerts, and other places where large numbers
of mobile users congregate for a few hours.

At the center of each cell is a base station to which all the telephones in the cell
transmit. The base station consists of a computer and transmitter/receiver con-
nected to an antenna. In a small system, all the base stations are connected to a

156 THE PHYSICAL LAYER CHAP. 2

single device called an MSC (Mobile Switching Center) or MTSO (Mobile Tele-
phone Switching Office). In a larger one, several MSCs may be needed, all of
which are connected to a second-level MSC, and so on. The MSCs are essentially
end offices as in the telephone system, and are in fact connected to at least one
telephone system end office. The MSCs communicate with the base stations, each
other, and the PSTN using a packet-switching network.

At any instant, each mobile telephone is logically in one specific cell and under
the control of that cell’s base station. When a mobile telephone physically leaves a
cell, its base station notices the telephone’s signal fading away and then asks all the
surrounding base stations how much power they are getting from it. When the
answers come back, the base station then transfers ownership to the cell getting the
strongest signal; under most conditions that is the cell where the telephone is now
located. The telephone is then informed of its new boss, and if a call is in progress,
it is asked to switch to a new channel (because the old one is not reused in any of
the adjacent cells). This process, called handoff, takes about 300 milliseconds.
Channel assignment is done by the MSC, the nerve center of the system. The base
stations are really just dumb radio relays.

Finding locations high in the air to place base station antennas is a major issue.
This problem has led some telecommunication carriers to forge alliances with the
Roman Catholic Church, since the latter owns a substantial number of exalted po-
tential antenna sites worldwide, all conveniently under a single management.

Cellular networks typically have four types of channels. Control channels
(base to mobile) are used to manage the system. Paging channels (base to mobile)
alert mobile users to calls for them. Access channels (bidirectional) are used for
call setup and channel assignment. Finally, data channels (bidirectional) carry
voice, fax, or data.

2.6.2 First-Generation (1G) Technology: Analog Voice

Let us look at cellular network technology, starting with the earliest system.
Mobile radiotelephones were used sporadically for maritime and military commu-
nication during the early decades of the 20th century. In 1946, the first system for
car-based telephones was set up in St. Louis. This system used a single large trans-
mitter on top of a tall building and had a single channel, used for both sending and
receiving. To talk, the user had to push a button that enabled the transmitter and
disabled the receiver. Such systems, known as push-to-talk systems, were in-
stalled beginning in the 1950s. Taxis and police cars often used this technology.

In the 1960s, IMTS (Improved Mobile Telephone System) was installed. It,
too, used a high-powered (200-watt) transmitter on top of a hill but it had two fre-
quencies, one for sending and one for receiving, so the push-to-talk button was no
longer needed. Since all communication from the mobile telephones went inbound
on a different channel than the outbound signals, the mobile users could not hear
each other (unlike the push-to-talk system used in older taxis).

SEC. 2.6 CELLULAR NETWORKS 157

IMTS supported 23 channels spread out from 150 MHz to 450 MHz. Due to
the small number of channels, users often had to wait a long time before getting a
dial tone. Also, due to the large power of the hilltop transmitters, adjacent systems
had to be several hundred kilometers apart to avoid interference. All in all, the
limited capacity made the system impractical.

AMPS (Advanced Mobile Phone System), an analog mobile phone system
invented by Bell Labs and first deployed in the United States in 1983, significantly
increased the capacity of the cellular network. It was also used in England, where
it was called TACS, and in Japan, where it was called MCS-L1. AMPS was for-
mally retired in 2008, but we will look at it to understand the context for the 2G
and 3G systems that improved on it. In AMPS, cells are typically 10 to 20 km
across; in digital systems, the cells are smaller. Whereas an IMTS system 100 km
across can have only one call on each frequency, an AMPS system might have 100
10-km cells in the same area and be able to have 10 to 15 calls on each frequency,
in widely separated cells.

AMPS uses FDM to separate the channels. The system uses 832 full-duplex
channels, each consisting of a pair of simplex channels. This arrangement is
known as FDD (Frequency Division Duplex). The 832 simplex channels from
824 to 849 MHz are used for mobile to base station transmission, and 832 simplex
channels from 869 to 894 MHz are used for base station to mobile transmission.
Each of these simplex channels is 30 kHz wide.

The 832 channels in AMPS are divided into four categories. Since the same
frequencies cannot be reused in nearby cells and 21 channels are reserved in each
cell for control, the actual number of voice channels available per cell is much
smaller than 832, typically about 45.

Call Management

Each mobile telephone in AMPS has a 32-bit serial number and a 10-digit tele-
phone number in its programmable read-only memory. The telephone number in
many countries is represented as a 3-digit area code in 10 bits and a 7-digit sub-
scriber number in 24 bits. When a phone is switched on, it scans a preprogrammed
list of 21 control channels to find the most powerful signal. The phone then broad-
casts its 32-bit serial number and 34-bit telephone number. Like all the control
information in AMPS, this packet is sent in digital form, multiple times, and with
an error-correcting code, even though the voice channels themselves are analog.

When the base station hears the announcement, it tells the MSC, which records
the existence of its new customer and also informs the customer’s home MSC of
his current location. During normal operation, the mobile telephone reregisters
about once every 15 minutes.

To make a call, a mobile user switches on the phone, (at least conceptually)
enters the number to be called on the keypad, and hits the CALL button. The
phone then transmits the number to be called and its own identity on the access

158 THE PHYSICAL LAYER CHAP. 2

channel. If a collision occurs there, it tries again later. When the base station gets
the request, it informs the MSC. If the caller is a customer of the MSC’s company
(or one of its partners), the MSC looks for an idle channel for the call. If one is
found, the channel number is sent back on the control channel. The mobile phone
then automatically switches to the selected voice channel and waits until the called
party picks up the phone.

Incoming calls work differently. To start with, all idle phones continuously lis-
ten to the paging channel to detect messages directed at them. When a call is
placed to a mobile phone (either from a fixed phone or another mobile phone), a
packet is sent to the callee’s home MSC to find out where it is. A packet is then
sent to the base station in its current cell, which sends a broadcast on the paging
channel of the form ‘‘Unit 14, are you there?’’ The called phone responds with a
‘‘Yes’’ on the access channel. The base then says something like: ‘‘Unit 14, call
for you on channel 3.’’ At this point, the called phone switches to channel 3 and
starts making ringing sounds (or playing some melody the owner was given as a
birthday present).

2.6.3 Second-Generation (2G) Technology: Digital Voice

The first generation of mobile phones was analog; the second generation is
digital. Switching to digital has several advantages. It provides capacity gains by
allowing voice signals to be digitized and compressed. It improves security by al-
lowing voice and control signals to be encrypted. This, in turn, deters fraud and
eavesdropping, whether from intentional scanning or echoes of other calls due to
RF propagation. Finally, it enables new services such as text messaging.

Just as there was no worldwide standardization during the first generation,
there was also no worldwide standardization during the second, either. Several dif-
ferent systems were developed, and three have been widely deployed. D-AMPS
(Digital Advanced Mobile Phone System) is a digital version of AMPS that
coexists with AMPS and uses TDM to place multiple calls on the same frequency
channel. It is described in International Standard IS-54 and its successor IS-136.
GSM (Global System for Mobile communications) has emerged as the dominant
system, and while it was slow to catch on in the United States it is now used virtu-
ally everywhere in the world. Like D-AMPS, GSM is based on a mix of FDM and
TDM. CDMA (Code Division Multiple Access), described in International
Standard IS-95, is a completely different kind of system and is based on neither
FDM nor TDM. While CDMA has not become the dominant 2G system, its tech-
nology has become the basis for 3G systems.

Also, the name PCS (Personal Communications Services) is sometimes used
in the marketing literature to indicate a second-generation (i.e., digital) system.
Originally it meant a mobile phone using the 1900 MHz band, but that distinction
is rarely made now. The dominant 2G system in most of the world is GSM which
we now describe in detail.

SEC. 2.6 CELLULAR NETWORKS 159

2.6.4 GSM: The Global System for Mobile Communications

GSM started life in the 1980s as an effort to produce a single European 2G
standard. The task was assigned to a telecommunications group called (in French)
Groupe Specialé Mobile. The first GSM systems were deployed starting in 1991
and were a quick success. It soon became clear that GSM was going to be more
than a European success, with the uptake stretching to countries as far away as
Australia, so GSM was renamed to have a more worldwide appeal.

GSM and the other mobile phone systems we will study retain from 1G sys-
tems a design based on cells, frequency reuse across cells, and mobility with hand-
offs as subscribers move. It is the details that differ. Here, we will briefly discuss
some of the main properties of GSM. However, the printed GSM standard is over
5000 [sic] pages long. A large fraction of this material relates to engineering as-
pects of the system, especially the design of receivers to handle multipath signal
propagation, and synchronizing transmitters and receivers. None of this will be
even mentioned here.

Fig. 2-40 shows that the GSM architecture is similar to the AMPS architecture,
though the components have different names. The mobile itself is now divided
into the handset and a removable chip with subscriber and account information
called a SIM card, short for Subscriber Identity Module. It is the SIM card that
activates the handset and contains secrets that let the mobile and the network ident-
ify each other and encrypt conversations. A SIM card can be removed and plugged
into a different handset to turn that handset into your mobile as far as the network
is concerned.

VLR
MSC

Air
interface

Cell tower and
base station

PSTNSIM
card

Handset

HLRBSC

BSC

Figure 2-40. GSM mobile network architecture.

The mobile talks to cell base stations over an air interface that we will de-
scribe in a moment. The cell base stations are each connected to a BSC (Base Sta-
tion Controller) that controls the radio resources of cells and handles handoff.
The BSC in turn is connected to an MSC (as in AMPS) that routes calls and con-
nects to the PSTN (Public Switched Telephone Network).

To be able to route calls, the MSC needs to know where mobiles can currently
be found. It maintains a database of nearby mobiles that are associated with the

160 THE PHYSICAL LAYER CHAP. 2

cells it manages. This database is called the VLR (Visitor Location Register).
There is also a database in the mobile network that gives the last known location of
each mobile. It is called the HLR (Home Location Register). This database is
used to route incoming calls to the right locations. Both databases must be kept up
to date as mobiles move from cell to cell.

We will now describe the air interface in some detail. GSM runs on a range of
frequencies worldwide, including 900, 1800, and 1900 MHz. More spectrum is al-
located than for AMPS in order to support a much larger number of users. GSM is
a frequency division duplex cellular system, like AMPS. That is, each mobile
transmits on one frequency and receives on another, higher frequency (55 MHz
higher for GSM versus 80 MHz higher for AMPS). However, unlike with AMPS,
with GSM a single frequency pair is split by time division multiplexing into time
slots. In this way, it is shared by multiple mobiles.

To handle multiple mobiles, GSM channels are much wider than the AMPS
channels (200 kHz versus 30 kHz). One 200-kHz channel is shown in Fig. 2-41.
A GSM system operating in the 900-MHz region has 124 pairs of simplex chan-
nels. Each simplex channel is 200 kHz wide and supports eight separate con-
nections on it, using time division multiplexing. Each currently active station is as-
signed one time slot on one channel pair. Theoretically, 992 channels can be sup-
ported in each cell, but many of them are not available, to avoid frequency conflicts
with neighboring cells. In Fig. 2-41, the eight shaded time slots all belong to the
same connection, four of them in each direction. Transmitting and receiving does
not happen in the same time slot because the GSM radios cannot transmit and re-
ceive at the same time and it takes time to switch from one to the other. If the
mobile device assigned to 890.4/935.4 MHz and time slot 2 wanted to transmit to
the base station, it would use the lower four shaded slots (and the ones following
them in time), putting some data in each slot until all the data had been sent.

The TDM slots shown in Fig. 2-41 are part of a complex framing hierarchy.
Each TDM slot has a specific structure, and groups of TDM slots form multi-
frames, also with a specific structure. A simplified version of this hierarchy is
shown in Fig. 2-42. Here we can see that each TDM slot consists of a 148-bit data
frame that occupies the channel for 577 µsec (including a 30-µsec guard time after
each slot). Each data frame starts and ends with three 0 bits, for frame delineation
purposes. It also contains two 57-bit Information fields, each one having a control
bit that indicates whether the following Information field is for voice or data. Be-
tween the Information fields is a 26-bit Sync (training) field that is used by the re-
ceiver to synchronize to the sender’s frame boundaries.

A data frame is transmitted in 547 µsec, but a transmitter is only allowed to
send one data frame every 4.615 msec, since it is sharing the channel with seven
other stations. The gross rate of each channel is 270,833 bps, divided among eight
users. However, as with AMPS, the overhead eats up a large fraction of the band-
width, ultimately leaving 24.7 kbps worth of payload per user before error cor-
rection is applied. After error correction, 13 kbps is left for speech. While this is

SEC. 2.6 CELLULAR NETWORKS 161

959.8 MHz

935.4 MHz
935.2 MHz

914.8 MHz

890.4 MHz
890.2 MHz

Fr
eq

ue
nc

y

Base
to mobile

Mobile
to base

124

2
1

124

2
1

ChannelTDM frame

Time

Figure 2-41. GSM uses 124 frequency channels, each of which uses an eight-
slot TDM system.

substantially less than 64 kbps PCM for uncompressed voice signals in the fixed
telephone network, compression on the mobile device can reach these levels with
little loss of quality.

C
T
L

0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 21 22 23 24

32,500-Bit multiframe sent in 120 msec

0 1 2 3 4 5 6 7

1250-Bit TDM frame sent in 4.615 msec

8.25–bit
(30 µsec)
guard time

Reserved
for future

use

000 000Information InformationSync

148-Bit data frame sent in 547 µsec

Bits 3 357 5726
Voice/data bit

Figure 2-42. A portion of the GSM framing structure.

As can be seen from Fig. 2-42, eight data frames make up a TDM frame and
26 TDM frames make up a 120-msec multiframe. Of the 26 TDM frames in a

162 THE PHYSICAL LAYER CHAP. 2

multiframe, slot 12 is used for control and slot 25 is reserved for future use, so only
24 are available for user traffic.

However, in addition to the 26-slot multiframe shown in Fig. 2-42, a 51-slot
multiframe (not shown) is also used. Some of these slots are used to hold several
control channels used to manage the system. The broadcast control channel is a
continuous stream of output from the base station containing the base station’s
identity and the channel status. All mobile stations monitor their signal strength to
see when they have moved into a new cell.

The dedicated control channel is used for location updating, registration, and
call setup. In particular, each BSC maintains a database of mobile stations cur-
rently under its jurisdiction, the VLR. Information needed to maintain the VLR is
sent on the dedicated control channel.

The system also has a common control channel, which is split up into three
logical subchannels. The first of these subchannels is the paging channel, which
the base station uses to announce incoming calls. Each mobile station monitors it
continuously to watch for calls it should answer. The second is the random access
channel, which allows users to request a slot on the dedicated control channel. If
two requests collide, they are garbled and have to be retried later. Using the dedi-
cated control channel slot, the station can set up a call. The assigned slot is
announced on the third subchannel, the access grant channel.

Finally, GSM differs from AMPS in how handoff is handled. In AMPS, the
MSC manages it completely without help from the mobile devices. With time slots
in GSM, the mobile is neither sending nor receiving most of the time. The idle
slots are an opportunity for the mobile to measure signal quality to other nearby
base stations. It does so and sends this information to the BSC. The BSC can use it
to determine when a mobile is leaving one cell and entering another so it can per-
form the handoff. This design is called MAHO (Mobile Assisted HandOff).

2.6.5 Third-Generation (3G) Technology: Digital Voice and Data

The first generation of mobile phones was analog voice, and the second gen-
eration was digital voice. The third generation of mobile phones, or 3G as it is
called, is all about digital voice and data. A number of factors drove the industry
to 3G technology. First, around the time of 3G, data traffic began to exceed voice
traffic on the fixed network; similar trends began to emerge for mobile devices.
Second, phone, Internet, and video services began to converge. The rise of smart-
phones, starting with Apple’s iPhone, which was first released in 2007, accelerated
the shift to mobile data. Data volumes are rising steeply with the popularity of
iPhones. When the iPhone was first released, it used a 2.5G network (essentially
an enhanced 2G network) that did not have enough data capacity. Data-hungry
iPhone users further drove the transition to 3G technologies, to support higher data
transmission rates. A year later, in 2008, Apple released an updated version of its
iPhone that could use the 3G data network.

SEC. 2.6 CELLULAR NETWORKS 163

Operators initially took small steps in the direction of 3G by going to what is
sometimes called 2.5G. One such system is EDGE (Enhanced Data rates for
GSM Evolution), which is essentially GSM with more bits per symbol. The trou-
ble is, more bits per symbol also means more errors per symbol, so EDGE has nine
different schemes for modulation and error correction, differing in terms of how
much of the bandwidth is devoted to fixing the errors introduced by the higher
speed. EDGE is one step along an evolutionary path that is defined from GSM to
other 3G technologies that we discuss in this section.

ITU tried to get a bit more specific about the 3G vision starting back around
1992. It issued a blueprint for getting there called IMT-2000, where IMT stood for
International Mobile Telecommunications. The basic services that the
IMT-2000 network was supposed to provide to its users are:

1. High-quality voice transmission.

2. Messaging (replacing email, fax, SMS, chat, etc.).

3. Multimedia (playing music, viewing videos, films, television, etc.).

4. Internet access (Web surfing, including pages with audio and video).

Additional services might be video conferencing, telepresence, group game play-
ing, and m-commerce (waving your telephone at the cashier to pay in a store).
Furthermore, all these services are supposed to be available worldwide (with auto-
matic connection via a satellite when no terrestrial network can be located), in-
stantly (always on), and with quality of service guarantees. In other words, pie in
the sky.

ITU envisioned a single worldwide technology for IMT-2000, so manufact-
urers could build a single device that could be sold and used anywhere in the
world. Having a single technology would also make life much simpler for network
operators and would encourage more people to use the services.

As it turned out, this was more than a bit optimistic. The number 2000 stood
for three things: (1) the year it was supposed to go into service, (2) the frequency it
was supposed to operate at (in MHz), and (3) the bandwidth the service should
have (in kbps). It did not make it on any of the three counts. Nothing was imple-
mented by 2000. ITU recommended that all governments reserve spectrum at
2 GHz so devices could roam seamlessly from country to country. China reserved
the required bandwidth but nobody else did. Finally, it was recognized that
2 Mbps is not currently feasible for users who are too mobile (due to the difficulty
of performing handoffs quickly enough). More realistic is 2 Mbps for stationary
indoor users, 384 kbps for people walking, and 144 kbps for connections in cars.

Despite these initial setbacks, a great deal has been accomplished since then.
Several IMT-2000 proposals were made and, after some winnowing, it came down
to two primary ones: (1) WCDMA (Wideband CDMA), proposed by Ericsson

164 THE PHYSICAL LAYER CHAP. 2

and pushed by the European Union, which called it UMTS (Universal Mobile
Telecommunications System) and (2) CDMA2000, proposed by Qualcomm in
the United States

Both of these systems are more similar than different; both are based on broad-
band CDMA. WCDMA uses 5-MHz channels and CDMA2000 uses 1.25-MHz
channels. If the Ericsson and Qualcomm engineers were put in a room and told to
come to a common design, they probably could find one in an hour. The trouble is
that the real problem is not engineering, but politics (as usual). Europe wanted a
system that interworked with GSM, whereas the United States wanted a system
that was compatible with one already widely deployed in the United States (IS-95).
Each side (naturally) also supported its local company (Ericsson is based in Swe-
den; Qualcomm is in California). Finally, Ericsson and Qualcomm were involved
in numerous lawsuits over their respective CDMA patents. To add to the confu-
sion, UMTS became a single 3G standard with multiple incompatible options, in-
cluding CDMA2000. This change was an effort to unify the various camps, but it
just papers over the technical differences and obscures the focus of ongoing efforts.
We will use UMTS to mean WCDMA, as distinct from CDMA2000.

Another improvement of WCDMA over the simplified CDMA scheme we de-
scribed earlier is to allow different users to send data at different rates, independent
of each other. This trick is accomplished naturally in CDMA by fixing the rate at
which chips are transmitted and assigning different users chip sequences of dif-
ferent lengths. For example, in WCDMA, the chip rate is 3.84 Mchips/sec and the
spreading codes vary from 4 to 256 chips. With a 256-chip code, around 12 kbps is
left after error correction, and this capacity is sufficient for a voice call. With a
4-chip code, the user data rate is close to 1 Mbps. Intermediate-length codes give
intermediate rates; in order to get to multiple Mbps, the mobile must use more than
one 5-MHz channel at once.

We will focus our discussion on the use of CDMA in cellular networks, as it is
the distinguishing feature of both systems. CDMA is neither FDM nor TDM but a
kind of mix in which each user sends on the same frequency band at the same time.
When it was first proposed for cellular systems, the industry gave it approximately
the same reaction that Columbus first got from Queen Isabella when he proposed
reaching India by sailing in the wrong direction. However, through the persistence
of a single company, Qualcomm, CDMA succeeded as a 2G system (IS-95) and
matured to the point that it became the technical basis for 3G.

To make CDMA work in the mobile phone setting requires more than the basic
CDMA technique that we described in Sec. 2.4. Specifically, we described a sys-
tem called synchronous CDMA, in which the chip sequences are exactly orthogo-
nal. This design works when all users are synchronized on the start time of their
chip sequences, as in the case of the base station transmitting to mobiles. The base
station can transmit the chip sequences starting at the same time so that the signals
will be orthogonal and able to be separated. However, it is difficult to synchronize
the transmissions of independent mobile phones. Without some special efforts,

SEC. 2.6 CELLULAR NETWORKS 165

their transmissions would arrive at the base station at different times, with no guar-
antee of orthogonality. To let mobiles send to the base station without synchroni-
zation, we want code sequences that are orthogonal to each other at all possible
offsets, not simply when they are aligned at the start.

While it is not possible to find sequences that are exactly orthogonal for this
general case, long pseudorandom sequences come close enough. They have the
property that, with high probability, they have a low cross-correlation with each
other at all offsets. This means that when one sequence is multiplied by another
sequence and summed up to compute the inner product, the result will be small; it
would be zero if they were orthogonal. (Intuitively, random sequences should al-
ways look different from each other. Multiplying them together should then pro-
duce a random signal, which will sum to a small result.) This lets a receiver filter
unwanted transmissions out of the received signal. Also, the auto-correlation of
pseudorandom sequences is also small, with high probability, except at a zero off-
set. This means that when one sequence is multiplied by a delayed copy of itself
and summed, the result will be small, except when the delay is zero. (Intuitively, a
delayed random sequence looks like a different random sequence, and we are back
to the cross-correlation case.) This lets a receiver lock onto the beginning of the
wanted transmission in the received signal.

The use of pseudorandom sequences lets the base station receive CDMA mes-
sages from unsynchronized mobiles. However, an implicit assumption in our dis-
cussion of CDMA is that the power levels of all mobiles are the same at the re-
ceiver. If they are not, a small cross-correlation with a powerful signal might over-
whelm a large auto-correlation with a weak signal. Thus, the transmit power on
mobiles must be controlled to minimize interference between competing signals.
It is this interference that limits the capacity of CDMA systems.

The power levels received at a base station depend on how far away the trans-
mitters are as well as how much power they transmit. There may be many mobile
stations at varying distances from the base station. A good heuristic to equalize the
received power is for each mobile station to transmit to the base station at the
inverse of the power level it receives from the base station. In other words, a
mobile station receiving a weak signal from the base station will use more power
than one getting a strong signal. For more accuracy, the base station also gives
each mobile feedback to increase, decrease, or hold steady its transmit power. The
feedback is frequent (1500 times per second) because good power control is impor-
tant to minimize interference.

Now let us describe the advantages of CDMA. First, CDMA can improve ca-
pacity by taking advantage of small periods when some transmitters are silent. In
polite voice calls, one party is silent while the other talks. On average, the line is
busy only 40% of the time. However, the pauses may be small and are difficult to
predict. With TDM or FDM systems, it is not possible to reassign time slots or fre-
quency channels quickly enough to benefit from these small silences. However, in
CDMA, by simply not transmitting one user lowers the interference for other users,

166 THE PHYSICAL LAYER CHAP. 2

and it is likely that some fraction of users will not be transmitting in a busy cell at
any given time. Thus CDMA takes advantage of expected silences to allow a larger
number of simultaneous calls.

Second, with CDMA each cell uses the same set of frequencies. Unlike GSM
and AMPS, FDM is not needed to separate the transmissions of different users.
This eliminates complicated frequency planning tasks and improves capacity. It
also makes it easy for a base station to use multiple directional antennas, or sec-
tored antennas, instead of an omnidirectional antenna. Directional antennas con-
centrate a signal in the intended direction and reduce the signal (and interference)
in other directions. This, in turn, increases capacity. Three-sector designs are com-
mon. The base station must track the mobile as it moves from sector to sector.
This tracking is easy with CDMA because all frequencies are used in all sectors.

Third, CDMA facilitates soft handoff, in which the mobile is acquired by the
new base station before the previous one signs off. In this way, there is no loss of
continuity. Soft handoff is shown in Fig. 2-43. It is easy with CDMA because all
frequencies are used in each cell. The alternative is a hard handoff, in which the
old base station drops the call before the new one acquires it. If the new one is
unable to acquire it (e.g., because there is no available frequency), the call is
disconnected abruptly. Users tend to notice this, but it is inevitable occasionally
with the current design. Hard handoff is the norm with FDM designs to avoid the
cost of having the mobile transmit or receive on two frequencies simultaneously.

(a) (b) (c)

Figure 2-43. Soft handoff (a) before, (b) during, and (c) after.

2.6.6 Fourth-Generation (4G) Technology: Packet Switching

In 2008, the ITU specified a set of standards for 4G systems. 4G, which is
sometimes also called IMT Advanced is based completely on packet-switched
network technology, including to its predecessors. Its immediate predecessor was a
technology often referred to as LTE (Long Term Evolution). Another precursor
and related technology to 4G was 3GPP LTE, sometimes called ‘‘4G LTE.’’ The
terminology is a bit confusing, as ‘‘4G’’ effectively refers to a generation of mobile
communications, where any generation may, in fact, have multiple standards. For
example, ITU considers IMT Advanced as a 4G standard, although it also accepts
LTE as a 4G standard. Other technologies such as the doomed WiMAX (IEEE

SEC. 2.6 CELLULAR NETWORKS 167

802.16) are also considered 4G technologies. Technically, LTE and ‘‘true’’ 4G are
different releases of the 3GPP standard (releases 8 and 10, respectively).

The main innovation of 4G over previous 3G systems is that 4G networks use
packet switching, as opposed to circuit switching. The innovation that allows
packet switching is called an EPC (Evolved Packet Core), which is essentially a
simplified IP network that separates voice traffic from the data network. The EPC
network carries both voice and data in IP packets. It is thus a (VoIP) Voice over IP
network, with resources allocated using the statistical multiplexing approaches de-
scribed earlier. As such, the EPC must manage resources in such a way that voice
quality remains high in the face of network resources that are shared among many
users. The performance requirements for LTE include, among other things, peak
throughput of 100 Mbps upload and 50 Mbps download. To achieve these higher
rates, 4G networks use a collection of additional frequencies, including 700 MHz,
850 MHz, 800 MHz, and others. Another aspect of the 4G standard is ‘‘spectral ef-
ficiency,’’ or how many bits can be transmitted per second for a given frequency;
for 4G technologies, peak spectral efficiency should be 15 bps/Hz for a downlink
and 6.75 bps/Ghz for uplink.

The LTE architecture includes the following elements as part of the Evolved
Packet Core, as shown in Chap. 1 as Fig. 1-19.

1. Serving Gateway (S-GW). The SGW forwards data packets to
ensure that packets continue to be forwarded to the user’s device
when switching from one eNodeB to another.

2. MME (Mobility Management Entity). The MME tracks and pages
the user device and chooses the SGW for a device when it first con-
nects to the network, as well as during handoffs. It also authenticates
the user’s device.

3. Packet Data Network Gateway (P-GW). The PDN GW interfaces
between the user device and a packet data network (i.e., a pack-
et-switched network), and can perform such functions such as address
allocation for that network (e.g., via DHCP), rate limiting, filtering,
deep packet inspection, and lawful interception of traffic. User de-
vices establish connection-oriented service with the packet gateway
using a so-called EPS bearer, which is established when the user de-
vice attaches to the network.

4. HSS (Home Subscriber Server), The MME queries the HSS to de-
termine that the user device corresponds to a valid subscriber.

The 4G network also has an evolved Radio Access Network (RAN). The
radio access network for LTE introduces an access node called an eNodeB, which
performs operations at the physical layer (as we focus on in this chapter), as well
as the MAC (Medium Access Control), RLC (Radio Link Control), and PDCP

168 THE PHYSICAL LAYER CHAP. 2

(Packet Data Control Protocol) layers, many of which are specific to the cellular
network architecture. The eNodeB performs resource management, admission con-
trol, scheduling, and other control-plane functions.

On 4G networks, voice traffic can be carried over the EPC using a technology
called VoLTE (Voice over LTE), making it possible for carriers to transmit voice
traffic over the packet-switched network and removing any dependency on the
legacy circuit-switched voice network.

2.6.7 Fifth-Generation (5G) Technology

Around 2014, the LTE system reached maturity, and people began to start
thinking about what would come next. Obviously, after 4G comes 5G. The real
question, of course, is ‘‘What Will 5G Be?’’ which Andrews et al. (2014) discuss at
length. Years later, 5G came to mean many different things, depending on the
audience and who is using the term. Essentially, the next generation of mobile cel-
lular network technology boils down to two main factors: higher data rates and
lower latency than 4G technologies. There are specific technologies that enable
faster speed and lower latency, of course, which we discuss below.

Cellular network performance is often measured in terms of aggregate data
rate or area capacity, which is the total amount of data that the network can serve
in bits per unit area. One goal of 5G is to improve the area capacity of the network
by three orders of magnitude (more than 1000 times that of 4G), using a combina-
tion of technologies:

1. Ultra-densification and offloading. One of the most straightforward
ways to improve network capacity is by adding more cells per area.
Whereas 1G cell sizes were on the order of hundreds of square kilo-
meters, 5G aims for smaller cell sizes, including picocells (cells that
are less than 100 meters in diameter) and even femtocells (cells that
have WiFi-like range of tens of meters). One of the most important
benefits of the shrinking of the cell size is the ability to reuse spec-
trum in a given geographic area, thus reducing the number of users
that are competing for resources at any given base station. Of course,
shrinking the cell size comes with its own set of complications, in-
cluding more complicated mobility management and handoff.

2. Increased bandwidth with millimeter waves. Most spectrum from pre-
vious technologies has been in the range of several hundred MHz to a
few GHz, corresponding to wavelengths that are in range of centime-
ters to about a meter. This spectrum has become increasingly
crowded, especially in major markets during peak hours. There are
considerable amounts of unused spectrum in the millimeter wave
range of 20<300 GHz, with wavelengths of less than 10 millimeters.
Until recently, this spectrum was not considered suitable for wireless

SEC. 2.6 CELLULAR NETWORKS 169

communication because shorter wavelengths do not propagate as
well. One of the ways that propagation challenges are being tackled is
by using large arrays of directional antennas, which is a significant
architectural shift from previous generations of cellular networks:
everything from interference properties to the process of associating
a user to a base station is different.

3. Increased spectral efficiency through advances in massive MIMO
(Multiple-Input Multiple-Output) technology. MIMO improves the
capacity of a radio link by using multiple transmit and receive anten-
nas to take advantage of multipath propagation, whereby the trans-
mitted radio signal reaches the receiver via two or more paths. MIMO
was introduced into WiFi communication and 3G cellular technolo-
gies around 2006. MIMO has quite a few variations; earlier cellular
standards take advantage of MU-MIMO (Multi-User MIMO). Gen-
erally, these technologies take advantage of the spatial diversity of
users to cancel out interference that may occur at either end of the
wireless transmission. Massive MIMO is a type of MU-MIMO that
increases the number of base station antennas so that there are many
more antennas than endpoints. There is even the possibility of using a
three-dimensional antenna array, in a so-called FD-MIMO (Full-
Dimension MIMO).

Another capability that will accompany 5G is network slicing, which will let
cellular carriers create multiple virtual networks on top of the same shared physical
infrastructure, devoting portions of their network to specific customer use cases.
Distinct fractions of the network (and its resources) may be dedicated to different
application providers, where different applications may have different re-
quirements. For example, applications that require high throughput may be allo-
cated to a different network slice than those that do not require high throughput.
SDN (Software-Defined Networking) and NFV (Network Functions Virtualiza-
tion) are emerging technologies that will help support slicing. We will discuss
these technologies in later chapters.

2.7 CABLE NETWORKS

The fixed and wireless phone systems will clearly play a role in future net-
works, but the cable networks will also factor heavily into future broadband access
networks. Many people nowadays get their television, telephone, and Internet ser-
vice over cable. In the following sections, we will look at cable television as a net-
work in more detail, contrasting it with the telephone systems we have just studied.
For more information see Harte (2017). The 2018 DOCSIS standard also provides
helpful information, particularly related to modern cable network architectures.

170 THE PHYSICAL LAYER CHAP. 2

2.7.1 A History of Cable Networks: Community Antenna Television

Cable television was conceived in the late 1940s as a way to provide better
television reception to people living in rural or mountainous areas. The system ini-
tially consisted of a big antenna on top of a hill to pluck the television signal out of
the air, an amplifier, called the headend, to strengthen it, and a coaxial cable to de-
liver it to people’s houses, as illustrated in Fig. 2-44.

Tap Coaxial cable

Drop cable

Headend

Antenna for picking
up distant signals

Figure 2-44. An early cable television system.

In the early years, cable television was called CATV (Community Antenna
Television). It was very much a mom-and-pop operation; anyone handy with elec-
tronics could set up a service for his town, and the users would chip in to pay the
costs. As the number of subscribers grew, additional cables were spliced onto the
original cable and amplifiers were added as needed. Transmission was one way,
from the headend to the users. By 1970, thousands of independent systems
existed.

In 1974, Time Inc. started a new channel, Home Box Office, with new content
(movies) distributed only on cable. Other cable-only channels followed, focusing
on news, sports, cooking, history, movies, science, kids, and many other topics.
This development gave rise to two changes in the industry. First, large corpora-
tions began buying up existing cable systems and laying new cable to acquire new
subscribers. Second, there was now a need to connect multiple systems, often in
distant cities, in order to distribute the new cable channels. The cable companies
began to lay cable between the cities to connect them all into a single system. This
pattern was analogous to what happened in the telephone industry 80 years earlier
with the connection of previously isolated end offices to make long-distance cal-
ling possible.

2.7.2 Broadband Internet Access Over Cable: HFC Networks

Over the course of the years the cable system grew and the cables between the
various cities were replaced by high-bandwidth fiber, similar to what happened in
the telephone system. A system with fiber for the long-haul runs and coaxial cable

SEC. 2.7 CABLE NETWORKS 171

to the houses is called an HFC (Hybrid Fiber Coax) system and is the predomi-
nant architecture for today’s cable networks. The trend of moving fiber closer to
the subscriber home continues, as described in the earlier section on FTTX. The
electro-optical converters that interface between the optical and electrical parts of
the network are called fiber nodes. Because the bandwidth of fiber is so much
greater than that of coax, a single fiber node can feed multiple coaxial cables. Part
of a modern HFC system is shown in Fig. 2-45(a).

Copper
twisted pair

Switch

Toll
office

Head-
end

High-bandwidth
fiber trunk

End
office

Local
loop

(a)

(b)

House

High-bandwidth
fiber
trunk Coaxial

cable

House
Tap

Fiber node

Fiber

Fiber

Figure 2-45. (a) Hybrid Fiber-Coax cable network. (b) The fixed phone system.

In the late 1990s, many cable operators began to enter the Internet access busi-
ness as well as the telephony business. Technical differences between the cable

172 THE PHYSICAL LAYER CHAP. 2

plant and telephone plant had an effect on what had to be done to achieve these
goals. For one thing, all the one-way amplifiers in the system had to be replaced
by two-way amplifiers to support upstream as well as downstream transmissions.
While this was happening, early Internet over cable systems used the cable televis-
ion network for downstream transmissions and a dial-up connection via the tele-
phone network for upstream transmissions. It was a kludge if ever there was one,
but it sort of worked.

Throwing off all the TV channels and using the cable infrastructure strictly for
Internet access would probably generate a fair number of irate customers (mostly
older customers, since many younger ones have already cut the cord), so cable
companies are hesitant to do this. Furthermore, most cities heavily regulate what is
on the cable, so the cable operators would not be allowed to do this even if they
really wanted to. As a consequence, they needed to find a way to have television
and Internet peacefully coexist on the same cable.

The solution is to build on frequency division multiplexing. Cable television
channels in North America occupy the 54–550 MHz region (except for FM radio,
from 88 to 108 MHz). These channels are 6-MHz wide, including guard bands,
and can carry one traditional analog television channel or several digital television
channels. In Europe, the low end is usually around 65 MHz and the channels are
6–8 MHz wide for the higher resolution required by PAL and SECAM, but other-
wise the allocation scheme is similar. The low part of the band is not used. Mod-
ern cables can also operate well above 550 MHz, often at up to 750 MHz or more.
The solution chosen was to introduce upstream channels in the 5–42-MHz band
(slightly higher in Europe) and use the frequencies at the high end for the down-
stream signals. The cable spectrum is illustrated in Fig. 2-46.

0 108

TV TV Downstream data

Downstream frequencies

U
ps

tre
am

da
ta

U
ps

tre
am

fre
qu

en
ci

es

FM

550 750 MHz
5 42 54 88

Figure 2-46. Frequency allocation in a typical cable TV system used for Internet
access.

Because the television signals are all downstream, it is possible to use
upstream amplifiers that work only in the 5–42-MHz region and downstream
amplifiers that work only at 54 MHz and up, as shown in the figure. Thus, we get
an asymmetry in the upstream and downstream bandwidths because more spectrum

SEC. 2.7 CABLE NETWORKS 173

is available above television than below it. On the other hand, most users want
more downstream traffic, so cable operators are not unhappy with this fact of life.
As we saw earlier, telephone companies usually offer an asymmetric DSL service,
even though they have no technical reason for doing so. In addition to upgrading
the amplifiers, the operator has to upgrade the headend, too, from a dumb amplifier
to an intelligent digital computer system with a high-bandwidth fiber interface to
an ISP. This upgraded headend is now sometimes called a CMTS (Cable Modem
Termination System). The CMTS and headend refer to the same component.

2.7.3 DOCSIS

Cable companies operate networks that include HFC physical-layer technology
for last-mile connectivity, as well as fiber and wireless last-mile connections. The
HFC part of those networks is widely deployed across the United States, Canada,
Europe, and other markets, and use the CableLabs DOCSIS (Data Over Cable
Service Interface Specification) standards.

DOCSIS version 1.0 was released in 1997. DOCSIS 1.0 and 1.1 had a working
limit of 38 Mbps downstream and 9 Mbps upstream DOCSIS 2.0 in 2001 resulted
in a tripling of upstream bandwidth. Later, DOCSIS 3.0 (2006) introduced support
for IPv6 and enabled channel bonding for downstream and upstream communica-
tions, dramatically increasing the potential capacity for each home served to hun-
dreds of megabits per second. DOCSIS 3.1 (2013), which introduced Orthogonal
Frequency Division Multiplexing (OFDM), wider channel bandwidth and higher
efficiency, enabled over 1 Gbps of downstream capacity per home. Extensions to
DOCSIS 3.1 have been added via updates to the DOCSIS 3.1 standard, including
Full Duplex operation (2017), which will enable multigigabit symmetric down-
stream and upstream capacity, as well as DOCSIS Low Latency (2018) and other
features to reduce latency.

At the hybrid fiber coaxial (HFC) layer, the network is highly dynamic, with
cable network operators performing fiber node splits on a regular basis, which
pushes fiber closer to the home and reduces the number of homes served by each
node, thereby making more capacity available for each home served. In some cases
the HFC last mile is replaced with fiber to the home, and many new builds are fiber
to the home as well.

Cable Internet subscribers require a DOCSIS cable modem to serve as the in-
terface between the home network and the ISP network. Each cable modem sends
data on one upstream and one downstream channel. Each channel is allocated
using FDM. DOCSIS 3.0 uses multiple channels. The usual scheme is to take
each 6 or 8 MHz downstream channel and modulate it with QAM-64 or, if the
cable quality is exceptionally good, QAM-256; a 6-MHz channel and QAM-64
yields about 36 Mbps. Accounting for signaling overhead, the net bandwidth is
about 27 Mbps. With QAM-256, the net payload is about 39 Mbps. The European
values are 1/3 larger due to the larger bandwidth available.

174 THE PHYSICAL LAYER CHAP. 2

The modem-to-home network interface is straightforward: it is typically an
Ethernet connection. These days, many home Internet users connect the cable
modem to a WiFi access point to set up a home wireless network. In some cases,
the user’s Internet service provider (ISP) provides a single hardware device that
combines the cable modem and wireless access point. The interface between the
cable modem and the rest of the ISP network is more complicated, as it involves
coordinating resource sharing among many cable subscribers who may be con-
nected to the same headend. This resource sharing technically occurs at the link
layer, not the physical layer, although we will cover it in this chapter for the sake of
continuity.

2.7.4 Resource Sharing in DOCSIS Networks: Nodes and Minislots

There is one important fundamental difference between the HFC system of
Fig. 2-45(a) and the telephone system of Fig. 2-45(b). In a given residential neigh-
borhood, a single cable is shared by many houses, whereas in the telephone sys-
tem, every house has its own private local loop. When these cables are used for
television broadcasting, sharing is natural. All the programs are broadcast on the
cable and it does not matter whether there are 10 viewers or 10,000 viewers. When
the same cable is used for Internet access, however, it matters a lot if there are 10
users or 10,000. If one user decides to download a very large file or stream an 8K
movie, that bandwidth is not available to other users. More users sharing a single
cable creates more competition for the bandwidth of the cable. The telephone sys-
tem does not have this particular property: downloading a large file over an ADSL
line does not reduce your neighbor’s bandwidth. On the other hand, the bandwidth
of coax is much higher than that of twisted pairs. In essence, the bandwidth that a
given subscriber receives at any given moment depends quite a bit on the usage of
subscribers who happen to be sharing the same cable, as we describe in more detail
below.

Cable ISPs have tackled this problem by splitting up long cables and con-
necting each one directly to a fiber node. The bandwidth from the headend to each
fiber node is significant, so as long as there are not too many subscribers on each
cable segment, the amount of traffic is manageable. A typical node size about ten
or fifteen years ago was 500–2000 homes, although the number of homes per node
continues to decrease as buildout to the edge continues in an effort to increase
speeds to subscribers. Increases in cable Internet subscribers over the past decade,
coupled with increasing traffic demand from subscribers, has created the need to
increasingly split these cables and add more fiber nodes. By 2019, a typical node
size was about 300–500 homes, although in some areas, ISPs are building N+0
HFC (a.k.a. ‘‘Fiber Deep’’) architectures, which can reduce this number to as low
as 70, which eliminates the need for cascading signal amplifiers and runs fiber
direct from network headends to nodes at the last segment of coaxial cable.

SEC. 2.7 CABLE NETWORKS 175

When a cable modem is plugged in and powered up, it scans the downstream
channels looking for a special packet that the headend periodically sends, provid-
ing system parameters to modems that have just come online. Upon receiving this
packet, the new modem announces its presence on one of the upstream channels.
The headend responds by assigning the modem an upstream and a downstream
channel. These assignments can be changed later if the headend deems it necessary
to balance the load.

There is more RF noise in the upstream direction because the system was not
originally designed for data, and noise from multiple subscribers is funneled to the
headend, so the modem transmits using a more conservative approach. This ranges
from QPSK to QAM-128, where some of the symbols are used for error protection
with trellis coded modulation. With fewer bits per symbol on the upstream, the
asymmetry between upstream and downstream rates is much more than suggested
by Fig. 2-46.

Today’s DOCSIS modems request a time to transmit, and then the CMTS
grants one or more timeslots that the modem can transmit, based on availability; si-
multaneous users all contend for upstream and downstream access. The network
uses TDM to share upstream bandwidth across multiple subscribers. Time is divid-
ed into minislots; each subscriber sends in a different minislot. The headend an-
nounces the start of a new round of minislots periodically, but the announcement
for the start of each minislot is not heard at all modems simultaneously due to sig-
nal propagation time down the cable. By knowing how far it is from the headend,
each modem can compute how long ago the first minislot really started.

It is important for the modem to know its distance to the headend to get the
timing right. The modem first determines its distance from the headend by sending
it a special packet and seeing how long it takes to get the response. This process is
called ranging. Each upstream packet must fit in one or more consecutive minis-
lots at the headend when it is received. Minislot length is network dependent. A
typical payload is 8 bytes.

During initialization, the headend assigns each modem to a minislot to use for
requesting upstream bandwidth. When a computer wants to send a packet, it trans-
fers the packet to the modem, which then requests the necessary number of minis-
lots for it. If the request is accepted, the headend puts an acknowledgement on the
downstream channel telling the modem which minislots have been reserved for its
packet. The packet is then sent, starting in the minislot allocated to it. Additional
packets can be requested using a field in the header.

As a rule, multiple modems will be assigned the same minislot, which leads to
contention (multiple modems attempting to send upstream data at the same time).
CDMA can allow multiple subscribers to share the same minislot, although it re-
duces the rate per subscriber. Another alternative is to not use CDMA, in which
case there may be no acknowledgement to the request because of a collision. When
collisions occur in this case, the modem just waits a random time and tries again.
After each successive failure, the randomization time is doubled. (For readers

176 THE PHYSICAL LAYER CHAP. 2

already somewhat familiar with networking, this algorithm is just slotted ALOHA
with binary exponential backoff. Ethernet cannot be used on cable because stations
cannot sense the medium. We will come back to these issues in Chap. 4.)

The downstream channels are managed differently from the upstream chan-
nels. For starters, there is only one sender (the headend), so there is no contention
and no need for minislots. For another, the amount of traffic downstream is usually
much larger than upstream, so a fixed packet size of 204 bytes is used. Part of that
is a Reed-Solomon error-correcting code and some other overhead, leaving a user
payload of 184 bytes. These numbers were chosen for compatibility with digital
television using MPEG-2, so the TV and downstream data channels are formatted
the same way. Logically, the connections are as depicted in Fig. 2-47.

Figure 2-47. Typical details of the upstream and downstream channels in North
America.

2.8 COMMUNICATION SATELLITES

In the 1950s and early 1960s, people tried to set up communication systems by
bouncing signals off metallized weather balloons. Unfortunately, the received sig-
nals were too weak to be of any practical use. Then, the U.S. Navy noticed a kind
of permanent weather balloon in the sky—the moon—and built an operational sys-
tem for ship-to-shore communication by bouncing signals off it.

Further progress in the celestial communication field had to wait until the first
communication satellite was launched. The key difference between an artificial
satellite and a real one is that the artificial one can amplify the signals before send-
ing them back, turning a strange curiosity into a powerful communication system.

Communication satellites have some interesting properties that make them
attractive for many applications. In its simplest form, a communication satellite
can be thought of as a big microwave repeater in the sky. It contains several
transponders, each of which listens to some portion of the spectrum, amplifies the

SEC. 2.8 COMMUNICATION SATELLITES 177

incoming signal, and then rebroadcasts it at another frequency to avoid interference
with the incoming signal. This mode of operation is known as a bent pipe. Digi-
tal processing can be added to separately manipulate or redirect data streams in the
overall band, or digital information can even be received by the satellite and
rebroadcast. Regenerating signals in this way improves performance compared to a
bent pipe because the satellite does not amplify noise in the upward signal. The
downward beams can be broad, covering a substantial fraction of the earth’s sur-
face, or narrow, covering an area only hundreds of kilometers in diameter.

According to Kepler’s law, the orbital period of a satellite varies as the radius
of the orbit to the 3/2 power. The higher the satellite, the longer the period. Near
the surface of the earth, the period is about 90 minutes. Consequently, low-orbit
satellites pass out of view fairly quickly (due to the satellites’ motion), so many of
them are needed to provide continuous coverage and ground antennas must track
them. At an altitude of about 35,800 km, the period is 24 hours. At an altitude of
384,000 km, the period is about 1 month, as anyone who has observed the moon
regularly can testify.

A satellite’s period is important, but it is not the only issue in determining
where to place it. Another issue is the presence of the Van Allen belts, layers of
highly charged particles trapped by the earth’s magnetic field. Any satellite flying
within them would be destroyed fairly quickly by the particles. These factors lead
to three regions in which satellites can be placed safely. These regions and some
of their properties are illustrated in Fig. 2-48. Below, we will briefly describe the
satellites that inhabit each of these regions.

2.8.1 Geostationary Satellites

In 1945, the science fiction writer Arthur C. Clarke calculated that a satellite at
an altitude of 35,800 km in a circular equatorial orbit would appear to remain
motionless in the sky, so it would not need to be tracked (Clarke, 1945). He went
on to describe a complete communication system that used these (manned) geosta-
tionary satellites, including the orbits, solar panels, radio frequencies, and launch
procedures. Unfortunately, he concluded that satellites were impractical due to the
impossibility of putting power-hungry, fragile vacuum tube amplifiers into orbit, so
he never pursued this idea further, although he wrote some science fiction stories
about it.

The invention of the transistor changed all that, and the first artificial commu-
nication satellite, Telstar, was launched in July 1962. Since then, communication
satellites have become a multibillion dollar business and the only aspect of outer
space that has become highly profitable. These high-flying satellites are often call-
ed GEO (Geostationary Earth Orbit) satellites.

With current technology, it is technologically unwise to have geostationary sat-
ellites spaced much closer than 2 degrees in the 360-degree equatorial plane, to

178 THE PHYSICAL LAYER CHAP. 2

Altitude (km) Type

35,000

30,000

25,000

20,000

15,000

10,000

5,000

0

GEO

MEO

Upper Van Allen belt

Lower Van Allen belt

LEO

Latency (ms)

270

35–85

1–7

Sats needed

3

10

50

Figure 2-48. Communication satellites and some of their properties, including
altitude above the earth, round-trip delay time, and number of satellites needed
for global coverage.

avoid interference. With a spacing of 2 degrees, there can only be 360/2 = 180 of
these satellites in the sky at once. However, each transponder can use multiple fre-
quencies and polarizations to increase the available bandwidth.

To prevent total chaos in the sky, orbit slot allocation is done by ITU. This
process is highly political, with countries barely out of the stone age demanding
‘‘their’’ orbit slots (for the purpose of leasing them to the highest bidder). Other
countries, however, maintain that national property rights do not extend up to the
moon and that no country has a legal right to the orbit slots above its territory. To
add to the fight, commercial telecommunication is not the only application. Tele-
vision broadcasters, governments, and the military also want a piece of the orbiting
pie.

Modern satellites can be quite large, weighing over 5000 kg and consuming
several kilowatts of electric power produced by the solar panels. The effects of
solar, lunar, and planetary gravity tend to move them away from their assigned
orbit slots and orientations, an effect countered by on-board rocket motors. This
fine-tuning activity is called station keeping. However, when the fuel for the
motors has been exhausted (typically after about 10 years), the satellite drifts and
tumbles helplessly, so it has to be turned off. Eventually, the orbit decays and the
satellite reenters the atmosphere and burns up or (very rarely) crashes to earth.

Orbit slots are not the only bone of contention. Frequencies are an issue, too,
because the downlink transmissions interfere with existing microwave users. Con-
sequently, ITU has allocated certain frequency bands to satellite users. The main
ones are listed in Fig. 2-49. The C band was the first to be made available for com-
mercial satellite traffic. Two frequency ranges are assigned in it, the lower one for

SEC. 2.8 COMMUNICATION SATELLITES 179

downlink traffic (from the satellite) and the upper one for uplink traffic (to the sat-
ellite). To allow traffic to go both ways at the same time, two channels are re-
quired. These channels are already overcrowded because they are also used by the
common carriers for terrestrial microwave links. The L and S bands were added
by international agreement in 2000. However, they are narrow and also crowded.

Band Downlink Uplink Bandwidth Problems
L 1.5 GHz 1.6 GHz 15 MHz Low bandwidth; crowded
S 1.9 GHz 2.2 GHz 70 MHz Low bandwidth; crowded
C 4.0 GHz 6.0 GHz 500 MHz Terrestrial interference
Ku 11 GHz 14 GHz 500 MHz Rain
Ka 20 GHz 30 GHz 3500 MHz Rain, equipment cost

Figure 2-49. The principal satellite bands.

The next-highest band available to commercial telecommunication carriers is
the Ku (K under) band. This band is not (yet) congested, and at its higher frequen-
cies, satellites can be spaced as close as 1 degree; transmission speeds in this band
can reach more than 500 Mbps. However, another problem exists: rain. Water
absorbs these short microwaves well. Fortunately, heavy storms are usually local-
ized, so using several widely separated ground stations instead of just one circum-
vents the problem, but at the price of extra antennas, extra cables, and extra elec-
tronics to enable rapid switching between stations. Bandwidth has also been allo-
cated in the Ka (K above) band for commercial satellite traffic, but the equipment
needed to use it is expensive. In addition to these commercial bands, many gov-
ernment and military bands also exist.

A modern satellite has around 40 transponders, most often with a 36-MHz
bandwidth. Usually, each transponder operates as a bent pipe, but recent satellites
have some on-board processing capacity, allowing more sophisticated operation.
In the earliest satellites, the division of the transponders into channels was static:
the bandwidth was simply split up into fixed frequency bands. Nowadays, each
transponder beam is divided into time slots, with various users taking turns. Once
again, we see how TDM and FDM are used in many contexts.

The first geostationary satellites had a single spatial beam that illuminated
about 1/3 of the earth’s surface, called its footprint. With the enormous decline in
the price, size, and power requirements of microelectronics, a much more sophisti-
cated broadcasting strategy has become possible. Each satellite is equipped with
multiple antennas and multiple transponders. Each downward beam can be
focused on a small geographical area, so multiple upward and downward transmis-
sions can take place simultaneously. Typically, these so-called spot beams are
elliptically shaped, and can be as small as a few hundred km in diameter. A com-
munication satellite for the United States typically has one wide beam for the con-
tiguous 48 states, plus spot beams for Alaska and Hawaii.

180 THE PHYSICAL LAYER CHAP. 2

One important development in the communication satellite world are low-cost
microstations, sometimes called VSATs (Very Small Aperture Terminals)
(Abramson, 2000). These tiny terminals have 1-meter or smaller antennas (versus
10 m for a standard GEO antenna) and can put out about 1 watt of power. The
uplink is generally good for up to 1 Mbps, but the downlink is often up to several
megabits/sec. Direct broadcast satellite television uses this technology for one-
way transmission.

In many VSAT systems, the microstations do not have enough power to com-
municate directly with one another (via the satellite, of course). Instead, a special
ground station, the hub, with a large, high-gain antenna is needed to relay traffic
between VSATs, as shown in Fig. 2-50. In this mode of operation, either the send-
er or the receiver has a large antenna and a powerful amplifier. The trade-off is a
longer delay in return for having cheaper end-user stations.

Communication
satellite

1
3 2

4

Hub

VSAT

Figure 2-50. VSATs using a hub.

VSATs have great potential in rural areas, especially in developing countries.
In much of the world, there are no landlines or cell towers. Stringing telephone
wires to thousands of small villages is far beyond the budgets of most
developing-country governments. Erecting cell towers is easier, but the cell towers
need wired connections to the national telephone network. However, installing
1-meter VSAT dishes powered by solar cells is often feasible. VSATs provide the
technology that can finish wiring the world. They can also provide Internet access
to smartphone users in areas where there is no terrestrial infrastructure, which is
true in much of the developing world.

SEC. 2.8 COMMUNICATION SATELLITES 181

Communication satellites have several properties that are radically different
from terrestrial point-to-point links. To begin with, even though signals to and
from a satellite travel at the speed of light (nearly 300,000 km/sec), the long round-
trip distance introduces a substantial delay for GEO satellites. Depending on the
distance between the user and the ground station and the elevation of the satellite
above the horizon, the end-to-end latency is between 250 and 300 msec. A typical
roundtrip value is 270 msec (540 msec for a VSAT system with a hub).

For comparison purposes, terrestrial microwave links have a propagation delay
of roughly 3 µsec/km, and coaxial cable or fiber-optic links have a delay of
approximately 5 µsec/km. The latter are slower than the former because electro-
magnetic signals travel faster in air than in solid materials.

Another important property of satellites is that they are inherently broadcast
media. It does not cost any more to send a message to thousands of stations within
a transponder’s footprint than it does to send to only one. For some applications,
this property is very useful. For example, one could imagine a satellite broadcast-
ing popular Web pages to the caches of a large number of computers spread over a
wide area. Even when broadcasting can be simulated with point-to-point lines, sat-
ellite broadcasting may be much cheaper. On the other hand, from a privacy point
of view, satellites are a complete disaster: everybody can hear everything. Encryp-
tion is essential for confidentiality.

Satellites also have the property that the cost of transmitting a message is inde-
pendent of the distance traversed. A call across the ocean costs no more to service
than a call across the street. Satellites also have excellent error rates and can be de-
ployed almost instantly, a major consideration for disaster response and military
communication.

2.8.2 Medium-Earth Orbit Satellites

At much lower altitudes, between the two Van Allen belts, we find the MEO
(Medium-Earth Orbit) satellites. As viewed from the earth, these drift slowly in
longitude, taking something like 6 hours to circle the earth. Accordingly, they
must be tracked as they move through the sky. Because they are lower than the
GEOs, they have a smaller footprint on the ground and require less powerful trans-
mitters to reach them. Currently, they are used for navigation systems rather than
telecommunications, so we will not examine them further here. The constellation
of roughly 30 GPS (Global Positioning System) satellites orbiting at about 20,200
km are examples of MEO satellites.

2.8.3 Low-Earth Orbit Satellites

Moving down in altitude, we come to the LEO (Low-Earth Orbit) satellites.
Due to their rapid motion, large numbers of them are needed for a complete sys-
tem. On the other hand, because the satellites are so close to the earth, the ground

182 THE PHYSICAL LAYER CHAP. 2

stations do not need much power, and the round-trip delay is much less: deploy-
ments see round-trip latencies of anywhere between around 40 and 150 millisec-
onds. The launch cost is substantially cheaper too. In this section, we will exam-
ine two examples of satellite constellations used for voice service: Iridium and
Globalstar.

For the first 30 years of the satellite era, low-orbit satellites were rarely used
because they zip into and out of view so quickly. In 1990, Motorola broke new
ground by filing an application with the FCC asking for permission to launch 77
low-orbit satellites for the Iridium project (element 77 is iridium). The plan was
later revised to use only 66 satellites, so the project should have been renamed
Dysprosium (element 66), but that probably sounded too much like a disease. The
idea was that as soon as one satellite went out of view, another would replace it.
This proposal set off a feeding frenzy among other communication companies. All
of a sudden, everyone wanted to launch a chain of low-orbit satellites.

After seven years of cobbling together partners and financing, communication
service began in November 1998. Unfortunately, the commercial demand for
large, heavy satellite telephones was negligible because the mobile phone network
had grown in a spectacular way since 1990. As a consequence, Iridium was not
profitable and was forced into bankruptcy in August 1999 in one of the most spec-
tacular corporate fiascos in history. The satellites and other assets (worth $5 bil-
lion) were later purchased by an investor for $25 million at a kind of extraterres-
trial garage sale. Other satellite business ventures promptly followed suit.

The Iridium service restarted in March 2001 and has been growing ever since.
It provides voice, data, paging, fax, and navigation service everywhere on land, air,
and sea, via hand-held devices that communicate directly with the Iridium satel-
lites. Customers include the maritime, aviation, and oil exploration industries, as
well as people traveling in parts of the world lacking a telecom infrastructure (e.g.,
deserts, mountains, the South Pole, and some developing countries).

The Iridium satellites are positioned at an altitude of 670 km, in circular polar
orbits. They are arranged in north-south necklaces, with one satellite every 32
degrees of latitude, as shown in Fig. 2-51. Each satellite has a maximum of 48
cells (spot beams) and a capacity of 3840 channels, some of which are used for
paging and navigation, while others are used for data and voice.

With six satellite necklaces, the entire earth is covered, as suggested by
Fig. 2-51. An interesting property of Iridium is that communication between dis-
tant customers takes place in space, as shown in Fig. 2-52(a). Here we see a caller
at the North Pole contacting a satellite directly overhead. Each satellite has four
neighbors with which it can communicate, two in the same necklace (shown) and
two in adjacent necklaces (not shown). The satellites relay the call across this grid
until it is finally sent down to the callee at the South Pole.

An alternative design to Iridium is Globalstar. It is based on 48 LEO satel-
lites but uses a different switching scheme than the one used by Iridium. Whereas
Iridium relays calls from satellite to satellite, which requires complex switching

SEC. 2.8 COMMUNICATION SATELLITES 183

Each satellite has
four neighbors

Figure 2-51. The Iridium satellites form six necklaces around the earth.

Bent-pipe
satellite

Satellite switches
in space

Switching
on the
ground

(a) (b)

Figure 2-52. (a) Relaying in space. (b) Relaying on the ground.

equipment in the satellites, Globalstar uses a traditional bent-pipe design. The call
originating at the North Pole in Fig. 2-52(b) is sent back to earth and picked up by
the large ground station at Santa’s Workshop. The call is then routed via a terres-
trial network to the ground station nearest the callee and delivered by a bent-pipe
connection as shown. The advantage of this scheme is that it puts much of the
complexity on the ground, where it is much easier to manage. Also, the use of
large ground station antennas that can put out a powerful signal and receive a weak
one means that lower-powered telephones can be used. After all, the telephone
puts out only a few milliwatts of power, so the signal that gets back to the ground
station is fairly weak, even after having been amplified by the satellite.

184 THE PHYSICAL LAYER CHAP. 2

Satellites continue to be launched at a rate of around 20 satellites per year, in-
cluding ever-larger satellites that now weigh over 5000 kilograms. But there are
also very small satellites for the more budget-conscious organization. To make
space research more accessible, academic researchers from California Polytechnic
University and Stanford got together in 1999 to define a standard for miniature sat-
ellites and an associated launcher that would greatly lower launch costs (Nugent et
al., 2008). These cubesats are satellites in units of 10 cm × 10 cm × 10 cm cubes,
each weighing no more than 1 kilogram, that can be launched for a price as little as
$40,000 each. The launcher flies as a secondary payload on commercial space
missions. It is basically a tube that takes up to three units of cubesats and uses
springs to release them into orbit. Roughly 20 cubesats have launched so far, with
many more in the works. Most of them communicate with ground stations on the
UHF and VHF bands.

Another deployment of LEO satellites is an attempted satellite-based Internet
backbone network, OneWeb’s deployment will initially involve a constellation of
several hundred satellites. If successful, the project promises to bring high-speed
Internet access to places which may not currently have it. The satellites will oper-
ate in the Ku band and will use a technique called ‘‘progressive pitch,’’ whereby
the satellites are turned slightly to avoid interference with geostationary satellites
that are transmitting in the same band.

2.9 COMPARING DIFFERENT ACCESS NETWORKS

Let’s now compare the properties of the different types of access networks that
we have surveyed.

2.9.1 Terrestrial Access Networks: Cable, Fiber, and ADSL

Cable, FTTH, and ADSL are much more similar than they are different. They
offer comparable service and, as competition between them heats up, probably
comparable prices. All access network technologies, including cable, ADSL, and
Fiber to the Home, now use fiber in the backbone; they differ on the last-mile ac-
cess technology at the physical and link layers. Fiber and ADSL providers tend to
deliver more consistent bandwidth to each subscriber because each user has dedi-
cated capacity. Ongoing and recent reports in the United States, such as the FCC’s
Measuring Broadband America (MBA) initiative (which is released annually),
report that access ISPs typically meet their advertised rates.

As an ADSL or FTTH access network acquires more users, their increasing
numbers have little effect on existing users, since each user has a dedicated con-
nection all the way to the home. On the other hand, cable subscribers share the ca-
pacity of a single node; as a result, when one or more users on a node increase their
usage, other users may experience congestion. Consequently, cable providers now

SEC. 2.9 COMPARING DIFFERENT ACCESS NETWORKS 185

tend to over-provision the capacity that they sell to each subscriber. More modern
DOCSIS standards such as DOCSIS 3.0 require that cable modems be capable of
bonding at least four channels, to achieve approximately 170 Mbps downstream
and 120 Mbps upstream (with about 10% of that throughput dedicated to signaling
overhead).

Ultimately, the maximum speeds that a cable subscriber can achieve are limit-
ed by the capacity of the coaxial cable, the amount of usable spectrum in fiber is
far greater by comparison. With cable, as more subscribers sign up for Internet ser-
vice, the performance of other users in the same node will suffer. In response,
cable ISPs split busy cables, connecting each one to a fiber node directly (this prac-
tice is sometimes called a node split. As previously discussed, the number of
homes per node continues to steadily decrease as cable ISPs continue to build fiber
closer to the edge of the network.

Cable, fiber, and ADSL are available in different regions, and performance of
these networks differs according to both the technology itself, and how each re-
spective technology is deployed. Most home users in developed countries can have
a telephone line if they want it, but not all users are close enough to their end of-
fices to get ADSL. Some are stuck with 56-kbps dial-up lines, especially in rural
areas. In fact, even in the United States, there are large areas in which a
1.544-Mbps T1 line is an unobtainable luxury. In Europe, with its higher popula-
tion density, 500 Mbps fiber-optic Internet is common in big cities. Some even
have 1-Gbps service available.

Also, not everyone has cable. If you do have cable and the company provides
Internet access, you can get it; distance to the fiber node or headend is not an issue.
Availability of cable and fiber in certain regions, particularly sparsely populated re-
gions, remains a concern though. Ultimately, high-speed Internet access today still
depends on the deployment of fiber or cable to homes. In the case of cable net-
works, increasing node splits require the deployment of fiber further into the neigh-
borhood, as opposed to relying on existing coaxial cable infrastructure. Even in
the case of ADSL, speed drops off significantly beyond a few kilometers from a
central office, so even ADSL requires some kind of fiber buildout at the edge (e.g.,
FTTN) to offer high speed to sparsely populated areas. All of these are expensive
propositions.

Historically, the telephone infrastructure (and DSL networks) have generally
been more reliable than cable, although data from the FCC’s MBA project show
that gap has narrowed, with most cable and DSL service achieving at least ‘‘two
nines’’ of reliability (i.e., 99% uptime, or tens of hours of downtime a year). Satel-
lite and metropolitan-area wireless networks perform less reliably. By comparison,
the conventional phone network achieves ‘‘five nines’’ of reliability, which corre-
sponds to only a few minutes of unavailability each year (Bischof et al., 2018).

Being a point-to-point medium, ADSL is inherently more secure than cable.
Any cable user can easily read all the packets going down the cable, no matter for
whom they are intended. For this reason, any decent cable provider will encrypt all

186 THE PHYSICAL LAYER CHAP. 2

traffic in both directions. Nevertheless, having your neighbor get your encrypted
messages is still less secure than having him not get anything at all.

2.9.2 Satellites Versus Terrestrial Networks

A comparison between satellite and terrestrial communication networks is
instructive. Some time ago, it seemed that communication satellites might have
been the future of communication. After all, the telephone system had changed lit-
tle in the previous 100 years and showed no signs of changing in the next 100
years. This glacial movement was caused in no small part by the regulatory envi-
ronment in which the telephone companies were expected to provide good voice
service at reasonable prices (which they did), and in return got a guaranteed profit
on their investment. For people with data to transmit, 1200-bps modems were
available. That was pretty much all there was.

The introduction of competition in telecommunications in 1984 in the United
States and somewhat later in Europe radically changed this situation. Telephone
companies began replacing their long-haul networks with fiber and introduced
high-bandwidth services like ADSL. They also stopped their long-time practice of
charging artificially high prices to long-distance users to subsidize local service.
All of a sudden, terrestrial fiber looked like the winner.

Nevertheless, communication satellites have some niche markets that fiber can-
not address. First, when rapid deployment is critical, satellites win easily. A quick
response is useful for military communication systems in times of war and disaster
response in times of peace. Following the massive December 2004 Sumatra earth-
quake and subsequent tsunami, for example, communications satellites were able
to restore communications to first responders within 24 hours. This rapid response
was possible because there is a developed market in which large players, such as
Intelsat with over 50 satellites, can rent out capacity pretty much anywhere it is
needed. For customers served by existing satellite networks, a solar-powered
VSAT can be set up easily and quickly to provide a megabit/sec link.

A second niche is for communication in places where the terrestrial infrastruc-
ture is poorly developed. Many people nowadays want to communicate every-
where they go. Mobile phone networks cover those locations with good population
density, but do not do an adequate job in other places (e.g., at sea or in the desert).
Conversely, Iridium provides voice service everywhere on earth, even at the South
Pole. Terrestrial infrastructure can also be expensive to install, depending on the
terrain and necessary rights of way. Indonesia, for example, has its own satellite
for domestic telephone traffic. Launching one satellite was cheaper than stringing
thousands of undersea cables among the 13,677 islands in the archipelago.

A third niche is when broadcasting is essential. A message sent by satellite
can be received by thousands of ground stations at once. Satellites are used to dis-
tribute much network TV programming to local stations for this reason. There is
now a large market for satellite broadcasts of digital TV and radio directly to end

SEC. 2.9 COMPARING DIFFERENT ACCESS NETWORKS 187

users with satellite receivers in their homes and cars. All sorts of other content can
be broadcast, too. For example, an organization transmitting a stream of stock,
bond, or commodity prices to thousands of dealers might find a satellite system to
be much cheaper than simulating broadcasting on the ground.

The United States has some competing satellite-based Internet providers, in-
cluding Hughes (often marketed as DISH, previously EchoStar) and Viasat, which
operate satellites mostly in geostationary or MEO, with some providers moving to
LEO. In 2016, the FCC’s Measuring Broadband America project reported that
these satellite-based providers were among the few Internet Service Providers who
were seeing decreased performance over time, likely because of increased sub-
scribership and limited bandwidth. The report found that these providers were
unable to offer speeds more than about 10 Mbps.

Nonetheless, in recent years, satellite Internet access has seen growing interest,
particularly in niche markets such as in-flight Internet access. Some in-flight Inter-
net access involves direct communication with mobile broadband towers, but for
flights over oceans, this does not work. Another method that helps cope with lim-
ited bandwidth on airplanes involves transmission of data to a collection of satel-
lites in geostationary orbit. Other companies including OneWeb, as discussed
above, and Boeing are working on building a satellite-based Internet backbone
using LEO satellites. The markets will still be somewhat niche, as the throughput
will be approximately 50 Mbps, much lower than terrestrial Internet.

In short, it looks like the mainstream communication of the future will be ter-
restrial fiber optics combined with cellular networks, but for some specialized uses,
satellites are better. However, one caveat applies to all of this: economics. Al-
though fiber offers more bandwidth, it is conceivable that terrestrial and satellite
communication may be able to compete aggressively on price in some markets. If
advances in technology radically cut the cost of deploying a satellite (e.g., if some
future space vehicle can toss out dozens of satellites on one launch) or low-orbit
satellites catch on in a big way, it is not certain that fiber will win all markets.

2.10 POLICY AT THE PHYSICAL LAYER

Various aspects of the physical layer involve regulatory and policy decisions
that ultimately affect how these technologies are used and developed. We briefly
discuss ongoing policy activity in both terrestrial networks (i.e., the telephone and
cable networks) and wireless networks.

2.10.1 Spectrum Allocation

The biggest challenge concerning the electromagnetic spectrum concerns per-
forming spectrum allocation efficiently and fairly. If multiple parties can transmit
data in the same part of the spectrum in the same geographic region, there is

188 THE PHYSICAL LAYER CHAP. 2

significant potential for the communicating parties to interfere with one another.
To prevent total chaos, there are national and international agreements about who
gets to use which frequencies. Because everyone wants a higher data rate, every-
one wants more spectrum. National governments allocate spectrum for AM and
FM radio, television, and mobile phones, as well as for telephone companies,
police, maritime, navigation, military, government, and many other competing
users. Worldwide, an agency of ITU-R (WRC) tries to coordinate this allocation
so devices that work in multiple countries can be manufactured. However, coun-
tries are not bound by ITU-R’s recommendations, and the FCC which does the al-
location for the United States, has occasionally rejected ITU-R’s recommendations
(usually because they required some politically powerful group to give up some
piece of the spectrum).

Even when a portion of spectrum has been allocated to a specific use, such as
mobile phones, there is the additional issue of which company is allowed to use
which frequencies. Three algorithms were widely used in the past. The oldest al-
gorithm, often called the beauty contest, requires each carrier to explain why its
proposal serves the public interest best. Government officials then decide which of
the nice stories they enjoy most. Having a government official award property
worth billions of dollars to his favorite company often leads to bribery, corruption,
nepotism, and worse. Furthermore, even a scrupulously honest government official
who thought that a foreign company could do a better job than any of the national
companies would have a lot of explaining to do.

This observation led to the second algorithm: holding a lottery among the in-
terested companies. The problem with lotteries is that companies with no interest
in using the spectrum can enter the lottery. If, say, a hamburger restaurant or shoe
store chain wins, it can resell the spectrum to a carrier at a huge profit and with no
risk.

Bestowing huge windfalls on alert but otherwise random companies has been
severely criticized by many, which led to the third approach: auction the spectrum
to the highest bidder. When the British government auctioned off the frequencies
needed for 3G mobile systems in 2000, it expected to get about $4 billion. It ac-
tually received about $40 billion because the carriers got into a feeding frenzy,
scared to death of missing the mobile boat. This event switched on other govern-
ments’ greedy bits and inspired them to hold their own auctions. It worked, but it
also left some of the carriers with so much debt that they are close to bankruptcy.
Even in the best cases, it will take many years to recoup these licensing fees.

A completely different approach to allocating frequencies is to not allocate
them at all. Instead, let everyone transmit at will, but regulate the power used so
that stations have such a short range that they do not interfere with each other.
Accordingly, most governments have set aside some frequency bands, called the
ISM (Industrial, Scientific, Medical) bands for unlicensed usage. Garage door
openers, cordless phones, radio-controlled toys, wireless mice, and numerous other
wireless household devices use the ISM bands. To minimize interference between

SEC. 2.10 POLICY AT THE PHYSICAL LAYER 189

these uncoordinated devices, the FCC mandates that all devices in the ISM bands
limit their transmit power (e.g., to 1 Watt) and use techniques to spread their sig-
nals over a range of frequencies. Devices may also need to take care to avoid inter-
ference with radar installations.

The location of these bands varies somewhat from country to country. In the
United States, for example, the bands that networking devices use in practice with-
out requiring a FCC license are shown in Fig. 2-53. The 900-MHz band was used
for early versions of 802.11, but it is crowded. The 2.4-GHz band is available in
most countries and widely used for 802.11b/g and Bluetooth, though it is subject to
interference from microwave ovens and radar installations. The 5-GHz part of the
spectrum includes U-NII (Unlicensed National Information Infrastructure)
bands. The 5-GHz bands are relatively undeveloped but, since they have the most
bandwidth and are used by WiFi specifications such as 802.11ac, they have be-
come massively popular and crowded, as well.

26
MHz

902
MHz

928
MHz

2.4
GHz

5.25
GHz

5.35
GHz

5.47
GHz

5.725
GHz

U-NII bands

5.825
GHz

2.4835
GHz

ISM band

83.5
MHz

100
MHz

255
MHz

ISM band

100
MHz

ISM band

Figure 2-53. ISM and U-NII bands used in the United States by wireless devices.

The unlicensed bands have been a roaring success over the past several dec-
ades. The ability to use the spectrum freely has unleashed a huge amount of inno-
vation in wireless LANs and PANs, evidenced by the widespread deployment of
technologies including 802.11 and Bluetooth. Even some ISPs are now getting into
the game with technologies such as LTE-U, which involves a deployment of an
LTE cellular network in the unlicensed spectrum. Such technology could allow
mobile devices to operate in this unlicensed spectrum, in addition to the portions of
spectrum that are explicitly allocated to operating cellular networks. LTE-U might
allow fixed-line ISPs who are deploying WiFi access points in hundreds of mil-
lions of homes to turn their network of access points into a network of cellular base
stations. Of course, allowing cellular phones to use the unlicensed spectrum comes
with its own set of complications. For example, devices that operate in the unli-
censed spectrum must respect other devices that are using the same spectrum and

190 THE PHYSICAL LAYER CHAP. 2

attempt not to interfere with so-called ‘‘incumbent’’ devices. LTE-U may also face
its own reliability and performance challenges as it must back off to interact nicely
with other devices that use the unlicensed spectrum, from other WiFi devices to
baby monitors.

Various developments in policy over the past 10 years continue to enable more
innovation in wireless technologies. One development in the United States is the
potential future allocation of more unlicensed spectrum. In 2009, the FCC decided
to allow unlicensed use of white spaces around 700 MHz. White spaces are fre-
quency bands that have been allocated but are not being used locally. The transition
from analog to all-digital television broadcasts in the United States in 2010 freed
up white spaces around 700 MHz. One challenge is that to use the white spaces,
unlicensed devices must be able to detect any nearby licensed transmitters, includ-
ing wireless microphones, that have first rights to use the frequency band. The
FCC also opened 57 GHz to 64 GHz for unlicensed operation in 2001. This range
is an enormous portion of spectrum, more than all the other ISM bands combined,
so it can support the kind of high-speed networks that would be needed to stream
high-definition TV through the air across your living room. At 60 GHz, radio
waves are absorbed by oxygen. This means that signals do not propagate far, mak-
ing them well suited to short-range networks. The high frequencies (60 GHz is in
the Extremely High Frequency or ‘‘millimeter’’ band, just below infrared radiation)
posed an initial challenge for equipment makers, but products are now on the mar-
ket.

In the United States, other spectrum bands are also being repurposed and auc-
tioned off to carriers, including 2.5 and 2.9 GHz, the C-Band (previously used for
satellite communications) in the 3.7–4.2 GHz range, as well as others, including
3.5, 6, 24, 28, 37, and 49 GHz. The FCC is also considering the use of certain very
high bands for short-range communication, such as the 95 GHz range. In late 2018,
the FCC launched its first 5G auction, with more auctions are planned for future
years. These auctions will open up a significant amount of spectrum to for mobile
broadband, enabling the higher bandwidths that would be required for streaming
video and Internet of Things applications. The 24 and 28 GHz spectrum each have
approximately 3,000 licenses up for sale. The FCC is also giving discounts to
small business and rural providers. Auctions for pieces of the 37, 39, and 49 GHz
spectrum bands are scheduled as well. In other countries, some of these spectrum
bands may operate as unlicensed spectrum. For example, the automotive industry
in Germany successfully lobbied to allow the 3.5 GHz band for private enterprise
use; other European countries are likely to follow suit.

2.10.2 The Cellular Network

It is interesting how political and tiny marketing decisions can have a huge
impact on the deployment of cellular networks in the United States and Europe.
The first mobile system was devised in the U.S. by AT&T and later mandated for

SEC. 2.10 POLICY AT THE PHYSICAL LAYER 191

the whole country by the FCC. As a result, the entire U.S. had a single (analog)
system and a mobile phone purchased in California also worked in New York. In
contrast, when mobile phones came to Europe, every country devised its own sys-
tem, which resulted in a fiasco.

Europe learned from its mistake and when digital came around, the govern-
ment-run PTTs got together and standardized on a single system (GSM), so any
European mobile phone would work anywhere in Europe. By then, the U.S. had
decided that government should not be in the standardization business, so it left
digital to the marketplace. This decision resulted in different equipment manufact-
urers producing different kinds of mobile phones. As a consequence, in the U.S.
two major—and completely incompatible—digital mobile phone systems were de-
ployed, as well as other minor systems.

Despite an initial lead by the U.S., mobile phone ownership and usage in
Europe is now far greater than in the U.S. Having a single system that works any-
where in Europe and with any provider is part of the reason, but there is more. A
second area where the U.S. and Europe differed is in the humble matter of phone
numbers. In the U.S., mobile phones are mixed in with regular (fixed) telephones.
Thus, there is no way for a caller to see if, say, (212) 234-5678 is a fixed telephone
(cheap or free call) or a mobile phone (expensive call). To keep people from get-
ting nervous about placing calls, the telephone companies decided to make the
mobile phone owner pay for incoming calls. As a consequence, many people hesi-
tated buying a mobile phone for fear of running up a big bill by just receiving calls.
In Europe, mobile phone numbers have a special area code (analogous to 800 and
900 numbers) so they are instantly recognizable. Consequently, the usual rule of
‘‘caller pays’’ also applies to mobile phones in Europe (except for international
calls, where costs are split).

A third issue that has had a large impact on adoption is the widespread use of
prepaid mobile phones in Europe (up to 75% in some areas), which can be pur-
chased in many stores, and even online. These cards are preloaded with a balance
of, for example, 20 or 50 euros and can be recharged (using a secret PIN code)
when the balance drops to zero. As a consequence, practically every teenager and
many small children in Europe have (usually prepaid) mobile phones so their par-
ents can locate them, without the danger of the child running up a huge bill. If the
mobile phone is used only occasionally, its use is essentially free since there is no
monthly charge or charge for incoming calls.

The auctioning of coveted spectrum bands for 5G, coupled with many tech-
nological advances previously discussed in this chapter, is poised to shake up the
cellular network edge in the next several years. Already, we are seeing the rise of
MVNOs (Mobile Virtual Network Operators) which are wireless carriers which
do not own the network infrastructure over which they provide service to their cus-
tomers. As cell sizes continue to shrink with higher frequencies and hardware for
small cells continues to be commoditized, MVNOs pay to share capacity on an
infrastructure that is operated by another carrier. They have the choice whether to

192 THE PHYSICAL LAYER CHAP. 2

operate their own components of an LTE architecture or use the infrastructure that
is owned by the underlying carrier. MVNOs that operate their own core network
are sometimes called ‘‘full’’ MVNOs. Companies including Qualcomm and Intel
are putting together reference design for small cell hardware that could result in the
complete disaggregation of the network edge, especially when coupled with the
use of unlicensed spectrum. Industry is also beginning to move towards infrastruc-
ture with ‘‘whitebox’’ eNodeBs that connect to a central office that has virtual EPC
services; the Open Networking Foundation’s M-CORD project has implemented
such an architecture.

2.10.3 The Telephone Network

For decades prior to 1984, the Bell System provided both local and long-dis-
tance service throughout most of the United States. In the 1970s, the U.S. federal
government came to believe that this was an illegal monopoly and sued to break it
up. The government won, and on January 1, 1984, AT&T was broken up into
AT&T Long Lines, 23 BOCs (Bell Operating Companies), and a few other
pieces. The 23 BOCs were grouped into seven regional BOCs (RBOCs) to make
them economically viable. The entire nature of telecommunication in the United
States was changed overnight by court order (not by an act of Congress).

The exact specifications of the divestiture were described in the so-called MFJ
(Modification of Final Judgment), an oxymoron if ever there was one. This
event led to increased competition, better service, and lower long-distance rates for
consumers and businesses. However, prices for local service rose as the cross sub-
sidies from long-distance calling were eliminated and local service had to become
self supporting. Many other countries have now introduced competition along sim-
ilar lines.

Of direct relevance to our studies is that the brand new competitive framework
caused a key technical feature to be added to the architecture of the telephone net-
work. To make it clear who could do what, the United States was divided up into
164 LATAs (Local Access and Transport Areas). Very roughly, a LAT A is about
as big as the area covered by one area code. Within each LATA, there was one
LEC (Local Exchange Carrier) with a monopoly on traditional telephone service
within its area. The most important LECs were the BOCs, although some LATAs
contained one or more of the 1500 independent telephone companies operating as
LECs.

The new feature was that all inter-LATA traffic was handled by a different kind
of company, an IXC (IntereXchange Carrier). Originally, AT&T Long Lines
was the only serious IXC, but now there are well-established competitors such as
Verizon and Sprint in the IXC business. One of the concerns at the breakup was to
ensure that all the IXCs would be treated equally in terms of line quality, tariffs,
and the number of digits their customers would have to dial to use them. The way
this is handled is illustrated in Fig. 2-54. Here we see three example LATAs, each

SEC. 2.10 POLICY AT THE PHYSICAL LAYER 193

with several end offices. LATAs 2 and 3 also have a small hierarchy with tandem
offices (intra-LATA toll offices).

1 2

To local loops

IXC #1’s
toll office

IXC #2’s
toll office

IXC POP

Tandem
office

End
office

LATA 3LATA 2LATA 1

1 2 1 2 1 2

Figure 2-54. The relationship of LATAs, LECs, and IXCs. All the circles are
LEC switching offices. Each hexagon belongs to the IXC whose number is in it.

Any IXC that wishes to handle calls originating in a LATA can build a switch-
ing office called a POP (Point of Presence) there. The LEC is required to connect
each IXC to every end office, either directly, as in LAT As 1 and 3, or indirectly, as
in LATA 2. Furthermore, the terms of the connection, both technical and financial,
must be identical for all IXCs. This requirement enables, a subscriber in, say,
LATA 1, to choose which IXC to use for calling subscribers in LATA 3.

As part of the MFJ, the IXCs were forbidden to offer local telephone service
and the LECs were forbidden to offer inter-LATA telephone service, although both
were free to enter any other business, such as operating fried chicken restaurants.
In 1984, that was a fairly unambiguous statement. Unfortunately, technology has a
funny way of making the law obsolete. Neither cable television nor mobile phones
were covered by the agreement. As cable television went from one way to two
way and mobile phones exploded in popularity, both LECs and IXCs began buying
up or merging with cable and mobile operators.

By 1995, Congress saw that trying to maintain a distinction between the vari-
ous kinds of companies was no longer tenable and drafted a bill to preserve ac-
cessibility for competition but allow cable TV companies, local telephone com-
panies, long-distance carriers, and mobile operators to enter one another’s busi-
nesses. The idea was that any company could then offer its customers a single
integrated package containing cable TV, telephone, and information services and

194 THE PHYSICAL LAYER CHAP. 2

that different companies would compete on service and price. The bill was enacted
into law in February 1996 as a major overhaul of telecommunications regulation.
As a result, some BOCs became IXCs and some other companies, such as cable
television operators, began offering local telephone service in competition with the
LECs.

One interesting property of the 1996 law is the requirement that LECs imple-
ment local number portability. This means that a customer can change local tele-
phone companies without having to get a new telephone number. Portability for
mobile phone numbers (and between fixed and mobile lines) followed suit in 2003.
These provisions removed a huge hurdle for many people, making them much
more inclined to switch LECs. As a result, the U.S. telecommunications landscape
became much more competitive, and other countries have followed suit. Often
other countries wait to see how this kind of experiment works out in the U.S. If it
works well, they do the same thing; if it works badly, they try something else.

In recent years, telecommunications policy has been relatively quiet, as it per-
tains to telephone companies, with most of the action and activity shifting to Inter-
net service providers. Two recent developments, however, involve policy activity
surrounding the insecurities of a signaling protocol called SS7 (Signaling System
7), which is the protocol that allows cellular networks to talk to one another. The
protocol is insecure, and Congress has asked the FCC to take action to address
some of these insecurities. Another interesting development related to the 1996
Telecommunications Act is how text messages are classified; unlike voice traffic
over the telephone network, which is classified as a communications service (like
phone calls), SMS messages (‘‘text messages’’) are classified as an information
service (akin to instant messages or other Internet communications services),
which subjects them to very different sets of regulations concerning everything
from how they can be billed to the privacy rules that govern these messages.

2.11 SUMMARY

The physical layer is the basis of all networks. Nature imposes two fundamen-
tal limits on all channels, and these determine their bandwidth. These limits are
the Nyquist limit, which deals with noiseless channels, and the Shannon limit,
which deals with noisy channels.

Transmission media can be guided or unguided. The principal guided media
are twisted pair, coaxial cable, and fiber optics. Unguided media include terrestrial
radio, microwaves, infrared, lasers through the air, and satellites.

Digital modulation methods send bits over guided and unguided media as ana-
log signals. Line codes operate at baseband, and signals can be placed in a pass-
band by modulating the amplitude, frequency, and phase of a carrier. Channels can
be shared between users with time, frequency, and code division multiplexing.

SEC. 2.11 SUMMARY 195

A key element in many wide area networks is the telephone system. Its main
components are the local loops, trunks, and switches. ADSL offers speeds up to
40 Mbps over the local loop by dividing it into many subcarriers that run in paral-
lel. This far exceeds the rates of telephone modems. PONs bring fiber to the home
for even greater access rates than ADSL. Trunks carry digital information. They
are multiplexed with WDM to provision many high capacity links over individual
fibers, as well as with TDM to share each high rate link between users. Both cir-
cuit switching and packet switching play a role.

Another system for network access is the cable infrastructure, which has grad-
ually evolved from coaxial cable to hybrid fiber coax, where many cable Internet
service providers now offer subscribers up to 1 Gbps (and, within a few years, like-
ly 10 Gbps). The architecture of these networks is quite different, however, in that
the capacity of the network is shared among subscribers in the same service node.

For mobile devices applications, the fixed telephone system is not suitable.
Mobile phones are currently in widespread use for voice and data; since 4G, all
voice is, in fact, carried over a packet-switched network. The first generation, 1G,
was analog and dominated by AMPS. 2G was digital, with GSM presently the
most widely deployed mobile phone system in the world. 3G is digital and based
on broadband CDMA. 4G’s main innovation was to shift to a packet-switched core.
5G is defined by smaller cell sizes, massive MIMO, and the use of significantly
more spectrum.

Many aspects of the physical layer are ultimately determined not only by the
technologies themselves, but also by policy organizations, such as standards bodies
and regulatory agencies. One area of the physical layer that is fairly dynamic in the
policy arena is wireless spectrum, much of which is highly regulated. As the need
for more bandwidth for data communications grows, regulatory agencies are ac-
tively searching for ways to use existing spectrum more efficiently, such as re-
appropriating and auctioning portions of previously allocated spectrum.

PROBLEMS

1. Is an oil pipeline a simplex system, a half-duplex system, a full-duplex system, or none
of the above? What about a river or a walkie-talkie-style communication?

2. What are the advantages of fiber optics over copper as a transmission medium? Is there
any downside of using fiber optics over copper?

3. How much bandwidth is there in 0.1 microns of spectrum at a wavelength of 1 micron?

4. It is desired to send a sequence of computer screen images over an optical fiber. The
screen is 3840 × 2160 pixels, each pixel being 24 bits. There are 50 screen images per
second. What data rate is needed is needed?

196 THE PHYSICAL LAYER CHAP. 2

5. In Fig. 2-5, the left-hand band is narrower than the others. Why?

6. Radio antennas often work best when the diameter of the antenna is equal to the
wavelength of the radio wave. Reasonable antennas range from 1 cm to 1 meter in
diameter. What frequency range does this cover?

7. Multipath fading is maximized when the two beams arrive 180 degrees out of phase.
How much of a path difference is required to maximize the fading for a 100-km-long
1-GHz microwave link?

8. A laser beam 1 mm wide is aimed at a detector 1 mm wide 100 m away on the roof of
a building. How much of an angular diversion (in degrees) does the laser have to have
before it misses the detector?

9. Compute the Fourier coefficients for the function f (t) = t (0) t) 1).

10. Identify three physical properties that limit the maximum data rate of digital communi-
cation channels used in practice. Explain your answers.

11. A noiseless 10-kHz channel is sampled every 1 msec. What is the maximum data rate?

12. Is the Nyquist theorem true for high-quality single-mode optical fiber or only for cop-
per wire?

13. Television channels are 6 MHz wide. How many bits/sec can be sent if four-level digi-
tal signals are used? Assume a noiseless channel.

14. If a binary signal is sent over a 3-kHz channel whose signal-to-noise ratio is 20 dB,
what is the maximum achievable data rate?

15. You need to select a line code that will only be used to send the bit sequences
10101010 and 00111100. Which of the lines codes shown in Fig. 2-14 is not a good
candidate? Consider both bandwidth efficiency and clock recovery.

16. What is the minimum bandwidth needed to achieve a data rate of B bits/sec if the sig-
nal is transmitted using NRZ, MLT-3, and Manchester encoding? Explain.

17. Prove that in 4B/5B mapped data with the NRZI encoding, a signal transition will oc-
cur at least every four bit times.

18. A modem constellation diagram similar to Fig. 2-17 has data points at (0, 1) and (0, 2).
Does the modem use phase modulation or amplitude modulation?

19. In a constellation diagram, all the points lie on a circle centered on the origin. What
kind of modulation is being used?

20. Ten signals, each requiring 4000 Hz, are multiplexed onto a single channel using FDM.
What is the minimum bandwidth required for the multiplexed channel? Assume that
the guard bands are 400 Hz wide.

21. Suppose that A, B, and C are simultaneously transmitting 0 bits, using a CDMA sys-
tem with the chip sequences of Fig. 2-22(a). What is the resulting chip sequence?

22. In the discussion about orthogonality of CDMA chip sequences, it was stated that if
S•T = 0 then S•T is also 0. Prove this.

23. Consider a different way of looking at the orthogonality property of CDMA chip se-

CHAP. 2 PROBLEMS 197

quences. Each bit in a pair of sequences can match or not match. Express the orthogo-
nality property in terms of matches and mismatches.

24. A CDMA receiver gets the following chips: (<1 +1 <3 +1 <1 <3 +1 +1). Assuming the
chip sequences defined in Fig. 2-22(a), which stations transmitted, and which bits did
each one send?

25. In Fig. 2-22, there are four stations that can transmit. Suppose four more stations are
added. Provide the chip sequences of these stations.

26. A base station schedules a single slot for devices A and B to send data using their cor-
responding chip sequences from Fig. 2-22. During this time, other stations remain
silent. Due to noise, some of the chips are lost. The base station receives the following
sequence: (0, 0, ?, 2, ?, ?, 0,-2). What are the bit values transmitted by stations A and
B?

27. How many end office codes were there pre-1984, when each end office was named by
its three-digit area code and the first three digits of the local number? Area codes start-
ed with a digit in the range 2–9, had a 0 or 1 as the second digit, and ended with any
digit. The first two digits of a local number were always in the range 2–9. The third
digit could be any digit.

28. A simple telephone system consists of two end offices and a single toll office to which
each end office is connected by a 1-MHz full-duplex trunk. The average telephone is
used to make four calls per 8-hour workday. The mean call duration is 6 min. Ten per-
cent of the calls are long distance (i.e., pass through the toll office). What is the maxi-
mum number of telephones an end office can support? (Assume 4 kHz per circuit.)
Explain why a telephone company may decide to support a lesser number of tele-
phones than this maximum number at the end office.

29. A regional telephone company has 15 million subscribers. Each of their telephones is
connected to a central office by a copper twisted pair. The average length of these
twisted pairs is 10 km. How much is the copper in the local loops worth? Assume that
the cross section of each strand is a circle 1 mm in diameter, the density of copper is
9.0 grams/cm3, and that copper sells for $6 per kilogram.

30. What is the maximum bit rate achievable in a V.32 standard modem if the baud rate is
9600 and no error correction is used?

31. The cost of a fast microprocessor has dropped to the point where it is now possible to
put one in each modem. How does that affect the handling of telephone line errors?
Does it negate the need for error checking/correction in layer 2?

32. An ADSL system using DMT allocates 3/4 of the available data channels to the down-
stream link. It uses QAM-64 modulation on each channel. What is the capacity of the
downstream link?

33. Why has the PCM sampling time been set at 125 µsec?

34. What signal-to-noise ratio is needed to put a T1 carrier on a 200-kHz line?

35. Compare the maximum data rate of a noiseless 4-kHz channel using
(a) Analog encoding (e.g., QPSK) with 2 bits per sample.
(b) The T1 PCM system.

198 THE PHYSICAL LAYER CHAP. 2

36. If a T1 carrier system slips and loses track of where it is, it tries to resynchronize using
the first bit in each frame. How many frames will have to be inspected on average to
resynchronize with a probability of 0.001 of being wrong?

37. What is the percent overhead on a T1 carrier? That is, what percent of the 1.544 Mbps
are not delivered to the end user? How does it relate to the percent overhead in OC-1 or
OC-768 lines?

38. SONET clocks have a drift rate of about 1 part in 109. How long does it take for the
drift to equal the width of 1 bit? Do you see any practical implications of this calcula-
tion? If so, what?

39. In Fig. 2-35, the user data rate for OC-3 is stated to be 148.608 Mbps. Show how this
number can be derived from the SONET OC-3 parameters. What will be the gross,
SPE, and user data rates of an OC-3072 line?

40. To accommodate lower data rates than STS-1, SONET has a system of virtual tribu-
taries (VTs). A VT is a partial payload that can be inserted into an STS-1 frame and
combined with other partial payloads to fill the data frame. VT1.5 uses 3 columns,
VT2 uses 4 columns, VT3 uses 6 columns, and VT6 uses 12 columns of an STS-1
frame. Which VT can accommodate

(a) A DS-1 service (1.544 Mbps)?
(b) European CEPT-1 service (2.048 Mbps)?
(c) A DS-2 service (6.312 Mbps)?

41. What is the available user bandwidth in an OC-12c connection?

42. What is the difference, if any, between the demodulator part of a modem and the coder
part of a codec? (After all, both convert analog signals to digital ones.)

43. Three packet-switching networks each contain n nodes. The first network has a star
topology with a central switch, the second is a (bidirectional) ring, and the third is fully
interconnected, with a wire from every node to every other node. What are the best-,
average-, and worst-case transmission paths in hops?

44. Compare the delay in sending an x-bit message over a k-hop path in a circuit-switched
network and in a (lightly loaded) packet-switched network. The circuit setup time is s
sec, the propagation delay is d sec per hop, the packet size is p bits, and the data rate is
b bps. Under what conditions does the packet network have a lower delay? Also, ex-
plain the conditions under which a packet-switched network is preferable to a cir-
cuit-switched network.

45. Suppose that x bits of user data are to be transmitted over a k-hop path in a pack-
et-switched network as a series of packets, each containing p data bits and h header
bits, with x >> p + h. The bit rate of the lines is b bps and the propagation delay is
negligible. What value of p minimizes the total delay?

46. In a typical mobile phone system with hexagonal cells, it is forbidden to reuse a fre-
quency band in an adjacent cell. If 840 frequencies are available, how many can be
used in a given cell?

47. The actual layout of cells is seldom as regular that as shown in Fig. 2-39. Even the

CHAP. 2 PROBLEMS 199

shapes of individual cells are typically irregular. Give a possible reason why this might
be. How do these irregular shapes affect frequency assignment to each cell?

48. Make a rough estimate of the number of PCS microcells 100 m in diameter it would
take to cover San Francisco (120 square km).

49. Sometimes when a mobile user crosses the boundary from one cell to another, the cur-
rent call is abruptly terminated, even though all transmitters and receivers are func-
tioning perfectly. Why?

50. At the low end, the telephone system is star shaped, with all the local loops in a neigh-
borhood converging on an end office. In contrast, cable television consists of a single
long cable snaking its way past all the houses in the same neighborhood. Suppose that
a future TV cable were 10-Gbps fiber instead of copper. Could it be used to simulate
the telephone model of everybody having their own private line to the end office? If
so, how many one-telephone houses could be hooked up to a single fiber?

51. A cable company decides to provide Internet access over cable in a neighborhood con-
sisting of 5000 houses. The company uses a coaxial cable and spectrum allocation al-
lowing 100 Mbps downstream bandwidth per cable. To attract customers, the company
decides to guarantee at least 2 Mbps downstream bandwidth to each house at any time.
Describe what the cable company needs to do to provide this guarantee.

52. Using the spectral allocation of Fig. 2-46 and the information given in the text, how
many Mbps does a cable system allocate to upstream and how many to downstream?

53. How fast can a cable user receive data if the network is otherwise idle? Assume that
the user interface is
(a) 10-Mbps Ethernet
(b) 100-Mbps Ethernet
(c) 54-Mbps Wireless.

54. The 66 low-orbit satellites in the Iridium project are divided into six necklaces around
the earth. At the altitude they are using, the period is 90 minutes. What is the average
interval for handoffs for a stationary transmitter?

55. Consider a satellite at the altitude of geostationary satellites but whose orbital plane is
inclined to the equatorial plane by an angle q. To a stationary user on the earth’s sur-
face at north latitude q, does this satellite appear motionless in the sky? If not, describe
its motion.

56. Calculate the end-to-end transit time for a packet for both GEO (altitude: 35,800 km),
MEO (altitude: 18,000 km), and LEO (altitude: 750 km) satellites.

57. What is the latency of a call originating at the North Pole to reach the South Pole if the
call is routed via Iridium satellites? Assume that the switching time at the satellites is
10 microseconds and earth’s radius is 6371 km.

58. How long will it take to transmit a 1-GB file from one VSAT to another using a hub as
shown in Fig. 2-50? Assume that the uplink is 1 Mbps, the downlink is 7 Mbps, and
circuit switching is used with 1.2 sec circuit setup time.

59. Calculate the transmit time in the previous problem if packet switching is used instead.

200 THE PHYSICAL LAYER CHAP. 2

Assume that the packet size is 64 KB, the switching delay in the satellite and hub is
10 microseconds, and the packet header size is 32 bytes.

60. Multiplexing STS-1 multiple data streams, called tributaries, plays an important role in
SONET. A 3:1 multiplexer multiplexes three input STS-1 tributaries onto one output
STS-3 stream. This multiplexing is done byte for byte. That is, the first three output
bytes are the first bytes of tributaries 1, 2, and 3, respectively. The next three output
bytes are the second bytes of tributaries 1, 2, and 3, respectively, and so on. Write a
program that simulates this 3:1 multiplexer. Your program should consist of five proc-
esses. The main process creates four processes, one each for the three STS-1 tributaries
and one for the multiplexer. Each tributary process reads in an STS-1 frame from an
input file as a sequence of 810 bytes. They send their frames (byte by byte) to the mul-
tiplexer process. The multiplexer process receives these bytes and outputs an STS-3
frame (byte by byte) by writing it to standard output. Use pipes for communication
among processes.

61. Write a program to implement CDMA. Assume that the length of a chip sequence is
eight and the number of stations transmitting is four. Your program consists of three
sets of processes: four transmitter processes (t0, t1, t2, and t3), one joiner process, and
four receiver processes (r0, r1, r2, and r3). The main program, which also acts as the
joiner process first reads four chip sequences (bipolar notation) from the standard input
and a sequence of 4 bits (1 bit per transmitter process to be transmitted), and forks off
four pairs of transmitter and receiver processes. Each pair of transmitter/receiver proc-
esses (t0,r0; t1,r1; t2,r2; t3,r3) is assigned one chip sequence and each transmitter proc-
ess is assigned 1 bit (first bit to t0, second bit to t1, and so on). Next, each transmitter
process computes the signal to be transmitted (a sequence of 8 bits) and sends it to the
joiner process. After receiving signals from all four transmitter processes, the joiner
process combines the signals and sends the combined signal to the four receiver proc-
esses. Each receiver process then computes the bit it has received and prints it to stan-
dard output. Use pipes for communication between processes.

3
THE DATA LINK LAYER

In this chapter, we will study the design principles for the second layer in our
model, the data link layer. This study deals with algorithms for achieving reliable,
efficient communication of whole units of information called frames (rather than
individual bits, as in the physical layer) between two adjacent machines. By adja-
cent, we mean that the two machines are connected by a communication channel
that acts conceptually like a wire (e.g., a coaxial cable, telephone line, or wireless
channel). The essential property of a channel that makes it ‘‘wire-like’’ is that the
bits are delivered in exactly the same order in which they are sent.

At first you might think this problem is so trivial that there is nothing to
study—machine A just puts the bits on the wire, and machine B just takes them off.
Unfortunately, communication channels make errors occasionally. Furthermore,
they have only a finite data rate, and there is a nonzero propagation delay between
the time a bit is sent and the time it is received. These limitations have important
implications for the efficiency of the data transfer. The protocols used for commu-
nications must take all of these factors into consideration. These protocols are the
subject of this chapter.

After an introduction to the key design issues present in the data link layer, we
will start our study of its protocols by looking at the nature of errors and how they
can be detected and corrected. Then we will study a series of increasingly com-
plex example protocols, each one solving more and more of the problems present
in this layer. Finally, we will conclude with some examples of data link protocols.

201

202 THE DAT A LINK LAYER CHAP. 3

3.1 DAT A LINK LAYER DESIGN ISSUES

The data link layer uses the services of the physical layer below it to send and
receive bits over (possibly unreliable) communication channels that may lose data.
It has a number of functions, including:

1. Providing a well-defined service interface to the network layer
(Sec. 3.1.1).

2. Framing sequences of bytes as self-contained segments (Sec. 3.1.2).

3. Detecting and correcting transmission errors (Sec. 3.1.3).

4. Regulating the flow of data so that slow receivers are not swamped
by fast senders (Sec. 3.1.4).

To accomplish these goals, the data link layer takes the packets it gets from the net-
work layer and encapsulates them into frames for transmission. Each frame con-
tains a frame header, a payload field for holding the packet, and a frame trailer, as
illustrated in Fig. 3-1. Frame management forms the heart of what the data link
layer does. In the following sections, we will examine all of the above issues in
detail. Also, when unreliable wireless networks are being used, using protocols to
improve the data link later often improves performance.

TrailerHeader Payload field

Frame

Sending machine

PacketPacket

Receiving machine

TrailerHeader Payload field

Figure 3-1. Relationship between packets and frames.

Although this chapter is primarily about the data link layer and its protocols,
many of the principles we will study here, such as error control and flow control,
are found in transport and other protocols as well in some networks. That is be-
cause reliability is an overall goal, and it is achieved when all the layers work to-
gether. In fact, in many networks, these functions are found mostly in the upper
layers, with the data link layer doing the minimal job that is ‘‘good enough.’’ How-
ever, no matter where they are found, the principles are pretty much the same.
They often show up in their simplest and purest forms in the data link layer, mak-
ing this a good place to examine them in detail.

SEC. 3.1 DATA LINK LAYER DESIGN ISSUES 203

3.1.1 Services Provided to the Network Layer

The function of the data link layer is to provide services to the network layer.
The principal service of the link layer is transferring data from the network layer
on the source machine to the network layer on the destination machine. On the
source machine is an entity, call it a process, in the network layer that passes pack-
ets to the data link layer for transmission to the destination. The job of the data
link layer is to transmit the data to the destination machine so they can be handed
over to the network layer there, as shown in Fig. 3-2(a). The actual transmission
follows the path of Fig. 3-2(b), but it is easier to think in terms of two data link
layer processes communicating using a data link protocol. For this reason, we will
implicitly use the model of Fig. 3-2(a) throughout this chapter.

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

Host 1 Host 2 Host 1 Host 2

Virtual
data path

Actual
data path

(a) (b)

Figure 3-2. (a) Virtual communication. (b) Actual communication.

The data link layer can be designed to offer various services. The actual ser-
vices that are offered vary from protocol to protocol. Three reasonable possibili-
ties that we will consider in turn are:

1. Unacknowledged connectionless service.

2. Acknowledged connectionless service.

3. Acknowledged connection-oriented service.

Unacknowledged connectionless service consists of having the source machine
send independent frames to the destination machine without having the destination

204 THE DAT A LINK LAYER CHAP. 3

machine acknowledge them. Ethernet is a good example of a data link layer that
provides this class of service. No logical connection is established beforehand or
released afterward. If a frame is lost due to noise on the line, no attempt is made to
detect the loss or recover from it in the data link layer. This class of service is ap-
propriate when the error rate is very low, so recovery is left to higher layers. It is
also appropriate for real-time traffic, such as voice or video, in which late data are
worse than bad data.

The next step up in terms of reliability is acknowledged connectionless service.
When this service is offered, there are still no logical connections used, but each
frame sent is individually acknowledged. In this way, the sender knows whether a
frame has arrived correctly or been lost. If it has not arrived within a specified
time interval, it can be sent again. This service is useful over unreliable channels,
such as wireless systems. 802.11 (WiFi) is a good example of this type of link
layer service.

It is perhaps worth emphasizing that providing acknowledgements in the data
link layer is just an optimization. It is never a requirement. The network layer can
always send a packet and wait for it to be acknowledged by its peer on the remote
machine. If the acknowledgement is not received before a retransmission timer ex-
pires, the sender can just send the entire message again. The trouble with this
strategy is that it can be inefficient. Links frequently have a strict maximum frame
length imposed by the hardware, and known propagation delays. The network
layer does not know these parameters. It might send a large packet that is broken
up into, say, ten frames, of which two are lost on average. It would then take a very
long time for the packet to get through. Instead, if individual frames are acknow-
ledged and retransmitted, then errors can be corrected more directly and more
quickly. On reliable channels, such as fiber, the overhead of a heavyweight data
link layer protocol may be unnecessary, but on (inherently unreliable) wireless
channels the overhead is often worth the cost.

Getting back to our services, the most sophisticated service the data link layer
can provide to the network layer is connection-oriented service. With this service,
the source and destination machines establish a connection before any data are
transferred. Each frame sent over the connection is numbered, and the data link
layer guarantees that each frame sent is indeed received. Furthermore, it guaran-
tees that each frame is received exactly once and that all frames are received in the
right order. Connection-oriented service thus provides the network layer processes
with the equivalent of a reliable bit stream. It is appropriate over long, unreliable
links such as a satellite channel or a long-distance telephone circuit. If acknow-
ledged connectionless service were used, it is conceivable that lost acknowledge-
ments could cause a frame to be sent and received several times, wasting band-
width.

When connection-oriented service is used, transfers go through three distinct
phases. In the first phase, the connection is established by having both sides ini-
tialize variables and counters needed to keep track of which frames have been

SEC. 3.1 DATA LINK LAYER DESIGN ISSUES 205

received and which ones have not. In the second phase, one or more frames are ac-
tually transmitted. In the third and final phase, the connection is released, freeing
up the variables, buffers, and other resources used to maintain the connection.

3.1.2 Framing

To provide service to the network layer, the data link layer must use the service
provided to it by the physical layer. The physical layer accepts a raw bit stream
and attempts to deliver it to the destination. If the channel is noisy, as it is for most
wireless and some wired links, the physical layer will add some redundancy to its
signals to reduce the bit error rate to a tolerable level. However, the bit stream re-
ceived by the data link layer is not guaranteed to be error-free. Some bits may
have different values, and the number of bits received may be less than, equal to, or
more than the number of bits transmitted. It is up to the data link layer to detect
and, if necessary, correct errors.

The usual approach is for the data link layer to break up the bit stream into dis-
crete frames, compute a short token called a checksum for each frame, and include
the checksum in the frame when it is transmitted. (Checksum algorithms will be
discussed later in this chapter.) When a frame arrives at the destination, the re-
ceiver recomputes the checksum based on the received frame. If the newly com-
puted checksum is different from the one contained in the frame, the data link layer
knows that an error has occurred and takes steps to deal with it (e.g., discarding the
bad frame and possibly also sending back an error report).

Breaking up the bit stream into frames is more difficult than it at first appears.
A good design must make it easy for a receiver to find the start of new frames
while using little of the channel bandwidth. We will look at four methods:

1. Byte count.

2. Flag bytes with byte stuffing.

3. Flag bits with bit stuffing.

4. Physical layer coding violations.

The first framing method uses a field in the header to specify the number of
bytes in the frame. When the data link layer at the destination sees the byte count,
it knows how many bytes follow and hence where the end of the frame is. This
technique is shown in Fig. 3-3(a) for four small example frames of sizes 5, 5, 8,
and 8 bytes, respectively.

The trouble with this algorithm is that the count can be garbled by a transmis-
sion error. For example, if the byte count of 5 in the second frame of Fig. 3-3(b)
becomes a 7 due to a single bit flip, the destination will get out of synchronization.
It will then be unable to locate the correct start of the next frame. Even if the
checksum is incorrect so the destination knows that the frame is bad, it still has no

206 THE DAT A LINK LAYER CHAP. 3

(b)

(a)

5 1 2 3 4 5 6 7 8 9 8 0 1 2 3 4 5 6 8 7 8 9 0 1 2 3

5 1 2 3 4 7 6 7 8 9 8 0 1 2 3 4 5 6 8 7 8 9 0 1 2 3

Byte count One byte

Error

Frame 1
5 bytes

Frame 1

Frame 2
5 bytes

Frame 2
(Wrong)

Frame 3
8 bytes

Frame 4
8 bytes

Now a byte
count

Figure 3-3. A byte stream. (a) Without errors. (b) With one error.

way of telling where the next frame starts. Sending a frame back to the source ask-
ing for a retransmission does not help either, since the destination does not know
how many bytes to skip over to get to the start of the retransmission. For this rea-
son, the byte count method is rarely used by itself.

The second framing method gets around the problem of resynchronization
after an error by having each frame start and end with special bytes. Often the
same byte, called a flag byte, is used as both the starting and ending delimiter.
This byte is shown in Fig. 3-4(a) as FLAG. Two consecutive flag bytes indicate
the end of one frame and the start of the next. Thus, if the receiver ever loses syn-
chronization, it can just search for two flag bytes to find the end of the current
frame and the start of the next frame.

However, there is a still a problem left. It may happen that the flag byte occurs
in the data, especially when binary data such as photos or songs are being trans-
mitted. This situation would interfere with the framing. One way to solve this
problem is to have the sender’s data link layer insert a special escape byte (ESC)
just before each ‘‘accidental’’ flag byte in the data. Thus, a framing flag byte can
be distinguished from one in the data by the absence or presence of an escape byte
before it. The data link layer on the receiving end removes the escape bytes before
giving the data to the network layer. This technique is called byte stuffing.

Of course, the next question is: what happens if an escape byte occurs in the
middle of the data? The answer is that it, too, is stuffed with an escape byte. At
the receiver, the first escape byte is removed, leaving the data byte that follows it
(which might be another escape byte or the flag byte). Some examples are shown
in Fig. 3-4(b). In all cases, the byte sequence delivered after destuffing is exactly
the same as the original byte sequence. We can still search for a frame boundary
by looking for two flag bytes in a row, without bothering to undo escapes.

SEC. 3.1 DATA LINK LAYER DESIGN ISSUES 207

A BESC FLAG

A BESC ESC

A ESC BESC ESC FLAG

A ESC BESC ESC ESC

BA FLAG

BA ESC

FLAGA ESC B

ESCA ESC B

FLAGTrailerFLAG Header Payload field

Original bytes After stuffing
(a)

(b)

Figure 3-4. (a) A frame delimited by flag bytes. (b) Four examples of byte se-
quences before and after byte stuffing.

The byte-stuffing scheme depicted in Fig. 3-4 is a slight simplification of the
one actually used in PPP (Point-to-Point Protocol), which is used to carry packets
over communications links and is common on the Internet. We will discuss PPP in
Sec. 3.5.1.

The third method of delimiting the bit stream gets around a disadvantage of
byte stuffing, which is that it is tied to the use of 8-bit bytes. Framing can be also
be done at the bit level, so frames can contain an arbitrary number of bits made up
of units of any size. It was developed for the once-popular HDLC (High-level
Data Link Control) protocol. Each frame begins and ends with a special bit pat-
tern, 01111110 or 0x7E in hexadecimal. This pattern is a flag byte. Whenever the
sender’s data link layer encounters five consecutive 1s in the data, it automatically
stuffs a 0 bit into the outgoing bit stream. This bit stuffing is analogous to byte
stuffing, in which an escape byte is stuffed into the outgoing character stream be-
fore a flag byte in the data. It also ensures a minimum density of transitions that
help the physical layer maintain synchronization. USB (Universal Serial Bus) uses
bit stuffing for this reason.

When the receiver sees five consecutive incoming 1 bits, followed by a 0 bit, it
automatically destuffs (i.e., deletes) the 0 bit. Just as byte stuffing is completely
transparent to the network layer in both computers, so is bit stuffing. If the user
data contain the flag pattern, 01111110, this flag is transmitted as 011111010 but
stored in the receiver’s memory as 01111110. The upper layers are completely
unaware that bit stuffing is being used. Figure 3-5 gives an example of bit stuffing.

208 THE DAT A LINK LAYER CHAP. 3

0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0

0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 0

Stuffed bits

(a)

(b)

(c) 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0

Figure 3-5. Bit stuffing. (a) The original data. (b) The data as they appear on
the line. (c) The data as they are stored in the receiver’s memory after destuffing.

With bit stuffing, the boundary between two frames can be unambiguously rec-
ognized by the flag pattern. Thus, if the receiver loses track of where it is, all it has
to do is scan the input for flag sequences, since they can only occur at frame
boundaries and never within the data.

With both bit and byte stuffing, a side effect is that the length of a frame now
depends on the contents of the data it carries. For instance, if there are no flag
bytes in the data, 100 bytes might be carried in a frame of roughly 100 bytes. If,
however, the data consists solely of flag bytes, each flag byte will be escaped and
the frame will become roughly 200 bytes long. With bit stuffing, the increase
would be roughly 12.5% as 1 bit is added to every byte.

The last method of framing is to use a shortcut from the physical layer. We
saw in Chap. 2 that the encoding of bits as signals often includes redundancy to
help the receiver. This redundancy means that some signals will not occur in regu-
lar data. For example, in the 4B/5B line code 4 data bits are mapped to 5 signal bits
to ensure sufficient bit transitions. This means that 16 out of the 32 signal possibil-
ities are not used. We can use some reserved signals to indicate the start and end of
frames. In effect, we are using ‘‘coding violations’’ (invalid characters) to delimit
frames. The beauty of this scheme is that because they are reserved signals, it is
easy to find the start and end of frames and there is no need to stuff the data.

Many data link protocols use a combination of these methods for safety. A
common pattern used for Ethernet and 802.11 is to have a frame begin with a
well-defined pattern called a preamble. This pattern might be quite long (72 bits
is typical for 802.11) to allow the receiver to prepare for an incoming packet. The
preamble is then followed by a length (i.e., count) field in the header that is used to
locate the end of the frame.

3.1.3 Error Control

Having solved the problem of marking the start and end of each frame, we
come to the next problem: how to make sure all frames are eventually delivered to
the network layer at the destination and in the proper order. Assume for the
moment that the receiver can tell whether a frame that it receives contains correct

SEC. 3.1 DATA LINK LAYER DESIGN ISSUES 209

or faulty information (we will look at the codes that are used to detect and correct
transmission errors in Sec. 3.2). For unacknowledged connectionless service, it
might be fine if the sender just kept outputting frames without regard to whether
they were arriving properly. But for reliable, connection-oriented service it would
not be fine at all.

The usual way to ensure reliable delivery is to provide the sender with some
feedback about what is happening at the other end of the line. Typically, the proto-
col calls for the receiver to send back special control frames bearing positive or
negative acknowledgements about the incoming frames. If the sender receives a
positive acknowledgement about a frame, it knows the frame has arrived safely.
On the other hand, a negative acknowledgement means that something has gone
wrong and the frame must be transmitted again.

An additional complication comes from the possibility that hardware troubles
may cause a frame to vanish completely (e.g., in a noise burst). In this case, the re-
ceiver will not react at all, since it has no reason to react. Similarly, if the acknowl-
edgement frame is lost, the sender will not know how to proceed. It should be
clear that a protocol in which the sender transmits a frame and then waits for an ac-
knowledgement, positive or negative, will hang forever if a frame is ever lost due
to, for example, malfunctioning hardware or a faulty communication channel.

This possibility is dealt with by introducing timers into the data link layer.
When the sender transmits a frame, it generally also starts a timer. The timer is set
to expire after an interval long enough for the frame to reach the destination, be
processed there, and have the acknowledgement propagate back to the sender.
Normally, the frame will be correctly received and the acknowledgement will get
back before the timer runs out, in which case the timer will be canceled.

However, if either the original frame or the acknowledgement is lost, the timer
will go off, alerting the sender to a potential problem. The obvious solution is to
just transmit the frame again. However, when frames may be transmitted multiple
times there is a danger that the receiver will accept the same frame two or more
times and pass it to the network layer more than once. To prevent this from hap-
pening, it is necessary to assign sequence numbers to outgoing frames, so that the
receiver can distinguish retransmissions from originals.

The whole issue of managing the timers and sequence numbers so as to ensure
that each frame is ultimately passed to the network layer at the destination exactly
once, no more and no less, is an important part of the duties of the data link layer
(and higher layers). Later in this chapter, we will look at a series of increasingly
sophisticated examples to see how this management is done.

3.1.4 Flow Control

Another important design issue that occurs in the data link layer (and higher
layers as well) is what to do with a sender that systematically wants to transmit
frames faster than the receiver can accept them. This situation can occur when the

210 THE DAT A LINK LAYER CHAP. 3

sender is running on a fast, powerful computer and the receiver is running on a
slow, low-end machine. A common situation is when a smartphone requests a Web
page from a far more powerful server, which then turns on the fire hose and blasts
the data at the poor helpless phone until it is completely swamped. Even if the
transmission is error free, the receiver may be unable to handle the frames as fast
as they arrive and will lose some.

Clearly, something has to be done to prevent this situation. Two approaches
are commonly used. In the first one, feedback-based flow control, the receiver
sends back information to the sender giving it permission to send more data, or at
least telling the sender how the receiver is doing. In the second one, rate-based
flow control, the protocol has a built-in mechanism that limits the rate at which
senders may transmit data, without using feedback from the receiver.

In this chapter, we will study feedback-based flow control schemes, primarily
because rate-based schemes are only seen as part of the transport layer (Chap. 5).
Feedback-based schemes are seen at both the link layer and higher layers. The lat-
ter is more common these days, in which case the link layer hardware is designed
to run fast enough that it does not cause loss. For example, hardware imple-
mentations of the link layer as NICs (Network Interface Cards) are sometimes
said to run at ‘‘wire speed,’’ meaning that they can handle frames as fast as they
can arrive on the link. Any overruns are then not a link problem, so they are hand-
led by higher layers.

Various feedback-based flow control schemes exist, but most of them use the
same basic principle. The protocol contains well-defined rules about when a send-
er may transmit the next frame. These rules often prohibit frames from being sent
until the receiver has granted permission, either implicitly or explicitly. For ex-
ample, when a connection is set up the receiver might say: ‘‘You may send me n
frames now, but after they have been sent, do not send any more until I have told
you to continue.’’ We will examine the details shortly.

3.2 ERROR DETECTION AND CORRECTION

We saw in Chap. 2 that communication channels have a range of charac-
teristics. Some channels, like optical fiber in telecommunications networks, have
tiny error rates so that transmission errors are a rare occurrence. But other chan-
nels, especially wireless links and aging local loops, have error rates that are orders
of magnitude larger. For these links, transmission errors are the norm. They cannot
be avoided at a reasonable expense or cost in terms of performance. The conclu-
sion is that transmission errors are here to stay. We have to learn how to deal with
them.

Network designers have developed two basic strategies for dealing with errors.
Both add redundant information to the data that is sent. One strategy is to include
enough redundant information to enable the receiver to be able to deduce what the

SEC. 3.2 ERROR DETECTION AND CORRECTION 211

transmitted data must have been. The other is to include only enough redundancy
to allow the receiver to deduce that an error has occurred (but not which error) and
have it request a retransmission. The former strategy uses error-correcting codes
and the latter uses error-detecting codes. The use of error-correcting codes is
often referred to as FEC (Forward Error Correction).

Each of these techniques occupies a different ecological niche. On channels
that are highly reliable, such as fiber, it is cheaper to use an error-detecting code
and just retransmit the occasional block found to be faulty. However, on channels
such as wireless links that make many errors, it is better to add redundancy to each
block so that the receiver is able to figure out what the originally transmitted block
was. FEC is used on noisy channels because retransmissions are just as likely to
be in error as the first transmission.

A key consideration for these codes is the type of errors that are likely to occur.
Neither error-correcting codes nor error-detecting codes can handle all possible er-
rors since the redundant bits that offer protection are as likely to be received in
error as the data bits (which can compromise their protection). It would be nice if
the channel treated redundant bits differently than data bits, but it does not. They
are all just bits to the channel. This means that to avoid undetected errors the code
must be strong enough to handle the expected errors.

One model is that errors are caused by extreme values of thermal noise that
overwhelm the signal briefly and occasionally, giving rise to isolated single-bit er-
rors. Another model is that errors tend to come in bursts rather than singly. This
model follows from the physical processes that generate them—such as a deep
fade on a wireless channel or transient electrical interference on a wired channel.

Both models matter in practice, and they have different trade-offs. Having the
errors come in bursts has both advantages and disadvantages over isolated sin-
gle-bit errors. On the advantage side, computer data are always sent in blocks of
bits. Suppose that the block size was 1000 bits and the error rate was 0.001 per bit.
If errors were independent, most blocks would contain an error. If the errors came
in bursts of 100, however, only one block in 100 would be affected, on average.
The disadvantage of burst errors is that when they do occur they are much harder
to correct than isolated errors.

Other types of errors also exist. Sometimes, the location of an error will be
known, perhaps because the physical layer received an analog signal that was far
from the expected value for a 0 or 1 and declared the bit to be lost. This situation is
called an erasure channel. It is easier to correct errors in erasure channels than in
channels that flip bits because even if the value of the bit has been lost, at least we
know which bit is in error. However, we often do not have the benefit of erasures.

We will examine both error-correcting codes and error-detecting codes next.
Please keep two points in mind, though. First, we cover these codes in the link
layer because this is the first place that we have run up against the problem of reli-
ably transmitting groups of bits. However, the codes are widely used because
reliability is an overall concern. Error-correcting codes are also often seen in the

212 THE DAT A LINK LAYER CHAP. 3

physical layer, particularly for noisy channels, and in higher layers, particularly for
real-time media and content distribution. Error-detecting codes are commonly
used in link, network, and transport layers.

The second point to bear in mind is that error codes are applied mathematics.
Unless you are particularly adept at Galois fields or the properties of sparse matri-
ces, you should get codes with good properties from a reliable source rather than
making up your own. In fact, this is what many protocol standards do, with the
same codes coming up again and again. In the material below, we will study a
simple code in detail and then briefly describe advanced codes. In this way, we
can understand the trade-offs from the simple code and talk about the codes that
are used in practice via the advanced codes.

3.2.1 Error-Correcting Codes

We will examine four different error-correcting codes:

1. Hamming codes.

2. Binary convolutional codes.

3. Reed-Solomon codes.

4. Low-Density Parity Check codes.

All of these codes add redundancy to the information that is sent. A frame consists
of m data (i.e., message) bits and r redundant (i.e., check) bits. In a block code,
the r check bits are computed solely as a function of the m data bits with which
they are associated, as though the m bits were looked up in a large table to find
their corresponding r check bits. In a systematic code, the m data bits are sent di-
rectly, along with the check bits, rather than being encoded themselves before they
are sent. In a linear code, the r check bits are computed as a linear function of the
m data bits. Exclusive OR (XOR) or modulo 2 addition is a popular choice. This
means that encoding can be done with operations such as matrix multiplications or
simple logic circuits. The codes we will look at in this section are linear, sys-
tematic block codes unless otherwise noted.

Let the total length of a block be n (i.e., n = m + r). We will describe this as
an (n, m) code. An n-bit unit containing data and check bits is referred to as an n-
bit codeword. The code rate, or simply rate, is the fraction of the codeword that
carries information that is not redundant, or m/n. The rates used in practice vary
widely. They might be 1/2 for a noisy channel, in which case half of the received
information is redundant, or close to 1 for a high-quality channel, with only a small
number of check bits added to a large message.

To understand how errors can be handled, it is necessary to first look closely at
what an error really is. Given any two codewords that may be transmitted or re-
ceived—say, 10001001 and 10110001—it is possible to determine how many

SEC. 3.2 ERROR DETECTION AND CORRECTION 213

corresponding bits differ. In this case, 3 bits differ. To determine how many bits
differ, just XOR the two codewords and count the number of 1 bits in the result.
For example:

10001001
10110001
00111000

The number of bit positions in which two codewords differ is called the Hamming
distance, named after Richard Hamming (Hamming, 1950). Its significance is that
if two codewords are a Hamming distance d apart, it will require d single-bit errors
to convert one into the other.

Given the algorithm for computing the check bits, it is possible to construct a
complete list of the legal codewords, and from this list to find the two codewords
with the smallest Hamming distance. This distance is the Hamming distance of the
complete code.

In most data transmission applications, all 2m possible data messages are legal,
but due to the way the check bits are computed, not all of the 2n possible code-
words are used. In fact, when there are r check bits, only the small fraction of
2m /2n or 1/2r of the possible messages will be legal codewords. It is the sparse-
ness with which the message is embedded in the space of codewords that allows
the receiver to detect and correct errors.

The error-detecting and error-correcting properties of a block code depend on
its Hamming distance. To reliably detect d errors, you need a distance d + 1 code
because with such a code there is no way that d single-bit errors can change a valid
codeword into another valid codeword. When the receiver sees an illegal code-
word, it can tell that a transmission error has occurred. Similarly, to correct d er-
rors, you need a distance 2d + 1 code because that way the legal codewords are so
far apart that even with d changes the original codeword is still closer than any
other codeword. This means the original codeword can be uniquely determined
based on the assumption that a larger number of errors are less likely.

As a simple example of an error-correcting code, consider a code with only
four valid codewords:

0000000000, 0000011111, 1111100000, and 1111111111

This code has a distance of 5, which means that it can correct double errors or
detect quadruple errors. If the codeword 0000000111 arrives and we expect only
single- or double-bit errors, the receiver will know that the original must have been
0000011111. If, however, a triple error changes 0000000000 into 0000000111, the
error will not be corrected properly. Alternatively, if we expect all of these errors,
we can detect them. None of the received codewords are legal codewords so an
error must have occurred. It should be apparent that in this example we cannot
both correct double errors and detect quadruple errors because this would require
us to interpret a received codeword in two different ways.

214 THE DAT A LINK LAYER CHAP. 3

In our example, the task of decoding by finding the legal codeword that is clos-
est to the received codeword can be done by inspection. Unfortunately, in the most
general case where all codewords need to be evaluated as candidates, this task can
be a time-consuming search. Instead, practical codes are usually designed so that
they have shortcuts to find what was likely the original codeword.

Imagine that we want to design a code with m message bits and r check bits
that will allow all single errors to be corrected. Each of the 2m legal messages has
n illegal codewords at a distance of 1 from it. These are formed by systematically
inverting each of the n bits in the n-bit codeword formed from it. Thus, each of the
2m legal messages requires n + 1 bit patterns dedicated to it. Since the total num-
ber of bit patterns is 2n, we must have (n + 1)2m) 2n . Using n = m + r , this re-
quirement becomes

(m + r + 1)) 2r (3-1)
Given m, this puts a lower limit on the number of check bits needed to correct sin-
gle errors.

This theoretical lower limit can, in fact, be achieved using a method due to
Hamming (1950). In Hamming codes the bits of the codeword are numbered con-
secutively, starting with bit 1 at the left end, bit 2 to its immediate right, and so on.
The bits that are powers of 2 (1, 2, 4, 8, 16, etc.) are check bits. The rest (3, 5, 6, 7,
9, etc.) are filled up with the m data bits. This pattern is shown for an (11,7) Ham-
ming code with 7 data bits and 4 check bits in Fig. 3-6. Each check bit forces the
modulo 2 sum, or parity, of some collection of bits, including itself, to be even (or
odd). A bit may be included in several check bit computations. To see which
check bits the data bit in position k contributes to, rewrite k as a sum of powers of
2. For example, 11 = 1 + 2 + 8 and 29 = 1 + 4 + 8 + 16. A bit is checked by just
those check bits occurring in its expansion (e.g., bit 11 is checked by bits 1, 2, and
8). In the example, the check bits are computed for even parity sums for a message
that is the ASCII letter ‘‘A.’’

Sent
codeword

Received
codeword

0 0 1 0 0 0 0 1 0 0 1
p1 p2 m3 p4 m5 m6 m7 p8 m9 m10 m11

Check
bits

Channel
0 0 1 0 1 0 0 1 0 0 1

1 bit
error

Syndrome
0 1 0 1

Check
results

A
1000001

Flip
bit 5

A
1000001

Message Message

Figure 3-6. Example of an (11, 7) Hamming code correcting a single-bit error.

This construction gives a code with a Hamming distance of 3, which means
that it can correct single errors (or detect double errors). The reason for the very
careful numbering of message and check bits will become apparent in the decoding

SEC. 3.2 ERROR DETECTION AND CORRECTION 215

process. When a codeword arrives, the receiver redoes the check bit computations
including the values of the received check bits. We call these the check results. If
the check bits are correct then, for even parity sums, each check result should be
zero. In this case, the codeword is accepted as valid.

If the check results are not all zero, however, an error has been detected. The
set of check results forms the error syndrome that is used to pinpoint and correct
the error. In Fig. 3-6, a single-bit error occurred on the channel so the check results
are 0, 1, 0, and 1 for k = 8, 4, 2, and 1, respectively. This gives a syndrome of
0101 or 4 + 1 = 5. By the design of the scheme, this means that the fifth bit is in
error. Flipping the incorrect bit (which might be a check bit or a data bit) and dis-
carding the check bits gives the correct message of an ASCII ‘‘A.’’

Hamming distances are valuable for understanding block codes, and Hamming
codes are used in error-correcting memory. However, most networks use stronger
codes. The second code we will look at is a convolutional code. This code is the
only one we will cover that is not a block code. In a convolutional code, an encod-
er processes a sequence of input bits and generates a sequence of output bits. There
is no natural message size or encoding boundary as in a block code. The output
depends on the current and previous input bits. That is, the encoder has memory.
The number of previous bits on which the output depends is called the constraint
length of the code. Convolutional codes are specified in terms of their rate and
constraint length.

Convolutional codes are widely used in deployed networks, for example, as
part of the GSM mobile phone system, in satellite communications, and in 802.11.
As an example, a popular convolutional code is shown in Fig. 3-7. This code is
known as the NASA convolutional code of r = 1/2 and k = 7, since it was first
used for the Voyager space missions starting in 1977. Since then it has been liber-
ally reused, for example, as part of 802.11.

Input
bit

Output
bit 1

S1 S2 S3 S4 S5 S6

Output
bit 2

Figure 3-7. The NASA binary convolutional code used in 802.11.

In Fig. 3-7, each input bit on the left-hand side produces two output bits on the
right-hand side that are XOR sums of the input and internal state. Since it deals
with bits and performs linear operations, this is a binary, linear convolutional code.
Since 1 input bit produces 2 output bits, the code rate is 1/2. It is not systematic
since none of the output bits is simply the input bit.

216 THE DAT A LINK LAYER CHAP. 3

The internal state is kept in six memory registers. Each time another bit is
input the values in the registers are shifted to the right. For example, if 111 is input
and the initial state is all zeros, the internal state, written left to right, will become
100000, 110000, and 111000 after the first, second, and third bits have been input.
The output bits will be 11, followed by 10, and then 01. It takes seven shifts to
flush an input completely so that it does not affect the output. The constraint length
of this code is thus k = 7.

A convolutional code is decoded by finding the sequence of input bits that is
most likely to have produced the observed sequence of output bits (which includes
any errors). For small values of k , this is done with a widely used algorithm devel-
oped by Viterbi (Forney, 1973). The algorithm walks the observed sequence, keep-
ing for each step and for each possible internal state the input sequence that would
have produced the observed sequence with the fewest errors. The input sequence
requiring the fewest errors at the end is the most likely message.

Convolutional codes have been popular in practice because it is easy to factor
the uncertainty of a bit being a 0 or a 1 into the decoding. For example, suppose
<1V is the logical 0 level and +1V is the logical 1 level, we might receive 0.9V and
<0.1V for 2 bits. Instead of mapping these signals to 1 and 0 right away, we would
like to treat 0.9V as ‘‘very likely a 1’’ and <0.1V as ‘‘maybe a 0’’ and correct the
sequence as a whole. Extensions of the Viterbi algorithm can work with these
uncertainties to provide stronger error correction. This approach of working with
the uncertainty of a bit is called soft-decision decoding. Conversely, deciding
whether each bit is a 0 or a 1 before subsequent error correction is called hard-
decision decoding.

The third kind of error-correcting code we will describe is the Reed-Solomon
code. Like Hamming codes, Reed-Solomon codes are linear block codes, and they
are often systematic, too. Unlike Hamming codes, which operate on individual
bits, Reed-Solomon codes operate on m bit symbols. Naturally, the mathematics
are more involved, so we will describe their operation by analogy.

Reed-Solomon codes are based on the fact that every n degree polynomial is
uniquely determined by n + 1 points. For example, a line having the form ax + b is
determined by two points. Extra points on the same line are redundant, which is
helpful for error correction. Imagine that we have two data points that represent a
line and we send those two data points plus two check points chosen to lie on the
same line. If one of the points is received in error, we can still recover the data
points by fitting a line to the received points. Three of the points will lie on the
line, and one point, the one in error, will not. By finding the line we have corrected
the error.

Reed-Solomon codes are actually defined as polynomials that operate over
finite fields, but they work in a similar manner. For m-bit symbols, the codewords
are 2m < 1 symbols long. A popular choice is to make m = 8 so that symbols are
bytes. A codeword is then 255 bytes long. The (255, 233) code is widely used; it
adds 22 redundant symbols to 233 data symbols. Decoding with error correction is

SEC. 3.2 ERROR DETECTION AND CORRECTION 217

done with an algorithm developed by Berlekamp and Massey that can efficiently
perform the fitting task for moderate-length codes (Massey, 1969).

Reed-Solomon codes are widely used in practice because of their strong
error-correction properties, particularly for burst errors. They are used for DSL,
data over cable, satellite communications, and perhaps most ubiquitously on CDs,
DVDs, and Blu-ray discs. Because they are based on m-bit symbols, a single-bit
error and an m-bit burst error are both treated simply as one symbol error. When 2t
redundant symbols are added, a Reed-Solomon code is able to correct up to t errors
in any of the transmitted symbols. This means, for example, that the (255, 233)
code, which has 32 redundant symbols, can correct up to 16 symbol errors. Since
the symbols may be consecutive and they are each 8 bits, an error burst of up to
128 bits can be corrected. The situation is even better if the error model is one of
erasures (e.g., a scratch on a CD that obliterates some symbols). In this case, up to
2t errors can be corrected.

Reed-Solomon codes are often used in combination with other codes such as a
convolutional code. The thinking is as follows. Convolutional codes are effective
at handling isolated bit errors, but they will fail, likely with a burst of errors, if
there are too many errors in the received bit stream. By adding a Reed-Solomon
code within the convolutional code, the Reed-Solomon decoding can mop up the
error bursts, a task at which it is very good. The overall code then provides good
protection against both single and burst errors.

The final error-correcting code we will cover is the LDPC (Low-Density Par-
ity Check) code. LDPC codes are linear block codes that were invented by Robert
Gallagher in his doctoral thesis (Gallagher, 1962). Like most theses, they were
promptly forgotten, only to be reinvented in 1995 when advances in computing
power had made them practical.

In an LDPC code, each output bit is formed from only a fraction of the input
bits. This leads to a matrix representation of the code that has a low density of 1s,
hence the name for the code. The received codewords are decoded with an approx-
imation algorithm that iteratively improves on a best fit of the received data to a
legal codeword. This corrects errors.

LDPC codes are practical for large block sizes and have excellent error-cor-
rection abilities that outperform many other codes (including the ones we have
looked at) in practice. For this reason, they are rapidly being included in new pro-
tocols. They are part of the standard for digital video broadcasting, 10 Gbps Ether-
net, power-line networks, and the latest version of 802.11. Expect to see more of
them in future networks.

3.2.2 Error-Detecting Codes

Error-correcting codes are widely used on wireless links, which are notoriously
noisy and error prone when compared to optical fibers. Without error-correcting
codes, it would be difficult to get anything through them. However, over fiber or

218 THE DAT A LINK LAYER CHAP. 3

high-quality copper, the error rate is much lower, so error detection and retransmis-
sion is usually more efficient there for dealing with the occasional error.

We will examine three different error-detecting codes. They are all linear, sys-
tematic block codes:

1. Parity.

2. Checksums.

3. Cyclic Redundancy Checks (CRCs).

To see how they can be more efficient than error-correcting codes, consider the
first error-detecting code, in which a single parity bit is appended to the data. The
parity bit is chosen so that the number of 1 bits in the codeword is even (or odd).
Doing this is equivalent to computing the (even) parity bit as the modulo 2 sum or
XOR of the data bits. For example, when 1011010 is sent in even parity, a bit is
added to the end to make it 10110100. With odd parity 1011010 becomes
10110101. A code with a single parity bit has a distance of 2, since any single-bit
error produces a codeword with the wrong parity. This means that it can detect
single-bit errors.

Consider a channel on which errors are isolated and the error rate is 10<6 per
bit. This may seem a tiny error rate, but it is at best a fair rate for a long wired
cable. Typical LAN links provide bit error rates of 10<10.2 Let the block size be
1000 bits. To provide error correction for 1000-bit blocks, we know from Eq. (3-1)
that 10 check bits are needed. Thus, a megabit of data would require 10,000 check
bits. To merely detect a block with a single 1-bit error, one parity bit per block will
suffice. Once every 1000 blocks, a block will be found to be in error and an extra
block (1001 bits) will have to be transmitted to repair the error. The total overhead
for the error detection and retransmission method is only 2001 bits per megabit of
data, versus 10,000 bits for a Hamming code.

One difficulty with this scheme is that a single parity bit can only reliably
detect a single-bit error in the block. If the block is badly garbled by a long burst
error, the probability that the error will be detected is only 0.5, which is hardly ac-
ceptable. The odds can be improved considerably if each block to be sent is
regarded as a rectangular matrix n bits wide and k bits high. Now, if we compute
and send one parity bit for each row, up to k-bit errors will be reliably detected as
long as there is at most one error per row.

However, there is something else we can do that provides even better protec-
tion against burst errors: we can compute the parity bits over the data in a different
order than the order in which the data bits are actually transmitted over the com-
munications channel. Doing so is called interleaving. In this case, we will com-
pute a parity bit for each of the n columns and send all the data bits as k rows,
sending the rows from top to bottom and the bits in each row from left to right in
the usual manner. At the last row, we send the n parity bits. This transmission
order is shown in Fig. 3-8 for n = 7 and k = 7.

SEC. 3.2 ERROR DETECTION AND CORRECTION 219

Burst
error

Channel

Transmit
order

Parity bits

1011110

N
c
l
w
o
r
k

Parity errors

1011110

N
e
t
w
o
r
k

1001110
1100101
1110100
1110111
1101111
1110010
1101011

1001110
1100011
1101100
1110111
1101111
1110010
1101011

Figure 3-8. Interleaving of parity bits to detect a burst error.

Interleaving is a general technique to convert a code that detects (or corrects)
isolated errors into a code that detects (or corrects) burst errors. In Fig. 3-8, when a
burst error of length n = 7 occurs, the bits that are in error are spread across dif-
ferent columns. (A burst error does not imply that all the bits are wrong; it just
implies that at least the first and last are wrong. In Fig. 3-8, 4 bits were flipped
over a range of 7 bits.) At most 1 bit in each of the n columns will be affected, so
the parity bits on those columns will detect the error. This method uses n parity
bits on blocks of kn data bits to detect a single burst error of length n or less.

A burst of length n + 1 will pass undetected, however, if the first bit is
inverted, the last bit is inverted, and all the other bits are correct. If the block is
badly garbled by a long burst or by multiple shorter bursts, the probability that any
of the n columns will have the correct parity by accident is 0.5, so the probability
of a bad block being accepted when it should not be is 2<n .

The second kind of error-detecting code, the checksum, is closely related to
groups of parity bits. The word ‘‘checksum’’ is often used to mean a group of
check bits associated with a message, regardless of how the bits are calculated. A
group of parity bits is one example of a checksum. However, there are other,
stronger checksums based on a running sum of the data bits of the message. The
checksum is usually placed at the end of the message, as the complement of the
sum function. This way, errors may be detected by summing the entire received
codeword, both data bits and checksum. If the result comes out to be zero, no error
has been detected.

One example of a checksum is the 16-bit Internet checksum used on all Inter-
net packets as part of the IP protocol (Braden et al., 1988). This checksum is a
sum of the message bits divided into 16-bit words. Because this method operates
on words rather than on bits, as in parity, errors that leave the parity unchanged can
still alter the sum and be detected. For example, if the lowest-order bit in two dif-
ferent words is flipped from a 0 to a 1, a parity check across these bits would fail to
detect an error. However, two 1s will be added to the 16-bit checksum to produce a
different result. The error can then be detected.

220 THE DAT A LINK LAYER CHAP. 3

The Internet checksum is computed in one’s complement arithmetic instead of
as the modulo 216 sum. In one’s complement arithmetic, a negative number is the
bitwise complement of its positive counterpart. Modern computers normally use
two’s complement arithmetic, in which a negative number is the one’s complement
plus one. On a two’s complement computer, the one’s complement sum is equiv-
alent to taking the sum modulo 216 and adding any overflow of the high-order bits
back into the low-order bits. This algorithm gives a more uniform coverage of the
data by the checksum bits. Otherwise, two high-order bits can be added, overflow,
and be lost without changing the sum. There is another benefit, too. One’s comple-
ment has two representations of zero, all 0s and all 1s. This allows one value (e.g.,
all 0s) to indicate that there is no checksum, without the need for another field.

For decades, it has always been assumed that frames to be checksummed con-
tain random bits. All analyses of checksum algorithms have been made under this
assumption. Inspection of real data by Partridge et al. (1995) has shown this as-
sumption to be quite wrong. As a consequence, undetected errors are in some
cases much more common than had been previously thought.

The Internet checksum, in particular, is efficient and simple but provides weak
protection in some cases precisely because it is a simple sum. It does not detect the
deletion or addition of zero data, nor swapping parts of the message, and it pro-
vides weak protection against message splices in which parts of two packets are
put together. These errors may seem very unlikely to occur by random processes,
but they are just the sort of errors that can occur with buggy hardware.

A better choice is Fletcher’s checksum (Fletcher, 1982). It includes a posi-
tional component, adding the product of the data and its position to the running
sum. This provides stronger detection of changes in the position of data.

Although the two preceding schemes may sometimes be adequate at higher
layers, in practice, a third and stronger kind of error-detecting code is in wide-
spread use at the link layer: the CRC (Cyclic Redundancy Check), also known as
a polynomial code. Polynomial codes are based upon treating bit strings as
representations of polynomials with coefficients of 0 and 1 only. A k-bit frame is
regarded as the coefficient list for a polynomial with k terms, ranging from xk < 1 to
x0. Such a polynomial is said to be of degree k < 1. The high-order (leftmost) bit
is the coefficient of xk < 1 , the next bit is the coefficient of x k < 2, and so on. For ex-
ample, 110001 has 6 bits and thus represents a six-term polynomial with coef-
ficients 1, 1, 0, 0, 0, and 1: 1x5 + 1x4 + 0x3 + 0x 2 + 0x1 + 1x0.

Polynomial arithmetic is done modulo 2, according to the rules of algebraic
field theory. It does not have carries for addition or borrows for subtraction. Both
addition and subtraction are identical to exclusive OR. For example:

10011011 00110011 11110000 01010101
+ 11001010 + 11001101 ï 10100110 ï 10101111

01010001 11111110 01010110 11111010

SEC. 3.2 ERROR DETECTION AND CORRECTION 221

Long division is carried out in exactly the same way as it is in binary except that
the subtraction is again done modulo 2. A divisor is said ‘‘to go into’’ a dividend if
the dividend has as many bits as the divisor.

When the polynomial code method is employed, the sender and receiver must
agree upon a generator polynomial, G(x), in advance. Both the high- and low-
order bits of the generator must be 1. To compute the CRC for some frame with m
bits corresponding to the polynomial M (x), the frame must be longer than the gen-
erator polynomial. The idea is to append a CRC to the end of the frame in such a
way that the polynomial represented by the checksummed frame is divisible by
G(x). When the receiver gets the checksummed frame, it tries dividing it by G(x).
If there is a remainder, there has been a transmission error.

The algorithm for computing the CRC is as follows:

1. Let r be the degree of G(x). Append r zero bits to the low-order end
of the frame so it now contains m + r bits and corresponds to the
polynomial xr M(x).

2. Divide the bit string corresponding to G(x) into the bit string corres-
ponding to xr M(x), using modulo 2 division.

3. Subtract the remainder (which is always r or fewer bits) from the bit
string corresponding to xr M(x) using modulo 2 subtraction. The re-
sult is the checksummed frame to be transmitted. Call its polynomial
T (x).

Figure 3-9 illustrates the calculation for a frame 1101011111 using the generator
G(x) = x4 + x + 1.

It should be clear that T (x) is divisible (modulo 2) by G(x). In any division
problem, if you diminish the dividend by the remainder, what is left over is divisi-
ble by the divisor. For example, in base 10, if you divide 210,278 by 10,941, the
remainder is 2399. If you then subtract 2399 from 210,278, what is left over
(207,879) is divisible by 10,941.

Now let us analyze the power of this method. What kinds of errors will be de-
tected? Imagine that a transmission error occurs, so that instead of the bit string
for T (x) arriving, T (x) + E(x) arrives. Each 1 bit in E (x) corresponds to a bit that
has been inverted. If there are k 1 bits in E(x), k single-bit errors have occurred. A
single burst error is characterized by an initial 1, a mixture of 0s and 1s, and a final
1, with all other bits being 0.

Upon receiving the checksummed frame, the receiver divides it by G(x); that
is, it computes [T (x) + E (x)]/G(x). T (x)/G(x) is 0, so the result of the computa-
tion is simply E(x)/G(x). Those errors that happen to correspond to polynomials
containing G(x) as a factor will slip by; all other errors will be caught.

If there has been a single-bit error, E(x) = xi, where i determines which bit is
in error. If G(x) contains two or more terms, it will never divide into E (x), so all
single-bit errors will be detected.

222 THE DAT A LINK LAYER CHAP. 3

00011

01001
11001

1

01011
11001

1

01111
11001

1

00000
11110

111 0

11100
00000

1100 0
0000 0

0

100 00
000 00

101 10
101 10

01 0
0

0000 0
1000 0

1 0

1 1
11 0 0 1

Remainder

Quotient (thrown away)
Frame with four zeros appended

00000 111111111 Frame with four zeros appended
minus remainder

Transmitted frame:

11 1 0
1 0 0

0 1 1 111Frame:
1 1

1 1 0 0 0 0 1 1 1 0
Generator:

Figure 3-9. Example calculation of the CRC.

If there have been two isolated single-bit errors, E(x) = xi + x j , where i > j .
Alternatively, this can be written as E(x) = x j (x i< j + 1). If we assume that G(x) is
not divisible by x, a sufficient condition for all double errors to be detected is that
G(x) does not divide x k + 1 for any k up to the maximum value of i < j (i.e., up to
the maximum frame length). Simple, low-degree polynomials that give protection
to long frames are known. For example, x15 + x14 + 1 will not divide x k + 1 for
any value of k below 32,768.

If there are an odd number of bits in error, E(X) contains an odd number of
terms (e.g., x 5 + x2 + 1, but not x2 + 1). Interestingly, no polynomial with an odd
number of terms has x + 1 as a factor in the modulo 2 system. By making x + 1 a
factor of G(x), we can catch all errors with an odd number of inverted bits. Statis-
tically, that alone catches half the cases.

Finally, and importantly, a polynomial code with r check bits will detect all
burst errors of length) r . A burst error of length k can be represented by
xi(xk < 1 + . . . + 1), where i determines how far from the right-hand end of the re-
ceived frame the burst is located. If G(x) contains an x0 term, it will not have x i as
a factor, so if the degree of the parenthesized expression is less than the degree of
G(x), the remainder can never be zero.

SEC. 3.2 ERROR DETECTION AND CORRECTION 223

If the burst length is r + 1, the remainder of the division by G(x) will be zero if
and only if the burst is identical to G(x). By definition of a burst, the first and last
bits must be 1, so whether it matches depends on the r < 1 intermediate bits. If all
combinations are regarded as equally likely, the probability of such an incorrect
frame being accepted as valid is ½r < 1 .

It can also be shown that when an error burst longer than r + 1 bits occurs or
when several shorter bursts occur, the probability of a bad frame getting through
unnoticed is ½r , assuming that all bit patterns are equally likely.

Certain polynomials have become international standards. The one used in
IEEE 802 followed the example of Ethernet and is

x32 + x 26 + x23 + x22 + x16 + x 12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x1 + 1

Among other desirable properties, it has the property that it detects all bursts of
length 32 or less and all bursts affecting an odd number of bits. It has been used
widely since the 1980s. However, this does not mean it is the best choice. Using
an exhaustive computational search, Castagnoli et al. (1993) and Koopman (2002)
found the best CRCs. These CRCs have a Hamming distance of 6 for typical mes-
sage sizes, while the IEEE standard CRC-32 has a Hamming distance of only 4.

Although the calculation required to compute the CRC may seem complicated,
it is easy to compute and verify CRCs in hardware with simple shift register cir-
cuits (Peterson and Brown, 1961). Newer and faster implementations are invented
regularly (Mitra and Nyack, 2017). In practice, hardware is nearly always used.
Dozens of networking standards include various CRCs, including virtually all
LANs (e.g., Ethernet, 802.11) and point-to-point links (e.g., packets over SONET).

3.3 ELEMENTARY DAT A LINK PROTOCOLS

To introduce the subject of protocols, we will begin by looking at three proto-
cols of increasing complexity. Before we look at the protocols, it is useful to make
explicit some of the assumptions underlying the model of communication.

3.3.1 Initial Simplifying Assumptions

Independent Processes. To start with, we assume that the physical layer, data
link layer, and network layer are independent processes that communicate by pas-
sing messages back and forth. A common implementation is shown in Fig. 3-10.
The physical layer process and some of the data link layer process run on dedicated
hardware called a NIC (Network Interface Card). The rest of the link layer proc-
ess and the network layer process run on the main CPU as part of the operating
system, with the software for the link layer process often taking the form of a de-
vice driver. However, other implementations are also possible (e.g., three proc-
esses offloaded to dedicated hardware called a network accelerator, or three

224 THE DAT A LINK LAYER CHAP. 3

processes running on the main CPU on a software-defined radio). Actually, the
preferred implementation changes from decade to decade with technology trade-
offs. In any event, treating the three layers as separate processes makes the dis-
cussion conceptually cleaner and also serves to emphasize the independence of the
layers.

Network

Cable (medium)

PHY

Link

Link

Application

Network Interface
Card (NIC)

Driver

Operating system

Computer

Figure 3-10. Implementation of the physical, data link, and network layers.

Unidirectional communication. Another key assumption is that machine A
wants to send a long stream of data to machine B, using a reliable, connection-ori-
ented service. Later, we will consider the case where B also wants to send data to
A simultaneously. A is assumed to have an infinite supply of data ready to send
and never has to wait for data to be produced. Instead, when A’s data link layer
asks for data, the network layer is always able to comply immediately. (This
restriction, too, will be dropped later.)

Reliable machines and processes. We also assume that machines do not
crash. That is, these protocols deal with communication errors, but not the prob-
lems caused by computers crashing and rebooting.

As far as the data link layer is concerned, the packet passed across the interface
to it from the network layer is pure data, whose every bit is to be delivered to the
destination’s network layer. The fact that the destination’s network layer may
interpret part of the packet as a header is of no concern to the data link layer.

3.3.2 Basic Transmission and Receipt

When the data link layer accepts a packet from the network layer at the sender,
it encapsulates the packet in a frame by adding a data link header and trailer to it
(see Fig. 3-1). Thus, a frame consists of an embedded packet, some control infor-
mation (in the header), and a checksum (in the trailer). The frame is then trans-
mitted to the data link layer on the other machine. We will assume that there exist
suitable library procedures to physical layer to send a frame and from physi-
cal layer to receive a frame. These procedures compute and append or check the
checksum (which is usually done in hardware) so that we do not need to worry

SEC. 3.3 ELEMENTARY DAT A LINK PROTOCOLS 225

about it as part of the protocols we develop in this section. They might use the
CRC algorithm discussed in the previous section, for example.

Initially, the receiver has nothing to do. It just sits around waiting for some-
thing to happen. In the example protocols throughout this chapter, we will indicate
that the data link layer is waiting for something to happen by the procedure call
wait for event(&event). This procedure only returns when something has hap-
pened (e.g., a frame has arrived). Upon return, the variable event tells what hap-
pened. The set of possible events differs for the various protocols to be described
and will be defined separately for each protocol. Note that in a more realistic
situation, the data link layer will not sit in a tight loop waiting for an event, as we
have suggested, but will receive an interrupt, which will cause it to stop whatever it
was doing and go handle the incoming frame. Nevertheless, for simplicity. we will
ignore all the details of parallel activity within the data link layer and assume that
it is dedicated full time to handling just our one channel.

When a frame arrives at the receiver, the receiver computes the checksum. If
the checksum in the frame is incorrect (i.e., there was a transmission error), the
data link layer is so informed (event = cksum err). If the inbound frame arrived
undamaged, the data link layer is also informed (event = frame arrival) so that it
can acquire the frame for inspection using from physical layer. As soon as the re-
ceiving data link layer has acquired an undamaged frame, it checks the control
information in the header, and, if everything is all right, passes the packet portion
to the network layer. Under no circumstances is a frame header ever given to a net-
work layer.

There is a good reason why the network layer must never be given any part of
the frame header: to keep the network and data link protocols completely separate.
As long as the network layer knows nothing at all about the data link protocol or
the frame format, these things can be changed without requiring changes to the
network layer’s software. This happens whenever a new NIC is installed in a com-
puter. Providing a rigid interface between the network and data link layers greatly
simplifies the design task because communication protocols in different layers can
evolve independently.

Figure 3-11 shows some declarations (in C) common to many of the protocols
to be discussed later. Five data structures are defined there: boolean, seq nr,
packet, frame kind, and frame. A boolean is an enumerated type and can take on
the values true and false. A seq nr is a small integer used to number the frames so
that we can tell them apart. These sequence numbers run from 0 up to and includ-
ing MAX SEQ, which is defined in each protocol needing it. A packet is the unit
of information exchanged between the network layer and the data link layer on the
same machine, or between network layer peers. In our model, it always contains
MAX PKT bytes, but more realistically it would be of variable length.

A frame has four fields: kind, seq, ack, and info, the first three of which contain
control information and the last of which may contain actual data to be transferred.
These control fields are collectively called the frame header.

226 THE DAT A LINK LAYER CHAP. 3

#define MAX PKT 1024 /* determines packet size in bytes */
typedef enum {false, true} boolean; /* boolean type */
typedef unsigned int seq nr; /* sequence or ack numbers */
typedef struct {unsigned char data[MAX PKT];} packet; /* packet definition */
typedef enum {data, ack, nak} frame kind; /* frame kind definition */
typedef struct { /* frames are transported in this layer */

frame kind kind; /* what kind of frame is it? */
seq nr seq; /* sequence number */
seq nr ack; /* acknowledgement number */
packet info; /* the network layer packet */

} frame;
/* Wait for an event to happen; return its type in event. */
void wait for event(event type *event);
/* Fetch a packet from the network layer for transmission on the channel. */
void from network layer(packet *p);

/* Deliver information from an inbound frame to the network layer. */
void to network layer(packet *p);

/* Go get an inbound frame from the physical layer and copy it to r. */
void from physical layer(frame *r);
/* Pass the frame to the physical layer for transmission. */
void to physical layer(frame *s);

/* Start the clock running and enable the timeout event. */
void start timer(seq nr k);

/* Stop the clock and disable the timeout event. */
void stop timer(seq nr k);
/* Start an auxiliary timer and enable the ack timeout event. */
void start ack timer(void);

/* Stop the auxiliary timer and disable the ack timeout event. */
void stop ack timer(void);

/* Allow the network layer to cause a network layer ready event. */
void enable network layer(void);
/* Forbid the network layer from causing a network layer ready event. */
void disable network layer(void);

/* Macro inc is expanded in-line: increment k circularly. */
#define inc(k) if (k < MAX SEQ) k = k + 1; else k = 0

Figure 3-11. Some definitions needed in the protocols to follow. These defini-
tions are located in the file protocol.h.

The kind field tells whether there are any data in the frame, because some of
the protocols distinguish frames containing only control information from those
containing data as well. The seq and ack fields are used for sequence numbers and
acknowledgements, respectively; their use will be described in more detail later.

SEC. 3.3 ELEMENTARY DAT A LINK PROTOCOLS 227

The info field of a data frame contains a single packet; the info field of a control
frame is not used. A more realistic implementation would use a variable-length
info field, omitting it altogether for control frames.

Again, it is important to understand the relationship between a packet and a
frame (see Fig. 3-1). The network layer builds a packet by taking a message from
the transport layer and adding the network layer header to it. This packet is passed
to the data link layer for inclusion in the info field of an outgoing frame. When the
frame arrives at the destination, the data link layer extracts the packet from the
frame and passes the packet to the network layer. In this manner, the network layer
can act as though machines can exchange packets directly.

A number of procedures are also listed in Fig. 3-11. These are library routines
whose details are implementation dependent and whose inner workings will not
concern us further in the following discussions. The procedure wait for event sits
in a tight loop waiting for something to happen, as mentioned earlier. The proce-
dures to network layer and from network layer are used by the data link layer to
pass packets to the network layer and accept packets from the network layer, re-
spectively. Note that from physical layer and to physical layer pass frames be-
tween the data link layer and the physical layer. In other words, to network layer
and from network layer deal with the interface between layers 2 and 3, whereas
from physical layer and to physical layer deal with the interface between layers
1 and 2.

In most of the protocols, we assume that the channel is unreliable and loses en-
tire frames upon occasion. To be able to recover from such calamities, the sending
data link layer must start an internal timer or clock whenever it sends a frame. If
no reply has been received within a certain predetermined time interval, the clock
times out and the data link layer receives an interrupt signal.

In our protocols, this is handled by allowing the procedure wait for event to
return event = timeout. The procedures start timer and stop timer turn the timer
on and off, respectively. Timeout events are possible only when the timer is run-
ning, of course, and before stop timer is called. It is explicitly permitted to call
start timer while the timer is running; such a call simply resets the clock to cause
the next timeout after a full timer interval has elapsed (unless it is reset or turned
off).

The procedures start ack timer and stop ack timer control an auxiliary timer
used to generate acknowledgements under certain conditions.

The procedures enable network layer and disable network layer are used in
the more sophisticated protocols, where we no longer assume that the network
layer always has packets to send. When the data link layer enables the network
layer, the network layer is then permitted to interrupt when it has a packet to be
sent. We indicate this with event = network layer ready. When the network
layer is disabled, it may not cause such events. By being careful about when it
enables and disables its network layer, the data link layer can prevent the network
layer from swamping it with packets for which it has no buffer space.

228 THE DAT A LINK LAYER CHAP. 3

Frame sequence numbers are always in the range 0 to MAX SEQ (inclusive),
where MAX SEQ is different for the different protocols. It is frequently necessary
to advance a sequence number by 1 circularly (i.e., MAX SEQ is followed by 0).
The macro inc performs this incrementing. It has been defined as a macro because
it is used in-line within the critical path. As we will see later, the factor limiting
network performance is often protocol processing, so defining simple operations
like this as macros (as opposed to procedures) does not affect the readability of the
code but does improve performance.

The declarations of Fig. 3-11 are part of each of the protocols we will discuss
shortly. To save space and to provide a convenient reference, they have been
extracted and listed together, but conceptually they should be merged with the pro-
tocols themselves. In C, this merging is done by putting the definitions in a special
header file, in this case protocol.h, and using the #include facility of the C preproc-
essor to include them in the protocol files.

3.3.3 Simplex Link-Layer Protocols

In this section, we will examine three simple protocols, each able to handle a
more realistic situation than the previous one.

Utopia: No Flow Control or Error Correction

As an initial example, we will consider a protocol that is as simple as it can be
because it does not worry about the possibility of anything going wrong. Data are
transmitted in one direction only. Both the transmitting and receiving network lay-
ers are always ready. Processing time can be ignored. Infinite buffer space is
available. And best of all, the communication channel between the data link layers
never damages or loses frames. This thoroughly unrealistic protocol, which we
will nickname ‘‘Utopia,’’ is simply to show the basic structure on which we will
build. It’s implementation is shown in Fig. 3-12.

The protocol consists of two distinct procedures, a sender and a receiver. The
sender runs in the data link layer of the source machine, and the receiver runs in
the data link layer of the destination machine. No sequence numbers or acknowl-
edgements are used here, so MAX SEQ is not needed. The only event type pos-
sible is frame arrival (i.e., the arrival of an undamaged frame).

The sender is in an infinite while loop just pumping data out onto the line as
fast as it can. The body of the loop consists of three actions: go fetch a packet
from the (always obliging) network layer, construct an outbound frame using the
variable s, and send the frame on its way. Only the info field of the frame is used
by this protocol, because the other fields have to do with error and flow control and
there are no errors or flow control restrictions here.

The receiver is equally simple. Initially, it waits for something to happen, the
only possibility being the arrival of an undamaged frame. Eventually, the frame

SEC. 3.3 ELEMENTARY DAT A LINK PROTOCOLS 229

/* Protocol 1 (Utopia) provides for data transmission in one direction only, from
sender to receiver. The communication channel is assumed to be error free
and the receiver is assumed to be able to process all the input infinitely quickly.
Consequently, the sender just sits in a loop pumping data out onto the line as
fast as it can. */

typedef enum {frame arrival} event type;
#include "protocol.h"
void sender1(void)
{

frame s; /* buffer for an outbound frame */
packet buffer; /* buffer for an outbound packet */
while (true) {

from network layer(&buffer); /* go get something to send */
s.info = buffer; /* copy it into s for transmission */
to physical layer(&s); /* send it on its way */

} /* Tomorrow, and tomorrow, and tomorrow,
Creeps in this petty pace from day to day
To the last syllable of recorded time.

– Macbeth, V, v */
}
void receiver1(void)
{

frame r;
event type event; /* filled in by wait, but not used here */
while (true) {

wait for event(&event); /* only possibility is frame arrival */
from physical layer(&r); /* go get the inbound frame */
to network layer(&r.info); /* pass the data to the network layer */

}
}

Figure 3-12. A utopian simplex protocol.
arrives and the procedure wait for event returns, with event set to frame arrival
(which is ignored anyway). The call to from physical layer removes the newly ar-
rived frame from the hardware buffer and puts it in the variable r, where the re-
ceiver code can get at it. Finally, the data portion is passed on to the network layer,
and the data link layer settles back to wait for the next frame, effectively suspend-
ing itself until the frame arrives.

The utopia protocol is unrealistic because it does not handle either flow control
or error correction. Its processing is close to that of an unacknowledged con-
nectionless service that relies on higher layers to solve these problems, though
even an unacknowledged connectionless service would do some error detection.

Adding Flow Control: Stop-and-Wait

Now we will tackle the problem of preventing the sender from flooding the re-
ceiver with frames faster than the latter is able to process them. This situation can
easily happen in practice so being able to prevent it is of great importance. The

230 THE DAT A LINK LAYER CHAP. 3

communication channel is still assumed to be error free, however, and the data traf-
fic is still simplex.

One solution is to build the receiver to be powerful enough to process a contin-
uous stream of back-to-back frames (or, equivalently, define the link layer to be
slow enough that the receiver can keep up). It must have sufficient buffering and
processing abilities to run at the line rate and must be able to pass the frames that
are received to the network layer quickly enough. However, this is a worst-case
solution. It requires dedicated hardware and can be wasteful of resources if the util-
ization of the link is mostly low. Moreover, it just shifts the problem of dealing
with a sender that is too fast elsewhere; in this case to the network layer.

A more general solution to this problem is to have the receiver provide feed-
back to the sender. After having passed a packet to its network layer, the receiver
sends a little dummy frame back to the sender which, in effect, gives the sender
permission to transmit the next frame. After having sent a frame, the sender is re-
quired by the protocol to bide its time until the little dummy (i.e., acknowledge-
ment) frame arrives. This delay is a simple example of a flow control protocol.

Protocols in which the sender sends one frame and then waits for an acknowl-
edgement before proceeding are called stop-and-wait. Figure 3-13 gives an ex-
ample of a simplex stop-and-wait protocol.

Although data traffic in this example is simplex, going only from the sender to
the receiver, frames do travel in both directions. Consequently, the communication
channel between the two data link layers needs to be capable of bidirectional infor-
mation transfer. However, this protocol entails a strict alternation of flow: first the
sender sends a frame, then the receiver sends a frame, then the sender sends anoth-
er frame, then the receiver sends another one, and so on. A half-duplex physical
channel would suffice here.

As in protocol 1, the sender starts out by fetching a packet from the network
layer, using it to construct a frame, and sending it on its way. But now, unlike in
protocol 1, the sender must wait until an acknowledgement frame arrives before
looping back and fetching the next packet from the network layer. The sending
data link layer need not even inspect the incoming frame as there is only one possi-
bility. The incoming frame is always an acknowledgement.

The only difference between receiver1 and receiver2 is that after delivering a
packet to the network layer, receiver2 sends an acknowledgement frame back to
the sender before entering the wait loop again. Because only the arrival of the
frame back at the sender is important, not its contents, the receiver need not put
any particular information in it.

Adding Error Correction: Sequence Numbers and ARQ

Now let us consider the normal situation of a communication channel that
makes errors. Frames may be either damaged or lost completely. However, we as-
sume that if a frame is damaged in transit, the receiver hardware will detect this

SEC. 3.3 ELEMENTARY DAT A LINK PROTOCOLS 231

/* Protocol 2 (Stop-and-wait) also provides for a one-directional flow of data from
sender to receiver. The communication channel is once again assumed to be error
free, as in protocol 1. However, this time the receiver has only a finite buffer
capacity and a finite processing speed, so the protocol must explicitly prevent
the sender from flooding the receiver with data faster than it can be handled. */

typedef enum {frame arrival} event type;
#include "protocol.h"
void sender2(void)
{

frame s; /* buffer for an outbound frame */
packet buffer; /* buffer for an outbound packet */
event type event; /* frame arrival is the only possibility */
while (true) {

from network layer(&buffer); /* go get something to send */
s.info = buffer; /* copy it into s for transmission */
to physical layer(&s); /* bye-bye little frame */
wait for event(&event); /* do not proceed until given the go ahead */

}
}
void receiver2(void)
{

frame r, s; /* buffers for frames */
event type event; /* frame arrival is the only possibility */
while (true) {

wait for event(&event); /* only possibility is frame arrival */
from physical layer(&r); /* go get the inbound frame */
to network layer(&r.info); /* pass the data to the network layer */
to physical layer(&s); /* send a dummy frame to awaken sender */

}
}

Figure 3-13. A simplex stop-and-wait protocol.

when it computes the checksum. If the frame is damaged in such a way that the
checksum is nevertheless correct—an unlikely occurrence—this protocol (and all
other protocols) can fail (i.e., deliver an incorrect packet to the network layer).

At first glance it might seem that a variation of protocol 2 would work: adding
a timer. The sender could send a frame, but the receiver would only send an ac-
knowledgement frame if the data were correctly received. If a damaged frame arri-
ved at the receiver, it would be discarded. After a while, the sender would time out
and send the frame again. This process would be repeated until the frame finally
arrived intact.

This scheme has a fatal flaw in it though. Think about the problem and try to
discover what might go wrong before reading further.

To see what might go wrong, remember that the goal of the data link layer is to
provide error-free, transparent communication between network layer processes.
The network layer on machine A gives a series of packets to its data link layer,
which must ensure that an identical series of packets is delivered to the network

232 THE DAT A LINK LAYER CHAP. 3

layer on machine B by its data link layer. In particular, the network layer on B has
no way of knowing that a packet has been lost or duplicated, so the data link layer
must guarantee that no combination of transmission errors, however unlikely, can
cause a duplicate packet to be delivered to a network layer.

Consider the following scenario:

1. The network layer on A gives packet 1 to its data link layer. The
packet is correctly received at B and passed to the network layer on B.
B sends an acknowledgement frame back to A.

2. The acknowledgement frame gets lost completely. It just never ar-
rives at all. Life would be a great deal simpler if the channel mangled
and lost only data frames and not control frames, but sad to say, the
channel is not very discriminating.

3. The data link layer on A eventually times out. Not having received an
acknowledgement, it (incorrectly) assumes that its data frame was lost
or damaged and sends the frame containing packet 1 again.

4. The duplicate frame also arrives intact at the data link layer on B and
is unwittingly passed to the network layer there. If A is sending a file
to B, part of the file will be duplicated (i.e., the copy of the file made
by B will be incorrect and the error will not have been detected). In
other words, the protocol will fail.

Clearly, what is needed is some way for the receiver to be able to distinguish a
frame that it is seeing for the first time from a retransmission. The obvious way to
achieve this is to have the sender put a sequence number in the header of each
frame it sends. Then the receiver can check the sequence number of each arriving
frame to see if it is a new frame or a duplicate to be discarded.

Since the protocol must be correct and the sequence number field in the header
is likely to be small to use the link efficiently, the question arises: what is the mini-
mum number of bits needed for the sequence number? The header might provide
1 bit, a few bits, 1 byte, or multiple bytes for a sequence number depending on the
protocol. The important point is that it must carry sequence numbers that are large
enough for the protocol to work correctly, or it is not much of a protocol.

The only ambiguity in this protocol is between a frame, m, and its direct suc-
cessor, m + 1. If frame m is lost or damaged, the receiver will not acknowledge it,
so the sender will keep trying to send it. Once it has been correctly received, the
receiver will send an acknowledgement to the sender. It is here that the potential
trouble crops up. Depending upon whether the acknowledgement frame gets back
to the sender correctly or not, the sender may try to send m or m + 1.

At the sender, the event that triggers the transmission of frame m + 1 is the ar-
rival of an acknowledgement for frame m. But this situation implies that m < 1 has
been correctly received, and furthermore that its acknowledgement has also been

SEC. 3.3 ELEMENTARY DAT A LINK PROTOCOLS 233

correctly received by the sender. Otherwise, the sender would not have begun with
m, let alone have been considering m + 1. As a consequence, the only ambiguity
is between a frame and its immediate predecessor or successor, not between the
predecessor and successor themselves.

A 1-bit sequence number (0 or 1) is therefore sufficient. At each instant of
time, the receiver expects a particular sequence number next. When a frame con-
taining the correct sequence number arrives, it is accepted and passed to the net-
work layer, then acknowledged. Then the expected sequence number is incre-
mented modulo 2 (i.e., 0 becomes 1 and 1 becomes 0). Any arriving frame con-
taining the wrong sequence number is rejected as a duplicate. However, the last
valid acknowledgement is repeated so that the sender can eventually discover that
the frame has been received.

An example of this kind of protocol is shown in Fig. 3-14. Protocols in which
the sender waits for a positive acknowledgement before advancing to the next data
item are often called ARQ (Automatic Repeat reQuest) or PAR (Positive Ac-
knowledgement with Retransmission). Like protocol 2, this one also transmits
data only in one direction.

Protocol 3 differs from its predecessors in that both sender and receiver have a
variable whose value is remembered while the data link layer is in the wait state.
The sender remembers the sequence number of the next frame to send in
next frame to send; the receiver remembers the sequence number of the next
frame expected in frame expected. Each protocol has a short initialization phase
before entering the infinite loop.

After transmitting a frame, the sender starts the timer running. If it was al-
ready running, it will be reset to allow another full timer interval. The interval
should be chosen to allow enough time for the frame to get to the receiver, for the
receiver to process it in the worst case, and for the acknowledgement frame to
propagate back to the sender. Only when that interval has elapsed is it safe to as-
sume that either the transmitted frame or its acknowledgement has been lost, and to
send a duplicate. If the timeout interval is set too short, the sender will transmit
unnecessary frames. While these extra frames will not affect the correctness of the
protocol, they will hurt performance.

After transmitting a frame and starting the timer, the sender waits for some-
thing exciting to happen. Only three possibilities exist: an acknowledgement
frame arrives undamaged, a damaged acknowledgement frame staggers in, or the
timer expires. If a valid acknowledgement comes in, the sender fetches the next
packet from its network layer and puts it in the buffer, overwriting the previous
packet. It also advances the sequence number. If a damaged frame arrives or the
timer expires, neither the buffer nor the sequence number is changed so that a dup-
licate can be sent. In all cases, the contents of the buffer (either the next packet or
a duplicate) are then sent.

When a valid frame arrives at the receiver, its sequence number is checked to
see if it is a duplicate. If not, it is accepted, passed to the network layer, and an

234 THE DAT A LINK LAYER CHAP. 3

acknowledgement is generated. Duplicates and damaged frames are not passed to
the network layer, but they do cause the last correctly received frame to be acknow-
ledged to signal the sender to advance to the next frame or retransmit a damaged
frame.

3.4 IMPROVING EFFICIENCY

In the previous protocols, data frames were transmitted in one direction only.
In most practical situations, there is a need to transmit data in both directions. Ad-
ditionally, the link layer can be more efficient if it can send multiple frames simul-
taneously before receiving an acknowledgement. We explore both of these con-
cepts next, and then provide several example protocols that achieve these goals.

3.4.1 Goal: Bidirectional Transmission, Multiple Frames in Flight

Next, we will explain a concept called piggybacking that can help a link layer
protocol achieve bidirectional transmission, and a concept called a sliding window
that can improve transmission efficiency by allowing the sender to have multiple
bytes in flight.

Bidirectional Transmission: Piggybacking

One way of achieving full-duplex data transmission is to run two instances of
one of the previous protocols, each using a separate link for simplex data traffic (in
different directions). Each link is then comprised of a ‘‘forward’’ channel (for
data) and a ‘‘reverse’’ channel (for acknowledgements). In both cases, the capacity
of the reverse channel is almost entirely wasted.

A better idea is to use the same link for data in both directions. After all, in
protocols 2 and 3 it was already being used to transmit frames both ways, and the
reverse channel normally has the same capacity as the forward channel. In this
model the data frames from A to B are intermixed with the acknowledgement
frames from A to B. By looking at the kind field in the header of an incoming
frame, the receiver can tell whether the frame is data or an acknowledgement.

Although interleaving data and control frames on the same link is a big im-
provement over having two separate physical links, yet another improvement is
possible. When a data frame arrives, instead of immediately sending a separate
control frame, the receiver restrains itself and waits until the network layer passes
it the next packet. The acknowledgement is attached to the outgoing data frame
(using the ack field in the frame header). In effect, the acknowledgement gets a
free ride on the next outgoing data frame. The technique of temporarily delaying
outgoing acknowledgements so that they can be hooked onto the next outgoing
data frame is known as piggybacking.

SEC. 3.4 IMPROVING EFFICIENCY 235

/* Protocol 3 (PAR) allows unidirectional data flow over an unreliable channel. */
#define MAX SEQ 1 /* must be 1 for protocol 3 */
typedef enum {frame arrival, cksum err, timeout} event type;
#include "protocol.h"
void sender3(void)
{

seq nr next frame to send; /* seq number of next outgoing frame */
frame s; /* scratch variable */
packet buffer; /* buffer for an outbound packet */
event type event;

next frame to send = 0; /* initialize outbound sequence numbers */
from network layer(&buffer); /* fetch first packet */
while (true) {

s.info = buffer; /* construct a frame for transmission */
s.seq = next frame to send; /* insert sequence number in frame */
to physical layer(&s); /* send it on its way */
start timer(s.seq); /* if answer takes too long, time out */
wait for event(&event); /* frame arrival, cksum err, timeout */
if (event == frame arrival) {

from physical layer(&s); /* get the acknowledgement */
if (s.ack == next frame to send) {

stop timer(s.ack); /* turn the timer off */
from network layer(&buffer); /* get the next one to send */
inc(next frame to send); /* invert next frame to send */

}
}

}
}
void receiver3(void)
{

seq nr frame expected;
frame r, s;
event type event;

frame expected = 0;
while (true) {

wait for event(&event); /* possibilities: frame arrival, cksum err */
if (event == frame arrival) { /* a valid frame has arrived */

from physical layer(&r); /* go get the newly arrived frame */
if (r.seq == frame expected) { /* this is what we have been waiting for */

to network layer(&r.info); /* pass the data to the network layer */
inc(frame expected); /* next time expect the other sequence nr */

}
s.ack = 1 < frame expected; /* tell which frame is being acked */
to physical layer(&s); /* send acknowledgement */

}
}

}
Figure 3-14. A positive acknowledgement with retransmission protocol.

236 THE DAT A LINK LAYER CHAP. 3

The principal advantage of using piggybacking over having distinct acknowl-
edgement frames is a better use of the available channel bandwidth. The ack field
in the frame header costs only a few bits, whereas a separate frame would need a
header, the acknowledgement, and a checksum. In addition, fewer frames sent
generally means a lighter processing load at the receiver. In the next protocol to be
examined, the piggyback field costs only 1 bit in the frame header. It rarely costs
more than a few bits.

However, piggybacking introduces a complication not present with separate
acknowledgements. How long should the data link layer wait for a packet onto
which to piggyback the acknowledgement? If the data link layer waits longer than
the sender’s timeout period, the frame will be retransmitted, defeating the whole
purpose of having acknowledgements. If the data link layer were an oracle and
could foretell the future, it would know when the next network layer packet was
going to come in and could decide either to wait for it or send a separate acknowl-
edgement immediately, depending on how long the projected wait was going to be.
Of course, the data link layer cannot foretell the future, so it must resort to some ad
hoc scheme, such as waiting a fixed number of milliseconds. If a new packet ar-
rives quickly, the acknowledgement is piggybacked onto it. Otherwise, if no new
packet has arrived by the end of this time period, the data link layer just sends a
separate acknowledgement frame.

Sliding Windows

The next three protocols are bidirectional protocols that belong to a class call-
ed sliding window protocols. The three differ among themselves in terms of ef-
ficiency, complexity, and buffer requirements, as discussed later. In these, as in all
sliding window protocols, each outbound frame contains a sequence number, rang-
ing from 0 up to some maximum. The maximum is usually 2n < 1 so the sequence
number fits exactly in an n-bit field. The stop-and-wait sliding window protocol
uses n = 1, restricting the sequence numbers to 0 and 1, but more sophisticated ver-
sions can use an arbitrary n.

The essence of all sliding window protocols is that at any instant of time, the
sender maintains a set of sequence numbers corresponding to frames it is permitted
to send. These frames are said to fall within the sending window. Similarly, the
receiver also maintains a receiving window corresponding to the set of frames it is
permitted to accept. The sender’s window and the receiver’s window need not
have the same lower and upper limits or even have the same size. In some proto-
cols, they are fixed in size, but in others they can grow or shrink over the course of
time as frames are sent and received.

Although these protocols give the data link layer more freedom about the order
in which it may send and receive frames, we have definitely not dropped the re-
quirement that the protocol must deliver packets to the destination network layer in
the same order they were passed to the data link layer on the sending machine.

SEC. 3.4 IMPROVING EFFICIENCY 237

Nor have we changed the requirement that the physical communication channel is
‘‘wire-like,’’ that is, it must deliver all frames in the order sent.

The sequence numbers within the sender’s window represent frames that have
been sent or can be sent but are as yet not acknowledged. Whenever a new packet
arrives from the network layer, it is given the next highest sequence number, and
the upper edge of the window is advanced by one. When an acknowledgement
comes in, the lower edge is advanced by one. In this way, the window continu-
ously maintains a list of unacknowledged frames. Figure 3-15 shows an example.

Sender

Receiver

7

6 1

5 2

0

4 3

7

6 1

5 2

0

4 3

7

6 1

5 2

0

4 3

7

6 1

5 2

0

4 3

7

6 1

5 2

0

4 3

7

6 1

5 2

0

4 3

7

6 1

5 2

0

4 3

7

6 1

5 2

0

4 3

(a) (b) (c) (d)

Figure 3-15. A sliding window of size 1, with a 3-bit sequence number. (a) Ini-
tially. (b) After the first frame has been sent. (c) After the first frame has been
received. (d) After the first acknowledgement has been received.

Since frames currently within the sender’s window may ultimately be lost or
damaged in transit, the sender must keep all of these frames in its memory for pos-
sible retransmission. Thus, if the maximum window size is n, the sender needs n
buffers to hold the unacknowledged frames. If the window ever grows to its maxi-
mum size, the sending data link layer must forcibly shut off the network layer until
another buffer becomes free.

The receiving data link layer’s window corresponds to the frames it may ac-
cept. Any frame falling within the window is put in the receiver’s buffer. When a
frame whose sequence number is equal to the lower edge of the window is re-
ceived, it is passed to the network layer and the window is rotated by one. Any
frame falling outside the window is discarded. In all of these cases, a subsequent
acknowledgement is generated so that the sender may work out how to proceed.
Note that a window size of 1 means that the data link layer only accepts frames in

238 THE DAT A LINK LAYER CHAP. 3

order, but for larger windows this is not so. The network layer, in contrast, is al-
ways fed data in the proper order, regardless of the data link layer’s window size.

Figure 3-15 shows an example with a maximum window size of 1. Initially, no
frames are outstanding, so the lower and upper edges of the sender’s window are
equal, but as time goes on, the situation progresses as shown. Unlike the sender’s
window, the receiver’s window always remains at its initial size, rotating as the
next frame is accepted and delivered to the network layer.

3.4.2 Examples of Full-Duplex, Sliding Window Protocols

We now give examples of a simple one-bit sliding window protocol, as well as
protocols that can handle retransmission of erroneous frames when multiple frames
are in flight.

One-Bit Sliding Window

Before tackling the general case, let us examine a sliding window protocol
with a window size of 1. Such a protocol uses stop-and-wait since the sender
transmits a frame and waits for its acknowledgement before sending the next one.

Figure 3-16 depicts such a protocol. Like the others, it starts out by defining
some variables. Next frame to send tells which frame the sender is trying to send.
Similarly, frame expected tells which frame the receiver is expecting. In both
cases, 0 and 1 are the only possibilities.

Under normal circumstances, one of the two data link layers goes first and
transmits the first frame. In other words, only one of the data link layer programs
should contain the to physical layer and start timer procedure calls outside the
main loop. The starting machine fetches the first packet from its network layer,
builds a frame from it, and sends it. When this (or any) frame arrives, the receiving
data link layer checks to see if it is a duplicate, just as in protocol 3. If the frame is
the one expected, it is passed to the network layer and the receiver’s window is slid
up.

The acknowledgement field contains the number of the last frame received
without error. If this number agrees with the sequence number of the frame the
sender is trying to send, the sender knows it is done with the frame stored in buffer
and can fetch the next packet from its network layer. If the sequence number dis-
agrees, it must continue trying to send the same frame. Whenever a frame is re-
ceived, a frame is also sent back.

Now let us examine protocol 4 to see how resilient it is to pathological scen-
arios. Assume that computer A is trying to send its frame 0 to computer B and that
B is trying to send its frame 0 to A. Suppose that A sends a frame to B, but A’s
timeout interval is a little too short. Consequently, A may time out repeatedly,
sending a series of identical frames, all with seq = 0 and ack = 1.

SEC. 3.4 IMPROVING EFFICIENCY 239

/* Protocol 4 (Sliding window) is bidirectional. */

#define MAX SEQ 1 /* must be 1 for protocol 4 */
typedef enum {frame arrival, cksum err, timeout} event type;
#include "protocol.h"
void protocol4 (void)
{

seq nr next frame to send; /* 0 or 1 only */
seq nr frame expected; /* 0 or 1 only */
frame r, s; /* scratch variables */
packet buffer; /* current packet being sent */
event type event;
next frame to send = 0; /* next frame on the outbound stream */
frame expected = 0; /* frame expected next */
from network layer(&buffer); /* fetch a packet from the network layer */
s.info = buffer; /* prepare to send the initial frame */
s.seq = next frame to send; /* insert sequence number into frame */
s.ack = 1 < frame expected; /* piggybacked ack */
to physical layer(&s); /* transmit the frame */
start timer(s.seq); /* start the timer running */
while (true) {

wait for event(&event); /* frame arrival, cksum err, or timeout */
if (event == frame arrival) { /* a frame has arrived undamaged */

from physical layer(&r); /* go get it */
if (r.seq == frame expected) { /* handle inbound frame stream */

to network layer(&r.info); /* pass packet to network layer */
inc(frame expected); /* invert seq number expected next */

}
if (r.ack == next frame to send) { /* handle outbound frame stream */

stop timer(r.ack); /* turn the timer off */
from network layer(&buffer); /* fetch new pkt from network layer */
inc(next frame to send); /* invert sender’s sequence number */

}
}
s.info = buffer; /* construct outbound frame */
s.seq = next frame to send; /* insert sequence number into it */
s.ack = 1 < frame expected; /* seq number of last received frame */
to physical layer(&s); /* transmit a frame */
start timer(s.seq); /* start the timer running */

}
}

Figure 3-16. A 1-bit sliding window protocol.

When the first valid frame arrives at computer B, it will be accepted and
frame expected will be set to a value of 1. All the subsequent frames received will
be rejected because B is now expecting frames with sequence number 1, not 0.
Furthermore, since all the duplicates will have ack = 1 and B is still waiting for an
acknowledgement of 0, B will not fetch a new packet from its network layer.

240 THE DAT A LINK LAYER CHAP. 3

After every rejected duplicate comes in, B will send A a frame containing
seq = 0 and ack = 0. Eventually, one of these will arrive correctly at A, causing A
to begin sending the next packet. No combination of lost frames or premature
timeouts can cause the protocol to deliver duplicate packets to either network layer,
to skip a packet, or to deadlock. The protocol is correct.

However, to show how subtle protocol interactions can be, we note that a pecu-
liar situation arises if both sides simultaneously send an initial packet. This syn-
chronization difficulty is illustrated by Fig. 3-17. In part (a), the normal operation
of the protocol is shown. In (b) the peculiarity is illustrated. If B waits for A’s first
frame before sending one of its own, the sequence is as shown in (a), and every
frame is accepted.

However, if A and B simultaneously initiate communication, their first frames
cross, and the data link layers then get into situation (b). In (a) each frame arrival
brings a new packet for the network layer; there are no duplicates. In (b) half of
the frames contain duplicates, even though there are no transmission errors. Simi-
lar situations can occur as a result of premature timeouts, even when one side
clearly starts first. In fact, if multiple premature timeouts occur, frames may be
sent three or more times, wasting valuable bandwidth.

A sends (0, 1, A0)

A gets (0, 0, B0)*
A sends (1, 0, A1)

B gets (0, 1, A0)*
B sends (0, 0, B0)

B gets (1, 0, A1)*
B sends (1, 1, B1)

B gets (0, 1, A2)*
B sends (0, 0, B2)

B gets (1, 0, A3)*
B sends (1, 1, B3)

A gets (1, 1, B1)*
A sends (0, 1, A2)

A gets (0, 0, B2)*
A sends (1, 0, A3)

A sends (0, 1, A0)

A gets (0, 1, B0)*
A sends (0, 0, A0)

B gets (0, 0, A0)
B sends (1, 0, B1)

B sends (0, 1, B0)
B gets (0, 1, A0)*
B sends (0, 0, B0)

B gets (1, 0, A1)*
B sends (1, 1, B1)

B gets (1, 1, A1)
B sends (0, 1, B2)

A gets (0, 0, B0)
A sends (1, 0, A1)

A gets (1, 0, B1)*
A sends (1, 1, A1)

Time(a) (b)

Figure 3-17. Two scenarios for protocol 4. (a) Normal case. (b) Abnormal case.
The notation is (seq, ack, packet number). An asterisk indicates where a network
layer accepts a packet.

Go-Back-N

Until now we have made the tacit assumption that the transmission time re-
quired for a frame to arrive at the receiver plus the transmission time for the ac-
knowledgement to come back is negligible. Sometimes this assumption is clearly

SEC. 3.4 IMPROVING EFFICIENCY 241

false. In these situations, the long round-trip time has important implications for
the efficiency of the bandwidth utilization. As an example, consider a 50-kbps sat-
ellite channel with a 500-msec round-trip propagation delay. Imagine trying to use
protocol 4 to send 1000-bit frames via the satellite. At t = 0 the sender starts send-
ing the first frame. At t = 20 msec the frame has been completely sent. Not until
t = 270 msec has the frame fully arrived at the receiver, and not until t = 520 msec
has the acknowledgement arrived at the sender, under the best of circumstances (no
waiting in the receiver and a short acknowledgement frame). This means that the
sender was blocked 500/520 or 96% of the time. In other words, only 4% of the
available bandwidth was used. Clearly, the combination of a long transit time, high
bandwidth, and short frame length is disastrous in terms of efficiency.

The problem described here can be viewed as a consequence of the rule requir-
ing a sender to wait for an acknowledgement before sending another frame. If we
relax that restriction, much better efficiency can be achieved. Basically, the solu-
tion lies in allowing the sender to transmit up to w frames before blocking, instead
of just 1. With a large enough choice of w the sender will be able to continuously
transmit frames since the acknowledgements will arrive for previous frames before
the window becomes full, preventing the sender from blocking.

To find an appropriate value for w we need to know how many frames can fit
inside the channel as they propagate from sender to receiver. This capacity is deter-
mined by the bandwidth in bits/sec multiplied by the one-way transit time, or the
bandwidth-delay product of the link. We can divide this quantity by the number
of bits in a frame to express it as a number of frames. Call this quantity BD. Then
w should be set to 2BD + 1. Twice the bandwidth-delay is the number of frames
that can be outstanding if the sender continuously sends frames when the round-
trip time to receive an acknowledgement is considered. The ‘‘+1’’ is because an
acknowledgement frame will not be sent until after a complete frame is received.

For the example link with a bandwidth of 50 kbps and a one-way transit time
of 250 msec, the bandwidth-delay product is 12.5 kbit or 12.5 frames of 1000 bits
each. 2BD + 1 is then 26 frames. Assume the sender begins sending frame 0 as
before and sends a new frame every 20 msec. By the time it has finished sending
26 frames, at t = 520 msec, the acknowledgement for frame 0 will have just arri-
ved. Thereafter, acknowledgements will arrive every 20 msec, so the sender will
always get permission to continue just when it needs it. From then onwards, 25 or
26 unacknowledged frames will always be outstanding. Put in other terms, the
sender’s maximum window size is 26.

For smaller window sizes, the utilization of the link will be less than 100%
since the sender will be blocked sometimes. We can write the utilization as the
fraction of time that the sender is not blocked:

link utilization)
w

1 + 2BD
The value above is an upper bound because it does not allow for any frame proc-
essing time and treats the acknowledgement frame as having zero length, since it is

242 THE DAT A LINK LAYER CHAP. 3

usually short. The equation shows the need for having a large window w whenever
the bandwidth-delay product is large. If the delay is high, the sender will rapidly
exhaust its window even for a moderate bandwidth, as in the satellite example. If
the bandwidth is high, even for a moderate delay the sender will exhaust its win-
dow quickly unless it has a large window (e.g., a 1-Gbps link with 1-msec delay
holds 1 megabit). With stop-and-wait for which w = 1, if there is even one frame’s
worth of propagation delay the efficiency will be less than 50%.

This technique of keeping multiple frames in flight is an example of pipelin-
ing. Pipelining frames over an unreliable communication channel raises some seri-
ous issues. First, what happens if a frame in the middle of a long stream is dam-
aged or lost? Large numbers of succeeding frames will arrive at the receiver be-
fore the sender even finds out that anything is wrong. When a damaged frame ar-
rives at the receiver, it obviously should be discarded, but what should the receiver
do with all the correct frames following it? Remember that the receiving data link
layer is obligated to hand packets to the network layer in sequence.

Two basic approaches are available for dealing with errors in the presence of
pipelining, both of which are shown in Fig. 3-18.

0 1

0 1 2 3 4 5 6 7 8E D D D D D D

2 3 4 5 6 7 8 2 3 4 5 6 7 8 9

Timeout interval

Error Frames discarded by data link layer

Frames buffered
by data link layer

Ac
k0

Ac
k1

Time
(a)

(b)

0 1

0 1 9 10 11 12 13 14E

2 3 4 5 2 6 7 8 9 10 11 12 13 14 15

8

Error

Ac
k 0

Ac
k 1

Na
k 2

4 5 23 6

Ac
k 5

Ac
k 6

7

Ac
k 7

Ac
k 8

Ac
k 9

Ac
k 1

1
Ac

k 1
2

Ac
k 1

3

Ac
k 1

0

Ac
k 2

Ac
k 3

Ac
k 4

Ac
k 5

Ac
k 6

Ac
k 7

Figure 3-18. Pipelining and error recovery. Effect of an error when
(a) receiver’s window size is 1 and (b) receiver’s window size is large.

One option, called go-back-n, is for the receiver to just discard all subsequent
frames, sending no acknowledgements for the discarded frames. This strategy

SEC. 3.4 IMPROVING EFFICIENCY 243

corresponds to a receive window of size 1. In other words, the data link layer
refuses to accept any frame except the next one it must give to the network layer.
If the sender’s window fills up before the timer runs out, the pipeline will begin to
empty. Eventually, the sender will time out and retransmit all unacknowledged
frames in order, starting with the damaged or lost one. This approach can waste a
lot of bandwidth if the error rate is high.

In Fig. 3-18(a) we see the go-back-n case in which the receiver’s window is 1.
Frames 0 and 1 are correctly received and acknowledged. Frame 2, however, is
damaged or lost. The sender, unaware of this problem, continues to send frames
until the timer for frame 2 expires. Then it backs up to frame 2 and starts over with
it, sending 2, 3, 4, etc. all over again.

Selective Repeat

The go-back-n protocol works well if errors are rare, but if the line is poor it
wastes a lot of bandwidth on retransmitted frames. We need to do better than this.
And it is possible. An alternative strategy, the selective repeat protocol, is to
allow the receiver to accept and buffer correct frames received following a dam-
aged or lost one.

When it is used, a bad frame that is received is discarded, but any good frames
received after it are accepted and buffered. When the sender times out, only the
oldest unacknowledged frame is retransmitted. If that frame arrives correctly, the
receiver can deliver to the network layer, in sequence, all the frames it has buff-
ered. Selective repeat corresponds to a receiver window larger than 1. This ap-
proach can require large amounts of data link layer memory if the window is large.

Selective repeat is often combined with having the receiver send a negative ac-
knowledgement (NAK) when it detects an error, for example, when it receives a
checksum error or a frame out of sequence. NAKs stimulate retransmission before
the corresponding timer expires and thus improve performance.

In Fig. 3-18(b), frames 0 and 1 are again correctly received and acknowledged
and frame 2 is lost. When frame 3 arrives at the receiver, the data link layer there
notices that it has missed a frame, so it sends back a NAK for 2 but buffers 3.
When frames 4 and 5 arrive, they, too, are buffered by the data link layer instead of
being passed to the network layer. Eventually, the NAK 2 gets back to the sender,
which immediately resends frame 2. When that arrives, the data link layer now has
2, 3, 4, and 5 and can pass all of them to the network layer in the correct order. It
can also acknowledge all frames up to and including 5, as shown in the figure. If
the NAK should get lost, eventually the sender will time out for frame 2 and send it
(and only it) of its own accord, but that may be a quite a while later.

These two alternative approaches are trade-offs between efficient use of band-
width and data link layer buffer space. Depending on which resource is scarcer,
one or the other can be used. Figure 3-19 shows a go-back-n protocol in which the

244 THE DAT A LINK LAYER CHAP. 3

/* Protocol 5 (Go-back-n) allows multiple outstanding frames. The sender may transmit up
to MAX SEQ frames without waiting for an ack. In addition, unlike in the previous
protocols, the network layer is not assumed to have a new packet all the time. Instead,
the network layer causes a network layer ready event when there is a packet to send. */

#define MAX SEQ 7

typedef enum {frame arrival, cksum err, timeout, network layer ready} event type;

#include "protocol.h"

static boolean between(seq nr a, seq nr b, seq nr c)
{
/* Return true if a <= b < c circularly; false otherwise. */

if (((a <= b) && (b < c)) || ((c < a) && (a <= b)) || ((b < c) && (c < a)))
return(true);

else
return(false);

}

static void send data(seq nr frame nr, seq nr frame expected, packet buffer[])
{
/* Construct and send a data frame. */

frame s; /* scratch variable */
s.info = buffer[frame nr]; /* insert packet into frame */
s.seq = frame nr; /* insert sequence number into frame */
s.ack = (frame expected + MAX SEQ) % (MAX SEQ + 1); /* piggyback ack */
to physical layer(&s); /* transmit the frame */
start timer(frame nr); /* start the timer running */

}

void protocol5(void)
{

seq nr next frame to send; /* MAX SEQ > 1; used for outbound stream */
seq nr ack expected; /* oldest frame as yet unacknowledged */
seq nr frame expected; /* next frame expected on inbound stream */
frame r; /* scratch variable */
packet buffer[MAX SEQ + 1]; /* buffers for the outbound stream */
seq nr nbuffered; /* number of output buffers currently in use */
seq nr i; /* used to index into the buffer array */
event type event;
enable network layer(); /* allow network layer ready events */
ack expected = 0; /* next ack expected inbound */
next frame to send = 0; /* next frame going out */
frame expected = 0; /* number of frame expected inbound */
nbuffered = 0; /* initially no packets are buffered */
while (true) {

wait for event(&event); /* four possibilities: see event type above */

SEC. 3.4 IMPROVING EFFICIENCY 245

switch(event) {
case network layer ready: /* the network layer has a packet to send */

/* Accept, save, and transmit a new frame. */
from network layer(&buffer[next frame to send]); /* fetch new packet */
nbuffered = nbuffered + 1; /* expand the sender’s window */
send data(next frame to send, frame expected, buffer);/* transmit the frame */
inc(next frame to send); /* advance sender’s upper window edge */
break;

case frame arrival: /* a data or control frame has arrived */
from physical layer(&r); /* get incoming frame from physical layer */
if (r.seq == frame expected) {

/* Frames are accepted only in order. */
to network layer(&r.info); /* pass packet to network layer */
inc(frame expected); /* advance lower edge of receiver’s window */

}
/* Ack n implies n < 1, n < 2, etc. Check for this. */

while (between(ack expected, r.ack, next frame to send)) {
/* Handle piggybacked ack. */
nbuffered = nbuffered < 1; /* one frame fewer buffered */
stop timer(ack expected); /* frame arrived intact; stop timer */
inc(ack expected); /* contract sender’s window */

}
break;

case cksum err: break; /* just ignore bad frames */
case timeout: /* trouble; retransmit all outstanding frames */

next frame to send = ack expected; /* start retransmitting here */
for (i = 1; i <= nbuffered; i++) {

send data(next frame to send, frame expected, buffer);/* resend frame */
inc(next frame to send); /* prepare to send the next one */

}
}
if (nbuffered < MAX SEQ)

enable network layer();
else

disable network layer();
}

}

Figure 3-19. A sliding window protocol using go-back-n.

receiving data link layer only accepts frames in order; frames following an error
are discarded. In this protocol, for the first time we have dropped the assumption
that the network layer always has an infinite supply of packets. When the network
layer has a packet it wants to send, it can cause a network layer ready event to
happen. To enforce the flow control limit on the sender window or the number of
unacknowledged frames that may be outstanding at any time, the data link layer
must be able to keep the network layer from bothering it with more work. The li-
brary procedures enable network layer and disable network layer do this job.

246 THE DAT A LINK LAYER CHAP. 3

The maximum number of frames that may be outstanding at any instant is not
the same as the size of the sequence number space. For go-back-n, MAX SEQ
frames may be outstanding at any instant, even though there are MAX SEQ + 1
distinct sequence numbers (which are 0, 1, . . . , MAX SEQ). We will see an even
tighter restriction for the next protocol, selective repeat. To see why this restriction
is required, consider the following scenario with MAX SEQ = 7:

1. The sender sends frames 0 through 7.

2. A piggybacked acknowledgement for 7 comes back to the sender.

3. The sender sends another eight frames, again with sequence numbers
0 through 7.

4. Now another piggybacked acknowledgement for frame 7 comes in.

The question is this: did all eight frames belonging to the second batch arrive suc-
cessfully, or did all eight get lost (counting discards following an error as lost)? In
both cases, the receiver would be sending frame 7 as the acknowledgement. The
sender has no way of telling. For this reason, the maximum number of outstanding
frames must be restricted to MAX SEQ (and not MAX SEQ + 1).

Although protocol 5 does not buffer the frames arriving after an error, it does
not escape the problem of buffering altogether. Since a sender may have to
retransmit all the unacknowledged frames at a future time, it must hang on to all
transmitted frames until it knows for sure that they have been accepted by the re-
ceiver.

When an acknowledgement comes in for frame n, frames n < 1, n < 2, and so
on are also automatically acknowledged. This type of acknowledgement is called a
cumulative acknowledgement. This property is especially important when some
of the previous acknowledgement-bearing frames were lost or garbled. Whenever
any acknowledgement comes in, the data link layer checks to see if any buffers can
now be released. If buffers can be released (i.e., there is some room available in
the window), a previously blocked network layer can now be allowed to cause
more network layer ready events.

For this protocol, we assume that there is always reverse traffic on which to
piggyback acknowledgements. Protocol 4 does not need this assumption since it
sends back one frame every time it receives a frame, even if it has already sent that
frame. In the next protocol, we will solve the problem of one-way traffic in an ele-
gant way.

Because protocol 5 has multiple outstanding frames, it logically needs multiple
timers, one per outstanding frame. Each frame times out independently of all the
other ones. However, all of these timers can easily be simulated in software using
a single hardware clock that causes interrupts periodically. The pending timeouts
form a linked list, with each node of the list containing the number of clock ticks
until the timer expires, the frame being timed, and a pointer to the next node.

SEC. 3.4 IMPROVING EFFICIENCY 247

10:00:00.000 10:00:00.005

5 1 8 2 6 3 6 38 2

Real
time

Pointer to next timeout
Frame being timed
Ticks to go

(a) (b)

Figure 3-20. Simulation of multiple timers in software. (a) The queued timeouts.
(b) The situation after the first timeout has expired.

As an illustration of how the timers could be implemented, consider the ex-
ample of Fig. 3-20(a). Assume that the clock ticks once every 1 msec. Initially,
the real time is 10:00:00.000; three timeouts are pending, at 10:00:00.005,
10:00:00.013, and 10:00:00.019. Every time the hardware clock ticks, the real
time is updated and the tick counter at the head of the list is decremented. When
the tick counter becomes zero, a timeout is caused and the node is removed from
the list, as shown in Fig. 3-20(b). Although this organization requires the list to be
scanned when start timer or stop timer is called, it does not require much work
per tick. In protocol 5, both of these routines have been given a parameter indicat-
ing which frame is to be timed.

In this protocol, both sender and receiver maintain a window of outstanding
and acceptable sequence numbers, respectively. The sender’s window size starts
out at 0 and grows to some predefined maximum. The receiver’s window, in con-
trast, is always fixed in size and equal to the predetermined maximum. The re-
ceiver has a buffer reserved for each sequence number within its fixed window.
Associated with each buffer is a bit (arrived) telling whether the buffer is full or
empty. Whenever a frame arrives, its sequence number is checked by the function
between to see if it falls within the window. If so and if it has not already been re-
ceived, it is accepted and stored. This action is taken without regard to whether or
not the frame contains the next packet expected by the network layer. Of course, it
must be kept within the data link layer and not passed to the network layer until all
the lower-numbered frames have already been delivered to the network layer in the
correct order. A protocol using this algorithm is given in Fig. 3-21.

Nonsequential receive introduces further constraints on frame sequence num-
bers compared to protocols in which frames are only accepted in order. We can
illustrate the trouble most easily with an example. Suppose that we have a 3-bit se-
quence number, so that the sender is permitted to transmit up to seven frames be-
fore being required to wait for an acknowledgement.

248 THE DAT A LINK LAYER CHAP. 3

/* Protocol 6 (Selective repeat) accepts frames out of order but passes packets to the
network layer in order. Associated with each outstanding frame is a timer. When the timer
expires, only that frame is retransmitted, not all the outstanding frames, as in protocol 5. */

#define MAX SEQ 7 /* should be 2ˆn < 1 */
#define NR BUFS ((MAX SEQ + 1)/2)
typedef enum {frame arrival, cksum err, timeout, network layer ready, ack timeout} event type;
#include "protocol.h"
boolean no nak = true; /* no nak has been sent yet */
seq nr oldest frame = MAX SEQ + 1; /* initial value is only for the simulator */

static boolean between(seq nr a, seq nr b, seq nr c)
{
/* Same as between in protocol 5, but shorter and more obscure. */

return ((a <= b) && (b < c)) || ((c < a) && (a <= b)) || ((b < c) && (c < a));
}
static void send frame(frame kind fk, seq nr frame nr, seq nr frame expected, packet buffer[])
{
/* Construct and send a data, ack, or nak frame. */

frame s; /* scratch variable */
s.kind = fk; /* kind == data, ack, or nak */
if (fk == data) s.info = buffer[frame nr % NR BUFS];
s.seq = frame nr; /* only meaningful for data frames */
s.ack = (frame expected + MAX SEQ) % (MAX SEQ + 1);
if (fk == nak) no nak = false; /* one nak per frame, please */
to physical layer(&s); /* transmit the frame */
if (fk == data) start timer(frame nr % NR BUFS);
stop ack timer(); /* no need for separate ack frame */

}
void protocol6(void)
{

seq nr ack expected; /* lower edge of sender’s window */
seq nr next frame to send; /* upper edge of sender’s window + 1 */
seq nr frame expected; /* lower edge of receiver’s window */
seq nr too far; /* upper edge of receiver’s window + 1 */
int i; /* index into buffer pool */
frame r; /* scratch variable */
packet out buf[NR BUFS]; /* buffers for the outbound stream */
packet in buf[NR BUFS]; /* buffers for the inbound stream */
boolean arrived[NR BUFS]; /* inbound bit map */
seq nr nbuffered; /* how many output buffers currently used */
event type event;
enable network layer(); /* initialize */
ack expected = 0; /* next ack expected on the inbound stream */
next frame to send = 0; /* number of next outgoing frame */
frame expected = 0;
too far = NR BUFS;
nbuffered = 0; /* initially no packets are buffered */
for (i = 0; i < NR BUFS; i++) arrived[i] = false;
while (true) {

wait for event(&event); /* five possibilities: see event type above */

SEC. 3.4 IMPROVING EFFICIENCY 249

switch(event) {
case network layer ready: /* accept, save, and transmit a new frame */

nbuffered = nbuffered + 1; /* expand the window */
from network layer(&out buf[next frame to send % NR BUFS]); /* fetch new packet */
send frame(data, next frame to send, frame expected, out buf);/* transmit the frame */
inc(next frame to send); /* advance upper window edge */
break;

case frame arrival: /* a data or control frame has arrived */
from physical layer(&r); /* fetch incoming frame from physical layer */
if (r.kind == data) {

/* An undamaged frame has arrived. */
if ((r.seq != frame expected) && no nak)

send frame(nak, 0, frame expected, out buf); else start ack timer();
if (between(frame expected,r.seq,too far) && (arrived[r.seq%NR BUFS]==false)) {

/* Frames may be accepted in any order. */
arrived[r.seq % NR BUFS] = true; /* mark buffer as full */
in buf[r.seq % NR BUFS] = r.info; /* insert data into buffer */
while (arrived[frame expected % NR BUFS]) {

/* Pass frames and advance window. */
to network layer(&in buf[frame expected % NR BUFS]);
no nak = true;
arrived[frame expected % NR BUFS] = false;
inc(frame expected); /* advance lower edge of receiver’s window */
inc(too far); /* advance upper edge of receiver’s window */
start ack timer(); /* to see if a separate ack is needed */

}
}

}
if((r.kind==nak) && between(ack expected,(r.ack+1)%(MAX SEQ+1),next frame to send))

send frame(data, (r.ack+1) % (MAX SEQ + 1), frame expected, out buf);
while (between(ack expected, r.ack, next frame to send)) {

nbuffered = nbuffered < 1; /* handle piggybacked ack */
stop timer(ack expected % NR BUFS); /* frame arrived intact */
inc(ack expected); /* advance lower edge of sender’s window */

}
break;

case cksum err:
if (no nak) send frame(nak, 0, frame expected, out buf); /* damaged frame */
break;

case timeout:
send frame(data, oldest frame, frame expected, out buf); /* we timed out */
break;

case ack timeout:
send frame(ack,0,frame expected, out buf); /* ack timer expired; send ack */

}

if (nbuffered < NR BUFS) enable network layer(); else disable network layer();
}

}
Figure 3-21. A sliding window protocol using selective repeat.

250 THE DAT A LINK LAYER CHAP. 3

Initially, the sender’s and receiver’s windows are as shown in Fig. 3-22(a). The
sender now transmits frames 0 through 6. The receiver’s window allows it to ac-
cept any frame with a sequence number between 0 and 6 inclusive. All seven
frames arrive correctly, so the receiver acknowledges them and advances its win-
dow to allow receipt of 7, 0, 1, 2, 3, 4, or 5, as shown in Fig. 3-22(b). All seven
buffers are marked empty.

Sender

Receiver

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

(a) (b) (c) (d)

Figure 3-22. (a) Initial situation with a window of size7. (b) After 7 frames have
been sent and received but not acknowledged. (c) Initial situation with a window
size of 4. (d) After 4 frames have been sent and received but not acknowledged.

It is at this point that disaster strikes in the form of a lightning bolt hitting the
telephone pole and wiping out all the acknowledgements. The protocol should op-
erate correctly despite this disaster. The sender eventually times out and retrans-
mits frame 0. When this frame arrives at the receiver, a check is made to see if it
falls within the receiver’s window. Unfortunately, in Fig. 3-22(b) frame 0 is within
the new window, so it is accepted as a new frame. The receiver also sends a (pig-
gybacked) acknowledgement for frame 6, since 0 through 6 have been received.

The sender is happy to learn that all its transmitted frames did actually arrive
correctly, so it advances its window and immediately sends frames 7, 0, 1, 2, 3, 4,
and 5. Frame 7 will be accepted by the receiver and its packet will be passed di-
rectly to the network layer. Immediately thereafter, the receiving data link layer
checks to see if it has a valid frame 0 already, discovers that it does, and passes the
old buffered packet to the network layer as if it were a new packet. Consequently,
the network layer gets an incorrect packet, and the protocol fails.

The essence of the problem is that after the receiver advanced its window, the
new range of valid sequence numbers overlapped the old one. Consequently, the
following batch of frames might be either duplicates (if all the acknowledgements
were lost) or new ones (if all the acknowledgements were received). The poor re-
ceiver has no way of distinguishing these two cases.

The way out of this dilemma lies in making sure that after the receiver has ad-
vanced its window there is no overlap with the original window. To ensure that
there is no overlap, the maximum window size should be at most half the range of
the sequence numbers. This situation is shown in Fig. 3-22(c) and Fig. 3-22(d).
With 3 bits, the sequence numbers range from 0 to 7. Only four unacknowledged

SEC. 3.4 IMPROVING EFFICIENCY 251

frames should be outstanding at any instant. That way, if the receiver has just
accepted frames 0 through 3 and advanced its window to permit acceptance of
frames 4 through 7, it can unambiguously tell if subsequent frames are retransmis-
sions (0 through 3) or new ones (4 through 7). In general, the window size for pro-
tocol 6 will be (MAX SEQ + 1)/2.

An interesting question is: how many buffers must the receiver have? Under
no conditions will it ever accept frames whose sequence numbers are below the
lower edge of the window or frames whose sequence numbers are above the upper
edge of the window. Consequently, the number of buffers needed is equal to the
window size, not to the range of sequence numbers. In the preceding example of a
3-bit sequence number, four buffers, numbered 0 through 3, are needed. When
frame i arrives, it is put in buffer i mod 4. Notice that although i and (i + 4) mod 4
are ‘‘competing’’ for the same buffer, they are never within the window at the same
time, because that would imply a window size of at least 5.

For the same reason, the number of timers needed is equal to the number of
buffers, not to the size of the sequence space. Effectively, one timer is associated
with each buffer. When the timer runs out, the contents of the buffer are retrans-
mitted.

Protocol 6 also relaxes the implicit assumption that the channel is heavily load-
ed. We made this assumption in protocol 5 when we relied on frames being sent in
the reverse direction on which to piggyback acknowledgements. If the reverse traf-
fic is light, the acknowledgements may be held up for a long period of time, which
can cause problems. In the extreme, if there is a lot of traffic in one direction and
no traffic in the other direction, the protocol will block when the sender window
reaches its maximum.

To relax this assumption, an auxiliary timer is started by start ack timer after
an in-sequence data frame arrives. If no reverse traffic has presented itself before
this timer expires, a separate acknowledgement frame is sent. An interrupt due to
the auxiliary timer is called an ack timeout event. With this arrangement, traffic
flow in only one direction is possible because the lack of reverse data frames onto
which acknowledgements can be piggybacked is no longer an obstacle. Only one
auxiliary timer exists, and if start ack timer is called while the timer is running, it
has no effect. The timer is not reset or extended since its purpose is to provide
some minimum rate of acknowledgements.

It is essential that the timeout associated with the auxiliary timer be apprecia-
bly shorter than the timeout used for timing out data frames. This condition is re-
quired to ensure that a correctly received frame is acknowledged early enough that
the frame’s retransmission timer does not expire and retransmit the frame.

Protocol 6 uses a more efficient strategy than protocol 5 for dealing with er-
rors. Whenever the receiver has reason to suspect that an error has occurred, it
sends a negative acknowledgement (NAK) frame back to the sender. Such a frame
is a request for retransmission of the frame specified in the NAK. In two cases, the
receiver should be suspicious: when a damaged frame arrives or a frame other than

252 THE DAT A LINK LAYER CHAP. 3

the expected one arrives (potential lost frame). To avoid making multiple requests
for retransmission of the same lost frame, the receiver should keep track of wheth-
er a NAK has already been sent for a given frame. The variable no nak in protocol
6 is true if no NAK has been sent yet for frame expected. If the NAK gets mangled
or lost, no real harm is done, since the sender will eventually time out and retrans-
mit the missing frame anyway. If the wrong frame arrives after a NAK has been
sent and lost, no nak will be true and the auxiliary timer will be started. When it
expires, an ACK will be sent to resynchronize the sender to the receiver’s current
status.

In some situations, the time required for a frame to propagate to the destina-
tion, be processed there, and have the acknowledgement come back is (nearly) con-
stant. In these situations, the sender can adjust its timer to be ‘‘tight,’’ just slightly
larger than the normal time interval expected between sending a frame and receiv-
ing its acknowledgement. NAKs are not useful in this case.

However, in other situations the round-trip time can be highly variable. For
example, if the reverse traffic is sporadic, the time before acknowledgement will be
shorter when there is reverse traffic and longer when there is not. The sender is
faced with the choice of either setting the interval to a small value (and risking un-
necessary retransmissions), or setting it to a large value (and going idle for a long
period after an error). Both choices waste bandwidth. In general, if the standard
deviation of the acknowledgement interval is large compared to the interval itself,
the timer is set ‘‘loose’’ to be conservative. NAKs can then appreciably speed up
retransmission of lost or damaged frames.

Closely related to the matter of timeouts and NAKs is the question of determin-
ing which frame caused a timeout. In protocol 5, it is always ack expected, be-
cause it is always the oldest. In protocol 6, there is no trivial way to determine
who timed out. Suppose that frames 0 through 4 have been transmitted, meaning
that the list of outstanding frames is 01234, in order from oldest to youngest. Now
imagine that 0 times out, 5 (a new frame) is transmitted, 1 times out, 2 times out,
and 6 (another new frame) is transmitted. At this point, the list of outstanding
frames is 3405126, from oldest to youngest. If all inbound traffic (i.e., acknowl-
edgement-bearing frames) is lost for a while, the seven outstanding frames will
time out in that order.

To keep the example from getting even more complicated than it already is, we
have not shown the timer administration. Instead, we just assume that the variable
oldest frame is set upon timeout to indicate which frame timed out.

3.5 DAT A LINK PROTOCOLS IN PRACTICE

Within a single building, LANs are widely used for interconnection, but most
wide area network infrastructure is built up from point-to-point lines. In Chap. 4,
we will look at LANs. Here we will examine the data link protocols found on

SEC. 3.5 DATA LINK PROTOCOLS IN PRACTICE 253

point-to-point lines in the Internet in three common situations. The first situation is
when packets are sent over SONET optical fiber links in wide area networks.
These links are widely used, for example, to connect routers in the different loca-
tions of an ISP’s network. The second situation is for ADSL links running on the
local loop of the telephone network at the edge of the Internet. The third situation
is for DOCSIS links in the local loop of a cable network. Both ADSL and DOC-
SIS connect millions of individuals and businesses to the Internet.

The Internet needs point-to-point links for these uses, as well as dial-up
modems, leased lines, cable modems, and so on. A standard protocol called PPP
(Point-to-Point Protocol) is used to send packets over these links. PPP is defined
in RFC 1661 and further elaborated in RFC 1662 and other RFCs (Simpson,
1994a, 1994b). SONET, ADSL, and DOCSIS links both apply PPP, but in dif-
ferent ways.

3.5.1 Packet over SONET

SONET, which we covered in Sec. 2.5.3, is the physical layer protocol that is
most commonly used over the wide area optical fiber links that make up the back-
bone of communications networks, including the telephone system. It provides a
bitstream that runs at a well-defined rate, for example 2.4 Gbps for an OC-48 link.
This bitstream is organized as fixed-size byte payloads that recur every 125 µsec,
whether or not there is user data to send.

To carry packets across these links, some framing mechanism is needed to dis-
tinguish occasional packets from the continuous bitstream in which they are tran-
sported. PPP runs on IP routers to provide this mechanism, as shown in Fig. 3-23.

IP

SONET

PPP
Optical
fiber

Router
IP packet

PPP frame

SONET payload SONET payload

(a) (b)

IP

SONET

PPP

Figure 3-23. Packet over SONET. (a) A protocol stack. (b) Frame relationships.

PPP improves on an earlier, simpler protocol called SLIP (Serial Line Inter-
net Protocol) and is used to handle error detection link configuration, support mul-
tiple protocols, permit authentication, and more. With a wide set of options, PPP
provides three main features:

1. A framing method that unambiguously delineates the end of one
frame and the start of the next one. The frame format also handles
error detection.

254 THE DAT A LINK LAYER CHAP. 3

2. A link control protocol for bringing lines up, testing them, negotiating
options, and bringing them down again gracefully when they are no
longer needed. This protocol is called LCP (Link Control Proto-
col).

3. A way to negotiate network layer options in a way that is independent
of the network layer protocol to be used. The method chosen is to
have a different NCP (Network Control Protocol) for each network
layer supported.

The PPP frame format was chosen to closely resemble the frame format of
HDLC (High-level Data Link Control), a widely used instance of an earlier fam-
ily of protocols, since there was no need to reinvent the wheel.

The primary difference between PPP and HDLC is that PPP is byte oriented
rather than bit oriented. In particular, PPP uses byte stuffing and all frames are an
integral number of bytes. HDLC uses bit stuffing and allows frames of, for exam-
ple, 30.25 bytes.

There is a second major difference in practice, however. HDLC provides re-
liable transmission with a sliding window, acknowledgements, and timeouts in the
manner we have studied. PPP can also provide reliable transmission in noisy envi-
ronments, such as wireless networks; the exact details are defined in RFC 1663.
However, this is rarely done in practice. Instead, an ‘‘unnumbered mode’’ is nearly
always used in the Internet to provide connectionless unacknowledged service.

The PPP frame format is shown in Fig. 3-24. All PPP frames begin with the
standard HDLC flag byte of 0x7E (01111110). The flag byte is stuffed if it occurs
within the Payload field using the escape byte 0x7D. The following byte is the
escaped byte XORed with 0x20, which flips the fifth bit. For example, 0x7D 0x5E
is the escape sequence for the flag byte 0x7E. This means the start and end of
frames can be searched for simply by scanning for the byte 0x7E since it will not
occur elsewhere. The destuffing rule when receiving a frame is to look for 0x7D,
remove it, and XOR the following byte with 0x20. Also, only one flag byte is
needed between frames. Multiple flag bytes can be used to fill the link when there
are no frames to be sent.

After the start-of-frame flag byte comes the Address field. This field is always
set to the binary value 11111111 to indicate that all stations are to accept the
frame. Using this value avoids the issue of having to assign data link addresses.

Flag
01111110

Flag
01111110

Address
11111111 ProtocolControl

00000011 Payload Checksum

Bytes 1 1 1 or 21 Variable 2 or 4 1

Figure 3-24. The PPP full frame format for unnumbered mode operation.

SEC. 3.5 DATA LINK PROTOCOLS IN PRACTICE 255

The Address field is followed by the Control field, the default value of which is
00000011. This value indicates an unnumbered frame.

Since the Address and Control fields are always constant in the default config-
uration, LCP provides the necessary mechanism for the two parties to negotiate an
option to omit them altogether and save 2 bytes per frame.

The fourth PPP field is the Protocol field. Its job is to tell what kind of packet
is in the Payload field. Codes starting with a 0 bit are defined for IP version 4, IP
version 6, and other network layer protocols that might be used, such as IPX and
AppleTalk. Codes starting with a 1 bit are used for PPP configuration protocols,
including LCP and a different NCP for each network layer protocol supported.
The default size of the Protocol field is 2 bytes, but it can be negotiated down to
1 byte using LCP. The designers were perhaps overly cautious in thinking that
someday there might be more than 256 protocols in use.

The Payload field is variable length, up to some negotiated maximum. If the
length is not negotiated using LCP during line setup, a default length of 1500 bytes
is used. Padding may follow the payload if it is needed.

After the Payload field comes the Checksum field, which is normally 2 bytes,
but a 4-byte checksum can be negotiated. The 4-byte checksum is in fact the same
32-bit CRC whose generator polynomial is given at the end of Sec. 3.2.2. The
2-byte checksum is also an industry-standard CRC.

PPP is a framing mechanism that can carry the packets of multiple protocols
over many types of physical layers. To use PPP over SONET, the choices to make
are spelled out in RFC 2615 (Malis and Simpson, 1999). A 4-byte checksum is
used, since this is the primary means of detecting transmission errors over the
physical, link, and network layers. It is recommended that the Address, Control,
and Protocol fields not be compressed, since SONET links already run at relatively
high rates.

There is also one unusual feature. The PPP payload is scrambled (as described
in Sec. 2.4.3) before it is inserted into the SONET payload. Scrambling XORs the
payload with a long pseudorandom sequence before it is transmitted. The issue is
that the SONET bitstream needs frequent bit transitions for synchronization.
These transitions come naturally with the variation in voice signals, but in data
communication the user chooses the information that is sent and might send a
packet with a long run of 0s. With scrambling, the likelihood of a user being able
to cause problems by sending a long run of 0s is made extremely low.

Before PPP frames can be carried over SONET lines, the PPP link must be es-
tablished and configured. The phases that the link goes through when it is brought
up, used, and taken down again are shown in Fig. 3-25.

The link starts in the DEAD state, which means that there is no connection at
the physical layer. When a physical layer connection is established, the link moves
to ESTABLISH. At this point, the PPP peers exchange a series of LCP packets,
each carried in the Payload field of a PPP frame, to select the PPP options for the
link from the possibilities mentioned above. The initiating peer proposes options,

256 THE DAT A LINK LAYER CHAP. 3

NETWORKDEAD

TERMINATE OPEN

ESTABLISH AUTHENTICATE

Carrier
detected

Both sides
agree on options

Authentication
successful

NCP
configuration

Carrier
dropped

Failed

Failed

Done

Figure 3-25. State diagram for bringing a PPP link up and down.

and the responding peer either accepts or rejects them, in whole or part. The re-
sponder can also make alternative proposals.

If LCP option negotiation is successful, the link reaches the AUTHENTICATE
state. Now the two parties can check each other’s identities, if desired. If
authentication is successful, the NETWORK state is entered and a series of NCP
packets are sent to configure the network layer. It is difficult to generalize about
the NCP protocols because each one is specific to some network layer protocol and
allows configuration requests to be made that are specific to that protocol. For IP,
for example, the assignment of IP addresses to both ends of the link is the most im-
portant possibility.

Once OPEN is reached, data transport can take place. It is in this state that IP
packets are carried in PPP frames across the SONET line. When data transport is
finished, the link moves into the TERMINATE state, and from there it moves back
to the DEAD state when the physical layer connection is dropped.

3.5.2 ADSL (Asymmetric Digital Subscriber Loop)

ADSL connects millions of home subscribers to the Internet at megabit/sec
rates over the same telephone local loop that is used for plain old telephone ser-
vice. In Sec. 2.5.2, we described how a device called a DSL modem is added on
the home side. It sends bits over the local loop to a device called a DSLAM (DSL
Access Multiplexer), pronounced ‘‘dee-slam,’’ in the telephone company’s local
office. Now we will explore in more detail how packets are carried over ADSL
links.

The overall picture for the protocols and devices used with ADSL is shown in
Fig. 3-26. Different protocols are deployed in different networks, so we have

SEC. 3.5 DATA LINK PROTOCOLS IN PRACTICE 257

chosen to show the most popular scenario. Inside the home, a computer such as a
PC sends IP packets to the DSL modem using a link layer like Ethernet. The DSL
modem then sends the IP packets over the local loop to the DSLAM using the pro-
tocols that we are about to study. At the DSLAM (or a router connected to it de-
pending on the implementation) the IP packets are extracted and enter an ISP net-
work so that they may reach any destination on the Internet.

AAL5

ADSL Local
loop

ATM

PPP
DSLAM

(with router)

AAL5

ADSL

ATM

PPP
DSL

modem
PC

Ethernet
Internet

Customer’s home ISP’s office

Ethernet

IP

Link

IP

Figure 3-26. ADSL protocol stacks.

The protocols shown over the ADSL link in Fig. 3-26 start at the bottom with
the ADSL physical layer. They are based on a digital modulation scheme called
orthogonal frequency division multiplexing (also known as discrete multitone), as
we saw in Sec 2.5.2. Near the top of the stack, just below the IP network layer, is
PPP. This protocol is the same PPP that we have just studied for packet over
SONET transports. It works in the same way to establish and configure the link
and carry IP packets.

In between ADSL and PPP are ATM and AAL5. These are new protocols that
we have not seen before. ATM (Asynchronous Transfer Mode) was designed in
the early 1990s and launched with incredible hype. It promised a network technol-
ogy that would solve the world’s telecommunications problems by merging voice,
data, cable television, telegraph, carrier pigeon, tin cans connected by strings, and
everything else into a single integrated system that could do everything for every-
one. This did not happen. In large part, the problems of ATM were similar to those
we described concerning the OSI protocols, that is, bad timing, technology, imple-
mentation, and politics. Nevertheless, ATM was at least much more successful than
OSI. While it has not taken over the world, it remains widely used in niches includ-
ing some broadband access lines such as DSL, and especially on WAN links inside
telephone networks.

ATM is a link layer that is based on the transmission of fixed-length cells of
information. The ‘‘ Asynchronous’’ in its name means that the cells do not always
need to be sent in the way that bits are continuously sent over synchronous lines, as
in SONET. Cells only need to be sent when there is information to carry. ATM is
a connection-oriented technology. Each cell carries a virtual circuit identifier in

258 THE DAT A LINK LAYER CHAP. 3

its header and devices use this identifier to forward cells along the paths of estab-
lished connections.

The cells are each 53 bytes long, consisting of a 48-byte payload plus a 5-byte
header. By using small cells, ATM can flexibly divide the bandwidth of a physical
layer link among different users in fine slices. This ability is useful when, for ex-
ample, sending both voice and data over one link without having long data packets
that would cause large variations in the delay of the voice samples. The unusual
choice for the cell length (e.g., compared to the more natural choice of a power
of 2) is an indication of just how political the design of ATM was. The 48-byte
size for the payload was a compromise to resolve a deadlock between Europe,
which wanted 32-byte cells, and the U.S., which wanted 64-byte cells. A brief
overview of ATM is given by Siu and Jain (1995).

To send data over an ATM network, it needs to be mapped into a sequence of
cells. This mapping is done with an ATM adaptation layer in a process called seg-
mentation and reassembly. Several adaptation layers have been defined for dif-
ferent services, ranging from periodic voice samples to packet data. The main one
used for packet data is AAL5 (ATM Adaptation Layer 5).

An AAL5 frame is shown in Fig. 3-27. Instead of a header, it has a trailer that
gives the length and has a 4-byte CRC for error detection. Naturally, the CRC is
the same one used for PPP and IEEE 802 LANs like Ethernet. Wang and
Crowcroft (1992) have shown that it is strong enough to detect nontraditional er-
rors such as cell reordering. As well as a payload, the AAL5 frame has padding.
This rounds out the overall length to be a multiple of 48 bytes so that the frame can
be evenly divided into cells. No addresses are needed on the frame as the virtual
circuit identifier carried in each cell will get it to the right destination.

PPP protocol PPP payload Pad Unused Length CRC

Bytes 1 or 2 0 to 47 2 2 4

AAL5 trailer

Variable

AAL5 payload

Figure 3-27. AAL5 frame carrying PPP data.

Now that we have described ATM, we have only to describe how PPP makes
use of ATM in the case of ADSL. It is done with yet another standard called
PPPoA (PPP over ATM). This standard is not really a protocol (so it does not
appear in Fig. 3-26) but more a specification of how to work with both PPP and
AAL5 frames. It is described in RFC 2364 (Gross et al., 1998).

Only the PPP protocol and payload fields are placed in the AAL5 payload, as
shown in Fig. 3-27. The protocol field indicates to the DSLAM at the far end
whether the payload is an IP packet or a packet from another protocol such as LCP.
The far end knows that the cells contain PPP information because an ATM virtual
circuit is set up for this purpose.

SEC. 3.5 DATA LINK PROTOCOLS IN PRACTICE 259

Within the AAL5 frame, PPP framing is not needed as it would serve no pur-
pose; ATM and AAL5 already provide the framing. More framing would be
worthless. The PPP CRC is also not needed because AAL5 already includes the
very same CRC. This error detection mechanism supplements the ADSL physical
layer coding of a Reed-Solomon code for error correction and a 1-byte CRC for the
detection of any remaining errors not otherwise caught. This scheme has a much
more sophisticated error-recovery mechanism than when packets are sent over a
SONET line because ADSL is a much noisier channel.

3.5.3 Data Over Cable Service Interface Specification (DOCSIS)

The DOCSIS (Data Over Cable Service Interface Specification) protocol is
generally described as having two components: the physical (PHY) layer, as de-
scribed in the previous chapter (sometimes called the PMD or physical media
dependent sublayer), and the Media Access Control (MAC) layer, which we will
cover in more detail in Chapter 4. Above the physical layer, DOCSIS must handle
a variety of tasks for the network layer, including bandwidth allocation in the
upstream and downstream direction (flow control), framing, and error correction
(sometimes error correction is viewed as a physical layer construct, of course). We
have described each of these concepts earlier in this chapter. In this section, we
explore how DOCSIS addresses each of these problems.

A DOCSIS frame contains various information including quality of service
indicators and support for fragmentation or concatenation of frames. Each unidi-
rectional sequence of frames is called a service flow. The primary service flows
allow the CMTS (Cable Modem Termination System in the cable company’s
office) to communicate management messages to each cable modem. Each service
flow has a unique identifier and is often associated with a service class, which may
be best effort, polling (whereby a cable modem makes explicit requests for band-
width), and grant service (whereby a cable modem transmits bursts of data at a
guaranteed data date). A primary service flow is the default service flow that car-
ries all frames that are not classified to another service. In the many broadband
service configurations, there is only a default upstream and default downstream
service flow between the CM and CMTS that carries all user traffic as well as all
management messages. DOCSIS networks have historically been designed assum-
ing that most data is transmitted in the downstream direction. Certain applications,
such as video conferencing, run counter to these trends, although recently announ-
ced cloud-gaming services (e.g., Stadia, GeForce Now, xCloud) may result in even
more downstream utilization, as these applications are targeting continuous stream-
ing rates of 30–35 Mbps.

Once a cable modem has been powered on, it establishes a connection to the
the CMTS, which typically allows it to connect to the rest of the network. When it
registers with the CMTS, it acquires upstream and downstream communication
channels to use, as well as encryption keys from the CMTS. The upstream and

260 THE DAT A LINK LAYER CHAP. 3

downstream carriers provide two shared channels for all cable modems. In the
downstream direction, all cable modems connected to the CMTS receive every
packet transmitted. In the upstream direction, many cable modems transmit, and
the CMTS is the single receiver. There can be multiple physical paths between the
CMTS and each cable modem.

Prior to DOCSIS 3.1, packets in the downstream direction were divided into
188-byte MPEG frames, each with a 4-byte header and a 184-byte payload (the
so-called MPEG transmission convergence layer). In addition to the data itself, the
CMTS periodically sends management information to the cable modem, which in-
cludes information about ranging, channel assignment, and other tasks related to
channel allocation that are performed by the MAC layer (which we will cover in
more detail in Chapter 4). Although DOCSIS 3.1 still supports this convergence
layer for legacy purposes, it no longer relies on it for downstream communication.

The DOCSIS link layer organizes transmission according to modulation pro-
files. A modulation profile is a list of modulation orders (i.e., bit-loadings) that
correspond to the OFDM subcarriers. In the downstream direction, the CMTS may
use different profiles for different cable modems, but typically, a group of cable
modems that have the same or similar performance will be grouped into the same
profile. Based on the service flow identification and QoS parameters, the link
layer (in DOCSIS 3.1), now called the convergence layer, groups packets that
have the same profile into the same send buffer; typically there is one send buffer
per profile, each of which is shallow so as to avoid significant latency. The code-
word builder then maps each DOCSIS frame to the corresponding FEC codewords,
pulling packets from different profile buffers only at each codeword boundary.
FEC encoding views the DOCSIS frame as a bit stream, not as a sequence of bytes.
DOCSIS relies on an LDPC codeword. In the downstream direction, a full code-
word has up to 2027 bytes, of which up to 1799 bytes are data and 225 are parity.
Within each byte of a DOCSIS frame, the least significant bit is transferred first;
when a value that is more than one byte is transmitted, the bytes are ordered from
most significant to least significant, an order sometimes called network order.
The CMTS also adopts byte stuffing: if no DOCSIS frame is available in the down-
stream direction, the CMTS inserts zero-bit-filled subcarriers into OFDM symbols,
or simply stuffs sequences of 1s into codewords, as shown in Fig. 3-28.

Since version 3.0, DOCSIS has supported a technology called channel bond-
ing, which allows a single subscriber to use multiple upstream and downstream
channels simultaneously. This technology is a form of link aggregation, which
may combine multiple physical links or ports to create a single logical connection.
DOCSIS 3.0 allows up to 32 downstream channels and 8 upstream channels to be
bonded, where each channel may be 6–8 MHz wide. Channel bonding in DOCSIS
3.1 is the same as it was in DOCSIS 3.0, although DOCSIS 3.1 supports wider
upstream and downstream channels: difference is that the upstream and down-
stream channels can be much wider (up to 192 MHz in downstream, 96 MHz in
upstream, as compared to 6 or 8 MHz downstream and up to 6.4 MHz upstream in

SEC. 3.5 DATA LINK PROTOCOLS IN PRACTICE 261

ResvV PDU
Ptr

End of
previous PDU

CW header

Bytes 2 1-1777 21 21 0-2

Payload BCH
parity LDPC parity S

Start of
Next PDU

Figure 3-28. DOCSIS Frame to codeword mapping.

DOCSIS 3.0). On the other hand, a DOCSIS 3.1 modem can bond across channels
of multiple types (e.g., a DOCSIS 3.1 modem could bond one 192 MHz OFDM
channel and four 6-MHZ SC-QAM channels).

3.6 SUMMARY

The task of the data link layer is to convert the raw bit stream offered by the
physical layer into a stream of frames for use by the network layer. The link layer
can present this stream with varying levels of reliability, ranging from con-
nectionless, unacknowledged service to reliable, connection-oriented service.

Various framing methods are used, including byte count, byte stuffing, and bit
stuffing. Data link protocols can provide error control to detect or correct damaged
frames and to retransmit lost frames. To prevent a fast sender from overrunning a
slow receiver, the data link protocol can also provide flow control. The sliding
window mechanism is widely used to integrate error control and flow control in a
simple way. When the window size is 1 packet, the protocol is stop-and-wait.

Codes for error correction and detection add redundant information to mes-
sages by using a variety of mathematical techniques. Convolutional codes and
Reed-Solomon codes are widely deployed for error correction, with low-density
parity check codes increasing in popularity. The codes for error detection that are
used in practice include cyclic redundancy checks and checksums. All these codes
can be applied at the link layer, as well as at the physical layer and higher layers.

We examined a series of protocols that provide a reliable link layer using ac-
knowledgements and retransmissions, or ARQ (Automatic Repeat reQuest), under
more realistic assumptions. Starting from an error-free environment in which the
receiver can handle any frame sent to it, we introduced flow control, followed by
error control with sequence numbers and the stop-and-wait algorithm. Then we
used the sliding window algorithm to allow bidirectional communication and intro-
duce the concept of piggybacking. The last two protocols pipeline the transmis-
sion of multiple frames to prevent the sender from blocking on a link with a long

262 THE DAT A LINK LAYER CHAP. 3

propagation delay. The receiver can either discard all frames other than the next
one in sequence, or buffer out-of-order frames and send negative acknowledge-
ments for greater bandwidth efficiency. The former strategy is a go-back-n proto-
col, and the latter strategy is a selective repeat protocol.

The Internet uses PPP as the main data link protocol over point-to-point lines.
It provides a connectionless unacknowledged service, using flag bytes to delimit
frames and a CRC for error detection. It is used to carry packets across a range of
links, including SONET links in wide area networks and ADSL links for the home.
DOCSIS is used when Internet service is provided over the existing cable TV net-
work.

PROBLEMS

1. Ethernet uses a preamble in combination with a byte count to separate the frames.
What happens if a user tries to send data that contains this preamble?

2. The following character encoding is used in a data link protocol:
A: 01000111 B: 11100011 FLAG: 01111110 ESC: 11100000
Show the bit sequence transmitted (in binary) for the four-character frame A B ESC
FLAG when each of the following framing methods is used:

(a) Byte count.
(b) Flag bytes with byte stuffing.
(c) Starting and ending flag bytes with bit stuffing.

3. The following data fragment occurs in the middle of a data stream for which the
byte-stuffing algorithm described in the text is used: A B ESC C ESC FLAG FLAG D.
What is the output after stuffing?

4. What is the maximum overhead in byte-stuffing algorithm?

5. You receive the following data fragment: A ESC FLAG A B A FLAG FLAG C B ESC
FLAG ESC ESC ESC FLAG FLAG. You know that the protocol uses byte stuffing.
Show the contents of each frame after destuffing.

6. You receive the following data fragment: 0110 0111 1100 1111 0111 1101. You know
that the protocol uses bit stuffing. Show the data after destuffing.

7. One of your classmates, Scrooge, has pointed out that it is wasteful to end each frame
with a flag byte and then begin the next one with a second flag byte. One flag byte
could do the job as well, and a byte saved is a byte earned. Do you agree?

8. A bit string, 0111101111101111110, needs to be transmitted at the data link layer.
What is the string actually transmitted after bit stuffing?

9. An upper-layer packet is split into 10 frames, each of which has an 80% chance of arri-
ving undamaged. If no error control is done by the data link protocol, how many times
must the message be sent on average to get the entire thing through?

CHAP. 3 PROBLEMS 263

10. Can you think of any circumstances under which an open-loop protocol (e.g., a Ham-
ming code) might be preferable to the feedback-type protocols discussed throughout
this chapter?

11. To provide more reliability than a single parity bit can give, an error-detecting coding
scheme uses one parity bit for checking all the odd-numbered bits and a second parity
bit for all the even-numbered bits. What is the Hamming distance of this code?

12. Sixteen-bit messages are transmitted using a Hamming code. How many check bits
are needed to ensure that the receiver can detect and correct single-bit errors? Show
the bit pattern transmitted for the message 1101001100110101. Assume that even par-
ity is used in the Hamming code.

13. An 8-bit byte with binary value 10101111 is to be encoded using an even-parity Ham-
ming code. What is the binary value after encoding?

14. A 12-bit Hamming code whose hexadecimal value is 0xE4F arrives at a receiver. What
was the original value in hexadecimal? Assume that not more than 1 bit is in error.

15. One way of detecting errors is to transmit data as a block of n rows of k bits per row
and add parity bits to each row and each column. The bit in the lower-right corner is a
parity bit that checks its row and its column. Will this scheme detect all single errors?
Double errors? Triple errors? Show that this scheme cannot detect some four-bit er-
rors.

16. Suppose that data are transmitted in blocks of 1000 bits. What is the maximum error
rate under which error detection and retransmission mechanism (1 parity bit per block)
is better than using Hamming code? Assume that bit errors are independent of one an-
other and no bit error occurs during retransmission.

17. A block of bits with n rows and k columns uses horizontal and vertical parity bits for
error detection. Suppose that exactly 4 bits are inverted due to transmission errors.
Derive an expression for the probability that the error will be undetected.

18. Using the convolutional coder of Fig. 3-7, what is the output sequence when the input
sequence is 10101010 (left to right) and the internal state is initially all zero?

19. Suppose that a message 1001 1100 1010 0011 is transmitted using the Internet Check-
sum (4-bit word). What is the value of the checksum?

20. What is the remainder obtained by dividing x7 + x5 + 1 by the generator polynomial
x3 + 1?

21. A bit stream 10011101 is transmitted using the standard CRC method described in the
text. The generator polynomial is x3 + 1. Show the actual bit string transmitted. Sup-
pose that the third bit from the left is inverted during transmission. Show that this error
is detected at the receiver’s end. Give an example of bit errors in the bit string trans-
mitted that will not be detected by the receiver.

22. A 1024-bit message is sent that contains 992 data bits and 32 CRC bits. CRC is com-
puted using the IEEE 802 standardized, 32-degree CRC polynomial. For each of the
following, explain whether the errors during message transmission will be detected by
the receiver:
(a) There was a single-bit error.

264 THE DAT A LINK LAYER CHAP. 3

(b) There were two isolated bit errors.
(c) There were 18 isolated bit errors.
(d) There were 47 isolated bit errors.
(e) There was a 24-bit long burst error.
(f) There was a 35-bit long burst error.

23. In the discussion of ARQ protocol in Section 3.3.3, a scenario was outlined that re-
sulted in the receiver accepting two copies of the same frame due to a loss of acknowl-
edgement frame. Is it possible that a receiver may accept multiple copies of the same
frame when none of the frames (message or acknowledgement) are lost?

24. A channel has a bit rate of 4 kbps and a propagation delay of 20 msec. For what range
of frame sizes does stop-and-wait give an efficiency of at least 50%?

25. In protocol 3, is it possible for the sender to start the timer when it is already running?
If so, how might this occur? If not, why is it impossible?

26. A 3000-km-long T1 trunk is used to transmit 64-byte frames using protocol 5. If the
propagation speed is 6 µsec/km, how many bits should the sequence numbers be?

27. Imagine a sliding window protocol using so many bits for sequence numbers that
wraparound never occurs. What relations must hold among the four window edges and
the window size, which is constant and the same for both the sender and the receiver?

28. If the procedure between in protocol 5 checked for the condition a) b) c instead of
the condition a) b < c, would that have any effect on the protocol’s correctness or ef-
ficiency? Explain your answer.

29. In protocol 6, when a data frame arrives, a check is made to see if the sequence number
differs from the one expected and no nak is true. If both conditions hold, a NAK is
sent. Otherwise, the auxiliary timer is started. Suppose that the else clause were omit-
ted. Would this change affect the protocol’s correctness?

30. Suppose that the three-statement while loop near the end of protocol 6 was removed
from the code. Would this affect the correctness of the protocol or just the per-
formance? Explain your answer.

31. The distance from earth to a distant planet is approximately 9 × 1010 m. What is the
channel utilization if a stop-and-wait protocol is used for frame transmission on a 64
Mbps point-to-point link? Assume that the frame size is 32 KB and the speed of light
is 3 × 108 m/s.

32. In the previous problem, suppose a sliding window protocol is used instead. For what
send window size will the link utilization be 100%? You may ignore the protocol
processing times at the sender and the receiver.

33. In protocol 6, the code for frame arrival has a section used for NAKs. This section is
invoked if the incoming frame is a NAK and another condition is met. Give a scenario
where the presence of this other condition is essential.

34. Consider the operation of protocol 6 over a 1-Mbps error-free line. The maximum
frame size is 1000 bits. New packets are generated 1 second apart. The timeout inter-
val is 10 msec. If the special acknowledgement timer were eliminated, unnecessary
timeouts would occur. How many times would the average message be transmitted?

CHAP. 3 PROBLEMS 265

35. In protocol 6, MAX SEQ = 2n < 1. While this condition is obviously desirable to
make efficient use of header bits, we have not demonstrated that it is essential. Does
the protocol work correctly for MAX SEQ = 4, for example?

36. Frames of 1000 bits are sent over a 1-Mbps channel using a geostationary satellite
whose propagation time from the earth is 270 msec. Acknowledgements are always
piggybacked onto data frames. The headers are very short. Three-bit sequence num-
bers are used. What is the maximum achievable channel utilization for

(a) Stop-and-wait?
(b) Protocol 5?
(c) Protocol 6?

37. Consider a protocol that uses piggybacking, a sending window size of 4, and 400-bit
frames. This protocol is used to transfer data over a 200 kbps channel with a 4 msec
one-way propagation delay. Unfortunately, the receiver has no data to send back. It
needs to send its acknowledgements in separate frames. What is the maximum amount
of time the receiver can wait before sending, such that the bandwidth efficiency does
not drop below 50%?

38. Compute the fraction of the bandwidth that is wasted on overhead (headers and re-
transmissions) for protocol 6 on a heavily loaded 50-kbps satellite channel with data
frames consisting of 40 header and 3960 data bits. Assume that the signal propagation
time from the earth to the satellite is 270 msec. ACK frames never occur. NAK frames
are 40 bits. The error rate for data frames is 1%, and the error rate for NAK frames is
negligible. The sequence numbers are 8 bits.

39. Consider an error-free 64-kbps satellite channel used to send 512-byte data frames in
one direction, with very short acknowledgements coming back the other way. What is
the maximum throughput for window sizes of 1, 7, 15, and 127? The earth-satellite
propagation time is 270 msec.

40. A 100-km-long cable runs at the T1 data rate. The propagation speed in the cable is
2/3 the speed of light in vacuum. How many bits fit in the cable?

41. Give at least one reason why PPP uses byte stuffing instead of bit stuffing to prevent
accidental flag bytes within the payload from causing confusion.

42. What is the minimum overhead to send an IP packet using PPP? Count only the over-
head introduced by PPP itself, not the IP header overhead. What is the maximum over-
head?

43. A 100-byte IP packet is transmitted over a local loop using ADSL protocol stack. How
many ATM cells will be transmitted? Briefly describe their contents.

44. The goal of this lab exercise is to implement an error-detection mechanism using the
standard CRC algorithm described in the text. Write two programs, generator and
verifier . The generator program reads from standard input a line of ASCII text con-
taining an n-bit message consisting of a string of 0s and 1s. The second line is the k-
bit polynomial, also in ASCII. It outputs to standard output a line of ASCII text with
n + k 0s and 1s representing the message to be transmitted. Then it outputs the poly-
nomial, just as it read it in. The verifier program reads in the output of the generator

266 THE DAT A LINK LAYER CHAP. 3

program and outputs a message indicating whether it is correct or not. Finally, write a
program, alter , that inverts 1 bit on the first line depending on its argument (the bit
number counting the leftmost bit as 1) but copies the rest of the two lines correctly. By
typing

generator <file | verifier

you should see that the message is correct, but by typing

generator <file | alter arg | verifier

you should get the error message.

4
THE MEDIUM ACCESS CONTROL

SUBLAYER

Many link-layer communications protocols that we studied in Chap. 3 rely on a
broadcast communication medium to transmit data. Any such protocol requires
additional mechanisms to allow multiple senders to efficiently and fairly share the
broadcast medium. This chapter introduces these protocols.

In any broadcast network, the key issue involves determining who gets to use
the channel when there is competition for it. For example, consider a conference
call in which six people, on six different telephones, are all connected so that each
one can hear and talk to everyone else. It is very likely that when one of them
stops speaking, two or more will start talking at once, leading to chaos. In a face-
to-face meeting, chaos is often avoided by a second external channel. For ex-
ample, at a meeting, people raise their hands to request permission to speak. When
only a single channel is available, it is much harder to determine who should go
next. Many protocols for solving the problem are known. They form the contents
of this chapter. In the literature, broadcast channels are sometimes referred to as
multiaccess channels or random access channels .

The protocols used to determine who goes next on a multiaccess channel be-
long to a sublayer of the data link layer called the MAC (Medium Access Con-
trol) sublayer. The MAC sublayer is especially important in LANs, particularly
wireless ones because wireless is naturally a broadcast channel. Some aspects of a
WAN (e.g., a direct interconnect) are point-to-point; others (e.g., the shared access
network in a cable ISP) are shared and also rely on the MAC layer to facilitate
sharing. Because multiaccess channels and LANs are so closely related, in this

267

268 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

chapter we will discuss LANs in general, including a few issues that are not strictly
part of the MAC sublayer. The main subject here will be control of the channel.

Technically, the MAC sublayer is the bottom part of the data link layer, so logi-
cally we should have studied it before examining all the point-to-point protocols in
Chap. 3. Nevertheless, for most people, it is easier to understand protocols involv-
ing multiple parties after two-party protocols are well understood. For that reason,
we have deviated slightly from a strict bottom-up order of presentation.

4.1 THE CHANNEL ALLOCATION PROBLEM

The central theme of this chapter is how to allocate a single broadcast channel
among competing users. The channel might be a portion of the wireless spectrum
in a geographic region, or a single wire or optical fiber to which multiple nodes are
connected. It does not matter. In both cases, the channel connects each user to all
other users and any user who makes full use of the channel interferes with other
users who also wish to use the channel.

We will first look at the shortcomings of static allocation schemes for bursty
traffic. Then, we will lay out the key assumptions used to model the dynamic
schemes that we examine in the following sections.

4.1.1 Static Channel Allocation

The conventional way of allocating a single channel, such as a telephone trunk,
among multiple competing users is to chop up its capacity by using one of the mul-
tiplexing schemes we described in Sec. 2.4.4, such as FDM (Frequency Division
Multiplexing). If there are N users, the bandwidth is divided into N equal-sized
portions, with each user being assigned one portion. Since each user has a private
frequency band, there is now no interference among users. When there is only a
small and constant number of users, each of which has a steady stream or a heavy
load of traffic, this division is a simple and efficient allocation mechanism. A
wireless example is FM radio stations. Each station gets a portion of the FM band
and uses it most of the time to broadcast its signal.

However, when the number of senders is large and varying or the traffic is
bursty, FDM presents some problems. If the spectrum is cut up into N regions and
fewer than N users are currently interested in communicating, a large piece of valu-
able spectrum will be wasted. And if more than N users want to communicate,
some of them will be denied permission for lack of bandwidth, even if some of the
users who have been assigned a frequency band hardly ever transmit or receive
anything.

Even assuming that the number of users could somehow be held constant at N,
dividing the single available channel into some number of static subchannels is
inherently inefficient. The basic problem is that when some users are quiescent,

SEC. 4.1 THE CHANNEL ALLOCATION PROBLEM 269

their bandwidth is simply lost. They are not using it, and no one else is allowed to
use it either. A static allocation is a poor fit to most computer systems, in which
data traffic is extremely bursty, often with peak traffic to mean traffic ratios of
1000:1. Consequently, most of the channels will be idle most of the time.

The poor performance of static FDM can easily be seen with a simple queue-
ing theory calculation. Let us start by finding the mean time delay, T, to send a
frame onto a channel of capacity C bps. We assume that the frames arrive ran-
domly with an average arrival rate of h frames/sec, and that the frames vary in
length with an average length of 1/µ bits. With these parameters, the service rate
of the channel is µC frames/sec. A standard queueing theory result is

T =
1

µC < h

(For the curious, this result is for an ‘‘M/M/1’’ queue. It requires that the ran-
domness of the times between frame arrivals and the frame lengths follow an expo-
nential distribution, or equivalently be the result of a Poisson process.)

In our example, if C is 100 Mbps, the mean frame length, 1/ µ, is 10,000 bits,
and the frame arrival rate, h, is 5000 frames/sec, then T = 200 µsec. Note that if
we ignored the queueing delay and just asked how long it takes to send a
10,000-bit frame on a 100-Mbps network, we would get the (incorrect) answer of
100 µsec. That result only holds when there is no contention for the channel.

Now let us divide the single channel into N independent subchannels, each
with capacity C/N bps. The mean input rate on each of the subchannels will now
be h /N. Recomputing T, we get

TN =
1

µ(C/N) < (h /N)
=

N
µC < h

= NT

The mean delay for the divided channel is N times worse than if all the frames
were somehow magically arranged orderly in a big central queue. This same result
says that a bank lobby full of ATM machines is better off having a single queue
feeding all the machines than a separate partitioned queue in front of each machine
because with separate queues, there may be idle ATMs while there are long lines at
other ones.

Precisely the same arguments that apply to FDM also apply to other ways of
statically dividing the channel. If we were to use time division multiplexing (TDM)
and allocate each user every Nth time slot, if a user does not use the allocated slot,
it would just lie fallow. The same would hold if we split up the networks physi-
cally. Using our previous example again, if we were to replace the 100-Mbps net-
work with 10 networks of 10 Mbps each and statically allocate each user to one of
them, the mean delay would jump from 200 µsec to 2 msec.

Since none of the traditional static channel allocation methods work well at all
with bursty traffic, we will now explore dynamic methods.

270 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

4.1.2 Assumptions for Dynamic Channel Allocation

Before we get to the first of the many channel allocation methods in this chap-
ter, it is worthwhile to carefully formulate the allocation problem. Underlying all
the work done in this area are the following five key assumptions:

1. Independent Traffic . The model consists of N independent stations
(e.g., computers, telephones), each with a program or user that gener-
ates frames for transmission. The expected number of frames gener-
ated in an interval of length 6t is h6t , where h is a constant (the arri-
val rate of new frames). Once a frame has been generated, the station
is blocked and does nothing until the frame has been successfully
transmitted.

2. Single Channel . A single channel is available for all communication.
All stations can transmit on it and all can receive from it. The stations
are assumed to be equally capable, though protocols may assign them
different roles (e.g., priorities).

3. Observable Collisions . If two frames are transmitted simultan-
eously, they overlap in time and the resulting signal is garbled. This
event is called a collision. All stations can detect that a collision has
occurred. A collided frame must be transmitted again later. No errors
other than those generated by collisions occur.

4. Continuous or Slotted Time . Time may be assumed continuous, in
which case frame transmission can begin at any instant. Alterna-
tively, time may be slotted or divided into discrete intervals (called
slots). Frame transmissions must then begin at the start of a slot. A
slot may contain 0, 1, or more frames, corresponding to an idle slot, a
successful transmission, or a collision, respectively.

5. Carrier Sense or No Carrier Sense. With the carrier sense assump-
tion, stations can tell if the channel is in use before trying to use it.
No station will attempt to use the channel while it is sensed as busy.
If there is no carrier sense, stations cannot sense the channel before
trying to use it. They just go ahead and transmit. Only later can they
determine whether the transmission was successful.

Some discussion of these assumptions is in order. The first one says that frame
arrivals are independent, both across stations and at a particular station, and that
frames are generated unpredictably but at a constant rate. Actually, this assump-
tion is not a particularly good model of network traffic, as it has long been well
known that packets come in bursts over a range of time scales (Paxson and Floyd,
1995). Recent research confirms that the pattern still holds (Fontugne et al., 2017).
Nonetheless, Poisson models , as they are frequently called, are commonly used, in

SEC. 4.1 THE CHANNEL ALLOCATION PROBLEM 271

part, because they are mathematically tractable. They help us analyze protocols to
understand roughly how performance changes over an operating range and how it
compares with other designs.

The single-channel assumption is the heart of the model. No external ways to
communicate exist. Stations cannot raise their hands to request that the teacher
call on them, so we will have to come up with better solutions.

The remaining three assumptions depend on the engineering of the system, and
we will say which assumptions hold when we examine a particular protocol.

The collision assumption is basic. Stations need some way to detect collisions
if they are to retransmit frames rather than let them be lost. For wired channels,
node hardware can be designed to detect collisions when they occur. The stations
can then terminate their transmissions prematurely to avoid wasting capacity. This
detection is much harder for wireless channels, so collisions are usually inferred
after the fact by the lack of an expected acknowledgement frame. It is also pos-
sible for some frames involved in a collision to be successfully received, depending
on the details of the signals and the receiving hardware. However, this situation is
not the common case, so we will assume that all frames involved in a collision are
lost. We will also see protocols that are designed to prevent collisions from oc-
curring in the first place.

The reason for the two alternative assumptions about time is that slotted time
can be used to improve performance. However, it requires the stations to follow a
master clock or synchronize their actions with each other to divide time into dis-
crete intervals. Hence, it is not always available. We will discuss and analyze sys-
tems with both kinds of time. For a given system, only one of them holds.

Similarly, a network may have carrier sensing or not. Wired networks will
generally have carrier sense. Wireless networks cannot always use it effectively
because not every station may be within radio range of every other station. Simi-
larly, carrier sense will not be available in other settings in which a station cannot
communicate directly with other stations, for example a cable modem in which sta-
tions must communicate via the cable headend. Note that the word ‘‘carrier’’ in
this sense refers to a signal on the channel and has nothing to do with the common
carriers (e.g., telephone companies) that date back to the days of the Pony Express.

To avoid any misunderstanding, it is worth noting that no multiaccess protocol
guarantees reliable delivery. Even in the absence of collisions, the receiver may
have copied some of the frame incorrectly for various reasons. Other parts of the
link layer or higher layers provide reliability.

4.2 MULTIPLE ACCESS PROTOCOLS

Many algorithms for allocating a multiple access channel are known. In the
following sections, we will study a small sample of the more interesting ones and
give some examples of how they are commonly used in practice.

272 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

4.2.1 ALOHA

The story of our first MAC protocol starts out in pristine Hawaii in the early
1970s. In this case, ‘‘pristine’’ can be interpreted as ‘‘not having a working tele-
phone system.’’ This did not make life more pleasant for researcher Norman
Abramson and his colleagues at the University of Hawaii who were trying to con-
nect users on remote islands to the main computer in Honolulu. Stringing their
own cables under the Pacific Ocean for long distances was not in the cards, so they
looked for a different solution.

The one they found used short-range radios, with each user terminal sharing
the same upstream frequency to send frames to the central computer. It included a
simple and elegant method to solve the channel allocation problem. Their work
has been extended by many researchers since then (Schwartz and Abramson,
2009). Although Abramson’s work, called the ALOHA system, used ground-
based radio broadcasting, the basic idea is applicable to any system in which unco-
ordinated users are competing for the use of a single shared channel.

We will discuss two versions of ALOHA here: pure and slotted. They differ
with respect to whether time is continuous, as in the pure version; or divided into
discrete slots into which all frames must fit, as in the slotted version.

Pure ALOHA

The basic idea of an ALOHA system is simple: let users transmit whenever
they have data to be sent. There will be collisions, of course, and the colliding
frames will be damaged. Senders need some way to find out if this is the case. In
the ALOHA system, after each station has sent its frame to the central computer,
this computer rebroadcasts the frame to all of the stations. A sending station can
thus listen for the broadcast from the hub to see if its frame has gotten through. In
other systems, such as wired LANs, the sender might be able to listen for collisions
while transmitting.

If the frame was destroyed, the sender just waits a random amount of time and
sends it again. The waiting time must be random or the same frames will collide
over and over, in lockstep. Systems in which multiple users share a common chan-
nel in a way that can lead to conflicts are known as contention systems .

A sketch of frame generation in an ALOHA system is given in Fig. 4-1. We
have made the frames all the same length because the throughput of ALOHA sys-
tems is maximized by having a uniform frame size rather than by allowing vari-
able-length frames.

Whenever two frames try to occupy the channel at the same time, there will be
a collision (as seen in Fig. 4-1) and both will be garbled. If the first bit of a new
frame overlaps with just the last bit of a frame that has almost finished, both
frames will be totally destroyed (i.e., have incorrect checksums) and both will have

SEC. 4.2 MULTIPLE ACCESS PROTOCOLS 273

User

A

B

C

D

E

TimeCollision Collision

Figure 4-1. In pure ALOHA, frames are transmitted at completely arbitrary times.

to be retransmitted later. The checksum does not (and should not) distinguish be-
tween a total loss and a near miss. Bad is bad.

An interesting question is: what is the efficiency of an ALOHA channel? In
other words, what fraction of all transmitted frames escape collisions under these
chaotic circumstances? Let us first consider an infinite collection of users typing at
their terminals (stations). A user is always in one of two states: typing or waiting.
Initially, all users are in the typing state. When a line is finished, the user stops
typing, waiting for a response. The station then transmits a frame containing the
line over the shared channel to the central computer and checks the channel to see
if it was successful. If so, the user sees the reply and goes back to typing. If not,
the user continues to wait while the station retransmits the frame over and over
until it has been successfully sent.

Let the ‘‘frame time’’ denote the amount of time needed to transmit the stan-
dard, fixed-length frame (i.e., the frame length divided by the bit rate). At this
point, we assume that the new frames generated by the stations are well modeled
by a Poisson distribution with a mean of N frames per frame time. (The infinite-
population assumption is needed to ensure that N does not decrease as users be-
come blocked.) If N > 1, the user community is generating frames at a higher rate
than the channel can handle, and nearly every frame will suffer a collision. For
reasonable throughput, we would expect 0 < N < 1.

In addition to the new frames, the stations also generate retransmissions of
frames that previously suffered collisions. Let us further assume that the old and
new frames combined are well modeled by a Poisson distribution, with mean of G
frames per frame time. Clearly, G * N. At low load (i.e., N 5 0), there will be
few collisions, hence few retransmissions, so G 5 N. At high load, there will be
many collisions, so G > N. Under all loads, the throughput, S, is just the offered
load, G, times the probability, P 0, of a transmission succeeding—that is, S = GP0 ,
where P 0 is the probability that a frame does not suffer a collision.

274 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

A frame will not suffer a collision if no other frames are sent within one frame
time of its start, as shown in Fig. 4-2. Under what conditions will the shaded
frame arrive undamaged? Let t be the time required to send one frame. If any
other user has generated a frame between time t0 and t0 + t, the end of that frame
will collide with the beginning of the shaded one. In fact, the shaded frame’s fate
was already sealed even before the first bit was sent, but since in pure ALOHA a
station does not listen to the channel before transmitting, it has no way of knowing
that another frame was already underway. Similarly, any other frame started be-
tween t0 + t and t0 + 2t will bump into the end of the shaded frame.

Collides with
the start of
the shaded

frame

Collides with
the end of

the shaded
frame

t

t0 t0+ t t0+ 2t t0+ 3t Time

Vulnerable

Figure 4-2. Vulnerable period for the shaded frame.

The probability that k frames are generated during a given frame time, in
which G frames are expected, is given by the Poisson distribution

Pr[k] =
Gk e<G

k!
(4-1)

so the probability of zero frames is just e<G. In an interval two frame times long,
the mean number of frames generated is 2G. The probability of no frames being
initiated during the entire vulnerable period is thus given by P 0 = e<2G. Using
S = GP 0, we get

S = Ge<2G

The relation between the offered traffic and the throughput is shown in
Fig. 4-3. The maximum throughput occurs at G = 0. 5, with S = 1/2e, which is
about 0.184. In other words, the best we can hope for is a channel utilization of
18%. This result is not very encouraging, but with everyone transmitting at will,
we could hardly have expected a 100% success rate.

SEC. 4.2 MULTIPLE ACCESS PROTOCOLS 275

0.40

0.30

0.20

0.10

0 0.5 1.0 1.5
G (attempts per packet time)

2.0 3.0

S
(th

ro
ug

hp
ut

pe

r
fr

am
e

tim
e)

Slotted ALOHA: S = Ge –G

Pure ALOHA: S = Ge –2G

Figure 4-3. Throughput versus offered traffic for ALOHA systems.

Slotted ALOHA

Soon after ALOHA came onto the scene, Roberts (1972) published a method
for doubling the capacity of an ALOHA system. His proposal was to divide time
into discrete intervals called slots, each interval corresponding to one frame. This
approach requires the users to agree on slot boundaries. One way to achieve syn-
chronization would be to have one special station emit a pip at the start of each in-
terval, like a clock.

In Roberts’ method, which has come to be known as slotted ALOHA —in
contrast to Abramson’s pure ALOHA —a station is not permitted to send when-
ever the user types a line. Instead, it is required to wait for the beginning of the
next slot. Thus, the continuous time ALOHA is turned into a discrete time one.
This halves the vulnerable period. To see this, look at Fig. 4-2 and imagine the
collisions that are now possible. The probability of no other traffic during the same
slot as our test frame is then e<G , which leads to

S = Ge<G

As you can see from Fig. 4-3, slotted ALOHA peaks at G = 1, with a throughput of
S = 1/e or about 0.368, twice that of pure ALOHA. If the system is operating at
G = 1, the probability of an empty slot is 0.368 (from Eq. 4-1). The best we can
hope for using slotted ALOHA is 37% of the slots empty, 37% successes, and 26%
collisions. Operating at higher values of G reduces the number of empties but in-
creases the number of collisions exponentially. To see how this rapid growth of
collisions with G comes about, consider the transmission of a test frame. The
probability that it will avoid a collision is e<G , which is the probability that all the
other stations are silent in that slot. The probability of a collision is then just
1 < e<G. The probability of a transmission requiring exactly k attempts (i.e., k < 1
collisions followed by one success) is

276 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

P k = e<G(1 < e<G)k < 1

The expected number of transmissions, E, per line typed at a terminal is then

E =
'

k=1
Y kP k =

'

k=1
Y ke<G (1 < e<G)k < 1 = eG

As a result of the exponential dependence of E upon G, small increases in the
channel load can drastically reduce its performance.

Slotted ALOHA is notable for a reason that may not be initially obvious. It
was devised in the 1970s, used in a few early experimental systems, then almost
forgotten (except by eccentric textbook authors who liked it). When Internet ac-
cess over the cable was invented, all of a sudden there was a problem of how to al-
locate a shared channel among multiple competing users. Slotted ALOHA was
pulled out of the garbage can, mixed with some new ideas, and suddenly there was
a solution. It has often happened that protocols that are perfectly valid fall into dis-
use for political reasons (e.g., some big company wants everyone to do things its
way) or due to ever-changing technology trends. Then, years later some clever
person realizes that a long-discarded protocol solves a current problem. For this
reason, in this chapter we will study a number of elegant protocols that are not cur-
rently in widespread use but might easily be used in future applications, provided
that enough network designers are aware of them. Of course, we will also study
many protocols that are in current use as well.

4.2.2 Carrier Sense Multiple Access Protocols

With slotted ALOHA, the best channel utilization that can be achieved is 1/e.
This low result is hardly surprising, since with stations transmitting at will, without
knowing what the other stations are doing there are bound to be many collisions.
In LANs, however, it is often possible for stations to detect what other stations are
doing, and thus adapt their behavior accordingly. These networks can achieve a
much better utilization than 1/e. In this section, we will discuss some protocols for
improving performance.

Protocols in which stations listen for a carrier (i.e., a transmission) and act
accordingly are called carrier sense protocols . A number of them have been pro-
posed, and they were long ago analyzed in detail. For example, see Kleinrock and
Tobagi (1975). Below we will look at several versions of carrier sense protocols.

Persistent and Nonpersistent CSMA

The first carrier sense protocol that we will study here is called 1-persistent
CSMA (Carrier Sense Multiple Access). That is a bit of a mouthful for the sim-
plest CSMA scheme. When a station has data to send, it first listens to the channel
to see if anyone else is transmitting at that moment. If the channel is idle, the sta-
tions sends its data. Otherwise, if the channel is busy, the station just waits until it
becomes idle. Then, the station transmits a frame. If a collision occurs, the station

SEC. 4.2 MULTIPLE ACCESS PROTOCOLS 277

waits a random amount of time and starts all over again. The protocol is called
1-persistent because the station transmits with a probability of 1 when it finds the
channel idle.

You might expect that this scheme avoids collisions except for the rare case of
simultaneous sends, but in fact it does not. It’s much worse than that. If two sta-
tions become ready in the middle of a third station’s transmission, both will wait
politely until the transmission ends, and then both will begin transmitting exactly
simultaneously, resulting in a collision. If they were not so impatient, there would
be fewer collisions.

More subtly, the propagation delay has a very important effect on collisions.
There is a chance that just after a station begins sending, another station will be-
come ready to send and sense the channel. If the first station’s signal has not yet
reached the second one, the latter will sense an idle channel and will also begin
sending, resulting in a collision. This chance depends on the number of frames
that fit on the channel, or the bandwidth-delay product of the channel. If only a
tiny fraction of a frame fits on the channel, which is the case in most LANs since
the propagation delay is small, the chance of a collision happening is small. The
larger the bandwidth-delay product, the more important this effect becomes, and
the worse the performance of the protocol.

Even so, this protocol has better performance than pure ALOHA because both
stations have the decency to desist from interfering with the third station’s frame,
so it gets through undamaged. Exactly the same holds for slotted ALOHA.

A second carrier sense protocol is nonpersistent CSMA. In this protocol, a
conscious attempt is made to be less greedy than in the previous one. As before, a
station senses the channel when it wants to send a frame, and if no one else is send-
ing, the station begins doing so itself immediately. However, if the channel is al-
ready in use, the station does not continually sense it for the purpose of seizing it
immediately upon detecting the end of the previous transmission. Instead, it waits
a random period of time and then repeats the algorithm. Consequently, this algo-
rithm leads to fewer collisions and better channel utilization but longer delays than
1-persistent CSMA.

The last protocol is p-persistent CSMA. It applies to slotted channels and
works as follows. When a station becomes ready to send, it senses the channel. If
it is idle, it transmits with a probability p. With a probability q = 1 < p, it defers
until the next slot. If that slot is also idle, it either transmits or defers again, with
probabilities p and q. This process is repeated until either the frame has been
transmitted or another station has begun transmitting. In the latter case, the
unlucky station acts as if there had been a collision by waiting a random time and
staring again. If the station initially senses that the channel is busy, it waits until
the next slot and then applies the above algorithm IEEE 802.1 uses a refinement of
p-persistent CSMA that we will discuss in Sec. 4.4.

Figure 4-4 shows the computed throughput versus offered traffic for all three
protocols, as well as for pure and slotted ALOHA.

278 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

1.0
0.9

0.8

0.5

0.4

0.3

0.2

0.1

0 1 2 3 4 5 6 7 8 90

0.6

0.7

S
(th

ro
ug

hp
ut

pe

r
pa

ck
et

 t
im

e)

G (attempts per packet time)

Pure
ALOHA

Slotted
ALOHA

1-persistent
CSMA

0.1-persistent CSMA

0.5-persistent
CSMA

Nonpersistent CSMA

0.01-persistent CSMA

Figure 4-4. Comparison of the channel utilization versus load for various ran-
dom access protocols.

CSMA with Collision Detection

Persistent and nonpersistent CSMA protocols are definitely an improvement
over ALOHA because they ensure that no station begins to transmit while the
channel is busy. However, if two stations sense the channel to be idle and begin
transmitting simultaneously, their signals will still collide. Another improvement
is for the stations to quickly detect the collision and abruptly stop transmitting,
(rather than finishing them) since they are irretrievably garbled anyway. This strat-
egy saves time and bandwidth.

This protocol, known as CSMA/CD (CSMA with Collision Detection), is the
basis of the classic Ethernet LAN, so it is worth devoting some time to looking at it
in detail. It is important to realize that collision detection is an analog process.
The station’s hardware must listen to the channel while it is transmitting. If the
signal it reads back is different from the signal it is putting out, it knows that a col-
lision is occurring. The implications are that a received signal must not be tiny
compared to the transmitted signal (which is difficult for wireless, as received sig-
nals may be 1,000,000 times weaker than transmitted signals) and that the modula-
tion must be chosen to allow collisions to be detected (e.g., a collision of two
0-volt signals may well be impossible to detect).

CSMA/CD, as well as many other LAN protocols, uses the conceptual model
of Fig. 4-5. At the point marked t0 , a station has finished transmitting its frame.
Any other station having a frame to send may now attempt to do so. If two or
more stations decide to transmit simultaneously, there will be a collision. If a sta-
tion detects a collision, it aborts its transmission, waits a random period of time,
and then tries again (assuming that no other station has started transmitting in the
meantime). Therefore, our simple model for CSMA/CD will consist of alternating

SEC. 4.2 MULTIPLE ACCESS PROTOCOLS 279

contention and transmission periods, with idle periods occurring when all stations
are quiet (e.g., for lack of work).

Contention
slots

Contention
period

Transmission
period

Idle
period

to

Frame Frame Frame Frame

Time
Figure 4-5. CSMA/CD can be in transmission, contention, or idle state.

Now let us look at the details of the contention algorithm. Suppose that two
stations both begin transmitting at exactly time t0. How long will it take them to
realize that they have collided? The answer is vital to determining the length of the
contention period and hence what the delay and throughput will be.

The minimum time to detect the collision is just the time it takes the signal to
propagate from one station to the other. Based on this information, you might
think that a station that has not heard a collision for a time equal to the full cable
propagation time after starting its transmission can be sure it has seized the cable.
By ‘‘seized,’’ we mean that all other stations know it is transmitting and will not in-
terfere. This conclusion is wrong.

Consider the following worst-case scenario. Let the time for a signal to propa-
gate between the two farthest stations be o . At t0, one station begins transmitting.
At t0 + o < ¡ , an instant before the signal arrives at the most distant station, that
station also begins transmitting. Of course, it detects the collision almost instantly
and stops, but the little noise burst caused by the collision does not get back to the
original station until time 2o < ¡ . In other words, in the worst case a station cannot
be sure that it has seized the channel until it has transmitted for 2o without hearing
a collision.

Starting with this understanding, we can think of CSMA/CD contention as a
slotted ALOHA system with a slot width of 2o . On a 1-km-long coaxial cable,
o 5 5 µsec. The difference for CSMA/CD compared to slotted ALOHA is that
slots in which only one station transmits (i.e., in which the channel is seized) are
followed by the rest of a frame. This difference will greatly improve performance
if the frame time is much longer than the propagation time.

4.2.3 Collision-Free Protocols

Although collisions do not occur with CSMA/CD once a station has unam-
biguously captured the channel, they can still occur during the contention period.
These collisions adversely affect the system performance, in particular when the

280 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

bandwidth-delay product is large, such as when the cable is long (i.e., large o) and
the frames are short. Not only do collisions reduce bandwidth, but they make the
time to send a frame variable, which is not a good fit for real-time traffic such as
voice over IP. CSMA/CD is also not universally applicable.

In this section, we will examine some protocols that resolve the contention for
the channel without any collisions at all, not even during the contention period.
Most of these protocols are not currently used in major systems, but in a rapidly
changing field, having some protocols with excellent properties available for future
systems is often a good thing.

In the protocols to be described, we assume that there are exactly N stations,
each programmed with a unique address from 0 to N < 1. It does not matter that
some stations may be inactive part of the time. We also assume that propagation
delay is negligible. The basic question remains: which station gets the channel
after a successful transmission? We continue using the model of Fig. 4-5 with its
discrete contention slots.

A Bit-Map Protocol

In our first collision-free protocol, the basic bit-map method , each contention
period consists of exactly N slots. If station 0 has a frame to send, it transmits a 1
bit during the slot 0. No other station is allowed to transmit during this slot.
Regardless of what station 0 does, station 1 gets the opportunity to transmit a 1 bit
during slot 1, but only if it has a frame queued. In general, station j may announce
that it has a frame to send by inserting a 1 bit into slot j. After all N slots have
passed by, each station has complete knowledge of which stations wish to transmit.
At that point, they begin transmitting frames in numerical order (see Fig. 4-6).

0 1

1 1 1 1 1 1 5 11 3 7

2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

18 Contention slots
Frames

8 Contention slots

2

d

Figure 4-6. The basic bit-map protocol.

Since everyone agrees on who goes next, there will never be any collisions.
After the last ready station has transmitted its frame, an event all stations can easily
monitor, another N-bit contention period is begun. If a station becomes ready just
after its bit slot has passed by, it is out of luck and must remain silent until every
station has had a chance and the bit map has come around again.

Protocols like this in which the desire to transmit is broadcast before the actual
transmission are called reservation protocols because they reserve channel owner-
ship in advance and prevent collisions. Let us briefly analyze the performance of

SEC. 4.2 MULTIPLE ACCESS PROTOCOLS 281

this protocol. For convenience, we will measure time in units of the contention bit
slot, with data frames consisting of d time units.

Under conditions of low load, the bit map will simply be repeated over and
over, for lack of data frames. Consider the situation from the point of view of a
low-numbered station, such as 0 or 1. Typically, when it becomes ready to send,
the ‘‘current’’ slot will be somewhere in the middle of the bit map. On average, the
station will have to wait N/2 slots for the current scan to finish and another full N
slots for the following scan to run to completion before it may begin transmitting.

The prospects for high-numbered stations are brighter. Generally, these will
only have to wait half a scan (N/2 bit slots) before starting to transmit. High-num-
bered stations rarely have to wait for the next scan. Since low-numbered stations
must wait on average 1. 5N slots and high-numbered stations must wait on average
0. 5N slots, the mean for all stations is N slots.

The channel efficiency at low load is easy to compute. The overhead per frame
is N bits and the amount of data is d bits, for an efficiency of d /(d + N).

At high load, when all the stations have something to send all the time, the N-
bit contention period is prorated over N frames, yielding an overhead of only 1 bit
per frame, or an efficiency of d/(d + 1). The mean delay for a frame is equal to the
sum of the time it queues inside its station, plus an additional (N < 1)d + N once it
gets to the head of its internal queue. This interval is how long it takes to wait for
all other stations to have their turn sending a frame and another bitmap.

Token Passing

The essence of the bit-map protocol is that it lets every station transmit a frame
in turn in a predefined order. Another way to accomplish the same thing is to pass
a small message called a token from one station to the next in the same predefined
order. The token represents permission to send. If a station has a frame queued for
transmission when it receives the token, it can send that frame before it passes the
token to the next station. If it has no queued frame, it simply passes the token.

In a token ring protocol, the topology of the network is used to define the
order in which stations send. The stations are connected one to the next in a single
ring. Passing the token to the next station then simply consists of receiving the
token in from one direction and transmitting it out in the other direction, as seen in
Fig. 4-7. Frames are also transmitted in the direction of the token. This way they
will circulate around the ring and reach whichever station is the destination. How-
ever, to stop the frame circulating indefinitely (like the token), some station needs
to remove it from the ring. This station may be either the one that originally sent
the frame, after it has gone through a complete cycle, or the station that was the in-
tended recipient of the frame.

Note that we do not need a physical ring to implement token passing. All that
is needed is a logical ring, where each station knows its predecessor and successor.
The channel connecting the stations might instead be a single long bus (cable).

282 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

Direction of
transmission

TokenStation

Figure 4-7. Token ring.

Each station then uses the bus to send the token to the next station in the predefined
sequence. Possession of the token allows a station to use the bus to send one frame.
This protocol is called token bus. It is defined in IEEE 802.4, a standard that
failed so badly that IEEE has withdrawn it. Standards are not always forever.

The performance of token passing is similar to that of the bit-map protocol,
though the contention slots and frames of one cycle are now intermingled. After
sending a frame, each station must wait for all N stations (including itself) to send
the token to their neighbors and the other N < 1 stations to send a frame, if they
have one. A subtle difference is that, since all positions in the cycle are equivalent,
there is no bias for low- or high-numbered stations. For token ring, each station is
also sending the token only as far as its neighboring station before the protocol
takes the next step. Each token does not need to propagate to all stations before the
protocol advances to the next step.

Token rings have cropped up as MAC protocols with some consistency. An
early token ring protocol (called ‘‘Token Ring’’ and standardized as IEEE 802.5)
was popular in the 1980s as an alternative to classic Ethernet. In the 1990s, a
much faster token ring called FDDI (Fiber Distributed Data Interface) was
beaten out by switched Ethernet. In the 2000s, a token ring called RPR (Resilient
Packet Ring) was defined as IEEE 802.17 to standardize the mix of metropolitan
area rings in use by ISPs. We wonder what the 2020s will have to offer.

Binary Countdown

A problem with the basic bit-map protocol, and by extension token passing, is
that the overhead is 1 bit per station, so it does not scale well to networks with hun-
dreds or thousands of stations. We can do better than that by using binary station
addresses with a channel that combines transmissions in a certain way. A station
wanting to use the channel now broadcasts its address as a binary bit string, start-
ing with the high-order bit. All addresses are assumed to be the same number of
bits. The bits in each address position from different stations are BOOLEAN
ORed together by the channel when they are sent at the same time. We will call

SEC. 4.2 MULTIPLE ACCESS PROTOCOLS 283

this protocol binary countdown . It was used in Datakit (Fraser, 1983). It implic-
itly assumes that the transmission delays are negligible so that all stations see
asserted bits essentially instantaneously.

To avoid conflicts, an arbitration rule must be applied: as soon as a station sees
that a high-order bit position that is 0 in its address has been overwritten with a 1,
it gives up. For example, if stations 0010, 0100, 1001, and 1010 are all trying to
get the channel, in the first bit time the stations transmit 0, 0, 1, and 1, respectively.
These are ORed together to form a 1. Stations 0010 and 0100 see the 1 and know
that a higher-numbered station is competing for the channel, so they give up for the
current round. Stations 1001 and 1010 continue.

The next bit is 0, and both stations continue. The next bit is 1, so station 1001
gives up. The winner is station 1010 because it has the highest address. After win-
ning the bidding, it may now transmit a frame, after which another bidding cycle
starts. The protocol is illustrated in Fig. 4-8. It has the property that higher-num-
bered stations have a higher priority than lower-numbered stations, which may be
either good or bad, depending on the context.

0 0 1 0 0 – – –

0 1 2 3
Bit time

0 1 0 0 0 – – –

1 0 0 1 1 0 0 –

1 0 1 0 1 0 1 0

1 0 1 0Result

Stations 0010
and 0100 see this

1 and give up

Station 1001
sees this 1
and gives up

Figure 4-8. The binary countdown protocol. A dash indicates silence.

The channel efficiency of this method is d /(d + log2 N). If, however, the
frame format has been cleverly chosen so that the sender’s address is the first field
in the frame, even these log2 N bits are not wasted, and the efficiency is 100%.

Binary countdown is an example of a simple, elegant, and efficient protocol
that is waiting to be rediscovered. Hopefully, it will find a new home some day.

4.2.4 Limited-Contention Protocols

We have now considered two basic strategies for channel acquisition in a
broadcast network: contention, as in CSMA, and collision-free protocols. Each
strategy can be rated as to how well it does with respect to the two important

284 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

performance measures, delay at low load and channel efficiency at high load.
Under conditions of light load, contention (i.e., pure or slotted ALOHA) is prefer-
able due to its low delay (since collisions are rare). As the load increases, con-
tention becomes increasingly less attractive because the overhead associated with
channel arbitration becomes greater. Just the reverse is true for the collision-free
protocols. At low load, they have relatively high delay but as the load increases,
the channel efficiency improves (since the overheads are fixed).

Obviously, it would be nice if we could combine the best properties of the con-
tention and collision-free protocols, arriving at a new protocol that used contention
at low load to provide low delay, but used a collision-free technique at high load to
provide good channel efficiency. Such protocols, which we will call limited-con-
tention protocols , do in fact exist, and will conclude our study of carrier sense net-
works.

Up to now, the only contention protocols we have studied have been symmet-
ric. That is, each station attempts to acquire the channel with some probability, p,
with all stations using the same p. Interestingly enough, the overall system per-
formance can sometimes be improved by using a protocol that assigns different
probabilities to different stations.

Before looking at the asymmetric protocols, let us quickly review the per-
formance of the symmetric case. Suppose that k stations are contending for chan-
nel access. Each has a probability p of transmitting during each slot. The
probability that some station successfully acquires the channel during a given slot
is the probability that any one station transmits, with probability p, and all other
k < 1 stations defer, each with probability 1 < p. This value is kp(1 < p)k < 1. To
find the optimal value of p, we differentiate with respect to p, set the result to zero,
and solve for p. Doing so, we find that the best value of p is 1/k. Substituting
p = 1/k, we get

Pr[success with optimal p] = £
¤

k < 1
k

¥
¦

k < 1

This probability is plotted in Fig. 4-9. For small numbers of stations, the chances
of success are good, but as soon as the number of stations reaches even five, the
probability has dropped close to its asymptotic value of 1/e.

From Fig. 4-9, it is fairly obvious that the probability of some station acquiring
the channel can be increased only by decreasing the amount of competition. The
limited-contention protocols do precisely that. They first divide the stations into
(not necessarily disjoint) groups. Only the members of group 0 are permitted to
compete for slot 0. If one of them succeeds, it acquires the channel and transmits
its frame. If the slot lies fallow or if there is a collision, the members of group 1
contend for slot 1, etc. By making an appropriate division of stations into groups,
the amount of contention for each slot can be reduced, thus operating each slot
near the left end of Fig. 4-9.

SEC. 4.2 MULTIPLE ACCESS PROTOCOLS 285

1.0

0.8

0.6

0.4

0.2

0.0
5 10 15 20 250

Pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

Number of ready stations

Figure 4-9. Acquisition probability for a symmetric contention channel.

The trick is how to assign stations to slots. Before looking at the general case,
let us consider some special cases. At one extreme, each group has only one mem-
ber. Such an assignment guarantees that there will never be collisions because at
most one station is contending for any given slot. We have seen such protocols be-
fore (e.g., binary countdown). The next special case is to assign two stations per
group. The probability that both will try to transmit during a slot is p2 , which for a
small p is negligible. As more and more stations are assigned to the same slot, the
probability of a collision grows, but the length of the bit-map scan needed to give
everyone a chance shrinks. The limiting case is a single group containing all sta-
tions (i.e., slotted ALOHA). What we need is a way to assign stations to slots dy-
namically, with many stations per slot when the load is low and few (or even just
one) station per slot when the load is high.

The Adaptive Tree-Walk Protocol

One particularly simple way of performing the necessary assignment is to use
the algorithm devised by the U.S. Army for testing soldiers for syphilis during
World War II (Dorfman, 1943). In short, the Army took a blood sample from N
soldiers. A portion of each sample was poured into a single test tube. This mixed
sample was then tested for antibodies. If none were found, all the soldiers in the
group were declared healthy. If antibodies were present, two new mixed samples
were prepared, one from soldiers 1 through N/2 and one from the rest. The proc-
ess was repeated recursively until the infected soldiers were determined.

For the computerized version of this algorithm (Capetanakis, 1979), it is con-
venient to think of the stations as the leaves of a binary tree, as illustrated in
Fig. 4-10. In the first contention slot following a successful frame transmission,
slot 0, all stations are permitted to try to acquire the channel. If one of them does

286 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

so, fine. If there is a collision, then during slot 1 only those stations falling under
node 2 in the tree may compete. If one of them acquires the channel, the slot fol-
lowing the frame is reserved for those stations under node 3. If, on the other hand,
two or more stations under node 2 want to transmit, there will be a collision during
slot 1, in which case it is node 4’s turn during slot 2.

1

2 3

4 5 6 7

A B C D E F G H
Stations

Figure 4-10. The tree for eight stations.

In essence, if a collision occurs during slot 0, the entire tree is searched, depth
first, to locate all ready stations. Each bit slot is associated with some particular
node in the tree. If a collision occurs, the search continues recursively with the
node’s left and right children. If a bit slot is idle or if only one station transmits in
it, the searching of its node can stop because all ready stations have been located.
(Were there more than one, there would have been a collision.)

When the load on the system is heavy, it is hardly worth the effort to dedicate
slot 0 to node 1 because that makes sense only in the unlikely event that precisely
one station has a frame to send. Similarly, one could argue that nodes 2 and 3
should be skipped as well for the same reason. Put in more general terms, at what
level in the tree should the search begin? Clearly, the heavier the load, the farther
down the tree the search should begin. We will assume that each station has a
good estimate of the number of ready stations, q, for example, from monitoring
recent traffic.

To proceed, let us number the levels of the tree from the top, with node 1 in
Fig. 4-10 at level 0, nodes 2 and 3 at level 1, etc. Notice that each node at level i
has a fraction 2<i of the stations below it. If the q ready stations are uniformly dis-
tributed, the expected number of them below a specific node at level i is just 2<i q.
Intuitively, we would expect the optimal level to begin searching the tree to be the
one at which the mean number of contending stations per slot is 1, that is, the level
at which 2<i q = 1. Solving this equation, we find that i = log2 q.

Numerous improvements to the basic algorithm have been discovered and are
discussed in some detail by Bertsekas and Gallager (1992). It is such a clever idea

SEC. 4.2 MULTIPLE ACCESS PROTOCOLS 287

that researchers are still tweaking it (De Marco and Kowalski, 2017). For example,
consider the case of stations G and H being the only ones wanting to transmit. At
node 1 a collision will occur, so 2 will be tried and discovered idle. It is pointless
to probe node 3 since it is guaranteed to have a collision (we know that two or
more stations under 1 are ready and none of them are under 2, so they must all be
under 3). The probe of 3 can be skipped and 6 tried next. When this probe also
turns up nothing, 7 can be skipped and node G tried next.

4.2.5 Wireless LAN Protocols

A system of laptop computers that communicate by radio can be regarded as a
wireless LAN, as we discussed in Sec. 1.4.3. Such a LAN is an example of a
broadcast channel. It also has somewhat different properties than a wired LAN,
which leads to different MAC protocols. In this section, we will examine some of
these protocols. In Sec. 4.4, we will look at 802.11 (WiFi) in detail.

A common configuration for a wireless LAN is an office building with access
points (APs) strategically placed around the building. The APs are wired together
using copper or fiber and provide connectivity to the stations that talk to them. If
the transmission power of the APs and laptops is adjusted to have a range of tens of
meters, nearby rooms become like a single cell and the entire building becomes
like the cellular telephony systems we studied in Chap. 2, except that each cell
only has one channel. This channel is shared by all the stations in the cell, includ-
ing the AP. It typically provides megabits/sec or even gigabits/sec of bandwidth.
IEEE 802.11ac can theoretically run at 7 Gbps, but in practice, it is much slower.

We have already remarked that wireless systems cannot normally detect a col-
lision while it is occurring. The received signal at a station may be tiny, perhaps a
million times fainter than the signal that is being transmitted. Finding it is like
looking for a ripple on the ocean. Instead, acknowledgements are used to discover
collisions and other errors after the fact.

There is an even more important difference between wireless LANs and wired
LANs. A station on a wireless LAN may not be able to transmit frames to or re-
ceive frames from all other stations because of the limited radio range of the sta-
tions. In wired LANs, when one station sends a frame, all other stations receive it.
The absence of this property in wireless LANs causes a variety of complications.

We will make the simplifying assumption that each radio transmitter has some
fixed range, represented by a circular coverage region within which another station
can sense and receive the station’s transmission. It is important to realize that in
practice coverage regions are not nearly so regular because the propagation of
radio signals depends on the environment. Walls and other obstacles that attenuate
and reflect signals may cause the range to differ markedly in different directions.
But a simple circular model will do for our purposes.

A naive approach to using a wireless LAN might be to try CSMA: just listen
for other transmissions and only transmit if no one else is doing so. The trouble is,

288 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

this protocol is not really a good way to think about wireless because what matters
for reception is interference at the receiver, not at the sender. To see the nature of
the problem, consider Fig. 4-11, where four wireless stations are illustrated. For
our purposes, it does not matter which are APs and which are laptops. The radio
range is such that A and B are within each other’s range and can potentially inter-
fere with one another. C can also potentially interfere with both B and D, but not
with A.

Radio range

(a) (b)

Radio range

A B C D A B C D

Figure 4-11. A wireless LAN. (a) A and C are hidden terminals when trans-
mitting to B. (b) B and C are exposed terminals when transmitting to A and D.

First consider what happens when A and C transmit to B, as depicted in
Fig. 4-11(a). If A sends and then C immediately senses the medium, it will not
hear A because A is out of its range. Thus C will falsely conclude that it can trans-
mit to B. If C does start transmitting, it will interfere at B, wiping out the frame
from A. (We assume here that no CDMA-type scheme is used to provide multiple
channels, so collisions garble the signal and destroy both frames.) We want a
MAC protocol that will prevent this kind of collision from happening because it
wastes bandwidth. The problem of a station not being able to detect a potential
competitor for the medium because the competitor is too far away is called the hid-
den terminal problem .

Now let us look at a different situation: B transmitting to A at the same time
that C wants to transmit to D, as shown in Fig. 4-11(b). If C senses the medium, it
will hear a transmission and falsely conclude that it may not send to D (shown as a
dashed line). In fact, such a transmission would cause bad reception only in the
zone between B and C, where neither of the intended receivers is located. We want
a MAC protocol that prevents this kind of deferral from happening because it
wastes bandwidth. The problem is called the exposed terminal problem .

The difficulty is that, before starting a transmission, a station really wants to
know whether there is radio activity around the receiver. CSMA merely tells it
whether there is activity near the transmitter by sensing the carrier. With a wire, all
signals propagate to all stations, so this distinction does not exist. However, only
one transmission can then take place at once anywhere in the system. In a system
based on short-range radio waves, multiple transmissions can occur simultaneously
if they all have different destinations and these destinations are out of range of one
another. We want this concurrency to happen as the cell gets larger and larger, in

SEC. 4.2 MULTIPLE ACCESS PROTOCOLS 289

the same way that people at a party should not wait for everyone in the room to go
silent before they talk; multiple conversations can take place at once in a large
room as long as they are not directed to the same location.

An early and quite influential protocol that tackles these problems for wireless
LANs is MACA (Multiple Access with Collision Avoidance) (Karn, 1990; and
Garcia-Luna-Aceves, 2017). The basic idea behind it is for the sender to stimulate
the receiver into outputting a short frame, so stations nearby can detect this trans-
mission and avoid transmitting for the duration of the upcoming (large) data frame.
This technique is used instead of carrier sense.

MACA is illustrated in Fig. 4-12. Let us see how A sends a frame to B. A
starts by sending an RTS (Request To Send) frame to B, as shown in Fig. 4-12(a).
This short frame (30 bytes) contains the length of the data frame that will eventual-
ly follow. Then B replies with a CTS (Clear To Send) frame, as shown in
Fig. 4-12(b). The CTS frame contains the data length (copied from the RTS frame).
Upon receipt of the CTS frame, A begins transmission.

(a) (b)

Range of A’s transmitter

A RTS

E

B DC A CTS

E

B DC

Range of B’s transmitter

Figure 4-12. The MACA protocol. (a) A sending an RTS to B. (b) B responding
with a CTS to A.

Now let us see how stations overhearing either of these frames react. Any sta-
tion hearing the RTS is clearly close to A and must remain silent long enough for
the CTS to be transmitted back to A without conflict. Any station hearing the CTS
is clearly close to B and must remain silent during the upcoming data transmission,
whose length it can tell by examining the CTS frame.

In Fig. 4-12, C is within range of A but not within range of B. Therefore, it
hears the RTS from A but not the CTS from B. As long as it does not interfere with
the CTS, it is free to transmit while the data frame is being sent. In contrast, D is
within range of B but not A. It does not hear the RTS but does hear the CTS. Hear-
ing the CTS tips it off that it is near a station that is about to receive a frame, so it
defers sending anything until that frame is expected to be finished. Station E hears
both control messages and, like D, must be silent until the data frame is complete.

290 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

Despite these precautions, collisions can still occur. For example, B and C
could both send RTS frames to A at the same time. These will collide and be lost.
In the event of a collision, an unsuccessful transmitter (i.e., one that does not hear a
CTS within the expected time interval) waits a random amount of time and tries
again later.

4.3 ETHERNET

We have now finished our discussion of channel allocation protocols in the
abstract, so it is time to see how these principles apply to real systems. Many of
the designs for personal, local, and metropolitan area networks have been stan-
dardized under the name of IEEE 802. A few have survived but many have not, as
we saw in Fig. 1-38. Some people who believe in reincarnation think that Charles
Darwin came back as a member of the IEEE Standards Association to weed out the
unfit. The most important of the survivors are 802.3 (Ethernet) and 802.11 (wire-
less LAN). Bluetooth (wireless PAN) is widely deployed but has now been stan-
dardized outside of 802.15.

We will begin our study of real systems with Ethernet, probably the most ubiq-
uitous kind of computer network in the world. Two kinds of Ethernet exist: classic
Ethernet , which solves the multiple access problem using the techniques we have
studied in this chapter; and switched Ethernet , in which devices called switches
are used to connect different computers. It is important to note that, while they are
both referred to as Ethernet, they are quite different. Classic Ethernet is the original
form and ran at rates from 3 to 10 Mbps. Switched Ethernet is what Ethernet has
become and runs at 100, 1000, 10,000, 40,000, or 100,000 Mbps, in forms called
fast Ethernet, gigabit Ethernet, 10-gigabit Ethernet, 40-gigabit Ethernet, or
100-gigabit Ethernet. In practice, only switched Ethernet is used nowadays.

We will discuss these historical forms of Ethernet in chronological order show-
ing how they developed. Since Ethernet and IEEE 802.3 are identical except for a
minor difference (which we will discuss shortly), many people use the terms
‘‘Ethernet’’ and ‘‘IEEE 802.3’’ interchangeably. We will do so, too. For more
information about Ethernet, see Spurgeon and Zimmerman (2014).

4.3.1 Classic Ethernet Physical Layer

The story of Ethernet starts about the same time as that of ALOHA, when a
student named Bob Metcalfe got his bachelor’s degree at M.I.T. and then moved up
the river to get his Ph.D. at Harvard. During his studies there, he was exposed to
Abramson’s work on ALOHA. He became so interested in it that after graduating
from Harvard, he decided to spend the summer in Hawaii working with Abramson
before starting work at Xerox PARC (Palo Alto Research Center). When he got to

SEC. 4.3 ETHERNET 291

PARC, he saw that the researchers there had designed and built what would later
be called personal computers. But the machines were isolated. Using his know-
ledge of Abramson’s work, he, together with his colleague David Boggs, designed
and implemented the first local area network (Metcalfe and Boggs, 1976). It used
a single long, thick coaxial cable and ran at 3 Mbps.

They called the system Ethernet after the luminiferous ether, through which
electromagnetic radiation was once thought to propagate. (When the 19th-century
British physicist James Clerk Maxwell discovered that electromagnetic radiation
could be described by a wave equation, scientists assumed that space must be filled
with some ethereal medium in which the radiation was propagating. Only after the
famous Michelson-Morley experiment in 1887 did physicists discover that electro-
magnetic radiation could propagate in a vacuum.)

The Xerox Ethernet was so successful that DEC, Intel, and Xerox drew up a
standard in 1978 for a 10-Mbps Ethernet, called the DIX standard . With a minor
change, the DIX standard became the IEEE 802.3 standard in 1983. Unfortunately
for Xerox, it already had a history of making seminal inventions (such as the per-
sonal computer) and then failing to commercialize on them, a story told in Fum-
bling the Future (Smith and Alexander, 1988). When Xerox showed no interest in
doing anything with Ethernet other than helping standardize it, Metcalfe formed
his own company, 3Com, to sell Ethernet cards for PCs. It sold millions of them.

Classic Ethernet snaked around the building as a single long cable to which all
the computers were attached. This architecture is shown in Fig. 4-13. The first va-
riety, popularly called thick Ethernet, resembled a yellow garden hose, with
markings every 2.5 meters to show where to attach computers. (The 802.3 stan-
dard did not actually require the cable to be yellow, but it did suggest it.) It was
succeeded by thin Ethernet, which bent more easily and made connections using
industry-standard BNC connectors. Thin Ethernet was much cheaper and easier to
install, but it could run for only 185 meters per segment (instead of 500 m with
thick Ethernet), each of which could handle only 30 machines (instead of 100).

Ether

Transceiver
Interface

cable

Figure 4-13. Architecture of classic Ethernet.

Each version of Ethernet has a maximum cable length per segment (i.e., unam-
plified length) over which the signal will propagate. To allow larger networks,

292 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

multiple cables can be connected by repeaters . A repeater is a physical layer de-
vice that receives, amplifies (i.e., regenerates), and retransmits signals in both di-
rections. As far as the software is concerned, a series of cable segments connected
by repeaters is no different from a single cable (except for a small amount of delay
introduced by the repeaters).

Over each of these cables, information was sent using the Manchester en-
coding we studied in Sec. 2.4.3. An Ethernet could contain multiple cable seg-
ments and multiple repeaters, but no two transceivers could be more than 2.5 km
apart and no path between any two transceivers could traverse more than four re-
peaters. The reason for this restriction was that the MAC protocol, which we will
look at next, would work correctly.

4.3.2 Classic Ethernet MAC Sublayer Protocol

The format used to send frames is shown in Fig. 4-14. First comes a Preamble
of 8 bytes, each containing the bit pattern 10101010 (with the exception of the last
byte, in which the last 2 bits are set to 11). This last byte is called the Start of
Frame delimiter for 802.3. The Manchester encoding of this pattern produces a
10-MHz square wave for 6.4 µsec to allow the receiver’s clock to synchronize with
the sender’s. The last two 1 bits tell the receiver that the rest of the frame is about
to start.

Preamble(a)

Bytes

Type Data Pad
Check-

sum
Destination

address
Source

address

8 2 0-1500 0-46 46 6

Preamble(b) Length Data Pad Check-
sum

Destination
address

Source
address

Figure 4-14. Frame formats. (a) Ethernet (DIX). (b) IEEE 802.3.

Next come two addresses, one for the destination and one for the source. They
are each 6 bytes long. The first transmitted bit of the destination address is a 0 for
ordinary addresses and a 1 for group addresses. Group addresses allow multiple
stations to listen to a single address. When a frame is sent to a group address, all
the stations in the group receive it. Sending to a group of stations is called multi-
casting . The special address consisting of all 1 bits is reserved for broadcasting .
A frame containing all 1s in the destination field is accepted by all stations on the
network. Multicasting is more selective, but it involves group management to
define which stations are in the group. Conversely, broadcasting does not dif-
ferentiate between stations at all, so it does not require any group management.

SEC. 4.3 ETHERNET 293

An interesting feature of station source addresses is that they are globally
unique, assigned centrally by IEEE to ensure that no two stations anywhere in the
world have the same address. The idea is that any station can uniquely address any
other station by just giving the right 48-bit number. To do this, the first 3 bytes of
the address field are used for an OUI (Organizationally Unique Identifier). Val-
ues for this field are assigned by IEEE and indicate a manufacturer. Manufacturers
are assigned blocks of 224 addresses. The manufacturer assigns the last 3 bytes of
the address and programs the complete address into the NIC before it is sold.

Next comes the Type or Length field, depending on whether the frame is Ether-
net or IEEE 802.3. Ethernet uses a Type field to tell the receiver what to do with
the frame. Multiple network-layer protocols may be in use at the same time on the
same machine, so when an Ethernet frame arrives, the operating system has to
know which one to hand the frame to. The Type field specifies which process to
give the frame to. For example, a type code of 0x0800 means that the data con-
tains an IPv4 packet.

IEEE 802.3, in its wisdom, decided that this field would carry the length of the
frame, since the Ethernet length was determined by looking inside the data—a lay-
ering violation if ever there was one. Of course, this meant there was no way for
the receiver to figure out what to do with an incoming frame. That problem was
handled by the addition of another header for the logical link control protocol with-
in the data, which we will look at later. It uses 8 bytes to convey the 2 bytes of
protocol type information.

Unfortunately, by the time 802.3 was published, so much hardware and soft-
ware for DIX Ethernet was already in use that few manufacturers and users were
enthusiastic about repackaging the Type and Length fields. In 1997, IEEE threw in
the towel and said that both ways were fine with it. Fortunately, all the Type fields
in use before 1997 had values greater than 1500, then well established as the maxi-
mum data size. Now the rule is that any number there less than or equal to 0x600
(1536) can be interpreted as Length, and any number greater than 0x600 can be
interpreted as Type. Now IEEE can maintain that everyone is using its standard
and everybody else can keep on doing what they were already doing (not bothering
with logical link control protocol) without feeling guilty about it. This is what
happens when (industrial) politics meets technology.

Next come the data, up to 1500 bytes. This limit was chosen somewhat arbi-
trarily at the time the Ethernet standard was cast in stone, mostly based on the fact
that a transceiver needs enough RAM to hold an entire frame and RAM was expen-
sive in 1978. A larger upper limit would have meant more RAM, and hence a
more expensive transceiver.

In addition to there being a maximum frame length, there is also a minimum
frame length. While a data field of 0 bytes is sometimes useful, it causes a prob-
lem. When a transceiver detects a collision, it truncates the current frame, which
means that stray bits and pieces of frames appear on the cable all the time. To
make it easier to distinguish valid frames from garbage, Ethernet requires that valid

294 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

frames must be at least 64 bytes long, from destination address to checksum, in-
cluding both. If the data portion of a frame is less than 46 bytes, the Pad field is
used to fill out the frame to the minimum size.

Another (and more important) reason for having a minimum length frame is to
prevent a station from completing the transmission of a short frame before the first
bit has even reached the far end of the cable, where it may collide with another
frame. This problem is illustrated in Fig. 4-15. At time 0, station A, at one end of
the network, sends off a frame. Let us call the propagation time for this frame to
reach the other end o . Just before the frame gets to the other end (i.e., at time
o < ¡), the most distant station, B, starts transmitting. When B detects that it is re-
ceiving more power than it is putting out, it knows that a collision has occurred, so
it aborts its transmission and generates a 48-bit noise burst to warn all other sta-
tions. In other words, it jams the ether to make sure the sender does not miss the
collision. At about time 2o , the sender sees the noise burst and aborts its transmis-
sion, too. It then waits a random time before trying again.

Packet starts
at time 0A B A B

Packet almost
at B at

Collision at
time

A B

Noise burst gets
back to A at 2

A B

(a) (b)

(c) (d)

Figure 4-15. Collision detection can take as long as 2o.

If a station tries to transmit a very short frame, it is conceivable that a collision
will occur, but the transmission will have completed before the noise burst gets
back to the station at 2o . The sender will then incorrectly conclude that the frame
was successfully sent. To prevent this situation from occurring, all frames must
take more than 2o to send so that the transmission is still taking place when the
noise burst gets back to the sender. For a 10-Mbps LAN with a maximum length
of 2500 meters and four repeaters (from the 802.3 specification), the round-trip
time (including time to propagate through the four repeaters) has been determined
to be nearly 50 µsec in the worst case. Therefore, the shortest allowed frame must
take at least this long to transmit. At 10 Mbps, a bit takes 100 nsec, so 500 bits is
the smallest frame that is guaranteed to work. To add some margin of safety, this
number was rounded up to 512 bits or 64 bytes.

The final field is the Checksum. It is a 32-bit CRC of the kind we studied in
Sec. 3.2. In fact, it is defined exactly by the generator polynomial we gave there,

SEC. 4.3 ETHERNET 295

which popped up for PPP, ADSL, and other links too. This CRC is an error-detect-
ing code that is used to determine if the bits of the frame have been received cor-
rectly. It just does error detection, with the frame dropped if an error is detected.

CSMA/CD with Binary Exponential Backoff

Classic Ethernet uses the 1-persistent CSMA/CD algorithm that we studied in
Sec. 4.2. This descriptor just means that stations sense the medium when they have
a frame to send and send the frame as soon as the medium becomes idle. They
monitor the channel for collisions as they send. If there is a collision, they abort the
transmission with a short jam signal and retransmit after a random interval.

Let us now see how the random interval is determined when a collision occurs,
as it is a new method. The model is still that of Fig. 4-5. After a collision, time is
divided into discrete slots whose length is equal to the worst-case round-trip propa-
gation time on the ether (2o). To accommodate the longest path allowed by Ether-
net, the slot time has been set to 512 bit times, or 51.2 µsec.

After the first collision, each station waits either 0 or 1 slot times at random be-
fore trying again. If two stations collide and each one picks the same random num-
ber, they will collide again. After the second collision, each one picks either 0, 1,
2, or 3 at random and waits that number of slot times. If a third collision occurs
(the probability of this happening is 0.25), the next time the number of slots to wait
is chosen at random from the interval 0 to 23 < 1.

In general, after i collisions, a random number between 0 and 2i < 1 is chosen,
and that number of slots is skipped. However, after 10 collisions have been
reached, the randomization interval is frozen at a maximum of 1023 slots. After 16
collisions, the controller throws in the towel and reports failure back to the com-
puter. Further recovery is up to higher layers.

This algorithm, called binary exponential backoff , was chosen to dynam-
ically adapt to the number of stations trying to send. If the randomization interval
for all collisions were 1023, the chance of two stations colliding for a second time
would be negligible, but the average wait after a collision would be hundreds of
slot times, introducing significant delay. On the other hand, if each station always
delayed for either 0 or 1 slots, then if 100 stations ever tried to send at once they
would collide over and over until 99 of them picked 1 and the remaining station
picked 0. This might take years. By having the randomization interval grow expo-
nentially as more and more consecutive collisions occur, the algorithm ensures a
low delay when only a few stations collide but also ensures that the collisions are
resolved in a reasonable interval when many stations collide. Truncating the back-
off at 1023 keeps the bound from growing too large.

If there is no collision, the sender assumes that the frame was probably suc-
cessfully delivered. That is, neither CSMA/CD nor Ethernet provides acknowl-
edgements. This choice is appropriate for wired and optical fiber channels that
have low error rates. Any errors that do occur must then be detected by the CRC

296 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

and recovered by higher layers. For wireless channels that have more errors, we
will see that acknowledgements are used.

4.3.3 Ethernet Performance

Now let us briefly examine the performance of classic Ethernet under condi-
tions of heavy and constant load, that is, with k stations always ready to transmit.
A rigorous analysis of the binary exponential backoff algorithm is complicated.
Instead, we will follow Metcalfe and Boggs (1976) and assume a constant retrans-
mission probability in each slot. If each station transmits during a contention slot
with probability p, the probability A that some station acquires the channel in that
slot is

A = kp(1 < p)k < 1

A is maximized when p = 1/k, with AA 1/e as k A '. The probability that the
contention interval has exactly j slots in it is A(1 < A) j< 1, so the mean number of
slots per contention is given by

'

j=0
Y jA(1 < A) j < 1 =

1
A

Since each slot has a duration 2o , the mean contention interval, w, is 2o /A. As-
suming optimal p, the mean number of contention slots is never more than e, so w
is at most 2o e 5 5. 4o .

If the mean frame takes P sec to transmit, when many stations have frames to
send,

Channel efficiency =
P

P + 2o / A
(4-2)

Here, we see where the maximum cable distance between any two stations enters
into the performance figures. The longer the cable, the longer the contention inter-
val, which is why the Ethernet standard specifies a maximum cable length.

It is instructive to formulate Eq. (4-2) in terms of the frame length, F , the net-
work bandwidth, B, the cable length, L, and the speed of signal propagation, c, for
the optimal case of e contention slots per frame. With P = F/B, Eq. (4-2) becomes

Channel efficiency =
1

1 + 2BLe/cF
(4-3)

When the second term in the denominator is large, network efficiency will be low.
More specifically, increasing network bandwidth or distance (the BL product) re-
duces efficiency for a given frame size. Unfortunately, much research on network
hardware is aimed precisely at increasing this product. People want high band-
width over long distances (fiber optic MANs, for example), yet classic Ethernet
implemented in this manner is not the best system for these applications. We will
see other ways of implementing Ethernet in the next section.

SEC. 4.3 ETHERNET 297

In Fig. 4-16, the channel efficiency is plotted versus the number of ready sta-
tions for 2o = 51. 2 µsec and a data rate of 10 Mbps, using Eq. (4-3). With a
64-byte slot time, it is not surprising that 64-byte frames are not efficient. On the
other hand, with 1024-byte frames and an asymptotic value of e 64-byte slots per
contention interval, the contention period is 174 bytes long and the efficiency is
85%. This result is much better than the 37% efficiency of slotted ALOHA.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 1 2 4 8 16
Number of stations trying to send

C
ha

nn
el

 e
ffi

ci
en

cy

32 64 128 256

1024-byte frames

512-byte frames

256-byte frames

128-byte frames

64-byte frames

Figure 4-16. Efficiency of Ethernet at 10 Mbps with 512-bit slot times.

It is probably worth mentioning that there has been a large amount of theoreti-
cal performance analysis of Ethernet (and other networks). Most of the results
should be taken with a grain (or better yet, a metric ton) of salt, for two reasons.
First, virtually all of the theoretical work assumes Poisson traffic. When re-
searchers began looking at real data, they discovered that network traffic is rarely
Poisson. Instead, it is self-similar or bursty over a range of time scales (Paxson and
Floyd, 1995; and Fontugne et al., 2017). What this means is that averaging over
long periods of time does not smooth out the traffic. As well as using questionable
models, many of the analyses focus on the ‘‘interesting’’ performance cases of
abnormally high load. Boggs et al. (1988) showed by experimentation that Ethernet
works well in reality, even at moderately high load.

4.3.4 Switched Ethernet

Ethernet soon began to evolve away from the single long cable architecture of
classic Ethernet. The problems associated with finding breaks or loose con-
nections drove it toward a different kind of wiring pattern, in which each station
has a dedicated cable running to a central hub . A hub simply connects all the

298 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

attached wires electrically, as if they were soldered together. This configuration is
shown in Fig. 4-17(a).

Port

Line Hub Switch
(a) (b)

Port

Line

Figure 4-17. (a) Hub. (b) Switch.

The wires were telephone company twisted pairs, since most office buildings
were already wired this way and normally plenty of spares were available. This re-
use was a win, but it did reduce the maximum cable run from the hub to 100
meters (200 meters if high-quality Category 5 twisted pairs were used). Adding or
removing a station is simpler in this configuration, and cable breaks can be detect-
ed easily. With the advantages of being able to use existing wiring and ease of
maintenance, twisted-pair hubs quickly became the dominant form of Ethernet.

However, hubs do not increase capacity because they are logically equivalent
to the single long cable of classic Ethernet. As more and more stations are added,
each station gets a decreasing share of the fixed capacity. Eventually, the LAN will
saturate. One way out is to go to a higher speed, say, from 10 Mbps to 100 Mbps,
1 Gbps, or even higher speeds. But with the growth of multimedia and powerful
servers, even a 1-Gbps Ethernet can become saturated.

Fortunately, there is an another way to deal with increased load: switched
Ethernet. The heart of this system is a switch containing a high-speed backplane
that connects all of the ports, as shown in Fig. 4-17(b). From the outside, a switch
looks just like a hub. They are both boxes, typically with 4 to 48 ports, each with a
standard RJ-45 connector for a twisted-pair cable. Each cable connects the switch
or hub to a single computer, as shown in Fig. 4-18. A switch has the same advan-
tages as a hub, too. It is easy to add or remove a new station by plugging or
unplugging a wire, and it is easy to find most faults since a flaky cable or port will
usually affect just one station. There is still a shared component that can fail—the
switch itself—but if all stations lose connectivity the IT folks know what to do to
fix the problem: replace the whole switch.

Inside the switch, however, something very different is happening. Switches
only output frames to the ports for which those frames are destined. When a
switch port receives an Ethernet frame from a station, the switch checks the Ether-
net addresses to see which port the frame is destined for. This step requires the

SEC. 4.3 ETHERNET 299

Switch

Twisted pair

Switch ports

Hub

Figure 4-18. An Ethernet switch.

switch to be able to work out which ports correspond to which addresses, a process
that we will describe in Sec. 4.8 when we get to the general case of switches con-
nected to other switches. For now, just assume that the switch knows the frame’s
destination port. The switch then forwards the frame over its high-speed backplane
to the destination port. The backplane typically runs at many Gbps, using a propri-
etary protocol that does not need to be standardized because it is entirely hidden
inside the switch. The destination port then transmits the frame on the wire so that
it reaches the intended station. None of the other ports even knows the frame
exists.

What happens if more than one of the stations or ports wants to send a frame at
the same time? Again, switches differ from hubs. In a hub, all stations are in the
same collision domain . They must use the CSMA/CD algorithm to schedule their
transmissions. In a switch, each port is its own independent collision domain. In
the common case that the cable is full duplex, both the station and the port can
send a frame on the cable at the same time, without worrying about other ports and
stations. Collisions are now impossible and CSMA/CD is not needed. However, if
the cable is half duplex, the station and the port must contend for transmission with
CSMA/CD in the usual way.

A switch improves performance over a hub in two ways. First, since there are
no collisions, the capacity is used more efficiently. Second, and more importantly,
with a switch multiple frames can be sent simultaneously (by different stations).
These frames will reach the switch ports and travel over the switch’s backplane to
be output on the proper ports. However, since two frames might be sent to the same
output port at the same time, the switch must have buffering so that it can tempo-
rarily queue an input frame until it can be transmitted to the output port. Overall,
these improvements give a large performance win that is not possible with a hub.
The total system throughput can often be increased by an order of magnitude, de-
pending on the number of ports and traffic patterns.

The change in the ports on which frames are output also has security benefits.
Most LAN interfaces have a promiscuous mode, in which all frames are given to
each computer, not just those addressed to it. With a hub, every computer that is
attached can see the traffic sent between all of the other computers. Spies and
busybodies love this feature. With a switch, traffic is forwarded only to the ports

300 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

where it is destined. This restriction provides better isolation so that traffic will not
easily escape and fall into the wrong hands. However, it is better to encrypt traffic
if security is really needed.

Because the switch just expects standard Ethernet frames on each input port, it
is possible to use some of the ports as concentrators. In Fig. 4-18, the port in the
upper-right corner is connected not to a single station, but to a 12-port hub instead.
As frames arrive at the hub, they contend for the ether in the usual way, including
collisions and binary backoff. Successful frames make it through the hub to the
switch and are treated there like any other incoming frames. The switch does not
know they had to fight their way in. Once in the switch, they are sent to the correct
output line over the high-speed backplane. It is possible that the correct destina-
tion was one on the lines attached to the hub, in which case the frame has already
been delivered so the switch drops it. Hubs are simpler and cheaper than switches,
but due to falling switch prices, they have become an endangered species. Modern
networks largely use switched Ethernet. Nevertheless, legacy hubs still exist.

4.3.5 Fast Ethernet

At the same time that switches were becoming popular, the speed of 10-Mbps
Ethernet was coming under pressure. At first, 10 Mbps seemed like heaven, just as
cable modems seemed like heaven to the users of 56-kbps telephone modems. But
the novelty wore off quickly. As a kind of corollary to Parkinson’s Law (‘‘Work
expands to fill the time available for its completion’’), it seemed that data expanded
to fill the bandwidth available for their transmission.

Many installations needed more bandwidth and thus had numerous 10-Mbps
LANs connected by a maze of repeaters, hubs, and switches, although to the net-
work managers it sometimes felt that they were being held together by bubble gum
and chicken wire. But even with Ethernet switches, the maximum bandwidth of a
single computer was limited by the cable that connected it to the switch port.

It was in this environment that IEEE reconvened the 802.3 committee in 1992
with instructions to come up with a faster LAN. One proposal was to keep 802.3
exactly as it was, but just make it go faster. Another proposal was to redo it totally
and give it lots of new features, such as real-time traffic and digitized voice, but
just keep the old name (for marketing reasons). After some wrangling, the com-
mittee decided to keep 802.3 the way it was, and just make it go faster. This strate-
gy would get the job done before the technology changed and avoid unforeseen
problems with a brand new design. The new design would also be backward-com-
patible with existing Ethernet LANs. The people behind the losing proposal did
what any self-respecting computer-industry people would have done under these
circumstances: they stomped off and formed their own committee and standardized
their LAN anyway (eventually as 802.12). It flopped miserably.

The work was done quickly (by standards committees’ norms), and the result,
802.3u, was approved by IEEE in June 1995. Technically, 802.3u is not really a

SEC. 4.3 ETHERNET 301

new standard, but an addendum to the existing 802.3 standard (to emphasize its
backward compatibility). This strategy is used a lot. Since practically everyone
calls it fast Ethernet , rather than 802.3u, we will do that, too.

The basic idea behind fast Ethernet was simple: keep all the old frame formats,
interfaces, and procedural rules, but reduce the bit time from 100 nsec to 10 nsec.
Technically, it would have been possible to copy 10-Mbps classic Ethernet and still
detect collisions on time by just reducing the maximum cable length by a factor of
10. However, the advantages of twisted-pair wiring were so overwhelming that
fast Ethernet is based entirely on this design. Thus, all fast Ethernet systems use
hubs and switches; multidrop cables with vampire taps or BNC connectors are not
permitted.

Nevertheless, some choices still had to be made, the most important being
which wire types to support. One contender was Category 3 twisted pair. The arg-
ument for it was that practically every office in the Western world had at least four
Category 3 (or better) twisted pairs running from it to a telephone wiring closet
within 100 meters. Sometimes two such cables existed. Thus, using Category 3
twisted pair would make it possible to wire up desktop computers using fast Ether-
net without having to rewire the building, an enormous advantage for many organi-
zations.

The main disadvantage of a Category 3 twisted pair is its inability to carry 100
Mbps over 100 meters, the maximum computer-to-hub distance specified for
10-Mbps hubs. In contrast, Category 5 twisted pair wiring can handle 100 m easi-
ly, and fiber can go much farther. The compromise chosen was to allow all three
possibilities, as shown in Fig. 4-19, but to pep up the Category 3 solution to give it
the additional carrying capacity needed.

Name Cable Max. segment Advantages
100Base-T4 Twisted pair 100 m Uses category 3 UTP
100Base-TX Twisted pair 100 m Full duplex at 100 Mbps (Cat 5 UTP)
100Base-FX Fiber optics 2000 m Full duplex at 100 Mbps; long runs

Figure 4-19. The original fast Ethernet cabling.

The Category 3 UTP scheme, formally called 100Base-T4 , used a signaling
speed of 25 MHz, only 25% faster than standard Ethernet’s 20 MHz. (Remember
that Manchester encoding, discussed in Sec. 2.4.3, requires two clock periods for
each of the 10 million bits sent each second.) However, to achieve the necessary
bit rate, 100Base-T4 requires four twisted pairs. Of the four pairs, one is always to
the hub, one is always from the hub, and the other two are switchable to the current
transmission direction. To get 100 Mbps out of the three twisted pairs in the trans-
mission direction, a fairly involved scheme is used on each twisted pair. It involves
sending ternary digits with three different voltage levels. This scheme is never go-
ing to to win any prizes for elegance, so we will (mercilfully) skip the details.

302 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

However, since standard telephone wiring for decades has had four twisted pairs
per cable, most offices are able to use the existing wiring plant. It means giving up
your office telephone, but that is surely a small price to pay for faster email.

100Base-T4 fell by the wayside as many office buildings were rewired with
Category 5 UTP for 100Base-TX Ethernet, which came to dominate the market.
This design is simpler because the wires can handle clock rates of 125 MHz. Only
two twisted pairs per station are used, one to the hub and one from it. Neither
straight binary coding (i.e., NRZ) nor Manchester coding is used. Instead, the
4B/5B encoding we described in Sec 2.4.3 is used. Four data bits are encoded as 5
signal bits and sent at 125 MHz to provide 100 Mbps. This scheme is simple but
has sufficient transitions for synchronization and uses the bandwidth of the wire
relatively well. The 100Base-TX system is full duplex; stations can transmit at
100 Mbps on one twisted pair and receive at 100 Mbps on another twisted pair at
the same time.

The last option, 100Base-FX, uses two strands of multimode fiber, one for
each direction, so it, too, can run full duplex with 100 Mbps in each direction. In
this setup, the distance between a station and the switch can be up to 2 km.

Fast Ethernet allows interconnection by either hubs or switches. To ensure that
the CSMA/CD algorithm continues to work, the relationship between the mini-
mum frame size and maximum cable length must be maintained as the network
speed goes up from 10 Mbps to 100 Mbps. So, either the minimum frame size of
64 bytes must go up or the maximum cable length of 2500 m must come down,
proportionally. The easy choice was for the maximum distance between any two
stations to come down by a factor of 10, since a hub with 100-m cables falls within
this new maximum already. However, 2-km 100Base-FX cables are too long to
permit a 100-Mbps hub with the normal Ethernet collision algorithm. These cables
must instead be connected to a switch and operate in a full-duplex mode so that
there are no collisions.

Users quickly started to deploy fast Ethernet, but they were not about to throw
away 10-Mbps Ethernet cards on older computers. As a consequence, virtually all
fast Ethernet switches can handle a mix of 10-Mbps and 100-Mbps stations. To
make upgrading easy, the standard itself provides a mechanism called auto-negoti-
ation that lets two stations automatically negotiate the optimum speed (10 or 100
Mbps) and duplexity (half or full). It works well most of the time but is known to
lead to duplex mismatch problems when one end of the link autonegotiates but the
other end does not and is set to full-duplex mode (Shalunov and Carlson, 2005).
Most Ethernet products use this feature to configure themselves.

4.3.6 Gigabit Ethernet

The ink was barely dry on the fast Ethernet standard when the 802 committee
began working on a yet faster Ethernet, quickly dubbed gigabit Ethernet . IEEE
ratified the most popular form as 802.3ab in 1999. Below, we will discuss some of

SEC. 4.3 ETHERNET 303

the key features of gigabit Ethernet. More information is given by Spurgeon and
Zimmerman (2014).

The committee’s goals for gigabit Ethernet were essentially the same as the
committee’s goals for fast Ethernet: increase performance tenfold while main-
taining compatibility with all existing Ethernet standards. In particular, gigabit
Ethernet had to offer unacknowledged datagram service with both unicast and
broadcast, use the same 48-bit addressing scheme already in use, and maintain the
same frame format, including the minimum and maximum frame sizes. The final
standard met all these goals.

Like fast Ethernet, all configurations of gigabit Ethernet use point-to-point
links. In the simplest configuration, illustrated in Fig. 4-20(a), two computers are
directly connected to each other. The more common case, however, uses a switch
or a hub connected to multiple computers and possibly additional switches or hubs,
as shown in Fig. 4-20(b). In both configurations, each individual Ethernet cable
has exactly two devices on it, no more and no fewer.

Switch or hub

Ethernet

(b)(a)

Ethernet

Computer

Figure 4-20. (a) A two-station Ethernet. (b) A multistation Ethernet.

Also like fast Ethernet, gigabit Ethernet supports two different modes of opera-
tion: full-duplex mode and half-duplex mode. The ‘‘normal’’ mode is full-duplex
mode, which allows traffic in both directions at the same time. This mode is used
when there is a central switch connected to computers (or other switches) on the
periphery. In this configuration, all lines are buffered so each computer and switch
is free to send frames whenever it wants to. The sender does not have to sense the
channel to see if anybody else is using it because contention is impossible. On the
line between a computer and a switch, the computer is the only possible sender to
the switch, and the transmission will succeed even if the switch is currently send-
ing a frame to the computer (because the line is full duplex). Since no contention
is possible, the CSMA/CD protocol is not used, so the maximum length of the
cable is determined by signal strength issues rather than by how long it takes for a
noise burst to propagate back to the sender in the worst case. Switches are free to
mix and match speeds. Autonegotiation is supported just as in fast Ethernet, only
now the choice is among 10, 100, and 1000 Mbps.

304 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

The other mode of operation, half-duplex, is used when the computers are con-
nected to a hub rather than a switch. A hub does not buffer incoming frames. In-
stead, it electrically connects all the lines internally, simulating the multidrop cable
used in classic Ethernet. In this mode, collisions are possible, so the standard
CSMA/CD protocol is required. Because a 64-byte frame (the shortest allowed)
can now be transmitted 100 times faster than in classic Ethernet, the maximum
cable length must be 100 times less, or 25 meters, to maintain the essential proper-
ty that the sender is still transmitting when the noise burst gets back to it, even in
the worst case. With a 2500-m-long cable, the sender of a 64-byte frame on a sys-
tem running at 1 Gbps would be long finished before the frame got even a tenth of
the way to the other end, let alone to the end and back.

This length restriction was painful enough that two features were added to the
standard to increase the maximum cable length to 200 meters, which is probably
enough for most offices. The first feature, called carrier extension , essentially
tells the hardware to add its own padding after the normal frame to extend the
frame to 512 bytes. Since this padding is added by the sending hardware and re-
moved by the receiving hardware, the software is unaware of it, meaning that no
changes are needed to existing software. The downside is that using 512 bytes
worth of bandwidth to transmit 46 bytes of user data (the payload of a 64-byte
frame) has a line efficiency of only 9%.

The second feature, called frame bursting , allows a sender to transmit a con-
catenated sequence of multiple frames in a single transmission. If the total burst is
less than 512 bytes, the hardware pads it again. If enough frames are waiting for
transmission, this scheme is very efficient and preferred over carrier extension.

In all fairness, it is hard to imagine an organization buying modern computers
with gigabit Ethernet cards and then connecting them with an old-fashioned hub to
simulate classic Ethernet with all its collisions. Gigabit Ethernet interfaces and
switches used to be expensive, but their prices fell rapidly as sales volumes picked
up. Still, backward compatibility is sacred in the computer industry, so the com-
mittee was required to put it in. Today, most computers ship with an Ethernet in-
terface that is capable of 10-, 100-, and 1000-Mbps operation (and maybe higher)
and compatible with all of them.

Gigabit Ethernet supports both copper and fiber cabling, as listed in Fig. 4-21.
Signaling at or near 1 Gbps requires encoding and sending a bit every nanosecond.
This trick was initially accomplished with short, shielded copper cables (the
1000Base-CX version) and optical fibers. For the optical fibers, two wavelengths
are permitted and result in two different versions: 0.85 microns (short, for
1000Base-SX) and 1.3 microns (long, for 1000Base-LX).

Signaling at the short wavelength can be achieved with cheap LEDs. It is used
with multimode fiber and is useful for connections within a building, as it can run
up to 500 m for 50-micron fiber. Signaling at the long wavelength requires lasers.
On the other hand, when combined with single-mode (10-micron) fiber, the cable
can be up to 5 km. This limit allows long distance connections between buildings,

SEC. 4.3 ETHERNET 305

Name Cable Max. segment Advantages
1000Base-SX Fiber optics 550 m Multimode fiber (50, 62.5 microns)
1000Base-LX Fiber optics 5000 m Single (10 µ) or multimode (50, 62.5 µ)
1000Base-CX 2 Pairs of STP 25 m Shielded twisted pair
1000Base-T 4 Pairs of UTP 100 m Standard category 5 UTP

Figure 4-21. Gigabit Ethernet cabling.

such as for a campus backbone, as a dedicated point-to-point link. Later variations
of the standard permit even longer links over single-mode fiber.

To send bits over these versions of gigabit Ethernet, the 8B/10B encoding we
described in Sec. 2.4.3 was borrowed from another networking technology called
Fibre Channel. That scheme encodes 8 bits of data into 10-bit codewords that are
sent over the wire or fiber, hence the name 8B/10B. The codewords were chosen
so that they could be balanced (i.e., have the same number of 0s and 1s) with suf-
ficient transitions for clock recovery. Sending the coded bits with NRZ requires a
signaling bandwidth of 25% more than that required for the uncoded bits, a big im-
provement over the 100% expansion of Manchester coding.

However, all of these options required new copper or fiber cables to support
the faster signaling. None of them made use of the large amount of Category 5
UTP that had been installed along with fast Ethernet. Within a year, 1000Base-T
came along to fill this gap, and it has been the most popular form of gigabit Ether-
net ever since. People apparently dislike rewiring their buildings.

More complicated signaling is needed to make Ethernet run at 1000 Mbps over
Category 5 wires. To start, all four twisted pairs in the cable are used, and each
pair is used in both directions at the same time by using digital signal processing to
separate signals. Over each wire, five voltage levels that carry 2 bits are used for
signaling at 125 Msymbols/sec. The mapping to produce the symbols from the bits
is not straightforward. It involves scrambling, for transitions, followed by an error
correcting code in which four values are embedded into five signal levels.

A speed of 1 Gbps is quite fast. For example, if a receiver is busy with some
other task for even 1 msec and does not empty the input buffer on some line, up to
1953 frames may have accumulated in that gap. Also, when a computer on a giga-
bit Ethernet is shipping data down the line to a computer on a classic Ethernet,
buffer overruns are very likely. As a consequence of these two observations, giga-
bit Ethernet supports flow control. The mechanism consists of one end sending a
special control frame to the other end telling it to pause for some period of time.
These PA USE control frames are normal Ethernet frames containing a type of
0x8808. Pauses are given in units of the minimum frame time. For gigabit Ether-
net, the time unit is 512 nsec, allowing for pauses as long as 33.6 msec.

There is one more extension that was introduced along with gigabit Ethernet.
Jumbo frames allow for frames to be longer than 1500 bytes, usually up to 9 KB.

306 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

This extension is proprietary. It is not recognized by the standard because if it is
used then Ethernet is no longer compatible with earlier versions, but most vendors
support it anyway. The rationale is that 1500 bytes is a short unit at gigabit speeds.
By manipulating larger blocks of information, the frame rate can be decreased,
along with the processing associated with it, such as interrupting the processor to
say that a frame has arrived, or splitting up and recombining messages that were
too long to fit in one Ethernet frame.

4.3.7 10-Gigabit Ethernet

As soon as gigabit Ethernet was standardized, the 802 committee got bored
and wanted to get back to work. IEEE told them to start on 10-gigabit Ethernet.
This work followed much the same pattern as the previous Ethernet standards, with
standards for fiber and shielded copper cable appearing first in 2002 and 2004, fol-
lowed by the standard for copper twisted pair in 2006.

Ten Gbps is an impressive speed, 1000x faster than the original Ethernet.
Where could it be needed? The answer is inside data centers and exchanges to
connect high-end routers, switches, and servers, as well as in long-distance, high
bandwidth trunks between offices that are enabling entire metropolitan area net-
works based on Ethernet and fiber. The long distance connections use optical fiber,
while the short connections may use copper or fiber.

All versions of 10-gigabit Ethernet support only full-duplex operation.
CSMA/CD is no longer part of the design, and the standards concentrate on the de-
tails of physical layers that can run at very high speed. Compatibility still matters,
though, so 10-gigabit Ethernet interfaces autonegotiate and fall back to the highest
speed supported by both ends of the line.

The main kinds of 10-gigabit Ethernet are listed in Fig. 4-22. Multimode fiber
with the 0.85µ (short) wavelength is used for medium distances, and single-mode
fiber at 1.3µ (long) and 1.5µ (extended) is used for long distances. 10GBase-ER
can run for distances of 40 km, making it suitable for wide area applications. All of
these versions send a serial stream of information that is produced by scrambling
the data bits, then encoding them with a 64B/66B code. This encoding has less
overhead than an 8B/10B code.

Name Cable Max. segment Advantages
10GBase-SR Fiber optics Up to 300 m Multimode fiber (0.85 µ)
10GBase-LR Fiber optics 10 km Single-mode fiber (1.3 µ)
10GBase-ER Fiber optics 40 km Single-mode fiber (1.5 µ)
10GBase-CX4 4 Pairs of twinax 15 m Twinaxial copper
10GBase-T 4 Pairs of UTP 100 m Category 6a UTP

Figure 4-22. 10-Gigabit Ethernet cabling.

SEC. 4.3 ETHERNET 307

The first copper version defined, 10GBase-CX4, uses a cable with four pairs of
twinaxial copper wiring. Each pair uses 8B/10B coding and runs at 3.125 Gsymb-
ols/sec to reach 10 Gbps. This version is cheaper than fiber and was early to mar-
ket, but it remains to be seen whether it will be beat out in the long run by 10-giga-
bit Ethernet over more garden-variety twisted-pair wiring.

10GBase-T is the version that uses UTP cables. While it calls for Category 6a
wiring, for shorter runs, it can use lower categories (including Category 5) to allow
some reuse of installed cabling. Not surprisingly, the physical layer is quite invol-
ved to reach 10 Gbps over twisted pair. We will only sketch some of the high-level
details. Each of the four twisted pairs is used to send 2500 Mbps in both directions.
This speed is reached using a signaling rate of 800 Msymbols/sec with symbols
that use 16 voltage levels. The symbols are produced by scrambling the data, pro-
tecting it with a LDPC (Low Density Parity Check) code, and further coding for
error correction.

Ten-gigabit Ethernet is now widespread in the market, so the 802.3 committee
has moved on. At the end of 2007, IEEE created a group to standardize Ethernet
operating at 40 Gbps and 100 Gbps. This upgrade will let Ethernet compete in very
high-performance settings, including long-distance connections in backbone net-
works and short connections over the equipment backplanes. The standard is not
yet complete, but proprietary products are already available.

4.3.8 40- and 100-Gigabit Ethernet

After it finished standardizing 10-gigabit Ethernet, the 802.11 committee got
to work on new standards for Ethernet at 40 gigabits/sec and 100 gigabits/sec. The
former is targeted at internal connections in data centers, not at ordinary offices
and certainly not end users. The latter is targeted at the Internet backbone and as
such has to work on optical-network runs of thousands of kilometers. A possible
use is a virtual private LAN to connect a data center with a million CPUs to anoth-
er million-CPU data center.

The first standard was 802.3ba, approved in 2010, followed by 802.3bj (2014)
and 802.3cd (2018). All of these define Ethernet at both 40 Gbps and 100 Gbps.
Design goals included:

1. Backward compatibility with 802.3 standards to 1 gigabit/sec.

2. Allowing the minimum and maximum frame sizes to stay the same.

3. Handle bit-error rates of 10<12 and better.

4. Work well on optical networks.

5. Have data rates of either 40 Gbps or 100 Gbps.

6. Allow the use of single- or multimode fiber and specialized back-
planes.

308 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

The new standards phase out copper wire in favor of optical fiber and high-per-
formance (copper) backplanes used in data centers that support cloud computing.
Half a dozen modulation schemes are supported, including 64B/66B (like 8B/10B,
but with more bits). In addition, up to 10 parallel lanes at 10 Gbps each can be
used to get to 100 Gbps. The lanes are typically different frequency bands over an
optical fiber. Integration into existing optical networks uses ITU recommendation
G.709.

Starting around 2018, a small number of companies began introducing
100-Gbps switches and network adapter cards. For the folks for whom 100 Gbps
is not enough, work has already begun on standards for up to 400 gigabits/sec,
sometimes referred to as 400GbE. The standards are 802.3cd, 802.3ck, 802.3cm,
and 802.3cn if you want to look them up. At 400 Gbps, a typical (compressed) 4K
movie can be downloaded in full in about 2 seconds.

4.3.9 Retrospective on Ethernet

Ethernet has been around for over 40 years and has no serious competitors in
sight, so it is likely to be around for many more years to come. Few CPU architec-
tures, operating systems, or programming languages have been king of the moun-
tain for three decades going on strong. Clearly, Ethernet did something right.
What was it?

Probably the main reason for its longevity is that Ethernet is simple and flexi-
ble. In practice, simple translates into reliable, cheap, and easy to maintain. Once
the hub and switch architecture was adopted, failures became extremely rare. Peo-
ple hesitate to replace something that works perfectly all the time, especially when
they know that an awful lot of things in the computer industry work very poorly, so
that many so-called ‘‘upgrades’’ are worse than what they replaced.

Simple also translates into cheap. Twisted-pair wiring is relatively inexpensive
as are the hardware components. They may start out expensive when there is a
transition, for example, new gigabit Ethernet NICs or switches, but they are merely
additions to a well-established network (not a replacement of it) and the prices fall
quickly as the sales volume picks up.

Ethernet is easy to maintain. There is no software to install (other than the
drivers) and not much in the way of configuration tables to manage (and get
wrong). Also, adding new hosts is as simple as just plugging them in.

Another point is that Ethernet interworks easily with TCP/IP, which has be-
come dominant. IP is a connectionless protocol, so it fits perfectly with Ethernet,
which is also connectionless. IP fits much less well with connection-oriented alter-
natives such as ATM. This mismatch definitely hurt ATM’s chances.

Lastly, and perhaps most importantly, Ethernet has been able to evolve in cer-
tain crucial ways. Speeds have gone up by four orders of magnitude and hubs and
switches have been introduced, but these changes have not required changing the

SEC. 4.3 ETHERNET 309

software and have often allowed the existing cabling to be reused for a time. When
a network salesman shows up at a large installation and says ‘‘I have this fantastic
new network for you. All you have to do is throw out all your hardware and rewrite
all your software,’’ he has a problem.

Many alternative technologies that you have probably not even heard of were
faster than Ethernet when they were introduced. As well as ATM, this list includes
FDDI (Fiber Distributed Data Interface) and Fibre Channel,† two ring-based opti-
cal LANs. Both were incompatible with Ethernet. Neither one made it. They were
too complicated, which led to complex chips and high prices. The lesson that
should have been learned here was KISS (Keep It Simple, Stupid). Eventually,
Ethernet caught up with them in terms of speed, often by borrowing some of their
technology, for example, the 4B/5B coding from FDDI and the 8B/10B coding
from Fibre Channel. Then, they had no advantages left and quietly died off or fell
into specialized roles.

It looks like Ethernet will continue to expand in its applications for some time.
Ten-gigabit Ethernet freed it from the distance constraints of CSMA/CD. Much
effort is being put into carrier-grade Ethernet to let network providers offer
Ethernet-based services to their customers for metropolitan and wide area networks
(Hawkins, 2016). This application carries Ethernet frames long distances over
fiber and calls for better management features to help operators offer reliable,
high-quality services. Very high-speed networks like 100GbE are also finding uses
in backplanes connecting components in large routers or servers. Both of these
uses are in addition to that of sending frames between computers in offices. The
next step is 400GbE and that may not even be the last one.

4.4 WIRELESS LANS

Wireless LANs are increasingly popular, and homes, offices, cafes, libraries,
airports, zoos, and other public places are being outfitted with them to connect
desktop PCs, laptops, tablets, and smartphones to the Internet. Wireless LANs can
also be used to let two or more nearby computers communicate without using the
Internet.

The main wireless LAN standard for over two decades has been 802.11. We
gave some background information on it in Sec. 1.5.3. Now it is time to take a
closer look at the technology. In the following sections, we will look at the proto-
col stack, physical-layer radio transmission techniques, the MAC sublayer proto-
col, the frame structure, and the services provided. For more information about
802.11, see Bing (2017) and Davis (2018). To get the truth from the mouth of the
horse, consult the published IEEE standards.
† It is called ‘‘Fibre Channel’’ and not ‘‘Fiber Channel’’ because the document editor was British.

310 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

4.4.1 The 802.11 Architecture and Protocol Stack

802.11 networks can be used in two modes. The most popular mode is to con-
nect clients, such as laptops and smartphones, to another network, such as a com-
pany intranet or the Internet. This mode is shown in Fig. 4-23(a). In infrastructure
mode, each client is associated with an AP (Access Point) that is in turn connected
to the other network. The client sends and receives its packets via the AP. Several
access points may be connected together, typically by a wired network called a dis-
tribution system, to form an extended 802.11 network. In this case, clients can
send frames to other clients via their APs.

(a) (b)

To networkAccess
point

Client

Figure 4-23. 802.11 architecture. (a) Infrastructure mode. (b) Ad-hoc mode.

The other mode, shown in Fig. 4-23(b), is an ad hoc network . This mode is a
collection of computers that are associated so that they can directly send frames to
each other. There is no access point. Since Internet access is the killer application
for wireless, ad hoc networks are not very popular.

Now we will look at the protocols. All the 802 protocols, including 802.11 and
Ethernet, have a certain commonality of structure. A partial view of the 802.11
protocol stack for the major 802.11 variants is given in Fig. 4-24. The stack is the
same for clients and APs. The physical layer corresponds fairly well to the OSI
physical layer, but the data link layer in all the 802 protocols is split into two or
more sublayers. In 802.11, the MAC sublayer determines how the channel is allo-
cated, that is, who gets to transmit next. Above it is the logical link control sub-
layer, whose job it is to hide the differences between the different 802 variants and
make them indistinguishable as far as the network layer is concerned. This could
have been a significant responsibility, but these days the logical link control is a
glue layer that identifies the protocol (e.g., IP) that is carried within an 802.11
frame.

Several transmission techniques have been added to the physical layer as
802.11 has evolved since it first appeared in 1997. Two of the initial techniques,
infrared in the manner of television remote controls and frequency hopping in the
2.4-GHz band, are now defunct. The third initial technique, direct sequence spread

SEC. 4.4 WIRELESS LANS 311

802.11 (legacy)
Frequency

hopping
and infrared

802.11a
OFDM

802.11b
Spread

spectrum

802.11g
OFDM

802.11n
MIMO
OFDM

Logical link layer

Release date: 1997—1999 1999 1999 2003 2009

802.11ac
MU-MIMO

OFDM

2013

802.11ax
MU-MIMO
OFDMA

2019

Upper
layers

Data link
layer

Physical
layer

MAC
sublayer

Figure 4-24. Part of the 802.11 protocol stack.

spectrum at 1 or 2 Mbps in the 2.4-GHz band, was extended to run at rates up to 11
Mbps and quickly became a hit. It is now known as 802.11b.

To give wireless junkies a much-wanted speed boost, new transmission techni-
ques based on the orthogonal frequency division multiplexing scheme we de-
scribed in Sec. 2.5.3 were introduced in 1999 and 2003. The first is called 802.11a
and uses a different frequency band, 5 GHz. The second stuck with 2.4 GHz and
compatibility. It is called 802.11g. Both give rates up to 54 Mbps.

Transmission techniques that simultaneously use multiple antennas at the
transmitter and receiver for a speed boost were finalized as 802.11n in Oct. 2009.

In December of 2013, IEEE ran out of letters and published the next standard
as 802.11ac. As an aside, the 802.11 committee members know the whole alpha-
bet and use the ‘‘missing’’ letters, such as 802.11r, for minor technical refinements
and amendments (often for clarifications and bug fixes). 802.11ac operates in the
5-GHz band, which means that older devices that use only the 2.4 GHz band can-
not use it. Most modern mobile devices use 802.11ac. Most recently, the 802.11ax
standard was approved for even more speed.

We will now examine each of these transmission techniques briefly. We will
only cover those that are in use, however, skipping the legacy 802.11 transmission
methods. Technically, these belong to the physical layer and should have been ex-
amined in Chap. 2, but since they are so closely tied to wireless LANs in general
and the 802.11 LAN in particular, we treat them here instead.

4.4.2 The 802.11 Physical Layer

Each of the transmission techniques makes it possible to send a MAC frame
over the air from one station to another. They differ, however, in the technology
used and speeds achievable in practice. A detailed discussion of these technologies
is far beyond the scope of this book, but a few words on each one will relate the

312 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

techniques to the material we covered in Chap. 2 and provide interested readers
with the key terms to search for elsewhere for more information.

All of the 802.11 techniques use short-range radios to transmit signals in either
the 2.4-GHz or the 5-GHz ISM frequency bands. These bands have the advantage
of being unlicensed and hence freely available to any transmitter willing to meet
some restrictions, such as radiated power of at most 1 W (though 50 mW is more
typical for wireless LAN radios). Unfortunately, this fact is also known to the
manufacturers of garage door openers, cordless phones, microwave ovens, and
countless other devices, all of which compete with laptops and smartphones using
WiFi for the same spectrum. The 2.4-GHz band tends to be more crowded than the
5-GHz band, so 5 GHz can be better for some applications even though it has
shorter range due to the higher frequency. Unfortunately, the shorter radio waves
at 5 GHz do not penetrate walls as well as the longer ones at 2.4 GHz do, so 5 GHz
is not the unquestioned champion.

All of the transmission methods also define multiple rates. The idea is that dif-
ferent rates can be used depending on the current conditions. If the wireless signal
is weak, a low rate can be used. If the signal is clear, the highest rate can be used.
This adjustment is called rate adaptation . Since the rates vary by a factor of 10 or
more, good rate adaptation is important for good performance. Of course, since it
is not needed for interoperability, the standards do not say how rate adaptation
should be done.

The first transmission method we shall look at is 802.11b. It is a spread-spec-
trum method that supports rates of 1, 2, 5.5, and 11 Mbps, though in practice the
operating rate is nearly always 11 Mbps. It is similar to the CDMA system we ex-
amined in Sec. 2.4.4, except that there is only one spreading code that is shared by
all users. Spreading is used to satisfy the FCC requirement that power be spread
over the ISM band. The spreading sequence used by 802.11b is called a Barker
sequence . It has the property that its autocorrelation is low except when the se-
quences are aligned. This property allows a receiver to lock onto the start of a
transmission. To send at a rate of 1 Mbps, the Barker sequence is used with BPSK
modulation to send 1 bit per 11 chips. The chips are transmitted at a rate of 11
Mchips/sec. To send at 2 Mbps, it is used with QPSK modulation to send 2 bits
per 11 chips. The higher rates are different. These rates use a technique called
CCK (Complementary Code Keying) to construct codes instead of the Barker se-
quence. The 5.5-Mbps rate sends 4 bits in every 8-chip code, and the 11-Mbps rate
sends 8 bits in every 8-chip code.

Next, we come to 802.11a, which supports rates up to 54 Mbps in the 5-GHz
ISM band. You might have expected that 802.11a to come before 802.11b, but that
was not the case. Although the 802.11a group was set up first, the 802.11b stan-
dard was approved first and its product got to market well ahead of the 802.11a
products, partly because of the difficulty of operating in the higher 5-GHz band.

The 802.11a method is based on OFDM (Orthogonal Frequency Division
Multiplexing) because OFDM uses the spectrum efficiently and resists wireless

SEC. 4.4 WIRELESS LANS 313

signal degradations such as multipath. Bits are sent over 52 subcarriers in parallel,
48 carrying data and 4 used for synchronization. Each symbol lasts 4µs and sends
1, 2, 4, or 6 bits. The bits are coded for error correction with a binary convolu-
tional code first, so only 1/2, 2/3, or 3/4 of the bits are not redundant. With dif-
ferent combinations, 802.11a can run at eight different rates, ranging from 6 to 54
Mbps. These rates are significantly faster than 802.11b rates, and there is less in-
terference in the 5-GHz band. However, 802.11b has a range that is about seven
times greater than that of 802.11a, which is more important in many situations.

Even with the greater range, the 802.11b people had no intention of letting this
upstart win the speed championship. Fortunately, in May 2002, the FCC dropped
its long-standing rule requiring all wireless communications equipment operating
in the ISM bands in the U.S. to use spread spectrum, so it got to work on 802.11g,
which was approved by IEEE in 2003. It copies the OFDM modulation methods
of 802.11a but operates in the narrow 2.4-GHz ISM band along with 802.11b. It
offers the same rates as 802.11a (6 to 54 Mbps) plus of course compatibility with
any 802.11b devices that happen to be nearby. All of these different choices can be
confusing for customers, so it is common for products to support 802.11a/b/g in a
single network interface card.

Not content to stop there, the IEEE committee began work on a high-through-
put physical layer called 802.11n. It was ratified in 2009. The goal for 802.11n
was throughput of at least 100 Mbps after all the wireless overheads were removed.
This goal called for a raw speed increase of at least a factor of four. To make it
happen, the committee doubled the channels from 20 MHz to 40 MHz and reduced
framing overheads by allowing a group of frames to be sent together. More signifi-
cantly, however, 802.11n uses up to four antennas to transmit up to four streams of
information at the same time. The signals of the streams interfere at the receiver,
but they can be separated using MIMO (Multiple Input Multiple Output) com-
munications techniques. The use of multiple antennas gives a large speed boost, or
better range and reliability instead. MIMO, like OFDM, is one of those clever
communications ideas that is changing wireless designs and which we are all likely
to hear a lot about in the future. For a brief introduction to multiple antennas in
802.11, see Halperin et al. (2010).

In 2013, IEEE published the 802.11ac standard. It uses wider (80 MHz and
160 MHz) channels, 256-QAM modulation, and MU-MIMO (MultiUser MIMO)
with up to eight streams and other tricks to crank the bit rate up to a theoretical
maximum of 7 Gbps, although in practice this is virtually never even approached.
Modern consumer mobile devices generally use 802.11ac.

Another recent 802.11 standard is 802.11ad . This one operates in the 60 GHz
band (57–71 GHz), which means the radio waves are very short: only 5 mm long.
These waves do not penetrate walls or anything else, so the standard is only useful
within a single room. However, this is an advantage as well as a disadvantage. It
means that whatever the person in the next office or apartment is doing will not in-
terfere with what you are doing. The combination of high bandwidth and poor

314 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

penetration makes it ideal for streaming uncompressed 4K or 8K movies from a
base station in a room to mobile devices in the room. An improvement to this stan-
dard, increasing the bandwidth by a factor of four, is the 802.11ay standard.

Now we come to 802.11ax, sometimes referred to high-efficiency wireless .
The consumer-friendly name for the standard is WiFi 6 (in case you thought you

slept through WiFi 1 through 5, you did not; the old names were based on the IEEE
standards numbers, and the WiFi Alliance decided to call this revision WiFi 6 be-
cause it is the sixth version of the WiFi standard). It allows for more efficient
QAM encoding along with a new modulation scheme, OFDMA. It can (in prin-
ciple) operate in unlicensed parts of the spectrum up to 7 GHz and can (theoreti-
cally) achieve a data rate of 11 Gbps. You can try this at home if you like, but
unless you have a perfectly designed test lab at home, you are not going to get 11
Gbps. You might get 1 Gbps, though.

In 802.11ax OFDMA, a central scheduler allocates fixed-length resource units
to each of the transmitting stations, thus reducing contention in dense deployments.
802.11ax also provides support for spatial spectrum reuse, through a technique
called coloring , whereby a sender marks the beginning of its transmission in such
a way that allows other senders to determine whether simultaneous use of the spec-
trum could take place. In some circumstances, a sender could transmit simultan-
eously if it reduces its power accordingly.

Additionally, 802.11ax uses 1024-QAM, which allows each symbol to encode
10 bits, as opposed to the 8 bits/symbol in 256-QAM that 802.11ac uses. The stan-
dard also supports smarter scheduling through a feature called target wake time ,
which allows a router to put devices in the home on transmission schedules to min-
imize collisions. This feature is likely to be most useful in smart homes, where an
increasing number of connected devices may need to periodically send heartbeats
to the home router.

4.4.3 The 802.11 MAC Sublayer Protocol

Let us now return from the land of electrical engineering to the land of com-
puter science. The 802.11 MAC sublayer protocol is quite different from that of
Ethernet, due to two factors that are fundamental to wireless communication.

First, radios are nearly always half duplex, meaning that they cannot transmit
and listen for noise bursts at the same time on a single frequency. The received
signal can easily be a million times weaker than the transmitted signal, so it cannot
be heard at the same time. With Ethernet, a station just waits until the ether goes
silent and then starts transmitting. If it does not receive a noise burst back while
transmitting the first 64 bytes, the frame has almost assuredly been delivered cor-
rectly. With wireless, this collision detection mechanism does not work.

Instead, 802.11 tries to avoid collisions with a protocol called CSMA/CA
(CSMA with Collision Avoidance). This protocol is conceptually similar to
Ethernet’s CSMA/CD, with channel sensing before sending and exponential back

SEC. 4.4 WIRELESS LANS 315

off after collisions. However, a station that has a frame to send starts with a random
backoff (except in the case that it has not used the channel recently and the channel
is idle). It does not wait for a collision. The number of slots to backoff is chosen in
the range 0 to, say, 15 in the case of the OFDM physical layer. The station waits
until the channel is idle, by sensing that there is no signal for a short period of time
(called the DIFS, as we explain below), and counts down idle slots, pausing when
frames are sent. It sends its frame when the counter reaches 0. If the frame gets
through, the destination immediately sends a short acknowledgement. Lack of an
acknowledgement is inferred to indicate an error, whether a collision or otherwise.
In this case, the sender doubles the backoff period and tries again, continuing with
exponential backoff as in Ethernet until the frame has been successfully trans-
mitted or the maximum number of retransmissions has been reached.

An example timeline is shown in Fig. 4-25. Station A is the first to send a
frame. While A is sending, stations B and C become ready to send. They see that
the channel is busy and wait for it to become idle. Shortly after A receives an ac-
knowledgement, the channel goes idle. However, rather than sending a frame right
away and colliding, B and C both perform a backoff. C picks a short backoff, and
thus sends first. B pauses its countdown while it senses that C is using the channel,
and resumes after C has received an acknowledgement. B soon completes its back-
off and sends its frame.

Station

A

B

C

Time

Data

Wait for idle Backoff Rest of backoff

Ack

A sends to D

B ready to send

D acks A

C sends to D D acks C

B sends to D D acks B

Data

Ack

Data

Ack

Wait for idle

Wait for idle Backoff

C ready to send

Figure 4-25. Sending a frame with CSMA/CA.

Compared to Ethernet, there are two main differences. First, starting backoffs
early helps to avoid collisions. This avoidance is worthwhile because collisions are
expensive, as the entire frame is transmitted even if one occurs. Second, acknowl-
edgements are used to infer collisions because collisions cannot be detected.

This mode of operation is called DCF (Distributed Coordination Function)
because each station acts independently, without any kind of central control. The
standard also includes an optional additional mode of operation called PCF (Point

316 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

Coordination Function) in which the access point controls all activity in its cell,
just like a cellular base station. However, PCF is not used in practice because there
is normally no way to prevent stations in another nearby network from transmitting
competing traffic.

The second problem is that the transmission ranges of different stations may be
different. With a wire, the system is engineered so that all stations can hear each
other. With the complexities of RF propagation, this situation does not hold for
wireless stations. Consequently, situations such as the hidden terminal problem
mentioned earlier and illustrated again in Fig. 4-26(a) can arise. Since not all sta-
tions are within radio range of each other, transmissions going on in one part of a
cell may not be received elsewhere in the same cell. In this example, station C is
transmitting to station B. If A senses the channel, it will not hear anything and will
falsely conclude that it may now start transmitting to B. This decision leads to a
collision.

Range
of C's
radio

A CB

(a)

A C

Range
of A's
radio

B

(b)

A wants to send to B
but cannot hear that

B is busy

B wants to send to C
but mistakenly thinks

the transmission will fail

C is
transmitting

A is
transmitting

Figure 4-26. (a) The hidden terminal problem. (b) The exposed terminal problem.

The inverse situation is the exposed terminal problem, illustrated in
Fig. 4-26(b). Here, B wants to send to C, so it listens to the channel. When it
hears a transmission, it falsely concludes that it may not send to C, even though A
may in fact be transmitting to D (not shown). This decision wastes a transmission
opportunity.

To reduce ambiguities about which station is sending, 802.11 defines channel
sensing to consist of both physical sensing and virtual sensing. Physical sensing
simply checks the medium to see if there is a valid signal. With virtual sensing,
each station keeps a logical record of when the channel is in use by tracking the
NAV (Network Allocation Vector). Each frame carries a NAV field that says how
long the sequence of which this frame is part will take to complete. Stations that
overhear this frame know that the channel will be busy for the period indicated by
the NAV , regardless of whether they can sense a physical signal. For example, the

SEC. 4.4 WIRELESS LANS 317

NAV of a data frame includes the time needed to send an acknowledgement. All
stations that hear the data frame will defer during the acknowledgement period,
whether or not they can hear the acknowledgement. Essentially, the NAV serves
like a countdown timer, during which period the sender assumes that the channel is
busy. In 802.11, the units of the NAV are microseconds. In dense deployments, the
NAV set by one sender can be reset by other senders in the same transmission
range, thus causing collisions and suboptimal performance. To mitigate this effect,
802.11ax introduces two NAVs; one NAV is modified by frames corresponding to
frames that the station is associated with, and the second NAV is modified by
frames that are heard by the station but originate in overlapping networks.

An optional RTS/CTS mechanism uses the NAV to prevent terminals from send-
ing frames at the same time as hidden terminals. It is shown in Fig. 4-27. In this
example, A wants to send to B. C is a station within range of A (and possibly with-
in range of B, but that does not matter). D is a station within range of B but not
within range of A.

RTS DataA

CTS ACKB

C

D

NAV

NAV

Time

Figure 4-27. Virtual channel sensing using CSMA/CA.

The protocol starts when A decides it wants to send data to B. A begins by
sending an RTS frame to B to request permission to send it a frame. If B receives
this request, it answers with a CTS frame to indicate that the channel is clear to
send. Upon receipt of the CTS, A sends its frame and starts an ACK timer. Upon
correct receipt of the data frame, B responds with an ACK frame, completing the
exchange. If A’s ACK timer expires before the ACK gets back to it, it is treated as a
collision and the whole protocol is run again after a backoff.

Now let us consider this exchange from the viewpoints of C and D. C is within
range of A, so it may receive the RTS frame. If it does, it realizes that someone is
going to send data soon. From the information provided in the RTS request, it can
estimate how long the sequence will take, including the final ACK. So, for the
good of all, it desists from transmitting anything until the exchange is completed. It
does so by updating its record of the NAV to indicate that the channel is busy, as
shown in Fig. 4-27. D does not hear the RTS, but it does hear the CTS, so it also
updates its NAV . Note that the NAV signals are not transmitted; they are just inter-
nal reminders to keep quiet for a certain period of time.

318 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

However, while RTS/CTS sounds good in theory, it is one of those designs that
has proved to be of little value in practice. Several reasons why it is seldom used
are known. It does not help for short frames (which are sent in place of the RTS) or
for the AP (which everyone can hear, by definition). For other situations, it only
slows down operation. RTS/CTS in 802.11 is a little different than in the MACA
protocol we saw in Sec 4.2 because everyone hearing the RTS or CTS remains quiet
for the duration to allow the ACK to get through without collision. Because of this,
it does not help with exposed terminals as MACA did, only with hidden terminals.
Most often there are few hidden terminals, and CSMA/CA already helps them by
slowing down stations that transmit unsuccessfully, whatever the cause, to make it
more likely that transmissions will succeed.

CSMA/CA with physical and virtual sensing is the core of the 802.11 protocol.
However, there are several other mechanisms that have been developed to go with
it. Each of these mechanisms was driven by the needs of real operation, so we will
look at them briefly.

The first need we will take a look at is reliability. In contrast to wired net-
works, wireless networks are noisy and unreliable, in no small part due to inter-
ference from other kinds of devices, such as microwave ovens, which also use the
unlicensed ISM bands. The use of acknowledgements and retransmissions is of lit-
tle help if the probability of getting a frame through is small in the first place.

The main strategy that is used to increase successful transmissions is to lower
the transmission rate. Slower rates use more robust modulations that are more like-
ly to be received correctly for a given signal-to-noise ratio. If too many frames are
lost, a station can lower the rate. If frames are delivered with little loss, a station
can occasionally test a higher rate to see if it should be used.

Another strategy to improve the chance of the frame getting through undam-
aged is to send shorter frames. If the probability of any bit being in error is p, the
probability of an n-bit frame being received entirely correctly is (1 < p)n . For ex-
ample, for p = 10<4 , the probability of receiving a full Ethernet frame (12,144 bits)
correctly is less than 30%. Most frames will be lost. But if the frames are only a
third as long (4048 bits), two thirds of them will be received correctly. Now most
frames will get through and fewer retransmissions will be needed.

Shorter frames can be implemented by reducing the maximum size of the mes-
sage that is accepted from the network layer. Alternatively, 802.11 allows frames
to be split into smaller pieces, called fragments , each with its own checksum. The
fragment size is not fixed by the standard, but is a parameter that can be adjusted
by the AP. The fragments are individually numbered and acknowledged using a
stop-and-wait protocol (i.e., the sender may not transmit fragment k + 1 until it has
received the acknowledgement for fragment k). Once the channel has been ac-
quired, multiple fragments are sent as a burst. They go one after the other with an
acknowledgement (and possibly retransmissions) in between, until either the whole
frame has been successfully sent or the transmission time reaches the maximum al-
lowed. The NAV mechanism described above keeps other stations quiet only until

SEC. 4.4 WIRELESS LANS 319

the next acknowledgement, but another mechanism (see below) is used to allow a
burst of fragments to be sent without other stations sending a frame in the middle.

The second need we will discuss is saving power. Battery life is always an
issue with mobile wireless devices. The 802.11 standard pays attention to the issue
of power management so that clients need not waste power when they have neither
information to send nor to receive.

The basic mechanism for saving power builds on beacon frames . Beacons are
periodic broadcasts by the AP (e.g., every 100 msec). The frames advertise the
presence of the AP to clients and carry system parameters, such as the identifier of
the AP, the time, how long until the next beacon, and security settings.

Clients can set a power-management bit in frames that they send to the AP to
tell it that they are entering power-save mode. In this mode, the client can doze
and the AP will buffer traffic intended for it. To check for incoming traffic, the cli-
ent wakes up for every beacon, and checks a traffic map that is sent as part of the
beacon. This map tells the client if there is buffered traffic. If so, the client sends a
poll message to the AP, which then sends the buffered traffic. The client can then
go back to sleep until the next beacon is sent.

Another power-saving mechanism, called APSD (Automatic Power Save
Delivery), was added to 802.11 in 2005. With this new mechanism, the AP buffers
frames and sends them to a client just after the client sends frames to the AP. The
client can then go to sleep until it has more traffic to send (and receive). This
mechanism works well for applications such as VoIP that have frequent traffic in
both directions. For example, a VoIP wireless phone might use it to send and re-
ceive frames every 20 msec, much more frequently than the beacon interval of 100
msec, while dozing in between.

The third and last need we will examine is quality of service. When the VoIP
traffic in the preceding example competes with peer-to-peer traffic, the VoIP traffic
will suffer. It will be delayed due to contention with the high-bandwidth peer-to-
peer traffic, even though the VoIP bandwidth is low. These delays are likely to
degrade the voice calls. To prevent this degradation, we would like to let the VoIP
traffic go ahead of the peer-to-peer traffic, as it is of higher priority.

IEEE 802.11 has a clever mechanism to provide this kind of quality of service
that was introduced as set of extensions under the name 802.11e in 2005. It works
by extending CSMA/CA with carefully defined intervals between frames. After a
frame has been sent, a certain amount of idle time is required before any station
may send a frame to check that the channel is no longer in use. The trick is to
define different time intervals for different kinds of frames.

Five intervals are depicted in Fig. 4-28. The interval between regular data
frames is called the DIFS (DCF InterFrame Spacing). Any station may attempt
to acquire the channel to send a new frame after the medium has been idle for
DIFS. The usual contention rules apply, and binary exponential backoff may be
needed if a collision occurs. The shortest interval is SIFS (Short InterFrame
Spacing). It is used to allow the parties in a single dialog the chance to go first.

320 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

Examples include letting the receiver send an ACK, other control frame sequences
like RTS and CTS, or letting a sender transmit a burst of fragments. Sending the
next fragment after waiting only SIFS is what prevents another station from jump-
ing in with a frame in the middle of the exchange.

ACK

SIFS

AIFS1

DIFS

EIFS

AIFS4

Control frame or next fragment may be sent here

High-priority frame here

Regular DCF frame here

Low-priority frame here

Bad frame recovery done

Time

Figure 4-28. Interframe spacing in 802.11.

The two AIFS (Arbitration InterFrame Space) intervals show examples of
two different priority levels. The short interval, AIFS1, is smaller than DIFS but
longer than SIFS. It can be used by the AP to move voice or other high-priority
traffic to the head of the line. The AP will wait for a shorter interval before it sends
the voice traffic, and thus send it before regular traffic. The long interval, AIFS4, is
larger than DIFS. It is used for background traffic that can be deferred until after
regular traffic. The AP will wait for a longer interval before it sends this traffic,
giving regular traffic the opportunity to transmit first. The complete quality of ser-
vice mechanism defines four different priority levels that have different backoff pa-
rameters as well as different idle parameters.

The last time interval, EIFS (Extended InterFrame Spacing), is used only by
a station that has just received a bad or unknown frame, to report the problem. The
idea is that since the receiver may have no idea of what is going on, it should wait
a while to avoid interfering with an ongoing dialog between two stations.

A further part of the quality of service extensions is the notion of a TXOP or
transmission opportunity . The original CSMA/CA mechanism let stations send
one frame at a time. This design was fine until the range of rates increased. With
802.11a/g, one station might be sending at 6 Mbps and another station be sending
at 54 Mbps. They each get to send one frame, but the 6-Mbps station takes nine
times as long (ignoring fixed overheads) as the 54-Mbps station to send its frame.
This disparity has the unfortunate side effect of slowing down a fast sender who is
competing with a slow sender to roughly the rate of the slow sender. For example,
again ignoring fixed overheads, when sending alone the 6-Mbps and 54-Mbps
senders will get their own rates, but when sending together they will both get 5.4
Mbps on average. It is a stiff penalty for the fast sender. This issue is known as the
rate anomaly (Heusse et al., 2003).

SEC. 4.4 WIRELESS LANS 321

With transmission opportunities, each station gets an equal amount of airtime,
not an equal number of frames. Stations that send at a higher rate for their airtime
will get higher throughput. In our example, when sending together the 6-Mbps and
54-Mbps senders will now get 3 Mbps and 27 Mbps, respectively.

4.4.4 The 802.11 Frame Structure

The 802.11 standard defines three different classes of frames in the air: data,
control, and management. Each of these has a header with a variety of fields used
within the MAC sublayer. In addition, there are some headers used by the physical
layer, but these mostly deal with the modulation techniques used, so we will not
discuss them here.

We will look at the format of the data frame as an example. It is shown in
Fig. 4-29. First comes the Frame control field, which is made up of 11 subfields.
The first of these is the Protocol version, set to 00. It is there to allow future ver-
sions of 802.11 to operate at the same time in the same cell. Then come the Type
(data, control, or management) and Subtype fields (e.g., RTS, or CTS). For a regu-
lar data frame (without quality of service), they are set to 10 and 0000 in binary.
The To DS and Fr om DS bits are set to indicate whether the frame is going to or
coming from the network connected to the APs, which is called the distribution
system. The More fragments bit means that more fragments will follow. The
Retry bit marks a retransmission of a frame sent earlier. The Power management
bit indicates that the sender is going into power-save mode. The More data bit in-
dicates that the sender has additional frames for the receiver. The Protected Frame
bit indicates that the frame body has been encrypted for security. We will discuss
security briefly in the next section. Finally, the Order bit tells the receiver that the
higher layer expects the sequence of frames to arrive strictly in order.

Bytes 2 2 2 0–2312

SequenceAddress 1
(recipient)Duration DataFrame

control
Check

sequence

46 6 6
Address 2

(transmitter) Address 3

2 2 1 1

Subtype
= 0000

Type
= 10

Version
= 00

4 1

To
DS

From
DS

More
frag. Retry Pwr.

mgt.
More
data Protected Order

1 11 1 1Bits

Figure 4-29. Format of the 802.11 data frame.

The second field of the data frame, the Duration field, tells how long the frame
and its acknowledgement will occupy the channel, measured in microseconds. It is
present in all types of frames, including control frames, and is what stations use to
manage the NAV mechanism.

322 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

Next come addresses. Data frames sent to or from an AP have three addresses,
all in standard IEEE 802 format. The first address is the receiver, and the second
address is the transmitter. They are obviously needed, but what is the third address
for? Remember that the AP is simply a relay point for frames as they travel be-
tween a client and another point on the network, perhaps a distant client or a portal
to the Internet. The third address gives this distant endpoint.

The Sequence field numbers frames so that duplicates can be detected. Of the
16 bits available, 4 identify the fragment and 12 carry a number that is advanced
with each new transmission. The Data field contains the payload, up to 2312
bytes. The first bytes of this payload are in a format known as LLC (Logical Link
Control). This layer is the glue that identifies the higher-layer protocol (e.g., IP)
to which the payloads should be passed. Last comes the Frame check sequence,
which is the same 32-bit CRC we saw in Sec. 3.2.2 and elsewhere.

Management frames have the same format as data frames, plus a format for the
data portion that varies with the subtype (e.g., parameters in beacon frames). Con-
trol frames are short. Like all frames, they have the Frame control, Duration , and
Frame check sequence fields. However, they may have only one address and no
data portion. Most of the key information is conveyed with the Subtype field (e.g.,
ACK, RTS , and CTS).

4.4.5 Services

The 802.11 standard defines the services that the clients, the access points, and
the network connecting them must be a conformant wireless LAN. The 802.11
standard offers various services.

Association and Data Delivery

The association service is used by mobile stations to connect themselves to
APs. Typically, it is used just after a station moves within radio range of the AP.
Upon arrival, the station learns the identity and capabilities of the AP, either from
beacon frames or by directly asking the AP. The capabilities include the data rates
supported, security arrangements, power-saving capabilities, quality of service sup-
port, and more. The AP’s beacon message also includes a SSID (Service Set
IDentifier), which most people often think of as the network name. The station
sends a request to associate with the AP; the AP may accept or reject the request.
While beacons are always broadcast, the SSID may or may not be broadcast. If the
SSID is not broadcast, the station must somehow know (or discover) the name to
associate to that AP.

Reassociation lets a station change its preferred AP. This is useful for mobile
stations moving from one AP to another AP in the same extended 802.11 LAN,
like a handover in the cellular network. If used correctly, no data will be lost as a
consequence of the handover. (But 802.11, like Ethernet, is a best-effort service.)

SEC. 4.4 WIRELESS LANS 323

No delivery guarantees are given. Either the station or the AP may also disassoci-
ate , ending the relationship. A station should use this service before shutting down
or leaving the network. The AP may use it before going down for maintenance.
The 802.11w standard added authentication to disassociation frames.

Once frames reach the AP, the distribution service determines how to route
them. If the destination is local to the AP, the frames can be sent out directly over
the air. Otherwise, they will have to be forwarded over the wired network. The
integration service handles any translation that is needed for a frame to be sent
outside the 802.11 LAN, or to arrive from outside the 802.11 LAN. The common
case here is connecting the wireless LAN to the Internet.

Data transmission is what it is all about, so 802.11 naturally provides a data
delivery service . This service lets stations transmit and receive data using the pro-
tocols we described earlier in this chapter. Since 802.11 is modeled on Ethernet
and transmission over Ethernet is not guaranteed to be 100% reliable, transmission
over 802.11 is not guaranteed to be reliable either. Higher layers must deal with
detecting and correcting errors.

Security and Privacy

Stations must also authenticate before they can send frames via the AP, but
authentication is handled in different ways depending on the choice of security
scheme. If the 802.11 network is ‘‘open,’’ anyone is allowed to use it. Otherwise,
credentials are needed to authenticate.

A common authentication approach, WPA2 (WiFi Protected Access 2), im-
plements security as defined in the 802.11i standard. (WPA is an interim scheme
that implements a subset of 802.11i. We will skip it and go straight to the com-
plete scheme.) With WPA2, the AP can talk to an authentication server that has a
username and password database to determine if the station is allowed to access the
network. Alternatively, a pre-shared key, which is a fancy name for a network
password, may be configured. Several frames are exchanged between the station
and the AP with a challenge and response that lets the station prove it has the right
credentials. This exchange happens after association.

Another authentication approach that is commonly used in enterprise networks
is 802.1X, which implements an approach called port-based authentication .
802.1X relies on centralized authentication (e.g., authentication of devices to a
centralized server), which creates the possibilities for more fine-grained access
control, accounting, billing, and attribution. The station that is authenticating is
sometimes called a supplicant; this device authenticates to the network through an
authenticator, which talks to the authentication server. 802.1X relies on an
authentication framework called EAP (Enhanced Authentication Protocol). The
EAP framework defines more than 50 different methods to perform authentication,
but common methods include EAP-TLS , which performs authentication based on
certificates; EAP-TTLS and PEAP, which allow the client to associate using a

324 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

variety of methods, including password-based authentication; and EAP-SIM ,
whereby a mobile phone can authenticate using a SIM. 802.1X has many advan-
tages over simple WPA, such as the ability to perform fine-grained access control
based on user, but it requires a certificate infrastructure to administer.

The predecessor to WPA was called WEP (Wired Equivalent Privacy). For
this scheme, authentication with a preshared key happens before association. WEP
is now widely known to be insecure and is effectively no longer used. The first
practical demonstration that WEP was broken came when Adam Stubblefield was
a summer intern at AT&T (Stubblefield et al., 2002). He was able to code up and
test an attack in one week, much of which was spent getting permission from man-
agement to buy the WiFi cards needed for experiments. Software to crack WEP
passwords is now freely available.

With WEP broken and WPA deprecated, the next try was WPA2. It uses a pri-
vacy service that manages the details of encryption and decryption. The en-
cryption algorithm for WPA2 is based on AES (Advanced Encryption Stan-
dard), a U.S. government standard approved in 2002. The keys that are used for
encryption are determined during the authentication procedure. Unfortunately,
WPA2 was broken in 2017 (Vanhoef and Piessens, 2017). Good security is very
hard, even with unbreakable crypto, because key management is the weakest link.

Prioritization and Power Control

To handle traffic with different priorities, there is a QoS traffic scheduling
service. It uses the protocols we described to give voice and video traffic preferen-
tial treatment compared to best-effort and background traffic. A companion service
also provides higher-layer timer synchronization. This lets stations coordinate their
actions, which may be useful for media processing.

Finally, there are two services that help stations manage their use of the spec-
trum. The transmit power control service gives stations the information they need
to meet regulatory limits on transmit power that vary from region to region. The
dynamic frequency selection service give stations the information they need to
avoid transmitting on frequencies in the 5-GHz band that are being used for radar
in the proximity.

With these services, 802.11 provides a rich set of functionality for connecting
nearby mobile clients to the Internet. It has been a huge success, and the standard
has repeatedly been amended to add more functionality. For a perspective on
where the standard has been and where it is heading, see Hiertz et al. (2010).

4.5 BLUETOOTH

In 1994, the Swedish company L. M. Ericsson became interested in connecting
its mobile phones to other devices (e.g., laptops) without cables. Together with
four other companies (IBM, Intel, Nokia, and Toshiba), it formed a SIG (Special

SEC. 4.5 BLUETOOTH 325

Interest Group, i.e., consortium) in 1998 to develop a wireless standard for con-
necting computing and communication devices and accessories using short-range,
low-power, inexpensive wireless radios. The project was named Bluetooth , after
Harald Blaatand (Bluetooth) II (940–981), a Viking king who unified (i.e., con-
quered) Denmark and Norway, also without cables.

Bluetooth 1.0 was released in July 1999, and since then the SIG has never
looked back. All manner of consumer electronic devices now use Bluetooth, from
mobile phones and laptops to headsets, printers, keyboards, mice, game consoles,
watches, music players, navigation units, and more. The Bluetooth protocols let
these devices find and connect to each other, an act called pairing , and securely
transfer data.

The protocols have evolved over the past decade, too. After the initial proto-
cols stabilized, higher data rates were added to Bluetooth 2.0 in 2004. With the 3.0
release in 2009, Bluetooth can be used for device pairing in combination with
802.11 for high-throughput data transfer. The 4.0 release in June 2010 specified
low-power operation. That will be handy for people who do not want to change the
batteries regularly in all of those devices around the house.

We will cover the main aspects of Bluetooth 4.0 below as it is still the mostly
widely used version. Afterwards, we will discuss Bluetooth 5 and how it differs
from Bluetooth 4.0 (mostly in minor ways).

4.5.1 Bluetooth Architecture

Let us start our study of the Bluetooth system with a quick overview of what it
contains and what it is intended to do. The basic unit of a Bluetooth system is a
piconet , which consists of a controller node and up to seven active worker nodes
within a distance of 10 meters. Multiple piconets can exist in the same (large)
room and can even be connected via a bridge node that takes part in multiple
piconets, as in Fig. 4-30. An interconnected collection of piconets is called a scat-
ternet .

In addition to the seven active worker nodes in a piconet, there can be up to
255 parked nodes in the net. These are devices that the controller has switched to a
low-power state to reduce the drain on their batteries. In parked state, a device
cannot do anything except respond to an activation or beacon signal from the con-
troller. Two minor intermediate power states, hold and sniff, also exist

The reason for the controller/worker design is that the designers intended to
facilitate the implementation of complete Bluetooth chips for under $5. The
consequence of this decision is that the workers are fairly dumb, basically just
doing whatever the controller tells them to do. At its heart, a piconet is a cent-
ralized TDM system, with the controller controlling the clock and determining
which device gets to communicate in which time slot. All communication is be-
tween the controller and a worker; direct worker-worker communication is not pos-
sible.

326 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

W

W

W

W

W

W

W

W

W

W

W

CC

Bridge worker

Parked
worker

Piconet 2Piconet 1

Active
worker

Figure 4-30. Two piconets can be connected to form a scatternet.

4.5.2 Bluetooth Applications

Most network protocols just provide channels between communicating entities
and let application designers figure out what they want to use them for. For ex-
ample, 802.11 does not specify whether users should use their laptop computers
for reading email, surfing the Web, or something else. In contrast, the Bluetooth
SIG specifies particular applications to be supported and provides different proto-
col stacks for each one. At the time of this writing, there are more than two dozen
applications, which are called profiles . Unfortunately, this approach leads to a
very large amount of complexity. We will omit the complexity here but will briefly
look at the profiles to see more clearly what the Bluetooth SIG is trying to accom-
plish with them.

Six of the profiles are for different uses of audio and video. For example, the
intercom profile allows two telephones to connect as walkie-talkies. The headset
and hands-free profiles both provide voice communication between a headset and
its base station, as might be used for hands-free telephony while driving a car.
Other profiles are for streaming stereo-quality audio and video, say, from a porta-
ble music player to headphones, or from a digital camera to a TV.

The human interface device profile is for connecting keyboards and mice to
computers. Other profiles let a mobile phone or other computer receive images
from a camera or send images to a printer. Perhaps of more interest is a profile to
use a mobile phone as a remote control for a (Bluetooth-enabled) TV.

Still other profiles enable networking. The personal area network profile lets
Bluetooth devices form an ad hoc network or remotely access another network,
such as an 802.11 LAN, via an access point. The dial-up networking profile was
actually the original motivation for the whole project. It allows a (laptop) com-
puter to connect to a mobile phone containing a built-in modem without using any
cables, just radio signals.

SEC. 4.5 BLUETOOTH 327

Profiles for higher-layer information exchange have also been defined. The
synchronization profile is intended for loading data into a mobile phone when it
leaves home and collecting data from it when it returns.

We will skip the rest of the profiles, except to mention that some profiles serve
as building blocks on which the above profiles are built. The generic access pro-
file, on which all of the other profiles are built, provides a way to establish and
maintain secure links (channels) between the controller and the workers. The other
generic profiles define the basics of object exchange and audio and video transport.
Utility profiles are used widely for functions such as emulating a serial line, which
is especially useful for many legacy applications.

Was it really necessary to spell out all these applications in detail and provide
different protocol stacks for each one? Probably not, but there were a number of
different working groups that devised different parts of the standard, and each one
just focused on its specific problem and generated its own profile. Think of this as
Conway’s Law in action. (In the April 1968 issue of Datamation magazine,
Melvin Conway observed that if you assign n people to write a compiler, you will
get an n-pass compiler, or more generally, the software structure mirrors the struc-
ture of the group that produced it.) It would probably have been possible to get
away with two protocol stacks instead of 25, one for file transfer and one for
streaming real-time communication.

4.5.3 The Bluetooth Protocol Stack

The Bluetooth standard has many protocols grouped loosely into the layers
shown in Fig. 4-31. The first observation to make is that the structure does not fol-
low the OSI model, the TCP/IP model, the 802 model, or any other model.

Host-controller
interface

Upper
layers

Datalink
layer

Physical
layerRadio

Link control
(Baseband)

Link manager

L2CAP

Service
discoveryRFcomm

Applications

. . .

Pr
of

ile

Pr
of

ile

Pr
of

ile

Figure 4-31. The Bluetooth protocol architecture.

328 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

The bottom layer is the physical radio layer, which corresponds fairly well to
the physical layer in the OSI and 802 models. It deals with radio transmission and
modulation. Many of the concerns here have to do with the goal of making the
system inexpensive so that it can become a mass-market item.

The link control (or baseband) layer is somewhat analogous to the MAC sub-
layer but also includes elements of the physical layer. It deals with how the con-
troller controls time slots and how these slots are grouped into frames.

Next come two protocols that use the link control protocol. The link manager
handles the establishment of logical channels between devices, including power
management, pairing and encryption, and quality of service. It lies below the host
controller interface line. This interface is a convenience for implementation: typi-
cally, the protocols below the line will be implemented on a Bluetooth chip, and
the protocols above the line will be implemented on the Bluetooth device that hosts
the chip.

The link protocol above the line is L2CAP (Logical Link Control Adapta-
tion Protocol). It frames variable-length messages and provides reliability if need-
ed. Many protocols use L2CAP, such as the two utility protocols that are shown.
The service discovery protocol is used to locate services within the network. The
RFcomm (Radio Frequency communication) protocol emulates the standard serial
port found on PCs for connecting the keyboard, mouse, and modem, among other
devices.

The top layer is where the applications are located. The profiles are repres-
ented by vertical boxes because they each define a slice of the protocol stack for a
particular purpose. Specific profiles, such as the headset profile, usually contain
only those protocols needed by that application and no others. For example, pro-
files may include L2CAP if they have packets to send but skip L2CAP if they have
only a steady flow of audio samples.

In the following sections, we will examine the Bluetooth radio layer and vari-
ous link protocols, since these roughly correspond to the physical and MAC
sublayers in the other protocol stacks we have studied.

4.5.4 The Bluetooth Radio Layer

The radio layer moves the bits from controller to worker, or vice versa. It is a
low-power system with a range of 10 meters operating in the same 2.4-GHz ISM
band as 802.11. The band is divided into 79 channels of 1 MHz each. To coexist
with other networks using the ISM band, frequency hopping spread spectrum is
used. There can be up to 1600 hops/sec over slots with a dwell time of 625-µsec.
All the nodes in a piconet hop frequencies simultaneously, following the slot tim-
ing and pseudorandom hop sequence dictated by the controller.

Unfortunately, it turned out that early versions of Bluetooth and 802.11 inter-
fered enough to ruin each other’s transmissions. Some companies responded by
banning Bluetooth altogether, but eventually a technical solution was devised. The

SEC. 4.5 BLUETOOTH 329

solution is for Bluetooth to adapt its hop sequence to exclude channels on which
there are other RF signals. This process reduces the harmful interference. It is
called adaptive frequency hopping .

Three forms of modulation are used to send bits on a channel. The basic
scheme is to use frequency shift keying to send a 1-bit symbol every microsecond,
giving a gross data rate of 1 Mbps. Enhanced rates were introduced with the 2.0
version of Bluetooth. These rates use phase shift keying to send either 2 or 3 bits
per symbol, for gross data rates of 2 or 3 Mbps. The enhanced rates are only used
in the data portion of frames.

4.5.5 The Bluetooth Link Layers

The link control (or baseband) layer is the closest thing Bluetooth has to a
MAC sublayer. It turns the raw bit stream into frames and defines some key for-
mats. In the simplest form, the controller in each piconet defines a series of
625- µsec time slots, with the controller’s transmissions starting in the even slots
and the workers’ transmissions starting in the odd ones. This scheme is traditional
time division multiplexing, with the controller getting half the slots and the work-
ers sharing the other half. Frames can be 1, 3, or 5 slots long. Each frame has an
overhead of 126 bits for an access code and header, plus a settling time of 250–260
µsec per hop to allow the inexpensive radio circuits to become stable. The payload
of the frame can be encrypted for confidentiality with a key that is chosen when the
controller and worker connect. Hops only happen between frames, not during a
frame. The result is that a 5-slot frame is much more efficient than a 1-slot frame
because the overhead is constant but more data is sent.

The link manager protocol sets up logical channels, called links, to carry
frames between the controller and a worker device that have discovered each other.
A pairing procedure is followed to make sure that the two devices are allowed to
communicate before the link is used. The old pairing method is that both devices
must be configured with the same four-digit PIN (Personal Identification Number).
The matching PIN is how each device would know that it was connecting to the
right remote device. However, unimaginative users and devices default to PINs
such as ‘‘0000’’ and ‘‘1234’’ meant that this method provided very little security in
practice.

The new secure simple pairing method enables users to confirm that both de-
vices are displaying the same passkey, or to observe the passkey on one device and
enter it into the second device. This method is more secure because users do not
have to choose or set a PIN. They merely confirm a longer, device-generated
passkey. Of course, it cannot be used on some devices with limited input/output,
such as a hands-free headset.

Once pairing is complete, the link manager protocol sets up the links. Two
main kinds of links exist to carry the payload (user data). The first is the SCO
(Synchronous Connection Oriented) link. It is used for real-time data, such as

330 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

telephone connections. This type of link is allocated a fixed slot in each direction.
A worker may have up to three SCO links with its controller. Each SCO link can
transmit one 64,000-bps PCM audio channel. Due to the time-critical nature of
SCO links, frames sent over them are never retransmitted. Instead, forward error
correction can be used to increase reliability.

The other kind is the ACL (Asynchronous ConnectionLess) link. This type
of link is used for packet-switched data that is available irregularly. ACL traffic is
delivered on a best-effort basis without guarantees. Frames can be lost and may
have to be retransmitted. A worker may have only one ACL link to its controller.

The data sent over ACL links come from the L2CAP layer. This layer has four
major functions. First, it accepts packets of up to 64 KB from the upper layers and
breaks them into frames for transmission. At the far end, the frames are reassem-
bled into packets. Second, it handles the multiplexing and demultiplexing of mul-
tiple packet sources. When a packet has been reassembled, the L2CAP layer deter-
mines which upper-layer protocol to hand it to, for example, RFcomm or service
discovery. Third, L2CAP handles error control and retransmission. It detects er-
rors and resends packets that were not acknowledged. Finally, L2CAP enforces
quality of service requirements between multiple links.

4.5.6 The Bluetooth Frame Structure

Bluetooth defines several frame formats, the most important of which is shown
in two forms in Fig. 4-32. It begins with an access code that usually identifies the
controller so that workers within radio range of two controllers can tell which traf-
fic is for them. Next comes a 54-bit header containing typical MAC sublayer
fields. If the frame is sent at the basic rate, the data field comes next. It has up to
2744 bits for a five-slot transmission. For a single time slot, the format is the same
except that the data field is 240 bits.

If the frame is sent at the enhanced rate, the data portion may have up to two or
three times as many bits because each symbol carries 2 or 3 bits instead of 1 bit.
These data are preceded by a guard field and a synchronization pattern that is used
to switch to the faster data rate. That is, the access code and header are carried at
the basic rate and only the data portion is carried at the faster rate. Enhanced-rate
frames end with a short trailer.

Let us take a quick look at the common header. The Address field identifies
which of the eight active devices the frame is intended for. The Type field identi-
fies the frame type (ACL, SCO, poll, or null), the type of error correction used in
the data field, and how many slots long the frame is. The Flow bit is asserted by a
worker when its buffer is full and cannot receive any more data. This bit enables a
primitive form of flow control. The Acknowledgementbit is used to piggyback an
ACK onto a frame. The Sequence bit is used to number the frames to detect re-
transmissions. The protocol is stop-and-wait, so 1 bit is enough. Then comes the
8-bit header Checksum. The entire 18-bit header is repeated three times to form

SEC. 4.5 BLUETOOTH 331

Repeated 3 times

Bits 72 0–2744

Data (at 1X rate)Access code

54

Header

(a) Basic rate data frame, top

Data (at 2X or 3X rate)Access code Header Guard/Sync Trailer

Bits 72 54 16 0–8184 2

(b) Enhanced rate data frame, bottom
5 x 675 microsec slots

Addr Type F A S CRC

3 4 1 1 1 8

Figure 4-32. Typical Bluetooth data frame at (a) basic and (b) enhanced, data rates.

the 54-bit header shown in Fig. 4-32. On the receiving side, a simple circuit exam-
ines all three copies of each bit. If all three are the same, the bit is accepted. If
not, the majority opinion wins. Thus, 54 bits of transmission capacity are used to
send 10 bits of header. The reason is that to reliably send data in a noisy environ-
ment using cheap, low-powered (2.5 mW) devices with little computing capacity, a
great deal of redundancy is needed.

Various formats are used for the data field for ACL and SCO frames. The
basic-rate SCO frames are a simple example to study: the data field is always 240
bits. Three variants are defined, permitting 80, 160, or 240 bits of actual payload,
with the rest being used for error correction. In the most reliable version (80-bit
payload), the contents are just repeated three times, the same as the header.

We can work out the capacity with this frame as follows. Since the worker
may use only the odd slots, it gets 800 slots/sec, just as the controller does. With
an 80-bit payload, the channel capacity from the worker is 64,000 bps as is the
channel capacity from the controller. This capacity is exactly enough for a single
full-duplex PCM voice channel (which is why a hop rate of 1600 hops/sec was
chosen). That is, despite a raw bandwidth of 1 Mbps, a single full-duplex uncom-
pressed voice channel can completely saturate the piconet. The efficiency of 13%
is the result of spending 41% of the capacity on settling time, 20% on headers, and
26% on repetition coding. This shortcoming highlights the value of the enhanced
rates and frames of more than a single slot.

4.5.7 Bluetooth 5

In June 2016, the Bluetooth Special Interest Group introduced Bluetooth 5. In
January 2019, it came out with Bluetooth 5.1. These were relatively minor
upgrades to the Bluetooth 4 standard. Nevertheless, there are some differences

332 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

between Bluetooth 4 and both Bluetooth 5 standards. Here is a list of the key ones
in Bluetooth 5.0

1. Support for Internet of Things devices.

2. The speed has been increased from 1 Mbps to 2 Mbps.

3. Message size has gone up from 31 bytes to 255 bytes.

4. Range indoors has gone up from 10 m to 40 m.

5. Power requirements have been reduced slightly.

6. The range of the beacons has gone up slightly.

7. Security is slightly better.

In all, not a huge change, but given the need for backward compatibility, that
was not to be expected. The Bluetooth 5.1 standard had a few minor updates in the
areas of device tracking, caching, and a few other small items.

4.6 DOCSIS

The cable television network was original designed for bringing television pro-
grams into homes. It is now also widely used as an alternative to the telephone
system for bringing Internet into homes. Below we describe the ‘‘MAC layer’’ in
the DOCSIS standard, which most cable providers implement.

4.6.1 Overview

The DOCIS specification also has a MAC sublayer, in some sense, although
this layer is somewhat less distinct from the link layer than other protocols, as we
have studied in previous chapters. Nonetheless, the protocol has various aspects
that fit into the standard goals of the MAC sublayer, including channel allocation
(which occurs through a request-grant process), configuration of quality of service,
and a unique forwarding model. This section addresses all three of these issues.
More recently, full-duplex DOCSIS 3.1 (now called DOCSIS 4.0) has introduced
new technologies for scheduling and interference cancellation.

DOCSIS has a standard MAC frame format, which includes a set of fields, in-
cluding the length of the MAC frame, a checksum, and an extended header field,
which supports a variety of functions, including link-layer security. Some headers
support specific functions, including downstream timing, upstream power adjust-
ment, bandwidth requests, and concatenation of frames. One specific type of
frame is called a request frame, which is how the cable modem requests band-
width, as described later in this section.

SEC. 4.6 DOCSIS 333

4.6.2 Ranging

A cable modem transmits what is called a ranging request, which allows the
CMTS (headend) to determine the network delay to the cable modem, as well as to
perform and necessary power adjustments. Ranging is effectively the periodic tun-
ing of the various transmission parameters, specifically timing, frequency, and
power. The CMTS polls the cable modem, which triggers the modem to submit a
ranging request. Based on this message, the CMTS provides the modem a response
to help the cable modem adjust signal transmission timing and power. By default,
ranging occurs about once every 30 seconds, but it can be configured to occur
more frequently; typical ranging intervals can be about 10 to 20 seconds.

4.6.3 Channel Bandwidth Allocation

A DOCSIS CMTS allocates bandwidth to each cable modem through a re-
quest-grant process. Each upstream or downstream traffic flow is typically assign-
ed a service flow, and each service flow is allocated bandwidth by the CMTS.

Service Flows

Channel allocation in DOCSIS typically involves allocation of channels be-
tween one CMTS and one or more cable modems, which are located in the sub-
scribers’ homes. The CMTS must serve all of the upstream and downstream chan-
nels, and it discards any frame with a source MAC address that is not one of the as-
signed cable modems in the group. Central to the DOCSIS MAC layer is the
notion of a service flow, which provides a way to manage both upstream and
downstream quality of service management. Each cable modem has an associated
service flow ID, which is negotiated during the registration of the cable modem;
each cable modem can have multiple associated service flows. Different service
flows can have different limitations that are associated with different types of traf-
fic. For example, each service flow might have a maximum packet size; or, a ser-
vice flow could be dedicated to a certain type of application, such as a constant bit
rate application. All cable modems must support at least one upstream and one
downstream service flow, called the primary service flow.

The Request-Grant Process and Low-Latency DOCSIS

When a cable modem has data to send, it sends a short request that tells the
CMTS how much data it has to send and waits for a subsequent bandwidth alloca-
tion message, which describes the upstream transmission opportunities that a send-
er may have to transmit data.

Upstream transmission is divided into discrete intervals by an upstream band-
width allocation mechanism called a minislot . A minislot is simply a time unit of

334 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

granularity for upstream transmission, typically in 6.25 µsec increments. Depend-
ing on the version of DOCSIS, a minislot may need to be a power-of-two multiple
of this increment; in more modern versions of DOCSIS, this restriction does not
apply. By adjusting the minislots that are granted to a particular service flow, the
CMTS can effectively implement quality of service and prioritization for different
traffic flows.

Generally speaking, quality of service has allowed the CMTS to allocate more
bandwidth to different cable modems (thus allowing a subscriber who is provi-
sioned for a higher tier of service to achieve a higher service level). More recently,
however, revisions to DOCSIS have also allowed differentiated service for latency-
sensitive applications. Specifically, a new revision to the DOCSIS protocol allows
for low latency, through a new specification called LLD (Low-Latency DOCSIS)
LLD recognizes that for many interactive applications, such as gaming and video
conferencing, low latency is as important as high throughput. In some cases, in
existing DOCSIS networks, the latency for some flows can be quite high, due to
both the time to acquire the shared media and the time for queueing.

LLD addresses these issues by shortening the round-trip delay associated with
the request-grant process, and by using two queues—one queue for latency-sensi-
tive application traffic and a second queue for traffic that is not latency-sensitive.
The shorter request-grant delay reduces the amount of time that the CMTS uses to
perform scheduling calculations, to 1 millisecond from a previous time interval of
2–4 milliseconds. LLD also uses mechanisms to proactively schedule grants to a
service flow to eliminate delay associated with the request-grant process entirely.
LLD allows applications to determine whether they have packets that cannot be
queued, through the marking of a differentiated service field in the DOCSIS frame.
For more information on LLD, see White (2019).

4.7 DAT A LINK LAYER SWITCHING

Many organizations have multiple LANs and wish to connect them. Would it
not be convenient if we could just join the LANs together to make a larger LAN?
In fact, we can do this when the connections are made with devices called bridges .
The Ethernet switches we described in Sec. 4.3.4 are a modern name for bridges;
they provide functionality that goes beyond classic Ethernet and Ethernet hubs to
make it easy to join multiple LANs into a larger and faster network. We shall use
the terms ‘‘bridge’’ and ‘‘switch’’ interchangeably.

Bridges operate in the data link layer, so they examine the data link layer ad-
dresses to forward frames. Since they are not supposed to examine the payload
field of the frames they forward, they can handle IP packets as well as other kinds
of packets, such as AppleTalk packets. In contrast, routers examine the addresses
in packets and route based on them, so they only work with the protocols that they
were designed to handle.

SEC. 4.7 DATA LINK LAYER SWITCHING 335

In this section, we will look at how bridges work and are used to join multiple
physical LANs into a single logical LAN. We will also look at how to do the re-
verse and treat one physical LAN as multiple logical LANs, called virtual LANs.
Both technologies provide useful flexibility for managing networks. For a compre-
hensive treatment of bridges, switches, and several related topics, see Perlman
(2000) and Yu (2011).

4.7.1 Uses of Bridges

Before getting into the technology of bridges, let us take a look at some com-
mon situations in which bridges are used. We will mention three reasons why a
single organization may end up with multiple LANs.

First, many university and corporate departments have their own LANs to con-
nect their own personal computers, servers, and devices such as printers. Since the
goals of the various departments differ, different departments may set up different
LANs, without regard to what other departments are doing. Sooner or later,
though, there is a need for interaction, so bridges are needed. In this example,
multiple LANs come into existence due to the autonomy of their owners.

Second, the organization may be geographically spread over several buildings
separated by considerable distances. It may be cheaper to have separate LANs in
each building and connect them with bridges and a few long-distance fiber optic
links than to run all the cables to a single central switch. Even if laying the cables
is easy to do, there are limits on their lengths (e.g., 200 m for twisted-pair gigabit
Ethernet). The network would not work for longer cables due to the excessive sig-
nal attenuation or round-trip delay. The only solution is to partition the LAN and
install bridges to join the pieces to increase the total physical distance that can be
covered.

Third, it may be necessary to split what is logically a single LAN into separate
LANs (connected by bridges) to accommodate the load. At many large universi-
ties, for example, thousands of workstations are available for student and faculty
computing. Companies may also have thousands of employees. The scale of this
system precludes putting all the workstations on a single LAN—there are more
computers than ports on any Ethernet hub and more stations than allowed on a sin-
gle classic Ethernet.

Even if it were possible to wire all the workstations together, putting more sta-
tions on an Ethernet hub or classic Ethernet would not add capacity. All of the sta-
tions share the same, fixed amount of bandwidth. The more stations there are, the
less average bandwidth per station.

However, two separate LANs have twice the capacity of a single LAN. Bridges
let the LANs be joined together while keeping this capacity. The key is not to send
traffic onto ports where it is not needed, so that each LAN can run at full speed.
This behavior also increases reliability, since on a single LAN a defective node that
keeps outputting a continuous stream of garbage can clog up the entire LAN. By

336 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

deciding what to forward and what not to forward, bridges act like fire doors in a
building, preventing a single node that has gone berserk from bringing down the
entire system.

To make these benefits easily available, ideally bridges should be completely
transparent. It should be possible to go out and buy bridges, plug the LAN cables
into the bridges, and have everything work perfectly, instantly. There should be no
hardware changes required, no software changes required, no setting of address
switches, no downloading of routing tables or parameters, nothing at all. Just plug
in the cables and walk away. Furthermore, the operation of the existing LANs
should not be affected by the bridges at all. As far as the stations are concerned,
there should be no observable difference whether or not they are part of a bridged
LAN. It should be as easy to move stations around the bridged LAN as it is to
move them around a single LAN.

Surprisingly enough, it is actually possible to create bridges that are transpar-
ent. Two algorithms are used: a backward learning algorithm to stop traffic being
sent where it is not needed; and a spanning tree algorithm to break loops that may
be formed when switches are cabled together willy-nilly. Let us now take a look at
these algorithms in turn to learn how this magic is accomplished.

4.7.2 Learning Bridges

The topology of two LANs bridged together is shown in Fig. 4-33 for two
cases. On the left-hand side, two multidrop LANs, such as classic Ethernets, are
joined by a special station—the bridge—that sits on both LANs. On the right-hand
side, LANs with point-to-point cables, including one hub, are joined together. The
bridges are the devices to which the stations and hub are attached. If the LAN
technology is Ethernet, the bridges are better known as Ethernet switches.

(a) (b)

A D

Bridge

B1
1 2

Port

B

C

E

G

F
C

Bridge

B1 B2

A

B

G

D

H1

Port
1

2
1

3 4
2

34
F

E

Hub

Figure 4-33. (a) Bridge connecting two multidrop LANs. (b) Bridges (and a
hub) connecting seven point-to-point stations.

Bridges were developed when classic Ethernets were in use, so they are often
shown in topologies with multidrop cables, as in Fig. 4-33(a). However, all the

SEC. 4.7 DATA LINK LAYER SWITCHING 337

topologies that are encountered today are comprised of point-to-point cables and
switches. The bridges work the same way in both settings. All of the stations at-
tached to the same port on a bridge belong to the same collision domain, and this is
different than the collision domain for other ports. If there is more than one sta-
tion, as in a classic Ethernet, a hub, or a half-duplex link, the CSMA/CD protocol
is used to send frames.

There is a difference, however, in how the bridged LANs are built. To bridge
multidrop LANs, a bridge is added as a new station on each of the multidrop
LANs, as in Fig. 4-33(a). To bridge point-to-point LANs, the hubs are either con-
nected to a bridge or, preferably, replaced with a bridge to increase performance. In
Fig. 4-33(b), bridges have replaced all but one hub.

Different kinds of cables can also be attached to one bridge. For example, the
cable connecting bridge B1 to bridge B2 in Fig. 4-33(b) might be a long-distance
fiber optic link, while the cable connecting the bridges to stations might be a short-
haul twisted-pair line. This arrangement is useful for bridging LANs in different
buildings.

Now let us consider what happens inside the bridges. Each bridge operates in
promiscuous mode, that is, it accepts every frame transmitted by the stations at-
tached to each of its ports. The bridge must decide whether to forward or discard
each frame, and, if the former, on which port to output the frame. This decision is
made by using the destination address. As an example, consider the topology of
Fig. 4-33(a). If station A sends a frame to station B, bridge B1 will receive the
frame on port 1. This frame can be immediately discarded without further ado be-
cause it is already on the correct port. However, in the topology of Fig. 4-33(b)
suppose that A sends a frame to D. Bridge B1 will receive the frame on port 1 and
output it on port 4. Bridge B2 will then receive the frame on its port 4 and output it
on its port 1.

A simple way to implement this scheme is to have a big (hash) table inside the
bridge. The table can list each possible destination and which output port it be-
longs on. For example, in Fig. 4-33(b), the table at B1 would list D as belonging to
port 4, since all B1 has to know is which port to put frames on to reach D. That, in
fact, more forwarding will happen later when the frame hits B2 is not of interest to
B1.

When the bridges are first plugged in, all the hash tables are empty. None of
the bridges know where any of the destinations are, so they use a flooding algo-
rithm: every incoming frame for an unknown destination is output on all the ports
to which the bridge is connected except the one it arrived on. As time goes on, the
bridges learn where destinations are. Once a destination is known, frames destined
for it are put only on the proper port; they are not flooded.

The algorithm used by the bridges is backward learning . As mentioned
above, the bridges operate in promiscuous mode, so they see every frame sent on
any of their ports. By looking at the source addresses, they can tell which ma-
chines are accessible on which ports. For example, if bridge B1 in Fig. 4-33(b)

338 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

sees a frame on port 3 coming from C, it knows that C must be reachable via port
3, so it makes an entry in its hash table. Any subsequent frame addressed to C
coming in to B1 on any other port will be forwarded to port 3.

The topology can change as machines and bridges are powered up and down
and moved around. To handle dynamic topologies, whenever a hash table entry is
made, the arrival time of the frame is noted in the entry. Whenever a frame whose
source is already in the table arrives, its entry is updated with the current time.
Thus, the time associated with every entry tells the last time a frame from that ma-
chine was seen.

Periodically, a process in the bridge scans the hash table and purges all entries
more than a few minutes old. In this way, if a computer is unplugged from its
LAN, moved around the building, and plugged in again somewhere else, within a
few minutes it will be back in normal operation, without any manual intervention.
This algorithm also means that if a machine is quiet for a few minutes, any traffic
sent to it will have to be flooded until it next sends a frame itself.

The routing procedure for an incoming frame depends on the port it arrives on
(the source port) and the address to which it is destined (the destination address).
The procedure is as follows.

1. If the port for the destination address is the same as the source port,
discard the frame.

2. If the port for the destination address and the source port are different,
forward the frame on to the destination port.

3. If the destination port is unknown, use flooding and send the frame on
all ports except the source port.

You might wonder whether the first case can occur with point-to-point links. The
answer is that it can occur if hubs are used to connect a group of computers to a
bridge. An example is shown in Fig. 4-33(b) where stations E and F are connected
to hub H 1, which is in turn connected to bridge B2. If E sends a frame to F , the
hub will relay it to B2 as well as to F . That is what hubs do—they wire all ports
together so that a frame input on one port is simply output on all other ports. The
frame will arrive at B2 on port 2, which is already the right output port to reach the
destination. Bridge B2 need only discard the frame.

As each frame arrives, this algorithm must be applied, so it is usually imple-
mented with special-purpose VLSI chips. The chips do the lookup and update the
table entry, all in a few microseconds. Because bridges only look at the MAC ad-
dresses to decide how to forward frames, it is possible to start forwarding as soon
as the destination header field has come in, before the rest of the frame has arrived
(provided the output line is available, of course). This design reduces the latency
of passing through the bridge, as well as the number of frames that the bridge must
be able to buffer. It is referred to as cut-through switching or wormhole routing
and is usually handled in hardware.

SEC. 4.7 DATA LINK LAYER SWITCHING 339

We can look at the operation of a bridge in terms of protocol stacks to under-
stand what it means to be a link layer device. Consider a frame sent from station A
to station D in the configuration of Fig. 4-33(a), in which the LANs are Ethernet.
The frame will pass through one bridge. The protocol stack view of processing is
shown in Fig. 4-34.

Eth

Eth

Packet

Packet

Packet

Relay

Network

Ethernet
MAC

Physical

Bridge

Station DStation A

Wire Wire

Eth

Eth

Packet

Packet

Packet

Eth Packet

Eth Packet Eth Packet

Eth Packet

Figure 4-34. Protocol processing at a bridge.

The packet comes from a higher layer and descends into the Ethernet MAC
layer. It acquires an Ethernet header (and also a trailer, not shown in the figure).
This unit is passed to the physical layer, goes out over the cable, and is picked up
by the bridge.

In the bridge, the frame is passed up from the physical layer to the Ethernet
MAC layer. This layer has extended processing compared to the Ethernet MAC
layer at a station. It passes the frame to a relay, still within the MAC layer. The
bridge relay function uses only the Ethernet MAC header to determine how to
handle the frame. In this case, it passes the frame to the Ethernet MAC layer of the
port used to reach station D, and the frame continues on its way.

In the general case, relays at a given layer can rewrite the headers for that
layer. Virtual LANs will provide an example shortly. In no case should the bridge
look inside the frame and learn that it is carrying an IP packet; that is irrelevant to
the bridge processing and would violate protocol layering. Also note that a bridge
with k ports will have k instances of MAC and physical layers. The value of k is 2
for our simple example.

4.7.3 Spanning-Tree Bridges

To increase reliability, redundant links can be used between bridges. In the ex-
ample of Fig. 4-35, there are two links in parallel between a pair of bridges. This
design ensures that if one link is cut, the network will not be partitioned into two
sets of computers that cannot talk to each other.

340 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

Frame F 0

Bridge

B1

A

B2

Redundant links

F1

F2
F3

F4

Figure 4-35. Bridges with two parallel links.

However, this redundancy introduces some additional problems because it cre-
ates loops in the topology. An example of these problems can be seen by looking
at how a frame sent by A to a previously unobserved destination is handled in
Fig. 4-35. Each bridge follows the normal rule for handling unknown destinations,
which is to flood the frame. Call the frame from A that reaches bridge B1 frame
F 0. The bridge sends copies of this frame out all of its other ports. We will only
consider the bridge ports that connect B1 to B2 (though the frame will be sent out
the other ports, too). Since there are two links from B1 to B2, two copies of the
frame will reach B2. They are shown in Fig. 4-35 as F 1 and F 2 .

Shortly thereafter, bridge B2 receives these frames. However, it does not (and
cannot) know that they are copies of the same frame, rather than two different
frames sent one after the other. So bridge B2 takes F 1 and sends copies of it out all
the other ports, and it also takes F 2 and sends copies of it out all the other ports.
This produces frames F 3 and F 4 that are sent along the two links back to B1.
Bridge B1 then sees two new frames with unknown destinations and copies them
again. This cycle goes on forever.

The solution to this difficulty is for the bridges to communicate with each
other and overlay the actual topology with a spanning tree that reaches every
bridge. In effect, some potential connections between bridges are ignored in the
interest of constructing a fictitious loop-free topology that is a subset of the actual
topology.

For example, in Fig. 4-36 we see five bridges that are interconnected and also
have stations connected to them. Each station connects to only one bridge. There
are some redundant connections between the bridges so that frames will be for-
warded in loops if all of the links are used. This topology can be thought of as a
graph in which the bridges are the nodes and the point-to-point links are the edges.
The graph can be reduced to a spanning tree, which has no cycles by definition, by
dropping the links shown as dashed lines in Fig. 4-36. Using this spanning tree,
there is exactly one path from every station to every other station. Once the
bridges have agreed on the spanning tree, all forwarding between stations follows

SEC. 4.7 DATA LINK LAYER SWITCHING 341

the spanning tree. Since there is a unique path from each source to each destina-
tion, loops are impossible.

Bridge

Station

B1

B2

B3

B4

B5

Link that is not part
of the spanning tree

Root
bridge

Figure 4-36. A spanning tree connecting five bridges. The dashed lines are links
that are not part of the spanning tree.

To build the spanning tree, the bridges run a distributed algorithm. Each
bridge periodically broadcasts a configuration message out all of its ports to its
neighbors and processes the messages it receives from other bridges, as described
next. These messages are not forwarded, since their purpose is to build the tree,
which can then be used for forwarding.

The bridges must first choose one bridge to be the root of the spanning tree.
To make this choice, they each include an identifier based on their MAC address in
the configuration message, as well as the identifier of the bridge they believe to be
the root. MAC addresses are installed by the manufacturer and guaranteed to be
unique worldwide, which makes these identifiers convenient and unique. The
bridges choose the bridge with the lowest identifier to be the root. After enough
messages have been exchanged to spread the news, all bridges will agree on which
bridge is the root. In Fig. 4-36, bridge B1 has the lowest identifier and becomes
the root.

Next, a tree of shortest paths from the root to every bridge is constructed. In
Fig. 4-36, bridges B2 and B3 can each be reached from bridge B1 directly, in one
hop that is a shortest path. Bridge B4 can be reached in two hops, via either B2 or
B3. To break this tie, the path via the bridge with the lowest identifier is chosen, so
B4 is reached via B2. Bridge B5 can be reached in two hops via B3.

To find these shortest paths, bridges include the distance from the root in their
configuration messages. Each bridge remembers the shortest path it finds to the
root. The bridges then turn off ports that are not part of the shortest path.

Although the tree spans all the bridges, not all the links (or even bridges) are
necessarily present in the tree. This happens because turning off the ports prunes
some links from the network to prevent loops. Even after the spanning tree has
been established, the algorithm continues to run during normal operation to auto-
matically detect topology changes and update the tree.

342 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

The algorithm for automatically constructing the spanning tree was invented
by Radia Perlman. Her job was to solve the problem of joining LANs without
loops. She was given a week to do it, but she came up with the idea for the span-
ning tree algorithm in a day. Fortunately, this left her enough time to write it as a
poem (Perlman, 1985):

I think that I shall never see
A graph more lovely than a tree.
A tree whose crucial property
Is loop-free connectivity.
A tree which must be sure to span.
So packets can reach every LAN.
First the Root must be selected
By ID it is elected.
Least-cost paths from Root are traced
In the tree these paths are placed.
A mesh is made by folks like me
Then bridges find a spanning tree.

The spanning tree algorithm was then standardized as IEEE 802.1D and used for
many years. In 2001, it was revised to more rapidly find a new spanning tree after a
topology change. For a detailed treatment of bridges, see Perlman (2000).

4.7.4 Repeaters, Hubs, Bridges, Switches, Routers, and Gateways

So far in this book, we have looked at a variety of ways to get frames and
packets from one computer to another. We have mentioned repeaters, hubs,
bridges, switches, routers, and gateways. All of these devices are in common use,
but they all differ in subtle and not-so-subtle ways. Since there are so many of
them, it is probably worth taking a look at them together to see what the simi-
larities and differences are.

The key to understanding these devices is to realize that they operate in dif-
ferent layers, as illustrated in Fig. 4-37(a). The layer matters because different de-
vices use different pieces of information to decide how to switch. In a typical
scenario, the user generates some data to be sent to a remote machine. Those data
are passed to the transport layer, which then adds a header (for example, a TCP
header) and passes the resulting unit down to the network layer. The network layer
adds its own header to form a network layer packet (e.g., an IP packet). In
Fig. 4-37(b), we see the IP packet shaded in gray. Then, the packet goes to the data
link layer, which adds its own header and checksum (CRC) and gives the resulting
frame to the physical layer for transmission, for example, over a LAN.

Now let us look at the switching devices and see how they relate to the packets
and frames. At the bottom, in the physical layer, we find the repeaters. These are
analog devices that work with signals on the cables to which they are connected.

SEC. 4.7 DATA LINK LAYER SWITCHING 343

Application layer Application gateway

Transport layer Transport gateway

Network layer Router Frame
header

Packet
header

TCP
header

Packet (supplied by network layer)

Frame (built by data link layer)

(b)(a)

User
data

CRC

Data link layer Bridge, switch

Physical layer Repeater, hub

Figure 4-37. (a) Which device is in which layer. (b) Frames, packets, and
headers.

A signal appearing on one cable is cleaned up, amplified, and put out on another
cable. Repeaters do not understand frames, packets, or headers. They understand
the symbols that encode bits as volts. Classic Ethernet, for example, was designed
to allow four repeaters that would boost the signal to extend the maximum cable
length from 500 meters to 2500 meters.

Next we come to the hubs. A hub has a number of input lines that it joins elec-
trically. Frames arriving on any of the lines are sent out on all the others. If two
frames arrive at the same time, they will collide, just as on a coaxial cable. All the
lines coming into a hub must operate at the same speed. Hubs differ from re-
peaters in that they do not (usually) amplify the incoming signals and are designed
for multiple input lines, but the differences are slight. Like repeaters, hubs are
physical layer devices that do not examine the link layer addresses or use them in
any way.

Now let us move up to the data link layer, where we find bridges and switches.
We just studied bridges at some length. A bridge connects two or more LANs.
Like a hub, a modern bridge has multiple ports, usually enough for 4 to 48 input
lines of a certain type. Unlike in a hub, each port is isolated to be its own collision
domain; if the port has a full-duplex point-to-point line, the CSMA/CD algorithm
is not needed. When a frame arrives, the bridge extracts the destination address
from the frame header and looks it up in a table to see where to send the frame.
For Ethernet, this address is the 48-bit destination address shown in Fig. 4-14. The
bridge only outputs the frame on the port where it is needed and can forward multi-
ple frames at the same time.

Bridges offer much better performance than hubs, and the isolation between
bridge ports also means that the input lines may run at different speeds, possibly
even with different network types. A common example is a bridge with ports that
connect to 10-, 100-, and 1000-Mbps Ethernet. Buffering within the bridge is
needed to accept a frame on one port and transmit the frame out on a different port.
If frames come in faster than they can be retransmitted, the bridge may run out of

344 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

buffer space and have to start discarding frames. For example, if a gigabit Ethernet
is pouring bits into a 10-Mbps Ethernet at top speed, the bridge will have to buffer
them, hoping not to run out of memory. This problem still exists even if all the
ports run at the same speed because more than one port may be sending frames to a
given destination port.

Bridges were originally intended to be able to join different kinds of LANs, for
example, an Ethernet and a Token Ring LAN. However, this never worked well
because of differences between the LANs. Different frame formats require copying
and reformatting, which takes CPU time, requires a new checksum calculation, and
introduces the possibility of undetected errors due to bad bits in the bridge’s mem-
ory. Different maximum frame lengths are also a serious problem with no good
solution. Basically, frames that are too large to be forwarded must be discarded. So
much for transparency.

Two other areas where LANs can differ are security and quality of service.
Some LANs have link-layer encryption, for example 802.11, and some do not, for
example Ethernet. Some LANs have quality of service features such as priorities,
for example 802.11, and some do not, for example Ethernet. Consequently, when a
frame must travel between these LANs, the security or quality of service expected
by the sender may not be able to be provided. For all of these reasons, modern
bridges usually work for one network type, and routers, which we will come to
soon, are used instead to join networks of different types.

Switches are modern bridges by another name. The differences are more to do
with marketing than technical issues, but there are a few points worth knowing.
Bridges were developed when classic Ethernet was in use, so they tend to join rel-
atively few LANs and thus have relatively few ports. The term ‘‘switch’’ is more
popular nowadays. Also, modern installations all use point-to-point links, such as
twisted-pair cables, so individual computers plug directly into a switch and thus
the switch will tend to have many ports. Finally, ‘‘switch’’ is also used as a general
term. With a bridge, the functionality is clear. On the other hand, a switch may
refer to an Ethernet switch or a completely different kind of device that makes for-
warding decisions, such as a telephone switch.

So far, we have seen repeaters and hubs, which are actually quite similar, as
well as bridges and switches, which are even more similar to each other. Now we
move up to routers, which are different from all of the above. When a packet
comes into a router, the frame header and trailer are stripped off and the packet lo-
cated in the frame’s payload field (shaded in Fig. 4-37) is passed to the routing
software. This software uses the packet header to choose an output line. For an IP
packet, the packet header will contain a 32-bit (IPv4) or 128-bit (IPv6) address, but
not a 48-bit IEEE 802 address. The routing software does not see the frame ad-
dresses and does not even know whether the packet came in on a LAN or a point-
to-point line. We will study routers and routing in Chap. 5.

Up another layer, we find transport gateways. These connect two computers
that use different connection-oriented transport protocols. For example, suppose a

SEC. 4.7 DATA LINK LAYER SWITCHING 345

computer using the connection-oriented TCP/IP protocol needs to talk to a com-
puter using a different connection-oriented transport protocol called SCTP. The
transport gateway can copy the packets from one connection to the other, refor-
matting them as need be.

Finally, application gateways understand the format and contents of the data
and can translate messages from one format to another. An email gateway could
translate Internet messages into SMS messages for mobile phones, for example.
Like ‘‘switch,’’ ‘‘gateway’’ is somewhat of a general term. It refers to a forwarding
process that runs at a high layer.

4.7.5 Virtual LANs

In the early days of local area networking, thick yellow cables snaked through
the cable ducts of many office buildings. Every computer they passed was plugged
in. No thought was given to which computer belonged on which LAN. All the
people in adjacent offices were put on the same LAN, whether they belonged to-
gether or not. Geography trumped corporate organization charts.

With the advent of twisted pair and hubs in the 1990s, all that changed. Build-
ings were rewired (at considerable expense) to rip out all the yellow garden hoses
and install twisted pairs from every office to central wiring closets at the end of
each corridor or in a central machine room, as illustrated in Fig. 4-38. If the Vice
President in Charge of Wiring was a visionary, Category 5 twisted pairs were in-
stalled; if he was a bean counter, the existing (Category 3) telephone wiring was
used (only to be replaced a few years later, when fast Ethernet emerged).

Today, the cables have changed and hubs have become switches, but the wiring
pattern is still the same. This pattern makes it possible to configure LANs logi-
cally rather than physically. For example, if a company wants k LANs, it could
buy k switches. By carefully choosing which connectors to plug into which
switches, the occupants of a LAN can be chosen in a way that makes organiza-
tional sense, without too much regard to geography.

Does it matter who is on which LAN? After all, in nearly all organizations, all
the LANs are interconnected. In short, yes, it often matters. Network administra-
tors like to group users on LANs to reflect the organizational structure rather than
the physical layout of the building, for a variety of reasons. One issue is security.
One LAN might host Web servers and other computers intended for public use.
Another LAN might host computers containing the records of the Human Re-
sources department that are not to be passed outside of the department. In such a
situation, putting all the computers on a single LAN and not letting any of the ser-
vers be accessed from off the LAN makes sense. Management tends to frown
when hearing that such an arrangement is impossible.

A second issue is load. Some LANs are more heavily used than others and it
may be desirable to separate them. For example, if the folks in research are run-
ning all kinds of nifty experiments that sometimes get out of hand and completely

346 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

Twisted pair
to a hub

Office

Switch

Hub

Hub

Corr idor

Cable
duct

Figure 4-38. A building with centralized wiring using hubs and a switch.

saturate their LAN, the folks in management may not be enthusiastic about donat-
ing some of the capacity they were planning to use for videoconferencing to help
out. Then again, this might impress on management the need to install a faster net-
work.

A third issue is broadcast traffic. Bridges broadcast traffic when the location
of the destination is unknown, and upper-layer protocols use broadcasting as well.
For example, when a user wants to send a packet to an IP address x, how does it
know which MAC address to put in the frame? We will study this question in
Chap. 5, but briefly summarized, the answer is that it broadcasts a frame con-
taining the question ‘‘who owns IP address x?’’ Then it waits for an answer. As the
number of computers in a LAN grows, so does the number of broadcasts. Each
broadcast consumes more of the LAN capacity than a regular frame because it is
delivered to every computer on the LAN. By keeping LANs no larger than they
need to be, the impact of broadcast traffic is reduced.

Related to broadcasts is the problem that once in a while a network interface
will break down or be misconfigured and begin generating an endless stream of
broadcast frames. If the network is really unlucky, some of these frames will elicit
responses that lead to ever more traffic. The result of this broadcast storm is that
(1) the entire LAN capacity is occupied by these frames, and (2) all the machines
on all the interconnected LANs are crippled just processing and discarding all the
frames being broadcast.

At first it might appear that broadcast storms could be limited in scope and
reach by separating the LANs with bridges or switches, but if the goal is to achieve

SEC. 4.7 DATA LINK LAYER SWITCHING 347

transparency (i.e., a machine can be moved to a different LAN across the bridge
without anyone noticing it), then bridges have to forward broadcast frames.

Having seen why companies might want multiple LANs with restricted scopes,
let us get back to the problem of decoupling the logical topology from the physical
topology. Building a physical topology to reflect the organizational structure can
add work and cost, even with centralized wiring and switches. For example, if two
people in the same department work in different buildings, it may be easier to wire
them to different switches that are part of different LANs. Even if this is not the
case, a user might be shifted within the company from one department to another
without changing offices, or might change offices without changing departments.
This might result in the user being on the wrong LAN until an administrator manu-
ally changed the user’s connector from one switch to another. Furthermore, the
number of computers that belong to different departments may not be a good
match for the number of ports on switches; some departments may be too small
and others so big that they require multiple switches. This results in wasted switch
ports that are not used.

In many companies, organizational changes occur all the time, meaning that
system administrators spend a lot of time pulling out plugs and pushing them back
in somewhere else. Also, in some cases, the change cannot be made at all because
the twisted pair from the user’s machine is too far from the correct switch (e.g., in
the wrong building), or the available switch ports are on the wrong LAN.

In response to customer requests for more flexibility, network vendors began
working on a way to rewire buildings entirely in software. The resulting concept is
called a VLAN (Virtual LAN). It has been standardized by the IEEE 802 com-
mittee and is now widely deployed in many organizations. Let us now take a look
at it.

VLANs are based on VLAN-aware switches. To set up a VLAN-based net-
work, the network administrator decides how many VLANs there will be, which
computers will be on which VLAN, and what the VLANs will be called. Often the
VLANs are (informally) named by colors, since it is then possible to print color
diagrams showing the physical layout of the machines, with the members of the
red LAN in red, members of the green LAN in green, and so on. In this way, both
the physical and logical layouts are visible in a single view.

As an example, consider the bridged LAN of Fig. 4-39, in which nine of the
machines belong to the G (gray) VLAN and five belong to the W (white) VLAN.
Machines from the gray VLAN are spread across two switches, including two ma-
chines that connect to a switch via a hub.

To make the VLANs function correctly, configuration tables have to be set up
in the bridges. These tables tell which VLANs are accessible via which ports.
When a frame comes in from, say, the gray VLAN, it must be forwarded on all the
ports marked with a G. This holds for ordinary (i.e., unicast) traffic for which the
bridges have not learned the location of the destination, as well as for multicast and
broadcast traffic. Note that a port may be labeled with multiple VLAN colors.

348 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

Gray station

B1 B2

Hub

G W GWW

G

G G

GW

GG G WG W

White station

Gray port

White port

Gray and
White port

Bridge

Figure 4-39. Two VLANs, gray and white, on a bridged LAN.

As an example, suppose that one of the gray stations plugged into bridge B1 in
Fig. 4-39 sends a frame to a destination that has not been observed beforehand.
Bridge B1 will receive the frame and see that it came from a machine on the gray
VLAN, so it will flood the frame on all ports labeled G (except the incoming port).
The frame will be sent to the five other gray stations attached to B1 as well as over
the link from B1 to bridge B2. At bridge B2, the frame is similarly forwarded on
all ports labeled G. This sends the frame to one further station and the hub (which
will transmit the frame to all of its stations). The hub has both labels because it
connects to machines from both VLANs. The frame is not sent on other ports
without G in the label because the bridge knows that there are no machines on the
gray VLAN that can be reached via these ports.

In our example, the frame is only sent from bridge B1 to bridge B2 because
there are machines on the gray VLAN that are connected to B2. Looking at the
white VLAN, we can see that the bridge B2 port that connects to bridge B1 is not
labeled W. This means that a frame on the white VLAN will not be forwarded
from bridge B2 to bridge B1. This behavior is correct because no stations on the
white VLAN are connected to B1.

The IEEE 802.1Q Standard

To implement this scheme, bridges need to know to which VLAN an incoming
frame belongs. Without this information, for example, when bridge B2 gets a frame
from bridge B1 in Fig. 4-39, it cannot know whether to forward the frame on the
gray or white VLAN. If we were designing a new type of LAN, it would be easy
enough to just add a VLAN field in the header. But what to do about Ethernet,
which is the dominant LAN, and did not have any spare fields lying around for the
VLAN identifier?

The IEEE 802 committee had this problem thrown into its lap in 1995. After
much discussion, it did the unthinkable and changed the Ethernet header. The new
format was published in IEEE standard 802.1Q, issued in 1998. The new format

SEC. 4.7 DATA LINK LAYER SWITCHING 349

contains a VLAN tag; we will examine it shortly. Not surprisingly, changing
something as well established as the Ethernet header was not entirely trivial. A
few questions that come to mind are:

1. Need we throw out several hundred million existing Ethernet cards?

2. If not, who generates the new fields?

3. What happens to frames that are already the maximum size?

Of course, the 802 committee was (only too painfully) aware of these problems
and had to come up with solutions, which it did.

The key to the solution is to realize that the VLAN fields are only actually
used by the bridges and switches and not by the user machines. Thus, in Fig. 4-39,
it is not really essential that they are present on the lines going out to the end sta-
tions as long as they are on the line between the bridges. Also, to use VLANs, the
bridges have to be VLAN aware. This fact makes the design feasible.

As to throwing out all existing Ethernet cards, the answer is no. Remember
that the 802.3 committee could not even get people to change the Type field into a
Length field. You can imagine the reaction to an announcement that all existing
Ethernet cards had to be thrown out. However, new Ethernet cards are 802.1Q
compliant and can correctly fill in the VLAN fields.

Because there can be computers (and switches) that are not VLAN aware, the
first VLAN-aware bridge to touch a frame adds VLAN fields and the last one
down the road removes them. An example of a mixed topology is shown in
Fig. 4-40. In this figure, VLAN-aware computers generate tagged (i.e., 802.1Q)
frames directly, and further switching uses these tags. The shaded symbols are
VLAN-aware and the empty ones are not.

Legacy
bridge

and host

B1 B2 B5
Tagged
frame

B4

B3

B6
VLAN-aware

host and bridge

Legacy
frame

Figure 4-40. Bridged LAN that is only partly VLAN aware. The shaded symb-
ols are VLAN aware. The empty ones are not.

With 802.1Q, frames are colored depending on the port on which they are re-
ceived. For this method to work, all machines on a port must belong to the same
VLAN, which reduces flexibility. For example, in Fig. 4-47, this property holds for

350 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

all ports where an individual computer connects to a bridge, but not for the port
where the hub connects to bridge B2.

Additionally, the bridge can use the higher-layer protocol to select the color. In
this way, frames arriving on a port might be placed in different VLANs depending
on whether they carry IP packets or PPP frames.

Other methods are possible, but they are not supported by 802.1Q. As one ex-
ample, the MAC address can be used to select the VLAN color. This might be use-
ful for frames coming in from a nearby 802.11 LAN in which laptops send frames
via different ports as they move. One MAC address would then be mapped to a
fixed VLAN regardless of which port it entered the LAN on.

As to the problem of frames longer than 1518 bytes, 802.1Q just raised the
limit to 1522 bytes. Luckily, only VLAN-aware computers and switches must sup-
port these longer frames.

Now let us take a look at the 802.1Q frame format. It is shown in Fig. 4-41.
The only change is the addition of a pair of 2-byte fields. The first one is the
VLAN protocol ID. It always has the value 0x8100. Since this number is greater
than 1500, all Ethernet cards interpret it as a type rather than a length. What a
legacy card does with such a frame is moot since such frames are not supposed to
be sent to legacy cards.

802.3 Length Data Pad
Check-

sum
Destination

address
Source
address

802.1Q Length Data PadTag

VLAN IdentifierVLAN protocol
ID (0x8100)

Pri
C
F
I

Check-
sum

Destination
address

Source
address

Figure 4-41. The 802.3 (legacy) and 802.1Q Ethernet frame formats.

The second 2-byte field contains three subfields. The main one is the VLAN
identifier, occupying the low-order 12 bits. This is what the whole thing is
about—the color of the VLAN to which the frame belongs. The 3-bit Priority
field has nothing to do with VLANs at all, but since changing the Ethernet header
is a once-in-a-decade event taking three years and featuring a hundred people, why
not put in some other good things while you are at it? This field makes it possible
to distinguish hard real-time traffic from soft real-time traffic from time-insensitive
traffic in order to provide better quality of service over Ethernet. It is needed for
voice over Ethernet (although in all fairness, IP has had a similar field for a quarter
of a century and nobody ever used it).

The last field, CFI (Canonical format indicator), should have been called the
CEI (Corporate ego indicator). It was originally intended to indicate the order of

SEC. 4.7 DATA LINK LAYER SWITCHING 351

the bits in the MAC addresses (little-endian versus big-endian), but that use got lost
in other controversies. Its presence now indicates that the payload contains a
freeze-dried 802.5 frame that is hoping to find another 802.5 LAN at the destina-
tion while being carried by Ethernet in between. This whole arrangement, of
course, has nothing whatsoever to do with VLANs. But standards’ committee pol-
itics are not unlike regular politics: if you vote for my bit, I will vote for your bit.
Horse trading at its finest.

As we mentioned above, when a tagged frame arrives at a VLAN-aware
switch, the switch uses the VLAN identifier as an index into a table to find out
which ports to send it on. But where does the table come from? If it is manually
constructed, we are back to square zero: manual configuration of bridges. The
beauty of the transparent bridge is that it is plug-and-play and does not require any
manual configuration. It would be a terrible shame to lose that property. Fortu-
nately, VLAN-aware bridges can also autoconfigure themselves based on observ-
ing the tags that come by. If a frame tagged as VLAN 4 comes in on port 3, appar-
ently some machine on port 3 is on VLAN 4. The 802.1Q standard explains how
to build the tables dynamically, mostly by referencing appropriate portions of the
802.1D standard.

Before leaving the subject of VLAN routing, it is worth making one last obser-
vation. Many people in the Internet and Ethernet worlds are fanatically in favor of
connectionless networking and violently opposed to anything smacking of con-
nections in the data link or network layers. Yet VLANs introduce something that
is surprisingly similar to a connection. To use VLANs properly, each frame carries
a new special identifier that is used as an index into a table inside the switch to
look up where the frame is supposed to be sent. That is precisely what happens in
connection-oriented networks. In connectionless networks, it is the destination ad-
dress that is used for routing, not some kind of connection identifier. We will see
more of this creeping connectionism in Chap. 5.

4.8 SUMMARY

Some networks have a single channel that is used for all communication. In
these networks, the key design issue is the allocation of this channel among the
competing stations wishing to use it. FDM and TDM are simple, efficient alloca-
tion schemes when the number of stations is small and fixed and the traffic is con-
tinuous. Both are widely used under these circumstances, for example, for divid-
ing up the bandwidth on telephone trunks. However, when the number of stations
is large and variable or the traffic is fairly bursty—the common case in computer
networks—FDM and TDM are poor choices.

Numerous dynamic channel allocation algorithms have been devised. The
ALOHA protocol, with and without slotting, is used in many derivatives in real

352 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

systems, for example, in DOCSIS networks. As an improvement when the state of
the channel can be sensed, stations can avoid starting a transmission while another
station is transmitting. This technique, carrier sensing, has led to a variety of
CSMA protocols for LANs and MANs. It is the basis for classic Ethernet and
802.11 networks.

A class of protocols that eliminates contention altogether, or at least reduces it
considerably, has been well known for years. The bitmap protocol, topologies such
as rings, and the binary countdown protocol completely eliminate contention. The
tree-walk protocol reduces it by dynamically dividing the stations into two disjoint
groups of different sizes and allowing contention only within one group; ideally
that group is chosen so that only one station is ready to send when it is permitted to
do so. Modern versions of MAC protocols, including DOCSIS and Bluetooth, ex-
plicitly take steps to avoid contention by assigning transmission intervals to send-
ers.

Wireless LANs have the added problems that it is difficult to sense colliding
transmissions, and that the coverage regions of stations may differ. In the domi-
nant wireless LAN, IEEE 802.11, stations use CSMA/CA to mitigate the first
problem by leaving small gaps to avoid collisions. The stations can also use the
RTS/CTS protocol to combat hidden terminals that arise because of the second
problem, although the overhead of RTS/CTS is so high in practice due to the
exposed terminal problem that it is often not used, especially in dense environ-
ments.

In contrast, many clients now use mechanisms to perform channel selection to
avoid contention. IEEE 802.11 is commonly used to connect laptops and other de-
vices to wireless access points, but it can also be used between devices. Any of
several physical layers can be used, including multichannel FDM with and without
multiple antennas, and spread spectrum. Modern versions of 802.11 include securi-
ty features at the link layer, including support for authentication, as well as ad-
vanced encoding to support MIMO transmission.

Ethernet is the dominant form of wired LAN. Classic Ethernet used
CSMA/CD for channel allocation on a yellow cable the size of a garden hose that
snaked from machine to machine. The architecture has changed as speeds have
risen from 10 Mbps to 10 Gbps and continue to climb. Now point-to-point links
such as twisted pair are attached to hubs and switches. With modern switches and
full-duplex links, there is no contention on the links and the switch can forward
frames between different ports in parallel.

With buildings full of LANs, a way is needed to interconnect them all. Plug-
and-play bridges are used for this purpose. The bridges are built with a backward
learning algorithm and a spanning tree algorithm. Since this functionality is built
into modern switches, the terms ‘‘bridge’’ and ‘‘switch’’ are used interchangeably.
To help with the management of bridged LANs, VLANs let the physical topology
be divided into different logical topologies. The VLAN standard, IEEE 802.1Q,
introduces a new format for Ethernet frames.

SEC. 4.8 SUMMARY 353

PROBLEMS

1. For this problem, use a formula from this chapter, but first state the formula. Frames
arrive randomly at a 100-Mbps channel for transmission. If the channel is busy when a
frame arrives, it waits its turn in a queue. Frame length is exponentially distributed
with a mean of 10,000 bits/frame. For each of the following frame arrival rates, give
the delay experienced by the average frame, including both queueing time and trans-
mission time.

(a) 90 frames/sec.
(b) 900 frames/sec.
(c) 9000 frames/sec.

2. A group of N stations share a 56-kbps pure ALOHA channel. Each station outputs a
1000-bit frame on average once every 100 sec, even if the previous one has not yet
been sent (e.g., the stations can buffer outgoing frames). What is the maximum value
of N?

3. Consider the delay of pure ALOHA versus slotted ALOHA at low load. Which one is
less? Explain your answer.

4. A large population of ALOHA users manages to generate 50 requests/sec, including
both originals and retransmissions. Time is slotted in units of 40 msec.
(a) What is the chance of success on the first attempt?
(b) What is the probability of exactly k collisions and then a success?
(c) What is the expected number of transmission attempts needed?

5. In an infinite-population slotted ALOHA system, the mean number of slots a station
waits between a collision and a retransmission is 4. Plot the delay versus throughput
curve for this system.

6. What is the length of a contention slot in CSMA/CD for (a) a 2-km twin-lead cable
(where signal propagation speed is 82% of the signal propagation speed in vacuum)?,
and (b) a 40-km multimode fiber optic cable (signal propagation speed is 65% of the
signal propagation speed in vacuum)?

7. How long does a station, s, have to wait in the worst case before it can start trans-
mitting its frame over a LAN that uses the basic bit-map protocol?

8. In the binary countdown protocol, explain how a lower-numbered station may be
starved from sending a packet.

9. See Fig. 4-10. Assume that the stations know that there are four ready stations: B, D,
G, and H . How does the adaptive tree walk protocol traverse the tree to let all four sta-
tions send their frame? How many additional collisions occur if the search starts from
the root?

10. Sixteen stations, numbered 1 through 16, are contending for the use of a shared chan-
nel by using the adaptive tree-walk protocol. If all the stations whose addresses are
prime numbers suddenly become ready at once, how many bit slots are needed to
resolve the contention?

354 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

11. A group of friends gets together to play highly interactive CPU- and network-intensive
video games. The friends play together using a high-bandwidth wireless network. The
wireless signal cannot propagate through walls, but the friends are all in the same
room. In such a setup, would it be best to use nonpersistent CSMA or the token ring
protocol? Please explain you answer.

12. Consider five wireless stations, A, B, C, D, and E. Station A can communicate with
all other stations. B can communicate with A, C and E . C can communicate with A, B
and D. D can communicate with A, C and E. E can communicate A, D and B.

(a) When A is sending to B, what other communications are possible?
(b) When B is sending to A, what other communications are possible?
(c) When B is sending to C, what other communications are possible?

13. Six stations, A through F , communicate using the MACA protocol. Is it possible for
two transmissions to take place simultaneously? Explain your answer.

14. A seven-story office building has 15 adjacent offices per floor. Each office contains a
wall socket for a terminal in the front wall, so the sockets form a rectangular grid in the
vertical plane, with a separation of 4 m between sockets, both horizontally and verti-
cally. Assuming that it is feasible to run a straight cable between any pair of sockets,
horizontally, vertically, or diagonally, how many meters of cable are needed to connect
all sockets using

(a) A star configuration with a single router in the middle?
(b) A classic 802.3 LAN?

15. What is the baud rate of classic 10-Mbps Ethernet?

16. Sketch the Manchester encoding on a classic Ethernet for the bit stream 0001110101.

17. A 1-km-long, 10-Mbps CSMA/CD LAN (not 802.3) has a propagation speed of
200 m/µsec. Repeaters are not allowed in this system. Data frames are 256 bits long,
including 32 bits of header, checksum, and other overhead. The first bit slot after a
successful transmission is reserved for the receiver to capture the channel in order to
send a 32-bit acknowledgement frame. What is the effective data rate, excluding over-
head, assuming that there are no collisions?

18. Two CSMA/CD stations are each trying to transmit a frame. They both contend for the
channel, using the binary exponential backoff algorithm after a collision. What is the
probability that the contention ends on round k, and what is the mean number of
rounds per contention period?

19. An IP packet to be transmitted by Ethernet is 60 bytes long, including all its headers.
If LLC is not in use, is padding needed in the Ethernet frame, and if so, how many
bytes?

20. Ethernet frames must be at least 64 bytes long to ensure that the transmitter is still
going in the event of a collision at the far end of the cable. Fast Ethernet has the same
64-byte minimum frame size but can get the bits out ten times faster. How is it pos-
sible to maintain the same minimum frame size?

CHAP. 4 PROBLEMS 355

21. Some books quote the maximum size of an Ethernet frame as 1522 bytes instead of
1500 bytes. Are they wrong? Explain your answer.

22. How many frames per second can gigabit Ethernet handle? Think carefully and take
into account all the relevant cases. Hint: the fact that it is gigabit Ethernet matters.

23. Name a network that allow frames to be packed back-to-back. Why is this feature
worth having?

24. In Fig. 4-27, four stations, A, B, C, and D, are shown. Which of the last two stations
do you think is closest to A and why?

25. Give an example to show that the RTS/CTS in the 802.11 protocol is a little different
than in the MACA protocol.

26. See Fig. 4-33(b). Imagine that all stations, bridges, and hubs shown in the figure are
wireless stations, and the links indicate that two stations are within range of each other.
If B2 is transmitting to D when B1 wants to transmit to A and H1 wants to transmit to
F , which pairs of stations are hidden or exposed terminals?

27. A wireless LAN with one AP has 10 client stations. Four of these stations have data
rates of 6 Mbps, four stations have data rates of 18 Mbps, and the last two stations have
data rates of 54 Mbps. What is the data rate experienced by each station when all ten
stations are sending data together, and

(a) TXOP is not used?
(b) TXOP is used?

28. Suppose that an 11-Mbps 802.11b LAN is transmitting 64-byte frames back-to-back
over a radio channel with a bit error rate of 10<7. How many frames per second will be
damaged on average?

29. Two devices connected to the same 802.11 network are both downloading a large file
from the Internet. Explain how one device could obtain a higher data rate than the
other by (ab)using a 802.11 mechanism intended to provide quality of service.

30. Fig. 4-28 shows different wait times in 802.11 for frames with different priorities. This
approach prevents high-priority traffic, such as frames carrying real-time data, from
getting stuck behind regular traffic. What is a disadvantage of this approach?

31. Give two reasons why networks might use an error-correcting code instead of error de-
tection and retransmission.

32. Why are solutions such as PCF (Point Coordination Function) better suited for ver-
sions of 802.11 that operate at higher frequencies?

33. A disadvantage of Bluetooth’s profiles is that they add significant complexity to the
protocol. How can these profiles be an advantage from the perspective of the applica-
tions?

34. Imagine a network where stations communicate using laser beams, similar to the setup
shown in Fig. 2-11. Explain how this setup is similar to, and different from, both Eth-
ernet and 802.11, and how that would affect the design of its data link layer and MAC
protocols.

356 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

35. From Fig. 4-30, we see that a Bluetooth device can be in two piconets at the same time.
Is there any reason why one device cannot be the controller in both of them at the same
time?

36. What is the maximum size of the data field for a 3-slot Bluetooth frame at basic rate?
Explain your answer.

37. Figure 4-24 shows several physical layer protocols. Which of these is closest to the
Bluetooth physical layer protocol? What is the biggest difference between the two?

38. It is mentioned in the text that the efficiency of a 1-slot frame with repetition encoding
is about 13% at basic data rate. What will the efficiency be if a 5-slot frame with repe-
tition encoding is used at basic data rate instead?

39. Beacon frames in the frequency hopping spread spectrum variant of 802.11 contain the
dwell time. Do you think the analogous beacon frames in Bluetooth also contain the
dwell time? Discuss your answer.

40. A switch designed for use with fast Ethernet has a backplane that can move 10 Gbps.
How many frames/sec can it handle in the worst case?

41. Consider the extended LAN connected using bridges B1 and B2 in Fig. 4-33(b). Sup-
pose the hash tables in the two bridges are empty. What does B2’s hash table look like
after the following sequence of data transmissions:
(a) B sends a frame to E.
(b) F sends a frame to A.
(c) A sends a frame to B.
(d) G sends a frame to E.
(e) D sends a frame to C.
(f) C sends a frame to A.
Assume that every frame is sent after the previous frame has been received.

42. Consider the extended LAN connected using bridges B1 and B2 in Fig. 4-33(b). Sup-
pose the hash tables in the two bridges are empty. Which of these data transmissions
leads to a broadcast:
(a) A sends a frame to C.
(b) B sends a frame to E.
(c) C sends a frame to B.
(d) G sends a frame to C.
(e) E sends a frame to F .
(f) D sends a packet to C.
Assume that every frame is sent after the previous frame has been received.

43. Consider the extended LAN connected using bridges B1 and B2 in Fig. 4-33(b). Sup-
pose the hash tables in the two bridges are empty. List all ports on which a packet will
be forwarded for the following sequence of data transmissions:

(a) A sends a packet to C.
(b) E sends a packet to F .
(c) F sends a packet to E.
(d) G sends a packet to E.

CHAP. 4 PROBLEMS 357

(e) D sends a packet to A.
(f) B sends a packet to F .

44. See Fig. 4-36. Imagine an additional bridge, B0, is connected to bridges B4 and B5.
Sketch the new spanning tree for this topology.

45. Briefly describe the difference between store-and-forward and cut-through switches.

46. Consider an Ethernet LAN with seven bridges. Bridge 0 is connected to 1 and 2.
Bridges 3, 4, 5, and 6 are connected to both 1 and 2. Assume the vast majority of
frames is addressed to stations connected to bridge 2. First sketch the spanning tree
constructed by the Ethernet protocol, then sketch an alternative spanning tree that
reduces the average frame latency.

47. Consider two Ethernet networks. In network (a), stations are connected to a hub via
full-duplex cables. In network (b), stations are connected to a switch using half-duplex
cables. For each of these networks, why is CSMA/CD (not) needed?

48. Store-and-forward switches have an advantage over cut-through switches with respect
to damaged frames. Explain what it is.

49. It is mentioned in Section 4.8.3 that some bridges may not even be present in the span-
ning tree. Outline a scenario where a bridge may not be present in the spanning tree.

50. To make VLANs work, configuration tables are needed in the bridges. What if the
VLANs of Fig. 4-39 used hubs rather than switches? Do the hubs need configuration
tables, too? Why or why not?

51. Write a program to simulate pure ALOHA. Assume that packet lengths follow a Gaus-
sian distribution with the mean and standard deviation as parameters. The number of
stations is also a parameter. Run the clock in steps of 6T, also a parameter. At each
step, each station has some probabilty of transmitting, regardless of whether any other
transmissions are going on. Study the behavior of the system under different condi-
tions of load.

52. Capture message traces sent by your own computer using promiscuous mode for a few
minutes several times. Build a simulator for a single communication channel and
implement the CSMA/CD protocols. Evaluate the efficiency of these protocols using
your own traces to represent different stations competing for the channel. Discuss the
representativeness of these traces as link layer workloads.

53. Write a program to simulate the behavior of the CSMA/CD protocol over Ethernet
when there are N stations ready to transmit while a frame is being transmitted. Your
program should report the times when each station successfully starts sending its
frame. Assume that a clock tick occurs once every slot time (51.2 µsec) and a collis-
ion detection and sending of a jamming sequence takes one slot time. All frames are
the maximum length allowed.

54. Download the wireshark program from www.wireshark.org. It is a free open-source
program to monitor networks and report on what is going on there. Learn about it by

358 THE MEDIUM ACCESS CONTROL SUBLAYER CHAP. 4

watching one of the many tutorials on YouTube. There are many Web pages dis-
cussing experiments you can do with it. It is a good way to get a hands-on feeling for
what goes on on a network.

5
THE NETWORK LAYER

The network layer is concerned with getting packets from the source all the
way to the destination. Getting to the destination may require making many hops
at intermediate routers along the way. This function clearly contrasts with that of
the data link layer, which has the more modest goal of just moving frames from
one end of a (virtual) ‘‘wire’’ to the other. Thus, the network layer is the lowest
layer that deals with end-to-end transmission.

To achieve its goals, the network layer must learn about the topology of the
network (i.e., the set of all routers and links) and compute appropriate paths
through it, even for large networks. It must also take care when choosing routes to
avoid overloading some of the communication lines and routers while leaving oth-
ers idle. Finally, when the source and destination are in different independently
operated networks, sometimes called autonomous systems, new challenges arise,
such as coordinating traffic flows across multiple networks and managing network
utilization. These problems are typically handled at the network layer; network
operators are often tasked with dealing with these challenges manually. Conven-
tionally, network operators had to reconfigure the network layer manually, through
low-level configuration. More recently, however, the advent of software-defined
networking and programmable hardware has made it possible to configure the net-
work layer from higher-level software programs, and even to redefine the functions
of the network layer entirely. In this chapter, we will study all these issues and
illustrate them, focusing in particular on the Internet and its network layer protocol,
IP (Internet Protocol).

359

360 THE NETWORK LAYER CHAP. 5

5.1 NETWORK LAYER DESIGN ISSUES

In the following sections, we will give an introduction to some of the issues
that the designers of the network layer must grapple with. These issues include the
service provided to the transport layer and the internal design of the network.

5.1.1 Store-and-Forward Packet Switching

Before starting to explain the details of the network layer, it is worth restating
the context in which the network layer protocols operate. This context can be seen
in Fig. 5-1. The major components of the network are the ISP’s equipment (rout-
ers, switches, and middleboxes connected by transmission lines), shown inside the
shaded oval, and the customers’ equipment, shown outside the oval. Host H1 is di-
rectly connected to one of the ISP’s routers, A, perhaps as a home computer that is
plugged into a DSL modem. In contrast, H2 is on a LAN, which might be an
office Ethernet, with a router, F, owned and operated by the customer. This router
has a leased line to the ISP’s equipment. We have shown F as being outside the
oval because it does not belong to the ISP. For the purposes of this chapter, howev-
er, routers on customer premises are considered part of the ISP network because
they run the same algorithms as the ISP’s routers (and our main concern here is al-
gorithms).

D

C

B

A E F

Packet

Process P1

Host H1

Router ISP’s equipment

H2LAN

P2

Figure 5-1. The environment of the network layer protocols.

This equipment is used as follows. A host with a packet to send transmits it to
the nearest router, either on its own LAN or over a point-to-point link to the ISP
(e.g., over an ADSL line or a cable television wire). The packet is stored there
until it has fully arrived and the link has finished its processing by verifying the
checksum. Then it is forwarded to the next router along the path until it reaches
the destination host, where it is delivered. This mechanism is store-and-forward
packet switching, as we have seen in previous chapters.

SEC. 5.1 NETWORK LAYER DESIGN ISSUES 361

5.1.2 Services Provided to the Transport Layer

The network layer provides services to the transport layer at the network
layer/transport layer interface. An important question is precisely what kind of ser-
vices the network layer provides to the transport layer. The services need to be
carefully designed with the following goals in mind:

1. The services should be independent of the router technology.

2. The transport layer should be shielded from the number, type, and
topology of the routers present.

3. The network addresses made available to the transport layer should
use a uniform numbering plan, even across LANs and WANs.

Given these goals, the designers of the network layer have a lot of freedom in
writing detailed specifications of the services to be offered to the transport layer.
This freedom often degenerates into a raging battle between two warring factions.
The discussion centers on whether the network layer should provide connec-
tion-oriented service or connectionless service.

One camp (represented by the Internet community) argues that the routers’ job
is moving packets around and nothing else. In this view (based on 40 years of
experience with a real computer network), the network is inherently unreliable, no
matter how it is designed. Therefore, the hosts should accept this fact and do error
control (i.e., error detection and correction) and flow control themselves.

This viewpoint leads to the conclusion that the network service should be con-
nectionless, with primitives SEND PACKET and RECEIVE PACKET and little else.
In particular, no packet ordering and flow control should be done, because the
hosts are going to do that anyway and there is usually little to be gained by doing it
twice. This reasoning is an example of the end-to-end argument, a design prin-
ciple that has been very influential in shaping the Internet (Saltzer et al., 1984).
Furthermore, each packet must carry the full destination address, because each
packet sent is carried independently of its predecessors, if any.

The other camp (represented by the telephone companies) argues that the net-
work should provide a reliable, connection-oriented service. They claim that
100 years of successful experience with the worldwide telephone system is an
excellent guide. In this view, quality of service is the dominant factor, and without
connections in the network, quality of service is very difficult to achieve, especial-
ly for real-time traffic such as voice and video.

Even after several decades, this controversy is still very much alive. Early,
widely used data networks, such as X.25 in the 1970s and its successor Frame
Relay in the 1980s, were connection-oriented. However, since the days of the
ARPANET and the early Internet, connectionless network layers have grown
tremendously in popularity. The IP protocol is now an ever-present symbol of suc-
cess. It was undeterred by a connection-oriented technology called ATM that was

362 THE NETWORK LAYER CHAP. 5

developed to overthrow it in the 1980s; instead, it is ATM that is now found in
niche uses and IP that is taking over telephone networks. Under the covers, how-
ever, the Internet is evolving connection-oriented features as quality of service be-
comes more important. Two examples of connection-oriented technologies are
multiprotocol label switching, which we will describe in this chapter, and VLANs,
which we saw in Chap. 4. Both technologies are widely used.

5.1.3 Implementation of Connectionless Service

Having looked at the two classes of service the network layer can provide to its
users, it is time to see how this layer works inside. Two different organizations are
possible, depending on the type of service offered. If connectionless service is of-
fered, packets are injected into the network individually and routed independently
of each other. No advance setup is needed. In this context, the packets are fre-
quently called datagrams (in analogy with telegrams) and the network is called a
datagram network. If connection-oriented service is used, a path from the source
router all the way to the destination router must be established before any data
packets can be sent. This connection is called a VC (Virtual Circuit), in analogy
with the physical circuits set up by the (old) telephone system, and the network is
called a virtual-circuit network. In this section, we will examine datagram net-
works; in the next one, we will examine virtual-circuit networks.

Let us now see how a datagram network works. Suppose that the process P1
in Fig. 5-2 has a long message for P2. It hands the message to the transport layer,
with instructions to deliver it to process P2 on host H2. The transport layer code
runs on H1, typically within the operating system. It prepends a transport header
to the front of the message and hands the result to the network layer, probably just
another procedure within the operating system.

Let us assume for this example that the message is four times longer than the
maximum packet size, so the network layer has to break it into four packets, 1, 2,
3, and 4, and send each of them in turn to router A using some point-to-point proto-
col, for example, PPP. At this point the ISP takes over. Every router has an inter-
nal table telling it where to send packets for each of the possible destinations.
Each table entry is a pair consisting of a destination and the outgoing line to use
for that destination. Only directly connected lines can be used. For example, in
Fig. 5-2, A has only two outgoing lines—to B and to C—so every incoming packet
must be sent to one of these routers, even if the ultimate destination is to some
other router. A’s initial routing table is shown in the figure under the label ‘‘ini-
tially.’’

At A, packets 1, 2, and 3 are stored briefly, having arrived on the incoming link
and had their checksums verified. Then each packet is forwarded according to A’s
table, onto the outgoing link to C within a new frame. Packet 1 is then forwarded
to E and then to F. When it gets to F, it is sent within a frame over the LAN to H2.
Packets 2 and 3 follow the same route.

SEC. 5.1 NETWORK LAYER DESIGN ISSUES 363

E’s tableC’s tableA’s table (initially) A’s table (later)

Dest. Line

D

C

B

A E F

Packet

Process P1

Host H1

Router ISP’s equipment

H2LAN

P2

4

23

1

A
B B

–

C C
D B
E C
F C

A
B B

–

C C
D B
E B
F B

A
B A

A

C –
D E
E E
F E

A
B D

C

C C
D D
E –
F F

Figure 5-2. Routing within a datagram network.

However, something different happens to packet 4. When it gets to A it is sent
to router B, even though it is also destined for F. For some reason, A decided to
send packet 4 via a different route than that of the first three packets. Perhaps it
has learned of a traffic jam somewhere along the ACE path and updated its routing
table, as shown under the label ‘‘later.’’ The algorithm that manages the tables and
makes the routing decisions is called the routing algorithm. Routing algorithms
are one of the main topics we will study in this chapter. There are several different
kinds of them, as we will see.

IP, which is the basis for the entire Internet, is the dominant example of a con-
nectionless network service. Each packet carries a destination IP address that rout-
ers use to individually forward each packet. The addresses are 32 bits in IPv4 pack-
ets and 128 bits in IPv6 packets. We will describe IP and these two versions in
much detail later in this chapter.

5.1.4 Implementation of Connection-Oriented Service

For connection-oriented service, we need to have a virtual-circuit network. Let
us see how that works. The idea behind virtual circuits is to avoid having to
choose a new route for every packet sent, as in Fig. 5-2. Instead, when a con-
nection is established, a route from the source machine to the destination machine
is chosen as part of the connection setup and stored in tables inside the routers.
That route is used for all traffic flowing over the connection, exactly the same way

364 THE NETWORK LAYER CHAP. 5

that the telephone system works. When the connection is released, the virtual cir-
cuit is also terminated. With connection-oriented service, each packet carries an
identifier telling which virtual circuit it belongs to.

As an example, consider the situation illustrated in Fig. 5-3. Here, host H1 has
established connection 1 with host H2. This connection is remembered as the first
entry in each of the routing tables. The first line of A’s table says that if a packet
bearing connection identifier 1 comes in from H1, it is to be sent to router C and
given connection identifier 1. Similarly, the first entry at C routes the packet to E,
also with connection identifier 1.

A’s table

In Out

D

C

B

E F

Packet

Router ISP’s equipment

H2LAN

P2

2
4

3

1

H1
H3 1

1

AProcess P1

Host H1

P3

H3

C
C 2

1
C’s table

A
A 2

1 E
E 2

1
E’s table

C
C 2

1 F
F 2

1

Figure 5-3. Routing within a virtual-circuit network.

Now let us consider what happens if H3 also wants to establish a connection to
H2. It chooses connection identifier 1 (because it is initiating the connection and
this is its only connection) and tells the network to establish the virtual circuit.
This leads to the second row in the tables. Please note that we have a conflict here
because although A can easily distinguish connection 1 packets from H1 from con-
nection 1 packets from H3, C cannot do this. For this reason, A assigns a different
connection identifier to the outgoing traffic for the second connection. Avoiding
conflicts of this kind is why routers need the ability to replace connection identi-
fiers in outgoing packets.

An example of a connection-oriented network service is MPLS (MultiProtocol
Label Switching). It is used within ISP networks in the Internet, with IP packets
wrapped in an MPLS header having a 20-bit connection identifier or label. MPLS

SEC. 5.1 NETWORK LAYER DESIGN ISSUES 365

is often hidden from customers, with the ISP establishing long-term connections
for large amounts of traffic, but it is increasingly being used to help when quality
of service is important but also with other ISP traffic management tasks. We will
have more to say about MPLS later in this chapter.

5.1.5 Comparison of Virtual-Circuit and Datagram Networks

Both virtual circuits and datagrams have their supporters and their detractors.
We will now attempt to summarize both sets of arguments. The major issues are
listed in Fig. 5-4, although purists could probably find a counterexample for every-
thing in the figure.

Issue Datagram network Virtual-circuit network
Circuit setup Not needed Required
Addressing Each packet contains the full

source and destination address
Each packet contains a
short VC number

State information Routers do not hold state
information about connections

Each VC requires router
table space per connection

Routing Each packet is routed
independently

Route chosen when VC is
set up; all packets follow it

Effect of router failures None, except for packets
lost during the crash

All VCs that passed
through the failed
router are terminated

Quality of service Difficult Easy if enough resources
can be allocated in
advance for each VC

Congestion control Difficult Easy if enough resources
can be allocated in
advance for each VC

Figure 5-4. Comparison of datagram and virtual-circuit networks.

Inside the network, several trade-offs exist between virtual circuits and data-
grams. One trade-off is setup time versus address parsing time. Using virtual cir-
cuits requires a setup phase, which takes time and consumes resources. However,
once this price is paid, figuring out what to do with a data packet in a virtual-cir-
cuit network is easy: the router just uses the circuit number to index into a table to
find out where the packet goes. In a datagram network, no setup is needed but a
more complicated lookup procedure is required to locate the entry for the destina-
tion.

A related issue is that the destination addresses used in datagram networks are
longer than circuit numbers used in virtual-circuit networks because they have a
global meaning. If the packets tend to be fairly short, including a full destination

366 THE NETWORK LAYER CHAP. 5

address in every packet may represent a significant amount of overhead, and hence
a waste of bandwidth.

Yet another issue is the amount of table space required in router memory. A
datagram network needs to have an entry for every possible destination, whereas a
virtual-circuit network just needs an entry for each virtual circuit. However, this
advantage is somewhat illusory since connection setup packets have to be routed
too, and they use destination addresses, the same as datagrams do.

Virtual circuits have some advantages in guaranteeing quality of service and
avoiding congestion within the network because resources (e.g., buffers, band-
width, and CPU cycles) can be reserved in advance, when the connection is estab-
lished. Once the packets start arriving, the necessary bandwidth and router capaci-
ty will be there. With a datagram network, congestion avoidance is more difficult.

For transaction processing systems (e.g., stores calling up to verify credit card
purchases), the overhead required to set up and clear a virtual circuit may easily
dwarf the use of the circuit. If the majority of the traffic is expected to be of this
kind, the use of virtual circuits inside the network makes little sense. On the other
hand, for long-running uses such as VPN traffic between two corporate offices,
permanent virtual circuits (that are set up manually and last for months or years)
may be useful.

Virtual circuits also have a vulnerability problem. If a router crashes and loses
its memory, even if it comes back up a second later, all the virtual circuits passing
through it will have to be aborted. In contrast, if a datagram router goes down,
only those users whose packets were queued in the router at the time need suffer
(and probably not even then since the sender is likely to retransmit them shortly).
The loss of a communication line is fatal to virtual circuits using it, but can easily
be compensated for if datagrams are used. Datagrams also allow the routers to bal-
ance the traffic throughout the network, since routes can be changed partway
through a long sequence of packet transmissions.

5.2 ROUTING ALGORITHMS IN A SINGLE NETWORK

The main function of the network layer is routing packets from the source ma-
chine to the destination machine. In this section, we discuss how the network layer
achieves this function within a single administrative domain or autonomous sys-
tem. In most networks, packets will require multiple hops to make the journey.
The only notable exception is for broadcast networks, but even here routing is an
issue if the source and destination are not on the same network segment. The algo-
rithms that choose the routes and the data structures that they use are a major area
of network layer design.

The routing algorithm is that part of the network layer software responsible
for deciding which output line an incoming packet should be transmitted on. If the
network uses datagrams internally, the routing decision must be made anew for

SEC. 5.2 ROUTING ALGORITHMS IN A SINGLE NETWORK 367

every arriving data packet since the best route may have changed since last time. If
the network uses virtual circuits internally, routing decisions are made only when a
new virtual circuit is being set up. Thereafter, data packets just follow the already
established route. The latter case is sometimes called session routing because a
route remains in force for an entire session (e.g., while logged in over a VPN).

It is sometimes useful to make a distinction between routing, which is making
the decision which routes to use, and forwarding, which is what happens when a
packet arrives. One can think of a router as having two processes inside it. One of
them handles each packet as it arrives, looking up the outgoing line to use for it in
the routing tables. This process is forwarding. The other process is responsible
for filling in and updating the routing tables. That is where the routing algorithm
comes into play.

Regardless of whether routes are chosen independently for each packet sent or
only when new connections are established, certain properties are desirable in a
routing algorithm: correctness, simplicity, robustness, stability, fairness, and ef-
ficiency. Correctness and simplicity hardly require comment, but the need for ro-
bustness may be less obvious at first. Once a major network comes on the air, it
may be expected to run continuously for years without system-wide failures. Dur-
ing that period there will be hardware and software failures of all kinds. Hosts,
routers, and lines will fail repeatedly, and the topology will change many times.
The routing algorithm should be able to cope with changes in the topology and
traffic without requiring all jobs in all hosts to be aborted. Imagine the havoc if the
network needed to be rebooted every time some router crashed.

Stability is also an important goal for the routing algorithm. There exist rout-
ing algorithms that never converge to a fixed set of paths, no matter how long they
run. A stable algorithm reaches equilibrium and stays there. It should converge
quickly too, since communication may be disrupted until the routing algorithm has
reached equilibrium.

Fairness and efficiency may sound obvious—surely no reasonable person
would oppose them—but as it turns out, they are often contradictory goals. As a
simple example of this conflict, look at Fig. 5-5. Suppose that there is enough traf-
fic between A and Av, between B and Bv, and between C and Cv to saturate the hori-
zontal links. To maximize the total flow, the X to X v traffic should be shut off alto-
gether. Unfortunately, X and Xv may not see it that way. Evidently, some compro-
mise between global efficiency and fairness to individual connections is needed.

Before we can even attempt to find trade-offs between fairness and efficiency,
we must decide what it is we seek to optimize. Minimizing the mean packet delay
is an obvious candidate to send traffic through the network effectively, but so is
maximizing total network throughput. Furthermore, these two goals are also in
conflict, since operating any queueing system near capacity implies a long queue-
ing delay. As a compromise, many networks attempt to minimize the distance a
packet must travel, or alternatively, simply reduce the number of hops a packet
must make. Either choice tends to improve the delay and also reduce the amount of

368 THE NETWORK LAYER CHAP. 5

X Xv

A B C

A' B' C'

Figure 5-5. Network with a conflict between fairness and efficiency.

bandwidth consumed per packet, which generally tends to improve the overall net-
work throughput as well.

Routing algorithms can be grouped into two major classes: nonadaptive and
adaptive. Nonadaptive algorithms do not base their routing decisions on any
measurements or estimates of the current topology and traffic. Instead, the choice
of the route to use to get from I to J (for all I and J) is computed in advance,
offline, and downloaded to the routers when the network is booted. This procedure
is sometimes called static routing. Because it does not respond to failures, static
routing is mostly useful for situations in which the routing choice is clear. For ex-
ample, router F in Fig. 5-3 should send packets headed into the network to router E
regardless of the ultimate destination.

Adaptive algorithms, in contrast, change their routing decisions to reflect
changes in the topology, and sometimes changes in the traffic as well. These
dynamic routing algorithms differ in where they get their information (e.g.,
locally, from adjacent routers, or from all routers), when they change the routes
(e.g., when the topology changes, or every 6T seconds as the load changes), and
what metric is used for optimization (e.g., distance, number of hops, or estimated
transit time).

In the following sections, we will discuss a variety of routing algorithms. The
algorithms cover delivery models besides sending a packet from a source to a dest-
ination. Sometimes the goal is to send the packet to multiple, all, or one of a set of
destinations. All the routing algorithms we describe here make decisions based on
the topology; we defer the possibility of decisions based on the traffic to Sec. 5.3.

5.2.1 The Optimality Principle

Before we get into specific algorithms, it may be helpful to note that one can
make a general statement about optimal routes without regard to network topology
or traffic. This statement is known as the optimality principle (Bellman, 1957).

SEC. 5.2 ROUTING ALGORITHMS IN A SINGLE NETWORK 369

It states that if router J is on the optimal path from router I to router K, then the
optimal path from J to K also falls along the same route. To see this, call the part
of the route from I to J r1 and the rest of the route r2 . If a route better than r2
existed from J to K, it could be concatenated with r1 to improve the route from I to
K, contradicting our statement that r1r2 is optimal.

As a direct consequence of the optimality principle, we can see that the set of
optimal routes from all sources to a given destination form a tree rooted at the dest-
ination. Such a tree is called a sink tree and is illustrated in Fig. 5-6(b) for the net-
work of Fig. 5-6(a). Here, the distance metric is the number of hops. The goal of
all routing algorithms is to discover and use the sink trees for all routers.

B

A

F

D E
C

J

N

O

I
H

G

L

M

K

(a)

B

A

F

D E
C

J

N

O

I
H

G

L

M

K

(b)

Figure 5-6. (a) A network. (b) A sink tree for router B.

Note that a sink tree is not necessarily unique; other trees with the same path
lengths may exist. If we allow all of the possible paths to be chosen, the tree be-
comes a more general structure called a DAG (Directed Acyclic Graph). DAGs
have no loops. We will use sink trees as a convenient shorthand for both cases.
Both cases also depend on the technical assumption that the paths do not interfere
with each other so, for example, a traffic jam on one path will not cause another
path to divert.

Since a sink tree is indeed a tree, it does not contain any loops, so each packet
will be delivered within a finite and bounded number of hops. In practice, life is
not quite this easy. Links and routers can go down and come back up during oper-
ation, so different routers may have different ideas about the current topology.
Also, we have quietly finessed the issue of whether each router has to individually
acquire the information on which to base its sink tree computation or whether this
information is collected by some other means. We will come back to these issues
shortly. Nevertheless, the optimality principle and the sink tree provide a bench-
mark against which other routing algorithms can be measured.

370 THE NETWORK LAYER CHAP. 5

5.2.2 Shortest Path Algorithm

Let us begin our study of routing algorithms with a simple technique for com-
puting optimal paths given a complete picture of the network. These paths are the
ones that we want a distributed routing algorithm to find, even though not all rout-
ers may know all of the details of the network.

The idea is to build a graph of the network, with each node of the graph repres-
enting a router and each edge of the graph representing a communication line, or
link. To choose a route between a given pair of routers, the algorithm just finds the
shortest path between them on the graph.

The concept of a shortest path deserves some explanation. One way of mea-
suring path length is the number of hops. Using this metric, the paths ABC and
ABE in Fig. 5-7 are equally long. Another metric is the geographic distance in
kilometers, in which case ABC is clearly much longer than ABE (assuming the fig-
ure is drawn to scale).

A D1

2

6

G

4

(a)

F (', <) D (',<)

A

B 7 C

2

H

3 3

2
2 FE

1

22

6

G

4

A

(c)

A

B (2, A) C (9, B)

H (', <)

E (4, B)

G (6, A)

F (6, E) D (',<)A

(e)

A

B (2, A) C (9, B)

H (9, G)

E (4, B)

G (5, E)

F (6,E) D (',<)A

(f)

A

B (2, A) C (9, B)

H (8, F)

E (4, B)

G (5, E)

F (6, E) D (',1)A

(d)

A

B (2, A) C (9, B)

H (', <)

E (4, B)

G (5, E)

F (', <) D (', <)A

H

E

G
(b)

B (2, A) C (', <)

H (', <)

E (', <)

G (6, A)

Figure 5-7. The first six steps used in computing the shortest path from A to D.
The arrows indicate the working node.

However, many other metrics besides hops and physical distance are also pos-
sible. For example, each edge could be labeled with the mean delay of a standard

SEC. 5.2 ROUTING ALGORITHMS IN A SINGLE NETWORK 371

test packet, as measured by hourly runs. With this graph labeling, the shortest path
is the fastest path rather than the path with the fewest edges or kilometers.

In the general case, the labels on the edges could be computed as a function of
the distance, bandwidth, average traffic, communication cost, measured delay, and
other factors. By changing the weighting function, the algorithm would then com-
pute the ‘‘shortest’’ path measured according to any one of a number of criteria or
to a combination of criteria.

Several algorithms for computing the shortest path between two nodes of a
graph are known. This one is due to Dijkstra (1959) and finds the shortest paths
between a source and all destinations in the network. Each node is labeled (in par-
entheses) with its distance from the source node along the best known path. The
distances must be non-negative, as they will be if they are based on real quantities
like bandwidth and delay. Initially, no paths are known, so all nodes are labeled
with infinity. As the algorithm proceeds and paths are found, the labels may
change, reflecting better paths. A label may be either tentative or permanent. Ini-
tially, all labels are tentative. When it is discovered that a label represents the
shortest possible path from the source to that node, it is made permanent and never
changed thereafter.

To illustrate how the labeling algorithm works, look at the weighted, undi-
rected graph of Fig. 5-7(a), where the weights represent, for example, distance.
We want to find the shortest path from A to D. We start out by marking node A as
permanent, indicated by a filled-in circle. Then we examine, in turn, each of the
nodes adjacent to A (the working node), relabeling each one with the distance to A.
Whenever a node is relabeled, we also label it with the node from which the probe
was made so that we can reconstruct the final path later. If the network had more
than one shortest path from A to D and we wanted to find all of them, we would
need to remember all of the probe nodes that could reach a node with the same dis-
tance.

Having examined each of the nodes adjacent to A, we examine all the tenta-
tively labeled nodes in the whole graph and make the one with the smallest label
permanent, as shown in Fig. 5-7(b). This one becomes the new working node.

We now start at B and examine all nodes adjacent to it. If the sum of the label
on B and the distance from B to the node being considered is less than the label on
that node, we have a shorter path, so the node is relabeled.

After all the nodes adjacent to the working node have been inspected and the
tentative labels changed if possible, the entire graph is searched for the tentatively
labeled node with the smallest value. This node is made permanent and becomes
the working node for the next round. Figure 5-7 shows the first six steps of the
algorithm.

To see why the algorithm works, look at Fig. 5-7(c). At this point we have just
made E permanent. Suppose that there were a shorter path than ABE, say AXYZE
(for some X and Y). There are two possibilities: either node Z has already been
made permanent, or it has not been. If it has, then E has already been probed (on

372 THE NETWORK LAYER CHAP. 5

the round following the one when Z was made permanent), so the AXYZE path has
not escaped our attention and thus cannot be a shorter path.

Now consider the case where Z is still tentatively labeled. If the label at Z is
greater than or equal to that at E, then AXYZE cannot be a shorter path than ABE.
If the label is less than that of E, then Z and not E will become permanent first,
allowing E to be probed from Z.

This algorithm is given in C in Fig. 5-8. The global variables n and dist de-
scribe the graph and are initialized before shortest path is called. The only dif-
ference between the program and the algorithm described above is that in Fig. 5-8,
we compute the shortest path starting at the terminal node, t, rather than at the
source node, s.

Since the shortest paths from t to s in an undirected graph are the same as the
shortest paths from s to t, it does not matter at which end we begin. The reason for
searching backward is that each node is labeled with its predecessor rather than its
successor. When the final path is copied into the output variable, path, the path is
thus reversed. The two reversal effects cancel, and the answer is produced in the
correct order.

5.2.3 Flooding

When a routing algorithm is implemented, each router must make decisions
based on local knowledge, not the complete picture of the network. A simple local
technique is flooding, in which every incoming packet is sent out on every out-
going line except the one it arrived on.

Flooding obviously generates vast numbers of duplicate packets, in fact, an
infinite number unless some measures are taken to damp the process. One such
measure is to have a hop counter contained in the header of each packet that is
decremented at each hop, with the packet being discarded when the counter
reaches zero. Ideally, the hop counter should be initialized to the length of the path
from source to destination. If the sender does not know how long the path is, it can
initialize the counter to the worst case, namely, the full diameter of the network.

Flooding with a hop count can produce an exponential number of duplicate
packets as the hop count grows and routers duplicate packets they have seen be-
fore. A better technique for damming the flood is to have routers keep track of
which packets have been flooded, to avoid sending them out a second time. One
way to achieve this goal is to have the source router put a sequence number in each
packet it receives from its hosts. Each router then needs a list per source router tel-
ling which sequence numbers originating at that source have already been seen. If
an incoming packet is on the list, it is not flooded.

To prevent the list from growing without bound, each list should be augmented
by a counter, k, meaning that all sequence numbers through k have been seen.
When a packet comes in, it is easy to check if the packet has already been flooded
(by comparing its sequence number to k); if so, it is discarded. Furthermore, the

SEC. 5.2 ROUTING ALGORITHMS IN A SINGLE NETWORK 373

#define MAX NODES 1024 /* maximum number of nodes */
#define INFINITY 1000000000 /* a number larger than every maximum path */
int n, dist[MAX NODES][MAX NODES]; /* dist[i][j] is the distance from i to j */
void shortest path(int s, int t, int path[])
{ struct state { /* the path being worked on */

int predecessor; /* previous node */
int length; /* length from source to this node */
enum {permanent, tentative} label; /* label state */

} state[MAX NODES];
int i, k, min;
struct state *p;

for (p = &state[0]; p < &state[n]; p++) { /* initialize state */
p->predecessor = <1;
p->length = INFINITY;
p->label = tentative;

}
state[t].length = 0; state[t].label = permanent;
k = t; /* k is the initial working node */
do { /* Is there a better path from k? */

for (i = 0; i < n; i++) /* this graph has n nodes */
if (dist[k][i] != 0 && state[i].label == tentative) {

if (state[k].length + dist[k][i] < state[i].length) {
state[i].predecessor = k;
state[i].length = state[k].length + dist[k][i];

}
}

/* Find the tentatively labeled node with the smallest label. */
k = 0; min = INFINITY;
for (i = 0; i < n; i++)

if (state[i].label == tentative && state[i].length < min) {
min = state[i].length;
k = i;

}
state[k].label = permanent;

} while (k != s);

/* Copy the path into the output array. */
i = 0; k = s;
do {path[i++] = k; k = state[k].predecessor; } while (k >= 0);

}

Figure 5-8. Dijkstra’s algorithm to compute the shortest path through a graph.

full list below k is not needed, since k effectively summarizes it.
Flooding is not practical for sending most packets, but it does have some im-

portant uses. First, it ensures that a packet is delivered to every node in the net-
work. This may be wasteful if there is a single destination that needs the packet,

374 THE NETWORK LAYER CHAP. 5

but it is effective for broadcasting information. In wireless networks, all messages
transmitted by a station can be received by all other stations within its radio range,
which is, in fact, flooding, and some algorithms utilize this property.

Second, flooding is tremendously robust. Even if large numbers of routers are
blown to smithereens (e.g., in a military network located in a war zone), flooding
will find a path if one exists, to get a packet to its destination. Flooding also re-
quires little in the way of setup. The routers only need to know their neighbors.
This means that flooding can be used as a building block for other routing algo-
rithms that are more efficient but need more in the way of setup. Flooding can also
be used as a metric against which other routing algorithms can be compared.
Flooding always chooses the shortest path because it chooses every possible path
in parallel. Consequently, no other algorithm can produce a shorter delay (if we
ignore the overhead generated by the flooding process itself).

5.2.4 Distance Vector Routing

Computer networks generally use dynamic routing algorithms that are more
complex than flooding, but more efficient because they find shortest paths for the
current topology. Two dynamic algorithms in particular, distance vector routing
and link state routing, are the most popular. In this section, we will look at the for-
mer algorithm. In the following section, we will study the latter algorithm.

A distance vector routing algorithm operates by having each router maintain
a table (i.e., a vector) giving the best known distance to each destination and which
link to use to get there. These tables are updated by exchanging information with
the neighbors. Eventually, every router knows the best link to reach each destina-
tion.

The distance vector routing algorithm is sometimes called by other names,
most commonly the distributed Bellman-Ford routing algorithm, after the re-
searchers who developed it (Bellman, 1957; and Ford and Fulkerson, 1962). It was
the original ARPANET routing algorithm and was also used in the Internet under
the name RIP.

In distance vector routing, each router maintains a routing table indexed by,
and containing one entry for, each router in the network. This entry has two parts:
the preferred outgoing line to use for that destination, and an estimate of the dis-
tance to that destination. The distance might be measured as the number of hops
or using another metric, as we discussed for computing shortest paths.

The router is assumed to know the ‘‘distance’’ to each of its neighbors. If the
metric is hops, the distance is just one hop. If the metric is propagation delay, the
router can measure it directly with special ECHO packets that the receiver just
timestamps and sends back as fast as it can.

As an example, assume that delay is used as a metric and that the router knows
the delay to each of its neighbors. Once every T msec, each router sends to each
neighbor a list of its estimated delays to each destination. It also receives a similar

SEC. 5.2 ROUTING ALGORITHMS IN A SINGLE NETWORK 375

list from each neighbor. Imagine that one of these tables has just come in from
neighbor X, with X i being X’s estimate of how long it takes to get to router i. If the
router knows that the delay to X is m msec, it also knows that it can reach router i
via X in X i + m msec. By performing this calculation for each neighbor, a router
can find out which estimate seems the best and use that estimate and the corres-
ponding link in its new routing table. Note that the old routing table is not used in
the calculation.

This updating process is illustrated in Fig. 5-9. Part (a) shows a network. The
first four columns of part (b) show the delay vectors received from the neighbors of
router J. A claims to have a 12-msec delay to B, a 25-msec delay to C, a 40-msec
delay to D, etc. Suppose that J has measured or estimated its delay to its neigh-
bors, A, I, H, and K, as 8, 10, 12, and 6 msec, respectively.

(a)

A B C D

E

I J K L

F G
H

Router

0
12
25
40
14
23
18
17
21
9
24
29

24
36
18
27
7

20
31
20
0

11
22
33

20
31
19
8
30
19
6
0
14
7
22
9

21
28
36
24
22
40
31
19
22
10
0
9

8
20
28
20
17
30
18
12
10
0
6

15

A
A
I
H
I
I
H
H
I
<

K
K

To A I H K Line

New estimated
delay from J

A
B
C
D
E
F
G
H
I
J
K
L

JA JI JH JK
delay delaydelaydelay

is is is is
8 10 12 6

New
routing
table
for J

Vectors received from
J's four neighbors

(b)

Figure 5-9. (a) A network. (b) Input from A, I, H, K, and the new routing table
for J.

Consider how J computes its new route to router G. It knows that it can get to
A in 8 msec, and furthermore A claims to be able to get to G in 18 msec, so J
knows it can count on a delay of 26 msec to G if it forwards packets bound for G to
A. Similarly, it computes the delay to G via I, H, and K as 41 (31 + 10), 18
(6 + 12), and 37 (31 + 6) msec, respectively. The best of these values is 18, so it
makes an entry in its routing table that the delay to G is 18 msec and that the route
to use is via H. The same calculation is performed for all the other destinations,
with the new routing table shown in the last column of the figure.

376 THE NETWORK LAYER CHAP. 5

The Count-to-Infinity Problem

The settling of routes to best paths across the network is called convergence.
Distance vector routing is useful as a simple technique by which routers can col-
lectively compute shortest paths, but it has a serious drawback in practice: although
it converges to the correct answer, it may do so slowly. In particular, it reacts ra-
pidly to good news, but leisurely to bad news. Consider a router whose best route
to destination X is long. If, on the next exchange, neighbor A suddenly reports a
short delay to X, the router just switches over to using the line to A to send traffic
to X. In one vector exchange, the good news is processed.

To see how fast good news propagates, consider the five-node (linear) network
of Fig. 5-10, where the delay metric is the number of hops. Suppose A is down ini-
tially and all the other routers know this. In other words, they have all recorded the
delay to A as infinity.

A B C D E

· · · ·

· · ·

· ·

·

4

1
1
1
1

2
2
2

3
3

Initially
After 1 exchange
After 2 exchanges
After 3 exchanges
After 4 exchanges

A B C D E

1 2 3 4

· · · ·

2 3 4
3 4

4
6

3
3
5
5

4
4
6

5
5

67 6 7
87 8 7

Initially
After 1 exchange
After 2 exchanges
After 3 exchanges
After 4 exchanges
After 5 exchanges
After 6 exchanges

...

(a) (b)

Figure 5-10. The count-to-infinity problem.

When A comes up, the other routers learn about it via the vector exchanges.
For simplicity, we will assume that there is a gigantic gong somewhere that is
struck periodically to initiate a vector exchange at all routers simultaneously. At
the time of the first exchange, B learns that its left-hand neighbor has zero delay to
A. B now makes an entry in its routing table indicating that A is one hop away to
the left. All the other routers still think that A is down. At this point, the routing
table entries for A are as shown in the second row of Fig. 5-10(a). On the next ex-
change, C learns that B has a path of length 1 to A, so it updates its routing table to
indicate a path of length 2, but D and E do not hear the good news until later.
Clearly, the good news is spreading at the rate of one hop per exchange. In a net-
work whose longest path is of length N hops, within N exchanges everyone will
know about newly revived links and routers.

Now let us consider the situation of Fig. 5-10(b), in which all the links and
routers are initially up. Routers B, C, D, and E have distances to A of 1, 2, 3, and 4

SEC. 5.2 ROUTING ALGORITHMS IN A SINGLE NETWORK 377

hops, respectively. Suddenly, either A goes down or the link between A and B is
cut (which is effectively the same thing from B’s point of view).

At the first packet exchange, B does not hear anything from A. Fortunately, C
says ‘‘Do not worry; I have a path to A of length 2.’’ Little does B suspect that C’s
path runs through B itself. For all B knows, C might have 10 links all with separate
paths to A of length 2. As a result, B thinks it can reach A via C, with a path length
of 3. D and E do not update their entries for A on the first exchange.

On the second exchange, C notices that each of its neighbors claims to have a
path to A of length 3. It picks one of them at random and makes its new distance to
A 4, as shown in the third row of Fig. 5-10(b). Subsequent exchanges produce the
history shown in the rest of Fig. 5-10(b).

From this figure, it should be clear why bad news travels slowly: no router ever
has a value more than one higher than the minimum of all its neighbors. Gradu-
ally, all routers work their way up to infinity, but the number of exchanges required
depends on the numerical value used for infinity. For this reason, it is wise to set
infinity to the longest path plus 1.

Not entirely surprisingly, this problem is known as the count-to-infinity prob-
lem. There have been many attempts to solve it, for example, preventing routers
from advertising their best paths back to the neighbors from which they heard
them. Split horizon with poisoned reverse rule are discussed in RFC 1058. How-
ever, none of these heuristics work well in practice despite the colorful names. The
core of the problem is that when X tells Y that it has a path somewhere, Y has no
way of knowing whether it itself is on the path.

5.2.5 Link State Routing

Distance vector routing was used in the ARPANET until 1979, when it was re-
placed by link state routing. The primary problem that caused its demise was that
the algorithm often took too long to converge after the network topology changed
(due to the count-to-infinity problem). Consequently, it was replaced by an en-
tirely new algorithm, now called link state routing. Variants of link state routing
called IS-IS and OSPF are the routing algorithms that are most widely used inside
large networks and the Internet today.

The idea behind link state routing is fairly simple and can be stated as five
parts. Each router must do the following things to make it work:

1. Discover its neighbors and learn their network addresses.

2. Set the distance or cost metric to each of its neighbors.

3. Construct a packet telling all it has just learned.

4. Send this packet to and receive packets from all other routers.

5. Compute the shortest path to every other router.

378 THE NETWORK LAYER CHAP. 5

In effect, the complete topology is distributed to every router. Then Dijkstra’s al-
gorithm can be run at each router to find the shortest path to every other router.
Below we will consider each of these five steps in more detail.

Learning about the Neighbors

When a router is booted, its first task is to learn who its neighbors are. It
accomplishes this goal by sending a special HELLO packet on each point-to-point
line. The router on the other end is expected to send back a reply giving its name.
These names must be globally unique because when a distant router later hears that
three routers are all connected to F, it is essential that it can determine whether all
three mean the same F.

When two or more routers are connected by a broadcast link (e.g., a switch,
ring, or classic Ethernet), the situation is slightly more complicated. Figure
5-11(a) illustrates a broadcast LAN to which three routers, A, C, and F, are directly
connected. Each of these routers is connected to one or more additional routers, as
shown.

Router

A

B

C

D E

C

D E

H

I

F

G G H

IF

N

A

B

LAN

(a) (b)

Figure 5-11. (a) Nine routers and a broadcast LAN. (b) A graph model of (a).

The broadcast LAN provides connectivity between each pair of attached rout-
ers. However, modeling the LAN as many point-to-point links increases the size of
the topology and leads to wasteful messages. A better way to model the LAN is to
consider it as a node itself, as shown in Fig. 5-11(b). Here, we have introduced a
new, artificial node, N, to which A, C, and F are connected. One designated
router on the LAN is selected to play the role of N in the routing protocol. The
fact that it is possible to go from A to C on the LAN is represented by the path
ANC here.

SEC. 5.2 ROUTING ALGORITHMS IN A SINGLE NETWORK 379

Setting Link Costs

The link state routing algorithm requires each link to have a distance or cost
metric for finding shortest paths. The cost to reach neighbors can be set automat-
ically, or configured by the network operator. A common choice is to make the
cost inversely proportional to the bandwidth of the link. For example, 1-Gbps
Ethernet may have a cost of 1 and 100-Mbps Ethernet may have a cost of 10. This
makes higher-capacity paths better choices.

If the network is geographically spread out, the delay of the links may be fac-
tored into the cost so that paths over shorter links are better choices. The most
direct way to determine this delay is to send over the line a special ECHO packet
that the other side is required to send back immediately. By measuring the round-
trip time and dividing it by two, the sending router can get an estimate of the delay.

Building Link State Packets

Once the information needed for the exchange has been collected, the next step
is for each router to build a packet containing all the data. The packet starts with
the identity of the sender, followed by a sequence number and age (to be described
later) and a list of neighbors. The cost to each neighbor is also given. An example
network is presented in Fig. 5-12(a) with costs shown as labels on the lines. The
corresponding link state packets for all six routers are shown in Fig. 5-12(b).

B C

E F

A D
61

2

8

5 7

4 3

(a)

A
Seq.
Age

B C D E F

B 4
E 5

Seq.
Age
A 4
C 2

Seq.
Age
B 2
D 3

Seq.
Age

C 3
F 7

Seq.
Age
A 5
C 1

Seq.
Age
B 6
D 7

F 6 E 1 F 8 E 8

Link State Packets

(b)

Figure 5-12. (a) A network. (b) The link state packets for this network.

Building the link state packets is easy. The hard part is determining when to
build them. One possibility is to build them periodically, at regular intervals. An-
other possibility is to build them when some specific event occurs, such as a line or
neighbor going down or coming back up again or changing its properties.

Distributing the Link State Packets

The trickiest part of the algorithm is distributing the link state packets. All of
the routers must get all of the link state packets quickly and reliably. If different
routers are using different versions of the topology, the routes they compute can
have inconsistencies, such as loops, unreachable machines, and other problems.

380 THE NETWORK LAYER CHAP. 5

First, we will describe the basic distribution algorithm. After that, we will give
some refinements. The fundamental idea is to use flooding to distribute the link
state packets to all routers. To keep the flood in check, each packet contains a se-
quence number that is incremented for each new packet sent. Routers keep track
of all the (source router, sequence) pairs they see. When a new link state packet
comes in, it is checked against the list of packets already seen. If it is new, it is for-
warded on all lines except the one it arrived on. If it is a duplicate, it is discarded.
If a packet with a sequence number lower than the highest one seen so far ever ar-
rives, it is rejected as being obsolete as the router has more recent data.

This algorithm has a few problems, but they are manageable. First, if the se-
quence numbers wrap around, confusion will reign. The solution here is to use a
32-bit sequence number. With one link state packet per second, it would take 137
years to wrap around, so this possibility can be ignored.

Second, if a router ever crashes, it will lose track of its sequence number. If it
starts again at 0, the next packet it sends will be rejected as a duplicate.

Third, if a sequence number is ever corrupted and 65,540 is received instead of
4 (a 1-bit error), packets 5 through 65,540 will be rejected as obsolete, since the
current sequence number will be thought to be 65,540.

The solution to these problems is to include the age of each packet after the se-
quence number and decrement it once a second. When the age hits zero, the infor-
mation from that router is discarded. Normally, a new packet comes in, say, every
10 sec, so router information only times out when a router is down (or six consecu-
tive packets have been lost, an unlikely event). The Age field is also decremented
by each router during the initial flooding process, to make sure no packet can get
lost and live for an indefinite period of time (a packet with age zero is discarded).

Some refinements to this algorithm make it more robust. When a link state
packet comes in to a router for flooding, it is not queued for transmission im-
mediately. Instead, it is put in a holding area to wait a short while in case more
links are coming up or going down. If another link state packet from the same
source comes in before the first packet is transmitted, their sequence numbers are
compared. If they are equal, the duplicate is discarded. If they are different, the
older one is thrown out. To guard against errors on the links, all link state packets
are acknowledged.

The data structure used by router B for the network shown in Fig. 5-12(a) is
depicted in Fig. 5-13. Each row here corresponds to a recently arrived, but as yet
not fully processed, link state packet. The table records where the packet origi-
nated, its sequence number and age, and the data. In addition, there are send and
acknowledgement flags for each of B’s three links (to A, C, and F, respectively).
The send flags mean that the packet must be sent on the indicated link. The ac-
knowledgement flags mean that it must be acknowledged there.

In Fig. 5-13, the link state packet from A arrives directly, so it must be sent to
C and F and acknowledged to A, as indicated by the flag bits. Similarly, the packet
from F has to be forwarded to A and C and acknowledged to F.

SEC. 5.2 ROUTING ALGORITHMS IN A SINGLE NETWORK 381

D 21 59 1 0 0 0 1 1

C 20 60 1 0 1 0 1 0

E 21 59 0 1 0 1 0 1

F 21 60 1 1 0 0 0 1

A 21 60 0 1 1 1 0 0

Source Seq. Age A C F A C F Data

Send flags ACK flags

Figure 5-13. The packet buffer for router B in Fig. 5-12(a).

However, the situation with the third packet, from E, is different. It arrives
twice, once via EAB and once via EFB. Consequently, it has to be sent only to C
but must be acknowledged to both A and F, as indicated by the bits.

If a duplicate arrives while the original is still in the buffer, bits have to be
changed. For example, if a copy of C’s state arrives from F before the fourth entry
in the table has been forwarded, the six bits will be changed to 100011 to indicate
that the packet must be acknowledged to F but not sent there.

Computing the New Routes

Once a router has accumulated a full set of link state packets, it can construct
the entire network graph because every link is represented. Every link is, in fact,
represented twice, once for each direction. The different directions may even have
different costs. The shortest-path computations may then find different paths from
router A to B than from router B to A.

Now Dijkstra’s algorithm can be run locally to construct the shortest paths to
all possible destinations. The results of this algorithm tell the router which link to
use to reach each destination. This information is installed in the routing tables,
and normal operation is resumed.

Compared to distance vector routing, link state routing requires more memory
and computation. For a network with n routers, each of which has k neighbors, the
memory required to store the input data is proportional to kn, which is at least as
large as a routing table listing all the destinations. Also, the computation time
grows faster than kn, even with the most efficient data structures, an issue in large
networks. Nevertheless, in many practical situations, link state routing works well
because it does not suffer from slow convergence problems.

Link state routing is widely used in actual networks, so a few words about
some example protocols are in order. Many ISPs use the IS-IS (Intermediate Sys-
tem-to-Intermediate System) link state protocol (Oran, 1990). It was designed

382 THE NETWORK LAYER CHAP. 5

for an early network called DECnet, later adopted by ISO for use with the OSI pro-
tocols and then modified to handle other protocols as well, most notably, IP. OSPF
(Open Shortest Path First), which will be discussed in Sec. 5.7.6, is the other main
link state protocol. It was designed by IETF several years after IS-IS and adopted
many of the innovations designed for IS-IS. These innovations include a self-stabi-
lizing method of flooding link state updates, the concept of a designated router on
a LAN, and the method of computing and supporting path splitting and multiple
metrics. As a consequence, there is very little difference between IS-IS and OSPF.
The most important difference is that IS-IS can carry information about multiple
network layer protocols at the same time (e.g., IP, IPX, and AppleTalk). OSPF
does not have this feature, and it is an advantage in large multiprotocol environ-
ments.

A general comment on routing algorithms is also in order. Link state, distance
vector, and other algorithms rely on processing at all the routers to compute routes.
Problems with the hardware or software at even a small number of routers can
wreak havoc across the network. For example, if a router claims to have a link it
does not have or forgets a link it does have, the network graph will be incorrect. If
a router fails to forward packets or corrupts them while forwarding them, the route
will not work as expected. Finally, if it runs out of memory or does the routing cal-
culation wrong, bad things will happen. As the network grows into the range of
tens or hundreds of thousands of nodes, the probability of some router failing occa-
sionally becomes nonnegligible. The trick is to try to arrange to limit the damage
when the inevitable happens. Perlman (1988) discusses these problems and their
possible solutions in detail.

5.2.6 Hierarchical Routing within a Network

As networks grow in size, the router routing tables grow proportionally. Not
only is router memory consumed by ever-increasing tables, but more CPU time is
needed to scan them and more bandwidth is needed to send status reports about
them. Additionally, even if every router could store the entire topology, recomput-
ing shortest paths every time the network experienced changes in the topology
would be prohibitive; imagine, for example, if a very large network would need to
computer shortest paths every time a link in the network failed or recovered. At a
certain point, the network may grow to a size where it is no longer feasible for
every router to have an entry for every other router, so the routing will have to be
done hierarchically, through the use of routing areas.

When hierarchical routing is used, the routers are divided into what we will
call regions or areas. Each router knows all the details about how to route packets
to destinations within its own region but knows nothing about the internal structure
of other regions. When different networks are interconnected, it is natural to
regard each one as a separate region to free the routers in one network from having
to know the topological structure of the other ones.

SEC. 5.2 ROUTING ALGORITHMS IN A SINGLE NETWORK 383

For huge networks, a two-level hierarchy may be insufficient; it may be neces-
sary to group the regions into clusters, the clusters into zones, the zones into
groups, and so on, until we run out of names for units of aggregation. As an ex-
ample of a simple multilevel hierarchy, consider how a packet might be routed
from Berkeley, California, to Malindi, Kenya. The Berkeley router would know
the detailed topology within California but would send all out-of-state traffic to the
Los Angeles router. The Los Angeles router would be able to route traffic directly
to other domestic routers but would send all foreign traffic to New York. The New
York router would be programmed to direct all traffic to the router in the destina-
tion country responsible for handling foreign traffic, say, in Nairobi. Finally, the
packet would work its way down the tree in Kenya until it got to Malindi.

Figure 5-14 gives a quantitative example of routing in a two-level hierarchy
with five regions. The full routing table for router 1A has 17 entries, as shown in
Fig. 5-14(b). When routing is done hierarchically, as in Fig. 5-14(c), there are en-
tries for all the local routers, as before, but all other regions are condensed into a
single router, so all traffic for region 2 goes via the 1B-2A line, but the rest of the
remote traffic goes via the 1C-3B line. Hierarchical routing has reduced the table
from 17 to 7 entries. As the ratio of the number of regions to the number of routers
per region grows, the savings in table space increase.

Region 1 Region 2

Region 3 Region 5Region 4

1B

1A
1C

2A 2B

2C

5B 5C
5A

5E
5D

2D

4A
4B 4C

3A

3B

1B 1
1C 1
1B 2
1B 3
1B 3
1B 4
1C 3
1C 2
1C 3
1C 4
1C 4
1C 4
1C 5
1B 5
1C 6
1C 5

– –1A

1C
2A
2B
2C
2D
3A
3B
4A
4B
4C
5A
5B
5C
5D
5E

1B

Line HopsDest.

Full table for 1A

1A

1C
2
3
4
5

1B

Line HopsDest.

Hierarchical table for 1A

1B 1
1C 1
1B 2
1C 2
1C 3
1C 4

– –

(a) (b) (c)

Figure 5-14. Hierarchical routing.
Unfortunately, these gains in space are not free. There is a penalty to be paid:

increased path length. For example, the best route from 1A to 5C is via region 2,

384 THE NETWORK LAYER CHAP. 5

but with hierarchical routing all traffic to region 5 goes via region 3, because that is
better for most destinations in region 5.

When a single network becomes very large, an interesting question is ‘‘How
many levels should the hierarchy have?’’ For example, consider a network with
720 routers. If there is no hierarchy, each router needs 720 routing table entries. If
the network is partitioned into 24 regions of 30 routers each, each router needs 30
local entries plus 23 remote entries for a total of 53 entries. If a three-level hier-
archy is chosen, with 8 clusters each containing 9 regions of 10 routers, each router
needs 10 entries for local routers, 8 entries for routing to other regions within its
own cluster, and 7 entries for distant clusters, for a total of 25 entries. Kamoun and
Kleinrock (1979) discovered that the optimal number of levels for an N router net-
work is ln N , requiring a total of e ln N entries per router. They have also shown
that the increase in effective mean path length caused by hierarchical routing is
sufficiently small that it is usually acceptable.

5.2.7 Broadcast Routing

In some applications, hosts need to send messages to many or all other hosts.
For example, a service distributing weather reports, stock market updates, or live
radio programs might work best by sending to all machines and letting those that
are interested read the data. Sending a packet to all destinations simultaneously is
called broadcasting. Various methods have been proposed for doing it.

One broadcasting method that requires no special features from the network is
for the source to simply send a distinct packet to each destination. Not only is the
method wasteful of bandwidth and slow, but it also requires the source to have a
complete list of all destinations. This method is not desirable in practice, even
though it is widely applicable.

An improvement is multidestination routing, in which each packet contains
either a list of destinations or a bit map indicating the desired destinations. When a
packet arrives at a router, the router checks all the destinations to determine the set
of output lines that will be needed. (An output line is needed if it is the best route
to at least one of the destinations.) The router generates a new copy of the packet
for each output line to be used and includes in each packet only those destinations
that are to use the line. In effect, the destination set is partitioned among the output
lines. After a sufficient number of hops, each packet will carry only one destina-
tion like a normal packet. Multidestination routing is like using separately ad-
dressed packets, except that when several packets must follow the same route, one
of them pays full fare and the rest ride free. The network bandwidth is therefore
used more efficiently. However, this scheme still requires the source to know all
the destinations, plus it is as much work for a router to determine where to send
one multidestination packet as it is for multiple distinct packets.

We have already seen a better broadcast routing technique: flooding. When
implemented with a sequence number per source, flooding uses links efficiently

SEC. 5.2 ROUTING ALGORITHMS IN A SINGLE NETWORK 385

with a decision rule at routers that is relatively simple. Although flooding is ill-
suited for ordinary point-to-point communication, it rates serious consideration for
broadcasting. However, it turns out that we can do better still once the shortest
path routes for regular packets have been computed.

The idea for reverse path forwarding is elegant and remarkably simple once
it has been pointed out (Dalal and Metcalfe, 1978). When a broadcast packet ar-
rives at a router, the router checks to see if the packet arrived on the link that is nor-
mally used for sending packets toward the source of the broadcast. If so, there is
an excellent chance that the broadcast packet itself followed the best route from the
router and is therefore the first copy to arrive at the router. This being the case, the
router forwards copies of it onto all links except the one it arrived on. If, however,
the broadcast packet arrived on a link other than the preferred one for reaching the
source, the packet is discarded as a likely duplicate.

I

F H J N

A D GKE O M O

GC D N

BH L

L B

A

E

H

B C
D

F

J

G

O

M
K

L
N

I

(a)

A B C
D

G

J

O

F
I

E

H

K

L

M

N

(b) (c)

KE

H

Figure 5-15. Reverse path forwarding. (a) A network. (b) Sink tree for router I.
(c) The tree built by reverse path forwarding from I.

An example of reverse path forwarding is shown in Fig. 5-15. Part (a) shows a
network, part (b) shows a sink tree for router I of that network, and part (c) shows
how the reverse path algorithm works. On the first hop, I sends packets to F, H, J,
and N, as indicated by the second row of the tree. Each of these packets arrives on
the preferred path to I (assuming that the preferred path falls along the sink tree)
and is so indicated by a circle around the letter. On the second hop, eight packets
are generated, two by each of the routers that received a packet on the first hop. As
it turns out, all eight of these arrive at previously unvisited routers, and five of
these arrive along the preferred line. Of the six packets generated on the third hop,
only three arrive on the preferred path (at C, E, and K); the others are duplicates.
After five hops and 24 packets, the broadcasting terminates, compared with four
hops and 14 packets had the sink tree been followed exactly.

The principal advantage of reverse path forwarding is that it is efficient while
being easy to implement. It sends the broadcast packet over each link only once in
each direction, just as in flooding, yet it requires only that routers know how to

386 THE NETWORK LAYER CHAP. 5

reach all destinations, without needing to remember sequence numbers (or use
other mechanisms to stop the flood) or list all destinations in the packet.

Our last broadcast algorithm improves on the behavior of reverse path for-
warding. It makes explicit use of the sink tree—or any other convenient spanning
tree for that matter—for the router initiating the broadcast. A spanning tree is a
subset of the network that includes all the routers but contains no loops. Sink trees
are spanning trees. If each router knows which of its lines belong to the spanning
tree, it can copy an incoming broadcast packet onto all the spanning tree lines ex-
cept the one it arrived on. This method makes excellent use of bandwidth, generat-
ing the absolute minimum number of packets necessary to do the job. In Fig. 5-15,
for example, when the sink tree of part (b) is used as the spanning tree, the broad-
cast packet is sent with the minimum 14 packets. The only problem is that each
router must have knowledge of some spanning tree for the method to be applicable.
Sometimes this information is available (e.g., with link state routing, all routers
know the complete topology, so they can compute a spanning tree) but sometimes
it is not (e.g., with distance vector routing).

5.2.8 Multicast Routing

Some applications, such as a multiplayer game or live video of a sports event
streamed to many viewing locations, send packets to multiple receivers. Unless the
group is very small, sending a distinct packet to each receiver is expensive. On the
other hand, broadcasting a packet is wasteful if the group consists of, say, 1000
machines on a million-node network, so that most receivers are not interested in
the message (or worse yet, they are definitely interested but are not supposed to see
it, for example, because it is part of a pay-per-view sports event). Thus, we need a
way to send messages to well-defined groups that are numerically large in size but
small compared to the network as a whole.

Sending a message to such a group is called multicasting, and the routing al-
gorithm used is called multicast routing. All multicasting schemes require some
way to create and destroy groups and to identify which routers are members of a
group. How these tasks are accomplished is not of concern to the routing algo-
rithm. For now, we will assume that each group is identified by a multicast address
and that routers know the groups to which they belong. We will revisit group mem-
bership when we describe Internet multicasting in Sec. 5.7.8.

Multicast routing schemes build on the broadcast routing schemes we have al-
ready studied, sending packets along spanning trees to deliver the packets to the
members of the group while making efficient use of bandwidth. However, the best
spanning tree to use depends on whether the group is dense, with receivers scat-
tered over most of the network, or sparse, with much of the network not belonging
to the group. In this section we will consider both cases.

If the group is dense, broadcast is a good start because it efficiently gets the
packet to all parts of the network. But broadcast will reach some routers that are

SEC. 5.2 ROUTING ALGORITHMS IN A SINGLE NETWORK 387

not members of the group, which is wasteful. The solution explored by Deering
and Cheriton (1990) is to prune the broadcast spanning tree by removing links that
do not lead to members. The result is an efficient multicast spanning tree.

As an example, consider the two groups, 1 and 2, in the network shown in
Fig. 5-16(a). Some routers are attached to hosts that belong to none, one or both of
these groups, as indicated in the figure. A spanning tree for the leftmost router is
shown in Fig. 5-16(b). This tree can be used for broadcast but is overkill for multi-
cast, as can be seen from the two pruned versions that are shown next. In
Fig. 5-16(c), all the links that do not lead to hosts that are members of group 1 have
been removed. The result is the multicast spanning tree for the leftmost router to
send to group 1. Packets are forwarded only along this spanning tree, which is
more efficient than the broadcast tree because there are 7 links instead of 10.
Fig. 5-16(d) shows the multicast spanning tree after pruning for group 2. It is ef-
ficient too, with only five links this time. It also shows that different multicast
groups have different spanning trees.

1, 2

1

1, 2

2 1 12

2

1

2

1, 2
1, 2

2 2

1

1

1
1

1
1

1

2
2

2

2 2

(a) (b)

(c) (d)

Figure 5-16. (a) A network. (b) A spanning tree for the leftmost router. (c) A
multicast tree for group 1. (d) A multicast tree for group 2.

Various ways of pruning the spanning tree are possible. The simplest one can
be used if link state routing is used and furthermore each router is aware of the
complete topology, including which hosts belong to which groups. Each router can

388 THE NETWORK LAYER CHAP. 5

then construct its own pruned spanning tree for each sender to the group in ques-
tion by constructing a sink tree for the sender as usual and then removing all links
that do not connect group members to the sink node. MOSPF (Multicast OSPF)
is an example of a link state protocol that works in this way (Moy, 1994).

With distance vector routing, a different pruning strategy can be followed. The
basic algorithm is reverse path forwarding. However, whenever a router with no
hosts interested in a particular group and no connections to other routers receives a
multicast message for that group, it responds with a PRUNE message, telling the
neighbor that sent the message not to send it any more multicasts from the sender
for that group. When a router with no group members among its own hosts has re-
ceived such messages on all the lines to which it sends the multicast, it, too, can re-
spond with a PRUNE message. In this way, the spanning tree is recursively pruned.
DVMRP (Distance Vector Multicast Routing Protocol) is an example of a multi-
cast routing protocol that works this way (Waitzman et al., 1988).

Pruning results in efficient spanning trees that use only the links that are ac-
tually needed to reach members of the group and no others. One potential disad-
vantage is that it is lots of work for routers, especially for very big networks. Sup-
pose that a network has n groups, each with an average of m nodes. At each router
and for each group m pruned spanning trees must be stored, for a total of mn trees.
For example, Fig. 5-16(c) gives the spanning tree for the leftmost router to send to
group 1. The spanning tree for the rightmost router to send to group 1 (not shown
in the figure) will look quite different, as packets will head directly for group mem-
bers rather than via the left side of the graph. This in turn means that routers must
forward packets destined to group 1 in different directions depending on which
node is sending to the group. When many large groups with many senders exist,
considerable storage is needed to store all the trees.

An alternative design uses core-based trees to compute a single spanning tree
for the group (Ballardie et al., 1993). All of the routers agree on a root (called the
core or rendezvous point) and build the tree by sending a packet from each mem-
ber to the root. The tree is the union of the paths traced by these packets.
Fig. 5-17(a) shows a core-based tree for group 1. To send to this group, a sender
sends a packet to the core. When the packet reaches the core, it is forwarded down
the tree. This is shown in Fig. 5-17(b) for the sender on the righthand side of the
network. As a performance optimization, packets destined for the group do not
need to reach the core before they are multicast. As soon as a packet reaches the
tree, it can be forwarded up toward the root, as well as down all the other branches.
This is the case for the sender at the top of Fig. 5-17(b).

Having a shared tree is not optimal for all sources. For example, in
Fig. 5-17(b), the packet from the sender on the righthand side reaches the top-right
group member via the core in three hops, instead of directly. The inefficiency de-
pends on where the core and senders are located, but often it is reasonable when
the core is in the middle of the senders. When there is only a single sender, as in a
video that is streamed to a group, using the sender as the core is optimal.

SEC. 5.2 ROUTING ALGORITHMS IN A SINGLE NETWORK 389

1

1
1

1

1

1

1
1

1

1

Core
Core

Sender

Sender

(a) (b)

Figure 5-17. (a) Core-based tree for group 1. (b) Sending to group 1.

Also of note is that shared trees can be a major savings in storage costs, mes-
sages sent, and computation. Each router has to keep only one tree per group, in-
stead of m trees. Further, routers that are not part of the tree do no work at all to
support the group. For this reason, shared tree approaches like core-based trees are
used for multicasting to sparse groups in the Internet as part of popular protocols
such as protocol independent multicast (Fenner et al., 2006).

5.2.9 Anycast Routing

So far, we have covered delivery models in which a source sends to a single
destination (called unicast), to all destinations (called broadcast), and to a group of
destinations (called multicast). Another delivery model, called anycast is some-
times also useful. In anycast, a packet is delivered to the nearest member of a
group (Partridge et al., 1993). Schemes that find these paths are called anycast
routing.

Why would we want anycast? Sometimes nodes provide a service, such as time
of day or content distribution for which it is getting the right information that mat-
ters, not the node that is contacted; any node will do. For example, anycast is used
in the Internet as part of DNS, as we will see in Chap. 7.

Fortunately, regular distance vector and link state routing can produce anycast
routes, so we do not need to devise a new routing scheme for anycast. Suppose we
want to anycast to the members of group 1. They will all be given the address ‘‘1,’’
instead of different addresses. Distance vector routing will distribute vectors as
usual, and nodes will choose the shortest path to destination 1. This will result in
nodes sending to the nearest instance of destination 1. The routes are shown in
Fig. 5-18(a). This procedure works because the routing protocol does not realize
that there are multiple instances of destination 1. That is, it believes that all the
instances of node 1 are the same node, as in the topology shown in Fig. 5-18(b).

390 THE NETWORK LAYER CHAP. 5

1

1
1

1

1

1

(a) (b)

Figure 5-18. (a) Anycast routes to group 1. (b) Topology seen by the routing protocol.

This procedure works for link state routing as well, although there is the added
consideration that the routing protocol must not find seemingly short paths that
pass through node 1. This would result in jumps through hyperspace, since the
instances of node 1 are really nodes located in different parts of the network. How-
ever, link state protocols already make this distinction between routers and hosts.
We glossed over this fact earlier because it was not needed for our discussion.

5.3 TRAFFIC MANAGEMENT AT THE NETWORK LAYER

Too many packets in any part of the network can ultimately introduce packet
delay and loss that degrades performance. This situation is called congestion.

5.3.1 The Need for Traffic Management: Congestion

The network and transport layers share the responsibility for managing conges-
tion. Because congestion occurs within the network, it is the network layer that di-
rectly experiences it and must ultimately determine what to do with the excess
packets. The most effective way to control congestion is to reduce the load that the
transport layer is placing on the network. This requires the network and transport
layers to work together. The network layer does not automatically mitigate con-
gestion, but network operators can configure routers, switches, and other devices at
the network layer to mitigate the effects of congestion, typically by taking actions
that would encourage a sender to reduce the sending rate, or by sending traffic
along different, less-congested paths through the network. In this chapter we will
look at the aspects of congestion that concern the network layer, and mechanisms
that the network layer uses to control and manage congestion. To avoid confusion
with the more common use of the phase ‘‘congestion control,’’ which is frequently
used by some authors to describe functions of the transport layer, in this chapter we

SEC. 5.3 TRAFFIC MANAGEMENT AT THE NETWORK LAYER 391

will discuss practices to manage congestion at the network layer as congestion
management or traffic management. In Chap. 6, we will finish the topic by cov-
ering the mechanisms that the transport layer uses to manage congestion control.

Figure 5-19 shows the onset of congestion. When the number of packets that
hosts send into the network is well within the network’s capacity, the amount of
traffic that is delivered is proportional to the amount of traffic that is sent: If twice
as much traffic is sent, twice as much is delivered. However, as the offered load
approaches the carrying capacity, bursts of traffic occasionally fill up the buffers
inside routers and some packets are lost. These lost packets consume some of the
capacity, so the number of delivered packets falls below the ideal curve. At this
point, the network is experiencing congestion.

Ideal

G
oo

dp
ut

 (p
ac

ke
ts

/s
ec

)

Desirable
response

Capacity of
the network

Congestion
collapse

Offered load (packet/sec)

Onset of
congestion

Figure 5-19. Performance drops significantly in the presence of congestion:
packet loss rates increase, and latency also increases as router queues fill with
packets.

At some point, the network may experience a congestion collapse, where per-
formance plummets as the offered load increases beyond the capacity. In short,
congestion collapse occurs when increasing load on the network actually results in
less traffic being successfully delivered. This situation can occur if packets are
sufficiently delayed inside the network that they are no longer useful when they
leave the network. For example, in the early Internet, the time a packet spent wait-
ing for a backlog of packets ahead of it to be sent over a slow 56-kbps link could
reach the maximum time it was allowed to remain in the network. It then had to be
thrown away. A different failure mode occurs when senders retransmit packets that
are greatly delayed, thinking that they have been lost. In this case, copies of the
same packet will be delivered by the network, again wasting its capacity. To cap-
ture these factors, the y-axis of Fig. 5-19 is given as goodput, which is the rate at
which useful packets are delivered by the network.

We would like to design networks that avoid congestion where possible and do
not suffer from congestion collapse if they somehow do become congested. Unfor-
tunately, in a packet-switched network, congestion cannot wholly be avoided. If

392 THE NETWORK LAYER CHAP. 5

all of a sudden, streams of packets begin arriving on three or four input lines and
all need the same output line, a queue will build up. If there is insufficient memory
to hold all of them, packets will be lost. Adding more memory may help up to a
point, but Nagle (1987) realized that if routers have an infinite amount of memory,
congestion frequently gets worse, not better. More recently, researchers discovered
that many network devices tend to have more memory than they need, a concept
that became known as bufferbloat. Network devices that have too much memory
can degrade network performance for a variety of reasons. First, by the time pack-
ets get to the front of the queue, they have already timed out (repeatedly) and dup-
licates have been sent. Second, as we will discuss in Chap. 6, senders need timely
information about network congestion, and if packets are stored in router buffers,
rather than dropped, then senders will continue to send traffic that congests the net-
work. All of this makes matters worse, not better—it leads to congestion collapse.

Low-bandwidth links or routers that process packets more slowly than the ca-
pacity of a network link can also become congested. In cases where the network
has additional capacity in other parts of the network, congestion can be mitigated
by directing some of the traffic away from the bottleneck to other (less congested)
parts of the network. Ultimately, however, increasing traffic demands may result in
congestion being pervasive throughout the network. When this occurs, there are
two approaches that operators can take: shedding load (i.e., dropping traffic), or
provisioning additional capacity.

It is worth pointing out the difference between congestion control, traffic
management, and flow control, as the relationship is a subtle one. Traffic man-
agement (sometimes also called traffic engineering) has to do with making sure the
network is able to carry the offered traffic; it can be performed by devices in the
network, or by the senders of traffic (often through mechanisms in the transport
protocol, which are often referred to as congestion control). Congestion manage-
ment and control concerns the behavior of all the hosts and routers. Flow control,
in contrast, relates to the traffic between a particular sender and a particular re-
ceiver and is generally concerned with making sure that the sender is not trans-
mitting data faster than the receiver can process it. Its job is to make sure no data
is lost because the sender is more powerful than the receiver and can send data
faster that the receiver can absorb it.

To see the difference between these two concepts, consider a network made up
of 100-Gbps fiber optic links on which a supercomputer is trying to force feed a
large file to a personal computer that is capable of handling only 1 Gbps. Al-
though there is no congestion (the network itself is not in trouble), flow control is
needed to force the supercomputer to stop frequently to give the personal computer
a chance to breathe.

At the other extreme, consider a network with 1-Mbps lines and 1000 large
computers, half of which are trying to transfer files at 100 kbps to the other half.
Here, the problem is not that of fast senders overpowering slow receivers, but that
the total offered traffic exceeds what the network can handle.

SEC. 5.3 TRAFFIC MANAGEMENT AT THE NETWORK LAYER 393

The reason congestion control and flow control are often confused is that the
best way to handle both problems is to get the host to slow down. Thus, a host can
get a ‘‘slow-down’’ message either because the receiver cannot handle the load or
because the network cannot handle it. We will come back to this point in Chap. 6.

We will start our study of congestion management by looking at the ap-
proaches that network operators can apply at different time scales. Then we will
look at approaches that can prevent congestion from occurring in the first place,
followed by approaches for coping with it once it has set in.

5.3.2 Approaches to Traffic Management

The presence of congestion means that the load is (temporarily) greater than
the resources (in a part of the network) can handle. There are two approaches to
dealing with it: increase the resources or decrease the load. As shown in Fig. 5-20,
these solutions are usually applied on different time scales to either prevent con-
gestion or react to it once it has occurred.

Traffic-aware
routing

Network
provisioning

Traffic
throttling

Admission
control

Load
shedding

Slower
(Preventative)

Faster
(Reactive)

Figure 5-20. Timescales of approaches to traffic and congestion management.

The most straightforward way to avoid congestion is to build a network that is
provisioned for the traffic load that it must carry. If there is a low-bandwidth link
on the path along which most traffic is directed, congestion is likely. Sometimes
resources can be added dynamically when there is serious congestion, for example,
turning on spare routers or enabling lines that are normally used only as backups
(to make the system fault tolerant) or purchasing bandwidth on the open market.
More often, links and routers that are regularly heavily utilized are upgraded at the
earliest opportunity. This is called provisioning and happens on a time scale of
months, driven by long-term traffic trends.

To make the most of the existing network capacity, routes can be tailored to
traffic patterns that change during the day as network users wake and sleep in dif-
ferent time zones. For example, routes may be changed to shift traffic away from
heavily used paths by changing the shortest path weights. Some local radio sta-
tions have helicopters flying around their cities to report on road congestion to
make it possible for their mobile listeners to route their packets (cars) around
hotspots. This is called traffic-aware routing. Splitting traffic across multiple
paths can also be helpful.

However, sometimes it is not possible to increase capacity, especially on short
time scales. The only way then to beat back the congestion is to decrease the load.

394 THE NETWORK LAYER CHAP. 5

In a virtual-circuit network, new connections can be refused if they would cause
the network to become congested. This is one example of admission control, a
concept that simply denies senders the ability to send traffic if the network capacity
cannot support it.

When congestion is imminent, the network can deliver feedback to the sources
whose traffic flows are responsible for the problem. The network can request these
sources to slow down the sending rates, or it can simply slow down the traffic it-
self, a process sometimes referred to as throttling. Two difficulties with this ap-
proach are how to identify the onset of congestion, and how to inform the source
that needs to slow down. To tackle the first issue, routers can monitor the average
load, queueing delay, or packet loss and send feedback to senders, either explicitly
or implicitly (e.g., by dropping packets) to tell them to slow down.

In the case where feedback is explicit, routers must participate in a feedback
loop with the sources. For a scheme to work correctly, the time scale must be
adjusted carefully. If every time two packets arrive in a row, a router yells STOP
and every time a router is idle for 20 µsec, it yells GO, the system will oscillate
wildly and never converge. On the other hand, if it waits 30 minutes to make sure
before saying anything, the congestion-control mechanism will react too sluggishly
to be of any use. Delivering timely feedback is a nontrivial matter. An added con-
cern is having routers send more messages when the network is already congested.

Another approach is for the network to discard packets that it cannot deliver.
The general name for this approach is load shedding, and there are various ways to
achieve it, including traffic shaping (restricting the transmission rate for a particu-
lar sender) and traffic policing (dropping traffic from a particular sender if it
exceeds some rate). A good policy for choosing which packets to discard can help
to prevent congestion collapse. We will discuss all of these topics below.

Traffic-Aware Routing

The first approach we will examine is traffic-aware routing. The routing ap-
proaches we looked at in Sec. 5.2 used fixed link weights that adapted to changes
in topology, but not to changes in traffic load. The goal in taking load into account
when computing routes is to shift traffic away from hotspots that will be the first
places in the network to experience congestion.

The most direct way to do this is to set the link weight to be a function of the
(fixed) link bandwidth and propagation delay plus the (variable) measured load or
average queueing delay. Least-weight paths will then favor paths that are more
lightly loaded, all else being equal.

Traffic-aware routing was used in the early Internet according to this model
(Khanna and Zinky, 1989). However, there is a peril. Consider the network of
Fig. 5-21, which is divided into two parts, East and West, connected by two links,
CF and EI. Suppose that most of the East-West traffic is using link CF, resulting

SEC. 5.3 TRAFFIC MANAGEMENT AT THE NETWORK LAYER 395

in this link being heavily loaded with long delays. Including queueing delay in the
weight used for the shortest path calculation will make EI more attractive. After
the new routing tables have been installed, most of the East-West traffic will now
go over EI, loading this link. Consequently, in the next update, CF will appear to
be the shortest path. As a result, the routing tables may oscillate wildly, leading to
erratic routing and many potential problems.

West East

B

A

D

E

C F

G

H

J

I

Figure 5-21. A network in which the East and West parts are connected by two links.

If load is ignored and only bandwidth and propagation delay are considered,
this problem does not occur. Attempts to include load but change weights within a
narrow range only slow down routing oscillations. Two techniques can contribute
to a successful solution. The first is multipath routing, in which there can be multi-
ple paths from a source to a destination. In our example this means that the traffic
can be spread across both of the East to West links. The second one is for the rout-
ing scheme to shift traffic across routes slowly enough that it is able to converge, as
in the scheme of Gallagher (1977).

Given these difficulties, in the Internet routing protocols do not generally
adjust their routes depending on the load. Instead, network operators make adjust-
ments to routing protocols on slower time scales by slowly changing the routing
configuration and parameters, a process sometimes called traffic engineering.
Traffic engineering has long been a painstaking, manual process, akin to a black
art. Some work has attempted to formalize this process, but Internet traffic loads
are unpredictable enough, and the protocol configuration parameters are coarse and
clunky enough that the process has remained fairly primitive. More recently, how-
ever, the advent of software defined networking has made it possible to automate
some of these tasks, and the increasing use of certain technologies such as MPLS
tunnels across the network has provided operators with more flexibility for a wide
range of traffic engineering tasks.

396 THE NETWORK LAYER CHAP. 5

Admission Control

One technique that is widely used in virtual-circuit networks to keep conges-
tion at bay is admission control. The idea is simple: do not set up a new virtual
circuit unless the network can carry the added traffic without becoming congested.
Thus, attempts to set up a virtual circuit may fail. This approach is better than the
alternative, as letting more people in when the network is busy just makes matters
worse. By analogy, in the telephone system, when a switch gets overloaded, it
practices admission control by not giving dial tones.

The trick with this approach is working out when a new virtual circuit will lead
to congestion. The task is straightforward in the telephone network because of the
fixed bandwidth of calls (64 kbps for uncompressed audio). However, virtual cir-
cuits in computer networks come in all shapes and sizes. Thus, the circuit must
come with some characterization of its traffic if we are to apply admission control.

Traffic is often described in terms of its rate and shape. The problem of how to
describe it in a simple yet meaningful way is difficult because traffic is typically
bursty—the average rate is only half the story. For example, traffic that varies
while browsing the Web is more difficult to handle than a streaming movie with
the same long-term throughput because the bursts of Web traffic are more likely to
congest routers in the network. A commonly used descriptor that captures this ef-
fect is the leaky bucket or token bucket. A leaky bucket has two parameters that
bound the average rate and the instantaneous burst size of traffic. Because these are
two common mechanisms for performing traffic shaping, we will cover these top-
ics in more detail in that section.

Given traffic descriptions, the network can decide whether to admit the new
virtual circuit. One possibility is for the network to reserve enough capacity along
the paths of each of its virtual circuits that congestion will not occur. In this case,
the traffic description is a service agreement for what the network will guarantee
its users. We have prevented congestion but veered into the related topic of quality
of service a little too early; we will return to it shortly.

Even without making guarantees, the network can use traffic descriptions for
admission control. The task is then to estimate how many circuits will fit within
the carrying capacity of the network without congestion. Suppose that virtual cir-
cuits that may blast traffic at rates up to 10 Mbps all pass through the same
100-Mbps physical link. How many circuits should be admitted? Clearly, 10 cir-
cuits can be admitted without risking congestion, but this is wasteful in the normal
case since it may rarely happen that all 10 are transmitting full blast at the same
time. In real networks, measurements of past behavior that capture the statistics of
transmissions can be used to estimate the number of circuits to admit, to trade bet-
ter performance for acceptable risk.

Admission control can be combined with traffic-aware routing by considering
routes around traffic hotspots as part of the setup procedure. For example, consid-
er the network of Fig. 5-22(a), in which two routers are congested, as indicated.

SEC. 5.3 TRAFFIC MANAGEMENT AT THE NETWORK LAYER 397

A

Congestion

Virtual
circuit

Congestion

B

A

B

(a) (b)

Figure 5-22. (a) A congested network. (b) The portion of the network that is not
congested. A virtual circuit from A to B is also shown.

Suppose that a host attached to router A wants to set up a connection to a host
attached to router B. Normally, this connection would pass through one of the con-
gested routers. To avoid this situation, we can redraw the network as shown in
Fig. 5-22(b), omitting the congested routers and all of their lines. The dashed line
shows a possible route for the virtual circuit that avoids the congested routers.
Shaikh et al. (1999) give a design for this kind of load-sensitive routing.

Load Shedding

When none of the above methods make the congestion disappear, routers can
bring out the heavy artillery: load shedding. This is a fancy way of saying that
when routers are being inundated by packets that they cannot handle, they just
throw them away. The term comes from the world of electrical power generation,
where it refers to the practice of utilities intentionally blacking out certain areas to
save the entire grid from collapsing on hot summer days when the demand for
electricity (to power air conditioners) greatly exceeds the supply.

The key question for a router drowning in packets is which packets to drop.
The preferred choice may depend on the type of applications that use the network.
For a file transfer, an old packet is worth more than a new one. This is because
dropping packet 6 and keeping packets 7 through 10, for example, will only force
the receiver to do more work to buffer data that it cannot yet use. In contrast, for
real-time media, a new packet is worth more than an old one. This is because
packets become useless if they are delayed and miss the time at which they must be
played out to the user.

The former policy (old is better than new) is often called wine and the latter
(new is better than old) is often called milk because most people prefer new milk
over old milk and old wine over new wine.

398 THE NETWORK LAYER CHAP. 5

More intelligent load shedding requires cooperation from the senders. An ex-
ample is packets that carry routing information. These packets are more important
than regular data packets because they establish routes; if they are lost, the network
may lose connectivity. Another example is that algorithms for compressing video,
like MPEG, periodically transmit an entire frame and then send subsequent frames
as differences from the last full frame. In this case, dropping a packet that is part
of a difference is preferable to dropping one that is part of a full frame because fu-
ture packets depend on the full frame.

To implement an intelligent discard policy, applications must mark their pack-
ets to indicate to the network how important they are. Then, when packets have to
be discarded, routers can first drop packets from the least important class, then the
next most important class, and so on.

Of course, unless there is some significant incentive to avoid marking every
packet as VERY IMPORTANT—NEVER, EVER DISCARD, nobody will do it.
Often accounting and money are used to discourage frivolous marking. For ex-
ample, the network might let senders transmit faster than the service they pur-
chased allows if they mark excess packets as low priority. Such a strategy is ac-
tually not a bad idea because it makes more efficient use of idle resources, allow-
ing hosts to use them as long as nobody else is interested, but without establishing
a right to them when times get tough.

Traffic Shaping

Before the network can make performance guarantees, it must know what traf-
fic is being guaranteed. In the telephone network, this characterization is simple.
For example, a voice call (in uncompressed format) needs 64 kbps and consists of
one 8-bit sample every 125 µsec. However, traffic in data networks is bursty. It
typically arrives at nonuniform rates as the traffic rate varies (e.g., videoconferenc-
ing with compression), users interact with applications (e.g., browsing a new Web
page), and computers switch between tasks. Bursts of traffic are more difficult to
handle than constant-rate traffic because they can fill buffers and cause packets to
be lost.

Traffic shaping is a technique for regulating the average rate and burstiness of
a flow of data that enters the network. The goal is to allow applications to transmit
a wide variety of traffic that suits their needs, including some bursts, yet have a
simple and useful way to describe the possible traffic patterns to the network.
When a flow is set up, the user and the network (i.e., the customer and the pro-
vider) agree on a certain traffic pattern (i.e., shape) for that flow. In effect, the cus-
tomer says to the provider ‘‘My transmission pattern will look like this; can you
handle it?’’

Sometimes this agreement is called an SLA (Service Level Agreement), espe-
cially when it is made over aggregate flows and long periods of time, such as all of

SEC. 5.3 TRAFFIC MANAGEMENT AT THE NETWORK LAYER 399

the traffic for a given customer. As long as the customer fulfills her part of the bar-
gain and only sends packets according to the agreed-on contract, the provider
promises to deliver them all in a timely fashion.

Traffic shaping reduces congestion and thus helps the network live up to its
promise. However, to make it work, there is also the issue of how the provider can
tell if the customer is following the agreement and what to do if the customer is
not. Packets in excess of the agreed pattern might be dropped by the network, or
they might be marked as having lower priority. Monitoring a traffic flow is called
traffic policing.

Shaping and policing are not so important for peer-to-peer and other transfers
that will consume any and all available bandwidth, but they are of great importance
for real-time data, such as audio and video connections, which have stringent qual-
ity-of-service requirements. We have already seen one way to limit the amount of
data an application sends: the sliding window, which uses one parameter to limit
how much data is in transit at any given time, which indirectly limits the rate. Now
we will look at a more general way to characterize traffic, with the leaky bucket
and token bucket algorithms. The formulations are slightly different but give an e-
quivalent result.

Try to imagine a bucket with a small hole in the bottom, as illustrated in
Fig. 5-23(b). No matter the rate at which water enters the bucket, the outflow is at
a constant rate, R, when there is any water in the bucket and zero when the bucket
is empty. Also, once the bucket is full to capacity B, any additional water entering
it spills over the sides and is lost.

Check
bucket
here

Host

Packets
Rate

R

B

B
Rate

R

Take out
water/tokens

Put in
water

Network
(a) (b) (c)

Figure 5-23. (a) Shaping packets. (b) A leaky bucket. (c) A token bucket.

This bucket can be used to shape or police packets entering the network, as
shown in Fig. 5-23(a). Conceptually, each host is connected to the network by an
interface containing a leaky bucket. To send a packet into the network, it must be
possible to put more water into the bucket. If a packet arrives when the bucket is
full, the packet must either be queued until enough water leaks out to hold it or be
discarded. The former might happen at a host shaping its traffic for the network as
part of the operating system. The latter might happen in hardware at a provider

400 THE NETWORK LAYER CHAP. 5

network interface that is policing traffic entering the network. This technique was
proposed by Turner (1986) and is called the leaky bucket algorithm.

A different but equivalent formulation is to imagine the network interface as a
bucket that is being filled, as shown in Fig. 5-23(c). The tap is running at rate R
and the bucket has a capacity of B, as before. Now to send a packet we must be
able to take water, or tokens, as the contents are commonly called, out of the
bucket (rather than putting water into the bucket). No more than a fixed number of
tokens, B, can accumulate in the bucket, and if the bucket is empty, we must wait
until more tokens arrive before we can send another packet. This algorithm is call-
ed the token bucket algorithm.

Leaky and token buckets limit the long-term rate of a flow but allow short-term
bursts up to a maximum regulated length to pass through unaltered and without
suffering any artificial delays. Large bursts will be smoothed by a leaky bucket
traffic shaper to reduce congestion in the network. As an example, imagine that a
computer can produce data at up to 1000 Mbps (125 million bytes/sec) and that the
first link of the network also runs at this speed. The pattern of traffic the host gen-
erates is shown in Fig. 5-24(a). This pattern is bursty. The average rate over one
second is 200 Mbps, even though the host sends a burst of 16,000 KB at the top
speed of 1000 Mbps (for 1/8 of the second).

25 MB/s for
250 msec

125 MB/s for
125 msec

Time (msec)

16000

1000

Rate (Mbps)

(a) (d)

(b) (e)

(c) (f)

1000

Bucket (KB)

With R = 25 MB/s, B = 0

With R = 25 MB/s,
B = 9600 KB

Bucket always empty

Bucket empties,
traffic delayed

Time (msec) 1000

9600

0

Figure 5-24. (a) Traffic from a host. Output shaped by a token bucket of rate 200
Mbps and capacity (b) 9600 KB and (c) 0 KB. Token bucket level for shaping
with rate 200 Mbps and capacity (d) 16,000 KB, (e) 9600 KB, and (f) 0 KB.

Now suppose that the routers can accept data at the top speed only for short in-
tervals, until their buffers fill up. The buffer size is 9600 KB, smaller than the

SEC. 5.3 TRAFFIC MANAGEMENT AT THE NETWORK LAYER 401

traffic burst. For long intervals, the routers work best at rates not exceeding 200
Mbps (say, because this is all the bandwidth given to the customer). The implica-
tion is that if traffic is sent in this pattern, some of it will be dropped in the network
because it does not fit into the buffers at routers.

To avoid this packet loss, we can shape the traffic at the host with a token
bucket. If we use a rate, R, of 200 Mbps and a capacity, B, of 9600 KB, the traffic
will fall within what the network can handle. The output of this token bucket is
shown in Fig. 5-24(b). The host can send full throttle at 1000 Mbps for a short
while until it has fully drained the bucket. Then it has to cut back to 200 Mbps un-
til the burst has been sent. The effect is to spread out the burst over time because it
was too large to handle all at once. The level of the token bucket is shown in
Fig. 5-24(e). It starts off full and is depleted by the initial burst. When it reaches
zero, new packets can be sent only at the rate at which the buffer is filling; there
can be no more bursts until the bucket has recovered. The bucket fills when no traf-
fic is being sent and stays flat when traffic is being sent at the fill rate.

We can also shape the traffic to be less bursty. Fig. 5-24(c) shows the output of
a token bucket with R = 200 Mbps and a capacity of 0. This is the extreme case in
which the traffic has been completely smoothed. No bursts are allowed, and the
traffic enters the network at a steady rate. The corresponding bucket level, shown
in Fig. 5-24(f), is always empty. Traffic is being queued on the host for release into
the network and there is always a packet waiting to be sent when it is allowed.

Finally, Fig. 5-24(d) illustrates the bucket level for a token bucket with
R = 200 Mbps and a capacity of B = 16, 000 KB. This is the smallest token bucket
through which the traffic passes unaltered. It might be used at a router in the net-
work to police the traffic that the host sends. However, if the host is sending traffic
that conforms to the token bucket on which it has agreed with the network, the traf-
fic will fit through that same token bucket run at the router at the edge of the net-
work. If the host sends at a faster or burstier rate, the token bucket will run out of
water. If this happens, a traffic policer will know that the traffic is not as was de-
scribed. It will then either drop the excess packets or lower their priority, depend-
ing on the design of the network. In our example, the bucket empties only momen-
tarily, at the end of the initial burst, then recovers enough for the next burst.

Leaky and token buckets are easy to implement. We will now describe the op-
eration of a token bucket. Even though we have described water flowing continu-
ously into and out of the bucket, real implementations must work with discrete
quantities. A token bucket is implemented with a counter for the level of the
bucket. The counter is advanced by R/6T units at every clock tick of 6T seconds.
This would be 200 Kbit every 1 msec in our example above. Every time a unit of
traffic is sent into the network, the counter is decremented, and traffic may be sent
until the counter reaches zero.

When the packets are all the same size, the bucket level can just be counted in
packets (e.g., 200 Kbit is 20 packets of 1250 bytes). However, often variable-sized
packets are used. In this case, the bucket level can be counted in bytes. If the

402 THE NETWORK LAYER CHAP. 5

residual byte count is too low to send a large packet, the packet must wait until the
next tick (or even longer, if the fill rate is small).

Calculating the length of the maximum burst (until the bucket empties) is
slightly tricky. It is longer than just 9600 KB divided by 125 MB/sec because
while the burst is being output, more tokens arrive. If we call the burst length S
sec., the maximum output rate M bytes/sec, the token bucket capacity B bytes, and
the token arrival rate R bytes/sec, we can see that an output burst contains a maxi-
mum of B + RS bytes. We also know that the number of bytes in a maxi-
mum-speed burst of length S seconds is MS. Hence, we have

B + RS = MS

We can solve this equation to get S = B/(M < R). For our parameters of B = 9600
KB, M = 125 MB/sec, and R = 25 MB/sec, we get a burst time of about 94 msec.

A potential problem with the token bucket algorithm is that it reduces large
bursts down to the long-term rate R. It is frequently desirable to reduce the peak
rate, but without going down to the long-term rate (and also without raising the
long-term rate to allow more traffic into the network). One way to get smoother
traffic is to insert a second token bucket after the first one. The rate of the second
bucket should be much higher than the first one. Basically, the first bucket charac-
terizes the traffic, fixing its average rate but allowing some bursts. The second
bucket reduces the peak rate at which the bursts are sent into the network. For ex-
ample, if the rate of the second token bucket is set to be 500 Mbps and the capacity
is set to 0, the initial burst will enter the network at a peak rate of 500 Mbps, which
is lower than the 1000 Mbps rate we had previously.

Using all of these buckets can be a bit tricky. When token buckets are used for
traffic shaping at hosts, packets are queued and delayed until the buckets permit
them to be sent. When token buckets are used for traffic policing at routers in the
network, the algorithm is simulated to make sure that no more packets are sent
than permitted. Nevertheless, these tools provide ways to shape the network traffic
into more manageable forms to assist in meeting quality-of-service requirements.

Active Queue Management

In the Internet and many other computer networks, senders adjust their trans-
missions to send as much traffic as the network can readily deliver. In this setting,
the network aims to operate just before the onset of congestion. When congestion
is imminent, it must tell the senders to throttle back their transmissions and slow
down. This feedback is business as usual rather than an exceptional situation. The
term congestion avoidance is sometimes used to contrast this operating point with
the one in which the network has become (overly) congested.

Let us now look at some approaches to throttling traffic that can be used in
both datagram networks and virtual-circuit networks alike. Each approach must
solve two problems. First, routers must determine when congestion is approaching,

SEC. 5.3 TRAFFIC MANAGEMENT AT THE NETWORK LAYER 403

ideally before it has arrived. To do so, each router can continuously monitor the
resources it is using. Three possibilities are the utilization of the output links, the
buffering of queued packets inside the router, and the number of packets that are
lost due to insufficient buffering. Of these possibilities, the second one is the most
useful. Averages of utilization do not directly account for the burstiness of most
traffic—a utilization of 50% may be low for smooth traffic and too high for highly
variable traffic. Counts of packet losses come too late. Congestion has already set
in by the time that packets are lost.

The queueing delay inside routers directly captures any congestion experi-
enced by packets. It should be low most of time, but will jump when there is a
burst of traffic that generates a backlog. To maintain a good estimate of the queue-
ing delay, d, a sample of the instantaneous queue length, s, can be made periodical-
ly and d updated according to

dnew = _ dold + (1 < _)s

where the constant _ determines how fast the router forgets recent history. This is
called an EWMA (Exponentially Weighted Moving Average). It smoothes out
fluctuations and is equivalent to a low-pass filter. Whenever d moves above some
predefined threshold, the router notes the onset of congestion.

The second problem is that routers must deliver timely feedback to the senders
that are causing the congestion. Congestion is experienced in the network, but
relieving congestion requires action on behalf of the senders that are using the net-
work. To deliver feedback, the router must identify the appropriate senders. It
must then warn them carefully, without sending many more packets into the al-
ready congested network. Different schemes use different feedback mechanisms,
as we will now describe.

Random Early Detection

Dealing with congestion when it first starts is more effective than letting it gum
up the works and then trying to deal with it. This observation leads to an inter-
esting twist on load shedding, which is to discard packets before all the buffer
space is really exhausted.

The motivation for this idea is that most Internet hosts do not yet get conges-
tion signals from routers in the form of an explicit notification. Instead, the only
reliable indication of congestion that hosts get from the network is packet loss.
After all, it is difficult to build a router that does not drop packets when it is com-
pletely overloaded. Transport protocols such as TCP are thus hardwired to react to
loss as congestion, slowing down the source in response. The reasoning behind
this logic is that TCP was designed for wired networks and wired networks are
very reliable, so lost packets are mostly due to buffer overruns rather than trans-
mission errors. Wireless links must recover transmission errors at the link layer (so
they are not seen at the network layer) to work well with TCP.

404 THE NETWORK LAYER CHAP. 5

This situation can be exploited to help reduce congestion. By having routers
drop packets early, before the situation has become hopeless, there is time for the
source to take action before it is too late. A popular algorithm for doing this is
called RED (Random Early Detection) (Floyd and Jacobson, 1993). To deter-
mine when to start discarding, routers maintain a running average of their queue
lengths. When the average queue length on some link exceeds a threshold, the link
is said to be congested and a small fraction of the packets are dropped at random.
Picking packets at random makes it more likely that the fastest senders will see a
packet drop; this is the best option since the router cannot tell which source is
causing the most trouble in a datagram network. The affected sender will notice
the loss when there is no acknowledgement, and then the transport protocol will
slow down. The lost packet is thus delivering the same message as a notification
packet, but implicitly, without the router sending any explicit signal.

RED routers improve performance compared to routers that drop packets only
when their buffers are full, though they require tuning to work well. For example,
the ideal number of packets to drop depends on how many senders need to be noti-
fied of congestion. However, explicit notification is the better option if it is avail-
able. It works in exactly the same manner, but delivers a congestion signal expli-
citly rather than as a loss; RED is used when hosts cannot receive explicit signals.

Choke Packets

The most direct way to notify a sender of congestion is to tell it directly. In
this approach, the router selects a congested packet and sends a choke packet back
to the source host, giving it the destination found in the packet. The original pack-
et may be tagged (a header bit is turned on) so that it will not generate any more
choke packets farther along the path and then forwarded in the usual way. To avoid
increasing load on the network during a time of congestion, the router may only
send choke packets at a low rate.

When the source host gets the choke packet, it is required to reduce the traffic
sent to the specified destination, for example, by 50%. In a datagram network,
simply picking packets at random when there is congestion is likely to cause choke
packets to be sent to fast senders, because they will have the most packets in the
queue. The feedback created by this protocol can help prevent congestion yet not
throttle any sender unless it causes trouble. For the same reason, it is likely that
multiple choke packets will be sent to a given host and destination. The host
should ignore these additional chokes for the fixed time interval until its reduction
in traffic takes effect. After that period, further choke packets indicate that the net-
work is still congested.

A choke packet used in the early Internet is the SOURCE QUENCH message
(Postel, 1981). It never caught on, though, partly because the circumstances in
which it was generated and the effect it had were not well specified. The modern
Internet uses a different notification design that we will describe next.

SEC. 5.3 TRAFFIC MANAGEMENT AT THE NETWORK LAYER 405

Explicit Congestion Notification

Instead of generating additional packets to warn of congestion, a router can tag
any packet it forwards (by setting a bit in the packet’s header) to signal that it is
experiencing congestion. When the network delivers the packet, the destination
can note that there is congestion and inform the sender when it sends a reply pack-
et. The sender can then throttle its transmissions as before.

This design is called ECN (Explicit Congestion Notification) and is used in
the Internet (Ramakrishnan et al., 2001). It is a refinement of early congestion sig-
naling protocols, notably the binary feedback scheme of Ramakrishnan and Jain
(1988) that was used in the DECnet architecture. Two bits in the IP packet header
are used to record whether the packet has experienced congestion. Packets are
unmarked when they are sent, as illustrated in Fig. 5-25. If any of the routers they
pass through is congested, that router will then mark the packet as having experi-
enced congestion as it is forwarded. The destination will then echo any marks it
has received back to the sender as an explicit congestion signal in its next reply
packet. This is shown with a dashed line in the figure to indicate that it happens
above the IP level (e.g., in TCP). The sender must then throttle its transmissions,
as in the case of choke packets.

Congestion signal
Host

Marked
packet

Host

Packet Congested
router

Figure 5-25. Explicit congestion notification

Hop-by-Hop Backpressure

At high speeds or over long distances, many new packets may be transmitted
after congestion has been signaled because of the delay before the signal takes ef-
fect. Consider, for example, a host in San Francisco (router A in Fig. 5-26) that is
sending traffic to a host in New York (router D in Fig. 5-26) at the OC-3 speed of
155 Mbps. If the New York host begins to run out of buffers, it will take about 40
msec for a choke packet to get back to San Francisco to tell it to slow down. An
ECN indication will take even longer because it is delivered via the destination.
Choke packet propagation is illustrated as the second, third, and fourth steps in
Fig. 5-26(a). In those 40 msec, another 6.2 megabits will have been sent. Even if
the host in San Francisco completely shuts down immediately, the 6.2 megabits in
the pipe will continue to pour in and have to be dealt with. Only in the seventh
diagram in Fig. 5-26(a) will the New York router notice a slower flow.

406 THE NETWORK LAYER CHAP. 5

An alternative approach is to have the choke packet take effect at every hop it
passes through, as shown in the sequence of Fig. 5-26(b). Here, as soon as the
choke packet reaches F, F is required to reduce the flow to D. Doing so will re-
quire F to devote more buffers to the connection, since the source is still sending
away at full blast, but it gives D immediate relief, like a headache remedy in a tele-
vision commercial. In the next step, the choke packet reaches E, which tells E to
reduce the flow to F. This action puts a greater demand on E’s buffers but gives F
immediate relief. Finally, the choke packet reaches A and the flow genuinely slows
down.

The net effect of this hop-by-hop scheme is to provide quick relief at the point
of congestion, at the price of using up more buffers upstream. In this way, conges-
tion can be nipped in the bud without losing any packets. The idea is discussed in
detail by Mishra et al. (1996).

5.4 QUALITY OF SERVICE AND APPLICATION QOE

The techniques we looked at in the previous sections are designed to reduce
congestion and improve network performance. However, there are applications
(and customers) that demand stronger performance guarantees from the network
than ‘‘the best that could be done under the circumstances,’’ sometimes referred to
as best effort. Yet, many applications often require some minimum level of
throughput to function and also do not perform well when latency exceeds some
threshold.. In this section, we will continue our study of network performance,
with a sharper focus on ways to provide quality of service that can meet applica-
tion needs. This is an area in which the Internet is undergoing a long-term up-
grade. More recently, there has also been increased focus on user (QoE) Quality
of Experience, which recognizes that ultimately the user experience matters, and
different applications have very different requirements and thresholds, as far as net-
work performance goes. An increasing area of focus pertains to estimating user
QoE given the ability to observe only encrypted network traffic.

5.4.1 Application QoS Requirements

A stream of packets from a source to a destination is called a flow (Clark,
1988). A flow might be all the packets of a connection in a connection-oriented
network, or all the packets sent from one process to another process in a con-
nectionless network. The needs of each flow can be characterized by four primary
parameters: bandwidth, delay, jitter, and loss. Together, these determine the QoS
(Quality of Service) the flow requires.

Several common applications and the stringency of their network requirements
are listed in Fig. 5-27. Note that network requirements are less demanding than
application requirements in those cases that the application can improve on the

SEC. 5.4 QUALITY OF SERVICE AND APPLICATION QOE 407

(a) (b)

Cho
ke

Choke

B C

A D

E F

Choke

Reduced
flow

Flow is still
at maximum rate

Flow is
reduced

B C

A D

E F
Heavy flow

Cho
ke

Choke

Choke

Reduced
flow

Figure 5-26. (a) A choke packet that affects only the source. (b) A choke packet
that affects each hop it passes through.

408 THE NETWORK LAYER CHAP. 5

service provided by the network. In particular, networks do not need to be lossless
for reliable file transfer, and they do not need to deliver packets with identical
delays for audio and video playout. Some amount of loss can be repaired with re-
transmissions, and some amount of jitter can be smoothed by buffering packets at
the receiver. However, there is nothing applications can do to remedy the situation
if the network provides too little bandwidth or too much delay.

Application Bandwidth Delay Jitter Loss
Email Low Low Low Medium
File sharing High Low Low Medium
Web access Medium Medium Low Medium
Remote login Low Medium Medium Medium
Audio on demand Low Low High Low
Video on demand High Low High Low
Telephony Low High High Low
Videoconferencing High High High Low

Figure 5-27. Stringency of applications’ quality-of-service requirements.

The applications differ in their bandwidth needs, with email, audio in all
forms, and remote login not needing much, but file sharing and video in all forms
needing a great deal.

More interesting are the delay requirements. File transfer applications, includ-
ing email and video, are not delay sensitive. If all packets are delayed uniformly
by a few seconds, no harm is done. Interactive applications, such as Web surfing
and remote login, are more delay sensitive. Real-time applications, such as tele-
phony and videoconferencing, have strict delay requirements. If all the words in a
telephone call are each delayed by too long, the users will find the connection
unacceptable. On the other hand, playing audio or video files from a server does
not require low delay.

The variation (i.e., standard deviation) in the delay or packet arrival times is
called jitter. The first three applications in Fig. 5-27 are not sensitive to the pack-
ets arriving with irregular time intervals between them. Remote login is somewhat
sensitive to that, since updates on the screen will appear in little bursts if the con-
nection suffers much jitter. Video and especially audio are extremely sensitive to
jitter. If a user is watching a video over the network and the frames are all delayed
by exactly 2.000 seconds, no harm is done. But if the transmission time varies ran-
domly between 1 and 2 seconds, the result will be terrible unless the application
hides the jitter. For audio, a jitter of even a few milliseconds is clearly audible.

The first four applications have more stringent requirements on loss than audio
and video because all bits must be delivered correctly. This goal is usually
achieved with retransmissions of packets that are lost in the network by the tran-
sport layer. This is wasted work; it would be better if the network refused packets

SEC. 5.4 QUALITY OF SERVICE AND APPLICATION QOE 409

it was likely to lose in the first place. Audio and video applications can tolerate
some lost packets without retransmission because people do not notice short
pauses or occasional skipped frames.

To accommodate a variety of applications, networks may support different cat-
egories of QoS. An influential example comes from ATM networks, which were
once part of a grand vision for networking but have since become a niche technolo-
gy. They support:

1. Constant bit rate (e.g., telephony).

2. Real-time variable bit rate (e.g., compressed videoconferencing).

3. Non-real-time variable bit rate (e.g., watching a movie on demand).

4. Available bit rate (e.g., file transfer).

These categories are also useful for other purposes and other networks. Constant
bit rate is an attempt to simulate a wire by providing a uniform bandwidth and a
uniform delay. Variable bit rate occurs when video is compressed, with some
frames compressing more than others. Sending a frame with a lot of detail in it
may require sending many bits, whereas a shot of a white wall may compress ex-
tremely well. Movies on demand are not actually real time because a few seconds
of video can easily be buffered at the receiver before playback starts, so jitter on
the network merely causes the amount of stored-but-not-played video to vary.
Available bit rate is for applications such as email that are not sensitive to delay or
jitter and will take what bandwidth they can get.

5.4.2 Overprovisioning

An easy solution to provide good quality of service is to build a network with
enough capacity for whatever traffic will be thrown at it. The name for this solution
is overprovisioning. The resulting network will carry application traffic without
significant loss and, assuming a decent routing scheme, will deliver packets with
low latency. Performance doesn’t get any better than this. To some extent, the
telephone system is overprovisioned because it is rare to pick up a telephone and
not get a dial tone instantly. There is simply so much capacity available that de-
mand can almost always be met.

The trouble with this solution is that it is expensive. It is basically solving a
problem by throwing money at it. Quality of service mechanisms let a network
with less capacity meet application requirements just as well at a lower cost.
Moreover, overprovisioning is based on expected traffic. All bets are off if the traf-
fic pattern changes too much. With quality of service mechanisms, the network
can honor the performance guarantees that it makes even when traffic spikes, at the
cost of turning down some requests.

410 THE NETWORK LAYER CHAP. 5

Four issues must be addressed to ensure quality of service:

1. What applications need from the network.

2. How to regulate the traffic that enters the network.

3. How to reserve resources at routers to guarantee performance.

4. Whether the network can safely accept more traffic.

No single technique deals efficiently with all these issues. Instead, a variety of
techniques have been developed for use at the network (and transport) layer. Prac-
tical quality-of-service solutions combine multiple techniques. To this end, we
will describe two versions of quality of service for the Internet called Integrated
Services and Differentiated Services.

5.4.3 Packet Scheduling

Being able to regulate the shape of the offered traffic is a good start. However,
to provide a performance guarantee, we must reserve sufficient resources along the
route that the packets take through the network. To do this, we are assuming that
the packets of a flow follow the same route. Spraying them over routers at random
makes it hard to guarantee anything. As a consequence, something similar to a vir-
tual circuit has to be set up from the source to the destination, and all the packets
that belong to the flow must follow this route.

Algorithms that allocate router resources among the packets of a flow and be-
tween competing flows are called packet scheduling algorithms. Three different
kinds of resources can potentially be reserved for different flows:

1. Bandwidth.

2. Buffer space.

3. CPU cycles.

The first one, bandwidth, is the most obvious. If a flow requires 1 Mbps and the
outgoing line has a capacity of 2 Mbps, trying to direct three flows through that
line is not going to work. Thus, reserving bandwidth means not oversubscribing
any output line.

A second resource that is often in short supply is buffer space. When a packet
arrives, it is buffered inside the router until it can be transmitted on the chosen out-
going line. The purpose of the buffer is to absorb small bursts of traffic as the
flows contend with each other. If no buffer is available, the packet has to be dis-
carded since there is no place to put it. For good quality of service, some buffers
might be reserved for a specific flow so that flow does not have to compete for
buffers with other flows. Up to some maximum value, there will always be a buff-
er available when the flow needs one.

SEC. 5.4 QUALITY OF SERVICE AND APPLICATION QOE 411

Finally, CPU cycles may also be a scarce resource. It takes router CPU time to
process a packet, so a router can process only a certain number of packets per sec-
ond. While modern routers are able to process most packets quickly, some kinds
of packets require greater CPU processing, such as the ICMP packets we will de-
scribe in Sec. 5.7.4. Making sure that the CPU is not overloaded is needed to
ensure timely processing of these packets.

First-In First-Out (FIFO) Scheduling

Packet scheduling algorithms allocate bandwidth and other router resources by
determining which of the buffered packets to send on the output line next. We al-
ready described the most straightforward scheduler when explaining how routers
work. Each router buffers packets in a queue for each output line until they can be
sent, and they are sent in the same order that they arrived. This algorithm is known
as FIFO (First-In First-Out), or equivalently FCFS (First-Come First-Served).

FIFO routers usually drop newly arriving packets when the queue is full. Since
the newly arrived packet would have been placed at the end of the queue, this be-
havior is called tail drop. It is intuitive, and you may be wondering what alterna-
tives exist. In fact, the RED algorithm we described in Sec. 5.3.2 chose a newly ar-
riving packet to drop at random when the average queue length grew large. The
other scheduling algorithms that we will describe also create other opportunities
for deciding which packet to drop when the buffers are full.

Fair Queueing

FIFO scheduling is simple to implement, but it is not suited to providing good
quality of service because when there are multiple flows, one flow can easily affect
the performance of the other flows. If the first flow is aggressive and sends large
bursts of packets, they will lodge in the queue. Processing packets in the order of
their arrival means that the aggressive sender can hog most of the capacity of the
routers its packets traverse, starving the other flows and reducing their quality of
service. To add insult to injury, the packets of the other flows that do get through
are likely to be delayed because they had to sit in the queue behind many packets
from the aggressive sender.

Many packet scheduling algorithms have been devised that provide stronger
isolation between flows and thwart attempts at interference (Bhatti and Crowcroft,
2000). One of the first ones was the fair queueing algorithm devised by Nagle
(1987). The essence of this algorithm is that routers have separate queues, one for
each flow for a given output line. When the line becomes idle, the router scans the
queues round robin, as shown in Fig. 5-28. It then takes the first packet on the next
queue. In this way, with n hosts competing for the output line, each host gets to
send one out of every n packets. It is fair in the sense that all flows get to send
packets at the same rate. Sending more packets will not improve this rate.

412 THE NETWORK LAYER CHAP. 5

Input queues

Round-robin
service

1

2

3

1123 23

Output line

Figure 5-28. Round-robin fair queueing.

Although a start, the algorithm has a flaw: it gives more bandwidth to hosts
that use large packets than to hosts that use small packets. Demers et al. (1990)
suggested an improvement in which the round robin is done in such a way as to
simulate a byte-by-byte round robin, instead of a packet-by-packet round robin.
The trick is to compute a virtual time that is the number of the round at which each
packet would finish being sent. Each round drains a byte from all of the queues
that have data to send. The packets are then sorted in order of their finishing times
and sent in that order.

This algorithm and an example of finish times for packets arriving in three
flows are illustrated in Fig. 5-29. If a packet has length L, the round at which it
will finish is simply L rounds after the start time. The start time is either the finish
time of the previous packet, or the arrival time of the packet, if the queue is empty
when it arrives.

Input queues

Fair
queueing

Packet Arrival
time

Length Finish
time

Output
order

A 0 8 8 1
B 5 6 11 3
C 5 10 10 2
D 8 9 20 7
E 8 8 14 4
F 10 6 16 5
G 11 10 19 6
H 20 8 28 8

A

B

CEG

D

F

H

Arrives
late

(a) (b)

Arrives after D
but goes first

Weight is 2

2X

Figure 5-29. (a) Weighted Fair Queueing. (b) Finishing times for the packets.

From the table in Fig. 5-29(b), and looking only at the first two packets in the
top two queues, packets arrive in the order A, B, D, and F . Packet A arrives at
round 0 and is 8 bytes long, so its finish time is round 8. Similarly the finish time
for packet B is 11. Packet D arrives while B is being sent. Its finish time is 9 byte-
rounds after it starts when B finishes, or 20. Similarly, the finish time for F is 16.
In the absence of new arrivals, the relative sending order is A, B, F , D, even
though F arrived after D. It is possible that another small packet will arrive on the
top flow and obtain a finish time before D. It will only jump ahead of D if the

SEC. 5.4 QUALITY OF SERVICE AND APPLICATION QOE 413

transmission of that packet has not started. Fair queueing does not preempt pack-
ets that are currently being transmitted. Because packets are sent in their entirety,
fair queueing is only an approximation of the ideal byte-by-byte scheme. But it is a
very good approximation, staying within one packet transmission of the ideal
scheme at all times.

Weighted Fair Queueing

One shortcoming of this algorithm in practice is that it gives all hosts the same
priority. In many situations, it is desirable to give, for example, video servers more
bandwidth than, say, file servers. This is easily possible by giving the video server
two or more bytes per round. This modified algorithm is called WFQ (Weighted
Fair Queueing). Letting the number of bytes per round be the weight of a flow,
W , we can now give the formula for computing the finish time:

F i = max(Ai, Fi<1) + Li /W

where Ai is the arrival time, F i is the finish time, and Li is the length of packet i.
The bottom queue of Fig. 5-29(a) has a weight of 2, so its packets are sent more
quickly as you can see in the finish times given in Fig. 5-29(b).

Another practical consideration is implementation complexity. WFQ requires
that packets be inserted by their finish time into a sorted queue. With N flows, this
is at best an O(log N) operation per packet, which is difficult to achieve for many
flows in high-speed routers. Shreedhar and Varghese (1995) describe an approxi-
mation called deficit round robin that can be implemented very efficiently, with
only O(1) operations per packet. WFQ is widely used given this approximation.

Other kinds of scheduling algorithms exist, too. A simple example is priority
scheduling, in which each packet is marked with a priority. High-priority packets
are always sent before any low-priority packets that are buffered. Within a priority,
packets are sent in FIFO order. However, priority scheduling has the disadvantage
that a burst of high-priority packets can starve low-priority packets, which may
have to wait indefinitely. WFQ often provides a better alternative. By giving the
high-priority queue a large weight, say 3, high-priority packets will often go
through a short line (as relatively few packets should be high priority) yet some
fraction of low-priority packets will continue to be sent even when there is high
priority traffic. A high- and low-priority system is essentially a two-queue WFQ
system in which the high priority has infinite weight.

As a final example of a scheduler, packets might carry timestamps and be sent
in timestamp order. Clark et al. (1992) describe a design in which the timestamp
records how far the packet is behind or ahead of schedule as it is sent through a se-
quence of routers on the path. Packets that have been queued behind other packets
at a router will tend to be behind schedule, and the packets that have been serviced
first will tend to be ahead of schedule. Sending packets in order of their time-
stamps has the beneficial effect of speeding up slow packets while at the same time

414 THE NETWORK LAYER CHAP. 5

slowing down fast packets. The result is that all packets are delivered by the net-
work with a more consistent delay, which is obviously a good thing.

Putting it Together

We have now seen all the necessary elements for QoS, so it is time to put them
together to actually provide it. QoS guarantees are established through the process
of admission control. We first saw admission control used to control congestion,
which is a performance guarantee, albeit a weak one. The guarantees we are con-
sidering now are stronger, but the model is the same. The user offers a flow with
an accompanying QoS requirement to the network. The network then decides
whether to accept or reject the flow based on its capacity and the commitments it
has made to other flows. If it accepts, the network reserves capacity in advance at
routers to guarantee QoS when traffic is sent on the new flow.

The reservations must be made at all of the routers along the route that the
packets take through the network. Any routers on the path without reservations
might become congested, and a single congested router can break the QoS guaran-
tee. Many routing algorithms find the single best path between each source and
each destination and send all traffic over that path. This may cause some flows to
be rejected if there is not enough spare capacity along the best path. QoS guaran-
tees for new flows may still be accommodated by choosing a different route for the
flow that has excess capacity. This is called QoS routing. Chen and Nahrstedt
(1998) give an overview of these techniques. It is also possible to split the traffic
for each destination over multiple paths to more easily find excess capacity. A
simple method is for routers to choose equal-cost paths and to divide the traffic
equally or in proportion to the capacity of the outgoing links. However, more
sophisticated algorithms are also available (Nelakuditi and Zhang, 2002).

Given a path, the decision to accept or reject a flow is not a simple matter of
comparing the resources (bandwidth, buffers, and cycles) requested by the flow
with the router’s excess capacity in those three dimensions. It is a little more com-
plicated than that. To start with, although some applications may know about their
bandwidth requirements, few know about buffers or CPU cycles, so at the mini-
mum, a different way is needed to describe flows and translate this description to
router resources. We will get to this shortly.

Next, some applications are far more tolerant of an occasional missed deadline
than others. The applications must choose from the type of guarantees that the net-
work can make, whether hard guarantees or behavior that will hold most of the
time. All else being equal, everyone would like hard guarantees, but the difficulty
is that they are expensive because they constrain worst case behavior. Guarantees
for most of the packets are often sufficient for applications, and more flows with
this guarantee can be supported for a fixed capacity.

Finally, some applications may be willing to haggle about the flow parameters
and others may not be willing to do so. For example, a movie viewer that normally

SEC. 5.4 QUALITY OF SERVICE AND APPLICATION QOE 415

runs at 30 frames/sec may be willing to drop back to 25 frames/sec if there is not
enough free bandwidth to support 30 frames/sec. Similarly, the number of pixels
per frame, audio bandwidth, and other properties may be adjustable.

Because many parties may be involved in the flow negotiation (the sender, the
receiver, and all the routers along the path between them), flows must be described
accurately in terms of specific parameters that can be negotiated. A set of such pa-
rameters is called a flow specification. Typically, the sender (e.g., the video ser-
ver) produces a flow specification proposing the parameters it would like to use.
As the specification propagates along the route, each router examines it and modi-
fies the parameters as need be. The modifications can only reduce the flow, not in-
crease it (e.g., a lower data rate, not a higher one). When it gets to the other end,
the parameters can be established.

As an example of what can be in a flow specification, consider the example of
Fig. 5-30. This is based on RFC 2210 and RFC 2211 for Integrated Services, a
QoS design we will cover in the next section. It has five parameters. The first two
parameters, the token bucket rate and token bucket size, use a token bucket to give
the maximum sustained rate the sender may transmit, averaged over a long time in-
terval, and the largest burst it can send over a short time interval.

Parameter Unit
Token bucket rate Bytes/sec
Token bucket size Bytes
Peak data rate Bytes/sec
Minimum packet size Bytes
Maximum packet size Bytes

Figure 5-30. An example flow specification.

The third parameter, the peak data rate, is the maximum transmission rate tol-
erated, even for brief time intervals. The sender must never exceed this rate even
for short bursts.

The last two parameters specify the minimum and maximum packet sizes, in-
cluding the transport and network layer headers (e.g., TCP and IP). The minimum
size is useful because processing each packet takes some fixed time, no matter how
short. A router may be prepared to handle 10,000 packets/sec of 1 KB each, but
not be prepared to handle 100,000 packets/sec of 50 bytes each, even though this
represents a lower data rate. The maximum packet size is important due to internal
network limitations that may not be exceeded. For example, if part of the path
goes over an Ethernet, the maximum packet size will be restricted to no more than
1500 bytes no matter what the rest of the network can handle.

An interesting question is how a router turns a flow specification into a set of
specific resource reservations. At first glance, it might appear that if a router has a
link that runs at, say, 1 Gbps and the average packet is 1000 bits, it can process 1

416 THE NETWORK LAYER CHAP. 5

million packets/sec. This observation is not the case, though, because there will al-
ways be idle periods on the link due to statistical fluctuations in the load. If the
link needs every bit of capacity to get its work done, idling for even a few bits cre-
ates a backlog it can never get rid of.

Even with a load slightly below the theoretical capacity, queues can build up
and delays can occur. Consider a situation in which packets arrive at random with
a mean arrival rate of h packets/sec. The packets have random lengths and can be
sent on the link with a mean service rate of µ packets/sec. Under the assumption
that both the arrival and service distributions are Poisson distributions (what is call-
ed an M/M/1 queueing system, where ‘‘M’’ stands for Markov, i.e., Poisson), it can
be proven using queueing theory that the mean delay experienced by a packet, T , is

T =
1
µ
×

1
1 < h/µ

=
1
µ
×

1
1 < l

where l = h /µ is the CPU utilization. The first factor, 1/µ , is what the service
time would be in the absence of competition. The second factor is the slowdown
due to competition with other flows. For example, if h = 950, 000 packets/sec and
µ = 1, 000, 000 packets/sec, then l = 0. 95 and the mean delay experienced by
each packet will be 20 µsec instead of 1 µsec. This time accounts for both the
queueing time and the service time, as can be seen when the load is very low
(h /µ 5 0). If there are, say, 30 routers along the flow’s route, queueing delay alone
will account for 600 µsec of delay.

One method of relating flow specifications to router resources that correspond
to bandwidth and delay performance guarantees is given by Parekh and Gallagher
(1993, 1994). It is based on traffic sources shaped by (R, B) token buckets and
WFQ at routers. Each flow is given a WFQ weight W large enough to drain its
token bucket rate R as shown in Fig. 5-31. For example, if the flow has a rate of 1
Mbps and the router and output link have a capacity of 1 Gbps, the weight for the
flow must be greater than 1/1000th of the total of the weights for all of the flows at
that router for the output link. This guarantees the flow a minimum bandwidth. If
it cannot be given a large enough rate, the flow cannot be admitted.

Weighted
fair queue

(R, B)
Traffic source

Router

Capacity C
W

wi

wi

W x CR <
weights

Figure 5-31. Bandwidth and delay guarantees with token buckets and WFQ.

The largest queueing delay the flow will see is a function of the burst size of
the token bucket. Consider the two extreme cases. If the traffic is smooth, without

SEC. 5.4 QUALITY OF SERVICE AND APPLICATION QOE 417

any bursts, packets will be drained from the router just as quickly as they arrive.
There will be no queueing delay (ignoring packetization effects). On the other
hand, if the traffic is saved up in bursts, then a maximum-size burst, B, may arrive
at the router all at once. In this case, the maximum queueing delay, D, will be the
time taken to drain this burst at the guaranteed bandwidth, or B/R (again, ignoring
packetization effects). If this delay is too large, the flow must request more band-
width from the network.

These guarantees are hard. The token buckets bound the burstiness of the
source, and fair queueing isolates the bandwidth given to different flows. This
means that the flow will meet its bandwidth and delay guarantees regardless of
how the other competing flows behave at the router. Those other flows cannot
break the guarantee even by saving up traffic and all sending at once.

Moreover, the result holds for a path through multiple routers in any network
topology. Each flow gets a minimum bandwidth because that bandwidth is guaran-
teed at each router. The reason each flow gets a maximum delay is more subtle. In
the worst case that a burst of traffic hits the first router and competes with the traf-
fic of other flows, it will be delayed up to the maximum delay of D. However, this
delay will also smooth the burst. In turn, this means that the burst will incur no
further queueing delays at later routers. The overall queueing delay will be at most
D.

5.4.4 Integrated Services

Between 1995 and 1997, IETF put a lot of effort into devising an architecture
for streaming multimedia. This work resulted in over two dozen RFCs, starting
with RFC 2205 through RFC 2212. The generic name for this work is integrated
services. It was aimed at both unicast and multicast applications. An example of
the former is a single user streaming a video clip from a news site. An example of
the latter is a collection of digital television stations broadcasting their programs as
streams of IP packets to many receivers at various locations. Below we will con-
centrate on multicast, since unicast is a special case of multicast.

In many multicast applications, groups can change membership dynamically,
for example, as people enter a video conference and then get bored and switch to a
soap opera or the croquet channel. Under these conditions, the approach of having
the senders reserve bandwidth in advance does not work well, since it would re-
quire each sender to track all entries and exits of its audience. For a system de-
signed to transmit television with millions of subscribers, it would not work at all.

RSVP—The Resource reSerVation Protocol

The main part of the integrated services architecture that is visible to the users
of the network is RSVP (Resource reSerVation Protocol). It is described in RFC
2205 through RFC 2210. This protocol is used for making the reservations; other

418 THE NETWORK LAYER CHAP. 5

protocols are used for sending the data. RSVP allows multiple senders to transmit
to multiple groups of receivers, permits individual receivers to switch channels
freely, and also optimizes bandwidth use while at the same time eliminating con-
gestion.

In its simplest form, the protocol uses multicast routing using spanning trees,
as discussed earlier. Each group is assigned a group address. To send to a group, a
sender puts the group’s address in its packets. The standard multicast routing algo-
rithm then builds a spanning tree covering all group members. The routing algo-
rithm is not part of RSVP. The only difference from normal multicasting is a little
extra information that is multicast to the group periodically to tell the routers along
the tree to maintain certain data structures in their memories.

As an example, consider the network of Fig. 5-32(a). Hosts 1 and 2 are multi-
cast senders, and hosts 3, 4, and 5 are multicast receivers. In this example, the
senders and receivers are disjoint, but in general, the two sets may overlap. The
multicast trees for hosts 1 and 2 are shown in Fig. 5-32(b) and Fig. 5-32(c), re-
spectively.

A

D

G

J

C

F

I

L

B

K

H

E

1 2

3 4 5

Receivers

Senders

A

D

G

J

C

F

I

L

B

K

H

E

1 2

3 4 5

1 2

3 4 5

A

D

G

J

C

F

I

L

B

K

H

E

(a) (b) (c)

Figure 5-32. (a) A network. (b) The multicast spanning tree for host 1. (c) The
multicast spanning tree for host 2.

To get better reception and eliminate congestion, any of the receivers in a
group can send a reservation message up the tree to the sender. The message is

SEC. 5.4 QUALITY OF SERVICE AND APPLICATION QOE 419

propagated using the reverse path forwarding algorithm discussed earlier. At each
hop, the router notes the reservation and reserves the necessary bandwidth. We
saw in the previous section how a weighted fair queueing scheduler can be used to
make this reservation. If insufficient bandwidth is available, it reports back failure.
By the time the message gets back to the source, bandwidth has been reserved all
the way from the sender to the receiver making the reservation request along the
spanning tree.

An example of such a reservation is shown in Fig. 5-33(a). Here host 3 has re-
quested a channel to host 1. Once it has been established, packets can flow from 1
to 3 without congestion. Now consider what happens if host 3 next reserves a
channel to the other sender, host 2, so the user can watch two television programs
at once. A second path is reserved, as illustrated in Fig. 5-33(b). Note that two
separate channels are needed from host 3 to router E because two independent
streams are being transmitted.

A

D

G

J

C

F

Bandwidth reserved
for source 1

Bandwidth
reserved for
source 2

I

L

B

K

H

E

1 2

3 4 5

A

D

G

J

C

F

I

L

B

K

H

E

1 2 2

3 4 5

A

D

G

J

C

F

I

L

B

K

H

E

(b) (c)(a)

3 4 5

1

Figure 5-33. (a) Host 3 requests a channel to host 1. (b) Host 3 then requests a
second channel, to host 2. (c) Host 5 requests a channel to host 1.

Finally, in Fig. 5-33(c), host 5 decides to watch the program being transmitted
by host 1 and also makes a reservation. First, dedicated bandwidth is reserved as
far as router H. However, this router sees that it already has a feed from host 1, so
if the necessary bandwidth has already been reserved, it does not have to reserve
any more. Note that hosts 3 and 5 might have asked for different amounts of band-
width (e.g., if host 3 is playing on a small screen and only wants the low-resolution
information), so the capacity reserved must be large enough to satisfy the greediest
receiver.

When making a reservation, a receiver can (optionally) specify one or more
sources that it wants to receive from. It can also specify whether these choices are

420 THE NETWORK LAYER CHAP. 5

fixed for the duration of the reservation or whether the receiver wants to keep open
the option of changing sources later. The routers use this information to optimize
bandwidth planning. In particular, two receivers are only set up to share a path if
they both agree not to change sources later on.

The reason for this strategy in the fully dynamic case is that reserved band-
width is decoupled from the choice of source. Once a receiver has reserved band-
width, it can switch to another source and keep that portion of the existing path that
is valid for the new source. If host 2 is transmitting several video streams in real
time, for example a TV broadcaster with multiple channels, host 3 may switch be-
tween them at will without changing its reservation: the routers do not care what
program the receiver is watching.

5.4.5 Differentiated Services

Flow-based algorithms have the potential to offer good quality of service to
one or more flows because they reserve whatever resources are needed along the
route. However, they also have a downside. They require an advance setup to es-
tablish each flow, something that does not scale well when there are thousands or
millions of flows. Also, they maintain internal per-flow state in the routers, mak-
ing them vulnerable to router crashes. Finally, the changes required to the router
code are substantial and involve complex router-to-router exchanges for setting up
the flows. As a consequence, while work continues to advance integrated services,
few deployments of it or anything like it exist yet.

For these reasons, IETF has also devised a simpler approach to quality of ser-
vice, one that can be largely implemented locally in each router without advance
setup and without having the whole path involved. This approach is known as
class-based (as opposed to flow-based) quality of service. IETF has standardized
an architecture for it, called differentiated services, which is described in RFC
2474, RFC 2475, and numerous others. We will now describe it.

Differentiated services can be offered by a set of routers forming an adminis-
trative domain (e.g., an ISP or a telco). The administration defines a set of service
classes with corresponding forwarding rules. If a customer subscribes to dif-
ferentiated services, customer packets entering the domain are marked with the
class to which they belong. This information is carried in the Differentiated ser-
vices field of IPv4 and IPv6 packets (described in Sec. 5.7.1). The classes are de-
fined as per-hop behaviors because they correspond to the treatment the packet
will receive at each router, not a guarantee across the network. Better service is
provided to packets with some per-hop behaviors (e.g., premium service) than to
others (e.g., regular service). Traffic within a class may be required to conform to
some specific shape, such as a leaky bucket with some specified drain rate. An op-
erator with a good nose for business might charge extra for each premium packet
transported or might allow up to N premium packets per month for a fixed addi-
tional monthly fee. Note that this scheme requires no advance setup, no resource

SEC. 5.4 QUALITY OF SERVICE AND APPLICATION QOE 421

reservation, and no time-consuming end-to-end negotiation for each flow, as with
integrated services. This makes differentiated services relatively easy to imple-
ment.

Class-based service also occurs in other industries. For example, package de-
livery companies often offer overnight, two-day, and three-day service. Airlines
offer first class, business class, and cattle-class service. Long-distance trains have
multiple service classes. The Paris subway even had two service classes for the
same quality of seating. For packets, the classes may differ in terms of delay, jitter,
and probability of being discarded in the event of congestion, among other possi-
bilities (but probably not roomier Ethernet frames).

To make the difference between flow-based quality of service and class-based
quality of service clearer, consider an example: Internet telephony. With a flow-
based scheme, each telephone call gets its own resources and guarantees. With a
class-based scheme, all the telephone calls together get the resources reserved for
the class telephony. These resources cannot be taken away by packets from the
Web browsing class or other classes, but no telephone call gets any private re-
sources reserved for it alone.

Expedited Forwarding

The choice of service classes is up to each operator, but since packets are often
forwarded between networks run by different operators, IETF has defined some
network-independent service classes. The simplest class is expedited forwarding,
so let us start with that one. It is described in RFC 3246.

The idea behind expedited forwarding is very simple. Two classes of service
are available: regular and expedited. The vast majority of the traffic is expected to
be regular, but a limited fraction of the packets are expedited. The expedited pack-
ets should be able to transit the network as though no other packets were present.
In this way, they will get low loss, low delay and low jitter service—just what is
needed for VoIP. A symbolic representation of this ‘‘two-tube’’ system is given in
Fig. 5-34. Note that there is still just one physical line. The two logical pipes
shown in the figure represent a way to reserve bandwidth for different classes of
service, not a second physical line.

One way to implement this strategy is as follows. Packets are classified as
expedited or regular and marked accordingly. This step might be done on the send-
ing host or in the ingress (first) router. The advantage of doing classification on the
sending host is that more information is available about which packets belong to
which flows. This task may be performed by networking software or even the op-
erating system, to avoid having to change existing applications. For example, it is
becoming common for VoIP packets to be marked for expedited service by hosts.
If the packets pass through a corporate network or ISP that supports expedited ser-
vice, they will receive preferential treatment. If the network does not support expe-
dited service, no harm is done. In that case, it makes sense to at least try.

422 THE NETWORK LAYER CHAP. 5

Regular packets

Expedited packets

Figure 5-34. Expedited packets experience a traffic-free network.

Of course, if the marking is done by the host, the ingress router is likely to
police the traffic to make sure that customers are not sending more expedited traf-
fic than they have paid for. Within the network, the routers may have two output
queues for each outgoing line, one for expedited packets and one for regular pack-
ets. When a packet arrives, it is queued accordingly. The expedited queue is given
priority over the regular one, for example, by using a priority scheduler. In this
way, expedited packets see an unloaded network, even when there is, in fact, a
heavy load of regular traffic.

Assured Forwarding

A somewhat more elaborate scheme for managing the service classes is called
assured forwarding. It is described in RFC 2597. Assured forwarding specifies
that there shall be four priority classes, each class having its own resources. The
top three classes might be called gold, silver, and bronze. In addition, it defines
three discard classes for packets that are experiencing congestion: low, medium,
and high. Taken together, these factors define 12 service classes.

Figure 5-35 shows one way packets might be processed under assured for-
warding. The first step is to classify the packets into one of the four priority
classes. As before, this step might be done on the sending host (as shown in the
figure) or in the ingress router, and the rate of higher-priority packets may be limit-
ed by the operator as part of the service offering.

The next step is to determine the discard class for each packet. This is done by
passing the packets of each priority class through a traffic policer such as a token
bucket. The policer lets all of the traffic through, but it identifies packets that fit
within small bursts as low discard, packets that exceed small bursts as medium dis-
card, and packets that exceed large bursts as high discard. The combination of pri-
ority and discard class is then encoded in each packet.

Finally, the packets are processed by routers in the network with a packet
scheduler that carefully distinguishes the different classes. A common choice is to

SEC. 5.4 QUALITY OF SERVICE AND APPLICATION QOE 423

Weighted
fair queues

Router

Silver

Gold

Bronze
Packet
source Four

priority
classes

Classifier Policer

Twelve
priority/drop

classes

Packets with
DiffServ mark

Figure 5-35. A possible implementation of assured forwarding.

use weighted fair queueing for the four priority classes, with higher classes given
higher weights. In this way, the higher classes will get most of the bandwidth, but
the lower classes will not be starved of bandwidth entirely. For example, if the
weights double from one class to the next higher class, the higher class will get
twice the bandwidth. Within a priority class, packets with a higher discard class
can be preferentially dropped by running an algorithm such as RED. RED will
start to drop packets as congestion builds but before the router has run out of buffer
space. At this stage, there is still buffer space with which to accept low discard
packets while dropping high discard packets.

5.5 INTERNETWORKING

Until now, we have implicitly assumed that there is a single homogeneous net-
work, with each machine using the same protocol in each layer. Unfortunately, this
assumption is wildly optimistic. Many different networks exist, including PANs,
LANs, MANs, and WANs. We have described Ethernet, Internet over cable, the
fixed and mobile telephone networks, 802.11, and more. Numerous protocols are
in widespread use across these networks in every layer.

5.5.1 Internetworks: An Overview

In the following sections, we will take a careful look at the issues that arise
when two or more networks are connected to form an internetwork, or more sim-
ply an internet.

It would be much simpler to join networks together if everyone used a single
networking technology, and it is often the case that there is a dominant kind of net-
work, such as Ethernet. Some pundits speculate that the multiplicity of technolo-
gies will go away as soon as everyone realizes how wonderful [fill in your favorite
network] is. Do not count on it. History shows this to be wishful thinking. Dif-
ferent kinds of networks grapple with different problems, so, for example, Ethernet

424 THE NETWORK LAYER CHAP. 5

and satellite networks are always likely to differ. Reusing existing systems, such as
running data networks on top of cable, the telephone network, and power lines,
adds constraints that cause the features of the networks to diverge. Heterogeneity is
here to stay.

If there will always be different networks, it would be simpler if we did not
need to interconnect them. This also is very unlikely. Bob Metcalfe postulated that
the value of a network with N nodes is the number of connections that may be
made between the nodes, or N 2 (Gilder, 1993). This means that large networks are
far more valuable than small networks because they allow many more connections,
so there always will be an incentive to combine smaller networks.

The Internet is the prime example of this interconnection. (We will write Inter-
net with a capital ‘‘I’’ to distinguish it from other internets, or connected net-
works.) The purpose of joining all these networks is to allow users on any of them
to communicate with users on all the other ones. When you pay an ISP for Internet
service, you may be charged depending on the bandwidth of your line, but what
you are really paying for is the ability to exchange packets with any other host that
is also connected to the Internet. After all, the Internet would not be very popular if
you could only send packets to other hosts in the same city.

Since networks often differ in important ways, getting packets from one net-
work to another is not always so easy. We must address problems of heterogeneity,
and also problems of scale as the resulting internet grows very large. We will be-
gin by looking at how networks can differ to see what we are up against. Then we
shall see the approach used so successfully by IP, the network layer protocol of the
Internet, including techniques for tunneling through networks, routing in internet-
works, and packet fragmentation.

5.5.2 How Networks Differ

Networks can differ in many ways. Some of the differences, such as different
modulation techniques or frame formats, are internal to the physical and data link
layers. These differences will not concern us here. Instead, in Fig. 5-36 we list
some of the differences that can be exposed to the network layer. It is papering
over these differences that makes internetworking more difficult than operating
within a single network.

When packets sent by a source on one network must transit one or more for-
eign networks before reaching the destination network, many problems can occur
at the interfaces between networks. To start with, the source needs to be able to
address the destination. What do we do if the source is on an Ethernet network and
the destination is on the cellular telephone network? Assuming we can even speci-
fy a cellular destination from an Ethernet network, packets would cross from a
connectionless network to a connection-oriented one. This may require that a new
connection be set up on short notice, which injects a delay, and much overhead if
the connection is not used for many more packets.

SEC. 5.5 INTERNETWORKING 425

Item Some Possibilities
Service offered Connectionless versus connection oriented
Addressing Different sizes, flat or hierarchical
Broadcasting Present or absent (also multicast)
Packet size Every network has its own maximum
Ordering Ordered and unordered delivery
Quality of service Present or absent; many different kinds
Reliability Different levels of loss
Security Privacy rules, encryption, etc.
Parameters Different timeouts, flow specifications, etc.
Accounting By connect time, packet, byte, or not at all

Figure 5-36. Some of the many ways networks can differ.

Many specific differences may have to be accommodated as well. How do we
multicast a packet to a group with some members on a network that does not sup-
port multicast? The differing max packet sizes used by different networks can be a
major nuisance, too. How do you pass an 8000-byte packet through a network
whose maximum size is 1500 bytes? If packets on a connection-oriented network
transit a connectionless network, they may arrive in a different order than they
were sent. That is something the sender likely did not expect, and it might come as
an (unpleasant) surprise to the receiver as well.

With effort, these kinds of differences can be papered over. For example, a
gateway joining two networks might generate separate packets for each destination
to simulate multicast. A large packet might be broken up, sent in pieces, and then
joined back together. Receivers might buffer packets and deliver them in order.

Networks also can differ in large respects that are more difficult to reconcile.
The clearest example is quality of service. If one network has strong QoS and the
other offers best effort service, it will be impossible to make bandwidth and delay
guarantees for real-time traffic end to end. In fact, they can likely only be made
while the best-effort network is operated at a low utilization, or hardly used, which
is unlikely to be the goal of most ISPs. Security mechanisms are problematic, but
at least encryption for confidentiality and data integrity can be layered on top of
networks that do not already include it. Finally, differences in accounting can lead
to unwelcome bills when normal usage suddenly becomes expensive, as roaming
mobile phone users with data plans have discovered.

5.5.3 Connecting Heterogeneous Networks

There are two basic choices for connecting different networks: we can build
devices that translate or convert packets from each kind of network into packets for
each other network, or as computer scientists often do, we can try to solve the

426 THE NETWORK LAYER CHAP. 5

problem by adding a layer of indirection and building a common layer on top of
the different networks. In either case, the devices are placed at the boundaries be-
tween networks; initially, these devices were called gateways.

Early on, Cerf and Kahn (1974) argued for a common layer to hide the dif-
ferences of existing networks. This approach has been tremendously successful,
and the layer they proposed was eventually separated into the TCP and IP proto-
cols. Almost four decades later, IP is the foundation of the modern Internet. For
this accomplishment, Cerf and Kahn were awarded the 2004 Turing Award, infor-
mally known as the Nobel Prize of computer science. IP provides a universal
packet format that all routers recognize and that can be passed through almost
every network. IP has extended its reach from computer networks to take over the
telephone network. It also runs on sensor networks and other tiny devices that were
once presumed too resource-constrained to support it.

We have discussed several different devices that connect networks, including
repeaters, hubs, switches, bridges, routers, and gateways. Repeaters and hubs just
move bits from one wire to another. They are mostly analog devices and do not
understand anything about higher layer protocols. Bridges and switches operate at
the link layer. They can be used to build networks, but only with minor protocol
translation in the process, for example, among 10-, 100-, and 1000-Mbps Ethernet
switches. Our focus in this section is interconnection devices that operate at the
network layer, namely the routers. We will leave gateways, which are higher-layer
interconnection devices, until later.

Let us first explore at a high level how interconnection with a common net-
work layer can be used to interconnect dissimilar networks. An internet comprised
of 802.11, MPLS, and Ethernet networks is shown in Fig. 5-37(a). Suppose that
the source machine on the 802.11 network wants to send a packet to the destination
machine on the Ethernet network. Since these technologies are different, and they
are further separated by another kind of network (MPLS), some added processing
is needed at the boundaries between the networks.

Because different networks may, in general, have different forms of ad-
dressing, the packet carries a network layer address that can identify any host
across the three networks. The first boundary the packet reaches is when it tran-
sitions from an 802.11 network to an MPLS network. Remember, 802.11 provides
a connectionless service, but MPLS provides a connection-oriented service. This
means that a virtual circuit must be set up to cross that network. Once the packet
has traveled along the virtual circuit, it will reach the Ethernet network. At this
boundary, the packet may be too large to be carried, since 802.11 can work with
larger frames than Ethernet. To handle this problem, the packet is divided into
fragments, and each fragment is sent separately. When the fragments reach the
destination, they are reassembled. Then the packet has completed its journey.

The protocol processing for this journey is shown in Fig. 5-37(b). The source
accepts data from the transport layer and generates a packet with the common net-
work layer header, which is IP in this example. The network header contains the

SEC. 5.5 INTERNETWORKING 427

802.11 MPLS Ethernet

Source Destination

Packet Virtual circuit

802.11

IP

IP

Router Router

802.11

IP

IP MPLS IP Eth

IP

IPMPLS

IP

IP Eth IP

Physical

(a)

(b)

Data from
transport layer

Figure 5-37. (a) A packet crossing different networks. (b) Network and link lay-
er protocol processing.

ultimate destination address, which is used to determine that the packet should be
sent via the first router. So the packet is encapsulated in an 802.11 frame whose
destination is the first router and transmitted. At the router, the packet is removed
from the frame’s data field and the 802.11 frame header is discarded. The router
now examines the IP address in the packet and looks up this address in its routing
table. Based on this address, it decides to send the packet to the second router
next. For this part of the path, an MPLS virtual circuit must be established to the
second router and the packet must be encapsulated with MPLS headers that travel
this circuit. At the far end, the MPLS header is discarded and the network address
is again consulted to find the next network layer hop. It is the destination itself.
When a packet is too long to be sent over Ethernet, it is split into two portions.
Each of these portions is put into the data field of an Ethernet frame and sent to the
Ethernet address of the destination. At the destination, the Ethernet header is
stripped from each of the frames, and the contents are reassembled. The packet
has finally reached its destination.

Observe that there is an essential difference between the routed case and the
switched (or bridged) case. With a router, the packet is extracted from the frame
and the network address in the packet is used for deciding where to send it. With a
switch (or bridge), the entire frame is transported on the basis of its MAC address.
Switches do not have to understand the network layer protocol being used to
switch packets. Routers do.

Unfortunately, internetworking is not nearly as easy as we have made it sound.
In fact, when bridges were introduced, it was intended that they would join dif-
ferent types of networks, or at least different types of LANs. They were to do this
by translating frames from one LAN into frames from another LAN. However,
this did not work well, for exactly the same reason that internetworking is difficult:

428 THE NETWORK LAYER CHAP. 5

the differences in the features of LANs, such as different maximum packet sizes
and LANs with and without priority classes, are hard to mask. Today, bridges are
predominantly used to connect the same kind of network at the link layer, and rout-
ers connect different networks at the network layer.

Internetworking has been very successful at building large networks, but it
only works when there is a common network layer. There have, in fact, been many
network protocols over time. Getting everybody to agree on a single format is dif-
ficult when companies perceive it to their commercial advantage to have a propri-
etary format that they control. Examples besides IP, which is now the near-univer-
sal network protocol, were IPX, SNA, and AppleTalk. None of these protocols are
still in widespread use, but there will always be other protocols. The most relevant
example now is probably IPv4 and IPv6. While these are both versions of IP, they
are not compatible (or it would not have been necessary to create IPv6).

A router that can handle multiple network protocols is called a multiprotocol
router. It must either translate the protocols, or leave connection for a higher pro-
tocol layer. Neither approach is entirely satisfactory. Connection at a higher layer,
say, by using TCP, requires that all the networks implement TCP (which may not
be the case). Then it limits usage across the networks to applications that use TCP
(which does not include many real-time applications).

The alternative is to translate packets between the networks. However, unless
the packet formats are close relatives with the same information fields, such con-
versions will always be incomplete and often doomed to failure. For example,
IPv6 addresses are 128 bits long. They will not fit in a 32-bit IPv4 address field,
no matter how hard the router tries. Getting IPv4 and IPv6 to run in the same net-
work has proven to be a major obstacle to the deployment of IPv6. (To be fair, so
has getting customers to understand why they should want IPv6 in the first place.)
Greater problems can be expected when translating between very different proto-
cols, such as connectionless and connection-oriented network protocols. Given
these difficulties, conversion is only rarely attempted. Arguably, even IP has only
worked so well by serving as a kind of lowest common denominator. It requires lit-
tle of the networks on which it runs, but offers only best-effort service as a result.

5.5.4 Connecting Endpoints Across Heterogeneous Networks

Handling the general case of making two different networks interwork is
exceedingly difficult. However, there is a common special case that is manageable
even for different network protocols. This case is where the source and destination
hosts are on the same type of network, but there is a different network in between.
As an example, think of an international bank with an IPv6 network in Paris, an
IPv6 network in London, and connectivity between the offices via the IPv4 Inter-
net. This situation is shown in Fig. 5-38.

The solution to this problem is a technique called tunneling. To send an IP
packet to a host in the London office, a host in the Paris office constructs the

SEC. 5.5 INTERNETWORKING 429

IPv6 IPv4 IPv6

Paris London

Tunnel

Router Router

IPv4 IPv6 packet IPv6 packetIPv6 packet

Figure 5-38. Tunneling a packet from Paris to London.

packet containing an IPv6 address in London, and sends it to the multiprotocol
router that connects the Paris IPv6 network to the IPv4 Internet. When this router
gets the IPv6 packet, it encapsulates the packet with an IPv4 header addressed to
the IPv4 side of the multiprotocol router that connects to the London IPv6 network.
That is, the router puts a (IPv6) packet inside a (IPv4) packet. When this wrapped
packet arrives, the London router removes the original IPv6 packet and sends it
onward to the destination host.

The path through the IPv4 Internet can be seen as a big tunnel extending from
one multiprotocol router to the other. The IPv6 packet just travels from one end of
the tunnel to the other, snug in its nice box. It does not have to worry about deal-
ing with IPv4 at all. Neither do the hosts in Paris or London. Only the multiproto-
col routers have to understand both IPv4 and IPv6 packets. In effect, the entire trip
from one multiprotocol router to the other is like a hop over a single link.

An analogy may make tunneling clearer. Consider a person driving her car
from Paris to London. Within France, the car moves under its own power, but
when it hits the English Channel, it is loaded onto a high-speed train and tran-
sported to England through the Chunnel (cars are not permitted to drive through
the Chunnel). Effectively, the car is being carried as freight, as depicted in
Fig. 5-39. At the far end, the car is let loose on the English roads and once again
continues to move under its own power. Tunneling of packets through a foreign
network works the same way.

Tunneling is widely used to connect isolated hosts and networks using other
networks. The network that results is called an overlay since it has effectively been
overlaid on the base network. Deployment of a network protocol with a new fea-
ture is a common reason, as our ‘‘IPv6 over IPv4’’ example shows. The disadvan-
tage of tunneling is that none of the hosts on the network that is tunneled over can
be reached because the packets cannot escape in the middle of the tunnel. Howev-
er, this limitation of tunnels is turned into an advantage with VPNs (Virtual Pri-
vate Networks). A VPN is simply an overlay that is used to provide a measure of
security. We will explore VPNs when we get to Chap. 8.

430 THE NETWORK LAYER CHAP. 5

Car English Channel

Paris London

Railroad track

Railroad carriage

Figure 5-39. Tunneling a car from France to England.

5.5.5 Internetwork Routing: Routing Across Multiple Networks

Routing through an internet poses the same basic problem as routing within a
single network, but with some added complications. To start, the networks may in-
ternally use different routing algorithms. For example, one network may use link
state routing and another distance vector routing. Since link state algorithms need
to know the topology but distance vector algorithms do not, this difference alone
would make it unclear how to find the shortest paths across the internet.

Networks run by different operators lead to bigger problems. First, the opera-
tors may have different ideas about what is a good path through the network. One
operator may want the route with the least delay, while another may want the most
inexpensive route. This will lead the operators to use different quantities to set the
shortest-path costs (e.g., milliseconds of delay vs. monetary cost). The weights
will not be comparable across networks, so shortest paths on the internet will not
be well defined.

Worse yet, one operator may not want another operator to even know the de-
tails of the paths in its network, perhaps because the weights and paths may reflect
sensitive information (such as the monetary cost) that represents a competitive bus-
iness advantage.

Finally, the internet may be much larger than any of the networks that com-
prise it. It may therefore require routing algorithms that scale well by using a hier-
archy, even if none of the individual networks need to use a hierarchy.

All of these considerations lead to a two-level routing algorithm. Within each
network, an intradomain or interior gateway protocol is used for routing. (‘‘Gate-
way’’ is an older term for ‘‘router.’’) It might be a link state protocol of the kind we
have already described. Across the networks that make up the internet, an interdo-
main or exterior gateway protocol is used. The networks may all use different
intradomain protocols, but they must use the same interdomain protocol. In the In-
ternet, the interdomain routing protocol is called Border Gateway Protocol (BGP).
We will describe it in Sec. 5.7.7

There is one more important term to introduce. Since each network is operated
independently of all the others, it is often referred to as an AS or Autonomous

SEC. 5.5 INTERNETWORKING 431

System. A good mental model for an AS is an ISP network. In fact, an ISP net-
work may be comprised of more than one AS, if it is managed, or, has been ac-
quired, as multiple networks. But the difference is usually not significant.

The two levels are usually not strictly hierarchical, as highly suboptimal paths
might result if a large international network and a small regional network were
both abstracted to be a single network. However, relatively little information about
routes within the networks is exposed to find routes across the internetwork. This
helps to address all of the complications. It improves scaling and lets operators
freely select routes within their own networks using a protocol of their choosing. It
also does not require weights to be compared across networks or expose sensitive
information outside of networks.

However, we have said little so far about how the routes across the networks of
the internet are determined. In the Internet, a large determining factor is the busi-
ness arrangements between ISPs. Each ISP may charge or receive money from the
other ISPs for carrying traffic. Another factor is that if internetwork routing re-
quires crossing international boundaries, various laws may suddenly come into
play, such as Sweden’s strict privacy laws about exporting personal data about
Swedish citizens from Sweden. All of these nontechnical factors are wrapped up
in the concept of a routing policy that governs the way autonomous networks
select the routes that they use. We will return to routing policies when we describe
BGP.

5.5.6 Supporting Different Packet Sizes: Packet Fragmentation

Each network or link imposes some maximum size on its packets. These lim-
its have various causes, among them

1. Hardware (e.g., the size of an Ethernet frame).

2. Operating system (e.g., all buffers are 512 bytes).

3. Protocols (e.g., the number of bits in the packet length field).

4. Compliance with some (inter)national standard.

5. Desire to reduce error-induced retransmissions to some level.

6. Desire to prevent one packet from occupying the channel too long.

The result of all these factors is that the network designers are not free to choose
any old maximum packet size they wish. Maximum payloads for some common
technologies are 1500 bytes for Ethernet and 2272 bytes for 802.11. IP is more
generous, allows for packets as big as 65,515 bytes.

Hosts usually prefer to transmit large packets because this reduces packet over-
heads such as bandwidth wasted on header bytes. An obvious internetworking
problem appears when a large packet wants to travel through a network whose

432 THE NETWORK LAYER CHAP. 5

maximum packet size is too small. This nuisance has been a persistent issue, and
solutions to it have evolved along with much experience gained on the Internet.

One solution is to make sure the problem does not occur in the first place.
However, this is easier said than done. A source does not usually know the path a
packet will take through the network to a destination, so it certainly does not know
how small a packet has to be to get there. This packet size is called the Path MTU
(Path Maximum Transmission Unit). Even if the source did know the path
MTU, packets are routed independently in a connectionless network such as the In-
ternet. This routing means that paths may suddenly change, which can unexpect-
edly change the path MTU.

The alternative solution to the problem is to allow routers to break up packets
into fragments, sending each fragment as a separate network layer packet. How-
ever, as every parent of a small child knows, converting a large object into small
fragments is considerably easier than the reverse process. (Physicists have even
given this effect a name: the second law of thermodynamics.) Packet-switching
networks, too, have trouble putting the fragments back together again.

Two opposing strategies exist for recombining the fragments back into the
original packet. The first strategy is to make all the fragmentation caused by a
‘‘small-packet’’ network transparent to any subsequent networks through which the
packet must pass on its way to the ultimate destination. This option is shown in
Fig. 5-40(a). In this approach, when an oversized packet arrives at G1 , the router
breaks it up into fragments. Each fragment is addressed to the same exit router,
G2, where the pieces are recombined. In this way, passage through the small-pack-
et network is made transparent. Subsequent networks are not even aware that frag-
mentation has occurred.

Transparent fragmentation is straightforward but has some problems. For one
thing, the exit router must know when it has received all the pieces, so either a
count field or an ‘‘end-of-packet’’ bit must be provided. Also, because all packets
must exit via the same router so that they can be reassembled, the routes are con-
strained. By not allowing some fragments to follow one route to the ultimate desti-
nation and other fragments a disjoint route, some performance may be lost. More
significant is the amount of work that the router may have to do. It may need to
buffer the fragments as they arrive, and decide when to throw them away if not all
of the fragments arrive. Some of this work may be wasteful, too, as the packet
may pass through a series of small-packet networks and need to be repeatedly frag-
mented and reassembled.

The other fragmentation strategy is to refrain from recombining fragments at
any intermediate routers. Once a packet has been fragmented, each fragment is
treated as though it were an original packet. The routers pass the fragments, as
shown in Fig. 5-40(b), and reassembly is performed only at the destination host.

The main advantage of nontransparent fragmentation is that it requires routers
to do less work. IP works this way. A complete design requires that the fragments
be numbered in such a way that the original data stream can be reconstructed. The

SEC. 5.5 INTERNETWORKING 433

G1 G2 G3 G4

G1 G2 G3 G4

Packet
Network 1

G1 fragments
a large packet

G2
reassembles
the fragments

G3 fragments
again

G4
reassembles

again

Network 2

(a)

Packet

G1 fragments
a large packet

The fragments are not reassembled
until the final destination (a host) is reached

(b)

Figure 5-40. (a) Transparent fragmentation. (b) Nontransparent fragmentation.

design used by IP is to give every fragment a packet number (carried on all pack-
ets), an absolute byte offset within the packet, and a flag indicating whether it is
the end of the packet. An example is shown in Fig. 5-41. While simple, this de-
sign has some attractive properties. Fragments can be placed in a buffer at the
destination in the right place for reassembly, even if they arrive out of order. Frag-
ments can also be fragmented if they pass over a network with a yet smaller MTU.
This is shown in Fig. 5-41(c). Retransmissions of the packet (if all fragments were
not received) can be fragmented into different pieces. Finally, fragments can be of
arbitrary size, down to a single byte plus the packet header. In all cases, the desti-
nation simply uses the packet number and fragment offset to place the data in the
right position, and the end-of-packet flag to determine when it has the complete
packet.

Unfortunately, this design still has problems. The overhead can be higher than
with transparent fragmentation because fragment headers are now carried over
some links where they may not be needed. But the real problem is the existence of
fragments in the first place. Kent and Mogul (1987) argued that fragmentation is
detrimental to performance because, as well as the header overheads, a whole
packet is lost if any of its fragments are lost, and because fragmentation is more of
a burden for hosts than was originally realized.

This leads us back to the original solution of getting rid of fragmentation in the
network—the strategy used in the modern Internet. The process is called path
MTU discovery (Mogul and Deering, 1990). It works like this. Each IP packet is
sent with its header bits set to indicate that no fragmentation is allowed to be per-
formed. If a router receives a packet that is too large, it generates an error packet,

434 THE NETWORK LAYER CHAP. 5

Number of the first elementary fragment in this packet

Packet
number

End of
packet bit

27 0 1 A B C D E F G H I J

27 0 0 A B C D E F G H 27 8 1 I J

27 0 0 A B C D E 27 5 0 F G H 27 8 1 I J

Header

1 byte

Header Header

Header Header Header

(a)

(b)

(c)

Figure 5-41. Fragmentation when the elementary data size is 1 byte. (a) Origi-
nal packet, containing 10 data bytes. (b) Fragments after passing through a net-
work with maximum packet size of 8 payload bytes plus header. (c) Fragments
after passing through a size 5 gateway.

returns it to the source, and drops the packet. This is shown in Fig. 5-42. When
the source receives the error packet, it uses the information inside to refragment the
packet into pieces that are small enough for the router to handle. If a router further
down the path has an even smaller MTU, the process is repeated.

Source Destination

Packet (with length)

“Try 900”“Try 1200”

1200 9001400

Figure 5-42. Path MTU discovery.

The advantage of path MTU discovery is that the source now knows what
length packet to send. If the routes and path MTU change, new error packets will
be triggered and the source will adapt to the new path. However, fragmentation is
still needed between the source and the destination unless the higher layers learn
the path MTU and pass the right amount of data to IP. TCP and IP are typically

SEC. 5.5 INTERNETWORKING 435

implemented together (as ‘‘TCP/IP’’) to be able to pass this sort of information.
Even if this is not done for other protocols, fragmentation has still been moved out
of the network and into the hosts.

The disadvantage of path MTU discovery is that there may be added startup
delays simply to send a packet. More than one round-trip delay may be needed to
probe the path and find the MTU before any data is delivered to the destination.
This begs the question of whether there are better designs. The answer is probably
‘‘Yes.’’ Consider the design in which each router simply truncates packets that
exceed its MTU. This would ensure that the destination learns the MTU as rapidly
as possible (from the amount of data that was delivered) and receives some of the
data.

5.6 SOFTWARE-DEFINED NETWORKING

Traffic management and engineering is historically very challenging: it re-
quires network operators to tune the configuration parameters of routing protocols,
which then re-compute routes. Traffic flows along the new paths and results in a
re-balancing of traffic. Unfortunately, the mechanisms for traffic control in this
manner are indirect: changes to routing configuration result in changes to routing
both in the network and between networks, and these protocols can interact in
unpredictable ways. SDN (Software-Defined Networking) aims to fix many of
these problems. We will discuss it below.

5.6.1 Overview

In a certain way, networks have always been ‘‘software defined,’’ in the sense
that configurable software running on routers is responsible for looking up infor-
mation in packets and making forwarding decisions about them. Yet, the software
that runs the routing algorithms and implements other logic about packet for-
warding was historically vertically integrated with the networking hardware. An
operator who bought a Cisco or Juniper router was, in some sense, stuck with the
software technology that the vendor shipped with the hardware. For example, mak-
ing changes to the way OSPF or BGP work was simply not possible. One of the
main concepts driving SDN was to recognize that the control plane, the software
and logic that select routes and decide what to do with forwarding traffic, runs in
software and can operate completely separately from the data plane, the hard-
ware-based technology that is responsible for actually performing lookups on
packets and deciding what to do with them. The two planes are shown in
Fig. 5-43.

Given the architectural separation of the control plane and the data plane, the
next natural logical step is to recognize that the control plane need not run on the
network hardware at all! In fact, one common instantiation of SDN involves a

436 THE NETWORK LAYER CHAP. 5

logically centralized program, often written in a high-level language (e.g., Python,
Java, Golang, C) making logical decisions about forwarding and communicating
those decisions to every forwarding device in the network. That communication
channel between the high-level software program and the underlying hardware
could be anything that the network device understands. One of the first SDN con-
trollers used BGP itself as a control plane (Feamster et al., 2003); subsequently,
technologies such as OpenFlow, NETCONF, and YANG have emerged as more
flexible ways to communicate control-plane information with network devices. In
some sense, SDN was a re-incarnation of a well-established idea (i.e., centralized
control) at a time when various enablers (open chipset APIs, software control of
distributed systems) were also at a level of maturity to enable the architectural
ideas to finally gain a foothold.

Figure 5-43. Control and data plane separation in SDN.

While the technology of SDN continues to rapidly evolve, the central tenet of
the separation of the data and control planes remains invariant. SDN technology
has evolved over a number of years; readers who wish to appreciate a complete
history of SDN can read further to appreciate the genesis of this increasingly popu-
lar technology (Feamster et al., 2013). Below, we survey several of the major
trends in SDN: (1) control over routing and forwarding (i.e., the technology behind
the control plane); (2) programmable hardware and customizable forwarding (i.e.,
the technology that makes the data plane more programmable), and (3) program-
mable network telemetry (a network management application that puts the two
pieces together and in many ways may be the ‘‘killer app’’ for SDN).

5.6.2 The SDN Control Plane: Logically Centralized Software Control

One of the main technical ideas that underlies SDN is a control plane that runs
separately from the routers, often as a single, logically centralized program. In
some sense, SDN has always really existed: routers are configurable, and many

SEC. 5.6 SOFTWARE-DEFINED NETWORKING 437

large networks would often even auto-generate their router configuration from a
centralized database, keep it in version control, and push those configurations to
the routers with scripts. While, in a pedantic sense, this kind of setup could be
called an SDN, technically speaking this type of setup only gives operators limited
control over how traffic is forwarded through the network. More typically, SDN
control programs (sometimes called ‘‘controllers’’) are responsible for more of the
control logic, such as computing the paths through the network on behalf of the
routers, and simply updating the resulting forwarding tables remotely.

Early work in software-defined networking aimed to make it easier for net-
work operators to perform traffic engineering tasks by directly controlling the
routes that each router in the network selects, rather than relying on indirect tuning
of network configuration parameters. Early incarnations of SDN thus aimed to
work within the constraints of existing Internet routing protocols to use them to di-
rectly control the routes. One such example was the RCP (Routing Control Plat-
form) (Feamster et al., 2003), which was subsequently deployed in backbone net-
works to perform traffic load balancing and defend against denial-of-service at-
tacks. Subsequent developments included a system called Ethane (Casado et al.,
2007), which used centralized software control to authenticate hosts within a net-
work. One of the problems with Ethane, however, was that it required customized
switches to operate, which limited its deployment in practice.

After demonstrating these benefits of SDN to network management, network
operators and vendors began to take notice. Additionally, there was a convenient
back door to making the switches even more flexible through a programmable con-
trol plane: many network switches relied on a common Broadcom chipset, which
had an interface that allowed direct writes into switch memory. A team of re-
searchers worked with switch vendors to expose this interface to software pro-
grams, ultimately developing a protocol called OpenFlow (McKeown et al, 2008).
The OpenFlow protocol was exposed by many switch vendors who were trying to
compete with the dominant incumbent switch vendor, Cisco. Initially, the protocol
supported a very simple interface: writes into a content-addressable memory that
acted as a simple match-action table. This match-action table allowed a switch to
identify packets that matched one or more fields in the packet header (e.g., MAC
address, IP address) and perform one of a set of possible actions, including for-
warding the packet to a specific port, dropping it, or sending it to an off-path soft-
ware controller.

There were multiple versions of the OpenFlow protocol standard. An early ver-
sion of OpenFlow, version 1.0, had a single match-action table, where entries in the
table could refer to either exact matches on combinations of packet header fields
(e.g., MAC address, IP address) or wild-card entries (e.g., an IP address or MAC
address prefix). Later versions of OpenFlow (the most prominent version being
OpenFlow 1.3) added more complex operations, including chains of tables, but
very few vendors ever implemented these standards. Expressing AND and OR
conjunctions on these types of matches turned out to be a bit tricky, especially for

438 THE NETWORK LAYER CHAP. 5

programmers, so some technologies emerged to make it easier for programmers to
express more complex combinations of conditionals (Foster et al., 2011), and even
to incorporate temporal and other aspects into the forwarding decisions (Kim et al.,
2015). In the end, adoption of some of these technologies was limited: the Open-
Flow protocol gained some traction in large data centers where operators could
have complete control over the network. Yet, widespread adoption in wide-area
and enterprise networks proved more limited because the operations one could per-
form in the forward table were so limited. Additionally, many switch vendors
never fully implemented later versions of the standard, making it difficult to deploy
solutions that depended on these standards in practice. Ultimately, however, the
OpenFlow protocol left several important legacies: (1) control over a network with
a single, centralized software program, permitting coordination across network de-
vices and forwarding elements, and (2) the ability to express such control over the
entire network from a single high-level programming language (e.g., Python, Java).

Ultimately, OpenFlow turned out to be a very limiting interface. It was not de-
signed with flexible network control in mind, but rather was a product of conven-
ience: network devices already had TCAM-based lookup tables in their switches
and OpenFlow was, more than anything, a market-driven initiative to open the in-
terface to these tables so that external software programs could write to it. It wasn’t
long before networking researchers started to think about whether there was a bet-
ter way to design the hardware as well, to allow for more flexible types of control
in the data plane. The next section discusses the developments in programmable
hardware that have ultimately made the switches themselves more programmable.

Meanwhile, programmable software control, mostly initially focused on transit
and data center networks, is beginning to find its way into cellular networks as
well. For example, the Central Office Re-Architected as a Datacenter (CORD)
project aims to develop a 5G network from disaggregated commodity hardware
and open-source software components (Peterson et al., 2019).

5.6.3 The SDN Data Plane: Programmable Hardware

Recognizing the limitations of the OpenFlow chipset, a subsequent develop-
ment in SDN was to make the hardware itself programmable. A number of devel-
opments in programmable hardware, in both network interface cards (NICs) and
switches have made it possible to customize everything from packet format to for-
warding behavior.

The general architecture is sometimes called a protocol-independent switch
architecture. The architecture involves a fixed set of processing pipelines, each
with memory for match-action tables, some amount of register memory, and sim-
ple operations such as addition (Bosshart et al., 2013). The forwarding model is
often referred to as RMT (Reconfigurable Match Tables), a pipeline architecture
that was inspired by RISC architectures. Each stage of the processing pipeline can
read information from the packet headers, make modifications to the values in the

SEC. 5.6 SOFTWARE-DEFINED NETWORKING 439

header based on simple arithmetic operations, and write back the values to the
packets. The processing pipeline is as shown in Fig. 5-44. The chip architecture
includes a programmable parser, a set of match stages, which have state and can
perform arithmetic computations on packets, as well as perform simple forwarding
and dropping decisions, and a ‘‘deparser,’’ which writes resulting values back into
the packets. Each of the read/modify stages can modify both the state that is main-
tained at each stage, plus any packet metadata (e.g., information about the queue
depth that an individual packet sees).

Figure 5-44. Reconfigurable match-action pipeline for a programmable data plane.

The RMT model also allows for custom packet header formats, thus making it
possible to store additional information, beyond simply that which is in standard
protocol headers, in each packet. RMT makes it possible for a programmer to
change aspects of the hardware data plane, without modifying the hardware itself.
The programmer can specify multiple match tables of arbitrary size, subject to an
overall resource limit. It also gives an operator sufficient flexibility to modify arbi-
trary header fields.

Modern chipsets, such as the Barefoot Tofino chipset, make it possible to per-
form protocol-independent custom packet processing on both packet ingress and
egress. as shown in Fig. 5-45. The ability to perform customized processing on
both ingress and egress makes it possible to perform analytics on queue timings
(e.g., how long individual packets spend in queues), as well as customized encap-
sulation and de-encapsulation. It also makes it possible to perform active queue
management (e.g., RED) on egress queues, based on metadata that would be avail-
able from ingress queues. Ongoing work is investigating ways to exploit this archi-
tecture for traffic and congestion management purposes, such as performing fine-
grained queue measurements (Chen et al., 2019).

This level of programmability has generally proved most useful in data-center
networks, whose architectures can benefit from high degrees of customizability.
On the other hand, the model does also allow for some general improvements and
features. For example, the model makes it possible for packets to carry information
about the state of the network itself, allowing for such applications as so-called

440 THE NETWORK LAYER CHAP. 5

Ingress Pipeline Crossbar Queueing Egress Pipeline

Figure 5-45. Reconfigurable match-action pipelines on both ingress and egress.

INT (In-band Network Telemetry), a technology that allows packets to carry
information about,for example, the latency along each hop in a network path.

Programmable NICs, libraries such as Intel’s Data Plane Development Kit
(DPDK), and the emergence of more flexible processing pipelines, such as the
Barefoot Tofino chipset, which is programmable with a language called P4
(Bosshart et al., 2014), now make it possible for network operators to develop cus-
tom protocols and more extensive packet processing in the switch hardware itself.
P4 is a high-level language for programming protocol-independent packet proc-
essors such as the RMT chip. Programmable data planes have emerged for soft-
ware switches, as well (in fact, long before programmable hardware switches).
Along these lines, an important development in programmable control over switch-
es was the development of Open vSwitch (OVS), an open-source implementation
of a switch that processes packets at multiple layers, operating as a module in the
Linux kernel. The software switch offers a range of features, from VLANs to IPv6.
The emergence of OVS made it possible for network operators to customize for-
warding in data centers, in particular, with OVS running as a switch in the hypervi-
sor of servers in data centers.

5.6.4 Programmable Network Telemetry

One of the more important benefits of SDN is its ability to support pro-
grammable network measurement. For many years, network hardware has only
exposed a limited amount of information about network traffic, such as aggregate

SEC. 5.6 SOFTWARE-DEFINED NETWORKING 441

statistics about traffic flows that the network switch sees (e.g., through standards
such as IPFIX). On the other hand, support for the capture of every network packet
can also be prohibitive, given the amount of storage and bandwidth that would be
required to capture the traffic, as well as the amount of processing that would be
required to analyze the data at a later point. For many applications, there is a need
to strike a balance between the granularity of packet traces with the scalability of
IPFIX aggregates This balance is needed to support network management tasks
such as application performance measurement, and for the congestion management
tasks that we discussed earlier.

Programmable switch hardware such as that which we discussed in the previ-
ous section can enable more flexible telemetry. One trend, for example, is enabling
operators to express queries about network traffic in high-level programming lan-
guages using frameworks such as MapReduce (Dean and Ghemawat, 2008). Such
a paradigm, originally designed for data processing on large clusters, also naturally
lends itself to queries about network traffic, for example, how many bytes or pack-
ets are destined to a given address or port, within a specified time window? Unfor-
tunately, programmable switch hardware is not (yet) sophisticated enough to sup-
port complex queries, and as a result, the query may need to be partitioned across
the stream processor and the network switch. Various technologies aim to make it
possible to support this type of query partitioning (Gupta et al., 2019). Open re-
search problems involve figuring out how to efficiently map high-level query con-
structs and abstractions to lower-level switch hardware and software.

One of the final challenges for programmable network telemetry in the coming
years is the increasing pervasiveness of encrypted traffic on the Internet. On the
one hand, encryption improves privacy by making it difficult for network eaves-
droppers to see the contents of user traffic. On the other hand, however, it is also
more difficult for network operators to manage their networks when they cannot
see the contents of the traffic. One such example concerns tracking the quality of
Internet video streams. In the absence of encryption, the contents of the traffic
make details such as the video bitrate and resolution apparent. When the traffic is
encrypted, these properties must be indirectly inferred, based on properties of the
network traffic that can be directly observed (e.g., packet interarrival times, bytes
transferred). Recent work has explored ways to automatically infer the higher-level
properties of network application traffic from low-level statistics (Bronzino et al.,
2020). Network operators will ultimately need better models to help infer how
conditions such as congestion affect application performance.

5.7 THE NETWORK LAYER IN THE INTERNET

It is now time to discuss the network layer of the Internet in detail. But before
getting into specifics, it is worth taking a look at the principles that drove its design
in the past and made it the success that it is today. All too often, nowadays, people

442 THE NETWORK LAYER CHAP. 5

seem to have forgotten them. These principles are enumerated and discussed in
RFC 1958, which is well worth reading (and should be mandatory for all protocol
designers—with a final exam at the end). This RFC draws heavily on ideas put
forth by Clark (1988) and Saltzer et al. (1984). We will now summarize what we
consider to be the top 10 principles (from most important to least important).

1. Make sure it works. Do not finalize the design or standard until
multiple prototypes have successfully communicated with each other.
All too often, designers first write a 1000-page standard, get it
approved, then discover it is deeply flawed and does not work. Then
they write version 1.1 of the standard. This is not the way to go.

2. Keep it simple. When in doubt, use the simplest solution. William
of Occam stated this principle (Occam’s razor) in the 14th century.
Put in modern terms: fight features. If a feature is not absolutely es-
sential, leave it out, especially if the same effect can be achieved by
combining other features.

3. Make clear choices. If there are several ways of doing the same
thing, choose one. Having two or more ways to do the same thing is
looking for trouble. Standards often have multiple options or modes
or parameters because several powerful parties insist that their way is
best. Designers should strongly resist this tendency. Just say no.

4. Exploit modularity. This principle leads directly to the idea of hav-
ing protocol stacks, each of whose layers is independent of all the
other ones. In this way, if circumstances require one module or layer
to be changed, the other ones will not be affected.

5. Expect heterogeneity. Different types of hardware, transmission
facilities, and applications will occur on any large network. To hand-
le them, the network design must be simple, general, and flexible.

6. Avoid static options and parameters. If parameters are unavoidable
(e.g., maximum packet size), it is best to have the sender and receiver
negotiate a value rather than defining fixed choices.

7. Look for a good design; it need not be perfect. Often, the de-
signers have a good design but it cannot handle some weird special
case. Rather than messing up the design, the designers should go
with the good design and put the burden of working around it on the
people with the strange requirements.

8. Be strict when sending and tolerant when receiving. In other
words, send only packets that rigorously comply with the standards,
but expect incoming packets that may not be fully conformant and try
to deal with them.

SEC. 5.7 THE NETWORK LAYER IN THE INTERNET 443

9. Think about scalability. If the system is to handle millions of hosts
and billions of users effectively, no centralized databases of any kind
are tolerable and load must be spread as evenly as possible over the
available resources.

10. Consider performance and cost. If a network has poor performance
or outrageous costs, nobody will use it.

Let us now leave the general principles and start looking at the details of the
Internet’s network layer. In the network layer, the Internet can be viewed as a col-
lection of networks or Autonomous Systems (ASes) that are interconnected. There
is no real structure, but several major backbones exist. These are constructed from
high-bandwidth lines and fast routers.

The biggest of these backbones, to which everyone else connects to reach the
rest of the Internet, are called Tier 1 networks. Attached to the backbones are
ISPs (Internet Service Providers) that provide Internet access to homes and busi-
nesses, data centers and colocation facilities full of server machines, and regional
(mid-level) networks. The data centers serve much of the content that is sent over
the Internet. Attached to the regional networks are more ISPs, LANs at many uni-
versities and companies, and other edge networks. A sketch of this quasihierarchi-
cal organization is given in Fig. 5-46.

Leased lines
to Asia A U.S. backbone

Leased
transatlantic

lines
A European backbone

National
network

Company
network

Ethernet

IP router

Mobile
network

5G

Cable

Home
network

Regional
network

Figure 5-46. The Internet is an interconnected collection of many networks.

The glue that holds the whole Internet together is the network layer protocol,
IP (Internet Protocol). Unlike almost all older network layer protocols, IP was

444 THE NETWORK LAYER CHAP. 5

designed from the beginning with internetworking in mind. A good way to think
of the network layer is this: its job is to provide a best-effort (i.e., not guaranteed)
way to transport packets from source to destination, without regard to whether
these machines are on the same network or whether there are other networks in be-
tween them.

Communication in the Internet works as follows. The transport layer takes
data streams and breaks them up so that they may be sent as IP packets. In theory,
packets can be up to 64 KB each, but in practice they are usually not more than
1500 bytes (so they fit in one Ethernet frame). IP routers forward each packet
through the Internet, along a path from one router to the next, until the destination
is reached. At the destination, the network layer hands the data to the transport
layer, which gives it to the receiving process. When all the pieces finally get to the
destination machine, they are reassembled by the network layer into the original
datagram. This datagram is then handed to the transport layer.

In the example of Fig. 5-46, a packet originating at a host on the home network
has to traverse four networks and a large number of IP routers before even getting
to the company network on which the destination host is located. This is not
unusual in practice, and there are many longer paths. There is also much redun-
dant connectivity in the Internet, with backbones and ISPs connecting to each other
in multiple locations. This means that there are many possible paths between two
hosts. It is the job of the IP routing protocols to decide which paths to use.

5.7.1 The IP Version 4 Protocol

An appropriate place to start our study of the network layer in the Internet is
with the format of the IP datagrams themselves. An IPv4 datagram consists of a
header part and a body or payload part. The header has a 20-byte fixed part and a
variable-length optional part. The header format is shown in Fig. 5-47. The bits
are transmitted from left to right and top to bottom, with the high-order bit of the
Version field going first. (This is a ‘‘big-endian’’ network byte order. On lit-
tle-endian machines, such as Intel x86 computers, a software conversion is re-
quired on both transmission and reception.) In retrospect, little endian would have
been a better choice, but at the time IP was designed, no one knew it would come
to dominate computing.

The Version field keeps track of which version of the protocol the datagram be-
longs to. Version 4 dominates the Internet today, and that is where we have started
our discussion. By including the version at the start of each datagram, it becomes
possible to have a transition between versions over a long period of time. In fact,
IPv6, the next version of IP, was defined more than a decade ago, yet is only just
beginning to be deployed. We will describe it later in this section. Its use will
eventually be forced when each of China’s almost 231 people has a desktop PC, a
laptop, and an IP phone. As an aside on numbering, IPv5 was an experimental
real-time stream protocol that was never widely used.

SEC. 5.7 THE NETWORK LAYER IN THE INTERNET 445

Version IHL Total length

Time to live Protocol

Differentiated services

Identification

Header checksum

Fragment offset

Source address

Destination address

Options (0 or more words)

D
F

M
F

32 Bits

Figure 5-47. The IPv4 (Internet Protocol version 4) header.

Since the header length is not constant, a field in the header, IHL, is provided
to tell how long the header is, in 32-bit words. The minimum value is 5, which
applies when no options are present. The maximum value of this 4-bit field is 15,
which limits the header to 60 bytes, and thus the Options field to 40 bytes. For
some options, such as one that records the route a packet has taken, 40 bytes is far
too small, making those options useless.

The Differentiated services field is one of the few fields that has changed its
meaning (slightly) over the years. Originally, it was called the Type of service
field. It was and still is intended to distinguish between different classes of service.
Various combinations of reliability and speed are possible. For digitized voice, fast
delivery beats accurate delivery. For file transfer, error-free transmission is more
important than fast transmission. The Type of service field provided 3 bits to signal
priority and 3 bits to signal whether a host cared more about delay, throughput, or
reliability. However, no one really knew what to do with these bits at routers, so
they were left unused for many years. When differentiated services were designed,
IETF threw in the towel and reused this field. Now, the top 6 bits are used to mark
the packet with its service class; we described the expedited and assured services
earlier in this chapter. The bottom 2 bits are used to carry explicit congestion noti-
fication information, such as whether the packet has experienced congestion; we
described explicit congestion notification as part of congestion control earlier in
this chapter.

The Total length includes everything in the datagram—both header and data.
The maximum length is 65,535 bytes. At present, this upper limit is tolerable, but
with future networks, larger datagrams may be needed.

The Identification field is needed to allow the destination host to determine
which packet a newly arrived fragment belongs to. All the fragments of a packet
contain the same Identification value.

446 THE NETWORK LAYER CHAP. 5

Next comes an unused bit, which is surprising, as available real estate in the IP
header is extremely scarce. As an April Fool’s joke, Bellovin (2003) proposed
using this bit to detect malicious traffic. This would greatly simplify security, as
packets with the ‘‘evil’’ bit set would be known to have been sent by attackers and
could just be discarded. Unfortunately, network security is not this simple, but it
was a nice try.

Then come two 1-bit fields related to fragmentation. DF stands for Don’t
Fragment. It is an order to the routers not to fragment the packet. Originally, it
was intended to support hosts incapable of putting the pieces back together again.
Now it is used as part of the process to discover the path MTU, which is the largest
packet that can travel along a path without being fragmented. By marking the
datagram with the DF bit, the sender knows it will either arrive in one piece, or an
error message will be returned to the sender.

MF stands for More Fragments. All fragments except the last one have this bit
set. It is needed to know when all fragments of a datagram have arrived.

The Fragment offset tells where in the current packet this fragment belongs.
All fragments except the last one in a datagram must be a multiple of 8 bytes—the
elementary fragment unit. Since 13 bits are provided, there is a maximum of 8192
fragments per datagram, supporting a maximum packet length up to the limit of the
Total length field. Working together, the Identification, MF, and Fragment offset
fields are used to implement fragmentation as described in Sec. 5.5.6.

The TTL (Time to live) field is a counter used to limit packet lifetimes. It was
originally supposed to count time in seconds, allowing a maximum lifetime of 255
sec. It must be decremented on each hop and is supposed to be decremented multi-
ple times when a packet is queued for a long time in a router. In practice, it just
counts hops. When it hits zero, the packet is discarded and a warning packet is
sent back to the source host. This feature prevents packets from wandering around
forever, something that otherwise might happen if the routing tables ever become
corrupted.

When the network layer has assembled a complete packet, it needs to know
what to do with it. The Protocol field tells it which transport process to give the
packet to. TCP is one possibility, but so are UDP and some others. The num-
bering of protocols is global across the entire Internet. Protocols and other assign-
ed numbers were formerly listed in RFC 1700, but nowadays they are contained in
an online database located at www.iana.org.

Since the header carries vital information such as addresses, it rates its own
checksum for protection, the Header checksum. The algorithm is to add up all the
16-bit halfwords of the header as they arrive, using one’s complement arithmetic,
and then take the one’s complement of the result. For purposes of this algorithm,
the Header checksum is assumed to be zero upon arrival. Such a checksum is use-
ful for detecting errors while the packet travels through the network. Note that it
must be recomputed at each hop because at least one field always changes (the
Time to live field), but tricks can be used to speed up the computation.

SEC. 5.7 THE NETWORK LAYER IN THE INTERNET 447

The Source address and Destination address indicate the IP address of the
source and destination network interfaces. We will discuss Internet addresses in the
next section.

The Options field was designed to provide an escape to allow subsequent ver-
sions of the protocol to include information not present in the original design, to
permit experimenters to try out new ideas, and to avoid allocating header bits to
information that is rarely needed. The options are of variable length. Each begins
with a 1-byte code identifying the option. Some options are followed by a 1-byte
option length field, and then one or more data bytes. The Options field is padded
out to a multiple of 4 bytes. Originally, the five options listed in Fig. 5-48 were de-
fined.

Option Description
Security Specifies how secret the datagram is
Strict source routing Gives the complete path to be followed
Loose source routing Gives a list of routers not to be missed
Record route Makes each router append its IP address
Timestamp Makes each router append its address and timestamp

Figure 5-48. Some of the IP options.

The Security option tells how secret the information is. In theory, a military
router might use this field to specify not to route packets through certain countries
the military considers to be ‘‘bad guys.’’ In practice, all routers ignore it, so its only
practical function is to help spies find the good stuff more easily.

The Strict source routing option gives the complete path from source to desti-
nation as a sequence of IP addresses. The datagram is required to follow that exact
route. It is most useful for system managers who need to send emergency packets
when the routing tables have been corrupted, or for making timing or performance
measurements.

The Loose source routing option requires the packet to traverse the list of rout-
ers specified, in the order specified, but it is allowed to pass through other routers
on the way. Normally, this option will provide only a few routers, to force a partic-
ular path. For example, to force a packet from London to Sydney to go west in-
stead of east, this option might specify routers in New York, Los Angeles, and
Honolulu. This option is most useful when political or economic considerations
dictate passing through or avoiding certain countries.

The Record route option tells each router along the path to append its IP ad-
dress to the Options field. This allows system managers to track down bugs in the
routing algorithms, like: ‘‘Why are packets from Houston to Dallas visiting Tokyo
first?’’. When the ARPANET was first set up, no packet ever passed through more
than nine routers, so 40 bytes of options was plenty. As mentioned above, now it is
too small.

448 THE NETWORK LAYER CHAP. 5

Finally, the Timestamp option is like the Record route option, except that in ad-
dition to recording its 32-bit IP address, each router also records a 32-bit time-
stamp. This option, too, is mostly useful for network measurement.

Today, IP options have fallen out of favor. Many routers ignore them or do not
process them efficiently, shunting them to the side as an uncommon case. That is,
they are only partly supported and they are rarely used.

5.7.2 IP Addresses

A defining feature of IPv4 is its 32-bit addresses. Every host and router on the
Internet has an IP address that can be used in the Source address and Destination
address fields of IP packets. It is important to note that an IP address does not ac-
tually refer to a host. It really refers to a network interface, so if a host is on two
networks, it must have two IP addresses. However, in practice, most hosts are on
one network and thus have one IP address. In contrast, routers have multiple inter-
faces and thus multiple IP addresses.

Prefixes

IP addresses are hierarchical, unlike Ethernet addresses. Each 32-bit address is
comprised of a variable-length network portion in the top bits and a host portion in
the bottom bits. The network portion has the same value for all hosts on a single
network, such as an Ethernet LAN. This means that a network corresponds to a
contiguous block of IP address space. This block is called a prefix.

IP addresses are written in dotted decimal notation. In this format, each of
the 4 bytes is written in decimal, from 0 to 255. For example, the 32-bit hexadeci-
mal address 80D00297 is written as 128.208.2.151. Prefixes are written by giving
the lowest IP address in the block and the size of the block. The size is determined
by the number of bits in the network portion; the remaining bits in the host portion
can vary. This means that the size must be a power of two. By convention, it is
written after the prefix IP address as a slash followed by the length in bits of the
network portion. In our example, if the prefix contains 28 addresses and so leaves
24 bits for the network portion, it is written as 128.208.2.0/24.

Since the prefix length cannot be inferred from the IP address alone, routing
protocols must carry the prefixes to routers. Sometimes prefixes are simply de-
scribed by their length, as in a ‘‘/16’’ which is pronounced ‘‘slash 16.’’ The length
of the prefix corresponds to a binary mask of 1s in the network portion. When writ-
ten out this way, it is called a subnet mask. It can be ANDed with the IP address
to extract only the network portion. For our example, the subnet mask is
255.255.255.0. Fig. 5-49 shows a prefix and a subnet mask.

Hierarchical addresses have significant advantages and disadvantages. The
key advantage of prefixes is that routers can forward packets based on only the net-
work portion of the address, as long as each of the networks has a unique address
block. The host portion does not matter at all to the routers because all hosts on

SEC. 5.7 THE NETWORK LAYER IN THE INTERNET 449

32 bits

Network

Prefix length = L bits

Host
Subnet
mask 1 0 0 0 0 0 0 0 0

32 – L bits

Figure 5-49. An IP prefix and a subnet mask.

the same network will be sent in the same direction. It is only when the packets
reach the network for which they are destined that they are forwarded to the correct
host. This makes the routing tables much smaller than they would otherwise be.
Consider that the number of hosts on the Internet is approaching one billion. That
would be a very large table for every router to keep. However, by using a hierarchy,
routers need to keep routes for only around 300,000 prefixes.

While using a hierarchy lets Internet routing scale, it has two disadvantages.
First, the IP address of a host depends on where it is located in the network. An
Ethernet address can be used anywhere in the world, but every IP address belongs
to a specific network, and routers will only be able to deliver packets destined to
that address to the network. Designs such as mobile IP are needed to support hosts
that move between networks but want to keep the same IP addresses.

The second disadvantage is that the hierarchy is wasteful of addresses unless it
is carefully managed. If addresses are assigned to networks in (too) large blocks,
there will be (many) addresses that are allocated but not in use. This allocation
would not matter much if there were plenty of addresses to go around. However, it
was realized more than two decades ago that the tremendous growth of the Internet
was rapidly depleting the free address space. IPv6 is the solution to this shortage,
but until it is widely deployed there will be great pressure to allocate IP addresses
so that they are used very efficiently.

Subnets

Network numbers are managed by a nonprofit corporation called ICANN
(Internet Corporation for Assigned Names and Numbers), to avoid conflicts.
In turn, ICANN has delegated parts of the address space to various regional author-
ities, which dole out IP addresses to ISPs and other companies. This is the process
by which a company is allocated a block of IP addresses.

However, this process is only the start of the story, as IP address assignment is
ongoing as companies grow. We have said that routing by prefix requires all the
hosts in a network to have the same network number. This property can cause
problems as networks grow. For example, let us consider a university that started
out with our example /16 prefix for use by the Computer Science Dept. for the

450 THE NETWORK LAYER CHAP. 5

computers on its Ethernet. A year later, the Electrical Engineering Dept. wants to
get on the Internet. The Art Dept. soon follows suit. What IP addresses should
these departments use? Getting further blocks requires going outside the university
and may be expensive or inconvenient. Moreover, the /16 already allocated has
enough addresses for over 60,000 hosts. It might be intended to allow for signifi-
cant growth, but until that happens, it is wasteful to allocate further blocks of IP
addresses to the same university. A different organization is required.

The solution is to allow the block of addresses to be split into several parts for
internal use as multiple networks, while still acting like a single network to the out-
side world. This is called subnetting and the networks (such as Ethernet LANs)
that result from dividing up a larger network are called subnets. As we mentioned
in Chap. 1, you should be aware that this new usage of the term conflicts with
older usage of ‘‘subnet’’ to mean the set of all routers and communication lines in a
network.

Figure 5-50 shows how subnets can help with our example. The single /16 has
been split into pieces. This split does not need to be even, but each piece must be
aligned so that any bits can be used in the lower host portion. In this case, half of
the block (a /17) is allocated to the Computer Science Dept., a quarter is allocated
to the Electrical Engineering Dept. (a /18), and one-eighth (a /19) to the Art Dept.
The remaining eighth is unallocated. A different way to see how the block was di-
vided is to look at the resulting prefixes when written in binary notation:

Computer Science: 10000000 11010000 1|xxxxxxx xxxxxxxx
Electrical Eng.: 10000000 11010000 00|xxxxxx xxxxxxxx
Art: 10000000 11010000 011|xxxxx xxxxxxxx

Here, the vertical bar (|) shows the boundary between the subnet number and the
host portion.

Art

128.208.0.0/16
(to Internet)

128.208.96.0/19

EE

CS
128.208.128.0/17

128.208.0.0/18

Figure 5-50. Splitting an IP prefix into separate networks with subnetting.

When a packet comes into the main router, how does the router know which
subnet to give it to? This is where the details of our prefixes come in. One way

SEC. 5.7 THE NETWORK LAYER IN THE INTERNET 451

would be for each router to have a table with 65,536 entries telling it which out-
going line to use for each host on campus. But this would undermine the main
scaling benefit we get from using a hierarchy. Instead, the routers simply need to
know the subnet masks for the networks on campus.

When a packet arrives, the router looks at the destination address of the packet
and checks which subnet it belongs to. The router can do this by ANDing the desti-
nation address with the mask for each subnet and checking to see if the result is the
corresponding prefix. For example, consider a packet destined for IP address
128.208.2.151. To see if it is for the Computer Science Dept., we AND with
255.255.128.0 to take the first 17 bits (which is 128.208.0.0) and see if they match
the prefix address (which is 128.208.128.0). They do not match. Checking the first
18 bits for the Electrical Engineering Dept., we get 128.208.0.0 when ANDing
with the subnet mask. This does match the prefix address, so the packet is for-
warded onto the interface that leads to the Electrical Engineering network.

The subnet divisions can be changed later if necessary, by updating all subnet
masks at routers inside the university. Outside the network, the subnetting is not
visible, so allocating a new subnet does not require contacting ICANN or changing
any external databases.

CIDR—Classless InterDomain Routing

Even if blocks of IP addresses are allocated so that the addresses are used ef-
ficiently, there is still a problem that remains: routing table explosion.

Routers in organizations at the edge of a network, such as a university, need to
have an entry for each of their subnets, telling the router which line to use to get to
that network. For routes to destinations outside of the organization, they can use
the simple default rule of sending the packets on the line toward the ISP that con-
nects the organization to the rest of the Internet. The other destination addresses
must all be out there somewhere.

Routers in ISPs and backbones in the middle of the Internet have no such lux-
ury. They must know which way to go to get to every network and no simple de-
fault will work. These core routers are said to be in the default-free zone of the
Internet. No one really knows how many networks are connected to the Internet
any more, but it is a large number, probably at least a million. This can make for a
very large table. It may not sound large by computer standards, but realize that
routers must perform a lookup in this table to forward every packet, and routers at
large ISPs may forward up to millions of packets per second. Specialized hard-
ware and fast memory are needed to process packets at these rates, not a gener-
al-purpose computer.

In addition, routing algorithms require each router to exchange information
about the addresses it can reach with other routers. The larger the tables, the more
information needs to be communicated and processed. The processing grows at
least linearly with the table size. Greater communication increases the likelihood

452 THE NETWORK LAYER CHAP. 5

that some parts will get lost, at least temporarily, possibly leading to routing insta-
bilities.

The routing table problem could have been solved by going to a deeper hier-
archy, like the telephone network. For example, having each IP address contain a
country, state/province, city, network, and host field might work. Then each router
would only need to know how to get to each country, the states or provinces in its
own country, the cities in its state or province, and the networks in its city. Unfor-
tunately, this solution would require considerably more than 32 bits for IP ad-
dresses and would use addresses inefficiently (and Liechtenstein would have as
many bits in its addresses as the United States).

Fortunately, there is something we can do to reduce routing table sizes. We can
apply the same insight as subnetting: routers at different locations can know about
a given IP address as belonging to prefixes of different sizes. However, instead of
splitting an address block into subnets, here we combine multiple small prefixes
into a single larger prefix. This process is called route aggregation. The resulting
larger prefix is sometimes called a supernet, to contrast with subnets as the divis-
ion of blocks of addresses.

With aggregation, IP addresses are contained in prefixes of varying sizes. The
same IP address that one router treats as part of a /22 (a block containing 210 ad-
dresses) may be treated by another router as part of a larger /20 (which contains 212

addresses). It is up to each router to have the corresponding prefix information.
This design works with subnetting and is called CIDR (Classless InterDomain
Routing), which is pronounced ‘‘cider,’’ as in the drink. The most recent version
of it is specified in RFC 4632 (Fuller and Li, 2006). The name highlights the con-
trast with addresses that encode hierarchy with classes, which we will describe
shortly.

To make CIDR easier to understand, let us consider an example in which a
block of 8192 IP addresses is available starting at 194.24.0.0. Suppose that Cam-
bridge University needs 2048 addresses and is assigned the addresses 194.24.0.0
through 194.24.7.255, along with mask 255.255.248.0. This is a /21 prefix. Next,
Oxford University asks for 4096 addresses. Since a block of 4096 addresses must
lie exactly on a 4096-byte boundary, Oxford cannot be given addresses starting at
194.24.8.0. Instead, it gets 194.24.16.0 through 194.24.31.255, along with subnet
mask 255.255.240.0. Finally, the University of Edinburgh asks for 1024 addresses
and is then assigned addresses 194.24.8.0 through 194.24.11.255 and also mask
255.255.252.0. These assignments are summarized in Fig. 5-51.

All of the routers in the default-free zone are now told about the IP addresses
in the three networks. Routers close to the universities may need to send on a dif-
ferent outgoing line for each of the prefixes, so they need an entry for each of the
prefixes in their routing tables. An example is the router in London in Fig. 5-52.

Now let us look at these three universities from the point of view of a distant
router in New York. All of the IP addresses in the three prefixes should be sent
from New York (or the U.S. in general) to London. The routing process in London

SEC. 5.7 THE NETWORK LAYER IN THE INTERNET 453

University First address Last address How many Prefix
Cambridge 194.24.0.0 194.24.7.255 2048 194.24.0.0/21
Edinburgh 194.24.8.0 194.24.11.255 1024 194.24.8.0/22
(Available) 194.24.12.0 194.24.15.255 1024 194.24.12.0/22
Oxford 194.24.16.0 194.24.31.255 4096 194.24.16.0/20

Figure 5-51. A set of IP address assignments.

Edinburgh

192.24.0.0/19
(1 aggregate prefix)

192.24.8.0/22

Cambridge

Oxford

192.24.16.0/20

192.24.0.0/21

LondonNew York

(3 prefixes)

Figure 5-52. Aggregation of IP prefixes.

notices this and combines the three prefixes into a single aggregate entry for the
prefix 194.24.0.0/19 that it passes to the New York router. This prefix contains 8K
addresses and covers the three universities and the otherwise unallocated 1024 ad-
dresses. By using aggregation, three prefixes have been reduced to one, reducing
the prefixes that the New York router must be told about and the routing table en-
tries in the New York router.

When aggregation is turned on, it is an automatic process. It depends on
which prefixes are located where in the Internet not on the actions of an adminis-
trator assigning addresses to networks. Aggregation is heavily used throughout the
Internet and can reduce the size of router tables to around 200,000 prefixes.

As a further twist, prefixes are allowed to overlap. The rule is that packets are
sent in the direction of the most specific route, or the longest matching prefix that
has the fewest IP addresses. Longest matching prefix routing provides a useful
degree of flexibility, as seen in the behavior of the router at New York in Fig. 5-53.
This router still uses a single aggregate prefix to send traffic for the three universi-
ties to London. However, the previously available block of addresses within this
prefix has now been allocated to a network in San Francisco. One possibility is for
the New York router to keep four prefixes, sending packets for three of them to

454 THE NETWORK LAYER CHAP. 5

London and packets for the fourth to San Francisco. Instead, longest matching
prefix routing can handle this forwarding with the two prefixes that are shown. One
overall prefix is used to direct traffic for the entire block to London. One more
specific prefix is also used to direct a portion of the larger prefix to San Francisco.
With the longest matching prefix rule, IP addresses within the San Francisco net-
work will be sent on the outgoing line to San Francisco, and all other IP addresses
in the larger prefix will be sent to London.

192.24.0.0/19

192.24.8.0/22

192.24.16.0/20

192.24.0.0/21

LondonNew York

192.24.12.0/22

San Francisco

192.24.12.0/22

Figure 5-53. Longest matching prefix routing at the New York router.

Conceptually, CIDR works as follows. When a packet comes in, the routing
table is scanned to determine if the destination lies within the prefix. It is possible
that multiple entries with different prefix lengths will match, in which case the
entry with the longest prefix is used. Thus, if there is a match for a /20 mask and a
/24 mask, the /24 entry is used to look up the outgoing line for the packet. Howev-
er, this process would be tedious if the table were really scanned entry by entry.
Instead, complex algorithms have been devised to speed up the address matching
process (Ruiz-Sanchez et al., 2001). Commercial routers use custom VLSI chips
with these algorithms embedded in hardware.

Classful and Special Addressing

To help you better appreciate why CIDR is so useful, we will briefly relate the
design that predated it. Before 1993, IP addresses were divided into the five cate-
gories listed in Fig. 5-54. This allocation has come to be called classful address-
ing.

The class A, B, and C formats allow for up to 128 networks with 16 million
hosts each, 16,384 networks with up to 65,536 hosts each, and 2 million networks
(e.g., LANs) with up to 256 hosts each (although a few of these are special). Also
supported is multicast (the class D format), in which a datagram is directed to mul-
tiple hosts. Addresses beginning with 1111 are reserved for use in the future.
They would be valuable to use now given the depletion of the IPv4 address space.
Unfortunately, many hosts will not accept these addresses as valid because they
have been off-limits for so long and it is hard to teach old hosts new tricks.

This is a hierarchical design, but unlike CIDR the sizes of the address blocks
are fixed. Over 2 billion 21-bit addresses exist, but organizing the address space

SEC. 5.7 THE NETWORK LAYER IN THE INTERNET 455

32 Bits

Range of host
addresses
1.0.0.0 to
127.255.255.255

128.0.0.0 to
191.255.255.255

192.0.0.0 to
223.255.255.255

224.0.0.0 to
239.255.255.255

240.0.0.0 to
255.255.255.255

Class

0 Network Host

10 Network Host

110 Network Host

1110 Multicast address

1111 Reserved for future use

A

B

C

D

E

Figure 5-54. IP address formats.

by classes wastes millions of them. In particular, the real villain is the class B net-
work. For most organizations, a class A network, with 16 million addresses, is too
big, and a class C network, with 256 addresses is too small. A class B network,
with 65,536, is just right. In Internet folklore, this situation is known as the three
bears problem as in Goldilocks and the Three Bears (Southey, 1848).

In reality, though, a class B address is far too large for most organizations.
Studies have shown that more than half of all class B networks have fewer than 50
hosts. A class C network would have done the job, but no doubt every organiza-
tion that asked for a class B address thought that one day it would outgrow the
8-bit host field. In retrospect, it might have been better to have had class C net-
works use 10 bits instead of 8 for the host number, allowing 1022 hosts per net-
work. Had this been the case, most organizations would probably have settled for
a class C network, and there would have been half a million of them (versus only
16,384 class B networks).

It is hard to fault the Internet’s designers for not having provided more (and
smaller) class B addresses. At the time the decision was made to create the three
classes, the Internet was a research network connecting the major research univer-
sities in the U.S. (plus a very small number of companies and military sites doing
networking research). No one then perceived the Internet becoming a mass-market
communication system rivaling the telephone network. At the time, someone no
doubt said: ‘‘The U.S. has about 2000 colleges and universities. Even if all of
them connect to the Internet and many universities in other countries join, too, we
are never going to hit 16,000, since there are not that many universities in the
whole world. Furthermore, having the host number be an integral number of bytes
speeds up packet processing’’ (which was then done entirely in software). Perhaps
some day people will look back and fault the folks who designed the telephone

456 THE NETWORK LAYER CHAP. 5

number scheme and say: ‘‘What idiots. Why didn’t they include the planet number
in the phone number?’’ But at the time, it did not seem necessary.

To handle these problems, subnets were introduced to flexibly assign blocks of
addresses within an organization. Later, CIDR was added to reduce the size of the
global routing table. Today, the bits that indicate whether an IP address belongs to
class A, B, or C network are no longer used, though references to these classes in
the literature are still common.

To see how dropping the classes made forwarding more complicated, consider
how simple it was in the old classful system. When a packet arrived at a router, a
copy of the IP address was shifted right 28 bits to yield a 4-bit class number. A
16-way branch then sorted packets into A, B, C (and D and E) classes, with eight
of the cases for class A, four of the cases for class B, and two of the cases for class
C. The code for each class then masked off the 8-, 16-, or 24-bit network number
and right aligned it in a 32-bit word. The network number was then looked up in
the A, B, or C table, usually by indexing for A and B networks and hashing for C
networks. Once the entry was found, the outgoing line could be looked up and the
packet forwarded. This is much simpler than the longest matching prefix opera-
tion, which can no longer use a simple table lookup because an IP address may
have any length prefix.

Class D addresses continue to be used in the Internet for multicast. Actually, it
might be more accurate to say that they are starting to be used for multicast, since
Internet multicast has not been widely deployed in the past.

There are also several other addresses that have special meanings, as shown in
Fig. 5-55. The IP address 0.0.0.0, the lowest address, is used by hosts when they
are being booted. It means ‘‘this network’’ or ‘‘this host.’’ IP addresses with 0 as
the network number refer to the current network. These addresses allow machines
to refer to their own network without knowing its number (but they have to know
the network mask to know how many 0s to include). The address consisting of all
1s, or 255.255.255.255—the highest address—is used to mean all hosts on the in-
dicated network. It allows broadcasting on the local network, typically a LAN.
The addresses with a proper network number and all 1s in the host field allow ma-
chines to send broadcast packets to distant LANs anywhere in the Internet. How-
ever, many network administrators disable this feature as it is mostly a security
hazard. Finally, all addresses of the form 127.xx.yy.zz are reserved for loopback
testing. Packets sent to that address are not put out onto the wire; they are proc-
essed locally and treated as incoming packets. This allows packets to be sent to the
host without the sender knowing its number, which is useful for testing.

NAT—Network Address Translation

IP addresses are scarce. An ISP might have a /16 address, giving it 65,534
usable host numbers. If it has more customers than that, it has a problem. In fact,
with 32-bit addresses, there are only 232 of them and they are all gone.

SEC. 5.7 THE NETWORK LAYER IN THE INTERNET 457

This host

A host on this network

Broadcast on the
local network

0

Host

Network

127 (Anything)

Broadcast on a
distant network

Loopback

0 0

1 1

0 0 0 0. . .

. . .1 1 1 1 1 1 1 1

Figure 5-55. Special IP addresses.

This scarcity has led to techniques to use IP addresses sparingly. One ap-
proach is to dynamically assign an IP address to a computer when it is on and
using the network, and to take the IP address back when the host becomes inactive.
The IP address can then be assigned to another computer that becomes active. In
this way, a single /16 address can handle up to 65,534 active users.

This strategy works well in some cases, for example, for dialup networking
and mobile and other computers that may be temporarily absent or powered off.
However, it does not work very well for business customers. Many PCs in busi-
nesses are expected to be on continuously. Some are employee machines, backed
up at night, and some are servers that may have to serve a remote request at a
moment’s notice. These businesses have an access line that always provides con-
nectivity to the rest of the Internet.

Increasingly, this situation also applies to home users subscribing to ADSL or
Internet over cable, since there is no hourly connection charge (as there once was),
just a monthly flat rate charge). Many of these users have two or more computers
at home, often one for each family member, and they all want to be online all the
time. The solution is to connect all the computers into a home network via a LAN
and put a (wireless) router on it. The router then connects to the ISP. From the
ISP’s point of view, the family is now the same as a small business with a handful
of computers. Welcome to Jones, Inc. With the techniques we have seen so far,
each computer must have its own IP address all day long. For an ISP with many
thousands of customers, particularly business customers and families that are just
like small businesses, the demand for IP addresses can quickly exceed the block
that is available.

The problem of running out of IP addresses is not a theoretical one that might
occur at some point in the distant future. It is happening right here and right now.
The long-term solution is for the whole Internet to migrate to IPv6, which has
128-bit addresses. This transition is slowly occurring, but it will be years before
the process is complete. To get by in the meantime, a quick fix was needed. The
quick fix that is widely used today came in the form of NAT (Network Address

458 THE NETWORK LAYER CHAP. 5

Translation), which is described in RFC 3022 and which we will summarize
below. For additional information, see Dutcher (2001).

The basic idea behind NAT is for the ISP to assign each home or business a
single IP address (or at most, a small number of them) for Internet traffic. Within
the customer network, every computer gets a unique IP address, which is used for
routing intramural traffic. However, just before a packet exits the customer net-
work and goes to the ISP, an address translation from the unique internal IP ad-
dress to the shared public IP address takes place. This translation makes use of
three ranges of IP addresses that have been declared as private. Networks may use
them internally as they wish. The only rule is that no packets containing these ad-
dresses may appear on the Internet itself. The three reserved ranges are:

10.0.0.0 – 10.255.255.255/8 (16,777,216 hosts)
172.16.0.0 – 172.31.255.255/12 (1,048,576 hosts)
192.168.0.0 – 192.168.255.255/16 (65,536 hosts)

The first range provides for 16,777,216 addresses (except for all 0s and all 1s, as
usual) and is the usual choice, even if the network is not large.

The operation of NAT is shown in Fig. 5-56. Within the customer premises,
every machine has a unique address of the form 10.x.y.z. However, before a packet
leaves the customer premises, it passes through a NAT box that converts the inter-
nal IP source address, 10.0.0.1 in the figure, to the customer’s true IP address,
198.60.42.12 in this example. The NAT box is often combined in a single device
with a firewall, which provides security by carefully controlling what goes into the
customer network and what comes out of it. We will study firewalls in Chap. 8. It
is also possible to integrate the NAT box into a router or ADSL modem.

Packet after
translation

Boundary of customer premises

NAT box/firewall

ISP
router

IP = 198.60.42.12
port = 3344

IP = 10.0.0.1
port = 5544 (to Internet)

Packet before
translation

Customer
router
and LAN

Figure 5-56. Placement and operation of a NAT box.

So far, we have glossed over one tiny but crucial detail: when the reply comes
back (e.g., from a Web server), it is naturally addressed to 198.60.42.12, so how
does the NAT box know which internal address to replace it with? Herein lies the
problem with NAT . If there were a spare field in the IP header, that field could be
used to keep track of who the real sender was, but only 1 bit is still unused. In

SEC. 5.7 THE NETWORK LAYER IN THE INTERNET 459

principle, a new option could be created to hold the true source address, but doing
so would require changing the IP code on all the machines on the entire Internet to
handle the new option. This is not a promising alternative for a quick fix.

What actually happens is as follows. The NAT designers observed that most
IP packets carry either TCP or UDP payloads. When we study TCP and UDP in
Chap. 6, we will see that both of these have headers containing a source port and a
destination port. Below we will just discuss TCP ports, but exactly the same story
holds for UDP ports. The ports are 16-bit integers that indicate where the TCP
connection begins and ends. These ports provide the field needed to make NAT
work.

When a process wants to establish a TCP connection with a remote process, it
attaches itself to an unused TCP port on its own machine. This is called the source
port and tells the TCP code where to send incoming packets belonging to this con-
nection. The process also supplies a destination port to tell who to give the pack-
ets to on the remote side. Ports 0–1023 are reserved for well-known services. For
example, port 80 is the port used by Web servers, so remote clients can locate
them. Each outgoing TCP message contains both a source port and a destination
port. Together, these ports serve to identify the processes using the connection on
both ends.

An analogy may make the use of ports clearer. Imagine a company with a sin-
gle main telephone number. When people call the main number, they reach an op-
erator who asks which extension they want and then puts them through to that ex-
tension. The main number is analogous to the customer’s IP address and the exten-
sions on both ends are analogous to the ports. Ports are effectively an extra 16 bits
of addressing that identify which process gets which incoming packet.

Using the Source port field, we can solve our mapping problem. Whenever an
outgoing packet enters the NAT box, the 10.x.y.z source address is replaced by the
customer’s true IP address. In addition, the TCP Source port field is replaced by
an index into the NAT box’s 65,536-entry translation table. This table entry con-
tains the original IP address and the original source port. Finally, both the IP and
TCP header checksums are recomputed and inserted into the packet. It is neces-
sary to replace the Source port because connections from machines 10.0.0.1 and
10.0.0.2 may both happen to use port 5000, for example, so the Source port alone
is not enough to identify the sending process.

When an incoming packet arrives at the NAT box from the ISP, the Destination
port in the TCP header is extracted and used as an index into the NAT box’s map-
ping table. From the entry located, the internal IP address and original TCP port
are extracted and inserted into the packet. Then both the IP and TCP checksums
are recomputed and inserted into the packet. The packet is then passed to the cus-
tomer router for normal delivery using the 10.x.y.z address.

Although this scheme sort of solves the problem, networking purists in the IP
community have a tendency to regard it as an abomination-on-the-face-of-the-
earth. Briefly summarized, here are some of the objections. First, NAT violates

460 THE NETWORK LAYER CHAP. 5

the architectural model of IP, which states that every IP address uniquely identifies
a single machine worldwide. The whole software structure of the Internet is built
on this fact. With NAT , thousands of machines may (and do) use address 10.0.0.1.

Second, NAT breaks the end-to-end connectivity model of the Internet, which
says that any host can send a packet to any other host at any time. Since the map-
ping in the NAT box is set up by outgoing packets, incoming packets cannot be ac-
cepted until after an outgoing one is sent. In practice, this means that a home user
with NAT can make TCP/IP connections to a remote Web server, but a remote user
cannot make connections to a game server on the home network. Special configu-
ration or NAT traversal techniques are needed to support this situation.

Third, NAT changes the Internet from a connectionless network to a very
strange kind of connection-oriented network. The problem is that the NAT box
must maintain state (i.e., the mapping) for each connection passing through it.
Having the network maintain connection state is a property of connection-oriented
networks, not a connectionless one. If the NAT box crashes and its mapping table
is lost, all its TCP connections are destroyed. In the absence of NAT , a router can
crash and restart with no long-term effect on TCP connections. The sending proc-
ess just times out within a few seconds and retransmits all unacknowledged pack-
ets. With NAT , the Internet becomes as vulnerable as a circuit-switched network.

Fourth, NAT violates the most fundamental rule of protocol layering: layer k
may not make any assumptions about what layer k + 1 has put into the payload
field. This basic principle is there to keep the layers independent. If TCP is later
upgraded to TCP-2, with a different header layout (e.g., 32-bit ports), NAT will
fail. The whole idea of layered protocols is to ensure that changes in one layer do
not require changes in other layers. NAT destroys this independence.

Fifth, processes on the Internet are not required to use TCP or UDP. If a user
on machine A decides to use some new transport protocol to talk to a user on ma-
chine B (e.g., for a multimedia application), introduction of a NAT box will cause
the application to fail because the NAT box will not be able to locate the TCP
Source port correctly.

A sixth and related problem is that some applications use multiple TCP/IP con-
nections or UDP ports in prescribed ways. For example, FTP, the standard File
Transfer Protocol, inserts IP addresses in the body of packet for the receiver to
extract and use. Since NAT knows nothing about these arrangements, it cannot re-
write the IP addresses or otherwise account for them. This lack of understanding
means that FTP and other applications such as the H.323 Internet telephony proto-
col (which we will study in Chap. 7) will fail in the presence of NAT unless special
precautions are taken. It is often possible to patch NAT for these cases, but having
to patch the code in the NAT box for every new application is not a good idea.

Finally, since the TCP Source port field is 16 bits, at most 65,536 machines
can be mapped onto an IP address. Actually, the number is slightly less because
the first 4096 ports are reserved for special uses. However, if multiple IP addresses
are available, each one can handle up to 61,440 machines.

SEC. 5.7 THE NETWORK LAYER IN THE INTERNET 461

A view of these and other problems with NAT is given in RFC 2993. Despite
the issues, NAT is widely used in practice, especially for home and small business
networks, as the only expedient technique to deal with the IP address shortage. It
has become wrapped up with firewalls and privacy because it blocks unsolicited in-
coming packets by default. For this reason, it is unlikely to go away even when
IPv6 is widely deployed.

5.7.3 IP Version 6

IP has been in heavy use for decades. It has worked extremely well, as demon-
strated by the exponential growth of the Internet. Unfortunately, IP has become a
victim of its own popularity: it is close to running out of addresses. Even with
CIDR and NAT using addresses more sparingly, the last IPv4 addresses were allo-
cated on Nov. 25, 2019. This looming disaster was recognized almost two decades
ago, and it sparked a great deal of discussion and controversy within the Internet
community about what to do about it.

In this section, we will describe both the problem and several proposed solu-
tions. The only long-term solution is to move to larger addresses. IPv6 (IP ver-
sion 6) is a replacement design that does just that. It uses 128-bit addresses; a
shortage of these addresses is not likely any time in the foreseeable future. How-
ever, IPv6 has proved very difficult to deploy. It is a different network layer proto-
col that does not really interwork with IPv4, despite many similarities. Also, com-
panies and users are not really sure why they should want IPv6 in any case. The re-
sult is that IPv6 is deployed and used in only a fraction of the Internet (estimates
are 25%) despite having been an Internet Standard since 1998. The next several
years will be an interesting time. Each IPv4 address is now worth as much as $19.
In 2019, a man was convicted of stockpiling 750,000 IP addresses (worth about
$14 million) and selling them on the black market.

In addition to the address problems, other issues loom in the background. In
its early years, the Internet was largely used by universities, high-tech industries,
and the U.S. Government (especially the Dept. of Defense). With the explosion of
interest in the Internet starting in the mid-1990s, it began to be used by a different
group of people, often with different requirements. For one thing, numerous peo-
ple with smart phones use it to keep in contact with their home bases. For another,
with the impending convergence of the computer, communication, and entertain-
ment industries, it may not be that long before every telephone and television set in
the world is an Internet node, resulting in a billion machines being used for audio
and video on demand. Under these circumstances, it became apparent that IP had
to evolve and become more flexible.

Seeing these problems on the horizon, in 1990 IETF started work on a new
version of IP, one that would never run out of addresses, would solve a variety of
other problems, and be more flexible and efficient as well. Its major goals were:

462 THE NETWORK LAYER CHAP. 5

1. Support billions of hosts, even with inefficient address allocation.

2. Reduce the size of the routing tables.

3. Simplify the protocol, to allow routers to process packets faster.

4. Provide better security (authentication and privacy).

5. Pay more attention to the typeof service, especially for real-time data.

6. Aid multicasting by allowing scopes to be specified.

7. Make it possible for a host to roam without changing its address.

8. Allow the protocol to evolve in the future.

9. Permit the old and new protocols to coexist for years.

The design of IPv6 presented a major opportunity to improve all of the features
in IPv4 that fall short of what is now wanted. To develop a protocol that met all
these requirements, IETF issued a call for proposals and discussion in RFC 1550.
Twenty-one responses were initially received. By December 1992, seven serious
proposals were on the table. They ranged from making minor patches to IP, to
throwing it out altogether and replacing it with a completely different protocol.

One proposal was to run TCP over CLNP, the network layer protocol designed
for OSI. With its 160-bit addresses, CLNP would have provided enough address
space forever as it could give every molecule of water in the oceans enough ad-
dresses (roughly 25) to set up a small network. This choice would also have uni-
fied two major network layer protocols. However, many people felt that this would
have been an admission that something in the OSI world was actually done right, a
statement considered Politically Incorrect in Internet circles. CLNP was patterned
closely on IP, so the two are not really that different. In fact, the protocol ulti-
mately chosen differs from IP far more than CLNP does. Another strike against
CLNP was its poor support for service types, something required to transmit multi-
media efficiently.

Three of the better proposals were published in IEEE Network (Deering, 1993;
Francis, 1993; and Katz and Ford, 1993). After much discussion, revision, and
jockeying for position, a modified combined version of the Deering and Francis
proposals, by now called SIPP (Simple Internet Protocol Plus) was selected and
given the designation IPv6 (Internet Protocol version 6).

IPv6 meets IETF’s goals fairly well. It maintains the good features of IP, dis-
cards or deemphasizes the bad ones, and adds new ones where needed. In general,
IPv6 is not compatible with IPv4, but it is compatible with the other auxiliary In-
ternet protocols, including TCP, UDP, ICMP, IGMP, OSPF, BGP, and DNS, with
small modifications being required to deal with longer addresses. The main fea-
tures of IPv6 are discussed below. More information about it can be found in RFC
2460 through RFC 2466.

SEC. 5.7 THE NETWORK LAYER IN THE INTERNET 463

First and foremost, IPv6 has longer addresses than IPv4. They are 128 bits
long, which solves the problem that IPv6 set out to solve: providing an effectively
unlimited supply of Internet addresses. We will have more to say about addresses
shortly.

The second major improvement of IPv6 is the simplification of the header. It
contains only seven fields (versus 13 in IPv4). This change allows routers to proc-
ess packets faster and thus improves throughput and delay. We will discuss the
header shortly, too.

The third major improvement is better support for options. This change was
essential with the new header because fields that previously were required are now
optional (because they are not used so often). In addition, the way options are
represented is different, making it simple for routers to skip over options not in-
tended for them. This feature speeds up packet processing time.

A fourth area in which IPv6 represents a big advance is in security. IETF had
its fill of newspaper stories about precocious 12-year-olds using their personal
computers to break into banks and military bases all over the Internet. There was a
strong feeling that something had to be done to improve security. Authentication
and privacy are key features of the new IP. These were later retrofitted to IPv4,
however, so in the area of security the differences are not so great any more.

Finally, more attention has been paid to quality of service. Various half-
hearted efforts to improve QoS have been made in the past, but now, with the
growth of multimedia on the Internet, the sense of urgency is greater.

The Main IPv6 Header

The IPv6 header is shown in Fig. 5-57. The Version field is always 6 for IPv6
(and 4 for IPv4). During the transition period from IPv4, which has already taken
more than a decade, routers will be able to examine this field to tell what kind of
packet they have. As an aside, making this test wastes a few instructions in the
critical path, given that the data link header usually indicates the network protocol
for demultiplexing, so some routers may skip the check. For example, the Ethernet
Type field has different values to indicate an IPv4 or an IPv6 payload. The dis-
cussions between the ‘‘Do it right’’ and ‘‘Make it fast’’ camps will no doubt contin-
ue to be vigorous and lengthy for years to come.

The Differentiated services field (originally called Traffic class) is used to dis-
tinguish the class of service for packets with different real-time delivery re-
quirements. It is used with the differentiated service architecture for quality of ser-
vice in the same manner as the field of the same name in the IPv4 packet. Also, the
low-order 2 bits are used to signal explicit congestion indications, again in the
same way as with IPv4.

The Flow label field provides a way for a source and destination to mark
groups of packets that have the same requirements and should be treated in the

464 THE NETWORK LAYER CHAP. 5

32 Bits

Version Flow labelDiff. services

Next headerPayload length Hop limit

Source address
(16 bytes)

Destination address
(16 bytes)

Figure 5-57. The IPv6 fixed header (required).

same way by the network, forming a pseudoconnection. For example, a stream of
packets from one process on a certain source host to a process on a specific desti-
nation host might have stringent delay requirements and thus need reserved band-
width. The flow can be set up in advance and given an identifier. When a packet
with a nonzero Flow label shows up, all the routers can look it up in internal tables
to see what kind of special treatment it requires. In effect, flows are an attempt to
have it both ways: the flexibility of a datagram network and the guarantees of a vir-
tual-circuit network.

Each flow for quality of service purposes is designated by the source address,
destination address, and flow number. This design means that up to 220 flows may
be active at the same time between a given pair of IP addresses. It also means that
even if two flows coming from different hosts but with the same flow label pass
through the same router, the router will be able to tell them apart using the source
and destination addresses. It is expected that flow labels will be chosen randomly,
rather than assigned sequentially starting at 1, so routers are expected to hash them.

The Payload length field tells how many bytes follow the 40-byte header of
Fig. 5-57. The name was changed from the IPv4 Total length field because the
meaning was changed slightly: the 40 header bytes are no longer counted as part of
the length (as they used to be). This change means the payload can now be 65,535
bytes instead of a mere 65,515 bytes.

The Next header field lets the cat out of the bag. The reason the header could
be simplified is that there can be additional (optional) extension headers. This
field tells which of the (currently) six extension headers, if any, follow this one. If

SEC. 5.7 THE NETWORK LAYER IN THE INTERNET 465

this header is the last IP header, the Next header field tells which transport protocol
handler (e.g., TCP, UDP) to pass the packet to.

The Hop limit field is used to keep packets from living forever. It is, in prac-
tice, the same as the Time to live field in IPv4, namely, a field that is decremented
on each hop. In theory, in IPv4 it was a time in seconds, but no router used it that
way, so the name was changed to reflect the way it is actually used.

Next come the Source address and Destination address fields. Deering’s origi-
nal proposal, SIP, used 8-byte addresses, but during the review process many peo-
ple felt that with 8-byte addresses IPv6 would run out of addresses within a few
decades, whereas with 16-byte addresses it would never run out. Other people
argued that 16 bytes was overkill, whereas still others favored using 20-byte ad-
dresses to be compatible with the OSI datagram protocol. Still another faction
wanted variable-sized addresses. After much debate and more than a few words
unprintable in an academic textbook, it was decided that fixed-length 16-byte ad-
dresses were the best compromise.

A new notation has been devised for writing 16-byte addresses. They are writ-
ten as eight groups of four hexadecimal digits with colons between the groups, like
this:

8000:0000:0000:0000:0123:4567:89AB:CDEF

Since many addresses will have many zeros inside them, three optimizations have
been authorized. First, leading zeros within a group can be omitted, so 0123 can
be written as 123. Second, one or more groups of 16 zero bits can be replaced by a
pair of colons. Thus, the above address now becomes

8000::123:4567:89AB:CDEF

Finally, IPv4 addresses can be written as a pair of colons and an old dotted decimal
number, for example:

::192.31.20.46

Perhaps it is unnecessary to be so explicit about it, but there are a lot of
16-byte addresses. Specifically, there are 2128 of them, which is approximately
3 × 1038. If the entire earth, land and water, were covered with computers, IPv6
would allow 7 × 1023 IP addresses per square meter. Students of chemistry will
notice that this number is larger than Avogadro’s number. While it was not the
intention to give every molecule on the surface of the earth its own IP address, we
are not that far off.

In practice, the address space will not be used efficiently, just as the telephone
number address space is not (the area code for Manhattan, 212, is nearly full, but
that for Wyoming, 307, is nearly empty). In RFC 3194, Durand and Huitema cal-
culated that, using the allocation of telephone numbers as a guide, even in the most
pessimistic scenario there will still be well over 1000 IP addresses per square meter
of the entire earth’s surface (land and water). In any likely scenario, there will be

466 THE NETWORK LAYER CHAP. 5

trillions of them per square meter. In short, it seems unlikely that we will run out
in the foreseeable future.

It is instructive to compare the IPv4 header (Fig. 5-47) with the IPv6 header
(Fig. 5-57) to see what has been left out in IPv6. The IHL field is gone because the
IPv6 header has a fixed length. The Protocol field was taken out because the Next
header field tells what follows the last IP header (e.g., a UDP or TCP segment).

All the fields relating to fragmentation were removed because IPv6 takes a dif-
ferent approach to fragmentation. To start with, all IPv6-conformant hosts are ex-
pected to dynamically determine the packet size to use. They do this using the
path MTU discovery procedure we described in Sec. 5.5.6. In brief, when a host
sends an IPv6 packet that is too large, instead of fragmenting it, the router that is
unable to forward it drops the packet and sends an error message back to the send-
ing host. This message tells the host to break up all future packets to that destina-
tion. Having the host send packets that are the right size in the first place is ulti-
mately much more efficient than having the routers fragment them on the fly.
Also, the minimum-size packet that routers must be able to forward has been raised
from 576 to 1280 bytes to allow 1024 bytes of data and many headers.

Finally, the Checksum field is gone because calculating it greatly reduces per-
formance. With the reliable networks now used, combined with the fact that the
data link layer and transport layers normally have their own checksums, the value
of yet another checksum was deemed not worth the performance price it extracted.
Removing all these features has resulted in a lean and mean network layer proto-
col. Thus, the goal of IPv6—a fast, yet flexible, protocol with plenty of address
space—is met by this design.

Extension Headers

Some of the missing IPv4 fields are occasionally still needed, so IPv6 intro-
duces the concept of (optional) extension headers. These headers can be supplied
to provide extra information, but encoded in an efficient way. Six kinds of exten-
sion headers are defined at present, as listed in Fig. 5-58. Each one is optional, but
if more than one is present they must appear directly after the fixed header, and
preferably in the order listed.

Some of the headers have a fixed format; others contain a variable number of
variable-length options. For these, each item is encoded as a (Type, Length, Value)
tuple. The Type is a 1-byte field telling which option this is. The Type values have
been chosen so that the first 2 bits tell routers that do not know how to process the
option what to do. The choices are: skip the option; discard the packet; discard the
packet and send back an ICMP packet; and discard the packet but do not send
ICMP packets for multicast addresses (to prevent one bad multicast packet from
generating millions of ICMP reports).

The Length is also a 1-byte field. It tells how long the value is (0 to 255
bytes). The Value is any information required, up to 255 bytes.

SEC. 5.7 THE NETWORK LAYER IN THE INTERNET 467

Extension header Description
Hop-by-hop options Miscellaneous information for routers
Destination options Additional information for the destination
Routing Loose list of routers to visit
Fragmentation Management of datagram fragments
Authentication Verification of the sender’s identity
Encrypted security payload Information about the encrypted contents

Figure 5-58. IPv6 extension headers.

The hop-by-hop header is used for information that all routers along the path
must examine. So far, one option has been defined: support of datagrams exceed-
ing 64 KB. The format of this header is shown in Fig. 5-59. When it is used, the
Payload length field in the fixed header is set to 0.

Next header

Jumbo payload length

0 194 4

Figure 5-59. The hop-by-hop extension header for large datagrams (jumbograms).

As with all extension headers, this one starts with a byte telling what kind of
header comes next. This byte is followed by one telling how long the hop-by-hop
header is in bytes, excluding the first 8 bytes, which are mandatory. All extensions
begin this way.

The next 2 bytes indicate that this option defines the datagram size (code 194)
and that the size is a 4-byte number. The last 4 bytes give the size of the datagram.
Sizes less than 65,536 bytes are not permitted and will result in the first router dis-
carding the packet and sending back an ICMP error message. Datagrams using
this header extension are called jumbograms. The use of jumbograms is impor-
tant for supercomputer applications that must transfer gigabytes of data efficiently
across the Internet.

The destination options header is intended for fields that need only be inter-
preted at the destination host. In the initial version of IPv6, the only options de-
fined are null options for padding this header out to a multiple of 8 bytes, so ini-
tially it will not be used. It was included to make sure that new routing and host
software can handle it, in case someone thinks of a destination option some day.

The routing header lists one or more routers that must be visited on the way to
the destination. It is very similar to the IPv4 loose source routing in that all ad-
dresses listed must be visited in order, but other routers not listed may be visited in
between. The format of the routing header is shown in Fig. 5-60.

468 THE NETWORK LAYER CHAP. 5

Next header Header extension
length Routing type Segments left

Type-specific data

Figure 5-60. The extension header for routing.

The first 4 bytes of the routing extension header contain four 1-byte integers.
The Next header and Header extension length fields were described above. The
Routing type field gives the format of the rest of the header. Type 0 says that a re-
served 32-bit word follows the first word, followed by some number of IPv6 ad-
dresses. Other types may be invented in the future, as needed. Finally, the Seg-
ments left field keeps track of how many of the addresses in the list have not yet
been visited. It is decremented every time one is visited. When it hits 0, the pack-
et is on its own with no more guidance about what route to follow. Usually, at this
point it is so close to the destination that the best route is obvious.

The fragment header deals with fragmentation similarly to the way IPv4 does.
The header holds the datagram identifier, fragment number, and a bit telling wheth-
er more fragments will follow. In IPv6, unlike in IPv4, only the source host can
fragment a packet. Routers along the way may not do this. This change is a major
philosophical break with the original IP, but in keeping with current practice for
IPv4. Plus, it simplifies the routers’ work and makes routing go faster. As men-
tioned above, if a router is confronted with a packet that is too big, it discards the
packet and sends an ICMP error packet back to the source. This information al-
lows the source host to fragment the packet into smaller pieces using this header
and try again.

The authentication header provides a mechanism by which the receiver of a
packet can be sure of who sent it. The encrypted security payload makes it pos-
sible to encrypt the contents of a packet so that only the intended recipient can read
it. These headers use the cryptographic techniques that we will describe in Chap. 8
to accomplish their missions.

Controversies

Given the open design process and the strongly held opinions of many of the
people involved, it should come as no surprise that many choices made for IPv6
were highly controversial, to say the least. We will summarize a few of these
briefly below. For all the gory details, see the RFCs.

We have already mentioned the argument about the address length. The result
was a compromise: 16-byte fixed-length addresses.

SEC. 5.7 THE NETWORK LAYER IN THE INTERNET 469

Another fight developed over the length of the Hop limit field. One camp felt
strongly that limiting the maximum number of hops to 255 (implicit in using an
8-bit field) was a gross mistake. After all, paths of 32 hops are common now, and
10 years from now much longer paths may be common. These people argued that
using a huge address size was farsighted but using a tiny hop count was short-
sighted. In their view, the greatest sin a computer scientist can commit is to pro-
vide too few bits somewhere.

The response was that arguments could be made to increase every field, lead-
ing to a bloated header. Also, the function of the Hop limit field is to keep packets
from wandering around for too long a time and 65,535 hops is far, far too long.
Finally, as the Internet grows, more and more long-distance links will be built,
making it possible to get from any country to any other country in half a dozen
hops at most. If it takes more than 125 hops to get from the source and the destina-
tion to their respective international gateways, something is wrong with the nation-
al backbones. The 8-bitters won this one.

Another hot potato was the maximum packet size. The supercomputer com-
munity wanted packets in excess of 64 KB. When a supercomputer gets started
transferring, it really means business and does not want to be interrupted every
64 KB. The argument against large packets is that if a 1-MB packet hits a
1.5-Mbps T1 line, that packet will tie the line up for over 5 seconds, producing a
very noticeable delay for interactive users sharing the line. A compromise was
reached here: normal packets are limited to 64 KB, but the hop-by-hop extension
header can be used to permit jumbograms.

A third hot topic was removing the IPv4 checksum. Some people likened this
move to removing the brakes from a car. Doing so makes the car lighter so it can
go faster, but if an unexpected event happens, you have a problem.

The argument against checksums was that any application that really cares
about data integrity has to have a transport layer checksum anyway, so having an-
other one in IP (in addition to the data link layer checksum) is overkill. Fur-
thermore, experience showed that computing the IP checksum was a major expense
in IPv4. The antichecksum camp won this one, and IPv6 does not have a check-
sum.

Mobile hosts were also a point of contention. If a portable computer flies half-
way around the world, can it continue operating there with the same IPv6 address,
or does it have to use a scheme with home agents? Some people wanted to build
explicit support for mobile hosts into IPv6. That effort failed when no consensus
could be found for any specific proposal.

Probably the biggest battle was about security. Everyone agreed it was essen-
tial. The war was about where to put it. The argument for putting it in the network
layer is that it then becomes a standard service that all applications can use without
any advance planning. The argument against it is that really secure applications
generally want nothing less than end-to-end encryption, where the source applica-
tion does the encryption and the destination application undoes it. With anything

470 THE NETWORK LAYER CHAP. 5

less, the user is at the mercy of potentially buggy network layer implementations
over which he has no control. The response to this argument is that these applica-
tions can just refrain from using the IP security features and do the job themselves.
The rejoinder to that is that the people who do not trust the network to do it right
do not want to pay the price of slow, bulky IP implementations that have this
capability, even if it is disabled.

Another aspect of where to put security relates to the fact that many (but not by
no means all) countries have very stringent export laws concerning cryptography
and encrypted data. especially personal data. Some, notably France and Iraq, also
restrict its use domestically, so that people cannot have secrets from the govern-
ment. As a result, any IP implementation that used a cryptographic system strong
enough to be of much value could not be exported from the United States (and
many other countries) to customers worldwide. Having to maintain two sets of
software, one for domestic use and one for export, is something most computer
vendors vigorously oppose.

One point on which there was no controversy is that no one expects the IPv4
Internet to be turned off on a Sunday evening and come back up as an IPv6 Internet
Monday morning. Instead, isolated ‘‘islands’’ of IPv6 will be converted, initially
communicating via tunnels, as we showed in Sec. 5.5.4. As the IPv6 islands grow,
they will merge into bigger islands. Eventually, all the islands will merge, and the
Internet will be fully converted.

At least, that was the plan. Deployment has proved the Achilles heel of IPv6.
It’s use is still far from universal, though all major operating systems fully support
it and have supported it for over a decade. Most deployments are new situations in
which a network operator—for example, a mobile phone operator— needs a large
number of IP addresses. Nevertheless, it is slowly taking over. On Comcast, most
traffic is now IPv6 and a quarter of Google’s is also IPv6, so there is progress.

Many strategies have been defined to help ease the transition. Among them are
ways to automatically configure the tunnels that carry IPv6 over the IPv4 Internet,
and ways for hosts to automatically find the tunnel endpoints. Dual-stack hosts
have an IPv4 and an IPv6 implementation so that they can select which protocol to
use depending on the destination of the packet. These strategies will streamline the
substantial deployment that seems inevitable when IPv4 addresses are exhausted.
For more information about IPv6, see Davies (2008).

5.7.4 Internet Control Protocols

In addition to IP, which is used for data transfer, the Internet has several com-
panion control protocols that are used in the network layer. They include ICMP,
ARP, and DHCP. In this section, we will look at each of these in turn, describing
the versions that correspond to IPv4 because they are the protocols that are in com-
mon use. ICMP and DHCP have similar versions for IPv6; the equivalent of ARP
is called NDP (Neighbor Discovery Protocol) for IPv6.

SEC. 5.7 THE NETWORK LAYER IN THE INTERNET 471

ICMP—The Internet Control Message Protocol

The operation of the Internet is monitored closely by the routers. When some-
thing unexpected occurs during packet processing at a router, the event is reported
to the sender by the ICMP (Internet Control Message Protocol). ICMP is also
used to test the Internet. About a dozen types of ICMP messages are defined.
Each ICMP message type is carried encapsulated in an IP packet. The most impor-
tant ones are listed in Fig. 5-61.

Message type Description
Destination unreachable Packet could not be delivered
Time exceeded Time to live field hit 0
Parameter problem Invalid header field
Source quench Choke packet
Redirect Teach a router about geography
Echo and echo reply Check if a machine is alive
Timestamp request/reply Same as Echo, but with timestamp
Router advertisement/solicitation Find a nearby router

Figure 5-61. The principal ICMP message types.

The DESTINATION UNREACHABLE message is used when the router cannot
locate the destination or when a packet with the DF bit cannot be delivered be-
cause a ‘‘small-packet’’ network stands in the way.

The TIME EXCEEDED message is sent when a packet is dropped because its
TtL (Time to live) counter has reached zero. This event is a symptom that packets
are looping, or that the counter values are being set too low.

One clever use of this error message is the traceroute utility that was devel-
oped by Van Jacobson in 1987. Traceroute finds the routers along the path from
the host to a destination IP address. It finds this information without any kind of
privileged network support. The method is simply to send a sequence of packets to
the destination, first with a TtL of 1, then a TtL of 2, 3, and so on. The counters on
these packets will reach zero at successive routers along the path. These routers
will each obediently send a TIME EXCEEDED message back to the host. From
those messages, the host can determine the IP addresses of the routers along the
path, as well as keep statistics and timings on parts of the path. It is not what the
TIME EXCEEDED message was intended for, but it is perhaps the most useful net-
work debugging tool of all time.

The PARAMETER PROBLEM message indicates that an illegal value has been
detected in a header field. This problem indicates a bug in the sending host’s IP
software or possibly in the software of a router transited.

The SOURCE QUENCH message was long ago used to throttle hosts that were
sending too many packets. When a host received this message, it was expected to

472 THE NETWORK LAYER CHAP. 5

slow down. It is rarely used anymore because when congestion occurs, these pack-
ets tend to add more fuel to the fire and it is unclear how to respond to them. Con-
gestion control in the Internet is now done largely by taking action in the transport
layer, using packet losses as a congestion signal; we will study how this is done in
detail in Chap. 6.

The REDIRECT message is used when a router notices that a packet seems to
be routed incorrectly. It is used by the router to tell the sending host to update to a
better route.

The ECHO and ECHO REPLY messages are sent by hosts to see if a given desti-
nation is reachable and currently alive. Upon receiving the ECHO message, the
destination is expected to send back an ECHO REPLY message. These messages are
used in the ping utility that checks if a host is up and on the Internet.

The TIMESTAMP REQUEST and TIMESTAMP REPLY messages are similar, ex-
cept that the arrival time of the message and the departure time of the reply are
recorded in the reply. This facility can be used to measure network performance.

The ROUTER ADVERTISEMENT and ROUTER SOLICITATION messages are
used to let hosts find nearby routers. A host needs to learn the IP address of at least
one router to be able to send packets off the local network.

In addition to these messages, others have been defined. The online list is now
kept at www.iana.org/assignments/icmp-parameters.

ARP—The Address Resolution Protocol

Although every machine on the Internet has one or more IP addresses, these
addresses are not sufficient for sending packets. Data link layer NICs (Network In-
terface Cards) such as Ethernet cards do not understand Internet addresses. In the
case of Ethernet, every NIC ever manufactured comes equipped with a unique
48-bit Ethernet address. Manufacturers of Ethernet NICs request a block of Ether-
net addresses from IEEE to ensure that no two NICs have the same address (to
avoid conflicts should the two NICs ever appear on the same LAN). The NICs
send and receive frames based on 48-bit Ethernet addresses. They know nothing at
all about 32-bit IP addresses.

The question now arises, how do IP addresses get mapped onto data link layer
addresses, such as Ethernet? To explain how this works, let us use the example of
Fig. 5-62, in which a small university with two /24 networks is illustrated. One
network (CS) is a switched Ethernet in the Computer Science Dept. It has the pre-
fix 192.32.65.0/24. The other LAN (EE), also switched Ethernet, is in Electrical
Engineering and has the prefix 192.32.63.0/24. The two LANs are connected by
an IP router. Each machine on an Ethernet and each interface on the router has a
unique Ethernet address, labeled E1 through E6, and a unique IP address on the CS
or EE network.

Let us start out by seeing how a user on host 1 sends a packet to a user on host
2 on the CS network. Let us assume the sender knows the name of the intended

SEC. 5.7 THE NETWORK LAYER IN THE INTERNET 473

Ethernet
switch

E3

CS Network
192.32.65.0/24

IP1 = 192.32.65.7

E2

E5E1

E4

E6

192.32.65.1

IP2 = 192.32.65.5

192.32.63.1

IP4 = 192.32.63.8

IP3 = 192.32.63.3

EE Network
192.32.63.0/24

Router
Host 1

Host 2

Host 3

Host 4

Frame Source
IP

Source
Eth.

Destination
IP

Destination
Eth.

Host 1 to 2, on CS net IP1 E1 IP2 E2
Host 1 to 4, on CS net IP1 E1 IP4 E3
Host 1 to 4, on EE net IP1 E4 IP4 E6

Figure 5-62. Two switched Ethernet LANs joined by a router.

receiver, possibly something like eagle.cs.uni.edu. The first step is to find the IP
address for host 2. This lookup is performed by DNS, which we will study in
Chap. 7. For the moment, we will just assume that DNS returns the IP address for
host 2 (192.32.65.5).

The upper layer software on host 1 now builds a packet with 192.32.65.5 in the
Destination address field and gives it to the IP software to transmit. The IP soft-
ware can look at the address and see that the destination is on the CS network, (i.e.,
its own network). However, it still needs some way to find the destination’s Ether-
net address to send the frame. One solution is to have a configuration file some-
where in the system that maps IP addresses onto Ethernet addresses. While this
solution is certainly possible, for organizations with thousands of machines keep-
ing all these files up to date is an error-prone, time-consuming job.

A better solution is for host 1 to output a broadcast packet onto the Ethernet
asking who owns IP address 192.32.65.5. The broadcast will arrive at every ma-
chine on the CS Ethernet, and each one will check its IP address. Host 2 alone will
respond with its Ethernet address (E2). In this way host 1 learns that IP address
192.32.65.5 is on the host with Ethernet address E2. The protocol used for asking
this question and getting the reply is called ARP (Address Resolution Protocol).
Almost every machine on the Internet runs it. ARP is defined in RFC 826.

The advantage of using ARP over configuration files is the simplicity. The
system manager does not have to do much except assign each machine an IP ad-
dress and decide about subnet masks. ARP does the rest.

At this point, the IP software on host 1 builds an Ethernet frame addressed to
E2, puts the IP packet (addressed to 192.32.65.5) in the payload field, and dumps it

474 THE NETWORK LAYER CHAP. 5

onto the Ethernet. The IP and Ethernet addresses of this packet are given in
Fig. 5-62. The Ethernet NIC of host 2 detects this frame, recognizes it as a frame
for itself, scoops it up, and causes an interrupt. The Ethernet driver extracts the IP
packet from the payload and passes it to the IP software, which sees that it is cor-
rectly addressed and processes it.

Various optimizations are possible to make ARP work more efficiently. To
start with, once a machine has run ARP, it caches the result in case it needs to con-
tact the same machine shortly. Next time it will find the mapping in its own cache,
thus eliminating the need for a second broadcast. In many cases, host 2 will need
to send back a reply, forcing it, too, to run ARP to determine the sender’s Ethernet
address. This ARP broadcast can be avoided by having host 1 include its
IP-to-Ethernet mapping in the ARP packet. When the ARP broadcast arrives at
host 2, the pair (192.32.65.7, E1) is entered into host 2’s ARP cache. In fact, all
machines on the Ethernet can enter this mapping into their ARP caches.

To allow mappings to change, for example, when a host is configured to use a
new IP address (but keeps its old Ethernet address), entries in the ARP cache
should time out after a few minutes. A clever way to help keep the cached infor-
mation current and to optimize performance is to have every machine broadcast its
mapping when it is configured. This broadcast is generally done in the form of an
ARP looking for its own IP address. There should not be a response, but a side ef-
fect of the broadcast is to make or update an entry in everyone’s ARP cache. This
is known as a gratuitous ARP. If a response does (unexpectedly) arrive, two ma-
chines have been assigned the same IP address. The error must be resolved by the
network manager before both machines can use the network.

Now let us look at Fig. 5-62 again, only this time assume that host 1 wants to
send a packet to host 4 (192.32.63.8) on the EE network. Host 1 will see that the
destination IP address is not on the CS network. It knows to send all such off-net-
work traffic to the router, which is also known as the default gateway. By conven-
tion, the default gateway is the lowest address on the network (198.32.65.1). To
send a frame to the router, host 1 must still know the Ethernet address of the router
interface on the CS network. It discovers this by sending an ARP broadcast for
198.32.65.1, from which it learns E3. It then sends the frame. The same lookup
mechanisms are used to send a packet from one router to the next over a sequence
of routers in an Internet path.

When the Ethernet NIC of the router gets this frame, it gives the packet to the
IP software. It knows from the network masks that the packet should be sent onto
the EE network where it will reach host 4. If the router does not know the Ethernet
address for host 4, then it will use ARP again to find out. The table in Fig. 5-62
lists the source and destination Ethernet and IP addresses that are present in the
frames as observed on the CS and EE networks. Please observe that the Ethernet
addresses change with the frame on each network while the IP addresses remain
constant (because they indicate the endpoints across all of the interconnected net-
works).

SEC. 5.7 THE NETWORK LAYER IN THE INTERNET 475

It is also possible to send a packet from host 1 to host 4 without host 1 know-
ing that host 4 is on a different network. The solution is to have the router answer
ARPs on the CS network for host 4 and give its Ethernet address, E3, as the re-
sponse. It is not possible to have host 4 reply directly because it will not see the
ARP request (as routers do not forward Ethernet-level broadcasts). The router will
then receive frames sent to 192.32.63.8 and forward them onto the EE network.
This solution is called proxy ARP. It is used in special cases in which a host
wants to appear on a network even though it actually resides on another network.
A common situation, for example, is a mobile computer that wants some other
node to pick up packets for it when it is not on its home network.

DHCP—The Dynamic Host Configuration Protocol

ARP (as well as other Internet protocols) makes the assumption that hosts are
configured with some basic information, such as their own IP addresses. How do
hosts get this information? It is possible to manually configure each computer, but
that is tedious and error-prone. There is a better way, and it is called DHCP
(Dynamic Host Configuration Protocol).

With DHCP, every network must have a DHCP server that is responsible for
configuration. When a computer is started, it has a built-in Ethernet or other link
layer address embedded in the NIC, but no IP address. Much like ARP, the com-
puter broadcasts a request for an IP address on its network. It does this by using a
DHCP DISCOVER packet. This packet must reach the DHCP server. If that server
is not directly attached to the network, the router will be configured to receive
DHCP broadcasts and relay them to the DHCP server, wherever it is located.

When the server receives the request, it allocates a free IP address and sends it
to the host in a DHCP OFFER packet (which again may be relayed via the router).
To be able to do this work even when hosts do not have IP addresses, the server
identifies a host using its Ethernet address (which is carried in the DHCP DIS-
COVER packet)

An issue that arises with automatic assignment of IP addresses from a pool is
for how long an IP address should be allocated. If a host leaves the network and
does not return its IP address to the DHCP server, that address will be permanently
lost. After a period of time, many addresses may be lost. To prevent that from
happening, IP address assignment may be for a fixed period of time, a technique
called leasing. Just before the lease expires, the host must ask for a DHCP
renewal. If it fails to make a request or the request is denied, the host may no long-
er use the IP address it was given earlier.

DHCP is described in RFC 2131 and RFC 2132. It is widely used in the Inter-
net to configure all sorts of parameters in addition to providing hosts with IP ad-
dresses. As well as in business and home networks, DHCP is used by ISPs to set
the parameters of devices over the Internet access link, so that customers do not
need to phone their ISPs to get this information. Common examples of the kind of

476 THE NETWORK LAYER CHAP. 5

information that is configured include the network mask, the IP address of the de-
fault gateway, and the IP addresses of DNS and time servers. DHCP has largely
replaced earlier protocols (called RARP and BOOTP) with more limited func-
tionality.

5.7.5 Label Switching and MPLS

So far, on our tour of the network layer of the Internet, we have focused exclu-
sively on packets as datagrams that are forwarded by IP routers. There is also an-
other kind of technology that is starting to be widely used, especially by ISPs, in
order to move Internet traffic across their networks. This technology is called
MPLS (MultiProtocol Label Switching) and it is perilously close to circuit
switching. Despite the fact that many people in the Internet community have an
intense dislike for connection-oriented networking, the idea seems to keep coming
back. As Yogi Berra once put it, it is like déjà vu all over again. However, there
are essential differences between the way the Internet handles route construction
and the way connection-oriented networks do it, so the technique is certainly not
traditional circuit switching.

MPLS adds a label in front of each packet, and forwarding is based on the
label rather than on the destination address. Making the label an index into an in-
ternal table makes finding the correct output line just a matter of table lookup.
Using this technique, forwarding can be done very quickly. This advantage was
the original motivation behind MPLS, which began as proprietary technology
known by various names including tag switching. Eventually, IETF began to stan-
dardize the idea. It is described in RFC 3031 and many other RFCs. The main
benefits over time have come to be routing that is flexible and forwarding that is
suited to quality of service as well as fast.

The first question to ask is where does the label go? Since IP packets were not
designed for virtual circuits, there is no field available for virtual-circuit numbers
within the IP header. For this reason, a new MPLS header had to be added in front
of the IP header. On a router-to-router line using PPP as the framing protocol, the
frame format, including the PPP, MPLS, IP, and TCP headers, is as shown in
Fig. 5-63.

The generic MPLS header is 4 bytes long and has four fields. Most important
is the Label field, which holds the index. The QoS field indicates the class of ser-
vice. The S field relates to stacking multiple labels (which is discussed below).
The TtL field indicates how many more times the packet may be forwarded. It is
decremented at each router, and if it hits 0, the packet is discarded. This feature
prevents infinite looping in the case of routing instability.

MPLS falls between the IP network layer protocol and the PPP link layer pro-
tocol. It is not really a layer 3 protocol because it depends on IP or other network
layer addresses to set up label paths. It is not really a layer 2 protocol either be-
cause it forwards packets across multiple hops, not a single link. For this reason,

SEC. 5.7 THE NETWORK LAYER IN THE INTERNET 477

PPP MPLS IP

Label QoS S TtL

20Bits

Headers

3 1 8

TCP User data CRC

Figure 5-63. Transmitting a TCP segment using IP, MPLS, and PPP.

MPLS is sometimes described as a layer 2.5 protocol. It is an illustration that real
protocols do not always fit neatly into our ideal layered protocol model.

On the brighter side, because the MPLS headers are not part of the network
layer packet or the data link layer frame, MPLS is to a large extent independent of
both layers. Among other things, this property means it is possible to build MPLS
switches that can forward both IP packets and non-IP packets, depending on what
shows up. This feature is where the ‘‘multiprotocol’’ in the name MPLS came
from. MPLS can also carry IP packets over non-IP networks.

When an MPLS-enhanced packet arrives at a LSR (Label Switched Router),
the label is used as an index into a table to determine the outgoing line to use and
also the new label to use. This label swapping is used in all virtual-circuit net-
works. Labels have only local significance and two different routers can feed unre-
lated packets with the same label into another router for transmission on the same
outgoing line. To be distinguishable at the other end, labels have to be remapped at
every hop. We saw this mechanism in action in Fig. 5-3. MPLS uses the same
technique.

As an aside, some people distinguish between forwarding and switching. For-
warding is the process of finding the best match for a destination address in a table
to decide where to send packets. An example is the longest matching prefix algo-
rithm used for IP forwarding. In contrast, switching uses a label taken from the
packet as an index into a forwarding table. It is simpler and faster. These defini-
tions are far from universal, however.

Since most hosts and routers do not understand MPLS, we should also ask
when and how the labels are attached to packets. This happens when an IP packet
reaches the edge of an MPLS network. The LER (Label Edge Router) inspects
the destination IP address and other fields to see which MPLS path the packet
should follow, and puts the right label on the front of the packet. Within the MPLS
network, this label is used to forward the packet. At the other edge of the MPLS
network, the label has served its purpose and is removed, revealing the IP packet
again for the next network. This process is shown in Fig. 5-64. One difference
from traditional virtual circuits is the level of aggregation. It is certainly possible

478 THE NETWORK LAYER CHAP. 5

Switching on
label only

Label switch
router

IP IP

IPLabel

Label edge
router

Add
label

Remove
label

(to next
network)

Label Label

Figure 5-64. Forwarding an IP packet through an MPLS network.

for each flow to have its own set of labels through the MPLS network. However, it
is more common for routers to group multiple flows that end at a particular router
or LAN and use a single label for them. The flows that are grouped together under
a single label are said to belong to the same FEC (Forwarding Equivalence
Class). This class covers not only where the packets are going, but also their ser-
vice class (in the differentiated services sense) because all the packets are treated
the same way for forwarding purposes.

With traditional virtual-circuit routing, it is not possible to group several dis-
tinct paths with different endpoints onto the same virtual-circuit identifier because
there would be no way to distinguish them at the final destination. With MPLS,
the packets still contain their final destination address, in addition to the label. At
the end of the labeled route, the label header can be removed and forwarding can
continue the usual way, using the network layer destination address.

Actually, MPLS goes even further. It can operate at multiple levels at once by
adding more than one label to the front of a packet. For example, suppose that
there are many packets that already have different labels (because we want to treat
the packets differently somewhere in the network) that should follow a common
path to some destination. Instead of setting up many label switching paths, one for
each of the different labels, we can set up a single path. When the already-labeled
packets reach the start of this path, another label is added to the front. This is call-
ed a stack of labels. The outermost label guides the packets along the path. It is re-
moved at the end of the path, and the labels revealed, if any, are used to forward
the packet further. The S bit in Fig. 5-63 allows a router removing a label to know
if there are any additional labels left. It is set to 1 for the bottom label and 0 for all
the other labels.

The final question we will ask is how the label forwarding tables are set up so
that packets follow them. This is one area of major difference between MPLS and
conventional virtual-circuit designs. In traditional virtual-circuit networks, when a
user wants to establish a connection, a setup packet is launched into the network to
create the path and make the forwarding table entries. MPLS does not involve
users in the setup phase. Requiring users to do anything other than send a datagram
would break too much existing Internet software.

SEC. 5.7 THE NETWORK LAYER IN THE INTERNET 479

Instead, the forwarding information is set up by protocols that are a combina-
tion of routing protocols and connection setup protocols. These control protocols
are separated from label forwarding, which allows multiple, different control proto-
cols to be used. One of the variants works like this. When a router is booted, it
checks to see which routes it is the final destination for (e.g., which prefixes belong
to its interfaces). It then creates one or more FECs for them, allocates a label for
each one, and passes the labels to its neighbors. They, in turn, enter the labels in
their forwarding tables and send new labels to their neighbors, until all the routers
have acquired the path. Resources can also be reserved as the path is constructed
to guarantee an appropriate quality of service. Other variants can set up different
paths, such as traffic engineering paths that take unused capacity into account, and
create paths on-demand to support service offerings such as quality of service.

Although the basic ideas behind MPLS are straightforward, the details are
complicated, with many variations and use cases that are being actively developed.
For more information, see Davie and Farrel (2008) and Davie and Rekhter (2000).

5.7.6 OSPF—An Interior Gateway Routing Protocol

We have now finished our study of how packets are forwarded in the Internet.
It is time to move on to the next topic: routing in the Internet. As we mentioned
earlier, the Internet is made up of a large number of independent networks or ASes
(Autonomous Systems) that are operated by different organizations, usually a
company, university, or ISP. Inside of its own network, an organization can use its
own algorithm for internal routing, or intradomain routing, as it is more com-
monly known. Nevertheless, there are only a handful of standard protocols that are
popular. In this section, we will study the problem of intradomain routing and look
at the OSPF protocol that is widely used in practice. An intradomain routing pro-
tocol is also called an IGP (Interior Gateway Protocol). In the next section, we
will study the problem of routing between independently operated networks, or
interdomain routing. For that case, all networks must use the same interdomain
routing protocol or exterior gateway protocol. The protocol that is used in the In-
ternet is BGP (Border Gateway Protocol). It will be discussed in Sec. 5.7.7.

Early intradomain routing protocols used a distance vector design, based on
the distributed Bellman-Ford algorithm inherited from the ARPANET. RIP (Rout-
ing Information Protocol) is the main example that is used to this day. It works
well in small systems, but less well as networks get larger. It also suffers from the
count-to-infinity problem and generally slow convergence. The ARPANET
switched over to a link state protocol in May 1979 because of these problems, and
in 1988 IETF began work on a link state protocol for intradomain routing. That
protocol, called OSPF (Open Shortest Path First), became a standard in 1990. It
drew on a protocol called IS-IS (Intermediate-System to Intermediate-System),
which became an ISO standard. Because of their shared heritage, the two proto-
cols are much more alike than different. For the complete story, see RFC 2328.

480 THE NETWORK LAYER CHAP. 5

They are the dominant intradomain routing protocols, and most router vendors now
support both of them. OSPF is more widely used in company networks, and IS-IS
is more widely used in ISP networks. Of the two, we will give a sketch of how
OSPF works.

Given the long experience with other routing protocols, the group designing
OSPF had a long list of requirements that had to be met. First, the algorithm had
to be published in the open literature, hence the ‘‘O’’ in OSPF. A proprietary solu-
tion owned by one company would not do. Second, the new protocol had to sup-
port a variety of distance metrics, including physical distance, delay, and so on.
Third, it had to be a dynamic algorithm, one that adapted to changes in the topo-
logy automatically and quickly.

Fourth, and new for OSPF, it had to support routing based on type of service.
The new protocol had to be able to route real-time traffic one way and other traffic
a different way. At the time, IP had a Type of service field, but no existing routing
protocol used it. This field was included in OSPF but still nobody used it, and it
was eventually removed. Perhaps this requirement was ahead of its time, as it pre-
ceded IETF’s work on differentiated services, which has rejuvenated classes of ser-
vice.

Fifth, and related to the above, OSPF had to do load balancing, splitting the
load over multiple lines. Most previous protocols sent all packets over a single
best route, even if there were two routes that were equally good. The other route
was not used at all. In many cases, splitting the load over multiple routes gives
better performance.

Sixth, support for hierarchical systems was needed. By 1988, some networks
had grown so large that no router could be expected to know the entire topology.
OSPF had to be designed so that no router would have to.

Seventh, some modicum of security was required to prevent fun-loving stu-
dents from spoofing routers by sending them false routing information. Finally,
provision was needed for dealing with routers that were connected to the Internet
via a tunnel. Previous protocols did not handle this well.

OSPF supports both point-to-point links (e.g., SONET) and broadcast net-
works (e.g., most LANs). Actually, it is able to support networks with multiple
routers, each of which can communicate directly with the others (called multiac-
cess networks) even if they do not have broadcast capability. Earlier protocols did
not handle this case well.

An example of an autonomous system network is given in Fig. 5-65(a). Hosts
are omitted because they do not generally play a role in OSPF, while routers and
networks (which may contain hosts) do. Most of the routers in Fig. 5-65(a) are
connected to other routers by point-to-point links, and to networks to reach the
hosts on those networks. However, routers R3, R4, and R5 are connected by a
broadcast LAN such as switched Ethernet.

OSPF operates by abstracting the collection of actual networks, routers, and
links into a directed graph in which each arc is assigned a weight (distance, delay,

SEC. 5.7 THE NETWORK LAYER IN THE INTERNET 481

LAN 1

LAN 2

LAN 4
LAN 3

R4R2

R1 R3 R5

R4
R2

R1 R3 R5LAN 1

LAN 2

LAN 3

LAN 4

(a)

(b)

0
0

03

3

4
5

8
7

5

5

44

1

1

Figure 5-65. (a) An autonomous system. (b) A graph representation of (a).

etc.). A point-to-point connection between two routers is represented by a pair of
arcs, one in each direction. Their weights may be different. A broadcast network
is represented by a node for the network itself, plus a node for each router. The
arcs from that network node to the routers have weight 0. They are important
nonetheless, as without them there is no path through the network. Other networks,
which have only hosts, have only an arc reaching them and not one returning. This
structure gives routes to hosts, but not through them.

Figure 5-65(b) shows the graph representation of the network of Fig. 5-65(a).
What OSPF fundamentally does is represent the actual network as a graph like this
and then use the link state method to have every router compute the shortest path
from itself to all other nodes. Multiple paths may be found that are equally short.
In this case, OSPF remembers the set of shortest paths and during packet for-
warding, traffic is split across them. This helps to balance load. It is called ECMP
(Equal Cost MultiPath).

Many of the ASes in the Internet are themselves large and nontrivial to man-
age. To work at this scale, OSPF allows an AS to be divided into numbered areas,
where an area is a network or a set of contiguous networks. Areas do not overlap
but need not be exhaustive, that is, some routers may belong to no area. Routers
that lie wholly within an area are called internal routers. An area is a gener-
alization of an individual network. Outside an area, its destinations are visible but
not its topology. This characteristic helps routing to scale.

Every AS has a backbone area, called area 0. The routers in this area are call-
ed backbone routers. All areas are connected to the backbone, possibly by tun-
nels, so it is possible to go from any area in the AS to any other area in the AS via

482 THE NETWORK LAYER CHAP. 5

the backbone. A tunnel is represented in the graph as just another arc with a cost.
As with other areas, the topology of the backbone is not visible outside the back-
bone.

Each router that is connected to two or more areas is called an area border
router. It must also be part of the backbone. The job of an area border router is to
summarize the destinations in one area and to inject this summary into the other
areas to which it is connected. This summary includes cost information but not all
the details of the topology within an area. Passing cost information allows hosts in
other areas to find the best area border router to use to enter an area. Not passing
topology information reduces traffic and simplifies the shortest-path computations
of routers in other areas. However, if there is only one border router out of an area,
even the summary does not need to be passed. Routes to destinations out of the
area always start with the instruction ‘‘Go to the border router.’’ This kind of area
is called a stub area.

The last kind of router is the AS boundary router. It injects routes to external
destinations on other ASes into the area. The external routes then appear as desti-
nations that can be reached via the AS boundary router with some cost. An exter-
nal route can be injected at one or more AS boundary routers. The relationship be-
tween ASes, areas, and the various kinds of routers is shown in Fig. 5-66. One
router may play multiple roles, for example, a border router is also a backbone
router.

Area 0 (backbone) Area 1Area 2 (stub)

Backbone
router

AS boundary
router

Internal
router

Area border
router

One
autonomous

system

Figure 5-66. The relation between ASes, backbones, and areas in OSPF.

During normal operation, each router within an area has the same link state
database and runs the same shortest path algorithm. Its main job is to calculate the
shortest path from itself to every other router and network in the entire AS. An
area border router needs the databases for all the areas to which it is connected and
must run the shortest path algorithm for each area separately.

For a source and destination in the same area, the best intra-area route (that lies
wholly within the area) is chosen. For a source and destination in different areas,
the inter-area route must go from the source to the backbone, across the backbone
to the destination area, and then to the destination. This algorithm forces a star

SEC. 5.7 THE NETWORK LAYER IN THE INTERNET 483

configuration on OSPF, with the backbone being the hub and the other areas being
spokes. Because the route with the lowest cost is chosen, routers in different parts
of the network may use different area border routers to enter the backbone and
destination area. Packets are routed from source to destination ‘‘as is.’’ They are
not encapsulated or tunneled (unless going to an area whose only connection to the
backbone is a tunnel). Also, routes to external destinations may include the exter-
nal cost from the AS boundary router over the external path, if desired, or just the
cost internal to the AS.

When a router boots, it sends HELLO messages on all of its point-to-point lines
and multicasts them on LANs to the group consisting of all the other routers.
From the responses, each router learns who its neighbors are. Routers on the same
LAN are all neighbors.

OSPF works by exchanging information between adjacent routers, which is not
the same as between neighboring routers. In particular, it is inefficient to have
every router on a LAN talk to every other router on the LAN. To avoid this situa-
tion, one router is elected as the designated router. It is said to be adjacent to all
the other routers on its LAN, and exchanges information with them. In effect, it is
acting as the single node that represents the LAN. Neighboring routers that are not
adjacent do not exchange information with each other. A backup designated router
is always kept up to date to ease the transition should the primary designated router
crash and need to be replaced immediately.

During normal operation, each router periodically floods LINK STATE UPDATE
messages to each of its adjacent routers. These messages gives its state and pro-
vide the costs used in the topological database. The flooding messages are
acknowledged, to make them reliable. Each message has a sequence number, so a
router can see whether an incoming LINK STATE UPDATE is older or newer than
what it currently has. Routers also send these messages when a link goes up or
down or its cost changes.

DATABASE DESCRIPTION messages give the sequence numbers of all the link
state entries currently held by the sender. By comparing its own values with those
of the sender, the receiver can determine who has the most recent values. These
messages are used when a link is brought up.

Either partner can request link state information from the other one by using
LINK STATE REQUEST messages. The result of this algorithm is that each pair of
adjacent routers checks to see who has the most recent data, and new information
is spread throughout the area this way. All these messages are sent directly in IP
packets. The five kinds of messages are summarized in Fig. 5-67.

Finally, we can put all the pieces together. Using flooding, each router informs
all the other routers in its area of its links to other routers and networks and the
cost of these links. This information allows each router to construct the graph for
its area(s) and compute the shortest paths. The backbone area does this work, too.
In addition, the backbone routers accept information from the area border routers
in order to compute the best route from each backbone router to every other router.

484 THE NETWORK LAYER CHAP. 5

Message type Description
Hello Used to discover who the neighbors are
Link state update Provides the sender’s costs to its neighbors
Link state ack Acknowledges link state update
Database description Announces which updates the sender has
Link state request Requests information from the partner

Figure 5-67. The five types of OSPF messages.

This information is propagated back to the area border routers, which advertise it
within their areas. Using this information, internal routers can select the best route
to a destination outside their area, including the best exit router to the backbone.

5.7.7 BGP—The Exterior Gateway Routing Protocol

Within a single AS, OSPF and IS-IS are the protocols that are commonly used.
Between ASes, a different protocol, called BGP (Border Gateway Protocol), is
used. A different protocol is needed because the goals of an intradomain protocol
and an interdomain protocol are not the same. All an intradomain protocol has to
do is move packets as efficiently as possible from the source to the destination. It
does not have to worry about politics.

In contrast, interdomain routing protocols have to worry about politics a great
deal (Metz, 2001). For example, a corporate AS might want the ability to send
packets to any Internet site and receive packets from any Internet site. However, it
might be unwilling to carry transit packets originating in a foreign AS and ending
in a different foreign AS, even if its own AS is on the shortest path between the
two foreign ASes (‘‘That’s their problem, not ours’’). On the other hand, it might
be willing to carry transit traffic for its neighbors, or even for specific other ASes
that paid it for this service. Telephone companies, for example, might be happy to
act as carriers for their customers, but not for others. Exterior gateway protocols in
general, and BGP in particular, have been designed to allow many kinds of routing
policies to be enforced in the interAS traffic.

Typical policies involve political, security, or economic considerations. A few
examples of possible routing constraints are:

1. Do not carry commercial traffic on the educational network.

2. Never send traffic from the Pentagon on a route through Iraq.

3. Use TeliaSonera instead of Verizon because it is cheaper.

4. Don’t use AT&T in Australia because performance is poor.

5. Traffic starting or ending at Apple should not transit Google.

SEC. 5.7 THE NETWORK LAYER IN THE INTERNET 485

As you might imagine from this list, routing policies can be highly individual.
They are often proprietary because they contain sensitive business information.
However, we can describe some patterns that capture the reasoning of the com-
panies above and that are often used as a starting point.

A routing policy is implemented by deciding what traffic can flow over which
of the links between ASes. One common policy is that a customer ISP pays anoth-
er provider ISP to deliver packets to any other destination on the Internet and re-
ceive packets sent from any other destination. The customer ISP is said to buy
transit service from the provider ISP. This is very similar a customer at home
buying Internet access service from an ISP. To make it work, the provider should
advertise routes to all destinations on the Internet to the customer over the link that
connects them. In this way, the customer will have a route to use to send packets
anywhere. Conversely, the customer should advertise routes only to the destina-
tions on its network to the provider. This will let the provider send traffic to the
customer only for those addresses; the customer does not want to handle traffic in-
tended for other destinations.

We can see an example of transit service in Fig. 5-68. There are four ASes that
are connected. The connection is often made with a link at IXPs (Internet
eXchange Points), facilities to which many ISPs have a link for the purpose of
connecting with other ISPs. AS2, AS3, and AS4 are customers of AS1. They buy
transit service from it. Thus, when source A sends to destination C, the packets
travel from AS2 to AS1 and finally to AS4. The routing advertisements travel in the
opposite direction to the packets. AS4 advertises C as a destination to its transit
provider, AS1, to let sources reach C via AS1. Later, AS1 advertises a route to C to
its other customers, including AS2, to let the customers know that they can send
traffic to C via AS1.

TR

AS1

AS2 AS3
AS4

A

PE

CU

PE

CU
CU TR TR

Path of BGP routing
advertisements (dash)

Path of IP
packets (solid)

Routing policy:
TR = Transit

CU = Customer
PE = Peer

B C

Figure 5-68. Routing policies between four autonomous systems.

In Fig. 5-68, all of the other ASes buy transit service from AS1. This provides
them with connectivity so they can interact with any host on the Internet. However,

486 THE NETWORK LAYER CHAP. 5

they have to pay for this privilege. Suppose that AS2 and AS3 exchange a lot of
traffic. Given that their networks are connected already, if they want to, they can
use a different policy—they can send traffic directly to each other for free. This
will reduce the amount of traffic they must have AS1 deliver on their behalf, and
hopefully it will reduce their bills. This policy is called settlement-free peering or
settlement-free interconnection.

To implement settlement-free peering, two ASes send routing advertisements
to each other for the addresses that reside in their networks. Doing so makes it
possible for AS2 to send AS3 packets from A destined to B and vice versa. Howev-
er, note that settlement-free peering is not transitive. In Fig. 5-68, AS3 and AS4 also
peer with each other. This arrangement allows traffic from C destined for B to be
sent directly to AS4. What happens if C sends a packet to A? AS3 is only advertis-
ing a route to B to AS4. It is not advertising a route to A. The consequence is that
traffic will not pass from AS4 to AS3 to AS2, even though a physical path exists.
This restriction is exactly what AS3 wants. It peers with AS4 to exchange traffic,
but does not want to carry traffic from AS4 to other parts of the Internet since it is
not being paid to do so. Instead, AS4 gets transit service from AS1. Thus, it is AS1
that will carry the packet from C to A.

Now that we know about transit and settlement-free peering, we can also see
that A, B, and C have transit arrangements. For example, A must buy Internet ac-
cess from AS2. A might be a single home computer or a company network with
many LANs. However, it does not need to run BGP because it is a stub network
that is connected to the rest of the Internet by only one link. So the only place for
it to send packets destined outside of the network is over the link to AS2. There is
nowhere else to go. This path can be arranged simply by setting up a default route.
For this reason, we have not shown A, B, and C as ASes that participate in interdo-
main routing.

Transit and settlement-free peering business arrangements are implemented
through a combination of routing policies that implement (1) preference among
multiple routes to a destination, (2) filtering of how routes are advertised to neigh-
boring networks. Generally speaking, preference works as follows: a router will
prefer routes learned from paying customers first, followed by routes learned from
settlement-free peers, and finally routes learned from provider networks. The ratio-
nale is simple: an AS would prefer to send traffic along routes where it is paid, as
opposed to sending traffic on routes where it has to pay for use. For similar rea-
sons, an AS will advertise all of its routes to customers, but it will not re-advertise
routes learned from a settlement-free peer or transit provider to other peers or pro-
viders. In addition to these two business arrangements, ASes have other arrange-
ments, including paid peering, whereby one AS pays another for access to routes
learned from that ASes customers. Paid peering is similar to settlement-free peer-
ing, except that money changes hands. Finally, there can also be partial transit
arrangements, whereby an AS might pay another AS for routes to some subset of
all Internet destinations.

SEC. 5.7 THE NETWORK LAYER IN THE INTERNET 487

Some company networks are connected to multiple ISPs. This technique is
used to improve reliability, since if the path through one ISP fails, the company can
use the path via the other ISP. This technique is called multihoming. In this case,
the company network is likely to run an interdomain routing protocol (e.g., BGP)
to tell other ASes which addresses should be reached via which ISP links.

Many variations on these transit and peering policies are possible, but they al-
ready illustrate how business relationships and control over where route advertise-
ments go can implement different kinds of policies. Now we will consider in more
detail how routers running BGP advertise routes to each other and select paths over
which to forward packets.

BGP is a form of distance vector protocol, but it is quite unlike intradomain
distance vector protocols such as RIP. We have already seen that policy, instead of
minimum distance, is used to pick which routes to use. Another large difference is
that instead of maintaining just the cost of the route to each destination, each BGP
router keeps track of the path used. This approach is called a path vector proto-
col. The path consists of the next hop router (which may be on the other side of
the ISP, not adjacent) and the sequence of ASes, or AS path, that the route has fol-
lowed (given in reverse order). Finally, pairs of BGP routers communicate with
each other by establishing TCP connections. Operating this way provides reliable
communication and also hides all the details of the network being passed through.

An example of how BGP routes are advertised is shown in Fig. 5-69. There
are three ASes and the middle one is providing transit to the left and right ISPs. A
route advertisement to prefix C starts in AS3. When it is propagated across the link
to R2c at the top of the figure, it has the AS path of simply AS3 and the next hop
router of R3a. At the bottom, it has the same AS path but a different next hop be-
cause it came across a different link. This advertisement continues to propagate
and crosses the boundary into AS1. At router R1a, at the top of the figure, the AS
path is AS2, AS3 and the next hop is R2a.

Carrying the complete path with the route makes it easy for the receiving
router to detect and break routing loops. The rule is that each router that sends a
route outside of the AS prepends its own AS number to the route. (This is why the
list is in reverse order.) When a router receives a route, it checks to see if its own
AS number is already in the AS path. If it is, a loop has been detected and the
advertisement is discarded. However, and somewhat ironically, it was realized in
the late 1990s that despite this precaution BGP suffers from a version of the count-
to-infinity problem (Labovitz et al., 2001). There are no long-lived loops, but
routes can sometimes be slow to converge and have transient loops.

Giving a list of ASes is a very coarse way to specify a path. An AS might be a
small company, or an international backbone network. There is no way of telling
from the route. BGP does not even try because different ASes may use different
intradomain protocols whose costs cannot be compared. Even if they could be
compared, an AS may not want to reveal its internal metrics. This is one of the
ways that interdomain routing protocols differ from intradomain protocols.

488 THE NETWORK LAYER CHAP. 5

R3a

Prefix

A

B

C

AS1 AS2 AS3

Path of
packets

R3b

R2c

R2d

R2a

R2b

R1a

R1b

C, AS3, R3aC, AS2, AS3, R2a

C, AS2, AS3, R2b

C, AS2, AS3, R1a

C, AS2, AS3, R1b

AS path
Next hop

C, AS3, R3b

Figure 5-69. Propagation of BGP route advertisements.

So far we have seen how a route advertisement is sent across the link between
two ISPs. We still need some way to propagate BGP routes from one side of the
ISP to the other, so they can be sent on to the next ISP. This task could be handled
by the intradomain protocol, but because BGP is very good at scaling to large net-
works, a variant of BGP is often used. It is called iBGP (internal BGP) to distin-
guish it from the regular use of BGP as eBGP (external BGP).

The rule for propagating routes inside an ISP is that every router at the bound-
ary of the ISP learns of all the routes seen by all the other boundary routers, for
consistency. If one boundary router on the ISP learns of a prefix to IP
128.208.0.0/16, all the other routers will learn of this prefix. The prefix will then
be reachable from all parts of the ISP, no matter how packets enter the ISP from
other ASes.

We have not shown this propagation in Fig. 5-69 to avoid clutter, but, for ex-
ample, router R2b will know that it can reach C via either router R2c at top or
router R2d at bottom. The next hop is updated as the route crosses within the ISP
so that routers on the far side of the ISP know which router to use to exit the ISP
on the other side. This can be seen in the leftmost routes in which the next hop
points to a router in the same ISP and not a router in the next ISP.

We can now describe the key missing piece, which is how BGP routers choose
which route to use for each destination. Each BGP router may learn a route for a
given destination from the router it is connected to in the next ISP and from all of
the other boundary routers (which have heard different routes from the routers they
are connected to in other ISPs). Each router must decide which route in this set of
routes is the best one to use. Ultimately the answer is that it is up to the ISP to
write some policy to pick the preferred route. However, this explanation is very
general and not so satisfying, so we can at least describe some common strategies.

SEC. 5.7 THE NETWORK LAYER IN THE INTERNET 489

The first strategy is that routes via peered networks are chosen in preference to
routes via transit providers. The former are free; the latter cost money. A similar
strategy is that customer routes are given the highest preference. It is only good
business to send traffic directly to the paying customers.

A different kind of strategy is the default rule that shorter AS paths are better.
This is debatable since an AS could be a network of any size, so a path through
three small ASes could actually be shorter than a path through one big AS. Howev-
er, shorter tends to be better on average, and this rule is a common tiebreaker.

The final strategy is to prefer the route that has the lowest cost within the ISP.
This is the strategy implemented in Fig. 5-69. Packets sent from A to C exit AS1 at
the top router, R1a. Packets sent from B exit via the bottom router, R1b. The rea-
son is that both A and B are taking the lowest-cost path or quickest route out of
AS1. Because they are located in different parts of the ISP, the quickest exit for
each one is different. The same thing happens as the packets pass through AS2.
On the last leg, AS3 has to carry the packet from B through its own network.

This strategy is known as early exit or hot-potato routing. It has the curious
side effect of tending to make routes asymmetric. For example, consider the path
taken when C sends a packet back to B. The packet will exit AS3 quickly, at the
top router, to avoid wasting its resources. Similarly, it will stay at the top when AS2
passes it to AS1 as quickly as possible. Then the packet will have a longer journey
in AS1. This is a mirror image of the path taken from B to C.

The above discussion should make clear that each BGP router chooses its own
best route from the known possibilities. It is not the case, as might naively be ex-
pected, that BGP chooses a path to follow at the AS level and OSPF chooses paths
within each of the ASes. BGP and the interior gateway protocol are integrated
much more deeply. This means that, for example, BGP can find the best exit point
from one ISP to the next and this point will vary across the ISP, as in the case of
the hot-potato policy. It also means that BGP routers in different parts of one AS
may choose different AS paths to reach the same destination. Care must be exer-
cised by the ISP to configure all of the BGP routers to make compatible choices
given all of this freedom, but this can be done in practice.

The above policies are implemented with a variety of protocol configurations
and settings. The main aspect of the mechanics that is worth understanding is the
route selection process, which allows a router to select a route to an Internet desti-
nation, given multiple options. Route selection proceeds in the following steps:

1. Prefer the route with the highest local preference value.

2. Prefer the route with the shortest AS path length.

3. Prefer routes learned via external connections (i.e., via eBGP) over
those learned from internal connections (i.e., via iBGP).

4. Among routes learned from the same neighboring AS, prefer routes
with the lowest multiple exit discriminator (MED) value.

490 THE NETWORK LAYER CHAP. 5

5. Prefer routes with the shortest IGP path cost to the next-hope IP ad-
dress in the BGP route (where the next-hop IP address is typically
that of the border router).

These route selection steps proceed in sequence until the router chooses a single
route for each IP prefix. The router performs the above process for each IP prefix
in its routing table. Although this ordering seems lengthy and complicated, it is
fairly intuitive. The local preference value for each route is a value that the local
network operator can set, and it remains internal to that AS. Because it has the
highest precedence among route selection rules, it allows an operator to implement
the types of route preferences and priorities that we discussed earlier in this section
(e.g., preferring a route learned from a customer over a settlement-free route).
After that rule, the others generally involve selection of short routes, as well as a
way to implement early exit routing, as previously described. For example, the
preference for a route learned from an external AS over an internal router is an at-
tempt to implement early exit. Similarly, a preference for a route with a shortest
IGP path cost to the border router is also an attempt to implement early exit.

Amazingly, we have only scratched the surface of BGP. For more information,
see the BGP version 4 specification in RFC 427 and related RFCs. However, real-
ize that much of its complexity lies with policies, which are not described in the
specification of the BGP protocol.

Interdomain Traffic Engineering

As previously described in this chapter, network operators often need to tune
the parameters and configuration of network protocols to manage utilization and
congestion. Such traffic engineering practices are common with BGP, where an op-
erator may want to control how BGP selects routes to control how traffic enters the
network (inbound traffic engineering) or how it leaves the network (outbound
traffic engineering)

The most common way to perform inbound traffic engineering is by adjusting
how routers set the local preference attribute for individual routes. By setting a
higher local preference value for all routes learned from a particular customer AS,
for example, an operator can ensure that that customer’s routes are picked over,
say, a transit route whenever the customer route exists. Inbound traffic engineering
is trickier, because BGP does not let one AS tell another AS how to select routes
(hence the name, autonomous). Nevertheless, an operator can send indirect signals
to routers in neighboring networks to control how these routers select routes. One
common way to do this is to artificially inflate the length of the AS path by re-
peating the network’s own AS multiple times in the route announcement, a practice
called AS path prepending. Another approach is to leverage longest prefix match
and simply split a prefix into multiple smaller (longer) prefixes, so that upstream
routers prefer the routes with longer prefixes. For example, a route for a /20 prefix

SEC. 5.7 THE NETWORK LAYER IN THE INTERNET 491

could be split into routes for two /21 prefixes, four /22 prefixes, and so forth. This
approach has some cost, however, as it can make the routing tables larger, and
beyond a certain length, routers will filter the announcements.

5.7.8 Internet Multicasting

Normal IP communication is between one sender and one receiver. However,
for some applications, it is useful for a process to be able to send to a large number
of receivers simultaneously. Examples are streaming a live sports event to many
viewers, delivering program updates to a pool of replicated servers, and handling
digital conference (i.e., multiparty) telephone calls.

IP supports one-to-many communication, or multicasting, using class D IP ad-
dresses. Each class D address identifies a group of hosts. Twenty-eight bits are
available for identifying groups, so over 250 million groups can exist at the same
time. When a process sends a packet to a class D address, a best-effort attempt is
made to deliver it to all the members of the group addressed, but no guarantees are
given. Some members may not get the packet.

The range of IP addresses 224.0.0.0/24 is reserved for multicast on the local
network. In this case, no routing protocol is needed. The packets are multicast by
simply broadcasting them on the LAN with a multicast address. All hosts on the
LAN receive the broadcasts, and hosts that are members of the group process the
packet. Routers do not forward the packet off the LAN. Some examples of local
multicast addresses are:

224.0.0.1 All systems on a LAN
224.0.0.2 All routers on a LAN
224.0.0.5 All OSPF routers on a LAN
224.0.0.251 All DNS servers on a LAN

Other multicast addresses may have members on different networks. In this
case, a routing protocol is needed. But first, the multicast routers need to know
which hosts are members of a group. A process asks its host to join in a specific
group. It can also ask its host to leave the group. Each host keeps track of which
groups its processes currently belong to. When the last process on a host leaves a
group, the host is no longer a member of that group. About once a minute or so,
each multicast router sends a query packet to all the hosts on its LAN (using the
local multicast address of 224.0.0.1, of course) asking them to report back on the
groups to which they currently belong. The multicast routers may or may not be
colocated with the standard routers. Each host sends back responses for all the
class D addresses it is interested in. These query and response packets use a proto-
col called IGMP (Internet Group Management Protocol). It is described in
RFC 3376.

Any of several multicast routing protocols may be used to build multicast
spanning trees that give paths from senders to all of the members of the group.

492 THE NETWORK LAYER CHAP. 5

The algorithms that are used are the ones we described in Sec. 5.2.8. Within an
AS, the main protocol used is PIM (Protocol Independent Multicast). PIM
comes in several flavors. In Dense Mode PIM, a pruned reverse path forwarding
tree is created. This is suited to situations in which members are everywhere in the
network, such as distributing files to many servers within a data center network. In
Sparse Mode PIM, spanning trees that are built are similar to core-based trees. This
is suited to situations such as a content provider multicasting TV to subscribers on
its IP network. A variant of this design, called Source-Specific Multicast PIM, is
optimized for the case that there is only one sender to the group. Finally, multicast
extensions to BGP or tunnels need to be used to create multicast routes when the
group members are in more than one AS.

5.8 POLICY AT THE NETWORK LAYER

Traffic management has become a topic related to policy in recent years, as
streaming video traffic has become a dominant fraction of overall traffic and Inter-
net interconnection has increasingly become direct between content providers and
access networks. Two aspects of the network layer that relate to policy are peering
disputes and traffic prioritization (sometimes associated with net neutrality). We
will discuss each of these aspects below.

5.8.1 Peering Disputes

Although BGP is a technical standard, ultimately interconnection amounts to
routing money. Traffic flows along paths that make service provider and transit net-
works the most money; paying for transit is considered a last resort. Settlement-
free peering of course depends on both parties agreeing that interconnection is
mutually beneficial. When one network feels it is getting the short end of the bar-
gain, it can ask the other network to pay. The other connecting network might
agree, or refuse, but if negotiations break down, this results in a so-called peering
dispute.

A very high-profile peering dispute occurred a few years ago. In recent years,
large content providers have been serving enough traffic to congest any intercon-
nect link. In 2013, large video providers were congesting interconnect links be-
tween transit providers and residential access networks. Ultimately, the streaming
video traffic filled the capacity of these links, creating high utilization on intercon-
nection links that was difficult for access networks to mitigate without provision-
ing extra capacity. The question then became one of who should pay for augment-
ing the network capacity. In the end, in many cases, the large content providers
ended up paying the access networks for direct interconnection, effectively a paid
peering arrangement as discussed earlier in this chapter. Many wrongly construed

SEC. 5.8 POLICY AT THE NETWORK LAYER 493

these circumstances as somehow relating to unfair de-prioritization or blocking of
video traffic. In fact, the incidents resulted from business disputes concerning
which network should be responsible for paying to provision interconnection
points. For more information on peering disputes and how they are handled, see
The Peering Playbook (Norton, 2012).

Peering disputes are as old as the commercial Internet. As a higher fraction of
traffic on the Internet goes over private interconnects, however, the nature of these
disputes is likely to evolve. For example, residential access networks now send a
very high fraction of their own traffic to the same distributed clouds where other
content is hosted. Thus, it is not in their interests to let the interconnects to those
distributed cloud platforms experience high utilization. Recently, some operators
have gone so far as to predict the death of transit connections entirely (Huston,
2018). Whether that comes to pass remains to be seen, but needless to say the dy-
namics of peering, interconnection, and transit continue to evolve rapidly.

5.8.2 Traffic Prioritization

Traffic prioritization, of the types that we have discussed earlier in this chapter,
is a complicated topic that sometimes crosses over into the policy realm. On the
one hand, a core aspect of traffic management is the prioritization of latency-sensi-
tive traffic (e.g., gaming and interactive video) so that high utilization for other
types of traffic (e.g., a large file transfer) does not result in poor overall user expe-
rience. Some applications such as file transfers do not require interactivity, whereas
interactive applications often require low latency and jitter.

To achieve good performance for a mix of application traffic, network opera-
tors often institute various forms of traffic prioritization, including methods such as
the weighted fair queueing approaches described earlier in this chapter. Addi-
tionally, as previously discussed, newer versions of DOCSIS will have support for
placing interactive application traffic in low-latency queues. Differentiated treat-
ment across different types of application traffic can in fact result in improved
quality of experience for certain applications without negatively affecting the qual-
ity of experience for other classes of applications.

Prioritization starts to get messier, however, if and when money changes hands.
The third rail in Internet policy is paid prioritization, whereby one party might
pay an Internet service provider so that its traffic would receive higher priority than
other competing traffic of the same application type. Such paid prioritization might
be viewed as anti-competitive behavior. In other cases, a transit network with a par-
ticular service offering (e.g., video, or voice over IP) could prioritize its own ser-
vice with respect to services from competitors. For example, in one instance,
AT&T, was found to be blocking FaceTime video calls. For these reasons, prioriti-
zation can often be a sensitive flash point in discussions about network neutrality
or net neutrality. The concept of net neutrality has complex legal and policy

494 THE NETWORK LAYER CHAP. 5

implications beyond the scope of a technical networking textbook, but the gener-
ally agreed upon bright-line rules are:

1. No blocking.

2. No throttling.

3. No paid prioritization.

4. Disclosure of any prioritization practices.

Any net neutrality policy also generally allows exceptions for reasonable network
management practices (e.g., prioritization to improve network efficiency, blocking
or filtering for network security reasons). What constitutes ‘‘reasonable’’ is often
left up to lawyers to decide. Another policy and legal question is who (i.e., what
government agency) gets to decide what the rules are, and what the penalties
should be for breaking them. Some aspects of the net neutrality policy debates in
the United States, for example, are about whether an Internet service provider is
more similar to a telephone utility company (e.g., AT&T) or to an information and
content provider (e.g., Google). Depending on the answer to that question, dif-
ferent government agencies get to set the rules on everything from prioritization to
privacy.

5.9 SUMMARY

The network layer provides services to the transport layer. It can be based on
either datagrams or virtual circuits. In both cases, its main job is routing packets
from the source to the destination. In datagram networks, a routing decision is
made on every packet. In virtual-circuit networks, it is made when the virtual cir-
cuit is set up.

Many routing algorithms are used in computer networks. Flooding is a simple
algorithm to send a packet along all paths. Most algorithms find the shortest path
and adapt to changes in the network topology. The main algorithms are distance
vector routing and link state routing. Most actual networks use one of these. Other
important routing topics are the use of hierarchy in large networks, routing for
mobile hosts, and broadcast, multicast, and anycast routing.

Networks can easily become congested, leading to increased delay and lost
packets. Network designers attempt to avoid congestion by designing the network
to have enough capacity, configuring the protocols to prefer uncongested routes,
refusing to accept more traffic, signaling sources to slow down, and shedding load.

The next step beyond just dealing with congestion is to actually try to achieve
a promised quality of service. Some applications care more about throughput
whereas others care more about delay and jitter. The methods that can be used to
provide different qualities of service include a combination of traffic shaping,

SEC. 5.9 SUMMARY 495

reserving resources at routers, and admission control. Approaches that have been
designed for good quality of service include IETF integrated services (including
RSVP) and differentiated services.

Networks differ in various ways, so when multiple networks are intercon-
nected, problems can occur. When different networks have different maximum
packet sizes, fragmentation may be needed. Different networks may run different
routing protocols internally but need to run a common protocol externally. Some-
times the problems can be finessed by tunneling a packet through a hostile net-
work, but if the source and destination networks use different technologies, this ap-
proach fails.

The Internet has a rich variety of protocols related to the network layer. These
include the datagram protocol, IP, and associated control protocols such as ICMP,
ARP, and DHCP. A connection-oriented protocol called MPLS carries IP packets
across some networks. One of the main routing protocols used within networks is
OSPF, and the routing protocol used across networks is BGP. The Internet is ra-
pidly running out of IP addresses, so a new version of IP, IPv6, has been developed
and is ever-so-slowly being deployed.

Some aspects of traffic engineering and management touch on policy-related
issues. Two common issues are peering disputes, where networks cannot agree on
the business terms of interconnection; and traffic prioritization, which is generally
applied to mitigate adverse effects of congestion but can touch on issues related to
network neutrality if it is applied in anti-competitive ways.

PROBLEMS

1. Give two example computer applications for which connection-oriented service is ap-
propriate. Now give two examples for which connectionless service is best.

2. Datagram networks route each packet as a separate unit, independent of all others. Vir-
tual-circuit networks do not have to do this, since each data packet follows a predeter-
mined route. Does this observation mean that virtual-circuit networks do not need the
capability to route isolated packets from an arbitrary source to an arbitrary destination?
Explain your answer.

3. Give three examples of protocol parameters that might be negotiated when a con-
nection is set up.

4. Assuming that all routers and hosts are working properly and that all software in both
is free of all errors, is there any chance, however small, that a packet will be delivered
to the wrong destination?

5. Show that the count-to-infinity problem shown in Fig. 5-10(b) can be solved by having
routers add to their distance vectors the outgoing link for every destination and cost
pair. For example, In Fig. 5-10(a), node C not only advertises a route to A with dis-
tance 2, it also communicates that this path goes through node B. Show the distances

496 THE NETWORK LAYER CHAP. 5

from all routers to A after every distance vector exchange, until all routers realize A is
no longer reachable.

6. Sketch a network topology different from the one in Fig. 5-10 for which including the
next hop does not solve the count-to-infinity problem if node A fails.

7. Consider the network of Fig. 5-12(a). Distance vector routing is used, and the follow-
ing link state packets have just come in at router D: from A: (B: 5, E : 4); from B: (A:
4, C: 1, F: 5); from C: (B: 3, D: 4, E: 3); from E: (A: 2, C: 2, F : 2); from F : (B: 1, D :
2, E: 3). The cost of the links from D to C and F are 3 and 4 respectively. What is
D’s new routing table? Give both the outgoing line to use and the cost.

8. Give a simple heuristic for finding two paths through a network from a given source to
a given destination that can survive the loss of any communication line (assuming two
such paths exist). The routers are considered reliable enough, so it is not necessary to
worry about the possibility of router crashes.

9. Consider the network of Fig. 5-12(a). Distance vector routing is used, and the follow-
ing vectors have just come in to router C: from B: (5, 0, 8, 12, 6, 2); from D: (16, 12,
6, 0, 9, 10); and from E: (7, 6, 3, 9, 0, 4). The cost of the links from C to B, D, and E,
are 6, 3, and 5, respectively. What is C’s new routing table? Give both the outgoing
line to use and the cost.

10. If costs are recorded as 8-bit numbers in a 50-router network, and distance vectors are
exchanged twice a second, how much bandwidth per (full-duplex) line is chewed up by
the distributed routing algorithm? Assume that each router has three lines to other
routers.

11. Explain the difference between routing, forwarding, and switching.

12. In Fig. 5-13, the Boolean OR of the two sets of ACF bits are 111 in every row. Is this
just an accident here, or does it hold for all networks under all circumstances?

13. Consider the network and link costs shown in Fig. 5-12. This network uses link state
routing. Node F broadcasts a message using reverse path forwarding. Sketch the
broadcast tree used in this scenario.

14. For hierarchical routing with 4800 routers, what region and cluster sizes should be cho-
sen to minimize the size of the routing table for a three-layer hierarchy? A good start-
ing place is the hypothesis that a solution with k clusters of k regions of k routers is
close to optimal, which means that k is about the cube root of 4800 (around 16). Use
trial and error to check out combinations where all three parameters are in the general
vicinity of 16.

15. In the text it was stated that when a mobile host is not at home, packets sent to its home
LAN are intercepted by its home agent on that LAN. For an IP network on an 802.3
LAN, how does the home agent accomplish this interception?

16. Looking at the network of Fig. 5-6, how many packets are generated by a broadcast
from B, using

(a) reverse path forwarding?
(b) the sink tree?

CHAP. 5 PROBLEMS 497

17. Consider the network of Fig. 5-15(a). Imagine that one new line is added, between F
and G , but the sink tree of Fig. 5-15(b) remains unchanged. What changes occur to
Fig. 5-15(c)?

18. Compute a multicast spanning tree for router C in the following network for a group
with members at routers A, B, C, D, E, F , I , and K.

A

G H

I

L

D

K

B
C

F

E

J

19. Consider two hosts connected via a router. Explain how congestion can occur, even
when both hosts and the router use flow control, but no congestion control. Then
explain how the receiver can be overwhelmed, even when using congestion control, but
no flow control.

20. As a possible congestion control mechanism in a network using virtual circuits inter-
nally, a router could refrain from acknowledging a received packet until (1) it knows its
last transmission along the virtual circuit was received successfully and (2) it has a free
buffer. For simplicity, assume that the routers use a stop-and-wait protocol and that
each virtual circuit has one buffer dedicated to it for each direction of traffic. If it takes
T sec to transmit a packet (data or acknowledgement) and there are n routers on the
path, what is the rate at which packets are delivered to the destination host? Assume
that transmission errors are rare and that the host-router connection is infinitely fast so
it is not a bottleneck.

21. Describe two major differences between the ECN method and the RED method of con-
gestion avoidance.

22. A token bucket scheme is used for traffic shaping. A new token is put into the bucket
every 5 µsec. Each token is good for one short packet, which contains 48 bytes of
data. What is the maximum sustainable data rate?

23. Explain how large file transfers could degrade the latency observed by both a gaming
application and small file transfers.

24. A possible solution to the problem above involves shaping the file transfer traffic so
that it never exceeds a certain rate. You decide to shape the traffic so that the sending
rate never exceeds 20 Mbps. Should you use a token bucket or a leaky bucket to imple-
ment this shaping, or will neither work? What should the drain rate of the bucket be?

498 THE NETWORK LAYER CHAP. 5

25. Given a sender who is sending at 100 Mbps, you would also like to automatically drop
(police) traffic from the sender after 1 second. How large should you make the bucket
in bytes?

26. A computer on a 6-Mbps network is regulated by a token bucket. The token bucket is
filled at a rate of 1 Mbps. It is initially filled to capacity with 8 megabits. How long
can the computer transmit at the full 6 Mbps?

27. A computer uses a token bucket with a capacity of 500 megabytes (MB), and a rate of
5 MB per second. The machine starts generating 15 MB per second when the bucket
contains 300 MB. How long will it take to send 1000 MB?

28. Consider the packet queues shown in Fig. 5-29. What is the finish time and output
order of the packets if the middle queue, instead of the bottom queue, has a weight
of 2? Order packets with the same finish time alphabetically.

29. The network of Fig. 5-32 uses RSVP with multicast trees for hosts 1 and 2 as shown.
Suppose that host 3 requests a channel of bandwidth 2 MB/sec for a flow from host 1
and another channel of bandwidth 1 MB/sec for a flow from host 2. At the same time,
host 4 requests a channel of bandwidth 2 MB/sec for a flow from host 1 and host 5 re-
quests a channel of bandwidth 1 MB/sec for a flow from host 2. How much total band-
width will be reserved for these requests at routers A, B, C, E, H , J , K, and L?

30. A router can process 2 million packets/sec. The load offered to it is 1.5 million pack-
ets/sec on average. If a route from source to destination contains 10 routers, how much
time is spent being queued and serviced by the router?

31. Consider the user of differentiated services with expedited forwarding. Is there a guar-
antee that expedited packets experience a shorter delay than regular packets? Why or
why not?

32. A router is blasting out IP packets whose total length (data plus header) is 1024 bytes.
Assuming that packets live for 10 sec, what is the maximum line speed the router can
operate at without danger of cycling through the IP datagram ID number space?

33. An IP datagram using the Strict source routing option has to be fragmented. Do you
think the option is copied into each fragment, or is it sufficient to just put it in the first
fragment? Explain your answer.

34. Suppose that instead of using 16 bits for the network part of a class B address origi-
nally, 20 bits had been used. How many class B networks would there have been?

35. Convert the IP address whose hexadecimal representation is C22F1582 to dotted deci-
mal notation.

36. Two IPv6-enabled devices wish to communicate across the Internet. Unfortunately, the
path between these two devices includes a network that has not yet deployed IPv6.
Design a way for the two devices to communicate.

37. A network on the Internet has a subnet mask of 255.255.240.0. What is the maximum
number of hosts it can handle?

38. While IP addresses are tried to specific networks, Ethernet addresses are not. Can you
think of a good reason why they are not?

CHAP. 5 PROBLEMS 499

39. A router has just received the following new IP addresses: 57.6.96.0/21, 57.6.104.0/21,
57.6.112.0/21, and 57.6.120.0/21. If all of them use the same outgoing line, can they
be aggregated? If so, to what? If not, why not?

40. A router has the following (CIDR) entries in its routing table:

Address/mask Next hop
135.46.56.0/22 Interface 0
135.46.60.0/22 Interface 1
192.53.40.0/23 Router 1
default Router 2

For each of the following IP addresses, what does the router do if a packet with that ad-
dress arrives?

(a) 135.46.63.10
(b) 135.46.57.14
(c) 135.46.52.2
(d) 192.53.40.7
(e) 192.53.56.7

41. Aggregate these three address ranges:
37.60.64.0/18
37.60.96.0/19
37.60.128.0/17

42. Many companies have a policy of having two (or more) routers connecting the com-
pany to the Internet to provide some redundancy in case one of them goes down. Is
this policy still possible with NAT? Explain your answer.

43. Two machines on the same network try to use the same port number to communicate
with a server on another network. Is this possible? Explain why (not). What changes
if these machines are separated from other networks by a NAT box?

44. You have just explained the ARP protocol to a friend. When you are all done, he says:
‘‘I’ve got it. ARP provides a service to the network layer, so it is part of the data link
layer.’’ What do you say to him?

45. You connect your phone to the wireless network at your home. This wireless network
is created by the modem obtained from your ISP. Using DHCP, your phone obtains IP
address 192.168.0.103. What is the likely source IP address of the DHCP OFFER
message?

46. Describe a way to reassemble IP fragments at the destination.

47. In IP, the checksum covers only the header and not the data. Why do you suppose this
design was chosen?

48. A person who lives in Boston travels to Minneapolis, taking her portable computer
with her. To her surprise, the LAN at her destination in Minneapolis is a wireless IP
LAN, so she does not have to plug in. Is it still necessary to go through the entire busi-
ness with home agents and foreign agents to make email and other traffic arrive cor-
rectly?

500 THE NETWORK LAYER CHAP. 5

49. IPv6 uses 16-byte addresses. If a block of 1 million addresses is allocated every
picosecond, how long will the addresses last?

50. One of the solutions ISPs use to deal with the shortage of IPv4 addresses is to dynami-
cally allocate them to their clients. Once IPv6 is fully deployed, the address space is
large enough to give every device a unique address. To reduce system complexity,
IPv6 addresses could be assigned to devices permanently. Explain why this is not a
good idea.

51. The Protocol field used in the IPv4 header is not present in the fixed IPv6 header.
Why not?

52. When the IPv6 protocol is introduced, does the ARP protocol have to be changed? If
so, are the changes conceptual or technical?

53. Write a program to simulate routing using flooding. Each packet should contain a
counter that is decremented on each hop. When the counter gets to zero, the packet is
discarded. Time is discrete, with each line handling one packet per time interval.
Make three versions of the program: all lines are flooded, all lines except the input line
are flooded, and only the (statically chosen) best k lines are flooded. Compare flood-
ing with deterministic routing (k = 1) in terms of both delay and the bandwidth used.

54. Write a program that simulates a computer network using discrete time. The first
packet on each router queue makes one hop per time interval. Each router has only a
finite number of buffers. If a packet arrives and there is no room for it, it is discarded
and not retransmitted. Instead, there is an end-to-end protocol, complete with timeouts
and acknowledgement packets, that eventually regenerates the packet from the source
router. Plot the throughput of the network as a function of the end-to-end timeout in-
terval, parameterized by error rate.

55. Write a function to do forwarding in an IP router. The procedure has one parameter, an
IP address. It also has access to a global table consisting of an array of triples. Each
triple contains three integers: an IP address, a subnet mask, and the outline line to use.
The function looks up the IP address in the table using CIDR and returns the line to use
as its value.

56. Use the traceroute (UNIX) or tracert (Windows) programs to trace the route from your
computer to various universities on other continents. Make a list of transoceanic links
you have discovered. Some sites to try are

www.berkeley.edu (California)
www.mit.edu (Massachusetts)
www.vu.nl (Amsterdam)
www.ucl.ac.uk (London)
www.usyd.edu.au (Sydney)
www.u-tokyo.ac.jp (Tokyo)
www.uct.ac.za (Cape Town)

6
THE TRANSPORT LAYER

Together with the network layer, the transport layer is the heart of the protocol
hierarchy. The network layer provides end-to-end packet delivery using datagrams
or virtual circuits. The transport layer builds on the network layer to provide data
transport from a process on a source machine to a process on a destination machine
with a desired level of reliability that is independent of the physical networks cur-
rently in use. It provides the abstractions that applications need to use the network.
Without the transport layer, the whole concept of layered protocols would make lit-
tle sense. In this chapter, we will study the transport layer in detail, including its
services and choice of API design to tackle issues of reliability, connections and
congestion control, protocols such as TCP and UDP, and performance.

6.1 THE TRANSPORT SERVICE

In the following sections, we will provide an introduction to the transport ser-
vice. We will look at what kind of service is provided to the application layer. To
make the issue of transport service more concrete, we will examine two sets of
transport layer primitives. First comes a simple (but hypothetical) one to show the
basic ideas. Then comes the interface commonly used in the Internet.

501

502 THE TRANSPORT LAYER CHAP. 6

6.1.1 Services Provided to the Upper Layers

The ultimate goal of the transport layer is to provide efficient, reliable, and
cost-effective data transmission service to its users, normally processes in the ap-
plication layer. To achieve this, the transport layer makes use of the services pro-
vided by the network layer. The software and/or hardware within the transport
layer that does the work is called the transport entity. The transport entity can be
located in the operating system kernel, in a library package bound into network ap-
plications, in a separate user process, or even on the network interface card. The
first two options are most common on the Internet. The (logical) relationship of
the network, transport, and application layers is illustrated in Fig. 6-1.

Application/transport
interface

Transport/network
interface

Application
(or session)

layer

Transport
entity

Transport
address

Network
address

Network layer

Application
(or session)

layer

Transport
entity

Network layer

Segment

Transport
protocol

Host 1 Host 2

Figure 6-1. The network, transport, and application layers.

Just as there are two types of network service, connection-oriented and con-
nectionless, there are also two types of transport service. The connection-oriented
transport service is similar to the connection-oriented network service in many
ways. In both cases, connections have three phases: establishment, data transfer,
and release.

Addressing and flow control are also similar in both layers. Furthermore, the
connectionless transport service is also very similar to the connectionless network
service. However, note that it can be difficult to provide a connectionless transport
service on top of a connection-oriented network service, since it is inefficient to set
up a connection to send a single packet and then tear it down immediately after-
wards.

The obvious question is this: if the transport layer service is so similar to the
network layer service, why are there two distinct layers? Why is one layer not ade-
quate? The answer is subtle, but really crucial. The transport code runs entirely on

SEC. 6.1 THE TRANSPORT SERVICE 503

the users’ machines, but the network layer largely runs on the routers, which are
operated by the carrier (at least for a wide area network). What happens if the net-
work layer offers inadequate service? What if it frequently loses packets? What
happens if routers crash from time to time?

Problems occur, that’s what. The users have no real control over the network
layer, so they cannot solve the problem of poor service by using better routers or
putting more error handling in the data link layer because they don’t own the rout-
ers. The only possibility is to put on top of the network layer another layer that im-
proves the quality of the service. If, in a connectionless network, packets are lost
or mangled, the transport entity can detect the problem and compensate for it by
using retransmissions. If, in a connection-oriented network, a transport entity is
informed halfway through a long transmission that its network connection has been
abruptly terminated, with no indication of what has happened to the data currently
in transit, it can set up a new network connection to the remote transport entity.
Using this new network connection, it can send a query to its peer asking which
data arrived and which did not, and knowing where it was, pick up from where it
left off.

In essence, the existence of the transport layer makes it possible for the tran-
sport service to be more reliable than the underlying network, which may not be all
that reliable. Furthermore, the transport primitives can be implemented as calls to
library procedures to make them independent of the network primitives. The net-
work service calls may vary considerably from one network to another (e.g., calls
based on a connectionless Ethernet may be quite different from calls on a con-
nection-oriented network). Hiding the network service behind a set of transport
service primitives ensures that changing the network merely requires replacing one
set of library procedures with another one that does the same thing with a different
underlying service. Having applications be independent of the network layer is a
good thing.

Thanks to the transport layer, application programmers can write code accord-
ing to a standard set of primitives and have these programs work on a wide variety
of networks, without having to worry about dealing with different network inter-
faces and levels of reliability. If all real networks were flawless and all had the
same service primitives and were guaranteed never, ever to change, the transport
layer might not be needed. However, in the real world it fulfills the key function of
isolating the upper layers from the technology, design, and imperfections of the
network.

For this reason, many people have made a qualitative distinction between lay-
ers one through four on the one hand and layer(s) above four on the other. The
bottom four layers can be seen as the transport service provider, whereas the
upper layer(s) are the transport service user. This distinction of provider versus
user has a considerable impact on the design of the layers and puts the transport
layer in a key position, since it forms the major boundary between the provider and
user of the reliable data transmission service. It is the level that applications see.

504 THE TRANSPORT LAYER CHAP. 6

6.1.2 Transport Service Primitives

To allow users to access the transport service, the transport layer must provide
some operations to application programs, that is, a transport service interface.
Each transport service has its own interface. In this section, we will first examine a
simple (hypothetical) transport service and its interface to see the bare essentials.
In the following section, we will look at a real example.

The transport service is similar to the network service, but there are also some
important differences. The main difference is that the network service is intended
to model the service offered by real networks, warts and all. Real networks can
lose packets, so the network service is generally unreliable.

The connection-oriented transport service, in contrast, is reliable. Of course,
real networks are not error-free, but that is precisely the purpose of the transport
layer—to provide a reliable service on top of an unreliable network.

As an example, consider two processes on a single machine connected by a
pipe in UNIX (or any other interprocess communication facility). They assume the
connection between them is 100% perfect. They do not want to know about ac-
knowledgements, lost packets, congestion, or anything at all like that. What they
want is a 100% reliable connection. Process A puts data into one end of the pipe,
and process B takes it out of the other. This is what the connection-oriented tran-
sport service is all about—hiding the imperfections of the network service so that
user processes can just assume the existence of an error-free bit stream even when
they are on different machines.

As an aside, the transport layer can also provide unreliable (datagram) service.
However, there is relatively little to say about that besides ‘‘it’s datagrams,’’ so we
will mainly concentrate on the connection-oriented transport service in this chap-
ter. Nevertheless, there are some applications, such as client-server computing and
streaming multimedia, that build on a connectionless transport service, and we will
say a little bit about that later on.

A second difference between the network service and transport service is
whom the services are intended for. From the perspective of network endpoints,
the network service is used only by the transport entities. Few users write their
own transport entities, and thus few users or programs ever see the bare network
service. In contrast, many programs (and thus programmers) see the transport
primitives. Consequently, the transport service must be convenient and easy to use.

To get an idea of what a transport service might be like, consider the five prim-
itives listed in Fig. 6-2. This transport interface is truly bare bones, but it gives the
essential flavor of what a connection-oriented transport interface has to do. It al-
lows application programs to establish, use, and then release connections, which is
sufficient for many applications.

To see how these primitives might be used, consider an application with a ser-
ver and a number of remote clients. To start with, the server executes a LISTEN
primitive, typically by calling a library procedure that makes a system call that

SEC. 6.1 THE TRANSPORT SERVICE 505

Primitive Packet sent Meaning
LISTEN (none) Block until some process tries to connect
CONNECT CONNECTION REQ. Actively attempt to establish a connection
SEND DATA Send information
RECEIVE (none) Block until a DATA packet arrives
DISCONNECT DISCONNECTION REQ. Request a release of the connection

Figure 6-2. The primitives for a simple transport service.

blocks the server until a client turns up. When a client wants to talk to the server, it
executes a CONNECT primitive. The transport entity carries out this primitive by
blocking the caller and sending a packet to the server. Encapsulated in the payload
of this packet is a transport layer message for the server’s transport entity.

A quick note on terminology is now in order. For lack of a better term, we will
use the term segment for messages sent from transport entity to transport entity.
TCP, UDP and other Internet protocols use this term. Some older protocols used
the ungainly name TPDU (Transport Protocol Data Unit). That term is not used
much any more now but you may see it in older papers and books.

Thus, segments (exchanged by the transport layer) are contained in packets
(which are exchanged by the network layer). In turn, these packets are contained
in frames (exchanged by the data link layer). When a frame arrives, the data link
layer processes the frame header and, if the destination address matches for local
delivery, passes the contents of the frame payload field up to the network entity.
The network entity similarly processes the packet header and then passes the con-
tents of the packet payload up to the transport entity. This nesting is illustrated in
Fig. 6-3.

Frame
header

Packet
header

Segment
header

Segment payload

Frame payload

Packet payload

Figure 6-3. Nesting of segments, packets, and frames.

Getting back to our client-server example, the client’s CONNECT call causes a
CONNECTION REQUEST segment to be sent to the server. When it arrives, the
transport entity checks to see that the server is blocked on a LISTEN (i.e., is ready to

506 THE TRANSPORT LAYER CHAP. 6

handle requests). If so, it then unblocks the server and sends a CONNECTION
ACCEPTED segment back to the client. When this segment arrives, the client is
unblocked and the connection is established.

Data can now be exchanged using the SEND and RECEIVE primitives. In the
simplest form, either party can do a (blocking) RECEIVE to wait for the other party
to do a SEND. When the segment arrives, the receiver is unblocked. It can then
process the segment and send a reply. As long as both sides can keep track of
whose turn it is to send, this scheme works fine.

In the transport layer, even a simple unidirectional data exchange is more com-
plicated than at the network layer. Every data packet sent will also be acknow-
ledged (eventually). The packets bearing control segments are also acknowledged,
implicitly or explicitly. These acknowledgements are managed by the transport en-
tities, using the network layer protocol, and are not visible to the transport users.
Similarly, the transport entities need to worry about timers and retransmissions.
None of this machinery is visible to the transport users. To the transport users, a
connection is a reliable bit pipe: one end stuffs bits in and they magically appear in
the same order at the other end. This ability to hide complexity is the reason that
layered protocols are such a powerful tool.

When a connection is no longer needed, it must be released to free up table
space within the two transport entities. Disconnection has two variants: asymmet-
ric and symmetric. In the asymmetric variant, either transport user can issue a DIS-
CONNECT primitive, which results in a DISCONNECT segment being sent to the re-
mote transport entity. Upon its arrival, the connection is released.

In the symmetric variant, each direction is closed separately, independently of
the other one. When one side does a DISCONNECT, that means it has no more data
to send but it is still willing to accept data from its partner. In this model, a con-
nection is released when both sides have done a DISCONNECT.

A state diagram for connection establishment and release for these simple
primitives is given in Fig. 6-4. Each transition is triggered by some event, either a
primitive executed by the local transport user or an incoming packet. For simpli-
city, we assume here that each segment is separately acknowledged. We also as-
sume that a symmetric disconnection model is used, with the client going first.
Please note that this model is quite unsophisticated. We will look at more realistic
models later on when we describe how TCP works.

6.1.3 Berkeley Sockets

Let us now briefly inspect another set of transport primitives, the socket primi-
tives as they are used for TCP. Sockets were first released as part of the Berkeley
UNIX 4.2BSD software distribution in 1983. They quickly became popular. The
primitives are now widely used for Internet programming on many operating sys-
tems, especially UNIX-based systems, and there is a socket-style API for Windows
called ‘‘winsock.’’

SEC. 6.1 THE TRANSPORT SERVICE 507

ACTIVE
ESTABLISHMENT

PENDING

PASSIVE
ESTABLISHMENT

PENDING

PASSIVE
DISCONNECT

PENDING

ACTIVE
DISCONNECT

PENDING

IDLE

IDLE

ESTABLISHED

Disconnection
request segment

received

Disconnect
primitive
executed

Disconnect
primitive executed

Disconnection request
segment received

Connection request
segment received

Connection accepted
segment received

Connect primitive
executed

Connect primitive
executed

Figure 6-4. A state diagram for a simple connection management scheme. Tran-
sitions labeled in italics are caused by packet arrivals. The solid lines show the
client’s state sequence. The dashed lines show the server’s state sequence.

The primitives are listed in Fig. 6-5. Roughly speaking, they follow the model
of our first example but offer more features and flexibility. We will not look at the
corresponding segments here. That discussion will come later.

Primitive Meaning
SOCKET Create a new communication endpoint
BIND Associate a local address with a socket
LISTEN Announce willingness to accept connections; give queue size
ACCEPT Passively establish an incoming connection
CONNECT Actively attempt to establish a connection
SEND Send some data over the connection
RECEIVE Receive some data from the connection
CLOSE Release the connection

Figure 6-5. The socket primitives for TCP.

The first four primitives in the list are executed in that order by servers. The
SOCKET primitive creates a new endpoint and allocates table space for it within the
transport entity. The parameters of the call specify the addressing format to be

508 THE TRANSPORT LAYER CHAP. 6

used, the type of service desired (e.g., reliable byte stream), and the protocol. A
successful SOCKET call returns an ordinary file descriptor for use in succeeding
calls, the same way an OPEN call on a file does.

Newly created sockets do not have network addresses. These are assigned
using the BIND primitive. Once a server has bound an address to a socket, remote
clients can connect to it. The reason for not having the SOCKET call create an ad-
dress directly is that some processes care about their addresses (e.g., they have
been using the same address for years and everyone knows this address)..

Next comes the LISTEN call, which allocates space to queue incoming calls for
the case that several clients try to connect at the same time. In contrast to LISTEN
in our first example, in the socket model LISTEN is not a blocking call.

To block waiting for an incoming connection, the server executes an ACCEPT
primitive. When a segment asking for a connection arrives, the transport entity
creates a new socket with the same properties as the original one and returns a file
descriptor for it. The server can then fork off a process or thread to handle the con-
nection on the new socket and go back to waiting for the next connection on the
original socket. ACCEPT returns a file descriptor, which can be used for reading
and writing in the standard way, the same as for files.

Now let us look at the client side. Here, too, a socket must first be created
using the SOCKET primitive, but BIND is not required since the address used does
not matter to the server. The CONNECT primitive blocks the caller and starts the
connection process. When it completes (i.e., when the appropriate segment is re-
ceived from the server), the client process is unblocked and the connection is estab-
lished. Both sides can now use SEND and RECEIVE to transmit and receive data
over the full-duplex connection. The standard UNIX READ and WRITE system calls
can also be used if none of the special options of SEND and RECEIVE are required.

Connection release with sockets is symmetric. When both sides have executed
a CLOSE primitive, the connection is released.

Sockets have proved tremendously popular and are the de facto standard for
abstracting transport services to applications. The socket API is often used with
the TCP protocol to provide a connection-oriented service called a reliable byte
stream, which is simply the reliable bit pipe that we described. However, other
protocols could be used to implement this service using the same API. It should
all be the same to the transport service users.

A strength of the socket API is that is can be used by an application for other
transport services. For instance, sockets can be used with a connectionless tran-
sport service. In this case, CONNECT sets the address of the remote transport peer
and SEND and RECEIVE send and receive datagrams to and from the remote peer.
(It is also common to use an expanded set of calls, for example, SENDTO and
RECVFROM, that emphasize messages and do not limit an application to a single
transport peer.) Sockets can also be used with transport protocols that provide a
message stream rather than a byte stream and that do or do not have congestion
control. For example, DCCP (Datagram Congestion Control Protocol) is a

SEC. 6.1 THE TRANSPORT SERVICE 509

version of UDP with congestion control (Kohler et al., 2006). It is up to the tran-
sport users to understand what service they are getting.

However, sockets are not likely to be the final word on transport interfaces. For
example, applications often work with a group of related streams, such as a Web
browser that requests several objects from the same server. With sockets, the most
natural fit is for application programs to use one stream per object. This structure
means that congestion control is applied separately for each stream, not across the
group, which is suboptimal. It punts to the application the burden of managing the
set. Some protocols and interfaces have been devised that support groups of relat-
ed streams more effectively and simply for the application. Two examples are
SCTP (Stream Control Transmission Protocol) defined in RFC 4960 (Ford,
2007) and QUIC (discussed later). These protocols must change the socket API
slightly to get the benefits of groups of related streams, and they also support fea-
tures such as a mix of connection-oriented and connectionless traffic and even mul-
tiple network paths.

6.1.4 An Example of Socket Programming: An Internet File Server

As an example of the nitty-gritty of how real socket calls are made, consider
the client and server code of Fig. 6-6. Here we have a very primitive Internet file
server along with an example client that uses it. The code has many limitations
(discussed below), but in principle the server code can be compiled and run on any
UNIX system connected to the Internet. The client code can be compiled and run
on any other UNIX machine on the Internet, anywhere in the world. The client
code can be executed with appropriate parameters to fetch any file to which the
server has access on its machine. The file is written to standard output, which, of
course, can be redirected to a file or pipe.

Let us look at the server code first. It starts out by including some standard
headers, the last three of which contain the main Internet-related definitions and
data structures. Next comes a definition of SERVER PORT as 8080. This number
was chosen arbitrarily. Any number between 1024 and 65535 will work just as
well, as long as it is not in use by some other process; ports below 1023 are re-
served for privileged users.

The next two lines in the server define constants. The first one determines the
chunk size in bytes used for the file transfer. The second one determines how
many pending connections can be held before additional ones are discarded.

After the declarations of local variables, the server code begins. It starts out by
initializing a data structure that will hold the server’s IP address. This data struc-
ture will soon be bound to the server’s socket. The call to memset sets the data
structure to all 0s. The three assignments following it fill in three of its fields. The
last of these contains the server’s port. The functions htonl and htons have to do
with converting values to a standard format so the code runs correctly on both lit-
tle-endian machines (e.g., Intel x86) and big-endian machines (e.g., the SPARC).

510 THE TRANSPORT LAYER CHAP. 6

/* This page contains a client program that can request a file from the server program
* on the next page. The server responds by sending the whole file.
*/

#include <sys/types.h>
#include <unistd.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

#define SERVER PORT 8080 /* arbitrary, but client & server must agree */
#define BUF SIZE 4096 /* block transfer size */

int main(int argc, char **argv)
{

int c, s, bytes;
char buf[BUF SIZE]; /* buffer for incoming file */
struct hostent *h; /* info about server */
struct sockaddr in channel; /* holds IP address */
if (argc != 3) {printf("Usage: client server-name file-name0); exit(-1);}
h = gethostbyname(argv[1]); /* look up host’s IP address */
if (!h) {printf("gethostbyname failed to locate %s0, argv[1]); exit(-1;}
s = socket(PF INET, SOCK STREAM, IPPROTO TCP);
if (s <0) {printf("socket call failed0); exit(-1);}
memset(&channel, 0, sizeof(channel));
channel.sin family= AF INET;
memcpy(&channel.sin addr.s addr, h->h addr, h->h length);
channel.sin port= htons(SERVER PORT);
c = connect(s, (struct sockaddr *) &channel, sizeof(channel));
if (c < 0) {printf("connect failed0); exit(-1);}
/* Connection is now established. Send file name including 0 byte at end. */
write(s, argv[2], strlen(argv[2])+1);

/* Go get the file and write it to standard output. */
while (1) {

bytes = read(s, buf, BUF SIZE); /* read from socket */
if (bytes <= 0) exit(0); /* check for end of file */
write(1, buf, bytes); /* write to standard output */

}
}

Figure 6-6. Client code using sockets. The server code is on the next page.

SEC. 6.1 THE TRANSPORT SERVICE 511

#include <sys/types.h> /* This is the server code */
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/fcntl.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#define SERVER PORT 8080 /* arbitrary, but client & server must agree */
#define BUF SIZE 4096 /* block transfer size */
#define QUEUE SIZE 10
int main(int argc, char *argv[])
{ int s, b, l, fd, sa, bytes, on = 1;

char buf[BUF SIZE]; /* buffer for outgoing file */
struct sockaddr in channel; /* holds IP address */
/* Build address structure to bind to socket. */
memset(&channel, 0, sizeof(channel)); /* zero channel */
channel.sin family = AF INET;
channel.sin addr.s addr = htonl(INADDR ANY);
channel.sin port = htons(SERVER PORT);
/* Passive open. Wait for connection. */
s = socket(AF INET, SOCK STREAM, IPPROTO TCP); /* create socket */
if (s < 0) {printf("socket call failed0); exit(-1);}
setsockopt(s, SOL SOCKET, SO REUSEADDR, (char *) &on, sizeof(on));
b = bind(s, (struct sockaddr *) &channel, sizeof(channel));
if (b < 0) {printf("bind failed0); exit(-1);}
l = listen(s, QUEUE SIZE); /* specify queue size */
if (l < 0) {printf("listen failed0); exit(-1);}
/* Socket is now set up and bound. Wait for connection and process it. */
while (1) {

sa = accept(s, 0, 0); /* block for connection request */
if (sa < 0) {printf("accept failed0); exit(-1);}
read(sa, buf, BUF SIZE); /* read file name from socket */
/* Get and return the file. */
fd = open(buf, O RDONLY); /* open the file to be sent back */
if (fd < 0) {printf("open failed");
while (1) {

bytes = read(fd, buf, BUF SIZE); /* read from file */
if (bytes <= 0) break; /* check for end of file */
write(sa, buf, bytes); /* write bytes to socket */

}
close(fd); /* close file */
close(sa); /* close connection */

}
}

512 THE TRANSPORT LAYER CHAP. 6

Next, the server creates a socket and checks for errors (indicated by s < 0). In
a production version of the code, the error message could be a trifle more explana-
tory. The call to setsockopt is needed to allow the port to be reused so the server
can run indefinitely, fielding request after request. Now the IP address is bound to
the socket and a check is made to see if the call to bind succeeded. The final step
in the initialization is the call to listen to announce the server’s willingness to
accept incoming calls and tell the system to hold up to QUEUE SIZE of them in
case new requests arrive while the server is still processing the current one. If the
queue is full and additional requests arrive, they are quietly discarded.

At this point, the server enters its main loop, which it never leaves. The only
way to stop it is to kill it from outside. The call to accept blocks the server until
some client tries to establish a connection with it. If the accept call succeeds, it re-
turns a socket descriptor that can be used for reading and writing, analogous to
how file descriptors can be used to read from and write to pipes. However, unlike
pipes, which are unidirectional, sockets are bidirectional, so sa (the accepted
socket) can be used for reading from the connection and also for writing to it. A
pipe file descriptor is for reading or writing but not both.

After the connection is established, the server reads the file name from it. If
the name is not yet available, the server blocks waiting for it. After getting the file
name, the server opens the file and enters a loop that alternately reads blocks from
the file and writes them to the socket until the entire file has been copied. Then the
server closes the file and the connection and waits for the next connection to show
up. It repeats this loop forever.

Now let us look at the client code. To understand how it works, it is necessary
to understand how it is invoked. Assuming it is called client, a typical call is

client flits.cs.vu.nl /usr/tom/filename >f

This call only works if the server is already running on flits.cs.vu.nl and the file
/usr/tom/filename exists and the server has read access to it. If the call is suc-
cessful, the file is transferred over the Internet and written to f, after which the cli-
ent program exits. Since the server continues after a transfer, the client can be
started again and again to get other files.

The client code starts with some includes and declarations. Execution begins
by checking to see if it has been called with the right number of arguments, where
argc = 3 means the program was called with its name plus two arguments. Note
that argv[1] contains the name of the server (e.g., flits.cs.vu.nl) and is converted to
an IP address by gethostbyname. This function uses DNS to look up the name. We
will study DNS in Chap. 7.

Next, a socket is created and initialized. After that, the client attempts to
establish a TCP connection to the server, using connect. If the server is up and
running on the named machine and attached to SERVER PORT and is either idle
or has room in its listen queue, the connection will (eventually) be established.
Using the connection, the client sends the name of the file by writing on the socket.

SEC. 6.1 THE TRANSPORT SERVICE 513

The number of bytes sent is one larger than the name proper, since the 0 byte ter-
minating the name must also be sent to tell the server where the name ends.

Now the client enters a loop, reading the file block by block from the socket
and copying it to standard output. When it is done, it just exits.

The procedure fatal prints an error message and exits. The server needs the
same procedure, but it was omitted due to lack of space on the page. Since the cli-
ent and server are compiled separately and normally run on different computers,
they cannot share the code of fatal.

Just for the record, this server is not the last word in serverdom. Its error
checking is meager and its error reporting is mediocre. Since it handles all re-
quests strictly sequentially (because it has only a single thread), its performance is
poor. It has clearly never heard about security, and using bare UNIX system calls
is not the way to gain platform independence. It also makes some assumptions that
are technically illegal, such as assuming that the file name fits in the buffer and is
transmitted atomically. These shortcomings notwithstanding, it is a working Inter-
net file server. For more information about using sockets, see Donahoo and
Calvert (2008, 2009); and Stevens et al. (2004).

6.2 ELEMENTS OF TRANSPORT PROTOCOLS
The transport service is implemented by a transport protocol used between

the two transport entities. In some ways, transport protocols resemble the data link
protocols we studied in detail in Chap. 3. Both have to deal with error control,
sequencing, and flow control, among other issues.

However, significant differences between the two also exist. These differences
are due to major dissimilarities between the environments in which the two proto-
cols operate, as shown in Fig. 6-7. At the data link layer, two routers communicate
directly via a physical channel, whether wired or wireless, whereas at the transport
layer, this physical channel is replaced by the entire network. This difference has
many important implications for the protocols.

Router Router

Physical
communication channel Host

(a) (b)

Network

Figure 6-7. (a) Environment of the data link layer. (b) Environment of the
transport layer.

For one thing, over point-to-point links such as wires or optical fiber, it is
usually not necessary for a router to specify which router it wants to talk to—each

514 THE TRANSPORT LAYER CHAP. 6

outgoing line leads directly to a particular router. In the transport layer, explicit
addressing of destinations is required.

For another thing, the process of establishing a connection over the wire of
Fig. 6-7(a) is simple: the other end is always there (unless it has crashed, in which
case it is not there). Either way, there is not much to do. Even on wireless links,
the process is not much different. Just sending a message is sufficient to have it
reach all other destinations. If the message is not acknowledged due to an error, it
can be resent. In the transport layer, initial connection establishment is complicat-
ed, as we will see.

Another (exceedingly annoying) difference between the data link layer and the
transport layer is the potential existence of storage capacity in the network. When
a router sends a packet over a link, it may arrive or be lost, but it cannot bounce
around for a while, go into hiding in a far corner of the world, and suddenly
emerge after other packets that were sent much later. If the network uses data-
grams, which are independently routed inside, there is a nonnegligible probability
that a packet may take the scenic route and arrive late and out of the expected
order, or even that duplicates of the packet will arrive. The consequences of the
network’s ability to delay and duplicate packets can sometimes be disastrous and
can require the use of special protocols to correctly transport information.

A final difference between the data link and transport layers is one of degree
rather than of kind. Buffering and flow control are needed in both layers, but the
presence in the transport layer of a large and varying number of connections with
bandwidth that fluctuates as the connections compete with each other may require
a different approach than we used in the data link layer. Some of the protocols dis-
cussed in Chap. 3 allocate a fixed number of buffers to each line, so that when a
frame arrives a buffer is always available. In the transport layer, the larger number
of connections that must be managed and variations in the bandwidth each con-
nection may receive make the idea of dedicating many buffers to each one less
attractive. In the following sections, we will examine all of these important issues,
and others.

6.2.1 Addressing

When an application process wishes to set up a connection to a remote applica-
tion process, it must specify which process on the remote endpoint to connect to.
The method normally used is to define transport addresses to which processes can
listen for connection requests. In the Internet, these endpoints are called ports.
We will use the generic term TSAP (Transport Service Access Point) to mean a
specific endpoint in the transport layer. The analogous endpoints in the network
layer (i.e., network layer addresses) are not-surprisingly called NSAPs (Network
Service Access Points). IP addresses are examples of NSAPs.

Figure 6-8 illustrates the relationship between the NSAPs, the TSAPs, and a
transport connection using them. Application processes, both clients and servers,

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 515

can attach themselves to a local TSAP to establish a connection to a remote TSAP.
These connections run through NSAPs on each host, as shown. The purpose of
having TSAPs is that in some networks, each computer has a single NSAP, so
some way is needed to distinguish multiple transport endpoints that share that
NSAP.

Application
process

Application
layer

Transport
connection

TSAP 1522

TSAP 1208

NSAPNSAP

Transport
layer

Network
layer

Data link
layer

Physical
layer

Server 1
Host 1 Host 2

Server 2

TSAP1836

Figure 6-8. TSAPs, NSAPs, and transport connections.

A possible scenario for a transport connection is as follows:

1. A mail server process attaches itself to TSAP 1522 on host 2 to wait
for an incoming call. How a process attaches itself to a TSAP is out-
side the networking model and depends entirely on the local operating
system. A call such as our LISTEN might be used, for example.

2. An application process on host 1 wants to send an email message, so
it attaches itself to TSAP 1208 and issues a CONNECT request. The
request specifies TSAP 1208 on host 1 as the source and TSAP 1522
on host 2 as the destination. This action ultimately results in a tran-
sport connection being established between the application process
and the server.

3. The application process sends over the mail message.

4. The mail server responds to say that it will deliver the message.

5. The transport connection is released.

516 THE TRANSPORT LAYER CHAP. 6

Note that there may well be other servers on host 2 that are attached to other
TSAPs and are waiting for incoming connections that arrive over the same NSAP.

The picture painted above is fine, except we have swept one little problem
under the rug: how does the user process on host 1 know that the mail server is at-
tached to TSAP 1522? One possibility is that the mail server has been attaching
itself to TSAP 1522 for years and gradually all the network users have learned this.
In this model, services have stable TSAP addresses that are listed in files in well-
known places. For example, the /etc/services file on UNIX systems lists which ser-
vers are permanently attached to which ports, including the fact that the mail server
is found on TCP port 25.

While stable TSAP addresses work for a small number of key services that
never change (e.g., the Web server), user processes, in general, often want to talk to
other user processes that do not have TSAP addresses that are known in advance,
or that may exist for only a short time.

To handle this situation, an alternative scheme can be used. In this scheme,
there exists a special process called a portmapper. To find the TSAP address cor-
responding to a given service name, such as ‘‘BitTorrent,’’ a user sets up a con-
nection to the portmapper (which listens to a well-known TSAP). The user then
sends a message specifying the service name, and the portmapper sends back the
TSAP address. Then the user releases the connection with the portmapper and
establishes a new one with the desired service.

In this model, when a new service is created, it must register itself with the
portmapper, giving both its service name (typically, an ASCII string) and its TSAP.
The portmapper records this information in its internal database so that when
queries come in later, it will know the answers.

The function of the portmapper is analogous to that of a directory assistance
operator in the telephone system—it provides a mapping of names onto numbers.
Just as in the telephone system, it is essential that the address of the well-known
TSAP used by the portmapper is indeed well known. If you do not know the num-
ber of the information operator, you cannot call the information operator to find it
out. If you think the number you dial for information is obvious, try it in a foreign
country sometime.

Many of the server processes that can exist on a machine will be used only
rarely. It is wasteful to have each of them active and listening to a stable TSAP
address all day long. An alternative scheme is shown in Fig. 6-9 in a simplified
form. It is known as the initial connection protocol. Instead of every conceivable
server listening at a well-known TSAP, each machine that wishes to offer services
to remote users has a special process server that acts as a proxy for less heavily
used servers. This server is called inetd on UNIX systems. It listens to a set of
ports at the same time, waiting for a connection request. Potential users of a ser-
vice begin by doing a CONNECT request, specifying the TSAP address of the ser-
vice they want. If no server is waiting for them, they get a connection to the proc-
ess server, as shown in Fig. 6-9(a).

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 517

Layer

4
TSAP

Mail
server

(a) (b)

Host 1 Host 2 Host 1 Host 2

Process
serverUser Process

serverUser

Figure 6-9. How a user process in host 1 establishes a connection with a mail
server in host 2 via a process server.

After it gets the incoming request, the process server spawns the requested ser-
ver, allowing it to inherit the existing connection with the user. The new server
does the requested work, while the process server goes back to listening for new
requests, as shown in Fig. 6-9(b). This method is only applicable when servers can
be created on demand.

6.2.2 Connection Establishment

Establishing a connection sounds easy, but it is actually surprisingly tricky. At
first glance, it would seem sufficient for one transport entity to just send a CON-
NECTION REQUEST segment to the destination and wait for a CONNECTION
ACCEPTED reply. The problem occurs when the network can lose, delay, corrupt,
and duplicate packets. This behavior causes serious complications.

Problem: Delayed and Duplicate Packets

Imagine a network that is so congested that acknowledgements hardly ever get
back in time and each packet times out and is retransmitted two or three or more
times. Suppose that the network uses datagrams inside and that every packet fol-
lows a different route. Some of the packets might get stuck in a traffic jam inside

518 THE TRANSPORT LAYER CHAP. 6

the network and take a long time to arrive. That is, they may be delayed in the net-
work and pop out much later, when the sender thought that they had been lost.

The worst possible nightmare is as follows. A user establishes a connection
with a bank, sends messages telling the bank to transfer a large amount of money
to the account of a not-entirely-trustworthy person. Unfortunately, the packets
decide to take the scenic route to the destination and go off exploring a remote cor-
ner of the network. The sender then times out and sends them all again. This time
the packets take the shortest route and are delivered quickly so the sender releases
the connection.

Unfortunately, eventually the initial batch of packets finally come out of hiding
and arrive at the destination in order, asking the bank to establish a new connection
and transfer money (again). The bank has no way of telling that these are dupli-
cates. It must assume that this is a second, independent transaction, and transfers
the money again.

This scenario may sound unlikely, or even implausible but the point is this:
protocols must be designed to be correct in all cases. Only the common cases need
be implemented efficiently to obtain good network performance, but the protocol
must be able to cope with the uncommon cases without breaking. If it cannot, we
have built a fair-weather network that can fail without warning when the conditions
get tough.

For the remainder of this section, we will study the problem of delayed dupli-
cates, with emphasis on algorithms for establishing connections in a reliable way,
so that nightmares like the one above cannot happen. The crux of the problem is
that the delayed duplicates are thought to be new packets. We cannot prevent pack-
ets from being duplicated and delayed. But if and when this happens, the packets
must be rejected as duplicates and not processed as fresh packets.

The problem can be attacked in various ways, none of them terribly satisfac-
tory. One way is to use throwaway transport addresses. In this approach, each
time a transport address is needed, a brand new one is generated. When a con-
nection is released, the address is discarded and never used again. Delayed dupli-
cate packets then never find their way to a transport process and can do no damage.
However, this approach makes it more difficult to connect with a process in the
first place.

Another option is to give each connection a unique identifier (i.e., a sequence
number incremented for each connection established) chosen by the initiating party
and put in each segment, including the one requesting the connection. After each
connection is released, each transport entity can update a table listing obsolete con-
nections as (peer transport entity, connection identifier) pairs. Whenever a con-
nection request comes in, it can be checked against the table to see if it belongs to a
previously released connection.

Unfortunately, this scheme has a basic flaw: it requires each transport entity to
maintain a certain amount of history information effectively indefinitely. This his-
tory must persist at both the source and destination machines. Otherwise, if a

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 519

machine crashes and loses its memory, it will no longer know which connection
identifiers have already been used by its peers.

Instead, we need to take a different tack to simplify the problem. Rather than
allowing packets to live forever within the network, we devise a mechanism to kill
off aged packets that are still hobbling about. With this restriction, the problem
becomes somewhat more manageable.

Packet lifetime can be restricted to a known maximum using one (or more) of
the following techniques:

1. Restricted network design.

2. Putting a hop counter in each packet.

3. Timestamping each packet.

The first technique includes any method that prevents packets from looping, com-
bined with some way of bounding delay including congestion over the (now
known) longest possible path. It is difficult, given that internets may range from a
single city to international in scope. The second method consists of having the hop
count initialized to some appropriate value and decremented each time the packet
is forwarded. The network protocol simply discards any packet whose hop counter
becomes zero. The third method requires each packet to bear the time it was creat-
ed, with the routers agreeing to discard any packet older than some agreed-upon
time. This latter method requires the router clocks to be synchronized, which itself
is a nontrivial task, and in practice a hop counter is a close enough approximation
to age.

In practice, we will need to guarantee not only that a packet is dead, but also
that all acknowledgements to it are dead, too, so we will now introduce a period T,
which is some small multiple of the true maximum packet lifetime. The maximum
packet lifetime is a conservative constant for a network; for the Internet, it is some-
what arbitrarily taken to be 120 seconds. The multiple is protocol dependent and
simply has the effect of making T longer. If we wait a time T secs after a packet
has been sent, we can be sure that all traces of it are now gone and that neither it
nor its acknowledgements will suddenly appear out of the blue to complicate mat-
ters.

With packet lifetimes bounded, it is possible to devise a practical and foolproof
way to reject delayed duplicate segments. The method described below is due to
Tomlinson (1975), as refined by Sunshine and Dalal (1978). Variants of it are
widely used in practice, including in TCP.

The heart of the method is for the source to label segments with sequence
numbers that will not be reused within T secs. The period, T, and the rate of pack-
ets per second determine the size of the sequence numbers. In this way, only one
packet with a given sequence number may be outstanding at any given time. Dupli-
cates of this packet may still occur, and they must be discarded by the destination.

520 THE TRANSPORT LAYER CHAP. 6

However, it is no longer the case that a delayed duplicate of an old packet may beat
a new packet with the same sequence number and be accepted by the destination in
its stead.

To get around the problem of a machine losing all memory of where it was
after a crash, one possibility is to require transport entities to be idle for T secs
after a recovery. The idle period will let all old segments die off, so the sender can
start again with any sequence number. However, in a complex internetwork, T may
be large, so this strategy is unattractive.

Instead, Tomlinson proposed equipping each host with a time-of-day clock.
The clocks at different hosts need not be synchronized. Each clock is assumed to
take the form of a binary counter that increments itself at uniform intervals. Fur-
thermore, the number of bits in the counter must equal or exceed the number of
bits in the sequence numbers. Last, and most important, the clock is assumed to
continue running even if the host goes down.

When a connection is set up, the low-order k-bits of the clock are used as the
k-bit initial sequence number. Thus, unlike our protocols of Chap. 3, each connec-
tion starts numbering its segments with a different initial sequence number. The
sequence space should be so large that by the time sequence numbers wrap around,
old segments with the same sequence number are long gone. This linear relation
between time and initial sequence numbers is shown in Fig. 6-10(a). The forbid-
den region shows the times for which segment sequence numbers are illegal lead-
ing up to their use. If any segment is sent with a sequence number in this region, it
could be delayed and impersonate a different packet with the same sequence num-
ber that will be issued slightly later. For example, if the host crashes and restarts at
time 70 seconds, it will use initial sequence numbers based on the clock to pick up
after it left off; the host does not start with a lower sequence number in the forbid-
den region.

Once both transport entities have agreed on the initial sequence number, any
sliding window protocol can be used for data flow control. This window protocol
will correctly find and discard duplicates of packets after they have already been
accepted. In reality, the initial sequence number curve (shown by the heavy line) is
not linear, but a staircase, since the clock advances in discrete steps. For simpli-
city, we will ignore this detail.

To keep packet sequence numbers out of the forbidden region, we need to take
care in two respects. We can get into trouble in two distinct ways. If a host sends
too much data too fast on a newly opened connection, the actual sequence number
versus time curve may rise more steeply than the initial sequence number versus
time curve, causing the sequence number to enter the forbidden region. To prevent
this from happening, the maximum data rate on any connection is one segment per
clock tick. This also means that the transport entity must wait until the clock ticks
before opening a new connection after a crash restart, lest the same number be
used twice. Both of these points argue in favor of a short clock tick (1 µsec or
less). However, the clock cannot tick too fast relative to the sequence number. For

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 521

120

80
70
60

0 30 60 90
Time
(a)

Time
(b)

120 150 1800

Se
qu

en
ce

 n
um

be
rs

Se
qu

en
ce

 n
um

be
rs

Restart after
crash with 70

TT

Actual sequence
numbers used

2k–1

Fo
rbi

dd
en

reg
ion

Figure 6-10. (a) Segments may not enter the forbidden region. (b) The resyn-
chronization problem.

a clock rate of C and a sequence number space of size S, we must have S/C > T so
that the sequence numbers cannot wrap around too quickly.

Entering the forbidden region from underneath by sending too fast is not the
only way to get into trouble. From Fig. 6-10(b), we see that at any data rate less
than the clock rate, the curve of actual sequence numbers used versus time will
eventually run into the forbidden region from the left as the sequence numbers
wrap around. The greater the slope of the actual sequence numbers, the longer this
event will be delayed. Avoiding this situation limits how slowly sequence numbers
can advance on a connection (or how long the connections may last).

The clock-based method solves the problem of not being able to distinguish
delayed duplicate segments from new segments. However, there is a practical snag
for using it for establishing connections. Since we do not normally remember
sequence numbers across connections at the destination, we still have no way of
knowing if a CONNECTION REQUEST segment containing an initial sequence
number is a duplicate of a recent connection. This snag does not exist during a con-
nection because the sliding window protocol does remember the current sequence
number.

Solution: Three-Way Handshake

To solve this specific problem, Tomlinson (1975) introduced the three-way
handshake. This establishment protocol involves one peer checking with the other
that the connection request is indeed current. The normal setup procedure when
host 1 initiates is shown in Fig. 6-11(a). Host 1 chooses a sequence number, x, and
sends a CONNECTION REQUEST segment containing it to host 2. Host 2 replies
with an ACK segment acknowledging x and announcing its own initial sequence

522 THE TRANSPORT LAYER CHAP. 6

number, y. Finally, host 1 acknowledges host 2’s choice of an initial sequence
number in the first data segment that it sends.

Ti
m

e

Ti
m

e

Ti
m

e

DATA (seq = x, ACK = y)

ACK (seq = y, ACK = x)

CR (seq = x)

Host 1 Host 2

REJECT (ACK = y)

DATA (seq = x,ACK = z)

ACK (seq = y, ACK = x)

CR (seq = x)

Host 1 Host 2

REJECT (ACK = y)

ACK (seq = y, ACK = x)

CR (seq = x)

Host 1 Host 2
Old duplicate

Old duplicate

Old duplicate

(a) (b)

(c)
Figure 6-11. Three protocol scenarios for establishing a connection using a
three-way handshake. CR denotes CONNECTION REQUEST. (a) Normal opera-
tion. (b) Old duplicate CONNECTION REQUEST appearing out of nowhere.
(c) Duplicate CONNECTION REQUEST and duplicate ACK.

Now let us see how the three-way handshake works in the presence of delayed
duplicate control segments. In Fig. 6-11(b), the first segment is a delayed dupli-
cate CONNECTION REQUEST from an old connection. This segment arrives at
host 2 without host 1’s knowledge. Host 2 reacts to this segment by sending host 1
an ACK segment, in effect asking for verification that host 1 was indeed trying to
set up a new connection. When host 1 rejects host 2’s attempt to establish a con-
nection, host 2 realizes that it was tricked by a delayed duplicate and abandons the
connection. In this way, a delayed duplicate does no damage.

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 523

The worst case is when both a delayed CONNECTION REQUEST and an ACK
are floating around in the subnet. This case is shown in Fig. 6-11(c). As in the
previous example, host 2 gets a delayed CONNECTION REQUEST and replies to it.
At this point, it is crucial to realize that host 2 has proposed using y as the initial
sequence number for host 2 to host 1 traffic, knowing full well that no segments
containing sequence number y or acknowledgements to y are still in existence.
When the second delayed segment finally arrives at host 2, the fact that z has been
acknowledged rather than y tells host 2 that this, too, is an old duplicate. The
important thing to realize here is that there is no combination of old segments that
can cause the protocol to fail and have a connection set up by accident when no
one wants it.

TCP always uses this three-way handshake to establish connections. Within a
connection, a timestamp is used to extend the 32-bit sequence number so that it
will not wrap within the maximum packet lifetime, even for gigabit-per-second
connections. This mechanism is a fix to TCP that was needed as it was used on
faster and faster links. It is described in RFC 1323 and called PAWS (Protection
Against Wrapped Sequence numbers). Across connections, for the initial
sequence numbers and before PAWS can come into play, TCP originally used the
clock-based scheme just described. However, this turned out to have a security
vulnerability. The clock made it easy for an attacker to predict the next initial
sequence number and send packets that tricked the three-way handshake and estab-
lished a forged connection. To close this hole, pseudorandom initial sequence num-
bers are used for connections in practice. However, it remains important that the
initial sequence numbers not repeat for an interval even though they appear random
to an observer. Otherwise, delayed duplicates can wreak havoc.

6.2.3 Connection Release

Releasing a connection is easier than establishing one. Nevertheless, there are
more pitfalls than one might expect here. As we mentioned earlier, there are two
styles of terminating a connection: asymmetric release and symmetric release.
Asymmetric release is the way the telephone system works: when one party hangs
up, the connection is broken. Symmetric release treats the connection as two sepa-
rate unidirectional connections and requires each one to be released separately.

Asymmetric release is abrupt and may result in data loss. Consider the scen-
ario of Fig. 6-12. After the connection is established, host 1 sends a segment that
arrives properly at host 2. Then host 1 sends another segment. Unfortunately, host
2 issues a DISCONNECT before the second segment arrives. The result is that the
connection is released and data are lost.

Clearly, a more sophisticated release protocol is needed to avoid data loss.
One way is to use symmetric release, in which each direction is released indepen-
dently of the other one. Here, a host can continue to receive data even after it has
sent a DISCONNECT segment.

524 THE TRANSPORT LAYER CHAP. 6

Ti
m

e

CR

DATA

DATA

Host 1 Host 2

ACK

DR

No data are
delivered after

a disconnect
request

Figure 6-12. Abrupt disconnection with loss of data.

Symmetric release does the job when each process has a fixed amount of data
to send and clearly knows when it has sent it. In other situations, determining that
all the work has been done and the connection should be terminated is not so ob-
vious. One can envision a protocol in which host 1 says ‘‘I am done. Are you done
too?’’ If host 2 responds: ‘‘I am done too. Goodbye, the connection can be safely
released.’’

Unfortunately, this protocol does not always work. There is a famous problem
that illustrates this issue. It is called the two-army problem. Imagine that a white
army is encamped in a valley, as shown in Fig. 6-13. On both of the surrounding
hillsides are blue armies. The white army is larger than either of the blue armies
alone, but together the blue armies are larger than the white army. If either blue
army attacks by itself, it will be defeated, but if the two blue armies attack simul-
taneously, they will be victorious.

The blue armies want to synchronize their attacks. However, their only com-
munication medium is to send messengers on foot down into the valley, where they
might be captured and the message lost (i.e., they have to use an unreliable com-
munication channel). The question is: does a protocol exist that allows the blue
armies to win?

Suppose that the commander of blue army #1 sends a message reading: ‘‘I pro-
pose we attack at dawn on March 29. How about it?’’ Now suppose that the mes-
sage arrives, the commander of blue army #2 agrees, and his reply gets safely back
to blue army #1. Will the attack happen? Probably not, because commander #2
does not know if his reply got through. If it did not, blue army #1 will not attack,
so it would be foolish for him to charge into battle.

Now let us improve the protocol by making it a three-way handshake. The ini-
tiator of the original proposal must acknowledge the response. Assuming no mes-
sages are lost, blue army #2 will get the acknowledgement, but the commander of

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 525

W

BB

White army

Blue
army

#1

Blue
army
#2

Figure 6-13. The two-army problem.

blue army #1 will now hesitate. After all, he does not know if his acknowledge-
ment got through, and if it did not, he knows that blue army #2 will not attack. We
could now make a four-way handshake protocol, but that does not help either.

In fact, it can be proven that no protocol exists that works. Suppose that some
protocol did exist. Either the last message of the protocol is essential, or it is not.
If it is not, we can remove it (and any other unessential messages) until we are left
with a protocol in which every message is essential. What happens if the final
message does not get through? We just said that it was essential, so if it is lost, the
attack does not take place. Since the sender of the final message can never be sure
of its arrival, he will not risk attacking. Worse yet, the other blue army knows this,
so it will not attack either.

To see the relevance of the two-army problem to releasing connections, rather
than to military affairs, just substitute ‘‘disconnect’’ for ‘‘attack.’’ If neither side is
prepared to disconnect until it is convinced that the other side is prepared to
disconnect too, the disconnection will never happen.

In practice, we can avoid this quandary by foregoing the need for agreement
and pushing the problem up to the transport user, letting each side independently
decide when it is done. This is an easier problem to solve. Figure 6-14 illustrates
four scenarios of releasing using a three-way handshake. While this protocol is not
infallible, it is usually adequate.

In Fig. 6-14(a), we see the normal case in which one of the users sends a DR
(DISCONNECTION REQUEST) segment to initiate the connection release. When it
arrives, the recipient sends back a DR segment and starts a timer, just in case its DR
is lost. When this DR arrives, the original sender sends back an ACK segment and
releases the connection. Finally, when the ACK segment arrives, the receiver also
releases the connection. Releasing a connection means that the transport entity

526 THE TRANSPORT LAYER CHAP. 6

removes the information about the connection from its table of currently open con-
nections and signals the connection’s owner (the transport user) somehow. This
action is different from a transport user issuing a DISCONNECT primitive.

DR

ACK

ACK

Host 1 Host 2

DR

DR

Send DR
+ start timer

Send DR
+ start timer

Send ACK

Release
connection

(Timeout)
release

connection

(Timeout)
release

connection

(N Timeouts)
release

connection

(Timeout)
send DR

+ start timer

Release
connection

DR

DR

Host 1 Host 2

DR

Send DR
+ start timer

Send DR &
start timer

Send DR &
start timer

Send DR &
start timer

Send ACK
Release

connection

Release
connection

DR

ACK

Host 1 Host 2

DR

Send DR
+ start timer

Send DR
+ start timer

Send ACK

Release
connection

Lost

Lost

(Timeout)
send DR

+ start timer

DR

Host 1 Host 2

Send DR
+ start timer

Lost

Lost

(a) (b)

(c) (d)

Figure 6-14. Four protocol scenarios for releasing a connection. (a) Normal
case of three-way handshake. (b) Final ACK lost. (c) Response lost. (d) Re-
sponse lost and subsequent DRs lost.

If the final ACK segment is lost, as shown in Fig. 6-14(b), the situation is saved
by the timer. When the timer expires, the connection is released anyway.

Now consider the case of the second DR being lost. The user initiating the
disconnection will not receive the expected response, will time out, and will start
all over again. In Fig. 6-14(c), we see how this works, assuming that the second
time no segments are lost and all segments are delivered correctly and on time.

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 527

Our last scenario, Fig. 6-14(d), is the same as Fig. 6-14(c) except that now we
assume all the repeated attempts to retransmit the DR also fail due to lost segments.
After N retries, the sender just gives up and releases the connection. Meanwhile,
the receiver times out and also exits.

While this protocol usually suffices, in theory it can fail if the initial DR and N
retransmissions are all lost. The sender will give up and release the connection,
while the other side knows nothing at all about the attempts to disconnect and is
still fully active. This situation results in a half-open connection. That is unac-
ceptable.

We could have avoided this problem by not allowing the sender to give up after
N retries and forcing it to go on forever until it gets a response. However, if the
other side is allowed to time out, the sender will indeed go on forever, because no
response will ever be forthcoming. If we do not allow the receiving side to time
out, the protocol hangs in Fig. 6-14(d).

One way to kill off half-open connections is to have a rule saying that if no
segments have arrived for a certain number of seconds, the connection is automat-
ically disconnected. That way, if one side ever disconnects, the other side will
detect the lack of activity and also disconnect. This rule also takes care of the case
where the connection is broken (because the network can no longer deliver packets
between the hosts) without either end disconnecting first.

Of course, if this rule is introduced, it is necessary for each transport entity to
have a timer that is stopped and then restarted whenever a segment is sent. If this
timer expires, a dummy segment is transmitted, just to keep the other side from
disconnecting. On the other hand, if the automatic disconnect rule is used and too
many dummy segments in a row are lost on an otherwise idle connection, first one
side, then the other will automatically disconnect.

We will not belabor this point any more, but by now it should be clear that
releasing a connection without data loss is not nearly as simple as it first appears.
The lesson here is that the transport user must be involved in deciding when to
disconnect—the problem cannot be cleanly solved by the transport entities them-
selves. To see the importance of the application, consider that while TCP normally
does a symmetric close (with each side independently closing its half of the con-
nection with a FIN packet when it has sent its data), many Web servers send the cli-
ent a RST packet that causes an abrupt close of the connection that is more like an
asymmetric close. This works only because the Web server knows the pattern of
data exchange. First it receives a request from the client, which is all the data the
client will send, and then it sends a response to the client.

When the Web server is finished with its response, all of the data has been sent
in either direction. The server can send the client a warning and abruptly shut the
connection. If the client gets this warning, it will release its connection state then
and there. If the client does not get the warning, it will eventually realize that the
server is no longer talking to it and release the connection state. The data has been
successfully transferred in either case.

528 THE TRANSPORT LAYER CHAP. 6

6.2.4 Error Control and Flow Control

Having examined connection establishment and release in some detail, let us
now look at how connections are managed while they are in use. The key issues
are error control and flow control. Error control is ensuring that the data is deliv-
ered with the desired level of reliability, usually that all of the data is delivered
without any errors. Flow control is keeping a fast transmitter from overrunning a
slow receiver.

Both of these issues have come up before, when we studied the data link layer.
The solutions that are used at the transport layer are the same mechanisms that we
studied in Chap. 3. As a very brief recap:

1. A frame carries an error-detecting code (e.g., a CRC or checksum)
that is used to check if the information was correctly received.

2. A frame carries a sequence number to identify itself and is retrans-
mitted by the sender until it receives an acknowledgement of suc-
cessful receipt from the receiver. This is called ARQ (Automatic
Repeat reQuest).

3. There is a maximum number of frames that the sender will allow to
be outstanding at any time, pausing if the receiver is not acknowledg-
ing frames quickly enough. If this maximum is one packet the proto-
col is called stop-and-wait. Larger windows enable pipelining and
improve performance on long, fast links.

4. The sliding window protocol combines these features and is also
used to support bidirectional data transfer.

Given that these mechanisms are used on frames at the link layer, it is natural
to wonder why they would be used on segments at the transport layer as well.
However, there is little duplication between the link and transport layers in prac-
tice. Even though the same mechanisms are used, there are differences in function
and degree.

For a difference in function, consider error detection. The link layer checksum
protects a frame while it crosses a single link. The transport layer checksum pro-
tects a segment while it crosses an entire network path. It is an end-to-end check,
which is not the same as having a check on every link. Saltzer et al. (1984) de-
scribe a situation in which packets were corrupted inside a router. The link layer
checksums protected the packets only while they traveled across a link, not while
they were inside the router. Thus, packets were delivered incorrectly even though
they were correct according to the checks on every link.

This and other examples led Saltzer et al. to articulate what is called the end-
to-end argument. According to this argument, the transport layer check that runs
end-to-end is essential for correctness, and the link layer checks are not essential

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 529

but nonetheless valuable for improving performance (since without them a cor-
rupted packet can be sent along the entire path unnecessarily).

As a difference in degree, consider retransmissions and the sliding window
protocol. Most wireless links, other than satellite links, can have only a single
frame outstanding from the sender at a time. That is, the bandwidth-delay product
for the link is small enough that not even a whole frame can be stored inside the
link. In this case, a small window size is sufficient for good performance. For
example, 802.11 uses a stop-and-wait protocol, transmitting or retransmitting each
frame and waiting for it to be acknowledged before moving on to the next frame.
Having a window size larger than one frame would add complexity without im-
proving performance. For wired and optical fiber links, such as (switched) Ether-
net or ISP backbones, the error-rate is low enough that link-layer retransmissions
can be omitted because the end-to-end retransmissions will repair the residual
frame loss.

On the other hand, many TCP connections have a bandwidth-delay product
that is much larger than a single segment. Consider a connection sending data
across the U.S. at 1 Mbps with a round-trip time of 200 msec. Even for this slow
connection, 200 Kbit of data will be stored at the receiver in the time it takes to
send a segment and receive an acknowledgement. For these situations, a large slid-
ing window must be used. Stop-and-wait will cripple performance. In our example
it would limit performance to one segment every 200 msec, or 5 segments/sec no
matter how fast the network really is.

Given that transport protocols generally use larger sliding windows, we will
look at the issue of buffering data more carefully. Since a host may have many
connections, each of which is treated separately, it may need a substantial amount
of buffering for the sliding windows. The buffers are needed at both the sender and
the receiver. Certainly they are needed at the sender to hold all transmitted but as
yet unacknowledged segments. They are needed there because these segments may
be lost and need to be retransmitted.

However, since the sender is buffering, the receiver may or may not dedicate
specific buffers to specific connections, as it sees fit. The receiver may, for ex-
ample, maintain a single buffer pool shared by all connections. When a segment
comes in, an attempt is made to dynamically acquire a new buffer. If one is avail-
able, the segment is accepted; otherwise, it is discarded. Since the sender is pre-
pared to retransmit segments lost by the network, no permanent harm is done by
having the receiver drop segments, although some resources are wasted. The send-
er just keeps trying until it gets an acknowledgement.

The best trade-off between source buffering and destination buffering depends
on the type of traffic carried by the connection. For low-bandwidth bursty traffic,
such as that produced by a user typing at a remote computer, it is reasonable not to
dedicate any buffers, but rather to acquire them dynamically at both ends, relying
on buffering at the sender if segments must occasionally be discarded. On the
other hand, for file transfer and most other high-bandwidth traffic, it is better if the

530 THE TRANSPORT LAYER CHAP. 6

receiver does dedicate a full window of buffers, to allow the data to flow at maxi-
mum speed. This is the strategy that TCP uses.

There still remains the question of how to organize the buffer pool. If most
segments are nearly the same size, it is natural to organize the buffers as a pool of
identically sized buffers, with one segment per buffer, as in Fig. 6-15(a). However,
if there is wide variation in segment size, from short requests for Web pages to
large packets in peer-to-peer file transfers, a pool of fixed-sized buffers presents
problems. If the buffer size is chosen to be equal to the largest possible segment,
space will be wasted whenever a short segment arrives. If the buffer size is chosen
to be less than the maximum segment size, multiple buffers will be needed for long
segments, with the attendant complexity.

Segment 1

Segment 2

Segment 3

Segment 4
(a) (b)

(c)

Unused
space

Figure 6-15. (a) Chained fixed-size buffers. (b) Chained variable-sized buffers.
(c) One large circular buffer per connection.

Another approach to the buffer size problem is to use variable-sized buffers, as
in Fig. 6-15(b). The advantage here is better memory utilization, at the price of
more complicated buffer management. A third possibility is to dedicate a single
large circular buffer per connection, as in Fig. 6-15(c). This system is simple and
elegant and does not depend on segment sizes, but makes good use of memory
only when the connections are heavily loaded.

As connections are opened and closed and as the traffic pattern changes, the
sender and receiver need to dynamically adjust their buffer allocations. Conse-
quently, the transport protocol should allow a sending host to request buffer space
at the other end. Buffers could be allocated per connection, or collectively, for all
connections running between the two hosts. Alternatively, the receiver, knowing

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 531

its buffer situation (but not knowing the offered traffic) could tell the sender ‘‘I
have reserved X buffers for you.’’ If the number of open connections should
increase, it may be necessary for an allocation to be reduced, so the protocol
should provide for this possibility.

A reasonably general way to manage dynamic buffer allocation is to decouple
the buffering from the acknowledgements, in contrast to the sliding window proto-
cols of Chap. 3. Dynamic buffer management means, in effect, a variable-sized
window. Initially, the sender requests a certain number of buffers, based on its ex-
pected needs. The receiver then grants as many of these as it can afford. Every
time the sender transmits a segment, it must decrement its allocation, stopping alto-
gether when the allocation reaches zero. The receiver separately piggybacks both
acknowledgements and buffer allocations onto the reverse traffic. TCP uses this
scheme, carrying buffer allocations in a header field called Window size.

Figure 6-16 has an example of how dynamic window management might work
in a datagram network with 4-bit sequence numbers. In this example, data flows in
segments from host A to host B and acknowledgements and buffer allocations flow
in segments in the reverse direction. Initially, A wants eight buffers, but it is grant-
ed only four of these. It then sends three segments, of which the third is lost. Seg-
ment 6 acknowledges receipt of all segments up to and including sequence number
1, thus allowing A to release those buffers, and furthermore informs A that it has
permission to send three more segments starting beyond 1 (i.e., segments 2, 3, and
4). A knows that it has already sent number 2, so it thinks that it may send seg-
ments 3 and 4, which it proceeds to do. At this point it is blocked and must wait
for more buffer allocation. Timeout-induced retransmissions (line 9), however,
may occur while blocked, since they use buffers that have already been allocated.
In line 10, B acknowledges receipt of all segments up to and including 4 but re-
fuses to let A continue. Such a situation is impossible with the fixed-window pro-
tocols of Chap. 3. The next segment from B to A allocates another buffer and al-
lows A to continue. This will happen when B has buffer space, likely because the
transport user has accepted more segment data.

Problems with buffer allocation schemes of this kind can arise in datagram net-
works if control segments can get lost—which they most certainly can. Look at
line 16. B has now allocated more buffers to A, but the allocation segment was
lost. Oops. Since control segments are not sequenced or timed out, A is now dead-
locked. To prevent this situation, each host should periodically send control seg-
ments giving the acknowledgement and buffer status on each connection. That
way, the deadlock will be broken, sooner or later.

Until now we have assumed that the only limit imposed on the sender’s data
rate is the amount of buffer space available in the receiver. This is often not the
case. Memory was once expensive but prices have fallen dramatically. Hosts may
be equipped with sufficient memory that the lack of buffers is rarely a problem,
even for wide area connections. Of course, this depends on the buffer size being set
to be large enough, which is not always the case for TCP (Zhang et al., 2002).

532 THE TRANSPORT LAYER CHAP. 6

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

< request 8 buffers>
<ack = 15, buf = 4>
<seq = 0, data = m0>
<seq = 1, data = m1>
<seq = 2, data = m2>
<ack = 1, buf = 3>
<seq = 3, data = m3>
<seq = 4, data = m4>
<seq = 2, data = m2>
<ack = 4, buf = 0>
<ack = 4, buf = 1>
<ack = 4, buf = 2>
<seq = 5, data = m5>
<seq = 6, data = m6>
<ack = 6, buf = 0>
<ack = 6, buf = 4>

A wants 8 buffers
B grants messages 0-3 only
A has 3 buffers left now
A has 2 buffers left now
Message lost but A thinks it has 1 left
B acknowledges 0 and 1, permits 2-4
A has 1 buffer left
A has 0 buffers left, and must stop
A times out and retransmits
Everything acknowledged, but A still blocked
A may now send 5
B found a new buffer somewhere
A has 1 buffer left
A is now blocked again
A is still blocked
Potential deadlock

A BMessage Comments

Figure 6-16. Dynamic buffer allocation. The arrows show the direction of trans-
mission. An ellipsis (...) indicates a lost segment.

When buffer space no longer limits the maximum flow, another bottleneck will
appear: the carrying capacity of the network. If adjacent routers can exchange at
most x packets/sec and there are k disjoint paths between a pair of hosts, there is no
way that those hosts can exchange more than kx segments/sec, no matter how much
buffer space is available at each end. If the sender pushes too hard (i.e., sends
more than kx segments/sec), the network will become congested because it will be
unable to deliver segments as fast as they are coming in.

What is needed is a mechanism that limits transmissions from the sender based
on the network’s carrying capacity rather than on the receiver’s buffering capacity.
Belsnes (1975) proposed using a sliding window flow-control scheme in which the
sender dynamically adjusts the window size to match the network’s carrying capac-
ity.

This means that a dynamic sliding window can implement both flow control
and congestion control. If the network can handle c segments/sec and the round-
trip time (including transmission, propagation, queueing, processing at the re-
ceiver, and return of the acknowledgement) is r, the sender’s window should be cr.
With a window of this size, the sender normally operates with the pipeline full.
Any small decrease in network performance will cause it to block. Since the net-
work capacity available to any given flow varies over time, the window size should
be adjusted frequently, to track changes in the carrying capacity. As we will see
later, TCP uses a similar scheme.

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 533

6.2.5 Multiplexing

Multiplexing, or sharing several conversations over connections, virtual cir-
cuits, and physical links plays a role in several layers of the network architecture.
In the transport layer, the need for multiplexing can arise in a number of ways. For
example, if only one network address is available on a host, all transport con-
nections on that machine have to use it. When a segment comes in, some way is
needed to tell which process to give it to. This situation, called multiplexing, is
shown in Fig. 6-17(a). In this figure, four distinct transport connections all use the
same network connection (e.g., IP address) to the remote host.

Layer

4

3

2

1

To router

Router lines

Transport address

Network
address

(a) (b)

Figure 6-17. (a) Multiplexing. (b) Inverse multiplexing.

Multiplexing can also be useful in the transport layer for another reason. Sup-
pose, for example, that a host has multiple network paths that it can use. If a user
needs more bandwidth or more reliability than one of the network paths can pro-
vide, a way out is to have a connection that distributes the traffic among multiple
network paths on a round-robin basis, as indicated in Fig. 6-17(b). This modus
operandi is called inverse multiplexing. With k network connections open, the ef-
fective bandwidth might be increased by a factor of k. An example of inverse mul-
tiplexing is SCTP which can run a connection using multiple network interfaces. In
contrast, TCP uses a single network endpoint. Inverse multiplexing is also found
at the link layer, when several low-rate links are used in parallel as one fast link.

6.2.6 Crash Recovery

If hosts and routers are subject to crashes or connections are long-lived (e.g.,
large software or media downloads), recovery from these crashes becomes an
issue. If the transport entity is entirely within the hosts, recovery from network

534 THE TRANSPORT LAYER CHAP. 6

and router crashes is straightforward. The transport entities expect lost segments
all the time and know how to cope with them by using retransmissions.

A more troublesome problem is how to recover from host crashes. In particu-
lar, it may be desirable for clients to be able to continue working when servers
crash and quickly reboot. To illustrate the difficulty, let us assume that one host,
the client, is sending a long file to another host, the file server, using a simple stop-
and-wait protocol. The transport layer on the server just passes the incoming seg-
ments to the transport user, one by one. Partway through the transmission, the ser-
ver crashes. When it comes back up, its tables are reinitialized, so it no longer
knows precisely where it was.

In an attempt to recover its previous status, the server might send a broadcast
segment to all other hosts, announcing that it has just crashed and requesting that
its clients inform it of the status of all open connections. Each client can be in one
of two states: one segment outstanding, S1, or no segments outstanding, S0. Based
on only this state information, the client must decide whether to retransmit the
most recent segment.

At first glance, it would seem obvious: the client should retransmit if and only
if it has an unacknowledged segment outstanding (i.e., is in state S1) when it learns
of the crash. However, a closer inspection reveals difficulties with this naive
approach. Consider, for example, the situation in which the server’s transport enti-
ty first sends an acknowledgement and then, when the acknowledgement has been
sent, writes to the application process. Writing a segment onto the output stream
and sending an acknowledgement are two distinct events that cannot be done
simultaneously. If a crash occurs after the acknowledgement has been sent but be-
fore the write has been fully completed, the client will receive the acknowledge-
ment and thus be in state S0 when the crash recovery announcement arrives. The
client will therefore not retransmit, (incorrectly) thinking that the segment has arri-
ved. This decision by the client leads to a missing segment.

At this point you may be thinking: ‘‘That problem can be solved easily. All
you have to do is reprogram the transport entity to first do the write and then send
the acknowledgement.’’ Try again. Imagine that the write has been done but the
crash occurs before the acknowledgement can be sent. The client will be in state
S1 and thus retransmit, leading to an undetected duplicate segment in the output
stream to the server application process.

No matter how the client and server are programmed, there are always situa-
tions where the protocol fails to recover properly. The server can be programmed
in one of two ways: acknowledge first or write first. The client can be pro-
grammed in one of four ways: always retransmit the last segment, never retransmit
the last segment, retransmit only in state S0, or retransmit only in state S1. This
gives eight combinations, but as we shall see, for each combination there is some
set of events that makes the protocol fail.

Three events are possible at the server: sending an acknowledgement (A), writ-
ing to the output process (W), and crashing (C). The three events can occur in six

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 535

different orderings: AC(W), AWC, C (AW), C(WA), WAC, and WC(A), where the
parentheses are used to indicate that neither A nor W can follow C (i.e., once it has
crashed, it has crashed). Figure 6-18 shows all eight combinations of client and
server strategies and the valid event sequences for each one. Notice that for each
strategy there is some sequence of events that causes the protocol to fail. For ex-
ample, if the client always retransmits, the AWC event will generate an undetected
duplicate, even though the other two events work properly.

Always retransmit OK DUP OK

LOST OK LOST

OK DUP LOST

LOST OK OK

Never retransmit

Retransmit in S0

Retransmit in S1

AC(W)
Strategy used by

sending host AWC

First ACK, then write First write, then ACK

C(AW)

OK DUP DUP

LOST OK OK

LOST DUP OK

OK OK DUP

C(WA) W AC WC(A)

OK = Protocol functions correctly
DUP = Protocol generates a duplicate message
LOST = Protocol loses a message

Strategy used by receiving host

Figure 6-18. Different combinations of client and server strategies.

Making the protocol more elaborate does not help. Even if the client and ser-
ver exchange several segments before the server attempts to write, so that the client
knows exactly what is about to happen, the client has no way of knowing whether a
crash occurred just before or just after the write. The conclusion is inescapable:
under our ground rules of no simultaneous events—that is, separate events happen
one after another not at the same time—host crash and recovery cannot be made
transparent to higher layers.

Put in more general terms, this result can be restated as ‘‘recovery from a layer
N crash can only be done by layer N + 1,’’ and then only if the higher layer retains
enough status information to reconstruct where it was before the problem occurred.
This is consistent with the case mentioned above that the transport layer can
recover from failures in the network layer, provided that each end of a connection
keeps track of where it is.

This problem gets us into the issue of what a so-called end-to-end acknowl-
edgement really means. In principle, the transport protocol is end-to-end and not
chained like the lower layers. Now consider the case of a user entering requests for
transactions against a remote database. Suppose that the remote transport entity is
programmed to first pass segments to the next layer up and then acknowledge.

536 THE TRANSPORT LAYER CHAP. 6

Even in this case, the receipt of an acknowledgement back at the user’s machine
does not necessarily mean that the remote host stayed up long enough to actually
update the database. A truly end-to-end acknowledgement, whose receipt means
that the work has actually been done and lack thereof means that it has not, is prob-
ably impossible to achieve. This point is discussed in more detail by Saltzer et al.
(1984).

6.3 CONGESTION CONTROL

If the transport entities on many machines send too many packets into the net-
work too quickly, the network will become congested, with performance degraded
as packets are delayed and lost. Controlling congestion to avoid this problem is the
combined responsibility of the network and transport layers. Congestion occurs at
routers, so it is detected at the network layer. However, congestion is ultimately
caused by traffic sent into the network by the transport layer. The only effective
way to control congestion is for the transport protocols to send packets into the net-
work more slowly.

In Chap. 5, we studied congestion control mechanisms in the network layer. In
this section, we will study the other half of the problem, congestion control mech-
anisms in the transport layer. After describing the goals of congestion control, we
will describe how hosts can regulate the rate at which they send packets into the
network. The Internet relies heavily on the transport layer for congestion control,
and specific algorithms are built into TCP and other protocols.

6.3.1 Desirable Bandwidth Allocation

Before we describe how to regulate traffic, we must understand what we are
trying to achieve by running a congestion control algorithm. That is, we must spec-
ify the state in which a good congestion control algorithm will operate the network.
The goal is more than to simply avoid congestion. It is to find a good allocation of
bandwidth to the transport entities that are using the network. A good allocation
will deliver good performance because it uses all the available bandwidth but
avoids congestion, it will be fair across competing transport entities, and it will
quickly track changes in traffic demands. We will make each of these criteria more
precise in turn.

Efficiency and Power

An efficient allocation of bandwidth across transport entities will use all of the
network capacity that is available. However, it is not quite right to think that if
there is a 100-Mbps link, five transport entities should get 20 Mbps each. They
should usually get less than 20 Mbps for good performance. The reason is that the

SEC. 6.3 CONGESTION CONTROL 537

traffic is often bursty. Recall that in Sec. 5.3 we described the goodput (or rate of
useful packets arriving at the receiver) as a function of the offered load. This curve
and a matching curve for the delay as a function of the offered load are given in
Fig. 6-19.

Capacity

(a)
Offered load (packets/sec)

Congestion
collapse

Offered load (packets/sec)

G
oo

dp
ut

 (p
ac

ke
ts

/s
ec

)

Desired
response

D
el

ay
 (s

ec
on

ds
)

(b)

Onset of
congestion

Figure 6-19. (a) Goodput and (b) delay as a function of offered load.

As the load increases in Fig. 6-19(a) goodput initially increases at the same
rate, but as the load approaches the capacity, goodput rises more gradually. This
falloff is because bursts of traffic can occasionally mount up and cause some losses
at buffers inside the network. If the transport protocol is poorly designed and
retransmits packets that have been delayed but not lost, the network can enter con-
gestion collapse. In this state, senders are furiously sending packets, but increas-
ingly little useful work is being accomplished.

The corresponding delay is given in Fig. 6-19(b) Initially the delay is fixed,
representing the propagation delay across the network. As the load approaches the
capacity, the delay rises, slowly at first and then much more rapidly. This is again
because of bursts of traffic that tend to mound up at high load. The delay cannot
really go to infinity, except in a model in which the routers have infinite buffers.
Instead, packets will be lost after experiencing the maximum buffering delay.

For both goodput and delay, performance begins to degrade at the onset of con-
gestion. Intuitively, we will obtain the best performance from the network if we
allocate bandwidth up until the delay starts to climb rapidly. This point is below the
capacity. To identify it, Kleinrock (1979) proposed the metric of power, where

power =
load
delay

Power will initially rise with offered load, as delay remains small and roughly con-
stant, but will reach a maximum and fall as delay grows rapidly. The load with the
highest power represents an efficient load for the transport entity to place on the
network. The network should try to stay close it as best it can.

538 THE TRANSPORT LAYER CHAP. 6

Max-Min Fairness

In the discussion above, we did not talk about how to divide bandwidth be-
tween different transport senders. This sounds like a simple question—give all the
senders an equal fraction of the bandwidth—but it is more complicated than that.

Perhaps the first consideration is to ask what this problem has to do with con-
gestion control. After all, if the network gives a sender some amount of bandwidth
to use, the sender should just use that much bandwidth. However, it is often the
case that networks do not have a strict bandwidth reservation for each flow or con-
nection. They may for some flows if quality of service is supported, but many con-
nections will seek to use whatever bandwidth is available or be lumped together by
the network under a common allocation. For example, IETF’s differentiated ser-
vices separates traffic into two classes and connections compete for bandwidth
within each class. IP routers often have all connections competing for the same
bandwidth. In this situation, it is the congestion control mechanism that is allocat-
ing bandwidth to the competing connections.

A second consideration is what a fair portion means for flows in a network. It
is simple enough if N flows use a single link, in which case they can all have 1/N
of the bandwidth (although efficiency will dictate that they use slightly less if the
traffic is bursty). But what happens if the flows have different, but overlapping,
network paths? For example, one flow may cross three links, and the other flows
may cross one link. The three-link flow consumes more network resources. It
might be fairer in some sense to give it less bandwidth than the one-link flows. It
should certainly be possible to support more one-link flows by reducing the band-
width of the three-link flow. This point demonstrates an inherent tension between
fairness and efficiency.

However, we will adopt a notion of fairness that does not depend on the length
of the network path. Even with this simple model, giving connections an equal
fraction of bandwidth is a bit complicated because different connections will take
different paths through the network and these paths will themselves have different
capacities. In this case, it is possible for a flow to be bottlenecked on a downstream
link and take a smaller portion of an upstream link than other flows; reducing the
bandwidth of the other flows would slow them down but would not help the bottle-
necked flow at all.

The form of fairness that is often desired for network usage is max-min fair-
ness. An allocation is max-min fair if the bandwidth given to one flow cannot be
increased without decreasing the bandwidth given to another flow with an alloca-
tion that is no larger. That is, increasing the bandwidth of a flow will only make the
situation worse for flows that are less well off.

Let us see an example. A max-min fair allocation is shown for a network with
four flows, A, B, C, and D, in Fig. 6-20. Each of the links between routers has the
same capacity, taken to be 1 unit, though in the general case the links will have dif-
ferent capacities. Three flows compete for the bottom-left link between routers R4

SEC. 6.3 CONGESTION CONTROL 539

and R5. Each of these flows therefore gets 1/3 of the link. The remaining flow, A,
competes with B on the link from R2 to R3. Since B has an allocation of 1/3, A
gets the remaining 2/3 of the link. Notice that all of the other links have spare
capacity. However, this capacity cannot be given to any of the flows without
decreasing the capacity of another, lower flow. For example, if more of the band-
width on the link between R2 and R3 is given to flow B, there will be less for flow
A. This is reasonable as flow A already has more bandwidth. However, the capac-
ity of flow C or D (or both) must be decreased to give more bandwidth to B, and
these flows will have less bandwidth than B. Thus, the allocation is max-min fair.

1/3

R1 R2

D

C

B

A

1/3

2/3

1/3

1/3

1/31/3

D

C

B

A

R4

R3

R6R5

2/3

1/3

Figure 6-20. Max-min bandwidth allocation for four flows.

Max-min allocations can be computed given a global knowledge of the net-
work. An intuitive way to think about them is to imagine that the rate for all of the
flows starts at zero and is slowly increased. When the rate reaches a bottleneck for
any flow, that flow stops increasing. The other flows continue to increase, sharing
equally in the available capacity, until they too reach their respective bottlenecks.

A third consideration is the level over which to consider fairness. A network
could be fair at the level of connections, connections between a pair of hosts, or all
connections per host. We examined this issue when we were discussing WFQ
(Weighted Fair Queueing) in Sec. 5.4 and concluded that each of these definitions
has its problems. For example, defining fairness per host means that a busy server
will fare no better than a mobile phone, while defining fairness per connection
encourages hosts to open more connections. Given that there is no clear answer,
fairness is often considered per connection, but precise fairness is usually not a
concern. It is more important in practice that no connection be starved of band-
width than that all connections get precisely the same amount of bandwidth. In
fact, with TCP it is possible to open multiple connections and compete for band-
width more aggressively. This tactic is used by bandwidth-hungry applications
such as BitTorrent for peer-to-peer file sharing.

Convergence

A final criterion is that the congestion control algorithm converge quickly to a
fair and efficient allocation of bandwidth. The discussion of the desirable operat-
ing point above assumes a static network environment. However, connections are

540 THE TRANSPORT LAYER CHAP. 6

always coming and going in a network, and the bandwidth needed by a given con-
nection will vary over time too, for example, as a user browses Web pages and
occasionally downloads large videos.

Because of the variation in demand, the ideal operating point for the network
varies over time. A good congestion control algorithm should rapidly converge to
the ideal operating point, and it should track that point as it changes over time. If
the convergence is too slow, the algorithm will never be close to the changing oper-
ating point. If the algorithm is not stable, it may fail to converge to the right point
in some cases, or even oscillate around the right point.

An example of a bandwidth allocation that changes over time and converges
quickly is shown in Fig. 6-21. Initially, flow 1 has all of the bandwidth. One sec-
ond later, flow 2 starts. It needs bandwidth as well. The allocation quickly changes
to give each of these flows half the bandwidth. At 4 seconds, a third flow joins.
However, this flow uses only 20% of the bandwidth, which is less than its fair
share (which is a third). Flows 1 and 2 quickly adjust, dividing the available band-
width to each have 40% of the bandwidth. At 9 seconds, the second flow leaves,
and the third flow remains unchanged. The first flow quickly captures 80% of the
bandwidth. At all times, the total allocated bandwidth is approximately 100%, so
that the network is fully used, and competing flows get equal treatment (but do not
have to use more bandwidth than they need).

Flow 1

0.5

Time (secs)

Ba
nd

w
id

th
 a

llo
ca

tio
n

0

1

1 4 9

Flow 3 Flow 2 stops
Flow 2 starts

Figure 6-21. Changing bandwidth allocation over time.

6.3.2 Regulating the Sending Rate

Now it is time for the main course. How do we regulate the sending rates to
obtain a desirable bandwidth allocation? The sending rate may be limited by two
factors. The first is flow control, in the case that there is insufficient buffering at
the receiving end. The second is congestion, in the case that there is insufficient
capacity in the network. In Fig. 6-22, we see this problem illustrated hydraulically.

SEC. 6.3 CONGESTION CONTROL 541

In Fig. 6-22(a), we see a thick pipe leading to a small-capacity receiver. This is a
flow-control limited situation. As long as the sender does not send more water
than the bucket can contain, no water will be lost. In Fig. 6-22(b), the limiting fac-
tor is not the bucket capacity, but the internal carrying capacity of the network. If
too much water comes in too fast, it will back up and some will be lost (in this
case, by overflowing the funnel).

Transmission
rate adjustment

Transmission
network Internal

congestion

Small-capacity
receiver

Large-capacity
receiver

(a) (b)

Figure 6-22. (a) A fast network feeding a low-capacity receiver. (b) A slow net-
work feeding a high-capacity receiver.

These cases may appear similar to the sender, as transmitting too fast causes
packets to be lost. However, they have different causes and call for different solu-
tions. We have already talked about a flow-control solution with a variable-sized
window. Now we will consider a congestion control solution. Since either of these
problems can occur, the transport protocol will in general need to run both solu-
tions and slow down if either problem occurs.

The way that a transport protocol should regulate the sending rate depends on
the form of the feedback returned by the network. Different network layers may
return different kinds of feedback. The feedback may be explicit or implicit, and it
may be precise or imprecise.

542 THE TRANSPORT LAYER CHAP. 6

An example of an explicit, precise design is when routers tell the sources the
rate at which they may send. Designs in the literature such as XCP (eXplicit Con-
gestion Protocol) operate in this manner (Katabi et al., 2002). An explicit, impre-
cise design is the use of ECN (Explicit Congestion Notification) with TCP. In this
design, routers set bits on packets that experience congestion to warn the senders to
slow down, but they do not tell them how much to slow down.

In other designs, there is no explicit signal. FAST TCP measures the round-
trip delay and uses that metric as a signal to avoid congestion (Wei et al., 2006).
Finally, in the form of congestion control most prevalent in the Internet today, TCP
with drop-tail or RED routers, packet loss is inferred and used to signal that the
network has become congested. There are many variants of this form of TCP, in-
cluding TCP CUBIC, which is used in Linux (Ha et al., 2008). Combinations are
also possible. For example, Windows includes Compound TCP that uses both
packet loss and delay as feedback signals (Tan et al., 2006). These designs are
summarized in Fig. 6-23.

Protocol Signal Explicit? Precise?
XCP Rate to use Yes Yes
TCP with ECN Congestion warning Yes No
FAST TCP End-to-end delay No Yes
Compound TCP Packet loss & end-to-end delay No Yes
CUBIC TCP Packet loss No No
TCP Packet loss No No

Figure 6-23. Signals of some congestion control protocols.

If an explicit and precise signal is given, the transport entity can use that signal
to adjust its rate to the new operating point. For example, if XCP tells senders the
rate to use, the senders may simply use that rate. In the other cases, however, some
guesswork is involved. In the absence of a congestion signal, the senders should
increase their rates. When a congestion signal is given, the senders should decrease
their rates. The way in which the rates are increased or decreased is given by a
control law. These laws have a major effect on performance.

Chiu and Jain (1989) studied the case of binary congestion feedback and con-
cluded that AIMD (Additive Increase Multiplicative Decrease) is the appropriate
control law to arrive at the efficient and fair operating point. To argue this case,
they constructed a graphical argument for the simple case of two connections com-
peting for the bandwidth of a single link. The graph in Fig. 6-24 shows the band-
width allocated to user 1 on the x-axis and to user 2 on the y-axis. When the
allocation is completely fair, both users will receive the same amount of band-
width. This is shown by the dotted fairness line. When the allocations sum to
100%, the capacity of the link, the allocation is efficient. This is shown by the dot-
ted efficiency line. A congestion signal is given by the network to both users when

SEC. 6.3 CONGESTION CONTROL 543

the sum of their allocations crosses this line. The intersection of these lines is the
desired operating point, when both users have the same bandwidth and all of the
network bandwidth is used.

Additive increase
and decrease

User 1’s bandwidth

Fairness line

Efficiency line

Optimal point

U
se

r 2
’s

 b
an

dw
id

th

0

Multiplicative increase
and decrease

100%

100%

Figure 6-24. Additive and multiplicative bandwidth adjustments.

Consider what happens from some starting allocation if both user 1 and user 2
additively increase their respective bandwidths over time. For example, the users
may each increase their sending rate by 1 Mbps every second. Eventually, the oper-
ating point crosses the efficiency line and both users receive a congestion signal
from the network. At this stage, they must reduce their allocations. However, an
additive decrease would simply cause them to oscillate along an additive line. This
situation is shown in Fig. 6-24. The behavior will keep the operating point close to
efficient, but it will not necessarily be fair.

Similarly, consider the case when both users multiplicatively increase their
bandwidth over time until they receive a congestion signal. For example, the users
may increase their sending rate by 10% every second. If they then multiplicatively
decrease their sending rates, the operating point of the users will simply oscillate
along a multiplicative line. This behavior is also shown in Fig. 6-24. The multi-
plicative line has a different slope than the additive line. (It points to the origin,
while the additive line has an angle of 45 degrees.) But it is otherwise no better. In
neither case will the users converge to the optimal sending rates that are both fair
and efficient.

Now consider the case that the users additively increase their bandwidth allo-
cations and then multiplicatively decrease them when congestion is signaled. This
behavior is the AIMD control law, and it is shown in Fig. 6-25. It can be seen that
the path traced by this behavior does converge to the optimal point that is both fair
and efficient. This convergence happens no matter what the starting point, making
AIMD broadly useful. By the same argument, the only other combination, multi-
plicative increase and additive decrease, would diverge from the optimal point.

AIMD is the control law that is used by TCP, based on this argument and an-
other stability argument (that it is easy to drive the network into congestion and

544 THE TRANSPORT LAYER CHAP. 6

Start

User 1’s bandwidth 100%

Fairness line

Efficiency line

Optimal point

U
se

r 2
’s

ba
nd

w
id

th
= Additive increase

(up at 45)

= Multiplicative decrease
(line points to origin)

Legend:
100%

0
0

Figure 6-25. Additive Increase Multiplicative Decrease (AIMD) control law.

difficult to recover, so the increase policy should be gentle and the decrease policy
aggressive). It is not quite fair, since TCP connections adjust their window size by
a given amount every round-trip time. Different connections will have different
round-trip times. This leads to a bias in which connections to closer hosts receive
more bandwidth than connections to distant hosts, all else being equal.

In Sec. 6.5, we will describe in detail how TCP implements an AIMD control
law to adjust the sending rate and provide congestion control. This task is more
difficult than it sounds because rates are measured over some interval and traffic is
bursty. Instead of adjusting the rate directly, a strategy that is often used in practice
is to adjust the size of a sliding window. TCP uses this strategy. If the window size
is W and the round-trip time is RTT , the equivalent rate is W /RTT . This strategy is
easy to combine with flow control, which already uses a window, and has the ad-
vantage that the sender paces packets using acknowledgements and hence slows
down in one RTT if it stops receiving reports that packets are leaving the network.

As a final issue, there may be many different transport protocols that send traf-
fic into the network. What will happen if the different protocols compete with dif-
ferent control laws to avoid congestion? Unequal bandwidth allocations, that is
what. Since TCP is the dominant form of congestion control in the Internet, there
is significant community pressure for new transport protocols to be designed so
that they compete fairly with it. The early streaming media protocols caused prob-
lems by excessively reducing TCP throughput because they did not compete fairly.
This led to the notion of TCP-friendly congestion control in which TCP and non-
TCP transport protocols can be freely mixed with no ill effects (Floyd et al., 2000).

6.3.3 Wireless Issues

Transport protocols such as TCP that implement congestion control should be
independent of the underlying network and link layer technologies. That is a good
theory, but in practice there are issues with wireless networks. The main issue is
that packet loss is often used as a congestion signal, including by TCP as we have

SEC. 6.3 CONGESTION CONTROL 545

just discussed. Wireless networks lose packets all the time due to transmission er-
rors. They just are not as reliable as wired networks.

With the AIMD control law, high throughput requires very small levels of
packet loss. Analyses by Padhye et al. (1998) show that the throughput goes up as
the inverse square root of the packet loss rate. What this means in practice is that
the loss rate for fast TCP connections is very small; 1% is a moderate loss rate, and
by the time the loss rate reaches 10% the connection has effectively stopped work-
ing. However, for wireless networks such as 802.11 LANs, frame loss rates of at
least 10% are common. This difference means that, absent protective measures,
congestion control schemes that use packet loss as a signal will unnecessarily
throttle connections that run over wireless links to very low rates.

To function well, the only packet losses that the congestion control algorithm
should observe are losses due to insufficient bandwidth, not losses due to transmis-
sion errors. One solution to this problem is to mask the wireless losses by using re-
transmissions over the wireless link. For example, 802.11 uses a stop-and-wait pro-
tocol to deliver each frame, retrying transmissions multiple times if need be before
reporting a packet loss to the higher layer. In the normal case, each packet is deliv-
ered despite transient transmission errors that are not visible to the higher layers.

Fig. 6-26 shows a path with a wired and wireless link for which the masking
strategy is used. There are two aspects to note. First, the sender does not necessar-
ily know that the path includes a wireless link, since all it sees is the wired link to
which it is attached. Internet paths are heterogeneous and there is no general meth-
od for the sender to tell what kind of links comprise the path. This complicates the
congestion control problem, as there is no easy way to use one protocol for wire-
less links and another protocol for wired links.

Wired link

Sender Receiver

Transport with end-to-end congestion control (loss = congestion)

Link layer retransmission
(loss = transmission error)

Wireless link

Figure 6-26. Congestion control over a path with a wireless link.

The second aspect is a puzzle. The figure shows two mechanisms that are dri-
ven by loss: link layer frame retransmissions, and transport layer congestion con-
trol. The puzzle is how these two mechanisms can co-exist without getting con-
fused. After all, a loss should cause only one mechanism to take action because it
is either a transmission error or a congestion signal. It cannot be both. If both

546 THE TRANSPORT LAYER CHAP. 6

mechanisms take action (by retransmitting the frame and slowing down the send-
ing rate) then we are back to the original problem of transports that run far too
slowly over wireless links. Consider this puzzle for a moment and see if you can
solve it.

The solution is that the two mechanisms act at different timescales. Link layer
retransmissions happen on the order of microseconds to milliseconds for wireless
links such as 802.11. Loss timers in transport protocols fire on the order of
milliseconds to seconds. The difference is three orders of magnitude. This allows
wireless links to detect frame losses and retransmit frames to repair transmission
errors long before packet loss is inferred by the transport entity.

The masking strategy is sufficient to let most transport protocols run well
across most wireless links. However, it is not always a fitting solution. Some wire-
less links have long round-trip times, such as satellites. For these links other tech-
niques must be used to mask loss, such as FEC (Forward Error Correction), or the
transport protocol must use a non-loss signal for congestion control.

A second issue with congestion control over wireless links is variable capacity.
That is, the capacity of a wireless link changes over time, sometimes abruptly, as
nodes move and the signal-to-noise ratio varies with the changing channel condi-
tions. This is unlike wired links whose capacity is fixed. The transport protocol
must adapt to the changing capacity of wireless links, otherwise it will either con-
gest the network or fail to use the available capacity.

One possible solution to this problem is simply not to worry about it. This
strategy is feasible because congestion control algorithms must already handle the
case of new users entering the network or existing users changing their sending
rates. Even though the capacity of wired links is fixed, the changing behavior of
other users presents itself as variability in the bandwidth that is available to a given
user. Thus it is possible to simply run TCP over a path with an 802.11 wireless link
and obtain reasonable performance.

However, when there is much wireless variability, transport protocols designed
for wired links may have trouble keeping up and deliver poor performance. The
solution in this case is a transport protocol that is designed for wireless links. A
particularly challenging setting is a wireless mesh network in which multiple,
interfering wireless links must be crossed, routes change due to mobility, and there
is lots of loss. Research in this area is ongoing. See Li et al. (2009) for an example
of wireless transport protocol design.

6.4 THE INTERNET TRANSPORT PROTOCOLS: UDP

The Internet has two main protocols in the transport layer, a connectionless
protocol and a connection-oriented one. The protocols complement each other.
The connectionless protocol is UDP. It does almost nothing beyond sending pack-
ets between applications, letting applications build their own protocols on top as

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS: UDP 547

needed. The connection-oriented protocol is TCP. It does almost everything. It
makes connections and adds reliability with retransmissions, along with flow con-
trol and congestion control, all on behalf of the applications that use it.

In the following sections, we will study UDP and TCP. We will start with
UDP because it is simplest. We will also look at two uses of UDP. Since UDP is a
transport layer protocol that typically runs in the operating system and protocols
that use UDP typically run in user space, these uses might be considered applica-
tions. However, the techniques they use are useful for many applications and are
better considered to belong to a transport service, so we will cover them here.

6.4.1 Introduction to UDP

The Internet protocol suite supports a connectionless transport protocol called
UDP (User Datagram Protocol). UDP provides a way for applications to send
encapsulated IP datagrams without having to establish a connection. UDP is de-
scribed in RFC 768.

UDP transmits segments consisting of an 8-byte header followed by the pay-
load. The header is shown in Fig. 6-27. The two ports serve to identify the end-
points within the source and destination machines. When a UDP packet arrives, its
payload is handed to the process attached to the destination port. This attachment
occurs when the BIND primitive or something similar is used, as we saw in Fig. 6-6
for TCP (the binding process is the same for UDP). Think of ports as mailboxes
that applications can rent to receive packets. We will have more to say about them
when we describe TCP, which also uses ports. In fact, the main value of UDP over
just using raw IP is the addition of the source and destination ports. Without the
port fields, the transport layer would not know what to do with each incoming
packet. With them, it delivers the embedded segment to the correct application.

32 Bits

Source port

UDP length

Destination port

UDP checksum

Figure 6-27. The UDP header.

The source port is primarily needed when a reply must be sent back to the
source. By copying the Source port field from the incoming segment into the Des-
tination port field of the outgoing segment, the process sending the reply can spec-
ify which process on the sending machine is to get it.

The UDP length field includes the 8-byte header and the data. The minimum
length is 8 bytes, to cover the header. The maximum length is 65,515 bytes, which

548 THE TRANSPORT LAYER CHAP. 6

is lower than the largest number that will fit in 16 bits because of the size limit on
IP packets.

An optional Checksum is also provided for extra reliability. It checksums the
header, the data, and a conceptual IP pseudoheader. When performing this compu-
tation, the Checksum field is set to zero and the data field is padded out with an ad-
ditional zero byte if its length is an odd number. The checksum algorithm is sim-
ply to add up all the 16-bit words in one’s complement and to take the one’s com-
plement of the sum. As a consequence, when the receiver performs the calculation
on the entire segment, including the Checksum field, the result should be 0. If the
checksum is not computed, it is stored as a 0, since by a happy coincidence of
one’s complement arithmetic a true computed 0 is stored as all 1s. However, turn-
ing it off is foolish unless the quality of the data does not matter (e.g., for digitized
speech).

The pseudoheader for the case of IPv4 is shown in Fig. 6-28. It contains the
32-bit IPv4 addresses of the source and destination machines, the protocol number
for UDP (17), and the byte count for the UDP segment (including the header). It is
different but analogous for IPv6. Including the pseudoheader in the UDP check-
sum computation helps detect misdelivered packets, but including it also violates
the protocol hierarchy since the IP addresses in it belong to the IP layer, not to the
UDP layer. TCP uses the same pseudoheader for its checksum.

32 Bits

Source address

Destination address

0 0 0 0 0 0 0 0 Protocol = 17 UDP length

Figure 6-28. The IPv4 pseudoheader included in the UDP checksum.

It is probably worth mentioning explicitly some of the things that UDP does
not do. It does not do flow control, congestion control, or retransmission upon
receipt of a bad segment. All of that is up to the user processes. What it does do is
provide an interface to the IP protocol with the added feature of demultiplexing
multiple processes using the ports and optional end-to-end error detection. That is
all it does.

For applications that need to have precise control over the packet flow, error
control, or timing, UDP provides just what the doctor ordered. One area where it
is especially useful is in client-server situations. Often, the client sends a short re-
quest to the server and expects a short reply back. If either the request or the reply

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS: UDP 549

is lost, the client can just time out and try again. Not only is the code simple, but
fewer messages are required (one in each direction) than with a protocol requiring
an initial setup like TCP.

An application that uses UDP this way is DNS (Domain Name System), which
we will study in Chap. 7. In brief, a program that needs to look up the IP address
of some host name, for example, www.cs.berkeley.edu, can send a UDP packet con-
taining the host name to a DNS server. The server replies with a UDP packet con-
taining the host’s IP address. No setup is needed in advance and no release is
needed afterward. Just two messages go over the network.

6.4.2 Remote Procedure Call

In a certain sense, sending a message to a remote host and getting a reply back
is a lot like making a function call in a programming language. In both cases, you
start with one or more parameters and you get back a result. This observation has
led people to try to arrange request-reply interactions on networks to be cast in the
form of procedure calls. Such an arrangement makes network applications much
easier to program and more familiar to deal with. For example, just imagine a pro-
cedure named get IP address(host name) that works by sending a UDP packet
to a DNS server and waiting for the reply, timing out and trying again if one is not
forthcoming quickly enough. In this way, all the details of networking can be hid-
den from the programmer.

The key work in this area was done by Birrell and Nelson (1984). In a nut-
shell, what Birrell and Nelson suggested was allowing programs to call procedures
located on remote hosts. When a process on machine 1 calls a procedure on ma-
chine 2, the calling process on 1 is suspended and execution of the called proce-
dure takes place on 2. Information can be transported from the caller to the callee
in the parameters and can come back in the procedure result. No message passing
is visible to the application programmer. This technique is known as RPC
(Remote Procedure Call) and has become the basis for many networking applica-
tions. Traditionally, the calling procedure is known as the client and the called pro-
cedure is known as the server, and we will use those names here too.

The idea behind RPC is to make a remote procedure call look as much as pos-
sible like a local one. In the simplest form, to call a remote procedure, the client
program must be bound with a small library procedure, called the client stub, that
represents the server procedure in the client’s address space. Similarly, the server
is bound with a procedure called the server stub. These procedures hide the fact
that the procedure call from the client to the server is not local.

The actual steps in making an RPC are shown in Fig. 6-29. Step 1 is the client
calling the client stub. This call is a local procedure call, with the parameters
pushed onto the stack in the normal way. Step 2 is the client stub packing the pa-
rameters into a message and making a system call to send the message. Packing
the parameters is called marshaling. Step 3 is the operating system sending the

550 THE TRANSPORT LAYER CHAP. 6

message from the client machine to the server machine. Step 4 is the operating
system passing the incoming packet to the server stub. Finally, step 5 is the server
stub calling the server procedure with the unmarshaled parameters. The reply
traces the same path in the other direction.

Client CPU

Client
stub

Client

2

1

Operating system

Server CPU

Server
stub

4

3

5

Operating system

Server

Network

Figure 6-29. Steps in making a remote procedure call. The stubs are shaded.

The key item to note here is that the client procedure, written by the user, just
makes a normal (i.e., local) procedure call to the client stub, which has the same
name as the server procedure. Since the client procedure and client stub are in the
same address space, the parameters are passed in the usual way. Similarly, the ser-
ver procedure is called by a procedure in its address space with the parameters it
expects. To the server procedure, nothing is unusual. In this way, instead of I/O
being done on sockets, network communication is done by faking a normal proce-
dure call.

Despite the conceptual elegance of RPC, there are a few snakes hiding under
the grass. A big one is the use of pointer parameters. Normally, passing a pointer
to a procedure is not a problem. The called procedure can use the pointer in the
same way the caller can because both procedures live in the same virtual address
space. With RPC, passing pointers is impossible because the client and server are
in different address spaces.

In some cases, tricks can be used to make it possible to pass pointers. Suppose
that the first parameter is a pointer to an integer, k. The client stub can marshal k
and send it along to the server. The server stub then creates a pointer to k and
passes it to the server procedure, just as it expects. When the server procedure re-
turns control to the server stub, the latter sends k back to the client, where the new
k is copied over the old one, just in case the server changed it. In effect, the stan-
dard calling sequence of call-by-reference has been replaced by call-by-copy-re-
store. Unfortunately, this trick does not always work, for example, if the pointer
points to a graph or other complex data structure. For this reason, some restric-
tions must be placed on parameters to procedures called remotely, as we shall see.

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS: UDP 551

A second problem is that in weakly typed languages, like C, it is perfectly legal
to write a procedure that computes the inner product of two vectors (arrays), with-
out specifying how large either one is. Each could be terminated by a special value
known only to the calling and called procedures. Under these circumstances, it is
essentially impossible for the client stub to marshal the parameters: it has no way
of determining how large they are.

A third problem is that it is not always possible to deduce the types of the
parameters, not even from a formal specification or the code itself. An example is
printf, which may have any number of parameters (at least one), and the parame-
ters can be an arbitrary mixture of integers, shorts, longs, characters, strings, float-
ing-point numbers of various lengths, and other types. Trying to call printf as a
remote procedure would be practically impossible because C is so permissive.
However, a rule saying that RPC can be used provided that you do not program in
C (or C++) would not be popular with a lot of programmers.

A fourth problem relates to the use of global variables. Normally, the calling
and called procedure can communicate by using global variables (although it is not
good practice), in addition to communicating via parameters. But if the called pro-
cedure is moved to a remote machine, the code will fail because the global vari-
ables are no longer shared.

These problems are not meant to suggest that RPC is hopeless. In fact, it is
widely used, but some restrictions are needed to make it work well in practice.

In terms of transport layer protocols, UDP is a good base on which to imple-
ment RPC. Both requests and replies may be sent as a single UDP packet in the
simplest case and the operation can be fast. However, an implementation must
include other machinery as well. Because the request or the reply may be lost, the
client must keep a timer to retransmit the request. Note that a reply serves as an
implicit acknowledgement for a request, so the request need not be separately ac-
knowledged. Sometimes the parameters or results may be larger than the maxi-
mum UDP packet size, in which case some protocol is needed to deliver large mes-
sages in pieces and reassemble them correctly. If multiple requests and replies can
overlap (as in the case of concurrent programming), an identifier is needed to
match the request with the reply.

A higher-level concern is that the operation may not be idempotent (i.e., safe to
repeat). The simple case is idempotent operations such as DNS requests and
replies. The client can safely retransmit these requests again and again if no
replies are forthcoming. It does not matter whether the server never received the re-
quest, or it was the reply that was lost. The answer, when it finally arrives, will be
the same (assuming the DNS database is not updated in the meantime). However,
not all operations are idempotent, for example, because they have important side
effects such as incrementing a counter. RPC for these operations requires stronger
semantics so that when the programmer calls a procedure it is not executed multi-
ple times. In this case, it may be necessary to set up a TCP connection and send the
request over it rather than using UDP.

552 THE TRANSPORT LAYER CHAP. 6

6.4.3 Real-Time Transport Protocols

Client-server RPC is one area in which UDP is widely used. Another one is
for real-time multimedia applications. In particular, as Internet radio, Internet tele-
phony, music-on-demand, videoconferencing, video-on-demand, and other multi-
media applications became more commonplace, people have discovered that each
application was reinventing more or less the same real-time transport protocol. It
gradually became clear that having a generic real-time transport protocol for multi-
ple applications would be a good idea.

Thus was RTP (Real-time Transport Protocol) born. It is described in RFC
3550 and is now in widespread use for multimedia applications. We will describe
two aspects of real-time transport. The first is the RTP protocol for transporting
audio and video data in packets. The second is the processing that takes place,
mostly at the receiver, to play out the audio and video at the right time. These
functions fit into the protocol stack as shown in Fig. 6-30.

Multimedia application
RTP

Socket interface

UDP
IP

Ethernet

(a) (b)

Ethernet
header

IP
header

UDP
header

RTP
header

RTP payload

UDP payload

IP payload

Ethernet payload

User
space

OS
Kernel

Figure 6-30. (a) The position of RTP in the protocol stack. (b) Packet nesting.

RTP normally runs in user space over UDP (in the operating system). It oper-
ates as follows. The multimedia application consists of multiple audio, video, text,
and possibly other streams. These are fed into the RTP library, which is in user
space along with the application. This library multiplexes the streams and encodes
them in RTP packets, which it stuffs into a socket. On the operating system side of
the socket, UDP packets are generated to wrap the RTP packets and handed to IP
for transmission over a link such as Ethernet. The reverse process happens at the
receiver. The multimedia application eventually receives multimedia data from the
RTP library. It is responsible for playing out the media. The protocol stack for this
situation is shown in Fig. 6-30(a). The packet nesting is shown in Fig. 6-30(b).

As a consequence of this design, it is a little hard to say which layer RTP is in.
Since it runs in user space and is linked to the application program, it certainly
looks like an application protocol. On the other hand, it is a generic, applica-
tion-independent protocol that just provides transport facilities, so it also looks like

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS: UDP 553

a transport protocol. Probably the best description is that it is a transport protocol
that just happens to be implemented in the application layer, which is why we are
covering it in this chapter.

RTP—The Real-time Transport Protocol

The basic function of RTP is to multiplex several real-time data streams onto a
single stream of UDP packets. The UDP stream can be sent to a single destination
(unicasting) or to multiple destinations (multicasting). Because RTP just uses nor-
mal UDP, its packets are not treated specially by the routers unless some normal IP
quality-of-service features are enabled. In particular, there are no special guaran-
tees about delivery, and packets may be lost, delayed, corrupted, etc.

The RTP format contains several features to help receivers work with multi-
media information. Each packet sent in an RTP stream is given a number one
higher than its predecessor. This numbering allows the destination to determine if
any packets are missing. If a packet is missing, the best action for the destination
to take is up to the application. It may be to skip a video frame if the packets are
carrying video data, or to approximate the missing value by interpolation if the
packets are carrying audio data. Retransmission is not a practical option since the
retransmitted packet would probably arrive too late to be useful. As a conse-
quence, RTP has no acknowledgements, and no mechanism to request retransmis-
sions.

Each RTP payload may contain multiple samples, and they may be coded any
way that the application wants. To allow for interworking, RTP defines several
profiles (e.g., a single audio stream), and for each profile, multiple encoding for-
mats may be allowed. For example, a single audio stream may be encoded as 8-bit
PCM samples at 8 kHz using delta encoding, predictive encoding, GSM encoding,
MP3 encoding, and so on. RTP provides a header field in which the source can
specify the encoding but is otherwise not involved in how encoding is done.

Another facility many real-time applications need is timestamping. The idea
here is to allow the source to associate a timestamp with the first sample in each
packet. The timestamps are relative to the start of the stream, so only the dif-
ferences between timestamps are significant. The absolute values have no mean-
ing. As we will describe shortly, this mechanism allows the destination to do a
small amount of buffering and play each sample the right number of milliseconds
after the start of the stream, independently of when the packet containing the sam-
ple arrived.

Not only does timestamping reduce the effects of variation in network delay,
but it also allows multiple streams to be synchronized with each other. For ex-
ample, a digital television program might have a video stream and two audio
streams. The two audio streams could be for stereo broadcasts or for handling
films with an original language soundtrack and a soundtrack dubbed into the local
language, giving the viewer a choice. Each stream comes from a different physical

554 THE TRANSPORT LAYER CHAP. 6

device, but if they are timestamped from a single counter, they can be played back
synchronously, even if the streams are transmitted and/or received somewhat errati-
cally.

The RTP header is illustrated in Fig. 6-31. It consists of three 32-bit words and
potentially some extensions. The first word contains the Version field, which is al-
ready at 2. Let us hope this version is very close to the ultimate version since there
is only one code point left (although 3 could be defined as meaning that the real
version was in an extension word).

32 bits

Ver. P X M Payload type Sequence number

Timestamp

Synchronization source identifier

Contributing source identifier

CC

Figure 6-31. The RTP header.

The P bit indicates that the packet has been padded to a multiple of 4 bytes.
The last padding byte tells how many bytes were added. The X bit indicates that an
extension header is present. The format and meaning of the extension header are
not defined. The only thing that is defined is that the first word of the extension
gives the length. This is an escape hatch for any unforeseen requirements.

The CC field tells how many contributing sources are present, from 0 to 15
(see below). The M bit is an application-specific marker bit. It can be used to
mark the start of a video frame, the start of a word in an audio channel, or some-
thing else that the application understands. The Payload type field tells which
encoding algorithm has been used (e.g., uncompressed 8-bit audio, MP3, etc.).
Since every packet carries this field, the encoding can change during transmission.
The Sequence number is just a counter that is incremented on each RTP packet
sent. It is used to detect lost packets.

The Timestamp is produced by the stream’s source to note when the first sam-
ple in the packet was made. This value can help reduce timing variability which is
called jitter, at the receiver by decoupling the playback from the packet arrival
time. The Synchronization source identifier tells which stream the packet belongs
to. It is the method used to multiplex and demultiplex multiple data streams onto a

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS: UDP 555

single stream of UDP packets. Finally, the Contributing source identifiers, if any,
are used when mixers are present in the studio. In that case, the mixer is the syn-
chronizing source, and the streams being mixed are listed here.

RTCP—The Real-time Transport Control Protocol

RTP has a little sister protocol (little sibling protocol?) called RTCP (Real-
time Transport Control Protocol). It is defined along with RTP in RFC 3550 and
handles feedback, synchronization, and the user interface. It does not transport any
media samples.

The first function can be used to provide feedback on delay, variation in delay
or jitter, bandwidth, congestion, and other network properties to the sources. This
information can be used by the encoding process to increase the data rate (and give
better quality) when the network is functioning well and to cut back the data rate
when there is trouble in the network. By providing continuous feedback, the
encoding algorithms can be continuously adapted to provide the best quality pos-
sible under the current circumstances. For example, if the bandwidth increases or
decreases during the transmission, the encoding may switch from MP3 to 8-bit
PCM to delta encoding as required. The Payload type field is used to tell the desti-
nation what encoding algorithm is used for the current packet, making it possible
to vary it on demand.

An issue with providing feedback is that the RTCP reports are sent to all par-
ticipants. For a multicast application with a large group, the bandwidth used by
RTCP would quickly grow large. To prevent this from happening, RTCP senders
scale down the rate of their reports to collectively consume no more than, say, 5%
of the media bandwidth. To do this, each participant needs to know the media
bandwidth, which it learns from the sender, and the number of participants, which
it estimates by listening to other RTCP reports.

RTCP also handles interstream synchronization. The problem is that different
streams may use different clocks, with different granularities and different drift
rates. RTCP can be used to keep them in sync.

Finally, RTCP provides a way for naming the various sources (e.g., in ASCII
text). This information can be displayed on the receiver’s screen to indicate who is
talking at the moment.

More information about RTP can be found in Perkins (2003).

Playout with Buffering and Jitter Control

Once the media information reaches the receiver, it must be played out at the
right time. In general, this will not be the time at which the RTP packet arrived at
the receiver because packets will take slightly different amounts of time to transit
the network. Even if the packets are injected with exactly the right intervals be-
tween them at the sender, they will reach the receiver with different relative times.

556 THE TRANSPORT LAYER CHAP. 6

Even a small amount of packet jitter can cause distracting media artifacts, such as
jerky video frames and unintelligible audio, if the media is simply played out as it
arrives.

The solution to this problem is to buffer packets at the receiver before they are
played out to reduce the jitter. As an example, in Fig. 6-32 we see a stream of
packets being delivered with a substantial amount of jitter. Packet 1 is sent from
the server at t = 0 sec and arrives at the client at t = 1 sec. Packet 2 undergoes
more delay and takes 2 sec to arrive. As the packets arrive, they are buffered on
the client machine.

0 5

1 2 3 4 5 6 7 8

10
Time (sec)

Time in buffer

15 20

Gap in playback

1

Packet removed from buffer

Packet arrives at buffer 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8Packet departs source

Figure 6-32. Smoothing the output stream by buffering packets.

At t = 10 sec, playback begins. At this time, packets 1 through 6 have been
buffered so that they can be removed from the buffer at uniform intervals for
smooth play. In the general case, it is not necessary to use uniform intervals
because the RTP timestamps tell when the media should be played.

Unfortunately, we can see that packet 8 has been delayed so much that it is not
available when its play slot comes up. There are two options. Packet 8 can be
skipped and the player can move on to subsequent packets. Alternatively, playback
can stop until packet 8 arrives, creating an annoying gap in the music or movie. In
a live media application like a voice-over-IP call, the packet will typically be
skipped. Live applications do not work well on hold. In a streaming media applica-
tion, the player might pause. This problem can be alleviated by delaying the start-
ing time even more, by using a larger buffer. For a streaming audio or video
player, buffers of about 10 seconds are often used to ensure that the player receives
all of the packets (that are not dropped in the network) in time. For live applica-
tions like videoconferencing, short buffers are needed for responsiveness.

A key consideration for smooth playout is the playback point, or how long to
wait at the receiver for media before playing it out. Deciding how long to wait de-
pends on the jitter. The difference between a low-jitter and high-jitter connection
is shown in Fig. 6-33. The average delay may not differ greatly between the two,
but if there is high jitter the playback point may need to be much further out to
capture 99% of the packets than if there is low jitter.

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS: UDP 557

High jitter
Low jitter

Minimum
delay

(due to speed of light)

Delay

(a)

Fr
ac

tio
n

of
 p

ac
ke

ts

Fr
ac

tio
n

of
 p

ac
ke

ts

Delay

(b)

Figure 6-33. (a) High jitter. (b) Low jitter.

To pick a good playback point, the application can measure the jitter by look-
ing at the difference between the RTP timestamps and the arrival time. Each dif-
ference gives a sample of the delay (plus an arbitrary, fixed offset). However, the
delay can change over time due to other, competing traffic and changing routes. To
accommodate this change, applications can adapt their playback point while they
are running. However, if not done well, changing the playback point can produce
an observable glitch to the user. One way to avoid this problem for audio is to
adapt the playback point between talkspurts, in the gaps in a conversation. No one
will notice the difference between a short and slightly longer silence. RTP lets
applications set the M marker bit to indicate the start of a new talkspurt for this
purpose.

If the absolute delay until media is played out is too long, live applications will
suffer. Nothing can be done to reduce the propagation delay if a direct path is
already being used. The playback point can be pulled in by simply accepting that a
larger fraction of packets will arrive too late to be played. If this is not acceptable,
the only way to pull in the playback point is to reduce the jitter by using a better
quality of service, for example, the expedited forwarding differentiated service.
That is, a better network is needed.

6.5 THE INTERNET TRANSPORT PROTOCOLS: TCP

UDP is a simple protocol and it has some very important uses, such as cli-
ent-server interactions and multimedia, but for most Internet applications, reliable,
sequenced delivery is needed, so UDP will not do. UDP cannot provide this, so
another protocol is required. It is called TCP and is the main workhorse of the
Internet. Let us now study it in detail.

558 THE TRANSPORT LAYER CHAP. 6

6.5.1 Introduction to TCP

TCP (Transmission Control Protocol) was specifically designed to provide a
reliable end-to-end byte stream over an unreliable internetwork. An internetwork
differs from a single network because different parts may have wildly different
topologies, bandwidths, delays, packet sizes, and other parameters. TCP was
designed to dynamically adapt to properties of the internetwork and to be robust in
the face of many kinds of failures.

TCP was formally defined in RFC 793 in September 1981. As time went on,
many improvements have been made, and various errors and inconsistencies have
been fixed. To give you a sense of the extent of TCP, the important RFCs are now
RFC 793 plus: clarifications and bug fixes in RFC 1122; extensions for high-per-
formance in RFC 1323; selective acknowledgements in RFC 2018; congestion con-
trol in RFC 2581; repurposing of header fields for quality of service in RFC 2873;
improved retransmission timers in RFC 2988; and explicit congestion notification
in RFC 3168. The full collection is even larger, which led to a guide to the many
RFCs, published of course as another RFC document, RFC 4614.

Each machine supporting TCP has a TCP transport entity, either a library pro-
cedure, a user process, or most commonly part of the kernel. In all cases, it man-
ages TCP streams and interfaces to the IP layer. A TCP entity accepts user data
streams from local processes, breaks them up into pieces not exceeding 64 KB (in
practice, often 1460 data bytes in order to fit in a single Ethernet frame with the IP
and TCP headers), and sends each piece as a separate IP datagram. When data-
grams containing TCP data arrive at a machine, they are given to the TCP entity,
which reconstructs the original byte streams. For simplicity, we will sometimes
use just ‘‘TCP’’ to mean the TCP transport entity (a piece of software) or the TCP
protocol (a set of rules). From the context it will be clear which is meant. For
example, in ‘‘The user gives TCP the data,’’ the TCP transport entity is clearly in-
tended.

The IP layer gives no guarantee that datagrams will be delivered properly, nor
any indication of how fast datagrams may be sent. It is up to TCP to send data-
grams fast enough to make use of the capacity but not cause congestion, and to
time out and retransmit any datagrams that are not delivered. Datagrams that do
arrive may well do so in the wrong order; it is also up to TCP to reassemble them
into messages in the proper sequence. In short, TCP must furnish good per-
formance with the reliability that most applications want and that IP does not pro-
vide.

6.5.2 The TCP Service Model

TCP service is obtained by both the sender and the receiver creating end
points, called sockets, as discussed in Sec. 6.1.3. Each socket has a socket number
(address) consisting of the IP address of the host and a 16-bit number local to that

SEC. 6.5 THE INTERNET TRANSPORT PROTOCOLS: TCP 559

host, called a port. A port is the TCP name for a TSAP. For TCP service to be
obtained, a connection must be explicitly established between a socket on one ma-
chine and a socket on another machine. The socket calls are listed in Fig. 6-5.

A socket may be used for multiple connections at the same time. In other
words, two or more connections may terminate at the same socket. Connections
are identified by the socket identifiers at both ends, that is, (socket1, socket2). No
virtual circuit numbers or other identifiers are used.

Port numbers below 1024 are reserved for standard services that can usually
only be started by privileged users (e.g., root in UNIX systems). They are called
well-known ports. For example, any process wishing to remotely retrieve mail
from a host can connect to the destination host’s port 143 to contact its IMAP dae-
mon. The list of well-known ports is given at www.iana.org. Over 700 have been
assigned. A few of the better-known ones are listed in Fig. 6-34.

Port Protocol Use
20, 21 FTP File transfer

22 SSH Remote login, replacement for Telnet
25 SMTP Email
80 HTTP World Wide Web

110 POP-3 Remote email access
143 IMAP Remote email access
443 HTTPS Secure Web (HTTP over SSL/TLS)
543 RTSP Media player control
631 IPP Printer sharing

Figure 6-34. Some assigned ports.

Other ports from 1024 through 49151 can be registered with IANA for use by
unprivileged users, but applications can and do choose their own ports. For ex-
ample, the BitTorrent peer-to-peer file-sharing application (unofficially) uses ports
6881–6887, but may run on other ports as well.

It would certainly be possible to have the FTP daemon attach itself to port 21
at boot time, the SSH daemon attach itself to port 22 at boot time, and so on.
However, doing so would clutter up memory with daemons that were idle most of
the time. Instead, what is commonly done is to have a single daemon, called inetd
(Internet daemon) in UNIX, attach itself to multiple ports and wait for the first
incoming connection. When that occurs, inetd forks off a new process and ex-
ecutes the appropriate daemon in it, letting that daemon handle the request. In this
way, the daemons other than inetd are only active when there is work for them to
do. Inetd learns which ports it is to use from a configuration file. Consequently,
the system administrator can set up the system to have permanent daemons on the
busiest ports (e.g., port 80) and inetd on the rest.

560 THE TRANSPORT LAYER CHAP. 6

All TCP connections are full duplex and point-to-point. Full duplex means
that traffic can go in both directions at the same time. Point-to-point means that
each connection has exactly two end points. TCP does not support multicasting or
broadcasting.

A TCP connection is a byte stream, not a message stream. Message bound-
aries are not preserved end to end. For example, if the sending process does four
512-byte writes to a TCP stream, these data may be delivered to the receiving proc-
ess as four 512-byte chunks, two 1024-byte chunks, one 2048-byte chunk (see
Fig. 6-35), or some other way. There is no way for the receiver to detect the unit(s)
in which the data were written, no matter how hard it tries.

A B C D A B C D

IP header TCP header

(a) (b)

Figure 6-35. (a) Four 512-byte segments sent as separate IP datagrams. (b) The
2048 bytes of data delivered to the application in a single READ call.

Files in UNIX have this property too. The reader of a file cannot tell whether
the file was written a block at a time, a byte at a time, or all in one blow. As with a
UNIX file, the TCP software has no idea of what the bytes mean and no interest in
finding out. A byte is just a byte.

When an application passes data to TCP, TCP may send it immediately or buff-
er it (in order to collect a larger amount to send at once), at its discretion. Howev-
er, sometimes the application really wants the data to be sent immediately. For
example, suppose a user of an interactive game wants to send a stream of updates.
It is essential that the updates be sent immediately, not buffered until there is a col-
lection of them. To force data out, TCP has the notion of a PUSH flag that is car-
ried on packets. The original intent was to let applications tell TCP implementa-
tions via the PUSH flag not to delay the transmission. However, applications can-
not literally set the PUSH flag themselves when they send data. Instead, different
operating systems have evolved different options to expedite transmission (e.g.,
TCP NODELAY in Windows and Linux).

For Internet archaeologists, we will also mention one interesting feature of
TCP service that remains in the protocol but is rarely used: urgent data. When an
application has high-priority data that should be processed immediately, for ex-
ample, if an interactive user hits the CTRL-C key to break off a remote computa-
tion that has already begun, the sending application can put some control infor-
mation in the data stream and give it to TCP along with the URGENT flag. This
event causes TCP to stop accumulating data and transmit everything it has for that
connection immediately, with no delay.

SEC. 6.5 THE INTERNET TRANSPORT PROTOCOLS: TCP 561

When the urgent data are received at the destination, the receiving application
is interrupted (e.g., given a signal in UNIX terms) so it can stop whatever it was
doing and read the data stream to find the urgent data. The end of the urgent data
is marked so the application knows when it is over. The start of the urgent data is
not marked. It is up to the application to figure that out.

This scheme provides a crude signaling mechanism and leaves everything else
up to the application. However, while urgent data is potentially useful, it found no
compelling application early on and fell into disuse. Its use is now discouraged be-
cause of implementation differences, leaving applications to handle their own sig-
naling. Perhaps future transport protocols will provide better signaling.

6.5.3 The TCP Protocol

In this section, we will give a general overview of the TCP protocol. In the
next one, we will go over the protocol header, field by field.

A key feature of TCP, and one that dominates the protocol design, is that every
byte on a TCP connection has its own 32-bit sequence number. When the Internet
began, the lines between routers were mostly 56-kbps leased lines, so a host blast-
ing away at full speed took over 1 week to cycle through the sequence numbers.
At modern network speeds, the sequence numbers can be consumed at an alarming
rate, as we will see later. Separate 32-bit sequence numbers are carried on packets
for the sliding window position in one direction and for acknowledgements in the
reverse direction, as discussed below.

The sending and receiving TCP entities exchange data in the form of segments.
A TCP segment consists of a fixed 20-byte header (plus an optional part) followed
by zero or more data bytes. The TCP software decides how big segments should
be. It can accumulate data from several writes into one segment or can split data
from one write over multiple segments. Two limits restrict the segment size. First,
each segment, including the TCP header, must fit in the 65,515-byte IP payload.
Second, each link has an MTU (Maximum Transfer Unit). Each segment must
fit in the MTU at the sender and receiver so that it can be sent and received in a
single, unfragmented packet. In practice, the MTU is generally 1500 bytes (the
Ethernet payload size) and thus defines the upper bound on segment size.

However, it is still possible for IP packets carrying TCP segments to be frag-
mented when passing over a network path for which some link has a small MTU.
If this happens, it degrades performance and causes other problems (Kent and
Mogul, 1987). Instead, modern TCP implementations perform path MTU discov-
ery by using the technique outlined in RFC 1191 . We describedit in Sec. 5.5.6.
This technique uses ICMP error messages to find the smallest MTU for any link on
the path. TCP then adjusts the segment size downwards to avoid fragmentation.

The basic protocol used by TCP entities is the sliding window protocol with a
dynamic window size. When a sender transmits a segment, it also starts a timer.
When the segment arrives at the destination, the receiving TCP entity sends back a

562 THE TRANSPORT LAYER CHAP. 6

segment (with data if any exist, and otherwise without) bearing an acknowledge-
ment number equal to the next sequence number it expects to receive and the
remaining window size. If the sender’s timer goes off before the acknowledgement
is received, the sender transmits the segment again.

Although this protocol sounds simple, there are many sometimes subtle ins and
outs, which we will cover below. Segments can arrive out of order, so bytes
3072–4095 can arrive but cannot be acknowledged because bytes 2048–3071 have
not turned up yet. Segments can also be delayed so long in transit that the sender
times out and retransmits them. The retransmissions may include different byte
ranges than the original transmission, requiring careful administration to keep track
of which bytes have been correctly received so far. However, since each byte in
the stream has its own unique offset, it can be done.

TCP must be prepared to deal with these problems and solve them in an
efficient way. A considerable amount of effort has gone into optimizing the per-
formance of TCP streams, even in the face of network problems. A number of the
algorithms used by many TCP implementations will be discussed below.

6.5.4 The TCP Segment Header

Figure 6-36 shows the layout of a TCP segment. Every segment begins with a
fixed-format, 20-byte header. The fixed header may be followed by header op-
tions. After the options, if any, up to 65, 535 < 20 < 20 = 65, 495 data bytes may
follow, where the first 20 refer to the IP header and the second to the TCP header.
Segments without any data are legal and are commonly used for acknowledge-
ments and control messages.

Let us dissect the TCP header field by field. The Source port and Destination
port fields identify the local end points of the connection. A TCP port plus its
host’s IP address forms a 48-bit unique end point. The source and destination end
points together identify the connection. This connection identifier is called a
5 tuple because it consists of five pieces of information: the protocol (TCP), source
IP and source port, and destination IP and destination port.

The Sequence number and Acknowledgement number fields perform their
usual functions. Note that the latter specifies the next in-order byte expected, not
the last byte correctly received. It is a cumulative acknowledgement because it
summarizes the received data with a single number. It does not go beyond lost
data. Both are 32 bits because every byte of data is numbered in a TCP stream.

The TCP header length tells how many 32-bit words are contained in the TCP
header. This information is needed because the Options field is of variable length,
so the header is, too. Technically, this field really indicates the start of the data
within the segment, measured in 32-bit words, but that number is just the header
length in words, so the effect is the same.

Next comes a 4-bit field that is not used. The fact that these bits have
remained unused for 30 years (as only 2 of the original reserved 6 bits have been

SEC. 6.5 THE INTERNET TRANSPORT PROTOCOLS: TCP 563

32 Bits

Source port Destination port

Sequence number

Acknowledgement number

TCP
header
length

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window size

Checksum Urgent pointer

Options (0 or more 32-bit words)

Data (optional)

E
C
E

C
W
R

Figure 6-36. The TCP header.

reclaimed) is testimony to how well thought out TCP is. Lesser protocols would
have needed these bits to fix bugs in the original design.

Now come eight 1-bit flags. CWR and ECE are used to signal congestion
when ECN (Explicit Congestion Notification) is used, as specified in RFC 3168.
ECE is set to signal an ECN-Echo to a TCP sender to tell it to slow down when the
TCP receiver gets a congestion indication from the network. CWR is set to signal
Congestion Window Reduced from the TCP sender to the TCP receiver so that it
knows the sender has slowed down and can stop sending the ECN-Echo. We dis-
cuss the role of ECN in TCP congestion control in Sec. 6.5.10.

URG is set to 1 if the Urgent pointer is in use. The Urgent pointer is used to
indicate a byte offset from the current sequence number at which urgent data are to
be found. This facility is in lieu of interrupt messages. As we mentioned above,
this facility is a bare-bones way of allowing the sender to signal the receiver with-
out getting TCP itself involved in the reason for the interrupt, but it is seldom used.

The ACK bit is set to 1 to indicate that the Acknowledgement number is valid.
This is the case for nearly all packets. If ACK is 0, the segment does not contain an
acknowledgement, so the Acknowledgement number field is ignored.

The PSH bit indicates PUSHed data. The receiver is hereby kindly requested
to deliver the data to the application upon arrival and not buffer it until a full buffer
has been received (which it might otherwise do for efficiency).

The RST bit is used to abruptly reset a connection that has become confused
due to a host crash or for some other reason. It is also used to reject an invalid

564 THE TRANSPORT LAYER CHAP. 6

segment or refuse an attempt to open a connection. In general, if you get a seg-
ment with the RST bit on, you have a problem on your hands.

The SYN bit is used to establish connections. The connection request has
SYN = 1 and ACK = 0 to indicate that the piggyback acknowledgement field is not
in use. The connection reply does bear an acknowledgement, however, so it has
SYN = 1 and ACK = 1. In essence, the SYN bit is used to denote both CONNEC-
TION REQUEST and CONNECTION ACCEPTED, with the ACK bit used to distin-
guish between those two possibilities.

The FIN bit is used to release a connection. It specifies that the sender has no
more data to transmit. However, after closing a connection, the closing process
may continue to receive data indefinitely. Both SYN and FIN segments have
sequence numbers and are thus guaranteed to be processed in the correct order.

Flow control in TCP is handled using a variable-sized sliding window. The
Window size field tells how many bytes may be sent starting at the byte acknow-
ledged. A Window size field of 0 is legal and says that the bytes up to and includ-
ing Acknowledgement number < 1 have been received, but that the receiver has
not had a chance to consume the data and would like no more data for the moment,
thank you. The receiver can later grant permission to send by transmitting a seg-
ment with the same Acknowledgement number and a nonzero Window size field.

In the protocols of Chap. 3, acknowledgements of frames received and permis-
sion to send new frames were tied together. This was a consequence of a fixed
window size for each protocol. In TCP, acknowledgements and permission to send
additional data are completely decoupled. In effect, a receiver can say: ‘‘I have re-
ceived bytes up through k but I do not want any more just now, thank you.’’ This
decoupling (in fact, a variable-sized window) gives additional flexibility. We will
study it in detail below.

A Checksum is also provided for extra reliability. It checksums the header, the
data, and a conceptual pseudoheader in exactly the same way as UDP, except that
the pseudoheader has the protocol number for TCP (6) and the checksum is
mandatory. Please see Sec. 6.4.1 for details.

The Options field provides a way to add extra facilities not covered by the reg-
ular header. Many options have been defined and several are commonly used. The
options are of variable length, fill a multiple of 32 bits by using padding with
zeros, and may extend to 40 bytes to accommodate the longest TCP header that
can be specified. Some options are carried when a connection is established to
negotiate or inform the other side of capabilities. Other options are carried on
packets during the lifetime of the connection. Each option has a Type-Length-
Value encoding.

A widely used option is the one that allows each host to specify the MSS
(Maximum Segment Size) it is willing to accept. Using large segments is more
efficient than using small ones because the 20-byte header can be amortized over
more data, but small hosts may not be able to handle big segments. During con-
nection setup, each side can announce its maximum and see its partner’s. If a host

SEC. 6.5 THE INTERNET TRANSPORT PROTOCOLS: TCP 565

does not use this option, it defaults to a 536-byte payload. All Internet hosts are
required to accept TCP segments of 536 + 20 = 556 bytes. The maximum segment
size in the two directions need not be the same.

For lines with high bandwidth, high delay, or both, the 64-KB window corres-
ponding to a 16-bit field is a problem. For example, on an OC-12 line (of roughly
600 Mbps), it takes less than 1 msec to output a full 64-KB window. If the round-
trip propagation delay is 50 msec (which is typical for a transcontinental fiber), the
sender will be idle more than 98% of the time waiting for acknowledgements. A
larger window size would allow the sender to keep pumping data out. The window
scale option allows the sender and receiver to negotiate a window scale factor at
the start of a connection. Both sides use the scale factor to shift the Window size
field up to 14 bits to the left, thus allowing windows of up to 230 bytes. Most TCP
implementations support this option.

The timestamp option carries a timestamp sent by the sender and echoed by
the receiver. It is included in every packet, once its use is established during con-
nection setup, and used to compute round-trip time samples that are used to esti-
mate when a packet has been lost. It is also used as a logical extension of the 32-bit
sequence number. On a fast connection, the sequence number may wrap around
quickly, leading to possible confusion between old and new data. The PAWS
scheme described earlier discards arriving segments with old timestamps to prevent
this problem.

Finally, the SACK (Selective ACKnowledgement) option lets a receiver tell a
sender the ranges of sequence numbers that it has received. It supplements the Ac-
knowledgement number and is used after a packet has been lost but subsequent (or
duplicate) data has arrived. The new data is not reflected by the Acknowledgement
number field in the header because that field gives only the next in-order byte that
is expected. With SACK, the sender is explicitly aware of what data the receiver
has and hence can determine what data should be retransmitted. SACK is defined
in RFC 2108 and RFC 2883 and is increasingly used. We describe the use of
SACK along with congestion control in Sec. 6.5.10.

6.5.5 TCP Connection Establishment

Connections are established in TCP by means of the three-way handshake dis-
cussed in Sec. 6.2.2. To establish a connection, one side, say, the server, passively
waits for an incoming connection by executing the LISTEN and ACCEPT primitives
in that order, either specifying a specific source or nobody in particular.

The other side, say, the client, executes a CONNECT primitive, specifying the IP
address and port to which it wants to connect, the maximum TCP segment size it is
willing to accept, and optionally some user data (e.g., a password). The CONNECT
primitive sends a TCP segment with the SYN bit on and ACK bit off and waits for a
response from the other end.

566 THE TRANSPORT LAYER CHAP. 6

When this segment arrives at the destination, the TCP entity there checks to
see if there is a process that has done a LISTEN on the port given in the Destination
port field. If not, it sends a reply with the RST bit on to reject the connection.

Ti
m

e

Host 1 Host 2

SYN (SEQ = y, ACK = x + 1)

SYN (SEQ = x)

(SEQ = x + 1, ACK = y + 1)

Host 1 Host 2

SYN (SEQ = y, ACK = x + 1)

SYN (SEQ = x)

SYN (SEQ = y)

SYN (SEQ = x , ACK = y + 1)

(a) (b)

Figure 6-37. (a) TCP connection establishment in the normal case. (b) Simul-
taneous connection establishment on both sides.

If some process is listening to the port, that process is given the incoming TCP
segment. It can either accept or reject the connection. If it accepts, an acknowl-
edgement segment is sent back. The sequence of TCP segments sent in the normal
case is shown in Fig. 6-37(a). Note that a SYN segment consumes 1 byte of
sequence space so that it can be acknowledged unambiguously.

In the event that two hosts simultaneously attempt to establish a connection
between the same two sockets, the sequence of events is as illustrated in
Fig. 6-37(b). The result of these events is that just one connection is established,
not two, because connections are identified by their end points. If the first setup
results in a connection identified by (x, y) and the second one does too, only one ta-
ble entry is made, namely, for (x, y).

Recall that the initial sequence number chosen by each host should cycle
slowly, rather than be a constant such as 0. This rule is to protect against delayed
duplicate packets, as we discussed in Sec 6.2.2. Originally, this was accomplished
with a clock-based scheme in which the clock ticked every 4 µsec.

However, a vulnerability with implementing the three-way handshake is that
the listening process must remember its sequence number as soon it responds with
its own SYN segment. This means that a malicious sender can tie up resources on a
host by sending a stream of SYN segments and never following through to com-
plete the connection. This attack is called a SYN flood, and it crippled many Web
servers in the 1990s. Now ways are known for defending against this attack.

SEC. 6.5 THE INTERNET TRANSPORT PROTOCOLS: TCP 567

One way to defend against this attack is to use SYN cookies. Instead of
remembering the sequence number, a host chooses a cryptographically generated
sequence number, puts it on the outgoing segment, and forgets it. If the three-way
handshake completes, this sequence number (plus 1) will be returned to the host. It
can then regenerate the correct sequence number by running the same crypto-
graphic function, as long as the inputs to that function are known, for example, the
other host’s IP address and port, and a local secret. This procedure allows the host
to check that an acknowledged sequence number is correct without having to
remember the sequence number separately. There are some caveats, such as the
inability to handle TCP options, so SYN cookies may be used only when the host
is subject to a SYN flood. However, they are an interesting twist on connection
establishment. For more information, see RFC 4987 and Lemon (2002).

6.5.6 TCP Connection Release

Although TCP connections are full duplex, to understand how connections are
released it is best to think of them as a pair of simplex connections. Each simplex
connection is released independently of its sibling. To release a connection, either
party can send a TCP segment with the FIN bit set, which means that it has no
more data to transmit. When the FIN is acknowledged, that direction is shut down
for new data. Data may continue to flow indefinitely in the other direction, howev-
er. When both directions have been shut down, the connection is released. Nor-
mally, four TCP segments are needed to release a connection: one FIN and one
ACK for each direction. However, it is possible for the first ACK and the second
FIN to be contained in the same segment, reducing the total count to three.

Just as with telephone calls in which both people say goodbye and hang up the
phone simultaneously, both ends of a TCP connection may send FIN segments at
the same time. These are each acknowledged in the usual way, and the connection
is shut down. There is, in fact, no essential difference between the two hosts
releasing sequentially or simultaneously.

To avoid the two-army problem (discussed in Sec. 6.2.3), timers are used. If a
response to a FIN is not forthcoming within two maximum packet lifetimes, the
sender of the FIN releases the connection. The other side will eventually notice
that nobody seems to be listening to it anymore and will time out as well. While
this solution is not perfect, given the fact that a perfect solution is theoretically
impossible, it will have to do. In practice, problems rarely arise.

6.5.7 TCP Connection Management Modeling

The steps required to establish and release connections can be represented in a
finite state machine with the 11 states listed in Fig. 6-38. In each state, certain
events are legal. When a legal event happens, some action may be taken. If some
other event happens, an error is reported.

568 THE TRANSPORT LAYER CHAP. 6

State Description
CLOSED No connection is active or pending
LISTEN The server is waiting for an incoming call
SYN RCVD A connection request has arrived; wait for ACK
SYN SENT The application has started to open a connection
ESTABLISHED The normal data transfer state
FIN WAIT 1 The application has said it is finished
FIN WAIT 2 The other side has agreed to release
TIME WAIT Wait for all packets to die off
CLOSING Both sides have tried to close simultaneously
CLOSE WAIT The other side has initiated a release
LAST ACK Wait for all packets to die off

Figure 6-38. The states used in the TCP connection management finite state ma-
chine.

Each connection starts in the CLOSED state. It leaves that state when it does
either a passive open (LISTEN) or an active open (CONNECT). If the other side does
the opposite one, a connection is established and the state becomes ESTAB-
LISHED. Connection release can be initiated by either side. When it is complete,
the state returns to CLOSED.

The finite state machine itself is shown in Fig. 6-39. The common case of a
client actively connecting to a passive server is shown with heavy lines—solid for
the client, dotted for the server. The lightface lines are unusual event sequences.
Each line in Fig. 6-39 is marked by an event/action pair. The event can either be a
user-initiated system call (CONNECT, LISTEN, SEND, or CLOSE), a segment arrival
(SYN, FIN, ACK, or RST), or, in one case, a timeout of twice the maximum packet
lifetime. The action is the sending of a control segment (SYN, FIN, or RST) or
nothing, indicated by –. Comments are shown in parentheses.

One can best understand the diagram by first following the path of a client (the
heavy solid line), then later following the path of a server (the heavy dashed line).
When an application program on the client machine issues a CONNECT request, the
local TCP entity creates a connection record, marks it as being in the SYN SENT
state, and shoots off a SYN segment. Note that many connections may be open (or
being opened) at the same time on behalf of multiple applications, so the state is
per connection and recorded in the connection record. When the SYN+ACK
arrives, TCP sends the final ACK of the three-way handshake and switches into the
ESTABLISHED state. Data can now be sent and received.

When an application is finished, it executes a CLOSE primitive, which causes
the local TCP entity to send a FIN segment and wait for the corresponding ACK
(dashed box marked ‘‘active close’’). When the ACK arrives, a transition is made
to the state FIN WAIT 2 and one direction of the connection is closed. When the

SEC. 6.5 THE INTERNET TRANSPORT PROTOCOLS: TCP 569

CLOSED

LISTEN

ESTABLISHED

CLOSING CLOSE
WAIT

(Start)
CONNECT/SYN (Step 1 of the 3-way handshake)

LISTEN/–
SYN/SYN + ACK

SYN
RCVD

FIN
WAIT 1

TIME
WAIT

LAST
ACK

FIN
WAIT 2

SYN
SENT

RST/–

ACK/–

(Active close)

FIN/ACK

FIN + ACK/ACK

FIN/ACK

ACK/–

ACK/–

ACK/–

SEND/SYN

SYN/SYN + ACK (simultaneous open)

(Data transfer state)

SYN + ACK/ACK
(Step 3 of the 3-way handshake)

CLOSE/FIN

CLOSE/FIN FIN/ACK

CLOSE/–
CLOSE/–

CLOSE/FIN

CLOSED

(Passive close)

(Timeout/)

(Go back to start)

(Step 2 of the 3-way handshake)

Figure 6-39. TCP connection management finite state machine. The heavy solid
line is the normal path for a client. The heavy dashed line is the normal path for a
server. The light lines are unusual events. Each transition is labeled with the
event causing it and the action resulting from it, separated by a slash.

other side closes, too, a FIN comes in, which is acknowledged. Now both sides are
closed, but TCP waits a time equal to twice the maximum packet lifetime to guar-
antee that all packets from the connection have died off, just in case the acknowl-
edgement was lost. When the timer goes off, TCP deletes the connection record.

Now let us examine connection management from the server’s viewpoint. The
server does a LISTEN and settles down to see who turns up. When a SYN comes in,
it is acknowledged and the server goes to the SYN RCVD state. When the server’s

570 THE TRANSPORT LAYER CHAP. 6

SYN is itself acknowledged, the three-way handshake is complete and the server
goes to the ESTABLISHED state. Data transfer can now occur.

When the client is done transmitting its data, it does a CLOSE, which causes a
FIN to arrive at the server (dashed box marked ‘‘passive close’’). The server is
then signaled. When it, too, does a CLOSE, a FIN is sent to the client. When the
client’s acknowledgement shows up, the server releases the connection and deletes
the connection record.

6.5.8 TCP Sliding Window

As mentioned earlier, window management in TCP decouples the issues of
acknowledgement of the correct receipt of segments and receiver buffer allocation.
For example, suppose the receiver has a 4096-byte buffer, as shown in Fig. 6-40. If
the sender transmits a 2048-byte segment that is correctly received, the receiver
will acknowledge the segment. However, since it now has only 2048 bytes of buff-
er space (until the application removes some data from the buffer), it will advertise
a window of 2048 starting at the next byte expected.

Now the sender transmits another 2048 bytes, which are acknowledged, but the
advertised window is of size 0. The sender must stop until the application process
on the receiving host has removed some data from the buffer, at which time TCP
can advertise a larger window and more data can be sent.

When the window is 0, the sender may not normally send segments, with two
exceptions. First, urgent data may be sent, for example, to allow the user to kill the
process running on the remote machine. Second, the sender may send a 1-byte
segment to force the receiver to reannounce the next byte expected and the window
size. This packet is called a window probe. The TCP standard explicitly provides
this option to prevent deadlock if a window update ever gets lost.

Senders are not required to transmit data as soon as they come in from the
application. Neither are receivers required to send acknowledgements as soon as
possible. For example, in Fig. 6-40, when the first 2 KB of data came in, TCP,
knowing that it had a 4-KB window, would have been completely correct in just
buffering the data until another 2 KB came in, to be able to transmit a segment
with a 4-KB payload. This freedom can be used to improve performance.

Consider a connection to a remote terminal, for example using SSH or telnet,
that reacts on every keystroke. In the worst case, whenever a character arrives at
the sending TCP entity, TCP creates a 21-byte TCP segment, which it gives to IP
to send as a 41-byte IP datagram. At the receiving side, TCP immediately sends a
40-byte acknowledgement (20 bytes of TCP header and 20 bytes of IP header).
Later, when the remote terminal has read the byte, TCP sends a window update,
moving the window 1 byte to the right.This packet is also 40 bytes. Finally, when
the remote terminal has processed the character, it echoes the character for local
display using a 41-byte packet. In all, 162 bytes of bandwidth are consumed and

SEC. 6.5 THE INTERNET TRANSPORT PROTOCOLS: TCP 571

Application
does a 2-KB
write

Application
does a 2-KB
write

Application
reads 2 KB

Sender is
blocked

Sender may
send up to 2-KB

Receiver’s
buffer

0 4 KB

2 KB

2 KB

Empty

Full

2 KB SEQ = 0

2 KB SEQ = 2048

1 KB SEQ = 4096

ACK = 2048 WIN = 2048

ACK = 4096 WIN = 0

ACK = 4096 WIN = 2048

2 KB1 KB

Sender Receiver

Figure 6-40. Window management in TCP.

four segments are sent for each character typed. When bandwidth is scarce, this
method of doing business is not desirable.

One approach that many TCP implementations use to optimize this situation is
called delayed acknowledgements. The idea is to delay acknowledgements and
window updates for up to 500 msec in the hope of acquiring some data on which to
hitch a free ride. Assuming the terminal echoes within 500 msec, only one 41-byte
packet now need be sent back by the remote side, cutting the packet count and
bandwidth usage in half.

Although delayed acknowledgements reduce the load placed on the network by
the receiver, a sender that sends multiple short packets (e.g., 41-byte packets con-
taining 1 byte of data) is still operating inefficiently. A way to reduce this usage is
known as Nagle’s algorithm (Nagle, 1984). What Nagle suggested is simple:
when data come into the sender in small pieces, just send the first piece and buffer
all the rest until the first piece is acknowledged. Then send all the buffered data in

572 THE TRANSPORT LAYER CHAP. 6

one TCP segment and start buffering again until the next segment is acknowledged.
That is, only one short packet can be outstanding at any time. If many pieces of
data are sent by the application in one round-trip time, Nagle’s algorithm will put
the many pieces in one segment, greatly reducing the bandwidth used. The algo-
rithm additionally says that a new segment should be sent if enough data have
trickled in to fill a maximum segment.

Nagle’s algorithm is widely used by TCP implementations, but there are times
when it is better to disable it. In particular, in interactive games that are run over
the Internet, the players typically want a rapid stream of short update packets.
Gathering the updates to send them in bursts makes the game respond erratically,
which makes for unhappy users. A more subtle problem is that Nagle’s algorithm
can sometimes interact with delayed acknowledgements to cause a temporary
deadlock: the receiver waits for data on which to piggyback an acknowledgement,
and the sender waits on the acknowledgement to send more data. This interaction
can delay the downloads of Web pages. Because of these problems, Nagle’s algo-
rithm can be disabled (which is called the TCP NODELAY option). Mogul and
Minshall (2001) discuss this and other solutions.

Another problem that can degrade TCP performance is the silly window syn-
drome (Clark, 1982). This problem occurs when data are passed to the sending
TCP entity in large blocks, but an interactive application on the receiving side
reads data only 1 byte at a time. To see the problem, look at Fig. 6-41. Initially,
the TCP buffer on the receiving side is full (i.e., it has a window of size 0) and the
sender knows this. Then the interactive application reads one character from the
TCP stream. This action makes the receiving TCP happy, so it sends a window
update to the sender saying that it is all right to send 1 byte. The sender obliges
and sends 1 byte. The buffer is now full, so the receiver acknowledges the 1-byte
segment and sets the window to 0. This behavior can go on forever.

Clark’s solution is to prevent the receiver from sending a window update for
1 byte. Instead, it is forced to wait until it has a decent amount of space available
and advertise that instead. Specifically, the receiver should not send a window
update until it can handle the maximum segment size it advertised when the con-
nection was established or until its buffer is half empty, whichever is smaller. Fur-
thermore, the sender can also help by not sending tiny segments. Instead, it should
wait until it can send a full segment, or at least one containing half of the receiver’s
buffer size.

Nagle’s algorithm and Clark’s solution to the silly window syndrome are com-
plementary. Nagle was trying to solve the problem caused by the sending applica-
tion delivering data to TCP a byte at a time. Clark was trying to solve the problem
of the receiving application sucking the data up from TCP a byte at a time. Both
solutions are valid and can work together. The goal is for the sender not to send
small segments and the receiver not to ask for them.

The receiving TCP can go further in improving performance than just doing
window updates in large units. Like the sending TCP, it can also buffer data, so it

SEC. 6.5 THE INTERNET TRANSPORT PROTOCOLS: TCP 573

Application reads 1 byte

Window update segment sent

New byte arrives

Header

Header

Receiver's buffer is full

Receiver's buffer is full

Room for one more byte

1 Byte

Figure 6-41. Silly window syndrome.

can block a READ request from the application until it has a large chunk of data for
it. Doing so reduces the number of calls to TCP (and the overhead). It also
increases the response time, but for noninteractive applications like file transfer,
efficiency may be more important than response time to individual requests.

Another issue that the receiver must handle is that segments may arrive out of
order. The receiver will buffer the data until it can be passed up to the application
in order. Actually, nothing bad would happen if out-of-order segments were dis-
carded, since they would eventually be retransmitted by the sender, but it would be
wasteful.

Acknowledgements can be sent only when all the data up to the byte acknow-
ledged have been received. This is a cumulative acknowledgement. If the receiver
gets segments 0, 1, 2, 4, 5, 6, and 7, it can acknowledge everything up to and in-
cluding the last byte in segment 2. When the sender times out, it then retransmits
segment 3. As the receiver has buffered segments 4 through 7, upon receipt of seg-
ment 3 it can acknowledge all bytes up to the end of segment 7.

6.5.9 TCP Timer Management

TCP uses multiple timers (at least conceptually) to do its work. The most
important of these is the RTO (Retransmission TimeOut). When a segment is
sent, a retransmission timer is started. If the segment is acknowledged before the

574 THE TRANSPORT LAYER CHAP. 6

timer expires, the timer is stopped. If, on the other hand, the timer goes off before
the acknowledgement comes in, the segment is retransmitted (and the timer is start-
ed again). The question that arises is: how long should the timeout be?

This problem is much more difficult in the transport layer than in data link pro-
tocols such as 802.11. In the latter case, the expected delay is measured in
microseconds and is highly predictable (i.e., has a low variance), so the timer can
be set to go off just slightly after the acknowledgement is expected, as shown in
Fig. 6-42(a). Since acknowledgements are rarely delayed in the data link layer
(due to lack of congestion), the absence of an acknowledgement at the expected
time generally means either the frame or the acknowledgement has been lost.

T T1 T20.3

0.2

0.1

0
0 10 20

Round-trip time (microseconds)
(a) (b)

Pr
ob

ab
ilit

y

0.3

0.2

0.1

0

Pr
ob

ab
ilit

y

30 40 50 0 10 20
Round-trip time (milliseconds)

30 40 50

Figure 6-42. (a) Probability density of acknowledgement arrival times in the
data link layer. (b) Probability density of acknowledgement arrival times for TCP.

TCP is faced with a radically different environment. The probability density
function for the time it takes for a TCP acknowledgement to come back looks more
like Fig. 6-42(b) than Fig. 6-42(a). It is larger and more variable. Determining the
round-trip time to the destination is tricky. Even when it is known, deciding on the
timeout interval is also difficult. If the timeout is set too short, say, T1 in
Fig. 6-42(b), unnecessary retransmissions will occur, clogging the Internet with
useless packets. If it is set too long (e.g., T2), performance will suffer due to the
long retransmission delay whenever a packet is lost. Furthermore, the mean and
variance of the acknowledgement arrival distribution can change rapidly within a
few seconds as congestion builds up or is resolved.

The solution is to use a dynamic algorithm that constantly adapts the timeout
interval, based on continuous measurements of network performance. The algo-
rithm generally used by TCP is due to Jacobson (1988) and works as follows. For
each connection, TCP maintains a variable, SRTT (Smoothed Round-Trip Time),

SEC. 6.5 THE INTERNET TRANSPORT PROTOCOLS: TCP 575

that is the best current estimate of the round-trip time to the destination in question.
When a segment is sent, a timer is started, both to see how long the acknowledge-
ment takes and also to trigger a retransmission if it takes too long. If the acknowl-
edgement gets back before the timer expires, TCP measures how long the acknowl-
edgement took, say, R. It then updates SRTT according to the formula

SRTT = _ SRTT + (1 < _) R

where _ is a smoothing factor that determines how quickly the old values are for-
gotten. Typically, _ = 7/8. This kind of formula is an EWMA (Exponentially
Weighted Moving Average) or low-pass filter that discards noise in the samples.

Even given a good value of SRTT, choosing a suitable retransmission timeout
is a nontrivial matter. Initial implementations of TCP used 2xRTT , but experience
showed that a constant value was too inflexible because it failed to respond when
the variance went up. In particular, queueing models of random (i.e., Poisson) traf-
fic predict that when the load approaches capacity, the delay becomes large and
highly variable. This can lead to the retransmission timer firing and a copy of the
packet being retransmitted although the original packet is still transiting the net-
work. It is all the more likely to happen under conditions of high load, which is the
worst time at which to send additional packets into the network.

To fix this problem, Jacobson proposed making the timeout value sensitive to
the variance in round-trip times as well as the smoothed round-trip time. This
change requires keeping track of another smoothed variable, RTTVAR (Round-Trip
Time VARiation) that is updated using the formula

RTTVAR = ` RTTVAR + (1 < `) |SRTT < R|

This is an EWMA as before, and typically ` = 3/4. The retransmission timeout,
RTO, is set to be

RTO = SRTT + 4 × RTTVAR

The choice of the factor 4 is somewhat arbitrary, but multiplication by 4 can be
done with a single shift, and less than 1% of all packets come in more than four
standard deviations late. Note that RTTVAR is not exactly the same as the standard
deviation (it is really the mean deviation), but it is close enough in practice. Jacob-
son’s paper is full of clever tricks to compute timeouts using only integer adds,
subtracts, and shifts. This economy is not needed for modern hosts, but it has
become part of the culture that allows TCP to run on all manner of devices, from
supercomputers down to tiny devices. So far nobody has put it on an RFID chip,
but someday? Who knows.

More details of how to compute this timeout, including initial settings of the
variables, are given in RFC 2988. The retransmission timer is also held to a mini-
mum of 1 second, regardless of the estimates. This is a conservative (albeit some-
what empirical) value chosen to prevent spurious retransmissions based on meas-
urements (Allman and Paxson, 1999).

576 THE TRANSPORT LAYER CHAP. 6

One problem that occurs with gathering the samples, R, of the round-trip time
is what to do when a segment times out and is sent again. When the acknowledge-
ment comes in, it is unclear whether the acknowledgement refers to the first trans-
mission or a later one. Guessing wrong can seriously contaminate the retransmis-
sion timeout. Phil Karn discovered this problem the hard way. Karn is an amateur
radio enthusiast interested in transmitting TCP/IP packets by ham radio, a notori-
ously unreliable medium. He made a simple proposal: do not update estimates on
any segments that have been retransmitted. Additionally, the timeout is doubled on
each successive retransmission until the segments get through the first time. This
fix is called Karn’s algorithm (Karn and Partridge, 1987). Most TCP imple-
mentations use it.

The retransmission timer is not the only timer TCP uses. A second timer is the
persistence timer. It is designed to prevent the following deadlock. The receiver
sends an acknowledgement with a window size of 0, telling the sender to wait.
Later, the receiver updates the window, but the packet with the update is lost. Now
the sender and the receiver are each waiting for the other to do something. When
the persistence timer goes off, the sender transmits a probe to the receiver. The re-
sponse to the probe gives the window size. If it is still 0, the persistence timer is
set again and the cycle repeats. If it is nonzero, data can now be sent.

A third timer that some implementations use is the keepalive timer. When a
connection has been idle for a long time, the keepalive timer may go off to cause
one side to checkwhether the other side is still there. If it fails to respond, the con-
nection is terminated. This feature is controversial because it adds overhead and
may terminate an otherwise healthy connection due to a transient network parti-
tion.

The last timer used on each TCP connection is the one used in the TIME WAIT
state while closing. It runs for twice the maximum packet lifetime to make sure
that when a connection is closed, all packets created by it have died off.

6.5.10 TCP Congestion Control

We have saved one of the key functions of TCP for last: congestion control.
When the load offered to any network is more than it can handle, congestion builds
up. The Internet is no exception. The network layer detects congestion when
queues grow large at routers and tries to manage it, if only by dropping packets. It
is up to the transport layer to receive congestion feedback from the network layer
and slow down the rate of traffic that it is sending into the network. In the Internet,
TCP plays the main role in controlling congestion, as well as the main role in reli-
able transport. That is why it is such a special protocol.

We covered the general situation of congestion control back in Sec. 6.3. One
key takeaway there was that a transport protocol using an additive increase multi-
plicative decrease control law in response to binary congestion signals from the

SEC. 6.5 THE INTERNET TRANSPORT PROTOCOLS: TCP 577

network would converge to a fair and efficient bandwidth allocation. TCP conges-
tion control is based on implementing this approach using a window and with
packet loss as the binary signal. To do so, TCP maintains a congestion window
whose size is the number of bytes the sender may have in the network at any time.
The corresponding rate is the window size divided by the round-trip time of the
connection. TCP adjusts the size of the window according to the AIMD rule.

Recall that the congestion window is maintained in addition to the flow control
window, which specifies the number of bytes that the receiver can buffer. Both
windows are tracked in parallel, and the number of bytes that may be sent is the
smaller of the two windows. Thus, the effective window is the smaller of what the
sender thinks is all right and what the receiver thinks is all right. It takes two to
tango. TCP will stop sending data if either the congestion or the flow control win-
dow is temporarily full. If the receiver says ‘‘send 64 KB’’ but the sender knows
that bursts of more than 32 KB clog the network, it will send 32 KB. On the other
hand, if the receiver says ‘‘send 64 KB’’ and the sender knows that bursts of up to
128 KB get through effortlessly, it will send the full 64 KB requested. The flow
control window was described earlier, and in what follows we will only describe
the congestion window.

Modern congestion control was added to TCP largely through the efforts of
Van Jacobson (1988). It is a fascinating story. Starting in 1986, the growing popu-
larity of the early Internet led to the first occurrence of what became known as a
congestion collapse, a prolonged period during which goodput dropped precipi-
tously (i.e., by more than a factor of 100) due to congestion in the network. Jacob-
son (and many others) set out to understand what was happening and remedy the
situation.

The high-level fix that Jacobson implemented was to approximate an AIMD
congestion window. The interesting part, and much of the complexity of TCP con-
gestion control, is how he added this to an existing implementation without chang-
ing any of the message formats, which made it instantly deployable. To start, he
observed that packet loss is a suitable signal of congestion. This signal comes a lit-
tle late (as the network is already congested) but it is quite dependable. After all, it
is difficult to build a router that does not drop packets when it is overloaded. This
fact is unlikely to change. Even when terabyte memories appear to buffer vast
numbers of packets, we will probably have terabit/sec networks to fill up those
memories.

However, using packet loss as a congestion signal depends on transmission
errors being relatively rare. This is not normally the case for wireless links such as
802.11, which is why they include their own retransmission mechanism at the link
layer. Because of wireless retransmissions, network layer packet loss due to trans-
mission errors is normally masked on wireless networks. It is also rare on other
links because wires and optical fibers typically have low bit-error rates.

All the Internet TCP algorithms assume that lost packets are caused by conges-
tion and monitor timeouts and look for signs of trouble the way miners watch their

578 THE TRANSPORT LAYER CHAP. 6

canaries. A good retransmission timer is needed in order to detect packet loss sig-
nals accurately and in a timely manner. We have already discussed how the TCP
retransmission timer includes estimates of the mean and variation in round-trip
times. Fixing this timer, by including the variation factor, was an important step in
Jacobson’s work. Given a good retransmission timeout, the TCP sender can track
the outstanding number of bytes, which are loading the network. It simply looks at
the difference between the sequence numbers that are transmitted and acknow-
ledged.

Now it seems that our task is easy. All we need to do is to track the congestion
window, using sequence and acknowledgement numbers, and adjust the congestion
window using an AIMD rule. As you might have expected, it is more complicated
than that. A first consideration is that the way packets are sent into the network,
even over short periods of time, must be matched to the network path. Otherwise
the traffic will cause congestion. For example, consider a host with a congestion
window of 64 KB attached to a 1-Gbps switched Ethernet. If the host sends the
entire window at once, this burst of traffic may travel over a slow 1-Mbps ADSL
line further along the path. The burst that took only half a millisecond on the
1-Gbps line will clog the 1-Mbps line for half a second, completely disrupting pro-
tocols such as voice over IP. This behavior might be a good idea for a protocol
designed to cause congestion, but not for a protocol to control it.

However, it turns out that we can use small bursts of packets to our advantage.
Fig. 6-43 shows what happens when a sender on a fast network (the 1-Gbps link)
sends a small burst of four packets to a receiver on a slow network (the 1-Mbps
link) that is the bottleneck or slowest part of the path. Initially the four packets
travel over the link as quickly as they can be sent by the sender. At the router, they
are queued while being sent because it takes longer to send a packet over the slow
link than to receive the next packet over the fast link. But the queue is not large
because only a small number of packets were sent at once. Note the increased
length of the packets on the slow link. The same packet, of 1 KB say, is now longer
because it takes more time to send it on a slow link than on a fast one.

Fast link Slow link
(bottleneck)

1: Burst of packets
sent on fast link

2: Burst queues at router
and drains onto slow link

3: Receive acks packets
at slow link rate

4: Acks preserve slow
link timing at sender Ack clock

ReceiverSender
.

Figure 6-43. A burst of packets from a sender and the returning ack clock.

Eventually the packets get to the receiver, where they are acknowledged. The
times for the acknowledgements reflect the times at which the packets arrived at

SEC. 6.5 THE INTERNET TRANSPORT PROTOCOLS: TCP 579

the receiver after crossing the slow link. They are spread out compared to the origi-
nal packets on the fast link. As these acknowledgements travel over the network
and back to the sender they preserve this timing.

The key observation is this: the acknowledgements return to the sender at
about the rate that packets can be sent over the slowest link in the path. This is pre-
cisely the rate that the sender wants to use. If it injects new packets into the net-
work at this rate, they will be sent as fast as the slow link permits, but they will not
queue up and congest any router along the path. This timing is known as an ack
clock. It is an essential part of TCP. By using an ack clock, TCP smoothes out
traffic and avoids unnecessary queues at routers.

A second consideration is that the AIMD rule will take a very long time to
reach a good operating point on fast networks if the congestion window is started
from a small size. Consider a modest network path that can support 10 Mbps with
an RTT of 100 msec. The appropriate congestion window is the bandwidth-delay
product, which is 1 Mbit or 100 packets of 1250 bytes each. If the congestion win-
dow starts at 1 packet and increases by 1 packet every RTT, it will be 100 RTTs or
10 seconds before the connection is running at about the right rate. That is a long
time to wait just to get to the right speed for a transfer. We could reduce this startup
time by starting with a larger initial window, say of 50 packets. But this window
would be far too large for slow or short links. It would cause congestion if used all
at once, as we have just described.

Instead, the solution Jacobson chose to handle both of these considerations is a
mix of linear and multiplicative increase. When a connection is established, the
sender initializes the congestion window to a small initial value of at most four
segments; the details are described in RFC 3390, and the use of four segments is an
increase from an earlier initial value of one segment based on experience. The
sender then sends the initial window. The packets will take a round-trip time to be
acknowledged. For each segment that is acknowledged before the retransmission
timer goes off, the sender adds one segment’s worth of bytes to the congestion win-
dow. Plus, as that segment has been acknowledged, there is now one less segment
in the network. The upshot is that every acknowledged segment allows two more
segments to be sent. The congestion window is doubling every round-trip time.

This algorithm is called slow start, but it is not slow at all—it is exponential
growth—except in comparison to the previous algorithm that let an entire flow
control window be sent all at once. Slow start is shown in Fig. 6-44. In the first
round-trip time, the sender injects one packet into the network (and the receiver re-
ceives one packet). Two packets are sent in the next round-trip time, then four
packets in the third round-trip time.

Slow start works well over a range of link speeds and round-trip times, and
uses an ack clock to match the rate of sender transmissions to the network path.
Take a look at the way acknowledgements return from the sender to the receiver in
Fig. 6-44. When the sender gets an acknowledgement, it increases the congestion
window by one and immediately sends two packets into the network. (One packet

580 THE TRANSPORT LAYER CHAP. 6

cwnd = 1

1 RTT, 1 packet
cwnd = 2

cwnd = 3
cwnd = 4

cwnd = 5
cwnd = 6
cwnd = 7
cwnd = 8

1 RTT, 2 packets

1 RTT, 4 packets

1 RTT, 4 packets
(pipe is full)

Data
Acknowledgement

TCP sender TCP receiver

Figure 6-44. Slow start from an initial congestion window of one segment.

is the increase by one; the other packet is a replacement for the packet that has
been acknowledged and left the network. At all times, the number of unacknow-
ledged packets is given by the congestion window.) However, these two packets
will not necessarily arrive at the receiver as closely spaced as when they were sent.
For example, suppose the sender is on a 100-Mbps Ethernet. Each packet of 1250
bytes takes 100 µsec to send. So the delay between the packets can be as small as
100 µsec. The situation changes if these packets go across a 1-Mbps ADSL link
anywhere along the path. It now takes 10 msec to send the same packet. This
means that the minimum spacing between the two packets has grown by a factor of
100. Unless the packets have to wait together in a queue on a later link, the spacing
will remain large.

In Fig. 6-44, this effect is shown by enforcing a minimum spacing between
data packets arriving at the receiver. The same spacing is kept when the receiver
sends acknowledgements, and thus when the sender receives the acknowledge-
ments. If the network path is slow, acknowledgements will come in slowly (after a
delay of an RTT). If the network path is fast, acknowledgements will come in
quickly (again, after the RTT). All the sender has to do is follow the timing of the
ack clock as it injects new packets, which is what slow start does.

Because slow start causes exponential growth, eventually (and sooner rather
than later) it will send too many packets into the network too quickly. When this
happens, queues will build up in the network. When the queues are full, one or
more packets will be lost. After this happens, the TCP sender will time out when
an acknowledgement fails to arrive in time. There is evidence of slow start growing
too fast in Fig. 6-44. After three RTTs, four packets are in the network. These four
packets take an entire RTT to arrive at the receiver. That is, a congestion window
of four packets is the right size for this connection. However, as these packets are
acknowledged, slow start continues to grow the congestion window, reaching eight
packets in another RTT. Only four of these packets can reach the receiver in one

SEC. 6.5 THE INTERNET TRANSPORT PROTOCOLS: TCP 581

RTT, no matter how many are sent. That is, the network pipe is full. Additional
packets placed into the network by the sender will build up in router queues, since
they cannot be delivered to the receiver quickly enough. Congestion and packet
loss will occur soon.

To keep slow start under control, the sender keeps a threshold for the con-
nection called the slow start threshold. Initially this value is set arbitrarily high,
to the size of the flow control window, so that it will not limit the connection. TCP
keeps increasing the congestion window in slow start until a timeout occurs or the
congestion window exceeds the threshold (or the receiver’s window is filled).

Whenever a packet loss is detected, for example, by a timeout, the slow start
threshold is set to half of the congestion window and the entire process is restarted.
The idea is that the current window is too large because it caused congestion previ-
ously that is only now detected by a timeout. Half of the window, which was used
successfully earlier, is probably a better estimate for a congestion window that is
close to the path capacity without causing loss. In our example in Fig. 6-44, grow-
ing the congestion window to eight packets may cause loss, while the congestion
window of four packets in the previous RTT was the right value. The congestion
window is then reset to its small initial value and slow start resumes.

Whenever the slow start threshold is crossed, TCP switches from slow start to
additive increase. In this mode, the congestion window is increased by one seg-
ment every round-trip time. Like slow start, this is usually implemented with an
increase for every segment that is acknowledged, rather than an increase once per
RTT. Call the congestion window cwnd and the maximum segment size MSS. A
common approximation is to increase cwnd by (MSS × MSS)/cwnd for each of the
cwnd /MSS packets that may be acknowledged. This increase does not need to be
fast. The whole idea is for a TCP connection to spend a lot of time with its conges-
tion window close to the optimum value—not so small that throughput will be low,
and not so large that congestion will occur.

Additive increase is shown in Fig. 6-45 for the same situation as slow start. At
the end of every RTT, the sender’s congestion window has grown enough that it
can inject an additional packet into the network. Compared to slow start, the linear
rate of growth is much slower. It makes little difference for small congestion win-
dows, as is the case here, but a large difference in the time taken to grow the con-
gestion window to 100 segments, for example.

There is something else that we can do to improve performance. The defect in
the scheme so far is waiting for a timeout. Timeouts are relatively long because
they must be conservative. After a packet is lost, the receiver cannot acknowledge
past it, so the acknowledgement number will stay fixed, and the sender will not be
able to send any new packets into the network because its congestion window
remains full. This condition can continue for a relatively long period until the
timer fires and the lost packet is sent again. At that stage, TCP slow starts again.

There is a quick way for the sender to recognize that one of its packets has
been lost. As packets beyond the lost packet arrive at the receiver, they trigger

582 THE TRANSPORT LAYER CHAP. 6

cwnd = 2

1 RTT, 2 packets
cwnd = 3

cwnd = 4

cwnd = 5

1 RTT, 3 packets

1 RTT, 4 packets

1 RTT, 4 packets
(pipe is full)

Data
Acknowledgement

TCP sender TCP receiver

cwnd = 1

1 RTT, 1 packet

Figure 6-45. Additive increase from an initial congestion window of one segment.

acknowledgements that return to the sender. These acknowledgements bear the
same acknowledgement number. They are called duplicate acknowledgements.
Each time the sender receives a duplicate acknowledgement, it is likely that anoth-
er packet has arrived at the receiver and the lost packet still has not shown up.

Because packets can take different paths through the network, they can arrive
out of order. This will trigger duplicate acknowledgements even though no packets
have been lost. However, this is uncommon in the Internet much of the time.
When there is reordering across multiple paths, the received packets are usually not
reordered too much. Thus, TCP somewhat arbitrarily assumes that three duplicate
acknowledgements imply that a packet has been lost. The identity of the lost pack-
et can be inferred from the acknowledgement number as well. It is the very next
packet in sequence. This packet can then be retransmitted right away, before the
retransmission timeout fires.

This heuristic is called fast retransmission. After it fires, the slow start
threshold is still set to half the current congestion window, just as with a timeout.
Slow start can be restarted by setting the congestion window to one packet. With
this window size, a new packet will be sent after the one round-trip time that it
takes to acknowledge the retransmitted packet along with all data that had been
sent before the loss was detected.

An illustration of the congestion algorithm we have built up so far is shown in
Fig. 6-46. This version of TCP is called TCP Tahoe after the 4.2BSD Tahoe
release in 1988 in which it was included. The maximum segment size here is 1
KB. Initially, the congestion window was 64 KB, but a timeout occurred, so the
threshold is set to 32 KB and the congestion window to 1 KB for transmission 0.
The congestion window grows exponentially until it hits the threshold (32 KB).

SEC. 6.5 THE INTERNET TRANSPORT PROTOCOLS: TCP 583

The window is increased every time a new acknowledgement arrives rather than
continuously, which leads to the discrete staircase pattern. After the threshold is
passed, the window grows linearly. It is increased by one segment every RTT.

5

Transmission round (RTTs)

Additive
increase

Threshold 32KB Packet
loss

C
on

ge
st

io
n

w
in

do
w

 (K
B

or
 p

ac
ke

ts
)

10

15

20

30

35

40

25

2 4 6 8 10 12 14 16 18 20 22 24

Slow start

0

Threshold 20KB

Figure 6-46. Slow start followed by additive increase in TCP Tahoe.

The transmissions in round 13 are unlucky (they should have known), and one
of them is lost in the network. This is detected when three duplicate acknowledge-
ments arrive. At that time, the lost packet is retransmitted, the threshold is set to
half the current window (by now 40 KB, so half is 20 KB), and slow start is initi-
ated all over again. Restarting with a congestion window of one packet takes one
round-trip time for all of the previously transmitted data to leave the network and
be acknowledged, including the retransmitted packet. The congestion window
grows with slow start as it did previously, until it reaches the new threshold of 20
KB. At that time, the growth becomes linear again. It will continue in this fashion
until another packet loss is detected via duplicate acknowledgements or a timeout
(or the receiver’s window becomes the limit).

TCP Tahoe (which included good retransmission timers) provided a working
congestion control algorithm that solved the problem of congestion collapse.
Jacobson realized that it is possible to do even better. At the time of the fast
retransmission, the connection is running with a congestion window that is too
large, but it is still running with a working ack clock. Every time another duplicate
acknowledgement arrives, it is likely that another packet has left the network.
Using duplicate acknowledgements to count the packets in the network, makes it
possible to let some packets exit the network and continue to send a new packet for
each additional duplicate acknowledgement.

Fast recovery is the heuristic that implements this behavior. It is a temporary
mode that aims to maintain the ack clock running with a congestion window that is
the new threshold, or half the value of the congestion window at the time of the

584 THE TRANSPORT LAYER CHAP. 6

fast retransmission. To do this, duplicate acknowledgements are counted (including
the three that triggered fast retransmission) until the number of packets in the net-
work has fallen to the new threshold. This takes about half a round-trip time. From
then on, a new packet can be sent for each duplicate acknowledgement that is
received. One round-trip time after the fast retransmission, the lost packet will have
been acknowledged. At that time, the stream of duplicate acknowledgements will
cease and fast recovery mode will be exited. The congestion window will be set to
the new slow start threshold and grows by linear increase.

The upshot of this heuristic is that TCP avoids slow start, except when the con-
nection is first started and when a timeout occurs. The latter can still happen when
more than one packet is lost and fast retransmission does not recover adequately.
Instead of repeated slow starts, the congestion window of a running connection fol-
lows a sawtooth pattern of additive increase (by one segment every RTT) and mul-
tiplicative decrease (by half in one RTT). This is exactly the AIMD rule that we
sought to implement.

This sawtooth behavior is shown in Fig. 6-47. It is produced by TCP Reno,
named after the 1990 4.3BSD Reno release in which it was included. TCP Reno is
essentially TCP Tahoe plus fast recovery. After an initial slow start, the congestion
window climbs linearly until a packet loss is detected by duplicate acknowledge-
ments. The lost packet is sent again and fast recovery is used to keep the ack clock
running until the retransmission is acknowledged. At that time, the congestion win-
dow is resumed from the new slow start threshold, rather than from 1. This behav-
ior continues indefinitely, and the connection spends most of the time with its con-
gestion window near the optimum value of the bandwidth-delay product.

5

Transmission round (RTTs)

Additive
increasePacket

loss

C
on

ge
st

io
n

w
in

do
w

 (K
B

or
 p

ac
ke

ts
)

10

15

20

30

35

40

25

4 8 12 16 20 24 28 32 36 40 44 48

Slow start

0

Thresh.

Threshold

Fast
recovery

Multiplicative
decrease

Threshold

Figure 6-47. Fast recovery and the sawtooth pattern of TCP Reno.

TCP Reno with its mechanisms for adjusting the congestion window has
formed the basis for TCP congestion control for more than two decades. Most of
the changes in the intervening years have adjusted these mechanisms in minor

SEC. 6.5 THE INTERNET TRANSPORT PROTOCOLS: TCP 585

ways, for example, by changing the choices of the initial window and removing
various ambiguities. Some improvements have been made for recovering from two
or more losses in a window of packets. For example, the TCP NewReno version
uses a partial advance of the acknowledgement number after a retransmission to
find and repair another loss (Hoe, 1996), as described in RFC 3782. Since the
mid-1990s, several variations have emerged that follow the principles we have
described but use slightly different control laws. For example, Linux uses a variant
called CUBIC TCP (Ha et al., 2008) and Windows includes a variant called Com-
pound TCP (Tan et al., 2006).

Two larger changes have also affected TCP implementations. First, much of
the complexity of TCP comes from inferring from a stream of duplicate acknowl-
edgements which packets have arrived and which packets have been lost. The
cumulative acknowledgement number does not provide this information. A simple
fix is the use of SACK, which lists up to three ranges of bytes that have been
received. With this information, the sender can more directly decide what packets
to retransmit and track the packets in flight to implement the congestion window.

When the sender and receiver set up a connection, they each send the SACK
permitted TCP option to signal that they understand selective acknowledgements.
Once SACK is enabled for a connection, it works as shown in Fig. 6-48. A re-
ceiver uses the TCP Acknowledgement number field in the normal manner, as a
cumulative acknowledgement of the highest in-order byte that has been received.
When it receives packet 3 out of order (because packet 2 was lost), it sends a SACK
option for the received data along with the (duplicate) cumulative acknowledge-
ment for packet 1. The SACK option gives the byte ranges that have been received
above the number given by the cumulative acknowledgement. The first range is the
packet that triggered the duplicate acknowledgement. The next ranges, if present,
are older blocks. Up to three ranges are commonly used. By the time packet 6 is
received, two SACK byte ranges are used to indicate that packet 6 and packets 3 to
4 have been received, in addition to all packets up to packet 1. From the infor-
mation in each SACK option that it receives, the sender can decide which packets
to retransmit. In this case, retransmitting packets 2 and 5 would be a good idea.

6 5 4 3 2 1

Lost packets

ACK: 1 ACK: 1
SACK: 3

ACK: 1
SACK: 3-4

ACK: 1
SACK: 6, 3-4

Sender Receiver

Retransmit 2 and 5!

Figure 6-48. Selective acknowledgements.

SACK is strictly advisory information. The actual detection of loss using dup-
licate acknowledgements and adjustments to the congestion window proceed just

586 THE TRANSPORT LAYER CHAP. 6

as before. However, with SACK, TCP can recover more easily from situations in
which multiple packets are lost at roughly the same time, since the TCP sender
knows which packets have not been received. SACK is now widely deployed. It is
described in RFC 2883, and TCP congestion control using SACK is described in
RFC 3517.

The second change is the use of ECN in addition to packet loss as a congestion
signal. ECN is an IP layer mechanism to notify hosts of congestion that we de-
scribed in Sec. 5.3.2. With it, the TCP receiver can receive congestion signals
from IP.

The use of ECN is enabled for a TCP connection when both the sender and re-
ceiver indicate that they are capable of using ECN by setting the ECE and CWR
bits during connection establishment. If ECN is used, each packet that carries a
TCP segment is flagged in the IP header to show that it can carry an ECN signal.
Routers that support ECN will set a congestion signal on packets that can carry
ECN flags when congestion is approaching, instead of dropping those packets after
congestion has occurred.

The TCP receiver is informed if any packet that arrives carries an ECN conges-
tion signal. The receiver then uses the ECE (ECN Echo) flag to signal the TCP
sender that its packets have experienced congestion. The sender tells the receiver
that it has heard the signal by using the CWR (Congestion Window Reduced) flag.

The TCP sender reacts to these congestion notifications in exactly the same
way as it does to packet loss that is detected via duplicate acknowledgements.
However, the situation is strictly better. Congestion has been detected and no
packet was harmed in any way. ECN is described in RFC 3168. It requires both
host and router support, and is not yet widely used on the Internet.

For more information on the complete set of congestion control behaviors that
are implemented in TCP, see RFC 5681.

6.5.11 TCP CUBIC

To cope with increasingly large bandwidth-delay products, TCP CUBIC was
developed (Ha et al., 2008). As previously described, networks with large band-
width-delay products take many round-trip times to reach the available capacity of
the end-to-end path. The general approach behind TCP CUBIC is to increase the
congestion window in such a way that is a function of the time since the last dupli-
cate acknowledgment, rather than simply based on the arrival of ACKs.

CUBIC also adjusts its congestion window differently as a function of time. In
contrast to the standard AIMD congestion control approach as we described above,
the congestion window increases according to a cubic function, which initially has
a growth in the congestion window, followed by a plateau period, and finally a
period of faster growth. Figure 6-49 shows the evolution of TCP CUBIC’s conges-
tion window over time. Again, one of the main differences between CUBIC and
other versions of TCP is that the congestion window evolves as a function of time,

SEC. 6.5 THE INTERNET TRANSPORT PROTOCOLS: TCP 587

since the last congestion event, increasing quickly, then plateauing to the conges-
tion window that the sender achieved before the last congestion event, and then
again increasing to probe for the optimal rate above that rate until another conges-
tion event occurs.

Time since last congestion event

Congestion
window

Figure 6-49. Evolution of TCP CUBIC Congestion Window.

TCP CUBIC is implemented by default in the Linux kernels 2.6.19 and above,
as well as modern versions of Windows.

6.6 TRANSPORT PROTOCOLS AND CONGESTION CONTROL

As network capacity increases, some of TCP’s conventional operating modes
no longer achieve optimal performance. In particular, connection-oriented proto-
cols such as TCP can suffer from high connection setup overhead, as well as per-
formance issues on networks with large buffers. In the remainder of this section,
we discuss some recent developments in transport protocols to address these
issues.

6.6.1 QUIC: Quick UDP Internet Connections

QUIC, initially proposed as (Quick UDP Internet Connections) is a transport
protocol that aims to improve some of the throughput and latency characteristics of
TCP. It was used in more than half of the connections from the Chrome browser to
Google’s services before it was ever standardized. However, most Web browsers
other than Google Chrome do not support the protocol.

As its name suggests, QUIC runs on top of UDP and its main goal has been to
make application protocols such as the Web protocols (discussed in Chap. 7) faster.
We will discuss how QUIC interacts with the Web’s application protocols in some
more detail in Chap. 7. As we will soon see, an application such as the Web relies

588 THE TRANSPORT LAYER CHAP. 6

on establishing multiple connections in parallel to load an individual Web page.
Because many of those connections are to a common server, establishing a new
connection to load each individual Web object can result in significant overhead.
As a result, QUIC aims to multiplex these connections over a single UDP flow,
while also ensuring that if a single Web object transfer is delayed, that it does not
ultimately block the transfer of other objects.

Because QUIC is based on UDP, it does not automatically achieve reliable
transport. If some data is lost in one stream, the protocol can continue transferring
data for other streams independently, which can ultimately improve the per-
formance of links with high transmission error rates. QUIC also makes various
other optimizations to improve performance, such as piggybacking applica-
tion-level encryption information on transport-connection establishment, and
encrypting each packet individually so that the loss of one packet does not prevent
decryption of subsequent packets. QUIC also provides mechanisms for improving
the speed of network handoff (e.g., from a cellular connection to a WiFi con-
nection), using a connection identifier as a way to maintain state when endpoints
change networks.

6.6.2 BBR: Congestion Control Based on Bottleneck Bandwidth

When bottleneck buffers are large, loss-based congestion control algorithms
such as those described earlier end up filling these buffers causing a phenomenon
known as bufferbloat. The idea behind bufferbloat is fairly straightforward: when
network devices in along a network path have buffers that are too large, a TCP
sender with a large congestion window can send at a rate that far exceeds the
capacity of the network before it ever receives a loss signal. Buffers in the middle
of the network can fill up, delaying congestion events for senders that are sending
too fast (i.e., not dropping packets) and, importantly, increasing the network
latency for senders whose packets are queued behind the packets in a large buffer
(Gettys, 2011).

Addressing bufferbloat can be achieved in a number of ways. One possible
approach is simply to reduce the size of buffers in network devices; unfortunately,
this requires convincing vendors and manufacturers of network devices, from wire-
less access points to backbone routers, to reduce the size of the buffers in their
devices. Even if that battle could be won, there are far too many legacy devices in
the network to rely on this approach alone. Another approach is to develop an al-
ternative to loss-based congestion control, which is the approach BBR takes.

The main idea behind BBR is to measure the bottleneck bandwidth and the
round-trip propagation delay and use estimates of these parameters to send at ex-
actly the appropriate operating point. BBR thus continuously tracks the bottleneck
bandwidth and the round-trip propagation delay. TCP already tracks the round-trip
time; BBR extends existing functionality by tracking the delivery rate of the tran-
sport protocol over time. BBR effectively computes the bottleneck bandwidth as

SEC. 6.6 TRANSPORT PROTOCOLS AND CONGESTION CONTROL 589

the maximum of the measured delivery rate over a given time window—typically
six to ten round trips.

The general philosophy of BBR is that, up to the bandwidth-delay product of
the path, the round-trip time will not increase because no additional buffering is
taking place; on the other hand, the delivery rate will remain inversely proportional
to the round-trip time and proportional to the amount of packets in flight (the win-
dow). Once the amount of packets in flight exceeds the bandwidth-delay product,
latency begins to increase as packets are queued, and the delivery rate plateaus. It
is at this point that BBR seeks to operate. Fig. 6-50 shows how the round trip time
and delivery rate vary with the amount of data in flight (i.e., sent, but not acknow-
ledged). The optimal operating point for BBR occurs when increasing the amount
of traffic in flight increases the overall round-trip time but does not increase the
delivery rate.

Round
Trip Time

Delivery
Rate

Propagation
Delay

Slope = 1/Bottleneck BW

Slope = 1/Propagation Delay

Data In Flight

Data In Flight

Bottleneck Bandwidth

Figure 6-50. BBR Operating Point.

The key to BBR is thus to continually update estimates of the bottleneck band-
width and round-trip latency accordingly. Each acknowledgement provides new,
updated information about round-trip times and average delivery rates, with checks
to make sure that the delivery rate is not application-limited (as is sometimes the
case in request-response protocols). The second part of BBR is pacing the data
itself to match the bottleneck bandwidth rate. The pacing rate is the critical pa-
rameter for BBR-based congestion control. In steady state, the rate at which BBR
sends is simply a function of the bottleneck bandwidth and the round-trip time.

590 THE TRANSPORT LAYER CHAP. 6

BBR minimizes delay by spending most of its time with exactly one band-
width-delay product’s worth of data in flight, paced at precisely the bottleneck
bandwidth rate. Convergence to the bottleneck rate is quite fast.

Google has deployed BBR in a fairly widespread fashion, both on its internal
backbone network, as well as in may of its applications. One open question, how-
ever, is how well BBR-based congestion control competes with conventional TCP-
based congestion control. in one recent experiment, for example, researchers
discovered that a BBR sender was consuming 40% of link capacity when sharing a
network path with 16 other transport connections, each of which received less than
4% of the remaining bandwidth (Ware et al., 2019). It can be shown that BBR
often takes a fixed share of available capacity, regardless of the number of compet-
ing TCP flows. Unfortunately, the state of the art for analyzing the fairness proper-
ties of new congestion control algorithms is simply to try them out and see what
happens. In this case, it seems that there remains significant work to be done to
ensure that BBR interacts well with existing TCP traffic on the Internet.

6.6.3 The Future of TCP

As the workhorse of the Internet, TCP has been used for many applications
and extended over time to give good performance over a wide range of networks.
Many versions are deployed with slightly different implementations than the clas-
sic algorithms we have described, especially for congestion control and robustness
against attacks. It is likely that TCP will continue to evolve with the Internet. We
will mention two particular issues.

The first one is that TCP does not provide the transport semantics that all
applications want. For example, some applications want to send messages or
records whose boundaries need to be preserved. Other applications work with a
group of related conversations, such as a Web browser that transfers several objects
from the same server. Still other applications want better control over the network
paths that they use. TCP with its standard sockets interface does not meet these
needs well. Essentially, the application has the burden of dealing with any problem
not solved by TCP. This has led to proposals for new protocols that would provide
a slightly different interface. Two examples are SCTP and SST. However, when-
ever someone proposes changing something that has worked so well for so long,
there is always a huge battle between the ‘‘Users are demanding more features’’
and ‘‘If it ain’t broke, don’t fix it’’ camps.

6.7 PERFORMANCE ISSUES

Performance issues are critically important in computer networks. When hun-
dreds or thousands of computers are interconnected, complex interactions, with
unforeseen consequences, are common. Frequently, this complexity leads to poor

SEC. 6.7 PERFORMANCE ISSUES 591

performance and no one knows why. In the following sections, we will examine
many issues related to network performance to see what kinds of problems exist
and what can be done about them.

Unfortunately, understanding network performance is more an art than a sci-
ence. There is little underlying theory that is actually of any use in practice. The
best we can do is give some rules of thumb gained from hard experience and pres-
ent examples taken from the real world. We have delayed this discussion until we
studied the transport layer because the performance that applications receive
depends on the combined performance of the transport, network, and link layers,
and to be able to use TCP as an example in various places.

In the next sections, we will look at eight aspects of network performance:

1. Performance problems.

2. Measuring network performance.

3. Measuring access network throughput.

4. Measuring quality of experience.

5. Host design for fast networks.

6. Fast segment processing.

7. Header compression.

8. Protocols for ‘‘long fat’’ networks.

These aspects consider network performance both at the host and across the net-
work, and as networks are increased in speed and size.

6.7.1 Performance Problems in Computer Networks

Some performance problems, such as congestion, are caused by temporary
resource overloads. If more traffic suddenly arrives at a router than the router can
handle, congestion will build up and performance will suffer. We studied conges-
tion in detail in this chapter and in Chap. 5.

Performance also degrades when there is a structural resource imbalance. For
example, if a gigabit communication line is attached to a low-end PC, the poor host
will not be able to process the incoming packets fast enough and some will be lost.
These packets will eventually be retransmitted, adding delay, wasting bandwidth,
and generally reducing performance.

Overloads can also be synchronously triggered. As an example, if a segment
contains a bad parameter (e.g., the port for which it is destined), in many cases the
receiver will thoughtfully send back an error notification. Now consider what
could happen if a bad segment is broadcast to 1000 machines: each one might send
back an error message. The resulting broadcast storm could cripple the network.

592 THE TRANSPORT LAYER CHAP. 6

UDP suffered from this problem until the ICMP protocol was changed to cause
hosts to refrain from responding to errors in UDP segments sent to broadcast
addresses. Wireless networks must be particularly careful to avoid unchecked
broadcast responses because broadcast occurs naturally and the wireless bandwidth
is limited.

A second example of synchronous overload is what happens after an electrical
power failure. When the power comes back on, all the machines simultaneously
start rebooting. A typical reboot sequence might require first going to some
(DHCP) server to learn one’s true identity, and then to some file server to get a
copy of the operating system. If hundreds of machines in a data center all do this
at once, the server will probably collapse under the load.

Even in the absence of synchronous overloads and the presence of sufficient
resources, poor performance can occur due to lack of system tuning. For example,
if a machine has plenty of CPU power and memory but not enough of the memory
has been allocated for buffer space, flow control will slow down segment reception
and limit performance. This was a problem for many TCP connections as the
Internet became faster but the default size of the flow control window stayed fixed
at 64 KB.

Another tuning issue is setting timeouts. When a segment is sent, a timer is set
to guard against loss of the segment. If the timeout is set too short, unnecessary
retransmissions will occur, clogging the wires. If the timeout is set too long,
unnecessary delays will occur after a segment is lost. Other tunable parameters in-
clude how long to wait for data on which to piggyback before sending a separate
acknowledgement, and how many retransmissions to make before giving up.

Another performance problem that occurs with real-time applications like
audio and video is jitter. Having enough bandwidth on average is not sufficient for
good performance. Short transmission delays are also required. Consistently
achieving short delays demands careful engineering of the load on the network,
quality-of-service support at the link and network layers, or both.

6.7.2 Network Performance Measurement

Network operators and users alike aim to measure the performance of net-
works. A popular measurement to perform, for example, is access network
throughput measurement (sometimes referred to simply as ‘‘speed’’). For example,
many Internet users have used tools such as Speedtest (i.e., www.speedtest.net) to
measure the performance of access networks. The conventional approach for per-
forming these tests has long been to send as much traffic on the network as quickly
as possible (essentially ‘‘filling the pipe’’). As the speed of access networks
increases, however, measuring the speed of an access link has become more chal-
lenging, as filling the pipe requires more data, and as network bottlenecks between
the client and the server under test move elsewhere in the network. Perhaps even
more importantly, speed is becoming less relevant to network performance than

SEC. 6.7 PERFORMANCE ISSUES 593

quality of experience or the performance of an application. As a result, network
performance measurement is continuing to evolve, especially in the era of gigabit
access networks.

6.7.3 Measuring Access Network Throughput

The conventional approach to measuring network throughput is simply to send
as much data along a network path as the network will support over a given period
of time, and divide the amount of data transferred by the time taken to transfer the
data, thus yielding an average throughput calculation. While seemingly simple and
generally appropriate, this approach encounters a number of shortcomings: most
importantly, a single TCP connection often cannot exhaust the capacity of a net-
work link, especially as the speed of access links continues to increase. Addi-
tionally, if the test captures the early part of the transfer, then the test may capture
transfer rates prior to steady state (e.g., TCP slow start), which could ultimately
result in a test that under-estimates the access network throughput. Finally, cli-
ent-based tests (such as speedtest.net or any type of throughput test one might run
from a client device) increasingly end up measuring performance limitations other
than the access network (e.g., the device’s radio, the wireless access network).

To account for these shortcomings, which have become increasingly acute as
access networks now begin to exceed gigabit speeds, some best practices have
emerged for measuring access network throughput (Feamster et al., 2020). The
first is to use multiple parallel TCP connections to fill the capacity of the access
link. Tests of early speed tests showed that four TCP connections was typically
sufficient to fill access network capacity (Sundaresan 2011); most modern cli-
ent-based tools, including Speedtest and the throughput test used by the Federal
Trade Communications use at least four parallel connections to measure network
capacity. Some of these tools even scale the number of network connections, so
that connections that appear to have higher capacity are tested with more parallel
connections.

A second best practice, which has become increasingly important as the
throughput of the ISP access link exceeds that of the home network (and other
parts of the end-to-end path), is to perform access network throughput tests directly
from the home router. Performing tests in this fashion minimizes the likelihood
that extraneous factors (e.g., a client device, the user’s wireless network) constrain
the throughput test.

As speeds continue to increase, it is likely that additional best practices may
emerge, such as measuring to multiple Internet destinations in parallel from a sin-
gle access connection. Such an approach may be necessary, particularly if the ser-
ver side of these connections becomes the source of more network throughput bot-
tlenecks. As speeds continue to increase, there is also an increased interest in
developing so-called ‘‘passive’’ throughput tests, which do not inject large amounts
of additional traffic into the network but rather watch traffic as it traverses the

594 THE TRANSPORT LAYER CHAP. 6

network and attempt to estimate network throughput based on passive observations
(while reliable passive access throughput measurements do not yet exist, such an
approach might ultimately not be so dissimilar to BBR’s approach of monitoring
latency and delivery rates to estimate the bottleneck bandwidth).

6.7.4 Measuring Quality of Experience

Ultimately, as access network speeds increase, the most salient performance
metrics may not be the speed of the access network in terms of throughput, but
rather whether applications perform as users expect them to. For example, in the
case of video, a user’s experience generally does not depend on throughput, past a
certain point (Ramachandran et al., 2019). Ultimately, a user’s experience when
streaming a video is defined by factors such as how quickly the video starts play-
ing (startup delay), whether the video rebuffers, and the resolution of the video.
Beyond about 50 Mbps, however, none of these factors particularly depend on
access link throughput, but rather on other properties of the network (latency, jitter,
and so forth).

Accordingly, modern network performance measurement is moving beyond
simple speed tests, in an effort to estimate user quality of experience, typically
based on passive observation of network traffic. These estimators are becoming
fairly widespread for streaming video (Ahmed et al., 2017; Krishnamoorthy et al.,
2017; Mangla et al., 2018; and Bronzino et al., 2020). The challenges lie in per-
forming this type of optimization across a general class of video services, and ulti-
mately for a larger class of applications (e.g., gaming, virtual reality).

Of course, a user’s quality of experience is a measure of whether that person is
happy with the service they are using. That metric is ultimately a human consider-
ation and might even require human feedback (e.g., real-time surveys or feedback
mechanisms from the user). Internet service providers continue to be interested in
mechanisms that can infer or predict user quality of experience and engagement
from things they can measure directly (e.g., application throughput, packet loss and
interarrival times, etc.).

We are still a ways off from seeing automatic estimation of user quality of
experience based on passive measurement of features in network traffic, but this
area remains a ripe area for exploration at the intersection of machine learning and
networking. Ultimately, the applications could go beyond networking, as transport
protocols (and network operators) might even optimize resources for users who
demand a higher quality experience. For example, the user who is streaming a
video in a remote part of the house but has walked away may care much less about
the quality of the application stream than the user who is deeply engrossed in a
movie. Of course, distinguishing between a user who is intensely watching a video
from one who went to the kitchen for a drink and did not bother to hit the pause
button before departing could be tricky.

SEC. 6.7 PERFORMANCE ISSUES 595

6.7.5 Host Design for Fast Networks

Measuring and tinkering can improve performance considerably, but they can-
not substitute for good design in the first place. A poorly designed network can be
improved only so much. Beyond that, it has to be redesigned from scratch.

In this section, we will present some rules of thumb for software imple-
mentation of network protocols on hosts. Surprisingly, experience shows that this
is often a performance bottleneck on otherwise fast networks, for two reasons.
First, NICs (Network Interface Cards) and routers have already been engineered
(with hardware support) to run at ‘‘wire speed.’’ This means that they can process
packets as quickly as the packets can possibly arrive on the link. Second, the rele-
vant performance is that which applications obtain. It is not the link capacity, but
the throughput and delay after network and transport processing.

Reducing software overheads improves performance by increasing throughput
and decreasing delay. It can also reduce the energy that is spent on networking,
which is an important consideration for mobile computers. Most of these ideas
have been common knowledge to network designers for years. They were first
stated explicitly by Mogul (1993); our treatment largely follows his. Another rele-
vant source is Metcalfe (1993).

Host Speed Is More Important Than Network Speed

Long experience has shown that in nearly all fast networks, operating system
and protocol overhead dominate actual time on the wire. For example, in theory,
the minimum RPC time on a 1-Gbps Ethernet is 1 µsec, corresponding to a mini-
mum (64-byte) request followed by a minimum (64-byte) reply. In practice, over-
coming the software overhead and getting the RPC time anywhere near there is a
substantial achievement. It rarely happens in practice.

Similarly, the biggest problem in running at 1 Gbps is often getting the bits
from the user’s buffer out onto the network fast enough and having the receiving
host process them as fast as they come in. If you double the host (CPU and memo-
ry) speed, you often can come close to doubling the throughput. Doubling the net-
work capacity has no effect if the bottleneck is in the hosts.

Reduce Packet Count to Reduce Overhead

Each segment has a certain amount of overhead (e.g., the header) as well as
data (e.g., the payload). Bandwidth is required for both components. Processing is
also required for both components (e.g., header processing and doing the check-
sum). When 1 million bytes are being sent, the data cost is the same no matter
what the segment size is. However, using 128-byte segments means 32 times as
much per-segment overhead as using 4-KB segments. The bandwidth and proc-
essing overheads add up fast to reduce throughput.

596 THE TRANSPORT LAYER CHAP. 6

Per-packet overhead in the lower layers amplifies this effect. Each arriving
packet causes a fresh interrupt if the host is keeping up. On a modern pipelined
processor, each interrupt breaks the CPU pipeline, interferes with the cache, re-
quires a change to the memory management context, voids the branch prediction
table, and forces a substantial number of CPU registers to be saved. An n-fold
reduction in segments sent thus reduces the interrupt and packet overhead by a fac-
tor of n.

You might say that both people and computers are poor at multitasking. This
observation underlies the desire to send MTU packets that are as large as will pass
along the network path without fragmentation. Mechanisms such as Nagle’s algo-
rithm and Clark’s solution are also attempts to avoid sending small packets.

Minimize Data Touching

The most straightforward way to implement a layered protocol stack is with
one module for each layer. Unfortunately, this leads to copying (or at least access-
ing the data on multiple passes) as each layer does its own work. For example,
after a packet is received by the NIC, it is typically copied to a kernel buffer. From
there, it is copied to a network layer buffer for network layer processing, then to a
transport layer buffer for transport layer processing, and finally to the receiving ap-
plication process. It is not unusual for an incoming packet to be copied three or
four times before the segment enclosed in it is delivered.

All this copying can greatly degrade performance because memory operations
are an order of magnitude slower than register–register instructions. For example,
if 20% of the instructions actually go to memory (i.e., are cache misses), which is
likely when touching incoming packets, the average instruction execution time is
slowed down by a factor of 2.8 (0. 8 × 1 + 0. 2 × 10). Hardware assistance will not
help here. The problem is too much copying by the operating system.

A clever operating system will minimize copying by combining the processing
of multiple layers. For example, TCP and IP are usually implemented together (as
‘‘TCP/IP’’) so that it is not necessary to copy the payload of the packet as proc-
essing switches from network to transport layer. Another common trick is to per-
form multiple operations within a layer in a single pass over the data. For example,
checksums are often computed while copying the data (when it has to be copied)
and the newly computed checksum is appended to the end.

Minimize Context Switches

A related rule is that context switches (e.g., from kernel mode to user mode)
are deadly. They have the bad properties of interrupts and copying combined.
This cost is why transport protocols are often implemented in the kernel. Like
reducing packet count, context switches can be reduced by having the library pro-
cedure that sends data do internal buffering until it has a substantial amount of

SEC. 6.7 PERFORMANCE ISSUES 597

them. Similarly, on the receiving side, small incoming segments should be col-
lected together and passed to the user in one fell swoop instead of individually, to
minimize context switches.

In the best case, an incoming packet causes a context switch from the current
user to the kernel, and then a switch to the receiving process to give it the newly
arrived data. Unfortunately, with some operating systems, additional context
switches happen. For example, if the network manager runs as a special process in
user space, a packet arrival is likely to cause a context switch from the current user
to the kernel, then another one from the kernel to the network manager, followed
by another one back to the kernel, and finally one from the kernel to the receiving
process. This sequence is shown in Fig. 6-51. All these context switches on each
packet are wasteful of CPU time and can have a devastating effect on network per-
formance.

User space

Kernel space
1 2 3 4

User process running at the
time of the packet arrival

Network
manager

Receiving
process

Figure 6-51. Four context switches to handle one packet with a user-space
network manager.

Avoiding Congestion Is Better Than Recovering from It

The old maxim that an ounce of prevention is worth a pound of cure certainly
holds for network congestion. When a network is congested, packets are lost,
bandwidth is wasted, useless delays are introduced, and more. All of these costs
are unnecessary, and recovering from congestion takes time and patience. Not hav-
ing it occur in the first place is better. Congestion avoidance is like getting your
DTP vaccination: it hurts a little at the time you get it, but it prevents something
that would hurt a lot more in the future.

Avoid Timeouts

Timers are necessary in networks, but they should be used sparingly and time-
outs should be minimized. When a timer goes off, some action is generally
repeated. If it is truly necessary to repeat the action, so be it and do it, but re-
peating it unnecessarily is wasteful.

598 THE TRANSPORT LAYER CHAP. 6

The way to avoid extra work is to be careful that timers are set a little bit on
the conservative side. A timer that takes too long to expire adds a small amount of
extra delay to one connection in the (unlikely) event of a segment being lost. A
timer that goes off when it should not have used up host resources, wastes band-
width, and puts extra load on perhaps dozens of routers for no good reason.

6.7.6 Fast Segment Processing

Now that we have covered general rules, we will look at some specific meth-
ods for speeding up segment processing. For more information, see Clark et al.
(1989), and Chase et al. (2001).

Segment processing overhead has two components: overhead per segment and
overhead per byte. Both must be attacked. The key to fast segment processing is
to separate out the normal, successful case (one-way data transfer) and handle it
specially. Many protocols tend to emphasize what to do when something goes
wrong (e.g., a packet getting lost), but to make the protocols run fast, the designer
should aim to minimize processing time when everything goes right. Minimizing
processing time when an error occurs is secondary.

Although a sequence of special segments is needed to get into the ESTAB-
LISHED state, once there, segment processing is straightforward until one side
starts to close the connection. Let us begin by examining the sending side in the
ESTABLISHED state when there are data to be transmitted. For the sake of clarity,
we assume here that the transport entity is in the kernel, although the same ideas
apply if it is a user-space process or a library inside the sending process. In
Fig. 6-52, the sending process traps into the kernel to do the SEND. The first thing
the transport entity does is test to see if this is the normal case: the state is ESTAB-
LISHED, neither side is trying to close the connection, a regular (i.e., not an out-
of-band) full segment is being sent, and enough window space is available at the
receiver. If all conditions are met, no further tests are needed and the fast path
through the sending transport entity can be taken. Typically, this path is taken
most of the time.

In the usual case, the headers of consecutive data segments are almost the
same. To take advantage of this fact, a prototype header is stored within the tran-
sport entity. At the start of the fast path, it is copied as fast as possible to a scratch
buffer, word by word. Those fields that change from segment to segment are over-
written in the buffer. Frequently, these fields are easily derived from state vari-
ables, such as the next sequence number. A pointer to the full segment header plus
a pointer to the user data are then passed to the network layer. Here, the same
strategy can be followed (not shown in Fig. 6-52). Finally, the network layer gives
the resulting packet to the data link layer for transmission.

As an example of how this principle works in practice, let us consider TCP/IP.
Figure 6-53(a) shows the TCP header. The fields that are the same between con-
secutive segments on a one-way flow are shaded. All the sending transport entity

SEC. 6.7 PERFORMANCE ISSUES 599

Trap into the kernel to send segment

Test

Segment passed to the receiving process

Test

S SSending
process

Receiving process

Network

Figure 6-52. The fast path from sender to receiver is shown with a heavy line.
The processing steps on this path are shaded.

has to do is copy the five words from the prototype header into the output buffer,
fill in the next sequence number (by copying it from a word in memory), compute
the checksum, and increment the sequence number in memory. It can then hand
the header and data to a special IP procedure optimized for sending a regular, max-
imum segment. IP then copies its five-word prototype header [see Fig. 6-53(b)]
into the buffer, fills the Identification field, and computes its checksum. The pack-
et is now ready for transmission.

Sequence number

(a) (b)

Header checksum

Identification

Source port

Acknowledgement number

Len Unused Window size

Checksum Urgent pointer

Destination port

Fragment offset

VER. IHL Total length

TTL Protocol

Source address

Destination address

Diff. Serv.

Figure 6-53. (a) TCP header. (b) IP header. In both cases, they are taken from
the prototype without change.

Now let us look at fast path processing on the receiving side of Fig. 6-52. Step
1 is locating the connection record for the incoming segment. For TCP, the con-
nection record can be stored in a hash table for which some simple function of the
two IP addresses and two ports is the key. Once the connection record has been
located, both addresses and both ports must be compared to verify that the correct
record has been found.

600 THE TRANSPORT LAYER CHAP. 6

An optimization that often speeds up connection record lookup even more is to
maintain a pointer to the last one used and try that one first. Clark et al. (1989)
tried this and observed a hit rate exceeding 90%.

The segment is checked to see if it is a normal one: the state is ESTABLISHED,
neither side is trying to close the connection, the segment is a full one, no special
flags are set, and the sequence number is the one expected. These tests take just a
handful of instructions. If all conditions are met, a special fast path TCP procedure
is called.

The fast path updates the connection record and copies the data to the user.
While it is copying, it also computes the checksum, eliminating an extra pass over
the data. If the checksum is correct, the connection record is updated and an
acknowledgement is sent back. The general scheme of first making a quick check
to see if the header is what is expected and then having a special procedure handle
that case is called header prediction. Many TCP implementations use it. When
this optimization and all the other ones discussed in this chapter are used together,
it is possible to get TCP to run at 90% of the speed of a local memory-to-memory
copy, assuming the network itself is fast enough.

Two other areas where substantial performance gains are possible are buffer
management and timer management. The issue in buffer management is avoiding
unnecessary copying, as mentioned above. Timer management is also important
because nearly all timers set do not expire. They are set to guard against segment
loss, but most segments and their acknowledgements arrive correctly. Hence, it is
important to optimize timer management for the case of timers rarely expiring.

A common scheme is to use a linked list of timer events sorted by expiration
time. The head entry contains a counter telling how many ticks away from expiry
it is. Each successive entry contains a counter telling how many ticks after the pre-
vious entry it is. Thus, if timers expire in 3, 10, and 12 ticks, respectively, the three
counters are 3, 7, and 2, respectively.

At every clock tick, the counter in the head entry is decremented. When it hits
zero, its event is processed and the next item on the list becomes the head. Its
counter does not have to be changed. This way, inserting and deleting timers are
expensive operations, with execution times proportional to the length of the list.

A much more efficient approach can be used if the maximum timer interval is
bounded and known in advance. Here, an array called a timing wheel can be used,
as shown in Fig. 6-54. Each slot corresponds to one clock tick. The current time
shown is T = 4. Timers are scheduled to expire at 3, 10, and 12 ticks from now. If
a new timer suddenly is set to expire in seven ticks, an entry is just made in slot 11.
Similarly, if the timer set for T + 10 has to be canceled, the list starting in slot 14
has to be searched and the required entry removed. Note that the array of Fig. 6-54
cannot accommodate timers beyond T + 15.

When the clock ticks, the current time pointer is advanced by one slot (circu-
larly). If the entry now pointed to is nonzero, all of its timers are processed. Many
variations on the basic idea are discussed by Varghese and Lauck (1987).

SEC. 6.7 PERFORMANCE ISSUES 601

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Slot

0
0
0
0
0
0

0
0
0
0
0
0

0

Pointer to list of timers for T + 12

Pointer to list of timers for T + 3

Pointer to list of timers for T + 10

Current time, T

Figure 6-54. A timing wheel.

6.7.7 Header Compression

We have been looking at fast networks for too long. There is more out there.
Let us now consider performance on wireless and other networks in which band-
width is limited. Reducing software overhead can help mobile computers run more
efficiently, but it does nothing to improve performance when the network links are
the bottleneck.

To use bandwidth well, protocol headers and payloads should be carried with
the minimum of bits. For payloads, this means using compact encodings of infor-
mation, such as images that are in JPEG format rather than a bitmap, or document
formats such as PDF that include compression. It also means application-level
caching mechanisms, such as Web caches that reduce transfers in the first place.

What about for protocol headers? At the link layer, headers for wireless net-
works are typically compact because they were designed with scarce bandwidth in
mind. For example, packets in connection-oriented networks have short con-
nection identifiers instead of longer addresses. However, higher layer protocols
such as IP, TCP and UDP come in one version for all link layers, and they are not
designed with compact headers. In fact, streamlined processing to reduce software
overhead often leads to headers that are not as compact as they could otherwise be
(e.g., IPv6 has a more loosely packed headers than IPv4).

The higher-layer headers can be a significant performance hit. Consider, for
example, voice-over-IP data that is being carried with the combination of IP, UDP,

602 THE TRANSPORT LAYER CHAP. 6

and RTP. These protocols require 40 bytes of header (20 for IPv4, 8 for UDP, and
12 for RTP). With IPv6 the situation is even worse: 60 bytes, including the 40-byte
IPv6 header. The headers can wind up as the majority of the transmitted data and
consume more than half the bandwidth.

Header compression is used to reduce the bandwidth taken over links by
higher-layer protocol headers. Specially designed schemes are used instead of gen-
eral purpose methods. This is because headers are short, so they do not compress
well individually, and decompression requires all prior data to be received. This
will not be the case if a packet is lost.

Header compression obtains large gains by using knowledge of the protocol
format. One of the first schemes was designed by Van Jacobson (1990) for com-
pressing TCP/IP headers over slow serial links. It is able to compress a typical
TCP/IP header of 40 bytes down to an average of 3 bytes. The trick to this method
is hinted at in Fig. 6-53. Many of the header fields do not change from packet to
packet. There is no need, for example, to send the same IP TTL or the same TCP
port numbers in each and every packet. They can be omitted on the sending side of
the link and filled in on the receiving side.

Similarly, other fields change in a predictable manner. For example, barring
loss, the TCP sequence number advances with the data. In these cases, the receiver
can predict the likely value. The actual number only needs to be carried when it
differs from what is expected. Even then, it may be carried as a small change from
the previous value, as when the acknowledgement number increases when new
data is received in the reverse direction.

With header compression, it is possible to have simple headers in higher-layer
protocols and compact encodings over low bandwidth links. ROHC (RObust
Header Compression) is a modern version of header compression that is defined
as a framework in RFC 5795. It is designed to tolerate the loss that can occur on
wireless links. There is a profile for each set of protocols to be compressed, such
as IP/UDP/RTP. Compressed headers are carried by referring to a context, which
is essentially a connection; header fields may easily be predicted for packets of the
same connection, but not for packets of different connections. In typical operation,
ROHC reduces IP/UDP/RTP headers from 40 bytes to 1 to 3 bytes.

While header compression is mainly targeted at reducing bandwidth needs, it
can also be useful for reducing delay. Delay is comprised of propagation delay,
which is fixed given a network path, and transmission delay, which depends on the
bandwidth and amount of data to be sent. For example, a 1-Mbps link sends 1 bit
in 1 µsec. In the case of media over wireless networks, the network is relatively
slow so transmission delay may be an important factor in overall delay and consis-
tently low delay is important for quality of service.

Header compression can help by reducing the amount of data that is sent, and
hence reducing transmission delay. The same effect can be achieved by sending
smaller packets. This will trade increased software overhead for decreased trans-
mission delay. Note that another potential source of delay is queueing delay to

SEC. 6.7 PERFORMANCE ISSUES 603

access the wireless link. This can also be significant because wireless links are
often heavily used as the limited resource in a network. In this case, the wireless
link must have quality-of-service mechanisms that give low delay to real-time
packets. Header compression alone is not sufficient.

6.7.8 Protocols for Long Fat Networks

Since the 1990s, there have been gigabit networks that transmit data over large
distances. Because of the combination of a fast network, or ‘‘fat pipe,’’ and long
delay, these networks are called long fat networks. When these networks arose,
people’s first reaction was to use the existing protocols on them, but various prob-
lems quickly arose. In this section, we will discuss some of the problems with
scaling up the speed and delay of network protocols.

The first problem is that many protocols use 32-bit sequence numbers. When
the Internet began, the lines between routers were mostly 56-kbps leased lines, so a
host blasting away at full speed took over 1 week to cycle through the sequence
numbers. To the TCP designers, 232 was a pretty decent approximation of infinity
because there was little danger of old packets still being around a week after they
were transmitted. With 10-Mbps Ethernet, the wrap time became 57 minutes,
much shorter, but still manageable. With a 1-Gbps Ethernet pouring data out onto
the Internet, the wrap time is about 34 sec., well under the 120-sec maximum pack-
et lifetime on the Internet. All of a sudden, 232 is not nearly as good an approxi-
mation to infinity since a fast sender can cycle through the sequence space while
old packets still exist.

The problem is that many protocol designers simply assumed, without stating
it, that the time required to use up the entire sequence space would greatly exceed
the maximum packet lifetime. Consequently, there was no need to even worry
about the problem of old duplicates still existing when the sequence numbers
wrapped around. At gigabit speeds, that unstated assumption fails. Fortunately, it
proved possible to extend the effective sequence number by treating the timestamp
that can be carried as an option in the TCP header of each packet as the high-order
bits. This mechanism is called PAWS, as described earlier.

A second problem is that the size of the flow control window must be greatly
increased. Consider, for example, sending a 64-KB burst of data from San Diego
to Boston in order to fill the receiver’s 64-KB buffer. Suppose that the link is 1
Gbps and the one-way speed-of-light-in-fiber delay is 20 msec. Initially, at t = 0,
the pipe is empty, as illustrated in Fig. 6-55(a). Only 500 µsec later, in
Fig. 6-55(b), all the segments are out on the fiber. The lead segment will now be
somewhere in the vicinity of Brawley, still deep in Southern California. However,
the transmitter must stop until it gets a window update.

After 20 msec, the lead segment hits Boston, as shown in Fig. 6-55(c), and is
acknowledged. Finally, 40 msec after starting, the first acknowledgement gets
back to the sender and the second burst can be transmitted. Since the transmission

604 THE TRANSPORT LAYER CHAP. 6

(a) (b)

(c) (d)

Data

Acknowledgements

Figure 6-55. The state of transmitting 1 Mbit from San Diego to Boston.
(a) At t = 0. (b) After 500 µsec. (c) After 20 msec. (d) After 40 msec.

line was used for 1.25 msec out of 100, the efficiency is about 1.25%. This situa-
tion is typical of an older protocols running over gigabit lines.

A useful quantity to keep in mind when analyzing network performance is the
bandwidth-delay product. It is obtained by multiplying the bandwidth (in
bits/sec) by the round-trip delay time (in sec). The product is the capacity of the
pipe from the sender to the receiver and back (in bits).

For the example of Fig. 6-55, the bandwidth-delay product is 40 million bits.
In other words, the sender would have to transmit a burst of 40 million bits to be
able to keep going full speed until the first acknowledgement came back. It takes
this many bits to fill the pipe (in both directions). This is why a burst of half a mil-
lion bits only achieves a 1.25% efficiency: it is only 1.25% of the pipe’s capacity.

The conclusion that can be drawn here is that for good performance, the
receiver’s window must be at least as large as the bandwidth-delay product, and
preferably somewhat larger since the receiver may not respond instantly. For a
transcontinental gigabit line, at least 5 MB are required.

A third and related problem is that simple retransmission schemes, such as the
go-back-n protocol, perform poorly on lines with a large bandwidth-delay product.

SEC. 6.7 PERFORMANCE ISSUES 605

Consider, the 1-Gbps transcontinental link with a round-trip transmission time of
40 msec. A sender can transmit 5 MB in one round trip. If an error is detected, it
will be 40 msec before the sender is told about it. If go-back-n is used, the sender
will have to retransmit not just the bad packet, but also the 5 MB worth of packets
that came afterward. Clearly, this is a massive waste of resources. More complex
protocols such as selective-repeat are needed.

A fourth problem is that gigabit lines are fundamentally different from megabit
lines in that long gigabit lines are delay limited rather than bandwidth limited. In
Fig. 6-56 we show the time it takes to transfer a 1-Mbit file 4000 km at various
transmission speeds. At speeds up to 1 Mbps, the transmission time is dominated
by the rate at which the bits can be sent. By 1 Gbps, the 40-msec round-trip delay
dominates the 1 msec it takes to put the bits on the fiber. Further increases in
bandwidth have hardly any effect at all.

1000 sec

100 sec

10 sec

1 sec

100 msec

10 msec

1 msec

Fi
le

 tr
an

sf
er

 ti
m

e

Data rate (bps)
103 104 105 106 107 108 109 1010 1011 1012

Figure 6-56. Time to transfer and acknowledge a 1-Mbit file over a 4000-km
line.

Figure 6-56 has unfortunate implications for network protocols. It says that
stop-and-wait protocols, such as RPC, have an inherent upper bound on their per-
formance. This limit is dictated by the speed of light. No amount of technological
progress in optics will ever improve matters (new laws of physics would help,
though). Unless some other use can be found for a gigabit line while a host is
waiting for a reply, the gigabit line is no better than a megabit line, just more
expensive.

A fifth problem is that communication speeds have improved faster than com-
puting speeds. (Note to computer engineers: go out and beat those communication
engineers! We are counting on you.) In the 1970s, the ARPANET ran at 56 kbps

606 THE TRANSPORT LAYER CHAP. 6

and had computers that ran at something like 1 MIPS. Compare these numbers to
1000-MIPS computers exchanging packets over a 1-Gbps line. The number of
instructions per byte has decreased by more than a factor of 10. The exact num-
bers are debatable depending on dates and scenarios, but the conclusion is this:
there is less time available for protocol processing than there used to be, so proto-
cols must become simpler.

Let us now turn from the problems to ways of dealing with them. The basic
principle that all high-speed network designers should learn by heart is:

Design for speed, not for bandwidth optimization.

Old protocols were often designed to minimize the number of bits on the wire, fre-
quently by using small fields and packing them together into bytes and words.
This concern is still valid for wireless networks, but not for gigabit networks. Pro-
tocol processing is the problem, so protocols should be designed to minimize it.
The IPv6 designers clearly understood this principle.

A tempting way to go fast is to build fast network interfaces in hardware. The
difficulty with this strategy is that unless the protocol is exceedingly simple, hard-
ware just means a plug-in board with a second CPU and its own program. To
make sure the network coprocessor is cheaper than the main CPU, it is often a
slower chip. The consequence of this design is that much of the time the main
(fast) CPU is idle waiting for the second (slow) CPU to do the critical work. It is a
myth to think that the main CPU has other work to do while waiting. Furthermore,
when two general-purpose CPUs communicate, race conditions can occur, so elab-
orate protocols are needed between the two processors to synchronize them cor-
rectly and avoid races. Usually, the best approach is to make the protocols simple
and have the main CPU do the work.

Packet layout is an important consideration in gigabit networks. The header
should contain as few fields as possible, to reduce processing time, and these fields
should be big enough to do the job and be word-aligned for fast processing. In this
context, ‘‘big enough’’ means that problems such as sequence numbers wrapping
around while old packets still exist, receivers being unable to advertise enough
window space because the window field is too small, etc. do not occur.

The maximum data size should be large, to reduce software overhead and per-
mit efficient operation. For high-speed networks, 1500 bytes is too small, which is
why gigabit Ethernet supports jumbo frames of up to 9 KB and IPv6 supports jum-
bogram packets in excess of 64 KB.

Let us now look at the issue of feedback in high-speed protocols. Due to the
(relatively) long delay loop, feedback should be avoided if at all possible: it takes
too long for the receiver to signal the sender. One example of feedback is govern-
ing the transmission rate by using a sliding window protocol. Future protocols
may switch to rate-based protocols to avoid the (long) delays inherent in the re-
ceiver sending window updates to the sender. In such a protocol, the sender can

SEC. 6.7 PERFORMANCE ISSUES 607

send all it wants to, provided it does not send faster than some rate the sender and
receiver have agreed upon in advance.

A second example of feedback is Jacobson’s slow start algorithm. This algo-
rithm makes multiple probes to see how much the network can handle. With high-
speed networks, making half a dozen or so small probes to see how the network
responds wastes a huge amount of bandwidth. A more efficient scheme is to have
the sender, receiver, and network all reserve the necessary resources at connection
setup time. Reserving resources in advance also has the advantage of making it
easier to reduce jitter. In short, going to high speeds inexorably pushes the design
toward connection-oriented operation, or something fairly close to it.

Another valuable feature is the ability to send a normal amount of data along
with the connection request. In this way, one round-trip time can be saved.

6.8 SUMMARY

The transport layer is the key to understanding layered protocols. It provides
various services, the most important of which is an end-to-end, reliable, con-
nection-oriented byte stream from sender to receiver. It is accessed through service
primitives that permit the establishment, use, and release of connections. A com-
mon transport layer interface is the one provided by Berkeley sockets.

Transport protocols must be able to do connection management over unreliable
networks. Connection establishment is complicated by the existence of delayed
duplicate packets that can reappear at inopportune moments. To deal with them,
three-way handshakes are needed to establish connections. Releasing a connection
is easier than establishing one but is still far from trivial due to the two-army prob-
lem.

Even when the network layer is completely reliable, the transport layer has
plenty of work to do. It must handle all the service primitives, manage connections
and timers, allocate bandwidth with congestion control, and run a variable-sized
sliding window for flow control.

Congestion control should allocate all of the available bandwidth between
competing flows fairly, and it should track changes in the usage of the network.
The AIMD control law converges to a fair and efficient allocation.

The Internet has two main transport protocols: UDP and TCP. UDP is a con-
nectionless protocol that is mainly a wrapper for IP packets with the additional fea-
ture of multiplexing and demultiplexing multiple processes using a single IP
address. UDP can be used for client-server interactions, for example, using RPC.
It can also be used for building real-time protocols such as RTP.

The main Internet transport protocol is TCP. It provides a reliable, bidirec-
tional, congestion-controlled byte stream with a 20-byte header on all segments. A
great deal of work has gone into optimizing TCP performance, using algorithms
from Nagle, Clark, Jacobson, Karn, and others.

608 THE TRANSPORT LAYER CHAP. 6

UDP and TCP have survived over the years very well, but there is still room
for improvement to enhance performance and solve problems caused by modern
high-speed networks. TCP CUBIC, QUIC, and BBR are a few of the modern im-
provements.

Network performance is typically dominated by protocol and segment proc-
essing overhead, and this situation gets worse at higher speeds. Protocols should
be designed to minimize the number of segments and work for large band-
width-delay paths. For gigabit networks, simple protocols and streamlined proc-
essing work best.

PROBLEMS

1. In our example transport primitives of Fig. 6-2, LISTEN is a blocking call. Is this
strictly necessary? If not, explain how a nonblocking primitive could be used. What
advantage would this have over the scheme described in the text?

2. Primitives of the transport service assume asymmetry between the two end points dur-
ing connection establishment: one end (server) executes LISTEN while the other end
(client) executes CONNECT. However, in peer-to-peer applications such file sharing
systems, e.g. BitTorrent, all end points are peers. There is no server or client func-
tionality. How can transport service primitives be used to build such peer-to-peer appli-
cations?

3. A chat application using TCP repeatedly calls receive(), and prints the received data as
a new message. Can you think of a problem with this approach?

4. In the underlying model of Fig. 6-4, it is assumed that packets may be lost by the net-
work layer and thus must be individually acknowledged. Suppose that the network
layer is 100 percent reliable and never loses packets. What changes, if any, are needed
to Fig. 6-4?

5. In both parts of Fig. 6-6, there is a comment that the value of SERVER PORT must be
the same in both client and server. Why is this so important?

6. In the Internet File Server example (Fig. 6-6), can the connect() system call on the cli-
ent fail for any reason other than listen queue being full on the server? Assume that
the network is perfect.

7. One criteria for deciding whether to have a server active all the time or have it start on
demand using a process server is how frequently the service provided is used. Can you
think of any other criteria for making this decision?

8. Suppose that the clock-driven scheme for generating initial sequence numbers is used
with a 15-bit wide clock counter. The clock ticks once every 100 msec, and the maxi-
mum packet lifetime is 60 sec. How often need resynchronization take place

(a) in the worst case?
(b) when the data consumes 240 sequence numbers/min?

CHAP. 6 PROBLEMS 609

9. How would the following scenarios affect Fig. 6-10(b)?
(a) The number of bits used for the clock/sequence number increases.
(b) Maximum packet lifetime increases.
(c) Clock tick-rate increases.
Sketch a new figure for each scenario. Explain what happens.

10. Why does the maximum packet lifetime, T, have to be large enough to ensure that not
only the packet but also its acknowledgements have vanished?

11. Consider a connection-oriented transport layer protocol that uses a time-of-day clock
to determine packet sequence numbers. The clock uses an 9-bit counter, and ticks once
every 250 msec. The maximum packet lifetime is 32 seconds. If the sender sends 3
packets per second, how long could the connection last without entering the forbidden
region?

12. Imagine that a two-way handshake rather than a three-way handshake were used to set
up connections. In other words, the third message was not required. Are deadlocks
now possible? Give an example or show that none exist.

13. Imagine a generalized n-army problem, in which the agreement of any two of the blue
armies is sufficient for victory. Does a protocol exist that allows blue to win?

14. Consider the problem of recovering from host crashes (i.e., Fig. 6-18). If the interval
between writing and sending an acknowledgement, or vice versa, can be made rel-
atively small, what are the two best sender-receiver strategies for minimizing the
chance of a protocol failure?

15. In Figure 6-20, suppose that a new flow E is added that takes a path from R1 to R2 to
R6. How does the max-min bandwidth allocation change for the five flows?

16. In Fig. 6-20, suppose the flows are rearranged such that A goes through R1, R2, and
R3, B goes through R1, R5, and R6, C goes through R4, R5, and R6, and D goes
through R4, R5, and R6. What is the max-min bandwidth allocation?

17. Discuss the advantages and disadvantages of credits versus sliding window protocols.

18. Some other policies for fairness in congestion control are Additive Increase Additive
Decrease (AIAD), Multiplicative Increase Additive Decrease (MIAD), and Multiplica-
tive Increase Multiplicative Decrease (MIMD). Discuss these three policies in terms of
convergence and stability.

19. Consider a transport-layer protocol that uses Additive Increase Square Root Decrease
(AISRD). Does this version converge to fair bandwidth sharing?

20. Two hosts simultaneously send data through a network with a capacity of 1 Mbps.
Host A uses UDP and transmits a 100 bytes packet every 1 msec. Host B generates
data with a rate of 600 kbps and uses TCP. Which host will obtain higher throughput?

21. Why does UDP exist? Would it not have been enough to just let user processes send
raw IP packets?

22. Consider a simple application-level protocol built on top of UDP that allows a client to
retrieve a file from a remote server residing at a well-known address. The client first

610 THE TRANSPORT LAYER CHAP. 6

sends a request with a file name, and the server responds with a sequence of data pack-
ets containing different parts of the requested file. To ensure reliability and sequenced
delivery, client and server use a stop-and-wait protocol. Ignoring the obvious per-
formance issue, do you see a problem with this protocol? Think carefully about the
possibility of processes crashing.

23. Both UDP and TCP use port numbers to identify the destination entity when delivering
a message. Give two reasons why these protocols invented a new abstract ID (port
numbers), instead of using process IDs, which already existed when these protocols
were designed.

24. Several RPC implementations provide an option to the client to use RPC implemented
over UDP or RPC implemented over TCP. Under what conditions will a client prefer to
use RPC over UDP and under what conditions will he prefer to use RPC over TCP?

25. Consider two networks, N1 and N 2, that have the same average delay between a
source A and a destination D. In N1, the delay experienced by different packets is uni-
formly distributed with maximum delay being 10 seconds, while in N2, 99% of the
packets experience less than one second delay with no limit on maximum delay. Dis-
cuss how RTP may be used in these two cases to transmit live audio/video stream.

26. What is the total size of the minimum TCP MTU, including TCP and IP overhead but
not including data link layer overhead?

27. Datagram fragmentation and reassembly are handled by IP and are invisible to TCP.
Does this mean that TCP does not have to worry about data arriving in the wrong
order?

28. RTP is used to transmit CD-quality audio, which makes a pair of 16-bit samples
44,100 times/sec, one sample for each of the stereo channels. How many packets per
second must RTP transmit?

29. Would it be possible to place the RTP code in the operating system kernel, along with
the UDP code? Explain your answer.

30. A process on host 1 has been assigned port p, and a process on host 2 has been assign-
ed port q. Is it possible for there to be two or more TCP connections between these
two ports at the same time?

31. In Fig. 6-36, we saw that in addition to the 32-bit acknowledgement field, there is an
ACK bit in the fourth word. Does this really add anything? Why or why not?

32. The maximum payload of a TCP segment is 65,495 bytes. Why was such a strange
number chosen?

33. Consider a TCP connection that is sending data at such a high rate that it starts reusing
sequence numbers within the maximum segment lifetime. Can this be prevented by
increasing the segment size? Why (not)?

34. Describe two ways to get into the SYN RCVD state of Fig. 6-39.

35. You are playing an online game over a high-latency network. The game requires you

CHAP. 6 PROBLEMS 611

to quickly tap objects on the screen. However, the game only shows the result of your
actions in bursts. Could this behavior be caused by a TCP option? Can you think of
another (network-related) cause?

36. Consider the effect of using slow start on a line with a 10-msec round-trip time and no
congestion. The receive window is 24 KB and the maximum segment size is 2 KB.
How long does it take before the first full window can be sent?

37. Suppose that the TCP congestion window is set to 18 KB and a timeout occurs. How
big will the window be if the next four transmission bursts are all successful? Assume
that the maximum segment size is 1 KB.

38. Consider a connection that uses TCP Reno. The connection has an initial congestion
window size of 1 KB, and an initial threshold of 64. Assume that additive increase
uses a step-size of 1 KB. What is the size of the congestion window in transmission
round 8, if the first transmission round is number 0?

39. If the TCP round-trip time, RTT, is currently 30 msec and the following acknowledge-
ments come in after 26, 32, and 24 msec, respectively, what is the new RTT estimate
using the Jacobson algorithm? Use _ = 0. 9.

40. A TCP machine is sending full windows of 65,535 bytes over a 1-Gbps channel that
has a 10-msec one-way delay. What is the maximum throughput achievable? What is
the line efficiency?

41. To address the limitations of IP version 4, a major effort had to be undertaken via IETF
that resulted in the design of IP version 6 and there are still is significant reluctance in
the adoption of this new version. However, no such major effort is needed to address
the limitations of TCP. Explain why this is the case.

42. In a network whose max segment is 128 bytes, max segment lifetime is 30 sec, and has
8-bit sequence numbers, what is the maximum data rate per connection?

43. Consider a TCP connection that uses a maximum segment lifetime of 128 seconds.
Assume that the connection uses the timestamp option, with the timestamp increasing
once per second. What can you say about the maximum data rate?

44. Suppose that you are measuring the time to receive a segment. When an interrupt
occurs, you read out the system clock in milliseconds. When the segment is fully proc-
essed, you read out the clock again. You measure 0 msec 270,000 times and 1 msec
730,000 times. How long does it take to receive a segment?

45. A CPU executes instructions at the rate of 1000 MIPS. Data can be copied 64 bits at a
time, with each word copied costing 10 instructions. If an coming packet has to be
copied four times, can this system handle a 1-Gbps line? For simplicity, assume that
all instructions, even those instructions that read or write memory, run at the full
1000-MIPS rate.

46. To get around the problem of sequence numbers wrapping around while old packets
still exist, one could use 64-bit sequence numbers. However, theoretically, an optical
fiber can run at 75 Tbps. What maximum packet lifetime is required to make sure that

612 THE TRANSPORT LAYER CHAP. 6

future 75-Tbps networks do not have wraparound problems even with 64-bit sequence
numbers? Assume that each byte has its own sequence number, as TCP does.

47. Consider a 1000 MIPS computer than can execute one instruction per nanosecond.
Suppose that it takes 50 instructions to process a packet header, independent of the
payload size and 10 instructions for each 8 bytes of payload. How many packets per
second can it process if the packets are (a) 128 bytes and (b) 1024 bytes? What is the
goodput in bytes/sec in both cases?

48. For a 1-Gbps network operating over 4000 km, the delay is the limiting factor, not the
bandwidth. Consider a MAN with the average source and destination 20 km apart. At
what data rate does the round-trip delay due to the speed of light equal the transmission
delay for a 1-KB packet?

49. What is the bandwidth-delay product for a 50-Mbps channel on a geostationary satel-
lite? If the packets are all 1500 bytes (including overhead), how big should the win-
dow be in packets?

50. Name some of the possible causes that a client-based speed test of an access network
might not measure the true speed of the access link

51. Consider the TCP header in Fig. 6-36. Every time a TCP segment is sent, it includes
4 unused bits. How does removing these bits, and shifting all subsequent fields four
bits to the left, affect performance?

52. The file server of Fig. 6-6 is far from perfect and could use a few improvements. Make
the following modifications.

(a) Give the client a third argument that specifies a byte range.
(b) Add a client flag –w that allows the file to be written to the server.

53. One common function that all network protocols need is to manipulate messages.
Recall that protocols manipulate messages by adding/striping headers. Some protocols
may break a single message into multiple fragments, and later join these multiple frag-
ments back into a single message. To this end, design and implement a message man-
agement library that provides support for creating a new message, attaching a header to
a message, stripping a header from a message, breaking a message into two messages,
combining two messages into a single message, and saving a copy of a message. Your
implementation must minimize data copying from one buffer to another as much as
possible. It is critical that the operations that manipulate messages do not touch the
data in a message, but rather, only manipulate pointers.

54. Design and implement a chat system that allows multiple groups of users to chat. A
chat coordinator resides at a well-known network address, uses UDP for communica-
tion with chat clients, sets up chat servers for each chat session, and maintains a chat
session directory. There is one chat server per chat session. A chat server uses TCP for
communication with clients. A chat client allows users to start, join, and leave a chat
session. Design and implement the coordinator, server, and client code.

7
THE APPLICATION LAYER

Having finished all the preliminaries, we now come to the layer where all the
applications are found. The layers below the application layer are there to provide
transport services, but they do not do real work for users. In this chapter, we will
study some real network applications.

Even at the application layer there is a need for support protocols, to allow
many applications to function. Accordingly, we will look at an important one of
these before starting with the applications themselves. The item in question is the
DNS (Domain Name System), which maps Internet names to IP addresses. After
that, we will examine three real applications: electronic mail, the World Wide Web
(generally referred to simply as ‘‘the Web’’), and multimedia, including modern
video streaming. We will finish the chapter by discussing content distribution,
including peer-to-peer networks and content delivery networks.

7.1 THE DOMAIN NAME SYSTEM (DNS)

Although programs theoretically could refer to Web pages, mailboxes, and
other resources by using the network (i.e., IP) addresses of the computers where
they are stored, these addresses are difficult for people to remember. Also, brows-
ing a company’s Web pages from 128.111.24.41 is brittle: if the company moves
the Web server to a different machine with a different IP address, everyone needs
to be told the new IP address. Although moving a Web site from one IP address to

613

614 THE APPLICATION LAYER CHAP. 7

another might seem far-fetched, in practice this general notion occurs quite often,
in the form of load balancing. Specifically, many modern Web sites host their con-
tent on multiple machines, often geographically distributed clusters. The organiza-
tion hosting the content may wish to ‘‘move’’ a client’s communication from one
Web server to another. The DNS is typically the most convenient way to do this.

High-level, readable names decouple machine names from machine addresses.
An organization’s Web server could thus be referred to as www.cs.uchicago.edu,
regardless of its IP address. Because the devices along a network path forward
traffic to its destination based on IP address, these human-readable domain names
must be converted to IP addresses; the DNS (Domain Name System) is the mech-
anism that does so. In the subsequent sections, we will study how DNS performs
this mapping, as well as how it has evolved over the past decades. In particular,
one of the most significant developments in the DNS in recent years is its implica-
tions for user privacy. We will explore these implications and various recent devel-
opments in DNS encryption that are related to privacy.

7.1.1 History and Overview

Back in the ARPANET days, a file, hosts.txt, listed all the computer names and
their IP addresses. Every night, all of the hosts would fetch it from the site at
which it was maintained. For a network of a few hundred large timesharing
machines, this approach worked reasonably well.

However, well before many millions of PCs were connected to the Internet,
everyone involved with it realized that this approach could not continue to work
forever. For one thing, the size of the file would become too large. Even more
importantly, host name conflicts would occur constantly unless names were cent-
rally managed, something unthinkable in a huge international network due to the
load and latency. The Domain Name System was invented in 1983 to address these
problems, and it has been a key part of the Internet ever since.

DNS is a hierarchical naming scheme and a distributed database system that
implements this naming scheme. It is primarily used for mapping host names to IP
addresses, but it has several other purposes, which we will outline in more detail
below. DNS is one of the most actively evolving protocols in the Internet. DNS is
defined in RFC 1034, RFC 1035, RFC 2181, and further elaborated in many other
RFCs.

7.1.2 The DNS Lookup Process

DNS operates as follows. To map a name onto an IP address, an application
program calls a library procedure, (typically gethostbyname or the equivalent) pas-
sing this function the name as a parameter. This process is sometimes referred to
as the stub resolver. The stub resolver sends a query containing the name to a
local DNS resolver, often called the local recursive resolver or simply the local

SEC. 7.1 THE DOMAIN NAME SYSTEM (DNS) 615

resolver, which subsequently performs a so-called recursive lookup for the name
against a set of DNS resolvers. The local recursive resolver ultimately returns a
response with the corresponding IP address to the stub resolver, which then passes
the result to the function that issued the query in the first place. The query and
response messages are sent as UDP packets. Given knowledge of the IP address,
the program can then communicate with the host corresponding to the DNS name
that it had looked up. We will explore this process in more detail later in this chap-
ter.

Typically, the stub resolver issues a recursive lookup to the local resolver,
meaning that it simply issues the query and waits for the response from the local
resolver. The local resolver, on the other hand, issues a sequence of queries to the
respective name servers for each part of the name hierarchy; the name server that is
responsible for a particular part of the hierarchy is often called the authoritative
name server for that domain. As we will see later, DNS uses caching, but caches
can be out of date. The authoritative name server is, well, authoritative. It is by
definition always correct. Before describing more detailed operation of DNS, we
describe the DNS name server hierarchy and how names are allocated.

When a host’s stub resolver sends a query to the local resolver, the local
resolver handles the resolution until it has the desired answer, or no answer. It
does not return partial answers. On the other hand, the root name server (and each
subsequent name server) does not recursively continue the query for the local name
server. It just returns a partial answer and moves on to the next query. The local
resolver is responsible for continuing the resolution by issuing further iterative
queries.

The name resolution process typically involves both mechanisms. A recursive
query may always seem preferable, but many name servers (especially the root)
will not handle them. They are too busy. Iterative queries put the burden on the
originator. The rationale for the local name server supporting a recursive query is
that it is providing a service to hosts in its domain. Those hosts do not have to be
configured to run a full name server, just to reach the local one. A 16-bit tran-
saction identifier is included in each query and copied to the response so that a
name server can match answers to the corresponding query, even if multiple
queries are outstanding at the same time.

All of the answers, including all the partial answers returned, are cached. In
this way, if a computer at cs.vu.nl queries for cs.uchicago.edu, the answer is
cached. If shortly thereafter, another host at cs.vu.nl also queries cs.uchicago.edu,
the answer will already be known. Even better, if a host queries for a different host
in the same domain, say noise.cs.uchicago.edu, the query can be sent directly to
the authoritative name server for cs.uchicago.edu. Similarly, queries for other
domains in uchicago.edu can start directly from the uchicago.edu name server.
Using cached answers greatly reduces the steps in a query and improves per-
formance. The original scenario we sketched is in fact the worst case that occurs
when no useful information is available in the cache.

616 THE APPLICATION LAYER CHAP. 7

Cached answers are not authoritative, since changes made at cs.uchicago.edu
will not be propagated to all the caches in the world that may know about it. For
this reason, cache entries should not live too long. This is the reason that the
Time to live field is included in each DNS resource record, a part of the DNS
database we will discuss shortly. It tells remote name servers how long to cache
records. If a certain machine has had the same IP address for years, it may be safe
to cache that information for one day. For more volatile information, it might be
safer to purge the records after a few seconds or a minute.

DNS queries have a simple format that includes various information, including
the name being queried (QNAME), as well as other auxiliary information, such as
a transaction identifier; the transaction identifier is often used to map queries to
responses. Initially, the transaction ID was only 16 bits, and the queries and re-
sponses were not secured; this design choice left DNS vulnerable to a variety of
attacks including something called a cache poisoning attack, whose details we dis-
cuss further in Chap. 8. When performing a series of iterative lookups, a recursive
DNS resolver might send the entire QNAME to the sequence of authoritative name
servers returning the responses. At some point, protocol designers pointed out that
sending the entire QNAME to every authoritative name server in a sequence of it-
erative resolvers constituted a privacy risk. As a result, many recursive resolvers
now use a process called QNAME minimization, whereby the local resolver only
sends the part of the query that the respective authoritative name server has the
information to resolve. For example, with QNAME minimization, given a name to
resolve such as www.cs.uchicago.edu, a local resolver would send only the string
cs.uchicago.edu to the authoritative name server for uchicago.edu, as opposed to
the fully qualified domain name (FQDN), to avoid revealing the entire FQDN to
the authoritative name server. For more information on QNAME minimization, see
RFC 7816.

Until very recently, DNS queries and responses relied on UDP as its transport
protocol, based on the rationale that DNS queries and responses needed to be fast
and lightweight, and could not handle the corresponding overhead of a TCP three-
way handshake. However, various developments, including the resulting insecurity
of the DNS protocol and the myriad subsequent attacks that DNS has been subject
to, ranging from cache poisoning to distributed denial-of-service (DDoS) attacks,
has resulted in an increasing trend towards the use of TCP as the transport protocol
for DNS. Using TCP as the transport protocol for DNS has subsequently allowed
DNS to leverage modern secure transport and application-layer protocols, resulting
in DNS-over-TLS (DoT) and DNS-over-HTTPS (DoH). We discuss these develop-
ments in more detail later in this chapter.

If the DNS stub resolver does not receive a response within some relatively
short period of time (a timeout period), the DNS client repeats the query, trying
another server for the domain after a small number of retries. This process is
designed to handle the case of the server being down as well as the query or
response packet getting lost.

SEC. 7.1 THE DOMAIN NAME SYSTEM (DNS) 617

7.1.3 The DNS Name Space and Hierarchy

Managing a large and constantly changing set of names is challenging. In the
postal system, name management is done by requiring letters to specify (implicitly
or explicitly) the country, state or province, city, street address, and name of the
addressee. Using this kind of hierarchical addressing ensures that there is no con-
fusion between the Marvin Anderson on Main St. in White Plains, N.Y. and the
Marvin Anderson on Main St. in Austin, Texas. DNS works the same way.

For the Internet, the top of the naming hierarchy is managed by an organization
called ICANN (Internet Corporation for Assigned Names and Numbers).
ICANN was created for this purpose in 1998, as part of the maturing of the Internet
to a worldwide, economic concern. Conceptually, the Internet is divided into over
250 top-level domains, where each domain covers many hosts. Each domain is
partitioned into subdomains, and these are further partitioned, and so on. All of
these domains constitute a namespace hierarchy, which can be represented by a
tree, as shown in Fig. 7-1. The leaves of the tree represent domains that have no
subdomains (but do contain machines, of course). A leaf domain may contain a
single host, or it may represent a company and contain thousands of hosts.

. . .

eng

cisco ieeeacm

eng

uchicago

cs

noise

jilljack

coac

csl

nec

cs

keiouwa

edu ocevu

lawcs

edu museumaero com gov org jp usnet au uk nl

Generic Countries

. . .

fluitfilts

Figure 7-1. A portion of the Internet domain name space.

The top-level domains have several different types: gTLD (generic Top Level
Domain), ccTLD (country code Top Level Doman), and others. Some of the
original generic TLDs, listed in Fig. 7-2, include original domains from the 1980s,
plus additional top-level domains introduced to ICANN. The country domains
include one entry for every country, as defined in ISO 3166. Internationalized
country domain names that use non-Latin alphabets were introduced in 2010.
These domains let people name hosts in Arabic, Chinese, Cyrillic, Hebrew, or
other languages.

In 2011, there were only 22 gTLDs, but in June 2011, ICANN voted to end
restrictions on the creation of additional gTLDs, allowing companies and other

618 THE APPLICATION LAYER CHAP. 7

organizations to select essentially arbitrary top-level domains, including TLDs that
include non-Latin characters (e.g., Cyrillic). ICANN began accepting applications
for new TLDs at the beginning of 2012. The initial cost of applying for a new TLD
was nearly 200,000 dollars. Some of the first new gTLDs became operational in
2013, and in July 2013, the first four new gTLDs were launched based on agree-
ment that was signed in Durban, South Africa. All four were based on non-Latin
characters: the Arabic word for ‘‘Web,’’ the Russian word for ‘‘online,’’ the Rus-
sian word for ‘‘site,’’ and the Chinese word for ‘‘game.’’ Some tech giants have
applied for many gTLDs: Google and Amazon, for example, have each applied for
about 100 new gTLDs. Today, some of the most popular gTLDs include top, loan,
xyz, and so forth.

Domain Intended use Start date Restricted?
com Commercial 1985 No
edu Educational institutions 1985 Yes
gov Government 1985 Yes
int International organizations 1988 Yes
mil Military 1985 Yes
net Network providers 1985 No
org Non-profit organizations 1985 No
aero Air transport 2001 Yes
biz Businesses 2001 No
coop Cooperatives 2001 Yes
info Informational 2002 No
museum Museums 2002 Yes
name People 2002 No
pro Professionals 2002 Yes
cat Catalan 2005 Yes
jobs Employment 2005 Yes
mobi Mobile devices 2005 Yes
tel Contact details 2005 Yes
travel Travel industry 2005 Yes
xxx Sex industry 2010 No

Figure 7-2. The original generic TLDs, as of 2010. As of 2020, there are more than
1,200 gTLDs.

Getting a second-level domain, such as name-of-company.com, is easy. The
top-level domains are operated by companies called registries. They are appointed
by ICANN. For example, the registry for com is Verisign. One level down, regis-
trars sell domain names directly to users. There are many of them and they com-
pete on price and service. Common registrars include Domain.com, GoDaddy, and

SEC. 7.1 THE DOMAIN NAME SYSTEM (DNS) 619

NameCheap. Fig. 7-3 shows the relationship between registries and registrars as
far as registering a domain name is concerned.

Register domains

Registrar

RegistryVERISIGN

ICANN

Figure 7-3. The relationship between registries and registrars.

The domain name that a machine aims to look up is typically called a FQDN
(Fully Qualified Domain Name) such as www.cs.uchicago.edu or cisco.com. The
FQDN starts with the most specific part of the domain name, and each part of the
hierarchy is separated by a ’’.’’ (Technically, all FQDNs end with a ‘‘.’’ as well, sig-
nifying the root of the DNS hierarchy, although most operating systems complete
that portion of the domain name automatically.)

Each domain is named by the path upward from it to the (unnamed) root. The
components are separated by periods (pronounced ‘‘dot’’). Thus, the engineering
department at Cisco might be eng.cisco.com., rather than a UNIX-style name such
as /com/cisco/eng. Notice that this hierarchical naming means that eng.cisco.com.
does not conflict with a potential use of eng in eng.uchicago.edu., which might be
used by the English department at the University of Chicago.

Domain names can be either absolute or relative. An absolute domain name
always ends with a period (e.g., eng.cisco.com.), whereas a relative one does not.
Relative names have to be interpreted in some context to uniquely determine their
true meaning. In both cases, a named domain refers to a specific node in the tree
and all the nodes under it.

Domain names are case-insensitive, so edu, Edu, and EDU mean the same
thing. Component names can be up to 63 characters long, and full path names
must not exceed 255 characters. The fact that DNS in case insensitive has been
used to defend against various DNS attacks, including DNS cache poisoning
attacks, using a technique called 0x20 encoding (Dagon et al., 2008), which we
will discuss in more detail later in this chapter.

In principle, domains can be inserted into the hierarchy in either the generic or
the country domains. For example, the domain cc.gatech.edu could equally well
be (and are often) listed under the us country domain as cc.gt.atl.ga.us. In prac-
tice, however, most organizations in the United States are under generic domains,

620 THE APPLICATION LAYER CHAP. 7

and most outside the United States are under the domain of their country. There is
no rule against registering under multiple top-level domains. Large companies
often do so (e.g., sony.com, sony.net, and sony.nl).

Each domain controls how it allocates the domains under it. For example,
Japan has domains ac.jp and co.jp that mirror edu and com. The Netherlands does
not make this distinction and puts all organizations directly under nl. Austraian
universities are all in edu.au. Thus, all three of the following are university CS and
EE departments:

1. cs.chicago.edu (University of Chicago, in the U.S.).

2. cs.vu.nl (Vrije Universiteit, in The Netherlands).

3. ee.uwa.edu.au (University of Western Australia).

To create a new domain, permission is required of the domain in which it will
be included. For example, if a security research group at the University of Chicago
wants to be known as security.cs.uchicago.edu, it has to get permission from who-
ever manages cs.uchicago.edu. (Fortunately, that person is typically not far away,
thanks to the federated management architecture of DNS) Similarly, if a new uni-
versity is chartered, say, the University of Northern South Dakota, it must ask the
manager of the edu domain to assign it unsd.edu (if that is still available). In this
way, name conflicts are avoided and each domain can keep track of all its subdo-
mains. Once a new domain has been created and registered, it can create subdo-
mains, such as cs.unsd.edu, without getting permission from anybody higher up the
tree.

Naming follows organizational boundaries, not physical networks. For exam-
ple, if the computer science and electrical engineering departments are located in
the same building and share the same LAN, they can nevertheless have distinct
domains. Similarly, even if computer science is split over Babbage Hall and Tur-
ing Hall, the hosts in both buildings will normally belong to the same domain.

7.1.4 DNS Queries and Responses

We now turn to the structure, format, and purpose of DNS queries, and how the
DNS servers answer those queries.

DNS Queries

As previously discussed, a DNS client typically issues a query to a local recur-
sive resolver, which performs an iterative query to ultimately resolve the query.
The most common query type is an A record query, which asks for a mapping from
a domain name to an IP address for a corresponding Internet endpoint. DNS has a
range of other resource records (with corresponding queries), as we discuss further
in the next section on resource records (i.e., responses).

SEC. 7.1 THE DOMAIN NAME SYSTEM (DNS) 621

Although the primary mechanism for DNS has long been to map human read-
able names to IP addresses, over the years, DNS queries have been used for a var-
iety of other purposes. Another common use for DNS queries is to look up do-
mains in a DNSBL (DNS-based blacklist), which are lists that are commonly
maintained to keep track of IP addresses associated with spammers and malware.
To look up a domain name in a DNSBL, a client might send a DNS A-record query
to a special DNS server, such as pbl.spamhaus.org (a ‘‘policy blacklist’’), which
corresponds to a list of IP addresses that are not supposed to be making connec-
tions to mail servers. To look up a particular IP address, a client simply reverses
the octets for the IP address and prepends the result to pbl.spamhaus.org.

For example, to look up 127.0.0.2, a client would simply issue a query for
2.0.0.127.pbl.spamhaus.org. If the corresponding IP address was in the list, the
DNS query would return an IP address that typically encodes some additional in-
formation, such as the provenance of that entry in the list. If the IP address is not
contained in the list, the DNS server would indicate that by responding with the
corresponding NXDOMAIN response, corresponding to ‘‘no such domain.’’

Extensions and Enhancements to DNS Queries

DNS queries have become more sophisticated and complex over time, as the
needs to serve clients with increasingly specific and relevant information over time
has increased, and as security concerns have grown. Two significant extensions to
DNS queries in recent years has been the use of the EDNS0 CS Extended DNS
Client Subnet or simply EDNS Client Subnet option, whereby a client’s local
recursive resolver passes the IP address subnet of the stub resolver to the authorita-
tive name server.

The EDNS0 CS mechanism allows the authoritative name server for a domain
name to know the IP address of the client that initially performed the query. Know-
ing this information can typically allow an authoritative DNS server to perform a
more effective mapping to a nearby copy of a replicated service. For example, if a
client issues a query for google.com, the authoritative name server for Google
would typically want to return a name that corresponds to a front-end server that is
close to the client. The ability to do so of course depends on knowing where on the
network (and, ideally, where in the world, geographically) the client is located.
Ordinarily, an authoritative name server might only see the IP address of the local
recursive resolver.

If the client that initiated the query happens to be located near its respective
local resolver, then the authoritative server for that domain could determine an
appropriate client mapping simply from the location of the DNS local recursive.
Increasingly, however, clients have begun to use local recursive resolvers that may
have IP addresses that make it difficult to locate the client. For example, Google
and Cloudflare both operate public DNS resolvers (8.8.8.8 and 1.1.1.1, respec-
tively). If a client is configured to use one of these local recursive resolvers, then

622 THE APPLICATION LAYER CHAP. 7

the authoritative name server does not learn much useful information from the IP
address of the recursive resolver. EDNS0 CS solves this problem by including the
IP subnet in the query from the local recursive, so that the authoritative can see the
IP subnet of the client that initiated the query.

As previously noted, the names in DNS queries are not case sensitive. This
characteristic has allowed modern DNS resolvers to include additional bits of a
transaction ID in the query by setting each character in a QNAME to an arbitrary
case. A 16-bit transaction ID is vulnerable to various cache poisoning attacks,
including the Kaminsky attack described in Chap. 8. This vulnerability partially
arises because the DNS transaction ID is only 16 bits. Increasing the number of
bits in the transaction ID would require changing the DNS protocol specification,
which is a massive undertaking.

An alternative was developed, usually called 0x20 encoding, whereby a local
recursive would toggle the case on each QNAME (e.g., uchicago.edu might
become uCHicaGO.EDu or similar), allowing each letter in the domain name to
encode an additional bit for the DNS transaction ID. The catch, of course, is that
no other resolver should alter the case of the QNAME in subsequent iterative
queries or responses. If the casing is preserved, then the corresponding reply con-
tains the QNAME with the original casing indicated by the local recursive resolver,
effectively acting adding bits to the transaction identifier. The whole thing is an
ugly hack, but such is the nature of trying to change widely deployed software
while maintaining backward compatibility.

DNS Responses and Resource Records

Every domain, whether it is a single host or a top-level domain, can have a set
of resource records associated with it. These records are the DNS database. For a
single host, the most common resource record is just its IP address, but many other
kinds of resource records also exist. When a resolver gives a domain name to
DNS, what it gets back are the resource records associated with that name. Thus,
the primary function of DNS is to map domain names onto resource records.

A resource record is a five-tuple. Although resource records are encoded in
binary, in most expositions resource records are presented as ASCII text, with one
line per resource record, as follows:

Domain name Time to live Class Type Value

The Domain name tells the domain to which this record applies. Normally, many
records exist for each domain, and each copy of the database holds information
about multiple domains. This field is thus the primary search key used to satisfy
queries. The order of the records in the database is not significant.

The Time to live field gives an indication of how stable the record is. Infor-
mation that is highly stable is assigned a large value, such as 86400 (the number of
seconds in 1 day). Information that is volatile (like stock prices), or that operators

SEC. 7.1 THE DOMAIN NAME SYSTEM (DNS) 623

may want to change frequently (e.g., to enable load balancing a single name across
multiple IP addresses) may be assigned a small value, such as 60 seconds (1
minute). We will return to this point later when we have discussed caching.

The third field of every resource record is the Class. For Internet information,
it is always IN. For non-Internet information, other codes can be used, but in prac-
tice these are rarely seen.

The Type field tells what kind of record this is. There are many kinds of DNS
records. The important types are listed in Fig. 7-4.

Type Meaning Value
SOA Start of authority Parameters for this zone
A IPv4 address of a host 32-Bit integer
AAAA IPv6 address of a host 128-Bit integer
MX Mail exchange Priority, domain willing to accept email
NS Name server Name of a server for this domain
CNAME Canonical name Domain name
PTR Pointer Alias for an IP address
SPF Sender policy framework Text encoding of mail sending policy
SRV Service Host that provides it
TXT Text Descriptive ASCII text

Figure 7-4. The principal DNS resource record types.

An SOA record provides the name of the primary source of information about
the name server’s zone (described below), the email address of its administrator, a
unique serial number, and various flags and timeouts.

Common Record Types

The most important record type is the A (Address) record. It holds a 32-bit
IPv4 address of an interface for some host. The corresponding AAAA, or ‘‘quad
A,’’ record holds a 128-bit IPv6 address. Every Internet host must have at least one
IP address so that other machines can communicate with it. Some hosts have two
or more network interfaces, so they will have two or more type A or AAAA re-
source records. Additionally, a single service (e.g., google.com) may be hosted on
many geographically distributed machines around the world (Calder et al., 2013).
In these cases, a DNS resolver might return multiple IP addresses for a single
domain name. In the case of a geographically distributed service, a resolver may
return to its client one or more IP addresses of a server that is close to the client
(geographically or topologically), to improve performance, and for load balancing.

An important record type is the NS record. It specifies a name server for the
domain or subdomain. This is a host that has a copy of the database for a domain.
It is used as part of the process to look up names, which we will describe shortly.

624 THE APPLICATION LAYER CHAP. 7

Another record type is the MX record. It specifies the name of the host prepared to
accept email for the specified domain. It is used because not every machine is pre-
pared to accept email. If someone wants to send email to, as an example,
bill@microsoft.com, the sending host needs to find some mail server located at
microsoft.com that is willing to accept email. The MX record can provide this
information.

CNAME records allow aliases to be created. For example, a person familiar
with Internet naming in general and wanting to send a message to user paul in the
computer science department at the University of Chicago might guess that
paul@cs.chicago.edu will work. Actually, this address will not work, because the
domain for the computer science department is cs.uchicago.edu. As a service to
people who do not know this, the University of Chicago could create a CNAME
entry to point people and programs in the right direction. An entry like this one
might do the job:

www.cs.uchicago.edu 120 IN CNAME hnd.cs.uchicago.edu

CNAMEs are commonly used for Web site aliases, because the common Web ser-
ver addresses (which often start with www) tend to be hosted on machines that
serve multiple purposes and whose primary name is not www.

The PTR record points to another name and is typically used to associate an IP
address with a corresponding name. PTR lookups that associate a name with a
corresponding IP address are typically called reverse lookups.

SRV is a newer type of record that allows a host to be identified for a given ser-
vice in a domain. For example, the Web server for www.cs.uchicago.edu could be
identified as hnd.cs.uchicago.edu. This record generalizes the MX record that per-
forms the same task but it is just for mail servers.

SPF lets a domain encode information about what machines in the domain will
send mail to the rest of the Internet. This helps receiving machines check that mail
is valid. If mail is being received from a machine that calls itself dodgy but the
domain records say that mail will only be sent out of the domain by a machine
called smtp, chances are that the mail is forged junk mail.

Last on the list, TXT records were originally provided to allow domains to
identify themselves in arbitrary ways. Nowadays, they usually encode machine-
readable information, typically the SPF information.

Finally, we have the Value field. This field can be a number, a domain name,
or an ASCII string. The semantics depend on the record type. A short description
of the Value fields for each of the principal record types is given in Fig. 7-4.

DNSSEC Records

The original deployment of DNS did not consider the security of the protocol.
In particular, DNS name servers or resolvers could manipulate the contents of any
DNS record, thus causing the client to receive incorrect information. RFC 3833

SEC. 7.1 THE DOMAIN NAME SYSTEM (DNS) 625

highlights some of the various security threats to DNS and how DNSSEC addres-
ses these threats. DNSSEC records allow responses from DNS name servers to
carry digital signatures, which the local or stub resolver can subsequently verify to
ensure that the DNS records were not modified or tampered with. Each DNS ser-
ver computes a hash (a kind of long checksum) of the RRSET (Resource Record
Set) for each set of resource records of the same type, with its private crypto-
graphic keys. Corresponding public keys can be used to verify the signatures on
the RRSETs. (For those not familiar with cryptography, Chap. 8 provides some
technical background.)

Verifying the signature of an RRSET with the name server’s corresponding
public key of course requires verifying the authenticity of that server’s public key.
This verification can be accomplished if the public key of one authoritative name
server’s public key is signed by the parent name server in the name hierarchy. For
example, the .edu authoritative name server might sign the public key correspond-
ing to the chicago.edu authoritative name server, and so forth.

DNSSEC has two resource records relating to public keys: (1) the RRSIG
record, which corresponds to a signature over the RRSET, signed with the corres-
ponding authoritative name server’s private key, and (2) the DNSKEY record,
which is the public key for the corresponding RRSET, which is signed by the par-
ent’s private key. This hierarchical structure for signatures allows DNSSEC public
keys for the name server hierarchy to be distributed in band. Only the root-level
public keys must be distributed out-of-band, and those keys can be distributed in
the same way that resolvers come to know about the IP addresses of the root name
servers. Chap. 8 discusses DNSSEC in more detail.

DNS Zones

Fig. 7-5. shows an example of the type of information that might be available
in a typical DNS resource record for a particular domain name. This figure depicts
part of a (hypothetical) database for the cs.vu.nl domain shown in Fig. 7-1, which
is often called a DNS zone file or sometimes simply DNS zone for short. This
zone file contains seven types of resource records.

The first noncomment line of Fig. 7-5 gives some basic information about the
domain, which will not concern us further. Then come two entries giving the first
and second places to try to deliver email sent to person@cs.vu.nl. The zephyr (a
specific machine) should be tried first. If that fails, the top should be tried as the
next choice. The next line identifies the name server for the domain as star.

After the blank line (added for readability) come lines giving the IP addresses
for the star, zephyr, and top. These are followed by an alias, www.cs.vu.nl, so that
this address can be used without designating a specific machine. Creating this
alias allows cs.vu.nl to change its World Wide Web server without invalidating the
address people use to get to it. A similar argument holds for ftp.cs.vu.nl.

626 THE APPLICATION LAYER CHAP. 7

; Authoritative data for cs.vu.nl
cs.vu.nl. 86400 IN SOA star boss (9527,7200,7200,241920,86400)
cs.vu.nl. 86400 IN MX 1 zephyr
cs.vu.nl. 86400 IN MX 2 top
cs.vu.nl. 86400 IN NS star

star 86400 IN A 130.37.56.205
zephyr 86400 IN A 130.37.20.10
top 86400 IN A 130.37.20.11
www 86400 IN CNAME star.cs.vu.nl
ftp 86400 IN CNAME zephyr.cs.vu.nl

flits 86400 IN A 130.37.16.112
flits 86400 IN A 192.31.231.165
flits 86400 IN MX 1 flits
flits 86400 IN MX 2 zephyr
flits 86400 IN MX 3 top

rowboat IN A 130.37.56.201
IN MX 1 rowboat
IN MX 2 zephyr

little-sister IN A 130.37.62.23

laserjet IN A 192.31.231.216

Figure 7-5. A portion of a possible DNS database (zone file) for cs.vu.nl.

The section for the machine flits lists two IP addresses and three choices are
given for handling email sent to flits.cs.vu.nl. First choice is naturally the flits
itself, but if it is down, the zephyr and top are the second and third choices.

The next three lines contain a typical entry for a computer, in this example,
rowboat.cs.vu.nl. The information provided contains the IP address and the pri-
mary and secondary mail drops. Then comes an entry for a computer that is not
capable of receiving mail itself, followed by an entry that is likely for a printer
(laserjet) that is connected to the Internet.

In theory at least, a single name server could contain the entire DNS database
and respond to all queries about it. In practice, this server would be so overloaded
as to be useless. Furthermore, if it ever went down, the entire Internet would be
crippled.

To avoid the problems associated with having only a single source of infor-
mation, the DNS name space is divided into nonoverlapping zones. One possible
way to divide the name space of Fig. 7-1 is shown in Fig. 7-6. Each circled zone
contains some part of the tree.

Where the zone boundaries are placed within a zone is up to that zone’s admin-
istrator. This decision is made in large part based on how many name servers are

SEC. 7.1 THE DOMAIN NAME SYSTEM (DNS) 627

. . .

eng

cisco ieeeacm

eng

uchicago

cs

noise

jilljack

coac

csl

nec

cs

keiouwa

edu ocevu

lawcs

edu museumaero com gov org jp usnet au uk nl

Generic Countries

. . .

fluitflits

Figure 7-6. Part of the DNS name space divided into zones (which are circled).

desired, and where. For example, in Fig. 7-6, the University of Chicago has a zone
for chicago.edu that handles traffic to cs.uchicago.edu. However, it does not hand-
le eng.uchicago.edu. That is a separate zone with its own name servers. Such a
decision might be made when a department such as English does not wish to run
its own name server, but a department such as Computer Science does.

7.1.5 Name Resolution

Each zone is associated with one or more name servers. These are hosts that
hold the database for the zone. Normally, a zone will have one primary name ser-
ver, which gets its information from a file on its disk, and one or more secondary
name servers, which get their information from the primary name server. To
improve reliability, some of the name servers can be located outside the zone.

The process of looking up a name and finding an address is called name reso-
lution. When a resolver has a query about a domain name, it passes the query to a
local name server. If the domain being sought falls under the jurisdiction of the
name server, such as top.cs.vu.nl falling under cs.vu.nl, it returns the authoritative
resource records. An authoritative record is one that comes from the authority
that manages the record and is thus always correct. Authoritative records are in
contrast to cached records, which may be out of date.

What happens when the domain is remote, such as when flits.cs.vu.nl wants to
find the IP address of cs.uchicago.edu at the University of Chicago? In this case,
and if there is no cached information about the domain available locally, the name
server begins a remote query. This query follows the process shown in Fig. 7-7.
Step 1 shows the query that is sent to the local name server. The query contains
the domain name sought, the type (A), and the class(IN).

628 THE APPLICATION LAYER CHAP. 7

10: 128.135.24.19

1: noise.cs.uchicago.edu

2: query

3: edu

5: uchicago.edu4: query

6: query
7: cs.uchicago.edu9: 128.135.24.19

8: query

Local
(cs.vu.nl)
resolver

uchicago cs
name server

uchicago
name server

Edu name server
(a.edu-servers.net)

Root name server
(a.root-servers.net)

filts.cs.vu.nl
Originator

Figure 7-7. Example of a resolver looking up a remote name in 10 steps.

The next step is to start at the top of the name hierarchy by asking one of the
root name servers. These name servers have information about each top-level
domain. This is shown as step 2 in Fig. 7-7. To contact a root server, each name
server must have information about one or more root name servers. This infor-
mation is normally present in a system configuration file that is loaded into the
DNS cache when the DNS server is started. It is simply a list of NS records for the
root and the corresponding A records.

There are 13 root DNS servers, unimaginatively called a.root-servers.net
through m.root-servers.net. Each root server could logically be a single computer.
However, since the entire Internet depends on the root servers, they are powerful
and heavily replicated computers. Most of the servers are present in multiple geo-
graphical locations and reached using anycast routing, in which a packet is deliv-
ered to the nearest instance of a destination address; we described anycast in
Chap. 5. The replication improves reliability and performance.

The root name server is very unlikely to know the address of a machine at
uchicago.edu, and probably does not know the name server for uchicago.edu eith-
er. But it must know the name server for the edu domain, in which cs.uchicago.edu
is located. It returns the name and IP address for that part of the answer in step 3.

The local name server then continues its quest. It sends the entire query to the
edu name server (a.edu-servers.net). That name server returns the name server for
uchicago.edu. This is shown in steps 4 and 5. Closer now, the local name server
sends the query to the uchicago.edu name server (step 6). If the domain name
being sought was in the English department, the answer would be found, as the
uchicago.edu zone includes the English department. The Computer Science depart-
ment has chosen to run its own name server. The query returns the name and IP
address of the uchicago.edu Computer Science name server (step 7).

SEC. 7.1 THE DOMAIN NAME SYSTEM (DNS) 629

Finally, the local name server queries the uchicago.edu Computer Science
name server (step 8). This server is authoritative for the domain cs.uchicago.edu,
so it must have the answer. It returns the final answer (step 9), which the local
name server forwards as a response to flits.cs.vu.nl (step 10).

7.1.6 Hands on with DNS

You can explore this process using standard tools such as the dig program that
is installed on most UNIX systems. For example, typing

dig ns @a.edu-servers.net cs.uchicago.edu

will send a query for cs.uchicago.edu to the a.edu-servers.net name server and
print out the result for its name servers. This will show you the information obtain-
ed in Step 4 in the example above, and you will learn the name and IP address of
the uchicago.edu name servers. Most organizations will have multiple name ser-
vers in case one is down. Half a dozen is not unusual. If you have access to a
UNIX, Linux, or MacOS system, try experimenting with the dig program to see
what it can do. You can learn a lot about DNS from using it. (The dig program is
also available for Windows, but you may have to install it yourself.)

Even though its purpose is simple, it should be clear that DNS is a large and
complex distributed system that is comprised of millions of name servers that work
together. It forms a key link between human-readable domain names and the IP
addresses of machines. It includes replication and caching for performance and
reliability and is designed to be highly robust.

Some applications need to use names in more flexible ways, for example, by
naming content and resolving to the IP address of a nearby host that has the con-
tent. This fits the model of searching for and downloading a movie. It is the movie
that matters, not the computer that has a copy of it, so all that is wanted is the IP
address of any nearby computer that has a copy of the movie. Content delivery
networks are one way to accomplish this mapping. We will describe how they
build on the DNS later in this chapter, in Sec. 7.5.

7.1.7 DNS Privacy

Historically, DNS queries and responses have not been encrypted. As a result,
any other device or eavesdropper on the network (e.g., other devices, a system
administrator, a coffee shop network) could conceivably observe a user’s DNS traf-
fic and determine information about that user. For example, a lookup to a site like
uchicago.edu might indicate that a user was browsing the University of Chicago
Web site. While such information might seem innocuous, DNS lookups to Web
sites such as webmd.com might indicate that a user was performing medical
research. Combinations of lookups combined with other information can often
even reveal more specific information, possibly even the precise Web site that a
user is visiting.

630 THE APPLICATION LAYER CHAP. 7

Privacy issues associated with DNS queries have become more contentious
when considering emerging applications, such as the Internet of Things (IoT) and
smart homes. For example, the DNS queries that a device issues can reveal infor-
mation about the type of devices that users have in their smart homes and the
extent to which they are interacting with those devices. For example, the DNS
queries that an Internet-connected camera or sleep monitor issues can uniquely
identify the device (Apthorpe et al., 2019). Given the increasingly sensitive activi-
ties that people perform on Internet-connected devices, from browsers to Inter-
net-connected ‘‘smart’’ devices, there is an increasing desire to encrypt DNS
queries and responses.

Several recent developments are poised to potentially reshape DNS entirely.
The first is the movement toward encrypting DNS queries and responses. Various
organizations, including Cloudflare, Google, and others are now offering users the
opportunity to direct their DNS traffic to their own local recursive resolvers, and
additionally offering support for encrypted transport (e.g., TLS, HTTPS) between
the DNS stub resolver and their local resolver. In some cases, these organizations
are partnering with Web browser manufacturers (e.g., Mozilla) to potentially direct
all DNS traffic to these local resolvers by default.

If all DNS queries and responses are exchanged with cloud providers over
encrypted transport by default, the implications for the future of the Internet archi-
tecture could be extremely significant. Specifically, Internet service providers will
no longer have the ability to observe DNS queries from their subscribers’ home
networks, which has, in the past, been one of the primary ways that ISPs monitor
these networks for infections and malware (Antonakakis et al., 2010). Other func-
tions, such as parental controls and various other services that ISPs offer, also
depend on seeing DNS traffic.

Ultimately, two somewhat orthogonal issues are at play. The first is the shift of
DNS towards encrypted transport, which almost everyone would agree is a positive
change (there were initial concerns about performance, which have mostly now
been addressed). The second issue is thornier: it involves who gets to operate the
local recursive resolvers. Previously, the local recursive resolver was generally
operated by a user’s ISP; if DNS resolution moves to the browser, however, via
DoH, then the browsers (the two most popular of which are at this point largely
controlled by a single dominant provider, Google) can control who is in a position
to observe DNS traffic. Ultimately, the operator of the local recursive resolver can
see the DNS queries from the user and associate those with an IP address; whether
the user wants their ISP or a large advertising company to see their DNS traffic
should be their choice, but the default settings in the browser may ultimately deter-
mine who ends up seeing the majority of this traffic. Presently, a wide range of
organizations, from ISPs to content providers and advertising companies are trying
to establish what are being called TRRs (Trusted Recursive Resolvers), which
are local recursive resolvers that use DoT or DoH to resolve queries for clients.
Time will tell how these developments ultimately reshape the DNS architecture.

SEC. 7.1 THE DOMAIN NAME SYSTEM (DNS) 631

Even DoT and DoH do not completely resolve all DNS-related privacy con-
cerns, because the operator of the local resolver must still be trusted with sensitive
information: namely, the DNS queries and the IP addresses of the clients that
issued those queries. Other recent enhancements to DNS and DoH have been pro-
posed, including oblivious DNS (Schmitt et al., 2019) and oblivious DoH (Kinn-
ear et al., 2019), whereby the stub resolver encrypts the original query to the local
recursive resolver, which in turn sends the encrypted query to an authoritative
name serve that can decrypt and resolve the query, but does not know the identity
or IP address of the stub resolver that initiated the query. Figure 7-8 shows this
relationship.

Client Stub resolver Recursive
resolver

Sees IP address of
stub, but not

query.

Can decrypt query
but doesn t know
stub resolve IP

address.

ODNS
Authoritative server
(Chicago)

University of Chicago

Figure 7-8. Oblivious DNS.

Most of these implementations are still nascent, in the forms of early prototypes
and draft standards being discussed in the DNS privacy working group at IETF.

7.1.8 Contention Over Names

As the Internet has become more commercial and more international, it has
also become more contentious, especially in matters related to naming. This con-
troversy includes ICANN itself. For example, the creation of the xxx domain took
several years and court cases to resolve. Is voluntarily placing adult content in its
own domain a good or a bad thing? (Some people did not want adult content avail-
able at all on the Internet while others wanted to put it all in one domain so nanny
filters could easily find and block it from children.) Some of the domains self-
organize, while others have restrictions on who can obtain a name, as noted in
Fig. 7-8. But what restrictions are appropriate? Take the pro domain, for example.
It is for qualified professionals. But who, exactly, is a professional? Doctors and
lawyers clearly are professionals. But what about freelance photographers, piano
teachers, magicians, plumbers, barbers, exterminators, tattoo artists, mercenaries,
and prostitutes? Are these occupations eligible? According to whom?

632 THE APPLICATION LAYER CHAP. 7

There is also money in names. Tuvalu (a tiny island country midway between
Hawaii and Australia) sold a lease on its tv domain for $50 million, all because the
country code is well-suited to advertising television sites. Virtually every common
(English) word has been taken in the com domain, along with the most common
misspellings. Try household articles, animals, plants, body parts, etc. The practice
of registering a domain only to turn around and sell it off to an interested party at a
much higher price even has a name. It is called cybersquatting. Many companies
that were slow off the mark when the Internet era began found their obvious
domain names already taken when they tried to acquire them. In general, as long
as no trademarks are being violated and no fraud is involved, it is first-come, first-
served with names. Nevertheless, policies to resolve naming disputes are still being
refined.

7.2 ELECTRONIC MAIL

Electronic mail, or more commonly email, has been around for over four dec-
ades. Faster and cheaper than paper mail, email has been a popular application
since the early days of the Internet. Before 1990, it was mostly used in academia.
During the 1990s, it became known to the public at large and grew exponentially,
to the point where the number of emails sent per day now is vastly more than the
number of snail mail (i.e., paper) letters. Other forms of network communication,
such as instant messaging and voice-over-IP calls have expanded greatly in use
over the past decade, but email remains the workhorse of Internet communication.
It is widely used within industry for intracompany communication, for example, to
allow far-flung employees all over the world to cooperate on complex projects.
Unfortunately, like paper mail, the majority of email—some 9 out of 10 mes-
sages—is junk mail or spam. While mail systems can remove much of it now-
adays, a lot still gets through and research into detecting it all is ongoing, for
example, see Dan et al. (2019) and Zhang et al. (2019).

Email, like most other forms of communication, has developed its own conven-
tions and styles. It is very informal and has a low threshold of use. People who
would never dream of calling up or even writing a letter to a Very Important Person
do not hesitate for a second to send a sloppily written email to him or her. By
eliminating most cues associated with rank, age, and gender, email debates often
focus on content, not status. With email, a brilliant idea from a summer student
can have more impact than a dumb one from an executive vice president.

Email is full of jargon such as BTW (By The Way), ROTFL (Rolling On The
Floor Laughing), and IMHO (In My Humble Opinion). Many people also use little
ASCII symbols called smileys, starting with the ubiquitous ‘‘:-)’’. This symbol
and other emoticons help to convey the tone of the message. They have spread to
other terse forms of communication, such as instant messaging, typically as graphi-
cal emoji. Many smartphones have hundreds of emojis available.

SEC. 7.2 ELECTRONIC MAIL 633

The email protocols have evolved during the period of their use, too. The first
email systems simply consisted of file transfer protocols, with the convention that
the first line of each message (i.e., file) contained the recipient’s address. As time
went on, email diverged from file transfer and many features were added, such as
the ability to send one message to a list of recipients. Multimedia capabilities
became important in the 1990s to send messages with images and other non-text
material. Programs for reading email became much more sophisticated too, shift-
ing from text-based to graphical user interfaces and adding the ability for users to
access their mail from their laptops wherever they happen to be. Finally, with the
prevalence of spam, email systems now pay attention to finding and removing
unwanted email.

In our description of email, we will focus on the way that mail messages are
moved between users, rather than the look and feel of mail reader programs.
Nevertheless, after describing the overall architecture, we will begin with the user-
facing part of the email system, as it is familiar to most readers.

7.2.1 Architecture and Services

In this section, we will provide an overview of how email systems are
organized and what they can do. The architecture of the email system is shown in
Fig. 7-9. It consists of two kinds of subsystems: the user agents, which allow peo-
ple to read and send email, and the message transfer agents, which move the mes-
sages from the source to the destination. We will also refer to message transfer
agents informally as mail servers.

Message
Transfer Agent

Message
Transfer Agent

SMTP
Sender

User Agent

Mailbox

Receiver
User Agent

Email

1: Mail
submission

2: Message
transfer

3: Final
delivery

Figure 7-9. Architecture of the email system.

The user agent is a program that provides a graphical interface, or sometimes a
text- and command-based interface that lets users interact with the email system. It
includes a means to compose messages and replies to messages, display incoming
messages, and organize messages by filing, searching, and discarding them. The
act of sending new messages into the mail system is called mail submission.

634 THE APPLICATION LAYER CHAP. 7

Some of the user agent processing may be done automatically, anticipating
what the user wants. For example, incoming mail may be filtered to extract or
deprioritize messages that are likely spam. Some user agents include advanced
features, such as arranging for automatic email responses (‘‘I’m having a wonder-
ful vacation and it will be a while before I get back to you.’’). A user agent runs on
the same computer on which a user reads her mail. It is just another program and
may be run only some of the time.

The message transfer agents are typically system processes. They run in the
background on mail server machines and are intended to be always available.
Their job is to automatically move email through the system from the originator to
the recipient with SMTP (Simple Mail Transfer Protocol), discussed in Sec. 7.2.4.
This is the message transfer step.

SMTP was originally specified as RFC 821 and revised to become the current
RFC 5321. It sends mail over connections and reports back the delivery status and
any errors. Numerous applications exist in which confirmation of delivery is
important and may even have legal significance (‘‘Well, Your Honor, my email sys-
tem is just not very reliable, so I guess the electronic subpoena just got lost some-
where’’).

Message transfer agents also implement mailing lists, in which an identical
copy of a message is delivered to everyone on a list of email addresses. Additional
advanced features are carbon copies, blind carbon copies, high-priority email,
secret (encrypted) email, alternative recipients if the primary one is not currently
available, and the ability for assistants to read and answer their bosses’ email.

Linking user agents and message transfer agents are the concepts of mailboxes
and a standard format for email messages. Mailboxes store the email that is
received for a user. They are maintained by mail servers. User agents simply pres-
ent users with a view of the contents of their mailboxes. To do this, the user agents
send the mail servers commands to manipulate the mailboxes, inspecting their con-
tents, deleting messages, and so on. The retrieval of mail is the final delivery (step
3) in Fig. 7-9. With this architecture, one user may use different user agents on
multiple computers to access one mailbox.

Mail is sent between message transfer agents in a standard format. The original
format, RFC 822, has been revised to the current RFC 5322 and extended with
support for multimedia content and international text. This scheme is called
MIME. People still refer to Internet email as RFC 822, though.

A key idea in the message format is the clear distinction between the envelope
and the contents of the envelope. The envelope encapsulates the message. Fur-
thermore, it contains all the information needed for transporting the message, such
as the destination address, priority, and security level, all of which are distinct from
the message itself. The message transport agents use the envelope for routing, just
as the post office does.

The message inside the envelope consists of two separate parts: the header and
the body. The header contains control information for the user agents. The body

SEC. 7.2 ELECTRONIC MAIL 635

is entirely for the human recipient. None of the agents care much about it.
Envelopes and messages are illustrated in Fig. 7-10.

Mr. Daniel Dumkopf
18 Willow Lane
White Plains, NY 10604

United Gizmo
180 Main St
Boston, MA 02120
Feb. 14, 2020

Yours truly
United Gizmo

Yours truly
United Gizmo

Subject: Invoice 1081

Dear Mr. Dumkopf,
Our computer records

show that you still have
not paid the above invoice
of $0.00. Please send us a
check for $0.00 promptly.

Dear Mr. Dumkopf,
Our computer records

show that you still have
not paid the above invoice
of $0.00. Please send us a
check for $0.00 promptly.

Name: Mr. Daniel Dumkopf
Street: 18 Willow Lane
City: White Plains
State: NY
Zip code: 10604
Priority: Urgent
Encryption: None

From: United Gizmo
Address: 180 Main St.
Location: Boston, MA 02120
Date: Feb. 14, 2020
Subject: Invoice 1081

Envelope

Message

(a) (b)

44¢

Bo
dy

H
ea

de
r

En
ve

lo
pe

Figure 7-10. Envelopes and messages. (a) Paper mail. (b) Electronic mail.

We will examine the pieces of this architecture in more detail by looking at the
steps that are involved in sending email from one user to another. This journey
starts with the user agent.

7.2.2 The User Agent

A user agent is a program (sometimes called an email reader) that accepts a
variety of commands for composing, receiving, and replying to messages, as well
as for manipulating mailboxes. There are many popular user agents, including
Google Gmail, Microsoft Outlook, Mozilla Thunderbird, and Apple Mail. They
can vary greatly in their appearance. Most user agents have a menu- or icon-driven
graphical interface that requires a mouse, or a touch interface on smaller mobile
devices. Older user agents, such as Elm, mh, and Pine, provide text-based inter-
faces and expect one-character commands from the keyboard. Functionally, these
are the same, at least for text messages.

636 THE APPLICATION LAYER CHAP. 7

The typical elements of a user agent interface are shown in Fig. 7-11. Your
mail reader is likely to be much flashier, but probably has equivalent functions.
When a user agent is started, it will usually present a summary of the messages in
the user’s mailbox. Often, the summary will have one line for each message in
some sorted order. It highlights key fields of the message that are extracted from
the message envelope or header.

Mail Folders
All items
Inbox
Networks
Travel
Junk Mail

Message summary

From
trudy
Andy
djw
Amy N. Wong
guido
lazowska
Olivia

. . .

.

.

Subject
Not all Trudys are nasty
Material on RFID privacy
Have you seen this?
Request for information
Re: Paper acceptance
More on that
I have an idea

Received
Today
Today
Mar 4
Mar 3
Mar 3
Mar 2
Mar 2

Mailbox search

!!

A. Student
Dear Professor,
I recently completed my undergraduate studies with
distinction at an excellent university. I will be visiting your

Message folders

Search Graduate studies? Mar 1

Message

Figure 7-11. Typical elements of the user agent interface.

Seven summary lines are shown in the example of Fig. 7-11. The lines use the
Fr om, Subject, and Received fields, in that order, to display who sent the message,
what it is about, and when it was received. All the information is formatted in a
user-friendly way rather than displaying the literal contents of the message fields,
but it is based on the message fields. Thus, people who fail to include a Subject
field often discover that responses to their emails tend not to get the highest prior-
ity.

Many other fields or indications are possible. The icons next to the message
subjects in Fig. 7-11 might indicate, for example, unread mail (the envelope),
attached material (the paperclip), and important mail, at least as judged by the
sender (the exclamation point).

Many sorting orders are also possible. The most common is to order messages
based on the time that they were received, most recent first, with some indication
as to whether the message is new or has already been read by the user. The fields in
the summary and the sort order can be customized by the user according to her
preferences.

User agents must also be able to display incoming messages as needed so that
people can read their email. Often a short preview of a message is provided, as in

SEC. 7.2 ELECTRONIC MAIL 637

Fig. 7-11, to help users decide when to read further and when to hit the SPAM but-
ton. Previews may use small icons or images to describe the contents of the mes-
sage. Other presentation processing includes reformatting messages to fit the dis-
play, and translating or converting contents to more convenient formats (e.g., digi-
tized speech to recognized text).

After a message has been read, the user can decide what to do with it. This is
called message disposition. Options include deleting the message, sending a
reply, forwarding the message to another user, and keeping the message for later
reference. Most user agents can manage one mailbox for incoming mail with mul-
tiple folders for saved mail. The folders allow the user to save message according
to sender, topic, or some other category.

Filing can be done automatically by the user agent as well, even before the
user reads the messages. A common example is that the fields and contents of mes-
sages are inspected and used, along with feedback from the user about previous
messages, to determine if a message is likely to be spam. Many ISPs and com-
panies run software that labels mail as important or spam so that the user agent can
file it in the corresponding mailbox. The ISP and company have the advantage of
seeing mail for many users and may have lists of known spammers. If hundreds of
users have just received a similar message, it is probably spam, although it could
be a message from the CEO to all employees. By presorting incoming mail as
‘‘probably legitimate’’ and ‘‘probably spam,’’ the user agent can save users a fair
amount of work separating the good stuff from the junk.

And the most popular spam? It is generated by collections of compromised
computers called botnets and its content depends on where you live. Fake diplo-
mas are common in Asia, and cheap drugs and other dubious product offers are
common in the U.S. Unclaimed Nigerian bank accounts still abound. Pills for
enlarging various body parts are common everywhere.

Other filing rules can be constructed by users. Each rule specifies a condition
and an action. For example, a rule could say that any message received from the
boss goes to one folder for immediate reading and any message from a particular
mailing list goes to another folder for later reading. Several folders are shown in
Fig. 7-11. The most important folders are the Inbox, for incoming mail not filed
elsewhere, and Junk Mail, for messages that are thought to be spam.

7.2.3 Message Formats

Now we turn from the user interface to the format of the email messages them-
selves. Messages sent by the user agent must be placed in a standard format to be
handled by the message transfer agents. First we will look at basic ASCII email
using RFC 5322, which is the latest revision of the original Internet message for-
mat as described in RFC 822 and its many updates. After that, we will look at
multimedia extensions to the basic format.

638 THE APPLICATION LAYER CHAP. 7

RFC 5322—The Internet Message Format

Messages consist of a primitive envelope (described as part of SMTP in RFC
5321), some number of header fields, a blank line, and then the message body.
Each header field (logically) consists of a single line of ASCII text containing the
field name, a colon, and, for most fields, a value. The original RFC 822 was
designed decades ago and did not clearly distinguish the envelope fields from the
header fields. Although it has been revised to RFC 5322, completely redoing it
was not possible due to its widespread usage. In normal usage, the user agent
builds a message and passes it to the message transfer agent, which then uses some
of the header fields to construct the actual envelope, a somewhat old-fashioned
mixing of message and envelope.

The principal header fields related to message transport are listed in Fig. 7-12.
The To: field gives the email address of the primary recipient. Having multiple
recipients is also allowed. The Cc: field gives the addresses of any secondary
recipients. In terms of delivery, there is no distinction between the primary and
secondary recipients. It is entirely a psychological difference that may be impor-
tant to the people involved but is not important to the mail system. The term Cc:
(Carbon copy) is a bit dated, since computers do not use carbon paper, but it is well
established. The Bcc: (Blind carbon copy) field is like the Cc: field, except that
this line is deleted from all the copies sent to the primary and secondary recipients.
This feature allows people to send copies to third parties without the primary and
secondary recipients knowing this.

Header Meaning
To: Email address(es) of primary recipient(s)
Cc: Email address(es) of secondary recipient(s)
Bcc: Email address(es) for blind carbon copies
From: Person or people who created the message
Sender: Email address of the actual sender
Received: Line added by each transfer agent along the route
Return-Path: Can be used to identify a path back to the sender

Figure 7-12. RFC 5322 header fields related to message transport.

The next two fields, Fr om: and Sender:, tell who wrote and actually sent the
message, respectively. These two fields need not be the same. For example, a bus-
iness executive may write a message, but her assistant may be the one who actually
transmits it. In this case, the executive would be listed in the Fr om: field and the
assistant in the Sender: field. The Fr om: field is required, but the Sender: field
may be omitted if it is the same as the Fr om: field. These fields are needed in case
the message is undeliverable and must be returned to the sender.

SEC. 7.2 ELECTRONIC MAIL 639

A line containing Received: is added by each message transfer agent along the
way. The line contains the agent’s identity, the date and time the message was
received, and other information that can be used for debugging the routing system.

The Return-Path: field is added by the final message transfer agent and was
intended to tell how to get back to the sender. In theory, this information can be
gathered from all the Received: headers (except for the name of the sender’s mail-
box), but it is rarely filled in as such and typically just contains the sender’s
address.

In addition to the fields of Fig. 7-12, RFC 5322 messages may also contain a
variety of header fields used by the user agents or human recipients. The most
common ones are listed in Fig. 7-13. Most of these are self-explanatory, so we will
not go into all of them in much detail.

Header Meaning
Date: The date and time the message was sent
Reply-To: Email address to which replies should be sent
Message-Id: Unique number for referencing this message later
In-Reply-To: Message-Id of the message to which this is a reply
References: Other relevant Message-Ids
Keywords: User-chosen keywords
Subject: Short summary of the message for the one-line display

Figure 7-13. Some fields used in the RFC 5322 message header.

The Reply-To: field is sometimes used when neither the person composing the
message nor the person sending the message wants to see the reply. For example, a
marketing manager may write an email message telling customers about a new
product. The message is sent by an assistant, but the Reply-To: field lists the head
of the sales department, who can answer questions and take orders. This field is
also useful when the sender has two email accounts and wants the reply to go to
the other one.

The Message-Id: is an automatically generated number that is used to link
messages together (e.g., when used in the In-Reply-To: field) and to prevent dupli-
cate delivery.

The RFC 5322 document explicitly says that users are allowed to invent optio-
nal headers for their own private use. By convention since RFC 822, these headers
start with the string X-. It is guaranteed that no future headers will use names start-
ing with X-, to avoid conflicts between official and private headers. Sometimes
wiseguy undergraduates make up fields like X-Fruit-of-the-Day: or X-Disease-of-
the-Week:, which are legal, although not always illuminating.

After the headers comes the message body. Users can put whatever they want
here. Some people terminate their messages with elaborate signatures, including
quotations from greater and lesser authorities, political statements, and disclaimers

640 THE APPLICATION LAYER CHAP. 7

of all kinds (e.g., The XYZ Corporation is not responsible for my opinions; in fact,
it cannot even comprehend them).

MIME—The Multipurpose Internet Mail Extensions

In the early days of the ARPANET, email consisted exclusively of text mes-
sages written in English and expressed in ASCII. For this environment, the early
RFC 822 format did the job completely: it specified the headers but left the content
entirely up to the users. In the 1990s, the worldwide use of the Internet and de-
mand to send richer content through the mail system meant that this approach was
no longer adequate. The problems included sending and receiving messages in
languages with diacritical marks (e.g., French and German), non-Latin alphabets
(e.g., Hebrew and Russian), or no alphabets (e.g., Chinese and Japanese), as well
as sending messages not containing text at all (e.g., audio, images, or binary docu-
ments and programs).

The solution was the development of MIME (Multipurpose Internet Mail
Extensions). It is widely used for mail messages that are sent across the Internet,
as well as to describe content for other applications such as Web browsing. MIME
is described in RFC 2045, and the ones following it as well as RFC 4288 and 4289.

The basic idea of MIME is to continue to use the RFC 822 format but to add
structure to the message body and define encoding rules for the transfer of non-
ASCII messages. Not deviating from RFC 822 allowed MIME messages to be
sent using the existing mail transfer agents and protocols (based on RFC 821 then,
and RFC 5321 now). All that had to be changed were the sending and receiving
programs, which users could do for themselves.

MIME defines five new message headers, as shown in Fig. 7-14. The first of
these simply tells the user agent receiving the message that it is dealing with a
MIME message, and which version of MIME it uses. Any message not containing
a MIME-Version: header is assumed to be an English plaintext message (or at least
one using only ASCII characters) and is processed as such.

Header Meaning
MIME-Version: Identifies the MIME version
Content-Description: Human-readable string telling what is in the message
Content-Id: Unique identifier
Content-Transfer-Encoding: How the body is wrapped for transmission
Content-Type: Type and format of the content

Figure 7-14. Message headers added by MIME.

The Content-Description: header is an ASCII string telling what is in the mes-
sage. This header is needed so the recipient will know whether it is worth decod-
ing and reading the message. If the string says ‘‘Photo of Aron’s hamster’’ and the

SEC. 7.2 ELECTRONIC MAIL 641

person getting the message is not a big hamster fan, the message will probably be
discarded rather than decoded into a high-resolution color photograph.

The Content-Id: header identifies the content. It uses the same format as the
standard Message-Id: header.

The Content-Transfer-Encoding: tells how the body is wrapped for transmis-
sion through the network. A key problem at the time MIME was developed was
that the mail transfer (SMTP) protocols expected ASCII messages in which no line
exceeded 1000 characters. ASCII characters use 7 bits out of each 8-bit byte. Bina-
ry data such as executable programs and images use all 8 bits of each byte, as do
extended character sets. There was no guarantee this data would be transferred
safely. Hence, some method of carrying binary data that made it look like a regular
ASCII mail message was needed. Extensions to SMTP since the development of
MIME do allow 8-bit binary data to be transferred, though even today binary data
may not always go through the mail system correctly if unencoded.

MIME provides five transfer encoding schemes, plus an escape to new
schemes—just in case. The simplest scheme is just ASCII text messages. ASCII
characters use 7 bits and can be carried directly by the email protocol, provided
that no line exceeds 1000 characters.

The next simplest scheme is the same thing, but using 8-bit characters, that is,
all values from 0 up to and including 255 are allowed. Messages using the 8-bit
encoding must still adhere to the standard maximum line length.

Then there are messages that use a true binary encoding. These are arbitrary
binary files that not only use all 8 bits but also do not adhere to the 1000-character
line limit. Executable programs fall into this category. Nowadays, mail servers
can negotiate to send data in binary (or 8-bit) encoding, falling back to ASCII if
both ends do not support the extension.

The ASCII encoding of binary data is called base64 encoding. In this scheme,
groups of 24 bits are broken up into four 6-bit units, with each unit being sent as a
legal ASCII character. The coding is ‘‘A’’ for 0, ‘‘B’’ for 1, and so on, followed by
the 26 lowercase letters, the 10 digits, and finally + and / for 62 and 63, respec-
tively. The == and = sequences indicate that the last group contained only 8 or 16
bits, respectively. Carriage returns and line feeds are ignored, so they can be
inserted at will in the encoded character stream to keep the lines short enough.
Arbitrary binary text can be sent safely using this scheme, albeit inefficiently. This
encoding was very popular before binary-capable mail servers were widely deploy-
ed. It is still commonly seen.

The last header shown in Fig. 7-14 is really the most interesting one. It speci-
fies the nature of the message body and has had an impact well beyond email. For
instance, content downloaded from the Web is labeled with MIME types so that the
browser knows how to present it. So is content sent over streaming media and
real-time transports such as voice over IP.

Initially, seven MIME types were defined in RFC 1521. Each type has one or
more available subtypes. The type and subtype are separated by a slash, as in

642 THE APPLICATION LAYER CHAP. 7

‘‘Content-Type: video/mpeg’’. Since then, over 2700 subtypes have been added,
along two new types (font and model). Additional entries are being added all the
time as new types of content are developed. The list of assigned types and sub-
types is maintained online by IANA at www.iana.org/assignments/media-types.
The types, along with several examples of commonly used subtypes, are given in
Fig. 7-15.

Type Example subtypes Description
text plain, html, xml, css Text in various formats
image gif, jpeg, tiff Pictures
audio basic, mpeg, mp4 Sounds
video mpeg, mp4, quicktime Movies
font otf, ttf Fonts for typesetting
model vrml 3D model
application octet-stream, pdf, javascript, zip Data produced by applications
message http, RFC 822 Encapsulated message
multipart mixed, alternative, parallel, digest Combination of multiple types

Figure 7-15. MIME content types and example subtypes.

The MIME types in Fig. 7-15 should be self-explanatory except perhaps the
last one. It allows a message with multiple attachments, each with a different
MIME type.

7.2.4 Message Transfer

Now that we have described user agents and mail messages, we are ready to
look at how the message transfer agents relay messages from the originator to the
recipient. The mail transfer is done with the SMTP protocol.

The simplest way to move messages is to establish a transport connection from
the source machine to the destination machine and then just transfer the message.
This is how SMTP originally worked. Over the years, however, two different uses
of SMTP have been differentiated. The first use is mail submission, step 1 in the
email architecture of Fig. 7-9. This is the means by which user agents send mes-
sages into the mail system for delivery. The second use is to transfer messages
between message transfer agents (step 2 in Fig. 7-9). This sequence delivers mail
all the way from the sending to the receiving message transfer agent in one hop.
Final delivery is accomplished with different protocols that we will describe in the
next section.

In this section, we will describe the basics of the SMTP protocol and its exten-
sion mechanism. Then we will discuss how it is used differently for mail submis-
sion and message transfer.

SEC. 7.2 ELECTRONIC MAIL 643

SMTP (Simple Mail Transfer Protocol) and Extensions

Within the Internet, email is delivered by having the sending computer estab-
lish a TCP connection to port 25 of the receiving computer. Listening to this port
is a mail server that speaks SMTP (Simple Mail Transfer Protocol). This server
accepts incoming connections, subject to some security checks, and accepts mes-
sages for delivery. If a message cannot be delivered, an error report containing the
first part of the undeliverable message is returned to the sender.

SMTP is a simple ASCII protocol. This is not a weakness but a feature. Using
ASCII text makes protocols easy to develop, test, and debug. They can be tested
by sending commands manually, and records of the messages are easy to read.
Most application-level Internet protocols now work this way (e.g., HTTP).

We will walk through a simple message transfer between mail servers that
delivers a message. After establishing the TCP connection to port 25, the sending
machine, operating as the client, waits for the receiving machine, operating as the
server, to talk first. The server starts by sending a line of text giving its identity
and telling whether it is prepared to receive mail. If it is not, the client releases the
connection and tries again later.

If the server is willing to accept email, the client announces whom the email is
coming from and whom it is going to. If such a recipient exists at the destination,
the server gives the client the go-ahead to send the message. Then the client sends
the message and the server acknowledges it. No checksums are needed because
TCP provides a reliable byte stream. If there is more email, that is now sent.
When all the email has been exchanged in both directions, the connection is
released. A sample dialog is shown in Fig. 7-16. The lines sent by the client (i.e.,
the sender) are marked C:. Those sent by the server (i.e., the receiver) are marked
S:.

The first command from the client is indeed meant to be HELO. Of the vari-
ous four-character abbreviations for HELLO, this one has numerous advantages
over its biggest competitor. Why all the commands had to be four characters has
been lost in the mists of time.

In Fig. 7-16, the message is sent to only one recipient, so only one RCPT com-
mand is used. Such commands are allowed to send a single message to multiple
receivers. Each one is individually acknowledged or rejected. Even if some recipi-
ents are rejected (because they do not exist at the destination), the message can be
sent to the other ones.

Finally, although the syntax of the four-character commands from the client is
rigidly specified, the syntax of the replies is less rigid. Only the numerical code
really counts. Each implementation can put whatever string it wants after the code.

The basic SMTP works well, but it is limited in several respects. It does not
include authentication. This means that the FROM command in the example could
give any sender address that it pleases. This is quite useful for sending spam.
Another limitation is that SMTP transfers ASCII messages, not binary data. This is

644 THE APPLICATION LAYER CHAP. 7

S: 220 ee.uwa.edu.au SMTP service ready
C: HELO abcd.com

S: 250 cs.uchicago.edu says hello to ee.uwa.edu.au
C: MAIL FROM: <alice@cs.uchicago.edu>

S: 250 sender ok
C: RCPT TO: <bob@ee.uwa.edu.au>

S: 250 recipient ok
C: DATA

S: 354 Send mail; end with "." on a line by itself
C: From: alice@cs.uchicago.edu
C: To: bob@ee.uwa.edu.au
C: MIME-Version: 1.0
C: Message-Id: <0704760941.AA00747@ee.uwa.edu.au>
C: Content-Type: multipart/alternative; boundary=qwertyuiopasdfghjklzxcvbnm
C: Subject: Earth orbits sun integral number of times
C:
C: This is the preamble. The user agent ignores it. Have a nice day.
C:
C: --qwertyuiopasdfghjklzxcvbnm
C: Content-Type: text/html
C:
C: <p>Happy birthday to you
C: Happy birthday to you
C: Happy birthday dear <bold> Bob </bold>
C: Happy birthday to you
C:
C: --qwertyuiopasdfghjklzxcvbnm
C: Content-Type: message/external-body;
C: access-type="anon-ftp";
C: site="bicycle.cs.uchicago.edu";
C: directory="pub";
C: name="birthday.snd"
C:
C: content-type: audio/basic
C: content-transfer-encoding: base64
C: --qwertyuiopasdfghjklzxcvbnm
C: .

S: 250 message accepted
C: QUIT

S: 221 ee.uwa.edu.au closing connection

Figure 7-16. A message from alice cs.uchicago.edu to bob ee.uwa.edu.au.

why the base64 MIME content transfer encoding was needed. However, with that
encoding the mail transmission uses bandwidth inefficiently, which is an issue for
large messages. A third limitation is that SMTP sends messages in the clear. It has
no encryption to provide a measure of privacy against prying eyes.

To allow these and many other problems related to message processing to be
addressed, SMTP was revised to have an extension mechanism. This mechanism

SEC. 7.2 ELECTRONIC MAIL 645

is a mandatory part of the RFC 5321 standard. The use of SMTP with extensions
is called ESMTP (Extended SMTP).

Clients wanting to use an extension send an EHLO message instead of HELO
initially. If this is rejected, the server is a regular SMTP server, and the client
should proceed in the usual way. If the EHLO is accepted, the server replies with
the extensions that it supports. The client may then use any of these extensions.
Several common extensions are shown in Fig. 7-17. The figure gives the keyword
as used in the extension mechanism, along with a description of the new func-
tionality. We will not go into extensions in further detail.

Keyword Description
AUTH Client authentication
BINARYMIME Server accepts binary messages
CHUNKING Server accepts large messages in chunks
SIZE Check message size before trying to send
STARTTLS Switch to secure transport (TLS; see Chap. 8)
UTF8SMTP Internationalized addresses

Figure 7-17. Some SMTP extensions.

To get a better feel for how SMTP and some of the other protocols described in
this chapter work, try them out. In all cases, first go to a machine connected to the
Internet. On a UNIX (or Linux) system, in a shell, type

telnet mail.isp.com 25
substituting the DNS name of your ISP’s mail server for mail.isp.com. On a Win-
dows machine, you may have to first install the telnet program (or equivalent) and
then start it yourself. This command will establish a telnet (i.e., TCP) connection
to port 25 on that machine. Port 25 is the SMTP port; see Fig. 6-34 for the ports
for other common protocols. You will probably get a response something like this:

Trying 192.30.200.66...
Connected to mail.isp.com
Escape character is ’ˆ]’.
220 mail.isp.com Smail #74 ready at Thu, 25 Sept 2019 13:26 +0200

The first three lines are from telnet, telling you what it is doing. The last line is
from the SMTP server on the remote machine, announcing its willingness to talk to
you and accept email. To find out what commands it accepts, type

HELP
From this point on, a command sequence such as the one in Fig. 7-16 is possible if
the server is willing to accept mail from you. You may have to type quickly,
though, since the connection may time out if it is inactive too long. Also, not every
mail server will accept a telnet connection from an unknown machine.

646 THE APPLICATION LAYER CHAP. 7

Mail Submission

Originally, user agents ran on the same computer as the sending message trans-
fer agent. In this setting, all that is required to send a message is for the user agent
to talk to the local mail server, using the dialog that we have just described. How-
ever, this setting is no longer the usual case.

User agents often run on laptops, home PCs, and mobile phones. They are not
always connected to the Internet. Mail transfer agents run on ISP and company
servers. They are always connected to the Internet. This difference means that a
user agent in Boston may need to contact its regular mail server in Seattle to send a
mail message because the user is traveling.

By itself, this remote communication poses no problem. It is exactly what the
TCP/IP protocols are designed to support. However, an ISP or company usually
does not want any remote user to be able to submit messages to its mail server to
be delivered elsewhere. The ISP or company is not running the server as a public
service. In addition, this kind of open mail relay attracts spammers. This is
because it provides a way to launder the original sender and thus make the message
more difficult to identify as spam.

Given these considerations, SMTP is normally used for mail submission with
the AUTH extension. This extension lets the server check the credentials (username
and password) of the client to confirm that the server should be providing mail ser-
vice.

There are several other differences in the way SMTP is used for mail submis-
sion. For example, port 587 can be used in preference to port 25 and the SMTP ser-
ver can check and correct the format of the messages sent by the user agent. For
more information about the restricted use of SMTP for mail submission, please see
RFC 4409.

Physical Transfer

Once the sending mail transfer agent receives a message from the user agent, it
will deliver it to the receiving mail transfer agent using SMTP. To do this, the
sender uses the destination address. Consider the message in Fig. 7-16, addressed
to bob@ee.uwa.edu.au. To what mail server should the message be delivered?

To determine the correct mail server to contact, DNS is consulted. In the previ-
ous section, we described how DNS contains multiple types of records, including
the MX, or mail exchanger, record. In this case, a DNS query is made for the MX
records of the domain ee.uwa.edu.au. This query returns an ordered list of the
names and IP addresses of one or more mail servers.

The sending mail transfer agent then makes a TCP connection on port 25 to the
IP address of the mail server to reach the receiving mail transfer agent, and uses
SMTP to relay the message. The receiving mail transfer agent will then place mail
for the user bob in the correct mailbox for Bob to read it at a later time. This local

SEC. 7.2 ELECTRONIC MAIL 647

delivery step may involve moving the message among computers if there is a large
mail infrastructure.

With this delivery process, mail travels from the initial to the final mail transfer
agent in a single hop. There are no intermediate servers in the message transfer
stage. It is possible, however, for this delivery process to occur multiple times.
One example that we have described already is when a message transfer agent
implements a mailing list. In this case, a message is received for the list. It is then
expanded as a message to each member of the list that is sent to the individual
member addresses.

As another example of relaying, Bob may have graduated from M.I.T. and also
be reachable via the address bob@alum.mit.edu. Rather than reading mail on mul-
tiple accounts, Bob can arrange for mail sent to this address to be forwarded to
bob@ee.uwa.edu. In this case, mail sent to bob@alum.mit.edu will undergo two
deliveries. First, it will be sent to the mail server for alum.mit.edu. Then, it will be
sent to the mail server for ee.uwa.edu.au. Each of these legs is a complete and sep-
arate delivery as far as the mail transfer agents are concerned.

7.2.5 Final Delivery

Our mail message is almost delivered. It has arrived at Bob’s mailbox. All that
remains is to transfer a copy of the message to Bob’s user agent for display. This is
step 3 in the architecture of Fig. 7-9. This task was straightforward in the early
Internet, when the user agent and mail transfer agent ran on the same machine as
different processes. The mail transfer agent simply wrote new messages to the end
of the mailbox file, and the user agent simply checked the mailbox file for new
mail.

Nowadays, the user agent on a PC, laptop, or mobile, is likely to be on a dif-
ferent machine than the ISP or company mail server and certain to be on a different
machine for a mail provider such as Gmail. Users want to be able to access their
mail remotely, from wherever they are. They want to access email from work,
from their home PCs, from their laptops when on business trips, and from cyber-
cafes when on so-called vacation. They also want to be able to work offline, then
reconnect to receive incoming mail and send outgoing mail. Moreover, each user
may run several user agents depending on what computer it is convenient to use at
the moment. Several user agents may even be running at the same time.

In this setting, the job of the user agent is to present a view of the contents of
the mailbox, and to allow the mailbox to be remotely manipulated. Several dif-
ferent protocols can be used for this purpose, but SMTP is not one of them. SMTP
is a push-based protocol. It takes a message and connects to a remote server to
transfer the message. Final delivery cannot be achieved in this manner both
because the mailbox must continue to be stored on the mail transfer agent and
because the user agent may not be connected to the Internet at the moment that
SMTP attempts to relay messages.

648 THE APPLICATION LAYER CHAP. 7

IMAP—The Internet Message Access Protocol

One of the main protocols that is used for final delivery is IMAP (Internet
Message Access Protocol). Version 4 of the protocol is defined in RFC 3501 and
in its many updates. To use IMAP, the mail server runs an IMAP server that listens
to port 143. The user agent runs an IMAP client. The client connects to the server
and begins to issue commands from those listed in Fig. 7-18.

Command Description
CAPABILITY List server capabilities
STARTTLS Start secure transport (TLS; see Chap. 8)
LOGIN Log on to server
AUTHENTICATE Log on with other method
SELECT Select a folder
EXAMINE Select a read-only folder
CREATE Create a folder
DELETE Delete a folder
RENAME Rename a folder
SUBSCRIBE Add folder to active set
UNSUBSCRIBE Remove folder from active set
LIST List the available folders
LSUB List the active folders
STATUS Get the status of a folder
APPEND Add a message to a folder
CHECK Get a checkpoint of a folder
FETCH Get messages from a folder
SEARCH Find messages in a folder
STORE Alter message flags
COPY Make a copy of a message in a folder
EXPUNGE Remove messages flagged for deletion
UID Issue commands using unique identifiers
NOOP Do nothing
CLOSE Remove flagged messages and close folder
LOGOUT Log out and close connection

Figure 7-18. IMAP (version 4) commands.

First, the client will start a secure transport if one is to be used (in order to
keep the messages and commands confidential), and then log in or otherwise
authenticate itself to the server. Once logged in, there are many commands to list
folders and messages, fetch messages or even parts of messages, mark messages

SEC. 7.2 ELECTRONIC MAIL 649

with flags for later deletion, and organize messages into folders. To avoid confu-
sion, please note that we use the term ‘‘folder’’ here to be consistent with the rest
of the material in this section, in which a user has a single mailbox made up of
multiple folders. However, in the IMAP specification, the term mailbox is used
instead. One user thus has many IMAP mailboxes, each of which is typically pres-
ented to the user as a folder.

IMAP has many other features, too. It has the ability to address mail not by
message number, but by using attributes (e.g., give me the first message from
Alice). Searches can be performed on the server to find the messages that satisfy
certain criteria so that only those messages are fetched by the client.

IMAP is an improvement over an earlier final delivery protocol, POP3 (Post
Office Protocol, version 3), which is specified in RFC 1939. POP3 is a simpler
protocol but supports fewer features and is less secure in typical usage. Mail is
usually downloaded to the user agent computer, instead of remaining on the mail
server. This makes life easier on the server, but harder on the user. It is not easy to
read mail on multiple computers, plus if the user agent computer breaks, all email
may be lost permanently. Nonetheless, you will still find POP3 in use.

Proprietary protocols can also be used because the protocol runs between a
mail server and user agent that can be supplied by the same company. Microsoft
Exchange is a mail system with a proprietary protocol.

Webmail

An increasingly popular alternative to IMAP and SMTP for providing email
service is to use the Web as an interface for sending and receiving mail. Widely
used Webmail systems include Google Gmail, Microsoft Hotmail and Yahoo!
Mail. Webmail is one example of software (in this case, a mail user agent) that is
provided as a service using the Web.

In this architecture, the provider runs mail servers as usual to accept messages
for users with SMTP on port 25. However, the user agent is different. Instead of
being a standalone program, it is a user interface that is provided via Web pages.
This means that users can use any browser they like to access their mail and send
new messages.

When the user goes to the email Web page of the provider, say, Gmail, a form
is presented in which the user is asked for a login name and password. The login
name and password are sent to the server, which then validates them. If the login
is successful, the server finds the user’s mailbox and builds a Web page listing the
contents of the mailbox on the fly. The Web page is then sent to the browser for
display.

Many of the items on the page showing the mailbox are clickable, so messages
can be read, deleted, and so on. To make the interface responsive, the Web pages
will often include JavaScript programs. These programs are run locally on the cli-
ent in response to local events (e.g., mouse clicks) and can also download and

650 THE APPLICATION LAYER CHAP. 7

upload messages in the background, to prepare the next message for display or a
new message for submission. In this model, mail submission happens using the
normal Web protocols by posting data to a URL. The Web server takes care of
injecting messages into the traditional mail delivery system that we have described.
For security, the standard Web protocols can be used as well. These protocols con-
cern themselves with encrypting Web pages, not whether the content of the Web
page is a mail message.

7.3 THE WORLD WIDE WEB

The Web, as the World Wide Web is popularly known, is an architectural
framework for accessing linked content spread out over millions of machines all
over the Internet. In 10 years it went from being a way to coordinate the design of
high-energy physics experiments in Switzerland to the application that millions of
people think of as being ‘‘The Internet.’’ Its enormous popularity stems from the
fact that it is easy for beginners to use and provides access with a rich graphical
interface to an enormous wealth of information on almost every conceivable sub-
ject, from aardvarks to Zulus.

The Web began in 1989 at CERN, the European Center for Nuclear Research.
The initial idea was to help large teams, often with members in a dozen or more
countries and time zones, collaborate using a constantly changing collection of
reports, blueprints, drawings, photos, and other documents produced by experi-
ments in particle physics. The proposal for a Web of linked documents came from
CERN physicist Tim Berners-Lee. The first (text-based) prototype was operational
18 months later. A public demonstration given at the Hypertext ’91 conference
caught the attention of other researchers, which led Marc Andreessen at the Uni-
versity of Illinois to develop the first graphical browser. It was called Mosaic and
released in February 1993.

The rest, as they say, is now history. Mosaic was so popular that a year later
Andreessen left to form a company, Netscape Communications Corp., whose goal
was to develop Web software. For the next three years, Netscape Navigator and
Microsoft’s Internet Explorer engaged in a ‘‘browser war,’’ each one trying to cap-
ture a larger share of the new market by frantically adding more features (and thus
more bugs) than the other one.

Through the 1990s and 2000s, Web sites and Web pages, as Web content is
called, grew exponentially until there were millions of sites and billions of pages.
A small number of these sites became tremendously popular. Those sites and the
companies behind them largely define the Web as people experience it today.
Examples include: a bookstore (Amazon, started in 1994), a flea market (eBay,
1995), search (Google, 1998), and social networking (Facebook, 2004). The
period through 2000, when many Web companies became worth hundreds of mil-
lions of dollars overnight, only to go bust practically the next day when they turned

SEC. 7.3 THE WORLD WIDE WEB 651

out to be hype, even has a name. It is called the dot com era. New ideas are still
striking it rich on the Web. Many of them come from students. For example, Mark
Zuckerberg was a Harvard student when he started Facebook, and Sergey Brin and
Larry Page were students at Stanford when they started Google. Perhaps you will
come up with the next big thing.

In 1994, CERN and M.I.T. signed an agreement setting up the W3C (World
Wide Web Consortium), an organization devoted to further developing the Web,
standardizing protocols, and encouraging interoperability between sites. Berners-
Lee became the director. Since then, several hundred universities and companies
have joined the consortium. Although there are now more books about the Web
than you can shake a stick at, the best place to get up-to-date information about the
Web is (naturally) on the Web itself. The consortium’s home page is at
www.w3.org. Interested readers are referred there for links to pages covering all of
the consortium’s numerous documents and activities.

7.3.1 Architectural Overview

From the users’ point of view, the Web comprises a vast, worldwide collection
of content in the form of Web pages. Each page typically contains links to hun-
dreds of other objects, which may be hosted on any server on the Internet, any-
where in the world. These objects may be other text and images, but nowadays also
include a wide variety of objects, including advertisements and tracking scripts. A
page may also link to other Web pages; users can follow a link by clicking on it,
which then takes them to the page pointed to. This process can be repeated indefi-
nitely. The idea of having one page point to another, now called hypertext, was
invented by a visionary M.I.T. professor of electrical engineering, Vannevar Bush,
in 1945 (Bush, 1945). This was long before the Internet was invented. In fact, it
was before commercial computers existed although several universities had pro-
duced crude prototypes that filled large rooms and had millions of times less com-
puting power than a smart watch but consumed more electrical power than a small
factory.

Pages are generally viewed with a program called a browser. Brave, Chrome,
Edge, Firefox, Opera, and Safari are examples of popular browsers. The browser
fetches the page requested, interprets the content, and displays the page, properly
formatted, on the screen. The content itself may be a mix of text, images, and for-
matting commands, in the manner of a traditional document, or other forms of con-
tent such as video or programs that produce a graphical interface for users.

Figure 7-19 shows an example of a Web page, which contains many objects.
In this case, the page is for the U.S. Federal Communications Commission. This
page shows text and graphical elements (which are mostly too small to read here).
Many parts of the page include references and links to other pages. The index
page, which the browser loads, typically contains instructions for the browser

652 THE APPLICATION LAYER CHAP. 7

concerning the locations of other objects to assemble, as well as how and where to
render those objects on the page.

A piece of text, icon, graphic image, photograph, or other page element that
can be associated with another page is called a hyperlink. To follow a link, a
desktop or notebook computer user places the mouse cursor on the linked portion
of the page area (which causes the cursor to change shape) and clicks. On a smart-
phone or tablet, the user taps the link. Following a link is simply a way of telling
the browser to fetch another page. In the early days of the Web, links were high-
lighted with underlining and colored text so that they would stand out. Now, the
creators of Web pages can use style sheets to control the appearance of many
aspects of the page, including hyperlinks, so links can effectively appear however
the designer of the Web site wishes. The appearance of a link can even be dynam-
ic, for example, it might change its appearance when the mouse passes over it. It is
up to the creators of the page to make the links visually distinct to provide a good
user experience.

Database

Web Page Web
Browser

Document
Program

Web Server

Ads, Trackers, etc.
(e.g., google-analytics.com)

Objects

(e.g., fonts.gstatic.com)

HTTPS Request

HTTPS Response

Figure 7-19. Fetching and rendering a Web page involves HTTP/HTTPS
requests to many servers.

Readers of this page might find a story of interest and click on the area indi-
cated, at which point the browser fetches the new page and displays it. Dozens of
other pages are linked off the first page besides this example. Every other page can
consist of content on the same machine(s) as the first page, or on machines halfway
around the globe. The user cannot tell. The browser typically fetches whatever
objects the user indicates to the browser through a series of clicks. Thus, moving
between machines while viewing content is seamless.

SEC. 7.3 THE WORLD WIDE WEB 653

The browser is displaying a Web page on the client machine. Each page is
fetched by sending a request to one or more servers, which respond with the con-
tents of the page. The request-response protocol for fetching pages is a simple
text-based protocol that runs over TCP, just as was the case for SMTP. It is called
HTTP (HyperText Transfer Protocol). The secure version of this protocol,
which is now the predominant mode of retrieving content on the Web today, is call-
ed HTTPS (Secure HyperText Transfer Protocol). The content may simply be a
document that is read off a disk, or the result of a database query and program
execution. The page is a static page if it is a document that is the same every time
it is displayed. In contrast, if it was generated on demand by a program or contains
a program it is a dynamic page.

A dynamic page may present itself differently each time it is displayed. For
example, the front page for an electronic store may be different for each visitor. If
a bookstore customer has bought mystery novels in the past, upon visiting the
store’s main page, the customer is likely to see new thrillers prominently displayed,
whereas a more culinary-minded customer might be greeted with new cookbooks.
How the Web site keeps track of who likes what is a story to be told shortly. But
briefly, the answer involves cookies (even for culinarily challenged visitors).

In the browser contacts a number of servers to load the Web page. The content
on the index page might be loaded directly from files hosted at fcc.gov. Auxiliary
content, such as an embedded video, might be hosted at a separate server, still at
fcc.gov, but perhaps on infrastructure that is dedicated to hosting the content. The
index page may also contain references to other objects that the user may not even
see, such as tracking scripts, or advertisements that are hosted on third-party ser-
vers. The browser fetches all of these objects, scripts, and so forth and assembles
them into a single page view for the user.

Display entails a range of processing that depends on the kind of content.
Besides rendering text and graphics, it may involve playing a video or running a
script that presents its own user interface as part of the page. In this case, the
fcc.gov server supplies the main page, the fonts.gstatic.com server supplies addi-
tional objects (e.g., fonts), and the google-analytics.com server supplies nothing
that the user can see but tracks visitors to the site. We will investigate trackers and
Web privacy later in this chapter.

The Client Side

Let us now examine the Web browser side in Fig. 7-19 in more detail. In
essence, a browser is a program that can display a Web page and capture a user’s
request to ‘‘follow’’ other content on the page. When an item is selected, the brow-
ser follows the hyperlink and retrieves the object that the user indicates (e.g., with
a mouse click, or by tapping the link on the screen of a mobile device).

When the Web was first created, it was immediately apparent that having one
page point to another Web page required mechanisms for naming and locating

654 THE APPLICATION LAYER CHAP. 7

pages. In particular, three questions had to be answered before a selected page
could be displayed:

1. What is the page called?

2. Where is the page located?

3. How can the page be accessed?

If every page were somehow assigned a unique name, there would not be any
ambiguity in identifying pages. Nevertheless, the problem would not be solved.
Consider a parallel between people and pages. In the United States, almost every
adult has a Social Security number, which is a unique identifier, as no two people
are supposed to have the same one. Nevertheless, if you are armed only with a
social security number, there is no way to find the owner’s address, and certainly
no way to tell whether you should write to the person in English, Spanish, or Chi-
nese. The Web has basically the same problems.

The solution chosen identifies pages in a way that solves all three problems at
once. Each page is assigned a URL (Uniform Resource Locator) that effectively
serves as the page’s worldwide name. URLs have three parts: the protocol (also
known as the scheme), the DNS name of the machine on which the page is locat-
ed, and the path uniquely indicating the specific page (a file to read or program to
run on the machine). In the general case, the path has a hierarchical name that
models a file directory structure. However, the interpretation of the path is up to
the server; it may or may not reflect the actual directory structure.

As an example, the URL of the page shown in Fig. 7-19 is
https://fcc.gov/

This URL consists of three parts: the protocol (https), the DNS name of the host
(fcc.gov), and the path name (/, which the Web server often treats as some default
index object).

When a user selects a hyperlink, the browser carries out a series of steps in
order to fetch the page pointed to. Let us trace the steps that occur when our exam-
ple link is selected:

1. The browser determines the URL (by seeing what was selected).

2. The browser asks DNS for the IP address of the server fcc.gov.

3. DNS replies with 23.1.55.196.

4. The browser makes a TCP connection to that IP address; given that
the protocol is HTTPS, the secure version of HTTP, the TCP con-
nection would by default be on port 443 (the default port for HTTP,
which is used far less often now, is port 80).

5. It sends an HTTPS request asking for the page //, which the Web ser-
ver typically assumes is some index page (e.g., index.html, index.php,
or similar, as configured by the Web server at fcc.gov).

SEC. 7.3 THE WORLD WIDE WEB 655

6. The server sends the page as an HTTPS response, for example, by
sending the file /index.html, if that is determined to be the default
index object.

7. If the page includes URLs that are needed for display, the browser
fetches the other URLs using the same process. In this case, the
URLs include multiple embedded images also fetched from that ser-
ver, embedded objects from gstatic.com, and a script from google-
analytics.com (as well as a number of other domains that are not
shown).

8. The browser displays the page /index.html as it appears in Fig. 7-19.

9. The TCP connections are released if there are no other requests to the
same servers for a short period.

Many browsers display which step they are currently executing in a status line
at the bottom of the screen. In this way, when the performance is poor, the user
can see if it is due to DNS not responding, a server not responding, or simply page
transmission over a slow or congested network.

A more detailed way to explore and understand the performance of the Web
page is through a so-called waterfall diagram, as shown in Fig. 7-20.

The figure shows a list of all of the objects that the browser loads in the proc-
ess of loading this page (in this case, 64, but many pages have hundreds of
objects), as well as the timing dependencies associated with loading each request,
and the operations associated with each page load (e.g., a DNS lookup, a TCP con-
nection, the downloading of actual content, and so forth). These waterfall diagrams
can tell us a lot about the behavior of a Web browser; for example, we can learn
about the number of parallel connections that a browser makes to any given server,
as well as whether connections are being reused. We can also learn about the rela-
tive time for DNS lookups versus actual object downloads, as well as other poten-
tial performance bottlenecks.

The URL design is open-ended in the sense that it is straightforward to have
browsers use multiple protocols to retrieve different kinds of resources. In fact,
URLs for various other protocols have been defined. Slightly simplified forms of
the common ones are listed in Fig. 7-21.

Let us briefly go over the list. The http protocol is the Web’s native language,
the one spoken by Web servers. HTTP stands for HyperText Transfer Protocol.
We will examine it in more detail later in this section, with a particular focus on
HTTPS, the secure version of this protocol, which is now the predominant protocol
used to serve objects on the Web today.

The ftp protocol is used to access files by FTP, the Internet’s file transfer proto-
col. FTP predates the Web and has been in use for more than four decades. The
Web makes it easy to obtain files placed on numerous FTP servers throughout the
world by providing a simple, clickable interface instead of the older command-line

656 THE APPLICATION LAYER CHAP. 7

Figure 7-20. Waterfall diagram for fcc.gov.

interface. This improved access to information is one reason for the spectacular
growth of the Web.

It is possible to access a local file as a Web page by using the file protocol, or
more simply, by just naming it. This approach does not require having a server.
Of course, it works only for local files, not remote ones.

The mailto protocol does not really have the flavor of fetching Web pages, but
is still useful anyway. It allows users to send email from a Web browser. Most

SEC. 7.3 THE WORLD WIDE WEB 657

Name Used for Example
http Hypertext (HTML) https://www.ee.uwa.edu/~rob/ (https://www.ee.uwa.edu/~rob/)
https Hypertext with security https://www.bank.com/accounts/ (https://www.bank.com/accounts/)
ftp FTP ftp://ftp.cs.vu.nl/pub/minix/README (ftp://ftp.cs.vu.nl/pub/minix/README)
file Local file file:///usr/nathan/prog.c
mailto Sending email mailto:JohnUser@acm.org
rtsp Streaming media rtsp://youtube.com/montypython.mpg
sip Multimedia calls sip:eve@adversary.com
about Browser information about:plugins

Figure 7-21. Some common URL schemes.

browsers will respond when a mailto link is followed by starting the user’s mail
agent to compose a message with the address field already filled in.

The rtsp and sip protocols are for establishing streaming media sessions and
audio and video calls.

Finally, the about protocol is a convention that provides information about the
browser. For example, following the about:plugins link will cause most browsers
to show a page that lists the MIME types that they handle with browser extensions
called plug-ins. Many browsers have very interesting information in the about: sec-
tion; an interesting example in the Firefox browser is about:telemetry, which
shows all of the performance and user activity information that the browser gathers
about the user. about:preferences shows user preferences, and about:config shows
many interesting aspects of the browser configuration, including whether the brow-
ser is performing DNS-over-HTTPS lookups (and to which trusted recursive
resolvers), as described in the previous section on DNS.

The URLs themselves have been designed not only to allow users to navigate
the Web, but to run older protocols such as FTP and email as well as newer proto-
cols for audio and video, and to provide convenient access to local files and brow-
ser information. This approach makes all the specialized user interface programs
for those other services unnecessary and integrates nearly all Internet access into a
single program: the Web browser. If it were not for the fact that this idea was
thought of by a British physicist working a multinational European research lab in
Switzerland (CERN), it could easily pass for a plan dreamed up by some software
company’s advertising department.

The Server Side

So much for the client side. Now let us take a look at the server side. As we
saw above, when the user types in a URL or clicks on a line of hypertext, the brow-
ser parses the URL and interprets the part between https:// and the next slash as a
DNS name to look up. Armed with the IP address of the server, the browser can

658 THE APPLICATION LAYER CHAP. 7

establish a TCP connection to port 443 on that server. Then it sends over a com-
mand containing the rest of the URL, which is the path to the page on that server.
The server then returns the page for the browser to display.

To a first approximation, a simple Web server is similar to the server of
Fig. 6-6. That server is given the name of a file to look up and return via the net-
work. In both cases, the steps that the server performs in its main loop are:

1. Accept a TCP connection from a client (a browser).

2. Get the path to the page, which is the name of the file requested.

3. Get the file (from disk).

4. Send the contents of the file to the client.

5. Release the TCP connection.

Modern Web servers have more features, but in essence, this is what a Web server
does for the simple case of content that is contained in a file. For dynamic content,
the third step may be replaced by the execution of a program (determined from the
path) that generates and returns the contents.

However, Web servers are implemented with a different design to serve hun-
dreds or thousands of requests per second. One problem with the simple design is
that accessing files is often the bottleneck. Disk reads are very slow compared to
program execution, and the same files may be read repeatedly from disk using
operating system calls. Another problem is that only one request is processed at a
time. If the file is large, other requests will be blocked while it is transferred.

One obvious improvement (used by all Web servers) is to maintain a cache in
memory of the n most recently read files or a certain number of gigabytes of con-
tent. Before going to disk to get a file, the server checks the cache. If the file is
there, it can be served directly from memory, thus eliminating the disk access.
Although effective caching requires a large amount of main memory and some
extra processing time to check the cache and manage its contents, the savings in
time are nearly always worth the overhead and expense.

To tackle the problem of serving more than a single request at a time, one strat-
egy is to make the server multithreaded. In one design, the server consists of a
front-end module that accepts all incoming requests and k processing modules, as
shown in Fig. 7-22. The k + 1 threads all belong to the same process, so the proc-
essing modules all have access to the cache within the process’ address space.
When a request comes in, the front end accepts it and builds a short record describ-
ing it. It then hands the record to one of the processing modules.

The processing module first checks the cache to see if the requested object is
present. If so, it updates the record to include a pointer to the file in the record. If
it is not there, the processing module starts a disk operation to read it into the cache
(possibly discarding some other cached file(s) to make room for it). When the file
comes in from the disk, it is put in the cache and also sent back to the client.

SEC. 7.3 THE WORLD WIDE WEB 659

Processing
module
(thread)

CacheFront end

Disk
Request

ResponseClient

Server

Figure 7-22. A multithreaded Web server with a front end and processing modules.

The advantage of this approach is that while one or more processing modules
are blocked waiting for a disk or network operation to complete (and thus consum-
ing no CPU time), other modules can be actively working on other requests. With
k processing modules, the throughput can be as much as k times higher than with a
single-threaded server. Of course, when the disk or network is the limiting factor,
it is necessary to have multiple disks or a faster network to get any real
improvement over the single-threaded model.

Essentially all modern Web architectures are now designed as shown above,
with a split between the front end and a back end. The front-end Web server is
often called a reverse proxy, because it retrieves content from other (typically
back-end) servers and serves those objects to the client. The proxy is called a
‘‘reverse’’ proxy because it is acting on behalf of the servers, as opposed to acting
on behalf of clients.

When loading a Web page, a client will often first be directed (using DNS) to a
reverse proxy (i.e., front end server), which will begin returning static objects to
the client’s Web browser so that it can begin loading some of the page contents as
quickly as possible. While those (typically static) objects are loading, the back end
can perform complex operations (e.g., performing a Web search, doing a database
lookup, or otherwise generating dynamic content), which it can serve back to the
client via the reverse proxy as those results and content becomes available.

7.3.2 Static Web Objects

The basis of the Web is transferring Web pages from server to client. In the
simplest form, Web objects are static. However, these days, almost any page that
you view on the Web will have some dynamic content, but even on dynamic Web
pages, a significant amount of the content (e.g., the logo, the style sheets, the head-
er and footer) remains static. Static objects are just files sitting on some server that
present themselves in the same way each time they are fetched and viewed. They

660 THE APPLICATION LAYER CHAP. 7

are generally amenable to caching, sometimes for a very long time, and are thus
often placed on object caches that are close to the user. Just because they are static
does not mean that the pages are inert at the browser, however. A video is a static
object, for example.

As mentioned earlier, the lingua franca of the Web, in which most pages are
written, is HTML. The home pages of university instructors are generally static
objects; in some cases, companies may have dynamic Web pages, but the end
result of the dynamic-generation process is a page in HTML. HTML (HyperText
Markup Language) was introduced with the Web. It allows users to produce Web
pages that include text, graphics, video, pointers to other Web pages, and more.
HTML is a markup language, or language for describing how documents are to be
formatted. The term ‘‘markup’’ comes from the old days when copyeditors actual-
ly marked up documents to tell the printer—in those days, a human being—which
fonts to use, and so on. Markup languages thus contain explicit commands for for-
matting. For example, in HTML, means start boldface mode, and
means leave boldface mode. Also, <h1> means to start a level 1 heading here.
LaTeX and TeX are other examples of markup languages that are well known to
most academic authors. In contrast, Microsoft Word is not a markup language
because the formatting commands are not embedded in the text.

The key advantage of a markup language over one with no explicit markup is
that it separates content from how it should be presented. Most modern Webpages
use style sheets to define the typefaces, colors, sizes, padding, and many other
attributes of text, lists, tables, headings, ads, and other page elements. Style sheets
are written in a language called CSS (Cascading Style Sheets).

Writing a browser is then straightforward: the browser simply has to under-
stand the markup commands and style sheet and apply them to the content.
Embedding all the markup commands within each HTML file and standardizing
them makes it possible for any Web browser to read and reformat any Web page.
That is crucial because a page may have been produced in a 3840 × 2160 window
with 24-bit color on a high-end computer but may have to be displayed in a
640 × 320 window on a mobile phone. Just scaling it down linearly is a bad idea
because then the letters would be so small that no one could read them.

While it is certainly possible to write documents like this with any plain text
editor, and many people do, it is also possible to use word processors or special
HTML editors that do most of the work (but correspondingly give the user less
direct control over the details of the final result). There are also many programs
available for designing Web pages, such as Adobe Dreamweaver.

7.3.3 Dynamic Web Pages and Web Applications

The static page model we have used so far treats pages as (multimedia) docu-
ments that are conveniently linked together. It was a good model back in the early
days of the Web, as vast amounts of information were put online. Nowadays,

SEC. 7.3 THE WORLD WIDE WEB 661

much of the excitement around the Web is using it for applications and services.
Examples include buying products on e-commerce sites, searching library catalogs,
exploring maps, reading and sending email, and collaborating on documents.

These new uses are like conventional application software (e.g., mail readers
and word processors). The twist is that these applications run inside the browser,
with user data stored on servers in Internet data centers. They use Web protocols
to access information via the Internet, and the browser to display a user interface.
The advantage of this approach is that users do not need to install separate applica-
tion programs, and user data can be accessed from different computers and backed
up by the service operator. It is proving so successful that it is rivaling traditional
application software. Of course, the fact that these applications are offered for free
by large providers helps. This model is a prevalent form of cloud computing,
where computing moves off individual desktop computers and into shared clusters
of servers in the Internet.

To act as applications, Web pages can no longer be static. Dynamic content is
needed. For example, a page of the library catalog should reflect which books are
currently available and which books are checked out and are thus not available.
Similarly, a useful stock market page would allow the user to interact with the page
to see stock prices over different periods of time and compute profits and losses.
As these examples suggest, dynamic content can be generated by programs run-
ning on the server or in the browser (or in both places).

The general situation is as shown in Fig. 7-23. For example, consider a map
service that lets the user enter a street address and presents a corresponding map of
the location. Given a request for a location, the Web server must use a program to
create a page that shows the map for the location from a database of streets and
other geographic information. This action is shown as steps 1 through 3. The
request (step 1) causes a program to run on the server. The program consults a
database to generate the appropriate page (step 2) and returns it to the browser
(step 3).

1
Program

Program

Web serverWeb browser

3

5

7

2

6

Web
page

Program4

DB

Figure 7-23. Dynamic pages.

There is more to dynamic content, however. The page that is returned may
itself contain programs that run in the browser. In our map example, the program

662 THE APPLICATION LAYER CHAP. 7

would let the user find routes and explore nearby areas at different levels of detail.
It would update the page, zooming in or out as directed by the user (step 4). To
handle some interactions, the program may need more data from the server. In this
case, the program will send a request to the server (step 5) that will retrieve more
information from the database (step 6) and return a response (step 7). The program
will then continue updating the page (step 4). The requests and responses happen
in the background; the user may not even be aware of them because the page URL
and title typically do not change. By including client-side programs, the page can
present a more responsive interface than with server-side programs alone.

Server-Side Dynamic Web Page Generation

Let us look briefly at the case of server-side content generation. When the user
clicks on a link in a form, for example in order to buy something, a request is sent
to the server at the URL specified with the form along with the contents of the
form as filled in by the user. These data must be given to a program or script to
process. Thus, the URL identifies the program to run; the data are provided to the
program as input. The page returned by this request will depend on what happens
during the processing. It is not fixed like a static page. If the order succeeds, the
page returned might give the expected shipping date. If it is unsuccessful, the re-
turned page might say that widgets requested are out of stock or the credit card was
not valid for some reason.

Exactly how the server runs a program instead of retrieving a file depends on
the design of the Web server. It is not specified by the Web protocols themselves.
This is because the interface can be proprietary and the browser does not need to
know the details. As far as the browser is concerned, it is simply making a request
and fetching a page.

Nonetheless, standard APIs have been developed for Web servers to invoke
programs. The existence of these interfaces makes it easier for developers to extend
different servers with Web applications. We will briefly look at two APIs to give
you a sense of what they entail.

The first API is a method for handling dynamic page requests that has been
available since the beginning of the Web. It is called the CGI (Common Gateway
Interface) and is defined in RFC 3875. CGI provides an interface to allow Web
servers to talk to back-end programs and scripts that can accept input (e.g., from
forms) and generate HTML pages in response. These programs may be written in
whatever language is convenient for the developer, usually a scripting language for
ease of development. Pick Python, Ruby, Perl, or your favorite language.

By convention, programs invoked via CGI live in a directory called cgi-bin,
which is visible in the URL. The server maps a request to this directory to a pro-
gram name and executes that program as a separate process. It provides any data
sent with the request as input to the program. The output of the program gives a
Web page that is returned to the browser.

SEC. 7.3 THE WORLD WIDE WEB 663

The second API is quite different. The approach here is to embed little scripts
inside HTML pages and have them be executed by the server itself to generate the
page. A popular language for writing these scripts is PHP (PHP: Hypertext Pre-
processor). To use it, the server has to understand PHP, just as a browser has to
understand CSS to interpret Web pages with style sheets. Usually, servers identify
Web pages containing PHP from the file extension php rather than html or htm.
PHP is simpler to use than CGI and is widely used.

Although PHP is easy to use, it is actually a powerful programming language
for interfacing the Web and a server database. It has variables, strings, arrays, and
most of the control structures found in C, but much more powerful I/O than just
printf. PHP is open source code, freely available, and widely used. It was
designed specifically to work well with Apache, which is also open source and is
the world’s most widely used Web server.

Client-Side Dynamic Web Page Generation

PHP and CGI scripts solve the problem of handling input and interactions with
databases on the server. They can all accept incoming information from forms,
look up information in one or more databases, and generate HTML pages with the
results. What none of them can do is respond to mouse movements or interact with
users directly. For this purpose, it is necessary to have scripts embedded in HTML
pages that are executed on the client machine rather than the server machine.
Starting with HTML 4.0, such scripts were permitted using the tag <script>. The
current HTML standard is now generally referred to as HTML5. HTML5
includes many new syntactic features for incorporating multimedia and graphical
content, including <video>, <audio>, and <canvas> tags. Notably, the canvas ele-
ment facilitates dynamic rendering of two-dimensional shapes and bitmap images.
Interestingly, the canvas element also has various privacy considerations, because
the HTML canvas properties are often unique on different devices. The privacy
concerns are significant, because the uniqueness of canvases on individual user
devices allows Web site operators to track users, even if the users delete all track-
ing cookies and block tracking scripts.

The most popular scripting language for the client side is JavaScript, so we
will now take a quick look at it. Many books have been written about it (e.g., Cod-
ing, 2019; and Atencio, 2020). Despite the similarity in names, JavaScript has al-
most nothing to do with the Java programming language. Like other scripting lan-
guages, it is a very high-level language. For example, in a single line of JavaScript
it is possible to pop up a dialog box, wait for text input, and store the resulting
string in a variable. High-level features like this make JavaScript ideal for design-
ing interactive Web pages. On the other hand, the fact that it is mutating faster
than a fruit fly trapped in an X-ray machine makes it difficult to write JavaScript
programs that work on all platforms, but maybe some day it will stabilize.

664 THE APPLICATION LAYER CHAP. 7

It is important to understand that while PHP and JavaScript look similar in that
they both embed code in HTML files, they are processed totally differently. With
PHP, after a user has clicked on the submit button, the browser collects the infor-
mation into a long string and sends it off to the server as a request for a PHP page.
The server loads the PHP file and executes the PHP script that is embedded in to
produce a new HTML page. That page is sent back to the browser for display. The
browser cannot even be sure that it was produced by a program. This processing is
shown as steps 1 to 4 in Fig. 7-24(a).

Server

PHP module(a)

Browser
User

1

4

2

3

Server

(b)

Browser
User

1

2

JavaScript

Figure 7-24. (a) Server-side scripting with PHP. (b) Client-side scripting with
JavaScript.

With JavaScript, when the submit button is clicked the browser interprets a
JavaScript function contained on the page. All the work is done locally, inside the
browser. There is no contact with the server. This processing is shown as steps 1
and 2 in Fig. 7-24(b). As a consequence, the result is displayed virtually instanta-
neously, whereas with PHP there can be a delay of several seconds before the
resulting HTML arrives at the client.

This difference does not mean that JavaScript is better than PHP. Their uses
are completely different. PHP is used when interaction with a database on the ser-
ver is needed. JavaScript (and other client-side languages) is used when the inter-
action is with the user at the client computer. It is certainly possible to combine
them, as we will see shortly.

7.3.4 HTTP and HTTPS

Now that we have an understanding of Web content and applications, it is time
to look at the protocol that is used to transport all this information between Web
servers and clients. It is HTTP (HyperText Transfer Protocol), as specified in
RFC 2616. Before we get into too many details, it is worth noting some dis-
tinctions between HTTP and its secure counterpart, HTTPS (Secure HyperText
Transfer Protocol). Both protocols essentially retrieve objects in the same way,
and the HTTP standard to retrieve Web objects is evolving essentially indepen-
dently from its secure counterpart, which effectively uses the HTTP protocol over a
secure transport protocol called TLS (Transport Layer Security). In this chapter,
we will focus on the protocol details of HTTP and how it has evolved from early

SEC. 7.3 THE WORLD WIDE WEB 665

versions, to the more modern versions of this protocol in what is now known as
HTTP/3. Chapter 8 discusses TLS in more detail, which effectively is the transport
protocol that transports HTTP, constituting what we think of as HTTPS. For the
remainder of this section, we will talk about HTTP; you can think of HTTPS as
simply HTTP that is transported over TLS.

Overview

HTTP is a simple request-response protocol; conventional versions of HTTP
typically run over TCP, although the most modern version of HTTP, HTTP/3, now
commonly runs over UDP as well. It specifies what messages clients may send to
servers and what responses they get back in return. The request and response
headers are given in ASCII, just like in SMTP. The contents are given in a MIME-
like format, also like in SMTP. This simple model was partly responsible for the
early success of the Web because it made development and deployment straightfor-
ward.

In this section, we will look at the more important properties of HTTP as it is
used today. Before getting into the details we will note that the way it is used in the
Internet is evolving. HTTP is an application layer protocol because it runs on top
of TCP and is closely associated with the Web. That is why we are covering it in
this chapter. In another sense, HTTP is becoming more like a transport protocol
that provides a way for processes to communicate content across the boundaries of
different networks. These processes do not have to be a Web browser and Web ser-
ver. A media player could use HTTP to talk to a server and request album infor-
mation. Antivirus software could use HTTP to download the latest updates.
Developers could use HTTP to fetch project files. Consumer electronics products
like digital photo frames often use an embedded HTTP server as an interface to the
outside world. Machine-to-machine communication increasingly runs over HTTP.
For example, an airline server might contact a car rental server and make a car
reservation, all as part of a vacation package the airline was offering.

Methods

Although HTTP was designed for use in the Web, it was intentionally made
more general than necessary with an eye to future object-oriented uses. For this
reason, operations, called methods, other than just requesting a Web page are sup-
ported.

Each request consists of one or more lines of ASCII text, with the first word on
the first line being the name of the method requested. The built-in methods are
listed in Fig. 7-25. The names are case sensitive, so GET is allowed but not get.

The GET method requests the server to send the page. (When we say ‘‘page’’
we mean ‘‘object’’ in the most general case, but thinking of a page as the contents
of a file is sufficient to understand the concepts.) The page is suitably encoded in

666 THE APPLICATION LAYER CHAP. 7

Method Description
GET Read a Web page
HEAD Read a Web page’s header
POST Append to a Web page
PUT Store a Web page
DELETE Remove the Web page
TRACE Echo the incoming request
CONNECT Connect through a proxy
OPTIONS Query options for a page

Figure 7-25. The built-in HTTP request methods.

MIME. The vast majority of requests to Web servers are GETs and the syntax is
simple. The usual form of GET is

GET filename HTTP/1.1

where filename names the page to be fetched and 1.1 is the protocol version.
The HEAD method just asks for the message header, without the actual page.

This method can be used to collect information for indexing purposes, or just to
test a URL for validity.

The POST method is used when forms are submitted. Like GET, it bears a
URL, but instead of simply retrieving a page it uploads data to the server (i.e., the
contents of the form or parameters). The server then does something with the data
that depends on the URL, conceptually appending the data to the object. The effect
might be to purchase an item, for example, or to call a procedure. Finally, the
method returns a page indicating the result.

The remaining methods are not used much for browsing the Web. The PUT
method is the reverse of GET: instead of reading the page, it writes the page. This
method makes it possible to build a collection of Web pages on a remote server.
The body of the request contains the page. It may be encoded using MIME, in
which case the lines following the PUT might include authentication headers, to
prove that the caller indeed has permission to perform the requested operation.

DELETE does what you might expect: it removes the page, or at least it indi-
cates that the Web server has agreed to remove the page. As with PUT, authentica-
tion and permission play a major role here.

The TRACE method is for debugging. It instructs the server to send back the
request. This method is useful when requests are not being processed correctly
and the client wants to know what request the server actually got.

The CONNECT method lets a user make a connection to a Web server through
an intermediate device, such as a Web cache.

The OPTIONS method provides a way for the client to query the server for a
page and obtain the methods and headers that can be used with that page.

SEC. 7.3 THE WORLD WIDE WEB 667

Every request gets a response consisting of a status line, and possibly addi-
tional information (e.g., all or part of a Web page). The status line contains a
three-digit status code telling whether the request was satisfied and, if not, why
not. The first digit is used to divide the responses into five major groups, as shown
in Fig. 7-26.

Code Meaning Examples
1xx Information 100 = server agrees to handle client’s request
2xx Success 200 = request succeeded; 204 = no content present
3xx Redirection 301 = page moved; 304 = cached page still valid
4xx Client error 403 = forbidden page; 404 = page not found
5xx Server error 500 = internal server error; 503 = try again later

Figure 7-26. The status code response groups.

The 1xx codes are rarely used in practice. The 2xx codes mean that the request
was handled successfully and the content (if any) is being returned. The 3xx codes
tell the client to look elsewhere, either using a different URL or in its own cache
(discussed later). The 4xx codes mean the request failed due to a client error such
an invalid request or a nonexistent page. Finally, the 5xx errors mean the server
itself has an internal problem, either due to an error in its code or to a temporary
overload.

Message Headers

The request line (e.g., the line with the GET method) may be followed by addi-
tional lines with more information. They are called request headers. This infor-
mation can be compared to the parameters of a procedure call. Responses may
also have response headers. Some headers can be used in either direction. A
selection of the more important ones is given in Fig. 7-27. This list is not short, so
as you might imagine there are often several headers on each request and response.

The User-Agent header allows the client to inform the server about its browser
implementation (e.g., Mozilla/5.0 and Chrome/74.0.3729.169). This information is
useful to let servers tailor their responses to the browser, since different browsers
can have widely varying capabilities and behaviors.

The four Accept headers tell the server what the client is willing to accept in
the event that it has a limited repertoire of what is acceptable to it. The first header
specifies the MIME types that are welcome (e.g., text/html). The second gives the
character set (e.g., ISO-8859-5 or Unicode-1-1). The third deals with compression
methods (e.g., gzip). The fourth indicates a natural language (e.g., Spanish). If the
server has a choice of pages, it can use this information to supply the one the client
is looking for. If it is unable to satisfy the request, an error code is returned and the
request fails.

668 THE APPLICATION LAYER CHAP. 7

Header Type Contents
User-Agent Request Information about the browser and its platform
Accept Request The type of pages the client can handle
Accept-Charset Request The character sets that are acceptable to the client
Accept-Encoding Request The page encodings the client can handle
Accept-Language Request The natural languages the client can handle
If-Modified-Since Request Time and date to check freshness
If-None-Match Request Previously sent tags to check freshness
Host Request The server’s DNS name
Authorization Request A list of the client’s credentials
Referrer Request The previous URL from which the request came
Cookie Request Previously set cookie sent back to the server
Set-Cookie Response Cookie for the client to store
Server Response Information about the server
Content-Encoding Response How the content is encoded (e.g., gzip)
Content-Language Response The natural language used in the page
Content-Length Response The page’s length in bytes
Content-Type Response The page’s MIME type
Content-Range Response Identifies a portion of the page’s content
Last-Modified Response Time and date the page was last changed
Expires Response Time and date when the page stops being valid
Location Response Tells the client where to send its request
Accept-Ranges Response Indicates the server will accept byte range requests
Date Both Date and time the message was sent
Range Both Identifies a portion of a page
Cache-Control Both Directives for how to treat caches
ETag Both Tag for the contents of the page
Upgrade Both The protocol the sender wants to switch to

Figure 7-27. Some HTTP message headers.

The If-Modified-Since and If-None-Match headers are used with caching. They
let the client ask for a page to be sent only if the cached copy is no longer valid.
We will describe caching shortly.

The Host header names the server. It is taken from the URL. This header is
mandatory. It is used because some IP addresses may serve multiple DNS names
and the server needs some way to tell which host to hand the request to.

The Authorization header is needed for pages that are protected. In this case,
the client may have to prove it has a right to see the page requested. This header is
used for that case.

SEC. 7.3 THE WORLD WIDE WEB 669

The client uses the (misspelled) Referer [sic] header to give the URL that
referred to the URL that is now requested. Most often this is the URL of the previ-
ous page. This header is particularly useful for tracking Web browsing, as it tells
servers how a client arrived at the page.

Cookies are small files that servers place on client computers to remember
information for later. A typical example is an e-commerce Web site that uses a cli-
ent-side cookie to keep track of what the client has ordered so far. Every time the
client adds an item to her shopping cart, the cookie is updated to reflect the new
item ordered. Although cookies are dealt with in RFC 2109 rather than RFC 2616,
they also have headers. The Set-Cookie header is how servers send cookies to cli-
ents. The client is expected to save the cookie and return it on subsequent requests
to the server by using the Cookie header. (Note that there is a more recent specif-
ication for cookies with newer headers, RFC 2965, but this has largely been reject-
ed by industry and is not widely implemented.)

Many other headers are used in responses. The Server header allows the server
to identify its software build if it wishes. The next five headers, all starting with
Content-, allow the server to describe properties of the page it is sending.

The Last-Modified header tells when the page was last modified, and the
Expires header tells for how long the page will remain valid. Both of these headers
play an important role in page caching.

The Location header is used by the server to inform the client that it should try
a different URL. This can be used if the page has moved or to allow multiple
URLs to refer to the same page (possibly on different servers). It is also used for
companies that have a main Web page in the com domain but redirect clients to a
national or regional page based on their IP addresses or preferred language.

If a page is large, a small client may not want it all at once. Some servers will
accept requests for byte ranges, so the page can be fetched in multiple small units.
The Accept-Ranges header announces the server’s willingness to handle this.

Now we come to headers that can be used either way. The Date header can be
used in both directions and contains the time and date the message was sent, while
the Range header tells the byte range of the page that is provided by the response.

The ETag header gives a short tag that serves as a name for the content of the
page. It is used for caching. The Cache-Control header gives other explicit instruc-
tions about how to cache (or, more usually, how not to cache) pages.

Finally, the Upgrade header is used for switching to a new communication
protocol, such as a future HTTP protocol or a secure transport. It allows the client
to announce what it can support and the server to assert what it is using.

Caching

People often return to Web pages that they have viewed before, and related
Web pages often have the same embedded resources. Some examples are the
images that are used for navigation across the site, as well as common style sheets

670 THE APPLICATION LAYER CHAP. 7

and scripts. It would be very wasteful to fetch all of these resources for these pages
each time they are displayed because the browser already has a copy.

Squirreling away pages that are fetched for subsequent use is called caching.
The advantage is that when a cached page can be reused, it is not necessary to
repeat the transfer. HTTP has built-in support to help clients identify when they
can safely reuse pages. This support improves performance by reducing both net-
work traffic and latency. The trade-off is that the browser must now store pages,
but this is nearly always a worthwhile trade-off because local storage is inexpen-
sive. The pages are usually kept on disk so that they can be used when the browser
is run at a later date.

The difficult issue with HTTP caching is how to determine that a previously
cached copy of a page is the same as the page would be if it was fetched again.
This determination cannot be made solely from the URL. For example, the URL
may give a page that displays the latest news item. The contents of this page will
be updated frequently even though the URL stays the same. Alternatively, the con-
tents of the page may be a list of the gods from Greek and Roman mythology. This
page should change somewhat less rapidly.

HTTP uses two strategies to tackle this problem. They are shown in Fig. 7-28
as forms of processing between the request (step 1) and the response (step 5). The
first strategy is page validation (step 2). The cache is consulted, and if it has a
copy of a page for the requested URL that is known to be fresh (i.e., still valid),
there is no need to fetch it anew from the server. Instead, the cached page can be
returned directly. The Expires header returned when the cached page was originally
fetched and the current date and time can be used to make this determination.

4a: Not modified

Web browser

Cache

Web server

2: Check expiry1: Request 3: Conditional GET

4b: Response
5: Response

Program

Figure 7-28. HTTP caching.

However, not all pages come with a convenient Expires header that tells when
the page must be fetched again. After all, making predictions is hard—especially
about the future. In this case, the browser may use heuristics. For example, if the
page has not been modified in the past year (as told by the Last-Modified header) it
is a fairly safe bet that it will not change in the next hour. There is no guarantee,
however, and this may be a bad bet. For example, the stock market might have
closed for the day so that the page will not change for hours, but it will change
rapidly once the next trading session starts. Thus, the cacheability of a page may

SEC. 7.3 THE WORLD WIDE WEB 671

vary wildly over time. For this reason, heuristics should be used with care, though
they often work well in practice.

Finding pages that have not expired is the most beneficial use of caching
because it means that the server does not need to be contacted at all. Unfortunately,
it does not always work. Servers must use the Expires header conservatively, since
they may be unsure when a page will be updated. Thus, the cached copies may
still be fresh, but the client does not know.

The second strategy is used in this case. It is to ask the server if the cached
copy is still valid. This request is a conditional GET, and it is shown in Fig. 7-28
as step 3. If the server knows that the cached copy is still valid, it can send a short
reply to say so (step 4a). Otherwise, it must send the full response (step 4b).

More header fields are used to let the server check whether a cached copy is
still valid. The client has the time a cached page was most recently updated from
the Last-Modified header. It can send this time to the server using the If-Modi-
fied-Since header to ask for the page if and only if it has been changed in the mean-
time. There is much more to say about caching because it has such a big effect on
performance, but this is not the place to say it. Not surprisingly, there are many
tutorials on the Web that you can find easily by searching for ‘‘Web caching.’’

HTTP/1 and HTTP/1.1

The usual way for a browser to contact a server is to establish a TCP con-
nection to port 443 for HTTPS (or port 80 for HTTP) on the server’s machine,
although this procedure is not formally required. The value of using TCP is that
neither browsers nor servers have to worry about how to handle long messages,
reliability, or congestion control. All of these matters are handled by the TCP
implementation.

Early in the Web, with HTTP/1.0, after the connection was established a single
request was sent over and a single response was sent back. Then the TCP con-
nection was released. In a world in which the typical Web page consisted entirely
of HTML text, this method was adequate. Quickly, the average Web page grew to
contain large numbers of embedded links for content such as icons and other eye
candy. Establishing a separate TCP connection to transport each single icon
became a very expensive way to operate.

This observation led to HTTP/1.1, which supports persistent connections.
With them, it is possible to establish a TCP connection, send a request and get a
response, and then send additional requests and get additional responses. This
strategy is also called connection reuse. By amortizing the TCP setup, startup,
and release costs over multiple requests, the relative overhead due to TCP is
reduced per request. It is also possible to pipeline requests, that is, send request 2
before the response to request 1 has arrived.

The performance difference between these three cases is shown in Fig. 7-29.
Part (a) shows three requests, one after the other and each in a separate connection.

672 THE APPLICATION LAYER CHAP. 7

Let us suppose that this represents a Web page with two embedded images on the
same server. The URLs of the images are determined as the main page is fetched,
so they are fetched after the main page. Nowadays, a typical page has around 40
other objects that must be fetched to present it, but that would make our figure far
too big so we will use only two embedded objects.

(a) (b) (c)

Pipelined
requests

Connection setup

HTTP
Response

HTTP
Request

Connection setup

Connection setup

Time

Connection setup Connection setup

Figure 7-29. HTTP with (a) multiple connections and sequential requests. (b) A
persistent connection and sequential requests. (c) A persistent connection and
pipelined requests.

In Fig. 7-29(b), the page is fetched with a persistent connection. That is, the
TCP connection is opened at the beginning, then the same three requests are sent,
one after the other as before, and only then is the connection closed. Observe that
the fetch completes more quickly. There are two reasons for the speedup. First,
time is not wasted setting up additional connections. Each TCP connection
requires at least one round-trip time to establish. Second, the transfer of the same
images proceeds more quickly. Why is this? It is because of TCP congestion con-
trol. At the start of a connection, TCP uses the slow-start procedure to increase the
throughput until it learns the behavior of the network path. The consequence of this
warmup period is that multiple short TCP connections take disproportionately
longer to transfer information than one longer TCP connection.

Finally, in Fig. 7-29(c), there is one persistent connection and the requests are
pipelined. Specifically, the second and third requests are sent in rapid succession
as soon as enough of the main page has been retrieved to identify that the images
must be fetched. The responses for these requests follow eventually. This method
cuts down the time that the server is idle, so it further improves performance.

SEC. 7.3 THE WORLD WIDE WEB 673

Persistent connections do not come for free, however. A new issue that they
raise is when to close the connection. A connection to a server should stay open
while the page loads. What then? There is a good chance that the user will click on
a link that requests another page from the server. If the connection remains open,
the next request can be sent immediately. However, there is no guarantee that the
client will make another request of the server any time soon. In practice, clients
and servers usually keep persistent connections open until they have been idle for a
short time (e.g., 60 seconds) or they have a large number of open connections and
need to close some.

The observant reader may have noticed that there is one combination that we
have left out so far. It is also possible to send one request per TCP connection, but
run multiple TCP connections in parallel. This parallel connection method was
widely used by browsers before persistent connections. It has the same disadvan-
tage as sequential connections—extra overhead—but much better performance.
This is because setting up and ramping up the connections in parallel hides some
of the latency. In our example, connections for both of the embedded images could
be set up at the same time. However, running many TCP connections to the same
server is discouraged. The reason is that TCP performs congestion control for each
connection independently. As a consequence, the connections compete against
each other, causing added packet loss, and in aggregate are more aggressive users
of the network than an individual connection. Persistent connections are superior
and used in preference to parallel connections because they avoid overhead and do
not suffer from congestion problems.

HTTP/2

HTTP/1.0 was around from the start of the Web and HTTP/1.1 was written in
2007. By 2012 it was getting a bit long in tooth, so IETF set up a working group
to create what later became HTTP/2. The starting point was a protocol Google had
devised earlier, called SPDY. The final product was published as RFC 7540 in May
2015.

The working group had several goals it tried to achieve, including:

1. Allow clients and servers to choose which HTTP version to use.

2. Maintain compatibility with HTTP/1.1 as much as possible.

3. Improve performance with multiplexing, pipelining, compression, etc.

4. Support existing practices used in browsers, servers, proxies, delivery
networks, and more.

A key idea was to maintain backward compatibility. Existing applications had
to work with HTTP/2, but new ones could take advantage of the new features to
improve performance. For this reason, the headers, URLs, and general semantics

674 THE APPLICATION LAYER CHAP. 7

did not change much. What changed was the way everything is encoded and the
way the clients and servers interact. In HTTP/1.1, a client opens a TCP connection
to a server, sends over a request as text, waits for a response, and in many cases
then closes the connection. This is repeated as often as needed to fetch an entire
Web page. In HTTP/2 A TCP connection is set up and many requests can be sent
over, in binary, possibly prioritized, and the server can respond to them in any
order it wants to. Only after all requests have been answered is the TCP connection
torn down.

Through a mechanism called server push, HTTP/2 allows the server to push
out files that it knows will be needed but which the client may not know initially.
For example, if a client requests a Web page and the server sees that it uses a style
sheet and a JavaScript file, the server can send over the style sheet and the
JavaScript before they are even requested. This eliminates some delays. An exam-
ple of getting the same information (a Web page, its style sheet, and two images) in
HTTP/1.1 and HTTP/2 is shown in Fig. 7-30.

User

Server

Time
(a) (b)

Time

R
eq

ue
st

 s
ty

le
 s

he
et

H
er

e
is

 th
e

st
yl

e
sh

ee
t

R
eq

ue
st

 im
ag

e
1

H
er

e
is

 im
ag

e
1

H
er

e
is

 im
ag

e
1

R
eq

ue
st

 im
ag

e
1

R
eq

ue
st

 im
ag

e
2

R
eq

ue
st

 im
ag

e
2

H
er

e
is

 im
ag

e
2

H
er

e
is

 im
ag

e
2

R
eq

ue
st

 p
ag

e

H
er

e
is

 th
e

pa
ge

R
eq

ue
st

 p
ag

e

H
er

e
is

 th
e

pa
ge

 +
 s

ty
le

 s
he

et

Figure 7-30. (a) Getting a Web page in HTTP/1.1. (b) Getting the same page in HTTP/2.

Note that Fig. 7-30(a) is the best case for HTTP/1.1, where multiple requests
can be sent consecutively over the same TCP connection, but the rules are that they
must be processed in order and the results sent back in order. In HTTP/2
[Fig. 7-30(b)], the responses can come back in any order. If it turns out, for exam-
ple, that image 1 is very large, the server could back image 2 first so the browser

SEC. 7.3 THE WORLD WIDE WEB 675

can start displaying the page with image 2 even before image 1 is available. That is
not allowed in HTTP/1.1. Also note that in Fig. 7-30(b) the server sent the style
sheet without the browser asking for it.

In addition to the pipelining and multiplexing of requests over the same TCP
connection, HTTP/2 compresses the headers and sends them in binary to reduce
bandwidth usage and latency. An HTTP/2 session consists of a series of frames,
each with a separate identifier. Responses may come back in a different order than
the requests, as in Fig. 7-30(b), but since each response carries the identifier of the
request, the browser can determine which request each response corresponds to.

Encryption was a sore point during the development of HTTP/2. Some people
wanted it badly, and others opposed it equally badly. The opposition was mostly
related to Internet-of-Things applications, in which the ‘‘thing’’ does not have a lot
of computing power. In the end, encryption was not required by the standard, but
all browsers require encryption, so de facto it is there anyway, at least for Web
browsing.

HTTP/3

HTTP/3 or simply H3 is the third major revision of HTTP, designed as a suc-
cessor to HTTP/2. The major distinction for HTTP/3 is the transport protocol that
it uses to support the HTTP messages: rather than relying on TCP, it relies on an
augmented version of UDP called QUIC, which relies on user-space congestion
control running on top of UDP. HTTP/3 started out simply as HTTP-over-QUIC
and has become the latest proposed major revision to the protocol. Many open-
source libraries that support client and server logic for QUIC and HTTP/3 are
available, in languages that include C, C++, Python, Rust, and Go. Popular Web
servers including nginx also now support HTTP/3 through patches.

The QUIC transport protocol supports stream multiplexing and per-stream
flow control, similar to that offered in HTTP/2. Stream-level reliability and con-
nection-wide congestion control can dramatically improve the performance of
HTTP, since congestion information can be shared across sessions, and reliability
can be amortized across multiple connections fetching objects in parallel. Once a
connection exists to a server endpoint, HTTP/3 allows the client to reuse that same
connection with multiple different URLs.

HTTP/3, running HTTP over QUIC, promises many possible performance
enhancements over HTTP/2, primarily because of the benefits that QUIC offers for
HTTP vs. TCP. In some ways, QUIC could be viewed as the next generation of
TCP. It offers connection setup with no additional round trips between client and
server; in the case when a previous connection has been established between client
and server, a zero-round-trip connection re-establishment is possible, provided that
a secret from the previous connection was established and cached. QUIC guaran-
tees reliable, in-order delivery of bytes within a single stream, but it does not

676 THE APPLICATION LAYER CHAP. 7

provide any guarantees with respect to bytes on other QUIC streams. QUIC does
permit out-of-order delivery within a stream, but HTTP/3 does not make use of this
feature. HTTP/3 over QUIC will be performed exclusively using HTTPS; requests
to (the increasingly deprecated) HTTP URLs will not be upgraded to use HTTP/3.
For more details on HTTP/3, see https://http3.net.

7.3.5 Web Privacy

One of the most significant concerns in recent years has been the privacy con-
cerns associated with Web browsing. Web sites, Web applications, and other third
parties often use mechanisms in HTTP to track user behavior, both within the con-
text of a single Web site or application, or across the Internet. Additionally, attack-
ers may exploit various information side channels in the browser or device to track
users. This section describes some of the mechanisms that are used to track users
and fingerprint individual users and devices.

Cookies

One conventional way to implement tracking is by placing a cookie (effec-
tively a small amount of data) on client devices, which the clients may then send
back upon subsequent visits to various Web sites. When a user requests a Web
object (e.g., a Web page), a Web server may place a piece of persistent state, called
a cookie, on the user’s device, using the ‘‘set-cookie’’ directive in HTTP. The data
passed to the client’s device using this directive is subsequently stored locally on
the device. When the device visits that Web domain in the future, the HTTP
request passes the cookie, in addition to the request itself.

‘‘First-party’’ HTTP cookies (i.e., those set by the domain of the Web site that
the user intends to visit, such as a shopping or news Web site) are useful for
improving user experience on many Web sites. For example, cookies are often used
to preserve state across a Web ‘‘session.’’ They allow a Web site to track useful
information about a user’s ongoing behavior on a Web site, such as whether they
recently logged into the Web site, or what items they have placed in a shopping
cart.

Cookies set by one domain are generally only visible to the same domain that
set the cookie in the first place. For example, one advertising network may set a
cookie on a user device, but no other third party can see the cookie that was set.
This Web security policy, called the same-origin policy, prevents one party from
reading a cookie that was set by another party and in some sense can limit how
information about an individual user is shared.

Although first-party cookies are often used to improve the user experience,
third parties, such as advertisers and tracking companies can also set cookies on
client devices, which can allow those third parties to track the sites that users visit

SEC. 7.3 THE WORLD WIDE WEB 677

as they navigate different Web sites across the entire Internet. This tracking takes
place as follows:

1. When a user visits a Web site, in addition to the content that the user
requests directly, the device may load content from third-party sites,
including from the domains of advertising networks. Loading an
advertisement or script from a third party allows that party to set a
unique cookie on the user’s device.

2. That user may subsequently visit different sites on the Internet that
load Web objects from the same third party that set tracking infor-
mation on a different site.

A common example of this practice might be two different Web sites that use
the same advertising network to serve ads. In this case, the advertising network
would see: (1) the user’s device return the cookie that it set on a different Web site;
(2) the HTTP referer request header that accompanies the request to load the object
from the advertiser, indicating the original site that the user’s device was visiting.
This practice is commonly referred to as cross-site tracking.

Super cookies, and other locally stored tracking identifiers, that a user cannot
control as they would regular cookies, can allow an intermediary to track a user a-
cross Web sites over time. Unique identifiers can include things such as third-party
tracking identifiers encoded in HTTP (specifically HSTS (HTTP Strict Trans-
port Security) headers that are not cleared when a user clears their cookies and
tags that an intermediate third party such as a mobile ISP can insert into unencryp-
ted Web traffic that traverses a network segment. This enables third parties, such as
advertisers, to build up a profile of a user’s browsing across a set of Web sites, sim-
ilar to the Web tracking cookies used by ad networks and application providers.

Third-Party Trackers

Web cookies that originate from a third-party domain that are used across
many sites can allow an advertising network or other third parties to track a user’s
browsing habits on any site where that tracking software is deployed (i.e., any site
that carries their advertisements, sharing buttons, or other embedded code). Adver-
tising networks and other third parties typically track a user’s browsing patterns a-
cross the range of Web sites that the user browses, often using browser-based
tracking software. In some cases, a third party may develop its own tracking soft-
ware (e.g., Web analytics software). In other cases, they may use a different third-
party service to collect and aggregate this behavior across sites.

Web sites may permit advertising networks and other third-party trackers to
operate on their site, enabling them to collect analytics data, advertise on other
Web sites (called re-targeting), or monetize the Web site’s available advertising
space via placement of carefully targeted ads. The advertisers collect data about

678 THE APPLICATION LAYER CHAP. 7

users by using various tracking mechanisms, such as HTTP cookies, HTML5
objects, JavaScript, device fingerprinting, browser fingerprinting, and other com-
mon Web technologies. When a user visits multiple Web sites that leverage the
same advertising network, that advertising network recognizes the user’s device,
enabling them to track user Web behavior over time.

Using such tracking software, a third party or advertising network can discover
a user’s interactions, social network and contacts, likes, interests, purchases, and so
on. This information can enable precise tracking of whether an advertisement
resulted in a purchase, mapping of relationships between people, creation of
detailed user tracking profiles, conduct of highly targeted advertising, and signifi-
cantly more due to the breadth and scope of tracking.

Even in cases where someone is not a registered user of a particular service
(e.g., social media site, search engine), has ceased using that service, or has logged
out of that service, they often are still being uniquely tracked using third-party (and
first-party) trackers. Third-party trackers are increasingly becoming concentrated
with a few large providers.

In addition to third-party tracking with cookies, the same advertisers and third-
party trackers can track user browsing behavior with techniques such as canvas fin-
gerprinting (a type of browser fingerprinting), session replay (whereby a third
party can see a playback of every user interaction with a particular Webpage), and
even exploitation of a browser or password manager’s ‘‘auto-fill’’ feature to send
back data from Web forms, often before a user even fills out the form. These more
sophisticated technologies can provide detailed information about user behavior
and data, including fine-grained details such as the user’s scrolls and mouse-clicks
and even in some instances the user’s username and password for a given Web site
(which can be either intentional on the part of the user or unintentional on the part
of the Web site).

A recent study suggests that specific instances of third-party tracking software
are pervasive. The same study also discovered that news sites have the largest num-
ber of tracking parties on any given first-party site; other popular categories for
tracking include arts, sports, and shopping Web sites. Cross-device tracking refers
to the practice of linking activities of a single user across multiple devices (e.g.,
smartphones, tablets, desktop machines, other ‘‘smart devices’’); the practice aims
to track a user’s behavior, even as they use different devices.

Certain aspects of cross-device tracking may improve user experience. For
example, as with cookies on a single device or browser, cross-device tracking can
allow a user to maintain a seamless experience when moving from one device to
the next (e.g., continuing to read a book or watch a movie from the place where the
user left off). Cross-device tracking can also be useful for preventing fraud; for
example, a service provider may notice that a user has logged in from an unfamil-
iar device in a completely new location. When a user attempts a login from an
unrecognized device, a service provider can take additional steps to authenticate
the user (e.g., two-factor authentication).

SEC. 7.3 THE WORLD WIDE WEB 679

Cross-device tracking is most common by first-party services, such as email
service providers, content providers (e.g., streaming video services), and com-
merce sites, but third parties are also becoming increasingly adept at tracking users
across devices.

1. Cross-device tracking may be deterministic, based on a persistent
identifier such as a login that is tied to a specific user.

2. Cross-device tracking may also be probabilistic; the IP address is one
example of a probabilistic identifier that can be used to implement
cross-device tracking. For example, technologies such as network
address translation can cause multiple devices on a network to have
the same public IP address. Suppose that a user visits a Web site from
a mobile device (e.g., a smartphone) and uses that device at both
home and work. A third party can set IP address information in the
device’s cookies. That user may then appear from two public IP
addresses, one at work, and one at home, and those two IP addresses
may be linked by the same third party cookie; if the user then visits
that third party from different devices that share either of those two IP
addresses, then those additional devices can be linked to the same
user with high confidence.

Cross-device tracking often uses a combination of deterministic and proba-
bilistic techniques; many of these techniques do not require the user to be logged
into any site to enable this type of tracking. For example, some parties offer ‘‘ana-
lytics’’ services that, when embedded across many first-party Web sites, allow the
third-party to track a user across Web sites and devices. Third parties often work
together to track users across devices and services using a practice called cookie
syncing, described in more detail later in this section.

Cross-device tracking enables more sophisticated inference of higher-level user
activities, since data from different devices can be combined to build a more com-
prehensive picture of an individual user’s activity. For example, data about a user’s
location (as collected from a mobile device) can be combined with a user’s search
history, social network activity (such as ‘‘likes’’) to determine for example whether
a user has physically visited a store following an online search or online advertis-
ing exposure.

Device and Browser Fingerprinting

Even when users disable common tracking mechanisms such as third-party
cookies, Web sites and third parties can still track users based on environmental,
contextual, and device information that the device returns to the server. Based on a
collection of this information, a third party may be able to uniquely identify, or
’’fingerprint,’’ a user across different sites and over time.

680 THE APPLICATION LAYER CHAP. 7

One well-known fingerprinting method is a technique called canvas finger-
printing, whereby the HTML canvas is used to identify a device. The HTML can-
vas allows a Web application to draw graphics in real time. Differences in font
rendering, smoothing, dimensions, and some other features may cause each device
to draw an image differently, and the resulting pixels can serve as a device finger-
print. The technique was first discovered in 2012, but not brought to public atten-
tion until 2014. Although there was a backlash at that time, many trackers continue
to use canvas fingerprinting and related techniques such as canvas font fingerprint-
ing, which identifies a device based on the browser’s font list; a recent study found
that these techniques are still present on thousands of sites. Web sites can also use
browser APIs to retrieve other information for tracking devices, including infor-
mation such as the battery status, which can be used to track a user based on bat-
tery charge level and discharge time. Other reports describe how knowing the bat-
tery status of a device can be used to track a device and therefore associate a device
with a user (Olejnik et al., 2015)

Cookie Syncing

When different third-party trackers share information with each other, these
parties can track an individual user even as they visit Web sites that have different
tracking mechanisms installed. Cookie syncing is difficult to detect and also facil-
itates merging of datasets about individual users between disparate third parties,
creating significant privacy concerns. A recent study suggests that the practice of
cookie syncing is widespread among third-party trackers.

7.4 STREAMING AUDIO AND VIDEO
Email and Web applications are not the only major uses of networks. For many

people, audio and video are the holy grail of networking. When the word ‘‘multi-
media’’ is mentioned, both the propellerheads and the suits begin salivating as if on
cue. The former see immense technical challenges in providing good quality voice
over IP and 8K video-on-demand to every computer. The latter see equally
immense profits in it.

While the idea of sending audio and video over the Internet has been around
since the 1970s at least, it is only since roughly 2000 that real-time audio and
real-time video traffic has grown with a vengeance. Real-time traffic is different
from Web traffic in that it must be played out at some predetermined rate to be use-
ful. After all, watching a video in slow motion with fits and starts is not most peo-
ple’s idea of fun. In contrast, the Web can have short interruptions, and page loads
can take more or less time, within limits, without it being a major problem.

Two things happened to enable this growth. First, computers have became
much more powerful and are equipped with microphones and cameras so that they
can input, process, and output audio and video data with ease. Second, a flood of

SEC. 7.4 STREAMING AUDIO AND VIDEO 681

Internet bandwidth has come to be available. Long-haul links in the core of the
Internet run at many gigabits/sec, and broadband and 802.11ac wireless reaches
users at the edge of the Internet. These developments allow ISPs to carry tremen-
dous levels of traffic across their backbones and mean that ordinary users can con-
nect to the Internet 100–1000 times faster than with a 56-kbps telephone modem.

The flood of bandwidth caused audio and video traffic to grow, but for dif-
ferent reasons. Telephone calls take up relatively little bandwidth (in principle 64
kbps but less when compressed) yet telephone service has traditionally been expen-
sive. Companies saw an opportunity to carry voice traffic over the Internet using
existing bandwidth to cut down on their telephone bills. Startups such as Skype
saw a way to let customers make free telephone calls using their Internet con-
nections. Upstart telephone companies saw a cheap way to carry traditional voice
calls using IP networking equipment. The result was an explosion of voice data
carried over the Internet and called Internet telephony and discussed in Sec. 7.4.4.

Unlike audio, video takes up a large amount of bandwidth. Reasonable quality
Internet video is encoded with compression resulting in a stream of around 8 Mbps
for 4K (which is 7 GB for a 2-hour movie) Before broadband Internet access, send-
ing movies over the network was prohibitive. Not so any more. With the spread of
broadband, it became possible for the first time for users to watch decent, streamed
video at home. People love to do it. Around a quarter of the Internet users on any
given day are estimated to visit YouTube, the popular video sharing site. The
movie rental business has shifted to online downloads. And the sheer size of videos
has changed the overall makeup of Internet traffic. The majority of Internet traffic
is already video, and it is estimated that 90% of Internet traffic will be video within
a few years.

Given that there is enough bandwidth to carry audio and video, the key issue
for designing streaming and conferencing applications is network delay. Audio and
video need real-time presentation, meaning that they must be played out at a
predetermined rate to be useful. Long delays mean that calls that should be inter-
active no longer are. This problem is clear if you have ever talked on a satellite
phone, where the delay of up to half a second is quite distracting. For playing
music and movies over the network, the absolute delay does not matter, because it
only affects when the media starts to play. But the variation in delay, called jitter,
still matters. It must be masked by the player or the audio will sound unintelligible
and the video will look jerky.

As an aside, the term multimedia is often used in the context of the Internet to
mean video and audio. Literally, multimedia is just two or more media. That defi-
nition makes this book a multimedia presentation, as it contains text and graphics
(the figures). However, that is probably not what you had in mind, so we use the
term ‘‘multimedia’’ to imply two or more continuous media, that is, media that
have to be played during some well-defined time interval. The two media are nor-
mally video with audio, that is, moving pictures with sound. Audio and smell may
take a while. Many people also refer to pure audio, such as Internet telephony or

682 THE APPLICATION LAYER CHAP. 7

Internet radio, as multimedia as well, which it is clearly not. Actually, a better
term for all these cases is streaming media. Nonetheless, we will follow the herd
and consider real-time audio to be multimedia as well.

7.4.1 Digital Audio

An audio (sound) wave is a one-dimensional acoustic (pressure) wave. When
an acoustic wave enters the ear, the eardrum vibrates, causing the tiny bones of the
inner ear to vibrate along with it, sending nerve pulses to the brain. These pulses
are perceived as sound by the listener. In a similar way, when an acoustic wave
strikes a microphone, the microphone generates an electrical signal, representing
the sound amplitude as a function of time.

The frequency range of the human ear runs from 20 Hz to 20,000 Hz. Some
animals, notably dogs, can hear higher frequencies. The ear hears loudness loga-
rithmically, so the ratio of two sounds with power A and B is conventionally
expressed in dB (decibels) as the quantity 10 log10(A/B). If we define the lower
limit of audibility (a sound pressure of about 20 µPascals) for a 1-kHz sine wave
as 0 dB, an ordinary conversation is about 50 dB and the pain threshold is about
120 dB. The dynamic range is a factor of more than 1 million.

The ear is surprisingly sensitive to sound variations lasting only a few millisec-
onds. The eye, in contrast, does not notice changes in light level that last only a
few milliseconds. The result of this observation is that jitter of only a few millisec-
onds during the playout of multimedia affects the perceived sound quality much
more than it affects the perceived image quality.

Digital audio is a digital representation of an audio wave that can be used to
recreate it. Audio waves can be converted to digital form by an ADC (Analog-to-
Digital Converter). An ADC takes an electrical voltage as input and generates a
binary number as output. In Fig. 7-31(a) we see an example of a sine wave. To
represent this signal digitally, we can sample it every 6T seconds, as shown by the
bar heights in Fig. 7-31(b). If a sound wave is not a pure sine wave but a linear
superposition of sine waves where the highest frequency component present is f ,
the Nyquist theorem (see Chap. 2) states that it is sufficient to make samples at a
frequency 2 f . Sampling more often is of no value since the higher frequencies
that such sampling could detect are not present.

The reverse process takes digital values and produces an analog electrical volt-
age. It is done by a DAC (Digital-to-Analog Converter). A loudspeaker can then
convert the analog voltage to acoustic waves so that people can hear sounds.

Audio Compression

Audio is often compressed to reduce bandwidth needs and transfer times, even
though audio data rates are much lower than video data rates. All compression
systems require two algorithms: one is used for compressing the data at the source,

SEC. 7.4 STREAMING AUDIO AND VIDEO 683

1.00
0.75
0.50
0.25

0
–0.25

–0.50
–0.75
–1.00

1
2 T

1
2 T

T T T

(a) (b) (c)

1
2 T

Figure 7-31. (a) A sine wave. (b) Sampling the sine wave. (c) Quantizing the
samples to 4 bits.

and another is used for decompressing it at the destination. In the literature, these
algorithms are referred to as the encoding and decoding algorithms, respectively.
We will use this terminology too.

Compression algorithms exhibit certain asymmetries that are important to
understand. Even though we are considering audio first, these asymmetries hold
for video as well. The first asymmetry applies to encoding the source material.
For many applications, a multimedia document will only be encoded once (when it
is stored on the multimedia server) but will be decoded thousands of times (when it
is played back by customers). This asymmetry means that it is acceptable for the
encoding algorithm to be slow and require expensive hardware provided that the
decoding algorithm is fast and does not require expensive hardware.

The second asymmetry is that the encode/decode process need not be invert-
ible. That is, when compressing a data file, transmitting it, and then decompress-
ing it, the user expects to get the original back, accurate down to the last bit. With
multimedia, this requirement does not exist. It is usually acceptable to have the
audio (or video) signal after encoding and then decoding be slightly different from
the original as long as it sounds (or looks) the same. When the decoded output is
not exactly equal to the original input, the system is said to be lossy. If the input
and output are identical, the system is lossless. Lossy systems are important
because accepting a small amount of information loss normally means a huge pay-
off in terms of the compression ratio possible.

Many audio compression algorithms have been developed. Probably the most
popular formats are MP3 (MPEG audio layer 3) and AAC (Advanced Audio
Coding) as carried in MP4 (MPEG-4) files. To avoid confusion, note that MPEG
provides audio and video compression. MP3 refers to the audio compression por-
tion (part 3) of the MPEG-1 standard, not the third version of MPEG, which has
been replaced by MPEG-4. AAC is the successor to MP3 and the default audio
encoding used in MPEG-4. MPEG-2 allows both MP3 and AAC audio. Is that
clear now? The nice thing about standards is that there are so many to choose
from. And if you do not like any of them, just wait a year or two.

684 THE APPLICATION LAYER CHAP. 7

Audio compression can be done in two ways. In waveform coding, the signal
is transformed mathematically by a Fourier transform into its frequency compo-
nents. In Chap. 2, we showed an example function of time and its Fourier ampli-
tudes in Fig. 2-12(a). The amplitude of each component is then encoded in a mini-
mal way. The goal is to reproduce the waveform fairly accurately at the other end
in as few bits as possible.

The other way, perceptual coding, exploits certain flaws in the human audi-
tory system to encode a signal in such a way that it sounds the same to a human lis-
tener, even if it looks quite different on an oscilloscope. Perceptual coding is based
on the science of psychoacoustics—how people perceive sound. Both MP3 and
AAC are based on perceptual coding.

Perceptual encoding dominates modern multimedia systems, so let us take a
look at it. A key property is that some sounds can mask other sounds. For exam-
ple, imagine that you are broadcasting a live flute concert on warm summer day.
Then all of a sudden, a crew of workmen show up with jackhammers and start tear-
ing up the street to replace it. No one can hear the flute any more, so you can just
transmit the frequency of the jackhammers and the listeners will get the same
musical experience as if you also had broadcast the flute as well, and you can save
bandwidth to boot. This is called frequency masking.

When the jackhammers stop, you don’t have to start broadcasting the flute fre-
quency for a small period of time because the ear turns down its gain when it picks
up a loud sound and it takes a bit of time to reset it. Transmission of low-amplitude
sounds during this recovery period are pointless and omitting them can save band-
width. This is called temporal masking. Perceptual encoding relies heavily on not
encoding or transmitting audio that the listeners are not going to perceive anyway.

7.4.2 Digital Video

Now that we know all about the ear, it is time to move on to the eye. (No, this
section is not followed by one on the nose.) The human eye has the property that
when an image appears on the retina, the image is retained for some number of
milliseconds before decaying. If a sequence of images is drawn at 50 images/sec,
the eye does not notice that it is looking at discrete images. All video systems
since the Lumière brothers invented the movie projector in 1895 exploit this prin-
ciple to produce moving pictures.

The simplest digital representation of video is a sequence of frames, each con-
sisting of a rectangular grid of picture elements, or pixels. Common sizes for
screens range from 1280 × 720 (called 720p), 1920 × 1080 (called 1080p or HD
video), 3840 × 2160 (called 4K) and 7680 × 4320 (called 8K).

Most systems use 24 bits per pixel, with 8 bits each for the red, blue, and green
(RGB) components. Red, blue, and green are the primary additive colors and every
other color can be made from superimposing them in the appropriate intensity.

SEC. 7.4 STREAMING AUDIO AND VIDEO 685

Older frame rates vary from 24 frames/sec, which traditional film-based mov-
ies used, through 25.00 frames/sec (the PAL system used in most of the world), to
30 frames/sec (the American NTSC system). Actually, if you want to get picky,
NTSC uses 29.97 frames/sec instead of 30 due to a hack the engineers introduced
during the transition from black-and-white television to color. A bit of bandwidth
was needed for part of the color management so they took it by reducing the frame
rate by 0.03 frame/sec. PAL used color from its inception, so the rate really is
exactly 25.00 frame/sec. In France, a slightly different system, called SECAM,
was developed in part, to protect French companies from German television manu-
facturers. It also runs at exactly 25.00 frames/sec. During the 1950s, the Commu-
nist countries of Eastern Europe adopted SECAM to prevent their people from
watching West German (PAL) television and getting Bad Ideas.

To reduce the amount of bandwidth required to broadcast television signals
over the air, television stations adopted a scheme in which frames were divided
into two fields, one with the odd-numbered rows and one with the even-numbered
rows, which were broadcast alternately. This meant that 25 frames/sec was actually
50 fields/sec. This scheme is called interlacing, and gives less flicker than broad-
casting entire frames one after another. Modern video does not use interlacing and
and just sends entire frames in sequence, usually at 50 frames/sec (PAL) or 59.94
frames/sec (NTSC). This is called progressive video.

Video Compression

It should be obvious from our discussion of digital video that compression is
critical for sending video over the Internet. Even 720p PAL progressive video
requires 553 Mbps of bandwidth and HD, 4K, and 8K require a lot more. To pro-
duce a standard for compressing video that could be used over all platforms and by
all manufacturers, the standards’ committees created a group called MPEG
(Motion Picture Experts Group) to come up with a worldwide standard. Very
briefly, the standards it came up with, known as MPEG-1, MPEG-2, and MPEG-4,
work like this. Every few seconds a complete video frame is transmitted. The
frame is compressed using something like the familiar JPEG algorithm that is used
for digital still pictures. Then for the next few seconds, instead of sending out full
frames, the transmitter sends out differences between the current frame and the
base (full) frame it most recently sent out.

First let us briefly look at the JPEG (Joint Photographic Experts Group)
algorithm for compressing a single still image. Instead of working with the RGB
components, it converts the image into luminance (brightness) and chrominance
(color) components because the eye is much more sensitive to luminance than
chrominance, allowing fewer bits to be used to encode the chrominance without
loss of perceived image quality. The image is then broken up into blocks of typi-
cally 8 × 8 or 10 × 10 pixels, each of which is processed separately. Separately, the

686 THE APPLICATION LAYER CHAP. 7

luminance and chrominance are run through a kind of Fourier transform (techni-
cally a discrete cosine transformation) to get the spectrum. High-frequency ampli-
tudes can then be discarded. The more amplitudes that are discarded, the fuzzier
the image and the smaller the compressed image is. Then standard lossless com-
press techniques like run-length encoding and Huffman encoding are applied to the
remaining amplitudes. If this sounds complicated, it is, but computers are pretty
good at carrying out complicated algorithms.

Now on to the MPEG part, described below in a simplified way. The frame
following a full JPEG (base) frame is likely to be very similar to the JPEG frame,
so instead of encoding the full frame, only the blocks that differ from the base
frame are transmitted. A block containing, say, a piece of blue sky is likely to be
the same as it was 20 msec earlier, so there is no need to transmit it again. Only the
blocks that have changed need to be retransmitted.

As an example, consider the situation of a a camera mounted securely on a tri-
pod with an actor walking toward a stationary tree and house. The first three
frames are shown in Fig. 7-32. The encoding of the second frame just sends the
blocks that have changed. Conceptually, the receiver starts out producing the sec-
ond frame by copying the first frame into a buffer and then applying the changes.
It then stores the second frame uncompressed for display. It also uses the second
frame as the base for applying the changes that come describing the difference
between the third frame and the second one.

Figure 7-32. Three consecutive frames.

It is slightly more complicated than this, though. If a block (say, the actor) is
present in the second frame but has moved, MPEG allows the encoder to say, in
effect, ‘‘block 29 from the previous frame is present in the new frame offset by a
distance (6x , 6y) and furthermore the sixth pixel has changed to abc and the 24th
pixel is now xyz.’’ This allows even more compression.

We mentioned symmetries between encoding and decoding before. Here we
see one. The encoder can spend as much time as it wants searching for blocks that
have moved and blocks that have changed somewhat to determine whether it is bet-
ter to send a list of updates to the previous frame or a complete new JPEG frame.
Finding a moved block is a lot more work than simply copying a block from the
previous image and pasting it into the new one at a known (6x, 6y) offset.

SEC. 7.4 STREAMING AUDIO AND VIDEO 687

To be a bit more complete, MPEG actually has three different kinds of frames,
not just two:

1. I (Intracoded) frames that are self-contained compressed still images.

2. P (Predictive) frames that are difference with the previous frame.

3. B (Bidirectional) frames that code differences with the next I-frame.

The B-frames require the receiver to stop processing until the next I-frame
arrives and then work backward from it. Sometimes this gives more compression,
but having the encoder constantly check to see if differences with the previous
frame or differences with any one of the next 30, 50, or 80 frames gives the small-
est result is time consuming on the encoding side but not time consuming on the
decoding side. This asymmetry is exploited to the maximum to give the smallest
possible encoded file. The MPEG standards do not specify how to search, how far
to search, or how good a match has to be in order to send differences or a complete
new block. This is up to each implementation.

Audio and video are encoded separately as we have described. The final
MPEG-encoded file consists of chunks containing some number of compressed
images and the corresponding compressed audio to be played while the frames in
that chunk are displayed. In this way, the video and audio are kept synchronized.

Note that this is a rather simplified description. In reality, even more tricks are
used to get better compression, but the basic ideas given above are essentially cor-
rect. The most recent format is MPEG-4, also called MP4. It is formally defined
in a standard known as H.264. It’s successor (defined for resolutions up to 8K) is
H.265. H.264 is the format most consumer video cameras produce. Because the
camera has to record the video on the SD card or other medium in real time, it has
very little time to hunt for blocks that have moved a little. Consequently, the com-
pression is not nearly as good as what a Hollywood studio can do when it dynam-
ically allocates 10,000 computers at a cloud server to encode its latest production.
This is encoding/decoding asymmetry in action.

7.4.3 Streaming Stored Media

Let us now move on to network applications. Our first case is streaming a
video that is already stored on a server somewhere, for example, watching a
YouTube or Netflix video. The most common example of this is watching videos
over the Internet. This is one form of VoD (Video on Demand). Other forms of
video on demand use a provider network that is separate from the Internet to deliv-
er the movies (e.g., the cable TV network).

The Internet is full of music and video sites that stream stored multimedia
files. Actually, the easiest way to handle stored media is not to stream it. The
straightforward way to make the video (or music track) available is just to treat the

688 THE APPLICATION LAYER CHAP. 7

pre-encoded video (or audio) file as a very big Web page and let the browser down-
load it. The sequence of four steps is shown in Fig. 7-33.

3: Save
media

2: Media response (HTTP)

1: Media request (HTTP)
Browser

Client

Media
player

Web
server

Server

4: Play
media

DiskDisk

Figure 7-33. Playing media over the Web via simple downloads.

The browser goes into action when the user clicks on a movie. In step 1, it
sends an HTTP request for the movie to the Web server to which the movie is link-
ed. In step 2, the server fetches the movie (which is just a file in MP4 or some
other format) and sends it back to the browser. Using the MIME type, the browser
looks up how it is supposed to display the file. The browser then saves the entire
movie to a scratch file on disk in step 3. It then starts the media player, passing it
the name of the scratch file. Finally, in step 4 the media player starts reading the
file and playing the movie. Conceptually, this is no different than fetching and dis-
playing a static Web page, except that the downloaded file is ‘‘displayed’’ by using
a media player instead of just writing pixels to a monitor.

In principle, this approach is completely correct. It will play the movie. There
is no real-time network issue to address either because the download is simply a
file download. The only trouble is that the entire video must be transmitted over
the network before the movie starts. Most customers do not want to wait an hour
for their ‘‘video on demand’’ to start, so something better is needed.

What is needed is a media player that is designed for streaming. It can either
be part of the Web browser or an external program called by the browser when a
video needs to be played. Modern browsers that support HTML5 usually have a
built-in media player.

A media player has five major jobs to do:

1. Manage the user interface.

2. Handle transmission errors.

3. Decompress the content.

4. Eliminate jitter.

5. Decrypt the file.

Most media players nowadays have a glitzy user interface, sometimes simulating a
stereo unit, with shiny buttons, knobs, sliders, and visual displays. Often there are

SEC. 7.4 STREAMING AUDIO AND VIDEO 689

interchangeable front panels, called skins, that the user can drop onto the player.
The media player has to manage all this and interact with the user.

The next three are related and depend on the network protocols. We will go
through each one in turn, starting with handling transmission errors. Dealing with
errors depends on whether a TCP-based transport like HTTP is used to transport
the media, or a UDP-based transport like RTP (Real Time Protocol) is used. If a
TCP-based transport is being used then there are no errors for the media player to
correct because TCP already provides reliability by using retransmissions. This is
an easy way to handle errors, at least for the media player, but it does complicate
the removal of jitter in a later step because timing out and asking for retransmis-
sions introduces uncertain and variable delays in the movie.

Alternatively, a UDP-based transport like RTP can be used to move the data.
With these protocols, there are no retransmissions. Thus, packet loss due to con-
gestion or transmission errors will mean that some of the media does not arrive. It
is up to the media player to deal with this problem. One way is to ignore the prob-
lem and just have bits of video and audio be wrong. If errors are infrequent, this
works fine and almost no one will notice. Another possibility is to use forward
error correction, such as encoding the video file with some redundancy, such as a
Hamming code or a Reed-Solomon code. Then the media player will have enough
information to correct errors on its own, without having to ask for retransmissions
or skip bits of damaged movies.

The downside here is that adding redundancy to the file makes it bigger.
Another approach involves using selective retransmission of the parts of the video
stream that are most important to play back the content. For example, in a com-
pressed video sequence, a packet loss in an I-frame is much more consequential,
since the decoding errors that result from the loss can propagate throughout the
group of pictures. On the other hand, losses in derivative frames, including P-
frames and B-frames, are easier to recover from. Similarly, the value of a retrans-
mission also depends on whether the retransmission of the content would arrive in
time for playback. As a result, some retransmissions can be far more valuable than
others, and selectively retransmitting certain packets (e.g., those within I-frames
that would arrive before playback) is one possible strategy. Protocols have been
built on top of RTP and QUIC to provide unequal loss protection when videos are
streamed over UDP (Feamster et al., 2000; and Palmer et al., 2018).

The media player’s third job is decompressing the content. Although this task
is computationally intensive, it is fairly straightforward. The thorny issue is how to
decode media if the underlying network protocol does not correct transmission
errors. In many compression schemes, later data cannot be decompressed until the
earlier data has been decompressed, because the later data is encoded relative to
the earlier data. Recall that a P-frame is based upon the most recent I-frame (and
other I-frames following it). If the I-frame is damaged and cannot be decoded, all
the subsequent P-frames are useless. The media player will then be forced to wait
for the next I-frame and simply skip a few seconds of video.

690 THE APPLICATION LAYER CHAP. 7

This reality forces the encoder to make a decision. If I-frames are spaced
closely, say, one per second, the gap when an error occurs will be fairly small, but
the video will be bigger because I-frames are much bigger than P- or B-frames. If
I-frames are, say, 5 seconds apart, the video file will be much smaller but there will
be 5-second gap if an I-frame is damaged and a smaller gap if a P-frame is dam-
aged. For this reason, when the underlying protocol is TCP, I-frames can be spaced
much further apart than if RTP is used. Consequently, many video-streaming sites
use TCP to allow a smaller encoded file with widely spaced I-frames and less
bandwidth needed for smooth playback.

The fourth job is to eliminate jitter, the bane of all real-time systems. Using
TCP makes this much worse, because it introduces random delays whenever
retransmissions are needed. The general solution that all streaming systems use is
a playout buffer. before starting to play the video, the system collects 5–30 sec-
onds worth of media, as shown in Fig. 7-34. Playing drains media regularly from
the buffer so that the audio is clear and the video is smooth. The startup delay
gives the buffer a chance to fill to the low-water mark. The idea is that data
should now arrive regularly enough that the buffer is never completely emptied. If
that were to happen, the media playout would stall.

Buffer

Low-
water
mark

High-
water
mark

Media
player

Media
server

Client machine Server machine

Figure 7-34. The media player buffers input from the media server and plays
from the buffer rather than directly from the network.

Buffering introduces a new complication. The media player needs to keep the
buffer partly full, ideally between the low-water mark and the high-water mark.
This means when the buffer passes the high-water mark, the player needs to tell the
source to stop sending, lest it lose data for lack of a place to put it. The high-water
mark has to be before the end of the buffer because data will continue to stream in
until the Stop request gets to the media server. Once the server stops sending and
the pipeline is empty, the buffer will start draining. When it hits the low-water
mark, the player sends a Start command to the server to start streaming again.

By using a protocol in which the media player can command the server to stop
and start, the media player can keep enough, but not too much, media in the buffer
to ensure smooth playout. Since RAM is fairly cheap these days, a media player,
even on a smartphone, could allocate enough buffer space to hold a minute or more
of media, if need be.

SEC. 7.4 STREAMING AUDIO AND VIDEO 691

The start-stop mechanism has another nice feature. It decouples the server’s
transmission rate from the playout rate. Suppose, for example, that the player has
to play out the video at 8 Mbps. When the buffer drops to the low-water mark, the
player will tell the server to deliver more data. If the server is capable of delivering
it at 100 Mbps, that is not a problem. It just comes in and is stored in the buffer.
When the high-water mark is reached, the player tells the server to stop. In this
way, the server’s transmission rate and the playout rate are completely decoupled.
What started out as a real-time system has become a simple nonreal-time file trans-
fer system. Getting rid of all the real-time transmission requirements is another
reason YouTube, Netflix, Hulu, and other streaming servers use TCP. It makes the
whole system design much simpler.

Determining the size of the buffer is a bit tricky. If lots of RAM is available, at
first glance it sounds like it might make sense to have a large buffer and allow the
server to keep it almost full, just in case the network suffers some congestion later
on. However, users are sometimes finicky. If a user finds a scene boring and uses
the buttons on the media player’s interface to skip forward, that might render most
or all of the buffer useless. In any event, jumping forward (or backward) to a spe-
cific point in time is unlikely to work unless that frame happens to be an I-frame. If
not, the player has to search for a nearby I-frame. If the new play point is outside
the buffer, the entire buffer has to be cleared and reloaded. In effect, users who
skip around a lot (and there are many of them), waste network bandwidth by invali-
dating precious data in their buffers. Systemwide, the existence of users who skip
around a lot argues for limiting the buffer size, even if there is plenty of RAM
available. Ideally, a media player could observe the user’s behavior and pick a
buffer size to match the user’s viewing style.

All commercial videos are encrypted to prevent piracy, so media players have
to be able to decrypt them as them come in. That is the fifth task in the list above.

DASH and HLS

The plethora of devices for viewing media introduces some complications we
need to look at now. Someone who buys a bright, shiny, and very expensive 8K
monitor will want movies delivered in 7680 × 4320 resolution at 100 or 120
frames/sec. But if halfway through an exciting movie she has to go to the doctor
and wants to finish watching it in the waiting room on a 1280 × 720 smartphone
that can handle at most 25 frames/sec, she has a problem. From the streaming
site’s point of view, this raises the question of what at resolution and frame rate
should movies be encoded.

The easy answer is to use every possible combination. At most it wastes disk
space to encode every movie at seven screen resolutions (e.g., smartphone, NTSC,
PAL, 720p, HD, 4K, and 8K) amd six frame rates (e.g., 25, 30, 50, 60, 100, and
120), for a total of 42 variants, but disk space is not very expensive. A bigger, but

692 THE APPLICATION LAYER CHAP. 7

related problem. is what happens when the viewer is stationary at home with her
big, shiny monitor, but due to network congestion, the bandwidth between her and
the server is changing wildly and cannot always support the full resolution.

Fortunately, several solutions have been already implemented. One solution is
DASH (Dynamic Adaptive Streaming over HTTP). The basic idea is simple
and it is compatible with HTTP (and HTTPS), so it can be streamed on a Web
page. The streaming server first encodes its movies at multiple resolutions and
frame rates and has them all stored in its disk farm. Each version is not stored as a
single file, but as many files, each storing, say, 10 seconds of video and audio.
This would mean that a 90-minute movie with seven screen resolutions and six
frame rates (42 variants) would require 42 × 540 = 22,680 separate files, each with
10 seconds worth of content. In other words, each file holds a segment of the
movie at one specific resolution and frame rate. Associated with the movie is a
manifest, officially known as an MPD (Media Presentation Description), which
lists the names of all these files and their properties, including resolution, frame
rate, and frame number in the movie.

To make this approach work, both the player and server must both use the
DASH protocol. The user side could either be the browser itself, a player shipped
to the browser as a JavaScript program, or a custom application (e.g., for a mobile
device, or a streaming set top box). The first thing it does when it is time to start
viewing the movie is fetch the manifest for the movie, which is just a small file, so
a normal GET HTTPS request is all that is needed.

The player then interrogates the device where it is running to discover its maxi-
mum resolution and possibly other characteristics, such as what audio formats it
can handle and how many speakers it has. Then it begins running some tests by
sending test messages to the server to try to estimate how much bandwidth is avail-
able. Once it has figured out what resolution the screen has and how much band-
width is available, the player consults the manifest to find the first, say, 10 seconds
of the movie that gives the best quality for the screen and available bandwidth.

But that’s not the end of the story. As the movie plays, the player continues to
run bandwidth tests. Every time it needs more content, that is, when the amount of
media in the buffer hits the low-water mark, it again consults the manifest and
orders the appropriate file depending where it is in the movie and which resolution
and frame rate it wants. If the bandwidth varies wildly during playback, the movie
shown may change from 8K at 100 frames/sec to HD at 25 frames/sec and back
several times a minute. In this way, the system adapts rapidly to changing network
conditions and allows the best viewing experience consistent with the available
resources. Companies such as Netflix have published information about how they
adapt the bitrate of a video stream based on the playback buffer occupancy (Huang
et al., 2014). An example is shown in Fig. 7-35.

In Fig. 7-35, as the bandwidth decreases, the player decides to ask for increas-
ingly low resolution versions. However, it could also have compromised in other
ways. For example, sending out 300 frames for a 10-second playout requires less

SEC. 7.4 STREAMING AUDIO AND VIDEO 693

User

Server

HD
Time

Se
le

ct
 m

ov
ie

O
K

C
as

ab
la

nc
a

G
et

 m
an

ife
st

H
er

e
is

 th
e

m
an

ife
st

M
ea

su
re

 b
an

dw
id

th

It
is

 1
00

 M
bp

s

G
iv

e
m

e
se

gm
en

t 0
 in

 8
K

H
er

e
is

 s
eg

m
en

t 0
 in

 8
K

M
ea

su
re

 b
an

dw
id

th

It
is

 4
0

M
bp

s
G

iv
e

m
e

se
gm

en
t 1

 in
 4

K

H
er

e
is

 s
eg

m
en

t 1
 in

 4
K

M
ea

su
re

 b
an

dw
id

th

It
is

 1
0

M
bp

s

G
iv

e
m

e
se

gm
en

t 2
 in

 H
D

H
er

e
is

 s
eg

m
en

t 2
 in

 H
D

Movie plays in 8K Movie plays in 4K

Figure 7-35. DASH being used to change format while watching a movie.

bandwidth than sending out 600 or 1200 frames for a 10-second playout, even with
good compression. In a real pinch, it could also have asked for a 10 frames/sec
version at 480 × 320 in black-and-white with monaural sound if that is on the man-
ifest. DASH allows the player to adapt to changing circumstances to give the user
the best possible experience for the current circumstances. The behavior of the
player and how it requests segments varies depending on the nature of the playback
service and the device. Services whose goal is to avoid rebuffering events might
requests a large number of segments before playing back video and to request seg-
ments in batches; other services whose goal is interactivity might fetch DASH seg-
ments at a more consistent, steady pace.

DASH is still evolving. For example, work is going on to reduce the latency
(Le Feuvre et al., 2015), improve the robustness (Wang and Ren, 2019), fairness
(Altamini, S., and Shirmohammadi, S, 2019), support virtual reality (Ribezzo et
al., 2018), and handle 4K videos well (Quinlan and Sreenan, 2018).

DASH is the most common method for streaming video today, although there
are some alternatives worth discussing. Apple’s HLS (HTTP Live Streaming)
also works in a browser using HTTP. It is the preferred method for viewing video
in Safari on iPhones, iPads, MacBooks, and all Apple devices. It is also widely
used by browsers such as Microsoft Edge, Firefox, and Chrome, on Windows,
Linux, and Android platforms. It is also supported by many game consoles, smart
TVs and other devices that can play multimedia content.

694 THE APPLICATION LAYER CHAP. 7

Like DASH, HLS requires the server to encode the movie in multiple resolu-
tions and frame rates, with each segment covering only a few seconds of video to
provide for rapid adaptation to changing conditions. HLS also has other features,
including fast forward, fast backward, subtitles in multiple languages, and more. It
is described in RFC 8216.

While the basic principles are the same, DASH and HLS differ in some ways.
DASH is codec agnostic, which means works with videos using any encoding
algorithm. HLS works only with algorithms that Apple supports, but since these
include H.264 and H.265, this difference is minor because almost all videos use
one of these. DASH allows third parties to easily insert ads into the video stream,
which HLS does not. DASH can handle arbitrary digital rights management
schemes, whereas HLS supports only Apple’s own system.

DASH is an open official standard, whereas HLS is a proprietary product. But
that cuts both ways. Because HLS has a powerful sponsor behind it, it is available
on many more platforms than DASH and the implementations are extremely stable.
On the other hand, YouTube and Netflix both use DASH. However, DASH is not
natively supported on iOS devices. Most likely the two protocols will continue to
coexist for years to come.

Video streaming has been a major force driving the Internet for decades. For a
retrospective, see Li et al. (2013).

An ongoing challenge with streaming video is estimating user QoE (Quality
of Experience) which is, informally, how happy a user is with the performance of
the video streaming application. Obviously, measuring QoE directly is challenging
(it requires asking users about their experience), but network operators are increas-
ingly aiming to determine when video streaming applications experience condi-
tions that may affect a user’s experience. Generally speaking, the parameters that
operators aim to estimate are the startup delay (how long a video takes to start
playing), the resolution of the video, and any instances of stalling (‘‘rebuffering’’).
It can be challenging to identify these events in an encrypted video stream, particu-
larly for an ISP that does not have access to the client software; machine learning
techniques are increasingly being used to infer application quality from encrypted
video traffic streams (Mangla et al., 2018; and Bronzino et al., 2020).

7.4.4 Real-Time Streaming

It is not only recorded videos that are tremendously popular on the Web. Real-
time streaming is very popular too. Once it became possible to stream audio and
video over the Internet, commercial radio and TV stations got the idea of broad-
casting their content over the Internet as well as over the air. Not so long after that,
college stations started putting their signals out over the Internet. Then college stu-
dents started their own Internet broadcasts.

Today, people and companies of all sizes stream live audio and video. The area
is a hotbed of innovation as the technologies and standards evolve. Live streaming

SEC. 7.4 STREAMING AUDIO AND VIDEO 695

is used for an online presence by major television stations. This is called IPTV (IP
TeleVision). It is also used to broadcast radio stations. This is called Internet
radio. Both IPTV and Internet radio reach audiences worldwide for events rang-
ing from fashion shows to World Cup soccer and test matches live from the New-
lands Cricket Ground. Live streaming over IP is used as a technology by cable
providers to build their own broadcast systems. And it is widely used by low-bud-
get operations from adult sites to zoos. With current technology, virtually anyone
can start live streaming quickly and with little expense.

One approach to live streaming is to record programs to disk. Viewers can
connect to the server’s archives, pull up any program, and download it for listen-
ing. A podcast is an episode retrieved in this manner.

Streaming live events adds new complications to the mix, at least sometimes.
For sports, news broadcasts, and politicians giving long boring speeches, the meth-
od of Fig. 7-34 still works. When a user logs onto the Web site covering the live
event, no video is shown for the first few seconds while the buffer fills. After that,
it is the same as watching a movie. The player pulls data out of the buffer, which is
continuously filled by the feed from the live event. The only real difference is that
when streaming a movie from a server, the server can potentially load 10 seconds
worth of movie in one second if the connection is fast enough. With a live event,
that is not possible.

Voice over IP

A good example of real-time streaming where buffering is not possible is using
the Internet to transmit telephone calls (possibly with video, as Skype, FaceTime,
and many other services do). Once upon a time, voice calls were carried over the
public switched telephone network, and network traffic was primarily voice traffic,
with a little bit of data traffic here and there. Then came the Internet, and the Web.
The data traffic grew and grew, until by 1999 there was as much data traffic as
voice traffic (since voice is now digitized, both can be measured in bits). By 2002,
the volume of data traffic was an order of magnitude more than the volume of
voice traffic and still growing exponentially, with voice traffic staying almost flat.
Now the data traffic is orders of magnitude more than the voice traffic.

The consequence of this growth has been to flip the telephone network on its
head. Voice traffic is now carried using Internet technologies, and represents only a
tiny fraction of the network bandwidth. This disruptive technology is known as
voice over IP, and also as Internet telephony. (As an aside, ‘‘Telephony’’ is pro-
nounced ‘‘te-LEF-ony.’’) It is also called that when the calls include video or are
multiparty, that is, videoconferencing.

The biggest difference streaming a movie over the Internet and Internet tele-
phony is the need for low latency. The telephone network allows a one-way
latency of up to 150 msec for acceptable usage, after which delay begins to be per-
ceived as annoying by the participants. (International calls may have a latency of
up to 400 msec, by which point they are far from a positive user experience.)

696 THE APPLICATION LAYER CHAP. 7

This low latency is difficult to achieve. Certainly, buffering 5–10 seconds of
media is not going to work (as it would for broadcasting a live sports event).
Instead, video and voice-over-IP systems must be engineered with a variety of
techniques to minimize latency. This goal means starting with UDP as the clear
choice rather than TCP, because TCP retransmissions introduce at least one round-
trip worth of delay.

Some forms of latency cannot be reduced, however, even with UDP. For
example, the distance between Seattle and Amsterdam is close to 8,000 km. The
speed-of-light propagation delay for this distance in optical fiber is 40 msec. Good
luck beating that. In practice, the propagation delay through the network will be
longer because it will cover a larger distance (the bits do not follow a great circle
route) and have transmission delays as each IP router stores and forwards a packet.
This fixed delay eats into the acceptable delay budget.

Another source of latency is related to packet size. Normally, large packets are
the best way to use network bandwidth because they are more efficient. However,
at an audio sampling rate of 64 kbps, a 1-KB packet would take 125 msec to fill
(and even longer if the samples are compressed). This delay would consume most
of the overall delay budget. In addition, if the 1-KB packet is sent over a broadband
access link that runs at just 1 Mbps, it will take 8 msec to transmit. Then add
another 8 msec for the packet to go over the broadband link at the other end. Clear-
ly, large packets will not work.

Instead, voice-over-IP systems use short packets to reduce latency at the cost
of bandwidth efficiency. They batch audio samples in smaller units, commonly 20
msec. At 64 kbps, this is 160 bytes of data, less with compression. However, by
definition the delay from this packetization will be 20 msec. The transmission
delay will be smaller as well because the packet is shorter. In our example, it would
reduce to around 1 msec. By using short packets, the minimum one-way delay for
a Seattle-to-Amsterdam packet has been reduced from an unacceptable 181 msec
(40 + 125 + 16) to an acceptable 62 msec (40 + 20 + 2).

We have not even talked about the software overhead, but it, too, will eat up
some of the delay budget. This is especially true for video, since compression is
usually needed to fit video into the available bandwidth. Unlike streaming from a
stored file, there is no time to have a computationally intensive encoder for high
levels of compression. The encoder and the decoder must both run quickly.

Buffering is still needed to play out the media samples on time (to avoid unin-
telligible audio or jerky video), but the amount of buffering must be kept very
small since the time remaining in our delay budget is measured in milliseconds.
When a packet takes too long to arrive, the player will skip over the missing sam-
ples, perhaps playing ambient noise or repeating a frame to mask the loss to the
user. There is a trade-off between the size of the buffer used to handle jitter and
the amount of media that is lost. A smaller buffer reduces latency but results in
more loss due to jitter. Eventually, as the size of the buffer shrinks, the loss will
become noticeable to the user.

SEC. 7.4 STREAMING AUDIO AND VIDEO 697

Observant readers may have noticed that we have said nothing about the net-
work layer protocols so far in this section. The network can reduce latency, or at
least jitter, by using quality of service mechanisms. The reason that this issue has
not come up before is that streaming is able to operate with substantial latency,
even in the live streaming case. If latency is not a major concern, a buffer at the
end host is sufficient to handle the problem of jitter. However, for real-time confer-
encing, it is usually important to have the network reduce delay and jitter to help
meet the delay budget. The only time that it is not important is when there is so
much network bandwidth that everyone gets good service.

In Chap. 5, we described two quality of service mechanisms that help with this
goal. One mechanism is DS (Differentiated Services), in which packets are mark-
ed as belonging to different classes that receive different handling within the net-
work. The appropriate marking for voice-over-IP packets is low delay. In practice,
systems set the DS codepoint to the well-known value for the Expedited Forward-
ing class with Low Delay type of service. This is especially useful over broadband
access links, as these links tend to be congested when Web traffic or other traffic
competes for use of the link. Given a stable network path, delay and jitter are
increased by congestion. Every 1-KB packet takes 8 msec to send over a 1-Mbps
link, and a voice-over-IP packet will incur these delays if it is sitting in a queue
behind Web traffic. However, with a low delay marking the voice-over-IP packets
will jump to the head of the queue, bypassing the Web packets and lowering their
delay.

The second mechanism that can reduce delay is to make sure that there is suf-
ficient bandwidth. If the available bandwidth varies or the transmission rate fluctu-
ates (as with compressed video) and there is sometimes not sufficient bandwidth,
queues will build up and add to the delay. This will occur even with DS. To ensure
sufficient bandwidth, a reservation can be made with the network. This capability
is provided by integrated services.

Unfortunately, it is not widely deployed. Instead, networks are engineered for
an expected traffic level or network customers are provided with service-level
agreements for a given traffic level. Applications must operate below this level to
avoid causing congestion and introducing unnecessary delays. For casual video-
conferencing at home, the user may choose a video quality as a proxy for band-
width needs, or the software may test the network path and select an appropriate
quality automatically.

Any of the above factors can cause the latency to become unacceptable, so
real-time conferencing requires that attention be paid to all of them. For an over-
view of voice over IP and analysis of these factors, see Sun et al. (2015).

Now that we have discussed the problem of latency in the media streaming
path, we will move on to the other main problem that conferencing systems must
address. This problem is how to set up and tear down calls. We will look at two
protocols that are widely used for this purpose, H.323 and SIP. Skype and Face-
Time are other important systems, but their inner workings are proprietary.

698 THE APPLICATION LAYER CHAP. 7

H.323

One thing that was clear to everyone before voice and video calls were made
over the Internet was that if each vendor designed its own protocol stack, the sys-
tem would never work. To avoid this problem, a number of interested parties got
together under ITU auspices to work out standards. In 1996, ITU issued recom-
mendation H.323, entitled ‘‘Visual Telephone Systems and Equipment for Local
Area Networks Which Provide a Non-Guaranteed Quality of Service.’’ Only the
telephone industry would come up with such a name. After some criticism, It was
changed to ‘‘Packet-based Multimedia Communications Systems’’ in the 1998
revision. H.323 was the basis for the first widespread Internet conferencing sys-
tems. It is still widely used.

H.323 is more of an architectural overview of Internet telephony than a specif-
ic protocol. It references a large number of specific protocols for speech coding,
call setup, signaling, data transport, and other areas rather than specifying these
things itself. The general model is depicted in Fig. 7-36. At the center is a gate-
way that connects the Internet to the telephone network. It speaks the H.323 proto-
cols on the Internet side and the PSTN protocols on the telephone side. The com-
municating devices are called terminals. A LAN may have a gatekeeper, which
controls the end points under its jurisdiction, called a zone.

Internet

Gatekeeper
Telephone

network

Zone Terminal Gateway

Figure 7-36. The H.323 architectural model for Internet telephony.

A telephone network needs a number of protocols. To start with, there is a
protocol for encoding and decoding audio and video. Standard telephony repres-
entations of a single voice channel as 64 kbps of digital audio (8000 samples of 8
bits per second) are defined in ITU recommendation G.711. All H.323 systems
must support G.711. Other encodings that compress speech are permitted, but not
required. They use different compression algorithms and make different trade-offs
between quality and bandwidth. For video, the MPEG forms of video compression
that we described above are supported, including H.264.

Since multiple compression algorithms are permitted, a protocol is needed to
allow the terminals to negotiate which one they are going to use. This protocol is
called H.245. It also negotiates other aspects of the connection such as the bit rate.

SEC. 7.4 STREAMING AUDIO AND VIDEO 699

RTCP is need for the control of the RTP channels. Also required is a protocol for
establishing and releasing connections, providing dial tones, making ringing
sounds, and the rest of the standard telephony. ITU Q.931 is used here. The termi-
nals need a protocol for talking to the gatekeeper (if present) as well. For this pur-
pose, H.225 is used. The PC-to-gatekeeper channel it manages is called the RAS
(Registration/Admission/Status) channel. This channel allows terminals to join
and leave the zone, request and return bandwidth, and provide status updates,
among other things. Finally, a protocol is needed for the actual data transmission.
RTP over UDP is used for this purpose. It is managed by RTCP, as usual. The
positioning of all these protocols is shown in Fig. 7-37.

Link layer protocol

IP

Audio

G.7xx

RTP

Physical layer protocol

TCPUDP

Video

H.26x
RTCP H.225

(RAS)
Q.931

(Signaling)
H.245
(Call

Control)

Control

Figure 7-37. The H.323 protocol stack.

To see how these protocols fit together, consider the case of a PC terminal on a
LAN (with a gatekeeper) calling a remote telephone. The PC first has to discover
the gatekeeper, so it broadcasts a UDP gatekeeper discovery packet to port 1718.
When the gatekeeper responds, the PC learns the gatekeeper’s IP address. Now the
PC registers with the gatekeeper by sending it a RAS message in a UDP packet.
After it has been accepted, the PC sends the gatekeeper a RAS admission message
requesting bandwidth. Only after bandwidth has been granted may call setup
begin. The idea of requesting bandwidth in advance is to allow the gatekeeper to
limit the number of calls. It can then avoid oversubscribing the outgoing line in
order to help provide the necessary quality of service.

As an aside, the telephone system does the same thing. When you pick up the
receiver, a signal is sent to the local end office. If the office has enough spare
capacity for another call, it generates a dial tone. If not, you hear nothing. Now-
adays, the system is so overdimensioned that the dial tone is nearly always instan-
taneous, but in the early days of telephony, it often took a few seconds. So if your
grandchildren ever ask you ‘‘Why are there dial tones?’’ now you know. Except by
then, probably telephones will no longer exist.

700 THE APPLICATION LAYER CHAP. 7

The PC now establishes a TCP connection to the gatekeeper to begin call set-
up. Call setup uses existing telephone network protocols, which are connection
oriented, so TCP is needed. In contrast, the telephone system has nothing like
RAS to allow telephones to announce their presence, so the H.323 designers were
free to use either UDP or TCP for RAS, and they chose the lower-overhead UDP.

Now that it has bandwidth allocated, the PC can send a Q.931 SETUP message
over the TCP connection. This message specifies the number of the telephone
being called (or the IP address and port, if a computer is being called). The gate-
keeper responds with a Q.931 CALL PROCEEDING message to acknowledge cor-
rect receipt of the request. The gatekeeper then forwards the SETUP message to
the gateway.

The gateway, which is half computer, half telephone switch, then makes an
ordinary telephone call to the desired (ordinary) telephone. The end office to
which the telephone is attached rings the called telephone and also sends back a
Q.931 ALERT message to tell the calling PC that ringing has begun. When the per-
son at the other end picks up the telephone, the end office sends back a Q.931
CONNECT message to signal the PC that it has a connection.

Once the connection has been established, the gatekeeper is no longer in the
loop, although the gateway is, of course. Subsequent packets bypass the gate-
keeper and go directly to the gateway’s IP address. At this point, we just have a
bare tube running between the two parties. This is just a physical layer connection
for moving bits, no more. Neither side knows anything about the other one.

The H.245 protocol is now used to negotiate the parameters of the call. It uses
the H.245 control channel, which is always open. Each side starts out by announc-
ing its capabilities, for example, whether it can handle video (H.323 can handle
video) or conference calls, which codecs it supports, etc. Once each side knows
what the other one can handle, two unidirectional data channels are set up and a
codec and other parameters are assigned to each one. Since each side may have
different equipment, it is entirely possible that the codecs on the forward and
reverse channels are different. After all negotiations are complete, data flow can
begin using RTP. It is managed using RTCP, which plays a role in congestion con-
trol. If video is present, RTCP handles the audio/video synchronization. The vari-
ous channels are shown in Fig. 7-38. When either party hangs up, the Q.931 call
signaling channel is used to tear down the connection after the call has been com-
pleted in order to free up resources no longer needed.

When the call is terminated, the calling PC contacts the gatekeeper again with
a RAS message to release the bandwidth it has been assigned. Alternatively, it can
make another call.

We have not said anything about quality of service for H.323, even though we
have said it is an important part of making real-time conferencing a success. The
reason is that QoS falls outside the scope of H.323. If the underlying network is
capable of producing a stable, jitter-free connection from the calling PC to the
gateway, the QoS on the call will be good; otherwise, it will not be. However, any

SEC. 7.4 STREAMING AUDIO AND VIDEO 701

Data control channel (RTCP)

Reverse data channel (RTP)

Forward data channel (RTP)

Call control channel (H.245)

Call signaling channel (Q.931)

Caller Callee

Figure 7-38. Logical channels between the caller and callee during a call.

portion of the call on the telephone side will be jitter-free, because that is how the
telephone network is designed.

SIP—The Session Initiation Protocol

H.323 was designed by ITU. Many people in the Internet community saw it as
a typical telco product: large, complex, and inflexible. Consequently, IETF set up
a committee to design a simpler and more modular way to do voice over IP. The
major result to date is SIP (Session Initiation Protocol). It is described in RFC
3261, with many updates since then. This protocol describes how to set up Internet
telephone calls, video conferences, and other multimedia connections. Unlike
H.323, which is a complete protocol suite, SIP is a single module, but it has been
designed to interwork well with existing Internet applications. For example, it
defines telephone numbers as URLs, so that Web pages can contain them, allowing
a click on a link to initiate a telephone call (the same way the mailto scheme allows
a click on a link to bring up a program to send an email message).

SIP can establish two-party sessions (ordinary telephone calls), multiparty ses-
sions (where everyone can hear and speak), and multicast sessions (one sender,
many receivers). The sessions may contain audio, video, or data, the latter being
useful for multiplayer real-time games, for example. SIP just handles setup, man-
agement, and termination of sessions. Other protocols, such as RTP/RTCP, are
also used for data transport. SIP is an application-layer protocol and can run over
UDP or TCP, as required.

SIP supports a variety of services, including locating the callee (who may not
be at his home machine) and determining the callee’s capabilities, as well as han-
dling the mechanics of call setup and termination. In the simplest case, SIP sets up
a session from the caller’s computer to the callee’s computer, so we will examine
that case first.

Telephone numbers in SIP are represented as URLs using the sip scheme, for
example, sip:ilse@cs.university.edu for a user named Ilse at the host specified by

702 THE APPLICATION LAYER CHAP. 7

the DNS name cs.university.edu. SIP URLs may also contain IPv4 addresses, IPv6
addresses, or actual telephone numbers.

The SIP protocol is a text-based protocol modeled on HTTP. One party sends
a message in ASCII text consisting of a method name on the first line, followed by
additional lines containing headers for passing parameters. Many of the headers
are taken from MIME to allow SIP to interwork with existing Internet applications.
The six methods defined by the core specification are listed in Fig. 7-39.

Method Description
INVITE Request initiation of a session
ACK Confirm that a session has been initiated
BYE Request termination of a session
OPTIONS Query a host about its capabilities
CANCEL Cancel a pending request
REGISTER Inform a redirection server about the user’s current location

Figure 7-39. SIP methods.

To establish a session, the caller either creates a TCP connection with the
callee and sends an INVITE message over it or sends the INVITE message in a
UDP packet. In both cases, the headers on the second and subsequent lines
describe the structure of the message body, which contains the caller’s capabilities,
media types, and formats. If the callee accepts the call, it responds with an HTTP-
type reply code (a three-digit number using the groups of Fig. 7-26, 200 for accep-
tance). Following the reply-code line, the callee also may supply information
about its capabilities, media types, and formats.

Connection is done using a three-way handshake, so the caller responds with
an ACK message to finish the protocol and confirm receipt of the 200 message.

Either party may request termination of a session by sending a message with
the BYE method. When the other side acknowledges it, the session is terminated.

The OPTIONS method is used to query a machine about its own capabilities.
It is typically used before a session is initiated to find out if that machine is even
capable of voice over IP or whatever type of session is being contemplated.

The REGISTER method relates to SIP’s ability to track down and connect to a
user who is away from home. This message is sent to a SIP location server that
keeps track of who is where. That server can later be queried to find the user’s cur-
rent location. The operation of redirection is illustrated in Fig. 7-40. Here, the cal-
ler sends the INVITE message to a proxy server to hide the possible redirection.
The proxy then looks up where the user is and sends the INVITE message there. It
then acts as a relay for the subsequent messages in the three-way handshake. The
LOOKUP and REPLY messages are not part of SIP; any convenient protocol can
be used, depending on what kind of location server is used.

SEC. 7.4 STREAMING AUDIO AND VIDEO 703

6 OK 5 OK
1 INVITE

2
LO

O
KU

P

3
R

EP
LY

4 INVITE

7 ACK 8 ACK

Caller Callee

Location server

Proxy

9 Data

Figure 7-40. Use of a proxy server and redirection with SIP.

SIP has a variety of other features that we will not describe here, including call
waiting, call screening, encryption, and authentication. It also has the ability to
place calls from a computer to an ordinary telephone, if a suitable gateway
between the Internet and telephone system is available.

Comparison of H.323 and SIP

Both H.323 and SIP allow two-party and multiparty calls using both computers
and telephones as end points. Both support parameter negotiation, encryption, and
the RTP/RTCP protocols. A summary of their similarities and differences is given
in Fig. 7-41.

Although the feature sets are similar, the two protocols differ widely in philos-
ophy. H.323 is a typical, heavyweight, telephone-industry standard, specifying the
complete protocol stack and defining precisely what is allowed and what is forbid-
den. This approach leads to very well-defined protocols in each layer, easing the
task of interoperability. The price paid is a large, complex, and rigid standard that
is difficult to adapt to future applications.

In contrast, SIP is a typical Internet protocol that works by exchanging short
lines of ASCII text. It is a lightweight module that interworks well with other
Internet protocols but less well with existing telephone system signaling protocols.
Because the IETF model of voice over IP is highly modular, it is flexible and can
be adapted to new applications easily. The downside is that is has suffered from
interoperability problems as people try to interpret what the standard means.

7.5 CONTENT DELIVERY

The Internet used to be all about point-to-point communication, much like the
telephone network. Early on, academics would communicate with remote com-
puters, logging in over the network to perform tasks. People have used email to

704 THE APPLICATION LAYER CHAP. 7

Item H.323 SIP
Designed by ITU IETF
Compatibility with PSTN Yes Largely
Compatibility with Internet Yes, over time Yes
Architecture Monolithic Modular
Completeness Full protocol stack SIP just handles setup
Parameter negotiation Yes Yes
Call signaling Q.931 over TCP SIP over TCP or UDP
Message format Binary ASCII
Media transport RTP/RTCP RTP/RTCP
Multiparty calls Yes Yes
Multimedia conferences Yes No
Addressing URL or phone number URL
Call termination Explicit or TCP release Explicit or timeout
Instant messaging No Yes
Encryption Yes Yes
Size of standards 1400 pages 250 pages
Implementation Large and complex Moderate, but issues
Status Widespread, esp. video Alternative, esp. voice

Figure 7-41. Comparison of H.323 and SIP.

communicate with each other for a long time, and now use video and voice over IP
as well. Since the Web grew up, however, the Internet has become more about
content than communication. Many people use the Web to find information, and
there is a tremendous amount of downloading of music, videos, and other material.
The switch to content has been so pronounced that the majority of Internet band-
width is now used to deliver stored videos.

Because the task of distributing content is different from that of point-to-point
communication, it places different requirements on the network. For example, if
Sally wants to talk to John, she may make a voice-over-IP call to his mobile. The
communication must be with a particular computer; it will do no good to call
Paul’s computer. But if John wants to watch his team’s latest cricket match, he is
happy to stream video from whichever computer can provide the service. He does
not mind whether the computer is Sally’s or Paul’s, or, more likely, an unknown
server in the Internet. That is, location does not matter for content, except as it
affects performance (and legality).

The other difference is that some Web sites that provide content have become
tremendously popular. YouTube is a prime example. It allows users to share videos
of their own creation on every conceivable topic. Many people want to do this.
The rest of us want to watch. Internet traffic today is upwards of 70% streaming

SEC. 7.5 CONTENT DELIVERY 705

video, with the vast majority of that streaming video traffic being delivered by a
small number of content providers.

No single server is powerful or reliable enough to handle such a startling level
of demand. Instead, YouTube, Netflix, and other large content providers build their
own content distribution networks. These networks use data centers spread around
the world to serve content to an extremely large number of clients with good per-
formance and availability.

The techniques that are used for content distribution have been developed over
time. Early in the growth of the Web, its popularity was almost its undoing. More
demands for content led to servers and networks that were frequently overloaded.
Many people began to call the WWW the World Wide Wait. To reduce the endless
delays, researchers developed different architectures to use the bandwidth for dis-
tributing content.

A common architecture for distributing content architecture is a CDN (Con-
tent Delivery Network), sometimes also called a Content Distribution Network.
A CDN is effectively a very large distributed set of caches, which typically serves
content directly to clients. CDNs were once exclusively the purview of only the
large content providers; a content provider with popular content might pay a CDN
such ask Akamai to distribute their content, effectively prepopulating its caches
with the content that needed to be distributed. Today, many large content providers,
including Netflix, Google, and even many ISPs that host their own content (e.g.,
Comcast) now operate their own CDNs.

Another way to distribute content is via a P2P (Peer-to-Peer) network, where-
by computers serve content to each other, typically without separately provisioned
servers or any central point of control. This idea has captured people’s imagination
because, by acting together, many little players can pack an enormous punch.

7.5.1 Content and Internet Traffic

To design and engineer networks that work well, we need an understanding of
the traffic that they must carry. With the shift to content, for example, servers have
migrated from company offices to Internet data centers that provide large numbers
of machines with excellent network connectivity. To run even a small server now-
adays, it is easier and cheaper to rent a virtual server hosted in an Internet data cen-
ter than to operate a real machine in a home or office with broadband connectivity
to the Internet.

Internet traffic is highly skewed. Many properties with which we are familiar
are clustered around an average. For instance, most adults are close to the average
height. There are some tall people and some short people, but few are very tall or
very short. Similarly, most novels are a few hundred pages; very few are 20 pages
or 10,000 pages. For these kinds of properties, it is possible to design for a range
that is not very large but nonetheless captures the majority of the population.

706 THE APPLICATION LAYER CHAP. 7

Internet traffic is not like this. For a long time, it has been known that there are
a small number of Web sites with massive traffic (e.g., Google, YouTube, and
Facebook) and a vast number of Web sites with much smaller traffic.

Experience with video rental stores, public libraries, and other such organiza-
tions shows that not all items are equally popular. Experimentally, when N movies
are available, the fraction of all requests for the kth most popular one is approxi-
mately C/k. Here, C is computed to normalize the sum to 1, namely,

C = 1/(1 + 1/2 + 1/3 + 1/4 + 1/5 + . . . + 1/N)

Thus, the most popular movie is seven times as popular as the number seven
movie. This result is known as Zipf ’s law (Zipf, 1949). It is named after George
Zipf, a professor of linguistics at Harvard University who noted that the frequency
of a word’s usage in a large body of text is inversely proportional to its rank. For
example, the 40th most common word is used twice as much as the 80th most
common word and three times as much as the 120th most common word.

A Zipf distribution is shown in Fig. 7-42(a). It captures the notion that there
are a small number of popular items and a great many unpopular items. To recog-
nize distributions of this form, it is convenient to plot the data on a log scale on
both axes, as shown in Fig. 7-42(b). The result should be a straight line.

(a)

1

R
el

at
iv

e
Fr

eq
ue

nc
y

Rank

0
1 5 10 15 20

R
el

at
iv

e
Fr

eq
ue

nc
y

Rank
1

10–2

10–1

101 102

100

(b)

Figure 7-42. Zipf distribution (a) On a linear scale. (b) On a log-log scale.

When people first looked at the popularity of Web pages, it also turned out to
roughly follow Zipf ’s law (Breslau et al., 1999). A Zipf distribution is one exam-
ple in a family of distributions known as power laws. Power laws are evident in
many human phenomena, such as the distribution of city populations and of
wealth. They have the same propensity to describe a few large players and a great
many smaller players, and they too appear as a straight line on a log-log plot. It
was soon discovered that the topology of the Internet could be roughly described
with power laws (Siganos et al., 2003). Next, researchers began plotting every

SEC. 7.5 CONTENT DELIVERY 707

imaginable property of the Internet on a log scale, observing a straight line, and
shouting: ‘‘Power law!’’

However, what matters more than a straight line on a log-log plot is what these
distributions mean for the design and use of networks. Given the many forms of
content that have Zipf or power law distributions, it seems fundamental that Web
sites on the Internet are Zipf-like in popularity. This in turn means that an average
site is not a useful representation. Sites are better described as either popular or
unpopular. Both kinds of sites matter. The popular sites obviously matter, since a
few popular sites may be responsible for most of the traffic on the Internet. Perhaps
surprisingly, the unpopular sites can matter too. This is because the total amount of
traffic directed to the unpopular sites can add up to a large fraction of the overall
traffic. The reason is that there are so many unpopular sites. The notion that, col-
lectively, many unpopular choices can matter has been popularized by books such
as The Long Tail (Anderson, 2008a).

To work effectively in this skewed world, we must be able to build both kinds
of Web sites. Unpopular sites are easy to handle. By using DNS, many different
sites may actually point to the same computer in the Internet that runs all of the
sites. On the other hand, popular sites are difficult to handle. There is no single
computer even remotely powerful enough, and using a single computer would
make the site inaccessible for millions of users when (not if) it fails. To handle
these sites, we must build content distribution systems. We will start on that quest
next.

7.5.2 Server Farms and Web Proxies

The Web designs that we have seen so far have a single server machine talking
to multiple client machines. To build large Web sites that perform well, we can
speed up processing on either the server side or the client side. On the server side,
more powerful Web servers can be built with a server farm, in which a cluster of
computers acts as a single server. On the client side, better performance can be
achieved with better caching techniques. In particular, proxy caches provide a
large shared cache for a group of clients.

We will describe each of these techniques in turn. However, note that neither
technique is sufficient to build the largest Web sites. Those popular sites require
the content distribution methods that we describe in the following sections, which
combine computers at many different locations.

Server Farms

No matter how much computing capacity and bandwidth one machine has, it
can only serve so many Web requests before the load is too great. The solution in
this case is to use more than one computer to make a Web server. This leads to the
server farm model of Fig. 7-43.

708 THE APPLICATION LAYER CHAP. 7

Front end

Backend
database

Internet
access

Clients
ServersServer farm

Balances load
across servers

Figure 7-43. A server farm.

The difficulty with this seemingly simple model is that the set of computers
that make up the server farm must look like a single logical Web site to clients. If
they do not, we have just set up different Web sites that run in parallel.

There are several possible solutions to make the set of servers appear to be one
Web site. All of the solutions assume that any of the servers can handle a request
from any client. To do this, each server must have a copy of the Web site. The ser-
vers are shown as connected to a common back-end database by a dashed line for
this purpose.

Perhaps the most common solution is to use DNS to spread the requests across
the servers in the server farm. When a DNS request is made for the DNS domain in
the corresponding Web URL, the DNS server returns a DNS response that redirects
the client to a CDN service (typically by a NS-record referral to a name server that
is authoritative for that domain), which in turn aims to return an IP address to the
client that corresponds to a server replica that is close to the client. If multiple IP
addresses are returned in the response, the client typically attempts to connect to
the first IP address in the provided set of responses. The effect is that different cli-
ents contact different servers to access the same Web site, just as intended, hope-
fully one that is close to the client. Note that this process, which is sometimes
referred to as client mapping, relies on the authoritative name server to know the
topological or geographic location for the client. We will discuss DNS-based client
mapping in more detail when we describe CDNs.

Another popular approach for load balancing today is to use IP anycast.
Briefly, IP anycast is the process by which a single IP address can be advertised
from multiple different network attachment points (e.g., a network in Europe and a
network in the United States). If all goes well, a client that seeks to contact a par-
ticular IP address would end up having its traffic routed to the closest network end-
point. Of course, as we know, interdomain routing on the Internet doesn’t always
pick the shortest (or even the best) path, and so this method is far more coarse-
grained and difficult to control than DNS-based client mapping. Nevertheless,

SEC. 7.5 CONTENT DELIVERY 709

some large CDNs such as Cloudflare use IP anycast in conjunction with DNS-
based client mapping.

Other less common solutions rely on a front end that distributes incoming
requests over the pool of servers in the server farm. This happens even when the
client contacts the server farm using a single destination IP address. The front end
is usually a link-layer switch or an IP router, that is, a device that handles frames or
packets. All of the solutions are based on it (or the servers) peeking at the network,
transport, or application layer headers and using them in nonstandard ways. A
Web request and response are carried as a TCP connection. To work correctly, the
front end must distribute all of the packets for a request to the same server.

A simple design is for the front end to broadcast all of the incoming requests to
all of the servers. Each server answers only a fraction of the requests by prior
agreement. For example, 16 servers might look at the source IP address and reply
to the request only if the last 4 bits of the source IP address match their configured
selectors. Other packets are discarded. While this is wasteful of incoming band-
width, often the responses are much longer than the request, so it is not nearly as
inefficient as it sounds.

In a more general design, the front end may inspect the IP, TCP, and HTTP
headers of packets and arbitrarily map them to a server. The mapping is called a
load balancing policy as the goal is to balance the workload across the servers.
The policy may be simple or complex. A simple policy might be to use the servers
one after the other in turn, or round-robin. With this approach, the front end must
remember the mapping for each request so that subsequent packets that are part of
the same request will be sent to the same server. Also, to make the site more reli-
able than a single server, the front end should notice when servers have failed and
stop sending them requests.

Web Proxies

Caching improves performance by shortening the response time and reducing
the network load. If the browser can determine that a cached page is fresh by itself,
the page can be fetched from the cache immediately, with no network traffic at all.
However, even if the browser must ask the server for confirmation that the page is
still fresh, the response time is shortened and the network load is reduced, especial-
ly for large pages, since only a small message needs to be sent.

However, the best the browser can do is to cache all of the Web pages that the
user has previously visited. From our discussion of popularity, you may recall that
as well as a few popular pages that many people visit repeatedly, there are many,
many unpopular pages. In practice, this limits the effectiveness of browser caching
because there are a large number of pages that are visited just once by a given user.
These pages always have to be fetched from the server.

One strategy to make caches more effective is to share the cache among multi-
ple users. That way, a page already fetched for one user can be returned to another

710 THE APPLICATION LAYER CHAP. 7

user when that user requests the same page again. Without browser caching, both
users would need to fetch the page from the server. Of course, this sharing cannot
be done for encrypted traffic, pages that require authentication, and uncacheable
pages (e.g., current stock prices) that are returned by programs. Dynamic pages
created by programs, especially, are a growing case for which caching is not effec-
tive. Nonetheless, there are plenty of Web pages that are visible to many users and
look the same no matter which user makes the request (e.g., images).

A Web proxy is used to share a cache among users. A proxy is an agent that
acts on behalf of someone else, such as the user. There are many kinds of proxies.
For instance, an ARP proxy replies to ARP requests on behalf of a user who is
elsewhere (and cannot reply for himself). A Web proxy fetches Web requests on
behalf of its users. It normally provides caching of the Web responses, and since it
is shared across users it has a substantially larger cache than a browser.

When a proxy is used, the typical setup is for an organization to operate one
Web proxy for all of its users. The organization might be a company or an ISP.
Both stand to benefit by speeding up Web requests for its users and reducing its
bandwidth needs. While flat pricing, independent of usage, is common for home
users, most companies and ISPs are charged according to the bandwidth that they
use.

This setup is shown in Fig. 7-44. To use the proxy, each browser is configured
to make page requests to the proxy instead of to the page’s real server. If the proxy
has the page, it returns the page immediately. If not, it fetches the page from the
server, adds it to the cache for future use, and returns it to the client that requested
it.

Clients

Servers

Browser cache

Organization

Proxy cache

Internet

Figure 7-44. A proxy cache between Web browsers and Web servers.

As well as sending Web requests to the proxy instead of the real server, clients
perform their own caching using its browser cache. The proxy is only consulted
after the a browser has tried to satisfy the request from its own cache. That is, the
proxy provides a second level of caching.

Further proxies may be added to provide additional levels of caching. Each
proxy (or browser) makes requests via its upstream proxy. Each upstream proxy

SEC. 7.5 CONTENT DELIVERY 711

caches for the downstream proxies (or browsers). Thus, it is possible for browsers
in a company to use a company proxy, which uses an ISP proxy, which contacts
Web servers directly. However, the single level of proxy caching we have shown in
Fig. 7-44 is often sufficient to gain most of the potential benefits, in practice. The
problem again is the long tail of popularity. Studies of Web traffic have shown that
shared caching is especially beneficial until the number of users reaches about the
size of a smallish company (say, 100 people). As the number of people grows larg-
er, the benefits of sharing a cache become marginal because of the unpopular
requests that cannot be cached due to lack of storage space.

Web proxies provide additional benefits that are often a factor in the decision
to deploy them. One benefit is to filter content. The administrator may configure
the proxy to blacklist sites or otherwise filter the requests that it makes. For exam-
ple, many administrators frown on employees watching YouTube videos (or worse
yet, pornography) on company time and set their filters accordingly. Another ben-
efit of having proxies is privacy or anonymity, when the proxy shields the identity
of the user from the server.

7.5.3 Content Delivery Networks

Server farms and Web proxies help to build large sites and to improve Web
performance, but they are not sufficient for truly popular Web sites that must serve
content on a global scale. For these sites, a different approach is needed.

CDNs (Content Delivery Networks) turn the idea of traditional Web caching
on its head. Instead, of having clients look for a copy of the requested page in a
nearby cache, provider places a copy of the page in a set of nodes at different loca-
tions and directs the client to use a nearby node as the server.

The techniques for using DNS for content distribution were pioneered by Aka-
mai starting in 1998, when the Web was groaning under the load of its early
growth. Akamai was the first major CDN and soon became the industry leader.
Probably even more clever than the idea of using DNS to connect clients to nearby
nodes was the model and incentive structure of its business. Companies pay Aka-
mai to deliver their content to clients, so that they have responsive Web sites that
customers like to use. The CDN nodes must be placed at network locations with
good connectivity, which initially meant inside ISP networks. In practice a CDN
node consists of a standard 19-inch equipment rack containing a computer and a
lot of disks, with an optical fiber coming out of it to connect to the ISP’s internal
LAN.

For the ISPs, there is a benefit to having a CDN node in their networks, namely
that the CDN node cuts down the amount of upstream network bandwidth that they
need (and must pay for). In addition, the CDN node reduces latency to the content
the ISP’s customers, Thus, the content provider, the ISP, and the customers all ben-
efit and the CDN makes money. Since 1998, many companies, including Cloud-
flare, Limelight, Dyn, and others, have gotten into the business, so it is now a

712 THE APPLICATION LAYER CHAP. 7

competitive industry with multiple providers. As mentioned, many large content
providers such as YouTube, Facebook, and Netflix operate their own CDNs.

The largest CDNs have hundreds of thousands of servers deployed in countries
all over the world. This large capacity can also help Web sites defend against
DDoS attacks. If an attacker manages to send hundreds or thousands of requests
per second to a site that uses a CDN, there is a good chance that the CDN will be
able to reply to them all. In this way, the attacked site will be able to survive the
flood of requests. That is, the CDN can quickly scale up a site’s serving capacity.
Some CDNs even advertise their ability to handle large-scale DDoS attacks as a
selling point to attract content providers.

The CDN nodes pictured in our example are normally clusters of machines.
DNS redirection is done with two levels: one to map clients to the approximate
network location, and another to spread the load over nodes in that location. Both
reliability and performance are concerns. To be able to shift a client from one
machine in a cluster to another, DNS replies at the second level are given with
short TTLs so that the client will repeat the resolution after a short while. Finally,
while we have concentrated on distributing static objects like images and videos,
CDNs can also support dynamic page creation, streaming media, and more. CDNs
are also commonly used to distribute video.

Populating CDN Cache Nodes

An example of the path that data follows when it is distributed by a CDN is
shown in Fig. 7-45. It is a tree. The origin server in the CDN distributes a copy of
the content to other nodes in the CDN, in Sydney, Boston, and Amsterdam, in this
example. This is shown with dashed lines. Clients then fetch pages from the
‘‘nearest’’ node in the CDN. This is shown with solid lines. In this way, the clients
in Sydney both fetch the page copy that is stored in Sydney; they do not both fetch
the page from the origin server, which may be in Europe.

Using a tree structure has three advantages. First, the content distribution can
be scaled up to as many clients as needed by using more nodes in the CDN, and
more levels in the tree when the distribution among CDN nodes becomes the bot-
tleneck. No matter how many clients there are, the tree structure is efficient. The
origin server is not overloaded because it talks to the many clients via the tree of
CDN nodes; it does not have to answer each request for a page by itself. Second,
each client gets good performance by fetching pages from a nearby server instead
of a distant server. This is because the round-trip time for setting up a connection is
shorter, TCP slow-start ramps up more quickly because of the shorter round-trip
time, and the shorter network path is less likely to pass through regions of conges-
tion in the Internet. Finally, the total load that is placed on the network is also kept
at a minimum. If the CDN nodes are well placed, the traffic for a given page
should pass over each part of the network only once. This is important because
someone pays for network bandwidth, eventually.

SEC. 7.5 CONTENT DELIVERY 713

CDN origin
server

CDN node

Sydney Boston Amsterdam

Distribution to
CDN nodes

Page
fetch

Worldwide clients

Figure 7-45. CDN distribution tree.

With the growth of encryption on the Web, and particularly with the rise of
HTTPS for distributing Web content, serving content from CDNs has become
more complex. Suppose, for example, that you wanted to retrieve
https://nytimes.com/. A DNS lookup for this domain might give you a referral to a
name server at Dyn, such as ns1.p24.dynect.net, which would in turn redirect you
to an IP address hosted on the Dyn CDN. But, now that server has to deliver con-
tent to you that is authenticated by the New York Times. To do so, it might need the
secret keys for the New York Times, or the ability to serve a certificate for
nytimes.com (or both). As a result, the CDN would need to be trusted with sensi-
tive information from the content provider, and the server has to be configured to
effectively act as an agent of nytimes.com. An alternative is to direct all client
requests back to the origin server, which could serve the HTTPS certificates and
content, but doing so would negate essentially all of the performance benefits of a
CDN. The typical solution typically involves somewhat of a middle ground, where
the CDN generates a certificate on behalf of the content provider and serves the
content from the CDN using that certificate, acting as the organization. This
achieves the most commonly desired goal of encrypting the content between the
CDN and the user, and authenticating the content for the user. More complex
options, which require deploying certificates at the origin server, can allow content
to also be encrypted between the origin and the cache nodes. Cloudflare has a
good summary of these options on its website at https://cloudflare.com/ssl/.

DNS Redirection and Client Mapping

The idea of using a distribution tree is straightforward. What is less simple is
how to map clients to the appropriate cache node in this tree. For example, proxy
servers would seem to provide a solution. Looking at Fig. 7-45, if each client was

714 THE APPLICATION LAYER CHAP. 7

configured to use the Sydney, Boston, or Amsterdam CDN node as a caching Web
proxy, the distribution would follow the tree.

The most common way to map or direct clients to nearby CDN cache nodes, as
we briefly discussed earlier, is using DNS redirection. We now describe the
approach in detail. Suppose that a client wants to fetch a page with the URL
https://www.cdn.com/page.html (https://www.cdn.com/page.html). To fetch the page, the browser will use DNS to
resolve www.cdn.com to an IP address. This DNS lookup proceeds in the usual
manner. By using the DNS protocol, the browser learns the IP address of the name
server for cdn.com, then contacts the name server to ask it to resolve www.cdn.com.
At this point, however, because the name server is run by the CDN. instead of
returning the same IP address for each request, it will look at the IP address of the
client making the request and return different answers depending on where the cli-
ent is located. The answer will be the IP address of the CDN node that is nearest to
the client. That is, if a client in Sydney asks the CDN name server to resolve
www.cdn.com, the name server will return the IP address of the Sydney CDN node,
but if a client in Amsterdam makes the same request, the name server will return
the IP address of the Amsterdam CDN node instead.

This strategy is perfectly appropriate, according to the semantics of DNS. We
have previously seen that name servers may return changing lists of IP addresses.
After the name resolution, the Sydney client will fetch the page directly from the
Sydney CDN node. Further pages on the same ‘‘server’’ will be fetched directly
from the Sydney CDN node as well because of DNS caching. The overall
sequence of steps is shown in Fig. 7-46.

CDN origin
server

2: Query DNS
CDN DNS

server

Amsterdam
CDN node

Sydney
CDN node

3: “Contact Sydney” “Contact Amsterdam”

4: Fetch
page

1: Distribute content

Sydney clients Amsterdam clients

Figure 7-46. Directing clients to nearby CDN nodes using DNS.

A complex question in the above process is what it means to find the nearest
CDN node, and how to go about it (this is the client mapping problem that we dis-
cussed earlier). There are at least two factors to consider in mapping a client to a
CDN node. One factor is the network distance. The client should have a short and
high-capacity network path to the CDN node. This situation will produce quick

SEC. 7.5 CONTENT DELIVERY 715

downloads. CDNs use a map they have previously computed to translate between
the IP address of a client and its network location. The CDN node that is selected
might be the one with the shortest distance as the crow flies, or it might not. What
matters is some combination of the length of the network path and any capacity
limits along it.

The second factor is the load that is already being carried by the CDN node. If
the CDN nodes are overloaded, they will deliver slow responses, just like the
overloaded Web server that we sought to avoid in the first place. Thus, it may be
necessary to balance the load across the CDN nodes, mapping some clients to
nodes that are slightly further away but more lightly loaded.

The ability of a CDN’s authoritative DNS server to map a client to a nearby
CDN cache node depends on the ability to determine the client’s location. As pre-
viously discussed in the DNS section, modern extensions to DNS, such as EDNS0
Client Subnet make it possible for the authoritative name server to see the client’s
IP address. The potential move to DNS-over-HTTPS also may introduce new chal-
lenges, given that the IP address of the local recursive resolver may be nowhere
near the client; if the DNS local recursive does not pass on the IP address of the
client (as is typically the case, given that the whole purpose is to preserve the pri-
vacy of the client), then CDNs who do not also resolve DNS for their clients are
likely to face greater difficulties in performing client mapping. On the other hand,
CDNs who also operate a DoH resolver (as Cloudflare and Google now do) may
reap significant benefits, as they will have direct knowledge of the client IP addres-
ses that are issuing DNS queries, often for content on their own CDNs! The cent-
ralization of DNS is indeed poised to reshape content distribution once again over
the coming few years.

This section presented a simplified description of how CDNs work. There are
many more details that matter in practice. For example, the CDN nodes’ disks will
eventually fill up so they have to purged regularly. Much work has been done on
determining on which files to discard and when, for example Basu et al. (2018).

7.5.4 Peer-to-Peer Networks

Not everyone can set up a 1000-node CDN at locations around the world to
distribute their content. (Actually, it is not hard to rent 1000 virtual machines
around the globe because of the well-developed and competitive hosting industry.
However, setting up a CDN only starts with getting the nodes.) Luckily, there is an
alternative for the rest of us that is simple to use and can distribute a tremendous
amount of content. It is a P2P (Peer-to-Peer) network.

P2P networks burst onto the scene starting in 1999. The first widespread
application was for mass crime: 50 million Napster users were exchanging copy-
righted songs without the copyright owners’ permission until Napster was shut
down by the courts amid great controversy. Nevertheless, peer-to-peer technology
has many interesting and legal uses. Other systems continued development, with

716 THE APPLICATION LAYER CHAP. 7

such great interest from users that P2P traffic quickly eclipsed Web traffic. Today,
BitTorrent remains the most popular P2P protocol. It is used so widely to share
(licensed and public domain) videos, as well as other large content (e.g., operating
system disk images), that it still accounts for a significant fraction of all Internet
traffic, despite the growth of video. We will look at it later in this section.

Overview

The basic idea of a P2P (Peer-to-Peer) file-sharing network is that many com-
puters come together and pool their resources to form a content distribution sys-
tem. The computers are often simply home computers. They do not need to be
machines in Internet data centers. The computers are called peers because each
one can alternately act as a client to another peer, fetching its content, and as a ser-
ver, providing content to other peers. What makes peer-to-peer systems interesting
is that there is no dedicated infrastructure, unlike in a CDN. Everyone participates
in the task of distributing content, and there is often no central point of control.
Many use cases exist (Karagiannis et al., 2019).

Many people are excited about P2P technology because it is seen as empow-
ering the little guy. The reason is not only that it takes a large company to run a
CDN, while anyone with a computer can join a P2P network. It is that P2P net-
works have a formidable capacity to distribute content that can match the largest of
Web sites.

Early Peer-to-Peer Networks: Napster

As previously discussed, early peer-to-peer networks such as Napster were
based on a centralized directory service. Users installed client software that scaned
their local storage for files to share and, after inspecting the contents, uploaded
metadata information about the shared files (e.g., file names, sizes, identity of the
user sharing the content) to a centralized directory service. Users who wished to
retrieve files from the Napster network would subsequently search the centralized
directory server and could learn about other users who had that file. The server
would inform the user searching for content about the IP address of a peer that was
sharing the file that the user was looking for, at which point the user’s client soft-
ware could contact that host directly and download the file in question.

A side-effect of Napster’s centralized directory server was that it made it rel-
atively easy for others to search the network and exhaustively determine who was
sharing which files, effectively crawling the entire network. It became clear at
some point that a significant fraction of all content on Napster was copyrighted
material, which ultimately resulted in injunctions that shut the service down.
Another side-effect of the centralized directory service that became clear was that
to disable the service, one needed only to disable the directory server. Without it,
Napster became effectively unusable. In response, designers of new peer-to-peer

SEC. 7.5 CONTENT DELIVERY 717

networks began to design systems that could be more robust to shutdown or failure.
The general approach to doing so was to decentralize the directory or search proc-
ess. Next-generation peer-to-peer systems, such as Gnutella, took this approach.

Decentralizing the Directory: Gnutella

Gnutella was released in 2000; it attempted to solve some of the problems that
a centralized directory service that Napster suffered from, effectively by imple-
menting a fully distributed search function. In Gnutella, a peer that joined the net-
work would attempt to discover other connected peers through an ad hoc discovery
process; the peer would start by contacting a few well-known Gnutella peers which
it had to discover through some bootstrapping process. One way of doing so was
to ship some set of IP addresses of Gnutella peers with the software itself. Upon
discovering a set of peers, the Gnutella peer could then issue search queries to
these neighboring peers, who would then pass the query on to their neighbors, and
so forth. This general approach to searching a peer-to-peer network is often
referred to as gossip.

Although the gossip approach solved some of the problems faced by
semi-centralized services such as Napster, it quickly faced other problems. One
problem is that in the Gnutella network, peers were continually joining and leaving
the network; peers were simply other users’ computers, and thus they were contin-
ually entering and leaving the network. In particular, users had no particular reason
to stay on the network after retrieving the files that they were interested in, and
thus so called free-riding behavior was common, with 70% of the users contribut-
ing no content (Adar and Huberman, 2000). Second, the flooding-based Specifi-
cally, the gossip approach scaled very poorly, particularly as Gnutella became pop-
ular. Specifically, the number of gossip messages grew exponentially with the
number of participants in the network. The protocol thus scaled particularly poorly.
Users with limited network capacity basically found the network completely unus-
able. Gnutella’s introduction of so-called ultra-peers mitigated these scalability
challenges somewhat, but in general Gnutella was fairly wasteful of available net-
work resources. The lack of scalability in Gnutella’s lookup process inspired the
invention of DHTs (Distributed Hash Tables) whereby a lookup is routed to the
appropriate a peer-to-peer network based on the corresponding hash value of the
lookup; each node in the peer-to-peer network is responsible only for maintaining
information about some subset of the overall lookup space, and the DHT is respon-
sible for routing the query to the appropriate peer that can resolve the lookup.
DHTs are used in many modern peer-to-peer networks, including eDonkey (which
uses a DHT for lookup) and BitTorrent (which uses a DHT to scale the tracking of
peers in the network, as we describe in the next section).

Finally, Gnutella did not automatically verify file contents that users were
downloading, resulting in a significant amount of bogus content on the network.
Why would a peer-to-peer network have so much fake content, you might wonder.

718 THE APPLICATION LAYER CHAP. 7

There are many possible reasons. One simple reason is that, just as any Internet
service might be subject to a denial-of-service attack, Gnutella itself also became a
target, and one of the easiest ways to launch a denial of service attack on the net-
work was to mount so-called pollution attacks, which flooded the network with
fake content. One group that was particularly interested in rendering these net-
works useless was the recording industry (notably the Recording Industry Associa-
tion of America), who was found to be polluting peer-to-peer networks such as
Gnutella with large amounts of fake content to dissuade people from using the net-
works to exchange copyrighted content.

Thus, peer-to-peer networks were faced with a number of challenges: scaling,
convincing users to stick around after downloading the content they were searching
for, and verifying the content they downloaded. BitTorrent’s design addressed all
three challenges, as we discuss next.

Coping with Scaling, Incentives, and Verification: BitTorrent

The BitTorrent protocol was developed by Bram Cohen in 2001 to let a set of
peers share files quickly and easily. There are dozens of freely available clients
that speak this protocol, just as there are many browsers that speak the HTTP pro-
tocol to Web servers. The protocol is available as an open standard at bittor-
rent.org.

In a typical peer-to-peer system, like that formed with BitTorrent, the users
each have some information that may be of interest to other users. This infor-
mation may be free software, music, videos, photographs, and so on. There are
three problems that need to be solved to share content in this setting:

1. How does a peer find other peers that have the content it wants to
download?

2. How is content replicated by peers to provide high-speed downloads
for everyone?

3. How do peers encourage each other to upload content to others as
well as download content for themselves?

The first problem exists because not all peers will have all of the content. The
approach taken in BitTorrent is for every content provider to create a content
description called a torrent. The torrent is much smaller than the content, and is
used by a peer to verify the integrity of the data that it downloads from other peers.
Other users who want to download the content must first obtain the torrent, say, by
finding it on a Web page advertising the content.

The torrent is just a file in a specified format that contains two key kinds of
information. One kind is the name of a tracker, which is a server that leads peers to
the content of the torrent. The other kind of information is a list of equal-sized

SEC. 7.5 CONTENT DELIVERY 719

pieces, or chunks, that make up the content. In early versions of BitTorrent, the
tracker was a centralized server; as with Napster, centralizing the tracker resulted
in a single point of failure for a BitTorrent network. As a result, modern versions of
BitTorrent commonly decentralize the tracker functionality using a DHT. Different
chunk sizes can be used for different torrents; they typically range from 64 KB to
512 KB. The torrent file contains the name of each chunk, given as a 160-bit
SHA-1 hash of the chunk. We will cover cryptographic hashes such as SHA-1 in
Chap. 8. For now, you can think of a hash as a longer and more secure checksum.
Given the size of chunks and hashes, the torrent file is at least three orders of mag-
nitude smaller than the content, so it can be transferred quickly.

To download the content described in a torrent, a peer first contacts the tracker
for the torrent. The tracker is a server (or group of servers, organized by a DHT)
that maintains a list of all the other peers that are actively downloading and upload-
ing the content. This set of peers is called a swarm. The members of the swarm
contact the tracker regularly to report that they are still active, as well as when they
leave the swarm. When a new peer contacts the tracker to join the swarm, the
tracker tells it about other peers in the swarm. Getting the torrent and contacting
the tracker are the first two steps for downloading content, as shown in Fig. 7-47.

Seed
peer

Unchoked
peers

Tracker

Torrent

Peer

1: Get torrent
metafile

2: Get peers
from tracker

3: Trade chunks
with peers

Source of
content

Figure 7-47. BitTorrent.

The second problem is how to share content in a way that gives rapid down-
loads. When a swarm is first formed, some peers must have all of the chunks that
make up the content. These peers are called seeders. Other peers that join the
swarm will have no chunks; they are the peers that are downloading the content.

While a peer participates in a swarm, it simultaneously downloads chunks that
it is missing from other peers, and uploads chunks that it has to other peers who
need them. This trading is shown as the last step of content distribution in
Fig. 7-47. Over time, the peer gathers more chunks until it has downloaded all of
the content. The peer can leave the swarm (and return) at any time. Normally a

720 THE APPLICATION LAYER CHAP. 7

peer will stay for a short period after finishes its own download. With peers com-
ing and going, the rate of churn in a swarm can be quite high.

For the above method to work well, each chunk should be available at many
peers. If everyone were to get the chunks in the same order, it is likely that many
peers would depend on the seeders for the next chunk. This would create a bottle-
neck. Instead, peers exchange lists of the chunks they have with each other. Then
they preferentially select rare chunks that are hard to find to download. The idea is
that downloading a rare chunk will result in the creation of another copy of it,
which will make the chunk easier for other peers to find and download. If all peers
do this, after a short while all chunks will be widely available.

The third problem involves incentives. CDN nodes are set up exclusively to
provide content to users. P2P nodes are not. They are users’ computers, and the
users may be more interested in getting a movie than helping other users with their
downloads; in other words, there can sometimes be incentives for users to cheat the
system. Nodes that take resources from a system without contributing in kind are
called free-riders or leechers. If there are too many of them, the system will not
function well. Earlier P2P systems were known to host them (Saroiu et al., 2003)
so BitTorrent sought to minimize them.

BitTorrent attempts to address this problem by rewarding peers who show
good upload behavior. Each peer randomly samples the other peers, retrieving
chunks from them while it uploads chunks to them. The peer continues to trade
chunks with only a small number of peers that provide the highest download per-
formance, while also randomly trying other peers to find good partners. Randomly
trying peers also allows newcomers to obtain initial chunks that they can trade with
other peers. The peers with which a node is currently exchanging chunks are said
to be unchoked.

Over time, this algorithm aims to match peers with comparable upload and
download rates with each other. The more a peer is contributing to the other peers,
the more it can expect in return. Using a set of peers also helps to saturate a peer’s
download bandwidth for high performance. Conversely, if a peer is not uploading
chunks to other peers, or is doing so very slowly, it will be cut off, or choked,
sooner or later. This strategy discourages adversarial behavior in which peers free-
ride on the swarm.

The choking algorithm is sometimes described as implementing the tit-for-tat
strategy that encourages cooperation in repeated interactions; the theory behind the
incentives for cooperation are rooted in the famous tit-for-tat game in game theory,
whereby players have incentives to cheat unless (1) they repeatedly play the game
with each other (as is the case in BitTorrent, where peers must repeatedly swap
chunks) and (2) peers are punished for not cooperating (as is the case with chok-
ing). Despite this design, in actual practice BitTorrent does not prevent clients
from gaming the system in various ways (Piatek et al., 2007). For example, Bit-
Torrent’s algorithm whereby a client favors selecting rare pieces can create incen-
tives for a peer to lie about which chunks of the file it has (e.g., claiming that it has

SEC. 7.5 CONTENT DELIVERY 721

rare pieces when it does not) (Liogkas et al., 2006). Software also exists whereby
clients can lie to the tracker about its ratio of upload to download, effectively say-
ing that it performed uploads that it did not perform. For these reasons, it is critical
for a peer to verify each chunk that they download from other peers. It can do so by
comparing the SHA-1 hash value of each chunk that is present in the torrent file
against the corresponding SHA-1 hash value that they can compute for each cor-
responding chunk that it downloads.

Another challenge involves creating incentives for peers to stay around in the
BitTorrent swarm as seeders, even after they have completed downloading the
entire file. If they do not, then the possibility exists that nobody in the swarm has
the entire file, and (worse), that a swarm may collectively be missing pieces of the
entire file, thus making it impossible for anyone to download the complete file.
This problem is particularly acute for files that are less popular (Menasche et al.,
2013). Various approaches have been developed to address these incentive issues
(Ramachandran et al., 2007).

As you can see from our discussion, BitTorrent comes with a rich vocabulary.
There are torrents, swarms, leechers, seeders, and trackers, as well as snubbing,
choking, lurking, and more. For more information see the short paper on BitTor-
rent (Cohen, 2003).

7.5.5 Evolution of the Internet

As we described in Chap. 1, the Internet has had a strange history, starting as
an academic research project for a few dozen American universities with an ARPA
contract. It is even hard to define the moment it began. Was that Nov. 21, 1969,
when two ARPANET nodes, UCLA and SRI, were connected? Was it on Dec. 17,
1972 when the Hawaiian AlohaNet connected to the ARPANET to form an inter-
network? Was it Jan. 1, 1983, when ARPA officially adopted TCP/IP as the proto-
col? Was it in 1989, when Tim Berners-Lee proposed what is now the World Wide
Web? It is hard to say. What is easy to say, however, is that a huge amount has
changed since the early days of the ARPANET and fledgling Internet, much of it
do the widespread adoption of CDNs and cloud computing. Below we will take a
quick look.

The fundamental model behind the ARPANET and the early Internet is shown
in Fig. 7-48. It consists of three components:

1. Hosts (the computers that did the work for the users).

2. Routers (called IMPs in the ARPANET) that switched the packets.

3. Transmission lines (originally 56-kbps leased telephone lines).

Each router was connected to one or more computers.
The conceptual model of the early Internet architecture was dominated by the

basic idea of point-to-point communications. The host computers were all seen as

722 THE APPLICATION LAYER CHAP. 7

Host

Router

Transmission line

Figure 7-48. The early Internet involved primarily point-to-point communications

equals (although some were much more powerful than others) and any computer
could send packets to any other computer since every computer had a unique
address. With the introduction of TCP/IP these were all 32 bits, which at the time
seemed like an excellent approximation to infinity. Now it seems closer to zero
than to infinity. The transmission model was that of a simple stateless, datagram
system, with each packet containing its destination address. Once a packet passed
through a router, it was completely forgotten. Routing was done hop by hop. Each
packet was routed based on its destination address and information in the router’s
tables about which transmission line to use for the packet’s destination.

Things began to change when the Internet surged past its academic beginnings
and went commercial. That led to the development of the backbone networks,
which used very high-speed links and were operated by large telecom companies
like AT&T and Verizon. Each company ran its own backbone, but the companies
connected to each other at peering exchanges. Internet service providers sprung up
to connect homes and businesses to the Internet and regional networks connected
the ISPs to the backbones. This situation is shown in Fig. 1-17. The next step was
the introduction of national ISPs and CDNs, as shown in Fig. 1-18.

Cloud computing and very large CDNs have again disrupted the structure of
the Internet, much as we described in Chap. 1. Modern cloud data centers, like
those run by Amazon and Microsoft, have hundreds of thousands of computers in
the same building, allowing users (typically large companies) to allocate 100 or
1000 or 10,000 machines within seconds. When Walmart has a big sale on Cyber

SEC. 7.5 CONTENT DELIVERY 723

Monday (the Monday after Thanksgiving), if it needs 10,000 machines to handle
the load, it just requests them automatically from its cloud provider as needed and
they will be available within seconds. On Back-to-Normal Tuesday, it can give
them all back. Almost all large companies that deal with millions of consumers
use cloud services to be able to expand or contract their computing capacity almost
instantaneously, as needed. As a side benefit, as mentioned above, clouds also pro-
vide fairly good protection against DDoS attacks because the cloud is so big that it
can absorb thousands of requests/sec, answer them all, and keep on functioning,
thus defeating the intent of the DDoS attack.

CDNs are hierarchical, with a master site (possibly replicated two or three
times for reliability) and many caches all over the world to which content is
pushed. When a user requests content, it is served from the closest cache. This
reduces latency and spreads the workload. Akamai, the first large commercial
CDN, has over 200,000 cache nodes in more than 1500 networks in more than 120
countries. Similarly, Cloudflare now has cache nodes in more than 90 countries.
In many cases, CDN cache nodes are co-located with ISP offices, so data can travel
from the CDN to the ISP over a very fast piece of optical fiber perhaps only 5
meters long. This new world has led to the Internet architecture shown in
Fig. 7-49, where the vast majority of Internet traffic is carried between access (e.g.,
regional) networks and distributed cloud infrastructure (i.e., either CDNs or cloud
services).

Users send requests to large servers to do something and the server does it and
creates a Web page showing what it did. Examples of requests are:

1. Buy a product at an e-commerce store.

2. Fetch an email message from an email provider.

3. Issue a payment order to a bank.

4. Request a song or movie to be streamed to a user’s device.

5. Update a Facebook page.

6. Ask an online newspaper to display an article.

Nearly all Internet traffic today now follows this model. The proliferation of cloud
services and CDNs have upended the conventional client-server model of Internet
traffic, whereby a client would retrieve or exchange content with a single server.
Today, the vast majority of content and communications operates on distributed
cloud services; many access ISPs for example send the majority of their traffic to
distributed cloud services. In most developed regions, there is simply no need for
users to access massive amounts of content over long-haul transit infrastructure:
CDNs have by and large placed much of that popular content close to the user,
often geographically nearby and across a direct network interconnect to their
access ISP. Thus an increasing amount of content is delivered via CDNs that are

724 THE APPLICATION LAYER CHAP. 7

To other exchanges

Peering
exchange Clouds and CDNsBackbone providers

Amazon
cloud

Netflix
CDN

Akamai
CDN

Private interconnect

AT&T

Comcast

Deutsche
Telekom

Figure 7-49. Most Internet traffic today is from clouds and CDNs, with a signifi-
cant amount of traffic being exchanged between access networks and ISPs over
private interconnects.

hosted either directly over private interconnects to access networks, or even on
CDNs, where cache nodes are located within the access network itself.

Backbone networks allow the many clouds and CDNs to interconnect via peer-
ing exchanges for those cases where there is no private dedicated interconnection.
The DE-CIX exchange in Frankfurt connects about 2000 networks. The AMS-IX
exchange in Amsterdam and the LINX exchange in London each connect about
1,000 networks. The larger exchanges in the United States each connect hundreds
of networks. These exchanges are themselves interconnected with one or more
OC-192 and/or OC-768 fiber links running at 9.6 and 38.5 Gbps, respectively. The
peering exchanges and the larger carrier networks that meet at them form the Inter-
net backbone to which most clouds and CDNs directly connect.

Content and cloud providers are increasingly connecting directly to access
ISPs over private interconnects to put the content closer to the users; in some cases,
they even place the content on servers directly in the access ISP network. One
example of this is Akamai, which has over 200,000 servers, most inside ISP net-
works, as mentioned above. This trend will continue to reshape the Internet in
years to come. Other CDNs, such as Cloudflare, are also becoming increasingly
pervasive. Finally, providers of content and services are themselves deploying
CDNs; Netflix has deployed its own CDN called Open Connect, for example,
where Netflix content is deployed on cache nodes either at IXPs or directly inside

SEC. 7.5 CONTENT DELIVERY 725

an access ISP network. The extent to which Internet paths traverse a separate back-
bone network or IXP (Internet Exchange Point) depends on a variety of factors,
including cost, available connectivity in the region, and economies of scale. IXPs
are extremely popular in Europe and other parts of the world; in contrast, in the
United States, direct connection over private interconnects tend to be more popular
and prevalent.

7.6 SUMMARY

Naming in the ARPANET started out in a very simple way: an ASCII text file
listed the names of all the hosts and their corresponding IP addresses. Every night
all the machines downloaded this file. But when the ARPANET morphed into the
Internet and exploded in size, a far more sophisticated and dynamic naming
scheme was required. The one used now is a hierarchical approach called the
Domain Name System. It organizes all the machines on the Internet into a set of
trees. At the top level are the well-known generic domains, including com and
edu, as well as about 200 country domains. DNS is implemented as a distributed
database with servers all over the world. By querying a DNS server, a process can
map an Internet domain name onto the IP address used to communicate with a
computer for that domain. DNS is used for a variety of purposes; recent develop-
ments have created privacy concerns around DNS, resulting in a move to encrypt
DNS with TLS or HTTPS. The resulting potential centralization of DNS is poised
to change fundamental aspects of the Internet architecture.

Email is the original killer app of the Internet. It is still widely used by every-
one from small children to grandparents. Most email systems in the world use the
mail system now defined in RFC 5321 and RFC 5322. Messages have simple
ASCII headers, and many kinds of content can be sent using MIME. Mail is sub-
mitted to message transfer agents for delivery and retrieved from them for pres-
entation by a variety of user agents, including Web applications. Submitted mail is
delivered using SMTP, which works by making a TCP connection from the send-
ing message transfer agent to the receiving one.

The Web is the application that most people think of as being the Internet.
Originally, it was a system for seamlessly linking hypertext pages (written in
HTML) across machines. The pages are downloaded by making a TCP connection
from the browser to a server and using HTTP. Nowadays, much of the content on
the Web is produced dynamically, either at the server (e.g., with PHP) or in the
browser (e.g., with JavaScript). When combined with back-end databases, dynamic
server pages allow Web applications such as e-commerce and search. Dynamic
browser pages are evolving into full-featured applications, such as email, that run
inside the browser and use the Web protocols to communicate with remote servers.
With the growth of the advertising industry, tracking on the Web has become very
pervasive, through a variety of techniques, from cookies to canvas fingerprinting.

726 THE APPLICATION LAYER CHAP. 7

While there are ways to block certain types of tracking mechanisms such as cook-
ies, doing so can sometimes hamper the functionality of a Web site, and some
tracking mechanisms (e.g., canvas fingerprinting) are incredibly difficult to block.

Digital audio and video have been key drivers for the Internet since 2000. The
majority of Internet traffic today is video. Much of it is streamed from Web sites
over a mix of protocols although TCP is also very widely used. Live media is
streamed to many consumers. It includes Internet radio and TV stations that broad-
cast all manner of events. Audio and video are also used for real-time conferenc-
ing. Many calls use voice over IP, rather than the traditional telephone network,
and include videoconferencing.

There are a small number of tremendously popular Web sites, as well as a very
large number of less popular ones. To serve the popular sites, content distribution
networks have been deployed. CDNs use DNS to direct clients to a nearby server;
the servers are placed in data centers all around the world. Alternatively, P2P net-
works let a collection of machines share content such as movies among them-
selves. They provide a content distribution capacity that scales with the number of
machines in the P2P network and which can rival the largest of sites.

PROBLEMS

1. Many business computers have three distinct and worldwide unique identifiers. What
are they?

2. In Fig. 7-5, there is no period after laserjet. Why not?

3. Give an example, similar to the one shown in Fig. 7-6, of a resolver looking up the
domain name courses.cs.vu.nl in two steps. In which scenario would this happen in
practice?

4. Which DNS record verifies the key that is used to sign the DNS records for an authori-
tative name server?

5. Which DNS record verifies the signature of the DNS records for an authoritative name
server?

6. Describe the process of client mapping, by which some part of the DNS infrastructure
would identify a content server that is close to the client that issued the DNS query.
Explain any assumptions involved in determining the location of the client.

7. Consider a situation in which a cyberterrorist makes all the DNS servers in the world
crash simultaneously. How does this change one’s ability to use the Internet?

8. Explain the advantages and disadvantages of using TCP instead of UDP for DNS
queries and responses.

9. Assuming that caching behavior for DNS lookups is as normal and DNS is not encryp-

CHAP. 7 PROBLEMS 727

ted, which of the following parties can see all of your DNS lookups from your local
device? If DNS is encrypted with DoH or DoT, who can see the DNS lookups?

10. Nathan wants to have an original domain name and uses a randomized program to gen-
erate a secondary domain name for him. He wants to register this domain name in the
com generic domain. The domain name that was generated is 253 characters long.
Will the com registrar allow this domain name to be registered?

11. Can a machine with a single DNS name have multiple IP addresses? How could this
occur?

12. The number of companies with a Web site has grown explosively in recent years. As a
result, thousands of companies are registered in the com domain, causing a heavy load
on the top-level server for this domain. Suggest a way to alleviate this problem with-
out changing the naming scheme (i.e., without introducing new top-level domain
names). It is permitted that your solution requires changes to the client code.

13. Some email systems support a Content Return: header field. It specifies whether the
body of a message is to be returned in the event of nondelivery. Does this field belong
to the envelope or to the header?

14. You receive a suspicious email, and suspect that it has been sent by a malicious party.
The FROM field in the email says the email was sent by someone you trust. Can you
trust the contents of the email? What more can you do to check its authenticity?

15. Electronic mail systems need directories so people’s email addresses can be looked up.
To build such directories, names should be broken up into standard components (e.g.,
first name, last name) to make searching possible. Discuss some problems that must
be solved for a worldwide standard to be acceptable.

16. A large law firm, which has many employees, provides a single email address for each
employee. Each employee’s email address is <login>@lawfirm.com. However, the
firm did not explicitly define the format of the login. Thus, some employees use their
first names as their login names, some use their last names, some use their initials, etc.
The firm now wishes to make a fixed format, for example:

firstname.lastname@lawfirm.com,

that can be used for the email addresses of all its employees. How can this be done
without rocking the boat too much?

17. A binary file is 4560 bytes long. How long will it be if encoded using base64 encod-
ing, with a CR+LF pair inserted after every 110 bytes sent and at the end?

18. A 100-byte ASCII string is encoded using base64. How long is the resulting string?

19. Your fellow student encodes the ASCII string ‘‘ascii’’ using base64, resulting in
‘‘YXNjaWJ’’. Show what went wrong during encoding, and give the correct encoding
of the string.

20. You are building an instant messaging application for your computer networks lab
assignment. The application must be able to transfer ASCII text and binary files.
Unfortunately, another student on your team already handed in the server code without

728 PROBLEMS CHAP. 7

implementing a feature for transferring binary files. Can you still implement this fea-
ture by only changing the client code?

21. In any standard, such as RFC 5322, a precise grammar of what is allowed is needed so
that different implementations can interwork. Even simple items have to be defined
carefully. The SMTP headers allow white space between the tokens. Give two plausi-
ble alternative definitions of white space between tokens.

22. Name five MIME types not listed in this book. You can check your browser or the
Internet for information.

23. Suppose that you want to send an MP3 file to a friend, but your friend’s ISP limits the
size of each incoming message to 1 MB and the MP3 file is 4 MB. Is there a way to
handle this situation by using RFC 5322 and MIME?

24. IMAP allows users to fetch and download email from a remote mailbox. Does this
mean that the internal format of mailboxes has to be standardized so any IMAP pro-
gram on the client side can read the mailbox on any mail server? Discuss your answer.

25. Although it was not mentioned in the text, an alternative form for a URL is to use the
IP address instead of its DNS name. Use this information to explain why a DNS name
cannot end with a digit.

26. Imagine that someone in the math department at Stanford has just written a new docu-
ment including a proof that he wants to distribute by FTP for his colleagues to review.
He puts the program in the FTP directory ftp/pub/forReview/newProof.pdf. What is the
URL for this program likely to be?

27. Imagine a Web page that takes 3 sec. to load using HTTP with a persistent connection
and sequential requests. Of these 3 seconds, 150 msec is spent setting up the con-
nection and obtaining the first response. Loading the same page using pipelined
requests takes 200 msec. Assume that sending a request is instantaneous, and that the
time between the request and reply is equal for all requests. How many requests are
performed when fetching this Web page?

28. You are building a networked application for your computer networks lab assignment.
Another student on your team says that, because your system communicates via HTTP,
which runs over TCP, your system does not need to take into account the possibility
that communication between hosts breaks down. What do you say to your teammate?

29. For each of the following applications, tell whether it would be (1) possible and (2)
better to use a PHP script or JavaScript, and why:
(a) Displaying a calendar for any requested month since September 1752.
(b) Displaying the schedule of flights from Amsterdam to New York.
(c) Graphing a polynomial from user-supplied coefficients.

30. The If-Modified-Since header can be used to check whether a cached page is still valid.
Requests can be made for pages containing images, sound, video, and so on, as well as
HTML. Do you think the effectiveness of this technique is better or worse for JPEG
images as compared to HTML? Think carefully about what ‘‘effectiveness’’ means
and explain your answer.

31. You request a Web page from a server. The server’s reply includes an Expires header,

CHAP. 7 PROBLEMS 729

whose value is set to one day in the future. After five minutes, you request the same
page from the same server. Can the server send you a newer version of the page?
Explain why (not).

32. Does it make sense for a single ISP to function as a CDN? If so, how would that
work? If not, what is wrong with the idea?

33. Audio CDs encode the music at 44,000 Hz with 16-bit samples. Would it make sense
to produce higher-quality audio by sampling at 176,000 Hz with 16-bit samples? What
about 44,000 Hz with 24-bit samples?

34. Assume that compression is not used for audio CDs. How many MB of data must the
compact disc contain in order to be able to play 2hours of music?

35. Could a psychoacoustic model be used to reduce the bandwidth needed for Internet
telephony? If so, what conditions, if any, would have to be met to make it work? If
not, why not?

36. A server hosting a popular chat room sends data to its clients at a rate of 32 kbps. If
this data arrives at the clients every 100 msec, what is the packet size used by the ser-
ver? What is the packet size if the clients receive data every second?

37. An audio streaming server has a one-way ‘‘distance’’ of 100 msec to a media player. It
outputs at 1 Mbps. If the media player has a 2-MB buffer, what can you say about the
position of the low-water mark and the high-water mark?

38. You are streaming a five-minute video and receive 80 Mbps of encoded data per sec-
ond, with a compression ratio of 200:1. The video has a resolution of 2000 × 1000 pix-
els, uses 20 bits per pixel, and is played at 60 frames per second. After 40 sec., your
Internet connection breaks down. Can you watch the video to completion?

39. Suppose that a wireless transmission medium loses a lot of packets. How could
uncompressed CD-quality audio be transmitted so that a lost packet resulted in a lower
quality sound but no gap in the music?

40. In the text we discussed a buffering scheme for video that is shown in Fig. 7-34.
Would this scheme also work for pure audio? Why or why not?

41. Real-time audio and video streaming has to be smooth. End-to-end delay and packet
jitter are two factors that affect the user experience. Are they essentially the same
thing? Under what circumstances does each one come into play? Can either one be
combatted, and if so, how?

42. What is the bit rate for transmitting uncompressed 1200 × 800 pixel color frames with
16 bits/pixel at 50 frames/sec?

43. What is the compression ratio needed to send a 4K video over a 80 Mbps channel?
Assume that the video plays at a rate of 60 frames per second, and every pixel value is
stored in 3 bytes.

44. Suppose an DASH system with 50 frames/sec breaks a video up into 10-second seg-
ments, each with exactly 500 frames, Do you see any problems here? (Hint: think

730 PROBLEMS CHAP. 7

about the kind of frames used in MPEG) If you see a problem, how could it be fixed?

45. Can a 1-bit error in an MPEG frame affect more than the frame in which the error
occurs? Explain your answer.

46. Imagine that a video streaming service decides to use UDP instead of TCP. UDP pack-
ets can arrive in a different order than the one in which they were sent. What problem
does this cause and how can it be solved? What complication does your solution intro-
duce, if any?

47. While working at a game-streaming company, a colleague suggests creating a new
transport-layer protocol that overcomes the shortcomings of TCP and UDP, and guar-
antees low latency and jitter for multimedia applications. Explain why this will not
work.

48. Consider a 50,000-customer video server, where each customer watches three movies
per month. Two-thirds of the movies are served at 9 P.M. How many movies does the
server have to transmit at once during this time period? If each movie requires 6
Mbps, how many OC-12 connections does the server need to the network?

49. Suppose that Zipf’s law holds for accesses to a 10,000-movie video server. If the ser-
ver holds the most popular 1000 movies in memory and the remaining 9000 on disk,
give an expression for the fraction of all references that will be to memory. Write a lit-
tle program to evaluate this expression numerically.

50. A popular Web page hosts 2 billion videos. If the video popularity follows a Zipf dis-
tribution, what fraction of views goes to the top 10 videos?

51. One of the advantages of peer-to-peer systems is that there is often no central point of
control, making these systems resilient to failures. Explain why BitTorrent is not fully
decentralized.

52. Some cybersquatters have registered domain names that are misspellings of common
corporate sites, for example, www.microsfot.com. Make a list of at least five such
domains.

53. Numerous people have registered DNS names that consist of www.word.com, where
word is a common word. For each of the following categories, list five such Web sites
and briefly summarize what it is (e.g., www.stomach.com belongs to a gastroenterolo-
gist on Long Island). Here is the list of categories: animals, foods, household objects,
and body parts. For the last category, please stick to body parts above the waist.

54. Explain some reasons why a BitTorrent client might cheat or lie, and how it might do
so.

8
NETWORK SECURITY

For the first few decades of their existence, computer networks were primarily
used by university researchers for sending email and by corporate employees for
sharing printers. Under these conditions, security did not get a lot of attention.
But now, as millions of ordinary citizens are using networks for banking, shopping,
and filing their tax returns, and weakness after weakness has been found, network
security has become a problem of massive proportions. In this chapter, we will
study network security from several angles, point out numerous pitfalls, and dis-
cuss many algorithms and protocols for making networks more secure.

On a historical note, network hacking already existed long before there was an
Internet. Instead, the telephone network was the target and messing around with
the signaling protocol was known as phone phreaking. Phone phreaking started
in the late 1950s, and really took off in the 1960s and 1970s. In those days, the
control signals used to authorize and route calls, were still ‘‘in band’’: the phone
company used sounds at specific frequencies in the same channel as the voice com-
munication to tell the switches what to do.

One of the best-known phone phreakers is John Draper, a controversial figure
who found that the toy whistle included in the boxes of Cap’n Crunch cereals in
the late 1960s emitted a tone of exactly 2600 Hz which happened to be the fre-
quency that AT&T used to authorize long-distance calls. Using the whistle, Draper
was able to make long distance calls for free. Draper became known as Captain
Crunch and used the whistles to build so-called blue boxes to hack the telephone

731

732 NETWORK SECURITY CHAP. 8

system. In 1974, Draper was arrested for toll fraud and went to jail, but not before
he had inspired two other pioneers in the Bay area, Steve Wozniak and Steve
Jobs, to also engage in phone phreaking and build their own blue boxes, as well as,
at a later stage, a computer that they decided to call Apple. According to Wozniak,
there would have been no Apple without Captain Crunch.

Security is a broad topic and covers a multitude of sins. In its simplest form, it
is concerned with making sure that nosy people cannot read, or worse yet, secretly
modify messages intended for other recipients. It is also concerned with attackers
who try to subvert essential network services such as BGP or DNS, render links or
network services unavailable, or access remote services that they are not authorized
to use. Another topic of interest is how to tell whether that message purportedly
from the IRS ‘‘Pay by Friday, or else’’ is really from the IRS and not from the
Mafia. Security additionally deals with the problems of legitimate messages being
captured and replayed, and with people later trying to deny that they sent certain
messages.

Most security problems are intentionally caused by malicious people trying to
gain some benefit, get attention, or harm someone. A few of the most common
perpetrators are listed in Fig. 8-1. It should be clear from this list that making a
network secure involves a lot more than just keeping it free of programming errors.
It involves outsmarting often intelligent, dedicated, and sometimes well-funded
adversaries. Measures that will thwart casual attackers will have little impact on
the serious ones.

In an article in USENIX ;Login:, James Mickens of Microsoft (and now a pro-
fessor at Harvard University) argued that you should distinguish between everyday
attackers and, say, sophisticated intelligence services. If you are worried about
garden-variety adversaries, you will be fine with common sense and basic security
measures. Mickens eloquently explains the distinction:

‘‘If your adversary is the Mossad, you’re gonna die and there’s nothing that you
can do about it. The Mossad is not intimidated by the fact that you employ https://.
If the Mossad wants your data, they’re going to use a drone to replace your cell-
phone with a piece of uranium that’s shaped like a cellphone, and when you die of
tumors filled with tumors, they’re going to hold a press conference and say ‘‘It
wasn’t us’’ as they wear t-shirts that say ‘‘IT WAS DEFINITELY US’’ and then
they’re going to buy all of your stuff at your estate sale so that they can directly
look at the photos of your vacation instead of reading your insipid emails about
them.’’

Mickens’ point is that sophisticated attackers have advanced means to compro-
mise your systems and stopping them is very hard. In addition, police records
show that the most damaging attacks are often perpetrated by insiders bearing a
grudge. Security systems should be designed accordingly.

Sec 8.1 FUNDAMENTALS OF NETWORK SECURITY 733

Adversary Goal
Student To have fun snooping on people’s email
Cracker To test someone’s security system; steal data
Sales rep To claim to represent all of Europe, not just Andorra
Corporation To discover a competitor’s strategic marketing plan
Ex-employee To get revenge for being fired
Accountant To embezzle money from a company
Stockbroker To deny a promise made to a customer by email
Identity thief To steal credit card numbers for sale
Government To learn an enemy’s military or industrial secrets
Terrorist To steal biological warfare secrets

Figure 8-1. Some people who may cause security problems, and why.

8.1 FUNDAMENTALS OF NETWORK SECURITY

The classic way to deal with network security problems is to distinguish three
essential security properties: confidentiality, integrity, and availability. The com-
mon abbreviation, CIA, is perhaps a bit unfortunate, given that the other common
expansion of that acronym has not been shy in violating those properties in the
past. Confidentiality has to do with keeping information out of the grubby little
hands of unauthorized users. This is what often comes to mind when people think
about network security. Integrity is all about ensuring that the information you re-
ceived was really the information sent and not something that an adversary modi-
fied. Availability deals with preventing systems and services from becoming un-
usable due to crashes, overload situations, or deliberate misconfigurations. Good
examples of attempts to compromise availability are the denial-of-service attacks
that frequently wreak havoc on high-value targets such as banks, airlines and the
local high school during exam time. In addition to the classic triumvirate of confi-
dentiality, integrity, and availability that dominates the security domain, there are
other issues that play important roles also. In particular, authentication deals with
determining whom you are talking to before revealing sensitive information or
entering into a business deal. Finally, nonrepudiation deals with signatures: how
do you prove that your customer really placed an electronic order for 10 million
left-handed doohickeys at 89 cents each when he later claims the price was 69
cents? Or maybe he claims he never placed any order after seeing that a Chinese
firm is flooding the market with left-handed doohickeys for 49 cents.

All these issues occur in traditional systems, too, but with some significant
differences. Integrity and secrecy are achieved by using registered mail and lock-
ing documents up. Robbing the mail train is harder now than it was in Jesse
James’ day. Also, people can usually tell the difference between an original paper

734 NETWORK SECURITY CHAP. 8

document and a photocopy, and it often matters to them. As a test, make a photo-
copy of a valid check. Try cashing the original check at your bank on Monday.
Now try cashing the photocopy of the check on Tuesday. Observe the difference in
the bank’s behavior.

As for authentication, people authenticate other people by various means, in-
cluding recognizing their faces, voices, and handwriting. Proof of signing is hand-
led by signatures on letterhead paper, raised seals, and so on. Tampering can
usually be detected by handwriting, ink, and paper experts. None of these options
are available electronically. Clearly, other solutions are needed.

Before getting into the solutions themselves, it is worth spending a few
moments considering where in the protocol stack network security belongs. There
is probably no one single place. Every layer has something to contribute. In the
physical layer, wiretapping can be foiled by enclosing transmission lines (or better
yet, optical fibers) in sealed metal tubes containing an inert gas at high pressure.
Any attempt to drill into a tube will release some gas, reducing the pressure and
triggering an alarm. Some military systems use this technique.

In the data link layer, packets on a point-to-point link can be encrypted as they
leave one machine and decrypted as they enter another. All the details can be
handled in the data link layer, with higher layers oblivious to what is going on.
This solution breaks down when packets have to traverse multiple routers, howev-
er, because packets have to be decrypted at each router, leaving them vulnerable to
attacks from within the router. Also, it does not allow some sessions to be protect-
ed (e.g., those involving online purchases by credit card) and others not. Neverthe-
less, link encryption, as this method is called, can be added to any network easily
and is often useful.

In the network layer, firewalls can be deployed to prevent attack traffic from
entering or leaving networks. IPsec, a protocol for IP security that encrypts packet
payloads, also functions at this layer. At the transport layer, entire connections can
be encrypted end-to-end, that is, process to process. Problems such as user
authentication and nonrepudiation are often handled at the application layer,
although occasionally (e.g., in the case of wireless networks), user authentication
can take place at lower layers. Since security applies to all layers of the network
protocol stack, we dedicate an entire chapter of the book to this topic.

8.1.1 Fundamental Security Principles

While addressing security concerns in all layers of the network stack is cer-
tainly necessary, it is very difficult to determine when you have addressed them
sufficiently and if you have addressed them all. In other words, guaranteeing secu-
rity is hard. Instead, we try to improve security as much as we can by consistently
applying a set of security principles. Classic security principles were formulated as
early as 1975 by Jerome Saltzer and Michael Schroeder:

SEC. 8.1 FUNDAMENTALS OF NETWORK SECURITY 735

1. Principle of economy of mechanism. This principle is sometimes
paraphrased as the principle of simplicity. Complex systems tend to
have more bugs than simple systems. Moreover, users may not under-
stand them well and use them in a wrong or insecure way. Simple sys-
tems are good systems. For instance, PGP (Pretty Good Privacy, see
Sec. 8.11), offers powerful protection for email. However, many
users find it cumbersome in practice and so far it has not yet gained
very widespread adoption. Simplicity also helps to minimize the
attack surface (all the points where an attacker may interact with the
system to try to compromise it). A system that offers a large set of
functions to untrusted users, each implemented by many lines of
code, has a large attack surface. If a function is not really needed,
leave it out.

2. Principle of fail-safe defaults. Say you need to organize the access
to a resource. It is better to make explicit rules about when one can
access the resource than trying to identify the condition under which
access to the resource should be denied. Phrased differently: a default
of lack of permission is safer.

3. Principle of complete mediation. Every access to every resource
should be checked for authority. It implies that we must have a way to
determine the source of a request (the requester).

4. Principle of least authority. This principle, often known as POLA,
states that any (sub) system should have just enough authority (privi-
lege) to perform its task and no more. Thus, if attackers compromise
such a system, they elevate their privilege by only the bare minimum.

5. Principle of privilege separation. Closely related to the previous
point: it is better to split up the system into multiple POLA-compliant
components than a single component with all the privileges combin-
ed. Again, if one component is compromised, the attackers will be
limited in what they can do.

6. Principle of least common mechanism. This principle is a little
trickier and states that we should minimize the amount of mechanism
common to more than one user and depended on by all users. Think
of it this way: if we have a choice between implementing a network
routine in the operating system where its global variables are shared
by all users, or in a user space library which, to all intents and pur-
poses, is private to the user process, we should opt for the latter. The
shared data in the operating system may well serve as an information
path between different users. We shall see an example of this in the
section on TCP connection hijacking.

736 NETWORK SECURITY CHAP. 8

7. Principle of open design. This states plain and simple that the de-
sign should not be secret and generalizes what is known as Kerck-
hoffs’ principle in cryptography. In 1883, the Dutch-born Auguste
Kerckhoffs published two journal articles on military cryptography
which stated that a cryptosystem should be secure even if everything
about the system, except the key, is public knowledge. In other words,
do not rely on ‘‘security by obscurity,’’ but assume that the adversary
immediately gains familiarity with your system and knows the en-
cryption and decryption algorithms.

8. Principle of psychological acceptability. The final principle is not a
technical one at all. Security rules and mechanisms should be easy to
use and understand. Again, many implementations of PGP protection
for email fail this principle. However, acceptability entails more.
Besides the usability of the mechanism, it should also be clear why
the rules and mechanisms are necessary in the first place.

An important factor in ensuring security is also the concept of isolation. Isola-
tion guarantees the separation of components (programs, computer systems, or
even entire networks) that belong to different security domains or have different
privileges. All interaction that takes place between the different components is
mediated with proper privilege checks. Isolation, POLA, and a tight control of the
flow of information between components allow the design of strongly compart-
mentalized systems.

Network security comprises concerns in the domain of systems and engineer-
ing as well as concerns rooted in theory, math, and cryptography. A good example
of the former is the classic ping of death, which allowed attackers to crash hosts
all over the Internet by using fragmentation options in IP to craft ICMP echo re-
quest packets larger than the maximum allowed IP packet size. Since the receiving
side never expected such large packets, it reserved insufficient buffer memory for
all the data and the excess bytes would overwrite other data that followed the buff-
er in memory. Clearly, this was a bug, commonly known as a buffer overflow. An
example of a cryptography problem is the 40-bit key used in the original WEP en-
cryption for WiFi networks which could be easily brute-forced by attackers with
sufficient computational power.

8.1.2 Fundamental Attack Principles

The easiest way to structure a discussion about systems aspects of security is to
put ourselves in the shoes of the adversary. So, having introduced fundamental as-
pects of security above, let us now consider the fundamentals of attacks.

From an attacker perspective, the security of a system presents itself as a set of
challenges that attackers must solve to reach their objectives. There are multiple
ways to violate confidentiality, integrity, availability, or any of the other security

SEC. 8.1 FUNDAMENTALS OF NETWORK SECURITY 737

properties. For instance, to break confidentiality of network traffic, an attacker may
break into a system to read the data directly, trick the communicating parties to
send data without encryption and capture it, or, in a more ambitious scenario, break
the encryption. All of these are used in practice and all of them consist of multiple
steps. We will deep dive into the fundamentals of attacks in Sec. 8.2. As a preview,
let us consider the various steps and approaches attackers may use.

1. Reconnaissance. Alexander Graham Bell once said: ‘‘Preparation is
the key to success.’’ and thus it is for attackers also. The first thing
you do as an attacker is to get to know as much about your target as
you can. In case you plan to attack by means of spam or social engin-
eering, you may want to spend some time sifting through the online
profiles of the people you want to trick into giving up information, or
even engage in some old-fashioned dumpster diving. In this chapter,
however, we limit ourselves to technical aspects of attacks and
defenses. Reconnaissance in network security is about discovering
information that helps the attacker. Which machines can we reach
from the outside? Using which protocols? What is the topology of the
network? What services run on which machines? Et cetera. We will
discuss reconnaissance in Sec. 8.2.1

2. Sniffing and Snooping. An important step in many network attacks
concerns the interception of network packets. Certainly if sensitive
information is sent ‘‘in the clear’’ (without encryption), the ability to
intercept network traffic is very useful for the attacker, but even en-
crypted traffic can be useful—to find out the MAC addresses of com-
municating parties, who talks to whom and when, etc. Moreover, an
attacker needs to intercept the encrypted traffic to break the en-
cryption. Since an attacker has access to other people’s network traf-
fic, the ability to sniff indicates that at least the principles of least au-
thority and complete mediation are not sufficiently enforced. Sniffing
is easy on a broadcast medium such as WiFi, but how to intercept
traffic if it does not even travel over the link to which your computer
is connected? Sniffing is the topic of Sec. 8.2.2.

3. Spoofing. Another basic weapon in the hands of attackers is mas-
querading as someone else. Spoofed network traffic pretends to origi-
nate from some other machine. For instance, we can easily transmit
an Ethernet frame or IP packet with a different source address, as a
means to bypass a defense or launch denial-of-service attacks, be-
cause these protocols are very simple. However, can we also do so for
complicated protocols such as TCP? After all, if you send a TCP
SYN segment to set up a connection to a server with a spoofed IP ad-
dress, the server will reply with its SYN/ACk segment (the second
phase of the connection setup) to that IP address, so unless the

738 NETWORK SECURITY CHAP. 8

attackers are on the same network segment, they will not see the re-
ply. Without that reply, they will not know the sequence number used
by the server, and hence, they will not be able to communicate.
Spoofing circumvents the principle of complete mediation: if we can-
not determine who sent a request, we cannot properly mediate it. In
Sec. 8.2.3, we discuss spoofing in detail.

4. Disruption. The third component of our CIA triad, availability, has
grown in importance also for attackers, with devastating DoS (Denial
of Service) attacks on all sorts of organizations. Moreover, in re-
sponse to new defenses, these attacks have grown ever more sophisti-
cated. One can argue that DoS attacks abuse the fact that the prin-
ciple of least common mechanism is not rigorously enforced—there
is insufficient isolation. In Sec. 8.2.4, we will look at the evolution of
such attacks.

Using these fundamental building blocks, attackers can craft a wide range of
attacks. For instance, using reconnaissance and sniffing, attackers may find the ad-
dress of a potential victim computer and discover that it trusts a server so that any
request coming from that server is automatically accepted. By means of a
denial-of-service (disruption) attack they can bring down the real server to make
sure it does not respond to the victim any more and then send spoofed requests that
appear to originate from the server. In fact, this is exactly how one of the most
famous attacks in the history of the Internet (on the San Diego Supercomputer
Center) happened. We will discuss the attack later.

8.1.3 From Threats to Solutions

After discussing the attacker’s moves, we will consider what we can do about
them. Since most attacks arrive over the network, the security community quickly
realized that the network may also be a good place to monitor for attacks. In Sec.
8.3, we will look at firewalls, intrusion detection systems and similar defenses.

Where Secs. 8.2 and 8.3 address the systems-related issues of attackers getting
their grubby little hands on sensitive information or systems, we devote Secs.
8.4–8.9 to the more formal aspects of network security, when we discuss cryptog-
raphy and authentication. Rooted in mathematics and implemented in computer
systems, a variety of cryptographic primitives help ensure that even if network traf-
fic falls in the wrong hands, nothing too bad can happen. For instance, attackers
will still not be able to break confidentiality, tamper with the content, or suc-
cessfully replay a network conversation. There is a lot to say about cryptography,
as there are different types of primitives for different purposes (proving authentic-
ity, encryption using public keys, encryption using symmetric keys, etc.) and each
type tends to have different implementations. In Sec. 8.4, we introduce the key
concepts of cryptography, and Sections 8.5 and 8.6 discuss symmetric and public

SEC. 8.1 FUNDAMENTALS OF NETWORK SECURITY 739

key cryptography, respectively. We explore digital signatures in Sec. 8.7 and key
management in Sec. 8.8.

Sec. 8.9 discusses the fundamental problem of secure authentication .
Authentication is that which prevents spoofing altogether: the technique by which
a process verifies that its communication partner is who it is supposed to be and
not an imposter. As security became increasingly important, the community devel-
oped a variety of authentication protocols. As we shall see, they tend to build on
cryptography.

In the sections following authentication, we survey concrete examples of (often
crypto-based) network security solutions. In Sec. 8.10, we discuss network tech-
nologies that provide communication security, such as IPsec, VPNs, and Wireless
security. Section 8.11 looks at the problem of email security, including explana-
tions of PGP (Pretty Good Privacy) and S/MIME (Secure Multipurpose Internet
Mail Extension). Section 8.12 discusses security in the wider Web domain, with
descriptions of secure DNS (DNSSEC), scripting code that runs in browsers, and
the Secure Sockets Layer (SSL). As we shall see, these technologies use many of
the ideas discussed in the preceding sections.

Finally, we discuss social issues in Sec. 8.13. What are the implications for im-
portant rights, such as privacy and freedom of speech? What about copyright and
protection of intellectual property? Security is an important topic so looking at it
closely is worthwhile.

Before diving in, we should reiterate that security is an entire field of study in
its own right. In this chapter, we focus only on networks and communication, rath-
er than issues related to hardware, operating systems, applications, or users. This
means that we will not spend much time looking at bugs and there is nothing here
about user authentication using biometrics, password security, buffer overflow at-
tacks, Trojan horses, login spoofing, process isolation, or viruses. All of these top-
ics are covered at length in Chap. 9 of Modern Operating Systems (Tanenbaum and
Bos, 2015). The interested reader is referred to that book for the systems aspects
of security. Now let us begin our journey.

8.2 THE CORE INGREDIENTS OF AN ATTACK

As a first step, let us consider the fundamental ingredients that make up an at-
tack. Virtually all network attacks follow a recipe that mixes some variants of these
ingredients in a clever manner.

8.2.1 Reconnaissance

Say you are an attacker and one fine morning you decide that you will hack or-
ganization X, where do you start? You do not have much information about the or-
ganization and, physically, you are an Internet away from the nearest office, so

740 NETWORK SECURITY CHAP. 8

dumpster diving or shoulder surfing are not options. You can always use social
engineering, to try and extract sensitive information from employees by sending
them emails (spam), or phoning them, or befriending them on social networks, but
in this book, we are interested in more technical issues, related to computer net-
works. For instance, can you find out what computers exist in the organization,
how they are connected, and what services they run?

As a starting point, we assume that an attacker has a few IP addresses of ma-
chines in the organization: Web servers, name servers, login servers, or any other
machines that communicate with the outside world. The first thing the attacker will
want to do is explore that server. Which TCP and UDP ports are open? An easy
way to find out is simply to try and set up a TCP connection to each and every port
number. If the connection is successful, there was a service listening. For instance,
if the server replies on port 25, it suggests an SMTP server is present, if the con-
nection succeeds on port 80, there will likely be a Web server, etc. We can use a
similar technique for UDP (e.g., if the target replies on UDP port 53, we know it
runs a domain name service because that is the port reserved for DNS).

Port Scanning

Probing a machine to see which ports are active is known as port scanning
and may get fairly sophisticated. The technique we described earlier, where an at-
tacker sets up a full TCP connection to the target (a so-called connect scan) is not
sophisticated at all. While effective, its major drawback is that it is very visible to
the target’s security team. Many servers tend to log successful TCP connections,
and showing up in logs during the reconnaissance phase is not what an attacker
wants. To avoid this, she can make the connections deliberately unsuccessful by
means of a half-open scan. A half-open scan only pretends to set up connections:
it sends TCP packets with the SYN flag set to all port numbers of interest and
waits for the server to send the corresponding SYN/ACKs for the ports that are
open, but it never completes the three-way handshake. Most servers will not log
these unsuccessful connection attempts.

If half-open scans are better than connect scans, why do we still discuss the lat-
ter? The reason is that half-open scans require more advanced attackers. A full
connection to a TCP port is typically possible from most machines using simple
tools such as telnet, that are often available to unprivileged users. For a half-open
scan, however, attackers need to determine exactly which packets should and
should not be transmitted. Most systems do not have standard tools for nonprivi-
leged users to do this and only users with administrator privileges can perform a
half-open scan.

Connect scans (sometimes referred to as open scans) and half-open scans both
assume that it is possible to initiate a TCP connection from an arbitrary machine
outside the victim’s network. However, perhaps the firewall does not allow con-
nections to be set up from the attacker’s machine. For instance, it may block all

SEC. 8.2 THE CORE INGREDIENTS OF AN ATTACK 741

SYN segments. In that case, the attacker may have to resort to more esoteric scan-
ning techniques. For instance, rather than a SYN segment, a FIN scan will send a
TCP FIN segment, which is normally used to close a connection. At first sight,
this does not make sense because there is no connection to terminate. However, the
response to the FIN packet is often different for open ports (with listening services
behind them) and closed ports. In particular, many TCP implementations send a
TCP RST packet if the port is closed, and nothing at all if it is open. Fig. 8-2 illus-
trates these three basic scanning techniques.

Port 80 Port 80

Server ServerServer

SYN

(a) Connect scan: connection
established implies port is open

SYN

ACK

SYN/ACK

Port 80

FIN

RSTSYN/ACK

(b) Half open scan: SYN/ACK
reply implies port open

(c) FIN scan: RST reply implies
port is closed

Figure 8-2. Basic port scanning techniques. (a) Connect scan. (b) Half-open
scan. (c) FIN scan.

By this time, you are probably thinking: ‘‘If we can do this with the SYN flags
and the FIN flags, can we try some of the other flags?’’ You would be right. Any
configuration that leads to different responses for open and closed ports works. A
well-known other option is to set many flags at once (FIN, PSH, URG), something
known as Xmas scan (because your packet is lit up like a Christmas tree).

Consider Fig. 8-2(a). If a connection can be established, it means the port is
open. Now look at Fig. 8-2(b). A SYN/ACK reply implies the port is open. Final-
ly, we have Fig. 8-2(c). An RST reply means the port is open.

Probing for open ports is a first step. The next thing the attacker wants to know
is exactly what server runs on this port, what software, what version of the soft-
ware, and on what operating system. For instance, suppose we find that port 8080
is open. This is probably a Web server, although this is not certain. Even if it is a
Web server, which one is it: Nginx, Lighttpd, Apache? Suppose an attacker only
has an exploit for Apache version 2.4.37 and only on Windows, finding out all
these details, known as fingerprinting is important. Just like in our port scans, we
do so by making use of (sometimes subtle) differences in the way these servers and
operating systems reply. If all of this sounds complicated, do not worry. Like many
complicated things in computer networks, some helpful soul has sat down and

742 NETWORK SECURITY CHAP. 8

implemented all these scanning and fingerprinting techniques for you in friendly
and versatile programs such as netmap and zmap.

Traceroute

Knowing which services are active on one machine is fine and dandy, but what
about the rest of the machines in the network? Given knowledge of that first IP ad-
dress, attackers may try to ‘‘poke around’’ to see what else is available. For in-
stance, if the first machine has IP address 130.37.193.191, they might also try
130.37.193.192, 130.37.193.193, and all other possible addresses on the local net-
work. Moreover, they can use programs such as traceroute to find the path toward
the original IP address. Traceroute first sends a small batch of UDP packets to the
target with the time-to-live (TTL) value set to one, then another batch with the
TTL set to two, then a batch with a TTL of three, and so on. The first router lowers
the TTL and immediately drops the first packets (because the TTL has now
reached zero), and sends back an ICMP error message indicating that the packets
have outlived their allocated life span. The second router does the same for the sec-
ond batch of packets, the third for the third batch, until eventually some UDP pack-
ets reach the target. By collecting the ICMP error packets and their source IP ad-
dresses, traceroute is able to stitch together the overall route. Attackers can use the
results to scan even more targets by probing address ranges of routers close to the
target, thus obtaining a rudimentary knowledge of the network topology.

8.2.2 Sniffing and Snooping (with a Dash of Spoofing)

Many network attacks start with the interception of network traffic. For this at-
tack ingredient, we assume that the attacker has a presence in the victim’s network.
For instance, the attacker brings a laptop in range of the victim’s WiFi network, or
obtains access to a PC in the wired network. Sniffing on a broadcast medium, such
as WiFi or the original Ethernet implementation is easy: you just tune into the
channel at a convenient location, and listen for the bits come thundering by. To do
so, attackers set their network interfaces in promiscuous mode, to make it accept
all packets on the channel, even those destined for another host, and use tools such
as tcpdump or Wireshark to capture the traffic.

Sniffing in Switched Networks

However, in many networks, things are not so easy. Take modern Ethernet as
an example. Unlike its original incarnations, Ethernet today is no longer a proper
shared-medium network technology. All communication is switched and attackers,
even if they are connected to the same network segment, will never receive any of
the Ethernet frames destined for the other hosts on the segment. Specifically, recall

SEC. 8.2 THE CORE INGREDIENTS OF AN ATTACK 743

that Ethernet switches are self-learning and quickly build up a forwarding table.
The self-learning is simple and effective: as soon as an Ethernet frame from host A
arrives at port 1, the switch records that traffic for host A should be sent on port 1.
Now it knows that all traffic with host A’s MAC address in the destination field of
the Ethernet header should be forwarded on port 1. Likewise, it will send the traffic
for host B on port 2, and so on. Once the forwarding table is complete, the switch
will no longer send any traffic explicitly addressed to host B on any port other than
2. To sniff traffic, attackers must find a way to make exactly that happen.

There are several ways for an attacker to overcome the switching problem.
They all use spoofing. Nevertheless, we will discuss them in this section, since the
sole goal here is to sniff traffic.

The first is MAC cloning, duplicating the MAC address of the host of which
you want to sniff the traffic. If you claim to have this MAC address (by sending out
Ethernet frames with that address), the switch will duly record this in its table and
henceforth send all traffic bound for the victim to your machine instead. Of course,
this assumes that you know this address, but you should be able to obtain it from
the ARP requests sent by the target that are, after all, broadcast to all hosts in the
network segment. Another complicating factor is that your mapping will be re-
moved from the switch as soon as the original owner of the MAC address starts
communicating again, so you will have to repeat this switch table poisoning con-
stantly.

As an alternative, but in the same vein, attackers can use the fact that the
switch table has a limited size and flood the switch with Ethernet frames with fake
source addresses. The switch does not know the MAC addresses are fake and sim-
ply records them until the table is full, evicting older entries to include the new
ones if need be. Since the switch now no longer has an entry for the target host, it
reverts to broadcast for all traffic towards it. MAC flooding makes your Ethernet
behave like a broadcast medium again and party like it is 1979.

Instead of confusing the switch, attackers can also target hosts directly in a
so-called ARP spoofing or ARP poisoning attack. Recall from Chap. 5 that the
ARP protocol helps a computer find the MAC address corresponding to an IP ad-
dress. For this purpose, the ARP implementation on a machine maintains a table
with mappings from IP to MAC addresses for all hosts that have communicated
with this machine (the ARP table). Each entry has a time-to-live (TTL) of, typi-
cally, a few tens of minutes. After that, the MAC address of the remote party is
silently forgotten, assuming there is no further communication between these par-
ties (in which case the TTL is reset), and all subsequent communication requires
an ARP lookup first. The ARP lookup is simply a broadcast message that says
something like: ‘‘Folks, I am looking for the MAC address of the host with IP ad-
dress 192.168.2.24. If this is you, please let me know.’’ The lookup request con-
tains the requester’s MAC address, so host 192.168.2.24 knows where to send the
reply, and also the requester’s IP address, so 192.168.2.24 can add the IP to MAC
address of the requester to its own ARP table.

744 NETWORK SECURITY CHAP. 8

Whenever the attacker sees such an ARP request for host 192.168.2.24, she
can race to supply the requester with her own MAC address. In that case, all com-
munication for 192.168.2.24 will be sent to the attacker’s machine. In fact, since
ARP implementations tend to be simple and stateless, the attacker can often just
send ARP replies even if there was no request at all: the ARP implementation will
accept the replies at face value and store the mappings in its ARP table.

By using this same trick on both communicating parties, the attacker receives
all the traffic between them. By subsequently forwarding the frames to the right
MAC addresses again, the attacker has installed a stealthy MITM (Man-in-the-
Middle) gateway, capable of intercepting all traffic between the two hosts.

8.2.3 Spoofing (beyond ARP)

In general, spoofing means sending bytes over the network with a falsified
source address. Besides ARP packets, attackers may spoof any other type of net-
work traffic. For instance, SMTP (Simple Mail Transfer Protocol) is a friendly,
text-based protocol that is used everywhere for sending email. It uses the Mail From:
header as an indication of the source of an email, but by default it does not check
this for correctness of the email address. In other words, you can put anything you
want in this header. All replies will be sent to this address. Incidentally, the content
of the Mail From: header is not even shown to the recipient of the email message. In-
stead, your mail client shows the content of a separate From: header. However, there
is no check on this field either, and SMTP allows you to falsify it, so that the email
that you send to your fellow students informing them that they failed the course ap-
pears to have been sent by the course instructor. If you additionally set the
Mail From: header to your own email address, all replies sent by panicking students
will end up in your mailbox. What fun you will have! Less innocently, criminals
frequently spoof email to send phishing emails from seemingly trusted sources.
That email from ‘‘your doctor’’ telling you to click on the link below to get urgent
information about your medical test may lead to a site that says everything is nor-
mal, but fails to mention that it just downloaded a virus to your computer. The one
from ‘‘your bank’’ can be bad for your financial health.

ARP spoofing occurs at the link layer, and SMTP spoofing at the application
layer, but spoofing may happen at any layer in the protocol stack. Sometimes,
spoofing is easy. For instance, anyone with the ability to craft custom packets can
create fake Ethernet frames, IP datagrams, or UDP packets. You only need to
change the source address and that is it: these protocols do not have any way to
detect the tampering. Other protocols are much more challenging. For instance, in
TCP connections the endpoints maintain state, such as the sequence and acknowl-
edgement numbers, that make spoofing much trickier. Unless the attacker can sniff
or guess the appropriate sequence numbers, the spoofed TCP segments will be re-
jected by the receiver as ‘‘out-of-window.’’ As we shall see later, there are substan-
tial other difficulties as well.

SEC. 8.2 THE CORE INGREDIENTS OF AN ATTACK 745

Even the simple protocols allow attackers to cause a lot of damage. Shortly, we
will see how spoofed UDP packets may lead to devastating DoS denial-of-Service
attacks. First, however, we consider how spoofing permits attackers to intercept
what clients send to a server by spoofing UDP datagrams in DNS.

DNS Spoofing

Since DNS uses UDP for its requests and replies, spoofing should be easy. For
instance, just like in the ARP spoofing attack, we could wait for a client to send a
lookup request for domain trusted-services.com and then race with the legitimate
domain name system to provide a false reply that informs the client that trust-
ed-services.com is located at an IP address owned by us. Doing so is easy if we can
sniff the traffic coming from the client (and, thus, see the DNS lookup request to
which to respond), but what if we cannot see the request? After all, if we can al-
ready sniff the communication, intercepting it via DNS spoofing is not that useful.
Also, what if we want to intercept the traffic of many people instead of just one?

The simplest solution, if attackers share the local name server of the victim, is
that they send their own request for, say, trusted-services.com, which in turn will
trigger the local name server to do a lookup for this IP address on their behalf by
contacting the next name server in the lookup process. The attackers immediately
‘‘reply’’ to this request by the local name server with a spoofed reply that appears
to come from the next name server. The result is that the local name server stores
the falsified mapping in its cache and serves it to the victim when it finally does the
lookup for trusted-services.com (and anyone else who may be looking up the same
name). Note that even if the attackers do not share the local name, the attack may
still work, if the attacker can trick the victim into doing a lookup request with the
attacker-provided domain name. For instance, the attacker could send an email
that urges the victim to click on a link, so that the browser will do the name lookup
for the attacker. After poisoning the mapping for trusted-services.com, all subse-
quent lookups for this domain will return the false mapping.

The astute reader will object that this is not so easy at all. After all, each DNS
request carries a 16-bit query ID and a reply is accepted only if the ID in the reply
matches. But if the attackers cannot see the request, they have to guess the identi-
fier. For a single reply, the odds of getting it right is one in 65,536. On average, an
attacker would have to send tens of thousands of DNS replies in a very short time,
to falsify a single mapping at the local name server, and do so without being
noticed. Not easy.

Birthday Attack

There is an easier way that is sometimes referred to as a birthday attack (or
birthday paradox, even though strictly speaking it is not a paradox at all). The
idea for this attack comes from a technique that math professors often use in their

746 NETWORK SECURITY CHAP. 8

probability courses. The question is: how many students do you need in a class be-
fore the probability of having two people with the same birthday exceeds 50%?
Most of us expect the answer to be way over 100. In fact, probability theory says it
is just 23. With 23 people, the probability of none of them having the same birth-
day is:

365
365

×
364
365

×
363
365

× . . . ×
343
365

= 0. 497203

In other words, the probability of two students celebrating their birthday on the
same day is over 50%.

More generally, if there is some mapping between inputs and outputs with n
inputs (people, identifiers, etc.) and k possible outputs (birthdays, identifiers, etc.),
there are n(n < 1)/2 input pairs. If n(n < 1)/2 > k, the chance of having at least
one match is pretty good. Thus, approximately, a match is likely for n > 3}}}2k . The
key is that rather than look for a match for one particular student’s birthday, we
compare everyone to everyone else and any match counts.

Using this insight, the attackers first send a few hundred DNS requests for the
domain mapping they want to falsify. The local name server will try to resolve
each of these requests individually by asking the next-level name server. This is
perhaps not very smart, because why would you send multiple queries for the same
domain, but few people have argued that name servers are smart, and this is how
the popular BIND name server operated for a long time. Anyway, immediately
after sending the requests, the attackers also send hundreds of spoofed ‘‘replies’’
for the lookup, each pretending to come from the next-level name server and carry-
ing a different guess for the query ID. The local name server implicitly performs
the many-to-many comparison for us because if any reply ID matches that of a re-
quest sent by the local name server, the reply will be accepted. Note how this scen-
ario resembles that of the students’ birthdays: the name server compares all re-
quests sent by the local name server with all spoofed replies.

By poisoning the local name server for a particular Web site, say, the attackers
obtain access to the traffic sent to this site for all clients of the name server. By set-
ting up their own connections to the Web site and then relaying all communication
from the clients and all communication from the server, they now serve as a
stealthy man-in-the-middle.

Kaminsky Attack

Things may get even worse when attackers poison the mapping not just for a
single Web site, but for an entire zone. The attack is known as Dan Kaminsky’s
DNS attack and it caused a huge panic among information security officers and
network administrators the world over. To see why everybody got their knickers in
a twist, we should go into DNS lookups in a little more detail.

SEC. 8.2 THE CORE INGREDIENTS OF AN ATTACK 747

Consider a DNS lookup request for the IP address of www.cs.vu.nl. Upon
reception of this request, the local name server, in turn, sends a request either to the
root name server or, more commonly, to the TLD (top-level domain) name server
for the .nl domain. The latter is more common because the IP address of the TLD
name server is often already in the local name server’s cache. Figure 8-3 shows
this request by the local name server (asking for an ‘‘A record’’ for the domain) in
a recursive lookup with query 1337.

Transaction ID = 1337

Number of question = 1

What is the A record of www.cs.vu.nl?

UDP source port = x UDP destination port = 53

Flags The flags indicate things like:
this is a standard query and
recursion is desired (RD = 1)

Figure 8-3. A DNS request for www.cs.vu.nl.

The TLD server does not know the exact mapping, but does know the names of the
DNS servers of Vrije Universiteit which it sends back in a reply, since it does not
do recursive lookups, thank you very much. The reply, shown in Fig. 8-4 has a few
interesting fields to discuss. First, we observe, without going into details, that the
flags indicate explicitly that the server does not want to do recursive lookups, so
the remainder of the lookup will be iterative. Second, the query ID of the reply is
also 1337, matching that of the lookup. Third, the reply provides the symbolic
names of the name servers of the university ns1.vu.nl and ns2.vu.nl as NS records.
These answers are authoritative and, in principle, suffice for the local name server
to complete the query: by first performing a lookup for the A record of one of the
name servers and subsequently contacting it, it can ask for the IP address of
www.cs.vu.nl. However, doing so means that it will first contact the same TLD
name server again, this time to ask for the IP address of the university’s name ser-
ver, and as this incurs an extra round trip time, it is not very efficient. To avoid this
extra lookup, the TLD name server helpfully provides the IP addresses of the two
university name servers as additional records in its reply, each with a short TTL.
These additional records are known as DNS glue records and are the key to the
Kaminsky attack.

Here is what the attackers will do. First, they send lookup requests for a non-
existing subdomain of the university domain like:: ohdeardankaminsky.vu.nl. Since
the subdomain does not exist, no name server can provide the mapping from its

748 NETWORK SECURITY CHAP. 8

Transaction ID = 1337

Number of question = 1
Number of resource records
of authoritative servers = 2

Number of resource records
with additional info = 2

Number of answers = 0

What is the A record of www.cs.vu.nl?

Authoritative server: ns1.vu.nl

Authoritative server: ns2.vu.nl

Additional/glue record: ns1.vu.nl 130.37.129.4

130.37.129.5Additional/glue record: ns2.vu.nl

UDP source port = 53 UDP destination port = x

Flags

(same as in request!)

The reply flags may indicate that this
is a reply and recursion is not possible
(RA = 0)

Figure 8-4. A DNS reply sent by the TLD name server.

cache. The local name server will instead contact the TLD name server. Im-
mediately after sending the requests, the attackers also send many spoofed replies,
pretending to be from the TLD name server, just like in a regular DNS spoofing re-
quest, except this time, the reply indicates that the TLD name server does not know
the answer (i.e., it does not provide the A record), does not do recursive lookups,
and advises the local name server to complete the lookup by contacting one of the
university name servers. It may even provide the real names of these name servers.
The only things they falsify are the glue records, for which they supply IP ad-
dresses that they control. As a result, every lookup for any subdomain of .vu.nl will
contact the attackers’ name server which can provide a mapping to any IP address
it wants. In other words, the attackers are able to operate as man-in-the-middle for
any site in the university domain!

While not all name server implementations were vulnerable to this attack, most
of them were. Clearly, the Internet had a problem. An emergency meeting was
hastily organized in Microsoft’s headquarters in Redmond. Kaminsky later stated
that all of this was shrouded in such secrecy that ‘‘there were people on jets to
Microsoft who didn’t even know what the bug was.’’

So how did these clever people solve the problem? The answer is, they didn’t,
not really. What they did do is make it harder. Recall that a core problem of these
DNS spoofing attacks is that the query ID is only 16 bits, making it possible to
guess it, either directly or by means of a birthday attack. A larger query ID makes
the attack much less likely to succeed. However, simply changing the format of the
DNS protocol message is not so easy and would also break many existing systems.

SEC. 8.2 THE CORE INGREDIENTS OF AN ATTACK 749

The solution was to extend the length of the random ID without really extending
the query ID, by instead introducing randomness also in the UDP source port.
When sending out a DNS request to, say, the TLD name server, a patched name
server would pick a random port out of thousands of possible port numbers and use
that as the UDP source port. Now the attacker must guess not just the query ID, but
also the port number and do so before the legitimate reply arrives. The 0x20 encod-
ing that we described in Chap. 7 exploits the case-insensitive nature of DNS
queries to add even more bits to the transaction ID.

Fortunately, DNSSEC, provides a more solid defense against DNS spoofing.
DNSSEC consists of a collection of extensions to DNS that offer both integrity and
origin authentication of DNS data to DNS clients. However, DNSSEC deployment
has been extremely slow. The initial work on DNSSEC was conducted in the early
1990s and the first RFC was published by the IETF in 1997; DNSSEC is now start-
ing to see more widespread deployment, as we will discuss later in this chapter.

TCP Spoofing

Compared to the protocols discussed so far, spoofing in TCP is infinitely more
complicated. When attackers want to pretend that a TCP segment came from an-
other computer on the Internet, they not only have to guess the port number, but
also the correct sequence numbers. Moreover, keeping a TCP connection in good
shape, while injecting spoofed TCP segments is very complicated. We distinguish
between two cases:

1. Connection spoofing. The attacker sets up a new connection, pre-
tending to be someone at a different computer.

2. Connection hijacking. The attacker injects data in a connection that
already exists between two parties, pretending to be either of these
two parties.

The best-known example of TCP connection spoofing was the attack by
Kevin Mitnick against the San Diego Supercomputing Center (SDSC) on Christ-
mas day 1994. It is one of the most famous hacks in history, and the subject of sev-
eral books and movies. Incidentally, one of them is a fairly big-budget flick called
‘‘Takedown,’’ that is based on a book that was written by the system administrator
of the Supercomputing Center. (Perhaps not surprisingly, the administrator in the
movie is portrayed as a very cool guy). We discuss it here because it illustrates the
difficulties in TCP spoofing quite well.

Kevin Mitnick had a long history of being an Internet bad boy before he set his
sights on SDSC. Incidentally, attacking on Christmas day is generally a good idea
because on public holidays there are fewer users and administrators around. After
some initial reconnaissance, Mitnick discovered that an (X-terminal) computer in
SDSC had a trust relationship with another (server) machine in the same center.

750 NETWORK SECURITY CHAP. 8

Fig. 8-5(a) shows the configuration. Specifically, the server was implicitly trusted
and anyone on the server could log in on the X-terminal as administrator using re-
mote shell (rsh) without the need to enter a password. His plan was to set up a TCP
connection to the X-terminal, pretending to be the server and use it to turn off pass-
word protection altogether—in those days, this could be done by writing ‘‘+ +’’ in
the .rhosts file.

Doing so, however, was not easy. If Mitnick had sent a spoofed TCP con-
nection setup request (a SYN segment) to the X-terminal with the IP address of the
server (step 1 in Fig. 8-5(b)), the X-terminal would have sent its SYN/ACK reply
to the actual server, and this reply would have been invisible to Mitnick (step 2 in
Fig. 8-5(b)). As a result, he would not know the X-terminal’s initial sequence
number (ISN), a more-or-less random number that he would need for the third
phase of the TCP handshake (which as we saw earlier, is the first segment that may
contain data). What is worse, upon reception of the SYN/ACK, the server would
have immediately responded with an RST segment to terminate the connection set-
up (step 3 in Fig. 8-5(c)). After all, there must have been a problem, as it never
sent a SYN segment.

(a) (b) (c)

Trusted
server

(Server can login
without password)

X-terminal

Mitnick

Trusted
serverX-terminal

Not visible to Mitnick

2. SYN/ACK

1. Spoofed SYN

Mitnick

Trusted
serverX-terminal

Terminate handshake

3. RST

Mitnick

Figure 8-5. Challenges faced by Kevin Mitnick during the attack on SDSC.

Note that the problem of the invisible SYN/ACK, and hence the missing initial
sequence number (ISN), would not be a problem at all if the ISN would have been
predictable. For instance, if it would start at 0 for every new connection. However,
since the ISN was chosen more or less random for every connection, Mitnick need-
ed to find out how it was generated in order to predict the number that the X-termi-
nal would use in its invisible SYN/ACK to the server.

To overcome these challenges, Mitnick launched his attack in several steps.
First, he interacted extensively with the X-terminal using nonspoofed SYN mes-
sages (step 1 in Fig. 8-6(a)). While these TCP connection attempts did not get him
access to the machine, they did give him a sequence of ISNs. Fortunately for
Kevin, the ISNs were not that random. He stared at the numbers for a while until
he found a pattern and was confident that given one ISN, he would be able to pre-
dict the next one. Next, he made sure that the trusted server would not be able to
reset his connection attempts by launching a DoS attack that made the server unre-
sponsive (step 2 in Fig. 8-6(b)). Now the path was clear to launch his real attack.

SEC. 8.2 THE CORE INGREDIENTS OF AN ATTACK 751

After sending the spoofed SYN packet (step 3 in Fig. 8-6(b)), he predicted the se-
quence number that the X-terminal would be using in its SYN/ACK reply to the
server (step 4 in Fig. 8-6(b)) and used this in the third and final step, where he sent
the command echo ‘‘+ +’’ >> .rhosts as data to the port used by the remote shell
daemon (step 5 in Fig. 8-6(c)). After that, he could log in from any machine with-
out a password.

(a) (b) (c)

Trusted
serverX-terminal

Mitnick

Trusted
serverX-terminal

(No RST)
4. SYN/ACK

Mitnick

Trusted
serverX-terminal

Mitnick

3. Spoofed
SYN

1. Guess ISN 5. Third phase of TCP handshake
with guessed ACK number and
data: echo + + >> .rhosts

2. KILL! KILL!
KILL!

Figure 8-6. Mitnick’s attack
Since one of the main weaknesses exploited by Mitnick was the predictability

of TCP’s initial sequence numbers, the developers of network stacks have since
spent much effort on improving the randomness of TCP’s choice for these securi-
ty-sensitive numbers. As a result, the Mitnick attack is no longer practical. Modern
attackers need to find a different way to guess the initial sequence numbers, for
instance, the one employed in the connection hijacking attack we describe no

TCP Connection Hijacking

Compared to connection spoofing, connection hijacking adds even more hur-
dles to overcome. For now, let us assume that the attackers are able to eavesdrop on
an existing connection between two communicating parties (because they are on
the same network segment) and therefore know the exact sequence numbers and all
other relevant information related to this communication. In a hijacking attack, the
aim is to take over an existing connection, by injecting data into the stream.

To make this concrete, let us assume that the attacker wants to inject some data
into the TCP connection that exists between a client who is logged in to a Web ap-
plication at a server with the aim of making either the client or server receive at-
tacker-injected bytes. In our example, the sequence numbers of the last bytes sent
by the client and server are 1000 and 12,500, respectively. Assume that all data re-
ceived so far have been acknowledged and the client and server are not currently
sending any data. Now the attacker injects, say, 100 bytes into the TCP stream to
the server, by sending a spoofed packet with the client’s IP address and source port,
as well as the server’s IP address and source port. This 4-tuple is enough to make
the network stack demultiplex the data to the right socket. In addition, the attacker
provides the appropriate sequence number (1001) and acknowledgement number
(12501), so TCP will pass the 100-byte payload to the Web server.

752 NETWORK SECURITY CHAP. 8

However, there is a problem. After passing the injected bytes to the applica-
tion, the server will acknowledge them to the client: ‘‘Thank you for the bytes, I
am now ready to receive byte number 1101.’’ This message comes as a surprise to
the client, who thinks the server is confused. After all, it never sent any data, and
still intends to send byte 1001. It promptly tells the server so, by sending an empty
segment with sequence number 1001 and acknowledgement number 12501.
‘‘Wow’’ says the server, ‘‘thanks, but this looks like an old ACK. By now, I already
received the next 100 bytes. Best tell the remote party about this.’’ It resends the
ACK (seq = 1101, ack = 12501), which leads to another ACK by the client, and so
on. This phenomenon is known as an ACK storm. It will never stop until one of
the ACKs gets lost (because TCP does not retransmit dataless ACKs).

How does the attacker quell the ACK storm? There are several tricks and we
will discuss all of them. The simplest one is to tear down the connection explicitly
by sending an RST segment to the communicating parties. Alternatively, the at-
tacker may be able to use ARP poisoning to cause one of the ACKs to be sent to a
nonexisting address, forcing it to get lost. An alternative strategy is to desynchro-
nize the two sides of the connection so much that all data sent by the client will be
ignored by the server and vice versa. Doing so by sending lots of data is quite in-
volved, but an attacker can easily accomplish this at the connection setup phase.
The idea is as follows. The attacker waits until the client sets up a connection to the
server. As soon as the server replies with a SYN/ACK, the attacker sends it an RST
packet to terminate the connection, immediately followed by a SYN packet, with
the same IP address and TCP source port as the ones originally used by the client,
but a different client-side sequence number. After the subsequent SYN/ACK by the
server, the server and client are both in the established state, but they cannot com-
municate with each other, because their sequence numbers are so far apart that they
are always out-of-window. Instead, the attacker plays the role of man-in-the-middle
and relays data between the two parties, able to inject data at will.

Off-Path TCP Exploits

Some of the attacks are very complex and hard to even understand, let alone
defend against. In this section we will look at one of the more complicated ones.
In most cases, attackers are not on the same network segment and cannot sniff the
traffic between the parties. Attacks in such a scenario are known as off-path TCP
exploits and are very tricky to pull off. Even if we ignore the ACK storm, the at-
tacker needs a lot of information to inject data into an existing connection:

1. Even before the actual attack, the attackers should discover that there
is a connection between two parties on the Internet to begin with.

2. Then they should determine the port numbers to use.

3. Finally, they need the sequence numbers.

SEC. 8.2 THE CORE INGREDIENTS OF AN ATTACK 753

Quite a tall order, if you are on the other side of the Internet, but not necessar-
ily impossible, though. Decades after the Mitnick attack on SDSC, security re-
searchers discovered a new vulnerability that permitted them to perform an off-
path TCP exploit on widely deployed Linux systems. They described their attack in
a paper titled ‘‘Off-Path TCP Exploits: Global Rate Limit Considered Dangerous,’’
which is a very apt title, as we shall see. We discuss it here because it illustrates
that secret information can sometimes leak in an indirect way.

Ironically, the attack was made possible by a novel feature that was supposed
to make the system more secure, not less secure. Recall that we said off-path data
injections were very difficult because the attacker had to guess the port numbers
and the sequence numbers and getting this right in a brute force attack is unlikely.
Still, you just might get it right. Especially since you do not even have to get the
sequence number exactly right, as long as the data you send is ‘‘in-window.’’ This
means that with some (small) probability, attackers may reset, or inject data into
existing connections. In August 2010, a new TCP extension appeared in the form
of RFC 5961 to remedy this problem.

RFC 5961 changed how TCP handled the reception of SYN segments, RST
segments, and regular data segments. The reason that the vulnerability existed
only in Linux is that only Linux implemented the RFC correctly. To explain what it
did, we should consider first how TCP worked before the extension. Let us consid-
er the reception of SYN segments first. Before RFC 5961, whenever TCP received
a SYN segment for an already existing connection, it would discard the packet if it
was out-of-window, but it would reset the connection if it was in-window. The rea-
son is that upon receiving a SYN segment, TCP would assume that the other side
had restarted and thus that the existing connection was no longer valid. This is not
good, as an attacker only needs to get one SYN segment with a sequence number
somewhere in the receiver window to reset a connection. What RFC 5961 propos-
ed instead was to not reset the connection immediately, but first send a challenge
ACK to the apparent sender of the SYN. If the packet did come from the legitimate
remote peer, it means that it really did lose the previous connection and is now set-
ting up a new one. Upon receiving the challenge ACK, it will therefore send an
RST packet with the correct sequence number. The attackers cannot do this since
they never received the challenge ACK.

The same story holds for RST segments. In traditional TCP, hosts would drop
the RST packets if they are out-of-window, and reset the connection if they are
in-window. To make it harder to reset someone else’s connection, RFC 5961 pro-
posed to reset the connection immediately only if the sequence number in the RST
segment was exactly the one at the start of the receiver window (i.e., next expected
sequence number). If the sequence number is not an exact match, but still in-win-
dow, the host does not drop the connection, but sends a challenge ACK. If the
sender is legitimate, it will send a RST packet with the right sequence number.

Finally, for data segments, old-style TCP conducts two checks. First, it checks
the sequence number. If that was in-window, it also checks the acknowledgement

754 NETWORK SECURITY CHAP. 8

number. It considers acknowledgement numbers valid as long as they fall in an
(enormous) interval. Let us denote the sequence numbers of the first unacknow-
ledged byte by FUB and the sequence number of the next byte to be sent by
NEXT . All packets with acknowledgement numbers in [FUB < 2GB, NEXT] are
valid, or half the ACK number space. This is easy to get right for an attacker!
Moreover, if the acknowledgement number also happens to be in-window, it would
process the data and advance the window in the usual way. Instead, RFC 5961 says
that while we should accept packets with acknowledgement numbers that are
(roughly) in-window, we should send challenge ACKs for the ones that are in the
window [FUB < 2GB, FUB < MAXWIN], where MAXWIN is the largest window
ever advertised by the peer.

The designers of the protocol extension quickly recognized that it may lead to
a huge number of challenge ACKs, and proposed ACK throttling as a solution. In
the implementation of Linux, this meant that it would send at most 100 challenge
ACKs per second, across all connections. In other words, a global variable shared
by all connections kept track of how many challenge ACKs were sent and if the
counter reached 100, it would send no more challenge ACKs for that one-second
interval, whatever happened.

All this sounds good, but there is a problem. A single global variable repres-
ents shared state that can serve as a side channel for clever attacks. Let us take the
first obstacle the attackers must overcome: are the two parties communicating?
Recall that a challenge ACK is sent in three scenarios:

1. A SYN segment has the right source and destination IP addresses and
port numbers, regardless of the sequence number.

2. A RST segment where the sequence number is in-window.

3. A data segment where additionally the acknowledgement number is
in the challenge window.

Let us say that the attackers want to know whether a user at 130.37.20.7 is talking
to a Web server (destination port 80) at 37.60.194.64. Since the attackers need not
get the sequence number right, they only need to guess the source port number. To
do so, they set up their own connection to the Web server and send 100 RST pack-
ets in quick succession, in response to which the server sends 100 challenge ACKs,
unless it has already sent some challenge ACKs, in which case it would send fewer.
However, this is quite unlikely. In addition to the 100 RSTs, the attackers therefore
send a spoofed SYN segment, pretending to be the client at 130.37.20.7, with a
guessed port number. If the guess is wrong, nothing happens and the attackers will
still receive the 100 challenge ACKs. However, if they guessed the port number
correctly, we end up in scenario (1), where the server sends a challenge ACK to the
legitimate client. But since the server can only send 100 challenge ACKs per sec-
ond, this means that the attackers receive only 99. In other words, by counting the
number of challenge ACKs, the attackers can determine not just that the two hosts

SEC. 8.2 THE CORE INGREDIENTS OF AN ATTACK 755

are communicating, but even the (hidden) source port number of the client. Of
course, you need quite a few tries to get it right, but this is definitely doable. Also,
there are various techniques to make this more efficient.

Once the attackers have the port number they can move to the next phase of the
attack: guessing the sequence and acknowledgement numbers. The idea is quite
similar. For the sequence number the attackers again send 100 legitimate RST
packets (spurring the server into sending challenge ACKs) and an additional spoof-
ed RST packet with the right IP addresses and now known port numbers, as well
as a guessed sequence number. If the guess is in-window, we are in scenario 2.
Thus, by counting the challenge ACKs the attackers receive, they can determine
whether the guess was correct.

Finally, for the acknowledgement number they send, in addition to the 100
RST packets, a data packet with all fields filled in correctly, but with a guess for
the acknowledgement number, and apply the same trick. Now the attackers have all
the information they need to reset the connection, or inject data.

The off-path TCP attack is a good illustration of three things. First, it shows
how crazy complicated network attacks may get. Second, it is an excellent example
of a network-based side-channel attack. Such attacks leak important information
in an indirect way. In this case, the attackers learned all the connection details by
counting something that appears very unrelated. Third, the attack shows that global
shared state is the core problem of such side-channel attacks. Side-channel vulner-
abilities appear everywhere, in both software and hardware, and in all cases, the
root cause is the sharing of some important resource. Of course, we knew this al-
ready, as it is a violation of Saltzer and Schroeder’s general principle of least com-
mon mechanism which we discussed in the beginning of this chapter. From a se-
curity perspective, it is good to remember that often sharing is not caring!

Before we move to the next topic (disruption and denial of service), it is good
to know that data injection is not just nice in theory, it is actively used in practice.
After the revelations by Edward Snowden in 2013, it became clear that the NSA
(National Security Agency) ran a mass surveillance operation. One of its activities
was Quantum, a sophisticated network attack that used packet injection to redirect
targeted users connecting to popular services (such as Twitter, Gmail, or Facebook)
to special servers that would then hack the victims’ computers to give the NSA
complete control. NSA denies everything, of course. It almost even denies its own
existence. An industry joke goes:
Q: What does NSA stand for?
A: No Such Agency

8.2.4 Disruption

Attacks on availability are known as denial-of-service" attacks. They occur
when a victim receives data it cannot handle, and as a result, becomes unrespon-
sive. There are various reasons why a machine may stop responding:

756 NETWORK SECURITY CHAP. 8

1. Crashes. The attacker sends content that causes the victim to crash
or hang. An example of such an attack was the ping of death we dis-
cussed earlier.

2. Algorithmic complexity. The attacker sends data that is crafted spe-
cifically to create a lot of (algorithmic) overhead. Suppose a server al-
lows clients to send rich search queries. In that case, an algorithmic
complexity attack may consist of a number of complicated regular
expressions that incur the worst-case search time for the server.

3. Flooding/swamping. The attacker bombards the victim with such a
massive flood of requests or replies that the poor system cannot keep
up. Often, but not always, the victim eventually crashes.

Flooding attacks have become a major headache for organizations because
these days it is very easy and cheap to carry out large-scale DoS attacks. For a few
dollars or euros, you can rent a botnet consisting of many thousands of machines to
attack any address you like. If the attack data is sent from a large number of dis-
tributed machines, we refer to the attack as a DDoS, (Distributed Denial-of-Ser-
vice) attack. Specialized services on the Internet, known as booters or stressers,
offer user-friendly interfaces to help even nontechnical users to launch them.

SYN Flooding

In the old days, DDoS attacks were quite simple. For instance, you would use a
large number of hacked machines to launch a SYN flooding attack. All of these
machines would send TCP SYN segments to the server, often spoofed to make it
appear as if they came from different machines. While the server responded with a
SYN/ACK, nobody would complete the TCP handshake, leaving the server dan-
gling. That is quite expensive. A host can only keep a limited number of con-
nections in the half-open state. After that, it no longer accepts new connections.

There are many solutions for SYN flooding attacks. For instance, we may sim-
ply drop half-open connections when we reach a limit to give preference to new
connections or reduce the SYN-received timeout. An elegant and very simple
solution, supported by many systems today goes by the name of SYN cookies, also
briefly discussed in Chap. 6. Systems protected with SYN cookies use a special
algorithm to determine the initial sequence number in such a way that the server
does not need to remember anything about a connection until it receives the third
packet in the three-way handshake. Recall that a sequence number is 32 bits wide.
With SYN cookies, the server chooses the initial sequence number as follows:

1. The top 5 bits are the value of t modulo 32, where t is a slowly incre-
menting timer (e.g., a timer that increases every 64 seconds).

2. The next 3 bits are an encoding of the MSS (maximum segment size),
giving eight possible values for the MSS.

SEC. 8.2 THE CORE INGREDIENTS OF AN ATTACK 757

3. The remaining 24 bits are the value of a cryptographic hash over the
timestamp t and the source and destination IP addresses and port
numbers.

The advantage of this sequence number is that the server can just stick it in a
SYN/ACK and forget about it. If the handshake never completes, it is no skin off
its back (or off whatever it is the server has on its back). If the handshake does
complete, containing its own sequence number plus one in the acknowledgement,
the server is able to reconstruct all the state it requires to establish the connection.
First, it checks that the cryptographic hash matches a recent value of t and then
quickly rebuilds the SYN queue entry using the MSS encoded in the 3 bits. While
SYN Cookies allow only eight different segment sizes and make the sequence
number grow faster than usual, the impact is minimal in practice. What is particu-
larly nice is that the scheme is compatible with normal TCP and does not require
the client to support the same extension.

Of course, it is still possible to launch a DDoS attack even in the presence of
SYN cookies by completing the handshake, but this is more expensive for the at-
tackers (as their own machines have limits on open TCP connections also), and
more importantly, prevents TCP attacks with spoofed IP addresses.

Reflection and Amplification in DDoS Attacks

However, TCP-based DDoS attacks are not the only game in town. In recent
years, more and more of the large-scale DDoS attacks have used UDP as the tran-
sport protocol. Spoofing UDP packets is typically easy. Moreover, with UDP it is
possible to trick legitimate servers on the Internet to launch so-called reflection
attacks on a victim. In a reflection attack, the attacker sends a request with a
spoofed source address to a legitimate UDP service, for instance, a name server.
The server will then reply to the spoofed address. If we do this from a large num-
ber of servers, the deluge of UDP reply packets is more than likely to take down
the victim. Reflection attacks have two main advantages.

1. By adding the extra level of indirection, the attacker makes it difficult
for the victim to block the senders somewhere in the network (after
all, the senders are all legitimate servers).

2. Many services can amplify the attack by sending large replies to small
requests.

These amplification-based DDoS attacks have been responsible for some of the
largest volumes of DDoS attack traffic in history, easily reaching into the
Terabit-per-second range. What the attacker must do for a successful amplification
attack is to look for publicly accessible services with a large amplification factor.
For instance, where one small request packet becomes a large reply packet, or

758 NETWORK SECURITY CHAP. 8

better still, multiple large reply packets. The byte amplification factor represents
the relative gain in bytes, while the packet amplification factor represents the rela-
tive gain packets. Figure 8-7 shows the amplification factors for several popular
protocols. While these numbers may look impressive, it is good to remember that
these are averages and individual servers may have even higher ones. Interestingly,
DNSSEC, the protocol that was intended to fix the security problems of DNS, has
a much higher amplification factor than plain old DNS, exceeding 100 for some
servers. Not to be outdone, misconfigured memcached servers (fast in-memory
databases), clocked an amplification factor well exceeding 50,000 during a massive
amplification attack of 1.7 Tbps in 2018.

Protocol Byte amplification Packet amplification
NTP 556.9 3.8
DNS 54.6 2.1
Bittorrent 3.8 1.6

Figure 8-7. Amplification factors for popular protocols

Defending against DDoS Attacks

Defending against such enormous streams of traffic is not easy, but several
defenses exist. One, fairly straightforward technique is to block traffic close to the
source. The most common way to do so is using a technique called egress filter-
ing, whereby a network device such as a firewall blocks all outgoing packets
whose source IP addresses do not correspond to those inside the network where it
is attached. This, of course, requires the firewall to know what packets could possi-
bly arrive with a particular source IP address, which is typically only possible at
the edge of the network; for example, a university network might know all IP
address ranges on its campus network and could thus block outgoing traffic from
any IP address that it did not own. The dual to egress filtering is ingress filtering,
whereby a network device filters all incoming traffic with internal IP addresses.

Another measure we can take is to try and absorb the DDoS attack with spare
capacity. Doing so is expensive and may be unaffordable on an individual basis, for
all but the biggest players. Fortunately, there is no reason to do this individually.
By pooling resources that can be used by many parties, even smaller players can
afford DDoS protection. Like insurance, the assumption is that not everybody will
be attacked at the same time.

So what insurance will you get? Several organizations offer to protect your
Web site by means of cloud-based DDoS protection which uses the strength of
the cloud, to scale up capacity as and when needed, to fend off DoS attacks. At its
core, the defense consists of the cloud shielding and even hiding the IP address of
the real server. All requests are sent to proxies in the cloud that filter out the

SEC. 8.2 THE CORE INGREDIENTS OF AN ATTACK 759

malicious traffic the best they can (although doing so may not be so easy for ad-
vanced attacks), and forward the benign requests to the real server. If the number
of requests or the amount of traffic for a specific server increases, the cloud will al-
locate more resources to handling these packets. In other words, the cloud
‘‘absorbs’’ the flood of data. Typically, it may also operate as a scrubber to sani-
tize the data as well. For instance, it may remove overlapping TCP segments or
weird combinations of TCP flags, and serve in general as a WAF (Web Applica-
tion Firewall).

To relay the traffic via the cloud-based proxies Web site owners can choose be-
tween several options with different price tags. If they can afford it, they can opt
for BGP blackholing. In this case, the assumption is that the Web site owner con-
trols an entire /24 block of (16,777,216) addresses. The idea is that the owner sim-
ply withdraws the BGP announcements for that block from its own routers. In-
stead, the cloud-based security provider starts announcing this IP from its network,
so that all traffic for the server will go to the cloud first. However, not everybody
has entire network blocks to play around with, or can afford the cost of BGP
rerouting. For them, there is the more economical option to use DNS rerouting. In
this case, the Web site’s administrators change the DNS mappings in their name
servers to point to servers in the cloud, rather than the real server. In either case,
visitors will send their packets to the proxies owned by the cloud-based security
provider first and these cloud-based proxies subsequently forward the packets to
the real server.

DNS rerouting is easier to implement, but the security guarantees of the cloud-
based security provider are only strong if the real IP address of the server remains
hidden. If the attackers obtain this address, they can bypass the cloud and attack
the server directly. Unfortunately, there are many ways in which the IP address
may leak. Like FTP, some Web applications send the IP address to the remote party
in-band, so there is not a lot one could do in those cases. Alternatively, attackers
could look at historical DNS data to see what IP addresses were registered for the
server in the past. Several companies collect and sell such historical DNS data.

8.3 FIREWALLS AND INTRUSION DETECTION SYSTEMS

The ability to connect any computer, anywhere, to any other computer, any-
where, is a mixed blessing. For individuals at home, wandering around the Internet
is lots of fun. For corporate security managers, it is a nightmare. Most companies
have large amounts of confidential information online—trade secrets, product de-
velopment plans, marketing strategies, financial analyses, tax records, etc. Disclo-
sure of this information to a competitor could have dire consequences.

In addition to the danger of information leaking out, there is also a danger of
information leaking in. In particular, viruses, worms, and other digital pests can
breach security, destroy valuable data, and waste large amounts of administrators’

760 NETWORK SECURITY CHAP. 8

time trying to clean up the mess they leave. Often they are imported by careless
employees who want to play some nifty new game.

Consequently, mechanisms are needed to keep ‘‘good’’ bits in and ‘‘bad’’ bits
out. One method is to use encryption, which protects data in transit between
secure sites. However, it does nothing to keep digital pests and intruders from get-
ting onto the company’s LAN. To see how to accomplish this goal, we need to
look at firewalls.

8.3.1 Firewalls

Firewalls are just a modern adaptation of that old medieval security standby:
digging a wide and deep moat around your castle. This design forced everyone
entering or leaving the castle to pass over a single drawbridge, where they could be
inspected by the I/O police. With networks, the same trick is possible: a company
can have many LANs connected in arbitrary ways, but all traffic to or from the
company is forced through an electronic drawbridge (firewall), as shown in
Fig. 8-8. No other route exists.

Internal network DeMilitarized zone External

Internet

Email
server

Web
server

Security
perimeter

Firewall

Figure 8-8. A firewall protecting an internal network.

The firewall acts as a packet filter. It inspects each and every incoming and
outgoing packet. Packets meeting some criterion described in rules formulated by
the network administrator are forwarded normally. Those that fail the test are
unceremoniously dropped.

The filtering criterion is typically given as rules or tables that list sources and
destinations that are acceptable, sources and destinations that are blocked, and de-
fault rules about what to do with packets coming from or going to other machines.
In the common case of a TCP/IP setting, a source or destination might consist of
an IP address and a port. Ports indicate which service is desired. For example,
TCP port 25 is for mail, and TCP port 80 is for HTTP. Some ports can simply be
blocked outright. For example, a company could block incoming packets for all IP
addresses combined with TCP port 79. It was once popular for the Finger service

SEC. 8.3 FIREWALLS AND INTRUSION DETECTION SYSTEMS 761

to look up people’s email addresses but is barely used today due to its role in a
now-infamous (accidental) attack on the Internet in 1988.

Other ports are not so easily blocked. The difficulty is that network adminis-
trators want security but cannot cut off communication with the outside world.
That arrangement would be much simpler and better for security, but there would
be no end to user complaints about it. This is where arrangements such as the
DMZ (DeMilitarized Zone) shown in Fig. 8-8 come in handy. The DMZ is the
part of the company network that lies outside of the security perimeter. Anything
goes here. By placing a machine such as a Web server in the DMZ, computers on
the Internet can contact it to browse the company Web site. Now the firewall can
be configured to block incoming TCP traffic to port 80 so that computers on the In-
ternet cannot use this port to attack computers on the internal network. To allow
the Web server to be managed, the firewall can have a rule to permit connections
between internal machines and the Web server.

Firewalls have become much more sophisticated over time in an arms race
with attackers. Originally, firewalls applied a rule set independently for each pack-
et, but it proved difficult to write rules that allowed useful functionality but blocked
all unwanted traffic. Stateful firewalls map packets to connections and use
TCP/IP header fields to keep track of connections. This allows for rules that, for
example, allow an external Web server to send packets to an internal host, but only
if the internal host first establishes a connection with the external Web server. Such
a rule is not possible with stateless designs that must either pass or drop all packets
from the external Web server.

Another level of sophistication up from stateful processing is for the firewall to
implement application-level gateways. This processing involves the firewall
looking inside packets, beyond even the TCP header, to see what the application is
doing. With this capability, it is possible to distinguish HTTP traffic used for Web
browsing from HTTP traffic used for peer-to-peer file sharing. Administrators can
write rules to spare the company from peer-to-peer file sharing but allow Web
browsing that is vital for business. For all of these methods, outgoing traffic can be
inspected as well as incoming traffic, for example, to prevent sensitive documents
from being emailed outside of the company.

As the above discussion should make abundantly clear, firewalls violate the
standard layering of protocols. They are network layer devices, but they peek at
the transport and applications layers to do their filtering. This makes them fragile.
For instance, firewalls tend to rely on standard port numbering conventions to de-
termine what kind of traffic is carried in a packet. Standard ports are often used,
but not by all computers, and not by all applications either. Some peer-to-peer ap-
plications select ports dynamically to avoid being easily spotted (and blocked).
Moreover, encryption hides higher-layer information from the firewall. Finally, a
firewall cannot readily talk to the computers that communicate through it to tell
them what policies are being applied and why their connection is being dropped. It
must simply pretend that it is a broken wire. For these reasons, networking purists

762 NETWORK SECURITY CHAP. 8

consider firewalls to be a blemish on the architecture of the Internet. However, the
Internet can be a dangerous place if you are a computer. Firewalls help with that
problem, so they are likely to stay.

Even if the firewall is perfectly configured, plenty of security problems still
exist. For example, if a firewall is configured to allow in packets from only specif-
ic networks (e.g., the company’s other plants), an intruder outside the firewall can
spoof the source addresses to bypass this check. If an insider wants to ship out
secret documents, he can encrypt them or even photograph them and ship the pho-
tos as JPEG files, which bypasses any email filters. And we have not even dis-
cussed the fact that, although three-quarters of all attacks come from outside the
firewall, the attacks that come from inside the firewall, for example, from disgrun-
tled employees, may be the most damaging (Verizon, 2009).

A different problem with firewalls is that they provide a single perimeter of
defense. If that defense is breached, all bets are off. For this reason, firewalls are
often used in a layered defense. For example, a firewall may guard the entrance to
the internal network and each computer may also run its own firewall, too. Reade-
rs who think that one security checkpoint is enough clearly have not made an inter-
national flight on a scheduled airline recently. As a result, many networks now
have multiple levels of firewall, all the way down to per-host firewalls—a simple
example of defense in depth. Suffice it to say that in both airports and computer
networks if attackers have to compromise multiple independent defenses, it is
much harder for them to breach the entire system.

8.3.2 Intrusion Detection and Prevention

Besides firewalls and scrubbers, network administrators may deploy a variety
of other defensive measures, such as intrusion detection systems and intrusion pre-
vention systems, to be described shortly. As the name implies, the role of an IDS
(Intrusion Detection System) is to detect attacks—ideally before they can do any
damage. For instance, they may generate warnings early on, at the onset of an at-
tack, when it observes port scanning or a brute force ssh password attack (where
an attacker simply tries many popular passwords to try and log in), or when the
IDS finds the signature of the latest and greatest exploit in a TCP connection.
However, it may also detect attacks only at a later stage, when a system has already
been compromised and now exhibits unusual behavior.

We can categorize intrusion detection systems by considering where they work
and how they work. A HIDS (Host-based IDS) works on the end-point itself, say
a laptop or server, and scans, for instance, the behavior of the software or the net-
work traffic to and from a Web server only on that machine. In contrast, a NIDS
(Network IDS) checks the traffic for a set of machines on the network. Both have
advantages and disadvantages.

A NIDS is attractive because it protects many machines, with the ability to cor-
relate events associated with different hosts, and does not use up resources on the

SEC. 8.3 FIREWALLS AND INTRUSION DETECTION SYSTEMS 763

machines it protects. In other words, the IDS has no impact on the performance of
the machines in its protection domain. On the other hand, it is difficult to handle
issues that are system specific. As an example, suppose that a TCP connection con-
tains overlapping TCP segments: packet A contains bytes 1–200 while packet B
contains bytes 100–300. Clearly, there is overlap between the bytes in the pay-
loads. Let us also assume that the bytes in the overlapping region are different.
What is the IDS to do?

The real question is: which bytes will be used by the receiving host? If the host
uses the bytes of packet A, the IDS should check these bytes for malicious content
and ignore the ones in packet B. However, what if the host instead uses the bytes in
packet B? And what if some hosts in the network take the bytes in packet A and
some take the bytes in packet B? Even if the hosts are all the same and the IDS
knows how they reassemble the TCP streams there may still be difficulties. Sup-
pose all hosts will normally take the bytes in packet A. If the IDS looks at that
packet, it is still wrong if the destination of the packet is two or three network hops
away, and the TTL value in packet A is 1, so it never even reaches its destination.
Tricks that attackers play with TTL, or with overlapping byte ranges in IP frag-
ments or TCP segments, are called IDS evasion techniques.

Another problem with NIDS is encryption. If the network bytes are no longer
decipherable, it becomes much harder for the IDS to determine if they are mali-
cious. This is another example of one security measure (encryption) reducing the
protection offered by another (IDS). As a work-around, administrators may give
the IDS the encryption keys to the NIDS. This works, but is not ideal, as it creates
additional key management headaches. Also, observe that the IDS sees all the net-
work traffic and tends to contain a great many lines of code itself. In other words,
it may form a very juicy target for attackers. Break the IDS and you get access to
all network traffic!

A host-based IDS’ drawbacks are that it uses resources at each machine on
which it runs and that it sees only a small fraction of the events in the network. On
the other hand, it does not suffer as much from evasion problems as it can check
the traffic after it has been reassembled by the very network stack of the machine it
is trying to protect. Also, in cases such as IPsec, where packets encrypted and de-
crypted in the network layer, the IDS may check the data after decryption.

Beside the different locations of an IDS, we also have some choice in how an
IDS determines whether something poses a threat. There are two main categories.
Signature-based intrusion detection systems use patterns in terms of bytes or se-
quences of packets that are symptoms of known attacks. If you know that a UDP
packet to port 53 with 10 specific bytes at the start of the payload are part of an
exploit E, an IDS can easily scan the network traffic for this pattern and raise an
alert when it detects it. The alert is specific: (‘‘I have detected E’’) and has a high
confidence (‘‘I know that it is E’’). However, with a signature-based IDS, you only
detect threats that are known and for which a signature is available. Alternatively,
an IDS may raise an alert if it sees unusual behavior. For instance, a computer that

764 NETWORK SECURITY CHAP. 8

normally only exchanges SMTP and DNS traffic with a few IP addresses, suddenly
starts sending HTTP traffic to many completely unknown IP addresses outside the
local network. An IDS may classify this as fishy. Since such anomaly-based
intrusion detection systems, or anomaly detection systems for short, trigger on
any abnormal behavior, they are capable of detecting new attacks as well as old
ones. The disadvantage is that the alerts do not carry a lot of explanation. Hearing
that ‘‘something unusual happened in the network’’ is much less specific and much
less useful than learning that ‘‘the security camera at the gate is now attacked being
by the Hajime malware.’’

An IPS (Intrusion Prevention System) should not only detect the attack, but
also stop it. In that sense, it is a glorified firewall. For instance, when the IPS sees
a packet with the Hajime signature it can drop it on the floor rather than allowing it
to reach the security camera. To do so, the IPS should sit on the path towards the
target and take decisions about accepting or dropping traffic ‘‘on the fly.’’ In con-
trast, an IDS may reside elsewhere in the network, as long as we mirror all the traf-
fic so it sees it. Now you may ask: why bother? Why not simply deploy an IPS and
be done with the threats entirely? Part of the answer is the performance: the proc-
essing at the IDS determines the speed of the data transfer. If you have very little
time, you may not be able to analyze the data very deeply. More importantly, what
if you get it wrong? Specifically, what if your IPS decides a connection contains an
attack and drops it, even though it is benign? That is really bad if the connection is
important, for example, when your business depends on it. It may be better to raise
an alert and let someone look into it, to decide if it really was malicious.

In fact, it is important to know how often your IDS or IPS gets it right. If it
raises too many false alerts (false positives) you may end up spending a lot of time
and money chasing those. If, on the other hand, it plays conservative and often
does not raise alerts when attacks do take place (false negatives), attackers may
still easily compromise your system. The number of false positives (FPs) and false
negatives (FNs) with respect to the true positives (TPs) and true negatives (TNs)
determines the usefulness of your protection. We commonly express these proper-
ties in terms of precision and recall. Precision represents a metric that indicates
how many of the alarms that you generated were justified. In mathematical terms:
P = TP/(TP + FP). Recall indicates how many of the actual attacks you detected:
R = TP/(TP + FN). Sometimes, we combine the two values in what is known as
the F-measure: F = 2PR/(P + R). Finally, we are sometimes simply interested in
how often an IDS or IPS got things right. In that case, we use the accuracy as a
metric: A = (TP + TN)/total.

While it is always true that high values for recall and high precision are better
than low ones, the number of false negatives and false positives are typically some-
what inversely correlated: if one goes down, the other goes up. However, the trade-
off for what acceptable ranges are varies from situation to situation. If you are the
Pentagon, you care deeply about not getting compromised. In that case, you may
be willing to chase down a few more false positives, as long as you do not have

SEC. 8.3 FIREWALLS AND INTRUSION DETECTION SYSTEMS 765

many false negatives. If, on the other hand, you are a school, things may be less
critical and you may choose to not spend your money on an administrator who
spends most of his working days analyzing false alarms.

There is one final thing we need to explain about these metrics to make you
appreciate the importance of false positives. We will use an analogy similar to the
one introduced by Stefan Axelsson in an influential paper that explained why intru-
sion detection is difficult (Axelsson, 1999). Suppose that there is a disease that
affects 1 in 100,000 people in practice. Anyone diagnosed with the disease dies
within a month. Fortunately, there is a great test to see if someone is infected. The
test has 99% accuracy: if a patient is sick (S) the test will be positive (in the medi-
cal world a positive test is a bad thing!) in 99% of the cases, while for healthy
patients (H), the test will be negative (Neg) in 99% of the cases. One day you take
the test and, blow me down, the test is positive (i.e., indicates Pos). The million
dollar question: how bad is this? Phrased differently: should you say goodbye to
friends and family, sell everything you own in a yard sale, and live a (short) life of
debauchery for the remaining 30-odd days? Or not?

To answer this question we should look at the math. What we are interested in
is the probability that you have the disease given that you tested positive:
P(S|Pos). What we know is:

P(Pos|S) = 0. 99

P(Neg|H) = 0. 99

P(S) = 0. 00001

To calculate P(S|Pos), we use the famous Bayes theorem:

P(S |Pos) =
P(S)P(Pos|S)

P(Pos)
In our case, there are only two possible outcomes for the test and two possible out-
comes for you having the disease. In other words

P(Pos) = P(S)P(Pos|S) + P(H)P(Pos|H)

where P(H) = 1 < P(S),

and P(Pos|H) = 1 < P(Neg|H), so that :

P(Pos) = P(S)P(Pos|S) + (1 < P(S))(1 < P(Neg|H))

= 0. 00001 * 0. 99 + 0. 99999 * 0. 01

so that

P(S|Pos) =
0. 00001 * 0. 99

0. 00001 * 0. 99 + 0. 99999 * 0. 01
= 0. 00098

766 NETWORK SECURITY CHAP. 8

In other words, the probability of you having the disease is less than 0. 1%. No
need to panic yet. (Unless of course you did prematurely sell all your belongings in
an estate sale.)

What we see here is that the final probability is strongly dominated by the false
positive rate P(Pos|H) = 1 < P(Neg|H) = 0. 01. The reason is that the number of
incidents is so small (0. 00001) that all the other terms in the equation hardly
count. The problem is referred to as the Base Rate Fallacy. If we substitute
‘‘under attack’’ for ‘‘sick,’’ and ‘‘alert’’ for ‘‘positive test,’’ we see that the base rate
fallacy is extremely important for any IDS or IPS solution. It motivates the need
for keeping the number of false positives low.

Besides the fundamental security principles by Saltzer and Schroeder, many
people have offered additional, often very practical principles. One that is particu-
larly useful to mention here is the pragmatic principle of defense in depth. Often
it is a good idea to use multiple complementary techniques to protect a system.
For instance, to stop attacks, we may use a firewall and an intrusion detection sys-
tem and a virus scanner. While no single measure may be foolproof by itself, the
idea is that it is much harder to bypass all of them at the same time.

8.4 CRYPTOGRAPHY

Cryptography comes from the Greek words for ‘‘secret writing.’’ It has a long
and colorful history going back thousands of years. In this section, we will just
sketch some of the highlights, as background information for what follows. For a
complete history of cryptography, Kahn’s (1995) book is recommended reading.
For a comprehensive treatment of modern security and cryptographic algorithms,
protocols, and applications, and related material, see Kaufman et al. (2002). For a
more mathematical approach, see Kraft and Washington (2018). For a less mathe-
matical approach, see Esposito (2018).

Professionals make a distinction between ciphers and codes. A cipher is a
character-for-character or bit-for-bit transformation, without regard to the linguistic
structure of the message. In contrast, a code replaces one word with another word
or symbol. Codes are not used any more, although they have a glorious history.

The most successful code ever devised was used by the United States Marine
Corps during World War II in the Pacific. They simply had Navajo Marines talking
to each other in their native language using specific Navajo words for military
terms, for example, chay-da-gahi-nail-tsaidi (literally: tortoise killer) for antitank
weapon. The Navajo language is highly tonal, exceedingly complex, and has no
written form. And not a single person in Japan knew anything about it. In
September 1945, the San Diego Union published an article describing the previ-
ously secret use of the Navajos to foil the Japanese, telling how effective it was.
The Japanese never broke the code and many Navajo code talkers were awarded

SEC. 8.4 CRYPTOGRAPHY 767

high military honors for extraordinary service and bravery. The fact that the U.S.
broke the Japanese code but the Japanese never broke the Navajo code played a
crucial role in the American victories in the Pacific.

8.4.1 Introduction to Cryptography

Historically, four groups of people have used and contributed to the art of
cryptography: the military, the diplomatic corps, diarists, and lovers. Of these, the
military has had the most important role and has shaped the field over the cen-
turies. Within military organizations, the messages to be encrypted have tradition-
ally been given to poorly paid, low-level code clerks for encryption and transmis-
sion. The sheer volume of messages prevented this work from being done by a few
elite specialists.

Until the advent of computers, one of the main constraints on cryptography
had been the ability of the code clerk to perform the necessary transformations,
often on a battlefield with little equipment. An additional constraint has been the
difficulty in switching over quickly from one cryptographic method to another,
since this entails retraining a large number of people. However, the danger of a
code clerk being captured by the enemy has made it essential to be able to change
the cryptographic method instantly if need be. These conflicting requirements
have given rise to the model of Fig. 8-9.

Encryption
method, E

Passive
intruder

just
listens

Active
intruder
can alter
messages

Plaintext, P Plaintext, PDecryption
method, D

Encryption
key, K

Decryption
key, K

Ciphertext, C = EK(P)

Intruder

Figure 8-9. The encryption model (for a symmetric-key cipher).

The messages to be encrypted, known as the plaintext, are transformed by a
function that is parametrized by a key. The output of the encryption process,
known as the ciphertext, is then transmitted, often by messenger or radio. We as-
sume that the enemy, or intruder, hears and accurately copies down the complete
ciphertext. However, unlike the intended recipient, he does not know what the

768 NETWORK SECURITY CHAP. 8

decryption key is and so cannot decrypt the ciphertext easily. Sometimes the in-
truder can not only listen to the communication channel (passive intruder) but can
also record messages and play them back later, inject his own messages, or modify
legitimate messages before they get to the receiver (active intruder). The art of
breaking ciphers, known as cryptanalysis, and the art of devising them (crypto-
graphy) are collectively known as cryptology.

It will often be useful to have a notation for relating plaintext, ciphertext, and
keys. We will use C = EK (P) to mean that the encryption of the plaintext P using
key K gives the ciphertext C. Similarly, P = DK(C) represents the decryption of
C to get the plaintext again. It then follows that

DK (EK (P)) = P

This notation suggests that E and D are just mathematical functions, which they
are. The only tricky part is that both are functions of two parameters, and we have
written one of the parameters (the key) as a subscript, rather than as an argument,
to distinguish it from the message.

A fundamental rule of cryptography is that one must assume that the crypt-
analyst knows the methods used for encryption and decryption. In other words, the
cryptanalyst knows how the encryption method, E, and decryption, D, of Fig. 8-9
work in detail. The amount of effort necessary to invent, test, and install a new al-
gorithm every time the old method is compromised (or thought to be compro-
mised) has always made it impractical to keep the encryption algorithm secret.
Thinking it is secret when it is not does more harm than good.

This is where the key enters. The key consists of a (relatively) short string that
selects one of many potential encryptions. In contrast to the general method,
which may only be changed every few years, the key can be changed as often as re-
quired. Thus, our basic model is a stable and publicly known general method
parametrized by a secret and easily changed key. The idea that the cryptanalyst
knows the algorithms and that the secrecy lies exclusively in the keys is called
Kerckhoffs’ principle, named after the Dutch-born military cryptographer
Auguste Kerckhoffs who first published it in a military journal 1883 (Kerckhoffs,
1883). Thus, we have

Kerckhoffs’ principle: all algorithms must be public; only the keys are secret.

The nonsecrecy of the algorithm cannot be emphasized enough. Trying to
keep the algorithm secret, known in the trade as security by obscurity, never
works. Also, by publicizing the algorithm, the cryptographer gets free consulting
from a large number of academic cryptologists eager to break the system so they
can publish papers demonstrating how smart they are. If many experts have tried
to break the algorithm for a long time after its publication and no one has suc-
ceeded, it is probably pretty solid. (On the other hand, researchers have found
bugs in open source security solutions such as OpenSSL that were over a decade

SEC. 8.4 CRYPTOGRAPHY 769

old, so the common belief that ‘‘given enough eyeballs, all bugs are shallow’’ argu-
ment does not always work in practice.)

Since the real secrecy is in the key, its length is a major design issue. Consider
a simple combination lock. The general principle is that you enter digits in se-
quence. Everyone knows this, but the key is secret. A key length of two digits
means that there are 100 possibilities. A key length of three digits means 1000
possibilities, and a key length of six digits means a million. The longer the key, the
higher the work factor the cryptanalyst has to deal with. The work factor for
breaking the system by exhaustive search of the key space is exponential in the key
length. Secrecy comes from having a strong (but public) algorithm and a long key.
To prevent your kid brother from reading your email, perhaps even 64-bit keys will
do. For routine commercial use, perhaps 256 bits should be used. To keep major
governments at bay, much larger keys of at least 256 bits, and preferably more are
needed. Incidentally, these numbers are for symmetric encryption, where the en-
cryption and the decryption key are the same. We will discuss the differences be-
tween symmetric and asymmetric encryption later.

From the cryptanalyst’s point of view, the cryptanalysis problem has three
principal variations. When he has a quantity of ciphertext and no plaintext, he is
confronted with the ciphertext-only problem. The cryptograms that appear in the
puzzle section of newspapers pose this kind of problem. When the cryptanalyst
has some matched ciphertext and plaintext, the problem is called the known plain-
text problem. Finally, when the cryptanalyst has the ability to encrypt pieces of
plaintext of his own choosing, we have the chosen plaintext problem. Newspaper
cryptograms could be broken trivially if the cryptanalyst were allowed to ask such
questions as ‘‘What is the encryption of ABCDEFGHIJKL?’’

Novices in the cryptography business often assume that if a cipher can with-
stand a ciphertext-only attack, it is secure. This assumption is very naive. In many
cases, the cryptanalyst can make a good guess at parts of the plaintext. For ex-
ample, the first thing many computers say when you boot them up is ‘‘login:’’.
Equipped with some matched plaintext-ciphertext pairs, the cryptanalyst’s job be-
comes much easier. To achieve security, the cryptographer should be conservative
and make sure that the system is unbreakable even if his opponent can encrypt arb-
itrary amounts of chosen plaintext.

Encryption methods have historically been divided into two categories: substi-
tution ciphers and transposition ciphers. We will now deal with each of these
briefly as background information for modern cryptography.

8.4.2 Two Fundamental Cryptographic Principles

Although we will study many different cryptographic systems in the pages
ahead, two principles underlying all of them are important to understand. Pay
attention. You violate them at your peril.

770 NETWORK SECURITY CHAP. 8

Redundancy

The first principle is that all encrypted messages must contain some redun-
dancy, that is, information not needed to understand the message. An example
may make it clear why this is needed. Consider a mail-order company, The Couch
Potato (TCP), with 60,000 products. Thinking they are being very efficient, TCP’s
programmers decide that ordering messages should consist of a 16-byte customer
name followed by a 3-byte data field (1 byte for the quantity and 2 bytes for the
product number). The last 3 bytes are to be encrypted using a very long key
known only by the customer and TCP.

At first, this might seem secure, and in a sense it is because passive intruders
cannot decrypt the messages. Unfortunately, it also has a fatal flaw that renders it
useless. Suppose that a recently fired employee wants to punish TCP for firing her.
Just before leaving, she takes the customer list with her. She works through the
night writing a program to generate fictitious orders using real customer names.
Since she does not have the list of keys, she just puts random numbers in the last 3
bytes, and sends hundreds of orders off to TCP.

When these messages arrive, TCP’s computer uses the customers’ name to lo-
cate the key and decrypt the message. Unfortunately for TCP, almost every 3-byte
message is valid, so the computer begins printing out shipping instructions. While
it might seem a bit odd for a customer to order 837 sets of children’s swings or 540
sandboxes, for all the computer knows, the customer might be planning to open a
chain of franchised playgrounds. In this way, an active intruder (the ex-employee)
can cause a massive amount of trouble, even though she cannot understand the
messages her computer is generating.

This problem can be solved by the addition of redundancy to all messages. For
example, if order messages are extended to 12 bytes, the first 9 of which must be
zeros, this attack no longer works because the ex-employee can no longer generate
a large stream of valid messages. The moral of the story is that all messages must
contain considerable redundancy so that active intruders cannot send random junk
and have it be interpreted as a valid message. Thus we have:

Cryptographic principle 1: Messages must contain some redundancy

However, adding redundancy makes it easier for cryptanalysts to break mes-
sages. Suppose that the mail-order business is highly competitive, and The Couch
Potato’s main competitor, The Sofa Tuber, would dearly love to know how many
sandboxes TCP is selling, so it taps TCP’s phone line. In the original scheme with
3-byte messages, cryptanalysis was nearly impossible because after guessing a key,
the cryptanalyst had no way of telling whether it was right because almost every
message was technically legal. With the new 12-byte scheme, it is easy for the
cryptanalyst to tell a valid message from an invalid one.

In other words, upon decrypting a message, the recipient must be able to tell
whether it is valid by simply inspecting the message and perhaps performing a

SEC. 8.4 CRYPTOGRAPHY 771

simple computation. This redundancy is needed to prevent active intruders from
sending garbage and tricking the receiver into decrypting the garbage and acting on
the ‘‘plaintext.’’

However, this same redundancy makes it much easier for passive intruders to
break the system, so there is some tension here. Furthermore, the redundancy
should never be in the form of n 0s at the start or end of a message, since running
such messages through some cryptographic algorithms gives more predictable re-
sults, making the cryptanalysts’ job easier. A CRC polynomial (see Chapter 3) is
much better than a run of 0s since the receiver can easily verify it, but it generates
more work for the cryptanalyst. Even better is to use a cryptographic hash, a con-
cept we will explore later. For the moment, think of it as a better CRC.

Freshness

The second cryptographic principle is that measures must be taken to ensure
that each message received can be verified as being fresh, that is, sent very
recently. This measure is needed to prevent active intruders from playing back old
messages. If no such measures were taken, our ex-employee could tap TCP’s
phone line and just keep repeating previously sent valid messages. Thus,

Cryptographic principle 2: Some method is needed to foil replay attacks

One such measure is including in every message a timestamp valid only for, say, 60
seconds. The receiver can then just keep messages around for 60 seconds and
compare newly arrived messages to previous ones to filter out duplicates. Mes-
sages older than 60 seconds can be thrown out, since any replays sent more than 60
seconds later will be rejected as too old. The interval should not be too short (e.g.,
5 seconds) because the sender’s and receiver’s clocks may be slightly out of sync.
Measures other than timestamps will be discussed later.

8.4.3 Substitution Ciphers

In a substitution cipher, each letter or group of letters is replaced by another
letter or group of letters to disguise it. One of the oldest known ciphers is the Cae-
sar cipher, attributed to Julius Caesar. With this method, a becomes D, b becomes
E, c becomes F, . . . , and z becomes C. For example, attack becomes DWWDFN.
In our examples, plaintext will be given in lowercase letters, and ciphertext in
uppercase letters.

A slight generalization of the Caesar cipher allows the ciphertext alphabet to
be shifted by k letters, instead of always three. In this case, k becomes a key to the
general method of circularly shifted alphabets. The Caesar cipher may have fooled
Pompey, but it has not fooled anyone since.

The next improvement is to have each of the symbols in the plaintext, say, the
26 letters for simplicity, map onto some other letter. For example,

772 NETWORK SECURITY CHAP. 8

a b c d e f g h i j k l m n o p q r s t u v w x y z
QW E R T Y U I O P A S D F G H J K L Z X C V B N M

plaintext:
ciphertext:

The general system of symbol-for-symbol substitution is called a monoalphabetic
substitution cipher, with the key being the 26-letter string corresponding to the
full alphabet. For the key just given, the plaintext attack would be transformed into
the ciphertext QZZQEA.

At first glance, this might appear to be a safe system because although the
cryptanalyst knows the general system (letter-for-letter substitution), he does not
know which of the 26! 5 4 × 1026 possible keys is in use. In contrast with the Cae-
sar cipher, trying all of them is not a promising approach. Even at 1 nsec per solu-
tion, a million cores working in parallel would take 10,000 years to try all the keys.

Nevertheless, given a surprisingly small amount of ciphertext, the cipher can
be broken easily. The basic attack takes advantage of the statistical properties of
natural languages. In English, for example, e is the most common letter, followed
by t , o, a, n, i , etc. The most common two-letter combinations, or digrams, are
th, in, er, re, and an. The most common three-letter combinations, or trigrams,
are the, ing, and, and ion.

A cryptanalyst trying to break a monoalphabetic cipher would start out by
counting the relative frequencies of all letters in the ciphertext. Then he might ten-
tatively assign the most common one to e and the next most common one to t. He
would then look at trigrams to find a common one of the form tXe, which strongly
suggests that X is h. Similarly, if the pattern thYt occurs frequently, the Y probably
stands for a. With this information, he can look for a frequently occurring trigram
of the form aZW, which is most likely and. By making guesses at common letters,
digrams, and trigrams and knowing about likely patterns of vowels and consonants,
the cryptanalyst builds up a tentative plaintext, letter by letter.

Another approach is to guess a probable word or phrase. For example, consid-
er the following ciphertext from an accounting firm (blocked into groups of five
characters):

CT BMN BYC T C BT JDS QXBNS GST JC BTSWX CTQT Z CQVUJ
QJ SGS TJQZZ MNQ JS VLNSX VSZJU JDS T S JQUUS JUBX J
DS K SU JSNT K BGAQJ ZBGYQ TLCTZ BNY BN QJ SW

A likely word in a message from an accounting firm is financial. Using our know-
ledge that financial has a repeated letter (i), with four other letters between their
occurrences, we look for repeated letters in the ciphertext at this spacing. We find
12 hits, at positions 6, 15, 27, 31, 42, 48, 56, 66, 70, 71, 76, and 82. However, only
two of these, 31 and 42, have the next letter (corresponding to n in the plaintext)
repeated in the proper place. Of these two, only 31 also has the a correctly posi-
tioned, so we know that financial begins at position 30. From this point on, deduc-
ing the key is easy by using the frequency statistics for English text and looking for
nearly complete words to finish off.

SEC. 8.4 CRYPTOGRAPHY 773

8.4.4 Transposition Ciphers

Substitution ciphers preserve the order of the plaintext symbols but disguise
them. Transposition ciphers, in contrast, reorder the letters but do not disguise
them. Figure 8-10 depicts a common transposition cipher, the columnar transposi-
tion. The cipher is keyed by a word or phrase not containing any repeated letters.
In this example, MEGABUCK is the key. The purpose of the key is to order the
columns, with column 1 being under the key letter closest to the start of the alpha-
bet, and so on. The plaintext is written horizontally, in rows, padded to fill the ma-
trix if need be. The ciphertext is read out by columns, starting with the column
whose key letter is the lowest.

M E G A B U C K

7 4 5 1 2 8 3 6
p l e a s e t r Plaintext

pleasetransferonemilliondollarsto
myswissbankaccountsixtwotwo

Ciphertext

AFLLSKSOSELAWAIATOOSSCTCLNMOMANT
ESILYNTWRNNTSOWDPAEDOBUOERIRICXB

a n s f e r o n
e m i l l i o n
d o l l a r s t
o m y s w i s s
b a n k a c c o
u n t s i x t w
o t w o a b c d

Figure 8-10. A transposition cipher.

To break a transposition cipher, the cryptanalyst must first be aware that he is
dealing with a transposition cipher. By looking at the frequency of E, T, A, O, I, N,
etc., it is easy to see if they fit the normal pattern for plaintext. If so, the cipher is
clearly a transposition cipher because in such a cipher every letter represents itself,
keeping the frequency distribution intact.

The next step is to make a guess at the number of columns. In many cases, a
probable word or phrase may be guessed at from the context. For example, sup-
pose that our cryptanalyst suspects that the plaintext phrase milliondollars occurs
somewhere in the message. Observe that digrams MO, IL, LL, LA, IR, and OS oc-
cur in the ciphertext as a result of this phrase wrapping around. The ciphertext let-
ter O follows the ciphertext letter M (i.e., they are vertically adjacent in column 4)
because they are separated in the probable phrase by a distance equal to the key
length. If a key of length seven had been used, the digrams MD, IO, LL, LL, IA,
OR, and NS would have occurred instead. In fact, for each key length, a different
set of digrams is produced in the ciphertext. By hunting for the various possibili-
ties, the cryptanalyst can often easily determine the key length.

774 NETWORK SECURITY CHAP. 8

The remaining step is to order the columns. When the number of columns, k,
is small, each of the k(k < 1) column pairs can be examined in turn to see if its
digram frequencies match those for English plaintext. The pair with the best match
is assumed to be correctly positioned. Now each of the remaining columns is ten-
tatively tried as the successor to this pair. The column whose digram and trigram
frequencies give the best match is tentatively assumed to be correct. The next col-
umn is found in the same way. The entire process is continued until a potential
ordering is found. Chances are that the plaintext will be recognizable at this point
(e.g., if milloin occurs, it is clear what the error is).

Some transposition ciphers accept a fixed-length block of input and produce a
fixed-length block of output. These ciphers can be completely described by giving
a list telling the order in which the characters are to be output. For example, the
cipher of Fig. 8-10 can be seen as a 64 character block cipher. Its output is 4, 12,
20, 28, 36, 44, 52, 60, 5, 13, . . . , 62. In other words, the fourth input character, a,
is the first to be output, followed by the twelfth, f, and so on.

8.4.5 One-Time Pads

Constructing an unbreakable cipher is actually quite easy; the technique has
been known for decades. First, choose a random bit string as the key. Then con-
vert the plaintext into a bit string, for example, by using its ASCII representation.
Finally, compute the XOR (eXclusive OR) of these two strings, bit by bit. The re-
sulting ciphertext cannot be broken because in a sufficiently large sample of
ciphertext, each letter will occur equally often, as will every digram, every trigram,
and so on. This method, known as the one-time pad, is immune to all present and
future attacks, no matter how much computational power the intruder has. The
reason derives from information theory: there is simply no information in the mes-
sage because all possible plaintexts of the given length are equally likely.

An example of how one-time pads are used is given in Fig. 8-11. First, mes-
sage 1, ‘‘I love you.’’ is converted to 7-bit ASCII. Then a one-time pad, pad 1, is
chosen and XORed with the message to get the ciphertext. A cryptanalyst could
try all possible one-time pads to see what plaintext came out for each one. For ex-
ample, the one-time pad listed as pad 2 in the figure could be tried, resulting in
plaintext 2, ‘‘Elvis lives,’’ which may or may not be plausible (a subject beyond the
scope of this book). In fact, for every 11-character ASCII plaintext, there is a one-
time pad that generates it. That is what we mean by saying there is no information
in the ciphertext: you can get any message of the correct length out of it.

One-time pads are great in theory, but have a number of disadvantages in prac-
tice. To start with, the key cannot be memorized, so both sender and receiver must
carry a written copy with them. If either one is subject to capture, written keys are
clearly undesirable. Additionally, the total amount of data that can be transmitted
is limited by the amount of key available. If the spy strikes it rich and discovers a
wealth of data, he may find himself unable to transmit them back to headquarters

SEC. 8.4 CRYPTOGRAPHY 775

Message 1: 1001001 0100000 1101100 1101111 1110110 1100101 0100000 1111001 1101111 1110101 0101110

Pad 1: 1010010 1001011 1110010 1010101 1010010 1100011 0001011 0101010 1010111 1100110 0101011
Ciphertext: 0011011 1101011 0011110 0111010 0100100 0000110 0101011 1010011 0111000 0010011 0000101

Pad 2: 1011110 0000111 1101000 1010011 1010111 0100110 1000111 0111010 1001110 1110110 1110110

Plaintext 2: 1000101 1101100 1110110 1101001 1110011 0100000 1101100 1101001 1110110 1100101 1110011

Figure 8-11. The use of a one-time pad for encryption and the possibility of get-
ting any possible plaintext from the ciphertext by the use of some other pad.

because the key has been used up. Another problem is the sensitivity of the meth-
od to lost or inserted characters. If the sender and receiver get out of synchroniza-
tion, all data from then on will appear garbled.

With the advent of computers, the one-time pad might potentially become
practical for some applications. The source of the key could be a special DVD that
contains several gigabytes of information and, if transported in a DVD movie box
and prefixed by a few minutes of video, would not even be suspicious. Of course,
at gigabit network speeds, having to insert a new DVD every 30 sec could become
tedious. And the DVDs must be personally carried from the sender to the receiver
before any messages can be sent, which greatly reduces their practical utility.
Also, given that very soon nobody will use DVD or Blu-Ray discs any more, any-
one caught carrying around a box of them should perhaps be regarded with suspi-
cion.

Quantum Cryptography

Interestingly, there may be a solution to the problem of how to transmit the
one-time pad over the network, and it comes from a very unlikely source: quantum
mechanics. This area is still experimental, but initial tests are promising. If it can
be perfected and be made efficient, virtually all cryptography will eventually be
done using one-time pads since they are provably secure. Below we will briefly
explain how this method, quantum cryptography, works. In particular, we will
describe a protocol called BB84 after its authors and publication year (Bennet and
Brassard, 1984).

Suppose that a user, Alice, wants to establish a one-time pad with a second
user, Bob. Alice and Bob are called principals, the main characters in our story.
For example, Bob is a banker with whom Alice would like to do business. The
names ‘‘Alice’’ and ‘‘Bob’’ have been used for the principals in virtually every
paper and book on cryptography since Ron Rivest introduced them many years ago
(Rivest et al., 1978). Cryptographers love tradition. If we were to use ‘‘Andy’’ and
‘‘Barbara’’ as the principals, no one would believe anything in this chapter. So be
it.

If Alice and Bob could establish a one-time pad, they could use it to communi-
cate securely. The obvious question is: how can they establish it without having

776 NETWORK SECURITY CHAP. 8

previously exchanging them physically (using DVDs, books, or USB sticks)? We
can assume that Alice and Bob are at the opposite ends of an optical fiber over
which they can send and receive light pulses. However, an intrepid intruder, Trudy,
can cut the fiber to splice in an active tap. Trudy can read all the bits sent in both
directions. She can also send false messages in both directions. The situation
might seem hopeless for Alice and Bob, but quantum cryptography can shed some
new light on the subject.

Quantum cryptography is based on the fact that light comes in microscopic lit-
tle packets called photons, which have some peculiar properties. Furthermore,
light can be polarized by being passed through a polarizing filter, a fact well known
to both sunglasses wearers and photographers. If a beam of light (i.e., a stream of
photons) is passed through a polarizing filter, all the photons emerging from it will
be polarized in the direction of the filter’s axis (e.g., vertically). If the beam is now
passed through a second polarizing filter, the intensity of the light emerging from
the second filter is proportional to the square of the cosine of the angle between the
axes. If the two axes are perpendicular, no photons get through. The absolute ori-
entation of the two filters does not matter; only the angle between their axes
counts.

To generate a one-time pad, Alice needs two sets of polarizing filters. Set one
consists of a vertical filter and a horizontal filter. This choice is called a rectilin-
ear basis. A basis (plural: bases) is just a coordinate system. The second set of
filters is the same, except rotated 45 degrees, so one filter runs from the lower left
to the upper right and the other filter runs from the upper left to the lower right.
This choice is called a diagonal basis. Thus, Alice has two bases, which she can
rapidly insert into her beam at will. In reality, Alice does not have four separate
filters, but a crystal whose polarization can be switched electrically to any of the
four allowed directions at great speed. Bob has the same equipment as Alice. The
fact that Alice and Bob each have two bases available is essential to quantum
cryptography.

For each basis, Alice now assigns one direction as 0 and the other as 1. In the
example presented below, we assume she chooses vertical to be 0 and horizontal to
be 1. Independently, she also chooses lower left to upper right as 0 and upper left
to lower right as 1. She sends these choices to Bob as plaintext, fully aware that
Trudy will be able to read her message.

Now Alice picks a one-time pad, for example, based on a random number gen-
erator (a complex subject all by itself). She transfers it bit by bit to Bob, choosing
one of her two bases at random for each bit. To send a bit, her photon gun emits
one photon polarized appropriately for the basis she is using for that bit. For ex-
ample, she might choose bases of diagonal, rectilinear, rectilinear, diagonal, recti-
linear, etc. To send her one-time pad of 1001110010100110 with these bases, she
would send the photons shown in Fig. 8-12(a). Given the one-time pad and the se-
quence of bases, the polarization to use for each bit is uniquely determined. Bits
sent one photon at a time are called qubits.

SEC. 8.4 CRYPTOGRAPHY 777

Trudy's
pad

(g) x 0 x 1 x x x ? 1 x ? ? 0 x ?

0 1 0 1 1 0 0 1

x

No Yes No Yes No No No Yes Yes No Yes Yes Yes No Yes No

Bit
number

Data

Trudy's
bases

(f)

One-
time
pad

(e)

Correct
basis?

(d)

What
Bob
gets

(c)

Bob's
bases

(b)

What
Alice
sends

(a)
1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 8-12. An example of quantum cryptography.

Bob does not know which bases to use, so he picks one at random for each ar-
riving photon and just uses it, as shown in Fig. 8-12(b). If he picks the correct
basis, he gets the correct bit. If he picks the incorrect basis, he gets a random bit
because if a photon hits a filter polarized at 45 degrees to its own polarization, it
randomly jumps to the polarization of the filter or to a polarization perpendicular
to the filter, with equal probability. This property of photons is fundamental to
quantum mechanics. Thus, some of the bits are correct and some are random, but
Bob does not know which are which. Bob’s results are depicted in Fig. 8-12(c).

How does Bob find out which bases he got right and which he got wrong? He
simply tells Alice (in plaintext) which basis he used for each bit in plaintext and
she tells him which are right and which are wrong in plaintext, as shown in
Fig. 8-12(d). From this information, both of them can build a bit string from the
correct guesses, as shown in Fig. 8-12(e). On the average, this bit string will be
half the length of the original bit string, but since both parties know it, they can use
it as a one-time pad. All Alice has to do is transmit a bit string slightly more than
twice the desired length, and she and Bob will have a one-time pad of the desired
length. Done.

But wait a minute. We forgot Trudy for the moment. Suppose that she is curi-
ous about what Alice has to say and cuts the fiber, inserting her own detector and

778 NETWORK SECURITY CHAP. 8

transmitter. Unfortunately for her, she does not know which basis to use for each
photon either. The best she can do is pick one at random for each photon, just as
Bob does. An example of her choices is shown in Fig. 8-12(f). When Bob later
reports (in plaintext) which bases he used and Alice tells him (in plaintext) which
ones are correct, Trudy now knows when she got it right and when she got it
wrong. In Fig. 8-12, she got it right for bits 0, 1, 2, 3, 4, 6, 8, 12, and 13. But she
knows from Alice’s reply in Fig. 8-12(d) that only bits 1, 3, 7, 8, 10, 11, 12, and 14
are part of the one-time pad. For four of these bits (1, 3, 8, and 12), she guessed
right and captured the correct bit. For the other four (7, 10, 11, and 14), she
guessed wrong and does not know the bit transmitted. Thus, Bob knows the one-
time pad starts with 01011001, from Fig. 8-12(e) but all Trudy has is 01?1??0?,
from Fig. 8-12(g).

Of course, Alice and Bob are aware that Trudy may have captured part of their
one-time pad, so they would like to reduce the information Trudy has. They can
do this by performing a transformation on it. For example, they could divide the
one-time pad into blocks of 1024 bits, square each one to form a 2048-bit number,
and use the concatenation of these 2048-bit numbers as the one-time pad. With her
partial knowledge of the bit string transmitted, Trudy has no way to generate its
square and so has nothing. The transformation from the original one-time pad to a
different one that reduces Trudy’s knowledge is called privacy amplification. In
practice, complex transformations in which every output bit depends on every
input bit are used instead of squaring.

Poor Trudy. Not only does she have no idea what the one-time pad is, but her
presence is not a secret either. After all, she must relay each received bit to Bob to
trick him into thinking he is talking to Alice. The trouble is, the best she can do is
transmit the qubit she received, using the polarization she used to receive it, and
about half the time she will be wrong, causing many errors in Bob’s one-time pad.

When Alice finally starts sending data, she encodes it using a heavy for-
ward-error-correcting code. From Bob’s point of view, a 1-bit error in the one-time
pad is the same as a 1-bit transmission error. Either way, he gets the wrong bit. If
there is enough forward error correction, he can recover the original message
despite all the errors, but he can easily count how many errors were corrected. If
this number is far more than the expected error rate of the equipment, he knows
that Trudy has tapped the line and can act accordingly (e.g., tell Alice to switch to
a radio channel, call the police, etc.). If Trudy had a way to clone a photon so she
had one photon to inspect and an identical photon to send to Bob, she could avoid
detection, but at present no way to clone a photon perfectly is known. And even if
Trudy could clone photons, the value of quantum cryptography to establish one-
time pads would not be reduced.

Although quantum cryptography has been shown to operate over distances of
60 km of fiber, the equipment is complex and expensive. Still, the idea has
promise if it can be made to scale up and become cheaper. For more information
about quantum cryptography, see Clancy et al. (2019).

SEC. 8.5 SYMMETRIC-KEY ALGORITHMS 779

8.5 SYMMETRIC-KEY ALGORITHMS

Modern cryptography uses the same basic ideas as traditional cryptography
(transposition and substitution), but its emphasis is different. Traditionally, cryp-
tographers have used simple algorithms. Nowadays, the reverse is true: the object
is to make the encryption algorithm so complex and involuted that even if the
cryptanalyst acquires vast mounds of enciphered text of his own choosing, he will
not be able to make any sense of it at all without the key.

The first class of encryption algorithms we will study in this chapter are called
symmetric-key algorithms because they use the same key for encryption and de-
cryption. Fig. 8-9 illustrates the use of a symmetric-key algorithm. In particular,
we will focus on block ciphers, which take an n-bit block of plaintext as input and
transform it using the key into an n-bit block of ciphertext.

Cryptographic algorithms can be implemented in either hardware (for speed)
or software (for flexibility). Although most of our treatment concerns the algo-
rithms and protocols, which are independent of the actual implementation, a few
words about building cryptographic hardware may be of interest. Transpositions
and substitutions can be implemented with simple electrical circuits. Figure
8-13(a) shows a device, known as a P-box (P stands for permutation), used to ef-
fect a transposition on an 8-bit input. If the 8 bits are designated from top to bot-
tom as 01234567, the output of this particular P-box is 36071245. By appropriate
internal wiring, a P-box can be made to perform any transposition and do it at prac-
tically the speed of light since no computation is involved, just signal propagation.
This design follows Kerckhoffs’ principle: the attacker knows that the general
method is permuting the bits. What he does not know is which bit goes where.

S1

S2
P1 P4P3P2

S3

S4

S5

S6

S7

S8

Product cipher

(c)

P-box

D
ec

od
er

: 3
 to

 8

En
co

de
r:

8
to

 3

(b)

P-box

(a)

S9

S10

S11

S12

Figure 8-13. Basic elements of product ciphers. (a) P-box. (b) S-box. (c) Product.

Substitutions are performed by S-boxes, as shown in Fig. 8-13(b). In this ex-
ample, a 3-bit plaintext is entered and a 3-bit ciphertext is output. The 3-bit input
selects one of the eight lines exiting from the first stage and sets it to 1; all the
other lines are 0. The second stage is a P-box. The third stage encodes the selec-
ted input line in binary again. With the wiring shown, if the eight octal numbers
01234567 were input one after another, the output sequence would be 24506713.

780 NETWORK SECURITY CHAP. 8

In other words, 0 has been replaced by 2, 1 has been replaced by 4, etc. Again, by
appropriate wiring of the P-box inside the S-box, any substitution can be accom-
plished. Furthermore, such a device can be built in hardware to achieve great
speed, since encoders and decoders have only one or two (subnanosecond) gate
delays and the propagation time across the P-box may well be less than 1 picosec.

The real power of these basic elements only becomes apparent when we cas-
cade a whole series of boxes to form a product cipher, as shown in Fig. 8-13(c).
In this example, 12 input lines are transposed (i.e., permuted) by the first stage
(P1). In the second stage, the input is broken up into four groups of 3 bits, each of
which is substituted independently of the others (S1 to S4). This arrangement
shows a method of approximating a larger S-box from multiple, smaller S-boxes.
It is useful because small S-boxes are practical for a hardware implementation
(e.g., an 8-bit S-box can be realized as a 256-entry lookup table), but large S-boxes
become quite unwieldy to build (e.g., a 12-bit S-box would at a minimum need
212 = 4096 crossed wires in its middle stage). Although this method is less gener-
al, it is still powerful. By including a sufficiently large number of stages in the
product cipher, the output can be made to be an exceedingly complicated function
of the input.

Product ciphers that operate on k -bit inputs to produce k-bit outputs are com-
mon. One common value for k is 256. A hardware implementation usually has at
least 20 physical stages, instead of just 7 as in Fig. 8-13(c). A software imple-
mentation has a loop with at least eight iterations, each one performing S-box-type
substitutions on subblocks of the 64- to 256-bit data block, followed by a permuta-
tion that mixes the outputs of the S-boxes. Often there is a special initial permuta-
tion and one at the end as well. In the literature, the iterations are called rounds.

8.5.1 The Data Encryption Standard

In January 1977 the U.S. Government adopted a product cipher developed by
IBM as its official standard for unclassified information. This cipher, DES (Data
Encryption Standard), was widely adopted by the industry for use in security
products. It is no longer secure in its original form, but in a modified form it is still
used here and there. The original version was controversial because IBM specified
a 128-bit key but after discussions with NSA, IBM ‘‘voluntarily’’ decided to re-
duce the key length to 56 bits, which cryptographers at the time said was too small.

DES operates essentially as shown in Fig. 8-13(c), but on bigger units. The
plaintext (in binary) is broken up into 64-bit units, and each one is encrypted sepa-
rately by doing permutations and substitutions parametrized by the 56-bit key on
each of 16 consecutive rounds. In effect, it is a gigantic monoalphabetic substitu-
tion cipher on an alphabet with 64-bit characters (about which more shortly).

As early as 1979, IBM realized that 56 bits was much too short and devised a
backward compatible scheme to increase the key length by having two 56-bit keys

SEC. 8.5 SYMMETRIC-KEY ALGORITHMS 781

used at once, for a total of 112 bits worth of key (Tuchman, 1979). The new
scheme, called Triple DES is still in use and works like this.

K1

E

K2

D

K1

EP C

K1

D

K2

E

(a) (b)

K1

DC P

Figure 8-14. (a) Triple encryption using DES. (b) Decryption.

Obvious questions are: (1) Why two keys instead of three? and (2) Why en-
cryption-decryption-encryption? The answer to both is that if a computer that uses
triple DES has to talk to one that uses only single DES, it can set both keys to the
same value and then apply triple DES to give the same result as single DES. This
design made it easier to phase in triple DES. It is basically obsolete now, but still in
use in some change-resistant applications.

8.5.2 The Advanced Encryption Standard

As DES began approaching the end of its useful life, even with triple DES,
NIST (National Institute of Standards and Technology), the agency of the U.S.
Dept. of Commerce charged with approving standards for the U.S. Federal Govern-
ment, decided that the government needed a new cryptographic standard for
unclassified use. NIST was keenly aware of all the controversy surrounding DES
and well knew that if it just announced a new standard, everyone knowing anything
about cryptography would automatically assume that NSA had built a back door
into it so NSA could read everything encrypted with it. Under these conditions,
probably no one would use the standard and it would have died quietly.

So, NIST took a surprisingly different approach for a government bureaucracy:
it sponsored a cryptographic bake-off (contest). In January 1997, researchers from
all over the world were invited to submit proposals for a new standard, to be called
AES (Advanced Encryption Standard). The bake-off rules were:

1. The algorithm must be a symmetric block cipher.

2. The full design must be public.

3. Key lengths of 128, 192, and 256 bits must be supported.

4. Both software and hardware implementations must be possible.

5. The algorithm must be public or licensed on nondiscriminatory terms.

Fifteen serious proposals were made, and public conferences were organized in
which they were presented and attendees were actively encouraged to find flaws in

782 NETWORK SECURITY CHAP. 8

all of them. In August 1998, NIST selected five finalists, primarily on the basis of
their security, efficiency, simplicity, flexibility, and memory requirements (impor-
tant for embedded systems). More conferences were held and more potshots taken
at the contestants.

In October 2000, NIST announced that it had selected Rijndael, invented by
Joan Daemen and Vincent Rijmen. The name Rijndael, pronounced Rhine-doll
(more or less), is derived from the last names of the authors: Rijmen + Daemen. In
November 2001, Rijndael became the AES U.S. Government standard, published
as FIPS (Federal Information Processing Standard) 197. Owing to the extraordin-
ary openness of the competition, the technical properties of Rijndael, and the fact
that the winning team consisted of two young Belgian cryptographers (who were
unlikely to have built in a back door just to please NSA), Rijndael has become the
world’s dominant cryptographic cipher. AES encryption and decryption is now
part of the instruction set for some CPUs.

Rijndael supports key lengths and block sizes from 128 bits to 256 bits in steps
of 32 bits. The key length and block length may be chosen independently. How-
ever, AES specifies that the block size must be 128 bits and the key length must be
128, 192, or 256 bits. It is doubtful that anyone will ever use 192-bit keys, so de
facto, AES has two variants: a 128-bit block with a 128-bit key and a 128-bit block
with a 256-bit key.

In our treatment of the algorithm, we will examine only the 128/128 case be-
cause this is the commercial norm. A 128-bit key gives a key space of
2128 5 3 × 1038 keys. Even if NSA manages to build a machine with 1 billion par-
allel processors, each being able to evaluate one key per picosecond, it would take
such a machine about 1010 years to search the key space. By then the sun will have
burned out, so the folks then present will have to read the results by candlelight.

Rijndael

From a mathematical perspective, Rijndael is based on Galois field theory,
which gives it some provable security properties. However, it can also be viewed
as C code, without getting into the mathematics.

Like DES, Rijndael uses both substitution and permutations, and it also uses
multiple rounds. The number of rounds depends on the key size and block size,
being 10 for 128-bit keys with 128-bit blocks and moving up to 14 for the largest
key or the largest block. However, unlike DES, all operations involve an integral
number of bytes, to allow for efficient implementations in both hardware and soft-
ware. DES is bit oriented and software implementations are slow as a result.

The algorithm has been designed not only for great security, but also for great
speed. A good software implementation on a 2-GHz machine should be able to
achieve an encryption rate of 700 Mbps, which is fast enough to encrypt over a
dozen 4K videos in real time. Hardware implementations are faster still.

SEC. 8.5 SYMMETRIC-KEY ALGORITHMS 783

8.5.3 Cipher Modes

Despite all this complexity, AES (or DES, or any block cipher for that matter)
is basically a monoalphabetic substitution cipher using big characters (128-bit
characters for AES and 64-bit characters for DES). Whenever the same plaintext
block goes in the front end, the same ciphertext block comes out the back end. If
you encrypt the plaintext abcdefgh 100 times with the same DES or AES key, you
get the same ciphertext 100 times. An intruder can exploit this property to help
subvert the cipher.

Electronic Code Book Mode

To see how this monoalphabetic substitution cipher property can be used to
partially defeat the cipher, we will use (triple) DES because it is easier to depict
64-bit blocks than 128-bit blocks, but AES has exactly the same problem. The
straightforward way to use DES to encrypt a long piece of plaintext is to break it
up into consecutive 8-byte (64-bit) blocks and encrypt them one after another with
the same key. The last piece of plaintext is padded out to 64 bits, if need be. This
technique is known as ECB mode (Electronic Code Book mode) in analogy with
old-fashioned code books where each plaintext word was listed, followed by its
ciphertext (usually a five-digit decimal number).

In Fig. 8-15, we have the start of a computer file listing the annual bonuses a
company has decided to award to its employees. This file consists of consecutive
32-byte records, one per employee, in the format shown: 16 bytes for the name,
8 bytes for the position, and 8 bytes for the bonus. Each of the sixteen 8-byte
blocks (numbered from 0 to 15) is encrypted by (triple) DES.

Name Position Bonus

16 8 8Bytes

D a v i s , B o b b i e J a n i t o r $ 5

C o l l i n s , K i m M a n a g e r $ 1 0 0 , 0 0 0

B l a c k , R o b i n B o s s $ 5 0 0 , 0 0 0

A d a m s , L e s l i e C l e r k $ 1 0

Figure 8-15. The plaintext of a file encrypted as 16 DES blocks.

Leslie just had a fight with the boss and is not expecting much of a bonus.
Kim, in contrast, is the boss’ favorite, and everyone knows this. Leslie can get ac-
cess to the file after it is encrypted but before it is sent to the bank. Can Leslie rec-
tify this unfair situation, given only the encrypted file?

No problem at all. All Leslie has to do is make a copy of the 12th ciphertext
block (which contains Kim’s bonus) and use it to replace the fourth ciphertext

784 NETWORK SECURITY CHAP. 8

block (which contains Leslie’s bonus). Even without knowing what the 12th block
says, Leslie can expect to have a much merrier Christmas this year. (Copying the
eighth ciphertext block is also a possibility, but is more likely to be detected;
besides, Leslie is not a greedy person.)

Cipher Block Chaining Mode

To thwart this type of attack, all block ciphers can be chained in various ways
so that replacing a block the way Leslie did will cause the plaintext decrypted start-
ing at the replaced block to be garbage. One method to do so is cipher block
chaining. In this method, shown in Fig. 8-16, each plaintext block is XORed with
the previous ciphertext block before being encrypted. Consequently, the same
plaintext block no longer maps onto the same ciphertext block, and the encryption
is no longer a big monoalphabetic substitution cipher. The first block is XORed
with a randomly chosen IV (Initialization Vector), which is transmitted (in plain-
text) along with the ciphertext.

(a) (b)

+

E

IV

Key

Key

IV

P0

C0

+

E

P1

C1

E

P2

C2

E

P3

C3

D

C0

P0

D

C1

P1

D

C2

P2

D
Decryption
box

Encryption
box

Exclusive
OR

C3

P3

+ +

+ + + +

Figure 8-16. Cipher block chaining. (a) Encryption. (b) Decryption.

We can see how cipher block chaining mode works by examining the example
of Fig. 8-16. We start out by computing C0 = E(P0 XOR IV). Then we compute
C1 = E(P1 XOR C0), and so on. Decryption also uses XOR to reverse the process,
with P0 = IV XOR D(C0), and so on. Note that the encryption of block i is a
function of all the plaintext in blocks 0 through i < 1, so the same plaintext gener-
ates different ciphertext depending on where it occurs. A transformation of the
type Leslie made will result in nonsense for two blocks starting at Leslie’s bonus
field. To an astute security officer, this peculiarity might suggest where to start the
ensuing investigation.

Cipher block chaining also has the advantage that the same plaintext block will
not result in the same ciphertext block, making cryptanalysis more difficult. In
fact, this is the main reason it is used.

SEC. 8.5 SYMMETRIC-KEY ALGORITHMS 785

Cipher Feedback Mode

However, cipher block chaining has the disadvantage of requiring an entire
64-bit block to arrive before decryption can begin. For byte-by-byte encryption,
cipher feedback mode using (triple) DES is used, as shown in Fig. 8-17. For
AES, the idea is exactly the same, only a 128-bit shift register is used. In this fig-
ure, the state of the encryption machine is shown after bytes 0 through 9 have been
encrypted and sent. When plaintext byte 10 arrives, as illustrated in Fig. 8-17(a),
the DES algorithm operates on the 64-bit shift register to generate a 64-bit cipher-
text. The leftmost byte of that ciphertext is extracted and XORed with P10. That
byte is transmitted on the transmission line. In addition, the shift register is shifted
left 8 bits, causing C2 to fall off the left end, and C10 is inserted in the position just
vacated at the right end by C9 .

(a)

Key

P10 C10

C10 C10
E

64-bit shift register

C2 C3 C4 C5 C6 C7 C8 C9

Encryption
box

Select
leftmost byte

Exclusive OR

(b)

Key

C10 P10

E

64-bit shift register

C2 C3 C4 C5 C6 C7 C8 C9

+

Encryption
box

Select
leftmost byte

+

Figure 8-17. Cipher feedback mode. (a) Encryption. (b) Decryption.

Note that the contents of the shift register depend on the entire previous history
of the plaintext, so a pattern that repeats multiple times in the plaintext will be en-
crypted differently each time in the ciphertext. As with cipher block chaining, an
initialization vector is needed to start the ball rolling.

Decryption with cipher feedback mode works the same way as encryption. In
particular, the content of the shift register is encrypted, not decrypted, so the selec-
ted byte that is XORed with C10 to get P10 is the same one that was XORed with
P10 to generate C10 in the first place. As long as the two shift registers remain
identical, decryption works correctly. This is illustrated in Fig. 8-17(b).

A problem with cipher feedback mode is that if one bit of the ciphertext is ac-
cidentally inverted during transmission, the 8 bytes that are decrypted while the
bad byte is in the shift register will be corrupted. Once the bad byte is pushed out
of the shift register, correct plaintext will once again be generated thereafter. Thus,

786 NETWORK SECURITY CHAP. 8

the effects of a single inverted bit are relatively localized and do not ruin the rest of
the message, but they do ruin as many bits as the shift register is wide.

Stream Cipher Mode

Nevertheless, applications exist in which having a 1-bit transmission error
mess up 64 bits of plaintext is too large an effect. For these applications, a fourth
option, stream cipher mode, exists. It works by encrypting an initialization vector
(IV), using a key to get an output block. The output block is then encrypted, using
the key to get a second output block. This block is then encrypted to get a third
block, and so on. The (arbitrarily large) sequence of output blocks, called the
keystream, is treated like a one-time pad and XORed with the plaintext to get the
ciphertext, as shown in Fig. 8-18(a). Note that the IV is used only on the first step.
After that, the output is encrypted. Also, note that the keystream is independent of
the data, so it can be computed in advance, if need be, and is completely insensitive
to transmission errors. Decryption is shown in Fig. 8-18(b).

E

(a)

Key

Plaintext Ciphertext

Keystream

Encryption box
IV

+

E

(b)

Key

PlaintextCiphertext

Keystream

Encryption box
IV

+

Figure 8-18. A stream cipher. (a) Encryption. (b) Decryption.

Decryption occurs by generating the same keystream at the receiving side.
Since the keystream depends only on the IV and the key, it is not affected by trans-
mission errors in the ciphertext. Thus, a 1-bit error in the transmitted ciphertext
generates only a 1-bit error in the decrypted plaintext.

It is essential never to use the same (key, IV) pair twice with a stream cipher
because doing so will generate the same keystream each time. Using the same
keystream twice exposes the ciphertext to a keystream reuse attack. Imagine that
the plaintext block, P0 , is encrypted with the keystream to get P0 XOR K0. Later,
a second plaintext block, Q0, is encrypted with the same keystream to get
Q0 XOR K0 . An intruder who captures both of these ciphertext blocks can simply
XOR them together to get P0 XOR Q0, which eliminates the key. The intruder
now has the XOR of the two plaintext blocks. If one of them is known or can be
reasonably guessed, the other can also be found. In any event, the XOR of two
plaintext streams can be attacked by using statistical properties of the message.

SEC. 8.5 SYMMETRIC-KEY ALGORITHMS 787

For example, for English text, the most common character in the stream will proba-
bly be the XOR of two spaces, followed by the XOR of space and the letter ‘‘e’’
and so on. In short, equipped with the XOR of two plaintexts, the cryptanalyst has
an excellent chance of deducing both of them.

8.6 PUBLIC-KEY ALGORITHMS

Historically, distributing the keys has always been the weakest link in most
cryptosystems. No matter how strong a cryptosystem was, if an intruder could
steal the key, the system was worthless. Cryptologists always took for granted that
the encryption key and decryption key were the same (or easily derived from one
another). But the key had to be distributed to all users of the system. Thus, it
seemed as if there was an inherent problem. Keys had to be protected from theft,
but they also had to be distributed, so they could not be locked in a bank vault.

In 1976, two researchers at Stanford University, Diffie and Hellman (1976),
proposed a radically new kind of cryptosystem, one in which the encryption and
decryption keys were so different that the decryption key could not feasibly be
derived from the encryption key. In their proposal, the (keyed) encryption algo-
rithm, E, and the (keyed) decryption algorithm, D, had to meet three requirements.
These requirements can be stated simply as follows:

1. D(E(P)) = P.

2. It is exceedingly difficult to deduce D from E.

3. E cannot be broken by a chosen plaintext attack.

The first requirement says that if we apply D to an encrypted message, E(P), we
get the original plaintext message, P, back. Without this property, the legitimate
receiver could not decrypt the ciphertext. The second requirement speaks for itself.
The third requirement is needed because, as we shall see in a moment, intruders
may experiment with the algorithm to their hearts’ content. Under these condi-
tions, there is no reason that the encryption key cannot be made public.

The method works like this. A person, say, Alice, who wants to receive secret
messages, first devises two algorithms meeting the above requirements. The en-
cryption algorithm and Alice’s key are then made public, hence the name public-
key cryptography. Alice might put her public key on her home page on the Web,
for example. We will use the notation E A to mean the encryption algorithm
parametrized by Alice’s public key. Similarly, the (secret) decryption algorithm
parameterized by Alice’s private key is DA. Bob does the same thing, publicizing
E B but keeping DB secret.

Now let us see if we can solve the problem of establishing a secure channel be-
tween Alice and Bob, who have never had any previous contact. Both Alice’s en-
cryption key, E A, and Bob’s encryption key, E B, are assumed to be in publicly

788 NETWORK SECURITY CHAP. 8

readable files. Now Alice takes her first message, P, computes EB (P), and sends it
to Bob. Bob then decrypts it by applying his secret key DB [i.e., he computes
DB(EB(P)) = P]. No one else can read the encrypted message, EB(P), because
the encryption system is assumed to be strong and because it is too difficult to
derive DB from the publicly known EB. To send a reply, R, Bob transmits E A(R).
Alice and Bob can now communicate securely.

A note on terminology is perhaps useful here. Public-key cryptography re-
quires each user to have two keys: a public key, used by the entire world for en-
crypting messages to be sent to that user, and a private key, which the user needs
for decrypting messages. We will consistently refer to these keys as the public and
private keys, respectively, and distinguish them from the secret keys used for con-
ventional symmetric-key cryptography.

8.6.1 RSA

The only catch is that we need to find algorithms that indeed satisfy all three
requirements. Due to the potential advantages of public-key cryptography, many
researchers are hard at work, and some algorithms have already been published.
One good method was discovered by a group at M.I.T. (Rivest et al., 1978). It is
known by the initials of the three discoverers (Rivest, Shamir, Adleman): RSA. It
has survived all attempts to break it for more than 40 years and is considered very
strong. Much practical security is based on it. For this reason, Rivest, Shamir, and
Adleman were given the 2002 ACM Turing Award. Its major disadvantage is that
it requires keys of at least 2048 bits for good security (versus 256 bits for symmet-
ric-key algorithms), which makes it quite slow.

The RSA method is based on some principles from number theory. We will
now summarize how to use the method; for details, consult their paper.

1. Choose two large primes, p and q (say, 1024 bits).

2. n = p × q and z = (p < 1) × (q < 1).

3. Choose a number relatively prime to z and call it d.

4. Find e such that e × d = 1 mod z.

With these parameters computed in advance, we are ready to begin encryption.
Divide the plaintext (regarded as a bit string) into blocks, so that each plaintext
message, P, falls in the interval 0) P < n. Do that by grouping the plaintext into
blocks of k bits, where k is the largest integer for which 2k < n is true.

To encrypt a message, P, compute C = Pe (mod n). To decrypt C, compute
P = Cd (mod n). It can be proven that for all P in the specified range, the en-
cryption and decryption functions are inverses. To perform the encryption, you
need e and n. To perform the decryption, you need d and n. Therefore, the public
key consists of the pair (e, n) and the private key consists of (d, n).

SEC. 8.6 PUBLIC-KEY ALGORITHMS 789

The security of the method is based on the difficulty of factoring large num-
bers. If the cryptanalyst could factor the (publicly known) n, he could then find p
and q, and from these z. Equipped with knowledge of z and e, d can be found
using Euclid’s algorithm. Fortunately, mathematicians have been trying to factor
large numbers for at least 300 years, and the accumulated evidence suggests that it
is an exceedingly difficult problem.

At the time, Rivest and colleagues concluded that factoring a 500-digit num-
ber would require 1025 years using brute force. In both cases, they assumed the
best-known algorithm and a computer with a 1-µsec instruction time. With a mil-
lion chips running in parallel, each with an instruction time of 1 nsec, it would still
take 1016 years. Even if computers continue to get faster by an order of magnitude
per decade, it will be many years before factoring a 500-digit number becomes fea-
sible, at which time our descendants can simply choose p and q still larger. Howev-
er, it will probably not come as a surprise that the attacks have made progress and
are now significantly faster.

A trivial pedagogical example of how the RSA algorithm works is given in
Fig. 8-19. For this example, we have chosen p = 3 and q = 11, giving n = 33 and
z = 20 (since(3 < 1) × (11 < 1) = 20). A suitable value for d is d = 7, since 7 and
20 have no common factors. With these choices, e can be found by solving the
equation 7e = 1 (mod 20), which yields e = 3. The ciphertext, C, corresponding
to a plaintext message, P, is given by C = P3 (mod 33). The ciphertext is de-
crypted by the receiver by making use of the rule P = C7 (mod 33). The figure
shows the encryption of the plaintext ‘‘SUZANNE’’ as an example.

Symbolic

S
U
Z
A
N
N
E

Symbolic

S
U
Z
A
N
N
E

Numeric

Plaintext (P) Ciphertext (C) After decryption

Receiver's computationSender's computation

19
21
26
01
14
14
05

19
21
26
01
14
14
05

P3

6859
9261

17576
1

2744
2744

125

P3 (mod 33) C7 (mod 33)

28
21
20

1
5
5

26

C7

13492928512
1801088541
1280000000

1
78125
78125

8031810176

Figure 8-19. An example of the RSA algorithm.

Because the primes chosen for this example are so small, P must be less than
33, so each plaintext block can contain only a single character. The result is a
monoalphabetic substitution cipher, not very impressive. If instead we had chosen
p and q 5 2512, we would have n 5 21024, so each block could be up to 1024 bits or
128 eight-bit characters, versus 8 characters for DES and 16 characters for AES.

790 NETWORK SECURITY CHAP. 8

It should be pointed out that using RSA as we have described is similar to
using a symmetric algorithm in ECB mode—the same input block gives the same
output block. Therefore, some form of chaining is needed for data encryption.
However, in practice, most RSA-based systems use public-key cryptography pri-
marily for distributing one-time 128- or 256-bit session keys for use with some
symmetric-key algorithm such as AES. RSA is too slow for actually encrypting
large volumes of data but is widely used for key distribution.

8.6.2 Other Public-Key Algorithms

Although RSA is still widely used, it is by no means the only public-key algo-
rithm known. The first public-key algorithm was the knapsack algorithm (Merkle
and Hellman, 1978). The idea here is that someone owns a very large number of
objects, each with a different weight. The owner encodes the message by secretly
selecting a subset of the objects and placing them in the knapsack. The total
weight of the objects in the knapsack is made public, as is the list of all possible
objects and their corresponding weights. The list of objects in the knapsack is kept
secret. With certain additional restrictions, the problem of figuring out a possible
list of objects with the given weight was thought to be computationally infeasible
and formed the basis of the public-key algorithm.

The algorithm’s inventor, Ralph Merkle, was quite sure that this algorithm
could not be broken, so he offered a $100 reward to anyone who could break it.
Adi Shamir (the ‘‘S’’ in RSA) promptly broke it and collected the reward. Unde-
terred, Merkle strengthened the algorithm and offered a $1000 reward to anyone
who could break the new one. Ronald Rivest (the ‘‘R’’ in RSA) promptly broke
the new one and collected the reward. Merkle did not dare offer $10,000 for the
next version, so ‘‘A’’ (Leonard Adleman) was out of luck. Nevertheless, the knap-
sack algorithm is not considered secure and is not used in practice any more.

Other public-key schemes are based on the difficulty of computing discrete
logarithms or on elliptic curves (Menezes and Vanstone, 1993). Algorithms that
use discrete algorithms have been invented by El Gamal (1985) and Schnorr
(1991). Elliptic curves, meanwhile are based on a branch of mathematics that is not
so well-known except among the elliptic curve illuminati.

A few other schemes exist, but those based on the difficulty of factoring large
numbers, computing discrete logarithms modulo a large prime, and elliptic curves,
are by far the most important. These problems are thought to be genuinely difficult
to solve—mathematicians have been working on them for many years without any
great breakthroughs. Elliptic curves in particular enjoy a lot of interest because the
elliptic curve discrete algorithm problems are even harder than those of factoriza-
tion. The Dutch mathematician Arjen Lenstra proposed a way to compare crypto-
graphic algorithms by computing how much energy you need to break them.
According to this calculation, breaking a 228-bit RSA key takes the energy equiv-
alent to that needed to boil less than a teaspoon of water. Breaking an elliptic curve

SEC. 8.6 PUBLIC-KEY ALGORITHMS 791

of that length would require as much energy as you would need to boil all the wa-
ter on the planet. Paraphrasing Lenstra: with all water evaporated, including that in
the bodies of would-be code breakers, the problem would run out of steam.

8.7 DIGITAL SIGNATURES

The authenticity of many legal, financial, and other documents is determined
by the presence or absence of an authorized handwritten signature. And photocop-
ies do not count. For computerized message systems to replace the physical tran-
sport of paper-and-ink documents, a method must be found to allow documents to
be signed in an unforgeable way.

The problem of devising a replacement for handwritten signatures is a difficult
one. Basically, what is needed is a system by which one party can send a signed
message to another party in such a way that the following conditions hold:

1. The receiver can verify the claimed identity of the sender.

2. The sender cannot later repudiate the contents of the message.

3. The receiver cannot possibly have concocted the message himself.

The first requirement is needed, for example, in financial systems. When a cus-
tomer’s computer orders a bank’s computer to buy a ton of gold, the bank’s com-
puter needs to be able to make sure that the computer giving the order really be-
longs to the customer whose account is to be debited. In other words, the bank has
to authenticate the customer (and the customer has to authenticate the bank).

The second requirement is needed to protect the bank against fraud. Suppose
that the bank buys the ton of gold, and immediately thereafter the price of gold
drops sharply. A dishonest customer might then proceed to sue the bank, claiming
that he never issued any order to buy gold. When the bank produces the message
in court, the customer may deny having sent it. The property that no party to a
contract can later deny having signed it is called nonrepudiation. The digital sig-
nature schemes that we will now study help provide it.

The third requirement is needed to protect the customer in the event that the
price of gold shoots up and the bank tries to construct a signed message in which
the customer asked for one bar of gold instead of one ton. In this fraud scenario,
the bank just keeps the rest of the gold for itself.

8.7.1 Symmetric-Key Signatures

One approach to digital signatures is to have a central authority that knows
everything and whom everyone trusts, say, Big Brother (BB). Each user then
chooses a secret key and carries it by hand to BB’s office. Thus, only Alice and BB

792 NETWORK SECURITY CHAP. 8

know Alice’s secret key, K A, and so on. In case you get lost with all notations, with
symbols and subscripts, have a look at Fig. 8-20 which summarizes the most im-
portant notations for this and subsequent sections.

Term Description
A Alice (sender)
B Bob the Banker (recipient)
P Plaintext message Alice wants to send
BB Big Brother (a trusted central authority)
t Timestamp (to ensure freshness)
RA Random number chosen by Alice

Symmetric key
K A Alice’s secret key (analogous for K B, KBB, etc.)
K A(M) Message M encrypted/decrypted with Alice’s secret key

Asymmetric keys
DA Alice’s private key (analogous for DB, etc.)
E A Alice’s public key (analogous for E B, etc.)
DA(M) Message M encrypted/decrypted with Alice’s private key
E A(M) Message M encrypted/decrypted with Alice’s public key

Digest
MD(P) Message Digest of plaintext P)

Figure 8-20. Alice wants to send a message to her banker: a legend to keys and symbols

When Alice wants to send a signed plaintext message, P, to her banker, Bob,
she generates K A(B, R A, t, P), where B is Bob’s identity, RA is a random number
chosen by Alice, t is a timestamp to ensure freshness, and K A(B, RA, t , P) is the
message encrypted with her key, K A. Then she sends it as depicted in Fig. 8-21.
BB sees that the message is from Alice, decrypts it, and sends a message to Bob as
shown. The message to Bob contains the plaintext of Alice’s message and also the
signed message K BB(A, t, P). Bob now carries out Alice’s request.

A, KA (B, RA, t, P)

Bo
b

Al
ic

e

BB

KB (A, RA, t, P, KBB (A, t, P))

1

2

Figure 8-21. Digital signatures with Big Brother.

What happens if Alice later denies sending the message? Step 1 is that every-
one sues everyone (at least, in the United States). Finally, when the case comes to
court and Alice vigorously denies sending Bob the disputed message, the judge

SEC. 8.7 DIGITAL SIGNATURES 793

will ask Bob how he can be sure that the disputed message came from Alice and
not from Trudy. Bob first points out that BB will not accept a message from Alice
unless it is encrypted with KA, so there is no possibility of Trudy sending BB a
false message from Alice without BB detecting it immediately.

Bob then dramatically produces Exhibit A: KBB(A, t , P). Bob says that this is
a message signed by BB that proves Alice sent P to Bob. The judge then asks BB
(whom everyone trusts) to decrypt Exhibit A. When BB testifies that Bob is telling
the truth, the judge decides in favor of Bob. Case dismissed.

One potential problem with the signature protocol of Fig. 8-21 is Trudy replay-
ing either message. To minimize this problem, timestamps are used throughout.
Furthermore, Bob can check all recent messages to see if R A was used in any of
them. If so, the message is discarded as a replay. Note that based on the time-
stamp, Bob will reject very old messages. To guard against instant replay attacks,
Bob just checks the R A of every incoming message to see if such a message has
been received from Alice in the past hour. If not, Bob can safely assume this is a
new request.

8.7.2 Public-Key Signatures

A structural problem with using symmetric-key cryptography for digital signa-
tures is that everyone has to agree to trust Big Brother. Furthermore, Big Brother
gets to read all signed messages. The most logical candidates for running the Big
Brother server are the government, the banks, the accountants, and the lawyers.
Unfortunately, none of these inspire total confidence in all citizens. Hence, it
would be nice if signing documents did not require a trusted authority.

Fortunately, public-key cryptography can make an important contribution in
this area. Let us assume that the public-key encryption and decryption algorithms
have the property that E(D(P)) = P, in addition, of course, to the usual property
that D(E(P)) = P. (RSA has this property, so the assumption is not unreasonable.)
Assuming that this is the case, Alice can send a signed plaintext message, P, to
Bob by transmitting EB(DA(P)). Note carefully that Alice knows her own (pri-
vate) key, DA, as well as Bob’s public key, EB, so constructing this message is
something Alice can do.

When Bob receives the message, he transforms it using his private key, as
usual, yielding D A(P), as shown in Fig. 8-22. He stores this text in a safe place
and then applies EA to get the original plaintext.

To see how the signature property works, suppose that Alice subsequently
denies having sent the message P to Bob. When the case comes up in court, Bob
can produce both P and D A(P). The judge can easily verify that Bob indeed has a
valid message encrypted by D A by simply applying E A to it. Since Bob does not
know what Alice’s private key is, the only way Bob could have acquired a message
encrypted by it is if Alice did indeed send it. While in jail for perjury and fraud,
Alice will have much time to devise interesting new public-key algorithms.

794 NETWORK SECURITY CHAP. 8

Bob's
public key,

EB

Alice's
private key,

DA

Bob's
private key,

DB

DA(P) DA(P)EB (DA(P))

Transmission line
Alice's computer Bob's computer

P P
Alice's

public key,
EA

Figure 8-22. Digital signatures using public-key cryptography.

Although using public-key cryptography for digital signatures is an elegant
scheme, there are problems that are related to the environment in which they oper-
ate rather than to the basic algorithm. For one thing, Bob can prove that a message
was sent by Alice only as long as DA remains secret. If Alice discloses her secret
key, the argument no longer holds because anyone could have sent the message, in-
cluding Bob himself.

The problem might arise, for example, if Bob is Alice’s stockbroker. Suppose
that Alice tells Bob to buy a certain stock or bond. Immediately thereafter, the
price drops sharply. To repudiate her message to Bob, Alice runs to the police
claiming that her home was burglarized and the computer holding her key was
stolen. Depending on the laws in her state or country, she may or may not be
legally liable, especially if she claims not to have discovered the break-in until get-
ting home from work, several hours after it allegedly happened.

Another problem with the signature scheme is what happens if Alice decides to
change her key. Doing so is clearly legal, and it is probably a good idea to do so
periodically. If a court case later arises, as described above, the judge will apply
the current E A to DA(P) and discover that it does not produce P. Bob will look
pretty stupid at this point.

In principle, any public-key algorithm can be used for digital signatures. The
de facto industry standard is the RSA algorithm. Many security products use it.
However, in 1991, NIST proposed using a variant of the El Gamal public-key algo-
rithm for its new Digital Signature Standard (DSS). El Gamal gets its security
from the difficulty of computing discrete logarithms, rather than from the difficulty
of factoring large numbers.

As usual when the government tries to dictate cryptographic standards, there
was an uproar. DSS was criticized for being

1. Too secret (NSA designed the protocol for using El Gamal).
2. Too slow (10 to 40 times slower than RSA for checking signatures).
3. Too new (El Gamal had not yet been thoroughly analyzed).
4. Too insecure (fixed 512-bit key).

In a subsequent revision, the fourth point was rendered moot when keys up to 1024
bits were allowed. Nevertheless, the first two points remain valid.

SEC. 8.7 DIGITAL SIGNATURES 795

8.7.3 Message Digests

One criticism of signature methods is that they often couple two distinct func-
tions: authentication and secrecy. Often, authentication is needed but secrecy is not
always needed. Also, getting an export license is often easier if the system in ques-
tion provides only authentication but not secrecy. Below we will describe an
authentication scheme that does not require encrypting the entire message.

This scheme is based on the idea of a one-way hash function that takes an arbi-
trarily long piece of plaintext and from it computes a fixed-length bit string. This
hash function, MD, often called a message digest, has four important properties:

1. Given P, it is easy to compute MD(P).

2. Given MD(P), it is effectively impossible to find P.

3. Given P, no one can find Pv such that MD(Pv) = MD(P).

4. A change to the input of even 1 bit produces a very different output.

To meet criterion 3, the hash should be at least 128 bits long, preferably more. To
meet criterion 4, the hash must mangle the bits very thoroughly, not unlike the
symmetric-key encryption algorithms we have seen.

Computing a message digest from a piece of plaintext is much faster than en-
crypting that plaintext with a public-key algorithm, so message digests can be used
to speed up digital signature algorithms. To see how this works, consider the sig-
nature protocol of Fig. 8-21 again. Instead, of signing P with K BB(A, t, P), BB
now computes the message digest by applying MD to P, yielding MD(P). BB
then encloses K BB(A, t, MD(P)) as the fifth item in the list encrypted with KB that
is sent to Bob, instead of KBB(A, t , P).

If a dispute arises, Bob can produce both P and KBB(A, t , MD(P)). After Big
Brother has decrypted it for the judge, Bob has MD(P), which is guaranteed to be
genuine, and the alleged P. However, since it is effectively impossible for Bob to
find any other message that gives this hash, the judge will easily be convinced that
Bob is telling the truth. Using message digests in this way saves both encryption
time and message transport costs.

Message digests work in public-key cryptosystems, too, as shown in Fig. 8-23.
Here, Alice first computes the message digest of her plaintext. She then signs the
message digest and sends both the signed digest and the plaintext to Bob. If Trudy
replaces P along the way, Bob will see this when he computes MD(P).

SHA-1, SHA-2 and SHA-3

A variety of message digest functions have been proposed. For a long time,
one of the most widely used functions was SHA-1 (Secure Hash Algorithm 1)
(NIST, 1993). Before we commence our explanation, it is important to realize that

796 NETWORK SECURITY CHAP. 8

P, DA (MD (P)) Bo
b

Al
ic

e

Figure 8-23. Digital signatures using message digests.

SHA-1 has been broken since 2017 and is now being phased out by many systems,
but more about this later. Like all message digests, SHA-1 operates by mangling
bits in a sufficiently complicated way that every output bit is affected by every
input bit. SHA-1 was developed by NSA and blessed by NIST in FIPS 180-1. It
processes input data in 512-bit blocks, and it generates a 160-bit message digest.
A typical way for Alice to send a nonsecret but signed message to Bob is illustrat-
ed in Fig. 8-24. Here, her plaintext message is fed into the SHA-1 algorithm to get
a 160-bit SHA-1 hash. Alice then signs the hash with her RSA private key and
sends both the plaintext message and the signed hash to Bob.

SHA-1
algorithm H

160-Bit SHA-1
hash of M

DA(H)

Signed hash
RSA

algorithm

Alice's
private key, DA

Sent
to
Bob

Alice's
plaintext
message

M
(arbitrary
length)

Figure 8-24. Use of SHA-1 and RSA for signing nonsecret messages.

After receiving the message, Bob computes the SHA-1 hash himself and also
applies Alice’s public key to the signed hash to get the original hash, H. If the two
agree, the message is considered valid. Since there is no way for Trudy to modify
the (plaintext) message while it is in transit and produce a new one that hashes to
H, Bob can easily detect any changes Trudy has made to the message. For mes-
sages whose integrity is important but whose contents are not secret, the scheme of
Fig. 8-24 is widely used. For a relatively small cost in computation, it guarantees
that any modifications made to the plaintext message in transit can be detected
with very high probability.

New versions of SHA-1 have been developed that produce hashes of 224, 256,
384, and 512 bits, respectively. Collectively, these versions are called SHA-2. Not
only are these hashes longer than SHA-1 hashes, but the digest function has been
changed to combat some potential weaknesses of SHA-1. The weaknesses are ser-
ious. In 2017, SHA-1 was broken by a team of researchers from Google and the

SEC. 8.7 DIGITAL SIGNATURES 797

CWI research center in Amsterdam. Specifically, the researchers were able to gen-
erate hash collisions, essentially killing the security of SHA-1. Not surprisingly,
the attack led to an increased interest in SHA-2.

In 2006, the National Institute of Standards and Technology (NIST) started
organizing a competition for a new hash standard, which is now known as SHA-3.
The competition closed in 2012. Three years later, the new SHA-3 standard
(‘‘Keccak’’) was officially published. Interestingly, NIST does not suggest that we
all dump SHA-2 in the trash and switch to SHA-3 because there are no successful
attacks on SHA-2 yet. Even so, it is good to have a drop-in replacement lying
around, just in case.

8.7.4 The Birthday Attack
In the world of crypto, nothing is ever what it seems to be. One might think

that it would take on the order of 2m operations to subvert an m-bit message digest.
In fact, 2m/2 operations will often do using a birthday attack, in an approach pub-
lished by Yuval (1979) in his now-classic paper ‘‘How to Swindle Rabin.’’

Remember, from our earlier discussion of the DNS birthday attack that if there
is some mapping between inputs and outputs with n inputs (people, messages, etc.)
and k possible outputs (birthdays, message digests, etc.), there are n(n < 1)/2 input
pairs. If n(n < 1)/2 > k, the chance of having at least one match is pretty good.
Thus, approximately, a match is likely for n > 3}}k . This result means that a 64-bit
message digest can probably be broken by generating about 232 messages and
looking for two with the same message digest.

Let us look at a practical example. The Department of Computer Science at
State University has one position for a tenured faculty member and two candidates,
Tom and Dick. Tom was hired two years before Dick, so he goes up for review
first. If he gets it, Dick is out of luck. Tom knows that the department chairperson,
Marilyn, thinks highly of his work, so he asks her to write him a letter of recom-
mendation to the Dean, who will decide on Tom’s case. Once sent, all letters be-
come confidential.

Marilyn tells her secretary, Ellen, to write the Dean a letter, outlining what she
wants in it. When it is ready, Marilyn will review it, compute and sign the 64-bit
digest, and send it to the Dean. Ellen can send the letter later by email.

Unfortunately for Tom, Ellen is romantically involved with Dick and would
like to do Tom in, so she writes the following letter with the 32 bracketed options:

Dear Dean Smith,
This [letter | message] is to give my [honest | frank] opinion of Prof. Tom Wil-

son, who is [a candidate | up] for tenure [now | this year]. I have [known | worked
with] Prof. Wilson for [about | almost] six years. He is an [outstanding | excellent]
researcher of great [talent | ability] known [worldwide | internationally] for his
[brilliant | creative] insights into [many | a wide variety of] [difficult | challenging]
problems.

798 NETWORK SECURITY CHAP. 8

He is also a [highly | greatly] [respected | admired] [teacher | educator]. His
students give his [classes | courses] [rave | spectacular] reviews. He is [our | the
Department’s] [most popular | best-loved] [teacher | instructor].

[In addition | Additionally] Prof. Wilson is a [gifted | effective] fund raiser. His
[grants | contracts] have brought a [large | substantial] amount of money into [the
| our] Department. [This money has | These funds have] [enabled | permitted] us to
[pursue | carry out] many [special | important] programs, [such as | for example]
your State 2025 program. Without these funds we would [be unable | not be able]
to continue this program, which is so [important | essential] to both of us. I
strongly urge you to grant him tenure.

Unfortunately for Tom, as soon as Ellen finishes composing and typing in this let-
ter, she also writes a second one:

Dear Dean Smith,
This [letter | message] is to give my [honest | frank] opinion of Prof. Tom Wil-

son, who is [a candidate | up] for tenure [now | this year]. I have [known | worked
with] Tom for [about | almost] six years. He is a [poor | weak] researcher not well
known in his [field | area]. His research [hardly ever | rarely] shows [insight in |
understanding of] the [key | major] problems of [the | our] day.

Furthermore, he is not a [respected | admired] [teacher | educator]. His stu-
dents give his [classes | courses] [poor | bad] reviews. He is [our | the Depart-
ment’s] least popular [teacher | instructor], known [mostly | primarily] within [the |
our] Department for his [tendency | propensity] to [ridicule | embarrass] students
[foolish | imprudent] enough to ask questions in his classes.

[In addition | Additionally] Tom is a [poor | marginal] fund raiser. His [grants |
contracts] have brought only a [meager | insignificant] amount of money into [the |
our] Department. Unless new [money is | funds are] quickly located, we may have
to cancel some essential programs, such as your State 2025 program. Unfortunate-
ly, under these [conditions | circumstances] I cannot in good [conscience | faith]
recommend him to you for [tenure | a permanent position].

Now Ellen programs her computer to compute the 232 message digests of each let-
ter overnight. Chances are, one digest of the first letter will match one digest of
the second. If not, she can add a few more options and try again tonight. Suppose
that she finds a match. Call the ‘‘good’’ letter A and the ‘‘bad’’ one B.

Ellen now emails letter A to Marilyn for approval. Letter B she keeps secret,
showing it to no one. Marilyn, of course, approves it, computes her 64-bit message
digest, signs the digest, and emails the signed digest off to Dean Smith. Indepen-
dently, Ellen emails letter B to the Dean (not letter A, as she is supposed to).

After getting the letter and signed message digest, the Dean runs the message
digest algorithm on letter B, sees that it agrees with what Marilyn sent him, and
fires Tom. The Dean does not realize that Ellen managed to generate two letters
with the same message digest and sent her a different one than the one Marilyn saw
and approved. (Optional ending: Ellen tells Dick what she did. Dick is appalled

SEC. 8.7 DIGITAL SIGNATURES 799

and breaks off the affair. Ellen is furious and confesses to Marilyn. Marilyn calls
the Dean. Tom gets tenure after all.) With SHA-2, the birthday attack is difficult
because even at the ridiculous speed of 1 trillion digests per second, it would take
over 32,000 years to compute all 280 digests of two letters with 80 variants each,
and even then a match is not guaranteed. However, with a cloud of 1,000,000
chips working in parallel, 32,000 years becomes 2 weeks.

8.8 MANAGEMENT OF PUBLIC KEYS
Public-key cryptography makes it possible for people who do not share a com-

mon key in advance to nevertheless communicate securely. It also makes signing
messages possible without the existence of a trusted third party. Finally, signed
message digests make it possible for the recipient to verify the integrity of received
messages easily and securely.

However, there is one problem that we have glossed over a bit too quickly: if
Alice and Bob do not know each other, how do they get each other’s public keys to
start the communication process? The obvious solution—put your public key on
your Web site—does not work, for the following reason. Suppose that Alice wants
to look up Bob’s public key on his Web site. How does she do it? She starts by
typing in Bob’s URL. Her browser then looks up the DNS address of Bob’s home
page and sends it a GET request, as shown in Fig. 8-25. Unfortunately, Trudy
intercepts the request and replies with a fake home page, probably a copy of Bob’s
home page except for the replacement of Bob’s public key with Trudy’s public key.
When Alice now encrypts her first message with ET , Trudy decrypts it, reads it,
re-encrypts it with Bob’s public key, and sends it to Bob, who is none the wiser
that Trudy is reading his incoming messages. Worse yet, Trudy could modify the
messages before reencrypting them for Bob. Clearly, some mechanism is needed
to make sure that public keys can be exchanged securely.

4. EB(Message)

Alice Trudy

1. GET Bob's home page

2. Fake home page with ET

3. ET(Message)
Bob

Figure 8-25. A way for Trudy to subvert public-key encryption.

8.8.1 Certificates

As a first attempt at distributing public keys securely, we could imagine a
KDC (Key Distribution Center) available online 24 hours a day to provide public
keys on demand. One of the many problems with this solution is that it is not

800 NETWORK SECURITY CHAP. 8

scalable, and the key distribution center would rapidly become a bottleneck. Also,
if it ever went down, Internet security would suddenly grind to a halt.

For these reasons, people have developed a different solution, one that does not
require the key distribution center to be online all the time. In fact, it does not have
to be online at all. Instead, what it does is certify the public keys belonging to peo-
ple, companies, and other organizations. An organization that certifies public keys
is now called a CA (Certification Authority).

As an example, suppose that Bob wants to allow Alice and other people he
does not know to communicate with him securely. He can go to the CA with his
public key along with his passport or driver’s license and ask to be certified. The
CA then issues a certificate similar to the one in Fig. 8-26 and signs its SHA-2
hash with the CA’s private key. Bob then pays the CA’s fee and gets a document
containing the certificate and its signed hash (ideally not sent over unreliable chan-
nels).

I hereby certify that the public key
19836A8B03030CF83737E3837837FC3s87092827262643FFA82710382828282A

belongs to
Robert John Smith
12345 University Avenue
Berkeley, CA 94702
Birthday: July 4, 1958
Email: bob@superdupernet.com

SHA-2 hash of the above certificate signed with the CA’s private key

Figure 8-26. A possible certificate and its signed hash.

The fundamental job of a certificate is to bind a public key to the name of a
principal (individual, company, etc.). Certificates themselves are not secret or pro-
tected. Bob might, for example, decide to put his new certificate on his Web site,
with a link on the main page saying: click here for my public-key certificate. The
resulting click would return both the certificate and the signature block (the signed
SHA-2 hash of the certificate).

Now let us run through the scenario of Fig. 8-25 again. When Trudy intercepts
Alice’s request for Bob’s home page, what can she do? She can put her own certif-
icate and signature block on the fake page, but when Alice reads the contents of the
certificate she will immediately see that she is not talking to Bob because Bob’s
name is not in it. Trudy can modify Bob’s home page on the fly, replacing Bob’s
public key with her own. However, when Alice runs the SHA-2 algorithm on the
certificate, she will get a hash that does not agree with the one she gets when she
applies the CA’s well-known public key to the signature block. Since Trudy does
not have the CA’s private key, she has no way of generating a signature block that
contains the hash of the modified Web page with her public key on it. In this way,
Alice can be sure she has Bob’s public key and not Trudy’s or someone else’s.

SEC. 8.8 MANAGEMENT OF PUBLIC KEYS 801

And as we promised, this scheme does not require the CA to be online for verifica-
tion, thus eliminating a potential bottleneck.

While the standard function of a certificate is to bind a public key to a princi-
pal, a certificate can also be used to bind a public key to an attribute. For ex-
ample, a certificate could say: ‘‘This public key belongs to someone over 18.’’ It
could be used to prove that the owner of the private key was not a minor and thus
allowed to access material not suitable for children, and so on, but without disclos-
ing the owner’s identity. Typically, the person holding the certificate would send it
to the Web site, principal, or process that cared about age. That site, principal, or
process would then generate a random number and encrypt it with the public key in
the certificate. If the owner were able to decrypt it and send it back, that would be
proof that the owner indeed had the attribute stated in the certificate. Alternatively,
the random number could be used to generate a session key for the ensuing conver-
sation.

Another example of where a certificate might contain an attribute is in an ob-
ject-oriented distributed system. Each object normally has multiple methods. The
owner of the object could provide each customer with a certificate giving a bit map
of which methods the customer is allowed to invoke and binding the bit map to a
public key using a signed certificate. Again, if the certificate holder can prove
possession of the corresponding private key, he will be allowed to perform the
methods in the bit map. This approach has the property that the owner’s identity
need not be known, a property useful in situations where privacy is important.

8.8.2 X.509

If everybody who wanted something signed went to the CA with a different
kind of certificate, managing all the different formats would soon become a prob-
lem. To solve this problem, a standard for certificates has been devised and
approved by the International Telecommunication Union (ITU). The standard is
called X.509 and is in widespread use on the Internet. It has gone through three
versions since the initial standardization in 1988. We will discuss version 3.

X.509 has been heavily influenced by the OSI world, borrowing some of its
worst features (e.g., naming and encoding). Surprisingly, IETF went along with
X.509, even though in nearly every other area, from machine addresses to transport
protocols to email formats, IETF generally ignored OSI and tried to do it right.
The IETF version of X.509 is described in RFC 5280.

At its core, X.509 is a way to describe certificates. The primary fields in a cer-
tificate are listed in Fig. 8-27. The descriptions given there should provide a gener-
al idea of what the fields do. For additional information, please consult the stan-
dard itself or RFC 2459.

For example, if Bob works in the loan department of the Money Bank, his
X.500 address might be

/C=US/O=MoneyBank/OU=Loan/CN=Bob/

802 NETWORK SECURITY CHAP. 8

Field Meaning
Version Which version of X.509
Serial number This number plus the CA’s name uniquely identifies the certificate
Signature algorithm The algorithm used to sign the certificate
Issuer X.500 name of the CA
Validity period The starting and ending times of the validity period
Subject name The entity whose key is being certified
Public key The subject’s public key and the ID of the algorithm using it
Issuer ID An optional ID uniquely identifying the certificate’s issuer
Subject ID An optional ID uniquely identifying the certificate’s subject
Extensions Many extensions have been defined
Signature The certificate’s signature (signed by the CA’s private key)

Figure 8-27. The basic fields of an X.509 certificate.

where C is for country, O is for organization, OU is for organizational unit, and
CN is for common name. CAs and other entities are named in a similar way. A
substantial problem with X.500 names is that if Alice is trying to contact
bob@moneybank.com and is given a certificate with an X.500 name, it may not be
obvious to her that the certificate refers to the Bob she wants. Fortunately, starting
with version 3, DNS names are now permitted instead of X.500 names, so this
problem may eventually vanish.

Certificates are encoded using OSI ASN.1 (Abstract Syntax Notation 1),
which is sort of like a struct in C, except with an extremely peculiar and verbose
notation. More information about X.509 is given by Ford and Baum (2000).

8.8.3 Public Key Infrastructures

Having a single CA to issue all the world’s certificates obviously would not
work. It would collapse under the load and be a central point of failure as well. A
possible solution might be to have multiple CAs, all run by the same organization
and all using the same private key to sign certificates. While this would solve the
load and failure problems, it introduces a new problem: key leakage. If there were
dozens of servers spread around the world, all holding the CA’s private key, the
chance of the private key being stolen or otherwise leaking out would be greatly in-
creased. Since the compromise of this key would ruin the world’s electronic secu-
rity infrastructure, having a single central CA is very risky.

In addition, which organization would operate the CA? It is hard to imagine
any authority that would be accepted worldwide as legitimate and trustworthy. In
some countries, people would insist that it be a government, while in other coun-
tries they would insist that it not be a government.

SEC. 8.8 MANAGEMENT OF PUBLIC KEYS 803

For these reasons, a different way for certifying public keys has evolved. It
goes under the general name of PKI (Public Key Infrastructure). In this section,
we will summarize how it works in general, although there have been many pro-
posals, so the details will probably evolve in time.

A PKI has multiple components, including users, CAs, certificates, and direc-
tories. What the PKI does is provide a way of structuring these components and
define standards for the various documents and protocols. A particularly simple
form of PKI is a hierarchy of CAs, as depicted in Fig. 8-28. In this example, we
have shown three levels, but in practice, there might be fewer or more. The top-
level CA, the root, certifies second-level CAs, which we here call RAs (Regional
Authorities) because they might cover some geographic region, such as a country
or continent. This term is not standard, though; in fact, no term is really standard
for the different levels of the tree. These, in turn, certify the real CAs, which issue
the X.509 certificates to organizations and individuals. When the root authorizes a
new RA, it generates an X.509 certificate stating that it has approved the RA, in-
cludes the new RA’ s public key in it, signs it, and hands it to the RA. Similarly,
when an RA approves a new CA, it produces and signs a certificate stating its
approval and containing the CA’s public key.

CA 1 CA 2

(a) (b)

CA 3 CA 4 CA 5

RA 2

RA 2 is approved.
Its public key is
47383AE349. . .

Root's signature

RA 1

Root RA 2 is approved.
Its public key is
47383AE349. . .

Root's signature

CA 5 is approved.
Its public key is
6384AF863B. . .

RA 2's signature

CA 5 is approved.
Its public key is
6384AF863B. . .

RA 2's signature

Figure 8-28. (a) A hierarchical PKI. (b) A chain of certificates.

Our PKI works like this. Suppose that Alice needs Bob’s public key in order
to communicate with him, so she looks for and finds a certificate containing it,
signed by CA 5. But Alice has never heard of CA 5. For all she knows, CA 5
might be Bob’s 10-year-old daughter. She could go to CA 5 and say: ‘‘Prove your
legitimacy.’’ CA 5 will respond with the certificate it got from RA 2, which con-
tains CA 5’s public key. Now armed with CA 5’s public key, she can verify that
Bob’s certificate was indeed signed by CA 5 and is thus legal.

Unless RA 2 is Bob’s 12-year-old son. So, the next step is for her to ask RA 2
to prove it is legitimate. The response to her query is a certificate signed by the
root and containing RA 2’spublic key. Now Alice is sure she has Bob’s public key.

804 NETWORK SECURITY CHAP. 8

But how does Alice find the root’s public key? Magic. It is assumed that
everyone knows the root’s public key. For example, her browser might have been
shipped with the root’s public key built in.

Bob is a friendly sort of guy and does not want to cause Alice a lot of work.
He knows that she will have to check out CA 5 and RA 2, so to save her some trou-
ble, he collects the two needed certificates and gives her the two certificates along
with his. Now she can use her own knowledge of the root’s public key to verify the
top-level certificate and the public key contained therein to verify the second one.
Alice does not need to contact anyone to do the verification. Because the certifi-
cates are all signed, she can easily detect any attempts to tamper with their con-
tents. A chain of certificates going back to the root like this is sometimes called a
chain of trust or a certification path. The technique is widely used in practice.

Of course, we still have the problem of who is going to run the root. The solu-
tion is not to have a single root, but to have many roots, each with its own RAs and
CAs. In fact, modern browsers come preloaded with the public keys for over 100
roots, sometimes referred to as trust anchors. In this way, having a single world-
wide trusted authority can be avoided.

But there is now the issue of how the browser vendor decides which purported
trust anchors are reliable and which are sleazy. It all comes down to the user trust-
ing the browser vendor to make wise choices and not simply approve all trust
anchors willing to pay its inclusion fee. Most browsers allow users to inspect the
root keys (usually in the form of certificates signed by the root) and delete any that
seem shady. For more information on PKIs, see Stapleton and Epstein (2016).

Directories

Another issue for any PKI is where certificates (and their chains back to some
known trust anchor) are stored. One possibility is to have each user store his or her
own certificates. While doing this is safe (i.e., there is no way for users to tamper
with signed certificates without detection), it is also inconvenient. One alternative
that has been proposed is to use DNS as a certificate directory. Before contacting
Bob, Alice probably has to look up his IP address using DNS, so why not have
DNS return Bob’s entire certificate chain along with his IP address?

Some people think this is the way to go, but others would prefer dedicated di-
rectory servers whose only job is managing X.509 certificates. Such directories
could provide lookup services by using properties of the X.500 names. For ex-
ample, in theory, such a directory service could answer queries like ‘‘Give me a list
of all people named Alice who work in sales departments anywhere in the U.S.’’

Revocation

The real world is full of certificates, too, such as passports and drivers’
licenses. Sometimes these certificates can be revoked, for example, drivers’
licenses can be revoked for drunken driving and other driving offenses. The same

SEC. 8.8 MANAGEMENT OF PUBLIC KEYS 805

problem occurs in the digital world: the grantor of a certificate may decide to
revoke it because the person or organization holding it has abused it in some way.
It can also be revoked if the subject’s private key has been exposed or, worse yet,
the CA’s private key has been compromised. Thus, a PKI needs to deal with the
issue of revocation. The possibility of revocation complicates matters.

A first step in this direction is to have each CA periodically issue a CRL (Cer-
tificate Revocation List) giving the serial numbers of all certificates that it has
revoked. Since certificates contain expiry times, the CRL need only contain the
serial numbers of certificates that have not yet expired. Once its expiry time has
passed, a certificate is automatically invalid, so no distinction is needed between
those that just timed out and those that were actually revoked. In both cases, they
cannot be used any more.

Unfortunately, introducing CRLs means that a user who is about to use a cer-
tificate must now acquire the CRL to see if the certificate has been revoked. If it
has been, it should not be used. However, even if the certificate is not on the list, it
might have been revoked just after the list was published. Thus, the only way to
really be sure is to ask the CA. And on the next use of the same certificate, the CA
has to be asked again, since the certificate might have been revoked a few seconds
ago.

Another complication is that a revoked certificate could conceivably be rein-
stated, for example, if it was revoked for nonpayment of some fee that has since
been paid. Having to deal with revocation (and possibly reinstatement) eliminates
one of the best properties of certificates, namely, that they can be used without hav-
ing to contact a CA.

Where should CRLs be stored? A good place would be the same place the cer-
tificates themselves are stored. One strategy is for the CA to actively push out
CRLs periodically and have the directories process them by simply removing the
revoked certificates. If directories are not used for storing certificates, the CRLs
can be cached at various places around the network. Since a CRL is itself a signed
document, if it is tampered with, that tampering can be easily detected.

If certificates have long lifetimes, the CRLs will be long, too. For example, if
credit cards are valid for 5 years, the number of revocations outstanding will be
much longer than if new cards are issued every 3 months. A standard way to deal
with long CRLs is to issue a master list infrequently, but issue updates to it more
often. Doing this reduces the bandwidth needed for distributing the CRLs.

8.9 AUTHENTICATION PROTOCOLS

Authentication is the technique by which a process verifies that its communi-
cation partner is who it is supposed to be and not an imposter. Verifying the identi-
ty of a remote process in the face of a malicious, active intruder is surprisingly dif-
ficult and requires complex protocols based on cryptography. In this section, we

806 NETWORK SECURITY CHAP. 8

will study some of the many authentication protocols that are used on insecure
computer networks.

As an aside, some people confuse authorization with authentication. Authen-
tication deals with the question of whether you are actually communicating with a
specific process. Authorization is concerned with what that process is permitted to
do. For example, say a client process contacts a file server and says: ‘‘I am Mirte’s
process and I want to delete the file cookbook.old.’’ From the file server’s point of
view, two questions must be answered:

1. Is this actually Mirte’s process (authentication)?

2. Is Mirte allowed to delete cookbook.old (authorization)?

Only after both of these questions have been unambiguously answered in the affir-
mative can the requested action take place. The former question is really the key
one. Once the file server knows to whom it is talking, checking authorization is
just a matter of looking up entries in local tables or databases. For this reason, we
will concentrate on authentication in this section.

The general model that essentially all authentication protocols use is this.
Alice starts out by sending a message either to Bob or to a trusted KDC, which is
expected to be honest. Several other message exchanges follow in various direc-
tions. As these messages are being sent, Trudy may intercept, modify, or replay
them in order to trick Alice and Bob or just to gum up the works.

Nevertheless, when the protocol has been completed, Alice is sure she is talk-
ing to Bob and Bob is sure he is talking to Alice. Furthermore, in most of the pro-
tocols, the two of them will also have established a secret session key for use in the
upcoming conversation. In practice, for performance reasons, all data traffic is en-
crypted using symmetric-key cryptography (typically AES), although public-key
cryptography is widely used for the authentication protocols themselves and for es-
tablishing the session key.

The point of using a new, randomly chosen session key for each new con-
nection is to minimize the amount of traffic that gets sent with the users’ secret
keys or public keys, to reduce the amount of ciphertext an intruder can obtain, and
to minimize the damage done if a process crashes and its core dump (memory
printout after a crash) falls into the wrong hands. Hopefully, the only key present
then will be the session key. All the permanent keys should have been carefully
zeroed out after the session was established.

8.9.1 Authentication Based on a Shared Secret Key

For our first authentication protocol, we will assume that Alice and Bob al-
ready share a secret key, K AB. This shared key might have been agreed upon on
the telephone or in person, but, in any event, not on the (insecure) network.

SEC. 8.9 AUTHENTICATION PROTOCOLS 807

This protocol is based on a principle found in many authentication protocols:
one party sends a random number to the other, who then transforms it in a special
way and returns the result. Such protocols are called challenge-response proto-
cols. In this and subsequent authentication protocols, the following notation will
be used:

A, B are the identities of Alice and Bob.
R i’s are the challenges, where i identifies the challenger.
Ki ’s are keys, where i indicates the owner.
KS is the session key.

The message sequence for our first shared-key authentication protocol is illus-
trated in Fig. 8-29. In message 1, Alice sends her identity, A, to Bob in a way that
Bob understands. Bob, of course, has no way of knowing whether this message
came from Alice or from Trudy, so he chooses a challenge, a large random number,
R B, and sends it back to ‘‘Alice’’ as message 2, in plaintext. Alice then encrypts
the message with the key she shares with Bob and sends the ciphertext, KAB (RB),
back in message 3. When Bob sees this message, he immediately knows that it
came from Alice because Trudy does not know KAB and thus could not have gener-
ated it. Furthermore, since RB was chosen randomly from a large space (say,
128-bit random numbers), it is very unlikely that Trudy would have seen RB and its
response in an earlier session. It is equally unlikely that she could guess the cor-
rect response to any challenge.

A

Al
ic

e

RB

1

2

4

5

3 KAB (RB)

KAB (RA)

Bo
b

RA

Figure 8-29. Two-way authentication using a challenge-response protocol.

At this point, Bob is sure he is talking to Alice, but Alice is not sure of any-
thing. For all Alice knows, Trudy might have intercepted message 1 and sent back
R B in response. Maybe Bob died last night. To find out to whom she is talking,
Alice picks a random number, R A, and sends it to Bob as plaintext, in message 4.
When Bob responds with K AB(R A), Alice knows she is talking to Bob. If they
wish to establish a session key now, Alice can pick one, KS , and send it to Bob en-
crypted with K AB.

The protocol of Fig. 8-29 contains five messages. Let us see if we can be
clever and eliminate some of them. One approach is illustrated in Fig. 8-30. Here

808 NETWORK SECURITY CHAP. 8

Alice initiates the challenge-response protocol instead of waiting for Bob to do it.
Similarly, while he is responding to Alice’s challenge, Bob sends his own. The en-
tire protocol can be reduced to three messages instead of five.

Al
ic

e

1

3

2 RB, KAB (RA)

KAB (RB)

A, RA

Bo
b

Figure 8-30. A shortened two-way authentication protocol.

Is this new protocol an improvement over the original one? In one sense it is:
it is shorter. Unfortunately, it is also wrong. Under certain circumstances, Trudy
can defeat this protocol by using what is known as a reflection attack. In particu-
lar, Trudy can break it if it is possible to open multiple sessions with Bob at once.
This situation would be true, for example, if Bob is a bank and is prepared to ac-
cept many simultaneous connections from automated teller machines at once.

Trudy’s reflection attack is shown in Fig. 8-31. It starts out with Trudy claim-
ing she is Alice and sending RT . Bob responds, as usual, with his own challenge,
R B. Now Trudy is stuck. What can she do? She does not know KAB(RB).

Tr
ud

y

1

5

2 RB, KAB (RT)

KAB (RB)

A, RT

3

4 RB2, KAB (RB)

A, RB

First session

Second session

First session

Bo
b

Figure 8-31. The reflection attack.

She can open a second session with message 3, supplying the RB taken from
message 2 as her challenge. Bob calmly encrypts it and sends back K AB(R B) in
message 4. We have shaded the messages on the second session to make them
stand out. Now Trudy has the missing information, so she can complete the first
session and abort the second one. Bob is now convinced that Trudy is Alice, so

SEC. 8.9 AUTHENTICATION PROTOCOLS 809

when she asks for her bank account balance, he gives it to her without question.
Then when she asks him to transfer it all to a secret bank account in Switzerland,
he does so without a moment’s hesitation.

The moral of this story is:

Designing a correct authentication protocol is much harder than it looks.

The following four general rules often help the designer avoid common pitfalls:

1. Have the initiator prove who she is before the responder has to. This
avoids Bob giving away valuable information before Trudy has to
give any evidence of who she is.

2. Have the initiator and responder use different keys for proof, even if
this means having two shared keys, K AB and K vAB.

3. Have the initiator and responder draw their challenges from different
sets. For example, the initiator must use even numbers and the re-
sponder must use odd numbers.

4. Make the protocol resistant to attacks involving a second parallel ses-
sion in which information obtained in one session is used in a dif-
ferent one.

If even one of these rules is violated, the protocol can frequently be broken. Here,
all four rules were violated, with disastrous consequences.

Now let us go take a closer look at Fig. 8-29. Surely that protocol is not sub-
ject to a reflection attack? Maybe. It is quite subtle. Trudy was able to defeat our
protocol by using a reflection attack because it was possible to open a second ses-
sion with Bob and trick him into answering his own questions. What would hap-
pen if Alice were a general-purpose computer that also accepted multiple sessions,
rather than a person at a computer? Let us take a look what Trudy can do.

To see how Trudy’s attack works, see Fig. 8-32. Alice starts out by announc-
ing her identity in message 1. Trudy intercepts this message and begins her own
session with message 2, claiming to be Bob. Again we have shaded the session 2
messages. Alice responds to message 2 by saying in message 3: ‘‘You claim to be
Bob? Prove it.’’ At this point, Trudy is stuck because she cannot prove she is Bob.

What does Trudy do now? She goes back to the first session, where it is her
turn to send a challenge, and sends the R A she got in message 3. Alice kindly re-
sponds to it in message 5, thus supplying Trudy with the information she needs to
send in message 6 in session 2. At this point, Trudy is basically home free because
she has successfully responded to Alice’s challenge in session 2. She can now can-
cel session 1, send over any old number for the rest of session 2, and she will have
an authenticated session with Alice in session 2.

But Trudy is a perfectionist, and she really wants to show off her considerable
skills. Instead, of sending any old number over to complete session 2, she waits

810 NETWORK SECURITY CHAP. 8

A

Al
ic

e
B

1

2

4

5

3

KAB (RA)

Tr
ud

y

RA

RA

6 KAB (RA)

7 RA2

8

9 KAB (RA2)

RA2

10 KAB (RA2)

First session

First session

First session

First session

Second session

Second session

Second session

Figure 8-32. A reflection attack on the protocol of Fig. 8-29.

until Alice sends message 7, Alice’s challenge for session 1. Of course, Trudy
does not know how to respond, so she uses the reflection attack again, sending
back RA2 as message 8. Alice conveniently encrypts RA2 in message 9. Trudy
now switches back to session 1 and sends Alice the number she wants in message
10, conveniently copied from what Alice sent in message 9. At this point, Trudy
has two fully authenticated sessions with Alice.

This attack has a somewhat different result than the attack on the three-mes-
sage protocol that we saw in Fig. 8-31. This time, Trudy has two authenticated
connections with Alice. In the previous example, she had one authenticated con-
nection with Bob. Again here, if we had applied all the general authentication pro-
tocol rules discussed earlier, this attack could have been stopped. For a detailed
discussion of these kinds of attacks and how to thwart them, see Bird et al. (1993).
They also show how it is possible to systematically construct protocols that are
provably correct. The simplest such protocol is nevertheless fairly complicated, so
we will now show a different class of protocol that also works.

The new authentication protocol is shown in Fig. 8-33 (Bird et al., 1993). It
uses a HMAC (Hashed Message Authentication Code) which guarantees the in-
tegrity and authenticity of a message. A simple, yet powerful HMAC consists of a
hash over the message plus the shared key. By sending the HMAC along with the
rest of the message, no attacker is able to change or spoof the message: changing
any bit would lead to an incorrect hash, and generating a valid hash is not possible
without the key. HMACs are attractive because they can be generated very ef-
ficiently (faster than running SHA-2 and then running RSA on the result).

SEC. 8.9 AUTHENTICATION PROTOCOLS 811

Alice starts out by sending Bob a random number, RA, as message 1. Random
numbers used just once in security protocols like this one are called nonces, which
is more-or-less a contraction of ‘‘number used once.’’ Bob responds by selecting
his own nonce, RB, and sending it back along with an HMAC. The HMAC is
formed by building a data structure consisting of Alice’s nonce, Bob’s nonce, their
identities, and the shared secret key, K AB. This data structure is then hashed into
the HMAC, for example, using SHA-2. When Alice receives message 2, she now
has RA (which she picked herself), RB, which arrives as plaintext, the two identi-
ties, and the secret key, K AB, which she has known all along, so she can compute
the HMAC herself. If it agrees with the HMAC in the message, she knows she is
talking to Bob because Trudy does not know K AB and thus cannot figure out which
HMAC to send. Alice responds to Bob with an HMAC containing just the two
nonces.

Al
ic

e

1

3

2

RA

Bo
bRB, HMAC(RA , RB , A, B, KAB)

HMAC(RA , RB , KAB)

Figure 8-33. Authentication using HMACs.

Can Trudy somehow subvert this protocol? No, because she cannot force ei-
ther party to encrypt or hash a value of her choice, as happened in Fig. 8-31 and
Fig. 8-32. Both HMACs include values chosen by the sending party, something
that Trudy cannot control.

Using HMACs is not the only way to use this idea. An alternative scheme that
is often used instead of computing the HMAC over a series of items is to encrypt
the items sequentially using cipher block chaining.

8.9.2 Establishing a Shared Key: The Diffie-Hellman Key Exchange

So far, we have assumed that Alice and Bob share a secret key. Suppose that
they do not (because so far there is no universally accepted PKI for signing and
distributing certificates). How can they establish one? One way would be for
Alice to call Bob and give him her key on the phone, but he would probably start
out by saying: ‘‘How do I know you are Alice and not Trudy?’’ They could try to
arrange a meeting, with each one bringing a passport, a driver’s license, and three
major credit cards, but being busy people, they might not be able to find a mutually
acceptable date for months. Fortunately, incredible as it may sound, there is a way
for total strangers to establish a shared secret key in broad daylight, even with
Trudy carefully recording every message.

812 NETWORK SECURITY CHAP. 8

The protocol that allows strangers to establish a shared secret key is called the
Diffie-Hellman key exchange (Diffie and Hellman, 1976) and works as follows.
Alice and Bob have to agree on two large numbers, n and g, where n is a prime,
(n < 1)/2 is also a prime, and certain conditions apply to g. These numbers may be
public, so either one of them can just pick n and g and tell the other openly. Now
Alice picks a large (say, 1024-bit) number, x, and keeps it secret. Similarly, Bob
picks a large secret number, y.

Alice initiates the key exchange protocol by sending Bob a (plaintext) message
containing (n, g, g x mod n), as shown in Fig. 8-34. Bob responds by sending
Alice a message containing gy mod n. Now Alice raises the number Bob sent her
to the x th power modulo n to get (gy mod n)x mod n. Bob performs a similar op-
eration to get (gx mod n) y mod n. By the laws of modular arithmetic, both calcu-
lations yield gxy mod n. Lo and behold, as if by magic, Alice and Bob suddenly
share a secret key, g xy mod n.

1

Alice
picks x

Bob
picks y

2 gy mod n

n, g, gx mod n

Alice computes
(gy mod n)x
= gxy mod n

Bob computes
(gx mod n)y

= gxy mod n

Bo
b

Al
ic

e

mod n mod n

Figure 8-34. The Diffie-Hellman key exchange.

Trudy, of course, has seen both messages. She knows g and n from message 1.
If she could compute x and y, she could figure out the secret key. The trouble is,
given only g x mod n, she cannot find x. No practical algorithm for computing dis-
crete logarithms modulo a very large prime number is known.

To make this example more concrete, we will use the (completely unrealistic)
values of n = 47 and g = 3. Alice picks x = 8 and Bob picks y = 10. Both of these
are kept secret. Alice’s message to Bob is (47, 3, 28) because 38 mod 47 is 28.
Bob’s message to Alice is (17). Alice computes 178 mod 47, which is 4. Bob
computes 2810 mod 47, which is 4. Alice and Bob have now independently deter-
mined that the secret key is now 4. To find the key, Trudy now has to solve the
equation 3x mod 47 = 28, which can be done by exhaustive search for small num-
bers like this, but not when all the numbers are hundreds or thousands of bits long.
All currently known algorithms simply take far too long, even on lightning-fast
supercomputers with tens of millions of cores.

Despite the elegance of the Diffie-Hellman algorithm, there is a problem: when
Bob gets the triple (47, 3, 28), how does he know it is from Alice and not from
Trudy? There is no way he can know. Unfortunately, Trudy can exploit this fact to

SEC. 8.9 AUTHENTICATION PROTOCOLS 813

deceive both Alice and Bob, as illustrated in Fig. 8-35. Here, while Alice and Bob
are choosing x and y, respectively, Trudy picks her own random number, z. Alice
sends message 1, intended for Bob. Trudy intercepts it and sends message 2 to
Bob, using the correct g and n (which are public anyway) but with her own z in-
stead of x . She also sends message 3 back to Alice. Later Bob sends message 4 to
Alice, which Trudy again intercepts and keeps.

1

Alice
picks x

Trudy
picks z

3 gz mod n

n, g, gx mod n

Tr
ud

y 2

Bob
picks y

4 gy mod n

n, g, gz mod n

Bo
b

Al
ic

e

Figure 8-35. The man-in-the-middle attack.

Now everybody does the modular arithmetic. Alice computes the secret key as
g xz mod n, and so does Trudy (for messages to Alice). Bob computes g yz mod n
and so does Trudy (for messages to Bob). Alice thinks she is talking to Bob, so
she establishes a session key (with Trudy). So does Bob. Every message that
Alice sends on the encrypted session is captured by Trudy, stored, modified if de-
sired, and then (optionally) passed on to Bob. Similarly, in the other direction,
Trudy sees everything and can modify all messages at will, while both Alice and
Bob are under the illusion that they have a secure channel to one another. For this
reason, the attack is known as the man-in-the-middle attack. It is also called the
bucket brigade attack, because it vaguely resembles an old-time volunteer fire
department passing buckets along the line from the fire truck to the fire.

8.9.3 Authentication Using a Key Distribution Center

Setting up a shared secret with a stranger almost worked, but not quite. On the
other hand, it probably was not worth doing in the first place (sour grapes attack).
To talk to n people this way, you would need n keys. For popular people, key
management would become a real burden, especially if each key had to be stored
on a separate plastic chip card.

A different approach is to introduce a trusted Key Distribution Center, such as
a bank or government office, into the system. In this model, each user has a single
key shared with the KDC. Authentication and session key management now go
through the KDC. The simplest known KDC authentication protocol involving
two parties and a trusted KDC is depicted in Fig. 8-36.

814 NETWORK SECURITY CHAP. 8

1
A, KA (B, KS)

KD
C

2

Bo
b

Al
ic

e

KB (A, KS)

Figure 8-36. A first attempt at an authentication protocol using a KDC.

The idea behind this protocol is simple: Alice picks a session key, KS , and tells
the KDC that she wants to talk to Bob using KS . This message is encrypted with
the secret key Alice shares (only) with the KDC, K A. The KDC decrypts this mes-
sage, extracting Bob’s identity and the session key. It then constructs a new mes-
sage containing Alice’s identity and the session key and sends this message to Bob.
This encryption is done with KB, the secret key Bob shares with the KDC. When
Bob decrypts the message, he learns that Alice wants to talk to him and which key
she wants to use.

The authentication here happens completely for free. The KDC knows that
message 1 must have come from Alice, since no one else would have been able to
encrypt it with Alice’s secret key. Similarly, Bob knows that message 2 must have
come from the KDC, which he trusts, since no one else knows his secret key.

Unfortunately, this protocol has a serious flaw. Trudy needs some money, so
she figures out some legitimate service she can perform for Alice, makes an attrac-
tive offer, and, bingo, she gets the job. After doing the work, Trudy then politely
requests Alice to pay by bank transfer. Alice then establishes a session key with
her banker, Bob. Then she sends Bob a message requesting money to be trans-
ferred to Trudy’s account.

Meanwhile, Trudy is back to her old ways, snooping on the network. She cop-
ies both message 2 in Fig. 8-36 and the money-transfer request that follows it.
Later, she replays both of them to Bob who thinks: ‘‘Alice must have hired Trudy
again. She clearly does good work.’’ Bob then transfers an equal amount of money
from Alice’s account to Trudy’s. Sometime after the 50th message pair, Bob runs
out of the office to find Trudy to offer her a big loan so she can expand her ob-
viously successful business. This problem is called the replay attack.

Several solutions to the replay attack are possible. The first one is to include a
timestamp in each message. Then, if anyone receives an old message, it can be
discarded. The trouble with this approach is that clocks are never exactly synchro-
nized over a network, so there has to be some interval during which a timestamp is
valid. Trudy can replay the message during this interval and get away with it.

The second solution is to put a nonce in each message. Each party then has to
remember all previous nonces and reject any message containing a previously used

SEC. 8.9 AUTHENTICATION PROTOCOLS 815

nonce. But nonces have to be remembered forever, lest Trudy try replaying a
5-year-old message. Also, if some machine crashes and it loses its nonce list, it is
again vulnerable to a replay attack. Timestamps and nonces can be combined to
limit how long nonces have to be remembered, but clearly the protocol is going to
get a lot more complicated.

A more sophisticated approach to mutual authentication is to use a multiway
challenge-response protocol. A well-known example of such a protocol is the
Needham-Schroeder authentication protocol (Needham and Schroeder, 1978),
one variant of which is shown in Fig. 8-37.

1
RA, A, B

2
KA (RA, B, KS, KB(A, KS))

KD
C

3

Bo
b

Al
ic

e

KB(A, KS), KS (RA2)

4
KS (RA2 –1), RB

5
KS (RB –1)

Figure 8-37. The Needham-Schroeder authentication protocol.

The protocol begins with Alice telling the KDC that she wants to talk to Bob.
This message contains a large random number, R A, as a nonce. The KDC sends
back message 2 containing Alice’s random number, a session key, and a ticket that
she can send to Bob. The point of the random number, R A, is to assure Alice that
message 2 is fresh, and not a replay. Bob’s identity is also enclosed in case Trudy
gets any funny ideas about replacing B in message 1 with her own identity so the
KDC will encrypt the ticket at the end of message 2 with KT instead of KB. The
ticket encrypted with KB is included inside the encrypted message to prevent
Trudy from replacing it with something else on the way back to Alice.

Alice now sends the ticket to Bob, along with a new random number, R A2, en-
crypted with the session key, KS . In message 4, Bob sends back KS(RA2 < 1) to
prove to Alice that she is talking to the real Bob. Sending back KS(R A2) would not
have worked, since Trudy could just have stolen it from message 3.

After receiving message 4, Alice is now convinced that she is talking to Bob
and that no replays could have been used so far. After all, she just generated R A2 a
few milliseconds ago. The purpose of message 5 is to convince Bob that it is
indeed Alice he is talking to, and no replays are being used here either. By having
each party both generate a challenge and respond to one, the possibility of any kind
of replay attack is eliminated.

816 NETWORK SECURITY CHAP. 8

Although this protocol seems pretty solid, it does have a slight weakness. If
Trudy ever manages to obtain an old session key in plaintext, she can initiate a new
session with Bob by replaying the message 3 that corresponds to the compromised
key and convince him that she is Alice (Denning and Sacco, 1981). This time she
can plunder Alice’s bank account without having to perform the legitimate service
even once.

Needham and Schroeder (1987) later published a protocol that corrects this
problem. In the same issue of the same journal, Otway and Rees (1987) also pub-
lished a protocol that solves the problem in a shorter way. Figure 8-38 shows a
slightly modified Otway-Rees protocol.

4
KA(RA, KS)

3

2

KB(RB, KS)

KD
C

1

Bo
b

Al
ic

e

A, B, R, KA (A, B, R, RA)

A, KA (A, B, R, RA),
B, KB (A, B, R, RB)

Figure 8-38. The Otway-Rees authentication protocol (slightly simplified).

In the Otway-Rees protocol, Alice starts out by generating a pair of random
numbers: R, which will be used as a common identifier, and RA, which Alice will
use to challenge Bob. When Bob gets this message, he constructs a new message
from the encrypted part of Alice’s message and an analogous one of his own. Both
the parts encrypted with K A and KB identify Alice and Bob, contain the common
identifier, and contain a challenge.

The KDC checks to see if the R in both parts is the same. It might not be if
Trudy has tampered with R in message 1 or replaced part of message 2. If the two
Rs match, the KDC believes that the request message from Bob is valid. It then
generates a session key and encrypts it twice, once for Alice and once for Bob.
Each message contains the receiver’s random number, as proof that the KDC, and
not Trudy, generated the message. At this point, both Alice and Bob are in posses-
sion of the same session key and can start communicating. The first time they ex-
change data messages, each one can see that the other one has an identical copy of
KS , so the authentication is then complete.

8.9.4 Authentication Using Kerberos

An authentication protocol used in many real systems (including Windows) is
Kerberos, which is based on a variant of Needham-Schroeder. It is named for a
multiheaded dog in Greek mythology that used to guard the entrance to Hades

SEC. 8.9 AUTHENTICATION PROTOCOLS 817

(presumably to keep undesirables out). Kerberos was designed at M.I.T. to allow
workstation users to access network resources in a secure way. Its biggest dif-
ference from Needham-Schroeder is its assumption that all clocks are fairly well
synchronized. The protocol has gone through several iterations. V5 is the one that
is widely used in industry and defined in RFC 4120. The earlier version, V4, was
finally retired after serious flaws were found (Yu et al., 2004). V5 improves on V4
with many small changes to the protocol and some improved features, such as the
fact that it no longer relies on the now-dated DES. For more information, see Sood
(2012).

Kerberos involves three servers in addition to Alice (a client workstation):

1. Authentication Server (AS): verifies users during login.

2. Ticket-Granting Server (TGS): issues ‘‘proof of identity tickets.’’

3. Bob the server: actually does the work Alice wants performed.

AS is similar to a KDC in that it shares a secret password with every user. The
TGS’s job is to issue tickets that can convince the real servers that the bearer of a
TGS ticket really is who he or she claims to be.

To start a session, Alice sits down at an arbitrary public workstation and types
her name. The workstation sends her name and the name of the TGS to the AS in
plaintext, as shown in message 1 of Fig. 8-39. What comes back is a session key
and a ticket, KTGS (A, KS , t), intended for the TGS. The session key is encrypted
using Alice’s secret key, so that only Alice can decrypt it. Only when message 2
arrives does the workstation ask for Alice’s password—not before then. The pass-
word is then used to generate K A in order to decrypt message 2 and obtain the ses-
sion key.

At this point, the workstation overwrites Alice’s password to make sure that it
is only inside the workstation for a few milliseconds at most. If Trudy tries log-
ging in as Alice, the password she types will be wrong and the workstation will
detect this because the standard part of message 2 will be incorrect.

After she logs in, Alice may tell the workstation that she wants to contact Bob
the file server. The workstation then sends message 3 to the TGS asking for a
ticket to use with Bob. The key element in this request is the ticket KTGS (A, KS , t),
which is encrypted with the TGS’s secret key and used as proof that the sender
really is Alice. The TGS responds in message 4 by creating a session key, KAB , for
Alice to use with Bob. Two versions of it are sent back. The first is encrypted
with only KS , so Alice can read it. The second is another ticket, encrypted with
Bob’s key, KB, so Bob can read it.

Trudy can copy message 3 and try to use it again, but she will be foiled by the
encrypted timestamp, t , sent along with it. Trudy cannot replace the timestamp
with a more recent one because she does not know KS , the session key Alice uses

818 NETWORK SECURITY CHAP. 8

Al
ic

e

AS

TG
S

Bo
b

KAB(A, t), KB(A, B, KAB, t)

A,TGS

KA(TGS, KS, t), KTGS(A, KS, t)

B, KS(A, t), KTGS(A, KS, t)

KS(B, KAB, t), KB(A, B, KAB, t)

KAB (t)
6

5

2

4

1

3

Figure 8-39. The operation of Kerberos V5.

to talk to the TGS. Even if Trudy replays message 3 quickly, all she will get is an-
other copy of message 4, which she could not decrypt the first time and will not be
able to decrypt the second time either.

Now Alice can send K AB to Bob via the new ticket to establish a session with
him (message 5). This exchange is also timestamped. The optional response
(message 6) is proof to Alice that she is actually talking to Bob, not to Trudy.

After this series of exchanges, Alice can communicate with Bob under cover
of KAB . If she later decides she needs to talk to another server, Carol, she just re-
peats message 3 to the TGS, only now specifying C instead of B. The TGS will
promptly respond with a ticket encrypted with KC that Alice can send to Carol and
that Carol will accept as proof that it came from Alice.

The point of all this work is that now Alice can access servers all over the net-
work in a secure way and her password never has to go over the network. In fact, it
only had to be in her own workstation for a few milliseconds. However, note that
each server does its own authorization. When Alice presents her ticket to Bob, this
merely proves to Bob who sent it. Precisely what Alice is allowed to do is up to
Bob.

Since the Kerberos designers did not expect the entire world to trust a single
authentication server, they made provision for having multiple realms, each with
its own AS and TGS. To get a ticket for a server in a distant realm, Alice would
ask her own TGS for a ticket accepted by the TGS in the distant realm. If the dis-
tant TGS has registered with the local TGS (the same way local servers do), the
local TGS will give Alice a ticket valid at the distant TGS. She can then do busi-
ness over there, such as getting tickets for servers in that realm. Note, however,
that for parties in two realms to do business, each one must trust the other’s TGS.
Otherwise, they cannot do business.

SEC. 8.9 AUTHENTICATION PROTOCOLS 819

8.9.5 Authentication Using Public-Key Cryptography

Mutual authentication can also be done using public-key cryptography. To
start with, Alice needs to get Bob’s public key. If a PKI exists with a directory ser-
ver that hands out certificates for public keys, Alice can ask for Bob’s, as shown in
Fig. 8-40 as message 1. The reply, in message 2, is an X.509 certificate containing
Bob’s public key. When Alice verifies that the signature is correct, she sends Bob
a message containing her identity and a nonce.

3
EB (A, RA)

7
KS (RB)

6
EA (RA, RB, KS) Bo

b

Al
ic

e

Directory

2. H
ere is

E B

4. Give me E
A

5. Here is E
A1. G

ive me E B

Figure 8-40. Mutual authentication using public-key cryptography.

When Bob receives this message, he has no idea whether it came from Alice or
from Trudy, but he plays along and asks the directory server for Alice’s public key
(message 4), which he soon gets (message 5). He then sends Alice message 6,
containing Alice’s RA, his own nonce, RB, and a proposed session key, KS .

When Alice gets message 6, she decrypts it using her private key. She sees R A
in it, which gives her a warm feeling inside. The message must have come from
Bob, since Trudy has no way of determining RA. Furthermore, it must be fresh
and not a replay, since she just sent Bob RA. Alice agrees to the session by send-
ing back message 7. When Bob sees RB encrypted with the session key he just
generated, he knows Alice got message 6 and verified R A. Bob is now happy.

What can Trudy do to try to subvert this protocol? She can fabricate message
3 and trick Bob into probing Alice, but Alice will see an R A that she did not send
and will not proceed further. Trudy cannot forge message 7 back to Bob because
she does not know RB or KS and cannot determine them without Alice’s private
key. She is out of luck.

8.10 COMMUNICATION SECURITY
We have now finished our study of the tools of the trade. Most of the impor-

tant techniques and protocols have been covered. The rest of the chapter is about
how these techniques are applied in practice to provide network security, plus some
thoughts about the social aspects of security at the end of the chapter.

820 NETWORK SECURITY CHAP. 8

In the following sections, we will look at communication security, that is, how
to get the bits secretly and without modification from source to destination and
how to keep unwanted bits outside the door. These are by no means the only secu-
rity issues in networking, but they are certainly among the most important ones.

8.10.1 IPsec

IETF has known for years that security was lacking in the Internet. Adding it
was not easy because a war broke out about where to put it. Most security experts
believe that to be really secure, encryption and integrity checks have to be end to
end (i.e., in the application layer). That is, the source process encrypts and/or in-
tegrity protects the data and sends them to the destination process where they are
decrypted and/or verified. Any tampering done in between these two processes, in-
cluding within either operating system, can then be detected. The trouble with this
approach is that it requires changing all the applications to make them security
aware. In this view, the next best approach is putting encryption in the transport
layer or in a new layer between the application layer and the transport layer, mak-
ing it still end to end but not requiring applications to be changed.

The opposite view is that users do not understand security and will not be ca-
pable of using it correctly and nobody wants to modify existing programs in any
way, so the network layer should authenticate and/or encrypt packets without the
users being involved. After years of pitched battles, this view won enough support
that a network layer security standard was defined. In part, the argument was that
having network layer encryption does not prevent security-aware users from doing
it right and it does help security-unaware users to some extent.

The result of this war was a design called IPsec (IP security), which is de-
scribed in many RFCs. Not all users want encryption (because it is computa-
tionally expensive). Rather than make it optional, it was decided to require en-
cryption all the time but permit the use of a null algorithm. The null algorithm is
described and praised for its simplicity, ease of implementation, and great speed in
RFC 2410.

The complete IPsec design is a framework for multiple services, algorithms,
and granularities. The reason for multiple services is that not everyone wants to
pay the price for having all the services all the time, so the services are available a
la carte. For example, someone streaming a movie from a remote server might not
care about encryption (although the copyright owner might). The major services
are secrecy, data integrity, and protection from replay attacks (where the intruder
replays a conversation). All of these are based on symmetric-key cryptography be-
cause high performance is crucial.

The reason for having multiple algorithms is that an algorithm that is now
thought to be secure may be broken in the future. By making IPsec algorithm-in-
dependent, the framework can survive even if some particular algorithm is later
broken. Switching to algorithm #2 is a lot easier than devising a new famework.

SEC. 8.10 COMMUNICATION SECURITY 821

The reason for having multiple granularities is to make it possible to protect a
single TCP connection, all traffic between a pair of hosts, or all traffic between a
pair of secure routers, among other possibilities.

One slightly surprising aspect of IPsec is that even though it is in the IP layer,
it is connection oriented. Actually, that is not so surprising because to have any se-
curity, a key must be established and used for some period of time—in essence, a
kind of connection by a different name. Also, connections amortize the setup costs
over many packets. A ‘‘connection’’ in the context of IPsec is called an SA (Secu-
rity Association). An SA is a simplex connection between two endpoints and has
a security identifier associated with it. If secure traffic is needed in both directions,
two security associations are required. Security identifiers are carried in packets
traveling on these secure connections and are used to look up keys and other rele-
vant information when a secure packet arrives.

Technically, IPsec has two principal parts. The first part describes two new
headers that can be added to packets to carry the security identifier, integrity con-
trol data, and other information. The other part, ISAKMP (Internet Security
Association and Key Management Protocol), deals with establishing keys.
ISAKMP is a framework. The main protocol for carrying out the work is IKE
(Internet Key Exchange). It has gone through multiple versions as flaws have
been corrected.

IPsec can be used in either of two modes. In transport mode, the IPsec head-
er is inserted just after the IP header. The Protocol field in the IP header is chang-
ed to indicate that an IPsec header follows the normal IP header (before the TCP
header). The IPsec header contains security information, primarily the SA identi-
fier, a new sequence number, and possibly an integrity check of the payload.

In tunnel mode, the entire IP packet, header and all, is encapsulated in the
body of a new IP packet with a completely new IP header. Tunnel mode is useful
when the tunnel ends at a location other than the final destination. In some cases,
the end of the tunnel is a security gateway machine, for example, a company fire-
wall. This is commonly the case for a VPN (Virtual Private Network). In this
mode, the security gateway encapsulates and decapsulates packets as they pass
through it. By terminating the tunnel at this secure machine, the machines on the
company LAN do not have to be aware of IPsec. Only the security gateway has to
know about it.

Tunnel mode is also useful when a bundle of TCP connections is aggregated
and handled as one encrypted stream because it prevents an intruder from seeing
who is sending how many packets to whom. Sometimes just knowing how much
traffic is going where is valuable information. For example, if during a military
crisis, the amount of traffic flowing between the Pentagon and the White House
were to drop sharply, but the amount of traffic between the Pentagon and some
military installation deep inside the Colorado Rocky Mountains were to increase
by the same amount, an intruder might be able to deduce some useful information
from these data. Studying the flow patterns of packets, even if they are encrypted,

822 NETWORK SECURITY CHAP. 8

is called traffic analysis. Tunnel mode provides a way to foil it to some extent.
The disadvantage of tunnel mode is that it adds an extra IP header, thus increasing
packet size substantially. In contrast, transport mode does not affect packet size as
much.

The first new header is AH (Authentication Header). It provides integrity
checking and antireplay security, but not secrecy (i.e., no data encryption). The
use of AH in transport mode is illustrated in Fig. 8-41. In IPv4, it is interposed be-
tween the IP header (including any options) and the TCP header. In IPv6, it is just
another extension header and is treated as such. In fact, the format is close to that
of a standard IPv6 extension header. The payload may have to be padded out to
some particular length for the authentication algorithm, as shown.

IP header AH

32 Bits

Security parameters index

Next header Payload len (Reserved)

Sequence number

Authentication data (HMAC)

TCP header

Authenticated

Payload + padding

Figure 8-41. The IPsec authentication header in transport mode for IPv4.

Let us now examine the AH header. The Next header field is used to store the
value that the IP Protocol field had before it was replaced with 51 to indicate that
an AH header follows. In most cases, the code for TCP (6) will go here. The Pay-
load length is the number of 32-bit words in the AH header minus2.

The Security parameters index is the connection identifier. It is inserted by the
sender to indicate a particular record in the receiver’s database. This record con-
tains the shared key used on this connection and other information about the con-
nection. If this protocol had been invented by ITU rather than IETF, this field
would have been called Virtual circuit number.

The Sequence number field is used to number all the packets sent on an SA.
Every packet gets a unique number, even retransmissions. In other words, the re-
transmission of a packet gets a different number here than the original (even
though its TCP sequence number is the same). The purpose of this field is to de-
tect replay attacks. These sequence numbers may not wrap around. If all 232 are
exhausted, a new SA must be established to continue communication.

Finally, we come to Authentication data, which is a variable-length field that
contains the payload’s digital signature. When the SA is established, the two sides
negotiate which signature algorithm they are going to use. Normally, public-key
cryptography is not used here because packets must be processed extremely rapidly

SEC. 8.10 COMMUNICATION SECURITY 823

and all known public-key algorithms are too slow. Since IPsec is based on sym-
metric-key cryptography and the sender and receiver negotiate a shared key before
setting up an security association (SA), the shared key is used in the signature
computation. In other words, IPsec uses an HMAC, much like the one we dis-
cussed in the section about authentication using shared keys. As mentioned, it is
much faster to compute than first running SHA-2 and then running RSA on the re-
sult.

The AH header does not allow encryption of the data, so it is mostly useful
when integrity checking is needed but secrecy is not needed. One noteworthy fea-
ture of AH is that the integrity check covers some of the fields in the IP header,
namely, those that do not change as the packet moves from router to router. The
Time to live field changes on each hop, for example, so it cannot be included in the
integrity check. However, the IP source address is included in the check, making it
impossible for an intruder to falsify the origin of a packet.

The alternative IPsec header is ESP (Encapsulating Security Payload). Its
use for both transport mode and tunnel mode is shown in Fig. 8-42.

ESP
header

New IP
header

Old IP
header

TCP
header

Authenticated

Payload + padding(b) Authentication (HMAC)

ESP
header

IP
header

TCP
header Payload + padding(a) Authentication (HMAC)

Authenticated

Encrypted

Encrypted

Figure 8-42. (a) ESP in transport mode. (b) ESP in tunnel mode.

The ESP header consists of two 32-bit words. They are the Security parame-
ters index and Sequence number fields that we saw in AH. A third word that gen-
erally follows them (but is technically not part of the header) is the Initialization
vector used for the data encryption, unless null encryption is used, in which case it
is omitted.

ESP also provides for HMAC integrity checks, as does AH, but rather than
being included in the header, they come after the payload, as shown in Fig. 8-42.
Putting the HMAC at the end has an advantage in a hardware implementation: the
HMAC can be calculated as the bits are going out over the network interface and
appended to the end. This is why Ethernet and other LANs have their CRCs in a
trailer, rather than in a header. With AH, the packet has to be buffered and the sig-
nature computed before the packet can be sent, potentially reducing the number of
packets/sec that can be sent.

Given that ESP can do everything AH can do and more and is more efficient to
boot, the question arises: why bother even having AH at all? The answer is mostly

824 NETWORK SECURITY CHAP. 8

historical. Originally, AH handled only integrity and ESP handled only secrecy.
Later, integrity was added to ESP, but the people who designed AH did not want to
let it die after all that work. Their only real argument is that AH checks part of the
IP header, which ESP does not, but other than that it is really a weak argument.
Another weak argument is that a product supporting AH but not ESP might have
less trouble getting an export license because it cannot do encryption. AH is likely
to be phased out in the future.

8.10.2 Virtual Private Networks

Many companies have offices and plants scattered over many cities, sometimes
over multiple countries. In the olden days, before public data networks, it was
common for such companies to lease lines from the telephone company between
some or all pairs of locations. Some companies still do this. A network built up
from company computers and leased telephone lines is called a private network.

Private networks work fine and are very secure. If the only lines available are
the leased lines, no traffic can leak out of company locations and intruders have to
physically wiretap the lines to break in, which is not easy to do. The problem with
private networks is that leasing dedicated lines between two points is very expen-
sive. When public data networks and later the Internet appeared, many companies
wanted to move their data (and possibly voice) traffic to the public network, but
without giving up the security of the private network.

This demand soon led to the invention of VPNs (Virtual Private Networks),
which are overlay networks on top of public networks but with most of the proper-
ties of private networks. They are called ‘‘virtual’’ because they are merely an illu-
sion, just as virtual circuits are not real circuits and virtual memory is not real
memory.

One popular approach is to build VPNs directly over the Internet. A common
design is to equip each office with a firewall and create tunnels through the Internet
between all pairs of offices, as illustrated in Fig. 8-43(a). A further advantage of
using the Internet for connectivity is that the tunnels can be set up on demand to in-
clude, for example, the computer of an employee who is at home or traveling as
long as the person has an Internet connection. This flexibility is much greater than
with a real private network with leased lines, yet from the perspective of the com-
puters on the VPN, the topology looks just like it, as shown in Fig. 8-43(b). When
the system is brought up, each pair of firewalls has to negotiate the parameters of
its SA, including the services, modes, algorithms, and keys. If IPsec is used for the
tunneling, it is possible to aggregate all traffic between any two pairs of offices
onto a single authenticated, encrypted SA, thus providing integrity control, secrecy,
and even considerable immunity to traffic analysis. Many firewalls have VPN
capabilities built in. Some ordinary routers can do this as well, but since firewalls
are primarily in the security business, it is natural to have the tunnels begin and end
at the firewalls, providing a clear separation between the company and the Internet.

SEC. 8.10 COMMUNICATION SECURITY 825

Home

Internet

Paris
office

London
office

Travel Home Travel

London Paris

(a) (b)

Figure 8-43. (a) A virtual private network. (b) Topology as seen from the inside.

Thus, firewalls, VPNs, and IPsec with ESP in tunnel mode are a natural combina-
tion and widely used in practice.

Once the SAs have been established, traffic can begin flowing. To a router
within the Internet, a packet traveling along a VPN tunnel is just an ordinary pack-
et. The only thing unusual about it is the presence of the IPsec header after the IP
header, but since these extra headers have no effect on the forwarding process, the
routers do not care about this extra header.

Another approach that is gaining popularity is to have the ISP set up the VPN.
Using MPLS (as discussed in Chap. 5), paths for the VPN traffic can be set up a-
cross the ISP network between the company offices. These paths keep the VPN
traffic separate from other Internet traffic and can be guaranteed a certain amount
of bandwidth or other quality of service.

A key advantage of a VPN is that it is completely transparent to all user soft-
ware. The firewalls set up and manage the SAs. The only person who is even
aware of this setup is the system administrator who has to configure and manage
the security gateways, or the ISP administrator who has to configure the MPLS
paths. To everyone else, it is like having a leased-line private network again. For
more about VPNs, see Ashraf (2018).

8.10.3 Wireless Security

It is surprisingly easy to design a system using VPNs and firewalls that is logi-
cally completely secure but that, in practice, leaks like a sieve. This situation can
occur if some of the machines are wireless and use radio communication, which
passes right over the firewall in both directions. The range of 802.11 networks can
be up to 100 meters, so anyone who wants to spy on a company can simply drive
into the employee parking lot in the morning, leave an 802.11-enabled notebook
computer in the car to record everything it hears, and take off for the day. By late
afternoon, the disk will be full of nice goodies. Theoretically, this leakage is not
supposed to happen. Theoretically, people are not supposed to rob banks, either.

826 NETWORK SECURITY CHAP. 8

Much of the security problem can be traced to the manufacturers of wireless
base stations (access points) trying to make their products user friendly. Usually, if
the user takes the device out of the box and plugs it into the electrical power sock-
et, it begins operating immediately—nearly always with no security at all, blurting
secrets to everyone within radio range. If it is then plugged into an Ethernet, all
the Ethernet traffic suddenly appears in the parking lot as well. Wireless is a
snooper’s dream come true: free data without having to do any work. It therefore
goes without saying that security is even more important for wireless systems than
for wired ones. In this section, we will look at some ways wireless networks hand-
le security with a focus on WiFi (802.11). Some additional information is given by
Osterhage (2018).

Part of the 802.11 standard, originally called 802.11i, prescribes a data link-
level security protocol for preventing a wireless node from reading or interfering
with messages sent between a pair of wireless nodes. It also goes by the trade
name WPA2 (WiFi Protected Access 2). Plain WPA is an interim scheme that
implements a subset of 802.11i. It should be avoided in favor of WPA2. The suc-
cessor to WPA2, brilliantly called WPA3, was announced in January 2018 and
uses 128-bit encryption in ‘‘personal mode’’ and 192-bit encryption in ‘‘Enterprise
mode.’’ WPA3 has many improvements over WPA2, chief among which perhaps
was known as ‘‘Dragonfly,’’ an overhauled handshake to thwart certain types of
password guessing attacks that plague WPA2. At the time of writing, WPA3 is not
yet as widely deployed as WPA2. Also, in April 2019 researchers disclosed an at-
tack vector known as Dragonblood that removes many of WPA3’s security advan-
tages. For these reasons, we focus on WPA2 in this section.

We will describe 802.11i shortly, but will first note that it is a replacement for
WEP (Wired Equivalent Privacy), the first generation of 802.11 security proto-
cols. WEP was designed by a networking standards committee, which is a com-
pletely different process than, for example, the way NIST selected the design of
AES using a worldwide public bake-off. The results were devastating. What was
wrong with it? Pretty much everything from a security perspective as it turns out.
For example, WEP encrypted data for confidentiality by XORing it with the output
of a stream cipher. Unfortunately, weak keying arrangements meant that the output
was often reused. This led to trivial ways to defeat it. As another example, the in-
tegrity check was based on a 32-bit CRC. That is an efficient code for detecting
transmission errors, but it is not a cryptographically strong mechanism for defeat-
ing attackers.

These and other design flaws made WEP very easy to compromise. The first
practical demonstration that WEP was broken came when Adam Stubblefield was
an intern at AT&T (Stubblefield et al., 2002). He was able to code up and test an
attack outlined by Fluhrer et al. (2001) in one week, of which most of the time was
spent convincing management to buy him a WiFi card to use in his experiments.
Software to crack WEP passwords within a minute is now freely available and the
use of WEP is very strongly discouraged. While it does prevent casual access it

SEC. 8.10 COMMUNICATION SECURITY 827

does not provide any real form of security. The 802.11i group was put together in
a hurry when it was clear that WEP was seriously broken. It produced a formal
standard by June 2004.

Now we will describe 802.11i, which does provide real security if it is set up
and used properly. There are two common scenarios in which WPA2 is used. The
first is a corporate setting, in which a company has a separate authentication server
that has a username and password database that can be used to determine if a wire-
less client is allowed to access the network. In this setting, clients use standard
protocols to authenticate themselves to the network. The main standards are
802.1X, with which the access point lets the client carry on a dialogue with the
authentication server and observes the result, and EAP (Extensible Authentica-
tion Protocol) (RFC 3748), which tells how the client and the authentication ser-
ver interact. Actually, EAP is a framework and other standards define the protocol
messages. However, we will not delve into the many details of this exchange be-
cause they do not much matter for an overview.

The second scenario is in a typical home setting in which there is no auth-
entication server. Instead, there is a single shared password that is used by clients
to access the wireless network. This setup is less complex than having an auth-
entication server, which is why it is used at home and in small businesses, but it is
less secure as well. The main difference is that with an authentication server each
client gets a key for encrypting traffic that is not known by the other clients. With a
single shared password, different keys are derived for each client, but all clients
have the same password and can derive each others’ keys if they want to.

The keys that are used to encrypt traffic are computed as part of an authentica-
tion handshake. The handshake happens right after the client associates with a
wireless network and authenticates with an authentication server, if there is one. At
the start of the handshake, the client has either the shared network password or its
password for the authentication server. This password is used to derive a master
key. However, the master key is not used directly to encrypt packets. It is standard
cryptographic practice to derive a session key for each period of usage, to change
the key for different sessions, and to expose the master key to observation as little
as possible. It is this session key that is computed in the handshake.

The session key is computed with the four-packet handshake shown in
Fig. 8-44. First, the AP (access point) sends a random number for identification.
The client also picks its own nonce. It uses the nonces, its MAC address and that of
the AP, and the master key to compute a session key, KS . The session key is split
into portions, each of which is used for different purposes, but we have omitted this
detail. Now the client has session keys, but the AP does not. So the client sends its
nonce to the AP, and the AP performs the same computation to derive the same
session keys. The nonces can be sent in the clear because the keys cannot be
derived from them without extra, secret information. The message from the client
is protected with an integrity check called a MIC (Message Integrity Check)
based on the session key. The AP can check that the MIC is correct, and so the

828 NETWORK SECURITY CHAP. 8

message indeed must have come from the client, after it computes the session keys.
A MIC is just another name for a message authentication code, as in an HMAC.
The term MIC is often used instead for networking protocols because of the poten-
tial for confusion with MAC (Medium Access Control) addresses.

C
lie

nt

NonceAP

NonceC, MICS

KS (KG), MICS

2

4

1

3

Ac
ce

ss
 P

oi
nt

 (A
P)

Compute session
keys KS from MAC
addresses, nonces,
and master key

Distribute group key, KG

Verify
client
has KS

Verify
AP
has KS

Acknowledge

Compute session
keys KS, same
as the client

KS (ACK), MICS

Figure 8-44. The 802.11i key setup handshake.

In the last two messages, the AP distributes a group key, KG , to the client, and
the client acknowledges the message. Receipt of these messages lets the client ver-
ify that the AP has the correct session keys, and vice versa. The group key is used
for broadcast and multicast traffic on the 802.11 LAN. Because the result of the
handshake is that every client has its own encryption keys, none of these keys can
be used by the AP to broadcast packets to all of the wireless clients; a separate
copy would need to be sent to each client using its key. Instead, a shared key is dis-
tributed so that broadcast traffic can be sent only once and received by all the cli-
ents. It must be updated as clients leave and join the network.

Finally, we get to the part where the keys are actually used to provide security.
Two protocols can be used in 802.11i to provide message confidentiality, integrity,
and authentication. Like WPA, one of the protocols, called TKIP (Temporary
Key Integrity Protocol), was an interim solution. It was designed to improve se-
curity on old and slow 802.11 cards, so that at least some security that is better
than WEP can be rolled out as a firmware upgrade. However, it, too, has now been
broken so you are better off with the other, recommended protocol, CCMP. What
does CCMP stand for? It is short for the somewhat spectacular name Counter
mode with Cipher block chaining Message authentication code Protocol. We will
just call it CCMP. You can call it anything you want.

CCMP works in a fairly straightforward way. It uses AES encryption with a
128-bit key and block size. The key comes from the session key. To provide

SEC. 8.10 COMMUNICATION SECURITY 829

confidentiality, messages are encrypted with AES in counter mode. Recall that we
discussed cipher modes in Sec. 8.2.3. These modes are what prevent the same mes-
sage from being encrypted to the same set of bits each time. Counter mode mixes a
counter into the encryption. To provide integrity, the message, including header
fields, is encrypted with cipher block chaining mode and the last 128-bit block is
kept as the MIC. Then both the message (encrypted with counter mode) and the
MIC are sent. The client and the AP can each perform this encryption, or verify
this encryption when a wireless packet is received. For broadcast or multicast mes-
sages, the same procedure is used with the group key.

8.11 EMAIL SECURITY

When an email message is sent between two distant sites, it will generally tran-
sit dozens of machines on the way. Any of these can read and record the message
for future use. In practice, privacy is nonexistent, despite what many people think.
Nevertheless, many people would like to be able to send email that can be read by
the intended recipient and no one else: not their boss and not even their govern-
ment. This desire has stimulated several people and groups to apply the crypto-
graphic principles we studied earlier to email to produce secure email. In the fol-
lowing sections, we will study a widely used secure email system, PGP, and then
briefly mention one other, S/MIME.

8.11.1 Pretty Good Privacy

Our first example, PGP (Pretty Good Privacy) is essentially the brainchild of
one person, Phil Zimmermann (1995). Zimmermann is a privacy advocate whose
motto is: ‘‘If privacy is outlawed, only outlaws will have privacy.’’ Released in
1991, PGP is a complete email security package that provides privacy, authentica-
tion, digital signatures, and compression, all in an easy-to-use form. Furthermore,
the complete package, including all the source code, is distributed free of charge
via the Internet. Owing to its quality, price (zero), and easy availability on UNIX,
Linux, Windows, and Mac OS platforms, it is widely used today.

PGP originally encrypted data by using a block cipher called IDEA (Interna-
tional Data Encryption Algorithm), which uses 128-bit keys. It was devised in
Switzerland at a time when DES was seen as tainted and AES had not yet been in-
vented. Conceptually, IDEA is similar to DES and AES: it mixes up the bits in a
series of rounds, but the details of the mixing functions are different from DES and
AES. Later, AES was added as an encryption algorithm and this is now commonly
used.

PGP has also been embroiled in controversy since day 1 (Levy, 1993). Be-
cause Zimmermann did nothing to stop other people from placing PGP on the In-
ternet, where people all over the world could get it, the U.S. Government claimed

830 NETWORK SECURITY CHAP. 8

that Zimmermann had violated U.S. laws prohibiting the export of munitions. The
U.S. Government’s investigation of Zimmermann went on for 5 years but was
eventually dropped, probably for two reasons. First, Zimmermann did not place
PGP on the Internet himself, so his lawyer claimed that he never exported anything
(and then there is the little matter of whether creating a Web site constitutes export
at all). Second, the government eventually came to realize that winning a trial
meant convincing a jury that a Web site containing a downloadable privacy pro-
gram was covered by the arms-trafficking law prohibiting the export of war
materiel such as tanks, submarines, military aircraft, and nuclear weapons. Years
of negative publicity probably did not help much, either.

As an aside, the export rules are bizarre, to put it mildly. The government con-
sidered putting code on a Web site to be an illegal export and harassed and threat-
ened Zimmermann about it for 5 years. On the other hand, when someone publish-
ed the complete PGP source code, in C, as a book (in a large font with a checksum
on each page to make scanning it in easy) and then exported the book, that was fine
with the government because books are not classified as munitions. The sword is
mightier than the pen, at least for Uncle Sam.

Another problem PGP ran into involved patent infringement. The company
holding the RSA patent, RSA Security, Inc., alleged that PGP’s use of the RSA al-
gorithm infringed on its patent, but that problem was settled with releases starting
at 2.6. Furthermore, PGP used another patented encryption algorithm, IDEA,
whose use caused some problems at first.

Since PGP is open source and freely available, various people and groups have
modified it and produced a number of versions. Some of these were designed to
get around the munitions laws, others were focused on avoiding the use of patented
algorithms, and still others wanted to turn it into a closed-source commercial prod-
uct. Although the munitions laws have now been slightly liberalized (otherwise,
products using AES would not have been exportable from the U.S.), and the RSA
patent expired in September 2000, the legacy of all these problems is that several
incompatible versions of PGP are in circulation, under various names. The dis-
cussion below focuses on classic PGP, which is the oldest and simplest version, ex-
cept that we use AES and SHA-2 instead of IDEA and MD5 in our explanation.
Another popular version, Open PGP, is described in RFC 2440. Yet another is the
GNU Privacy Guard.

PGP intentionally uses existing cryptographic algorithms rather than inventing
new ones. It is largely based on algorithms that have withstood extensive peer
review and were not designed or influenced by any government agency trying to
weaken them. For people who distrust government, this property is a big plus.

PGP supports text compression, secrecy, and digital signatures and also pro-
vides extensive key management facilities, but, oddly enough, not email facilities.
It is like a preprocessor that takes plaintext as input and produces signed ciphertext
in base64 as output. This output can then be emailed, of course. Some PGP im-
plementations call a user agent as the final step to actually send the message.

SEC. 8.11 EMAIL SECURITY 831

To see how PGP works, let us consider the example of Fig. 8-45. Here, Alice
wants to send a signed plaintext message, P, to Bob in a secure way. PGP supports
different encryption schemes such as RSA and elliptic curve cryptography, but here
we assume that both Alice and Bob have private (DX) and public (EX) RSA keys.
Let us also assume that each one knows the other’s public key; we will cover PGP
key management shortly.

SHA-2 RSA Zip AES Base
64

RSA

ASCII text to
the networkP1.Z

P
P1

Original
plaintext
message
from Alice

Concatenation of
P and the signed
hash of P

Concatenation of
P1.Z encrypted
with AES and KM
encrypted with EB

Alice’s private
RSA key, DA

P1 compressed

Bob’s public
RSA key, EB

KM : One-time message key for AES

: Concatenation

KM

Figure 8-45. PGP in operation for sending a message.

Alice starts out by invoking the PGP program on her computer. PGP first
hashes her message, P, using SHA-2, and then encrypts the resulting hash using
her private RSA key, DA. When Bob eventually gets the message, he can decrypt
the hash with Alice’s public key and verify that the hash is correct. Even if some-
one else (e.g., Trudy) could acquire the hash at this stage and decrypt it with
Alice’s known public key, the strength of SHA-2 guarantees that it would be com-
putationally infeasible to produce another message with the same SHA-2 hash.

The encrypted hash and the original message are now concatenated into a sin-
gle message, P1, and then compressed using the ZIP program, which uses the Ziv-
Lempel algorithm (Ziv and Lempel, 1977). Call the output of this step P1.Z.

Next, PGP prompts Alice for some random input. Both the content and the
typing speed are used to generate a 256-bit AES message key, KM (called a session
key in the PGP literature, but this is really a misnomer since there is no session).
KM is now used to encrypt P1.Z with AES. In addition, K M is encrypted with
Bob’s public key, EB. These two components are then concatenated and converted
to base64, as we discussed in the section on MIME in Chap. 7. The resulting mes-
sage contains only letters, digits, and the symbols +, /, and =, which means it can
be put into an RFC 822 body and be expected to arrive unmodified.

When Bob gets the message, he reverses the base64 encoding and decrypts the
AES key using his private RSA key. Using this key, he decrypts the message to get
P1.Z. After decompressing it, Bob separates the plaintext from the encrypted hash

832 NETWORK SECURITY CHAP. 8

and decrypts the hash using Alice’s public key. If the plaintext hash agrees with
his own SHA-2 computation, he knows that P is the correct message and that it
came from Alice.

It is worth noting that RSA is only used in two places here: to encrypt the
256-bit SHA-2 hash and to encrypt the 256-bit key. Although RSA is slow, it has
to encrypt only a handful of bits, not a large volume of data. Furthermore, all 512
plaintext bits are exceedingly random, so a considerable amount of work will be
required on Trudy’s part just to determine if a guessed key is correct. The heavy-
duty encryption is done by AES, which is orders of magnitude faster than RSA.
Thus, PGP provides security, compression, and a digital signature and does so in a
much more efficient way than the scheme illustrated in Fig. 8-22.

PGP supports multiple RSA key lengths. It is up to the user to select the one
that is most appropriate. For instance, if you are a regular user, a key length of
1024 bits may already be sufficient. If you are worried about sophisticated govern-
ment-funded three-letter organizations, perhaps 2048 bits should be the minimum.
Worried about aliens whose technology is 10,000 years ahead of ours reading your
emails? There is always the option to use 4096 bit keys. On the other hand, since
RSA is only used for encrypting a few bits, perhaps you should always go for
alien-proof.

The format of a classic PGP message is shown in Fig. 8-46. Numerous other
formats are also in use. The message has three parts, containing the IDEA key, the
signature, and the message, respectively. The key part contains not only the key,
but also a key identifier, since users are permitted to have multiple public keys.

ID
of
EB

ID
of
EA

Sig.
hdr hash

Msg
hdr

File
name

T
i

m
e

T
i

m
e

T
y
p
e
s

KM
Message

Encrypted
by EB DA

Compressed, encrypted by AES

Base64

Signature part

Message

key part Message part

RSA

Figure 8-46. A PGP message.

The signature part contains a header, which will not concern us here. The
header is followed by a timestamp, the identifier for the sender’s public key that
can be used to decrypt the signature hash, some type information that identifies the
algorithms used (to allow SHA-4 and RSA2 to be used when they are invented),
and the encrypted hash itself.

The message part also contains a header, the default name of the file to be used
if the receiver writes the file to the disk, a message creation timestamp, and, finally
(not surprisingly), the message itself.

SEC. 8.11 EMAIL SECURITY 833

Key management has received a large amount of attention in PGP as it is the
Achilles’ heel of all security systems. Key management works as follows. Each
user maintains two data structures locally: a private key ring and a public key ring.
The private key ring contains one or more personal private/public-key pairs. The
reason for supporting multiple pairs per user is to permit users to change their pub-
lic keys periodically or when one is thought to have been compromised, without
invalidating messages currently in preparation or in transit. Each pair has an iden-
tifier associated with it so that a message sender can tell the recipient which public
key was used to encrypt it. Message identifiers consist of the low-order 64 bits of
the public key. Users are themselves responsible for avoiding conflicts in their
public-key identifiers. The private keys on disk are encrypted using a special (arbi-
trarily long) password to protect them against sneak attacks.

The public key ring contains public keys of the user’s correspondents. These
are needed to encrypt the message keys associated with each message. Each entry
on the public key ring contains not only the public key, but also its 64-bit identifier
and an indication of how strongly the user trusts the key.

The problem being tackled here is the following. Suppose that public keys are
maintained on Web sites. One way for Trudy to read Bob’s secret email is to at-
tack the Web site and replace Bob’s public key with one of her choice. When
Alice later fetches the key allegedly belonging to Bob, Trudy can mount a bucket
brigade (MITM)) attack on Bob.

To prevent such attacks, or at least minimize the consequences of them, Alice
needs to know how much to trust the item called ‘‘Bob’s key’’ on her public key
ring. If she knows that Bob personally handed her a CD-ROM (or a more modern
storage device) containing the key, she can set the trust value to the highest value.
It is this decentralized, user-controlled approach to public-key management that
sets PGP apart from centralized PKI schemes.

Nevertheless, people do sometimes obtain public keys by querying a trusted
key server. For this reason, after X.509 was standardized, PGP supported these
certificates as well as the traditional PGP public key ring mechanism. All current
versions of PGP have X.509 support.

8.11.2 S/MIME

IETF’s venture into email security, called S/MIME (Secure/MIME), is de-
scribed in RFC 2632 through RFC 2643. It provides authentication, data integrity,
secrecy, and nonrepudiation. It also is quite flexible, supporting a variety of
cryptographic algorithms. Not surprisingly, given the name, S/MIME integrates
well with MIME, allowing all kinds of messages to be protected. A variety of new
MIME headers are defined, for example, for holding digital signatures.

S/MIME does not have a rigid certificate hierarchy beginning at a single root,
which had been one of the political problems that doomed an earlier system called
PEM (Privacy Enhanced Mail). Instead, users can have multiple trust anchors. As

834 NETWORK SECURITY CHAP. 8

long as a certificate can be traced back to some trust anchor the user believes in, it
is considered valid. S/MIME uses the standard algorithms and protocols we have
been examining so far, so we will not discuss it any further here. For the details,
please consult the RFCs.

8.12 WEB SECURITY

We have just studied two important areas where security is needed: communi-
cations and email. You can think of these as the soup and appetizer. Now it is time
for the main course: Web security. The Web is where most of the Trudies hang out
nowadays and do their dirty work. In the following sections, we will look at some
of the problems and issues relating to Web security.

Web security can be roughly divided into three parts. First, how are objects
and resources named securely? Second, how can secure, authenticated connections
be established? Third, what happens when a Web site sends a client a piece of ex-
ecutable code? After looking at some threats, we will examine all these issues.

8.12.1 Threats

One reads about Web site security problems in the newspaper almost weekly.
The situation is really pretty grim. Let us look at a few examples of what has al-
ready happened. First, the home pages of numerous organizations have been at-
tacked and replaced by new home pages of the crackers’ choosing. (The popular
press calls people who break into computers ‘‘hackers,’’ but many programmers re-
serve that term for great programmers. We prefer to call these people crackers.
Sites that have been cracked include those belonging to Yahoo!, the U.S. Army,
Equifax, the CIA, NASA, and the New York Times. In most cases, the crackers just
put up some funny text and the sites were repaired within a few hours.

Now let us look at some much more serious cases. Numerous sites have been
brought down by denial-of-service attacks, in which the cracker floods the site with
traffic, rendering it unable to respond to legitimate queries. Often, the attack is
mounted from a large number of machines that the cracker has already broken into
(DDoS attacks). These attacks are so common that they do not even make the
news any more, but they can cost the attacked sites millions of dollars in lost busi-
ness.

In 1999, a Swedish cracker broke into Microsoft’s Hotmail Web site and creat-
ed a mirror site that allowed anyone to type in the name of a Hotmail user and then
read all of the person’s current and archived email.

In another case, a 19-year-old Russian cracker named Maxim broke into an
e-commerce Web site and stole 300,000 credit card numbers. Then he approached
the site owners and told them that if they did not pay him $100,000, he would post
all the credit card numbers to the Internet. They did not give in to his blackmail,

SEC. 8.12 WEB SECURITY 835

and he indeed posted the credit card numbers, inflicting great damage on many
innocent victims.

In a different vein, a 23-year-old California student emailed a press release to a
news agency falsely stating that the Emulex Corporation was going to post a large
quarterly loss and that the CEO was resigning immediately. Within hours, the
company’s stock dropped by 60%, causing stockholders to lose over $2 billion.
The perpetrator made a quarter of a million dollars by selling the stock short just
before sending the announcement. While this event was not a Web site break-in, it
is clear that putting such an announcement on the home page of any big corpora-
tion would have a similar effect.

We could (unfortunately) go on like this for many more pages. But it is now
time to examine some of the technical issues related to Web security. For more
information about security problems of all kinds, see Du (2019), Schneier (2004),
and Stuttard and Pinto (2007). Searching the Internet will also turn up vast num-
bers of specific cases.

8.12.2 Secure Naming and DNSSEC

Let us revisit the problem of DNS spoofing and start with something very
basic: Alice wants to visit Bob’s Web site. She types Bob’s URL into her browser
and a few seconds later, a Web page appears. But is it Bob’s? Maybe yes and
maybe no. Trudy might be up to her old tricks again. For example, she might be
intercepting all of Alice’s outgoing packets and examining them. When she cap-
tures an HTTP GET request headed to Bob’s Web site, she could go to Bob’s Web
site herself to get the page, modify it as she wishes, and return the fake page to
Alice. Alice would be none the wiser. Worse yet, Trudy could slash the prices at
Bob’s e-store to make his goods look very attractive, thereby tricking Alice into
sending her credit card number to ‘‘Bob’’ to buy some merchandise.

One disadvantage of this classic man-in-the-middle attack is that Trudy has to
be in a position to intercept Alice’s outgoing traffic and forge her incoming traffic.
In practice, she has to tap either Alice’s phone line or Bob’s, since tapping the fiber
backbone is fairly difficult. While active wiretapping is certainly possible, it is a
fair amount of work, and while Trudy is clever, she is also lazy.

Besides, there are easier ways to trick Alice, such as DNS spoofing, which we
encountered previously in Sec. 8.2.3. Briefly, attackers use DNS spoofing to store
an incorrect mapping of a service in an intermediate name server, making it point
to the attacker’s IP address. When a user wants to communicate with the service, it
looks up the address, but rather than talking to the legitimate server, ends up talk-
ing to the attacker.

The real problem is that DNS was designed at a time when the Internet was a
research facility for a few hundred universities, and neither Alice, nor Bob, nor
Trudy was invited to the party. Security was not an issue then; making the Internet
work at all was the issue. The environment has changed radically over the years,

836 NETWORK SECURITY CHAP. 8

so in 1994 IETF set up a working group to make DNS fundamentally secure. This
(ongoing) project is known as DNSSEC (DNS security); its first output was pres-
ented in RFC 2535 and later updated in RFC 4033, RFC 4034, and RFC 4035
among others. Unfortunately, DNSSEC has not been fully deployed yet, so numer-
ous DNS servers are still vulnerable to spoofing attacks.

DNSSEC is conceptually extremely simple. It is based on public-key crypto-
graphy. Every DNS zone (as discussed in Chap. 7) has a public/private key pair.
All information sent by a DNS server is signed with the originating zone’s private
key, so the receiver can verify its authenticity.

DNSSEC offers three fundamental services:

1. Proof of where the data originated.

2. Public key distribution.

3. Transaction and request authentication.

The main service is the first one, which verifies that the data being returned has
been approved by the zone’s owner. The second one is useful for storing and
retrieving public keys securely. The third one is needed to guard against playback
and spoofing attacks. Note that secrecy is not an offered service since all the infor-
mation in DNS is considered public. Since phasing in DNSSEC was expected to
take several years, the ability for security-aware servers to interwork with securi-
ty-ignorant servers was essential, which implied that the protocol could not be
changed. Let us now look at some of the details.

DNS records are grouped into sets called RRSETs (Resource Record SETs),
with all the records having the same name, class, and type being lumped together
in a set. An RRSET may contain multiple A records, for example, if a DNS name
resolves to a primary IP address and a secondary IP address. The RRSETs are ex-
tended with several new record types (discussed below). Each RRSET is crypto-
graphically hashed (e.g., using SHA-2). The hash is signed by the zone’s private
key (e.g., using RSA). The unit of transmission to clients is the signed RRSET.
Upon receipt of a signed RRSET, the client can verify whether it was signed by the
private key of the originating zone. If the signature agrees, the data are accepted.
Since each RRSET contains its own signature, RRSETs can be cached anywhere,
even at untrustworthy servers, without endangering the security.

DNSSEC introduces several new record types. The first of these is the
DNSKEY record. This record holds the public key of a zone, user, host, or other
principal, the cryptographic algorithm used for signing, the protocol used for trans-
mission, and a few other bits. The public key is stored naked. X.509 certificates
are not used due to their bulk. The algorithm field holds a 1 for MD5/RSA signa-
tures and other values for other combinations. The protocol field can indicate the
use of IPsec or other security protocols, if any.

The second new record type is the RRSIG record. It holds the signed hash
according to the algorithm specified in the DNSKEY record. The signature applies

SEC. 8.12 WEB SECURITY 837

to all the records in the RRSET, including any DNSKEY records present, but
excluding itself. It also holds the times when the signature begins its period of
validity and when it expires, as well as the signer’s name and a few other items.

The DNSSEC design is such that a zone’s private key can be kept offline to
protect it. Once or twice a day, the contents of a zone’s database can be manually
transported (e.g., on a secure storage device such as the old, but fairly trustworthy
CD-ROM) to a disconnected machine on which the private key is located. All the
RRSETs can be signed there and the RRSIG records thus produced can be con-
veyed back to the zone’s primary server on a secure device. In this way, the private
key can be stored on a storage device locked in a safe except when it is inserted
into the disconnected machine for signing the day’s new RRSETs. After signing is
completed, all copies of the key are erased from memory and the disk and the stor-
age devices are returned to the safe. This procedure reduces electronic security to
physical security, something people understand how to deal with.

This method of presigning RRSETs greatly speeds up the process of answering
queries since no cryptography has to be done on the fly. The trade-off is that a
large amount of disk space is needed to store all the keys and signatures in the
DNS databases. Some records will increase tenfold in size due to the signature.

When a client process gets a signed RRSET, it must apply the originating
zone’s public key to decrypt the hash, compute the hash itself, and compare the
two values. If they agree, the data are considered valid. However, this procedure
begs the question of how the client gets the zone’s public key. One way is to ac-
quire it from a trusted server, using a secure connection (e.g., using IPsec).

However, in practice, it is expected that clients will be preconfigured with the
public keys of all the top-level domains. If Alice now wants to visit Bob’s Web
site, she can ask DNS for the RRSET of bob.com, which will contain his IP ad-
dress and a DNSKEY record containing Bob’s public key. This RRSET will be
signed by the top-level com domain, so Alice can easily verify its validity. An ex-
ample of what this RRSET might contain is shown in Fig. 8-47.

Domain name Time to live Class Type Value
bob.com. 86400 IN A 36.1.2.3
bob.com. 86400 IN DNSKEY 3682793A7B73F731029CE2737D...
bob.com. 86400 IN RRSIG 86947503A8B848F5272E53930C...

Figure 8-47. An examle RRSET for bob.com. The DNSKEY record is Bob’s
public key. The RRSIG record is the top-level com server’s signed hash of the A
and DNSKEY records to verify their authenticity.

Now armed with a verified copy of Bob’s public key, Alice can ask Bob’s DNS
server (run by Bob) for the IP address of www.bob.com. This RRSET will be
signed by Bob’s private key, so Alice can verify the signature on the RRSET Bob
returns. If Trudy somehow or other manages to inject a false RRSET into any of

838 NETWORK SECURITY CHAP. 8

the caches, Alice can easily detect its lack of authenticity because the RRSIG
record contained in it will be incorrect.

However, DNSSEC also provides a cryptographic mechanism to bind a re-
sponse to a specific query, to prevent the kind of spoofing attack we discussed at
the start of this chapter. This (optional) antispoofing measure adds to the response
a hash of the query message signed with the respondent’s private key. Since Trudy
does not know the private key of the top-level com server, she cannot forge a re-
sponse to a query Alice’s ISP sent there. She can certainly get her response back
first, but it will be rejected due to its invalid signature over the hashed query.

DNSSEC also supports a few other record types. For example, the CERT
record can be used for storing (e.g., X.509) certificates. This record has been pro-
vided because some people want to turn DNS into a PKI. Whether this will ac-
tually happen remains to be seen. We will stop our discussion of DNSSEC here.
For more details, please consult the RFCs.

8.12.3 Transport Layer Security

Secure naming is a good start, but there is much more to Web security. The
next step is secure connections. We will now look at how secure connections can
be achieved. Nothing involving security is simple and this is not either.

When the Web burst into public view, it was initially used for just distributing
static pages. However, before long, some companies got the idea of using it for
financial transactions, such as purchasing merchandise by credit card, online bank-
ing, and electronic stock trading. These applications created a demand for secure
connections. In 1995, Netscape Communications Corp., the then-dominant brow-
ser vendor, responded by introducing a security package called SSL (Secure Sock-
ets Layer) now called TLS (Transport Layer Security) to meet this demand.
This software and its protocol are now widely used, for example, by Firefox,
Brave, Safari, and Chrome, so it is worth examining in some detail.

SSL builds a secure connection between two sockets, including

1. Parameter negotiation between client and server.

2. Authentication of the server by the client.

3. Secret communication.

4. Data integrity protection.

We have seen these items before, so there is no need to elaborate on them here.
The positioning of SSL in the usual protocol stack is illustrated in Fig. 8-48.

Effectively, it is a new layer interposed between the application layer and the tran-
sport layer, accepting requests from the browser and sending them down to TCP
for transmission to the server. Once the secure connection has been established,
SSL’s main job is handling compression and encryption. When HTTP is used over

SEC. 8.12 WEB SECURITY 839

SSL, it is called HTTPS (Secure HTTP), even though it is the standard HTTP
protocol. Sometimes it is available at a new port (443) instead of port 80. As an
aside, SSL is not restricted to Web browsers, but that is its most common applica-
tion. It can also provide mutual authentication.

Application (HTTP)
Security (SSL)

Transport (TCP)
Network (IP)

Data link (PPP)
Physical (modem, ADSL, cable TV)

Figure 8-48. Layers (and protocols) for a home user browsing with SSL.

The SSL protocol has gone through several versions. Below we will discuss
only version 3, which is the most widely used version. SSL supports a variety of
different options. These options include the presence or absence of compression,
the cryptographic algorithms to be used, and some matters relating to export re-
strictions on cryptography. The last is mainly intended to make sure that serious
cryptography is used only when both ends of the connection are in the United
States. In other cases, keys are limited to 40 bits, which cryptographers regard as
something of a joke. Netscape was forced to put in this restriction in order to get
an export license from the U.S. Government.

SSL consists of two subprotocols, one for establishing a secure connection and
one for using it. Let us start out by seeing how secure connections are established.
The connection establishment subprotocol is shown in Fig. 8-49. It starts out with
message 1 when Alice sends a request to Bob to establish a connection. The re-
quest specifies the SSL version Alice has and her preferences with respect to com-
pression and cryptographic algorithms. It also contains a nonce, R A, to be used
later.

Now it is Bob’s turn. In message 2, Bob makes a choice among the various al-
gorithms that Alice can support and sends his own nonce, R B. Then, in message 3,
he sends a certificate containing his public key. If this certificate is not signed by
some well-known authority, he also sends a chain of certificates that can be follow-
ed back to one. All browsers, including Alice’s, come preloaded with about 100
public keys, so if Bob can establish a chain anchored to one of these, Alice will be
able to verify Bob’s public key. At this point, Bob may send some other messages
(such as a request for Alice’s public-key certificate). When Bob is done, he sends
message 4 to tell Alice it is her turn.

Alice responds by choosing a random 384-bit premaster key and sending it to
Bob encrypted with his public key (message 5). The actual session key used for
encrypting data is derived from the premaster key combined with both nonces in a
complex way. After message 5 has been received, both Alice and Bob are able to

840 NETWORK SECURITY CHAP. 8

SSL version, preferences, RA

SSL version, choices, RB

X.509 certificate chain

Server done

EB (premaster key)

Change cipher

Finished

Change cipher

Finished
9

7

8

Al
ic

e

Bo
b

6

5

4

3

2

1

Figure 8-49. A simplified version of the SSL connection establishment subprotocol.

compute the session key. For this reason, Alice tells Bob to switch to the new
cipher (message 6) and also that she is finished with the establishment subprotocol
(message 7). Bob then acknowledges her (messages 8 and 9).

However, although Alice knows who Bob is, Bob does not know who Alice is
(unless Alice has a public key and a corresponding certificate for it, an unlikely
situation for an individual). Therefore, Bob’s first message may well be a request
for Alice to log in using a previously established login name and password. The
login protocol, however, is outside the scope of SSL. Once it has been accom-
plished, by whatever means, data transport can begin.

As mentioned above, SSL supports multiple cryptographic algorithms. One of
them uses triple DES with three separate keys for encryption and SHA for mes-
sage integrity. This combination is relatively slow, so it was mostly used for bank-
ing and other applications in which good security is a must. For ordinary e-com-
merce applications, RC4 was often used with a 128-bit key for encryption and
MD5 is used for message authentication. RC4 takes the 128-bit key as a seed and
expands it to a much larger number for internal use. Then it uses this internal num-
ber to generate a keystream. The keystream is XORed with the plaintext to pro-
vide a classical stream cipher, as we saw in Fig. 8-18. The export versions also
used RC4 with 128-bit keys, but 88 of the bits are made public to make the cipher
easy to break.

For actual transport, a second subprotocol is used, as shown in Fig. 8-50. Mes-
sages from the browser are first broken into units of up to 16 KB. When data

SEC. 8.12 WEB SECURITY 841

compression is enabled, each unit is then separately compressed. After that, a
secret key derived from the two nonces and premaster key is concatenated with the
compressed text and the result is hashed with the agreed-on hashing algorithm
(usually MD5). This hash is appended to each fragment as the MAC. The com-
pressed fragment plus MAC is then encrypted with the agreed-on symmetric en-
cryption algorithm (usually by XORing it with the RC4 keystream). Finally, a
fragment header is attached and the fragment is transmitted over the TCP con-
nection the usual way.

Message
authentication
code

Header added

Encryption

MAC added

Compression

Fragmentation Part 1 Part 2

Message from browser

Figure 8-50. Data transmission using SSL.

A word of caution is in order, however. Since it has been shown that RC4 has
some weak keys that can be easily cryptanalyzed, the security of SSL using RC4
has been on shaky ground for some time already (Fluhrer et al., 2001). Browsers
that allow the user to choose the cipher suite should be configured to use, say,
triple DES with 168-bit keys and SHA-2 all the time, even though this combination
is slower than RC4 and MD5. Or, better yet, users should upgrade to browsers that
support the successor to SSL that we describe shortly.

A problem with SSL is that Alice & Bob may not have certificates, and even if
they do, they do not always verify that the keys being used match them.

In 1996, Netscape Communications Corp. turned SSL over to IETF for stan-
dardization. The result was TLS (Transport Layer Security). It is described in
RFC 5246.

TLS was built on SSL version 3. The changes made to SSL were relatively
small, but just enough that SSL version 3 and TLS cannot interoperate. For ex-
ample, the way the session key is derived from the premaster key and nonces was
changed to make the key stronger (i.e., harder to cryptanalyze). Because of this

842 NETWORK SECURITY CHAP. 8

incompatibility, most browsers implement both protocols, with TLS falling back to
SSL during negotiation if necessary. This is referred to as SSL/TLS. The first TLS
implementation appeared in 1999 with version 1.2 defined in August 2008, and
version 1.3 in March 2018. It includes support for stronger cipher suites (notably
AES), as well as encryption of the SNI (Server Name Indication), which can be
used to identify the Web site the user is visiting if it is transmitted in cleartext.

8.12.4 Running Untrusted Code

Naming and connections are two areas of concern related to Web security. But
there are more. One particularly difficult problem is that we more and more allow
foreign, untrusted code to run on our local machines. We will now take a quick
peek at some of the issues raised by such untrusted code and some approaches to
dealing with it.

Scripting Code in the Browser

In the early days, when Web pages were just static HTML files, they did not
contain executable code. Now they often contain small programs, typically written
in JavaScript (and sometimes compiled to the more efficient Web Assembly).
Downloading and executing such mobile code is obviously a massive security risk,
so various methods have been devised to minimize it.

JavaScript does not have any formal security model, but it does have a long
history of leaky implementations. Each vendor handles security in a different way.
The main defense is that, barring bugs, the language should not be able to do very
bad things—read or write arbitrary files, access the sensitive data of other Web
pages, etc. We commonly say that such code runs in a sandboxed environment.
The problem is that bugs do exist.

The fundamental problem is that letting foreign code run on your machine is
asking for trouble. From a security standpoint, it is like inviting a burglar into your
house and then trying to watch him carefully so he cannot escape from the kitchen
into the living room. If something unexpected occurs and you are distracted for a
moment, bad things can happen. The tension here is that mobile code allows
flashy graphics and fast interaction, and many Web site designers think that this is
much more important than security, especially when it is somebody else’s machine
at risk.

For instance, imagine that a Web site containing your personal data allows you
to provide feedback in the form of arbitrary text that is visible to every other user.
The idea is that users can now tell the company how much they like or hate its ser-
vices. However, unless that Web site very carefully sanitizes the data in the feed-
back form, an attacker could also place a small amount of JavaScript in the text
field. Now imagine that you visit the Web site and look at the feedback provided
by other users. The JavaScript will be sent to your browser which has no idea that

SEC. 8.12 WEB SECURITY 843

this is supposed to be feedback. It just sees JavaScript, just like it finds on many
other Web pages, and starts executing it. The malicious JavaScript is able to steal
all the privacy-sensitive data (e.g., cookies) that your browser maintains for this
Web site and send it to the criminal. This is known as a CSS (cross-site scripting)
attack. CSRF (Cross-Site Request Forgery) attacks, which are related, can even
allow an attacker to pose as a user.

Another problem that may arise is that the JavaScript engine may not be as
secure as it should be. For instance, there may be a bug in the browser that mali-
cious JavaScript code can use to take over the browser, or perhaps even the entire
system. This is known as a drive-by download: you visit a Web site and without
realizing it, you are infected. It does not even mean that the Web site was
malicious—perhaps the JavaScript was in an advertisement or in some feedback
field, as we saw earlier. A particular famous attack, known as Operation Aurora
was the attack on Google and several other tech companies, where the attackers
used a drive-by download to spread through the company with an eye towards get-
ting access to its code repositories.

Browser Extensions

As well as extending Web pages with code, there is a booming marketplace in
browser extensions, add-ons, and plug-ins. They are computer programs that ex-
tend the functionality of Web browsers. Plug-ins often provide the capability to
interpret or display a certain type of content, such as PDFs or Flash animations.
Extensions and add-ons provide new browser features, such as better password
management, or ways to interact with pages by, for example, marking them up or
enabling easy shopping for related items.

Installing an extension, add-on, or plug-in is as simple as coming across some-
thing you want when browsing and following the link to install the program. This
action will cause code to be downloaded across the Internet and installed into the
browser. All of these programs are written to frameworks that differ depending on
the browser that is being enhanced. However, to a first approximation, they become
part of the trusted computing base of the browser. That is, if the code that is in-
stalled is buggy, the entire browser can be compromised.

There are two other obvious failure modes as well. The first is that the program
may behave maliciously, for example, by gathering personal information and send-
ing it to a remote server. For all the browser knows, the user installed the extension
for precisely this purpose. The second problem is that plug-ins give the browser the
ability to interpret new types of content. Often this content is a full-blown pro-
gramming language itself. PDF and Flash are good examples. When users view
pages with PDF and Flash content, the plug-ins in their browser are executing the
PDF and Flash code. That code had better be safe; often there are vulnerabilities
that it can exploit. For all of these reasons, add-ons and plug-ins should only be in-
stalled as needed and only from trusted vendors.

844 NETWORK SECURITY CHAP. 8

Trojans and Other Malware

Trojans and malicious software (malware) are another form of untrusted code.
Often users install such code without realizing it because they think the code is
benign, or because they opened an attachment that led to stealthy code execution,
which then installed some additional malicious software. When malicious code
starts executing, it usually starts out by infecting other programs (either on disk or
running programs in memory). When one of these programs is run, it is running
malicious code. It may spread itself to other machines, encrypt all your documents
on disk (for ransom), spy on your activities, and many other unpleasant things.
Some malware infects the boot sector of the hard disk, so when the machine is
booted, the malware gets to run. Malware become a huge problem on the Internet
and have caused billions of dollars’ worth of damage. There is no obvious solu-
tion. Perhaps a whole new generation of operating systems based on secure micro-
kernels and tight compartmentalization of users, processes, and resources might
help.

8.13 SOCIAL ISSUES

The Internet and its security technology is an area where social issues, public
policy, and technology meet head-on, often with huge consequences. Below we
will just briefly examine three areas: privacy, freedom of speech, and copyright.
Needless to say, we can only scratch the surface. For additional reading, see
Anderson (2008a), Baase and Henry (2017), Bernal (2018), and Schneier (2004).
The Internet is also full of material. Just type words such as ‘‘privacy,’’ ‘‘censor-
ship,’’ and ‘‘copyright’’ into any search engine.

8.13.1 Confidential and Anonymous Communication

Do people have a right to privacy? Good question. The Fourth Amendment to
the U.S. Constitution prohibits the government from searching people’s houses,
papers, and effects without good reason, and goes on to restrict the circumstances
under which search warrants shall be issued. Thus, privacy has been on the public
agenda for over 200 years, at least in the U.S.

What has changed in the past decade is both the ease with which governments
can spy on their citizens and the ease with which the citizens can prevent such spy-
ing. In the 18th century, for the government to search a citizen’s papers, it had to
send out a policeman on a horse to go to the citizen’s farm demanding to see cer-
tain documents. It was a cumbersome procedure. Nowadays, telephone com-
panies and Internet providers readily provide wiretaps when presented with search
warrants. It makes life much easier for the policeman and there is no danger of
falling off a horse.

SEC. 8.13 SOCIAL ISSUES 845

The widespread usage of smartphones adds a new dimension to government
snooping. Many people carry around a smartphone that contains information about
their entire life. Some smartphones can be unlocked using facial recognition soft-
ware. This has the consequence that if a police officer wants to have a suspect
unlock his phone and the suspect refuses, all the officer has to do is hold the phone
in front of the suspect’s face, and bingo, the phone unlocks. Very few people think
about this scenario when enabling face recognition (or its predecessor, fingerprint
recognition).

Cryptography changes all that. Anybody who goes to the trouble of download-
ing and installing PGP and who uses a well-guarded alien-strength key can be
fairly sure that nobody in the known universe can read his email, search warrant or
no search warrant. Governments well understand this and do not like it. Real pri-
vacy means it is much harder for them to spy on criminals of all stripes, but it is
also much harder to spy on journalists and political opponents. Consequently,
some governments restrict or forbid the use or export of cryptography. In France,
for example, prior to 1999, all cryptography was banned unless the government
was given the keys.

France was not alone. In April 1993, the U.S. Government announced its
intention to make a hardware cryptoprocessor, the clipper chip, the standard for all
networked communication. It was said that this would guarantee citizens’ privacy.
It also mentioned that the chip provided the government with the ability to decrypt
all traffic via a scheme called key escrow, which allowed the government access to
all the keys. However, the government promised only to snoop when it had a valid
search warrant. Needless to say, a huge furor ensued, with privacy advocates de-
nouncing the whole plan and law enforcement officials praising it. Eventually, the
government backed down and dropped the idea.

A large amount of information about electronic privacy is available at the Elec-
tronic Frontier Foundation’s Web site, www.eff.org.

Anonymous Remailers

PGP, SSL, and other technologies make it possible for two parties to establish
secure, authenticated communication, free from third-party surveillance and inter-
ference. However, sometimes privacy is best served by not having authentication,
in fact, by making communication anonymous. The anonymity may be desired for
point-to-point messages, newsgroups, or both.

Let us consider some examples. First, political dissidents living under authori-
tarian regimes often wish to communicate anonymously to escape being jailed or
killed. Second, wrongdoing in many corporate, educational, governmental, and
other organizations has often been exposed by whistleblowers, who frequently pre-
fer to remain anonymous to avoid retribution. Third, people with unpopular social,
political, or religious views may wish to communicate with each other via email or

846 NETWORK SECURITY CHAP. 8

newsgroups without exposing themselves. Fourth, people may wish to discuss
alcoholism, mental illness, sexual harassment, child abuse, or being a member of a
persecuted minority in a newsgroup without having to go public. Numerous other
examples exist, of course.

Let us consider a specific example. In the 1990s, some critics of a nontradi-
tional religious group posted their views to a USENET newsgroup via an anony-
mous remailer. This server allowed users to create pseudonyms and send email to
the server, which then remailed or re-posted them using the pseudonyms, so no one
could tell where the messages really came from. Some postings revealed what the
religious group claimed were trade secrets and copyrighted documents. The reli-
gious group responded by telling local authorities that its trade secrets had been
disclosed and its copyright infringed, both of which were crimes where the server
was located. A court case followed and the server operator was compelled to turn
over the mapping information that revealed the true identities of the persons who
had made the postings. (Incidentally, this was not the first time that a religious
group was unhappy when someone leaked its trade secrets: William Tyndale was
burned at the stake in 1536 for translating the Bible into English.)

A substantial segment of the Internet community was completely outraged by
this breach of confidentiality. The conclusion that everyone drew is that an anony-
mous remailer that stores a mapping between real email addresses and pseudonyms
(now called a type 1 remailer) is not worth anything at all. This case stimulated
various people into designing anonymous remailers that could withstand subpoena
attacks.

These new remailers, often called cypherpunk remailers, work as follows.
The user produces an email message, complete with RFC 822 headers (except
Fr om:, of course), encrypts it with the remailer’s public key, and sends it to the
remailer. There the outer RFC 822 headers are stripped off, the content is de-
crypted and the message is remailed. The remailer has no accounts and maintains
no logs, so even if the server is later confiscated, it retains no trace of messages
that have passed through it.

Many users who wish anonymity chain their requests through multiple anony-
mous remailers, as shown in Fig. 8-51. Here, Alice wants to send Bob a really,
really, really anonymous Valentine’s Day card, so she uses three remailers. She
composes the message, M , and puts a header on it containing Bob’s email address.
Then she encrypts the whole thing with remailer 3’s public key, E3 (indicated by
horizontal hatching). To this she prepends a header with remailer 3’s email address
in plaintext. This is the message shown between remailers 2 and 3 in the figure.

Then she encrypts this message with remailer 2’s public key, E2 (indicated by
vertical hatching) and prepends a plaintext header containing remailer 2’s email ad-
dress. This message is shown between 1 and 2 in Fig. 8-51. Finally, she encrypts
the entire message with remailer 1’s public key, E1, and prepends a plaintext head-
er with remailer 1’s email address. This is the message shown to the right of Alice
in the figure and this is the message she actually transmits.

SEC. 8.13 SOCIAL ISSUES 847

Alice Bob1

To 1

2 3

To 2

Anonymous remailer

Encrypted
with E1 Encrypted

with E2 Encrypted
with E3

To Bob
To 3

M
To Bob

M

To 3
To Bob

M

To 3
To 2

To Bob
M

Figure 8-51. How Alice uses three remailers to send Bob a message.

When the message hits remailer 1, the outer header is stripped off. The body is
decrypted and then emailed to remailer 2. Similar steps occur at the other two
remailers.

Although it is extremely difficult for anyone to trace the final message back to
Alice, many remailers take additional safety precautions. For example, they may
hold messages for a random time, add or remove junk at the end of a message, and
reorder messages, all to make it harder for anyone to tell which message output by
a remailer corresponds to which input, in order to thwart traffic analysis. For a de-
scription of this kind of remailer, see the classic paper by Mazières and Kaashoek
(1998).

Anonymity is not restricted to email. Services also exist that allow anonymous
Web surfing using the same form of layered path in which one node only knows
the next node in the chain. This method is called onion routing because each node
peels off another layer of the onion to determine where to forward the packet next.
The user configures his browser to use the anonymizer service as a proxy. Tor is a
well-known example of such a system (Bernaschi et al., 2019). Henceforth, all
HTTP requests go through the anonymizer network, which requests the page and
sends it back. The Web site sees an exit node of the anonymizer network as the
source of the request, not the user. As long as the anonymizer network refrains
from keeping a log, no one can determine who requested which page. also not in
the face of a subpoena since the information simply is not there.

8.13.2 Freedom of Speech

Anonymous communication makes it harder for other people to see details
about their private communications. A second key social issue is freedom of
speech, and its opposite, censorship, which is about governments wanting to
restrict what individuals can read and publish. With the Web containing millions

848 NETWORK SECURITY CHAP. 8

and millions of pages, it has become a censor’s paradise. Depending on the nature
and ideology of the regime, banned material may include Web sites containing:

1. Material inappropriate for children or teenagers.

2. Hate aimed at various ethnic, religious, sexual, or other groups.

3. Information about democracy and democratic values.

4. Accounts of historical events contradicting the government’s version.

5. Manuals for picking locks, building nuclear weapons, encrypting
messages, etc.

The usual response is to ban the ‘‘bad’’ sites.
Sometimes the results are unexpected. For example, some public libraries

have installed Web filters on their computers to make them child friendly by block-
ing pornography sites. The filters veto sites on their blacklists but also check pages
for dirty words before displaying them. In one case in Loudoun County, Virginia,
the filter blocked a patron’s search for information on breast cancer because the fil-
ter saw the word ‘‘breast.’’ The library patron sued Loudoun County. However, in
Livermore, California, a parent sued the public library for not installing a filter
after her 12-year-old son was caught viewing pornography there. What’s a library
to do?

It has escaped many people that the World Wide Web is a worldwide Web. It
covers the whole world. Not all countries agree on what should be allowed on the
Web. For example, in November 2000, a French court ordered Yahoo!, a corpora-
tion located in California, to block French users from viewing auctions of Nazi
memorabilia on Yahoo!’s Web site because owning such material violates French
law. Yahoo! appealed to a U.S. court, which sided with it, but the issue of whose
laws apply where is far from settled.

Incidentally, for many years, Yahoo! was one of the darlings of the Internet
companies, but nothing lasts forever and in 2017 it was announced that Verizon
would buy it for close to 5 billion dollars. The price was reduced with 350 million
dollars as a direct result of a series of data breaches at Yahoo! whereby the ac-
counts of billions of users were affected. Security matters.

Going back to the court case, just imagine. What would happen if some court
in Utah instructed France to block Web sites dealing with wine because they do not
comply with Utah’s much stricter laws about alcohol? Suppose that China de-
manded that all Web sites dealing with democracy be banned as not in the interest
of the State. Do Iranian laws on religion apply to more liberal Sweden? Can
Saudi Arabia block Web sites dealing with women’s rights? The whole issue is a
veritable Pandora’s box.

A relevant comment from John Gilmore is: ‘‘The net interprets censorship as
damage and routes around it.’’ For a concrete implementation, consider the eter-
nity service (Anderson, 1996). Its goal is to make sure published information

SEC. 8.13 SOCIAL ISSUES 849

cannot be depublished or rewritten, as was common in the Soviet Union during
Josef Stalin’s reign. To use the eternity service, the user specifies how long the
material is to be preserved, pays a fee proportional to its duration and size, and
uploads it. Thereafter, no one can remove or edit it, not even the uploader.

How could such a service be implemented? The simplest model is to use a
peer-to-peer system in which stored documents would be placed on dozens of par-
ticipating servers, each of which gets a fraction of the fee, and thus an incentive to
join the system. The servers should be spread over many legal jurisdictions for
maximum resilience. Lists of 10 randomly selected servers would be stored
securely in multiple places, so that if some were compromised, others would still
exist. An authority bent on destroying the document could never be sure it had
found all copies. The system could also be made self-repairing in the sense that if
it became known that some copies had been destroyed, the remaining sites would
attempt to find new repositories to replace them.

The eternity service was the first proposal for a censorship-resistant system.
Since then, others have been proposed and, in some cases, implemented. Various
new features have been added, such as encryption, anonymity, and fault tolerance.
Often the files to be stored are broken up into multiple fragments, with each frag-
ment stored on many servers. Some of these systems are Freenet (Clarke et al.,
2002), PASIS (Wylie et al., 2000), and Publius (Waldman et al., 2000).

Of increasing concern is not only the filtering or censorship of information, but
also the spread of so-called disinformation, or information that is deliberately
crafted to be false. Disinformation is now a tactic that attackers can use to sway
political, social, and financial outcomes. In 2016, attackers famously authored dis-
information sites pertaining to United States presidential candidates and dissemi-
nated them on social media. In other contexts, disinformation has been used to
attempt to sway real estate prices for investors. Unfortunately, detecting disinfor-
mation is challenging, and doing so before it spreads is even more challenging.

Steganography

In countries where censorship abounds, dissidents often try to use technology
to evade it. Cryptography allows secret messages to be sent (although possibly not
lawfully), but if the government thinks that Alice is a Bad Person, the mere fact
that she is communicating with Bob may get him put in this category, too, as
repressive governments understand the concept of transitive closure, even if they
are short on mathematicians. Anonymous remailers can help, but if they are
banned domestically and messages to foreign ones require a government export
license, they cannot help much. But the Web can.

People who want to communicate secretly often try to hide the fact that any
communication at all is taking place. The science of hiding messages is called
steganography, from the Greek words for ‘‘covered writing.’’ In fact, the ancient
Greeks used it themselves. Herodotus wrote of a general who shaved the head of a

850 NETWORK SECURITY CHAP. 8

messenger, tattooed a message on his scalp, and let the hair grow back before send-
ing him off. Modern techniques are conceptually the same, only they have a higher
bandwidth, lower latency, and do not require the services of a barber.

As a case in point, consider Fig. 8-52(a). This photograph, taken by one of the
authors (AST) in Kenya, contains three zebras contemplating an acacia tree. Fig-
ure 8-52(b) appears to be the same three zebras and acacia tree, but it has an extra
added attraction. It contains the complete, unabridged text of five of Shakespeare’s
plays embedded in it: Hamlet, King Lear, Macbeth, The Merchant of Venice, and
Julius Caesar. Together, these plays total over 700 KB of text.

(a) (b)

Figure 8-52. (a) Three zebras and a tree. (b) Three zebras, a tree, and the com-
plete text of five plays by William Shakespeare.

How does this steganographic channel work? The original color image is
1024 × 768 pixels. Each pixel consists of three 8-bit numbers, one each for the
red, green, and blue intensity of that pixel. The pixel’s color is formed by the lin-
ear superposition of the three colors. The steganographic encoding method uses
the low-order bit of each RGB color value as a covert channel. Thus, each pixel
has room for 3 bits of secret information, 1 in the red value, 1 in the green value,
and 1 in the blue value. With an image of this size, up to 1024 × 768 × 3 bits or
294,912 bytes of secret information can be stored in it.

The full text of the five plays and a short notice add up to 734,891 bytes. This
text was first compressed to about 274 KB using a standard compression algo-
rithm. The compressed output was then encrypted using IDEA and inserted into
the low-order bits of each color value. As can be seen (or actually, cannot be
seen), the existence of the information is completely invisible. It is equally invisi-
ble in the large, full-color version of the photo. The eye cannot easily distinguish
21-bit color from 24-bit color.

Viewing the two images in black and white with low resolution does not do
justice to how powerful the technique is. To get a better feeling for how steganog-
raphy works, we have prepared a demonstration, including the full-color high-

SEC. 8.13 SOCIAL ISSUES 851

resolution image of Fig. 8-52(b) with the five plays embedded in it. The demon-
stration, including tools for inserting and extracting text into images, can be found
at the book’s Web site.

To use steganography for undetected communication, dissidents could create a
Web site bursting with politically correct pictures, such as photographs of the Great
Leader, local sports, movie, and television stars, etc. Of course, the pictures would
be riddled with steganographic messages. If the messages were first compressed
and then encrypted, even someone who suspected their presence would have im-
mense difficulty in distinguishing the messages from white noise. Of course, the
images should be fresh scans; copying a picture from the Internet and changing
some of the bits is a dead giveaway. To see how you can embed an audio recording
in a still image, see Chaudhary and Chaudbe (2018).

Images are by no means the only carrier for steganographic messages. Audio
files also work fine. Hidden information can be carried in a voice-over-IP call by
manipulating the packet delays, distorting the audio, or even in the header fields of
packets (Lubacz et al., 2010). Even the layout and ordering of tags in an HTML
file can carry information.

Although we have examined steganography in the context of free speech, it has
numerous other uses. One common use is for the owners of images to encode
secret messages in them stating their ownership rights. If such an image is stolen
and placed on a Web site, the lawful owner can reveal the steganographic message
in court to prove whose image it is. This technique is called watermarking. It is
discussed in Muyco and Hernandez (2019).

Steganography is an active research area, with entire conferences devoted to
the topic. Some interesting papers include Hegarty and Keane (2018), Kumar
(2018), and Patil et al. (2019).

8.13.3 Copyright

Privacy and censorship are just two areas where technology meets public poli-
cy. A third one is the copyright law. Copyright is granting to the creators of
Intellectual Property, including writers, poets, playwrights, artists, composers,
musicians, photographers, cinematographers, choreographers, and others, the
exclusive right to exploit their work for some period of time, typically the life of
the author plus 50 years or 75 years in the case of corporate ownership. After the
copyright of a work expires, it passes into the public domain and anyone can use or
sell it as they wish. The Gutenberg Project (www.gutenberg.org), for example, has
placed over 50,000 public-domain works (e.g., by Shakespeare, Mark Twain, and
Charles Dickens) on the Web. In 1998, the U.S. Congress extended copyright in
the U.S. by another 20 years at the request of Hollywood, which claimed that with-
out an extension nobody would create anything any more. Protection of the origi-
nal (1928) Mickey Mouse film was thus protected until 2024, after which time

852 NETWORK SECURITY CHAP. 8

anyone can rent a movie theater and legally show it without having to get permis-
sion from the Walt Disney Company. By way of contrast, patents last for only 20
years and people still invent things.

Copyright came to the forefront when Napster, a music-swapping service, had
50 million members. Although Napster did not actually copy any music, the courts
held that its holding a central database of who had which song was contributory
infringement, that is, it was helping other people infringe. While nobody seriously
claims copyright is a bad idea (although many claim that the term is far too long,
favoring big corporations over the public), the next generation of music sharing is
already raising major ethical issues.

For example, consider a peer-to-peer network in which people share legal files
(public-domain music, home videos, religious tracts that are not trade secrets, etc.)
and perhaps a few that may be copyrighted. Assume that everyone is online all the
time via ADSL or cable. Each machine has an index of what is on the hard disk,
plus a list of other members. Someone looking for a specific item can pick a ran-
dom member and see if he has it. If not, he can check out all the members in that
person’s list, and all the members in their lists, and so on. Computers are very
good at this kind of work. Having found the item, the requester just copies it.

If the work is copyrighted, chances are the requester is infringing (although for
international transfers, the question of whose law applies matters because in some
countries uploading is illegal but downloading is not). But what about the sup-
plier? Is it a crime to keep music you have paid for and legally downloaded on
your hard disk where others might find it? If you have an unlocked cabin in the
country and a thief sneaks in carrying a notebook computer and scanner, scans a
copyrighted book to the notebook’s hard disk, and sneaks out, are you guilty of the
crime of failing to protect someone else’s copyright?

But there is more trouble brewing on the copyright front. There is a huge bat-
tle going on now between Hollywood and the computer industry. The former
wants stringent protection of all intellectual property but the latter does not want to
be Hollywood’s policeman. In October 1998, Congress passed the DMCA (Digi-
tal Millennium Copyright Act), which makes it a crime to circumvent any protec-
tion mechanism present in a copyrighted work or to tell others how to circumvent
it. Similar legislation has been enacted in the European Union. While virtually no
one thinks that pirates in the Far East should be allowed to duplicate copyrighted
works, many people think that the DMCA completely shifts the balance between
the copyright owner’s interest and the public interest.

A case in point: in September 2000, a music industry consortium charged with
building an unbreakable system for selling music online sponsored a contest invit-
ing people to try to break the system (which is precisely the right thing to do with
any new security system). A team of security researchers from several universities,
led by Prof. Edward Felten of Princeton, took up the challenge and broke the sys-
tem. They then wrote a paper about their findings and submitted it to a USENIX
security conference, where it underwent peer review and was accepted. Before the

SEC. 8.13 SOCIAL ISSUES 853

paper was presented, Felten received a letter from the Recording Industry Associa-
tion of America threatening to sue under the DMCA if they published the paper.

Their response was to file a lawsuit asking a federal court to rule on whether
publishing scientific papers on security research was still legal. Fearing a defini-
tive court ruling against it, the industry reluctantly withdrew its threat and the court
dismissed Felten’s suit. No doubt the industry was motivated by the weakness of
its case: it had invited people to try to break its system and then threatened to sue
some of them for accepting its own challenge. With the threat withdrawn, the
paper was published (Craver et al., 2001). A new confrontation is virtually certain.

Meanwhile, peer-to-peer networks have been used to exchange copyrighted
content. In response, copyright holders have used the DMCA to send automated
notices called DMCA takedown notices to users and ISPs. The copyright holders
initially notified (and sued) individuals directly, which proved unpopular and inef-
fective. Now they are suing the ISPs for not terminating customers who are violat-
ing the DMCA. This is a tricky proposition, since peer-to-peer networks often
have peers that lie about what they are sharing (Cuevas et al., 2014; and Santos et
al., 2011) and your printer may even be mistaken for a culprit (Piatek et al., 2008),
but the copyright holders are having some success with this approach: in December
2019, a federal court ordered Cox Communications to pay $1 billion to the copy-
right holders for not properly responding to takedown notices.

A related issue is the extent of the fair use doctrine, which has been estab-
lished by court rulings in various countries. This doctrine says that purchasers of a
copyrighted work have certain limited rights to copy the work, including the right
to quote parts of it for scientific purposes, use it as teaching material in schools or
colleges, and in some cases make backup copies for personal use in case the origi-
nal medium fails. The tests for what constitutes fair use include (1) whether the
use is commercial, (2) what percentage of the whole is being copied, and (3) the
effect of the copying on sales of the work. Since the DMCA and laws within the
European Union prohibit circumvention of copy protection schemes, these laws
also prohibit legal fair use. In effect, the DMCA takes away historical rights from
users to give content sellers more power. A showdown is inevitable.

Another development in the works that dwarfs even the DMCA in its shifting
of the balance between copyright owners and users is trusted computing as advo-
cated by industry bodies such as the TCG (Trusted Computing Group), led by
companies like Intel and Microsoft. The idea is to provide support for carefully
monitoring user behavior in various ways (e.g., playing pirated music) at a level
below the operating system in order to prohibit unwanted behavior. This is accom-
plished with a small chip, called a TPM (Trusted Platform Module), which it is
difficult to tamper with. Some PCs sold nowadays come equipped with a TPM.
The system allows software written by content owners to manipulate PCs in ways
that users cannot change. This raises the question of who is trusted in trusted com-
puting. Certainly, it is not the user. Needless to say, the social consequences of
this scheme are immense. It is nice that the industry is finally paying attention to

854 NETWORK SECURITY CHAP. 8

security, but it is lamentable that the driver is enforcing copyright law rather than
dealing with viruses, crackers, intruders, and other security issues that most people
are concerned about.

In short, the lawmakers and lawyers will be busy balancing the economic inter-
ests of copyright owners with the public interest for years to come. Cyberspace is
no different from meatspace: it constantly pits one group against another, resulting
in power struggles, litigation, and (hopefully) eventually some kind of resolution,
at least until some new disruptive technology comes along.

8.14 SUMMARY

Security finds itself at the intersection of important properties such as confi-
dentiality, integrity and availability (CIA). Unfortunately, it is often difficult to
grasp in the sense that it is hard to specify exactly how secure a system is. What
we can do is rigorously apply security principles such as those of Saltzer and
Schroeder.

Meanwhile, adversaries will try to compromise a system by combining the
fundamental building blocks reconnaissance (what is running where under what
conditions), sniffing (eavesdropping on traffic), spoofing (pretending to be some-
one else), and disruption (denial-of-service). All of these building blocks can grow
to be extremely advanced. To protect against these attacks and combinations
thereof, network administrators install firewalls, intrusion detection systems and
intrusion prevention systems. Such solutions may be deployed in the network as
well as at the host and may work on the basis of signatures or anomalies. Either
way, the number of false positives (false alerts) and false negatives (attacks missed)
are important measures for the usefulness of such solutions. Especially if attacks
are rare and there are many events, the Base Rate Fallacy dictates that false posi-
tives rate quickly reduces the power of an intrusion detection system.

Cryptography is a tool that can be used to keep information confidential and to
ensure its integrity and authenticity. All modern cryptographic systems are based
on Kerckhoffs’ principle of having a publicly known algorithm and a secret key.
Many cryptographic algorithms use complex transformations involving substitu-
tions and permutations to transform the plaintext into the ciphertext. However, if
quantum cryptography can be made practical, the use of one-time pads may pro-
vide truly unbreakable cryptosystems.

Cryptographic algorithms can be divided into symmetric-key algorithms and
public-key algorithms. Symmetric-key algorithms mangle the bits in a series of
rounds parametrized by the key to turn the plaintext into the ciphertext. AES
(Rijndael) and triple DES are some of the most popular symmetric-key algorithms
at present. These algorithms can be used in electronic code book mode, cipher
block chaining mode, stream cipher mode, counter mode, and others.

SEC. 8.14 SUMMARY 855

Public-key algorithms have the property that different keys are used for en-
cryption and decryption and that the decryption key cannot be derived from the en-
cryption key. These properties make it possible to publish the public key. One of
the main public-key algorithms is RSA, which derives its strength from the fact
that it is difficult to factor large numbers. ECC-based algorithms are also used.

Legal, commercial, and other documents need to be signed. Accordingly, vari-
ous schemes have been devised for digital signatures, using both symmetric-key
and public-key algorithms. Commonly, messages to be signed are hashed using al-
gorithms such as SHA-2 or SHA-3, and then the hashes are signed rather than the
original messages.

Public-key management can be done using certificates, which are documents
that bind a principal to a public key. Certificates are signed by a trusted authority
or by someone (recursively) approved by a trusted authority. The root of the chain
has to be obtained in advance, but browsers generally have many root certificates
built into them.

These cryptographic tools can be used to secure network traffic. IPsec oper-
ates in the network layer, encrypting packet flows from host to host. Firewalls can
screen traffic going into or out of an organization, often based on the protocol and
port used. Virtual private networks can simulate an old leased-line network to pro-
vide certain desirable security properties. Finally, wireless networks need good se-
curity lest everyone read all the messages, and protocols like 802.11i provide it.
Defense in depth, using multiple defense mechanisms, is always a good idea.

When two parties establish a session, they have to authenticate each other and,
if need be, establish a shared session key. Various authentication protocols exist,
including some that use a trusted third party, Diffie-Hellman, Kerberos, and pub-
lic-key cryptography.

Email security can be achieved by a combination of the techniques we have
studied in this chapter. PGP, for example, compresses messages, then encrypts
them with a secret key and sends the secret key encrypted with the receiver’s pub-
lic key. In addition, it also hashes the message and sends the signed hash to verify
message integrity.

Web security is also an important topic, starting with secure naming.
DNSSEC provides a way to prevent DNS spoofing. Most e-commerce Web sites
use TLS to establish secure, authenticated sessions between the client and server.
Various techniques are used to deal with mobile code, especially sandboxing and
code signing.

Finally, the Internet raises many issues in which technology interacts strongly
with public policy. Some of the areas include privacy, freedom of speech, and
copyright. Addressing these issues requires contribution from multiple disciplines.
Given the speed at which technology evolves and the speed at which legislation
and public policy evolve, we will stick out our necks and predict that these issues
will not be solved by the time the next edition of this book is in print. In case we
are wrong, we will buy all our readers a wheel of cheese.

856 NETWORK SECURITY CHAP. 8

PROBLEMS

1. Consider the principle of complete mediation. Which non-functional system require-
ment will likely be affected by adhering strictly to this principle?

2. What type of scan does the following network log represent? Complete your answer as
accurately as possible, indicating which hosts you think are up and which ports you
think are open or closed.

Time From To Flags Other info
21:03:59.711106 brutus.net.53 > host201.caesar.org.21: F 0:0(0) win 2048 (ttl 48, id 55097)
21:04:05.738307 brutus.net.53 > host201.caesar.org.21: F 0:0(0) win 2048 (ttl 48, id 50715)
21:05:10.399065 brutus.net.53 > host202.caesar.org.21: F 0:0(0) win 3072 (ttl 49, id 32642)
21:05:16.429001 brutus.net.53 > host202.caesar.org.21: F 0:0(0) win 3072 (ttl 49, id 31501)
21:09:12.202997 brutus.net.53 > host024.caesar.org.21: F 0:0(0) win 2048 (ttl 52, id 47689)
21:09:18.215642 brutus.net.53 > host024.caesar.org.21: F 0:0(0) win 2048 (ttl 52, id 26723)
21:10:22.664153 brutus.net.53 > host003.caesar.org.21: F 0:0(0) win 3072 (ttl 53, id 24838)
21:10:28.691982 brutus.net.53 > host003.caesar.org.21: F 0:0(0) win 3072 (ttl 53, id 25257)
21:11:10.213615 brutus.net.53 > host102.caesar.org.21: F 0:0(0) win 4096 (ttl 58, id 61907)
21:11:10.227485 host102.caesar.org.21 > brutus.net.53: R 0:0(0) ack 4294947297 win 0 (ttl 25, id 38400)

3. What type of scan does the following network log represent? Complete your answer as
accurately as possible, indicating which hosts you think are up and which ports you
think are open or closed.

Time From To Flags Other info
20:31:49.635055 IP 127.0.0.1.56331 > 127.0.0.1.22: Flags [FPU], seq 149982695, win 4096, urg 0, length 0
20:31:49.635123 IP 127.0.0.1.56331 > 127.0.0.1.80: Flags [FPU], seq 149982695, win 3072, urg 0, length 0
20:31:49.635162 IP 127.0.0.1.56331 > 127.0.0.1.25: Flags [FPU], seq 149982695, win 4096, urg 0, length 0
20:31:49.635200 IP 127.0.0.1.25 > 127.0.0.1.56331: Flags [R.], seq 0, ack 149982696, win 0, length 0
20:31:49.635241 IP 127.0.0.1.56331 > 127.0.0.1.10000: Flags [FPU], seq 149982695, win 3072, urg 0, length 0
20:31:49.635265 IP 127.0.0.1.10000 > 127.0.0.1.56331: Flags [R.], seq 0, ack 149982696, win 0, length 0
20:31:50.736353 IP 127.0.0.1.56332 > 127.0.0.1.80: Flags [FPU], seq 150048230, win 1024, urg 0, length 0
20:31:50.736403 IP 127.0.0.1.56332 > 127.0.0.1.22: Flags [FPU], seq 150048230, win 3072, urg 0, length 0

4. What is an algorithmic complexity DoS attack?

5. Alice wants to communicate with the www.vu.nl Web site, but the entry for this do-
main in her name server was poisoned so that the packets end up at an attacker-con-
trolled machine. To what extent is the attacker able to compromise Confidentiality, In-
tegrity, and Authenticity in the following cases: (a) unencrypted (http) communication
between Alice and www.vu.nl, (b) encrypted (https) communication between Alice and
www.vu.nl when the Web site uses a self-signed certificate, (c) encrypted (https) com-
munication between Alice and www.vu.nl when the Web site uses a certificate signed
by a legitimate certificate authority?

6. A stateless firewall blocks TCP connection initiation requests from an external location
to any local host. Explain why this defense is not very effective against sophisticated
attackers.

CHAP. 8 PROBLEMS 857

7. Explain the base rate fallacy using the IDS performance of the previous question.

8. You are performing an off-path TCP hijacking attack on Herbert’s machine and have
already established that Herbert is logged in from his machine to the FTP server at
vusec.net (recall: FTP uses destination port 21 for commands). Both machines run
Linux and implement the original RFC 5961, as discussed in the text. Using the off-
path TCP exploitation technique, you now also want to discover the source port of the
FTP control connection (at Herbert’s end). Assume all port numbers are possible in
principle and that you can send an infinite number of packets per second. Show how
we can use a binary search to find the correct port number quickly. Using this techni-
que, how many spoofed packets do you need to send in the worst case? Explain.

9. Break the following monoalphabetic substitution cipher. The plaintext, consisting of
letters only, is an excerpt from a poem by Lewis Carroll.

mvyy bek mnyx n yvjjyr snijrh invq n muvjvdt je n idnvy
jurhri n fehfevir pyeir oruvdq ki ndq uri jhrnqvdt ed zb jnvy
Irr uem rntrhyb jur yeoijrhi ndq jur jkhjyri nyy nqlndpr
Jurb nhr mnvjvdt ed jur iuvdtyr mvyy bek pezr ndq wevd jur qndpr
mvyy bek, medj bek, mvyy bek, medj bek, mvyy bek wevd jur qndpr
mvyy bek, medj bek, mvyy bek, medj bek, medj bek wevd jur qndpr

10. An affine cipher is a version of a monoalphabetic substitution cipher, in which the let-
ters of an alphabet of size m are first mapped to the integers in the range 0 to m < 1.
Subsequently, the integer representing each plaintext letter is transformed to an integer
representing the corresponding ciphertext letter. The encryption function for a single
letter is E(x) = (ax + b) mod m, where m is the size of the alphabet and a and b are the
key of the cipher, and are co-prime. Trudy finds out that Bob generated a ciphertext
using an affine cipher. She gets a copy of the ciphertext, and finds out that the most
frequent letter of the ciphertext is ‘‘R’’, and the second most frequent letter of the
ciphertext is ‘‘K’’. Show how Trudy can break the code and retrieve the plaintext.

11. Break the following columnar transposition cipher. The plaintext is taken from a popu-
lar computer networks textbook, so ‘‘connected’’’ is a probable word. The plaintext
consists entirely of letters (no spaces). The ciphertext is broken up into blocks of four
characters for readability.

oeet nott rece rowp sabe ndea oana tmrs otne heth imnc trdi ccfa lxgo ioua iere iybe nft

12. Alice used a transposition cipher to encrypt her messages to Bob. For added security,
she encrypted the transposition cipher key using a substitution cipher, and kept the en-
crypted cipher in her computer. Trudy managed to get hold of the encrypted transposi-
tion cipher key. Can Trudy decipher Alice’s messages to Bob? Why or why not?

13. Find a 77-bit one-time pad that generates the text ‘‘Donald Duck’’ from the ciphertext
of Fig. 8-11.

14. You are a spy, and, conveniently, have a library with an infinite number of books at
your disposal. Your operator also has such a library at his disposal. You have initially
agreed to use Lord of the Rings as a one-time pad. Explain how you could use these
assets to generate an infinitely long one-time pad.

858 NETWORK SECURITY CHAP. 8

15. Quantum cryptography requires having a photon gun that can, on demand, fire a single
photon carrying 1 bit. In this problem, calculate how many photons a bit carries on a
250-Gbps fiber link. Assume that the length of a photon is equal to its wavelength,
which for purposes of this problem, is 1 micron. Also, assume that the speed of light
in fiber is 20 cm/nsec.

16. If Trudy captures and regenerates photons when quantum cryptography is in use, she
will get some of them wrong and cause errors to appear in Bob’s one-time pad. What
fraction of Bob’s one-time pad bits will be in error, on average?

17. A fundamental cryptographic principle states that all messages must have redundancy.
But we also know that redundancy helps an intruder tell if a guessed key is correct.
Consider two forms of redundancy. First, the initial n bits of the plaintext contain a
known pattern. Second, the final n bits of the message contain a hash over the mes-
sage. From a security point of view, are these two equivalent? Discuss your answer.

18. Consider a banking system that uses the following format for transaction messages:
two bytes for the sender ID, two bytes for the receiver ID, and four bytes for the
amount to be transferred. Transactions are encrypted before sending. What could you
add to these messages to make them adhere to the two cryptographic principles dis-
cussed in this chapter?

19. A group of nasty people doing nasty business do not want the police to listen in on
their digital communications. To make sure this does not happen, they use an end-to-
end encrypted messaging system that uses an unbreakable cipher. Think of two
approaches that can still allow the police to eavesdrop on their conversations.

20. Suppose we have a cipher-breaking machine with a million processors that can analyze
a key in 1 nanosecond. It would take 1016 years to break the 128-bit version of AES.
Let us compute how long it will take for this time to get down to 1 year, still a long
time, of course. To achieve this goal, we need computers to be 1016 times faster. If
Moore’s Law (computing power doubles every 18 months) continues to hold, how
many years will it take before a parallel computer can get the cipher-breaking time
down to a year?

21. AES supports a 256-bit key. How many keys does AES-256 have? See if you can find
some number in physics, chemistry, or astronomy of about the same size. Use the In-
ternet to help search for big numbers. Draw a conclusion from your research.

22. Consider ciphertext block chaining. Instead of a single 0 bit being transformed into a 1
bit, an extra 0 bit is inserted into the ciphertext stream after block Ci. How much
plaintext will be garbled as a result?

23. Compare cipher block chaining with cipher feedback mode in terms of the number of
encryption operations needed to transmit a large file. Which one is more efficient and
by how much?

24. Alice and Bob are communicating using public-key cryptography. Who can retrieve
the plaintext, P, from EB(DA(P)), and which steps are required to do so?

25. A few years from now, you are a teaching assistant for Computer Networks. You
explain to the students that in RSA cryptography, the public and private keys consist of
(e, n) and (d, n) respectively. The possible values of e and d depend on a value z,

CHAP. 8 PROBLEMS 859

whose possible values depend in turn on n. One of the students comments that this
scheme is unnecessarily complicated, and proposes to simply it. Instead of selecting d
as a relative prime to z , d is selected as a relative prime to n. Then e is found such that
e × d = 1 modulo n. This way, z is no longer needed. How does this change affect the
effort required to break the cipher?

26. Trudy’s RSA keys are as follows: nt = 33, d t = 3, et = 7. Trudy finds out that Bob’s
public key is nb = 33, eb = 3.
(a) How can Trudy use this information to read encrypted messages directed to Bob?
(b) Based on your conclusions from section (a), calculate the number of secure public
key pairs for a specific pair of p and q.

27. Alice and Bob use RSA public key encryption in order to communicate between them.
Trudy finds out that Alice and Bob shared one of the primes used to determine the
number n of their public key pairs. In other words, Trudy found out that na = pa × q
and nb = pb × q. How can Trudy use this information to break Alice’s code?

28. In Fig. 8-23, we see how Alice can send Bob a signed message. If Trudy replaces P,
Bob can detect it. But what happens if Trudy replaces both P and the signature?

29. Digital signatures have a potential weakness due to lazy users. In e-commerce transac-
tions, a contract might be drawn up and the user asked to sign its SHA hash. If the
user does not actually verify that the contract and hash correspond, the user may inad-
vertently sign a different contract. Suppose that the Mafia try to exploit this weakness
to make some money. They set up a pay Web site (e.g., pornography, gambling, etc.)
and ask new customers for a credit card number. Then they send over a contract saying
that the customer wishes to use their service and pay by credit card and ask the cus-
tomer to sign it, knowing that most of them will just sign without verifying that the
contract and hash agree. Show how the Mafia can buy diamonds from a legitimate In-
ternet jeweler and charge them to unsuspecting customers.

30. A math class has 25 students. Assuming that all of the students were born in the first
half of the year—between January 1st and June 30th—what is the probability that at
least two students have the same birthday? Assume that nobody was born on leap day.

31. After Ellen confessed to Marilyn about tricking her in the matter of Tom’s tenure, Mar-
ilyn resolved to avoid this problem by dictating the contents of future messages into a
dictating machine and having her new secretary just type them in. Marilyn then
planned to examine the messages on her terminal after they had been typed in to make
sure they contained her exact words. Can the new secretary still use the birthday attack
to falsify a message, and if so, how? Hint: She can.

32. Consider the failed attempt of Alice to get Bob’s public key in Fig. 8-25. Suppose that
Bob and Alice already share a secret key, but Alice still wants Bob’s public key. Is
there now a way to get it securely? If so, how?

33. Alice wants to communicate with Bob, using public-key cryptography. She establishes
a connection to someone she hopes is Bob. She asks him for his public key and he
sends it to her in plaintext along with an X.509 certificate signed by the root CA.
Alice already has the public key of the root CA. What steps does Alice carry out to
verify that she is talking to Bob? Assume that Bob does not care who he is talking to
(e.g., Bob is some kind of public service).

860 NETWORK SECURITY CHAP. 8

34. Suppose that a system uses PKI based on a tree-structured hierarchy of CAs. Alice
wants to communicate with Bob, and receives a certificate from Bob signed by a CA X
after establishing a communication channel with Bob. Suppose Alice has never heard
of X. What steps does Alice take to verify that she is talking to Bob?

35. Can IPsec using AH be used in transport mode if one of the machines is behind a NAT
box? Explain your answer.

36. Alice wants to send a message to Bob using SHA-2 hashes. She consults with you
regarding the appropriate signature algorithm to be used. What would you suggest?

37. Give one advantage of HMACs over using RSA to sign SHA-2 hashes.

38. Give one reason why a firewall might be configured to inspect incoming traffic. Give
one reason why it might be configured to inspect outgoing traffic. Do you think the
inspections are likely to be successful?

39. Suppose an organization uses a secure VPN to securely connect its sites over the Inter-
net. Jim, a user in the organization, uses the VPN to communicate with his boss, Mary.
Describe one type of communication between Jim and Mary which would not require
use of encryption or other security mechanism, and another type of communication
which would require encryption or other security mechanisms. Please explain your
answer.

40. Change one message in the protocol of Fig. 8-31 in a minor way to make it resistant to
the reflection attack. Explain why your change works.

41. The Diffie-Hellman key exchange is being used to establish a secret key between Alice
and Bob. Alice sends Bob (227, 5, 82). Bob responds with (125). Alice’s secret num-
ber, x, is 12, and Bob’s secret number, y, is 3. Show how Alice and Bob compute the
secret key.

42. If Alice and Bob have never met, share no secrets, and have no certificates, they can
nevertheless establish a shared secret key using the Diffie-Hellman algorithm. Explain
why it is very hard to defend against a man-in-the-middle attack.

43. In the protocol of Fig. 8-36, why is A sent in plaintext along with the encrypted session
key?

44. Are timestamps and nonces used for confidentiality, integrity, availability, authentica-
tion, or nonrepudiation? Explain your answer.

45. In the protocol of Fig. 8-36, we pointed out that starting each plaintext message with
32 zero bits is a security risk. Suppose that each message begins with a per-user ran-
dom number, effectively a second secret key known only to its user and the KDC.
Does this eliminate the known plaintext attack? Why?

46. Confidentiality, integrity, availability, authentication, and nonrepudiation are funda-
mental security properties. For each of these properties, explain if it can be provided
by public-key cryptography. If yes, explain how.

47. Consider the fundamental security problems listed in the problem above. For each of
these properties, explain if it can be provided by message digests. If yes, explain how.

CHAP. 8 PROBLEMS 861

48. In the Needham-Schroeder protocol, Alice generates two challenges, RA and R A2.
This seems like overkill. Would one not have done the job?

49. Suppose an organization uses Kerberos for authentication. In terms of security and ser-
vice availability, what is the effect if AS or TGS goes down?

50. Alice is using the public-key authentication protocol of Fig. 8-40 to authenticate com-
munication with Bob. However, when sending message 7, Alice forgot to encrypt RB.
Trudy now knows the value of RB. Do Alice and Bob need to repeat the authentication
procedure with new parameters in order to ensure secure communication? Explain
your answer.

51. In the public-key authentication protocol of Fig. 8-40, in message 7, RB is encrypted
with KS . Is this encryption necessary, or would it have been adequate to send it back
in plaintext? Explain your answer.

52. Point-of-sale terminals that use magnetic-stripe cards and PIN codes have a fatal flaw:
a malicious merchant can modify his card reader to log all the information on the card
and the PIN code in order to post additional (fake) transactions in the future. Next
generation terminals will use cards with a complete CPU, keyboard, and tiny display
on the card. Devise a protocol for this system that malicious merchants cannot break.

53. You get an email from your bank saying unusual behavior was detected on your
account. However, when you follow the embedded link in the email and log into their
Web site, it does not show any transactions. You log out again. Perhaps it was a mis-
take. One day later you go back to the bank’s Web site and log in. This time, it shows
you that all your money has been transferred to an unknown account. What happened?

54. Give two reasons why PGP compresses messages.

55. Is it possible to multicast a PGP message? What restrictions would apply?

56. Assuming that everyone on the Internet used PGP, could a PGP message be sent to an
arbitrary Internet address and be decoded correctly by all concerned? Discuss your
answer.

57. The SSL data transport protocol involves two nonces as well as a premaster key. What
value, if any, does using the nonces have?

58. Consider an image of 2048 × 1536 pixels. You want to hide a file sized 2.5 MB. What
fraction of the file can you steganographically hide in this image? What fraction
would you be able to hide if you compressed the file to a quarter of its original size?
Show your calculations.

59. The image of Fig. 8-52(b) contains the ASCII text of five plays by Shakespeare.
Would it be possible to hide music among the zebras instead of text? If so, how would
it work and how much could you hide in this picture? If not, why not?

60. You are given a text file of size 60 MB, which is to be hidden using steganography in
the low-order bits of each color in an image file. What size image would be required
in order to encrypt the entire file? What size would be needed if the file were first
compressed to a third of its original size? Give your answer in pixels, and show your
calculations. Assume that the images have an aspect ratio of 3:2, for example, 3000 ×
2000 pixels.

862 NETWORK SECURITY CHAP. 8

61. Alice was a heavy user of a type 1 anonymous remailer. She would post many mes-
sages to her favorite newsgroup, alt.fanclub.alice, and everyone would know they all
came from Alice because they all bore the same pseudonym. Assuming that the
remailer worked correctly, Trudy could not impersonate Alice. After type 1 remailers
were all shut down, Alice switched to a cypherpunk remailer and started a new thread
in her newsgroup. Devise a way for her to prevent Trudy from posting new messages
to the newsgroup, impersonating Alice.

62. In 2018, researchers found a pair of vulnerabilities in modern processors they called
Spectre and Meltdown. Find out how the Meltdown attack works and explain which of
the security principles were not sufficiently adhered to by the processor designers,
causing the introduction of these vulnerabilities. Explain your answer. Give a possible
motivation for not adhering strictly to these principles.

63. While traveling abroad, you connect to the WiFi network in your hotel using a unique
password. Explain how an attacker may eavesdrop on your communication.

64. Search the Internet for some court case involving copyright versus fair use and write a
1-page report summarizing your findings.

65. Write a program that encrypts its input by XORing it with a keystream. Find or write
as good a random number generator as you can to generate the keystream. The pro-
gram should act as a filter, taking plaintext on standard input and producing ciphertext
on standard output (and vice versa). The program should take one parameter, the key
that seeds the random number generator.

66. Write a procedure that computes the SHA-2 hash of a block of data. The procedure
should have two parameters: a pointer to the input buffer and a pointer to a 20-byte
output buffer. To see the exact specification of SHA-2, search the Internet for FIPS
180-1, which is the full specification.

67. Write a function that accepts a stream of ASCII characters and encrypts this input
using a substitution cipher with the Cipher Block Chaining mode. The block size
should be 8 bytes. The program should take plaintext from the standard input and print
the ciphertext on the standard output. For this problem, you are allowed to select any
reasonable system to determine that the end of the input is reached, and/or when padd-
ing should be applied to complete the block. You may select any output format, as
long as it is unambiguous. The program should receive two parameters:

1. A pointer to the initializing vector; and
2. A number, k, representing the substitution cipher shift, such that each ASCII charac-
ter would be encrypted by the k th character ahead of it in the alphabet.

For example, if x = 3, then ‘‘A’’ is encoded by ‘‘D’’, ‘‘B’’ is encoded by ‘‘E’’ etc. Make
reasonable assumptions with respect to reaching the last character in the ASCII set.
Make sure to document clearly in your code any assumptions you make about the input
and encryption algorithm.

9
READING LIST AND BIBLIOGRAPHY

We have now finished our study of computer networks, but this is only the
beginning. Many interesting topics have not been treated in as much detail as they
deserve, and others have been omitted altogether for lack of space. In this chapter,
we provide some suggestions for further reading and a bibliography, for the benefit
of readers who wish to continue their study of computer networks.

9.1 SUGGESTIONS FOR FURTHER READING

There is an extensive literature on all aspects of computer networks. Two jour-
nals that publish papers in this area are IEEE/ACM Transactions on Networking
and IEEE Journal on Selected Areas in Commun..

The periodicals of the ACM Special Interest Groups on Data Communications
(SIGCOMM) and Mobility of Systems, Users, Data, and Computing (SIGMO-
BILE) publish many papers of interest, especially on emerging topics. They are
Computer Communication Review and Mobile Computing and Commun. Review.

IEEE also publishes three magazines—IEEE Internet Computing, IEEE Net-
work Magazine, and IEEE Communications Magazine—that contain surveys, tuto-
rials, and case studies on networking. The first two emphasize architecture, stan-
dards, and software, and the last tends toward communications technology (fiber
optics, satellites, and so on).

There are a number of annual or biannual conferences that attract numerous
papers on networks. In particular, look for the SIGCOMM conference, NSDI

863

864 READING LIST AND BIBLIOGRAPHY CHAP. 9

(Symposium on Networked Systems Design and Implementation), MobiSys (Con-
ference on Mobile Systems, Applications, and Services), SOSP (Symposium on
Operating Systems Principles) and OSDI (Symposium on Operating Systems
Design and Implementation).

Below we list some suggestions for supplementary reading, keyed to the chap-
ters of this book. Some of the suggestions are books or chapters in books, with
some tutorials and surveys. Full references are in Sec. 9.2.

9.1.1 Introduction and General Works

Comer, The Internet Book, 4th ed.
Anyone looking for an easygoing introduction to the Internet should look here.

Comer describes the history, growth, technology, protocols, and services of the
Internet in terms that novices can understand, but so much material is covered that
the book is also of interest to more technical readers.

Computer Communication Review, 50th Anniversary Issue, Oct. 2019
ACM SIGCOMM was 50 years old in 2019, and this special issue looks at the

early days and how networking and SIGCOMM have changed over the years. A
number of the early SIGCOMM chairs have written articles about how things were
and where things ought to go in the future. Another topic is the relationship
between academic research on networking and industry. The evolution of the
newsletter is also discussed.

Crocker, S.D., ‘‘The Arpanet and Its Impact on the State of Networking’’
To celebrate the 50th anniversary of the ARPANET, the forerunner of the Inter-

net, IEEE Computer put six of the designers of the ARPANET at a (virtual) round-
table to discuss the ARPANET and its (enormous) impact on the world. The
designers present at the roundtable were Ben Barker, Vint Cerf, Steve Crocker, Bob
Kahn Len Kleinrock, and Jeff Rulifson. The discussion is full of interesting
insights including the fact that although ARPANET was initially targeted at the
best research universities in the U.S., few of them saw any value in the project at
first and were reluctant to join it.

Crovella and Krishnamurthy, Internet Measurement
How do we know how well the Internet works anyway? This question is not

trivial to answer because no one is in charge of the Internet. This book describes
the techniques that have been developed to measure the operation of the Internet,
from network infrastructure to applications.

IEEE Internet Computing, Jan.-Feb. 2000
The first issue of IEEE Internet Computing in the new millennium did exactly

what you would expect: it asked the people who helped create the Internet in the

SEC. 9.1 SUGGESTIONS FOR FURTHER READING 865

previous millennium to speculate on where it is going in the next one. The experts
are Paul Baran, Lawrence Roberts, Leonard Kleinrock, Stephen Crocker, Danny
Cohen, Bob Metcalfe, Bill Gates, Bill Joy, and others. See how well their predic-
tions have fared two decades later.

Kurose and Ross, Computer Networking: A Top-Down Approach
This book is roughly similar in content to this one except that after an intro-

ductory chapter, it starts at the top of the protocol stack (the application layer) it
works its way down down to the link layer. There is no chapter on the physical
layer, but there are separate chapters on security amd multimedia.

McCullough, How the Internet Happened: From Netscape to the iPhone
For anyone interested in an easy-breezy history of the Internet from the early

1990s until now, this is the place to look. It covers many companies and devices
that have played a major role in the Internet’s development and growth, including
Netscape, Internet Explorer, AOL, Yahoo, Amazon, Google, Napster, Netflix, Pay-
Pal, Facebook, and the iPhone.

Naughton, A Brief History of the Future
Who invented the Internet, anyway? Many people have claimed credit. And

rightly so, since many people had a hand in it, in different ways. There was Paul
Baran, who wrote a report describing packet switching, there were the people at
various universities who designed the ARPANET architecture, there were the peo-
ple at BBN who programmed the first IMPs, there were Bob Kahn and Vint Cerf
who invented TCP/IP, and so on. These books tell the story of the Internet, at least
up to 2000, replete with many anecdotes.

Severance, Introduction to Networking: How the Internet Works
If you want to learn about networking in only 100 pages, instead of 1000

pages, this is the place to look. It is a quick and easy read and touches on most of
the key topics, including network architectures, the link layer, IP, DNS, the trans-
port layer, the application layer, SSL, and the OSI model. The hand-drawn illustra-
tions are fun.

9.1.2 The Physical Layer

Boccardi et al., ‘‘Five Disruptive Technology Directions for 5G’’
Proponents of 5G cellular networks say they will change the world. But how?

This paper talks about five ways 5G could be disruptive. These include device-cen-
tric architectures, the use of millimeter waves, MIMO, smarter devices, and native
support for machine-to-machine communication.

866 READING LIST AND BIBLIOGRAPHY CHAP. 9

Hu and Li, ‘‘Satellite-Based Internet: A Tutorial’’
Internet access via satellite is different from using terrestrial lines. Not only is

there the issue of delay, but routing and switching are also different. In this paper,
the authors examine the issues related to using satellites for Internet access.

Hui, Introduction to Fiber-Optic Communications
The title sums it up well. There are chapters on optical fibers, light sources,

detectors, optical amplifiers, optical transmission systems, and more. It is a bit
technical, so some engineering background is needed to fully understand it.

Lamparter et al., ‘‘Multi-Gigabit over Copper Access Networks’’
Everyone agrees that the best way to provide very high-speed data to the home

is fiber to the home. However, rewiring the world is an expensive proposition. In
this paper, the authors discuss hybrid forms of wiring that may make more sense in
the short and medium term, including fiber to the building, which brings fiber into
large buildings (apartment buildings and office buildings, but reuses the existing
wiring and infrastructure within the buildings.

Pearson, Fiber Optic Communication for Beginners: The Basics
If you are interested in learning more about fiber optics in a hurry, this little

42-page book might be right for you. It discusses why fiber is the way to go, sig-
nal types, optoelectronics, passive devices, fiber modes, cables, connectors, splices,
and testing.

Stockman and Coomans, ‘‘Fiber to the Tap: Pushing Coaxial Cable Networks to
Their Limits’’

The authors believe that the limit on cable television networks has not been
reach, and could go as high as multiple gigabits/sec. In this paper, they discuss the
various parts of the cable system and how they think it is possible to achieve such
speeds. The paper requires some engineering background to fully understand it.

9.1.3 The Data Link Layer

Lin and Costello, Error Control Coding, 2nd ed.
Codes to detect and correct errors are central to reliable computer networks.

This popular textbook explains some of the most important codes, from simple lin-
ear Hamming codes to more complex low-density parity check codes. It tries to do
so with the minimum algebra necessary, but that is still a lot.

Kurose and Ross, Computer Networking
Chapter 6 of this book is about the data link layer. It also includes a section on

switching in data centers.

SEC. 9.1 SUGGESTIONS FOR FURTHER READING 867

Stallings, Data and Computer Communications, 10th ed.
Part two covers digital data transmission and a variety of links, including error

detection, error control with retransmissions, and flow control.

9.1.4 The Medium Access Control Sublayer

Alloulah and Huang, ‘‘Future Millimeter-Wave Indoor Systems’’
As the radio frequencies at and below 5 GHz get clogged, communication

engineers are looking to higher frequencies to get more unused bandwidth. The
30–300 GHz portion of the spectrum is potentially available, but at those frequen-
cies the radio waves are absorbed by water (e.g., rain) making them more suited for
use indoors. This paper discusses some of the issues and applications for 802.11ad
and other systems that operate using these millimeter waves.

Bing, Wi-Fi Technologies and Applications
IEEE 802.11 has become the standard for wireless communication, and this

book is a good reference for readers interesting in learning more about it. The
book covers frequency bands, multi-antenna systems, and the various 802.11 stan-
dards. It also looks at alternatives like LTE-U and LAA. It concludes with a chap-
ter on modulation techniques.

Colbach, Bluetooth Tutorial: Design, Protocol and Specifications for BLE
Bluetooth is widely used to connect mobile devices using short-range radio

signals. This book discusses Bluetooth in some detail, including its architecture,
protocols, and applications. Bluetooth 1.0 through Bluetooth 5 are covered.

Kasim, Delivering Carrier Ethernet
Nowadays, Ethernet is not only a local-area technology. The new fashion is to

use Ethernet as a long-distance link for carrier-grade Ethernet. This book brings
together essays to cover the topic in depth.

Perlman, Interconnections, 2nd ed.
For an authoritative but entertaining treatment of bridges, routers, and routing

in general, Perlman’s book is the place to look. The author designed the algo-
rithms used in the IEEE 802 spanning tree bridge and she is one of the world’s
leading authorities on various aspects of networking.

Spurgeon and Zimmerman, Ethernet: The Definitive Guide, 2nd ed.
After some introductory material about cabling, framing, negotiation, and

power over Ethernet, and signaling systems, there are chapters on 10-Mbs,
100-Mbps, 1000-Mbps, 10-Gbps, 40-Gbps, and 100-Gbps Ethernet systems. Then
come chapters on cabling, switching, performance, and troubleshooting. This is a
more hands-on kind of book than a theory book.

868 READING LIST AND BIBLIOGRAPHY CHAP. 9

9.1.5 The Network Layer

Comer, Internetworking with TCP/IP, Vol. 1, 5th ed.
Comer has written the definitive work on the TCP/IP protocol suite, now in its

fifth edition. Most of the first half deals with IP and related protocols in the net-
work layer. The other chapters deal primarily with the higher layers and are also
worth reading.

Hallberg, Quality of Service in Modern Packet Networks
The vast majority of the traffic on the Internet is multimedia, which makes

quality of service a hot area. This book covers many related topics, including inte-
grated services, differentiated services, packet queing and scheduling, congestion
avoidance, measuring quality of service, and more.

Grayson et al., IP Design for Mobile Networks
Telephone networks and the Internet are on a collision course, with mobile

phone networks being implemented with IP on the inside. This book tells how to
design a network using the IP protocols that supports mobile telephone service.

Nucci and Papagiannaki, Design, Measurement and Management of Large-Scale
IP Networks

We talked a great deal about how networks work, but not how you would
design, deploy and manage one if you were an ISP. This book fills that gap, look-
ing at modern methods for traffic engineering and how ISPs provide services using
networks.

Perlman, Interconnections, 2nd ed.
In Chapters 12 through 15, Perlman describes many of the issues involved in

unicast and multicast routing algorithm design, both for wide area networks and
networks of LANs. But by far, the best part of the book is Chap. 18, in which the
author distills her many years of experience with network protocols into an infor-
mative and fun chapter. It is required reading for protocol designers.

Stevens, TCP/IP Illustrated, Vol. 1
Chapters 3–10 provide a comprehensive treatment of IP and related protocols

(ARP, RARP, and ICMP), illustrated by examples.

Feamster et al. ‘‘The Road to SDN’’
This survey article describes the intellectual history and roots of software-

defined networks, which date back to the centralized control of the telephone net-
works. It also explores the various conditions, technical and political, that led to
the rise of SDN in the late 2000s.

SEC. 9.1 SUGGESTIONS FOR FURTHER READING 869

Swami et al., ‘‘Software-defined Networking-based DDoS Defense Mechanisms’’
Software defined networking interacts with security, namely DDoS attacks in

two ways. First, the SDN code can itself be a target for attack. Second, the SDN
code can help protect the network against DDoD attacks. This survey paper looks
at many papers that address both of these issues.

Varghese, Network Algorithmics
We have spent much time talking about how routers and other network ele-

ments interact with each other. This book is different: it is about how routers are
actually designed to forward packets at prodigious speeds. For the inside scoop on
that and related questions, this is the book to read. The author is an authority on
clever algorithms that are used in practice to implement high-speed network ele-
ments in software and hardware.

9.1.6 The Transport Layer

Comer, Internetworking with TCP/IP, Vol. 1, 5th ed.
As mentioned above, Comer has written the definitive work on the TCP/IP

protocol suite. The second half of the book is about UDP and TCP.

Pyles et al., Guide to TCP/IP: IPv6 and IPv4
Another book on TCP, IP, and related protocols. In contrast to the others, this

one has quite a bit of material on IPv6, including chapters on transitioning to Ipv6
and deploying IPv6.

Stevens, TCP/IP Illustrated, Vol. 1
Chapters 17–24 provide a comprehensive treatment of TCP illustrated by

examples.

Feamster and Livingood, ‘‘Internet Speed Measurement: Current Challenges and
Future Recommendations’’

The authors discuss the challenges associated with measuring Internet speed as
access networks continue to get faster. For further reading on this topic, this paper
describes the design principles for Internet speed measurement, and challenges in
this area going forward as access networks get faster.

9.1.7 The Application Layer

Ahsan et a., ‘‘DASHing Towards Hollywood’’
DASH and HLS use HTTP to make them Web compatible, but both are built

on TCP, which prioritizes reliable in-order delivery over timely delivery. This
paper shows how by using a variant of TCP, performance of streaming video can
be improved at stalls due to head-of-line blocking can be eliminated.

870 READING LIST AND BIBLIOGRAPHY CHAP. 9

Berners-Lee et al., ‘‘The World Wide Web’’
Take a trip back in time for a perspective on the Web and where it is going by

the person who invented it and some of his colleagues at CERN. The article
focuses on the Web architecture, URLs, HTTP, and HTML, as well as future direc-
tions, and compares it to other distributed information systems.

Chakraborty et al., VoIP Technology: Applications and Challenges
The old analog telephone system is pretty much dying or in some countries,

already dead. It is being replaced by VoIP. If you are interested in how VoIP works
in detail, this is good place to look. Among other topics covered are the VoIP tech-
nology, protocols, quality-of-service issues, VoIP over wireless, performance, opti-
mization, dealing with congestion, and more.

Dizdarevic et al, ‘‘A Survey of Communication Protocols for Internet of Things ...’’
The Internet of Things is an up-and-coming topic but protocols for how the

‘‘things’’ communicate with servers and clouds are fragmented. Typically they run
in the application layer on top of TCP, but there are many of them, including REST
HTTP, MQTT, CoAP, AMQP, DDS, XMPP, and even HTTP/2.0. This paper dis-
cusses all of them and looks at issues like performance, latency, energy, security,
and more. The paper also has over 130 references.

Goralski, The Illustrated Network: How TCP/IP Works in a Modern Network
The title of this book is somewhat misleading. While TCP is certainly covered

in detail, so are many other networking protocols and technologies. Among other
topics, it covers protocols and layers, TCP/IP, link technologies, optical networks,
IPv4 and IPv6, ARP, routing, multiplexing, peering, BGP, multicast, MPLS,
DHCP, DNS, FTP, SMTP, HTTP, SSL, and much more.

Held, A Practical Guide to Content Delivery Networks, 2nd ed.
This book gives a down-to-earth exposition of how CDNs work, emphasizing

the practical considerations in designing and operating a CDN that performs well.

Li et al., ‘‘Two Decades of Internet Video Streaming: A Retrospective View’’
Video streaming has taken over the Internet. Most of its bandwidth is now

devoted to Netflix, YouTube, and other streaming services. This paper looks at
some of history and technology used for video streaming.

Simpson, Video Over IP, 2nd ed.
The author takes a broad look at how IP technology can be used to move video

across networks, both on the Internet and in private networks designed to carry
video. Interestingly, this book is oriented for the video professional learning about
networking, rather than the other way around.

SEC. 9.1 SUGGESTIONS FOR FURTHER READING 871

Wittenburg, Understanding Voice Over IP Technology
This book covers how voice over IP works, from carrying audio data with the

IP protocols and quality-of-service issues, through to the SIP and H.323 suite of
protocols. It is necessarily detailed given the material, but accessible and broken up
into digestible units.

9.1.8 Network Security

Anderson, ‘‘Making Security Sustainable’’
The Internet of Things is going to change how we have to look at security. In

the old days, a car manufacturer sent a few prototypes of a new car to government
agencies for testing. If it was approved, they manufactured millions of identical
copies. When cars get connected to the Internet and get software updates every
week, the old model doesn’t work any more. In this article, Anderson discusses
this an many related safety and security issues that are on the horizon.

Anderson, Security Engineering, 2nd. ed.
This book presents a wonderful mix of security techniques couched in an

understanding of how people use (and misuse) them. It is more technical than
Secrets and Lies, but less technical than Network Security (see below). After an
introduction to the basic security techniques, entire chapters are devoted to various
applications, including banking, nuclear command and control, security printing,
biometrics, physical security, electronic warfare, telecom security, e-commerce,
and copyright protection.

Fawaz and Shin, ‘‘Security and Privacy in the Internet of Things’’
The Internet of Things is an exploding area. Tens of billions of devices will

soon be connected to the Internet, including cars, pacemakers, door locks, and a lot
more. Security and privacy are paramount in many IoT applications, but tend to be
ignored in most discussions of the subject. The authors discuss the situation and
propose a solution.

Ferguson et al., Cryptography Engineering
Many books tell you how the popular cryptographic algorithms work. This

book tells you how to use cryptography—why cryptographic protocols are
designed the way they are and how to put them together into a system that will
meet your security goals. It is a fairly compact book that is essential reading for
anyone designing systems that depend on cryptography.

Fridrich, Steganography in Digital Media
Steganography goes back to ancient Greece, where the wax was melted off

blank tablets so secret messages could be applied to the underlying wood before
the wax was reapplied. Nowadays, videos, audio, and other content on the Internet

872 READING LIST AND BIBLIOGRAPHY CHAP. 9

provide different carriers for secret messages. Various modern techniques for hid-
ing and finding information in images are discussed here.

Kaufman et al., Network Security, 2nd ed.
This authoritative and witty book is the first place to look for more technical

information on network security algorithms and protocols. Secret and public key
algorithms and protocols, message hashes, authentication, Kerberos, PKI, IPsec,
SSL/TLS, and email security are all explained carefully and at considerable length,
with many examples. Chapter 26, on security folklore, is a real gem. In security,
the devil is in the details. Anyone planning to design a security system that will
actually be used will learn a lot from the real-world advice in this chapter.

Schneier, Secrets and Lies
If you read Cryptography Engineering from cover to cover, you will know

everything there is to know about cryptographic algorithms. If you then read
Secrets and Lies cover to cover (which can be done in a lot less time), you will
learn that cryptographic algorithms are not the whole story. Most security weak-
nesses are not due to faulty algorithms or even keys that are too short, but to flaws
in the security environment. For a nontechnical and fascinating discussion of com-
puter security in the broadest sense, this book is a very good read.

Skoudis and Liston, Counter Hack Reloaded, 2nd ed.
The best way to stop a hacker is to think like a hacker. This book shows how

hackers see a network, and argues that security should be a function of the entire
network’s design, not an afterthought based on one specific technology. It covers
almost all common attacks, including the ‘‘social engineering’’ types that take
advantage of users who are not always familiar with computer security measures.

Ye et al., ‘‘A Survey on Malware Detection Using Data Mining Techniques’’
Malware is everywhere and most computers run antivirus or antimalware soft-

ware. How do the vendors of these programs detect and classify malware? This
survey paper looks at the malware and antimalware industries and how malware
can be detected by data mining.

9.2 ALPHABETICAL BIBLIOGRAPHY

ABRAMSON, N.: ‘‘Internet Access Using VSATs,’’ IEEE Commun. Magazine, vol. 38, pp.
60–68, July 2000.

ADAR, E., and HUBERMAN, B.A.: ‘‘Free Riding on Gnutella,’’ First Monday, Oct. 2000.
AHMED, A., SHAFIQ, Z., HARKEERAT, B., and KHAKPOUR, A.: ‘‘Suffering from Buffer-

ing? Detecting QoE Impairments in Live Video Streams,’’ Int’l Conf. on Network Pro-
tocols, IEEE, 2017.

SEC. 9.2 ALPHABETICAL BIBLIOGRAPHY 873

AHSAN, A., MCQUISTIN, S.M., PERKINS, C., and OTT, J.: ‘‘DASHing Towards Holly-
wood,’’ Proc. Ninth ACM Multimedia Systems Conf., ACM, pp. 1–12, 2018.

ALLMAN, M., and PAXSON, V.: ‘‘On Estimating End-to-End Network Path Properties,’’
Proc. SIGCOMM ’99 Conf., ACM, pp. 263–274, 1999.

ALLOULAH, M., and HUANG, H.: ‘‘Future Millimeter-Wave Indoor Systems: A Blueprint
for Joint Communication and Sensing,’’ IEEE Computer, vol. 52, pp. 16–24, July
2019.

ALTAMINI, S., and SHIRMOHAMMADI, S.: ‘‘Client-server Cooperative and Fair DASH
Video Streaming,’’ Proc. 29th Workshop on Network and Operating System Support
for Digital Audio and Video, ACM, pp. 1–6, June 2019.

ANDERSON, C.: The Long Tail: Why the Future of Business is Selling Less of More,
revised updated ed., New York: Hyperion, 2008a.

ANDERSON, R.J.: ‘‘Making Security Sustainable,’’ Commun. of the ACM, vol. 61, pp.
24–25, March 2018.

ANDERSON, R.J.: Security Engineering: A Guide to Building Dependable Distributed Sys-
tems, 2nd ed., New York: John Wiley & Sons, 2008b.

ANDERSON, R.J.: ‘‘Free Speech Online and Offline,’’ IEEE Computer, vol. 25, pp. 28–30,
June 2002.

ANDERSON, R.J.: ‘‘The Eternity Service,’’ Proc. Pragocrypt Conf., CTU Publishing
House, pp. 242–252, 1996.

ANDREWS, J.G., BUZZO, S., CHOI, W., HANLY, S.V., LOZANO, A., SOONG, A.C.K., and
ZHANG, J.C.: ‘‘What Will 5G Be?,’’ IEEE J. on Selected Areas in Commun., vol. 32,
pp. 1065–1082, June 2014.

ANTONAKAKIS, M., PERDISCI, R., DAGON, D., LEE, W., and FEAMSTER, N.: ‘‘Building
a Dynamic Reputation System for DNS,’’ USENIX Security Symposium, pp. 273–290,
2010.

APTHORPE, N., HUANG, D., REISMAN D., NARAYANAN, A., and FEAMSTER, N.: ‘‘Keep-
ing the Smart Home Private with Smart(er) Traffic Shaping,’’ Proceedings on Privacy
Enhancing Technologies, pp. 128–48, 2019.

ASHRAF, Z: Virtual Private Networks in Theory and Practice, Munich: Grin Verlag, 2018.

ATENCIO, L.: The Joy of JavaScript, Shelter Island, NY: Manning Publications, 2020.

AXELSSON, S.: ‘‘The Base-rate Fallacy and It’s Implications of the Difficulty of Intrusion
Detection,’’ Proc. Conf. on Computer and Commun. Security, ACM, pp. 1–7, 1999.

BAASE, S., and HENRY, T.: A Gift of Fire: Social, Legal, and Ethical Issues for Computing
Technology, 5th ed., Upper Saddle River, NJ: Pearson Education, 2017.

BALLARDIE, T., FRANCIS, P., and CROWCROFT, J.: ‘‘Core Based Trees (CBT),’’ Proc.
SIGCOMM ’93 Conf., ACM, pp. 85–95, 1993.

BARAN, P.: ‘‘On Distributed Communications: I. Introduction to Distributed Communica-
tion Networks,’’ Memorandum RM-420-PR, Rand Corporation, Aug. 1964.

874 READING LIST AND BIBLIOGRAPHY CHAP. 9

BASU, S., SUNDARRAJAN, A., GHADERTI, J., SHAKKOTTAI, S., and SITARAMAN, R.:
‘‘ Adaptive TTL-Based Caching for Content Delivery,’’ IEEE/ACM Trans. on Network-
ing, vol. 26, pp. 1063–1077, June 2018.

BELLMAN, R.E.: Dynamic Programming, Princeton, NJ: Princeton University Press, 1957.
BELLOVIN, S.: ‘‘The Security Flag in the IPv4 Header,’’ RFC 3514, Apr. 2003.
BELSNES, D.: ‘‘Flow Control in the Packet Switching Networks,’’ Commun. Networks,

Uxbridge, England: Online, pp. 349–361, 1975.
BENNET, C.H., and BRASSARD, G.: ‘‘Quantum Cryptography: Public Key Distribution and

Coin Tossing,’’ Proc. Int’l Conf. on Computer Systems and Signal Processing, pp.
175–179, 1984.

BERESFORD, A., and STAJANO, F.: ‘‘Location Privacy in Pervasive Computing,’’ IEEE
Pervasive Computing, vol. 2, pp. 46–55, Jan. 2003.

BERNAL, P.: The Internet, Warts and All, Cambridge, U.K.: Cambridge University Press,
2018.

BERNASCHI, M., CELESTINI, A., GUARINO, S., LOMBARDI, F., and MASTROSTEFANO,
E.: ‘‘Spiders Like Onions: on the Network of Tor Hidden Services,’’ Proc. World Wide
Web Conf., ACM, pp. 105–115, May 2019.

BERNERS-LEE, T., CAILLIAU, A., LOUTONEN, A., NIELSEN, H.F., and SECRET, A.:
‘‘The World Wide Web,’’ Commun. of the ACM, vol. 37, pp. 76–82, Aug. 1994.

BERTSEKAS, D., and GALLAGER, R.: Data Networks, 2nd ed., Upper Saddle River, NJ:
Prentice Hall, 1992.

BHATTI, S.N., and CROWCROFT, J.: ‘‘QoS Sensitive Flows: Issues in IP Packet Han-
dling,’’ IEEE Internet Computing, vol. 4, pp. 48–57, July–Aug. 2000.

BIHAM, E., and SHAMIR, A.: ‘‘Differential Fault Analysis of Secret Key Cryptosystems,’’
Proc. 17th Ann. Int’l Cryptology Conf., Springer-Verlag LNCS 1294, pp. 513–525,
1997.

BING, B.: Wi-Fi Technologies and Applications, Seattle: Amazon, 2017.
BIRD, R., GOPAL, I., HERZBERG, A., JANSON, P.A., KUTTEN, S., MOLVA, R., and YUNG,

M.: ‘‘Systematic Design of a Family of Attack-Resistant Authentication Protocols,’’
IEEE J. on Selected Areas in Commun., vol. 11, pp. 679–693, June 1993.

BIRRELL, A.D., and NELSON, B.J.: ‘‘Implementing Remote Procedure Calls,’’ ACM Trans.
on Computer Systems, vol. 2, pp. 39–59, Feb. 1984.

BIRYUKOV, A., SHAMIR, A., and WAGNER, D.: ‘‘Real Time Cryptanalysis of A5/1 on a
PC,’’ Proc. Seventh Int’l Workshop on Fast Software Encryption, Springer-Verlag
LNCS 1978, pp. 1–8, 2000.

BISCHOF, Z., BUSTAMANTE, F., and FEAMSTER, N.: ‘‘Characterizing and Improving the
Reliability of Broadband Internet Access*(CQ The 46th Research Conf. on Commun.,
Information, and Internet Policy (TPRC), SSRN, 2018.

BOCCARDI, F., HEATH, R.W., LOZANO, A., MARZETTA, T.L., and POPOVSKI, P.: ‘‘Five
Disruptive Technology Directions for 5G,’’ IEEE Commun. Magazine, vol. 52, pp.
74–80, Feb. 2014.

SEC. 9.2 ALPHABETICAL BIBLIOGRAPHY 875

BOGGS, D., MOGUL, J., and KENT, C.: ‘‘Measured Capacity of an Ethernet: Myths and
Reality,’’ Proc. SIGCOMM ’88 Conf., ACM, pp. 222–234, 1988.

BORISOV, N., GOLDBERG, I., and WAGNER, D.: ‘‘Intercepting Mobile Communications:
The Insecurity of 802.11,’’ Seventh Int’l Conf. on Mobile Computing and Networking,
ACM, pp. 180–188, 2001.

BOSSHART, P., DALY, D., GIBB, G., IZZARD, M., MCKEOWN, N., REXFORD, J., and
WALKER, D.: ‘‘P4: Programming Protocol-Independent Packet Processors,’’ Computer
Commun. Review, vol. 44, pp. 87–95, Apr., 2014.

BOSSHART, P., GIBB, G., KIM, H.-S., VARGHESE, G., MCKEOWN, N., IZZARD, M.,
MUJICA, F., and HOROWITZ, M.: ‘‘Forwarding Metamorphosis: Fast Programmable
Match-Action Processing in Hardware for SDN,’’ Computer Commun. Review, vol. 43,
pp. 99–110, Apr., 2013.

BRADEN, R.: ‘‘Requirements for Internet Hosts—Communication Layers,’’ RFC 1122,
Oct. 1989.

BRADEN, R., BORMAN, D., and PARTRIDGE, C.: ‘‘Computing the Internet Checksum,’’
RFC 1071, Sept. 1988.

BRESLAU, L., CAO, P., FAN, L., PHILLIPS, G., and SHENKER, S.: ‘‘Web Caching and Zipf-
like Distributions: Evidence and Implications,’’ Proc. INFOCOM Conf., IEEE, pp.
126–134, 1999.

BRONZINO, F., SCHMITT, P., AYOUBI, S., MARTINS, G., TEIXEIRA, R., and FEAMSTER,
N.: ‘‘Inferring Streaming Video Quality from Encrypted Traffic: Practical Models and
Deployment Experience,’’ ACM SIGMETRICS, 2020.

BUSH, V.: ‘‘ As We May Think,’’ Atlantic Monthly, vol. 176, pp. 101–108, July 1945.

CALDER, M., FAN, X., HU, Z., KATZ-BASSETT, E., HEIDEMANN, J. and GOVINDAN, R.:
‘‘Mapping the Expansion of Google’s Serving Infrastructure,’’ ACM SIGCOMM Inter-
net Measurement Conf., ACM, pp. 313–326, 2013.

CAPETANAKIS, J.I.: ‘‘Tree Algorithms for Packet Broadcast Channels,’’ IEEE Trans. on
Information Theory, vol. IT-5, pp. 505–515, Sept. 1979.

CASADO, M., FREEDMAN, M.J., PETIT, J., LUO, J., MCKEOWN, N., and SCHENKER, S.:
‘‘Ethane: Taking Control of the Enterprise,’’ Proc. SIGCOMM 2007 Conf., ACM, pp.
1–12, 2007.

CASTAGNOLI, G., BRAUER, S., and HERRMANN, M.: ‘‘Optimization of Cyclic Redun-
dancy-Check Codes with 24 and 32 Parity Bits,’’ IEEE Trans. on Commun., vol. 41,
pp. 883–892, June 1993.

CERF, V., and KAHN, R.: ‘‘ A Protocol for Packet Network Interconnection,’’ IEEE Trans.
on Commun., vol. COM-2, pp. 637–648, May 1974.

CHAKRABORTY, T., MISRA, S., and PRASAD, R.: VoIP Technology: Applications and
Challenges, Berlin: Springer, 2019.

CHANG, F., DEAN, J., GHEMAWA T, S., HSIEH, W., WALLACH, D., BURROWS, M., CHAN-
DRA, T., FIKES, A., and GRUBER, R.: ‘‘Bigtable: A Distributed Storage System for
Structured Data,’’ Proc. OSDI 2006 Symp., USENIX, pp. 15–29, 2006.

876 READING LIST AND BIBLIOGRAPHY CHAP. 9

CHASE, J.S., GALLATIN, A.J., and YOCUM, K.G.: ‘‘End System Optimizations for High-
Speed TCP,’’ IEEE Commun. Magazine, vol. 39, pp. 68–75, Apr. 2001.

CHAUDHARY, A, and CHAUBE, M.K.: ‘‘Hiding MP3 in Colour Image Using Whale Opti-
mization,’’ Proc. Second Int’l Conf. on Vision, Image, and Signal Processing, ACM,
Art. 54, 2018.

CHEN, S., and NAHRSTEDT, K.: ‘‘ An Overview of QoS Routing for Next-Generation Net-
works,’’ IEEE Network Magazine, vol. 12, pp. 64–69, Nov./Dec. 1998.

CHEN, X., FEIBISH, S., KORAL, Y., REXFORD, J., ROTTENSTREICH, O., MONETTI, S.,
WANG, T.: ‘‘Fine-Grained Queue Measurement in the Data Plane,’’ CoNext, ACM,
Dec. 2019.

CHIU, D., and JAIN, R.: ‘‘ Analysis of the Increase and Decrease Algorithms for Congestion
Avoidance in Computer Networks,’’ Comput. Netw. ISDN Syst., vol. 17, pp. 1–4, June
1989.

CLANCY, T.C., MCGWIER, R.W., and CHEN, L.: ‘‘Post-Quantum Cryptography and 5G
Security: A Tutorial,’’ Proc. WiSec, ACM, pp. 285–287, 2019.

CLARK, D.D.: ‘‘The Design Philosophy of the DARPA Internet Protocols,’’ Proc. SIG-
COMM ’88 Conf., ACM, pp. 106–114, 1988.

CLARK, D.D.: ‘‘Window and Acknowledgement Strategy in TCP,’’ RFC 813, July 1982.
CLARK, D.D., JACOBSON, V., ROMKEY, J., and SALWEN, H.: ‘‘ An Analysis of TCP Pro-

cessing Overhead,’’ IEEE Commun. Magazine, vol. 27, pp. 23–29, June 1989.
CLARK, D.D., SHENKER, S., and ZHANG, L.: ‘‘Supporting Real-Time Applications in an

Integrated Services Packet Network,’’ Proc. SIGCOMM ’92 Conf., ACM, pp. 14–26,
1992.

CLARKE, A.C.: ‘‘Extra-Terrestrial Relays,’’ Wireless World, 1945.
CLARKE, I., MILLER, S.G., HONG, T.W., SANDBERG, O., and WILEY, B.: ‘‘Protecting

Free Expression Online with Freenet,’’ IEEE Internet Computing, vol. 6, pp. 40–49,
Jan.–Feb. 2002.

CODING, M: JavaScript for Beginners, Seattle: Amazon, 2019.

COHEN, B.: ‘‘Incentives Build Robustness in BitTorrent,’’ Proc. First Workshop on Eco-
nomics of Peer-to-Peer Systems, June 2003.

COLBACH, B.: Bluetooth Tutorial: Design, Protocol and Specifications for BLE - Blue-
tooth Low Energy 4.0 and Bluetooth 5, Seattle: Amazon Kindle, 2019.

COMER, D.E.: The Internet Book, 4th ed., Upper Saddle River, NJ: Prentice Hall, 2007.
COMER, D.E.: Internetworking with TCP/IP, vol. 1, 6th ed., Upper Saddle River, NJ: Pren-

tice Hall, 2013.
CRAVER, S.A., WU, M., LIU, B., STUBBLEFIELD, A., SWARTZLANDER, B., WALLACH,

D.W., DEAN, D., and FELTEN, E.W.: ‘‘Reading Between the Lines: Lessons from the
SDMI Challenge,’’ Proc. 10th USENIX Security Symp., USENIX, 2001.

CROCKER, S.D.: ‘‘The Arpanet and Its Impact on the State of Networking,’’ IEEE Com-
puter, vol. 52, pp-14–23, Oct. 2019.

SEC. 9.2 ALPHABETICAL BIBLIOGRAPHY 877

CROVELLA, M., and KRISHNAMURTHY, B.: Internet Measurement, New York: John
Wiley & Sons, 2006.

CUEVAS, R., KRYCZKA, M., GINZALEZ, R., CUEVAS, A., and AZCORRZ, A.: ‘‘Torrent-
Guard: Stopping Scam and Malware Distribution in the BitTorrent Ecosystem,’’ Com-
puter Networks, vol. 59, pp. 77–90, 2014.

DAEMEN, J., and RIJMEN, V.: The Design of Rijndael, Berlin: Springer-Verlag, 2002.

DAGON, D., ANTONAKAKIS, M., VIXIE, P., JINMEI, T., and LEE, W.: ‘‘Increased DNS
Forgery Resistance Through 0x20-bit Encoding,’’ Proceedings of the 15th ACM Conf.
on Computer and Commun. Security, ACM, pp. 211–222, 2008.

DALAL, Y., and METCLFE, R.: ‘‘Reverse Path Forwarding of Broadcast Packets,’’ Com-
mun. of the ACM, vol. 21, pp. 1040–1048, Dec. 1978.

DAN, K., KITAGAW A, N., SAKURABA, S., and YAMAI, N.: ‘‘Spam Domain Detection
Method Using Active DNS Data and E-Mail Reception Log,’’ Proc. 43rd Computer
Softw. and Appl. Conf., IEEE, pp. 896–899, 2019.

DAVIE, B., and FARREL, A.: MPLS: Next Steps, San Francisco: Morgan Kaufmann, 2008.

DAVIE, B., and REKHTER, Y.: MPLS Technology and Applications, San Francisco: Morgan
Kaufmann, 2000.

DAVIES, J.: Understanding IPv6, 2nd ed., Redmond, WA: Microsoft Press, 2008.

DAVIS, J.: Wifi Technology: Advances and Applications, New York: NY Research Press,
2018.

DAY, J.D.: ‘‘The (Un)Revised OSI Reference Model,’’ Computer Commun. Rev., vol. 25,
pp. 39–55, Oct. 1995.

DAY, J.D., and ZIMMERMANN, H.: ‘‘The OSI Reference Model,’’ Proc. of the IEEE, vol.
71, pp. 1334–1340, Dec. 1983.

DE MARCO, G., and KOWALSKI, D.: ‘‘Contention Resolution in a Nonsynchronized Multi-
ple Access Channel,’’ J. of Theoretical Computer Science, vol. 689, pp. 1–13, Aug.
2017.

DEAN, J., and GHEMAWA T, S.: ‘‘MapReduce: a Flexible Data Processing Tool,’’ Commun.
of the ACM, vol. 53, pp. 72–77, Jan. 2008.

DEERING, S.E.: ‘‘SIP: Simple Internet Protocol,’’ IEEE Network Magazine, vol. 7, pp.
16–28, May/June 1993.

DEERING, S.E., and CHERITON, D.: ‘‘Multicast Routing in Datagram Networks and
Extended LANs,’’ ACM Trans. on Computer Systems, vol. 8, pp. 85–110, May 1990.

DEMERS, A., KESHAV, S., and SHENKER, S.: ‘‘ Analysis and Simulation of a Fair Queueing
Algorithm,’’ Internetwork: Research and Experience, vol. 1, pp. 3–26, Sept. 1990.

DENNING, D.E., and SACCO, G.M.: ‘‘Timestamps in Key Distribution Protocols,’’ Com-
mun. of the ACM, vol. 24, pp. 533–536, Aug. 1981.

DIFFIE, W., and HELLMAN, M.E.: ‘‘Exhaustive Cryptanalysis of the NBS Data Encryption
Standard,’’ IEEE Computer, vol. 10, pp. 74–84, June 1977.

878 READING LIST AND BIBLIOGRAPHY CHAP. 9

DIFFIE, W., and HELLMAN, M.E.: ‘‘New Directions in Cryptography,’’ IEEE Trans. on
Information Theory, vol. IT-2, pp. 644–654, Nov. 1976.

DIJKSTRA, E.W.: ‘‘ A Note on Two Problems in Connexion with Graphs,’’ Numer. Math.,
vol. 1, pp. 269–271, Oct. 1959.

DIZDAREVIC, J., CARPIO, D., JUKAN, A., and MASIP-BRUIN, X.: ‘‘ A Survey of Commu-
nication Protocols for Internet of Things and Related Challenges of Fog and Cloud
Computing Integration,’’ ACM Computing Surveys, vol. 51, Art. 116, Jan. 2019.

DONAHOO, M., and CALVERT, K.: TCP/IP Sockets in C, 2nd ed., San Francisco: Morgan
Kaufmann, 2009.

DONAHOO, M., and CALVERT, K.: TCP/IP Sockets in Java, 2nd ed., San Francisco: Mor-
gan Kaufmann, 2008.

DORFMAN, R.: ‘‘Detection of Defective Members of a Large Population,’’ Annals Math.
Statistics, vol. 14, pp. 436–440, 1943.

DU, W.: Computer & Internet Security: A Hands-on Approach, 2nd ed." , Seattle: Amazon,
2019.

DUTCHER, B.: The NAT Handbook, New York: John Wiley & Sons, 2001.
EL GAMAL, T.: ‘‘ A Public-Key Cryptosystem and a Signature Scheme Based on Discrete

Logarithms,’’ IEEE Trans. on Information Theory, vol. IT-1, pp. 469–472, July 1985.
ESPOSITO, V.: Cryptography for Beginners: a Useful Support for Understanding, Seattle:

Amazon Digital Services, 2018.
FALL, K.: ‘‘ A Delay-Tolerant Network Architecture for Challenged Internets,’’ Proc. SIG-

COMM 2003 Conf., ACM, pp. 27–34, Aug. 2003.
FAWAZ, K., and SHIN, K.G.: ‘‘Security and Privacy in the Internet of Things,’’ IEEE Com-

puter, vol. 52, pp. 40–49, Apr. 2019.
FEAMSTER, N., BALAKRISHNAN, H., REXFORD, J., SHAIKH, A., and VAN DER

MERWE, J.: ‘‘The Case for Separating Routing from Routers,’’ Proc. SIGCOMM
Workshop on Future Directions in Network Architecture, ACM, pp. 5–12, 2004.

FEAMSTER, N., and LIVINGOOD, J.: ‘‘Internet Speed Measurement: Current Challenges
and Future Recommendations,’’ Commun. of the ACM, ACM, 2020.

FEAMSTER, N., REXFORD, J., and ZEGURA, E.: ‘‘The Road to SDN,’’ ACM Queue, vol.
11, p. 20, Dec. 2013.

FENNER, B., HANDLEY, M., HOLBROOK, H., and KOUVELAS, I.: ‘‘Protocol Independent
Multicast-Sparse Mode (PIM-SM),’’ RFC 4601, Aug. 2006.

FERGUSON, N., SCHNEIER, B., and KOHNO, T.: Cryptography Engineering: Design Prin-
ciples and Practical Applications, New York: John Wiley & Sons, 2010.

FLETCHER, J.: ‘‘ An Arithmetic Checksum for Serial Transmissions,’’ IEEE Trans. on
Commun., vol. COM-0, pp. 247–252, Jan. 1982.

FLOYD, S., HANDLEY, M., PADHYE, J., and WIDMER, J.: ‘‘Equation-Based Congestion
Control for Unicast Applications,’’ Proc. SIGCOMM 2000 Conf., ACM, pp. 43–56,
Aug. 2000.

SEC. 9.2 ALPHABETICAL BIBLIOGRAPHY 879

FLOYD, S., and JACOBSON, V.: ‘‘Random Early Detection for Congestion Avoidance,’’
IEEE/ACM Trans. on Networking, vol. 1, pp. 397–413, Aug. 1993.

FLUHRER, S., MANTIN, I., and SHAMIR, A.: ‘‘Weakness in the Key Scheduling Algorithm
of RC4,’’ Proc. Eighth Ann. Workshop on Selected Areas in Cryptography, Springer-
Verlag LNCS 2259, pp. 1–24, 2001.

FONTUGNE, R., ABRY, P., FUKUDA, K., VEITCH, D., BORGNAT , P., and WENDT, H.:
‘‘Scaling in Internet Traffic: A 14 Year and 3 Day Longitudinal Study, With Multiscale
Analyses and Random Projections,’’ IEEE/ACM Trans. on Networking, vol. 25, pp.
2152–2165, Aug. 2017.

FORD, B.: ‘‘Structured Streams: A New Transport Abstraction,’’ Proc. SIGCOMM 2007
Conf., ACM, pp. 361–372, 2007.

FORD, L.R., Jr., and FULKERSON, D.R.: Flows in Networks, Princeton, NJ: Princeton Uni-
versity Press, 1962.

FORD, W., and BAUM, M.S.: Secure Electronic Commerce, Upper Saddle River, NJ: Pren-
tice Hall, 2000.

FORNEY, G.D.: ‘‘The Viterbi Algorithm,’’ Proc. of the IEEE, vol. 61, pp. 268–278, Mar.
1973.

FOSTER, N., HARRISON, R., FREEDMAN, M., MONSANTO, C., REXFORD, J., STORY,
A., and WALKER, D..: ‘‘Frenetic: A Network Programming Language,’’ ACM Sigplan
Notices, vol. 46, pp. 279–291, Sep. 2011.

FRANCIS, P.: ‘‘ A Near-Term Architecture for Deploying Pip,’’ IEEE Network Magazine,
vol. 7, pp. 30–37, May/June 1993.

FRASER, A.G.: ‘‘Towards a Universal Data Transport System,’’ IEEE J. on Selected Areas
in Commun., vol. 5, pp. 803–816, Nov. 1983.

FRIDRICH, J.: Steganography in Digital Media: Principles, Algorithms, and Applications,
Cambridge: Cambridge University Press, 2009.

FULLER, V., and LI, T.: ‘‘Classless Inter-domain Routing (CIDR): The Internet Address
Assignment and Aggregation Plan,’’ RFC 4632, Aug. 2006.

GALLAGHER, R.G.: ‘‘ A Minimum Delay Routing Algorithm Using Distributed Computa-
tion,’’ IEEE Trans. on Commun., vol. COM-5, pp. 73–85, Jan. 1977.

GALLAGHER, R.G.: ‘‘Low-Density Parity Check Codes,’’ IRE Trans. on Information The-
ory, vol. 8, pp. 21–28, Jan. 1962.

GARCIA-LUNA-ACEVES, J.: ‘‘Carrier-Sense Multiple Access with Collision Avoidance
and Detection,’’ Proc. 20th Int’l Conf. on Modelling, Analysis, and Simulation of Wire-
less and Mobile Systems, ACM, pp. 53–61, Nov. 2017.

GETTYS, J.: ‘‘Bufferbloat: Dark Buffers in the Internet,’’ IEEE Internet Computing, IEEE,
p. 96, 2011.

GILDER, G.: ‘‘Metcalfe’s Law and Legacy,’’ Forbes ASAP, Sept. 13, 1993.

GORALSKI, W.: The Illustrated Network: How TCP/IP Works in a Modern Network, 2nd
ed., San Francisco: Morgan Kaufmann, 2017.

880 READING LIST AND BIBLIOGRAPHY CHAP. 9

GRAYSON, M., SHATZKAMER, K., and WAINNER, S.: IP Design for Mobile Networks,
Indianapolis, IN: Cisco Press, 2009.

GROBE, K., and EISELT, M.: Wavelength Division Multiplexing: A Practical Engineering
Guide, New York: John Wiley & Sons, 2013.

GROBE, K., and ELBERS, J.: ‘‘PON in Adolescence: From TDMA to WDM-PON,’’ IEEE
Commun. Magazine, vol. 46, pp. 26–34, Jan. 2008.

GROSS, G., KAYCEE, M., LIN, A., MALIS, A., and STEPHENS, J.: ‘‘The PPP Over AAL5,’’
RFC 2364, July 1998.

GUPTA, A., HARRISON, R., CANINI, M., FEAMSTER, N., REXFORD, J., and WILL-
INGER, W.: ‘‘Sonata: Query-driven Streaming Network Telemetry,’’ Proc. SIGCOMM
2018 Conf., ACM, pp. 357–371, 2018.

HA, S., RHEE, I., and LISONG, X.: ‘‘CUBIC: A New TCP-Friendly High-Speed TCP Vari-
ant,’’ SIGOPS Oper. Syst. Rev., vol. 42, pp. 64–74, June 2008.

HALLBERG, G: Quality of Service in Modern Packet Networks, Seattle: Amazon, 2019.

HALPERIN, D., HEYDT-BENJAMIN, T., RANSFORD, B., CLARK, S., DEFEND, B., MOR-
GAN, W., FU, K., KOHNO, T., and MAISEL, W.: ‘‘Pacemakers and Implantable Cardiac
Defibrillators: Software Radio Attacks and Zero-Power Defenses,’’ IEEE Symp. on
Security and Privacy, pp. 129–142, May 2008.

HALPERIN, D., HU, W., SHETH, A., and WETHERALL, D.: ‘‘802.11 with Multiple Anten-
nas for Dummies,’’ Computer Commun. Rev., vol. 40, pp. 19–25, Jan. 2010.

HAMMING, R.W.: ‘‘Error Detecting and Error Correcting Codes,’’ Bell System Tech. J., vol.
29, pp. 147–160, Apr. 1950.

HARTE, L: Introduction to Cable TV (Catv): Systems, Services, Operation, and Technol-
ogy, Morrisville, NC: DiscoverNet Publishing, 2017.

HARTE, L, BROMLEY, B, and DAVIS, M.: Introduction to CDMA, Fayetteville, NC:
Phoenix Global Support, 2012.

HARTE, L., KELLOGG, S., DREHER, R., and SCHAFFNIT, T.: The Comprehensive Guide
to Wireless Technology, Fuquay-Varina, NC: APDG Publishing, 2000.

HAWKINS, J.: Carrier Ethernet, Hanover, MD: Ciena, 2016.

HAWLEY, G.T.: ‘‘Historical Perspectives on the U.S. Telephone Loop,’’ IEEE Commun.
Magazine, vol. 29, pp. 24–28, Mar. 1991.

HEGARTY, M.T., and KEANE, A,J.: Steganography, The World of Secret Communications,
Amazon CreateSpace, 2018.

HELD, G.: A Practical Guide to Content Delivery Networks, 2nd ed., Boca Raton, FL:
CRC Press, 2010.

HEUSSE, M., ROUSSEAU, F., BERGER-SABBATEL, G., DUDA, A.: ‘‘Performance Anomaly
of 802.11b,’’ Proc. INFOCOM Conf., IEEE, pp. 836–843, 2003.

HIERTZ, G., DENTENEER, D., STIBOR, L., ZANG, Y., COSTA, X., and WALKE, B.: ‘‘The
IEEE 802.11 Universe,’’ IEEE Commun. Magazine, vol. 48, pp. 62–70, Jan. 2010.

SEC. 9.2 ALPHABETICAL BIBLIOGRAPHY 881

HOE, J.: ‘‘Improving the Start-up Behavior of a Congestion Control Scheme for TCP,’’
Proc. SIGCOMM ’96 Conf., ACM, pp. 270–280, 1996.

HU, Y., and LI, V.O.K.: ‘‘Satellite-Based Internet: A Tutorial,’’ IEEE Commun. Magazine,
vol. 30, pp. 154–162, Mar. 2001.

HUANG, T.Y., JOHARI, R., MCKEOWN, N., TRUNNELL, M. and WATSON, M.: ‘‘ A Buffer-
based Approach to Rate Adaptation: Evidence from a Large Video Streaming Ser-
vice,’’ Proc. SIGCOMM 2014 Conf., ACM, pp. 187–198, 2014.

HUI, R.: Introduction to Fiber-Optic Communications, London: Academic Press, 2020.
HUITEMA, C.: Routing in the Internet, 2nd ed., Upper Saddle River, NJ: Prentice Hall,

1999.
HULL, B., BYCHKOVSKY, V., CHEN, K., GORACZKO, M., MIU, A., SHIH, E., ZHANG, Y.,

BALAKRISHNAN, H., and MADDEN, S.: ‘‘CarTel: A Distributed Mobile Sensor Com-
puting System,’’ Proc. Sensys 2006 Conf., ACM, pp. 125–138, Nov. 2006.

HUSTON, G.: ‘‘The Death of Transit and Beyond,’’, 2018.

IRMER, T.: ‘‘Shaping Future Telecommunications: The Challenge of Global Standardiza-
tion,’’ IEEE Commun. Magazine, vol. 32, pp. 20–28, Jan. 1994.

JACOBSON, V.: ‘‘Compressing TCP/IP Headers for Low-Speed Serial Links,’’ RFC 1144,
Feb. 1990.

JACOBSON, V.: ‘‘Congestion Avoidance and Control,’’ Proc. SIGCOMM ’88 Conf., ACM,
pp. 314–329, 1988.

JUANG, P., OKI, H., WANG, Y., MARTONOSI, M., PEH, L., and RUBENSTEIN, D.:
‘‘Energy-Efficient Computing for Wildlife Tracking: Design Tradeoffs and Early
Experiences with ZebraNet,’’ SIGOPS Oper. Syst. Rev., vol. 36, pp. 96–107, Oct. 2002.

KAMOUN, F., and KLEINROCK, L.: ‘‘Stochastic Performance Evaluation of Hierarchical
Routing for Large Networks,’’ Computer Networks, vol. 3, pp. 337–353, Nov. 1979.

KARAGIANNIS, V., VENITO, A., COELHO, R., BORKOWSKI, M, and FOHLER, G.: ‘‘Edge
Computing with Peer to Peer Interactions: Use Cases and Impact,’’ Proc. Workshop on
Fog Computing and the IoT, ACM, pp. 46–50, Apr. 2019.

KARN, P.: ‘‘MACA—A New Channel Access Protocol for Packet Radio,’’ ARRL/CRRL
Amateur Radio Ninth Computer Networking Conf., pp. 134–140, 1990.

KARN, P. and PARTRIDGE, C.: ‘‘Improving Round-Trip Time Estimates in Reliable Trans-
port Protocols,’’ ACM SIGCOMM Computer Commun. Review, ACM, pp. 2–7, 1987.

KASIM, A.: Delivering Carrier Ethernet: Extending Ethernet Beyond the LAN, New York:
McGraw-Hill, 2008.

KATABI, D., HANDLEY, M., and ROHRS, C.: ‘‘Congestion Control for High Bandwidth-
Delay Product Networks,’’ Proc. SIGCOMM 2002 Conf., ACM, pp. 89–102, 2002.

KATZ, D., and FORD, P.S.: ‘‘TUBA: Replacing IP with CLNP,’’ IEEE Network Magazine,
vol. 7, pp. 38–47, May/June 1993.

KAUFMAN, C., PERLMAN, R., and SPECINER, M.: Network Security, Upper Saddle River,
NJ: Prentice Hall, 2002.

882 READING LIST AND BIBLIOGRAPHY CHAP. 9

KENT, C., and MOGUL, J.: ‘‘Fragmentation Considered Harmful,’’ Proc. SIGCOMM ’87
Conf., ACM, pp. 390–401, 1987.

KHANNA, A. and ZINKY, J.: ‘‘The Revised ARPANET Routing Metric,’’ Proc. SIGCOMM
’89 Conf., ACM, pp. 45–56, 1989.

KIM, H., REICH, J., GUPTA, A., SHAHBAZ, M., FEAMSTER, N. and CLARK, R.: ‘‘Kinetic:
Verifiable Dynamic Network Control,’’ 12th USENIX Sym. on Networked Systems
Design and Implementation, ACM, pp. 59–72, 2015.

KINNEAR, E., MCMANUS, P., and WOOD, C: ‘‘Oblivious DNS over HTTPS,’’ IETF Net-
work Working Group Internet Draft, 2019.

KLEINROCK, L.: ‘‘Power and Other Deterministic Rules of Thumb for Probabalistic Prob-
lems in Computer Communications,’’ Proc. Int’l Conf. on Commun., pp. 43.1.1--
43.1.10, 1979.

KLEINROCK, L., and TOBAGI, F.: ‘‘Random Access Techniques for Data Transmission
over Packet-Switched Radio Channels,’’ Proc. Nat. Computer Conf., pp. 187–201,
1975.

KOHLER, E., HANDLEY, H., and FLOYD, S.: ‘‘Designing DCCP: Congestion Control with-
out Reliability,’’ Proc. SIGCOMM 2006 Conf., ACM, pp. 27–38, 2006.

KOOPMAN, P.: ‘‘32-Bit Cyclic Redundancy Codes for Internet Applications,’’ Proc. Intl.
Conf. on Dependable Systems and Networks., IEEE, pp. 459–472, 2002.

KRAFT, J, and WASHINGTON, L.: An Introduction to Number Theory with Cryptography,
2nd ed. , London: Chapman and Hall, 2018.

KUMAR, R.: All about Steganography and Detection of Stegano Images, Riga, Latvia: Lap
Lambert Academic Publishing, 2018.

KUROSE, J., and ROSS, K: Computer Networking: A Top-Down Approach, 7th ed. Upper
Saddle River, NJ: Pearson, 2016.

KUSZYK, A., and HAMMOUDEH, M.: ‘‘Contemporary Alternatives to Traditional Proces-
sor Design in the Post Moore’s Law Era,’’ Proc. Second Int’l Conf. on Future Networks
and Distributed Systems,, ACM, Art. 46, 2018.

LABOVITZ, C., AHUJA, A., BOSE, A., and JAHANIAN, F.: ‘‘Delayed Internet Routing Con-
vergence,’’ IEEE/ACM Trans. on Networking, vol. 9, pp. 293–306, June 2001.

LAINO, J.: The Telecom Handbook, New York: CMP Books, 2017.

LAM, C.K.M., and TAN, B.C.Y.: ‘‘The Internet Is Changing the Music Industry,’’ Commun.
of the ACM, vol. 44, pp. 62–66, Aug. 2001.

LAMPARTER, O., FANG, L., BISCHOFF, J.-C., REITMANN, M., SCHWENDENER, R.,
ZASOWSKI, T.: ‘‘Multi-Gigabit over Copper Access Networks: Architectural Evolu-
tion and Techno-Economic Analysis,’’ IEEE Commun. Magazine, vol. 57, pp 22–27,
Aug. 2019.

LE FEUVRE, J., CONCOLATO, C., BOUZAKARIA, N., and NGUYEN, V.: ‘‘MPEG-DASH
for Low Latency and Hybrid Streaming Services,’’ Proc. 23rd Int’l conf. on Multime-
dia, ACM, pp. 751–752, June 2015.

SEC. 9.2 ALPHABETICAL BIBLIOGRAPHY 883

LEMON, J.: ‘‘Resisting SYN Flood DOS Attacks with a SYN Cache,’’ Proc. BSDCon
Conf., USENIX, pp. 88–98, 2002.

LEVY, S.: ‘‘Crypto Rebels,’’ Wired, pp. 54–61, May/June 1993.

LI, B., WANG, Z., LIU, J., and ZHU, W.: ‘‘Two Decades of Internet Video Streaming: A Ret-
rospective View,’’ ACM Trans. on Multimedia Computing, vol. 9, Art. 33, Oct. 2013.

LI, M., AGRAWAL, D., GANESAN, D., and VENKATARAMANI, A.: ‘‘Block-Switched Net-
works: A New Paradigm for Wireless Transport,’’ Proc. NSDI 2009 Conf., USENIX,
pp. 423–436, 2009.

LI, Z., LEVIN, D., SPRING, N., and BHATTACHARJEE, B: ‘‘Internet Anycast: Performance,
Problems, and Potential,’’ Proc. SIGCOMM 2018 Conf., pp. 59–73, Aug. 2018.

LIN, S., and COSTELLO, D.: Error Control Coding, 2nd ed., Upper Saddle River, NJ: Pear-
son Education, 2004.

LUBACZ, J., MAZURCZYK, W., and SZCZYPIORSKI, K.: ‘‘Vice over IP, ’’ IEEE Spectrum,
pp. 42–47, Feb. 2010.

MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H., PARULKAR, G., PETERSON, L.,
REXFORD, J., SHENKER, S. and TURNER, J.: ‘‘OpenFlow: Enabling Innovation in
Campus Networks,’’ Computer Commun. Review, vol. 38, pp. 69–74, Apr. 2008.

MACEDONIA, M.R.: ‘‘Distributed File Sharing,’’ IEEE Computer, vol. 33, pp. 99–101,
2000.

MALIS, A., and SIMPSON, W.: ‘‘PPP over SONET/SDH,’’ RFC 2615, June 1999.

MANGLA, T., HALEPOVIC, E., AMMAR, M. and ZEGURA, E.: ‘‘eMIMIC: Estimating
HTTP-Based Video QoE Metrics from Encrypted Network Traffic,’’ Network Traffic
Measurement and Analysis Conf., IEEE, pp. 1–8, 2018.

MASSEY, J.L.: ‘‘Shift-Register Synthesis and BCH Decoding,’’ IEEE Trans. on Informa-
tion Theory, vol. IT-5, pp. 122–127, Jan. 1969.

MATSUI, M.: ‘‘Linear Cryptanalysis Method for DES Cipher,’’ Advances in Cryptology—
Eurocrypt 1993 Proceedings, Springer-Verlag LNCS 765, pp. 386–397, 1994.

MAZIERES, D., and KAASHOEK, M.F.: ‘‘The Design, Implementation, and Operation of an
Email Pseudonym Server,’’ Proc. Fifth Conf. on Computer and Commun. Security,
ACM, pp. 27–36, 1998.

MCCULLOUGH, B.: How the Internet Happened: From Netscape to the iPhone, New York:
Liveright, 2018.

MENASCHE, D.S., ROCHA, D.A., ANTONIO, A., LI, B., TOWSLEY, D. and VENKATARA-
MANI, A.: ‘‘Content Availability and Bundling in Swarming Systems,’’ IEEE/ACM
Trans. on Networking, IEEE, pp.580–593, 2013.

MENEZES, A.J., and VANSTONE, S.A.: ‘‘Elliptic Curve Cryptosystems and Their Imple-
mentation,’’ Journal of Cryptology, vol. 6, pp. 209–224, 1993.

MERKLE, R.C., and HELLMAN, M.: ‘‘Hiding and Signatures in Trapdoor Knapsacks,’’
IEEE Trans. on Information Theory, vol. IT-4, pp. 525–530, Sept. 1978.

884 READING LIST AND BIBLIOGRAPHY CHAP. 9

METCALFE, R.M.: ‘‘Metcalfe’s Law after 40 Years of Ethernet,’’ IEEE Computer, vol. 46,
pp. 26–31, 2013.

METCALFE, R.M.: ‘‘Computer/Network Interface Design: Lessons from Arpanet and Eth-
ernet,’’ IEEE J. on Selected Areas in Commun., vol. 11, pp. 173–179, Feb. 1993.

METCALFE, R.M., and BOGGS, D.R.: ‘‘Ethernet: Distributed Packet Switching for Local
Computer Networks,’’ Commun. of the ACM, vol. 19, pp. 395–404, July 1976.

METZ, C: ‘‘Interconnecting ISP Networks,’’ IEEE Internet Computing, vol. 5, pp. 74–80,
Mar.–Apr. 2001.

MISHRA, P.P., KANAKIA, H., and TRIPATHI, S.: ‘‘On Hop by Hop Rate-Based Congestion
Control,’’ IEEE/ACM Trans. on Networking, vol. 4, pp. 224–239, Apr. 1996.

MITRA, J., and NAYAK, T.: ‘‘Reconfigurable Very High Throughput Low Latency VLSI
(FPGA Design Architecture of CRC 32,’’ Integration, vol. 56, pp. 1–14, Jan. 2017.

MOGUL, J.: ‘‘IP Network Performance,’’ in Internet System Handbook, D.C. Lynch and
M.Y. Rose (eds.), Boston: Addison-Wesley, pp. 575–575, 1993.

MOGUL, J., and DEERING, S.: ‘‘Path MTU Discovery,’’ RFC 1191, Nov. 1990.

MOGUL, J., and MINSHALL, G.: ‘‘Rethinking the Nagle Algorithm,’’ Comput. Commun.
Rev., vol. 31, pp. 6–20, Jan. 2001.

MOY, J.: ‘‘Multicast Routing Extensions for OSPF,’’ Commun. of the ACM, vol. 37, pp.
61–66, Aug. 1994.

MUYCO, S.D., and HERNANDEZ, A.A.: ‘‘Least Significant Bit Hash Algorithm for Digital
Image Watermarking Authentication,’’ Proc. Fifth Int’l Conf. on Computing and Art.
Intell, ACM, pp. 150–154, 2019.

NAGLE, J.: ‘‘On Packet Switches with Infinite Storage,’’ IEEE Trans. on Commun., vol.
COM-5, pp. 435–438, Apr. 1987.

NAGLE, J.: ‘‘Congestion Control in TCP/IP Internetworks,’’ Computer Commun. Rev., vol.
14, pp. 11–17, Oct. 1984.

NAUGHTON, J.: A Brief History of the Future, Woodstock, NY: Overlook Press, 2000.

NEEDHAM, R.M., and SCHROEDER, M.D.: ‘‘ Authentication Revisited,’’ Operating Sys-
tems Rev., vol. 21, p. 7, Jan. 1987.

NEEDHAM, R.M., and SCHROEDER, M.D.: ‘‘Using Encryption for Authentication in Large
Networks of Computers,’’ Commun. of the ACM, vol. 21, pp. 993–999, Dec. 1978.

NELAKUDITI, S., and ZHANG, Z.-L.: ‘‘ A Localized Adaptive Proportioning Approach to
QoS Routing,’’ IEEE Commun. Magazine, vol. 40, pp. 66–71, June 2002.

NIST: ‘‘Secure Hash Algorithm,’’ U.S. Government Federal Information Processing Stan-
dard 180, 1993.

NORTON, W.B.: The Internet Peering Playbook: Connecting to the Core of the Internet,
DrPeering Press, 2011.

NUCCI, A., and PAPAGIANNAKI, D.: Design, Measurement and Management of Large-
Scale IP Networks, Cambridge: Cambridge University Press, 2008.

SEC. 9.2 ALPHABETICAL BIBLIOGRAPHY 885

NUGENT, R., MUNAKANA, R., CHIN, A., COELHO, R., and PUIG-SUARI, J.: ‘‘The Cube-
Sat: The PicoSatellite Standard for Research and Education,’’ Proc. SPACE 2008
Conf., AIAA, 2008.

OLEJNIK, L., CASTELLUCIA, C., and DIAZ, C.: ‘‘The Leaking Battery,‘‘ Data Privacy
Management and Security Assurance Springer, pp. 254–263.

ORAN, D.: ‘‘OSI IS-IS Intra-domain Routing Protocol,’’ RFC 1142, Feb. 1990.

OSTERHAGE, W.: Wireless Network Security, 2nd ed. , Boca Raton, FL: CRC Press, 2018.

OTWA Y, D., and REES, O.: ‘‘Efficient and Timely Mutual Authentication,’’ Operating Sys-
tems Rev., pp. 8–10, Jan. 1987.

PADHYE, J., FIROIU, V., TOWSLEY, D., and KUROSE, J.: ‘‘Modeling TCP Throughput: A
Simple Model and Its Empirical Validation,’’ Proc. SIGCOMM ’98 Conf., ACM, pp.
303–314, 1998.

PALMER, M., KRUGER, T., CHANDRASEKARAN, N., and FELDMANN, A.: ‘‘The QUIC
Fix for Optimal Video Streaming,’’ Proc. Workshop on Evolution, Performance, and
Interoperability of QUIC, ACM, pp. 43–49, Dec. 2018.

PARAMESWARAN, M., SUSARLA, A., and WHINSTON, A.B.: ‘‘P2P Networking: An Infor-
mation-Sharing Alternative,’’ IEEE Computer, vol. 34, pp. 31–38, July 2001.

PAREKH, A., and GALLAGHER, R.: ‘‘ A Generalized Processor Sharing Approach to Flow
Control in Integrated Services Networks: The Multiple-Node Case,’’ IEEE/ACM Trans.
on Networking, vol. 2, pp. 137–150, Apr. 1994.

PAREKH, A., and GALLAGHER, R.: ‘‘ A Generalized Processor Sharing Approach to Flow
Control in Integrated Services Networks: The Single-Node Case,’’ IEEE/ACM Trans.
on Networking, vol. 1, pp. 344–357, June 1993.

PARTRIDGE, C., HUGHES, J., and STONE, J.: ‘‘Performance of Checksums and CRCs
over Real Data,’’ Proc. SIGCOMM ’95 Conf., ACM, pp. 68–76, 1995.

PARTRIDGE, C., MENDEZ, T., and MILLIKEN, W.: ‘‘Host Anycasting Service,’’ RFC
1546, Nov. 1993.

PATIL, P., BUBANE, V., and PANDHARE, N.: Audio Steganography, Riga, Latvia: Lap Lam-
bert Academic Publishing, 2019.

PAXSON, V., and FLOYD, S.: ‘‘Wide-Area Traffic: The Failure of Poisson Modeling,’’
IEEE/ACM Trans. on Networking, vol. 3, pp. 226–244, June 1995.

PEARSON, E.: Fiber Optic Communications For Beginners: The Basics, Fiber Optic
Assoc., 2015.

PERKINS, C.E.: RTP: Audio and Video for the Internet, Boston: Addison-Wesley, 2003.

PERKINS, C.E.: ‘‘IP Mobility Support for IPv4,’’ RFC 3344, Aug. 2002.

PERKINS, C.E. (ed.): Ad Hoc Networking, Boston: Addison-Wesley, 2001.
PERKINS, C.E.: Mobile IP Design Principles and Practices, Upper Saddle River, NJ: Pren-

tice Hall, 1998.

886 READING LIST AND BIBLIOGRAPHY CHAP. 9

PERKINS, C.E., and ROYER, E.: ‘‘The Ad Hoc On-Demand Distance-Vector Protocol,’’ in
Ad Hoc Networking, edited by C. Perkins, Boston: Addison-Wesley, 2001.

PERLMAN, R.: Interconnections, 2nd ed., Boston: Addison-Wesley, 2000.
PERLMAN, R.: Network Layer Protocols with Byzantine Robustness, Ph.D. thesis, M.I.T.,

1988.

PERLMAN, R.: ‘‘ An Algorithm for the Distributed Computation of a Spanning Tree in an
Extended LAN,’’ Proc. SIGCOMM ’85 Conf., ACM, pp. 44–53, 1985.

PERLMAN, R., and KAUFMAN, C.: ‘‘Key Exchange in IPsec,’’ IEEE Internet Computing,
vol. 4, pp. 50–56, Nov.–Dec. 2000.

PERROS, H.G.: Connection-Oriented Networks: SONET/SDH, ATM, MPLS and Optical
Networks, New York: John Wiley & Sons, 2005.

PETERSON, L., ANDERSON, T., KATTI, S., MCKEOWN, N. PARULKAR, G., REXFORD,
J., SATYANARAYANAN, M., SUNAY , O. and VAHDAT , A.: ‘‘Democratizing the Net-
work Edge,’’ Computer Commun. Review, vol. 49, pp. 31–36, Apr. 2019.

PETERSON, W.W., and BROWN, D.T.: ‘‘Cyclic Codes for Error Detection,’’ Proc. IRE, vol.
49, pp. 228–235, Jan. 1961.

PIATEK, M., ISDAL, T., ANDERSON, T., KRISHNAMURTHY, A., and VENKATARAMANI,
V.: ‘‘Do Incentives Build Robustness in BitTorrent?,’’ Proc. NSDI 2007 Conf.,
USENIX, pp. 1–14, 2007.

PIATEK, M., KOHNO, T., and KRISHNAMURTHY, A.: ‘‘Challenges and Directions for
Monitoring P2P File Sharing Networks—or Why My Printer Received a DMCA Take-
down Notice,’’ Third Workshop on Hot Topics in Security, USENIX, July 2008.

POSTEL, J.: ‘‘Internet Control Message Protocols,’’ RFC 792, Sept. 1981.

PYLES, J., CARRELL, J.L., and TITTEL, E.: Guide to TCP/IP: IPv6 and IPv4, 5th ed.,
Boston: Cengage Learning, 2017.

QUINLAN, J., and SREENAN, C.: ‘‘Multi-profile Ultra High Definition (UHD) AVC and
HEVC 4K DASH Datasets,’’ Proc. Ninth Multimedia Systems Conf., ACM, pp.
375–380, June 2018.

RABIN, J., and MCCATHIENEVILE, C.: ‘‘Mobile Web Best Practices 1.0,’’ W3C Recom-
mendation, July 2008.

RAMACHANDRAN, A., DAS SARMA, A., FEAMSTER, N.: ‘‘Bit Store: An Incentive-Com-
patabile Solution for Blocked Downloads in BitTorrent,’’ Proc. Joint Workshop on
Econ. Networked Syst. and Incentive-Based Computing, 2007.

RAMACHANDRAN, S., GRYYA, T., DAPENA, K., and THOMAS, P.: ‘‘The Truth about
Faster Internet: It’s Not Worth It,’’ The Wall Street Journal, p. A1, 2019.

RAMAKRISHNAN, K.K., FLOYD, S., and BLACK, D.: ‘‘The Addition of Explicit Conges-
tion Notification (ECN) to IP,’’ RFC 3168, Sept. 2001.

RAMAKRISHNAN, K.K., and JAIN, R.: ‘‘ A Binary Feedback Scheme for Congestion
Avoidance in Computer Networks with a Connectionless Network Layer,’’ Proc. SIG-
COMM ’88 Conf., ACM, pp. 303–313, 1988.

SEC. 9.2 ALPHABETICAL BIBLIOGRAPHY 887

RIBEZZO, G., SAMELA, G., PALMISANO, V., DE CICCO, L., and MASCOLO, S.: ‘‘ A
DASH Video Streaming for Immersive Contents,’’ Proc. Ninth Multimedia Systems
Conf., ACM, pp. 525–528, June 2018.

RIVEST, R.L.: ‘‘The MD5 Message-Digest Algorithm,’’ RFC 1320, Apr. 1992.

RIVEST, R.L., SHAMIR, A., and ADLEMAN, L.: ‘‘On a Method for Obtaining Digital Sig-
natures and Public Key Cryptosystems,’’ Commun. of the ACM, vol. 21, pp. 120–126,
Feb. 1978.

ROBERTS, L.G.: ‘‘Extensions of Packet Communication Technology to a Hand Held Per-
sonal Terminal,’’ Proc. Spring Joint Computer Conf., AFIPS, pp. 295–298, 1972.

ROBERTS, L.G.: ‘‘Multiple Computer Networks and Intercomputer Communication,’’
Proc. First Symp. on Operating Systems Prin., ACM, pp. 3.1–3.6, 1967.

ROSE, M.T.: The Simple Book, Upper Saddle River, NJ: Prentice Hall, 1994.

ROSE, M.T.: The Internet Message, Upper Saddle River, NJ: Prentice Hall, 1993.

RUIZ-SANCHEZ, M.A., BIERSACK, E.W., and DABBOUS, W.: ‘‘Survey and Taxonomy of
IP Address Lookup Algorithms,’’ IEEE Network Magazine, vol. 15, pp. 8–23,
Mar.–Apr. 2001.

SALTZER, J.H., REED, D.P., and CLARK, D.D.: ‘‘End-to-End Arguments in System
Design,’’ ACM Trans. on Computer Systems, vol. 2, pp. 277–288, Nov. 1984.

SANTOS, F.R., DA COSTA CORDEIRO, W.L., GASPARY, L.P., and BARCELLOS, M.P.:
‘‘Funnel: Choking Polluters in BitTorrent File Sharing Communities,’’ IEEE Trans. on
Network and Service Management, vol. 8, pp. 310–321, April 2011.

SAROIU, S., GUMMADI, K., and GRIBBLE, S.: ‘‘Measuring and Analyzing the Characteris-
tics of Napster & Gnutella Hosts,’’ Multim. Syst., vol. 9, pp. 170–184, Aug. 2003.

SCHMITT, P., EDMUNDSON, A., MANKIN, A. and FEAMSTER, N.: ‘‘Oblivious DNS:
Practical Privacy for DNS Queries,’’ Proc. on Privacy Enhancing Technologies, pp.
228–244, 2019.

SCHNEIER, B.: Secrets and Lies, New York: John Wiley & Sons, 2004.

SCHNORR, C.P.: ‘‘Efficient Signature Generation for Smart Cards,’’ Journal of Cryptology,
vol. 4, pp. 161–174, 1991.

SCHWARTZ, M., and ABRAMSON, N.: ‘‘The AlohaNet: Surfing for Wireless Data,’’ IEEE
Commun. Magazine, vol. 47, pp. 21–25, Dec. 2009.

SENN, J.A.: ‘‘The Emergence of M-Commerce,’’ IEEE Computer, vol. 33, pp. 148–150,
Dec. 2000.

SEVERANCE, C.R.: Introduction to Networking: How the Internet Works, Amazon Cre-
ateSpace, 2015.

SHAIKH, A., REXFORD, J., and SHIN, K.: ‘‘Load-Sensitive Routing of Long-Lived IP
Flows,’’ Proc. SIGCOMM ’99 Conf., ACM, pp. 215–226, Sept. 1999.

SHALUNOV, S., and CARLSON, R.: ‘‘Detecting Duplex Mismatch on Ethernet,’’ Passive
and Active Network Measurement, Springer-Verlag LNCS 3431, pp. 3135–3148, 2005.

888 READING LIST AND BIBLIOGRAPHY CHAP. 9

SHANNON, C.: ‘‘ A Mathematical Theory of Communication,’’ Bell System Tech. J., vol. 27,
pp. 379–423, July 1948; and pp. 623–656, Oct. 1948.

SHREEDHAR, M., and VARGHESE, G.: ‘‘Efficient Fair Queueing Using Deficit Round
Robin,’’ Proc. SIGCOMM ’95 Conf., ACM, pp. 231–243, 1995.

SIGANOS, G., FALOUTSOS, M., FALOUTSOS, P., and FALOUTSOS, C.: ‘‘Power Laws and
the AS-level Internet Topology,’’ IEEE/ACM Trans. on Networking, vol. 11, pp.
514–524, Aug. 2003.

SIMPSON, W.: Video Over IP, 2nd ed., Burlington, MA: Focal Press, 2008.

SIMPSON, W.: ‘‘The Point-to-Point Protocol (PPP),’’ RFC 1661, July 1994a.

SIMPSON, W.: ‘‘PPP in HDLC-like Framing,’’ RFC 1662, July 1994b.

SIU, K., and JAIN, R.: ‘‘ A Brief Overview of ATM: Protocol Layers, LAN Emulation, and
Traffic,’’ Computer Commun. Review, vol. 25, pp. 6–20, Apr. 1995.

SKOUDIS, E., and LISTON, T.: Counter Hack Reloaded, 2nd ed., Upper Saddle River, NJ:
Prentice Hall, 2006.

SMITH, D.K., and ALEXANDER, R.C.: Fumbling the Future, New York: William Morrow,
1988.

SOOD, K: Kerberos Authentication Protocol: Cryptography and Network Security, Riga,
Latvia: Lap Lambert Academic Publishing, 2012.

SOTIROV, A., STEVENS, M., APPELBAUM, J., LENSTRA, A., MOLNAR, D., OSVIK, D.,
and DE WEGER, B.: ‘‘MD5 Considered Harmful Today,’’ Proc. 25th Chaos Commun.
Congress, Verlag Art d’Ameublement, 2008.

SOUTHEY, R.: The Doctors, London: Longman, Brown, Green and Longmans, 1848.

SPURGEON, C., and ZIMMERMAN, A.: Ethernet: The Definitive Guide, 2nd ed." ,
Sebastapol, CA: O’Reilly, 2014.

STALLINGS, W.: Data and Computer Commun., 10th ed., Upper Saddle River, NJ: Pearson
Education, 2013.

STAPLETON, J., and EPSTEIN, W.C.: Security without Obscurity: A Guide to PKI Opera-
tions, Boca Raton, FL: CRC Press, 2016.

STEVENS, W.R.: TCP/IP Illustrated: The Protocols, Boston: Addison Wesley, 1994.

STEVENS, W.R., FENNER, B., and RUDOFF, A.M.: UNIX Network Programming: The
Sockets Network API, Boston: Addison-Wesley, 2004.

STOCKMAN, G.-J., and COOMANS, W.: ‘‘Fiber to the Tap: Pushing Coaxial Cable Net-
works to Their Limits,’’ IEEE Commun. Magazine, vol. 57, pp. 34–39, Aug. 2019.

STUBBLEFIELD, A., IOANNIDIS, J., and RUBIN, A.D.: ‘‘Using the Fluhrer, Mantin, and
Shamir Attack to Break WEP,’’ Proc. Network and Distributed Systems Security Symp.,
ISOC, pp. 1–11, 2002.

STUTTARD, D., and PINTO, M.: The Web Application Hacker’s Handbook, New York:
John Wiley & Sons, 2007.

SEC. 9.2 ALPHABETICAL BIBLIOGRAPHY 889

SU, S.: The UMTS Air Interface in RF Engineering, New York: McGraw-Hill, 2007.

SUN, S., MKWAW A, I.H., JAMMEH, E., and IFEACHOR, E.: Guide to Voice and Video over
IP: For Fixed and Mobile Networks, Berlin: Springer, 2015.

SUNDARESAN, S., De DONATO, W., FEAMSTER, N., TEIXEIRA, R., CRAWFORD, S. and
PESCAPE, A.: ‘‘Broadband Internet Performance: A View from the Gateway,’’ Proc.
SIGCOMM 2011 Conf., ACM, pp. 134–145, 2011.

SUNSHINE, C.A., and DALAL, Y.K.: ‘‘Connection Management in Transport Protocols,’’
Computer Networks, vol. 2, pp. 454–473, 1978.

SWAMI, R., DAVE, M., and RANGA, V.: ‘‘Software-defined Networking-based DDoS
Defense Mechanisms,’’ ACM Computing Surveys, vol. 52, Art. 28, April 2019.

TAN, K., SONG, J., ZHANG, Q., and SRIDHARN, M.: ‘‘ A Compound TCP Approach for
High-Speed and Long Distance Networks,’’ Proc. INFOCOM Conf., IEEE, pp. 1–12,
2006.

TANENBAUM, A.S., and BOS, H.: Modern Operating Systems, 4th ed., Upper Saddle River,
NJ: Prentice Hall, 2015.

TOMLINSON, R.S.: ‘‘Selecting Sequence Numbers,’’ Proc. SIGCOMM/SIGOPS Interpro-
cess Commun. Workshop, ACM, pp. 11–23, 1975.

TUCHMAN, W.: ‘‘Hellman Presents No Shortcut Solutions to DES,’’ IEEE Spectrum, vol.
16, pp. 40–41, July 1979.

TURNER, J.S.: ‘‘New Directions in Communications (or Which Way to the Information
Age),’’ IEEE Commun. Magazine, vol. 24, pp. 8–15, Oct. 1986.

VANHOEF, M., and PIESSENS, F: ‘‘Key Reinstallation Attacks: Forcing Nonce Reuse in
WPA2,’’ Proc. 2017 SIGSAC Conf. on Computer and Commun. Security, ACM, pp.
1313–1328, 2017

VARGHESE, G.: Network Algorithmics, San Francisco: Morgan Kaufmann, 2004.

VARGHESE, G., and LAUCK, T.: ‘‘Hashed and Hierarchical Timing Wheels: Data Struc-
tures for the Efficient Implementation of a Timer Facility,’’ Proc. 11th Symp. on Oper-
ating Systems Prin., ACM, pp. 25–38, 1987.

VERIZON BUSINESS: 2009 Data Breach Investigations Report, Verizon, 2009.

VITERBI, A.: CDMA: Principles of Spread Spectrum Communication, Upper Saddle River,
NJ: Prentice Hall, 1995.

WAITZMAN, D., PARTRIDGE, C., and DEERING, S.: ‘‘Distance Vector Multicast Routing
Protocol,’’ RFC 1075, Nov. 1988.

WALDMAN, M., RUBIN, A.D., and CRANOR, L.F.: ‘‘Publius: A Robust, Tamper-Evident,
Censorship-Resistant Web Publishing System,’’ Proc. Ninth USENIX Security Symp.,
USENIX, pp. 59–72, 2000.

WALTERS, R: Spread Spectrum: Hedy Lamarr and the Mobile Phone, Kindle, 2013.
WANG, B., and REN, F.: ‘‘Improving Robustness of DASH Against Network Uncertainty,’’

2019 Int’l Conf. on Multimedia and Expo, IEEE, pp. 448–753, July 2019.

890 READING LIST AND BIBLIOGRAPHY CHAP. 9

WANG, Z., and CROWCROFT, J.: ‘‘SEAL Detects Cell Misordering,’’ IEEE Network Mag-
azine, vol. 6, pp. 8–9, July 1992.

WARNEKE, B., LAST, M., LIEBOWITZ, B., and PISTER, K.S.J.: ‘‘Smart Dust: Communi-
cating with a Cubic Millimeter Computer,’’ IEEE Computer, vol. 34, pp. 44–51, Jan.
2001.

WEI, D., CHENG, J., LOW, S., and HEGDE, S.: ‘‘FAST TCP: Motivation, Architecture,
Algorithms, Performance,’’ IEEE/ACM Trans. on Networking, vol. 14, pp. 1246–1259,
Dec. 2006.

WEISER, M.: ‘‘The Computer for the Twenty-First Century,’’ Scientific American, vol. 265,
pp. 94–104, Sept. 1991.

WITTENBURG, N.: Understanding Voice Over IP Technology, Clifton Park, NY: Delmar
Cengage Learning, 2009.

WOOD, L., IVANCIC, W., EDDY, W., STEWART, D., NORTHAM, J., JACKSON, C., and DA
SILVA CURIEL, A.: ‘‘Use of the Delay-Tolerant Networking Bundle Protocol from
Space,’’ Proc. 59th Int’l Astronautical Congress, Int’l Astronautical Federation, pp.
3123–3133, 2008.

WU, T.: ‘‘Network Neutrality, Broadband Discrimination,’’ Journal on Telecom. and High-
Tech. Law, vol. 2, pp. 141–179, 2003.

WYLIE, J., BIGRIGG, M.W., STRUNK, J.D., GANGER, G.R., KILICCOTE, H., and
KHOSLA, P.K.: ‘‘Survivable Information Storage Systems,’’ IEEE Computer, vol. 33,
pp. 61–68, Aug. 2000.

YE, Y., LI, T., ADJEROH, D., and ITENGAR, S,S,: ‘‘ A Survey on Malware Detection Using
Data Mining Techniques,’’ ACM Computing Surveys, vol. 50, Art. 41, June 2017.

YU, T., HARTMAN, S., and RAEBURN, K.: ‘‘The Perils of Unauthenticated Encryption:
Kerberos Version 4,’’ Proc. NDSS Symposium, Internet Society, Feb. 2004.

YUVAL, G.: ‘‘How to Swindle Rabin,’’ Cryptologia, vol. 3, pp. 187–190, July 1979.
ZHANG, Y., BRESLAU, L., PAXSON, V., and SHENKER, S.: ‘‘On the Characteristics and

Origins of Internet Flow Rates,’’ Proc. SIGCOMM 2002 Conf., ACM, pp. 309–322,
2002.

ZHANG, Y., YUAN, X., and TZENG, N.-F.: ‘‘Pseudo-Honeypot: Toward Efficient and Scal-
able Spam Sniffer,’’ Proc. 49th Int’l Conf. on Dependable Systems and Networks,
IEEE, pp. 435–446, 2019.

ZIMMERMANN, P.R.: The Official PGP User’s Guide, Cambridge, MA: M.I.T. Press,
1995a.

ZIPF, G.K.: Human Behavior and the Principle of Least Effort: An Introduction to Human
Ecology, Boston: Addison-Wesley, 1949.

ZIV, J., and LEMPEL, Z.: ‘‘ A Universal Algorithm for Sequential Data Compression,’’
IEEE Trans. on Information Theory, vol. IT-3, pp. 337–343, May 1977.

INDEX

Numbers
0x20 encoding, 622
1-persistent CSMA, 276–277
1G network, 156–158
2G network, 158–162
2.5G network, 163
3G network, 162–166
3GPP (see Third Generation Partnership Project)
4B/5B encoding, 118
4G network, 166–168
4K video, 684
5G network, 168–169
4Bautoneg/5B coding, 302
8B/10B encoding, 120, 305
8K video, 684
64B/66B encoding, 306
95th percentile billing, 153
100base-FX cable, 302
100base-T4 cable, 301
100base-TX, cable, 302
100-gigabit Ethernet, 307–308
720p video, 684
802.11 (see IEEE 802.11)
802.11i, 826

802.1X, 46, 323–324, 827
1080p video, 684

A

A-law, 144
AAC (see Advanced Audio Coding)
AAL (see ATM Adaptation Layer)
AAL5, 257
Abstract syntax notation 1, 802
Access channel, 156
Access grant channel, 162
Access point, 16, 44, 310
Accuracy of IDS, 764
ACK clock, 579
ACK storm, 752
Acknowledged datagram, 55
Acknowledgement, 34. 55, 175, 204, 209, 230–241

cumulative, 562
Acknowledgement frame, 230–236, 241, 251, 271

209
ACL (see Asynchronous Connectionless Link)

891

892 INDEX

Active queue management, 402–403
Ad hoc network, 44, 310, 326
Adaptation, rate, 312
Adaptive frequency hopping, Bluetooth, 329
Adaptive routing algorithm, 368
Adaptive tree-walk protocol, 285–287
ADC (see Analog-to-Digital Converter)
Add-on, browser, 843
Adding flow control: stop-and-wait, 229
Additive increase multiplicative decrease, 542
Address resolution protocol, 470–475
Addressing, 49, 365, 425

classful, 454–456
hierarchical, 617
transport, 514–517

Adjacent router, 483
Admission control, 394, 396
ADSL (see Asymmetric DSL)
Advanced audio coding, 683–684
Advanced encryption standard, 324, 781–782
Advanced mobile phone system, 41, 157
Advanced networks and services, 32
Advanced Research Projects Agency, 28–31, 721
AES (see Advanced Encryption Standard)
Aggregate data rate, 168
Aggregation, route, 452
AH (see Authentication Header)
AIFS (see Arbitration InterFrame Space)
AIMD (see Additive Increase Multiplicative Decrease)
Air interface, 159
Akamai, 12, 36, 705, 711, 723
Algorithm

adaptive routing, 368
AES, 781–782
anycast routing, 389–390
audio compression, 682–684
backward learning, 337
Bellman-Ford, 374–377, 479
binary exponential backoff, 295–296
broadcast routing, 384–386
choking, 720
CRC, 221
DES, 780–781
Dijkstra’s, 371
Dorfman’s, 285
flooding, 372–374
forwarding, 22
hierarchical routing, 382–384
Internet checksum, 219
internetwork routing, 430–431

Algorithm (continued)
IS-IS routing, 381
Karn’s, 576
leaky bucket, 400–402
multicast routing, 386–389
multidestination routing, 384
Nagle’s, 571–572
nonadaptive routing, 368
packet scheduling, 410–417
Perlman’s, 341
public-key encryption, 787–791
reverse path forwarding, 385–386
Rijndael, 782
routing, 22, 363, 366–390
RSA, 788–790
spectrum allocation, 188
shortest path routing, 370–372
symmetric key encryption, 779–787
token bucket, 400–402
traffic-aware routing, 393–395
video compression, 685–687

Alias, DNS, 624–625
Allocation, channel, 268–271
ALOHA, 45, 272–276

pure, 272–275
slotted, 275–276

Alternate mark inversion, 119
AMI (see Alternate Mark Inversion)
Amplification-based DDoS attack, 757–758
Amplitude shift keying, 121
AMPS (see Advanced Mobile Phone System)
Analog-to-digital converter, 682
Andreessen, Marc, 650
Anomaly, rate, 320
Anomaly-based IDS, 764
Anonymous remailer, 845–847
ANS (see Advanced Networks and Services)
ANSNET, 32
Antenna, sectored, 166
Antheil, George, 103
Anycast routing algorithm, 389–390
AP (see Access Point)
API (see Application Programming Interface)
Apocalypse of the two elephants, 64
Application layer, 63–64
Application-level gateway, 761
Application programming interface, 69
APSD (see Automatic Power Save Delivery)
Arbitration interframe space, 320
Architectural overview, Web, 651–659

INDEX 893

Area
backbone, 481
routing, 382

Area border router, 482
Area capacity, 168
ARP (see Address Resolution Protocol)
ARP poisoning, 743
ARP spoofing, 743
ARP table, 472–474, 743
ARPA (see Advanced Research Projects Agency)
ARPANET, 27–31
ARQ (see Automatic Repeat reQuest)
ARQ protocol, 230–234
AS (see Autonomous System)
AS path prepending, 490
ASK (see Amplitude Shift Keying)
ASN.1 (see Abstract Syntax Notation 1)
Association, 802.11, 322
Assured forwarding, 422–423
Asymmetric DSL, 137–141, 256–259
Asynchronous connectionless link, 330
Asynchronous transfer mode, 257–259
AT&T, 28, 33, 69, 76, 133, 190, 192, 731
ATM (see Asynchronous Transfer Mode)
ATM adaptation layer, 258
Attack

birthday, 745–746, 797–799
bucket brigade, 813
chosen plaintext, 769
ciphertext-only, 769
denial of service, 738, 745
denial-of-service, 755
distributed denial of service, 756
distributed DoS, 756
Kaminsky, 746–749
keystream reuse, 786
known plaintext, 769
man-in-the-middle, 744, 813
reflection, 757, 808
replay, 814
side-channel, 755
ssh password, 762

Attack ingredients, 739–759
Attack principles, 736–738

disruption, 738
reconnaissance, 737
sniffing and snooping, 737
spoofing, 737–738

Attack surface, 735
Attenuation, 97–98, 105

Attribute, certificate, 801
Auction, spectrum, 188
Audio, 408, 552–554, 680–684
Audio compression, 682–684
Authentication, 49, 733, 738, 805

IEEE 802.11, 323
Kerberos, 816–818
key distribution center, 813–816
Needham-Schroeder, 815–816
Otway-Rees, 815–816
public-key cryptography, 819
shared secret key, 806–811

Authentication header, 822
Authentication protocol, 805–819
Authoritative name server, 615
Authoritative record, DNS, 627
Auto-correlation, 165
Auto-negotiation, 302
Automatic power save delivery, 319
Automatic repeat request, 233, 528
Automatic repeat request protocol, 230–234
Autonegotiation, 303
Autonomous system, 430, 443, 479
Availability, 733
Avoiding congestion, 597
Avoiding timeouts, 597–598

B
B-frame, 687
Backbone, Internet, 153, 307, 724
Backbone area, 481
Backbone network, 13, 35
Backbone router, 481
Backpressure, 405–406
Backward learning algorithm, 337
Balanced signal, 119–120
Bandwidth, 90, 111
Bandwidth allocation, 536–540
Bandwidth-delay product, 241, 277, 529, 604
Bandwidth efficiency, 116–117, 536
Bandwidth-limited signal, 110–113
Baran, Paul, 27–28
Barker sequence, 312
Base rate fallacy, 766
Base station, 16, 44
Base station controller, 159
Base64 encoding, 641

894 INDEX

Baseband, 111, 120
Baseband signal, 111, 120
Baseband transmission, 115–116
Basic bit-map, 280–281
Basic transmission, protocol, 224–228
Baud rate, 117
BB84 cipher, 775
BBR, 588–590
Beacon frame, 319
Beauty contest for allocating spectrum, 188
Bell, Alexander Graham, 131
Bell operating company, 192
Bellman-Ford routing algorithm, 374–377
Bent-pipe transponder, 177
Berkeley socket, 56, 506–509
Best effort quality of service, 406
BGP (see Border Gateway Protocol)
BGP blackholing, 759
Bidirectional transmission, 234–238
Big-endian computer, 351, 444, 509
Binary countdown protocol, 282–283–287
Binary exponential backoff algorithm, 295–296
Binary phase shift keying, 121
Bipolar encoding, 119
Birthday attack, 745–746, 797–799
Birthday paradox, 745–746
Bit-map protocol, 280–281
Bit rate, 117
Bit stuffing, 207–208
BitTorrent, 718–721
Blaatand, Harald, 325
Block cipher, 779
Block code, 212
Bluetooth 5, 15, 334–332
Bluetooth application, 326–327
Bluetooth architecture, 325
Bluetooth frame structure, 330–331
Bluetooth link layer, 329–330
Bluetooth protocol stack, 327–328
Bluetooth radio layer, 328–329
Bluetooth SIG, 326
BOC (see Bell Operating Company)
Body, email, 634
Bonding, 141

DOCSIS, 173, 185, 260
Booter, 756
Border gateway protocol, 430, 484–491
Botnet, 77, 637
Boundary router, 482
BPSK (see Binary Phase Shift Keying)

Bridge, 334–345
learning, 336–339
spanning-tree, 339–342

Bright-line rule, 493
Broadband, 137
Broadband access networks, 8, 169–176, 184–187

measuring performance of, 593–594
Broadband Internet over cable, 170–171
Broadcast control channel, 162
Broadcast network, 267, 481
Broadcast routing algorithm, 384–386
Broadcast storm, 346, 591
Broadcasting, 292
Browser, 651
Browser add-on, 843
Browser extension, 843
Browser fingerprinting, 78, 679–680
Browser plug-in, 843
BSC (see Base Station Controller)
Bucket, leaky, 396–399, 420
Bucket brigade attack, 813
Buffer, multimedia, 556
Bufferbloat, 392, 588
Bursty traffic, 398
Bush, Vannevar, 651
Byte stuffing, 206–207

C
CA (see Certification Authority)
Cable head-end, 20
Cable headend, 34, 173, 175, 259–260, 333–334
Cable Internet (see Data over cable service)
Cable modem, 34, 173–175, 259–260, 333–334
Cable modem termination system, 34, 173, 175, 259–260, 333–334
Cable television, 20–21, 34, 93, 169–176
Cached record, DNS, 627
Caching, Web, 669–671, 670
Caesar cipher, 771
Call management, 157–158
Canvas fingerprinting, 680
Capacitive coupling, 119
Capacity, channel, 114
Captain Crunch, 731
Carrier extension, 304
Carrier-grade Ethernet, 309
Carrier sense multiple access protocol, 45. 276–279
Cascading style sheet, 660

INDEX 895

Category 3 wire, 92, 139
Category 5e wire, 91–92
Category 6 wire, 92
Category 7 wire, 92
Category 8 wire, 92
CATV (see Community Antenna TeleVision)
CCITT, 70
CCK (see Complementary Code Keying)
CCMP, 828
CcTLD (see Country code Top Level Domain)
CD (see Committee Draft)
CDM (see Code Division Multiplexing)
CDMA (see Code Division Multiple Access)
CDMA2000, 164
CDN (see Content Delivery Network)
Cell

ATM, 257
mobile phone, 155

Cell phone, 154
Cellular base station, 37
Cellular network, 42, 154–169, 190–192
Certificate, public-key, 799–802

X509, 799–802
Certificate revocation, 804–805
Certification authority, 800
Certification path, 804
CGI (see Common Gateway Interface)
Chain of trust, 804
Challenge ACK, 753
Challenge-response protocol, 807
Channel, 156

access, 156
access grant, 162
broadcast control, 162
capacity, 114
common control, 162
control, 156
data, 156
dedicated control, 162
paging, 156, 162
random access, 152

Channel allocation, 268–271
dynamic, 270–271
static, 268–269

Channel-associated signaling, 145
Channel bandwidth allocation, DOCSIS, 333–334
Channel bonding, 260
Checksum, 219

Fletcher’s, 220
Chip, 126

Chip sequence, 126
Choke packet, 404
Choked node, BitTorrent, 720
Chosen plaintext attack, 769
Christmas scan, 741
Chromatic dispersion, 97
Chrominance, 685
Chunk, BitTorrent, 719
CIA (see Confidentiality, Integrity, Availability)
CIDR (see Classless InterDomain Routing)
Cipher, 766, BB84

BB84, 775
Caesar, 771
monoalphabetic substitution, 772
substitution, 771–772
transposition, 773–774

Cipher block chaining mode, 784
Cipher feedback mode, 785–786
Cipher mode, 783–787
Ciphertext, 767
Ciphertext-only attack, 769
Circuit, 54
Circuit switching, 41, 150–151
Clark, David, 64, 73
Clarke, Arthur C., 177
Class A network, 455
Class B network, 455
Class C network, 455
Class-based service, 420
Classful addressing, 454
Classic Ethernet, 18, 290–297
Classless interdomain routing, 451–454
Clear to send, 289
Client, 14
Client mapping, 708, 714
Client side, World Wide Web, 653–657
Client-server model, 3–4
Client stub, 549
Clipper chip, 845
Clock recovery, 117–119
Cloud-based DDoS protection, 758
Cloud computing, 12, 661
CMTS (see Cable Modem Termination System)
Coaxial cable, 93
Code, cryptographic, 766
Code division multiple access, 37, 126–129, 158
Code division multiplexing, 126–129
Code rate, 212
Code signing, 855
Codec, 143, 694, 700

896 INDEX

Codeword, 212
Collision, 270
Collision detection, CSMA, 278–279
Collision domain, 299
Collision-free protocol, 279–283
Colocation, 36
Coloring, spectrum, 314
Committee draft, 72
Common-channel signaling, 145
Common control channel, 162
Common gateway interface, 662
Communication satellite, 176–184
Communication security, 819–829
Communication subnet, 21
Communications Decency Act, 75
Community antenna television, 170
Companding, 144
Comparison of fiber optics and copper wire, 100
Comparison of virtual-circuit and

datagram network, 365–366
Complementary code keying, 312
Compression, audio, 682–684

video, 685–687
Computer network (see Network)
Computer Science Network, 31
Conditional GET, 671
Confidentiality, 49, 733

Security, Availability, 733
Congestion, 48

network layer, 390–393
Congestion avoidance, 402
Congestion collapse, 391, 577
Congestion control, 392, 536–546

TCP, 576–586
TCP-friendly, 544
transport layer, 587–590
wireless, 544–546

Congestion management, 391
Congestion window, TCP, 577
Connect scan, 740
Connecting endpoints, 428–430
Connecting heterogeneous network, 425–430
Connection establishment, 517–523

TCP, 565–567
Connection hijacking, 751
Connection management, TCP, 567–570
Connection-oriented service, 54
Connection release, 523–527

TCP, 567–570
Connection reuse, HTTP, 671

Connection spoofing, 749
implementation, 363–365

Connectionless service, 54
implementation, 362–363

Constellation diagram, 122
Constraint length, 215
Content and internet traffic, 705–707
Content delivery, 12, 703–725
Content delivery network, 12–13, 38, 705, 711–715
Content provider network, 11–12
Contention over DNS names, 631–632
Contention system, 272
Continuous media, 681
Control channel, 156
Control law, 542
Control plane, 435
Convergence

congestion, 539
routing algorithm , 376

Convergence layer, 260
Convolutional code, 215
Cookie, 78, 669, 676–677
Cookie syncing, 679, 680
Copyright, 851–854
Core-based tree, 388
Core network, 38
Count-to-infinity problem, 376–377
Country code top level domain, 617
Cracker, 834
Crash recovery, 533–536
CRC (see Cyclic Redundancy Check)
Critique of OSI and TCP, 64–66
CRL (see Certificate Revocation List)
Cross-correlation, 165
Cross-site request forgery, 843
Cross-site scripting, 843
Cryptanalysis, 768
Cryptographic certificate, 799–802
Cryptographic principle, 769–771

freshness, 771
redundancy, 770–771

Cryptography, 738, 766–787
introduction, 767–769
one-time pad, 774–775
public-key, 787–791
quantum, 775–778
secret-key, 779–787
substitution cipher, 771–772
symmetric-key, 779–787
transposition cipher, 773–774

INDEX 897

Cryptology, 768
CSMA (see Carrier Sense Multiple Access)
CSMA/CA (see CSMA with Collision Avoidance)
CSMA/CD (see CMSA with Collision Detection)
CSMA/CD with binary exponential backoff, 295–296
CSMA with collision avoidance, 314–315
CSMA with collision detection, 278–279
CSNET (see Computer Science Network)
CSRF (see Cross-Site Request Forgery)
CSS (see Cascading Style Sheet)
CSS (see Cross-Site Scripting)
CTS (see Clear to Send)
Cubesat, 184
CUBIC, 586–587
Cumulative acknowledgement, 246, 562, 573
Cut-through switching, 54, 338
Cybersquatting, 632
Cyclic redundancy check, 220
Cypherpunk remailer, 846

D
D-AMPS (see Digital AMPS)
DAC (see Digital-to-Analog Converter)
Daemen, Joan, 782
Daemon, Internet, 559
DAG (see Directed Acyclic Graph)
DASH (see Dynamic Adaptive Streaming over HTTP)
Data center, 36
Data center network, 11
Data channel, 156
Data delivery service, 802.11, 323
Data encryption standard, 780–781
Data link layer, 89–195

framing, 205–208
Data link layer design issues, 202–210
Data link layer switching, 334–351
Data link protocol, 223–261

elementary, 223–252
Data link protocols in practice, 252–261
Data over cable service interface (DOCSIS)

bandwidth allocation, 333–334
data link layer, 259–260
MAC sublayer, 332–334
physical layer, 173–176
last mile, 34–35
ranging, 333
service flow, 333

Data plane, 438–440
Datagram, 54, 362
Datagram congestion control protocol, 508
Datagram network, 362
Datakit, 283
Davies, Donald, 28
dB (see Decibel)
DCCP (see Datagram Congestion

Controlled Protocol)
DCF (see Distributed Coordination Function)
DCF interframe spacing, 319
DDoS (see Distributed Denial of

Service attack)
De facto standard, 69
De jure standard, 69
Decibel, 114, 682
Decoding, audio, 683
Dedicated control channel, 162
Default-free zone, 451
Default gateway, 474
Defense in depth, 762
Deficit round robin packet scheduling, 413
Delayed acknowledgement, 571
Delayed packets, 517–521
Demilitarized zone, 761
Denial of service attack, 77, 437, 733, 7387–738, 745, 755
Dense wavelength division multiplexing, 130
DES (see Data Encryption Standard)
Design issues

data link layer, 202–210
network layer, 360–366, 441–443
transport layer, 513–536

Designated router, 378, 483
Destination port, 459
Device driver, 223
Device fingerprinting, 679–680
DHCP (see Dynamic Host Configuration Protocol)
DHT (see Distributed Hash Table)
Diagonal basis, quantum, 776
Differentiated service, 420–423
Diffie-Hellman key exchange, 812–813
DIFS (see DCF InterFrame Spacing)
Digital AMPS, 158
Digital audio, 682–684
Digital Millennium Copyright Act, 76, 852
Digital modulation, 115–123
Digital signature, 791–799

public-key, 793–794
symmetric-key, 791–793

Digital signature standard, 794

898 INDEX

Digital subscriber line, 137–141
Digital subscriber line access multiplexer, 140
Digital-to-analog converter, 682
Digital video, 684–687
Digitizing voice signals, 143–144
Digram, 772
Dijkstra’s algorithm, 371
Direct sequence spread spectrum, 103–104
Directed acyclic graph, 369
Directional waves, 106
DIS (see Draft International Standard)
Disassociation, 323
Discrete multitone, 138
Disinformation, 79–80, 849
Disparity, symbol, 120
Dispersion, chromatic, 97
Disruption, 738, 755–759
Distance vector multicast routing protocol, 388
Distance vector routing, 374–377
Distributed coordination function, 315
Distributed denial of service attack, 77, 756

cloud-based protection, 758
defense, 758–759

Distributed hash table, 717
Distribution service, 802.11, 323
Distribution system, 310
DIX Ethernet standard, 291
DMCA (see Digital Millennium Copyright Act)
DMCA takedown notice, 76, 853
DMT (see Discrete MultiTone)
DMZ (see DeMilitarized Zone)
DNS (see Domain name system)
DNS-based blacklist, 621
DNS glue records, 747
DNS over HTTPS, 616, 630
DNS over TLS, 616, 630
DNS rerouting, 759
DNS security, 624–625, 749, 758, 836, 836–838
DNS spoofing, 745–749, 835
DNSBL (see DNS-based blacklist)
DNSSEC (see DNS Security)
DNSSEC record, 624
DOCSIS (see Data Over Cable Service

Interface Specification)
DoH (see DNS over HTTP)
Domain name server, root, 628
Domain name system, 613–632

authoritative record, 627
cached record, 627
contention over names, 631–632

Domain name system (continued)
cybersquatting, 632
extensions, 621–622
hands on, 629
history, 614
lookup process, 614–616
name resolution, 627–629
name space, 617–620
privacy, 629–631
queries and response, 620–627
record types, 623–624
redirection, 713–715
registrar, 618
registry, 618
resource record, 622–625
top level domain, 617–618
zone, 625–627

DoS attack (see Denial of Service attack)
DoT (see DNS over TLS)
Dot com era, 651
Dotted decimal notation, 448
Downstream proxy, 711
Draft International Standard, 72
Draft standard, 74
Draper, John, 731
Drive-by download, 843
DSL (see Digital Subscriber Line)
DSLAM (see Digital Subscriber Line Access Multiplexer)
Duplicate acknowledgement, 582
Duplicate packets, 517–521
DVMRP (see Distance Vector Multicast Routing Protocol)
DWDM (see Dense Wavelength Division Multiplexing)
Dwell time, Bluetooth, 328
Dynamic adaptive streaming over HTTP, 691–694
Dynamic channel allocation, 270–271
Dynamic frequency selection, 324
Dynamic host configuration protocol, 475–476
Dynamic page, 653
Dynamic routing, 368
Dynamic Web page, 660–662
Dynamic Web page generation, 662–664

client side, 663–664
server side, 662–663

E
E-UTRAN (see Evolved UMTS Terrestrial

Radio Access Network)
E1 line, 145

INDEX 899

EAP (see Extensible Authentication Protocol)
Early exit, 489
EBGP (see External BGP)
Ecb mode, 783
ECB mode (see Electronic Code Book mode)
ECMP (see Equal Cost MultiPath)
ECN (see Explicit Congestion Notification)
EDGE (see Enhanced Data rates for GSM Evolution)
EDNS client subnet, 621
EDNS0 CS (see Extensions to Domain Name System)
Efficiency, bandwidth, 536
Egress filtering, 758
EIFS (see Extended InterFrame Spacing)
Eisenhower, Dwight, 28
Electromagnetic spectrum, 101
Electronic code book mode, 783, 783–784
Electronic commerce, 6
Electronic mail (see email)
Electronic subpoena, 634
Elementary data link protocol, 223–252
Email, 14, 632

architecture, 633–635
body, 634
delivery, 646
envelope, 634
final delivery, 647
mail server, 633
mailbox, 634
mailing list. 634
message disposition, 637
message format, 637, 638–640
message transfer, 642–647
message transfer agent, 633
MIME, 640–642
protocol, 634
services, 633–635
submission, 633, 642, 646
user agent, 633, 635–637

Email header, 634
Email reader, 635
Email security, 829–834
Emoji, 632
Emoticon, 632
Encapsulating security payload, 823
Encoding, 4B/5B, 118

8B/10B, 120
audio, 683
bipolar, 119

End office, 132
End-to-end argument, 361, 528

Enhanced authentication protocol, 323
EAP-SIM, 324
EAP-TLS, 323
EAP-TTL, 323

Enhanced data rates for GSM evolution, 163
eNodeB, 37, 167–168
Enterprise network, 13–15, 323, 438
Envelope, email, 634
EPC (see Evolved Packet Core)
EPON (see Ethernet PON)
EPS bearer, 167
Equal cost multipath, 481
Erasure channel, 211
Error control, 208–209, 528–532
Error correcting code, 47, 212–217
Error detecting code, 47, 217–223
Error syndrome, 215
ESMTP (see Extended SMTP)
ESP (see Encapsulating Security Payload)
Establishing a connection, 517–523
Establishing a shared key, 811–813
Eternity service, 848
Ethernet, 17, 290–309

10-Gigabit, 306–307
40-Gigabit, 307–308
100-gigabit, 307–308
binary exponential backoff, 295–296
carrier-grade, 309
classic, 18, 290–297
fast, 300–302
gigabit, 203–306
Jumbo frame, 305
promiscuous mode, 299
retrospective, 308–309
switched, 17

Ethernet MAC sublayer protocol, 292–295
Ethernet performance, 296–297
Ethernet PON, 142
Ethernet switch, 298
Evolution, Internet, 721–724
Evolvability, network, 48–49
Evolved packet core, 38, 167
Evolved UMTS terrestrial radio access network, 37
EWMA (see Exponentially Weighted

Moving Average)
Expedited forwarding, 421–422
Explicit congestion notification, 405, 563
Exponentially weighted moving average, 403, 575
Exposed terminal problem, 288
Extended DNS client subnet, 621

900 INDEX

Extended interframe spacing, 320
Extended SMTP, 645
Extended superframe, 144
Extensible authentication protocol, 827
Extension header, IPv6, 466
Extensions to DNS, 621–622
Exterior gateway protocol, 430, 479
Exterior gateway routing protocol, 484–491
External BGP, 488

F
Fading, multipath, 107
Fair queueing packet scheduling, 411–413
Fair use doctrine, 853
Fairness, max-min, 538–539
False negative, 764
False positive, 764
Fast Ethernet, 300–302
Fast networking, host design, 595–598
Fast recovery, 583
Fast retransmission, 582
Fast segment processing, 598–601
FCC (see Federal Communications Commission)
FCFS (see First-Come First-Serve)
FD-MIMO (see Full Dimension MIMO)
FDD (see Frequency Division Duplex)
FDDI (see Fiber Distributed Data Interface)
FDM (see Frequency Division Multiplexing)
FEC (see Forward Error Correction)
FEC (see Forwarding Equivalence Class)
Federal Communications Commission, 108
Feedback-based flow control, 210
Femtocell, 168
Fiber cable, 98–100
Fiber distributed data interface, 282
Fiber node, 171
Fiber optics, 95–100
Fiber to the curb, 141
Fiber to the distribution point, 141
Fiber to the home, 35, 141
Fiber to the node, 141
Fiber to the X, 34, 141–143, 171
Fibre channel, 305
Field, television, 685
FIFO (see First-In First-Out)
Fifth-generation cellular network, 168–169
File server example, 510–511

File transfer protocol, 460, 655
FIN scan, 741
Final delivery, 647
Fingerprinting, 741

Web, 679–680
Firewall, 759–762, 764
First-come first-served packet scheduling, 411
First-generation cellular network, 156–158
First-in first-out packet scheduling, 411
Five tuple, 562
Fixed wireless, 9
Flag byte, 206
Flooding routing algorithm, 372–374
Flow, packet, 406
Flow control, 48, 209–210, 392, 528–532
Flow specification, 415
F-measure, 764
Footprint, satellite, 179
Forward error correction, 211, 689
Forwarding, 22, 367
Forwarding algorithm, 22, 367
Forwarding equivalence class, 478
Fourier analysis, 110
Fourier series, 110
Fourth-generation cellular network, 166–168
FQDN (see Fully Qualified Domain Name)
Fragment

IEEE 802.11, 318
packet, 432

Fragmentation, packet, 431–435
Frame, 202
Frame bursting, 304
Frame header, 225
Frame structure, Bluetooth, 330–331

Ethernet, 292
IEEE 802.11, 321–322

Framing, 205–208
Free-rider, BitTorrent, 720
Free-riding, 717
Free-space optics, 108
Freedom of speech, 847–849
Frequency, 101
Frequency division duplex, 157
Frequency division multiplexing, 123–125
Frequency hopping spread spectrum, 103
Frequency masking, 684
Frequency reuse, 42
Frequency shift keying, 121
Freshness of messages, 771
Front end, 709

INDEX 901

FSK (see Frequency Shift Keying)
FTP (see File Transfer Protocol)
FTTC (see Fiber To The Curb)
FTTDP (seeFiber To The Distribution Point)
FTTH (see Fiber To The Home)
FTTN (see Fiber To The Node)
FTTX (see Fiber to the X)
Full-dimension MIMO, 169
Full-duplex link, 92
Full-duplex protocol, 234–252
Fully qualified domain name, 619
Fundamental security principle, 734–736
Fundamentals of attack, 736–738
Fundamentals of network security, 733–739
Fuzzball, 31

G
G.711, 698
G.dmt, 139
G.fast, 141
Gatekeeper, H.323, 698
Gateway, 26, 426, 698
Gateway mobile switching center, 41
General packet radio service, 38
Generator polynomial, 221
Generic top level domain, 617–618
Geo-tagging, 10
Geostationary earth orbit, 177
Geostationary satellite, 177–181
GET, conditional, 671
Gigabit-capable PON, 142
Gigabit Ethernet, 302, 302–306
Global Positioning System, 10, 181
Global system for mobile communications, 41,

158–162
Globalstar, 182
Gmail, 79, 635, 647, 649, 755
GMSC (see Gateway Mobile Switching Center)
Gnutella, 717–718
Go-back-n protocol, 240–243
Goodput, 391, 537
Gossip, 717
GPON (see Gigabit-capable PON)
GPRS (see General Packet Radio Service)
GPS (see Global Positioning System)
Gratuitous ARP, 474
Gray, Elisha, 131

Gray code, 122
Group, 143
GSM (see Global System for Mobile communications)
gTLD (see generic Top Level Domain)
Guard band, 123–124
Guard time, 124
Guided transmission media, 90–100

H

H.225, 699
H.245, 698
H.323, 698–701
H.323 vs. SIP, 703–704
H3 (see HyperText Transfer Protocol, HTTP/3)
Half-duplex link, 92
Half-open scan, 740
Hamming, Richard, 213
Hamming code, 214–215
Hamming distance, 213
Handoff, 39–40, 156
Handover, 39–40
Hard-decision decoding, 216
Hard handoff, 166
Hard handover, 40
Harmonic, 110
Hash collision, 797
Hashed message authentication code, 810, 823
HD video, 684
HDLC (see High-level Data Link Control)
Headend, cable, 170
Header

email, 634
packet, 51

Header compression, 601–603
Header file, 226–228
Header prediction, 600
Hertz, Heinrich, 90
Heterogeneous networks, 425–430
HFC network (see Hybrid Fiber Coax network)
Hidden terminal problem, 288
HIDS (see Host-based IDS)
Hierarchical routing algorithm, 382–384
High-efficiency wireless, 314
High-level data link control, 207, 254
History, Internet, 26–33
HLR (see Home Location Register)

902 INDEX

HLS (see HTTP Live Streaming)
HMAC (see Hashed Message Authenication Code)
Home location register, 160
Home network, 18–20, 169–176, 184–187, 444, 593
Home subscriber server, 40, 167
Hop-by-hop backpressure, 405–406
Host, 21
Host-based IDS, 762
Host design for fast networking, 595–598
Host speed, importance, 595
Hosting, 36
Hot-potato routing, 489
How networks differ, 424–425
HSS (see Home Subscriber Server)
HSTS (see HTTP Strict Transport Security)
HTML5, 663
HTTP (see HyperText Transfer Protocol)
HTTP live streaming, 693–694
HTTP strict transport security, 677
HTTP/2 (see HyperText Transfer Protocol, HTTP/2)
HTTP/3 (see HyperText Transfer Protocol, HTTP/3)
HTTPS (see Secure HTTP)
HTTPS (see Secure HyperText Transfer Protocol)
Hub, 297

satellite, 180
Hybrid fiber coax, 171
Hybrid fiber coax network, 34, 171
Hyperlink, 652
Hypertext, 651
Hypertext transfer protocol, 653, 655, 664–676

caching, 669–671
HTTP/1, 671–673
HTTP/2, 673–675
HTTP/3, 675–676
message headers, 667–669
methods, 665–667
overview, 665

Hz, 90

I

IAB (see Internet Activities Board)
IBGP (see Internal BGP)
ICANN (see Internet Corporation for

Assigned Names and Numbers)
ICMP (see Internet Control Message Protocol)
IDEA (see International Data Encryption Algorithm)

IDS (see Intrusion Detection System)
IDS evasion, 763
IEEE (see Institute of Electrical and Electronics Engineers)
IEEE 802.11, 16, 16–18
IEEE 802.11, architecture, 310–311
IEEE 802.11, association, 322
IEEE 802.11, authentication, 323
IEEE 802.11, data delivery service, 323
IEEE 802.11, distribution service, 323
IEEE 802.11, frame structure, 321–322
IEEE 802.11, integration service, 323
IEEE 802.11, MAC sublayer, 314–321
IEEE 802.11, physical layer, 311–313
IEEE 802.11, prioritization and power control, 324
IEEE 802.11, protocol stack, 310–311
IEEE 802.11, security and privacy, 323–324
IEEE 802.11, services, 322–323, 322–324
IEEE 802.11a, 312
IEEE 802.11ad, 313
IEEE 802.11ax, 314
IEEE 802.11ay, 314
IEEE 802.11b, 312
IEEE 802.11g, 313
IEEE 802.11n, 313
IEEE 802.1Q, 348
IEEE 802.1X, 46, 323
IETF (see Internet Engineering Task Force)
IGMP (see Internet Group Management Protocol)
IKE (see Internet Key Exchange)
IMAP (see Internet Message Access Protocol)
IMP (see Interface Message Processor)
Improved mobile telephone system, 156
Improving efficiency, 234
IMT-2000 (see International Mobile

Telecommunications)
IMT advanced network, 166
IMTS (see Improved Mobile Telephone System)
In-band network telemetry, 440
In-band signaling, 145
Inbound traffic engineering, 490
Include file for protocols, 226–228
Index page, 651
Industrial, scientific, and medical band, 43–44, 188
Inetd, 559
Infrared Data Association, 108
Infrared transmission, 107–108
Ingress filtering, 758
Initial assumptions, protocol, 223–224
Initial connection protocol, 516
Initialization vector, 784

INDEX 903

Instant messaging, 5
Institute of Electrical and Electronics Engineers, 72
INT (see In-band Network Telemetry)
Integrated service, 417
Integrated services, 417–420
Integration service, 802.11, 323
Integrity, 49, 733
Intellectual property, 851
Interdomain routing, 430, 479
Interdomain traffic engineering, 490–491
Interexchange carrier, 192
Interface, 50, 304, 309, 313, 346, 448
Interface message processor, 28–29
Interframe spacing, 319–320
Interior gateway protocol, 430, 479
Interior gateway routing protocol, 479–484
Interlacing, 685
Interleaving, 218
Intermediate system-intermediate system, 381, 479
Internal BGP, 488
Internal router, 481
International data encryption algorithm, 829
International mobile telecommunication-2000, 163
International standard, 72
International standard IS-95, 158
International Standards Organization, 71–74
International Telecommunication Union, 70
Internet, 2–15
Internet Activities Board, 73–74
Internet architecture, 33–36, 721,-725
Internet Architecture Board, 73–74
Internet backbone, 153, 307, 724
Internet control message protocol, 62, 471–472
Internet Corporation for Assigned Names and

Numbers, 449, 617
Internet daemon, 559
Internet Engineering Task Force, 74
Internet evolution, 721–724
Internet exchange point, 35, 485, 725
Internet group management protocol, 491
Internet history, 26–33
Internet key exchange, 821
Internet layer, 62–63, 441–492
Internet message access protocol, 648–649
Internet message format, 638–640
Internet multicasting, 491–492
Internet network layer, 441–492
Internet of Things, 7, 18, 190
Internet over cable, 169–173, 259–261
Internet protocol (IP), 62, 443–470

Internet protocol version 4, 444–461
addresses, 448–461
CIDR, 451–454
classless, 454–456
network address translation, 456–461
subnets, 449–451

Internet protocol version 6, 461–470
controversies, 468–470
extension header, 463–466
main header, 463–466

Internet radio, 695
Internet reference model, 61–64
Internet Research Task Force, 74
Internet security association and key

management protocol, 821
Internet service provider, 12
Internet Society, 74
Internet Standard, 74
Internet telephony, 681, 695
Internet transport layer, 546–590
Internet transport protocols, 546–587

TCP, 557–587
UDP, 546–557

Internetwork, 23, 25–26, 423
Internetwork routing, 430–431
Internetworking, 49, 423–435
Interoffice trunk, 133
Intertoll trunk, 133
Intradomain routing, 430, 479
Intruder, security, 767
Intrusion detection system, 762–766

anomaly-based, 764
host-based, 762
network-based, 762
signature-based, 763

Intrusion prevention, 764–766
Intrusion prevention system, 764

false negative, 764
false positive, 764

Inverse multiplexing, 533
IoT (see Internet of Things)
IP (see Internet Protocol)
IP address, 448–461
IP anycast, 389–390, 628, 708–709
IP protocol version 4, 444–461

addresses, 448–461
CIDR, 451–454
classless, 454–456
network address translation, 456–461
subnets, 449–451

904 INDEX

IP protocol version 6, 461–470
controversies, 468–470
extension header, 463–466, 468–470
main header, 463–466

IP security, 820–824
IP telephony, 14
IP television, 6, 695
IPS (see Intrusion prevention system)
IPsec, 820–824
IPTV (see IP TeleVision)
IPv4 (see Internet Protocol version 4)
IPv5, 444
IPv6 (see Internet Protocol version 6)
IrDA (see Infrared Data Association)
Iridium, 182
IRTF (see Internet Research Task Force)
IS (see International Standard)
IS-95, 158
IS-IS routing algorithm, 381
ISAKMP (see Internet Security Association

and Key Management Protocol)
ISM band (see Industrial, Scientific, Medical band)
ISO (see International Standards Organization)
Isolation, 736
ISP (see Internet Service Provider)
ITU (see International Telecommunication Union)
ITU-R, 70
ITU-T, 70
IV (see Initialization Vector)
IXC (see IntereXchange Carrier)
IXP (see Internet Exchange Point)

J
Javascript, 663, 842
Jitter, 408, 554, 681
Jobs, Steve, 732
Joint photographic expert group, 685
JPEG (see Joint Photographic Experts Group)
Jumbo frame, Ethernet, 305
Jumbogram, 467

K
Kaminsky attack, 746–749
Karn’s algorithm, 576

KDC (see Key Distribution Center)
Keepalive timer, 576
Kepler’s law, 177
Kerberos, 816–818
Kerckhoffs’ principle, 768
Key, cryptographic, 767
Key distribution center, 799–800
Key escrow, 845
Keying, amplitude shift, 121

frequency shift, 121
Keystream, 786
Keystream reuse attack, 786
Known plaintext attack, 769

L
L2CAP (see Logical Link Control Adaptation Protocol)
Label edge router, 477
Label switched router, 477
Label switching, 476–479
Lamarr, Hedy, 103
LAN (see Local Area Network)
LATA (see Local Access and Transport Area)
Layer, 49

application, 63–64
ATM adaptation, 258
Bluetooth link, 329–330
Bluetooth radio, 328–329
convergence, 260
data link, 89–195
IEEE 802.11 physical, 311–314
Internet, 62–63
link, 62
network, 359–495
physical, 89–195
transport, 63, 501–608

Layering, protocol, 48–53
LCP (see Link Control Protocol
LDPC (see Low-Density Parity Check)
Leaky bucket algorithm, 400–402
Learning bridge, 336–339
Leasing, 475
LEC (see Local Exchange Carrier)
Leecher, BitTorrent, 720
LEO (see Low-earth Orbit)
LER (see Label Edge Router)
Light transmission, 108–109
Limited-contention protocol, 283–284

INDEX 905

Line code, 116
Linear code, 212
Link

Bluetooth, 329–330
fiber-optic, 95
full-duplex, 92
half-duplex, 92
microwave, 181
point-to-point, 17
virtual, 23
Web, 651

Link aggregation, 260
Link control protocol, 254
Link encryption, 734
Link layer, 62, 201–262
Link state routing, 377–384
Little-endian computer, 350
LLC (see Logical Link Control)
LLD (see Low-Latency DOCSIS)
Load balancing, 709–711
Load shedding, 397–398
Local access and transport area, 192
Local area network (see also Ethernet)
Local area network, 16–18, 290–332
Local central office, 132
Local exchange carrier, 192
Local loop, 133, 134–135
Local number portability, 194
Local preference, 490
Local recursive resolver, 614
Local resolver, 615
Logical link control, 322
Logical link control adaptation protocol, 328
Long fat network, 603–607
Long term evolution, 21, 166
Longest matching prefix, 453
Lossless encoding, 683
Lossy encoding, 683
Lottery, 188
Low-density parity check, 217
Low-earth orbit, 181
Low-earth orbit satellite, 181–184
Low-latency DOCSIS, 333–334, 334
Low-water mark, 690
LSR (see Label Switched Router)
LTE (see Long Term Evolution)
LTE-U (see LTE-Unlicensed)
LTE-Unlicensed, 47
Luminance, 685

M
MAC (see Medium Access Control)
MAC cloning, 743
MAC flooding, 743
MAC sublayer, 802, 314–321
MACA (see Multiple Access with Collision Avoidance)
MAHO (see Mobile Assisted HandOff
Mail relay, open, 646
Mail server, 633
Mail submission, 633, 642, 646
Mailbox, 634
Mailing list, 634
Malware, 844
MAN (see Metropolitan Area Network)
Man-in-the-middle attack, 744, 813
Management of public keys, 799–805
Manchester encoding, 117
Marshaling, parameter, 549
Massive MIMO, 169
Match-action table, 437
Max-min fairness, 538–539
Maximum data rate of a channel, 114–115
Maximum segment size, 564, 581, 756–757
Maximum transfer unit, 561
Maximum transmission unit, 432
Maxwell, James Clerk, 101, 291
MCI (see Microwave Communication Inc.)
M-commerce, 10
Measuring access network throughput, 593
Measuring network performance, 592–594
Measuring quality of experience, 594
Media gateway, 41
Media player, 688
Media presentation description, 692
Medium access control, 167, 267
Medium-earth orbit satellite, 181
MEO (see Medium Earth Orbit)
Merkle, Ralph, 790
Mesh network, 16, 546
Message digest, 795–797
Message disposition, email, 637
Message format, email, 637
Message header, HTTP, 667
Message integrity check, 827
Message transfer, 642–647
Message transfer agent, 633
Metcalfe, Robert, 8, 424
Method, HTTP, 665
Metric units, 80–81

906 INDEX

Metropolitan area network, 20–21
MFJ (see Modification of Final Judgment)
MGW (see Media Gateway)
MIC (see Message Integrity Check)
Michelson-Morley experiment, 291
Mickens, James, 732
Microcell, 155
Microwave Commication Inc., 107
Microwave transmission, 106–107
Milk, shedding algorithm, 397
MIME (see Multipurpose Internet Mail Extensions)
MIMO (see Multiple Input Multiple Output)
MIMO (see Multiple-Input Multiple-Output)
Min-Max fairness, 538–539
Minimizing context switches, 596–597
Minimizing data touching, 596
Minislot, 175, 333
MITM (see Man In The Middle attack)
Mitnick, Kevin, 749–751
MME (see Mobility Management Entity)
Mobile assisted handoff, 162
Mobile code, 842
Mobile-commerce, 10
Mobile network, 8–11, 36–43, 154–169, 190–192,

309–332
4G, 42–43, 166–168
5G, 42–43, 168–169
history, 41–42

Mobile phone, 154
Mobile switching center, 41, 156
Mobile telephone network, 154–169
Mobile telephone switching office, 156
Mobile virtual network operator, 191–192
Mobility management entity, 167
Mockapetris, Paul, 65
Modem, 34, 135–137

V.90, 137
V.92, 137

Modification of final judgment, 192
Modulation, pulse code, 143

quadrature amplitude, 122
Modulation profile, 260
Monoalphabetic substitution cipher, 772
MOSPF (see Multicast OSPF)
Mossad, 732
Motion picture experts group, 685
MP3 (see MPEG audio layer 3)
MP4 (see MPEG layer 4)
MPD (see Media Presentation Description)
MPEG (see Motion Picture Experts Group)

MPEG audio layer 3, 683
MPEG layer 4, 683
MPLS (see MultiProtocol Label Switching)
MSC (see Mobile Switching Center)
MSS (see Maximum Segment Size)
MTSO (see Mobile Telephone Switching Office)
MTU (see Maximum Transfer Unit)
MTU (see Maximum Transmission Unit)
MTU discovery, 433
Mu law, 144
MU-MIMO (see Multi User MIMO)
MU-MIMO (see Multiuser MIMO)
Multi-user MIMO, 169
Multiaccess channel, 267
Multiaccess network, 480
Multicast OSPF, 388
Multicast routing algorithm, 386–389
Multicasting, 292, 386
Multidestination routing algorithm, 384
Multihoming, 487
Multimedia, 681
Multimode fiber, 96–98, 302, 304–307
Multipath fading, 44–45, 103, 107
Multiple access protocol, 271–290
Multiple access with collision avoidance, 289–290
Multiple input multiple output, 169, 313
Multiplexing, 115, 123–130, 533

code division, 126–129
frequency division, 123–125
orthogonal frequency division, 124
statistical time division, 125
time division, 125–126
wavelength division, 129–130

Multiplexing optical networks: SONET/SDH, 146
Multiprotocol label switching, 476–479
Multiprotocol router, 428
Multipurpose internet mail extensions, 640–642
Multithreaded server, 658
Multitone, discrete, 138
Multiuser MIMO, 313
MVNO (see Mobile Virtual Network Operator)

N

Nagle’s algorithm, 571
Name resolution, DNS, 627–629
Name server, root, 628

INDEX 907

Naming, 49
secure, 835–838

NAP (see Network Access Point)
Napster, 716–717
NAT (see Network Address Translation)
NAT box, 458
NAT traversal, 460
National Institute of Standards and

Technology, 72, 781
National Science Foundation Network, 31–33
National Security Agency, 756
NAV (see Network Allocation Vector)
NCP (see Network Control Protocol)
Near field communication, 10
Needham-Schroeder authentication

protocol, 815–816
Negotiation, 54
Net neutrality, 76–77, 492, 493
Netmap, 742
Network

3G, 162–166
4G, 42–43
5G, 42–43
ad hoc, 44
ALOHA, 45
ARPANET, 27–31
backbone, 13
cable television, 94, 170–176
cellular, 42, 154–169
comparison, 184–187
content delivery, 12
content provider, 11–12
data center, 11
enterprise, 13–15
HFC, 34
home, 18–20
local area, 16–18
mesh, 16
metropolitan area, 20–21
mobile, 8–11, 36–43
power-line, 20
satellite, 176–184
software defined, 25
telephone, 192–194
transit, 12–13, 35
types, 7–15
uses, 1–7
virtual private, 13–14, 23–25
wide-area, 21–25
wireless, 8–11, 43–47

Network accelerator, 223
Network access point, 32
Network address translation, 456–461
Network allocation vector, 316–317
Network architecture, 51
Network-based IDS, 762
Network control protocol, 254
Network design goals, 47–49
Network functions virtualization, 169
Network interface card, 210, 223
Network interface device, 140
Network layer, 359–495

congestion, 390–393
design issues, 360–366
design principles, 441–443
Internet, 441–492
routing algorithms, 366–390
traffic management, 390–406

Network layer policy, 492–494
Network neutrality, 76–77, 493–495
Network order, 260
Network protocol, 47–59
Network reliability, 47–48
Network security, 77–78, 731–855
Network service access point, 514
Network slicing, 169
NFC (see Near Field Communication)
NFV (see Network Functions Virtualization)
Network interface card, 210
NIC (see Network Interface Card)
NID (see Network Interface Device)
NIDS (see Network-based IDS)
NIST (see National Institute of

Standards and Technology)
Node, DOCSIS, 174–176
Node split, 185
Non-return-to-zero code, 116
Non-return-to-zero inverted code, 118
Nonadaptive routing algorithm, 368
Nonce, 811
Nonpersistent CSMA, 277
Nonrepudiation, 733, 791
NRZ (see Non-Return-to-Zero)
NRZI (see Non-Return-to-Zero Inverted)
NSA (see National Security Agency)
NSAP (see Network Service Access Point)
NSFNET (see National Science Foundation Network)
Nyquist, Henry, 114
Nyquist theorem, 114

908 INDEX

O
Oblivious DNS, 631
Oblivious DoH, 631
OFDM (see Orthogonal Frequency

Division Multiplexing)
Off-path TCP exploit, 752–755
One-bit sliding window, 236–240
One-time pad, 774–775
ONF (see Open Networking Foundation)
Onion routing, 847
Online speech, 75–76
Open mail relay, 646
Open Networking Foundation, 68
Open scan, 740
Open shortest path first, 479–484
Open systems interconnection, 60
OpenFlow, 436–438
Operation Aurora, 843
Optimality principle, 368–369
Organizationally unique identifier, 293
Orthogonal chip sequence, 127
Orthogonal frequency division

multiplexing, 45, 124, 312–313
OSI (see Open Systems Interconnection)
OSI reference model, 59–61

critique, 64–66
OSPF (see Open Shortest Path First)
Otway-Rees authentication protocol, 816
OUI (see Organizationally Unique Identifier)
Out-of-band signaling, 145
Outbound traffic engineering, 490
Overlay, 429, 824
Overprovisioning, 409–410

P
P-box, 779
P-GW (see Packet Data Network Gateway)
P-persistent CSMA, 277
P2P (see Peer-to-Peer)
Pacing rate, 589
Packet, 54
Packet data control protocol, 167
Packet data network gateway, 38, 167
Packet filter, 760
Packet fragmentation, 431–435
Packet over SONET, 253–256

Packet scheduling algorithm, 410–417
Packet switching, 40, 151–154, 360
Paging channel, 156, 162
Paid peering, 486
Paid prioritization, 493
Pairing, 325
PAN (see Personal Area Network)
Par, 233
PAR protocol, 230–234
Parallel connection, 673
Parity bit, 218
Parity check, low-density, 217
Partial transit, 486
Passband, 111
Passband transmission, 115, 120
Passive optical network, 142
Path diversity, 44, 169
Path loss, 105
Path MTU, 432
Path MTU discovery, 433, 561
Path prepending, 490
Path vector protocol, 487
PA WS (see Protection Against Wrapped

Sequence numbers)
PCF (see Point Coordination Function)
PCM (see Pulse Code Modulation)
PCS (see Personal Communications Services)
PDCP (see Packet Data Control Protocol)
PEAP (see Protected Extensible

Authentication Protocol)
Peer, 35, 50
Peer-to-peer, 705
Peer-to-peer network, 715–721

BitTorrent, 718–721
Gnutella, 717–718
Napster, 716–717

Peer-to-peer system, 4–5
Peering, 486
Peering dispute, 492–493
Per hop behavior, 420
Perceptual coding, 684
Performance, measuring, 592–594

transport layer, 590–607
Performance problems, 591–592
Perlman, Radia, 342
Persistence timer, 576
Persistent connection, 671
Persistent CSMA, 276–277
Persistent storage, 90–91
Person-to-person communication, 5

INDEX 909

Personal area network, 15–16
Personal communications service, 158
PGP (see Pretty Good Privacy)
Phase shift keying, 121
Phishing, 78, 744
Phone phreaking, 731
PHP, 663–664
PHP hypertext preprocessor, 663
Physical layer, 89–195

Ethernet, 290–292
IEEE 802.11, 311–314

Physical layer policy, 187–194
Physical medium, 50
Physical transfer, email, 646
Picocell, 168
Piconet, 325
Piggybacking, 234
PIM (see Protocol Independent Multicast)
Ping, 472
Ping of death, 736, 756
Pipelining, 242
Pixel, 684
PKI (see Public Key Infrastructure)
Plain old telephone service, 139
Plaintext, 767
Playback point, 556
Playout with buffering and jitter control, 555–556
Plug-in browser, 843
Podcast, 695
Point coordination function, 316–317
Point of presence, 35, 193
Point-to-point protocol, 207, 253–255
Poisson model, 270
POLA (see Principle of Least Authority)
Policy, network layer, 492–494
Policy at the physical layer, 187–194
Policy issues, 75–80
Pollution attack, 718
Polynomial, generator, 221
Polynomial code, 220–223
PON (see Passive Optical Network)
POP (see Point of Presence)
POP3, 649 (see Post Office Protocol, version 3)
Populating CDN caches, 712–713
Port, 17, 514

TCP, 559
UDP, 547

Port-based authentication, 323
Port scanning, 740–742
Portmapper, 516

Post, telegraph & telephone administration, 70
Post office protocol, version 3, 649
POTS (see Plain Old Telephone Service)
Power law, 706
Power line, 94–95
Power-line network, 7, 20, 95, 125, 217
Power metric, 537
Power-save mode, 319
PPP (see Point-to-Point Protocol)
PPP over ATM, 258
PPPoA (see PPP over ATM)
Preamble, 208
Precision of IDS, 764
Prefix, IP address, 448–449
Premaster key, 839
Pretty good privacy, 829–833
Primitive, service, 56–58
Principal, security, 775
Principle of complete mediation, 735
Principle of defense in depth, 766
Principle of economy of mechanism, 735
Principle of fail-safe default, 735
Principle of least authority, 735
Principle of least common mechanism, 735, 755
Principle of open design, 736
Principle of privilege separation, 735
Principle of psychological acceptability, 736
Prioritization and power control, 802.11, 324
Privacy, 40, 78–79, 324, 844–847

DNS, 629–631
location, 79
Web, 676–680

Privacy amplification, 778
Private network, virtual, 824
Private-key ring, 833
Process server, 516
Product cipher, 780
Profile, Bluetooth, 326
Profiling, 78
Programmable network telemetry, 440–441
Progressive video, 685
Promiscuous mode, 299, 742
Proposed standard, 74
Protected extensible authentication protocol, 323
Protection against wrapped sequence number, 523
Protocol, 49–53, 280–281, 546–557

adaptive tree-walk, 285–287
address resolution, 472–475
ALOHA, 272–276
ARQ, 230–234

910 INDEX

Protocol (continued)
authentication, 805–819
automatic repeat request, 230–234
basic transmission,, 224–228
binary countdown, 282–283–287
bit-map, 280–281
Bluetooth stack, 327–328
border gateway, 430, 484–491
carrier sense, 276
carrier sense multiple access, 276–279
challenge response, 807
collision-free, 279–283
data link, 223–261, 252–261
datagram congestion control, 508
Diffie-Hellman, 812–813
distance vector multicast routing, 388
dynamic host configuration, 475–476
EAP-TLS, 323
elementary data link, 223–252
enhanced authentication, 323
Ethernet, 292–295
Ethernet MAC sublayer, 292–295
extensible authentication, 827
exterior gateway, 430, 479, 484–491
exterior gateway routing, 484–491
file transfer, 460
FTP, 655
full-duplex, 234–252
go-back-n, 240–243
HTTP, 653
HTTPS, 653
hypertext transfer, 664–676
IEEE 802 MAC sublayer, 314–321
IEEE 802.11 mac sublayer, 314–321
IEEE 802.11 stack, 310–311
initial connection, 516
interior gateway, 430, 479
interior gateway routing, 479–484
Internet (IP), 62, 443–470
Internet control, 470–476
Internet control message, 62, 471–472
Internet group management, 491
Internet transport, 546–587
IP version 4, 444–461
IP version 6, 461–470
Kerberos, 816–818
label switching, 476–479
limited-contention, 282–283, 283–284
link control, 254
logical link control adaptation, 328

Protocol (continued)
long fat network, 603–607
MACA, 289–290
multiple access, 271–290
Needham-Schroeder, 815–816
network, 47–59
network control, 254
Otway-Rees, 816
packet data control, 167
PAR, 230–234
path vector, 487
PEAP, 323
point-to-point, 207, 253–255
positive acknowledgment with transmission, 230–234
protected extensible authentication, 323
real time,689
real-time transport, 552–557
real-time transport control, 555
relationship to services, 58–59
reservation, 280
resource reservation, 417–420
RTCP, 555
RTP, 552
selective repeat, 243–252
serial line, 253
serial line Internet, 253
session initiation, 701–703
Simple Internet Protocol Plus, 462
simplex link-layer, 228–234
sliding window, 236–252
SMTP, 634
stop-and-wait, 229–230
stream control transmission, 509
TCP, 561–562
token passing, 281–282
token-passing, 281–282
transmission control, 63, 557–587
transport, 513
transport protocol data unit, 505
tree-walk, 285–287
TTL, 323
user datagram, 63, 546–557
Wireless LAN, 287–290

Protocol 1 (utopia), 229–230
Protocol 2 (stop-and-wait), 231–234
Protocol 3 (PAR), 234–238
Protocol 4 (sliding window), 238–242
Protocol 5 (go-back-n), 240–245
Protocol 6 (selective repeat), 243–252
Protocol header file, 226–228

INDEX 911

Protocol-independent multicast, 492
Protocol-independent switch architecture, 438
Protocol layering, 48–53, 49
Protocol stack, 51–53

Bluetooth, 327–328
Provisioning, 393
Proxy, reverse, 659

Web, 709–711
Proxy ARP, 475
PSK (see Phase Shift Keying)
PSTN (see Public Switched Telephone Network)
Psychoacoustics, 684
PTT (see Post Telegraph & Telephone administration)
Public-key algorithm, 787–791
Public-key authentication, 819
Public-key cryptography, 787–791
Public-key digital signature, 793–794
Public-key infrastructure, 802–805
Public-key management, 799–805
Public-key ring, 833
Public switched telephone network, 41, 131–149
Pulse code modulation, 143
Pure ALOHA, 272–275
Push-to-talk system, 156

Q
Q.931, 699
QAM-16, 122
QAM-64, 122
QNAME minimization, 616
QoE (see Quality of Experience)
QoS routing, 414
QoS traffic scheduling, 324
QPSK (see Quadrature Phase Shift Keying)
Quadrature amplitude modulation, 122
Quadrature phase shift keying, 121
Quality of experience, 406, 694
Quality of service, 48, 406–423

requirements, 406–409
Quantum cryptography, 775–778
Qubit, 776
Query, DNS, 620–627
Queueing theory, 269
Queueing delay, 153, 269, 367, 394, 395,

403, 416–417, 602
QUIC (see Quick UDP Internet Connection)
Quick UDP internet connection, 587–588

R
RA (see Regional Authority)
Radio access network, 38, 167
Radio link control, 167
Radio network controller, 38
Radio transmission, 104–106
RAN (see Radio Access Network)
Random access channel, 162, 267
Random early detection, 403–404
Ranging, 175

DOCSIS, 333
RAS (see Registration/Admission/Status)
RAS channel (see Registration/Admission Status channel)
Rate adaptation, 312
Rate anomaly, 320
Rate-based flow control, 210
RCP (see Routing Control Platform)
Real-time audio, 680
Real-time delivery, 48
Real-time protocol, 689
Real-time streaming, 694–703
Real-time transport control protocol, 555
Real-time transport protocol, 552, 552–557
Real-time video, 680
Realm, Kerberos, 818
Reassociation, 322
Recall, 764
Receiving window, 236
Reconfigurable match table, 438
Reconnaissance, 737, 739–740, 740
Rectilinear basis, 776
Recursive lookup, 615
Recursive resolver, trusted, 630
RED (see Random Early Detection)
Reducing packet count, 595
Redundancy, cryptographic, 770–771
Reed-Solomon code, 216
Reference model, 59–68

OSI, 59–61
Reflection attack, 757, 808
Reflection-based DDoS attack, 757–758
Region, routing, 382
Regional Authority, 803
Registrar, 618
Registration/admission/status channel, 699
Registry, 618
Relationship of services to protocols, 58–59
Releasing a connection, 523–527
Reliable byte stream, 508

912 INDEX

Remote procedure call, 549–551
Rendezvous point, 388
Repeater, 292
Replay attack, 814
Request for comments, 74
Request header, HTTP, 667
Request-reply service, 55
Request to send, 289
Reservation protocol, 280
Resilient packet ring, 282
Resource allocation, 48
Resource record, 622–625
Resource record set, 625, 836
Resource reservation protocol, 417–420
Resource sharing, 13, 115, 143, 174, 533
Response header, HTTP, 667
Retransmission timeout, 573
Retrospective on Ethernet, 308–309
Reverse lookup, 624
Reverse path forwarding routing algorithm, 385–386
Reverse proxy, 659
Revocation, certificate, 804–805
RFC (see Request for Comments)
RFC 427, 490
RFC 768, 547
RFC 793, 558
RFC 821, 634, 640
RFC 822, 634, 637, 638, 639, 640, 831, 846
RFC 826, 473
RFC 1034, 614
RFC 1035, 614
RFC 1058, 377
RFC 1122, 558
RFC 1191, 561
RFC 1323, 523, 558
RFC 1521, 641
RFC 1550, 462
RFC 1661, 253
RFC 1662, 253
RFC 1663, 254
RFC 1700, 446
RFC 1939, 649
RFC 1958, 442
RFC 2018, 558
RFC 2045, 640
RFC 2108, 565
RFC 2109, 669
RFC 2131, 475
RFC 2132, 475
RFC 2181, 614

RFC 2205, 417
RFC 2210, 415, 417
RFC 2211, 415
RFC 2212, 417
RFC 2328, 479
RFC 2335, 836
RFC 2364, 258
RFC 2410, 820
RFC 2440, 830
RFC 2459, 801
RFC 2460, 462
RFC 2466, 462
RFC 2474, 420
RFC 2475, 420
RFC 2535, 836
RFC 2581, 558
RFC 2597, 422
RFC 2615, 255
RFC 2616, 664, 669
RFC 2632, 833
RFC 2643, 833
RFC 2873, 558
RFC 2883, 565, 586
RFC 2965, 669
RFC 2988, 558, 575
RFC 2993, 461
RFC 3022, 458
RFC 3031, 476
RFC 3168, 558, 563, 586
RFC 3194, 465
RFC 3246, 421
RFC 3261, 701
RFC 3376, 491
RFC 3390, 579
RFC 3501, 648
RFC 3517, 586
RFC 3550, 552, 555
RFC 3748, 827
RFC 3782, 585
RFC 3833, 624
RFC 3875, 662
RFC 4033, 836
RFC 4034, 836
RFC 4035, 836
RFC 4120, 817
RFC 4288, 640
RFC 4409, 646
RFC 4614, 558
RFC 4632, 452
RFC 4960, 509, 590

INDEX 913

RFC 4987, 567
RFC 5246, 841
RFC 5280, 801
RFC 5321, 634, 638, 640, 645
RFC 5322, 634, 637, 638–640, 639
RFC 5681, 586
RFC 5795, 602
RFC 5961, 753, 754
RFC 7540, 673
RFC 7816, 616
RFC 8216, 694
Rijmen, Vincent, 782
Rijndael cipher, 782
Rivest, Ron, 776, 789, 791

Rivest Shamir Adleman (RSA) algorithm, 789
RLC (see Radio Link Control)
RMT (see Reconfigurable Match Tables)
RNC (see Radio Network Controller)
Robbed-bit signaling, 145
Robust header compression, 602
ROHC (see RObust Header Compression)
Root name server, 628
Round, DES, 780
Route aggregation, 452
Router, 22

backbone, 481
boundary, 482
designated, 482
internal, 481

Routing, 48
dynamic, 368
hot potato, 489
interdomain, 430, 484–487, 708
internetwork, 430–431
intradomain, 430
session, 367
static, 368

Routing algorithm, 22, 363, 366–390
adaptive, 368
anycast, 389–390
backward learning, 337
Bellman-Ford, 374–377
broadcast, 384–386
distance-vector, 374–377
flooding, 372–374
hierarchical, 382–384
link state, 377–384
link-state, 381
multicast, 386–389
multidestination, 384

Routing algorithm (continued)
nonadaptive, 368
reverse path forwarding, 385–386
shortest path, 370–372
traffic-aware, 393–395

Routing area, 382
Routing control platform, 437
Routing policy, 431
RPC (see Remote Procedure Call)
RPR (see Resilient Packet Ring)
RRSET (see Resource Record SET)
RSA algorithm, 788–790
RSVP (see Resource reSerVation Protocol)
RTCP (see Real-time Transport Control Protocol)
RTO (see Retransmission TimeOut)
RTP (see Real Time Protocol)
RTP (see Real-time Transport Protocol)
RTS (see Request To Send)

S

SA (seeSecurity Association)
SACK (see Selective ACKnowledgement)
Same-origin policy, 676
Sandboxed environment, 842
Satellite

geostationary, 177–178
low earth-orbit, 181–184
medium earth-orbit, 18

Satellite hub, 180
Satellite nework, 176–184
Satellites versus terrestrial network, 186
Sawtooth, 584
S-box, 779
Scalable network, 48
Scatternet, 325
Scheme, World Wide Web, 654
SCO (see Synchronous Connection Oriented link)
Scrambler, 118
Scripting code, 842–843
Scrubber, 759
SCTP (see Stream Control Transmission Protocol)
SDH (see Synchronous Digital Hierarchy)
SDN (see Software Defined Networking
SD-WAN (see Software Defined WAN)
Second-generation cellular network, 158–162
Sectored antenna, 166

914 INDEX

Secure hash algorithm, 795–797
Secure HTTP, 559, 630, 652–655, 664–665, 713, 839
Secure/MIME, 833–834
Secure naming, 835–838
Secure simple pairing, Bluetooth, 329
Secure sockets layer, 838–842
Security, 49

communication, 819–829
network, 77–78, 731–855

Security association, 821
Security by obscurity, 768
Security principal, 775
Security principles, 734–736

complete mediation, 735
economy of mechanism, 735
fail-safe defaults, 735
least authority, 735
least common mechanism, 735
open design, 736
privilege separation, 735
psychological acceptability, 736

Seeder, BitTorrent, 719
Segment, TCP, 562–565

transport, 505
UDP, 547

Segment processing, 598–601
Selective acknowledgement, 565
Selective repeat protocol, 243–252
Sending rate, 540–544
Sending window, 236
Sensor network, 11
Serial line Internet protocol, 253
Server, 14

multithreaded, 658
Server farm, 36, 707–709
Server name indication, 842
Server push, 674
Server side, World Wide Web, 657–659
Server stub, 549
Service, connection-oriented, 54
Service flow, 259

DOCSIS, 333
Service level agreement, 24, 398
Service primitive, 56–58
Service set identifier, 322
Services, 802.11, 322–324
Services for the network layer, 203–205
Services provided to the transport layer, 361–362
Serving gateway, 167
Serving network gateway, 38

Session initiation protocol, 701–703
Session key, 806
Session routing, 367
Settlement-free interconnection, 486
Settlement-free peering, 486
S-GW (see Serving Gateway)
SHA-1 (see Secure Hash Algorithm)
SHA-2, 795–797
SHA-3, 795–797
Shannon, Claude, 114
Shannon limit, 114
Shared secret key authentication, 806–811
Short interframe spacing, 319
Short message service, 10
Shortest path routing algorithm, 370–372
Side-attack, 755
SIFS (see Short InterFrame Spacing)
Signal, balanced, 119–120
Signal-to-noise ratio, 114
Signaling, channel-associated, 145

common-channel, 145
in-band, 145
robbed-bit, 145

Signaling system 7, 194
Signature, digital, 791–799
Signature-based IDS, 763
Silly window syndrome, 572
SIM card, 159
SIM card (see Subscriber Identity Module card)
Simple Internet protocol plus, 462
Simple mail transfer protocol, 634, 643–645
Simplex, 92
Simplex link-layer protocol, 228–234
Single-mode fiber, 96
Sink tree, 369
SIP (see Session Initiation Protocol)
SIP vs. H.323, 703–704
SIPP (see Simple Internet Protocol Plus)
Skin, 689
SLA (see Service Level Agreement)
SLA (see Service-Level Agreement)
Sliding window, 528

TCP, 570–573
Sliding window protocol, 236–252

one-bit, 236–240
SLIP (see Serial Line Internet Protocol)
Slotted ALOHA, 275–276
Slow start, TCP, 579
Slow start threshold, 581
Smartphone, 10

INDEX 915

Smiley, 632
S/MIME (see Secure MIME)
SMTP (see Simple Mail Transfer Protocol)
Snail mail, 632
SNI (see Server Name Indication)
Sniffing and snooping, 737, 742–744
Sniffing in switched networks, 742–744
Snooping, 742–744
Snowmobile, Amazon, 90
SNR (see Signal-to-Noise Ratio)
Social engineering, 740
Social issues, 75–80, 844–854
Social network, 5
Socket

Berkeley, 31, 56, 506–513
TCP, 558–559

Socket programming, example, 509–513
Soft-decision decoding, 216
Soft handoff, 166
Soft handover, 40
Software defined networking, 25m 169, 435–441

control plane, 436–438
data plane, 438–440
overview, 435–436

Software-defined WAN, 24
Soliton, 98
SONET (see Synchronous Optical NETwork)
Source port, 459
Spam email, 78, 621, 632, 637–638
Spanning tree, 386
Spanning-tree bridge, 339–342
SPE (see Synchronous Payload Envelope)
Spectrum, electromagnetic, 101
Spectrum allocation, 187–190

auction, 188
beauty contest, 188
lottery, 188

Spectrum auction, 188
Speed of light, 101
Splitter, 140
Spoofing, 737, 743, 744–755

DNS, 745
Spot beam, 179
Spread spectrum, 126

direct sequence, 103–104
Sprint, 107
SS7 (see Signaling System 7)
Ssh password attack, 762
SSID (see Service Set IDentifier)
SSL (see Secure Sockets Layer)

SST (see Structured Stream Transport)
Standard, de facto, 69

de jure, 69
telecommunications, 69–71

Standardization, 68–74
Stateful firewall, 761
Static channel allocation, 268–269
Static page, 653
Static routing, 368
Static Web object, 659–660
Station, network, 270
Station keeping, 178
Statistical multiplexing, 48
Statistical time division multiplexing, 125
STDM (see Statistical Time Division Multiplexing)
Steganography, 849–851
Stop-and-wait protocol, 229–230, 528
Store-and-forward packet switching, 360
Store-and-forward switching, 54
Stream cipher mode, 786–787
Stream control transmission protocol, 509
Streaming audio, 680–684
Streaming media, 682
Streaming stored media, 687–694
Streaming video, 684–694
Stresser, 756
Strowger gear, 151
Structure of the telephone system, 131–134
Structured stream transport, 509
STS-1 (see Synchronous transport signal-1)
Stub area, 482
Stub network, 486
Stub resolver, 614
Stuffing, bit, 207–209

byte, 206–207
Style sheet, 652, 660
Subnet, 21

IP, 449–451
Subnet mask, 448
Subnetting, 450
Subscriber identity module, 40, 159
Substitution cipher, 771–772
Super cookie, 677
Supergroup, 143
Supernet, 452
Swarm, BitTorrent, 719
Switch, 17, 22

Ethernet, 290, 298
Switch table poisoning, 743
Switched Ethernet, 17, 297–300

916 INDEX

Switching, 149–154
cut-through, 338
data link layer, 334–351
packet, 151–154

Switching circuit, 150–151
Switching element, 22
Symbol, 117
Symbol rate, 117
Symmetric-key algorithm, 779–787
Symmetric-key cryptography, 779–787
Symmetric-key digital signature, 791–793
SYN cookie, 567, 756
SYN flood, 566
SYN flooding, 756–757
Synchronous CDMA, 164
Synchronous connection oriented link, 329
Synchronous digital hierarchy, 146–149
Synchronous optical network, 146–149
Synchronous payload envelope, 148
Synchronous transport signal-1, 148
Systematic code, 212

T
T1 line, 144
Tag switching, 476
Tail drop, 411
Talkspurt, 557
Tandem office, 133
Target wake time, 314
T-carrier, 144–146
TCG (see Trusted Computing Group)
TCM (see Trellis Coded Modulation)
TCP (see Transmission Control Protocol)
TCP connection hijacking, 751–752
TCP connection spoofing, 749
tcpdump, 742
TCP-friendly congestion control, 544
TCP/IP reference model, 61–64, 66–67
TCP segment header, 562–565
TCP spoofing, 749–751
TDM (see Time Division Multiplexing)
Telecommunications standards, 69–71
Telephone modem, 135–137
Telephone network, 192–194
Temporal masking, 684
Temporary key integrity protocol, 828
Terminal, 698

Terrestrial access networks, 184–186
Text messaging, 10
Texting, 10
Theoretical basis for data communication, 110–113
Third-generation cellular network, 162–166
Third Generation Partnership Project, 69
Third-party tracker, 677–679
Threats to solutions, 738–739
Threats to Websites, 834–835
Three bears problem, 455
Three-way handshake, 521–523
Throttling, 394
Tier 1 network, 36, 443
Time division multiplexing, 125–126
Time slot, 125
Timeouts, avoiding, 597–598
Timer management, TCP, 573–576
Timestamp, 565
Timing wheel, 600
Tit-for-tat, 720
TKIP (see Temporary Key Integrity Protocol)
TLS (see Transport Layer Security)
Token, 281
Token bucket algorithm, 400–402
Token bus, 282
Token passing protocol, 281–282
Token ring, 281
Toll connecting trunk, 133
Toll office, 133
Top-level domain, 617–618
Torrent, BitTorrent, 718
TPDU (seeTransport Protocol Data Unit)
TPM (see Trusted Platform Module)
Traceroute, 471, 742
Tracker, BitTorrent, 718, 719
Tracking, 78
Traffic analysis, 822
Traffic-aware routing algorithm, 393–395
Traffic engineering, 490–491
Traffic management, 391, 393

network, layer, 390–396
Traffic policing, 399
Traffic prioritization, 493–494
Traffic shaping, 398–402
Transit network, 12–13, 35
Transit provider, 36
Transit service, 485
Transmission, baseband, 115

light, 108–109
passband, 115

INDEX 917

Transmission control protocol, 63, 557–587
congestion control, 576–586
connection establishment, 565–567
connection management modeling, 567–570
connection release, 567–570
CUBIC, 586–587
future, 590
introduction, 558
port, 559
protocol, 561–562
segment header, 562–565
service model, 558–561
sliding window, 570–573
slow start, 579
socket, 558
timer management, 573–576

Transmission line, 21
Transmission of light through fiber, 97–98
Transmission opportunity, 320
Transmit power control, 324
Transponder, 176
Transport entity, 502
Transport layer, 63, 501–608

addressing, 514–517
congestion control, 587–590

Transport layer security, 664, 841–842, 855
Transport mode, 821
Transport protocol

congestion control, 536–557
elements, 513–536
TCP, 557–587

Transport protocol data unit, 505
Transport service, 501–513
Transport service access point, 514
Transport service primitive, 504–506
Transport service provider, 503
Transport service user, 503
Transposition cipher, 773, 773–774
Tree-walk protocol, 285–287
Trellis coded modulation, 136
Trigram, 772
Triple DES, 781
Trojans, 844
TRR (see Trusted Recursive Resolver)
Trunk, telephone, 133
Trunks and multiplexing, 143
Trust anchor, 804
Trusted computing, 853
Trusted computing group, 853
Trusted platform module, 853

Trusted recursive resolver, 630
TSAP (see Transport Service Access Point)
Tunnel mode, 821
Tunneling, 428
Twisted pair, 91–93
Two-army problem, 524–525
TXOP (see Transmission opportunity)
Tyndale, William, 846

U
Ubiquitous computing, 7, 629
UDP (see User Datagram Protocol)
Ultra-peer, 717
Ultra-wideband communication, 104
UMTS (see Universal Mobile Telecommunication System)
Unchoked node, BitTorrent, 720
Unicast, 389
Uniform resource locator, 654
Universal mobile telecommunications system, 37, 164
Universal serial bus, 118
Unlicensed national information infrastructure, 189
U-NII (see Unlicensed National

Information Infrastructure)
Unshielded Twisted Pair, 92
Untrusted code, 842–844
Upstream proxy, 710
Urgent data, 560
URL (see Uniform Resource Locator)
USB (see Universal Serial Bus)
User agent, email, 633, 635–637
User datagram protocol, 63, 546–557

header, 547
introduction, 547–549
real-time, 552–557
remote procedure call, 549–551

User-generated content, 75
Using the spectrum for transmission, 104–109
Utopia: no flow control or error correction, 228
UTP (see Unshielded Twisted Pair)
UWB (see Ultra-WideBand communication)

V
V.32 modem, 136
V.34 modem, 136

918 INDEX

V.90 modem, 137
V.92 modem, 137
VC (see Virtual Circuit)
VDSL, 139
VDSL2, 139
Very small aperture terminal, 180
Video

720p, 684
1080p, 684
HD, 684
4K, 684
8K, 684
progressive, 685

Video compression, 685–687
Video on demand, 687
Virtual circuit, 257, 362
Virtual-circuit network, 362
Virtual LAN, 18, 345–348
Virtual private network, 13–14, 23–25, 429, 824–825
Visitor location register, 160
VLAN (see Virtual LAN)
VLR (see Visitor Location Register)
VoD (see Video on Demand)
Voice-grade line, 113
Voice over IP, 14, 55, 167, 319, 681, 695–698
Voice over LTE, 168
VoIP (see Voice over IP)
VoLTE (see Voice over LTE)
Vplus, 139
VPN (see Virtual Private Network)
VPNs, 13
VSAT (see Very Small Aperture Terminal)
W3C (see World Wide Web Consortium)
WAF (see Web Application Firewall)
Walsh code, 127
WAN (see Wide Area Network)
Waterfall diagram, 655
Watermarking, 851
Waveform coding, 684
Waveforms to bits, 109–130
Wavelength, 101
Wavelength division multiplexing, 129–130
WCDMA (see Wideband CDMA)
WDM (see Wavelength Division Multiplexing)
Web application, 3
Web application firewall, 759
Web assembly, 842
Web browser, 651

Web page, 651
Web privacy, 676–68
Web proxy, 709–711
Web security, 834–844
Webmail, 649–650
Website threat, 834–835
Weighted fair queueing packet scheduling, 413–414
Well-known port, 559
WEP (see Wired Equivalent Privacy)
WFQ (see Weighted Fair Queueing)
White space, 190
Wide area network, 21–25
Wideband CDMA, 163–164
WiFi (see Wireless network or IEEEE 802.11)
WiFi alliance, 68
WiFi protected access, 46, 323, 826
Wiki, 5
Wikipedia, 5
WiMAX, 21, 43, 73, 166
Window probe, 570
Window scale, 565
Wine, shedding algorithm, 397
Wired equivalent privacy, 46, 324, 826
Wireless congestion control, 544–546
Wireless LAN, 309–324
Wireless LAN protocol, 287–290
Wireless network, 8–11, 43–47
Wireless router, 16
Wireless security, 825–829
Wireless transmission, 100
Wireshark, 742
Work factor, cryptographic, 769
World Wide Web, 650–680

architectural overview, 651–659
client side, 653–657
dynamic Web page, 660–662
HTTP, 664–676
HTTP Protocol, 653
HTTPS, 664–676
server side, 657–659
static object, 659–660

World Wide Web Consortium, 74, 651
Wormhole routing, 338
Wozniak, Steve, 732
WPA (see WiFi Protected Access)
WPA2 (see WiFi Protected Access 2)
WPA3, 826
WWW (see World Wide Web)

INDEX 919

X
X.509 certificate, 799–802
XDSL, 137
Xmas scan, 741

Z
Zero-rated service, 153
Zero rating, 77
Zipf ’s law, 706
Zmap, 742
Zone

Demilitarized, 760–761
DNS, 625–628, 836–837
H.323, 698

920 INDEX

Also by Andrew S. Tanenbaum and Herbert Bos

Modern Operating Systems, 4th ed.

This worldwide best-seller incorporates the latest developments in operating systems. The book
starts with chapters on the principles, including processes, memory management, file systems, I/O,
and so on. Then it covers virtualization, multiples processor systems, and security. Two case stud-
ies—UNIX/Linux and Windows come next. Tanenbaum’s experience as the designer of three operat-
ing systems (Amoeba, Globe, and MINIX) gives him a background few other authors can match, so
the final chapter distills his long experience into advice for operating system designers.

" 921

Also by Andrew S. Tanenbaum and Todd Austin

Structured Computer Organization, 6th ed.

A computer can be structured as a hierarchy of levels, from the hardware up through the operat-
ing system. This book treats all of them, starting with how a transistor works and ending with operat-
ing system design. No previous experience with either hardware or software is needed to follow this
book, however, as all the topics are self contained and explained in simple terms starting right at the
beginning. The running examples used throughout the book are the ever-popular Intel x86 and the
ARM.

922

About the authors

Andrew S. Tanenbaum has an S.B. degree from M.I.T. and a Ph.D. from the University of Cali-
fornia at Berkeley. He is currently an emeritus Professor of Computer Science at the Vrije Univer-
siteit where he taught operating systems, networks, and related topics for over 40 years. His research
was on highly reliable operating systems although he also worked on compilers, distributed systems,
security, and other topics over the years. These research projects have led to over 200 refereed papers
in journals and conferences.

Prof. Tanenbaum has also (co)authored five books which have now appeared in 24 editions. The
books have been translated into 21 languages, including Basque, Chinese, French, German, Japanese,
Korean, Romanian, Serbian, Spanish, and Thai, and are used at universities all over the world.

He is also the author of MINIX, a UNIX clone initially intended for use in student programming
labs. It was the direct inspiration for Linux and the platform on which Linux was initially developed.

Tanenbaum is a Fellow of the ACM, a Fellow of the the IEEE, and a member of the Royal
Netherlands Academy of Arts and Sciences. He has won numerous scientific prizes from ACM,
IEEE, and USENIX, which are listed on his Wikipedia page. He also has two honorary doctorates.
His home page is at www.cs.vu.nl/~ast.

Nick Feamster is Neubauer Professor of Computer Science and the Director of Center for Data
and Computing (CDAC) at the University of Chicago. His research focuses on many aspects of com-
puter networking and networked systems, with a focus on network operations, network security, and
Internet censorship, and applications of machine learning to computer networks.

He received his Ph.D. in Computer science from MIT in 2005, and his S.B. and M.Eng. degrees
in Electrical Engineering and Computer Science from MIT in 2000 and 2001, respectively. He was an
early-stage employee at Looksmart (which became the directory service for AltaVista), where he
wrote the company’s first web crawler. At Damballa, he helped design the company’s first botnet-
detection algorithm.

Prof. Feamster is an ACM Fellow. He received the Presidential Early Career Award for Scien-
tists and Engineers (PECASE) for his contributions to data-driven approaches to network security.
His early work on the Routing Control Platform won the USENIX Test of Time Award for its influ-
ence on software defined networking. He created the first online course on this topic. He was also a
founding instructor in Georgia Tech’s online Masters in Computer Science program.

Feamster is an avid distance runner, having completed 20 marathons, including Boston, New
York, and Chicago.

David J. Wetherall works at Google. He was formerly an Associate Professor of Computer Sci-
ence and Engineering at the University of Washington in Seattle, and advisor to Intel Labs in Seattle.
He hails from Australia, where he received his B.E. in electrical enginering from the University of
Western Australia and his Ph.D. in computer science from M.I.T.

Dr. Wetherall has worked in the area of networking for the past two decades. His research is
focused on network systems, especially wireless networks and mobile computing, the design of Inter-
net protocols, and network measurement.

He received the ACM SIGCOMM Test-of-Time award for research that pioneered active net-
works, an architecture for rapidly introducing new network services. He received the IEEE William
Bennett Prize for breakthroughs in Internet mapping. His research was recognized with an NSF
CAREER award in 2002, and he became a Sloan Fellow in 2004.

Wetherall participates in the networking research community. He has co-chaired the program
committees of SIGCOMM, NSDI and MobiSys, and co-founded the ACM HotNets workshops. He
has served on numerous program committees for networking conferences, and is an editor for ACM
Computer Communication Review.

	CONTENTS
	READING LIST AND BIBLIOGRAPHY
	INDEX

