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Preface

I think the animal on this cover, a common palm civet, is applicable to the subject of
this book. I knew nothing about this animal until I saw the cover, so I looked it up.
Common palm civets are considered pests because they defecate all over attics and
make loud noises fighting with each other at the most inopportune times. Their anal
scent glands emit a nauseating secretion. They have an endangered species rating of
“Least Concern,” which is apparently the politically correct way of saying, “Kill as
many of these as you want; no one will miss them.” Common palm civets enjoy eating
coffee cherries, and they pass the coffee beans through. Kopi luwak, one of the most
expensive coffees in the world, is made from the coffee beans extracted from civet
excretions. According to the Specialty Coffee Association of America, “It just tastes
bad.”

This makes the common palm civet a perfect mascot for concurrent and multithrea‐
ded development. To the uninitiated, concurrency and multithreading are undesira‐
ble. They make well-behaved code act up in the most horrendous ways. Race condi‐
tions and whatnot cause loud crashes (always, it seems, either in production or dur‐
ing a demo). Some have gone so far as to declare “threads are evil” and avoid concur‐
rency completely. There are a handful of developers who have developed a taste for
concurrency and use it without fear; but most developers have been burned in the
past by concurrency, and that experience has left a bad taste in their mouth.

However, for modern applications, concurrency is quickly becoming a requirement.
Users these days expect fully responsive interfaces, and server applications are having
to scale to unprecedented levels. Concurrency addresses both of these trends.

Fortunately, there are many modern libraries that make concurrency much easier!
Parallel processing and asynchronous programming are no longer exclusively the
domains of wizards. By raising the level of abstraction, these libraries make respon‐
sive and scalable application development a realistic goal for every developer. If you
have been burned in the past, when concurrency was extremely difficult, then I
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encourage you to give it another try with modern tools. We can probably never call
concurrency easy, but it sure isn’t as hard as it used to be!

Who Should Read This Book
This book is written for developers who want to learn modern approaches to concur‐
rency. I do assume that you’ve got a fair amount of .NET experience, including an
understanding of generic collections, enumerables, and LINQ. I do not expect that
you have any multithreading or asynchronous programming knowledge. If you do
have some experience in those areas, you may still find this book helpful because it
introduces newer libraries that are safer and easier to use.

Concurrency is useful for any kind of application. It doesn’t matter whether you work
on desktop, mobile, or server applications; these days concurrency is practically a
requirement across the board. You can use the recipes in this book to make user
interfaces more responsive and servers more scalable. We are already at the point
where concurrency is ubiquitous, and understanding these techniques and their uses
is essential knowledge for the professional developer.

Why I Wrote This Book
Early in my career, I learned multithreading the hard way. After a couple of years, I
learned asynchronous programming the hard way. While those were both valuable
experiences, I do wish that back then I had some of the tools and resources that are
available today. In particular, the async and await support in modern .NET lan‐
guages is pure gold.

However, if you look around today at books and other resources for learning concur‐
rency, they almost all start by introducing the most low-level concepts. There’s excel‐
lent coverage of threads and serialization primitives, and the higher-level techniques
are put off until later, if they’re covered at all. I believe this is for two reasons. First,
many developers of concurrency, such as myself, did learn the low-level concepts
first, slogging through the old-school techniques. Second, many books are years old
and cover now-outdated techniques; as the newer techniques have become available,
these books have been updated to include them, but have unfortunately placed them
at the end.

I think that’s backward. In fact, this book only covers modern approaches to concur‐
rency. That’s not to say there’s no value in understanding all the low-level concepts.
When I went to college for programming, I had one class where I had to build a vir‐
tual CPU from a handful of gates, and another class that covered assembly program‐
ming. In my professional career, I’ve never designed a CPU, and I’ve only written a
couple dozen lines of assembly, but my understanding of the fundamentals still helps
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me every day. Still, it’s best to start with the higher-level abstractions; my first pro‐
gramming class wasn’t in assembly language.

This book fills a niche: it is an introduction to (and reference for) concurrency using
modern approaches. It covers several different kinds of concurrency, including paral‐
lel, asynchronous, and reactive programming. It does not, however, cover any of the
old-school techniques, which are adequately covered in many other books and online
resources.

Navigating This Book
Here’s how the book is broken down:

• Chapter 1 is an introduction to the various kinds of concurrency covered by this
book: parallel, asynchronous, reactive, and dataflow.

• Chapters 2–6 are a more thorough introduction to these kinds of concurrency.
• The remaining chapters each deal with a particular aspect of concurrency, and

they act as a reference for solutions to common problems.

I recommend reading (or at least skimming) the first chapter, even if you’re already
familiar with some kinds of concurrency.

As this book goes to press, .NET Core 3.0 is still in beta, so some
details around asynchronous streams may change.

Online Resources
This book acts like a broad-spectrum introduction to several different kinds of con‐
currency. I’ve done my best to include techniques that I and others have found the
most helpful, but this book isn’t exhaustive by any means. The following resources are
the best ones I’ve found for a more thorough exploration of these technologies:

• For parallel programming, the best resource I know of is Parallel Programming
with Microsoft .NET by Microsoft Press, the text of which is available online.
Unfortunately, it’s already a bit out of date. The section on futures should use
asynchronous code instead, and the section on pipelines should use Channels or
TPL Dataflow.

• For asynchronous programming, MSDN is quite good, particularly the “Asyn‐
chronous Programming” overview.

• Microsoft has also made available documentation for TPL Dataflow.
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• System.Reactive (Rx) is a library that is gaining a lot of traction online and con‐
tinues evolving. In my opinion, the best resource today for Rx is Introduction to
Rx, an ebook by Lee Campbell.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://oreil.ly/concur-c-ckbk2.
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This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Concurrency in C# Cookbook, Second
Edition, by Stephen Cleary (O’Reilly). Copyright 2019 Stephen Cleary,
978-1-492-05450-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For almost 40 years, O’Reilly Media has provided technology
and business training, knowledge, and insight to help compa‐
nies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.
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How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/concur-c-ckbk2.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1

Concurrency: An Overview

Concurrency is a key aspect of beautiful software. For decades, concurrency was pos‐
sible but difficult to achieve. Concurrent software was difficult to write, difficult to
debug, and difficult to maintain. As a result, many developers chose the easier path
and avoided concurrency. With the libraries and language features available for
modern .NET programs, concurrency is now much easier. Microsoft has led the way
in significantly lowering the bar for concurrency. Previously, concurrent program‐
ming was the domain of experts; these days, every developer can (and should)
embrace concurrency.

Introduction to Concurrency
Before continuing, I’d like to clear up some terminology that I’ll be using throughout
this book. These are my own definitions that I use consistently to disambiguate dif‐
ferent programming techniques. Let’s start with concurrency.

Concurrency
Doing more than one thing at a time.

I hope it’s obvious how concurrency is helpful. End-user applications use concur‐
rency to respond to user input while writing to a database. Server applications use
concurrency to respond to a second request while finishing the first request. You need
concurrency any time you need an application to do one thing while it’s working on
something else. Almost every software application in the world can benefit from con‐
currency.

Most developers hearing the term “concurrency” immediately think of “multithread‐
ing.” I’d like to draw a distinction between these two.
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Multithreading
A form of concurrency that uses multiple threads of execution.

Multithreading refers to literally using multiple threads. As demonstrated in many
recipes in this book, multithreading is one form of concurrency, but certainly not the
only one. In fact, direct use of low-level threading types has almost no purpose in a
modern application; higher-level abstractions are more powerful and more efficient
than old-school multithreading. For that reason, I’ll minimize my coverage of outda‐
ted techniques. None of the multithreading recipes in this book use the Thread or
BackgroundWorker types; they have been replaced with superior alternatives.

As soon as you type new Thread(), it’s over; your project already
has legacy code.

But don’t get the idea that multithreading is dead! Multithreading lives on in the
thread pool, a useful place to queue work that automatically adjusts itself according to
demand. In turn, the thread pool enables another important form of concurrency:
parallel processing.

Parallel processing
Doing lots of work by dividing it up among multiple threads that run concur‐
rently.

Parallel processing (or parallel programming) uses multithreading to maximize the
use of multiple processor cores. Modern CPUs have multiple cores, and if there’s a lot
of work to do, then it makes no sense to make one core do all the work while the
others sit idle. Parallel processing splits the work among multiple threads, which can
each run independently on a different core.

Parallel processing is one type of multithreading, and multithreading is one type of
concurrency. There’s another type of concurrency that is important in modern appli‐
cations but isn’t as familiar to many developers: asynchronous programming.

Asynchronous programming
A form of concurrency that uses futures or callbacks to avoid unnecessary
threads.

A future (or promise) is a type that represents some operation that will complete in
the future. Some modern future types in .NET are Task and Task<TResult>. Older
asynchronous APIs use callbacks or events instead of futures. Asynchronous pro‐
gramming is centered around the idea of an asynchronous operation: some operation
that is started that will complete some time later. While the operation is in progress, it
doesn’t block the original thread; the thread that starts the operation is free to do
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other work. When the operation completes, it notifies its future or invokes its call‐
back or event to let the application know the operation is finished.

Asynchronous programming is a powerful form of concurrency, but until recently, it
required extremely complex code. The async and await support in modern
languages make asynchronous programming almost as easy as synchronous (non‐
concurrent) programming.

Another form of concurrency is reactive programming. Asynchronous programming
implies that the application will start an operation that will complete once at a later
time. Reactive programming is closely related to asynchronous programming but is
built on asynchronous events instead of asynchronous operations. Asynchronous
events may not have an actual “start,” may happen at any time, and may be raised
multiple times. One example is user input.

Reactive programming
A declarative style of programming where the application reacts to events.

If you consider an application to be a massive state machine, the application’s behav‐
ior can be described as reacting to a series of events by updating its state at each event.
This isn’t as abstract or theoretical as it sounds; modern frameworks make this
approach quite useful in real-world applications. Reactive programming isn’t neces‐
sarily concurrent, but it is closely related to concurrency, so this book covers the
basics.

Usually, a mixture of techniques is used when writing a concurrent program. Most
applications at least use multithreading (via the thread pool) and asynchronous pro‐
gramming. Feel free to mix and match all the various forms of concurrency, using the
appropriate tool for each part of the application.

Introduction to Asynchronous Programming
Asynchronous programming has two primary benefits. The first benefit is for end-
user GUI programs: asynchronous programming enables responsiveness. Everyone
has used a program that temporarily locks up while it’s working; an asynchronous
program can remain responsive to user input while it’s working. The second benefit is
for server-side programs: asynchronous programming enables scalability. A server
application can scale somewhat just by using the thread pool, but an asynchronous
server application can usually scale an order of magnitude better than that.

Both benefits of asynchronous programming derive from the same underlying aspect:
asynchronous programming frees up a thread. For GUI programs, asynchronous
programming frees up the UI thread; this permits the GUI application to remain
responsive to user input. For server applications, asynchronous programming frees
up request threads; this permits the server to use its threads to serve more requests.
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Modern asynchronous .NET applications use two keywords: async and await. The
async keyword is added to a method declaration, and performs a double purpose: it
enables the await keyword within that method and it signals the compiler to generate
a state machine for that method, similar to how yield return works. An async 
method may return Task<TResult> if it returns a value, Task if it doesn’t return a
value, or any other “task-like” type, such as ValueTask. In addition, an async method
may return IAsyncEnumerable<T> or IAsyncEnumerator<T> if it returns multiple val‐
ues in an enumeration. The task-like types represent futures; they can notify the call‐
ing code when the async method completes.

Avoid async void! It is possible to have an async method return
void, but you should only do this if you’re writing an async event
handler. A regular async method without a return value should
return Task, not void.

With that background, let’s take a quick look at an example:

async Task DoSomethingAsync()
{
  int value = 13;

  // Asynchronously wait 1 second.
  await Task.Delay(TimeSpan.FromSeconds(1));

  value *= 2;

  // Asynchronously wait 1 second.
  await Task.Delay(TimeSpan.FromSeconds(1));

  Trace.WriteLine(value);
}

An async method begins executing synchronously, just like any other method.
Within an async method, the await keyword performs an asynchronous wait on its
argument. First, it checks whether the operation is already complete; if it is, it contin‐
ues executing (synchronously). Otherwise, it will pause the async method and return
an incomplete task. When that operation completes some time later, the async
method will resume executing.

You can think of an async method as having several synchronous portions, broken
up by await statements. The first synchronous portion executes on whatever thread
calls the method, but where do the other synchronous portions execute? The answer
is a bit complicated.

When you await a task (the most common scenario), a context is captured when the
await decides to pause the method. This is the current SynchronizationContext
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unless it’s null, in which case the context is the current TaskScheduler. The method
resumes executing within that captured context. Usually, this context is the UI con‐
text (if you’re on the UI thread) or the threadpool context (most other situations). If 
you have an ASP.NET Classic (pre-Core) application, then the context could also be
an ASP.NET request context. ASP.NET Core uses the threadpool context rather than
a special request context.

So, in the preceding code, all the synchronous portions will attempt to resume on the
original context. If you call DoSomethingAsync from a UI thread, each of its synchro‐
nous portions will run on that UI thread; but if you call it from a threadpool thread,
each of its synchronous portions will run on any threadpool thread.

You can avoid this default behavior by awaiting the result of the ConfigureAwait
extension method and passing false for the continueOnCapturedContext parameter.
The following code will start on the calling thread, and after it is paused by an await,
it’ll resume on a threadpool thread:

async Task DoSomethingAsync()
{
  int value = 13;

  // Asynchronously wait 1 second.
  await Task.Delay(TimeSpan.FromSeconds(1)).ConfigureAwait(false);

  value *= 2;

  // Asynchronously wait 1 second.
  await Task.Delay(TimeSpan.FromSeconds(1)).ConfigureAwait(false);

  Trace.WriteLine(value);
}

It’s good practice to always call ConfigureAwait in your core
“library” methods, and only resume the context when you need it
—in your outer “user interface” methods.

The await keyword is not limited to working with tasks; it can work with any kind of
awaitable that follows a certain pattern. As an example, the Base Class Library
includes the ValueTask<T> type, which reduces memory allocations if the result is
commonly synchronous; for example, if the result can be read from an in-memory
cache. ValueTask<T> is not directly convertible to Task<T>, but it does follow the
awaitable pattern, so you can directly await it. There are other examples, and you can
build your own, but most of the time await will take a Task or Task<TResult>.
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There are two basic ways to create a Task instance. Some tasks represent actual code
that a CPU has to execute; these computational tasks should be created by calling
Task.Run (or TaskFactory.StartNew if you need them to run on a particular schedu‐
ler). Other tasks represent a notification; these kinds of event-based tasks are created
by TaskCompletionSource<TResult> (or one of its shortcuts). Most I/O tasks use
TaskCompletionSource<TResult>.

Error handling is natural with async and await. In the code snippet that follows, Pos
sibleExceptionAsync may throw a NotSupportedException, but TrySomethingA
sync can catch the exception naturally. The caught exception has its stack trace prop‐
erly preserved and isn’t artificially wrapped in a TargetInvocationException or
AggregateException:

async Task TrySomethingAsync()
{
  try
  {
    await PossibleExceptionAsync();
  }
  catch (NotSupportedException ex)
  {
    LogException(ex);
    throw;
  }
}

When an async method throws (or propagates) an exception, the exception is placed
on its returned Task and the Task is completed. When that Task is awaited, the await
operator will retrieve that exception and (re)throw it in a way such that its original
stack trace is preserved. Thus, code such as the following example would work as
expected if PossibleExceptionAsync was an async method:

async Task TrySomethingAsync()
{
  // The exception will end up on the Task, not thrown directly.
  Task task = PossibleExceptionAsync();

  try
  {
    // The Task's exception will be raised here, at the await.
    await task;
  }
  catch (NotSupportedException ex)
  {
    LogException(ex);
    throw;
  }
}
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There’s one other important guideline when it comes to async methods: once you
start using async, it’s best to allow it to grow through your code. If you call an async
method, you should (eventually) await the task it returns. Resist the temptation to
call Task.Wait, Task<TResult>.Result, or GetAwaiter().GetResult(); doing so
could cause a deadlock. Consider the following method:

async Task WaitAsync()
{
  // This await will capture the current context ...
  await Task.Delay(TimeSpan.FromSeconds(1));
  // ... and will attempt to resume the method here in that context.
}

void Deadlock()
{
  // Start the delay.
  Task task = WaitAsync();

  // Synchronously block, waiting for the async method to complete.
  task.Wait();
}

The code in this example will deadlock if called from a UI or ASP.NET Classic con‐
text because both of those contexts only allow one thread in at a time. Deadlock will
call WaitAsync, which begins the delay. Deadlock then (synchronously) waits for that
method to complete, blocking the context thread. When the delay completes, await
attempts to resume WaitAsync within the captured context, but it cannot because
there’s already a thread blocked in the context, and the context only allows one thread
at a time. Deadlock can be prevented two ways: you can use ConfigureAwait(false)
within WaitAsync (which causes await to ignore its context), or you can await the
call to WaitAsync (making Deadlock into an async method).

If you use async, it’s best to use async all the way.

For a more complete introduction to async, the online documentation that Microsoft
has provided for async is fantastic; I recommend reading at least the Asynchronous
Programming overview and the Task-based Asynchronous Pattern (TAP) overview. If
you want to go a bit deeper, there’s also the Async in Depth documentation.

Asynchronous streams take the groundwork of async and await and extend it to
handle multiple values. Asynchronous streams are built around the concept of asyn‐
chronous enumerables, which are like regular enumerables, except that they enable
asynchronous work to be done when retrieving the next item in the sequence. This is

Introduction to Asynchronous Programming | 7

http://bit.ly/async-prog
http://bit.ly/async-prog
http://bit.ly/task-async-patt
http://bit.ly/async-indepth


an extremely powerful concept that Chapter 3 covers in more detail. Asynchronous 
streams are especially useful whenever you have a sequence of data that arrives either
one at a time or in chunks. For example, if your application processes the response of
an API that uses paging with limit and offset parameters, then asynchronous
streams are an ideal abstraction. As of the time of this writing, asynchronous streams
are only available on the newest .NET platforms.

Introduction to Parallel Programming
Parallel programming should be used any time you have a fair amount of computa‐
tion work that can be split up into independent chunks. Parallel programming increa‐
ses the CPU usage temporarily to improve throughput; this is desirable on client sys‐
tems where CPUs are often idle, but it’s usually not appropriate for server systems.
Most servers have some parallelism built in; for example, ASP.NET will handle multi‐
ple requests in parallel. Writing parallel code on the server may still be useful in some
situations (if you know that the number of concurrent users will always be low), but
in general, parallel programming on the server would work against its built-in paral‐
lelism and therefore wouldn’t provide any real benefit.

There are two forms of parallelism: data parallelism and task parallelism. Data paral‐
lelism is when you have a bunch of data items to process, and the processing of each
piece of data is mostly independent from the other pieces. Task parallelism is when
you have a pool of work to do, and each piece of work is mostly independent from the
other pieces. Task parallelism may be dynamic; if one piece of work results in several
additional pieces of work, they can be added to the pool of work.

There are a few different ways to do data parallelism. Parallel.ForEach is similar to
a foreach loop and should be used when possible. Parallel.ForEach is covered in
Recipe 4.1. The Parallel class also supports Parallel.For, which is similar to a for
loop, and can be used if the data processing depends on the index. Code that uses
Parallel.ForEach looks like the following:

void RotateMatrices(IEnumerable<Matrix> matrices, float degrees)
{
  Parallel.ForEach(matrices, matrix => matrix.Rotate(degrees));
}

Another option is PLINQ (Parallel LINQ), which provides an AsParallel extension
method for LINQ queries. Parallel is more resource friendly than PLINQ; Parallel
will play more nicely with other processes in the system, while PLINQ will (by
default) attempt to spread itself over all CPUs. The downside to Parallel is that it’s
more explicit; PLINQ in many cases has more elegant code. PLINQ is covered in
Recipe 4.5 and looks like this:

IEnumerable<bool> PrimalityTest(IEnumerable<int> values)
{
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  return values.AsParallel().Select(value => IsPrime(value));
}

Regardless of the method you choose, one guideline stands out when doing parallel
processing.

The chunks of work should be as independent from one another as
possible.

As long as your chunk of work is independent from all other chunks, you maximize
your parallelism. As soon as you start sharing state between multiple threads, you
have to synchronize access to that shared state, and your application becomes less
parallel. Chapter 12 covers synchronization in more detail.

The output of your parallel processing can be handled in various ways. You can place
the results in some kind of a concurrent collection, or you can aggregate the results
into a summary. Aggregation is common in parallel processing; this kind of map/
reduce functionality is also supported by the Parallel class method overloads.
Recipe 4.2 looks at aggregation in more detail.

Now let’s turn to task parallelism. Data parallelism is focused on processing data; task
parallelism is just about doing work. At a high level, data parallelism and task paral‐
lelism are similar; “processing data” is a kind of “work.” Many parallelism problems
can be solved either way; it’s convenient to use whichever API is more natural for the
problem at hand.

Parallel.Invoke is one type of Parallel method that does a kind of fork/join task
parallelism. This method is covered in Recipe 4.3; you just pass in the delegates you
want to execute in parallel:

void ProcessArray(double[] array)
{
  Parallel.Invoke(
      () => ProcessPartialArray(array, 0, array.Length / 2),
      () => ProcessPartialArray(array, array.Length / 2, array.Length)
  );
}

void ProcessPartialArray(double[] array, int begin, int end)
{
  // CPU-intensive processing...
}

The Task type was originally introduced for task parallelism, though these days it’s
also used for asynchronous programming. A Task instance—as used in task parallel‐
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ism—represents some work. You can use the Wait method to wait for a task to com‐
plete, and you can use the Result and Exception properties to retrieve the results of
that work. Code using Task directly is more complex than code using Parallel, but it
can be useful if you don’t know the structure of the parallelism until runtime. With
this kind of dynamic parallelism, you don’t know how many pieces of work you need
to do at the beginning of the processing; you find out as you go along. Generally, a
dynamic piece of work should start whatever child tasks it needs and then wait for
them to complete. The Task type has a special flag, TaskCreationOptions.Attached
ToParent, which you could use for this. Dynamic parallelism is covered in Recipe 4.4.

Task parallelism should strive to be independent, just like data parallelism. The more
independent your delegates can be, the more efficient your program can be. Also, if
your delegates aren’t independent, then they need to be synchronized, and it’s harder
to write correct code if that code needs synchronization. With task parallelism, be
especially careful of variables captured in closures. Remember that closures capture
references (not values), so you can end up with sharing that isn’t obvious.

Error handling is similar for all kinds of parallelism. Because operations are proceed‐
ing in parallel, it’s possible for multiple exceptions to occur, so they are wrapped up in
an AggregateException that’s thrown to your code. This behavior is consistent across
Parallel.ForEach, Parallel.Invoke, Task.Wait, etc. The AggregateException type
has some useful Flatten and Handle methods to simplify the error handling code:

try
{
  Parallel.Invoke(() => { throw new Exception(); },
      () => { throw new Exception(); });
}
catch (AggregateException ex)
{
  ex.Handle(exception =>
  {
    Trace.WriteLine(exception);
    return true; // "handled"
  });
}

Usually, you don’t have to worry about how the work is handled by the thread pool.
Data and task parallelism use dynamically adjusting partitioners to divide work
among worker threads. The thread pool increases its thread count as necessary. The
thread pool has a single work queue, and each threadpool thread also has its own
work queue. When a threadpool thread queues additional work, it sends it to its own
queue first because the work is usually related to the current work item; this behavior
encourages threads to work on their own work, and maximizes cache hits. If another
thread doesn’t have work to do, it’ll steal work from another thread’s queue. Microsoft
put a lot of work into making the thread pool as efficient as possible, and there are a
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large number of knobs you can tweak if you need maximum performance. As long as
your tasks are not extremely short, they should work well with the default settings.

Tasks should neither be extremely short, nor extremely long.

If your tasks are too short, then the overhead of breaking up the data into tasks and
scheduling those tasks on the thread pool becomes significant. If your tasks are too
long, then the thread pool cannot dynamically adjust its work balancing efficiently.
It’s difficult to determine how short is too short and how long is too long; it really
depends on the problem being solved and the approximate capabilities of the hard‐
ware. As a general rule, I try to make my tasks as short as possible without running
into performance issues (you’ll see your performance suddenly degrade when your
tasks are too short). Even better, instead of using tasks directly, use the Parallel type
or PLINQ. These higher-level forms of parallelism have partitioning built in to han‐
dle this automatically for you (and adjust as necessary at runtime).

If you want to dive deeper into parallel programming, the best book on the subject is
Parallel Programming with Microsoft .NET, by Colin Campbell et al. (Microsoft
Press).

Introduction to Reactive Programming (Rx)
Reactive programming has a higher learning curve than other forms of concurrency,
and the code can be harder to maintain unless you keep up with your reactive skills.
If you’re willing to learn it, though, reactive programming is extremely powerful.
Reactive programming enables you to treat a stream of events like a stream of data.
As a rule of thumb, if you use any of the event arguments passed to an event, then
your code would benefit from using System.Reactive instead of a regular event han‐
dler.

System.Reactive used to be called Reactive Extensions, which was
often shortened to “Rx.” All three of these terms refer to the same
technology.

Reactive programming is based on the notion of observable streams. When you sub‐
scribe to an observable stream, you’ll receive any number of data items (OnNext), and
then the stream may end with a single error (OnError) or “end of stream” notification
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(OnCompleted). Some observable streams never end. The actual interfaces look like
the following:

interface IObserver<in T>
{
  void OnNext(T item);
  void OnCompleted();
  void OnError(Exception error);
}

interface IObservable<out T>
{
  IDisposable Subscribe(IObserver<TResult> observer);
}

However, you should never implement these interfaces. The System.Reactive (Rx)
library by Microsoft has all the implementations you should ever need. Reactive code
ends up looking very much like LINQ; you can think of it as “LINQ to Events.” Sys‐
tem.Reactive has everything that LINQ does and adds in a large number of its own
operators, particularly ones that deal with time. The following code starts with some
unfamiliar operators (Interval and Timestamp) and ends with a Subscribe, but in
the middle are some Where and Select operators that should be familiar from LINQ:

Observable.Interval(TimeSpan.FromSeconds(1))
    .Timestamp()
    .Where(x => x.Value % 2 == 0)
    .Select(x => x.Timestamp)
    .Subscribe(x => Trace.WriteLine(x));

The example code starts with a counter running off a periodic timer (Interval) and
adds a timestamp to each event (Timestamp). It then filters the events to only include
even counter values (Where), selects the timestamp values (Timestamp), and then as
each resulting timestamp value arrives, writes it to the debugger (Subscribe). Don’t
worry if you don’t understand the new operators, such as Interval: these are covered
later in this book. For now, just keep in mind that this is a LINQ query very similar to
the ones you’re already familiar with. The main difference is that LINQ to Objects
and LINQ to Entities use a “pull” model, where the enumeration of a LINQ query
pulls the data through the query, while LINQ to Events (System.Reactive) uses a
“push” model, where the events arrive and travel through the query by themselves.

The definition of an observable stream is independent from its subscriptions. The last
example is the same as the following code:

IObservable<DateTimeOffset> timestamps =
    Observable.Interval(TimeSpan.FromSeconds(1))
        .Timestamp()
        .Where(x => x.Value % 2 == 0)
        .Select(x => x.Timestamp);
timestamps.Subscribe(x => Trace.WriteLine(x));
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It is normal for a type to define the observable streams and make them available as an
IObservable<TResult> resource. Other types can then subscribe to those streams or
combine them with other operators to create another observable stream.

A System.Reactive subscription is also a resource. The Subscribe operators return an
IDisposable that represents the subscription. When your code is done listening to an
observable stream, it should dispose its subscription.

Subscriptions behave differently with hot and cold observables. A hot observable is a
stream of events that is always going on, and if there are no subscribers when the
events come in, they are lost. For example, mouse movement is a hot observable. A
cold observable is an observable that doesn’t have incoming events all the time. A cold
observable will react to a subscription by starting the sequence of events. For exam‐
ple, an HTTP download is a cold observable; the subscription causes the HTTP
request to be sent.

The Subscribe operator should always take an error handling parameter as well. The
preceding examples do not; the following is a better example that will respond appro‐
priately if the observable stream ends in an error:

Observable.Interval(TimeSpan.FromSeconds(1))
    .Timestamp()
    .Where(x => x.Value % 2 == 0)
    .Select(x => x.Timestamp)
    .Subscribe(x => Trace.WriteLine(x),
        ex => Trace.WriteLine(ex));

Subject<TResult> is one type that is useful when experimenting with System.Reac‐
tive. This “subject” is like a manual implementation of an observable stream. Your
code can call OnNext, OnError, and OnCompleted, and the subject will forward those
calls to its subscribers. Subject<TResult> is great for experimenting, but in produc‐
tion code, you should strive to use operators like those covered in Chapter 6.

There are tons of useful System.Reactive operators, and I only cover a few selected
ones in this book. For more information on System.Reactive, I recommend the excel‐
lent online book Introduction to Rx.

Introduction to Dataflows
TPL Dataflow is an interesting mix of asynchronous and parallel technologies. It’s
useful when you have a sequence of processes that need to be applied to your data.
For example, you may need to download data from a URL, parse it, and then process
it in parallel with other data. TPL Dataflow is commonly used as a simple pipeline,
where data enters one end and travels until it comes out the other. However, TPL
Dataflow is far more powerful than this; it’s capable of handling any kind of mesh.
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You can define forks, joins, and loops in a mesh, and TPL Dataflow will handle them
appropriately. Most of the time, though, TPL Dataflow meshes are used as a pipeline.

The basic building unit of a dataflow mesh is a dataflow block. A block can either be a
target block (receiving data), a source block (producing data), or both. Source blocks
can be linked to target blocks to create the mesh; linking is covered in Recipe 5.1.
Blocks are semi-independent; they will attempt to process data as it arrives and push
the results downstream. The usual way of using TPL Dataflow is to create all the
blocks, link them together, and then start putting data in at one end. The data then
comes out of the other end by itself. Again, Dataflow is more powerful than this; it’s
possible to break links and create new blocks and add them to the mesh while there is
data flowing through it, but that is a very advanced scenario.

Target blocks have buffers for the data they receive. Having buffers enables them to
accept new data items even if they aren’t ready to process them yet; this keeps data
flowing through the mesh. This buffering can cause problems in fork scenarios,
where one source block is linked to two target blocks. When the source block has
data to send downstream, it starts offering it to its linked blocks one at a time. By
default, the first target block would just take the data and buffer it, and the second
target block would never get any. The fix for this situation is to limit the target block
buffers by making them nongreedy; Recipe 5.4 covers this.

A block will fault when something goes wrong, for example, if the processing delegate
throws an exception when processing a data item. When a block faults, it will stop
receiving data. By default, it won’t take down the whole mesh; this enables you to
rebuild that part of the mesh or redirect the data. However, this is an advanced sce‐
nario; most times, you want the faults to propagate along the links to the target
blocks. Dataflow supports this option as well; the only tricky part is that when an
exception is propagated along a link, it is wrapped in an AggregateException. So, if
you have a long pipeline, you could end up with a deeply nested exception; the
method AggregateException.Flatten can be used to work around this:

try
{
  var multiplyBlock = new TransformBlock<int, int>(item =>
  {
    if (item == 1)
      throw new InvalidOperationException("Blech.");
    return item * 2;
  });
  var subtractBlock = new TransformBlock<int, int>(item => item - 2);
  multiplyBlock.LinkTo(subtractBlock,
      new DataflowLinkOptions { PropagateCompletion = true });

  multiplyBlock.Post(1);
  subtractBlock.Completion.Wait();
}
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catch (AggregateException exception)
{
  AggregateException ex = exception.Flatten();
  Trace.WriteLine(ex.InnerException);
}

Recipe 5.2 covers dataflow error handling in more detail.

At first glance, dataflow meshes sound very much like observable streams, and they
do have much in common. Both meshes and streams have the concept of data items
passing through them. Also, both meshes and streams have the notion of a normal
completion (a notification that no more data is coming), as well as a faulting comple‐
tion (a notification that some error occurred during data processing). But Sys‐
tem.Reactive (Rx) and TPL Dataflow do not have the same capabilities. Rx observa‐
bles are generally better than dataflow blocks when doing anything related to timing.
Dataflow blocks are generally better than Rx observables when doing parallel pro‐
cessing. Conceptually, Rx works more like setting up callbacks: each step in the
observable directly calls the next step. In contrast, each block in a dataflow mesh is
very independent from all the other blocks. Both Rx and TPL Dataflow have their
own uses, with some amount of overlap. They also work quite well together; Recipe
8.8 covers interoperability between Rx and TPL Dataflow.

If you’re familiar with actor frameworks, TPL Dataflow will seem to share similarities
with them. Each dataflow block is independent, in the sense that it will spin up tasks
to do work as needed, like executing a transformation delegate or pushing output to
the next block. You can also set up each block to run in parallel, so that it’ll spin up
multiple tasks to deal with additional input. Due to this behavior, each block does
have a certain similarity to an actor in an actor framework. However, TPL Dataflow is
not a full actor framework; in particular, there’s no built-in support for clean error
recovery or retries of any kind. TPL Dataflow is a library with an actor-like feel, but it
isn’t a full-featured actor framework.

The most common TPL Dataflow block types are TransformBlock<TInput, TOut
put> (similar to LINQ’s Select), TransformManyBlock<TInput, TOutput> (similar to
LINQ’s SelectMany), and ActionBlock<TResult>, which executes a delegate for each
data item. For more information on TPL Dataflow, I recommend the MSDN docu‐
mentation and the “Guide to Implementing Custom TPL Dataflow Blocks”.

Introduction to Multithreaded Programming
A thread is an independent executor. Each process has multiple threads in it, and each
of those threads can be doing different things simultaneously. Each thread has its own
independent stack but shares the same memory with all the other threads in a pro‐
cess. In some applications, there is one thread that is special. For example, user inter‐
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face applications have a single special UI thread, and Console applications have a sin‐
gle special main thread.

Every .NET application has a thread pool. The thread pool maintains a number of
worker threads that are waiting to execute whatever work you have for them to do.
The thread pool is responsible for determining how many threads are in the thread
pool at any time. There are dozens of configuration settings you can play with to
modify this behavior, but I recommend that you leave it alone; the thread pool has
been carefully tuned to cover the vast majority of real-world scenarios.

There is almost no need for you to ever create a new thread yourself. The only time
you should ever create a Thread instance is if you need an STA thread for COM
interop.

A thread is a low-level abstraction. The thread pool is a slightly higher level of
abstraction; when code queues work to the thread pool, the thread pool itself will take
care of creating a thread if necessary. The abstractions covered in this book are higher
still: parallel and dataflow processing queues work to the thread pool as necessary.
Code using these higher abstractions is easier to get right than code using low-level
abstractions.

For this reason, the Thread and BackgroundWorker types are not covered at all in this
book. They have had their time, and that time is over.

Collections for Concurrent Applications
There are a couple of collection categories that are useful for concurrent program‐
ming: concurrent collections and immutable collections. Both of these collection cat‐
egories are covered in Chapter 9. Concurrent collections allow multiple threads to
update them simultaneously in a safe way. Most concurrent collections use snapshots
to enable one thread to enumerate the values while another thread may be adding or
removing values. Concurrent collections are usually more efficient than just protect‐
ing a regular collection with a lock.

Immutable collections are a bit different. An immutable collection cannot actually be
modified; instead, to modify an immutable collection, you create a new collection
that represents the modified collection. This sounds horribly inefficient, but immuta‐
ble collections share as much memory as possible between collection instances, so it’s
not as bad as it sounds. The nice thing about immutable collections is that all opera‐
tions are pure, so they work very well with functional code.

Modern Design
Most concurrent technologies have one similar aspect: they are functional in nature. I
don’t mean functional as in “they get the job done,” but rather functional as a style of

16 | Chapter 1: Concurrency: An Overview



programming that is based on function composition. If you adopt a functional mind‐
set, your concurrent designs will be less convoluted.

One principle of functional programming is purity (that is, avoiding side effects).
Each piece of the solution takes some value(s) as input and produces some value(s) as
output. As much as possible, you should avoid having these pieces depend on global
(or shared) variables or update global (or shared) data structures. This is true whether
the piece is an async method, a parallel task, a System.Reactive operation, or a data‐
flow block. Of course, sooner or later your computations will have to have an effect,
but you’ll find your code is cleaner if you can handle the processing with pure pieces
and then perform updates with the results.

Another principle of functional programming is immutability. Immutability means
that a piece of data cannot change. One reason that immutable data is useful for con‐
current programs is that you never need synchronization for immutable data; the fact
that it cannot change makes synchronization unnecessary. Immutable data also helps
you avoid side effects. Developers are beginning to use more immutable types, and
this book has several recipes covering immutable data structures.

Summary of Key Technologies
The .NET framework has had some support for asynchronous programming since
the very beginning. However, asynchronous programming was difficult until 2012,
when .NET 4.5 (along with C# 5.0 and VB 2012) introduced the async and await
keywords. This book will use the modern async/await approach for all asynchronous
recipes, and it has some recipes showing how to interoperate between async and the
older asynchronous programming patterns. If you need support for older platforms,
see Appendix A.

The Task Parallel Library was introduced in .NET 4.0 with full support for both data
and task parallelism. These days, it’s available even on platforms with fewer resources,
such as mobile phones. The TPL is built in to .NET.

The System.Reactive team has worked hard to support as many platforms as possible.
System.Reactive, like async and await, provide benefits for all sorts of applications,
both client and server. System.Reactive is available in the System.Reactive NuGet
package.

The TPL Dataflow library is officially distributed within the NuGet package for Sys
tem.Threading.Tasks.Dataflow.

Most concurrent collections are built into .NET; there are some additional concurrent
collections available in the System.Threading.Channels NuGet package. Immutable
collections are available in the System.Collections.Immutable NuGet package.
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CHAPTER 2

Async Basics

This chapter introduces you to the basics of using async and await for asynchronous
operations. Here, we’ll only deal with naturally asynchronous operations, which are
operations such as HTTP requests, database commands, and web service calls.

If you have a CPU-intensive operation that you want to treat as though it were asyn‐
chronous (e.g., so that it doesn’t block the UI thread), then see Chapter 4 and Recipe
8.4. Also, this chapter only deals with operations that are started once and complete
once; if you need to handle streams of events, then see Chapters 3 and 6.

2.1 Pausing for a Period of Time
Problem
You need to (asynchronously) wait for a period of time. This is a common scenario
when unit testing or implementing retry delays. It also comes up when coding simple
timeouts.

Solution
The Task type has a static method Delay that returns a task that completes after the
specified time.

The following example code defines a task that completes asynchronously. When fak‐
ing an asynchronous operation, it’s important to test synchronous success and asyn‐
chronous success, as well as asynchronous failure. The following example returns a
task used for the asynchronous success case:

async Task<T> DelayResult<T>(T result, TimeSpan delay)
{
  await Task.Delay(delay);
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  return result;
}

Exponential backoff is a strategy in which you increase the delays between retries. Use
it when working with web services to ensure that the server doesn’t get flooded with
retries. The next example is a simple implementation of exponential backoff:

async Task<string> DownloadStringWithRetries(HttpClient client, string uri)
{
  // Retry after 1 second, then after 2 seconds, then 4.
  TimeSpan nextDelay = TimeSpan.FromSeconds(1);
  for (int i = 0; i != 3; ++i)
  {
    try
    {
      return await client.GetStringAsync(uri);
    }
    catch
    {
    }

    await Task.Delay(nextDelay);
    nextDelay = nextDelay + nextDelay;
  }

  // Try one last time, allowing the error to propagate.
  return await client.GetStringAsync(uri);
}

For production code, I’d recommend a more thorough solution,
such as the Polly NuGet library; this code is just a simple example
of Task.Delay usage.

You can also use Task.Delay as a simple timeout. CancellationTokenSource is the
normal type used to implement a timeout (Recipe 10.3). You can wrap a cancellation
token in an infinite Task.Delay to provide a task that cancels after a specified time.
Finally, use that timer task with Task.WhenAny (Recipe 2.5) to implement a “soft time‐
out.” The following example code returns null if the service doesn’t respond within
three seconds:

async Task<string> DownloadStringWithTimeout(HttpClient client, string uri)
{
  using var cts = new CancellationTokenSource(TimeSpan.FromSeconds(3));
  Task<string> downloadTask = client.GetStringAsync(uri);
  Task timeoutTask = Task.Delay(Timeout.InfiniteTimeSpan, cts.Token);

  Task completedTask = await Task.WhenAny(downloadTask, timeoutTask);
  if (completedTask == timeoutTask)
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    return null;
  return await downloadTask;
}

While it’s possible to use Task.Delay as a “soft timeout,” this approach has limita‐
tions. If the operation times out, it’s not canceled; in the previous example, the down‐
load task continues downloading and will download the full response before discard‐
ing it. The preferred approach is to use a cancellation token as the timeout and pass it
directly to the operation (GetStringAsync in the last example). That said, sometimes
the operation is not cancelable, and in that case Task.Delay may be used by other
code to act like the operation timed out.

Discussion
Task.Delay is a fine option for unit testing asynchronous code or for implementing
retry logic. However, if you need to implement a timeout, a CancellationToken is
usually a better choice.

See Also
Recipe 2.5 covers how Task.WhenAny is used to determine which task completes first.

Recipe 10.3 covers using CancellationToken as a timeout.

2.2 Returning Completed Tasks
Problem
You need to implement a synchronous method with an asynchronous signature. This
situation can arise if you’re inheriting from an asynchronous interface or base class
but want to implement it synchronously. This technique is particularly useful when
unit testing asynchronous code, when you need a simple stub or mock for an asyn‐
chronous interface.

Solution
You can use Task.FromResult to create and return a new Task<T> that is already
completed with the specified value:

interface IMyAsyncInterface
{
  Task<int> GetValueAsync();
}

class MySynchronousImplementation : IMyAsyncInterface
{
  public Task<int> GetValueAsync()
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  {
    return Task.FromResult(13);
  }
}

For methods that don’t have a return value, you can use Task.CompletedTask, which
is a cached Task that is successfully completed:

interface IMyAsyncInterface
{
  Task DoSomethingAsync();
}

class MySynchronousImplementation : IMyAsyncInterface
{
  public Task DoSomethingAsync()
  {
    return Task.CompletedTask;
  }
}

Task.FromResult provides completed tasks only for successful results. If you need a
task with a different kind of result (e.g., a task that is completed with a
NotImplementedException), then you can use Task.FromException:

Task<T> NotImplementedAsync<T>()
{
  return Task.FromException<T>(new NotImplementedException());
}

Similarly, there’s a Task.FromCanceled for creating tasks that have already been can‐
celed from a given CancellationToken:

Task<int> GetValueAsync(CancellationToken cancellationToken)
{
  if (cancellationToken.IsCancellationRequested)
    return Task.FromCanceled<int>(cancellationToken);
  return Task.FromResult(13);
}

If it is possible for your synchronous implementation to fail, then you should capture
exceptions and use Task.FromException to return them, as such:

interface IMyAsyncInterface
{
  Task DoSomethingAsync();
}

class MySynchronousImplementation : IMyAsyncInterface
{
  public Task DoSomethingAsync()
  {
    try
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    {
      DoSomethingSynchronously();
      return Task.CompletedTask;
    }
    catch (Exception ex)
    {
      return Task.FromException(ex);
    }
  }
}

Discussion
If you’re implementing an asynchronous interface with synchronous code, avoid any
form of blocking. It isn’t ideal for an asynchronous method to block and then return a
completed task, when it is possible for the method to be implemented asynchro‐
nously. For a counterexample, consider the Console text readers in the .NET BCL.
Console.In.ReadLineAsync will actually block the calling thread until a line is read,
and then it will return a completed task. This behavior isn’t intuitive and has sur‐
prised many developers. If an asynchronous method blocks, it prevents the calling
thread from starting other tasks, which interferes with concurrency and may even
cause a deadlock.

If you regularly use Task.FromResult with the same value, consider caching the
actual task. For example, if you create a Task<int> with a zero result once, then you
avoid creating extra instances that will have to be garbage-collected:

private static readonly Task<int> zeroTask = Task.FromResult(0);
Task<int> GetValueAsync()
{
  return zeroTask;
}

Logically, Task.FromResult, Task.FromException, and Task.FromCanceled are all
helper methods and shortcuts for the general-purpose TaskCompletionSource<T>.
TaskCompletionSource<T> is a lower-level type that is useful for interoperating with
other forms of asynchronous code. Generally, you should use the shorthand
Task.FromResult and friends if you want to return a task that’s already been comple‐
ted. Use TaskCompletionSource<T> to return a task that is completed at some future 
time.

See Also
Recipe 7.1 covers unit testing asynchronous methods.

Recipe 11.1 covers inheritance of async methods.
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Recipe 8.3 shows how TaskCompletionSource<T> can be used for general-purpose
interop with other asynchronous code.

2.3 Reporting Progress
Problem
You need to respond to progress while an operation is executing.

Solution
Use the provided IProgress<T> and Progress<T> types. Your async method should
take an IProgress<T> argument; the T is whatever type of progress you need to
report:

async Task MyMethodAsync(IProgress<double> progress = null)
{
  bool done = false;
  double percentComplete = 0;
  while (!done)
  {
    ...
    progress?.Report(percentComplete);
  }
}

Calling code can use it as such:

async Task CallMyMethodAsync()
{
  var progress = new Progress<double>();
  progress.ProgressChanged += (sender, args) =>
  {
    ...
  };
  await MyMethodAsync(progress);
}

Discussion
By convention, the IProgress<T> parameter may be null if the caller doesn’t need
progress reports, so be sure to check for this in your async method.

Bear in mind that the IProgress<T>.Report method is usually asynchronous. This
means that MyMethodAsync may continue executing before the progress is reported.
For this reason, it’s best to define T as an immutable type or at least a value type. If T is
a mutable reference type, then you’ll have to create a separate copy yourself each time
you call IProgress<T>.Report.
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Progress<T> will capture the current context when it is constructed and will invoke
its callback within that context. This means that if you construct the Progress<T> on
the UI thread, then you can update the UI from its callback, even if the asynchronous
method is invoking Report from a background thread.

When a method supports progress reporting, it should also make a best effort to sup‐
port cancellation.

IProgress<T> is not exclusively for asynchronous code; both progress and cancella‐
tion can (and should) be used in long-running synchronous code as well.

See Also
Recipe 10.4 covers how to support cancellation in an asynchronous method.

2.4 Waiting for a Set of Tasks to Complete
Problem
You have several tasks and need to wait for them all to complete.

Solution
The framework provides a Task.WhenAll method for this purpose. This method takes
several tasks and returns a task that completes when all of those tasks have comple‐
ted:

Task task1 = Task.Delay(TimeSpan.FromSeconds(1));
Task task2 = Task.Delay(TimeSpan.FromSeconds(2));
Task task3 = Task.Delay(TimeSpan.FromSeconds(1));

await Task.WhenAll(task1, task2, task3);

If all the tasks have the same result type and they all complete successfully, then the
Task.WhenAll task will return an array containing all the task results:

Task<int> task1 = Task.FromResult(3);
Task<int> task2 = Task.FromResult(5);
Task<int> task3 = Task.FromResult(7);

int[] results = await Task.WhenAll(task1, task2, task3);

// "results" contains { 3, 5, 7 }

There is an overload of Task.WhenAll that takes an IEnumerable of tasks; however, I
don’t recommend that you use it. Whenever I mix asynchronous code with LINQ, I
find the code is clearer when I explicitly “reify” the sequence (i.e., evaluate the
sequence, creating a collection):
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async Task<string> DownloadAllAsync(HttpClient client,
    IEnumerable<string> urls)
{
  // Define the action to do for each URL.
  var downloads = urls.Select(url => client.GetStringAsync(url));
  // Note that no tasks have actually started yet
  //  because the sequence is not evaluated.

  // Start all URLs downloading simultaneously.
  Task<string>[] downloadTasks = downloads.ToArray();
  // Now the tasks have all started.

  // Asynchronously wait for all downloads to complete.
  string[] htmlPages = await Task.WhenAll(downloadTasks);

  return string.Concat(htmlPages);
}

Discussion
If any of the tasks throws an exception, then Task.WhenAll will fault its returned task
with that exception. If multiple tasks throw an exception, then all of those exceptions
are placed on the Task returned by Task.WhenAll. However, when that task is awai‐
ted, only one of them will be thrown. If you need each specific exception, you can
examine the Exception property on the Task returned by Task.WhenAll:

async Task ThrowNotImplementedExceptionAsync()
{
  throw new NotImplementedException();
}

async Task ThrowInvalidOperationExceptionAsync()
{
  throw new InvalidOperationException();
}

async Task ObserveOneExceptionAsync()
{
  var task1 = ThrowNotImplementedExceptionAsync();
  var task2 = ThrowInvalidOperationExceptionAsync();

  try
  {
    await Task.WhenAll(task1, task2);
  }
  catch (Exception ex)
  {
    // "ex" is either NotImplementedException or InvalidOperationException.
    ...
  }
}
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async Task ObserveAllExceptionsAsync()
{
  var task1 = ThrowNotImplementedExceptionAsync();
  var task2 = ThrowInvalidOperationExceptionAsync();

  Task allTasks = Task.WhenAll(task1, task2);
  try
  {
    await allTasks;
  }
  catch
  {
    AggregateException allExceptions = allTasks.Exception;
    ...
  }
}

Most of the time, I do not observe all the exceptions when using Task.WhenAll. It’s
usually sufficient to respond to only the first error that was thrown, rather than all of
them.

Note that in the preceding example, the ThrowNotImplementedExceptionAsync and
ThrowInvalidOperationExceptionAsync methods don’t throw their exceptions
directly; they use the async keyword, so their exceptions are captured and placed on a
task that is returned normally. This is the normal and expected behavior of methods
that return awaitable types.

See Also
Recipe 2.5 covers a way to wait for any of a collection of tasks to complete.

Recipe 2.6 covers waiting for a collection of tasks to complete and performing actions
as each one completes.

Recipe 2.8 covers exception handling for async Task methods.

2.5 Waiting for Any Task to Complete
Problem
You have several tasks and need to respond to just one of them that’s completing.
You’ll encounter this problem most commonly when you have multiple independent
attempts at an operation, with a first-one-takes-all kind of structure. For example,
you could request stock quotes from multiple web services simultaneously, but you
only care about the first one that responds.
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Solution
Use the Task.WhenAny method. The Task.WhenAny method takes a sequence of tasks
and returns a task that completes when any of the tasks complete. The result of the
returned task is the task that completed. Don’t worry if that sounds confusing; it’s one
of those things that’s difficult to explain but is easier to understand with code:

// Returns the length of data at the first URL to respond.
async Task<int> FirstRespondingUrlAsync(HttpClient client,
    string urlA, string urlB)
{
  // Start both downloads concurrently.
  Task<byte[]> downloadTaskA = client.GetByteArrayAsync(urlA);
  Task<byte[]> downloadTaskB = client.GetByteArrayAsync(urlB);

  // Wait for either of the tasks to complete.
  Task<byte[]> completedTask =
      await Task.WhenAny(downloadTaskA, downloadTaskB);

  // Return the length of the data retrieved from that URL.
  byte[] data = await completedTask;
  return data.Length;
}

Discussion
The task returned by Task.WhenAny never completes in a faulted or canceled state.
This “outer” task always completes successfully, and its result value is the first Task to
complete (the “inner” task). If the inner task completed with an exception, then that
exception is not propagated to the outer task (the one returned by Task.WhenAny).
You should usually await the inner task after it has completed to ensure any excep‐
tions are observed.

When the first task completes, consider whether to cancel the remaining tasks. If the
other tasks aren’t canceled but are also never awaited, then they are abandoned.
Abandoned tasks will run to completion, and their results will be ignored. Any excep‐
tions from those abandoned tasks will also be ignored. If these tasks aren’t canceled,
they do continue to run and can use resources unnecessarily, such as HTTP connec‐
tions, DB connections, or timers.

It is possible to use Task.WhenAny to implement timeouts (e.g., using Task.Delay as
one of the tasks), but it’s not recommended. It’s more natural to express timeouts with
cancellation, and cancellation has the added benefit that it can actually cancel the
operation(s) if they time out.

Another anti-pattern for Task.WhenAny is handling tasks as they complete. At first it
seems reasonable to keep a list of tasks and remove each task from the list as it com‐
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pletes. The problem with this approach is that it executes in O(N²) time, when an
O(N) algorithm exists. The proper O(N) algorithm is discussed in Recipe 2.6.

See Also
Recipe 2.4 covers asynchronously waiting for all of a collection of tasks to complete.

Recipe 2.6 covers waiting for a collection of tasks to complete and performing actions
as each one completes.

Recipe 10.3 covers using a cancellation token to implement timeouts.

2.6 Processing Tasks as They Complete
Problem
You have a collection of tasks to await, and you want to do some processing on each
task after it completes. However, you want to do the processing for each one as soon
as it completes, not waiting for any of the other tasks.

The following example code kicks off three delay tasks and then awaits each one:

async Task<int> DelayAndReturnAsync(int value)
{
  await Task.Delay(TimeSpan.FromSeconds(value));
  return value;
}

// Currently, this method prints "2", "3", and "1".
// The desired behavior is for this method to print "1", "2", and "3".
async Task ProcessTasksAsync()
{
  // Create a sequence of tasks.
  Task<int> taskA = DelayAndReturnAsync(2);
  Task<int> taskB = DelayAndReturnAsync(3);
  Task<int> taskC = DelayAndReturnAsync(1);
  Task<int>[] tasks = new[] { taskA, taskB, taskC };

  // Await each task in order.
  foreach (Task<int> task in tasks)
  {
    var result = await task;
    Trace.WriteLine(result);
  }
}

The code currently awaits each task in sequence order, even though the third task in
the sequence is the first one to complete. You want the code to do the processing (e.g.,
Trace.WriteLine) as each task completes without waiting for the others.

2.6 Processing Tasks as They Complete | 29



Solution
There are a few different approaches you can take to solve this problem. The one
described first in this recipe is the recommended approach; another is described in
the “Discussion” section.

The easiest solution is to restructure the code by introducing a higher-level async
method that handles awaiting the task and processing its result. Once the processing
is factored out, the code is significantly simplified:

async Task<int> DelayAndReturnAsync(int value)
{
  await Task.Delay(TimeSpan.FromSeconds(value));
  return value;
}

async Task AwaitAndProcessAsync(Task<int> task)
{
  int result = await task;
  Trace.WriteLine(result);
}

// This method now prints "1", "2", and "3".
async Task ProcessTasksAsync()
{
  // Create a sequence of tasks.
  Task<int> taskA = DelayAndReturnAsync(2);
  Task<int> taskB = DelayAndReturnAsync(3);
  Task<int> taskC = DelayAndReturnAsync(1);
  Task<int>[] tasks = new[] { taskA, taskB, taskC };

  IEnumerable<Task> taskQuery =
      from t in tasks select AwaitAndProcessAsync(t);
  Task[] processingTasks = taskQuery.ToArray();

  // Await all processing to complete
  await Task.WhenAll(processingTasks);
}

Alternatively, this code can be written like this:

async Task<int> DelayAndReturnAsync(int value)
{
  await Task.Delay(TimeSpan.FromSeconds(value));
  return value;
}

// This method now prints "1", "2", and "3".
async Task ProcessTasksAsync()
{
  // Create a sequence of tasks.
  Task<int> taskA = DelayAndReturnAsync(2);
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  Task<int> taskB = DelayAndReturnAsync(3);
  Task<int> taskC = DelayAndReturnAsync(1);
  Task<int>[] tasks = new[] { taskA, taskB, taskC };

  Task[] processingTasks = tasks.Select(async t =>
  {
    var result = await t;
    Trace.WriteLine(result);
  }).ToArray();

  // Await all processing to complete
  await Task.WhenAll(processingTasks);
}

The refactoring shown is the cleanest and most portable way to solve this problem.
Note that it is subtly different than the original code. This solution will do the task
processing concurrently, whereas the original code would do the task processing one
at a time. Typically this isn’t a problem, but if it’s not acceptable for your situation,
then consider using locks (Recipe 12.2) or the following alternative solution.

Discussion
If refactoring isn’t a palatable solution, then there is an alternative. Stephen Toub and
Jon Skeet have both developed an extension method that returns an array of tasks
that will complete in order. Stephen Toub’s solution is available on the Parallel Pro‐
gramming with .NET blog, and Jon Skeet’s solution is available on his coding blog.

The OrderByCompletion extension method is also available in the
open source AsyncEx library, in the Nito.AsyncEx NuGet package.

Using an extension method like OrderByCompletion minimizes the changes to the
original code:

async Task<int> DelayAndReturnAsync(int value)
{
  await Task.Delay(TimeSpan.FromSeconds(value));
  return value;
}

// This method now prints "1", "2", and "3".
async Task UseOrderByCompletionAsync()
{
  // Create a sequence of tasks.
  Task<int> taskA = DelayAndReturnAsync(2);
  Task<int> taskB = DelayAndReturnAsync(3);
  Task<int> taskC = DelayAndReturnAsync(1);
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  Task<int>[] tasks = new[] { taskA, taskB, taskC };

  // Await each one as they complete.
  foreach (Task<int> task in tasks.OrderByCompletion())
  {
    int result = await task;
    Trace.WriteLine(result);
  }
}

See Also
Recipe 2.4 covers asynchronously waiting for a sequence of tasks to complete.

2.7 Avoiding Context for Continuations
Problem
When an async method resumes after an await, by default it will resume executing
within the same context. This can cause performance problems if that context was a
UI context and a large number of async methods are resuming on the UI context.

Solution
To avoid resuming on a context, await the result of ConfigureAwait and pass false
for its continueOnCapturedContext parameter:

async Task ResumeOnContextAsync()
{
  await Task.Delay(TimeSpan.FromSeconds(1));

  // This method resumes within the same context.
}

async Task ResumeWithoutContextAsync()
{
  await Task.Delay(TimeSpan.FromSeconds(1)).ConfigureAwait(false);

  // This method discards its context when it resumes.
}

Discussion
Having too many continuations run on the UI thread can cause a performance prob‐
lem. This type of performance problem is difficult to diagnose, since it’s not a single
method that is slowing down the system. Rather, the UI performance begins to suffer
from “thousands of paper cuts” as the application grows more complex.
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The real question is, how many continuations on the UI thread are too many? There’s
no hard-and-fast answer, but Lucian Wischik of Microsoft has publicized the guide‐
line used by the Universal Windows team: a hundred or so per second is OK, but a
thousand or so per second is too many.

It’s best to avoid this problem right at the beginning. For every async method you
write, if it doesn’t need to resume to its original context, then use ConfigureAwait.
There’s no disadvantage to doing so.

It’s also a good idea to be aware of context when writing async code. Normally, an
async method should either require context (dealing with UI elements or ASP.NET
requests/responses) or be free from context (doing background operations). If you
have an async method that has parts requiring context and parts free from context,
consider splitting it up into two (or more) async methods. This approach helps keep
your code better organized into layers.

See Also
Chapter 1 covers an introduction to asynchronous programming.

2.8 Handling Exceptions from async Task Methods
Problem
Exception handling is a critical part of any design. It’s easy to design for the success
case, but a design isn’t correct until it also handles the failure cases. Fortunately, han‐
dling exceptions from async Task methods is straightforward.

Solution
Exceptions can be caught by a simple try/catch, just like you would do for synchro‐
nous code:

async Task ThrowExceptionAsync()
{
  await Task.Delay(TimeSpan.FromSeconds(1));
  throw new InvalidOperationException("Test");
}

async Task TestAsync()
{
  try
  {
    await ThrowExceptionAsync();
  }
  catch (InvalidOperationException)
  {
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  }
}

Exceptions raised from async Task methods are placed on the returned Task. They
are only raised when the returned Task is awaited:

async Task ThrowExceptionAsync()
{
  await Task.Delay(TimeSpan.FromSeconds(1));
  throw new InvalidOperationException("Test");
}

async Task TestAsync()
{
  // The exception is thrown by the method and placed on the task.
  Task task = ThrowExceptionAsync();
  try
  {
    // The exception is re-raised here, where the task is awaited.
    await task;
  }
  catch (InvalidOperationException)
  {
    // The exception is correctly caught here.
  }
}

Discussion
When an exception is thrown out of an async Task method, that exception is cap‐
tured and put on the returned Task. Since async void methods don’t have a Task to
put their exception on, their behavior is different; catching exceptions from async
void methods is covered in Recipe 2.9.

When you await a faulted Task, the first exception on that task is re-thrown. If you’re
familiar with the problems of re-throwing exceptions, you may be wondering about
stack traces. Rest assured: when the exception is re-thrown, the original stack trace is
correctly preserved.

This setup sounds somewhat complicated, but all this complexity works together so
that the simple scenario has simple code. Most of the time, your code should propa‐
gate exceptions from asynchronous methods that it calls; all it has to do is await the
task returned from that asynchronous method, and the exception will be propagated
naturally.

There are some situations (such as Task.WhenAll) where a Task may have multiple
exceptions, and await will only rethrow the first one. See Recipe 2.4 for an example
of handling all exceptions.
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See Also
Recipe 2.4 covers waiting for multiple tasks.

Recipe 2.9 covers techniques for catching exceptions from async void methods.

Recipe 7.2 covers unit testing exceptions thrown from async Task methods.

2.9 Handling Exceptions from async void Methods
Problem
You have an async void method and need to handle exceptions propagated out of
that method.

Solution
There is no good solution. If at all possible, change the method to return Task instead
of void. In some situations, doing that isn’t possible; for example, let’s say you need to
unit test an ICommand implementation (which must return void). In this case, you can
provide a Task-returning overload of your Execute method:

sealed class MyAsyncCommand : ICommand
{
  async void ICommand.Execute(object parameter)
  {
    await Execute(parameter);
  }

  public async Task Execute(object parameter)
  {
    ... // Asynchronous command implementation goes here.
  }

  ... // Other members (CanExecute, etc.)
}

It’s best to avoid propagating exceptions out of async void methods. If you must use
an async void method, consider wrapping all of its code in a try block and handling
the exception directly.

There is another solution for handling exceptions from async void methods. When
an async void method propagates an exception, that exception is then raised on the
SynchronizationContext that was active at the time the async void method started
executing. If your execution environment provides a SynchronizationContext, then
it usually has a way to handle these top-level exceptions at a global scope. For exam‐
ple, WPF has Application.DispatcherUnhandledException, Universal Windows
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has Application.UnhandledException, and ASP.NET has the UseExceptionHandler
middleware.

It is also possible to handle exceptions from async void methods by controlling the
SynchronizationContext. Writing your own SynchronizationContext isn’t easy, but
you can use the AsyncContext type from the free Nito.AsyncEx NuGet helper library.
AsyncContext is particularly useful for applications that don’t have a built-in Synchro
nizationContext, such as Console applications and Win32 services. The next exam‐
ple uses AsyncContext to run and handle exceptions from an async void method:

static class Program
{
  static void Main(string[] args)
  {
    try
    {
      AsyncContext.Run(() => MainAsync(args));
    }
    catch (Exception ex)
    {
      Console.Error.WriteLine(ex);
    }
  }

  // BAD CODE!!!
  // In the real world, do not use async void unless you have to.
  static async void MainAsync(string[] args)
  {
    ...
  }
}

Discussion
One reason to prefer async Task over async void is that Task-returning methods
are easier to test. At the very least, overloading void-returning methods with Task-
returning methods will give you a testable API surface.

If you do need to provide your own SynchronizationContext type (for example,
AsyncContext), be sure not to install that SynchronizationContext on any threads
that don’t belong to you. As a general rule, you shouldn’t place this type on any thread
that already has one (such as UI or ASP.NET classic request threads); nor should you
place a SynchronizationContext on threadpool threads. The main thread of a Con‐
sole application does belong to you, and so do any threads you manually create your‐
self.
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The AsyncContext type is in the Nito.AsyncEx NuGet package.

See Also
Recipe 2.8 covers exception handling with async Task methods.

Recipe 7.3 covers unit testing async void methods.

2.10 Creating a ValueTask
Problem
You need to implement a method that returns ValueTask<T>.

Solution
ValueTask<T> is used as a return type in scenarios where there’s usually a synchro‐
nous result that can be returned and asynchronous behavior is more rare. As a gen‐
eral rule, for your own application code, you should use Task<T> as a return type and
not ValueTask<T>. Only consider using ValueTask<T> as a return type in your own
application after profiling shows that you’d see a performance increase. That said,
there are situations where you need to implement a method that returns Value
Task<T>. One such situation is IAsyncDisposable, whose DisposeAsync method
returns ValueTask. See Recipe 11.6 for a more detailed discussion of asynchronous
disposal.

The easiest way to implement a method that returns ValueTask<T> is to use async
and await just like a normal async method:

public async ValueTask<int> MethodAsync()
{
  await Task.Delay(100); // asynchronous work.
  return 13;
}

Many times a method returning ValueTask<T> is capable of returning a value imme‐
diately; in that case, you can optimize for that scenario using the ValueTask<T> con‐
structor, and then forward to the slow asynchronous method only if necessary:

public ValueTask<int> MethodAsync()
{
  if (CanBehaveSynchronously)
    return new ValueTask<int>(13);
  return new ValueTask<int>(SlowMethodAsync());
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}

private Task<int> SlowMethodAsync();

A similar approach is possible for the nongeneric ValueTask. Here, the ValueTask
default constructor is used to return a successfully completed ValueTask. The follow‐
ing example shows an IAsyncDisposable implementation that only runs its asyn‐
chronous disposal logic once; on future invocations, the DisposeAsync method com‐
pletes successfully and synchronously:

private Func<Task> _disposeLogic;

public ValueTask DisposeAsync()
{
  if (_disposeLogic == null)
    return default;

  // Note: this simple example is not threadsafe;
  //  if multiple threads call DisposeAsync,
  //  the logic could run more than once.
  Func<Task> logic = _disposeLogic;
  _disposeLogic = null;
  return new ValueTask(logic());
}

Discussion
Most of your methods should return Task<T>, since consuming Task<T> has fewer
pitfalls than consuming ValueTask<T>. See Recipe 2.11 for details on these pitfalls.

Most often, if you’re just implementing interfaces that use ValueTask or Value
Task<T>, then you can simply use async and await. The more advanced implementa‐
tions are for when you want to use ValueTask<T> yourself.

The approaches covered in this recipe are the simpler and more common approaches
to creating ValueTask<T> and ValueTask instances. There is another approach more
suitable to more advanced scenarios, when you need to absolutely minimize the allo‐
cations used. This more advanced approach enables you to cache or pool an IValue
TaskSource<T> implementation and reuse it for multiple asynchronous method invo‐
cations. To get started with the advanced scenario, see the Microsoft docs for the Man
ualResetValueTaskSourceCore<T> type.

See Also
Recipe 2.11 covers limitations of consuming ValueTask<T> and ValueTask types.

Recipe 11.6 covers asynchronous disposal.
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2.11 Consuming a ValueTask
Problem
You need to consume a ValueTask<T> value.

Solution
Using await is the most straightforward and common way to consume a Value
Task<T> or ValueTask value. The majority of the time, this is all you need to do:

ValueTask<int> MethodAsync();

async Task ConsumingMethodAsync()
{
  int value = await MethodAsync();
}

You can also do the await after doing a concurrent operation, as with Task<T>:

ValueTask<int> MethodAsync();

async Task ConsumingMethodAsync()
{
  ValueTask<int> valueTask = MethodAsync();
  ... // other concurrent work
  int value = await valueTask;
}

Both of these are appropriate because the ValueTask is only awaited a single time.
This is one of the restrictions of ValueTask.

A ValueTask or ValueTask<T> may only be awaited once.

To do anything more complex, convert the ValueTask<T> into a Task<T> by calling
AsTask:

ValueTask<int> MethodAsync();

async Task ConsumingMethodAsync()
{
  Task<int> task = MethodAsync().AsTask();
  ... // other concurrent work
  int value = await task;
  int anotherValue = await task;
}
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It’s perfectly safe to await a Task<T> multiple times. You can do other things with it,
too, like asynchronously wait for multiple operations to complete (see Recipe 2.4):

ValueTask<int> MethodAsync();

async Task ConsumingMethodAsync()
{
  Task<int> task1 = MethodAsync().AsTask();
  Task<int> task2 = MethodAsync().AsTask();
  int[] results = await Task.WhenAll(task1, task2);
}

However, for each ValueTask<T>, you can only call AsTask once. The usual approach
is to convert it to a Task<T> immediately and then ignore the ValueTask<T>. Also
note that you cannot both await and call AsTask on the same ValueTask<T>.

Most code should either immediately await a ValueTask<T> or convert it to a
Task<T>.

Discussion
Other properties on ValueTask<T> are for more advanced usage. They don’t tend to
act like other properties you may be familiar with; in particular, Value

Task<T>.Result has more restrictions than Task<T>.Result. Code that synchro‐
nously retrieves a result from a ValueTask<T> may call ValueTask<T>.Result or Val
ueTask<T>.GetAwaiter().GetResult(), but these members must not be called until
the ValueTask<T> is complete. Synchronously retrieving a result from Task<T> blocks
the calling thread until the task completes; ValueTask<T> makes no such guarantees.

Synchronously getting results from a ValueTask or ValueTask<T>
may only be done once, after the ValueTask has completed, and
that same ValueTask cannot be awaited or converted to a task.

At the risk of being repetitive, when your code calls a method returning ValueTask or
ValueTask<T>, it should either immediately await that ValueTask or immediately call
AsTask to convert it to a Task. This simple guideline doesn’t cover all the advanced
scenarios, but most applications will never need to do more than that.

See Also
Recipe 2.10 covers how to return ValueTask<T> and ValueTask values from your
methods.

Recipes 2.4 and 2.5 cover waiting for multiple tasks simultaneously.
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CHAPTER 3

Asynchronous Streams

Asynchronous streams are a way to asynchronously receive multiple data items.
They’re built on asynchronous enumerables (IAsyncEnumerable<T>). An asynchro‐
nous enumerable is an asynchronous version of an enumerable; that is, it can produce
items on demand for a consumer, and each item may be produced asynchronously.

I find it useful to contrast asynchronous streams with other types that may be more
familiar and to consider the differences. This helps me remember when to use asyn‐
chronous streams and when other types would be more appropriate.

Asynchronous Streams and Task<T>
The standard asynchronous approach with Task<T> is only sufficient for asynchro‐
nously handling a single data value. Once a given Task<T> completes, that’s it; a single
Task<T> cannot provide more than one value of T for its consumers. Even if T is a
collection, the value can only be provided once. See “Introduction to Asynchronous
Programming” on page 3 and Chapter 2 for more on using async with Task<T>.

When comparing Task<T> to asynchronous streams, the asynchronous streams are
more similar to enumerables. Specifically, an IAsyncEnumerator<T> may provide any
number of T values, one at a time. Like IEnumerator<T>, an IAsyncEnumerator<T>
may be infinite in length.

Asynchronous Streams and IEnumerable<T>
IAsyncEnumerable<T>, as the name would imply, is similar to IEnumerable<T>. This
is perhaps not a surprise; they both enable consumers to retrieve elements from them
one at a time. The big difference is in the name: one is asynchronous and the other is
not.
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When your code iterates over an IEnumerable<T>, it blocks as it retrieves each ele‐
ment from the enumerable. If the IEnumerable<T> is representing some I/O-bound
operation, such as a database query or API call, then the consuming code ends up
blocking on I/O, which is not ideal. IAsyncEnumerable<T> works just like an IEnumer
able<T>, except that it asynchronously retrieves each next element.

Asynchronous Streams and Task<IEnumerable<T>>
It is entirely possible to asynchronously return a collection with more than one item;
one common example is Task<List<T>>. Still, async methods that return List<T>
only get one return statement; the collection must be completely populated before it
is returned. Even methods returning Task<IEnumerable<T>> may asynchronously
return an enumerable, but then that enumerable is evaluated synchronously. Con‐
sider that LINQ-to-Entities has a ToListAsync LINQ method that returns
Task<List<T>>. When a LINQ provider executes this, it has to communicate with the
database and get all the matching responses back before it can finish populating the
list and return it.

The limitation of Task<IEnumerable<T>> is that it cannot return items as it gets
them; if returning a collection, it has to load all of its items into memory, populate the
collection, and then return the entire collection all at once. Even if it returns a LINQ
query, it can asynchronously build that query, but once the query is returned, each
item is retrieved from that query synchronously. IAsyncEnumerable<T> also returns
multiple items asynchronously, but the difference is that IAsyncEnumerable<T> can
act asynchronously for each item returned. It’s a true asynchronous stream of items.

Asynchronous Streams and IObservable<T>
Observables are a true notion of asynchronous streams; they produce their notifica‐
tions one at a time with true support for asynchronous production (no blocking). But
the consumption pattern for IObservable<T> is completely different than that of
IAsyncEnumerable<T>. See Chapter 6 for more details about IObservable<T>.

To consume an IObservable<T>, code needs to define a LINQ-like query through
which the observable notifications will flow, and then subscribe to the observable in
order to start the flow. When working with observables, the code first defines how it
will react to the incoming notifications, and then it turns them on (hence the name
“reactive”). In contrast, consuming an IAsyncEnumerable<T> is done very similarly to
consuming an IEnumerable<T>, except that the consumption is asynchronous.

There is also a backpressure problem; all notifications in System.Reactive are syn‐
chronous, so as soon as one item notification is sent to its subscribers, the observable
continues execution and retrieves the next item to publish, possibly calling the API
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again. If the consuming code is consuming the stream asynchronously (i.e., doing
some asynchronous action for each notification as it arrives), then the observable will
race ahead of the consuming code.

A nice way of thinking about the difference between them is that IObservable<T> is
push-based and IAsyncEnumerable<T> is pull-based. An observable stream will push
notifications at your code, but an asynchronous stream will passively let your code
(asynchronously) pull data items out of it. Only when the consuming code requests
the next item does the observable stream resume execution.

Summary
A theoretical example may be useful. Many APIs take offset and limit parameters
to enable paging of results. Let’s say we wanted to define a method that retrieves
results from an API that does paging, and we want our method to handle the paging
so that our higher-level methods don’t have to deal with that.

If our method returns Task<T>, we are limited to returning only a single T. This is
fine for a single call to the API where the T is the result of the API, but it doesn’t work
well as a return type if we want our method to call the API multiple times.

If our method returns IEnumerable<T>, we can create a loop, paging through the API
results by calling it multiple times. Each time the method calls the API, it would
yield return the results of that page. Further API calls are only necessary if the enu‐
meration continues. Unfortunately, methods returning IEnumerable<T> cannot be
asynchronous, so all our API calls are forced to be synchronous.

If our method returns Task<List<T>>, then we can have a loop that pages through
the API results, calling the API asynchronously. However, the code cannot return
each item as it gets the response; it would have to build up all the results and return
them all at once.

If our method returns IObservable<T>, we can use System.Reactive to implement
an observable stream that begins requests when subscribed to and publishes each
item as we get them. The abstraction is push-based; it appears to consuming code
that the API results are being pushed to them, which is more awkward to handle.
IObservable<T> would be a better fit for scenarios like receiving and responding to
WebSocket/SignalR messages.

If our method returns IAsyncEnumerable<T>, we can have a natural loop that uses
both await and yield return to create a true pull-based asynchronous stream.
IAsyncEnumerable<T> is the natural fit for this kind of scenario.

Table 3-1 summarizes the different roles of common types.
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Table 3-1. Type classifications
Type Single or multiple value Asynchronous or synchronous Push or pull

T Single value Synchronous N/A

IEnumerable<T> Multiple values Synchronous N/A

Task<T> Single value Asynchronous Pull

IAsyncEnumerable<T> Multiple values Asynchronous Pull

IObservable<T> Single or multiple Asynchronous Push

As this book goes to press, .NET Core 3.0 is still in beta, so the
details around asynchronous streams may change.

3.1 Creating Asynchronous Streams
Problem
You need to return multiple values, and each value may require some asynchronous
work. This point is commonly reached from one of two paths:

• You have multiple values to return (as an IEnumerable<T>), and then need to add
asynchronous work.

• You have a single asynchronous return (as a Task<T>), and then need to add
other return values.

Solution
Returning multiple values from a method can be done with yield return, and asyn‐
chronous methods use async and await. With asynchronous streams, you can com‐
bine these two; just use a return type of IAsyncEnumerable<T>:

async IAsyncEnumerable<int> GetValuesAsync()
{
  await Task.Delay(1000); // some asynchronous work
  yield return 10;
  await Task.Delay(1000); // more asynchronous work
  yield return 13;
}

This simple example illustrates how await can be used with yield return to create
an asynchronous stream.

44 | Chapter 3: Asynchronous Streams



A more real-world example is asynchronously enumerating over all the results of an
API that uses parameters for paging:

async IAsyncEnumerable<string> GetValuesAsync(HttpClient client)
{
  int offset = 0;
  const int limit = 10;
  while (true)
  {
    // Get the current page of results and parse them.
    string result = await client.GetStringAsync(
        $"https://example.com/api/values?offset={offset}&limit={limit}");
    string[] valuesOnThisPage = result.Split('\n');

    // Produce the results for this page.
    foreach (string value in valuesOnThisPage)
      yield return value;

    // If this is the last page, we're done.
    if (valuesOnThisPage.Length != limit)
      break;

    // Otherwise, proceed to the next page.
    offset += limit;
  }
}

When GetValuesAsync starts, it does an asynchronous request for the first page of
data, and then produces the first element. When the second element is then reques‐
ted, GetValuesAsync produces it immediately, since it is also in that same first page of
data. The next element is also in that page, and so on, up to 10 elements. Then, when
the 11th element is requested, all the values in valuesOnThisPage will have been pro‐
duced, so there are no more elements on the first page. GetValuesAsync will continue
executing its while loop, proceed to the next page, do an asynchronous request for
the second page of data, receive back a new batch of values, and then it’ll produce the
11th element.

Discussion
Ever since async and await were introduced, users have been wondering how to use
them with yield return. For many years, that wasn’t possible, but asynchronous
streams has now brought this capability to C# and modern versions of .NET.

One thing you may notice with the more realistic example is that only some of the
results need any asynchronous work. In that example, with a page length of 10, only
about 1 out of every 10 elements will need asynchronous work. If the page size is 20,
then only 1 out of every 20 elements will need asynchronous work.
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This is a normal pattern with asynchronous streams. For many streams, the majority
of asynchronous iteration is actually synchronous; asynchronous streams merely
allow any next item to be retrieved asynchronously. Asynchronous streams were
designed with both asynchronous and synchronous code in mind; this is why asyn‐
chronous streams are built on ValueTask<T>. By using ValueTask<T> under the
hood, asynchronous streams maximize their efficiency, whether items are retrieved
synchronously or asynchronously. See Recipe 2.10 for more about ValueTask<T> and
when it is appropriate to use.

When you do implement asynchronous streams, consider supporting cancellation.
See Recipe 3.4 for a detailed discussion of cancellation with asynchronous streams.
Some scenarios do not require actual cancellation; the consuming code can always
choose not to retrieve the next element. That is a perfectly fine approach if there’s no
external source for the cancellation. If you have an asynchronous stream where you
want to cancel the asynchronous stream, even if it’s in the middle of getting the next
element, then you’d want to support proper cancellation using a CancellationToken.

See Also
Recipe 3.2 covers consuming asynchronous streams.

Recipe 3.4 covers handling cancellation for asynchronous streams.

Recipe 2.10 has more detail about ValueTask<T> and when it is appropriate to use.

3.2 Consuming Asynchronous Streams
Problem
You need to process the results of an asynchronous stream, also known as an asyn‐
chronous enumerable.

Solution
Consuming an asynchronous operation is done via await, and consuming an enu‐
merable is usually done via foreach. Consuming an asynchronous enumerable is
done by combining these two into await foreach. For example, given an asynchro‐
nous enumerable that pages over API responses, you can consume it and write each
element to the console:

IAsyncEnumerable<string> GetValuesAsync(HttpClient client);

public async Task ProcessValueAsync(HttpClient client)
{
  await foreach (string value in GetValuesAsync(client))
  {
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    Console.WriteLine(value);
  }
}

Conceptually, what is happening here is that GetValuesAsync is invoked, and it
returns an IAsyncEnumerable<T>. The foreach then creates an asynchronous enu‐
merator from that asynchronous enumerable. Asynchronous enumerators are logi‐
cally similar to regular enumerators, except that their “get next element” operation
may be asynchronous. So, the await foreach will await for the next element to
arrive or for the asynchronous enumerator to complete. If an element arrived, await
foreach will execute its loop body; if the asynchronous enumerator is complete, then
the loop will exit.

It is also natural to do asynchronous processing of each element:

IAsyncEnumerable<string> GetValuesAsync(HttpClient client);

public async Task ProcessValueAsync(HttpClient client)
{
  await foreach (string value in GetValuesAsync(client))
  {
    await Task.Delay(100); // asynchronous work
    Console.WriteLine(value);
  }
}

In this case, the await foreach won’t proceed to the next element until the loop body
is complete. So, the await foreach will asynchronously receive the first element,
then asynchronously execute the loop body for that first element, then asynchro‐
nously receive the next element, then asynchronously execute the loop body for that
next element, and so on.

There is an await buried in the await foreach: the “get next element” operation is
awaited. With a regular await, you can avoid the implicitly captured context by using
ConfigureAwait(false), as described in Recipe 2.7. Asynchronous streams also sup‐
port ConfigureAwait(false), which is passed to the hidden await statements:

IAsyncEnumerable<string> GetValuesAsync(HttpClient client);

public async Task ProcessValueAsync(HttpClient client)
{
  await foreach (string value in GetValuesAsync(client).ConfigureAwait(false))
  {
    await Task.Delay(100).ConfigureAwait(false); // asynchronous work
    Console.WriteLine(value);
  }
}
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Discussion
await foreach is the most natural way to consume asynchronous streams. The lan‐
guage supports ConfigureAwait(false) for avoiding context in await foreach.

It’s also possible to pass in cancellation tokens; this is a bit more advanced due to the
complexity of asynchronous streams, so you can find it covered in Recipe 3.4.

While it’s possible and natural to use await foreach to consume asynchronous
streams, there’s an exhaustive library of asynchronous LINQ operators available;
some of the more popular ones are covered in Recipe 3.3.

The body of await foreach can be either synchronous or asynchronous. For the
asynchronous example in particular, this is something that is much trickier to get
right when working with other streaming abstractions, such as IObservable<T>. This
is because observable subscriptions must be synchronous, but await foreach per‐
mits natural asynchronous processing.

The await foreach generates an await used for the “get next element” operation; it
also generates an await used to asynchronously dispose the enumerable.

See Also
Recipe 3.1 covers producing asynchronous streams.

Recipe 3.4 covers handling cancellation for asynchronous streams.

Recipe 3.3 covers common LINQ methods for asynchronous streams.

Recipe 11.6 covers asynchronous disposal.

3.3 Using LINQ with Asynchronous Streams
Problem
You want to process an asynchronous stream using well-defined and well-tested
operators.

Solution
IEnumerable<T> has LINQ to Objects, and IObservable<T> has LINQ to Events.
Both of these have libraries of extension methods that define operators you can use to
build queries. IAsyncEnumerable<T> also has LINQ support, provided by the .NET
community in the System.Linq.Async NuGet package.

As an example, one of the common questions about LINQ is how to use the Where
operator if the predicate for Where is asynchronous. In other words, you want to filter
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a sequence based on some asynchronous condition—e.g., you need to look up each
element in a database or API to see if it should be included in the result sequence.
Where doesn’t work with an asynchronous condition because the Where operator
requires that its delegate return an immediate, synchronous answer.

Asynchronous streams have a support library that defines many useful operators. In
the following example, WhereAwait is the proper choice:

IAsyncEnumerable<int> values = SlowRange().WhereAwait(
    async value =>
    {
      // Do some asynchronous work to determine
      //  if this element should be included.
      await Task.Delay(10);
      return value % 2 == 0;
    });

await foreach (int result in values)
{
  Console.WriteLine(result);
}

// Produce sequence that slows down as it progresses.
async IAsyncEnumerable<int> SlowRange()
{
  for (int i = 0; i != 10; ++i)
  {
    await Task.Delay(i * 100);
    yield return i;
  }
}

LINQ operators for asynchronous streams also include synchronous versions; it does
make sense to apply a synchronous Where (or Select, or whatever) to an asynchro‐
nous stream. The result is still an asynchronous stream:

IAsyncEnumerable<int> values = SlowRange().Where(
    value => value % 2 == 0);

await foreach (int result in values)
{
  Console.WriteLine(result);
}

All of your old LINQ friends are here: Where, Select, SelectMany, and even Join.
Most LINQ operators now also take asynchronous delegates, like the WhereAwait
example above.
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Discussion
Asynchronous streams are pull-based, so there’s no time-related operators like there
are for observables. Throttle and Sample don’t make sense in this world, since the
elements are pulled out of the asynchronous stream on demand.

LINQ methods for asynchronous streams can also be useful for regular enumerables.
If you find yourself in this situation, you can call ToAsyncEnumerable() on any IEnu
merable<T>, and then you’ll have an asynchronous stream interface that you can use
with WhereAwait, SelectAwait, and other operators that support asynchronous dele‐
gates.

Before you dive in, a word on naming is in order. The example in this recipe used
WhereAwait as the asynchronous equivalent of Where. As you explore the LINQ oper‐
ators for asynchronous streams, you’ll find that some end in Async and others end in
Await. The operators that end in Async return an awaitable; they represent a regular
value, not an asynchronous sequence. The operators that end in Await take an asyn‐
chronous delegate; the Await in their name implies that they actually perform an
await on the delegate you pass to them.

We already looked at an example of the Await suffix with Where and WhereAwait. The
Async suffix only applies to termination operators—operators that extract some value
or perform some calculation and return an asynchronous scalar value instead of an
asynchronous sequence. An example of a termination operator is CountAsync, the
asynchronous stream version of Count, which can count the number of elements that
match some predicate:

int count = await SlowRange().CountAsync(
    value => value % 2 == 0);

That predicate can also be asynchronous, in which case you would then use the Coun
tAwaitAsync operator, since it both takes an asynchronous delegate (which it will
await) and produces a single terminal value, the count:

int count = await SlowRange().CountAwaitAsync(
    async value =>
    {
      await Task.Delay(10);
      return value % 2 == 0;
    });

In summary, operators that can take delegates have two names: one with an Await
suffix and one without. In addition, operators that return a terminal value rather than
an asynchronous stream end in Async. If an operator takes an asynchronous delegate
and returns a terminal value, then it has both suffixes.
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The LINQ operators for asynchronous streams are in the NuGet
package for System.Linq.Async. Additional LINQ operators for
asynchronous streams can be found in the NuGet package for Sys
tem.Interactive.Async.

See Also
Recipe 3.1 covers producing asynchronous streams.

Recipe 3.2 covers consuming asynchronous streams.

3.4 Asynchronous Streams and Cancellation
Problem
You want a way to cancel asynchronous streams.

Solution
Not all asynchronous streams require cancellation. It’s possible to simply stop enu‐
merating when a condition is reached. If that is the only kind of “cancellation” neces‐
sary, then a true cancellation isn’t required, as the following example shows:

await foreach (int result in SlowRange())
{
  Console.WriteLine(result);
  if (result >= 8)
    break;
}

// Produce sequence that slows down as it progresses.
async IAsyncEnumerable<int> SlowRange()
{
  for (int i = 0; i != 10; ++i)
  {
    await Task.Delay(i * 100);
    yield return i;
  }
}

That said, it’s often useful to cancel asynchronous streams, as some operators pass
cancellation tokens to their source streams. In this scenario, you’ would want to use a
CancellationToken to stop the await foreach from external code.

An async method returning IAsyncEnumerable<T> may take a cancellation token by
defining a parameter marked with the EnumeratorCancellation attribute. It can then
use the token naturally, which is usually done by passing it to other APIs that take
cancellation tokens, like this:
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using var cts = new CancellationTokenSource(500);
CancellationToken token = cts.Token;
await foreach (int result in SlowRange(token))
{
  Console.WriteLine(result);
}

// Produce sequence that slows down as it progresses.
async IAsyncEnumerable<int> SlowRange(
    [EnumeratorCancellation] CancellationToken token = default)
{
  for (int i = 0; i != 10; ++i)
  {
    await Task.Delay(i * 100, token);
    yield return i;
  }
}

Discussion
The example solution here passes the CancellationToken directly to the method
returning the asynchronous enumerator. This is the most common usage.

There are other scenarios where your code will be given an asynchronous enumerator
and will want to apply a CancellationToken to the enumerators it uses. Cancellation
tokens are used when starting a new enumeration of an enumerable, so it makes
sense to apply a CancellationToken in this way. The enumerable itself is defined by
the SlowRange method, but it’s not started until it is consumed. There are even some
scenarios where different cancellation tokens should be passed to different enumera‐
tions of the enumerable.

Briefly; it is not the enumerable that is cancelable, but the enumerator created by that
enumerable. This is an uncommon but important use case, and it’s the reason asyn‐
chronous streams support a WithCancellation extension method that you can use to
attach a CancellationToken to a specific iteration of an asynchronous stream:

async Task ConsumeSequence(IAsyncEnumerable<int> items)
{
  using var cts = new CancellationTokenSource(500);
  CancellationToken token = cts.Token;
  await foreach (int result in items.WithCancellation(token))
  {
    Console.WriteLine(result);
  }
}

// Produce sequence that slows down as it progresses.
async IAsyncEnumerable<int> SlowRange(
    [EnumeratorCancellation] CancellationToken token = default)
{
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  for (int i = 0; i != 10; ++i)
  {
    await Task.Delay(i * 100, token);
    yield return i;
  }
}

await ConsumeSequence(SlowRange());

With the EnumeratorCancellation parameter attribute in place, the compiler takes
care of passing the token from WithCancellation to the token parameter marked by
EnumeratorCancellation, and the cancellation request now causes await foreach to
raise an OperationCanceledException after it has processed the first few items.

The WithCancellation extension method doesn’t prevent ConfigureAwait(false).
Both extension methods can be chained together:

async Task ConsumeSequence(IAsyncEnumerable<int> items)
{
  using var cts = new CancellationTokenSource(500);
  CancellationToken token = cts.Token;
  await foreach (int result in items
      .WithCancellation(token).ConfigureAwait(false))
  {
    Console.WriteLine(result);
  }
}

See Also
Recipe 3.1 covers producing asynchronous streams.

Recipe 3.2 covers consuming asynchronous streams.

Chapter 10 covers cooperative cancellation across multiple technologies.
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CHAPTER 4

Parallel Basics

This chapter covers patterns for parallel programming. Parallel programming is used
to split up CPU-bound pieces of work and divide them among multiple threads.
These parallel processing recipes only consider CPU-bound work. If you have natu‐
rally asynchronous operations (such as I/O-bound work) that you want to execute in
parallel, then see Chapter 2, and Recipe 2.4 in particular.

The parallel processing abstractions covered in this chapter are part of the Task Paral‐
lel Library (TPL). The TPL is built into the .NET framework.

4.1 Parallel Processing of Data
Problem
You have a collection of data, and you need to perform the same operation on each
element of the data. This operation is CPU-bound and may take some time.

Solution
The Parallel type contains a ForEach method specifically designed for this problem.
The following example takes a collection of matrices and rotates them all:

void RotateMatrices(IEnumerable<Matrix> matrices, float degrees)
{
  Parallel.ForEach(matrices, matrix => matrix.Rotate(degrees));
}

There are some situations where you’ll want to stop the loop early, such as if you
encounter an invalid value. The following example inverts each matrix, but if an inva‐
lid matrix is encountered, it’ll abort the loop:
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void InvertMatrices(IEnumerable<Matrix> matrices)
{
  Parallel.ForEach(matrices, (matrix, state) =>
  {
    if (!matrix.IsInvertible)
      state.Stop();
    else
      matrix.Invert();
  });
}

This code uses ParallelLoopState.Stop to stop the loop, preventing any further
invocations of the loop body. Bear in mind that this is a parallel loop, so other invoca‐
tions of the loop body may already be running, including invocations for items after
the current item. In this code example, if the third matrix isn’t invertible, the loop is
stopped and no new matrixes will be processed, but other matrixes (such as the
fourth and fifth) may already be processing.

A more common situation is when you want the ability to cancel a parallel loop. This
is different than stopping the loop; a loop is stopped from inside the loop, and it is
canceled from outside the loop. To show an example, a cancel button may cancel a
CancellationTokenSource, canceling a parallel loop as in this code example:

void RotateMatrices(IEnumerable<Matrix> matrices, float degrees,
    CancellationToken token)
{
  Parallel.ForEach(matrices,
      new ParallelOptions { CancellationToken = token },
      matrix => matrix.Rotate(degrees));
}

One thing to keep in mind is that each parallel task may run on a different thread, so
any shared state must be protected. The following example inverts each matrix and
counts the number of matrices that couldn’t be inverted:

// Note: this is not the most efficient implementation.
// This is just an example of using a lock to protect shared state.
int InvertMatrices(IEnumerable<Matrix> matrices)
{
  object mutex = new object();
  int nonInvertibleCount = 0;
  Parallel.ForEach(matrices, matrix =>
  {
    if (matrix.IsInvertible)
    {
      matrix.Invert();
    }
    else
    {
      lock (mutex)
      {
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        ++nonInvertibleCount;
      }
    }
  });
  return nonInvertibleCount;
}

Discussion
The Parallel.ForEach method enables parallel processing over a sequence of values.
A similar solution is Parallel LINQ (PLINQ), which provides much of the same capa‐
bilities with a LINQ-like syntax. One difference between Parallel and PLINQ is that
PLINQ assumes it can use all the cores on the computer, while Parallel will dynami‐
cally react to changing CPU conditions.

Parallel.ForEach is a parallel foreach loop. If you need to do a parallel for loop,
the Parallel class also supports a Parallel.For method. Parallel.For is especially
useful if you have multiple arrays of data that all take the same index.

See Also
Recipe 4.2 covers aggregating a series of values in parallel, including sums and aver‐
ages.

Recipe 4.5 covers the basics of PLINQ.

Chapter 10 covers cancellation.

4.2 Parallel Aggregation
Problem
At the conclusion of a parallel operation, you need to aggregate the results. Examples
of aggregation are summing up values or finding their average.

Solution
The Parallel class supports aggregation through the concept of local values, which
are variables that exist locally within a parallel loop. This means that the body of the
loop can just access the value directly, without needing synchronization. When the
loop is ready to aggregate each of its local results, it does so with the localFinally
delegate. Note that the localFinally delegate does need to synchronize access to the
variable that holds the final result. Here’s an example of a parallel sum:

// Note: this is not the most efficient implementation.
// This is just an example of using a lock to protect shared state.
int ParallelSum(IEnumerable<int> values)
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{
  object mutex = new object();
  int result = 0;
  Parallel.ForEach(source: values,
      localInit: () => 0,
      body: (item, state, localValue) => localValue + item,
      localFinally: localValue =>
      {
        lock (mutex)
          result += localValue;
      });
  return result;
}

Parallel LINQ has more natural aggregation support than the Parallel class:

int ParallelSum(IEnumerable<int> values)
{
  return values.AsParallel().Sum();
}

OK, that was a cheap shot, since PLINQ has built-in support for many common
operators (for example, Sum). PLINQ also has generic aggregation support via the
Aggregate operator:

int ParallelSum(IEnumerable<int> values)
{
  return values.AsParallel().Aggregate(
      seed: 0,
      func: (sum, item) => sum + item
  );
}

Discussion
If you’re already using the Parallel class, you may want to use its aggregation sup‐
port. Otherwise, in most scenarios, the PLINQ support is more expressive and has 
shorter code.

See Also
Recipe 4.5 covers the basics of PLINQ.

4.3 Parallel Invocation
Problem
You have a number of methods to call in parallel, and these methods are (mostly)
independent of one another.
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Solution
The Parallel class contains a simple Invoke member that is designed for this sce‐
nario. This example splits an array in half and processes each half independently:

void ProcessArray(double[] array)
{
  Parallel.Invoke(
      () => ProcessPartialArray(array, 0, array.Length / 2),
      () => ProcessPartialArray(array, array.Length / 2, array.Length)
  );
}

void ProcessPartialArray(double[] array, int begin, int end)
{
  // CPU-intensive processing...
}

You can also pass an array of delegates to the Parallel.Invoke method if the number
of invocations isn’t known until runtime:

void DoAction20Times(Action action)
{
  Action[] actions = Enumerable.Repeat(action, 20).ToArray();
  Parallel.Invoke(actions);
}

Parallel.Invoke supports cancellation just like the other members of the Parallel
class:

void DoAction20Times(Action action, CancellationToken token)
{
  Action[] actions = Enumerable.Repeat(action, 20).ToArray();
  Parallel.Invoke(new ParallelOptions { CancellationToken = token }, actions);
}

Discussion
Parallel.Invoke is a great solution for simple parallel invocation. Note that it will
not be a perfect fit if you want to invoke an action for each item of input data (use
Parallel.ForEach instead) or if each action produces some output (use Parallel
LINQ instead).

See Also
Recipe 4.1 covers Parallel.ForEach, which invokes an action for each item of data.

Recipe 4.5 covers Parallel LINQ.
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4.4 Dynamic Parallelism
Problem
You have a more complex parallel situation where the structure and number of paral‐
lel tasks depend on information known only at runtime.

Solution
The Task Parallel Library (TPL) is centered around the Task type. The Parallel class
and Parallel LINQ are just convenience wrappers around the powerful Task. When
you need dynamic parallelism, it’s easiest to use the Task type directly.

Here is an example in which some expensive processing needs to be done for each
node of a binary tree. The structure of the tree won’t be known until runtime, so this
is a good scenario for dynamic parallelism. The Traverse method processes the cur‐
rent node and then creates two child tasks, one for each branch underneath the node
(for this example, I’m assuming that the parent nodes must be processed before the
children). The ProcessTree method starts the processing by creating a top-level par‐
ent task and waiting for it to complete:

void Traverse(Node current)
{
  DoExpensiveActionOnNode(current);
  if (current.Left != null)
  {
    Task.Factory.StartNew(
        () => Traverse(current.Left),
        CancellationToken.None,
        TaskCreationOptions.AttachedToParent,
        TaskScheduler.Default);
  }
  if (current.Right != null)
  {
    Task.Factory.StartNew(
        () => Traverse(current.Right),
        CancellationToken.None,
        TaskCreationOptions.AttachedToParent,
        TaskScheduler.Default);
  }
}

void ProcessTree(Node root)
{
  Task task = Task.Factory.StartNew(
      () => Traverse(root),
      CancellationToken.None,
      TaskCreationOptions.None,
      TaskScheduler.Default);
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  task.Wait();
}

The AttachedToParent flag ensures that the Task for each branch is linked to the
Task for their parent node. This creates parent/child relationships among the Task
instances that mirror the parent/child relationships in the tree nodes. Parent tasks
execute their delegate and then wait for their child tasks to complete. Exceptions
from child tasks are then propagated from the child tasks to their parent task. So,
ProcessTree can wait for the tasks for the entire tree just by calling Wait on the sin‐
gle Task at the root of the tree.

If you don’t have a parent/child kind of situation, you can schedule any task to run
after another by using a task continuation. The continuation is a separate task that
executes when the original task completes:

Task task = Task.Factory.StartNew(
    () => Thread.Sleep(TimeSpan.FromSeconds(2)),
    CancellationToken.None,
    TaskCreationOptions.None,
    TaskScheduler.Default);
Task continuation = task.ContinueWith(
    t => Trace.WriteLine("Task is done"),
    CancellationToken.None,
    TaskContinuationOptions.None,
    TaskScheduler.Default);
// The "t" argument to the continuation is the same as "task".

Discussion
CancellationToken.None and TaskScheduler.Default are used in the preceding
code example. Cancellation tokens are covered in Recipe 10.2, and task schedulers are
covered in Recipe 13.3. It’s always a good idea to explicitly specify the TaskScheduler
used by StartNew and ContinueWith.

This arrangement of parent and child tasks is common with dynamic parallelism,
although it’s not required. It’s equally possible to store each new task in a threadsafe
collection and then wait for them all to complete using Task.WaitAll.

Using Task for parallel processing is completely different than
using Task for asynchronous processing.

The Task type serves two purposes in concurrent programming: it can be a parallel
task or an asynchronous task. Parallel tasks may use blocking members, such as
Task.Wait, Task.Result, Task.WaitAll, and Task.WaitAny. Parallel tasks also com‐
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monly use AttachedToParent to create parent/child relationships between tasks. Par‐
allel tasks should be created with Task.Run or Task.Factory.StartNew.

In contrast, asynchronous tasks should avoid blocking members, and prefer await,
Task.WhenAll, and Task.WhenAny. Asynchronous tasks should not use
AttachedToParent, but they can form an implicit kind of parent/child relationship by
awaiting another task.

See Also
Recipe 4.3 covers invoking a sequence of methods in parallel, when all the methods
are known at the start of the parallel work.

4.5 Parallel LINQ
Problem
You need to perform parallel processing on a sequence of data to produce another
sequence of data or a summary of that data.

Solution
Most developers are familiar with LINQ, which you can use to write pull-based calcu‐
lations over sequences. Parallel LINQ (PLINQ) extends this LINQ support with par‐
allel processing.

PLINQ works well in streaming scenarios, when you have a sequence of inputs and
are producing a sequence of outputs. Here’s a simple example that just multiplies each
element in a sequence by two (real-world scenarios will be much more CPU-intensive
than a simple multiply):

IEnumerable<int> MultiplyBy2(IEnumerable<int> values)
{
  return values.AsParallel().Select(value => value * 2);
}

The example may produce its outputs in any order; this behavior is the default for
Parallel LINQ. You can also specify the order to be preserved. The following example
is still processed in parallel, but it preserves the original order:

IEnumerable<int> MultiplyBy2(IEnumerable<int> values)
{
  return values.AsParallel().AsOrdered().Select(value => value * 2);
}

Another natural use of Parallel LINQ is to aggregate or summarize the data in paral‐
lel. The following code performs a parallel summation:
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int ParallelSum(IEnumerable<int> values)
{
  return values.AsParallel().Sum();
}

Discussion
The Parallel class is good for many scenarios, but PLINQ code is simpler when
doing aggregation or transforming one sequence to another. Bear in mind that the
Parallel class is more friendly to other processes on the system than PLINQ; this is
especially a consideration if the parallel processing is done on a server machine.

PLINQ provides parallel versions of a wide variety of operators, including filtering
(Where), projection (Select), and a variety of aggregations, such as Sum, Average, and
the more generic Aggregate. In general, anything you can do with regular LINQ you
can do in parallel with PLINQ. This makes PLINQ a great choice if you have existing
LINQ code that would benefit from running in parallel.

See Also
Recipe 4.1 covers how to use the Parallel class to execute code for each element in a
sequence.

Recipe 10.5 covers how to cancel PLINQ queries.
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CHAPTER 5

Dataflow Basics

TPL Dataflow is a powerful library that enables you to create a mesh or pipeline and
then (asynchronously) send your data through it. Dataflow is a very declarative style
of coding: normally, you completely define the mesh first and then start processing
data. The mesh ends up being a structure through which your data flows. This
requires you to think about your application a bit differently, but once you make that
leap, dataflow becomes a natural fit for many scenarios.

Each mesh is comprised of various blocks that are linked to each other. The individ‐
ual blocks are simple and are responsible for a single step in the data processing.
When a block finishes working on its data, it will pass its result along to any linked
blocks.

To use TPL Dataflow, install the NuGet package System.Threading.Tasks.Dataflow
into your application.

5.1 Linking Blocks
Problem
You need to link dataflow blocks to one another to create a mesh.

Solution
The blocks provided by the TPL Dataflow library define only the most basic mem‐
bers. Many of the useful TPL Dataflow methods are actually extension methods. The
LinkTo extension method provides an easy way to link dataflow blocks together:

var multiplyBlock = new TransformBlock<int, int>(item => item * 2);
var subtractBlock = new TransformBlock<int, int>(item => item - 2);
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// After linking, values that exit multiplyBlock will enter subtractBlock.
multiplyBlock.LinkTo(subtractBlock);

By default, linked dataflow blocks only propagate data; they do not propagate com‐
pletion (or errors). If your dataflow is linear (like a pipeline), then you will probably
want to propagate completion. To propagate completion (and errors), you can set the
PropagateCompletion option on the link:

var multiplyBlock = new TransformBlock<int, int>(item => item * 2);
var subtractBlock = new TransformBlock<int, int>(item => item - 2);

var options = new DataflowLinkOptions { PropagateCompletion = true };
multiplyBlock.LinkTo(subtractBlock, options);

...

// The first block's completion is automatically propagated to the second block.
multiplyBlock.Complete();
await subtractBlock.Completion;

Discussion
Once linked, data will flow automatically from the source block to the target block.
The PropagateCompletion option flows completion in addition to data; however, at
each step in the pipeline, a faulting block will propagate its exception to the next
block wrapped in an AggregateException. So, if you have a long pipeline that propa‐
gates completions, the original error may be nested in multiple AggregateException
instances. AggregateException has several members, such as Flatten, that assist
with error handling in this situation.

It is possible to link dataflow blocks in many ways; your mesh can have forks and
joins and even loops. However, the simple, linear pipeline is sufficient for most sce‐
narios. We’ll be dealing mainly with pipelines (and briefly cover forks); more
advanced scenarios are beyond the scope of this book.

The DataflowLinkOptions type gives you several different options you can set on a
link (such as the PropagateCompletion option used in this solution), and the LinkTo
overload can also take a predicate that you can use to filter which data can go over a
link. If data doesn’t pass the filter, it is not dropped. Data that passes the filter travels
over that link; data that doesn’t pass the filter attempts to pass over an alternate link,
and stays in the block if there’s no other link for it to take. If a data item gets stuck in a
block like this, then that block won’t produce any other data items; the entire block
becomes stalled until that data item is removed.

See Also
Recipe 5.2 covers propagating errors along links.
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Recipe 5.3 covers removing links between blocks.

Recipe 8.8 covers how to link dataflow blocks to System.Reactive observable streams.

5.2 Propagating Errors
Problem
You need a way to respond to errors that can happen in your dataflow mesh.

Solution
If a delegate passed to a dataflow block throws an exception, then that block will enter
a faulted state. When a block is in a faulted state, it will drop all of its data (and stop
accepting new data). The block in the following code will never produce any output
data; the first value raises an exception, and the second value is just dropped:

var block = new TransformBlock<int, int>(item =>
{
  if (item == 1)
    throw new InvalidOperationException("Blech.");
  return item * 2;
});
block.Post(1);
block.Post(2);

To catch exceptions from a dataflow block, you should await its Completion prop‐
erty. The Completion property returns a Task that will complete when the block is
completed, and if the block faults, the Completion task is also faulted:

try
{
  var block = new TransformBlock<int, int>(item =>
  {
    if (item == 1)
      throw new InvalidOperationException("Blech.");
    return item * 2;
  });
  block.Post(1);
  await block.Completion;
}
catch (InvalidOperationException)
{
  // The exception is caught here.
}

When you propagate completion using the PropagateCompletion link option, errors
are also propagated. However, the exception is passed to the next block wrapped in an
AggregateException. The following example catches the exception from the end of a
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pipeline, so it would catch AggregateException if an exception was propagated from
earlier blocks:

try
{
  var multiplyBlock = new TransformBlock<int, int>(item =>
  {
    if (item == 1)
      throw new InvalidOperationException("Blech.");
    return item * 2;
  });
  var subtractBlock = new TransformBlock<int, int>(item => item - 2);
  multiplyBlock.LinkTo(subtractBlock,
      new DataflowLinkOptions { PropagateCompletion = true });
  multiplyBlock.Post(1);
  await subtractBlock.Completion;
}
catch (AggregateException)
{
  // The exception is caught here.
}

Each block wraps incoming errors in an AggregateException, even if the incoming
error is already an AggregateException. If an error occurs early in a pipeline and
travels down several links before it’s observed, the original error will be wrapped in
multiple layers of AggregateException. The AggregateException.Flatten method
simplifies error handling in this scenario.

Discussion
When you build your mesh (or pipeline), consider how errors should be handled. In
simpler situations, it can be best to just propagate the errors and catch them once at
the end. In more complex meshes, you may need to observe each block when the
dataflow has completed.

Alternatively, if you want your blocks to remain viable in the face of exceptions, you
can choose to treat exceptions as another kind of data and let them flow through your
mesh along with your correctly processed data items. Using that pattern, you can
keep your dataflow mesh operational, since the blocks themselves don’t fault and con‐
tinue processing the next data item. See Recipe 14.6 for more details.

See Also
Recipe 5.1 covers establishing links between blocks.

Recipe 5.3 covers breaking links between blocks.

Recipe 14.6 covers flowing exceptions alongside data in a dataflow mesh.
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5.3 Unlinking Blocks
Problem
During processing, you need to dynamically change the structure of your dataflow.
This is an advanced scenario that is hardly ever needed.

Solution
You can link or unlink dataflow blocks at any time; data can be freely passing through
the mesh and it’s still safe to link or unlink at any time. Both linking and unlinking
are fully threadsafe.

When you create a dataflow block link, keep the IDisposable returned by the LinkTo
method, and dispose of it when you want to unlink the blocks:

var multiplyBlock = new TransformBlock<int, int>(item => item * 2);
var subtractBlock = new TransformBlock<int, int>(item => item - 2);

IDisposable link = multiplyBlock.LinkTo(subtractBlock);
multiplyBlock.Post(1);
multiplyBlock.Post(2);

// Unlink the blocks.
// The data posted above may or may not have already gone through the link.
// In real-world code, consider a using block rather than calling Dispose.
link.Dispose();

Discussion
Unless you can guarantee that the link is idle, there will be race conditions when you
unlink it. However, these race conditions are usually not a concern; data will either
flow over the link before the link is broken, or it won’t. There are no race conditions
that would cause duplication or loss of data.

Unlinking is an advanced scenario, but it can be useful in a handful of situations. As
one example, there’s no way to change the filter for a link. To change the filter on an
existing link, you’d have to unlink the old one and create a new link with the new fil‐
ter (optionally setting DataflowLinkOptions.Append to false). As another example,
unlinking at a strategic point can be used to pause a dataflow mesh.

See Also
Recipe 5.1 covers establishing links between blocks.
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5.4 Throttling Blocks
Problem
You have a fork scenario in your dataflow mesh and want the data to flow in a load-
balancing way.

Solution
By default, when a block produces output data, it’ll examine all of its links (in the
order they were created) and attempt to flow the data down each link one at a time.
Also, by default, each block will maintain an input buffer and accept any amount of
data before it’s ready to process it.

This causes a problem in a fork scenario, where one source block is linked to two tar‐
get blocks: the second block is then starved. As the source block produces data, it will
try to flow the data down each link. The first target block would always accept the
data and buffer it, and so the source block would never try to flow the data to the
second target block. This problem can be fixed by throttling the target blocks using
the BoundedCapacity block option. By default, BoundedCapacity is set to Dataflow
BlockOptions.Unbounded, which causes the first target block to buffer all the data
even if it isn’t ready to process it yet.

BoundedCapacity can be set to any value greater than zero (or, of course, Dataflow
BlockOptions.Unbounded). As long as the target blocks can keep up with the data
coming from the source blocks, a simple value of 1 will suffice:

var sourceBlock = new BufferBlock<int>();
var options = new DataflowBlockOptions { BoundedCapacity = 1 };
var targetBlockA = new BufferBlock<int>(options);
var targetBlockB = new BufferBlock<int>(options);

sourceBlock.LinkTo(targetBlockA);
sourceBlock.LinkTo(targetBlockB);

Discussion
Throttling is useful for load balancing in fork scenarios, but it can be used anywhere
else you want throttling behavior. For example, if you’re populating your dataflow
mesh with data from an I/O operation, you can apply BoundedCapacity to the blocks
in your mesh. That way, you won’t read too much I/O data until your mesh is ready
for it, and your mesh won’t end up buffering all the input data before it’s able to pro‐
cess it.
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See Also
Recipe 5.1 covers linking blocks together.

5.5 Parallel Processing with Dataflow Blocks
Problem
You want to perform some parallel processing within your dataflow mesh.

Solution
By default, each dataflow block is independent from each other block. When you link
two blocks together, they will process independently. So, every dataflow mesh has
some natural parallelism built in.

If you need to go beyond this—for example, if you have one particular block that does
heavy CPU computations—then you can instruct that block to operate in parallel on
its input data by setting the MaxDegreeOfParallelism option. By default, this option
is set to 1, so each dataflow block will only process one piece of data at a time.

BoundedCapacity can be set to DataflowBlockOptions.Unbounded or any value
greater than zero. The following example permits any number of tasks to be multiply‐
ing data simultaneously:

var multiplyBlock = new TransformBlock<int, int>(
    item => item * 2,
    new ExecutionDataflowBlockOptions
    {
      MaxDegreeOfParallelism = DataflowBlockOptions.Unbounded
    });
var subtractBlock = new TransformBlock<int, int>(item => item - 2);
multiplyBlock.LinkTo(subtractBlock);

Discussion
The MaxDegreeOfParallelism option makes parallel processing within a block easy
to do. What is not so easy is determining which blocks need it. One technique is to
pause dataflow execution in the debugger, where you can see the number of data
items queued up (i.e., the ones that haven’t yet been processed by the block). An
unexpected number of data items can be an indication that some restructuring or
parallelization would be helpful.

MaxDegreeOfParallelism also works if the dataflow block does asynchronous pro‐
cessing. In this case, the MaxDegreeOfParallelism option specifies the level of con‐
currency—a certain number of slots. Each data item takes up a slot when the block
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begins processing it and only leaves that slot when the asynchronous processing is
fully completed.

See Also
Recipe 5.1 covers linking blocks together.

5.6 Creating Custom Blocks
Problem
You have reusable logic that you want to place into a custom dataflow block. Doing so
enables you to create larger blocks that contain complex logic.

Solution
You can cut out any part of a dataflow mesh that has a single input and output block
by using the Encapsulate method. Encapsulate will create a single block out of the
two endpoints. Propagating data and completion between those endpoints is your
responsibility. The following code creates a custom dataflow block out of two blocks,
propagating data and completion:

IPropagatorBlock<int, int> CreateMyCustomBlock()
{
  var multiplyBlock = new TransformBlock<int, int>(item => item * 2);
  var addBlock = new TransformBlock<int, int>(item => item + 2);
  var divideBlock = new TransformBlock<int, int>(item => item / 2);

  var flowCompletion = new DataflowLinkOptions { PropagateCompletion = true };
  multiplyBlock.LinkTo(addBlock, flowCompletion);
  addBlock.LinkTo(divideBlock, flowCompletion);

  return DataflowBlock.Encapsulate(multiplyBlock, divideBlock);
}

Discussion
When you encapsulate a mesh into a custom block, consider what kind of options
you want to expose to your users. Consider how each block option should (or
shouldn’t) be passed on to your inner mesh; in many cases, some block options don’t
apply or don’t make sense. For this reason, it’s common for custom blocks to define
their own custom options instead of accepting a DataflowBlockOptions parameter.

DataflowBlock.Encapsulate will only encapsulate a mesh with one input block and
one output block. If you have a reusable mesh with multiple inputs and/or outputs,
you should encapsulate it within a custom object and expose the inputs and outputs
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as properties of type ITargetBlock<T> (for inputs) and IReceivableSourceBlock<T>
(for outputs).

These examples all use Encapsulate to create a custom block. It is also possible to
implement the dataflow interfaces yourself, but it’s much more difficult. Microsoft
has a paper that describes advanced techniques for creating your own custom data‐
flow blocks.

See Also
Recipe 5.1 covers linking blocks together.

Recipe 5.2 covers propagating errors along block links.
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CHAPTER 6

System.Reactive Basics

LINQ is a set of language features that enable developers to query sequences. The two
most common LINQ providers are the built-in LINQ to Objects (which is based on
IEnumerable<T>) and LINQ to Entities (based on IQueryable<T>). There are many
other providers available, and most providers have the same general structure. Quer‐
ies are lazily evaluated, and the sequences produce values as necessary. Conceptually,
this is a pull model; during evaluation, value items are pulled from the query one at a
time.

System.Reactive (Rx) treats events as sequences of data that arrive over time. As such,
you can think of Rx as LINQ to Events (based on IObservable<T>). The main differ‐
ence between observables and other LINQ providers is that Rx is a “push” model,
meaning that the query defines how the program reacts as events arrive. Rx builds on
top of LINQ, adding some powerful new operators as extension methods.

This chapter looks at some of the more common Rx operations. Bear in mind that all
of the LINQ operators are also available, so simple operations, such as filtering
(Where) and projection (Select), work conceptually the same as they do with any
other LINQ provider. We won’t cover these common LINQ operations here; we’ll
focus on the new capabilities that Rx builds on top of LINQ, particularly those deal‐
ing with time.

To use System.Reactive, install the NuGet package for System.Reactive into your
application.
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6.1 Converting .NET Events
Problem
You have an event that you need to treat as a System.Reactive input stream, produc‐
ing some data via OnNext each time the event is raised.

Solution
The Observable class defines several event converters. Most .NET framework events
are compatible with FromEventPattern, but if you have events that don’t follow the
common pattern, you can use FromEvent instead.

FromEventPattern works best if the event delegate type is EventHandler<T>. Many
newer framework types use this event delegate type. For example, the Progress<T>
type defines a ProgressChanged event, which is of type EventHandler<T>, so it can be
easily wrapped with FromEventPattern:

var progress = new Progress<int>();
IObservable<EventPattern<int>> progressReports =
    Observable.FromEventPattern<int>(
        handler => progress.ProgressChanged += handler,
        handler => progress.ProgressChanged -= handler);
progressReports.Subscribe(data => Trace.WriteLine("OnNext: " + data.EventArgs));

Note here that the data.EventArgs is strongly typed to be an int. The type argument
to FromEventPattern (int in the previous example) is the same as the type T in Even
tHandler<T>. The two lambda arguments to FromEventPattern enable System.Reac‐
tive to subscribe and unsubscribe from the event.

The newer user interface frameworks use EventHandler<T>, and can easily be used
with FromEventPattern, but older types often define a unique delegate type for each
event. These can also be used with FromEventPattern, but it takes a bit more work.
For example, the System.Timers.Timer type defines an Elapsed event, which is of
type ElapsedEventHandler. You can wrap older events like this with FromEventPat
tern:

var timer = new System.Timers.Timer(interval: 1000) { Enabled = true };
IObservable<EventPattern<ElapsedEventArgs>> ticks =
    Observable.FromEventPattern<ElapsedEventHandler, ElapsedEventArgs>(
        handler => (s, a) => handler(s, a),
        handler => timer.Elapsed += handler,
        handler => timer.Elapsed -= handler);
ticks.Subscribe(data => Trace.WriteLine("OnNext: " + data.EventArgs.SignalTime));

Note that in this example that data.EventArgs is still strongly typed. The type argu‐
ments to FromEventPattern are now the unique handler type and the derived Even
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tArgs type. The first lambda argument to FromEventPattern is a converter from
EventHandler<ElapsedEventArgs> to ElapsedEventHandler; the converter should
do nothing more than pass along the event.

That syntax is definitely getting awkward. Here’s another option, which uses reflec‐
tion:

var timer = new System.Timers.Timer(interval: 1000) { Enabled = true };
IObservable<EventPattern<object>> ticks =
    Observable.FromEventPattern(timer, nameof(Timer.Elapsed));
ticks.Subscribe(data => Trace.WriteLine("OnNext: "
    + ((ElapsedEventArgs)data.EventArgs).SignalTime));

With this approach, the call to FromEventPattern is much easier. Note that there’s
one drawback to this approach: the consumer doesn’t get strongly typed data. Because
data.EventArgs is of type object, you have to cast it to ElapsedEventArgs yourself.

Discussion
Events are a common source of data for System.Reactive streams. This recipe covers
wrapping any events that conform to the standard event pattern (where the first argu‐
ment is the sender and the second argument is the event arguments type). If you have
unusual event types, you can still use the Observable.FromEvent method overloads
to wrap them into an observable.

When events are wrapped into an observable, OnNext is called each time the event is
raised. When you’re dealing with AsyncCompletedEventArgs, this can cause surpris‐
ing behavior, because any exception is passed along as data (OnNext), not as an error
(OnError). Consider this wrapper for WebClient.DownloadStringCompleted, for
example:

var client = new WebClient();
IObservable<EventPattern<object>> downloadedStrings =
    Observable.
    FromEventPattern(client, nameof(WebClient.DownloadStringCompleted));
downloadedStrings.Subscribe(
    data =>
    {
      var eventArgs = (DownloadStringCompletedEventArgs)data.EventArgs;
      if (eventArgs.Error != null)
        Trace.WriteLine("OnNext: (Error) " + eventArgs.Error);
      else
        Trace.WriteLine("OnNext: " + eventArgs.Result);
    },
    ex => Trace.WriteLine("OnError: " + ex.ToString()),
    () => Trace.WriteLine("OnCompleted"));
client.DownloadStringAsync(new Uri("http://invalid.example.com/"));
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When WebClient.DownloadStringAsync completes with an error, the event is raised
with an exception in AsyncCompletedEventArgs.Error. Unfortunately, System.Reac‐
tive sees this as a data event, so if you then run the preceding code you will see
OnNext: (Error) printed instead of OnError:.

Some event subscriptions and unsubscriptions must be done from a particular con‐
text. For example, events on many UI controls must be subscribed to from the UI
thread. System.Reactive provides an operator that will control the context for sub‐
scribing and unsubscribing: SubscribeOn. The SubscribeOn operator isn’t necessary
in most situations because most of the time a UI-based subscription is done from the
UI thread.

SubscribeOn controls the context for the code that adds and
removes the event handlers. Don’t confuse this with ObserveOn,
which controls the context for the observable notifications (the del‐
egates passed to Subscribe).

See Also
Recipe 6.2 covers how to change the context in which events are raised.

Recipe 6.4 covers how to throttle events so subscribers aren’t overwhelmed.

6.2 Sending Notifications to a Context
Problem
System.Reactive does its best to be thread agnostic. So, it’ll raise notifications (e.g.,
OnNext) in whatever thread happens to be current. Each OnNext notification will hap‐
pen sequentially, but not necessarily on the same thread.

You often want these notifications raised in a particular context. For example, UI ele‐
ments should only be manipulated from the UI thread that owns them, so if you’re
updating a UI in response to a notification that is arriving on a threadpool thread,
then you’ll need to move over to the UI thread.

Solution
System.Reactive provides the ObserveOn operator to move notifications to another
scheduler.

Consider the following example, which uses the Interval operator to create OnNext
notifications once a second:
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private void Button_Click(object sender, RoutedEventArgs e)
{
  Trace.WriteLine($"UI thread is {Environment.CurrentManagedThreadId}");
  Observable.Interval(TimeSpan.FromSeconds(1))
      .Subscribe(x => Trace.WriteLine(
          $"Interval {x} on thread {Environment.CurrentManagedThreadId}"));
}

On my machine, the output looks like the following:

UI thread is 9
Interval 0 on thread 10
Interval 1 on thread 10
Interval 2 on thread 11
Interval 3 on thread 11
Interval 4 on thread 10
Interval 5 on thread 11
Interval 6 on thread 11

Since Interval is based on a timer (without a specific thread), the notifications are
raised on a threadpool thread, rather than the UI thread. If you need to update a UI
element, you can pipe those notifications through ObserveOn and pass a synchroniza‐
tion context representing the UI thread:

private void Button_Click(object sender, RoutedEventArgs e)
{
  SynchronizationContext uiContext = SynchronizationContext.Current;
  Trace.WriteLine($"UI thread is {Environment.CurrentManagedThreadId}");
  Observable.Interval(TimeSpan.FromSeconds(1))
      .ObserveOn(uiContext)
      .Subscribe(x => Trace.WriteLine(
          $"Interval {x} on thread {Environment.CurrentManagedThreadId}"));
}

Another common usage of ObserveOn is to move off the UI thread when necessary.
Consider a situation where you need to do some CPU-intensive computation when‐
ever the mouse moves. By default, all mouse moves are raised on the UI thread, so
you can use ObserveOn to move those notifications to a threadpool thread, do the
computation, and then move the result notifications back to the UI thread:

SynchronizationContext uiContext = SynchronizationContext.Current;
Trace.WriteLine($"UI thread is {Environment.CurrentManagedThreadId}");
Observable.FromEventPattern<MouseEventHandler, MouseEventArgs>(
        handler => (s, a) => handler(s, a),
        handler => MouseMove += handler,
        handler => MouseMove -= handler)
    .Select(evt => evt.EventArgs.GetPosition(this))
    .ObserveOn(Scheduler.Default)
    .Select(position =>
    {
      // Complex calculation
      Thread.Sleep(100);
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      var result = position.X + position.Y;
      var thread = Environment.CurrentManagedThreadId;
      Trace.WriteLine($"Calculated result {result} on thread {thread}");
      return result;
    })
    .ObserveOn(uiContext)
    .Subscribe(x => Trace.WriteLine(
        $"Result {x} on thread {Environment.CurrentManagedThreadId}"));

If you execute this sample, you’ll see the calculations done on a threadpool thread
and the results printed on the UI thread. However, you’ll also notice that the calcula‐
tions and results will lag behind the input; they’ll queue up because the mouse loca‐
tion updates more often than every 100 ms. System.Reactive has several techniques
for handling this situation; one common one covered in Recipe 6.4 is throttling the
input.

Discussion
ObserveOn actually moves notifications to a System.Reactive scheduler. This recipe
covered the default (thread pool) scheduler and one way of creating a UI scheduler.
The most common uses for the ObserveOn operator are moving on or off the UI
thread, but schedulers are also useful in other scenarios. A more advanced scenario
where schedulers are useful is faking the passage of time when unit testing, which
you’ll find covered in Recipe 7.6.

ObserveOn controls the context for the observable notifications.
This is not to be confused with SubscribeOn, which controls the
context for the code that adds and removes the event handlers.

See Also
Recipe 6.1 covers how to create sequences from events, and using SubscribeOn.

Recipe 6.4 covers throttling event streams.

Recipe 7.6 covers the special scheduler used for testing your System.Reactive code.

6.3 Grouping Event Data with Windows and Buffers
Problem
You have a sequence of events, and you want to group the incoming events as they
arrive. As an example, you need to react to pairs of inputs. As another example, you
need to react to all inputs within a two-second window.
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Solution
System.Reactive provides a pair of operators that group incoming sequences: Buffer
and Window. Buffer will hold on to the incoming events until the group is complete,
at which time it forwards them all at once as a collection of events. Window will logi‐
cally group the incoming events but will pass them along as they arrive. The return
type of Buffer is IObservable<IList<T>> (an event stream of collections); the return
type of Window is IObservable<IObservable<T>> (an event stream of event streams).

The following example uses the Interval operator to create OnNext notifications
once a second and then buffers them two at a time:

Observable.Interval(TimeSpan.FromSeconds(1))
    .Buffer(2)
    .Subscribe(x => Trace.WriteLine(
        $"{DateTime.Now.Second}: Got {x[0]} and {x[1]}"));

On my machine, this code produces a pair of outputs every two seconds:

13: Got 0 and 1
15: Got 2 and 3
17: Got 4 and 5
19: Got 6 and 7
21: Got 8 and 9

The following is a similar example of using Window to create groups of two events:

Observable.Interval(TimeSpan.FromSeconds(1))
    .Window(2)
    .Subscribe(group =>
    {
      Trace.WriteLine($"{DateTime.Now.Second}: Starting new group");
      group.Subscribe(
          x => Trace.WriteLine($"{DateTime.Now.Second}: Saw {x}"),
          () => Trace.WriteLine($"{DateTime.Now.Second}: Ending group"));
    });

On my machine, this Window example produces this output:

17: Starting new group
18: Saw 0
19: Saw 1
19: Ending group
19: Starting new group
20: Saw 2
21: Saw 3
21: Ending group
21: Starting new group
22: Saw 4
23: Saw 5
23: Ending group
23: Starting new group
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These examples illustrate the difference between Buffer and Window. Buffer waits for
all the events in its group and then publishes a single collection. Window groups events
the same way, but publishes the events as they come in; Window immediately publishes
an observable that will publish the events for that window.

Both Buffer and Window also work with time spans. The following code is an example
where all mouse move events are collected in windows of one second:

private void Button_Click(object sender, RoutedEventArgs e)
{
  Observable.FromEventPattern<MouseEventHandler, MouseEventArgs>(
          handler => (s, a) => handler(s, a),
          handler => MouseMove += handler,
          handler => MouseMove -= handler)
      .Buffer(TimeSpan.FromSeconds(1))
      .Subscribe(x => Trace.WriteLine(
          $"{DateTime.Now.Second}: Saw {x.Count} items."));
}

Depending on how you move the mouse, you should see output like the following:

49: Saw 93 items.
50: Saw 98 items.
51: Saw 39 items.
52: Saw 0 items.
53: Saw 4 items.
54: Saw 0 items.
55: Saw 58 items.

Discussion
Buffer and Window are some of the tools you have for taming input and shaping it the
way you want it to look. Another useful technique is throttling, which you’ll learn
about in Recipe 6.4.

Both Buffer and Window have other overloads that can be used in more advanced sce‐
narios. The overloads with skip and timeShift parameters enable you to create
groups that overlap other groups or skip elements in between groups. There are also
overloads that take delegates, which enable you to dynamically define the boundary
of the groups.

See Also
Recipe 6.1 covers how to create sequences from events.

Recipe 6.4 covers throttling event streams.
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6.4 Taming Event Streams with Throttling and Sampling
Problem
A common problem with writing reactive code is when the events come in too
quickly. A fast-moving stream of events can overwhelm your program’s processing.

Solution
System.Reactive provides operators specifically for dealing with a flood of event data.
The Throttle and Sample operators give us two different ways to tame fast input
events.

The Throttle operator establishes a sliding timeout window. When an incoming
event arrives, it resets the timeout window. When the timeout window expires, it
publishes the last event value that arrived within the window.

The following example monitors mouse movements and uses Throttle to only
report updates once the mouse has stayed still for a full second:

private void Button_Click(object sender, RoutedEventArgs e)
{
  Observable.FromEventPattern<MouseEventHandler, MouseEventArgs>(
          handler => (s, a) => handler(s, a),
          handler => MouseMove += handler,
          handler => MouseMove -= handler)
      .Select(x => x.EventArgs.GetPosition(this))
      .Throttle(TimeSpan.FromSeconds(1))
      .Subscribe(x => Trace.WriteLine(
          $"{DateTime.Now.Second}: Saw {x.X + x.Y}"));
}

The output varies considerably based on mouse movement, but one example run on
my machine looked like this:

47: Saw 139
49: Saw 137
51: Saw 424
56: Saw 226

Throttle is often used in situations such as autocomplete, when the user is typing
text into a text box, and you don’t want to do the actual lookup until the user stops
typing.

Sample takes a different approach to taming fast-moving sequences. Sample estab‐
lishes a regular timeout period and publishes the most recent value within that win‐
dow each time the timeout expires. If no values were received within the sample
period, then no results are published for that period.
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The following example captures mouse movements and samples them in one-second
intervals. Unlike the Throttle example, this Sample example doesn’t require you to
hold the mouse still to see data:

private void Button_Click(object sender, RoutedEventArgs e)
{
  Observable.FromEventPattern<MouseEventHandler, MouseEventArgs>(
          handler => (s, a) => handler(s, a),
          handler => MouseMove += handler,
          handler => MouseMove -= handler)
      .Select(x => x.EventArgs.GetPosition(this))
      .Sample(TimeSpan.FromSeconds(1))
      .Subscribe(x => Trace.WriteLine(
          $"{DateTime.Now.Second}: Saw {x.X + x.Y}"));
}

Here’s the output on my machine when I first left the mouse still for a few seconds
and then continuously moved it:

12: Saw 311
17: Saw 254
18: Saw 269
19: Saw 342
20: Saw 224
21: Saw 277

Discussion
Throttling and sampling are essential tools for taming the flood of input. Don’t forget
that you can also easily do filtering with the standard LINQ Where operator. You can
think of the Throttle and Sample operators as similar to Where, only they filter on
time windows instead of filtering on event data. All three of these operators help you
tame fast-moving input streams in different ways.

See Also
Recipe 6.1 covers how to create sequences from events.

Recipe 6.2 covers how to change the context in which events are raised.

6.5 Timeouts
Problem
You expect an event to arrive within a certain time and need to ensure that your pro‐
gram will respond in a timely fashion, even if the event doesn’t arrive. Most com‐
monly, this kind of expected event is a single asynchronous operation (e.g., expecting
the response from a web service request).

84 | Chapter 6: System.Reactive Basics



Solution
The Timeout operator establishes a sliding timeout window on its input stream.
Whenever a new event arrives, the timeout window is reset. If the timeout expires
without seeing an event in that window, the Timeout operator will end the stream
with an OnError notification containing a TimeoutException.

The following example issues a web request for the example domain and applies a
timeout of one second. To get the web request started, the code uses ToObservable to
convert a Task<T> to an IObservable<T> (see Recipe 8.6):

void GetWithTimeout(HttpClient client)
{
  client.GetStringAsync("http://www.example.com/").ToObservable()
      .Timeout(TimeSpan.FromSeconds(1))
      .Subscribe(
          x => Trace.WriteLine($"{DateTime.Now.Second}: Saw {x.Length}"),
          ex => Trace.WriteLine(ex));
}

Timeout is ideal for asynchronous operations, such as web requests, but it can be
applied to any event stream. The following example applies Timeout to mouse move‐
ments, which are easier to play around with:

private void Button_Click(object sender, RoutedEventArgs e)
{
  Observable.FromEventPattern<MouseEventHandler, MouseEventArgs>(
          handler => (s, a) => handler(s, a),
          handler => MouseMove += handler,
          handler => MouseMove -= handler)
      .Select(x => x.EventArgs.GetPosition(this))
      .Timeout(TimeSpan.FromSeconds(1))
      .Subscribe(
          x => Trace.WriteLine($"{DateTime.Now.Second}: Saw {x.X + x.Y}"),
          ex => Trace.WriteLine(ex));
}

On my machine, I moved the mouse a bit and then kept it still for a second, and got
these results:

16: Saw 180
16: Saw 178
16: Saw 177
16: Saw 176
System.TimeoutException: The operation has timed out.

Note that once the TimeoutException is sent to OnError, the stream is finished. No
more mouse movements come through. You may not want exactly this behavior, so
the Timeout operator has overloads that substitute a second stream when the timeout
occurs instead of ending the stream with an exception.
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The code in the following example observes mouse movements until there’s a time‐
out. After the timeout, the code observes mouse clicks:

private void Button_Click(object sender, RoutedEventArgs e)
{
  IObservable<Point> clicks =
      Observable.FromEventPattern<MouseButtonEventHandler, MouseButtonEventArgs>(
          handler => (s, a) => handler(s, a),
          handler => MouseDown += handler,
          handler => MouseDown -= handler)
      .Select(x => x.EventArgs.GetPosition(this));

  Observable.FromEventPattern<MouseEventHandler, MouseEventArgs>(
          handler => (s, a) => handler(s, a),
          handler => MouseMove += handler,
          handler => MouseMove -= handler)
      .Select(x => x.EventArgs.GetPosition(this))
      .Timeout(TimeSpan.FromSeconds(1), clicks)
      .Subscribe(
          x => Trace.WriteLine($"{DateTime.Now.Second}: Saw {x.X},{x.Y}"),
          ex => Trace.WriteLine(ex));
}

On my machine, I moved the mouse a bit, then held it still for a second, and then
clicked a couple of different points. The following outputs shows the mouse move‐
ments quickly moving through until the timeout, and then the two clicks:

49: Saw 95,39
49: Saw 94,39
49: Saw 94,38
49: Saw 94,37
53: Saw 130,141
55: Saw 469,4

Discussion
Timeout is an essential operator in nontrivial applications because you always want
your program to be responsive even if the rest of the world isn’t. It’s particularly use‐
ful when you have asynchronous operations, but it can be applied to any event
stream. Note that the underlying operation is not actually canceled; in the case of a
timeout, the operation will continue executing until it succeeds or fails.

See Also
Recipe 6.1 covers how to create sequences from events.

Recipe 8.6 covers wrapping asynchronous code as an observable event stream.

Recipe 10.6 covers unsubscribing from sequences as a result of a CancellationToken.

Recipe 10.3 covers using a CancellationToken as a timeout.
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CHAPTER 7

Testing

Testing is an essential part of software quality. Unit testing advocates have become
common in recent years; it seems that you read or hear about it everywhere. Some
promote test-driven development, a style of coding that ensures you have comprehen‐
sive tests when the application is complete. The benefits of unit testing on code qual‐
ity and overall time to completion are well known, and yet many developers still don’t
write unit tests.

I encourage you to write at least some unit tests. Start with the code in which you feel
the least confidence. In my experience, unit tests have given me two main advantages:

• Better understanding of the code. You know that part of the application that
works but you have no idea how? It’s always kind of in the back of your mind
when the really weird bug reports come in. Writing unit tests for code you find
difficult is a great way to get a clear understanding of how it works. After writing
unit tests describing its behavior, the code is no longer mysterious; you end up
with a set of unit tests that describe its behavior and the dependencies that code
has on the rest of the code.

• Greater confidence to make changes. Sooner or later, you’ll get that feature
request that requires you to change the code that scares you, and you’ll no longer
be able to pretend it isn’t there (I know how that feels; I’ve been there!). It’s best to
be proactive: write the unit tests for the scary code before the feature request
comes in. Once your unit tests are complete, you’ll have an early warning system
that will alert you immediately if your changes break existing behavior. When
you have a pull request, unit tests also give you greater confidence that the code
changes don’t break existing behavior.

Both of these advantages apply to your own code just as much as others’ code. I’m
sure there are other advantages, too. Does unit testing decrease the frequency of
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bugs? Most likely. Does unit testing reduce the overall time on a project? Possibly. But
the advantages I’ve described are definite; I experience them every time I write unit
tests. So, that’s my sales pitch for unit testing.

This chapter contains recipes that are all about testing. A lot of developers (even ones
who normally write unit tests) shy away from testing concurrent code because they
assume it’s hard. However, as these recipes will show, unit testing concurrent code
isn’t as difficult as they think. Modern features and libraries, such as async and Sys‐
tem.Reactive, have put a lot of thought into testing, and it shows. I encourage you to
use these recipes to write unit tests, especially if you’re new to concurrency (i.e., the
new concurrent code appears hard or scary).

7.1 Unit Testing async Methods
Problem
You have an async method that you need to unit test.

Solution
Most modern unit test frameworks support async Task unit test methods, including
MSTest, NUnit, and xUnit. MSTest began support for these tests with Visual Studio
2012. If you use another unit test framework, you may have to upgrade to the latest
version.

Here is an example of an async MSTest unit test:

[TestMethod]
public async Task MyMethodAsync_ReturnsFalse()
{
  var objectUnderTest = ...;
  bool result = await objectUnderTest.MyMethodAsync();
  Assert.IsFalse(result);
}

The unit test framework will notice that the return type of the method is Task and
will intelligently wait for the task to complete before marking the test “successful” or
“failed.”

If your unit test framework doesn’t support async Task unit tests, then it’ll need
some help to wait for the asynchronous operation under test. One option is that you
can use GetAwaiter().GetResult() to synchronously block on the task; if you then
use GetAwaiter().GetResult() instead of Wait(), it avoids the AggregateException
wrapper if the task has an exception. However, I prefer to use the AsyncContext type
from the Nito.AsyncEx NuGet package:
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[TestMethod]
public void MyMethodAsync_ReturnsFalse()
{
  AsyncContext.Run(async () =>
  {
    var objectUnderTest = ...;
    bool result = await objectUnderTest.MyMethodAsync();
    Assert.IsFalse(result);
  });
}

AsyncContext.Run will wait until all asynchronous methods complete.

Discussion
Mocking asynchronous dependencies can be a bit awkward at first. It’s a good idea to
at least test how your methods respond to synchronous success (mocking with
Task.FromResult), synchronous errors (mocking with Task.FromException), and
asynchronous success (mocking with Task.Yield and a return value). You’ll find cov‐
erage of Task.FromResult and Task.FromException in Recipe 2.2. Task.Yield can
be used to force asynchronous behavior, and is primarily useful for unit tests:

interface IMyInterface
{
  Task<int> SomethingAsync();
}

class SynchronousSuccess : IMyInterface
{
  public Task<int> SomethingAsync()
  {
    return Task.FromResult(13);
  }
}

class SynchronousError : IMyInterface
{
  public Task<int> SomethingAsync()
  {
    return Task.FromException<int>(new InvalidOperationException());
  }
}

class AsynchronousSuccess : IMyInterface
{
  public async Task<int> SomethingAsync()
  {
    await Task.Yield(); // Force asynchronous behavior.
    return 13;
  }
}
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When testing asynchronous code, deadlocks and race conditions may surface more
often than when testing synchronous code. I find the per-test timeout setting useful;
in Visual Studio, you can add a test settings file to your solution that enables you to
set individual test timeouts. The default value is quite high; I usually have a per-test
timeout setting of two seconds.

The AsyncContext type is in the Nito.AsyncEx NuGet package.

See Also
Recipe 7.2 covers unit testing asynchronous methods expected to fail.

7.2 Unit Testing async Methods Expected to Fail
Problem
You need to write a unit test that checks for a specific failure of an async Task
method.

Solution
If you’re doing desktop or server development, MSTest does support failure testing
via the regular ExpectedExceptionAttribute:

// Not a recommended solution; see below.
[TestMethod]
[ExpectedException(typeof(DivideByZeroException))]
public async Task Divide_WhenDenominatorIsZero_ThrowsDivideByZero()
{
  await MyClass.DivideAsync(4, 0);
}

However, this solution isn’t the best: ExpectedException is actually a poor design.
The exception it expects may be thrown by any of the methods called by your unit
test method. A better design checks that a particular piece of code throws that excep‐
tion, not the unit test as a whole.

Most modern unit test frameworks include Assert.ThrowsAsync<TException> in
some form. For example, you can use xUnit’s ThrowsAsync like this:

[Fact]
public async Task Divide_WhenDenominatorIsZero_ThrowsDivideByZero()
{
  await Assert.ThrowsAsync<DivideByZeroException>(async () =>
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  {
    await MyClass.DivideAsync(4, 0);
  });
}

Do not forget to await the task returned by ThrowsAsync! The
await will propagate any assertion failures that it detects. If you
forget the await and ignore the compiler warning, your unit test
will always silently succeed regardless of your method’s behavior.

Unfortunately, several other unit test frameworks don’t include an equivalent async-
compatible ThrowsAsync. If you find yourself in this boat, create your own:

/// <summary>
/// Ensures that an asynchronous delegate throws an exception.
/// </summary>
/// <typeparam name="TException">
/// The type of exception to expect.
/// </typeparam>
/// <param name="action">The asynchronous delegate to test.</param>
/// <param name="allowDerivedTypes">
/// Whether derived types should be accepted.
/// </param>
public static async Task<TException> ThrowsAsync<TException>(Func<Task> action,
    bool allowDerivedTypes = true)
    where TException : Exception
{
  try
  {
    await action();
    var name = typeof(Exception).Name;
    Assert.Fail($"Delegate did not throw expected exception {name}.");
    return null;
  }
  catch (Exception ex)
  {
    if (allowDerivedTypes && !(ex is TException))
      Assert.Fail($"Delegate threw exception of type {ex.GetType().Name}" +
          $", but {typeof(TException).Name} or a derived type was expected.");
    if (!allowDerivedTypes && ex.GetType() != typeof(TException))
      Assert.Fail($"Delegate threw exception of type {ex.GetType().Name}" +
          $", but {typeof(TException).Name} was expected.");
    return (TException)ex;
  }
}

You can use the method just like it was any other Assert.ThrowsAsync<TException>
method. Don’t forget to await the return value!
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Discussion
Testing error handling is just as important as testing the successful scenarios. Some
would even say more important, since the successful scenario is the one that everyone
tries before the software is released. If your application behaves strangely, it will be
due to an unexpected error situation.

However, I encourage developers to move away from ExpectedException. It’s better
to test for an exception thrown at a specific point rather than testing for an exception
at any time during the test. Instead of ExpectedException, use ThrowsAsync (or its
equivalent in your unit test framework), or use the ThrowsAsync implementation, as
in the last code example.

See Also
Recipe 7.1 covers the basics of unit testing asynchronous methods.

7.3 Unit Testing async void Methods
Problem
You have an async void method that you need to unit test.

Solution
Stop.

Rather than solving this problem, you should do your dead-level best to avoid it. If it’s
possible to change your async void method to an async Task method, then do so.

If your method must be async void (e.g., to satisfy an interface method signature),
then consider writing two methods: an async Task method that contains all the logic,
and an async void wrapper that just calls the async Task method and awaits the
result. The async void method satisfies the architecture requirements, while the
async Task method (with all the logic) is testable.

If it’s impossible to change your method and you must unit test an async void
method, then there is a way to do it. You can use the AsyncContext class from the
Nito.AsyncEx library:

// Not a recommended solution; see the rest of this section.
[TestMethod]
public void MyMethodAsync_DoesNotThrow()
{
  AsyncContext.Run(() =>
  {
    var objectUnderTest = new Sut(); // ...;
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    objectUnderTest.MyVoidMethodAsync();
  });
}

The AsyncContext type will wait until all asynchronous operations complete (includ‐
ing async void methods) and will propagate exceptions that they raise.

The AsyncContext type is in the Nito.AsyncEx NuGet package.

Discussion
One of the key guidelines in async code is to avoid async void. I strongly recom‐
mend you refactor your code instead of using AsyncContext for unit testing async
void methods.

See Also
Recipe 7.1 covers unit testing async Task methods.

7.4 Unit Testing Dataflow Meshes
Problem
You have a dataflow mesh in your application, and you need to verify it works cor‐
rectly.

Solution
Dataflow meshes are independent: they have a lifetime of their own and are asyn‐
chronous by nature. So, the most natural way to test them is with an asynchronous
unit test. The following unit test verifies the custom dataflow block from Recipe 5.6:

[TestMethod]
public async Task MyCustomBlock_AddsOneToDataItems()
{
  var myCustomBlock = CreateMyCustomBlock();

  myCustomBlock.Post(3);
  myCustomBlock.Post(13);
  myCustomBlock.Complete();

  Assert.AreEqual(4, myCustomBlock.Receive());
  Assert.AreEqual(14, myCustomBlock.Receive());
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  await myCustomBlock.Completion;
}

Unit testing failures isn’t quite as straightforward, unfortunately. This is because
exceptions in dataflow meshes are wrapped in another AggregateException each
time they are propagated to the next block. The following example uses a helper
method to ensure that an exception will discard data and propagate through the cus‐
tom block:

[TestMethod]
public async Task MyCustomBlock_Fault_DiscardsDataAndFaults()
{
  var myCustomBlock = CreateMyCustomBlock();

  myCustomBlock.Post(3);
  myCustomBlock.Post(13);
  (myCustomBlock as IDataflowBlock).Fault(new InvalidOperationException());

  try
  {
    await myCustomBlock.Completion;
  }
  catch (AggregateException ex)
  {
    AssertExceptionIs<InvalidOperationException>(
        ex.Flatten().InnerException, false);
  }
}

public static void AssertExceptionIs<TException>(Exception ex,
    bool allowDerivedTypes = true)
{
  if (allowDerivedTypes && !(ex is TException))
    Assert.Fail($"Exception is of type {ex.GetType().Name}, but " +
        $"{typeof(TException).Name} or a derived type was expected.");
  if (!allowDerivedTypes && ex.GetType() != typeof(TException))
    Assert.Fail($"Exception is of type {ex.GetType().Name}, but " +
        $"{typeof(TException).Name} was expected.");
}

Discussion
Unit testing of dataflow meshes directly is doable, but somewhat awkward. If your
mesh is a part of a larger component, then you may find that it’s easier to just unit test
the larger component (implicitly testing the mesh). But if you’re developing a reusa‐
ble custom block or mesh, then unit tests like the preceding ones should be used.

See Also
Recipe 7.1 covers unit testing async methods.
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7.5 Unit Testing System.Reactive Observables
Problem
Part of your program is using IObservable<T>, and you need to find a way to unit
test it.

Solution
System.Reactive has a number of operators that produce sequences (e.g., Return) and
other operators that can convert a reactive sequence into a regular collection or item
(e.g., SingleAsync). You can use operators like Return to create stubs for observable
dependencies, and operators like SingleAsync to test the output.

Consider the following code, which takes an HTTP service as a dependency and
applies a timeout to the HTTP call:

public interface IHttpService
{
  IObservable<string> GetString(string url);
}

public class MyTimeoutClass
{
  private readonly IHttpService _httpService;

  public MyTimeoutClass(IHttpService httpService)
  {
    _httpService = httpService;
  }

  public IObservable<string> GetStringWithTimeout(string url)
  {
    return _httpService.GetString(url)
        .Timeout(TimeSpan.FromSeconds(1));
  }
}

The system under test is MyTimeoutClass, which consumes an observable depend‐
ency and produces an observable as output.

The Return operator creates a cold sequence with a single element in it; you can use
Return to build a simple stub. The SingleAsync operator returns a Task<T> that is
completed when the next event arrives. SingleAsync can be used for simple unit tests
like the following:

class SuccessHttpServiceStub : IHttpService
{
  public IObservable<string> GetString(string url)
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  {
    return Observable.Return("stub");
  }
}

[TestMethod]
public async Task MyTimeoutClass_SuccessfulGet_ReturnsResult()
{
  var stub = new SuccessHttpServiceStub();
  var my = new MyTimeoutClass(stub);

  var result = await my.GetStringWithTimeout("http://www.example.com/")
      .SingleAsync();

  Assert.AreEqual("stub", result);
}

Another operator important in stub code is Throw, which returns an observable that
ends with an error. The operator enables us to unit test the error case as well. The
following example uses the ThrowsAsync helper from Recipe 7.2:

private class FailureHttpServiceStub : IHttpService
{
  public IObservable<string> GetString(string url)
  {
    return Observable.Throw<string>(new HttpRequestException());
  }
}

[TestMethod]
public async Task MyTimeoutClass_FailedGet_PropagatesFailure()
{
  var stub = new FailureHttpServiceStub();
  var my = new MyTimeoutClass(stub);

  await ThrowsAsync<HttpRequestException>(async () =>
  {
    await my.GetStringWithTimeout("http://www.example.com/")
        .SingleAsync();
  });
}

Discussion
Return and Throw are great for creating observable stubs, and SingleAsync is an easy
way to test observables with async unit tests. They’re a good combination for simple
observables, but they don’t hold up well once you start dealing with time. For exam‐
ple, if you wanted to test the timeout capability of MyTimeoutClass, the unit test
would have to wait for that amount of time. That, however, would be a poor
approach: it makes your unit tests unreliable by introducing a race condition, and it

96 | Chapter 7: Testing



doesn’t scale well as you add more unit tests. Recipe 7.6 covers a special way that Sys‐
tem.Reactive empowers you to stub out time itself.

See Also
Recipe 7.1 covers unit testing async methods, which is very similar to unit tests that
await SingleAsync.

Recipe 7.6 covers unit testing observable sequences that depend on time passing.

7.6 Unit Testing System.Reactive Observables
with Faked Scheduling
Problem
You have an observable that is dependent on time, and want to write a unit test that is
not dependent on time. Observables that depend on time include ones that use time‐
outs, windowing/buffering, and throttling/sampling. You want to unit test these but
do not want your unit tests to have excessive runtimes.

Solution
It’s certainly possible to put delays in your unit tests; however, there are two problems
with that approach: 1) the unit tests take a long time to run, and 2) there are race
conditions because the unit tests all run at the same time, making timing unpredicta‐
ble.

The System.Reactive (Rx) library was designed with testing in mind; in fact, the Rx
library itself is extensively unit tested. To enable thorough unit testing, Rx introduced
a concept called a scheduler, and every Rx operator that deals with time is imple‐
mented using this abstract scheduler.

To make your observables testable, you need to allow your caller to specify the sched‐
uler. For example, you can take the MyTimeoutClass from Recipe 7.5 and add a
scheduler:

public interface IHttpService
{
  IObservable<string> GetString(string url);
}

public class MyTimeoutClass
{
  private readonly IHttpService _httpService;

  public MyTimeoutClass(IHttpService httpService)
  {
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    _httpService = httpService;
  }

  public IObservable<string> GetStringWithTimeout(string url,
      IScheduler scheduler = null)
  {
    return _httpService.GetString(url)
        .Timeout(TimeSpan.FromSeconds(1), scheduler ?? Scheduler.Default);
  }
}

Next, you can modify your HTTP service stub so that it also understands scheduling,
then introduce a variable delay:

private class SuccessHttpServiceStub : IHttpService
{
  public IScheduler Scheduler { get; set; }
  public TimeSpan Delay { get; set; }

  public IObservable<string> GetString(string url)
  {
    return Observable.Return("stub")
        .Delay(Delay, Scheduler);
  }
}

Now you can go ahead and use TestScheduler, a type included in the System.Reac‐
tive library. TestScheduler gives you powerful control over (virtual) time.

TestScheduler is in a separate NuGet package from the rest of Sys‐
tem.Reactive; you’ll need to install the Microsoft.Reactive.Test
ing NuGet package.

TestScheduler gives you complete control over time, but you often just need to set
up your code and then call TestScheduler.Start. Start will virtually advance time
until everything is done. A simple success test case could look like the following:

[TestMethod]
public void MyTimeoutClass_SuccessfulGetShortDelay_ReturnsResult()
{
  var scheduler = new TestScheduler();
  var stub = new SuccessHttpServiceStub
  {
    Scheduler = scheduler,
    Delay = TimeSpan.FromSeconds(0.5),
  };
  var my = new MyTimeoutClass(stub);
  string result = null;
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  my.GetStringWithTimeout("http://www.example.com/", scheduler)
      .Subscribe(r => { result = r; });

  scheduler.Start();

  Assert.AreEqual("stub", result);
}

The code simulates a network delay of half a second. It’s important to note that this
unit test does not take half a second to run; on my machine, it takes about 70 milli‐
seconds. The half-second delay only exists in virtual time. The other notable differ‐
ence in this unit test is that it isn’t asynchronous; since you’re using TestScheduler,
all your tests can complete immediately.

Now that everything is using test schedulers, it’s easy to test timeout situations:

[TestMethod]
public void MyTimeoutClass_SuccessfulGetLongDelay_ThrowsTimeoutException()
{
  var scheduler = new TestScheduler();
  var stub = new SuccessHttpServiceStub
  {
    Scheduler = scheduler,
    Delay = TimeSpan.FromSeconds(1.5),
  };
  var my = new MyTimeoutClass(stub);
  Exception result = null;

  my.GetStringWithTimeout("http://www.example.com/", scheduler)
      .Subscribe(_ => Assert.Fail("Received value"), ex => { result = ex; });

  scheduler.Start();

  Assert.IsInstanceOfType(result, typeof(TimeoutException));
}

Once again, the preceding unit test does not take 1 second (or 1.5 seconds) to run; it
executes immediately using virtual time.

Discussion
In this recipe we’ve just scratched the surface on System.Reactive schedulers and vir‐
tual time. I recommend that you start unit testing when you start writing Sys‐
tem.Reactive code; as your code grows more and more complex, you can rest assured
that Microsoft.Reactive.Testing is capable of handling it.

TestScheduler also has AdvanceTo and AdvanceBy methods, which enable you to
gradually step through virtual time. These may be useful in some situations, but you
should strive to have your unit tests only test one thing. To test a timeout, you could
write a single unit test that partially advanced the TestScheduler and ensured that
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the timeout didn’t happen early, and then advanced the TestScheduler past the time‐
out value and ensured that the timeout did happen. However, I prefer to run separate
unit tests as much as possible; for example, one unit test ensuring that the timeout
didn’t happen early, and a different unit test ensuring that the timeout did happen 
later.

See Also
Recipe 7.5 covers the basics of unit testing observable sequences.
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CHAPTER 8

Interop

Asynchronous, parallel, reactive—each of these has its place, but how well do they
work together?

In this chapter, we’ll look at various interop scenarios where you’ll learn how to com‐
bine these different approaches. You’ll learn that they complement each other, rather
than compete; there’s very little friction at the boundaries where one approach meets
another.

8.1 Async Wrappers for “Async” Methods with
“Completed” Events
Problem
There is an older asynchronous pattern that uses methods named OperationAsync
along with events named OperationCompleted. You want to perform an operation
using the older asynchronous pattern and await the result.

The OperationAsync and OperationCompleted pattern is called the
Event-based Asynchronous Pattern (EAP). You’re going to wrap
those into a Task-returning method that follows the Task-based
Asynchronous Pattern (TAP).

Solution
By using the TaskCompletionSource<TResult> type, you can create wrappers for
asynchronous operations. The TaskCompletionSource<TResult> type controls a
Task<TResult> and enables you to complete the task at the appropriate time.
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This example defines an extension method for WebClient that downloads a string.
The WebClient type defines DownloadStringAsync and DownloadStringCompleted.
Using those, you can define a DownloadStringTaskAsync method, like this:

public static Task<string> DownloadStringTaskAsync(this WebClient client,
    Uri address)
{
  var tcs = new TaskCompletionSource<string>();

  // The event handler will complete the task and unregister itself.
  DownloadStringCompletedEventHandler handler = null;
  handler = (_, e) =>
  {
    client.DownloadStringCompleted -= handler;
    if (e.Cancelled)
      tcs.TrySetCanceled();
    else if (e.Error != null)
      tcs.TrySetException(e.Error);
    else
      tcs.TrySetResult(e.Result);
  };

  // Register for the event and *then* start the operation.
  client.DownloadStringCompleted += handler;
  client.DownloadStringAsync(address);

  return tcs.Task;
}

Discussion
This particular example is not very useful because WebClient already is defining a
DownloadStringTaskAsync, and there’s a more async-friendly HttpClient that could
be used. However, this same technique can be used to interface with older asynchro‐
nous code that hasn’t yet been updated to use Task.

For new code, always use HttpClient. Only use WebClient if you’re
working with legacy code.

Normally, a TAP method for downloading strings would be named OperationAsync
(e.g., DownloadStringAsync); however, that naming convention won’t work in this
case because EAP already defines a method with that name. Here the convention is to
name the TAP method OperationTaskAsync (e.g., DownloadStringTaskAsync).
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When wrapping EAP methods, there’s the possibility that the “start” method may
throw an exception; in the previous example, DownloadStringAsync may throw. In
that case, you’ll need to decide whether to allow the exception to propagate or to
catch the exception and call TrySetException. Most of the time, exceptions thrown
at that point are usage errors, so it doesn’t matter which option you choose. If you’re
unsure whether the exceptions are usage errors, then I recommend catching the
exception and calling TrySetException.

See Also
Recipe 8.2 covers TAP wrappers for APM methods (BeginOperation and EndOpera
tion).

Recipe 8.3 covers TAP wrappers for any kind of notification.

8.2 Async Wrappers for “Begin/End” Methods
Problem
An older asynchronous pattern uses pairs of methods named BeginOperation and
EndOperation, with the IAsyncResult representing the asynchronous operation. You
have an operation that follows the older asynchronous pattern and want to consume
it with await.

The BeginOperation and EndOperation pattern is called the Asyn‐
chronous Programming Model (APM). You’re going to wrap those
into a Task-returning method that follows the Task-based Asyn‐
chronous Pattern (TAP).

Solution
The best approach for wrapping APM is to use one of the FromAsync methods on the
TaskFactory type. FromAsync uses TaskCompletionSource<TResult> under the
hood, but when you’re wrapping APM, FromAsync is much easier to use.

This example defines an extension method for WebRequest that sends an HTTP
request and gets the response. The WebRequest type defines BeginGetResponse and
EndGetResponse; you can define a GetResponseAsync method like this:

public static Task<WebResponse> GetResponseAsync(this WebRequest client)
{
  return Task<WebResponse>.Factory.FromAsync(client.BeginGetResponse,
      client.EndGetResponse, null);
}
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Discussion
FromAsync has a downright confusing number of overloads!

As a general rule, it’s best to call FromAsync, as in the example. First, pass the
BeginOperation method (without calling it), then pass the EndOperation method
(without calling it). Next, pass all arguments that BeginOperation takes except for the
last AsyncCallback and object arguments. Finally, pass null.

In particular, do not call the BeginOperation method before calling FromAsync. You
can call FromAsync, passing the IAsyncOperation that you get from BeginOperation,
but if you call it that way, FromAsync is forced to use a less efficient implementation.

You might be wondering why the recommended pattern always passes a null at the
end. FromAsync was introduced along with the Task type in .NET 4.0, before async
was around. At the time, it was common to use state objects in asynchronous call‐
backs, and the Task type supports this via its AsyncState member. In the new async
pattern, state objects are no longer necessary, so it’s normal to always pass null for
the state parameter. These days, state is only used to avoid a closure instance when
optimizing memory usage.

See Also
Recipe 8.3 covers writing TAP wrappers for any kind of notification.

8.3 Async Wrappers for Anything
Problem
You have an unusual or nonstandard asynchronous operation or event and want to
consume it via await.

Solution
The TaskCompletionSource<T> type can be used to construct Task<T> objects in any
scenario. Using a TaskCompletionSource<T>, you can complete a task in three differ‐
ent ways: with a successful result, faulted, or canceled.

Before async was on the scene, there were two other asynchronous patterns recom‐
mended by Microsoft: APM (Recipe 8.2) and EAP (Recipe 8.1). However, both APM
and EAP were rather awkward and in some cases difficult to get right. So, an unoffi‐
cial convention arose that used callbacks, with methods like the following:

public interface IMyAsyncHttpService
{
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  void DownloadString(Uri address, Action<string, Exception> callback);
}

Methods like these follow the convention that DownloadString will start the (asyn‐
chronous) download, and when it completes, the callback is invoked with either the
result or the exception. Usually, callback is invoked on a background thread.

A nonstandard kind of asynchronous method like the previous example can be wrap‐
ped using TaskCompletionSource<T> so that it naturally works with await, as this
next example shows:

public static Task<string> DownloadStringAsync(
    this IMyAsyncHttpService httpService, Uri address)
{
  var tcs = new TaskCompletionSource<string>();
  httpService.DownloadString(address, (result, exception) =>
  {
    if (exception != null)
      tcs.TrySetException(exception);
    else
      tcs.TrySetResult(result);
  });
  return tcs.Task;
}

Discussion
You can use this same TaskCompletionSource<T> pattern to wrap any asynchronous
method, no matter how nonstandard. Create the TaskCompletionSource<T> instance
first. Next, arrange a callback so that the TaskCompletionSource<T> completes its
task appropriately. Then, start the actual asynchronous operation. Finally, return the
Task<T> that is attached to that TaskCompletionSource<T>.

It is important for this pattern that you make sure that the TaskCompletionSource<T>
is always completed. Think through your error handling in particular, and ensure that
the TaskCompletionSource<T> will be completed appropriately. In the last example,
exceptions are explicitly passed into the callback, so you don’t need a catch block; but
some nonstandard patterns might need you to catch exceptions in your callbacks and
place them on the TaskCompletionSource<T>.

See Also
Recipe 8.1 has coverage of TAP wrappers for EAP members (OperationAsync, Opera
tionCompleted).

Recipe 8.2 covers TAP wrappers for APM members (BeginOperation, EndOperation).
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8.4 Async Wrappers for Parallel Code
Problem
You have (CPU-bound) parallel processing that you want to consume using await.
Usually, this is desirable so that your UI thread doesn’t block waiting for the parallel
processing to complete.

Solution
The Parallel type and Parallel LINQ use the thread pool to do parallel processing.
They will also include the calling thread as one of the parallel processing threads, so if
you call a parallel method from the UI thread, the UI will be unresponsive until the
processing completes.

To keep the UI responsive, wrap the parallel processing in a Task.Run and await the
result:

await Task.Run(() => Parallel.ForEach(...));

The key behind this recipe is that parallel code includes the calling thread in its pool of
threads that it uses to do the parallel processing. This is true for both Parallel LINQ
and the Parallel class.

Discussion
This is a simple recipe but one that is often overlooked. By using Task.Run, you’re
pushing all of the parallel processing off to the thread pool. Task.Run returns a Task
that then represents that parallel work, and the UI thread can (asynchronously) wait
for it to complete.

This recipe only applies to UI code. On the server side (e.g., ASP.NET), parallel pro‐
cessing is rarely done because the server host already does parallelism. For this rea‐
son, server-side code shouldn’t perform parallel processing, nor should it push work
off to the thread pool.

See Also
Chapter 4 covers the basics of parallel code.

Chapter 2 covers the basics of asynchronous code.
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8.5 Async Wrappers for System.Reactive Observables
Problem
You have an observable stream that you want to consume using await.

Solution
First, you need to decide which of the observable events in the event stream you’re
interested in. These are common situations:

• The last event before the stream ends
• The next event
• All the events

To capture the last event in the stream, you can either await the result of LastAsync
or just await the observable directly:

IObservable<int> observable = ...;
int lastElement = await observable.LastAsync();
// or:  int lastElement = await observable;

When you await an observable or LastAsync, the code (asynchronously) waits until
the stream completes and then returns the last element. Under the covers, the await
is subscribing to the stream.

To capture the next event in the stream, use FirstAsync. In the following code, the
await subscribes to the stream and then completes (and unsubscribes) as soon as the
first event arrives:

IObservable<int> observable = ...;
int nextElement = await observable.FirstAsync();

To capture all events in the stream, you can use ToList:

IObservable<int> observable = ...;
IList<int> allElements = await observable.ToList();

Discussion
The System.Reactive library provides all the tools you need to consume streams using
await. The only tricky part is that you have to think about whether the awaitable will
wait until the stream completes. Of the examples in this recipe, LastAsync, ToList,
and the direct await will wait until the stream completes; FirstAsync will only wait
for the next event.
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If these examples don’t satisfy your needs, remember that you have the full power of
LINQ as well as the System.Reactive manipulators. Operators such as Take and
Buffer can also help you asynchronously wait for the elements you need without
having to wait for the entire stream to complete.

Some of the operators for use with await—such as FirstAsync and LastAsync—
don’t actually return a Task<T>. If you plan to use Task.WhenAll or Task.WhenAny,
then you’ll need an actual Task<T>, which you can get by calling ToTask on any
observable. ToTask will return a Task<T> that completes with the last value in the
stream.

See Also
Recipe 8.6 covers using asynchronous code within an observable stream.

Recipe 8.8 covers using observable streams as an input to a dataflow block (which can
perform asynchronous work).

Recipe 6.3 covers windows and buffering for observable streams.

8.6 System.Reactive Observable Wrappers for async Code
Problem
You have an asynchronous operation that you want to combine with an observable.

Solution
Any asynchronous operation can be treated as an observable stream that does one of
two things:

• Produces a single element and then completes
• Faults without producing any elements

To implements this transformation, the System.Reactive library has a simple conver‐
sion from Task<T> to IObservable<T>. The following code starts an asynchronous
download of a web page, treating it as an observable sequence:

IObservable<HttpResponseMessage> GetPage(HttpClient client)
{
  Task<HttpResponseMessage> task =
      client.GetAsync("http://www.example.com/");
  return task.ToObservable();
}
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The ToObservable approach assumes you have already called the async method and
have a Task to convert.

Another approach is to call StartAsync. StartAsync also calls the async method
immediately but supports cancellation: if a subscription is disposed of, the async
method is canceled:

IObservable<HttpResponseMessage> GetPage(HttpClient client)
{
  return Observable.StartAsync(
      token => client.GetAsync("http://www.example.com/", token));
}

Both ToObservable and StartAsync immediately start the asynchronous operation
without waiting for a subscription; the observable is “hot.” To create a “cold” observa‐
ble that only starts the operation when subscribed to, use FromAsync (which also sup‐
ports cancellation just like StartAsync):

IObservable<HttpResponseMessage> GetPage(HttpClient client)
{
  return Observable.FromAsync(
      token => client.GetAsync("http://www.example.com/", token));
}

FromAsync is notably different than ToObservable and StartAsync, which return an
observable for an async operation that has already started. FromAsync starts a new,
independent async operation every time it is subscribed to.

Finally, you can use special overloads of SelectMany to start asynchronous operations
for each event in a source stream as they arrive. SelectMany also supports cancella‐
tion.

The following example takes an existing event stream of URLs and then initiates a
request as each URL arrives:

IObservable<HttpResponseMessage> GetPages(
    IObservable<string> urls, HttpClient client)
{
  return urls.SelectMany(
      (url, token) => client.GetAsync(url, token));
}

Discussion
System.Reactive existed before the introduction of async but added these operators
(and others) so that it could interoperate well with async code. I recommend that you
use the operators described even though you can build the same functionality using
other System.Reactive operators.
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See Also
Recipe 8.5 covers consuming observable streams with asynchronous code.

Recipe 8.8 covers using dataflow blocks (which can contain asynchronous code) as
sources of observable streams.

8.7 Asynchronous Streams and Dataflow Meshes
Problem
Part of your solution uses asynchronous streams, and part of your solution uses data‐
flow meshes, and you need to pass data between them.

Solution
Consuming a Channel as an asynchronous stream is built right into the Channel
types; see Recipe 9.8 for details. Consuming a TPL Dataflow block as an asynchro‐
nous stream is a bit more awkward, but certainly doable. I find it easiest to first define
an extension method for dataflow blocks that make their API more similar to Chan‐
nels, and then consume them as an asynchronous stream using that extension 
method:

public static class DataflowExtensions
{
  public static bool TryReceiveItem<T>(this ISourceBlock<T> block, out T value)
  {
    if (block is IReceivableSourceBlock<T> receivableSourceBlock)
      return receivableSourceBlock.TryReceive(out value);

    try
    {
      value = block.Receive(TimeSpan.Zero);
      return true;
    }
    catch (TimeoutException)
    {
      // There is no item available right now.
      value = default;
      return false;
    }
    catch (InvalidOperationException)
    {
      // The block is complete and there are no more items.
      value = default;
      return false;
    }
  }
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  public static async IAsyncEnumerable<T> ReceiveAllAsync<T>(
      this ISourceBlock<T> block,
      [EnumeratorCancellation] CancellationToken cancellationToken = default)
  {
    while (await block
        .OutputAvailableAsync(cancellationToken).ConfigureAwait(false))
    {
      while (block.TryReceiveItem(out var value))
      {
        yield return value;
      }
    }
  }
}

See Recipe 3.4 for the details on the EnumeratorCancellation attribute.

Using the extension method in the previous code example, it’s possible to consume
any output dataflow block as an asynchronous stream:

var multiplyBlock = new TransformBlock<int, int>(value => value * 2);

multiplyBlock.Post(5);
multiplyBlock.Post(2);
multiplyBlock.Complete();

await foreach (int item in multiplyBlock.ReceiveAllAsync())
{
  Console.WriteLine(item);
}

It is also possible to use an asynchronous stream as a source of items for a dataflow
block. All you need is a loop to pull the items out and place them into the block.
There are a couple of assumptions in the following code that may not be appropriate
in every scenario. First, the code assumes you want the block to complete when the
stream completes. Second, it begins running on its calling thread; some scenarios
may want to always run the entire loop on a threadpool thread:

public static async Task WriteToBlockAsync<T>(
    this IAsyncEnumerable<T> enumerable,
    ITargetBlock<T> block, CancellationToken token = default)
{
  try
  {
    await foreach (var item in enumerable
        .WithCancellation(token).ConfigureAwait(false))
    {
      await block.SendAsync(item, token).ConfigureAwait(false);
    }

    block.Complete();
  }
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  catch (Exception ex)
  {
    block.Fault(ex);
  }
}

Discussion
The extension methods in this recipe are intended as a starting point. In particular,
the WriteToBlockAsync extension method does make some assumptions; be sure to
consider the behavior of these methods and ensure that their behavior is appropriate
for your scenario before using them.

See Also
Recipe 9.8 covers consuming a Channel as an asynchronous stream.

Recipe 3.4 covers canceling asynchronous streams.

Chapter 5 covers recipes for TPL Dataflow.

Chapter 3 covers recipes for asynchronous streams.

8.8 System.Reactive Observables and Dataflow Meshes
Problem
Part of your solution uses System.Reactive observables, and part of your solution uses
dataflow meshes, and you need them to communicate.

System.Reactive observables and dataflow meshes each have their own uses, with
some conceptual overlap; this recipe shows how easily they work together so that you
can use the best tool for each part of the job.

Solution
First, let’s consider using a dataflow block as an input to an observable stream. The
following code creates a buffer block (which does no processing) and creates an
observable interface from that block by calling AsObservable:

var buffer = new BufferBlock<int>();
IObservable<int> integers = buffer.AsObservable();
integers.Subscribe(data => Trace.WriteLine(data),
    ex => Trace.WriteLine(ex),
    () => Trace.WriteLine("Done"));

buffer.Post(13);
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Buffer blocks and observable streams can be completed normally or with error, and
the AsObservable method will translate the block completion (or fault) into the com‐
pletion of the observable stream. However, if the block faults with an exception, that
exception will be wrapped in an AggregateException when it’s passed to the observa‐
ble stream. This is similar to how linked blocks propagate their faults.

It’s only a little more complicated to take a mesh and treat it as a destination for an
observable stream. The following code calls AsObserver to enable a block to sub‐
scribe to an observable stream:

IObservable<DateTimeOffset> ticks =
    Observable.Interval(TimeSpan.FromSeconds(1))
        .Timestamp()
        .Select(x => x.Timestamp)
        .Take(5);

var display = new ActionBlock<DateTimeOffset>(x => Trace.WriteLine(x));
ticks.Subscribe(display.AsObserver());

try
{
  display.Completion.Wait();
  Trace.WriteLine("Done.");
}
catch (Exception ex)
{
  Trace.WriteLine(ex);
}

Just as before, the completion of the observable stream is translated to the completion
of the block, and any errors from the observable stream are translated to a fault of the
block.

Discussion
Dataflow blocks and observable streams share a lot of conceptual ground. They both
have data pass through them, and they both understand completion and faults. They
were designed for different scenarios; TPL Dataflow is intended for a mixture of
asynchronous and parallel programming, while System.Reactive is intended for reac‐
tive programming. However, the conceptual overlap is compatible enough that they
work very well and naturally together.

See Also
Recipe 8.5 covers consuming observable streams with asynchronous code.

Recipe 8.6 covers using asynchronous code within an observable stream.
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8.9 Converting System.Reactive Observables to
Asynchronous Streams
Problem
Part of your solution uses System.Reactive observables, and you want to consume
them as asynchronous streams.

Solution
System.Reactive observables are push-based, and asynchronous streams are pull-
based. So right off the bat, you need to realize there’s a conceptual mismatch. You
need a way to remain responsive to the observable stream, storing its notifications
until the consuming code requests them.

The most straightforward solution is already included in the System.Linq.Async
library:

IObservable<long> observable =
    Observable.Interval(TimeSpan.FromSeconds(1));

// WARNING: May consume unbounded memory; see discussion!
IAsyncEnumerable<long> enumerable =
    observable.ToAsyncEnumerable();

The ToAsyncEnumerable extension method is in the Sys

tem.Linq.Async NuGet package.

However, it’s important to recognize that this simple ToAsyncEnumerable extension
method is using an unbounded producer/consumer queue under the hood. It is
essentially the same as an extension method you can write yourself using a Channel
as an unbounded producer/consumer queue:

// WARNING: May consume unbounded memory; see discussion!
public static async IAsyncEnumerable<T> ToAsyncEnumerable<T>(
    this IObservable<T> observable)
{
  Channel<T> buffer = Channel.CreateUnbounded<T>();
  using (observable.Subscribe(
      value => buffer.Writer.TryWrite(value),
      error => buffer.Writer.Complete(error),
      () => buffer.Writer.Complete()))
  {
    await foreach (T item in buffer.Reader.ReadAllAsync())
      yield return item;
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  }
}

These are simple solutions, but they use unbounded queues, so they should only be
used if you’re sure that the consumer can (eventually) keep up with the observable
events. It’s fine if the producer runs faster than the consumer for a while; during that
time, the observable events go into the buffer. As long as the producer eventually
catches up, the preceding solutions will work. But if the producer always runs faster
than the consumer, the observable events will continue to arrive, expanding the
buffer, and eventually use up all the memory for the process.

You can avoid the memory issue by using a bounded queue. The trade-off is that you
must decide how to handle extra items if the observable events fill up the queue. One
option is to discard the extra items; the following example code uses a bounded chan‐
nel to throw away the oldest observable notification when the buffer is full:

// WARNING: May discard items; see discussion!
public static async IAsyncEnumerable<T> ToAsyncEnumerable<T>(
    this IObservable<T> observable, int bufferSize)
{
  var bufferOptions = new BoundedChannelOptions(bufferSize)
  {
    FullMode = BoundedChannelFullMode.DropOldest,
  };
  Channel<T> buffer = Channel.CreateBounded<T>(bufferOptions);
  using (observable.Subscribe(
      value => buffer.Writer.TryWrite(value),
      error => buffer.Writer.Complete(error),
      () => buffer.Writer.Complete()))
  {
    await foreach (T item in buffer.Reader.ReadAllAsync())
      yield return item;
  }
}

Discussion
When you have a producer that runs faster than a consumer, your options are to
either buffer the producer items (assuming that the producer eventually catches up),
or limit the producer’s items. The second solution in this recipe limits the producer’s
items by dropping ones that don’t fit in the buffer. You can also limit the producer’s
items by using observable operators designed for that, such as Throttle or Sample;
see Recipe 6.4 for details. Depending on your needs, it may be best to Throttle or
Sample the input observable before converting it to an IAsyncEnumerable<T> using
one of the techniques in this recipe.

Aside from bounded queues and unbounded queues, there’s a third option not cov‐
ered here: use backpressure to notify the observable stream that it must stop produc‐
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ing notifications until the buffer is ready to receive them. Unfortunately, Sys‐
tem.Reactive hasn’t yet standardized on a backpressure pattern, so this isn’t a viable
option at the time of writing. Backpressure is complex and nuanced, and reactive
libraries for other languages have implemented different patterns for backpressure. It
remains to be seen whether System.Reactive will adopt one of these, invent its own
backpressure pattern, or just leave backpressure unsolved.

See Also
Recipe 6.4 covers System.Reactive operators designed to throttle input.

Recipe 9.8 covers using Channel as an unbounded producer/consumer queue.

Recipe 9.10 covers using Channel as a sampling queue, dropping items when it is full.
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CHAPTER 9

Collections

Using the proper collections is essential in concurrent applications. I’m not talking
about the standard collections like List<T>; I assume you already know about those.
The purpose of this chapter is to introduce newer collections that are specifically
intended for concurrent or asynchronous use.

Immutable collections are collection instances that can never change. At first glance,
this sounds completely useless; but they’re actually very useful, even in single-
threaded, nonconcurrent applications. Read-only operations (such as enumeration)
act directly on the immutable instance. Write operations (such as adding an item)
return a new immutable instance instead of changing the existing instance. This isn’t
as wasteful as it first sounds because most of the time immutable collections share
most of their memory. Furthermore, immutable collections have the advantage of
being implicitly safe to access from multiple threads; since they cannot change, they
are threadsafe.

Immutable collections are in the System.Collections.Immutable
NuGet package.

Immutable collections are new, but they should be considered for new development
unless you need a mutable instance. If you’re not familiar with immutable collections,
I recommend that you start with Recipe 9.1, even if you don’t need a stack or queue,
because I’ll cover several common patterns that all immutable collections follow.

There are special ways to more efficiently construct an immutable collection with lots
of existing elements; the example code in these recipes only adds elements one at a
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time. The MSDN documentation has details on how to efficiently construct immuta‐
ble collections if you need to speed up your initialization.

Threadsafe collections
These mutable collection instances can be changed by multiple threads simulta‐
neously. Threadsafe collections use a mixture of fine-grained locks and lock-free
techniques to ensure that threads are blocked for a minimal amount of time (and
usually aren’t blocked at all). For many threadsafe collections, enumeration of the
collection creates a snapshot of the collection and then enumerates that snapshot.
The key advantage of threadsafe collections is that they can be accessed safely
from multiple threads, yet the operations will only block your code for a short
time, if at all.

Producer/consumer collections
These mutable collection instances are designed with a specific purpose in mind:
to allow (possibly multiple) producers to push items to the collection while
allowing (possibly multiple) consumers to pull items out of the collection. So
they act as a bridge between producer code and consumer code, and they also
have an option to limit the number of items in the collection. Producer/
consumer collections can either have a blocking or asynchronous API. For exam‐
ple, when the collection is empty, a blocking producer/consumer collection will
block the calling consumer thread until another item is added; but an asynchro‐
nous producer/consumer collection will allow the calling consumer thread to
asynchronously wait until another item is added.

There are a number of different producer/consumer collections used in the recipes in
this chapter, and different producer/consumer collections have different advantages.
Table 9-1 may be helpful in determining which one you should use.

Table 9-1. Producer/consumer collections
Feature Channels BlockingCollection<T> BufferBlock<T> AsyncProducer-

ConsumerQueue<T>
AsyncCollection<T>

Queue
semantics

✓ ✓ ✓ ✓ ✓

Stack/bag
semantics

✗ ✓ ✗ ✗ ✓

Synchronous API ✓ ✓ ✓ ✓ ✓
Asynchronous
API

✓ ✗ ✓ ✓ ✓

Drop items
when full

✓ ✗ ✗ ✗ ✗

Tested by
Microsoft

✓ ✓ ✓ ✗ ✗

118 | Chapter 9: Collections



Channels can be found in the System.Threading.Channels NuGet
package, BufferBlock<T> in the NuGet package for Sys

tem.Threading.Tasks.Dataflow, and AsyncProducerConsumer

Queue<T> and AsyncCollection<T> in the NuGet package for
Nito.AsyncEx.

9.1 Immutable Stacks and Queues
Problem
You need a stack or queue that does not change very often and can be accessed by
multiple threads safely.

For example, a queue can be used as a sequence of operations to perform, and a stack
can be used as a sequence of undo operations.

Solution
Immutable stacks and queues are the simplest immutable collections. They behave
very similarly to the standard Stack<T> and Queue<T>. Performance-wise, immutable
stacks and queues have the same time complexity as standard stacks and queues;
however, in simple scenarios where the collections are updated frequently, the stan‐
dard stacks and queues are faster.

Stacks are a first-in, last-out data structure. The following code creates an empty
immutable stack, pushes two items, enumerates the items, and then pops an item:

ImmutableStack<int> stack = ImmutableStack<int>.Empty;
stack = stack.Push(13);
stack = stack.Push(7);

// Displays "7" followed by "13".
foreach (int item in stack)
  Trace.WriteLine(item);

int lastItem;
stack = stack.Pop(out lastItem);
// lastItem == 7

Note in the example that we keep overwriting the local variable stack. Immutable
collections follow a pattern where they return an updated collection; the original col‐
lection reference is unchanged. This means that once you have a reference to a partic‐
ular immutable collection instance, it’ll never change. Consider the following exam‐
ple:

ImmutableStack<int> stack = ImmutableStack<int>.Empty;
stack = stack.Push(13);
ImmutableStack<int> biggerStack = stack.Push(7);
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// Displays "7" followed by "13".
foreach (int item in biggerStack)
  Trace.WriteLine(item);

// Only displays "13".
foreach (int item in stack)
  Trace.WriteLine(item);

Under the covers, the two stacks are sharing the memory used to contain the item 13.
This kind of implementation is very efficient while enabling you to easily snapshot
the current state. Each immutable collection instance is naturally threadsafe, but
immutable collections can also be used in single-threaded applications. In my experi‐
ence, immutable collections are especially useful when the code is more functional or
when you need to store a large number of snapshots and want them to share memory
as much as possible.

Queues are similar to stacks, except they are a first-in, first-out data structure. The
following code creates an empty immutable queue, enqueues two items, enumerates
the items, and then dequeues an item:

ImmutableQueue<int> queue = ImmutableQueue<int>.Empty;
queue = queue.Enqueue(13);
queue = queue.Enqueue(7);

// Displays "13" followed by "7".
foreach (int item in queue)
  Trace.WriteLine(item);

int nextItem;
queue = queue.Dequeue(out nextItem);
// Displays "13".
Trace.WriteLine(nextItem);

Discussion
This recipe introduced the two simplest immutable collections, the stack and the
queue. It also covered several important design philosophies that are true for all
immutable collections:

• An instance of an immutable collection never changes.
• Since it never changes, it is naturally threadsafe.
• When you call a modifying method on an immutable collection, the new modi‐

fied collection is returned.

120 | Chapter 9: Collections



Even though immutable collections are threadsafe, references to
immutable collections are not threadsafe. A variable that refers to
an immutable collection needs the same synchronization protec‐
tions as any other variable (see Chapter 12).

Immutable collections are ideal for sharing state. They don’t, however, work as well as
communication conduits. In particular, don’t use an immutable queue to communi‐
cate between threads; producer/consumer queues work much better for that.

ImmutableStack<T> and ImmutableQueue<T> can be found in the
System.Collections.Immutable NuGet package.

See Also
Recipe 9.6 covers threadsafe (blocking) mutable queues.

Recipe 9.7 covers threadsafe (blocking) mutable stacks.

Recipe 9.8 covers async-compatible mutable queues.

Recipe 9.11 covers async-compatible mutable stacks.

Recipe 9.12 covers blocking/asynchronous mutable queues.

9.2 Immutable Lists
Problem
You need a data structure you can index into that does not change very often and can
be accessed by multiple threads safely.

Solution
A list is a general-purpose data structure that can be used for all kinds of application
states. Immutable lists do allow indexing, but you need to be aware of the perfor‐
mance characteristics. They’re not just a drop-in replacement for List<T>.

ImmutableList<T> does support similar methods as List<T>, as the following exam‐
ple shows:

ImmutableList<int> list = ImmutableList<int>.Empty;
list = list.Insert(0, 13);
list = list.Insert(0, 7);
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// Displays "7" followed by "13".
foreach (int item in list)
  Trace.WriteLine(item);

list = list.RemoveAt(1);

The immutable list is internally organized as a binary tree so that immutable list
instances may maximize the amount of memory they share with other instances. As a
result, there are performance differences between ImmutableList<T> and List<T> for
some common operations (Table 9-2).

Table 9-2. Performance difference of immutable lists
Operation List<T> ImmutableList<T>
Add amortized O(1) O(log N)

Insert O(N) O(log N)

RemoveAt O(N) O(log N)

Item[index] O(1) O(log N)

Of note, the indexing operation for ImmutableList<T> is O(log N), not O(1), as you
may expect. If you’re replacing List<T> with ImmutableList<T> in existing code,
you’ll need to consider how your algorithms access items in the collection.

This means that you should use foreach instead of for whenever possible. A foreach
loop over an ImmutableList<T> executes in O(N) time, while a for loop over the
same collection executes in O(N * log N) time:

// The best way to iterate over an ImmutableList<T>.
foreach (var item in list)
  Trace.WriteLine(item);

// This will also work, but it will be much slower.
for (int i = 0; i != list.Count; ++i)
  Trace.WriteLine(list[i]);

Discussion
ImmutableList<T> is a good general-purpose data structure, but because of its per‐
formance differences, you can’t blindly replace all your List<T> uses with it. List<T>
is commonly used by default—it’s the one you use unless you need a different collec‐
tion. ImmutableList<T> isn’t quite that ubiquitous; you’ll need to consider the other
immutable collections carefully and choose the one that makes the most sense for
your situation.
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ImmutableList<T> is in the System.Collections.Immutable

NuGet package.

See Also
Recipe 9.1 covers immutable stacks and queues, which are like lists that only allow
certain elements to be accessed.

The MSDN documentation on ImmutableList<T>.Builder covers an efficient way to
populate an immutable list.

9.3 Immutable Sets
Problem
You need a data structure that does not need to store duplicates, does not change very
often, and can be accessed by multiple threads safely.

For example, an index of words from a file would be a good use case for a set.

Solution
There are two immutable set types: ImmutableHashSet<T> is a collection of unique
items, and ImmutableSortedSet<T> is a sorted collection of unique items. Both types
have a similar interface:

ImmutableHashSet<int> hashSet = ImmutableHashSet<int>.Empty;
hashSet = hashSet.Add(13);
hashSet = hashSet.Add(7);

// Displays "7" and "13" in an unpredictable order.
foreach (int item in hashSet)
  Trace.WriteLine(item);

hashSet = hashSet.Remove(7);

Only the sorted set allows indexing into it like a list:

ImmutableSortedSet<int> sortedSet = ImmutableSortedSet<int>.Empty;
sortedSet = sortedSet.Add(13);
sortedSet = sortedSet.Add(7);

// Displays "7" followed by "13".
foreach (int item in sortedSet)
  Trace.WriteLine(item);
int smallestItem = sortedSet[0];
// smallestItem == 7
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sortedSet = sortedSet.Remove(7);

Unsorted sets and sorted sets have similar performance (see Table 9-3).

Table 9-3. Performance of immutable sets
Operation ImmutableHashSet<T> ImmutableSortedSet<T>
Add O(log N) O(log N)

Remove O(log N) O(log N)

Item[index] n/a O(log N)

However, I recommend you use an unsorted set unless you know it needs to be sor‐
ted. Many types only support basic equality and not full comparison, so an unsorted
set can be used for many more types than a sorted set.

One important note about the sorted set is that its indexing is O(log N), not O(1), just
like ImmutableList<T>, which is covered in Recipe 9.2. This means that the same
caveat applies in this situation: you should use foreach instead of for whenever pos‐
sible with an ImmutableSortedSet<T>.

Discussion
Immutable sets are useful data structures, but populating a large immutable set can be
slow. Most immutable collections have special builders that can be used to construct
them quickly in a mutable way and then convert them into an immutable collection.
This is true for many immutable collections, but I’ve found them most useful for
immutable sets.

ImmutableHashSet<T> and ImmutableSortedSet<T> are in the
NuGet System.Collections.Immutable package.

See Also
Recipe 9.7 covers threadsafe mutable bags, which are similar to sets.

Recipe 9.11 covers async-compatible mutable bags.

The MSDN documentation on ImmutableHashSet<T>.Builder covers an efficient
way to populate an immutable hash set.

The MSDN documentation on ImmutableSortedSet<T>.Builder covers an efficient
way to populate an immutable sorted set.
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9.4 Immutable Dictionaries
Problem
You need a key/value collection that does not change very often and can be accessed
by multiple threads safely. For example, you may want to store reference data in a
lookup collection; the reference data rarely changes but should be available to different
threads.

Solution
There are two immutable dictionary types: ImmutableDictionary<TKey, TValue>
and ImmutableSortedDictionary<TKey, TValue>. As you may be able to guess from
their names, while the items in ImmutableDictionary have an unpredictable order,
ImmutableSortedDictionary ensures that its elements are sorted.

Both of these collection types have very similar members:

ImmutableDictionary<int, string> dictionary =
    ImmutableDictionary<int, string>.Empty;
dictionary = dictionary.Add(10, "Ten");
dictionary = dictionary.Add(21, "Twenty-One");
dictionary = dictionary.SetItem(10, "Diez");

// Displays "10Diez" and "21Twenty-One" in an unpredictable order.
foreach (KeyValuePair<int, string> item in dictionary)
  Trace.WriteLine(item.Key + item.Value);

string ten = dictionary[10];
// ten == "Diez"

dictionary = dictionary.Remove(21);

Note the use of SetItem. In a mutable dictionary, you could try doing something like
dictionary[key] = item, but immutable dictionaries must return the updated
immutable dictionary, so they use the SetItem method instead:

ImmutableSortedDictionary<int, string> sortedDictionary =
    ImmutableSortedDictionary<int, string>.Empty;
sortedDictionary = sortedDictionary.Add(10, "Ten");
sortedDictionary = sortedDictionary.Add(21, "Twenty-One");
sortedDictionary = sortedDictionary.SetItem(10, "Diez");

// Displays "10Diez" followed by "21Twenty-One".
foreach (KeyValuePair<int, string> item in sortedDictionary)
  Trace.WriteLine(item.Key + item.Value);

string ten = sortedDictionary[10];
// ten == "Diez"
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sortedDictionary = sortedDictionary.Remove(21);

Unsorted dictionaries and sorted dictionaries have similar performance, but I recom‐
mend you use an unordered dictionary unless you need your elements to be sorted
(see Table 9-4). Unsorted dictionaries can be a little faster overall. Furthermore,
unsorted dictionaries can be used with any key types, whereas sorted dictionaries
require their key types to be fully comparable.

Table 9-4. Performance of immutable dictionaries
Operation ImmutableDictionary<TK,TV> ImmutableSortedDictionary<TK,TV>
Add O(log N) O(log N)

SetItem O(log N) O(log N)

Item[key] O(log N) O(log N)

Remove O(log N) O(log N)

Discussion
In my experience, dictionaries are a common and useful tool when dealing with
application state. They can be used in any kind of key/value or lookup scenario.

Like other immutable collections, immutable dictionaries have a builder mechanism
for efficient construction if the dictionary contains many elements. For example, if
you load your initial reference data at startup, you should use the builder mechanism
to construct the initial immutable dictionary. On the other hand, if your reference
data is gradually built up during your application’s execution, then using the regular
immutable dictionary Add method is likely acceptable.

ImmutableDictionary<TK, TV> and ImmutableSortedDiction

ary<TK, TV> are in the System.Collections.Immutable NuGet
package.

See Also
Recipe 9.5 covers threadsafe mutable dictionaries.

The MSDN documentation on ImmutableDictionary<TK,TV>.Builder covers an
efficient way to populate an immutable dictionary.

The MSDN documentation on ImmutableSortedDictionary<TK,TV>.Builder cov‐
ers an efficient way to populate an immutable sorted dictionary.
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9.5 Threadsafe Dictionaries
Problem
You have a key/value collection (e.g., an in-memory cache) that you need to keep in
sync, even though multiple threads are both reading from and writing to it.

Solution
The ConcurrentDictionary<TKey, TValue> type in the .NET framework is a true
gem of a data structure. It’s threadsafe, using a mixture of fine-grained locks and lock-
free techniques to ensure fast access in the vast majority of scenarios.

Its API does take a bit of getting used to. It’s very different from the standard Dictio
nary<TKey, TValue> type, since it must deal with concurrent access from multiple
threads. But once you have learned the basics in this recipe, you’ll find Concurrent
Dictionary<TKey, TValue> to be one of the most useful collection types.

First, let’s learn how to write a value to the collection. To set the value of a key, you
can use AddOrUpdate:

var dictionary = new ConcurrentDictionary<int, string>();
string newValue = dictionary.AddOrUpdate(0,
    key => "Zero",
    (key, oldValue) => "Zero");

AddOrUpdate is a bit complex because it must do several things, depending on the
current contents of the concurrent dictionary. The first method argument is the key.
The second argument is a delegate that transforms the key (in this case, 0) into a
value to be added to the dictionary (in this case, "Zero"). This delegate is only
invoked if the key doesn’t exist in the dictionary. The third argument is another dele‐
gate that transforms the key (0) and the old value into an updated value to be stored
in the dictionary ("Zero"). This delegate is only invoked if the key does exist in the
dictionary. AddOrUpdate returns the new value for that key (the same value that was
returned by one of the delegates).

Now for the part that really bends your brain: in order for the concurrent dictionary
to work properly, AddOrUpdate might have to invoke either (or both) delegates multi‐
ple times. This is very rare, but it can happen. So your delegates should be simple and
fast and not cause side effects. This means that your delegate should only create the
value; it shouldn’t change any other variables in your application. The same principle
holds for all delegates you pass to methods on ConcurrentDictionary<TKey,
TValue>.

There are several other ways to add values to a dictionary. One shortcut is to just use
indexing syntax:
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// Using the same "dictionary" as above.
// Adds (or updates) key 0 to have the value "Zero".
dictionary[0] = "Zero";

Indexing syntax is less powerful; it doesn’t give you the ability to update a value based
on the existing value. The syntax is simpler and works fine, however, if you already
have the value you want to store in the dictionary.

Let’s look at how to read a value. This can be easily done via TryGetValue:

// Using the same "dictionary" as above.
bool keyExists = dictionary.TryGetValue(0, out string currentValue);

TryGetValue will return true and set the out value if the key was found in the dictio‐
nary. If the key wasn’t found, TryGetValue will return false. You can also use index‐
ing syntax to read values, but I find that much less useful because it’ll throw an excep‐
tion if a key isn’t found. Keep in mind that a concurrent dictionary has multiple
threads reading, updating, adding, and removing values; in many situations, it’s diffi‐
cult to know whether a key exists or not until you attempt to read it.

Removing values is just as easy as reading them:

// Using the same "dictionary" as above.
bool keyExisted = dictionary.TryRemove(0, out string removedValue);

TryRemove is almost identical to TryGetValue, except (of course) it removes the key/
value pair if the key was found in the dictionary.

Discussion
Although ConcurrentDictionary<TKey, TValue> is threadsafe, that doesn’t mean its
operations are atomic. If multiple threads call AddOrUpdate concurrently, it’s possible
for both of them to detect that the key isn’t present, and both of them concurrently
execute their delegate that creates a new value.

I think ConcurrentDictionary<TKey, TValue> is awesome, mainly because of the
incredibly powerful AddOrUpdate method. However, it doesn’t fit the bill in every sit‐
uation. ConcurrentDictionary<TKey, TValue> is best when you have multiple
threads reading and writing to a shared collection. If the updates are not constant (if
they’re more rare), then ImmutableDictionary<TKey, TValue> may be a better
choice.

ConcurrentDictionary<TKey, TValue> is best in a shared-data situation, where
multiple threads share the same collection. If some threads only add elements and
other threads only remove elements, you’d be better served by a producer/consumer
collection.

ConcurrentDictionary<TKey, TValue> isn’t the only threadsafe collection. The BCL
also provides ConcurrentStack<T>, ConcurrentQueue<T>, and ConcurrentBag<T>.
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Threadsafe collections are commonly used as producer/consumer collections, which
will be covered in the rest of this chapter.

See Also
Recipe 9.4 covers immutable dictionaries, which are ideal if the contents of the dictio‐
nary change very rarely.

9.6 Blocking Queues
Problem
You need a conduit to pass messages or data from one thread to another. For exam‐
ple, one thread could be loading data, which it pushes down the conduit as it loads;
meanwhile, there are other threads on the receiving end of the conduit that receive
the data and process it.

Solution
The .NET type BlockingCollection<T> was designed to be this kind of conduit. By
default, BlockingCollection<T> is a blocking queue, providing first-in, first-out
behavior.

A blocking queue needs to be shared by multiple threads, and it’s usually defined as a
private, read-only field:

private readonly BlockingCollection<int> _blockingQueue =
    new BlockingCollection<int>();

Usually, a thread will either add items to the collection or remove items from the col‐
lection, but not both. Threads that add items are called producer threads, and threads
that remove items are called consumer threads.

Producer threads can add items by calling Add, and when the producer thread is fin‐
ished (when all items have been added), it can then finish the collection by calling
CompleteAdding. This notifies the collection that no more items will be added to it,
and the collection can then inform its consumers that there are no more items.

Here’s a simple example of a producer that adds two items and then marks the collec‐
tion complete:

_blockingQueue.Add(7);
_blockingQueue.Add(13);
_blockingQueue.CompleteAdding();

9.6 Blocking Queues | 129



Consumer threads usually run in a loop, waiting for the next item and then process‐
ing it. If you take the producer code and put it in a separate thread (e.g., via
Task.Run), then you can consume those items like this:

// Displays "7" followed by "13".
foreach (int item in _blockingQueue.GetConsumingEnumerable())
  Trace.WriteLine(item);

If you want to have multiple consumers, GetConsumingEnumerable can be called
from multiple threads at the same time. However, each item is only passed to one of
those threads. When the collection is completed, the enumerable completes.

Discussion
The preceding examples all use GetConsumingEnumerable for the consumer threads;
this is the most common scenario. However, there’s also a Take member that enables a
consumer to just consume a single item rather than run a loop consuming all the
items.

When you use conduits like this, you do need to consider what happens if your pro‐
ducers run faster than your consumers. If you’re producing items faster than you can
consume them, then you may need to throttle your queue.

Blocking queues are great when you have a separate thread (such as a threadpool
thread) acting as a producer or consumer. They’re not as great when you want to
access the conduit asynchronously—for example, if a UI thread wants to act as a con‐
sumer. Recipe 9.8 covers asynchronous queues.

Whenever you introduce a conduit like this into your application,
consider switching to the TPL Dataflow library. A lot of the time,
using TPL Dataflow is simpler than building your own conduits
and background threads.

BufferBlock<T> from TPL Dataflow can act like a blocking queue, and TPL Dataflow
allows building a pipeline or mesh for processing. In many simpler cases, though,
ordinary blocking queues like BlockingCollection<T> are the appropriate design
choice.

You could also use AsyncEx library’s AsyncProducerConsumerQueue<T>, which can act
like a blocking queue.

See Also
Recipe 9.7 covers blocking stacks and bags, if you want a similar conduit without
first-in, first-out semantics.
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Recipe 9.8 covers queues that have asynchronous rather than blocking APIs.

Recipe 9.12 covers queues that have both asynchronous and blocking APIs.

Recipe 9.9 covers queues that throttle their number of items.

9.7 Blocking Stacks and Bags
Problem
You need a conduit to pass messages or data from one thread to another, but you
don’t want (or need) the conduit to have first-in, first-out semantics.

Solution
The .NET type BlockingCollection<T> acts as a blocking queue by default, but it
can also act like any kind of producer/consumer collection. It’s actually a wrapper
around a threadsafe collection that implements IProducerConsumerCollection<T>.

So, you can create a BlockingCollection<T> with last-in, first-out (stack) semantics
or unordered (bag) semantics:

BlockingCollection<int> _blockingStack = new BlockingCollection<int>(
    new ConcurrentStack<int>());
BlockingCollection<int> _blockingBag = new BlockingCollection<int>(
    new ConcurrentBag<int>());

It’s important to keep in mind that there are now race conditions around the ordering
of the items. If you let the same producer code execute before any consumer code,
and then execute the consumer code after the producer code, then the order of the
items will be exactly like a stack:

// Producer code
_blockingStack.Add(7);
_blockingStack.Add(13);
_blockingStack.CompleteAdding();

// Consumer code
// Displays "13" followed by "7".
foreach (int item in _blockingStack.GetConsumingEnumerable())
  Trace.WriteLine(item);

When the producer code and consumer code are on different threads (which is the
usual case), the consumer always gets the most recently added item next. For exam‐
ple, the producer could add 7, the consumer could take 7, the producer could add 13,
and the consumer could take 13. The consumer does not wait for CompleteAdding to
be called before it returns the first item.
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Discussion
The same considerations around throttling that apply to blocking queues also apply
to blocking stacks and bags. If your producers run faster than your consumers and
you need to limit the memory usage of your blocking stack/bag, you can use throt‐
tling as shown in Recipe 9.9.

This recipe uses GetConsumingEnumerable for the consumer code; this is the most
common scenario. There is also a Take member that enables a consumer to just con‐
sume a single item rather than run a loop consuming all the items.

If you want to access shared stacks or bags asynchronously rather than by blocking
(for example, having your UI thread act as a consumer), see Recipe 9.11.

See Also
Recipe 9.6 covers blocking queues, which are much more commonly used than
blocking stacks or bags.

Recipe 9.11 covers asynchronous stacks and bags.

9.8 Asynchronous Queues
Problem
You need a conduit to pass messages or data from one part of code to another in a
first-in, first-out manner, without blocking threads.

For example, one piece of code could be loading data, which it pushes down the con‐
duit as it loads; meanwhile, the UI thread is receiving the data and displaying it.

Solution
What you need is a queue with an asynchronous API. There is no type like this in the
core .NET framework, but there are a couple of options available from NuGet.

The first option is to use Channels. Channels are a modern library for asynchronous
producer/consumer collections, with a nice emphasis on high performance for high-
volume scenarios. Producers generally write items to a channel using WriteAsync,
and when they are all done producing, one of them calls Complete to notify the chan‐
nel that there won’t be any more items in the future, like this:

Channel<int> queue = Channel.CreateUnbounded<int>();

// Producer code
ChannelWriter<int> writer = queue.Writer;
await writer.WriteAsync(7);
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await writer.WriteAsync(13);
writer.Complete();

// Consumer code
// Displays "7" followed by "13".
ChannelReader<int> reader = queue.Reader;
await foreach (int value in reader.ReadAllAsync())
  Trace.WriteLine(value);

This more natural consumer code uses asynchronous streams; see Chapter 3 for more
information. As of this writing, asynchronous streams are only available on the new‐
est .NET platforms; older platforms can use the following pattern:

// Consumer code (older platforms)
// Displays "7" followed by "13".
ChannelReader<int> reader = queue.Reader;
while (await reader.WaitToReadAsync())
  while (reader.TryRead(out int value))
    Trace.WriteLine(value);

Note the double while loop in the consumer code for older platforms; this is normal.
WaitToReadAsync will asynchronously wait until an item is available or the channel
has been marked complete; it returns true when there is an item available to be read.
TryRead will attempt to read an item (immediately and synchronously), returning
true if an item was read. If TryRead returns false, this could be because there’s no
item available right now, or it could be because the channel has been marked com‐
plete and there will never be any more items. So, when TryRead returns false, the
inner while loop exits and the consumer again calls WaitToReadAsync, which will
return false if the channel has been marked complete.

Another producer/consumer queue option is to use BufferBlock<T> from the TPL
Dataflow library. BufferBlock<T> is quite similar to a channel. The following exam‐
ple shows how to declare a BufferBlock<T>, what the producer code looks like, and
what the consumer code looks like:

var _asyncQueue = new BufferBlock<int>();

// Producer code
await _asyncQueue.SendAsync(7);
await _asyncQueue.SendAsync(13);
_asyncQueue.Complete();

// Consumer code
// Displays "7" followed by "13".
while (await _asyncQueue.OutputAvailableAsync())
  Trace.WriteLine(await _asyncQueue.ReceiveAsync());

The example consumer code uses OutputAvailableAsync, which is really only useful
if you have just a single consumer. If you have multiple consumers, it is possible that
OutputAvailableAsync will return true for more than one consumer even though
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there is only one item. If the queue is completed, then ReceiveAsync will throw Inva
lidOperationException. So if you have multiple consumers, the consumer code usu‐
ally looks more like the following:

while (true)
{
  int item;
  try
  {
    item = await _asyncQueue.ReceiveAsync();
  }
  catch (InvalidOperationException)
  {
    break;
  }
  Trace.WriteLine(item);
}

You can also use the AsyncProducerConsumerQueue<T> type from the Nito.AsyncEx
NuGet library. The API is similar to but not exactly the same as BufferBlock<T>:

var _asyncQueue = new AsyncProducerConsumerQueue<int>();

// Producer code
await _asyncQueue.EnqueueAsync(7);
await _asyncQueue.EnqueueAsync(13);
_asyncQueue.CompleteAdding();

// Consumer code
// Displays "7" followed by "13".
while (await _asyncQueue.OutputAvailableAsync())
  Trace.WriteLine(await _asyncQueue.DequeueAsync());

This consumer code also uses OutputAvailableAsync and has the same problems as
BufferBlock<T>. If you have multiple consumers, the consumer code usually looks
more like the following:

while (true)
{
  int item;
  try
  {
    item = await _asyncQueue.DequeueAsync();
  }
  catch (InvalidOperationException)
  {
    break;
  }
  Trace.WriteLine(item);
}
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Discussion
I recommend using Channels for asynchronous producer/consumer queues when‐
ever possible. They have multiple sampling options in addition to throttling, and they
are highly optimized. However, if your application logic can be expressed as a “pipe‐
line” through which data flows, then TPL Dataflow may be a more natural fit. The
final option is AsyncProducerConsumerQueue<T>, which may make sense if your
application is already using other types from AsyncEx.

Channels can be found in the System.Threading.Channels NuGet
package. The BufferBlock<T> type is in the System.Thread
ing.Tasks.Dataflow NuGet package. The AsyncProducerConsu
merQueue<T> type is in the Nito.AsyncEx NuGet package.

See Also
Recipe 9.6 covers producer/consumer queues with blocking semantics rather than
asynchronous semantics.

Recipe 9.12 covers producer/consumer queues that have both blocking and asynchro‐
nous semantics.

Recipe 9.7 covers asynchronous stacks and bags if you want a similar conduit without
first-in, first-out semantics.

9.9 Throttling Queues
Problem
You have a producer/consumer queue, and your producers might run faster than
your consumers, which would cause undesired memory usage. You also want to keep
all the queue items, so you need a way to throttle the producers.

Solution
When you use producer/consumer queues, you do need to consider what happens if
your producers run faster than your consumers, unless you’re sure that your consum‐
ers will always run faster. If you’re producing items faster than you can consume
them, then you may need to throttle your queue. You can throttle a queue by desig‐
nating a maximum number of elements. When a queue is “full,” it applies backpres‐
sure to the producers, blocking them until there is more room in the queue.
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Channels can be throttled by creating a bounded channel rather than an unbounded
channel. Since channels are asynchronous, producers will be asynchronously throt‐
tled:

Channel<int> queue = Channel.CreateBounded<int>(1);
ChannelWriter<int> writer = queue.Writer;

// This Write completes immediately.
await writer.WriteAsync(7);

// This Write (asynchronously) waits for the 7 to be removed
// before it enqueues the 13.
await writer.WriteAsync(13);

writer.Complete();

BufferBlock<T> has built-in support for throttling, explored in more detail in Recipe
5.4. With dataflow blocks, you set the BoundedCapacity option:

var queue = new BufferBlock<int>(
    new DataflowBlockOptions { BoundedCapacity = 1 });

// This Send completes immediately.
await queue.SendAsync(7);

// This Send (asynchronously) waits for the 7 to be removed
// before it enqueues the 13.
await queue.SendAsync(13);

queue.Complete();

The producer in the preceding code snippet uses the asynchronous SendAsync API;
the same approach works for the synchronous Post API.

The AsyncEx type AsyncProducerConsumerQueue<T> has support for throttling. Just
construct the queue with the appropriate value:

var queue = new AsyncProducerConsumerQueue<int>(maxCount: 1);

// This Enqueue completes immediately.
await queue.EnqueueAsync(7);

// This Enqueue (asynchronously) waits for the 7 to be removed
// before it enqueues the 13.
await queue.EnqueueAsync(13);

queue.CompleteAdding();

Blocking producer/consumer queues also support throttling. You can use Blocking
Collection<T> to throttle the number of items by passing the appropriate value
when you create it:
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var queue = new BlockingCollection<int>(boundedCapacity: 1);

// This Add completes immediately.
queue.Add(7);

// This Add waits for the 7 to be removed before it adds the 13.
queue.Add(13);

queue.CompleteAdding();

Discussion
Throttling is necessary whenever producers can run faster than consumers. One sce‐
nario you must consider is whether it’s possible for producers to run faster than con‐
sumers if your application is running on different hardware than yours. Some throt‐
tling is usually necessary to ensure your application will run on future hardware
and/or cloud instances, which are generally more constrained than developer
machines.

Throttling will cause backpressure on the producers, slowing them down to ensure
that consumers are able to process all items, without causing undue memory pres‐
sure. If you don’t need to process every item, you can choose to sample instead of
throttle. See Recipe 9.10 for sampling producer/consumer queues.

Channels are in the System.Threading.Channels NuGet package.
The BufferBlock<T> type is in the System.Threading.Tasks.Data
flow NuGet package. The AsyncProducerConsumerQueue<T> type
is in the Nito.AsyncEx NuGet package.

See Also
Recipe 9.8 covers basic asynchronous producer/consumer queue usage.

Recipe 9.6 covers basic synchronous producer/consumer queue usage.

Recipe 9.10 covers sampling producer/consumer queues, an alternative to throttling.

9.10 Sampling Queues
Problem
You have a producer/consumer queue, but your producers may run faster than your
consumers, which is causing undesired memory usage. You don’t need to keep all the
queue items; you need a way to filter the queue items so that the slower producers
only need to process the important ones.
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Solution
Channels are the easiest way to apply sampling to input items. One common example
is to always take the latest n items, discarding the oldest items once the queue is full:

Channel<int> queue = Channel.CreateBounded<int>(
    new BoundedChannelOptions(1)
    {
      FullMode = BoundedChannelFullMode.DropOldest,
    });
ChannelWriter<int> writer = queue.Writer;

// This Write completes immediately.
await writer.WriteAsync(7);

// This Write also completes immediately.
// The 7 is discarded unless a consumer has already retrieved it.
await writer.WriteAsync(13);

This is an easy way to tame input streams, keeping them from flooding your consum‐
ers.

There are other BoundedChannelFullMode options as well. For example, if you
wanted the oldest items to be preserved, you could discard any new items once the
channel is full:

Channel<int> queue = Channel.CreateBounded<int>(
    new BoundedChannelOptions(1)
    {
      FullMode = BoundedChannelFullMode.DropWrite,
    });
ChannelWriter<int> writer = queue.Writer;

// This Write completes immediately.
await writer.WriteAsync(7);

// This Write also completes immediately.
// The 13 is discarded unless a consumer has already retrieved the 7.
await writer.WriteAsync(13);

Discussion
Channels are great for doing simple sampling like this. A particularly useful option in
many situations is BoundedChannelFullMode.DropOldest. More complex sampling
would need to be done by the consumers themselves.

If you need to do time-based sampling, such as “only 10 items per second,” use Sys‐
tem.Reactive. System.Reactive has natural operators for working with time.
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Channels are located in the System.Threading.Channels NuGet
package.

See Also
Recipe 9.9 covers throttling channels, which limits the number of items in the chan‐
nel by blocking producers rather than dropping items.

Recipe 9.8 covers basic channel usage, including producer and consumer code.

Recipe 6.4 covers throttling and sampling using System.Reactive, which supports
time-based sampling.

9.11 Asynchronous Stacks and Bags
Problem
You need a conduit to pass messages or data from one part of code to another, but
you don’t want (or need) the conduit to have first-in, first-out semantics.

Solution
The Nito.AsyncEx library provides a type AsyncCollection<T>, which acts like an
asynchronous queue by default, but it can also act like any kind of producer/
consumer collection. The wrapper around an IProducerConsumerCollection<T>,
AsyncCollection<T> is also the async equivalent of the .NET BlockingCollec
tion<T>, which is covered in Recipe 9.7.

AsyncCollection<T> supports last-in, first-out (stack) or unordered (bag) semantics,
based on whatever collection you pass to its constructor:

var _asyncStack = new AsyncCollection<int>(
    new ConcurrentStack<int>());
var _asyncBag = new AsyncCollection<int>(
    new ConcurrentBag<int>());

Note that there’s a race condition around the ordering of items in the stack. If all pro‐
ducers complete before consumers start, then the order of items is like a regular
stack:

// Producer code
await _asyncStack.AddAsync(7);
await _asyncStack.AddAsync(13);
_asyncStack.CompleteAdding();

// Consumer code
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// Displays "13" followed by "7".
while (await _asyncStack.OutputAvailableAsync())
  Trace.WriteLine(await _asyncStack.TakeAsync());

When both producers and consumers are executing concurrently (which is the usual
case), the consumer will always get the most recently added item next. This will cause
the collection as a whole to act not quite like a stack. Of course, the bag collection has
no ordering at all.

AsyncCollection<T> has support for throttling, which is necessary if producers may
add to the collection faster than the consumers can remove from it. Just construct the
collection with the appropriate value:

var _asyncStack = new AsyncCollection<int>(
    new ConcurrentStack<int>(), maxCount: 1);

Now the same producer code will asynchronously wait as needed:

// This Add completes immediately.
await _asyncStack.AddAsync(7);

// This Add (asynchronously) waits for the 7 to be removed
// before it enqueues the 13.
await _asyncStack.AddAsync(13);

_asyncStack.CompleteAdding();

The example consumer code uses OutputAvailableAsync, which has the same limi‐
tation described in Recipe 9.8. If you have multiple consumers, the consumer code
usually looks more like the following:

while (true)
{
  int item;
  try
  {
    item = await _asyncStack.TakeAsync();
  }
  catch (InvalidOperationException)
  {
    break;
  }
  Trace.WriteLine(item);
}

Discussion
AsyncCollection<T> is just the asynchronous equivalent of BlockingCollection<T>
with a slightly different API.
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The AsyncCollection<T> type is in the Nito.AsyncEx NuGet pack‐
age.

See Also
Recipe 9.8 covers asynchronous queues, which are much more common than asyn‐
chronous stacks or bags.

Recipe 9.7 covers synchronous (blocking) stacks and bags.

9.12 Blocking/Asynchronous Queues
Problem
You need a conduit to pass messages or data from one part of code to another in a
first-in, first-out manner, and you need the flexibility to treat either the producer end
or the consumer end as synchronous or asynchronous.

For example, a background thread may be loading data and pushing it into the con‐
duit, and you want the background thread to synchronously block if the conduit is
too full. At the same time, the UI thread is receiving data from the conduit, and you
want the UI thread to asynchronously pull data from the conduit so the UI remains
responsive.

Solution
After looking at blocking queues in Recipe 9.6 and asynchronous queues in Recipe
9.8, now we’ll learn about a few queue types that support both blocking and asyn‐
chronous APIs.

The first is BufferBlock<T> and ActionBlock<T> from the TPL Dataflow NuGet
library. BufferBlock<T> can be easily used as an asynchronous producer/consumer
queue (see Recipe 9.8 for more details):

var queue = new BufferBlock<int>();

// Producer code
await queue.SendAsync(7);
await queue.SendAsync(13);
queue.Complete();

// Consumer code for a single consumer
while (await queue.OutputAvailableAsync())
  Trace.WriteLine(await queue.ReceiveAsync());
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// Consumer code for multiple consumers
while (true)
{
  int item;
  try
  {
    item = await queue.ReceiveAsync();
  }
  catch (InvalidOperationException)
  {
    break;
  }

  Trace.WriteLine(item);
}

As you can see in the following example, BufferBlock<T> also supports a synchro‐
nous API for both producers and consumers:

var queue = new BufferBlock<int>();

// Producer code
queue.Post(7);
queue.Post(13);
queue.Complete();

// Consumer code
while (true)
{
  int item;
  try
  {
    item = queue.Receive();
  }
  catch (InvalidOperationException)
  {
    break;
  }

  Trace.WriteLine(item);
}

The consumer code using BufferBlock<T> is rather awkward, since it isn’t the “data‐
flow way” of writing code. The TPL Dataflow library includes a number of blocks that
can be linked together, enabling you to define a reactive mesh. In this case, a pro‐
ducer/consumer queue completing with a particular action can be defined using
ActionBlock<T>:

// Consumer code is passed to queue constructor.
ActionBlock<int> queue = new ActionBlock<int>(item => Trace.WriteLine(item));

// Asynchronous producer code

142 | Chapter 9: Collections



await queue.SendAsync(7);
await queue.SendAsync(13);

// Synchronous producer code
queue.Post(7);
queue.Post(13);
queue.Complete();

If the TPL Dataflow library isn’t available on your desired platform(s), then there is
an AsyncProducerConsumerQueue<T> type in Nito.AsyncEx that also supports both
synchronous and asynchronous methods:

var queue = new AsyncProducerConsumerQueue<int>();

// Asynchronous producer code
await queue.EnqueueAsync(7);
await queue.EnqueueAsync(13);

// Synchronous producer code
queue.Enqueue(7);
queue.Enqueue(13);

queue.CompleteAdding();

// Asynchronous single consumer code
while (await queue.OutputAvailableAsync())
  Trace.WriteLine(await queue.DequeueAsync());

// Asynchronous multi-consumer code
while (true)
{
  int item;
  try
  {
    item = await queue.DequeueAsync();
  }
  catch (InvalidOperationException)
  {
    break;
  }
  Trace.WriteLine(item);
}

// Synchronous consumer code
foreach (int item in queue.GetConsumingEnumerable())
  Trace.WriteLine(item);

Discussion
I recommend using BufferBlock<T> or ActionBlock<T> if possible because the TPL
Dataflow library has been more extensively tested than the Nito.AsyncEx library.
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However, AsyncProducerConsumerQueue<T> may be useful if your application is
already using other types from the AsyncEx library.

It is also possible to use System.Threading.Channels synchronously, but only indi‐
rectly. Their natural API is asynchronous, but since they are threadsafe collections,
you can force them to work synchronously by wrapping your production or con‐
sumption code inside a Task.Run and then blocking on the task returned from
Task.Run, like this:

Channel<int> queue = Channel.CreateBounded<int>(10);

// Producer code
ChannelWriter<int> writer = queue.Writer;
Task.Run(async () =>
{
  await writer.WriteAsync(7);
  await writer.WriteAsync(13);
  writer.Complete();
}).GetAwaiter().GetResult();

// Consumer code
ChannelReader<int> reader = queue.Reader;
Task.Run(async () =>
{
  while (await reader.WaitToReadAsync())
    while (reader.TryRead(out int value))
      Trace.WriteLine(value);
}).GetAwaiter().GetResult();

TPL Dataflow blocks, AsyncProducerConsumerQueue<T>, and Channels all support
throttling by passing options during construction. Throttling is necessary when you
have producers that push items faster than your consumers can consume them,
which could cause your application to take up large amounts of memory.

The BufferBlock<T> and ActionBlock<T> types are in the Sys
tem.Threading.Tasks.Dataflow NuGet package. The AsyncProdu
cerConsumerQueue<T> type is in the Nito.AsyncEx NuGet package.
Channels are in the System.Threading.Channels NuGet package.

See Also
Recipe 9.6 covers blocking producer/consumer queues.

Recipe 9.8 covers asynchronous producer/consumer queues.

Recipe 5.4 covers throttling dataflow blocks.
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CHAPTER 10

Cancellation

The .NET 4.0 framework introduced exhaustive and well-designed cancellation sup‐
port. This support is cooperative, which means that cancellation can be requested but
not enforced on code. Since cancellation is cooperative, it isn’t possible to cancel code
unless it is written to support cancellation. For this reason, I recommend supporting
cancellation in as much of your own code as possible.

Cancellation is a type of signal, with two different sides: a source that triggers the can‐
cellation and a receiver that then responds to the cancellation. In .NET, the source is
CancellationTokenSource and the receiver is CancellationToken. The recipes in
this chapter cover both sources and receivers of cancellation in normal usage and
describe how to use the cancellation support to interoperate with nonstandard forms
of cancellation.

Cancellation is treated as a special kind of error. The convention is that canceled code
will throw an exception of type OperationCanceledException (or a derived type,
such as TaskCanceledException). This way the calling code knows that the cancella‐
tion was observed.

To indicate to calling code that your method supports cancellation, you should take a
CancellationToken as a parameter. This parameter is usually the last parameter,
unless your method also reports progress (Recipe 2.3). You can also consider provid‐
ing an overload or default parameter value for consumers that do not require cancel‐
lation:

public void CancelableMethodWithOverload(CancellationToken cancellationToken)
{
  // Code goes here.
}

public void CancelableMethodWithOverload()
{
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  CancelableMethodWithOverload(CancellationToken.None);
}

public void CancelableMethodWithDefault(
    CancellationToken cancellationToken = default)
{
  // Code goes here.
}

CancellationToken.None represents a cancellation token that will never be canceled,
and is a special value that is equivalent to default(CancellationToken). Consumers
pass this value when they don’t ever want the operation to be canceled.

Asynchronous streams have a similar but more complex way of handling cancella‐
tion. Canceling asynchronous streams is covered in detail in Recipe 3.4.

10.1 Issuing Cancellation Requests
Problem
Your code calls cancelable code (that takes a CancellationToken) and you need to
cancel it.

Solution
The CancellationTokenSource type is the source for a CancellationToken. It only
enables code to respond to cancellation requests; the CancellationTokenSource
members enable code to request cancellation.

Each CancellationTokenSource is independent from every other one (unless you
link them, as considered in Recipe 10.8). The Token property returns a Cancella
tionToken for that source, and the Cancel method issues the actual cancellation
request.

The following code illustrates creating a CancellationTokenSource and using Token
and Cancel. The code uses an async method because it’s easier to illustrate in a short
code sample; the same Token/Cancel pair is used to cancel all kinds of code:

void IssueCancelRequest()
{
  using var cts = new CancellationTokenSource();
  var task = CancelableMethodAsync(cts.Token);

  // At this point, the operation has been started.

  // Issue the cancellation request.
  cts.Cancel();
}
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In the preceding example code, the task variable is ignored after it has started run‐
ning; in real-world code, that task would probably be stored somewhere and awaited
so that the end user is aware of the final result.

When you cancel code, there is almost always a race condition. The cancelable code
may have been just about to finish when the cancel request is made, and if it doesn’t
happen to check its cancellation token before finishing, it will actually complete suc‐
cessfully. In fact, when you cancel code, there are three possibilities: it may respond to
the cancellation request (throwing OperationCanceledException), it may finish suc‐
cessfully, or it may finish with an error unrelated to the cancellation (throwing a dif‐
ferent exception).

The following code is just like the last, except that it awaits the task, illustrating all
three possible results:

async Task IssueCancelRequestAsync()
{
  using var cts = new CancellationTokenSource();
  var task = CancelableMethodAsync(cts.Token);

  // At this point, the operation is happily running.

  // Issue the cancellation request.
  cts.Cancel();

  // (Asynchronously) wait for the operation to finish.
  try
  {
    await task;
    // If we get here, the operation completed successfully
    //  before the cancellation took effect.
  }
  catch (OperationCanceledException)
  {
    // If we get here, the operation was canceled before it completed.
  }
  catch (Exception)
  {
    // If we get here, the operation completed with an error
    //  before the cancellation took effect.
    throw;
  }
}

Normally, setting up the CancellationTokenSource and issuing the cancellation are
in separate methods. Once you cancel a CancellationTokenSource instance, it is per‐
manently canceled. If you need another source, you must create another instance.
The following code is a more realistic GUI-based example that uses one button to
start an asynchronous operation and another button to cancel it. It also disables and
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enables StartButton and CancelButton so that there can only be one operation at a
time:

private CancellationTokenSource _cts;

private async void StartButton_Click(object sender, RoutedEventArgs e)
{
  StartButton.IsEnabled = false;
  CancelButton.IsEnabled = true;
  try
  {
    _cts = new CancellationTokenSource();
    CancellationToken token = _cts.Token;
    await Task.Delay(TimeSpan.FromSeconds(5), token);
    MessageBox.Show("Delay completed successfully.");
  }
  catch (OperationCanceledException)
  {
    MessageBox.Show("Delay was canceled.");
  }
  catch (Exception)
  {
    MessageBox.Show("Delay completed with error.");
    throw;
  }
  finally
  {
    StartButton.IsEnabled = true;
    CancelButton.IsEnabled = false;
  }
}

private void CancelButton_Click(object sender, RoutedEventArgs e)
{
  _cts.Cancel();
  CancelButton.IsEnabled = false;
}

Discussion
The most realistic example in this recipe used a GUI application, but don’t get the
impression that cancellation is just for user interfaces. Cancellation has its place on
the server as well; for example, ASP.NET provides a cancellation token representing
the request timeout or client disconnect. It’s true that cancellation token sources are
rarer on the server side, but there’s no reason you can’t use them; they’re useful if you
need to cancel for some reason not covered by ASP.NET cancellation, such as an
additional timeout for a portion of the request processing.

148 | Chapter 10: Cancellation



See Also
Recipe 10.4 covers passing tokens to async code.

Recipe 10.5 covers passing tokens to parallel code.

Recipe 10.6 covers using tokens with reactive code.

Recipe 10.7 covers passing tokens to dataflow meshes.

10.2 Responding to Cancellation Requests by Polling
Problem
You have a loop in your code that needs to support cancellation.

Solution
When you have a processing loop in your code, then there isn’t a lower-level API to
which you can pass the CancellationToken. In this case, you should periodically
check whether the token has been canceled. The following code observes the token
periodically while executing a CPU-bound loop:

public int CancelableMethod(CancellationToken cancellationToken)
{
  for (int i = 0; i != 100; ++i)
  {
    Thread.Sleep(1000); // Some calculation goes here.
    cancellationToken.ThrowIfCancellationRequested();
  }
  return 42;
}

If your loop is very tight (i.e., if the body of your loop executes very quickly), then
you may want to limit how often you check your cancellation token. As always, meas‐
ure your performance before and after a change like this before deciding which way is
best. The following code is similar to the previous example, but it has more iterations
of a faster loop, so I added a limit to how often the token is checked:

public int CancelableMethod(CancellationToken cancellationToken)
{
  for (int i = 0; i != 100000; ++i)
  {
    Thread.Sleep(1); // Some calculation goes here.
    if (i % 1000 == 0)
      cancellationToken.ThrowIfCancellationRequested();
  }
  return 42;
}
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The proper limit to use depends entirely on how much work you’re doing and how
responsive the cancellation needs to be.

Discussion
The majority of the time, your code should just pass through the CancellationToken
to the next layer. There are examples of this in Recipes 10.4, 10.5, 10.6, and 10.7. The
polling technique in this recipe should only be used if you have a processing loop that
needs to support cancellation.

There’s another member on CancellationToken called IsCancellationRequested,
which starts returning true when the token is canceled. Some people use this mem‐
ber to respond to cancellation, usually by returning a default or null value. I do not
recommend this approach for most code. The standard cancellation pattern is to raise
an OperationCanceledException, which is taken care of by ThrowIfCancellationRe
quested. If code further up the stack wants to catch the exception and act like the
result is null, then that’s fine, but any code taking a CancellationToken should fol‐
low the standard cancellation pattern. If you do decide not to follow the cancellation
pattern, at least document it clearly.

ThrowIfCancellationRequested works by polling the cancellation token; your code
has to call it at regular intervals. There’s also a way to register a callback that is
invoked when cancellation is requested. The callback approach is more about inter‐
operating with other cancellation systems; Recipe 10.9 covers using callbacks with 
cancellation.

See Also
Recipe 10.4 covers passing tokens to async code.

Recipe 10.5 covers passing tokens to parallel code.

Recipe 10.6 covers using tokens with reactive code.

Recipe 10.7 covers passing tokens to dataflow meshes.

Recipe 10.9 covers using callbacks instead of polling to respond to cancellation
requests.

Recipe 10.1 covers issuing a cancellation request.

10.3 Canceling Due to Timeouts
Problem
You have some code that needs to stop running after a timeout.

150 | Chapter 10: Cancellation



Solution
Cancellation is a natural solution for timeout situations. A timeout is just one type of
cancellation request. The code that needs to be canceled merely observes the cancella‐
tion token just like any other cancellation; it should neither know nor care that the
cancellation source is a timer.

There are some convenience methods for cancellation token sources that automati‐
cally issue a cancel request based on a timer. You can pass the timeout into the con‐
structor:

async Task IssueTimeoutAsync()
{
  using var cts = new CancellationTokenSource(TimeSpan.FromSeconds(5));
  CancellationToken token = cts.Token;
  await Task.Delay(TimeSpan.FromSeconds(10), token);
}

Alternatively, if you already have a CancellationTokenSource instance, you can start
a timeout for that instance:

async Task IssueTimeoutAsync()
{
  using var cts = new CancellationTokenSource();
  CancellationToken token = cts.Token;
  cts.CancelAfter(TimeSpan.FromSeconds(5));
  await Task.Delay(TimeSpan.FromSeconds(10), token);
}

Discussion
To execute code with a timeout, use CancellationTokenSource and CancelAfter (or
the constructor). There are other ways to do the same thing, but using the existing
cancellation system is the easiest and most efficient option.

Remember that the code to be canceled needs to observe the cancellation token; it
isn’t possible to easily cancel un-cancelable code.

See Also
Recipe 10.4 covers passing tokens to async code.

Recipe 10.5 covers passing tokens to parallel code.

Recipe 10.6 covers using tokens with reactive code.

Recipe 10.7 covers passing tokens to dataflow meshes.
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10.4 Canceling async Code
Problem
You are using async code and need to support cancellation.

Solution
The simplest way to support cancellation in asynchronous code is to just pass the
CancellationToken through to the next layer. The following example code performs
an asynchronous delay and then returns a value; it supports cancellation by passing
the token to Task.Delay:

public async Task<int> CancelableMethodAsync(CancellationToken cancellationToken)
{
  await Task.Delay(TimeSpan.FromSeconds(2), cancellationToken);
  return 42;
}

Many asynchronous APIs support CancellationToken, so enabling cancellation
yourself is usually a simple matter of taking a token and passing it along. As a general
rule, if your method calls APIs that take CancellationToken, then your method
should also take a CancellationToken and pass it to every API that supports it.

Discussion
Unfortunately, some methods don’t support cancellation. When you’re in this situa‐
tion, there’s no easy solution. It’s not possible to safely stop arbitrary code unless it’s
wrapped in a separate executable. If your code calls code that doesn’t support cancel‐
lation, and if you don’t want to wrap that code in a separate executable, you do always
have the option of pretending to cancel the operation by ignoring the result.

Cancellation should be provided as an option whenever possible. This is because
proper cancellation at a higher level depends on proper cancellation at the lower
level. So, when you’re writing your own async methods, try your best to include sup‐
port for cancellation; you never know what higher-level method will want to call
yours, and it might need cancellation.

See Also
Recipe 10.1 covers issuing a cancellation request.

Recipe 10.3 covers using cancellation as a timeout.
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10.5 Canceling Parallel Code
Problem
You are using parallel code and need to support cancellation.

Solution
The easiest way to support cancellation is to pass the CancellationToken through to
the parallel code. Parallel methods support this by taking a ParallelOptions
instance. You can set the CancellationToken on a ParallelOptions instance in the
following manner:

void RotateMatrices(IEnumerable<Matrix> matrices, float degrees,
    CancellationToken token)
{
  Parallel.ForEach(matrices,
      new ParallelOptions { CancellationToken = token },
      matrix => matrix.Rotate(degrees));
}

Alternatively, it’s possible to observe the CancellationToken directly in your loop
body:

void RotateMatrices2(IEnumerable<Matrix> matrices, float degrees,
    CancellationToken token)
{
  // Warning: not recommended; see below.
  Parallel.ForEach(matrices, matrix =>
  {
    matrix.Rotate(degrees);
    token.ThrowIfCancellationRequested();
  });
}

The alternative method is more work and doesn’t compose as well because the paral‐
lel loop will wrap the OperationCanceledException within an AggregateException.
Also, if you pass the CancellationToken as part of a ParallelOptions instance, the
Parallel class may make more intelligent decisions about how often to check the
token. For these reasons, it’s best to pass the token as an option. If you pass the token
as an option, you could also pass the token to the loop body, but you don’t want to
only pass the token to the loop body.

Parallel LINQ (PLINQ) also has built-in support for cancellation, using the WithCan
cellation operator:

IEnumerable<int> MultiplyBy2(IEnumerable<int> values,
    CancellationToken cancellationToken)
{
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  return values.AsParallel()
      .WithCancellation(cancellationToken)
      .Select(item => item * 2);
}

Discussion
Supporting cancellation for parallel work is important for a good user experience. If
your application is doing parallel work, it’ll use a large amount of CPU at least for a
short time. High CPU usage is something that users notice, even if it doesn’t interfere
with other applications on the same machine. So, I recommend supporting cancella‐
tion whenever you do parallel computation (or any other CPU-intensive work), even
if the total time spent with high CPU usage isn’t extremely long.

See Also
Recipe 10.1 covers issuing a cancellation request.

10.6 Canceling System.Reactive Code
Problem
You have some reactive code, and you need it to be cancelable.

Solution
The System.Reactive library has a notion of a subscription to an observable stream.
Your code can dispose of the subscription to unsubscribe from the stream. In many
cases, this is sufficient to logically cancel the stream. For example, the following code
subscribes to mouse clicks when one button is pressed and unsubscribes (cancels the
subscription) when another button is pressed:

private IDisposable _mouseMovesSubscription;

private void StartButton_Click(object sender, RoutedEventArgs e)
{
  IObservable<Point> mouseMoves = Observable
      .FromEventPattern<MouseEventHandler, MouseEventArgs>(
          handler => (s, a) => handler(s, a),
          handler => MouseMove += handler,
          handler => MouseMove -= handler)
      .Select(x => x.EventArgs.GetPosition(this));
  _mouseMovesSubscription = mouseMoves.Subscribe(value =>
  {
    MousePositionLabel.Content = "(" + value.X + ", " + value.Y + ")";
  });
}

154 | Chapter 10: Cancellation



private void CancelButton_Click(object sender, RoutedEventArgs e)
{
  if (_mouseMovesSubscription != null)
    _mouseMovesSubscription.Dispose();
}

It’s quite convenient to make System.Reactive work with the CancellationToken
Source/CancellationToken system that everything else uses for cancellation. The
rest of this recipe covers ways that System.Reactive observables interact with Cancel
lationToken.

The first major use case is when the observable code is wrapped in asynchronous
code. The basic approach was covered in Recipe 8.5, and now you want to add Cancel
lationToken support. In general, the easiest way to do this is to perform all opera‐
tions using reactive operators and then call ToTask to convert the last resulting ele‐
ment to an awaitable task. The following code shows how to asynchronously take the
last element in a sequence:

CancellationToken cancellationToken = ...
IObservable<int> observable = ...
int lastElement = await observable.TakeLast(1).ToTask(cancellationToken);
// or: int lastElement = await observable.ToTask(cancellationToken);

Taking the first element is very similar; just modify the observable before calling
ToTask:

CancellationToken cancellationToken = ...
IObservable<int> observable = ...
int firstElement = await observable.Take(1).ToTask(cancellationToken);

Asynchronously converting the entire observable sequence to a task is likewise simi‐
lar:

CancellationToken cancellationToken = ...
IObservable<int> observable = ...
IList<int> allElements = await observable.ToList().ToTask(cancellationToken);

Finally, let’s consider the reverse situation. We’ve looked at several ways to handle sit‐
uations where System.Reactive code responds to CancellationToken—that is, where
a CancellationTokenSource cancel request is translated into a disposal of that sub‐
scription. It’s also possible to go the other way: issuing a cancellation request as a
response to disposal.

The FromAsync, StartAsync, and SelectMany operators all support cancellation, as
seen in Recipe 8.6. These operators cover the vast majority of use cases. Rx also pro‐
vides a CancellationDisposable type that cancels a CancellationToken when dis‐
posed. You can use CancellationDisposable directly, like this:

using (var cancellation = new CancellationDisposable())
{
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  CancellationToken token = cancellation.Token;
  // Pass the token to methods that respond to it.
}
// At this point, the token is canceled.

Discussion
System.Reactive (Rx) has its own notion of cancellation: disposing subscriptions. This
recipe looked at several ways to make Rx play nicely with the universal cancellation
framework introduced in .NET 4.0. As long as you are in the Rx world portion of
your code, use the Rx subscription/disposal system; it’s cleanest if you only introduce
CancellationToken support at the boundaries.

See Also
Recipe 8.5 covers asynchronous wrappers around Rx code (without cancellation
support).

Recipe 8.6 covers Rx wrappers around asynchronous code (with cancellation sup‐
port).

Recipe 10.1 covers issuing a cancellation request.

10.7 Canceling Dataflow Meshes
Problem
You are using dataflow meshes and need to support cancellation.

Solution
The best way to support cancellation in your code is to pass the CancellationToken
through to a cancelable API. Each block in a dataflow mesh supports cancellation as a
part of its DataflowBlockOptions. If you want to extend your custom dataflow block
with cancellation support, set the CancellationToken property on the block options:

IPropagatorBlock<int, int> CreateMyCustomBlock(
    CancellationToken cancellationToken)
{
  var blockOptions = new ExecutionDataflowBlockOptions
  {
    CancellationToken = cancellationToken
  };
  var multiplyBlock = new TransformBlock<int, int>(item => item * 2,
      blockOptions);
  var addBlock = new TransformBlock<int, int>(item => item + 2,
      blockOptions);
  var divideBlock = new TransformBlock<int, int>(item => item / 2,
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      blockOptions);

  var flowCompletion = new DataflowLinkOptions
  {
    PropagateCompletion = true
  };
  multiplyBlock.LinkTo(addBlock, flowCompletion);
  addBlock.LinkTo(divideBlock, flowCompletion);

  return DataflowBlock.Encapsulate(multiplyBlock, divideBlock);
}

In this example, I applied the CancellationToken to every block in the mesh, which
isn’t strictly necessary. Since I’m also propagating completion along the links, I could
apply it to the first block and allow it to propagate through. Cancellations are consid‐
ered a special form of error, so the blocks further down the pipeline would be com‐
pleted with an error as that error propagates through. That said, if I’m canceling a
mesh, I may as well cancel every block simultaneously, so in this case I usually set the
CancellationToken option on every block.

Discussion
In dataflow meshes, cancellation is not a form of flush. When a block is canceled, it
drops all its input and refuses to take any new items. So if you cancel a block while it’s
running, you will lose data.

See Also
Recipe 10.1 covers issuing a cancellation request.

10.8 Injecting Cancellation Requests
Problem
You have a layer of your code that needs to respond to cancellation requests and also
issue its own cancellation requests to the next layer.

Solution
The .NET 4.0 cancellation system has built-in support for this scenario, known as
linked cancellation tokens. A cancellation token source can be created linked to one
(or many) existing tokens. When you create a linked cancellation token source, the
resulting token is canceled when any of the existing tokens is canceled or when the
linked source is explicitly canceled.
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The following code performs an asynchronous HTTP request. The token passed into
the GetWithTimeoutAsync method represents cancellation requested by the end user,
and the GetWithTimeoutAsync method also applies a timeout to the request:

async Task<HttpResponseMessage> GetWithTimeoutAsync(HttpClient client,
    string url, CancellationToken cancellationToken)
{
  using CancellationTokenSource cts = CancellationTokenSource
      .CreateLinkedTokenSource(cancellationToken);
  cts.CancelAfter(TimeSpan.FromSeconds(2));
  CancellationToken combinedToken = cts.Token;

  return await client.GetAsync(url, combinedToken);
}

The resulting combinedToken is canceled when either the user cancels the existing
cancellationToken or when the linked source is canceled by CancelAfter.

Discussion
Although the preceding example only used a single CancellationToken source, the
CreateLinkedTokenSource method can take any number of cancellation tokens as
parameters. This enables you to create a single combined token from which you can
implement your logical cancellation. For example, ASP.NET provides a cancellation
token that represents the user disconnecting (HttpContext.RequestAborted); han‐
dler code may create a linked token that responds to either a user disconnecting or its
own cancellation reason, such as a timeout.

Keep in mind the lifetime of the linked cancellation token source. The previous
example is the usual use case, where one or more cancellation tokens are passed into
the method, which then links them together and passes them on as a combined
token. Note also that the example code uses the using statement, which ensures that
the linked cancellation token source is disposed of when the operation is complete
(and the combined token is no longer being used). Consider what would happen if
the code didn’t dispose of the linked cancellation token source: it’s possible that the
GetWithTimeoutAsync method may be called multiple times with the same (long-
lived) existing token, in which case the code would link a new token source each time
the method is invoked. Even after the HTTP requests complete (and nothing is using
the combined token), that linked source is still attached to the existing token. To pre‐
vent memory leaks like this, dispose of the linked cancellation token source when you
no longer need the combined token.

See Also
Recipe 10.1 covers issuing cancellation requests in general.

Recipe 10.3 covers using cancellation as a timeout.
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10.9 Interop with Other Cancellation Systems
Problem
You have some external or legacy code with its own notion of cancellation, and you
want to control it using a standard CancellationToken.

Solution
The CancellationToken has two primary ways to respond to a cancellation request:
polling (covered in Recipe 10.2) and callbacks (the subject of this recipe). Polling is
normally used for CPU-bound code, such as data processing loops; callbacks are nor‐
mally used in all other scenarios. You can register a callback for a token using the
CancellationToken.Register method.

For example, let’s say you’re wrapping the System.Net.NetworkInformation.Ping
type and you want to be able to cancel a ping. The Ping class already has a Task-based
API but does not support CancellationToken. Instead, the Ping type has its own Sen
dAsyncCancel method that you can use to cancel a ping. To do this, register a callback
that invokes that method:

async Task<PingReply> PingAsync(string hostNameOrAddress,
    CancellationToken cancellationToken)
{
  using var ping = new Ping();
  Task<PingReply> task = ping.SendPingAsync(hostNameOrAddress);
  using CancellationTokenRegistration _ = cancellationToken
      .Register(() => ping.SendAsyncCancel());
  return await task;
}

Now, when a cancellation is requested, the CancellationToken will invoke the SendA
syncCancel method for you, canceling the SendPingAsync method.

Discussion
The CancellationToken.Register method can be used to interoperate with any kind
of alternative cancellation system. But do bear in mind that when a method takes a
CancellationToken, a cancellation request should only cancel that one operation.
Some alternative cancellation systems implement a cancel by closing some resource,
which can cancel multiple operations; this kind of cancellation system doesn’t map
well to a CancellationToken. If you do decide to wrap that kind of cancellation in a
CancellationToken, you should document its unusual cancellation semantics.

Keep in mind the lifetime of the callback registration. The Register method returns a
disposable that should be disposed of when that callback is no longer needed. The
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preceding example code uses a using statement to clean up when the asynchronous
operation completes. If the code didn’t have that using statement, then each time the
code is called with the same (long-lived) CancellationToken, it would add another
callback (which in turn keeps the Ping object alive). To avoid memory and resource
leaks, dispose of the callback registration when you no longer need the callback.

See Also
Recipe 10.2 covers responding to a cancellation token by polling rather than call‐
backs.

Recipe 10.1 covers issuing cancellation requests in general.
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CHAPTER 11

Functional-Friendly OOP

Modern programs require asynchronous programming; these days servers must scale
better than ever, and end-user applications must be more responsive than ever.
Developers are finding that they must learn asynchronous programming, and as they
explore this world, they find that it often clashes with the traditional object-oriented
programming that they’re accustomed to.

The core reason for this is because asynchronous programming is functional. By
“functional,” I don’t mean “it works”; I mean it’s a functional style of programming
instead of a procedural style of programming. A lot of developers learned basic func‐
tional programming in college and have hardly touched it since. If code like (car
(cdr '(3 5 7))) gives you a chill as repressed memories come flooding back, then
you may be in that category. But don’t fear; modern asynchronous programming isn’t
that hard once you get used to it.

The major breakthrough with async is that you can still think procedurally while pro‐
gramming asynchronously. This makes asynchronous methods easier to write and
understand. However, under the covers, asynchronous code is still functional in
nature, and this causes some problems when people try to force async methods into
classical object-oriented designs. The recipes in this chapter deal with those friction
points where asynchronous code clashes with object-oriented programming.

These friction points are especially noticeable when translating an existing OOP code
base into an async-friendly code base.
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11.1 Async Interfaces and Inheritance
Problem
You have a method in your interface or base class that you want to make asynchro‐
nous.

Solution
The key to understanding this problem and its solution is to realize that async is an
implementation detail. The async keyword can only be applied to methods with
implementations; it isn’t possible to apply it to abstract methods or interface methods
(unless they have default implementations). However, you can define a method with
the same signature as an async method, just without the async keyword.

Remember that types are awaitable, not methods. You can await a Task returned by a
method, whether or not that method is implemented using async. So, an interface or
abstract method can just return a Task (or Task<T>), and the return value of that
method is awaitable.

The following code defines an interface with an asynchronous method (without the
async keyword), an implementation of that interface (with async), and an independ‐
ent method that consumes a method of the interface (via await):

interface IMyAsyncInterface
{
  Task<int> CountBytesAsync(HttpClient client, string url);
}

class MyAsyncClass : IMyAsyncInterface
{
  public async Task<int> CountBytesAsync(HttpClient client, string url)
  {
    var bytes = await client.GetByteArrayAsync(url);
    return bytes.Length;
  }
}

async Task UseMyInterfaceAsync(HttpClient client, IMyAsyncInterface service)
{
  var result = await service.CountBytesAsync(client, "http://www.example.com");
  Trace.WriteLine(result);
}

This same pattern works for abstract methods in base classes.

An asynchronous method signature only means that the implementation may be
asynchronous. It is possible for the actual implementation to be synchronous if it has
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no real asynchronous work to do. For example, a test stub may implement the same
interface (without async) by using something like FromResult:

class MyAsyncClassStub : IMyAsyncInterface
{
  public Task<int> CountBytesAsync(HttpClient client, string url)
  {
    return Task.FromResult(13);
  }
}

Discussion
At the time of this writing, async and await are still gaining traction. As asynchro‐
nous methods become more common, asynchronous methods on interfaces and base
classes will become more common as well. They’re not that hard to work with if you
keep in mind that it is the return type that is awaitable (not the method), and that an
asynchronous method definition may be implemented either asynchronously or syn‐
chronously.

See Also
Recipe 2.2 covers returning a completed task, implementing an asynchronous
method signature with synchronous code.

11.2 Async Construction: Factories
Problem
You are coding a type that requires some asynchronous work to be done in its con‐
structor.

Solution
Constructors cannot be async, nor can they use the await keyword. It would cer‐
tainly be useful to await in a constructor, but this would change the C# language con‐
siderably.

One possibility is to have a constructor paired with an async initialization method, so
the type could be used like this:

var instance = new MyAsyncClass();
await instance.InitializeAsync();

This approach has some disadvantages. It can be easy to forget to call the Initiali
zeAsync method, and the instance isn’t usable immediately after it’s constructed.
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A better solution is to make the type its own factory. The following type illustrates the
asynchronous factory method pattern:

class MyAsyncClass
{
  private MyAsyncClass()
  {
  }

  private async Task<MyAsyncClass> InitializeAsync()
  {
    await Task.Delay(TimeSpan.FromSeconds(1));
    return this;
  }

  public static Task<MyAsyncClass> CreateAsync()
  {
    var result = new MyAsyncClass();
    return result.InitializeAsync();
  }
}

The constructor and InitializeAsync method are private so that other code can‐
not possibly misuse them; so the only way of creating an instance is via the static
CreateAsync factory method. Calling code cannot access the instance until after the
initialization is complete.

Other code can create an instance like this:

MyAsyncClass instance = await MyAsyncClass.CreateAsync();

Discussion
The primary advantage of this pattern is that there’s no way that other code can get an
uninitialized instance of MyAsyncClass. That’s why I prefer this pattern over other
approaches whenever I can use it.

Unfortunately, this approach does not work in some scenarios—in particular, when
your code is using a dependency injection provider. No major dependency injection
or inversion of control library works with async code. If you find yourself in one of
these scenarios, there are a couple of alternatives that you can consider.

If the instance you’re creating is actually a shared resource, then you can use the asyn‐
chronous lazy type discussed in Recipe 14.1. Otherwise, you can use the asynchro‐
nous initialization pattern discussed in Recipe 11.3.

Here’s an example of what not to do:

class MyAsyncClass
{
  public MyAsyncClass()
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  {
    InitializeAsync();
  }

  // BAD CODE!!
  private async void InitializeAsync()
  {
    await Task.Delay(TimeSpan.FromSeconds(1));
  }
}

At first glance, this seems like a reasonable approach: you get a regular constructor
that kicks off an asynchronous operation; however, there are several drawbacks that
are due to the use of async void. The first problem is that when the constructor
completes, the instance is still being asynchronously initialized, and there isn’t an
obvious way to determine when the asynchronous initialization has completed. The
second problem is with error handling: any exceptions raised from InitializeAsync
can’t be caught by any catch clauses surrounding the object construction.

See Also
Recipe 11.3 covers the asynchronous initialization pattern, a way of doing asynchro‐
nous construction that works with dependency injection/inversion of control con‐
tainers.

Recipe 14.1 covers asynchronous lazy initialization, which is a viable solution if the
instance is conceptually a shared resource or service.

11.3 Async Construction: The Asynchronous
Initialization Pattern
Problem
You are coding a type that requires some asynchronous work to be done in its con‐
structor, but you cannot use the asynchronous factory pattern (Recipe 11.2) because
the instance is created via reflection (e.g., a dependency injection/inversion of control
library, data binding, Activator.CreateInstance, and so on).

Solution
When you encounter this scenario, you have to return an uninitialized instance,
though you can mitigate this situation by applying a common pattern: the asynchro‐
nous initialization pattern. Every type that requires asynchronous initialization
should define a property, like this:

Task Initialization { get; }
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I usually like to define this in a marker interface for types that require asynchronous
initialization:

/// <summary>
/// Marks a type as requiring asynchronous initialization
/// and provides the result of that initialization.
/// </summary>
public interface IAsyncInitialization
{
  /// <summary>
  /// The result of the asynchronous initialization of this instance.
  /// </summary>
  Task Initialization { get; }
}

When you implement this pattern, you should start the initialization (and assign the
Initialization property) in the constructor. The results of the asynchronous initial‐
ization (including any exceptions) are exposed via that Initialization property.
Here’s an example implementation of a simple type using asynchronous initialization:

class MyFundamentalType : IMyFundamentalType, IAsyncInitialization
{
  public MyFundamentalType()
  {
    Initialization = InitializeAsync();
  }

  public Task Initialization { get; private set; }

  private async Task InitializeAsync()
  {
    // Asynchronously initialize this instance.
    await Task.Delay(TimeSpan.FromSeconds(1));
  }
}

If you’re using a dependency injection/inversion of control library, you can create and
initialize an instance of this type using code like the following:

IMyFundamentalType instance = UltimateDIFactory.Create<IMyFundamentalType>();
var instanceAsyncInit = instance as IAsyncInitialization;
if (instanceAsyncInit != null)
  await instanceAsyncInit.Initialization;

You can extend this pattern to allow composition of types with asynchronous initiali‐
zation. In the following example another type that depends on an IMyFundamental
Type is defined:

class MyComposedType : IMyComposedType, IAsyncInitialization
{
  private readonly IMyFundamentalType _fundamental;
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  public MyComposedType(IMyFundamentalType fundamental)
  {
    _fundamental = fundamental;
    Initialization = InitializeAsync();
  }

  public Task Initialization { get; private set; }

  private async Task InitializeAsync()
  {
    // Asynchronously wait for the fundamental instance to initialize,
    //  if necessary.
    var fundamentalAsyncInit = _fundamental as IAsyncInitialization;
    if (fundamentalAsyncInit != null)
      await fundamentalAsyncInit.Initialization;

    // Do our own initialization (synchronous or asynchronous).
    ...
  }
}

The composed type waits for all of its components to initialize before it proceeds with
its initialization. The rule to follow is that every component should be initialized by
the end of InitializeAsync. This ensures that all dependent types are initialized as
part of the composed initialization. Any exceptions from a component initialization
are propagated to the composed type’s initialization.

Discussion
If you can, I recommend using asynchronous factories (Recipe 11.2) or asynchronous
lazy initialization (Recipe 14.1) instead of this solution. Those are the best approaches
because you never expose an uninitialized instance. However, if your instances are
created by dependency injection/inversion of control, data binding, and so on, then
you’re forced to expose an uninitialized instance, and in that case I recommend using
the asynchronous initialization pattern in this recipe.

Remember from the recipe on asynchronous interfaces (Recipe 11.1) that an asyn‐
chronous method signature only means that the method may be asynchronous. The
MyComposedType.InitializeAsync code is a good example of this: if the IMyFunda
mentalType instance does not also implement IAsyncInitialization and MyCompo
sedType has no asynchronous initialization of its own, then its InitializeAsync
method completes synchronously.

The code for checking whether an instance implements IAsyncInitialization and
initializing it is a bit awkward, and it becomes more so when you have a composed
type that depends on a larger number of components. It’s easy enough to create a
helper method that can be used to simplify the code:
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public static class AsyncInitialization
{
  public static Task WhenAllInitializedAsync(params object[] instances)
  {
    return Task.WhenAll(instances
        .OfType<IAsyncInitialization>()
        .Select(x => x.Initialization));
  }
}

You can call InitializeAllAsync and pass in whatever instances you want initial‐
ized; the method will ignore instances that don’t implement IAsyncInitialization.
The initialization code for a composed type that depends on three injected instances
can then look like the following:

private async Task InitializeAsync()
{
 // Asynchronously wait for all 3 instances to initialize, if necessary.
 await AsyncInitialization.WhenAllInitializedAsync(_fundamental,
     _anotherType, _yetAnother);

 // Do our own initialization (synchronous or asynchronous).
 ...
}

See Also
Recipe 11.2 covers asynchronous factories, which are a way to do asynchronous con‐
struction without exposing uninitialized instances.

Recipe 14.1 covers asynchronous lazy initialization, which can be used if the instance
is a shared resource or service.

Recipe 11.1 covers asynchronous interfaces.

11.4 Async Properties
Problem
You have a property that you want to make async. The property is not used in data
binding.

Solution
This is a problem that often comes up when converting existing code to use async; in
this situation, you have a property whose getter invokes a method that is now asyn‐
chronous. However, there’s no such thing as an “asynchronous property.” It’s not pos‐
sible to use the async keyword with a property, and that’s a good thing. Property get‐
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ters should return current values; they shouldn’t be kicking off background opera‐
tions:

// What we think we want (does not compile).
public int Data
{
  async get
  {
    await Task.Delay(TimeSpan.FromSeconds(1));
    return 13;
  }
}

When you find that your code wants an “asynchronous property,” what your code
really needs is something a little different. The solution depends on whether your
property value needs to be evaluated once or multiple times; you have a choice
between these semantics:

• A value that is asynchronously evaluated each time it is read
• A value that is asynchronously evaluated once and is cached for future access

If your “asynchronous property” needs to kick off a new (asynchronous) evaluation
each time it’s read, then it’s not a property; it’s a method in disguise. If you encoun‐
tered this situation when converting synchronous code to asynchronous, then it’s
time to admit that the original design was actually incorrect; the property should have
been a method all along:

// As an asynchronous method.
public async Task<int> GetDataAsync()
{
  await Task.Delay(TimeSpan.FromSeconds(1));
  return 13;
}

It is possible to return a Task<int> directly from a property, as the following code
shows:

// This "async property" is an asynchronous method.
// This "async property" is a Task-returning property.
public Task<int> Data
{
  get { return GetDataAsync(); }
}

private async Task<int> GetDataAsync()
{
  await Task.Delay(TimeSpan.FromSeconds(1));
  return 13;
}
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I do not recommend this approach, however. If every access to a property is going to
kick off a new asynchronous operation, then that “property” should really be a
method. The fact that it’s an asynchronous method makes it clearer that a new asyn‐
chronous operation is initiated every time, so the API isn’t misleading. Recipes 11.3
and 11.6 do use task-returning properties, but those properties apply to the instance
as a whole; they don’t start a new asynchronous operation every time they are read.

Sometimes you want the property value evaluated every time it’s retrieved. Other
times you want the property to only kick off a single (asynchronous) evaluation and
cache that resulting value for future use. In this case, you can use asynchronous lazy
initialization. That solution is covered in detail in Recipe 14.1, but in the meantime,
here’s an example of what the code would look like:

// As a cached value
public AsyncLazy<int> Data
{
  get { return _data; }
}

private readonly AsyncLazy<int> _data =
    new AsyncLazy<int>(async () =>
    {
      await Task.Delay(TimeSpan.FromSeconds(1));
      return 13;
    });

The code will only execute the asynchronous evaluation once and then return that
same value to all callers. Calling code looks like the following:

int value = await instance.Data;

In this case, the property syntax is appropriate since there’s only one evaluation hap‐
pening.

Discussion
One of the important questions to ask yourself is whether reading the property
should start a new asynchronous operation; if the answer is yes, then use an asyn‐
chronous method instead of a property. If the property should act as a lazy-evaluated
cache, then use asynchronous initialization (see Recipe 14.1). In this recipe I didn’t
cover properties that are used in data binding; I cover those in Recipe 14.3.

When you’re converting a synchronous property to an “asynchronous property,”
here’s an example of what not to do:

private async Task<int> GetDataAsync()
{
  await Task.Delay(TimeSpan.FromSeconds(1));
  return 13;
}
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public int Data
{
  // BAD CODE!!
  get { return GetDataAsync().Result; }
}

While we’re on the subject of properties in async code, it’s worth thinking about how
state relates to asynchronous code. This is especially true if you’re converting a syn‐
chronous code base to asynchronous. Consider any state that you expose in your API
(e.g., via properties); for each piece of state, ask yourself, what is the current state of
an object that has an asynchronous operation in progress? There’s no right answer,
but it’s important to think about the semantics you want and to document them.

For example, consider Stream.Position, which represents the current offset of the
stream pointer. With the synchronous API, when you call Stream.Read or
Stream.Write, the reading/writing is done and Stream.Position is updated to reflect
the new position before the Read or Write method returns. The semantics are clear
for synchronous code.

Now, consider Stream.ReadAsync and Stream.WriteAsync: when should
Stream.Position be updated? When the read/write operation is complete, or before
it actually happens? If it’s updated before the operation completes, is it updated syn‐
chronously by the time ReadAsync/WriteAsync returns, or could it happen shortly
after that?

This is a great example of how a property that exposes state has perfectly clear seman‐
tics for synchronous code but no obviously correct semantics for asynchronous code.
It’s not the end of the world—you just need to think about your entire API when
async-enabling your types and document the semantics you choose.

See Also
Recipe 14.1 covers asynchronous lazy initialization in detail.

Recipe 14.3 covers “asynchronous properties” that need to support data binding.

11.5 Async Events
Problem
You have an event that you need to use with handlers that might be async, and you
need to detect whether the event handlers have completed. Note that this is a rare sit‐
uation when raising an event; usually, when you raise an event, you don’t care when
the handlers complete.
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Solution
It’s not feasible to detect when async void handlers have returned, so you need some
alternative way to detect when the asynchronous handlers have completed. The Uni‐
versal Windows platform introduced a concept called deferrals that you can use to
track asynchronous handlers. An asynchronous handler allocates a deferral before its
first await and later notifies the deferral when it completes. Synchronous handlers
don’t need to use deferrals.

The Nito.AsyncEx library includes a type called a DeferralManager, which is used by
the component raising the event. This deferral manager then permits event handlers
to allocate deferrals and keeps track of when all the deferrals have completed.

For each of your events where you need to wait for the handlers to complete, you first
extend your event arguments type:

public class MyEventArgs : EventArgs, IDeferralSource
{
  private readonly DeferralManager _deferrals = new DeferralManager();

  ... // Your own constructors and properties

  public IDisposable GetDeferral()
  {
    return _deferrals.DeferralSource.GetDeferral();
  }

  internal Task WaitForDeferralsAsync()
  {
    return _deferrals.WaitForDeferralsAsync();
  }
}

When you’re dealing with asynchronous event handlers, it’s best to make your event
arguments type threadsafe. The easiest way to do this is to make it immutable (i.e.,
have all its properties be read-only).

Then, each time you raise the event, you can (asynchronously) wait for all asynchro‐
nous event handlers to complete. The following code will return a completed task if
there are no handlers; otherwise, it’ll create a new instance of your event arguments
type, pass it to the handlers, and wait for any asynchronous handlers to complete:

public event EventHandler<MyEventArgs> MyEvent;

private async Task RaiseMyEventAsync()
{
  EventHandler<MyEventArgs> handler = MyEvent;
  if (handler == null)
    return;
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  var args = new MyEventArgs(...);
  handler(this, args);
  await args.WaitForDeferralsAsync();
}

Asynchronous event handlers can then use the deferral within a using block; the
deferral notifies the deferral manager when it is disposed:

async void AsyncHandler(object sender, MyEventArgs args)
{
  using IDisposable deferral = args.GetDeferral();
  await Task.Delay(TimeSpan.FromSeconds(2));
}

This is slightly different than how Universal Windows deferrals work. In the Univer‐
sal Windows API, each event that needs deferrals defines its own deferral type, and
that deferral type has an explicit Complete method rather than being IDisposable.

Discussion
There are logically two different kinds of events used in .NET, with very different
semantics. I call these notification events and command events; this isn’t official termi‐
nology, just some terms that I chose for clarity. A notification event is an event that is
raised to notify other components of some situation. A notification is purely one-
way; the sender of the event doesn’t care whether there are any receivers of the event.
With notifications, the sender and receiver can be entirely disconnected. Most events
are notification events; one example is a button click.

In contrast, a command event is an event that is raised to implement some function‐
ality on behalf of the sending component. Command events aren’t “events” in the true
sense of the term, though they are often implemented as .NET events. The sender of a
command must wait until the receiver handles it before moving on. If you use events
to implement the Visitor pattern, then those are command events. Lifecycle events
are also command events, so ASP.NET page lifecycle events and many UI framework
events, such as Xamarin’s Application.PageAppearing, fall into this category. Any
UI framework event that is actually an implementation is also a command event (e.g.,
BackgroundWorker.DoWork).

Notification events don’t require any special code to enable asynchronous handlers;
the event handlers can be async void and work just fine. When the event sender
raises the event, the asynchronous event handlers aren’t completed immediately, but
that doesn’t matter because they’re just notification events. So, if your event is a notifi‐
cation event, the grand total amount of work you need to do to support asynchronous
handlers is: nothing.
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Command events are a different story. When you have a command event, you need a
way to detect when the handlers have completed. The preceding solution with defer‐
rals should only be used for command events.

The DeferralManager type is in the Nito.AsyncEx NuGet package.

See Also
Chapter 2 covers the basics of asynchronous programming.

11.6 Async Disposal
Problem
You have a type that has asynchronous operations but also needs to enable disposal of
its resources.

Solution
There are a couple of common options for dealing with existing operations when dis‐
posing of an instance: you can either treat the disposal as a cancellation request that is
applied to all existing operations, or you can implement an actual asynchronous dis‐
posal.

Treating disposal as a cancellation has a historic precedence on Windows; types such
as file streams and sockets cancel any existing reads or writes when they are closed.
By defining your own private CancellationTokenSource and passing that token to
your internal operations, you can do something very similar in .NET. With the fol‐
lowing code, Dispose will cancel the operations but won’t wait for those operations to
complete:

class MyClass : IDisposable
{
  private readonly CancellationTokenSource _disposeCts =
      new CancellationTokenSource();

  public async Task<int> CalculateValueAsync()
  {
    await Task.Delay(TimeSpan.FromSeconds(2), _disposeCts.Token);
    return 13;
  }

  public void Dispose()
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  {
    _disposeCts.Cancel();
  }
}

The code shows the basic pattern around Dispose. In a real-world app, you should
put in checks that the object is not already disposed of and also enable the user to
supply her own CancellationToken (using the technique from Recipe 10.8):

public async Task<int> CalculateValueAsync(CancellationToken cancellationToken)
{
  using CancellationTokenSource combinedCts = CancellationTokenSource
      .CreateLinkedTokenSource(cancellationToken, _disposeCts.Token);
  await Task.Delay(TimeSpan.FromSeconds(2), combinedCts.Token);
  return 13;
}

Calling code will have any existing operations canceled when Dispose is called:

async Task UseMyClassAsync()
{
  Task<int> task;
  using (var resource = new MyClass())
  {
    task = resource.CalculateValueAsync(default);
  }

  // Throws OperationCanceledException.
  var result = await task;
}

For some types, implementing Dispose as a cancellation request works just fine (e.g.,
HttpClient has these semantics). However, other types need to know when all the
operations have completed. For these types, you need some kind of asynchronous
disposal.

Asynchronous disposal is a technique introduced with C# 8.0 and .NET Core 3.0. The
BCL introduced a new IAsyncDisposable interface that is an asynchronous equiva‐
lent of IDisposable. The language simultaneously introduced an await using state‐
ment that is the asynchronous equivalent of using. So types that would like to do
asynchronous work during disposal now have that capability:

class MyClass : IAsyncDisposable
{
  public async ValueTask DisposeAsync()
  {
    await Task.Delay(TimeSpan.FromSeconds(2));
  }
}

The return type of DisposeAsync is ValueTask and not Task, but the standard async
and await keywords work just as well with ValueTask as they do with Task.
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Types implementing IAsyncDisposable are usually consumed by await using:

await using (var myClass = new MyClass())
{
  ...
} // DisposeAsync is invoked (and awaited) here.

If you need to avoid context using ConfigureAwait(false), that is possible, but it’s a
bit more awkward because you have to declare your variable outside the await using
statement:

var myClass = new MyClass();
await using (myClass.ConfigureAwait(false))
{
  ...
} // DisposeAsync is invoked (and awaited) here with ConfigureAwait(false).

Discussion
Asynchronous disposal is definitely easier than implementing Dispose as a cancella‐
tion request, and the more complex approach should only be used when you really
need it. In fact, most of the time you can get away with not disposing anything at all,
which is certainly the easiest approach because you don’t have to do anything.

This recipe has two patterns for handling disposal; it’s also possible to use both of
them if you want. Using both would give your type the semantics of a clean shutdown
if the client code uses await using, and a “cancel” if the client code uses Dispose. I
wouldn’t recommend this in general, but it is an option.

See Also
Recipe 10.8 covers linked cancellation tokens.

Recipe 11.1 covers asynchronous interfaces.

Recipe 2.10 discusses implementing methods returning ValueTask.

Recipe 2.7 covers avoiding context using ConfigureAwait(false).
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CHAPTER 12

Synchronization

When your application makes use of concurrency (as practically all .NET applications
do), then you need to watch out for situations in which one piece of code needs to
update data while other code needs to access the same data. Whenever this happens,
you need to synchronize access to the data. The recipes in this chapter cover the most
common types used to synchronize access. However, if you use the other recipes in
this book appropriately, you’ll find that a lot of the more common synchronization is
already done for you by the respective libraries. Before diving into the synchroniza‐
tion recipes, let’s take a closer look at some common situations where synchroniza‐
tion may or may not be required.

The synchronization explanations in this section are slightly sim‐
plified, but the conclusions are all correct.

There are two major types of synchronization: communication and data protection.
Communication is used when one piece of code needs to notify another piece of code
of some condition (e.g., a new message has arrived). I’ll cover communication more
thoroughly in this chapter’s recipes; the remainder of this introduction discusses data
protection.

You need to use synchronization to protect shared data when all three of these condi‐
tions are true:

• Multiple pieces of code are running concurrently.
• These pieces are accessing (reading or writing) the same data.
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• At least one piece of code is updating (writing) the data.

The reason for the first condition should be obvious; if your entire code runs from
top to bottom and nothing ever happens concurrently, then you never have to worry
about synchronization. This is the case for some simple Console applications, but the
vast majority of .NET applications do use some kind of concurrency. The second con‐
dition means that if each piece of code has its own local data that it doesn’t share, then
there’s no need for synchronization; the local data is never accessed from any other
pieces of code. There’s also no need for synchronization if there is shared data but the
data never changes, such as if the data is defined using immutable types. The third
condition covers scenarios like configuration values and the like that are set at the
beginning of the application and then never change. If the shared data is only read,
then it doesn’t need synchronization; only data that is both shared and updated needs
synchronization.

The purpose of data protection is to provide each piece of code with a consistent view
of the data. If one piece of code is updating the data, then you can use synchroniza‐
tion to make those updates appear atomic to the rest of the system.

It takes some practice to learn when synchronization is necessary, so we’ll walk
through a few examples before starting the recipes in this chapter. As our first exam‐
ple, consider the following code:

async Task MyMethodAsync()
{
  int value = 10;
  await Task.Delay(TimeSpan.FromSeconds(1));
  value = value + 1;
  await Task.Delay(TimeSpan.FromSeconds(1));
  value = value - 1;
  await Task.Delay(TimeSpan.FromSeconds(1));
  Trace.WriteLine(value);
}

If the MyMethodAsync method is called from a threadpool thread (e.g., from within
Task.Run), then the lines of code accessing value may run on separate threadpool
threads. But does it need synchronization? No, because none of them can be running
at the same time. The method is asynchronous, but it’s also sequential (meaning it
progresses one part at a time).

OK, let’s complicate the example a bit. This time we’ll run concurrent asynchronous
code:

private int value;

async Task ModifyValueAsync()
{
  await Task.Delay(TimeSpan.FromSeconds(1));
  value = value + 1;
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}

// WARNING: may require synchronization; see discussion below.
async Task<int> ModifyValueConcurrentlyAsync()
{
  // Start three concurrent modifications.
  Task task1 = ModifyValueAsync();
  Task task2 = ModifyValueAsync();
  Task task3 = ModifyValueAsync();

  await Task.WhenAll(task1, task2, task3);

  return value;
}

This code above is starting three modifications that run concurrently. Does it need
synchronization? It depends. If you know that the method is called from a GUI or
ASP.NET context (or any context that only allows one piece of code to run at a time),
synchronization won’t be necessary because when the actual data modification code
runs, it runs at a different time than the other two data modifications. For example, if
the preceding code is run in a GUI context, there’s only one UI thread that will exe‐
cute each of the data modifications, so it must do them one at a time. So, if you know
the context is a one-at-a-time context, then there’s no synchronization needed. How‐
ever, if that same method is called from a threadpool thread (e.g., from Task.Run),
then synchronization would be necessary. In that case, the three data modifications
could run on separate threadpool threads and update data.Value simultaneously, so
you would need to synchronize access to data.Value.

Now let’s consider one more wrinkle:

private int value;

async Task ModifyValueAsync()
{
  int originalValue = value;
  await Task.Delay(TimeSpan.FromSeconds(1));
  value = originalValue + 1;
}

Consider what happens if ModifyValueAsync is called multiple times concurrently.
Even if it is called from a one-at-a-time context, the data member is shared between
each invocation of ModifyValueAsync, and the value may change any time that
method does an await. You may want to apply synchronization even in a one-at-a-
time context if you want to avoid that kind of sharing. Put another way, to make it so
that each call to ModifyValueAsync waits until all previous calls have completed,
you’ll need to add synchronization. This is true even if the context ensures that only
one thread is used for all the code (i.e., the UI thread). Synchronization in this sce‐
nario is a kind of throttling for asynchronous methods (see Recipe 12.2).
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Let’s look at one more async example. You can use Task.Run to do what I call “simple
parallelism”—a basic kind of parallel processing that doesn’t provide the efficiency
and configurability that the true parallelism of Parallel/PLINQ does. The following
code updates a shared value using simple parallelism:

// BAD CODE!!
async Task<int> SimpleParallelismAsync()
{
  int value = 0;
  Task task1 = Task.Run(() => { value = value + 1; });
  Task task2 = Task.Run(() => { value = value + 1; });
  Task task3 = Task.Run(() => { value = value + 1; });
  await Task.WhenAll(task1, task2, task3);
  return value;
}

This code has three separate tasks running on the thread pool (via Task.Run), all
modifying the same value. So, our synchronization conditions apply, and we cer‐
tainly do need synchronization here. Note that we do need synchronization even
though value is a local variable; it’s still shared between threads even though it’s local
to the one method.

Moving on to true parallel code, let’s consider an example that uses the Parallel
type:

void IndependentParallelism(IEnumerable<int> values)
{
  Parallel.ForEach(values, item => Trace.WriteLine(item));
}

Since this code uses Parallel, we must assume the body of the parallel loop (item =>
Trace.WriteLine(item)) can be running on multiple threads. However, the body of
the loop only reads from its own data; there’s no data sharing between threads here.
The Parallel class divides the data among threads so that none of them has to share
its data. Each thread running its loop body is independent from all the other threads
running the same loop body. So, no synchronization of the preceding code is neces‐
sary.

Let’s look at an aggregation example similar to the one covered in Recipe 4.2:

// BAD CODE!!
int ParallelSum(IEnumerable<int> values)
{
  int result = 0;
  Parallel.ForEach(source: values,
      localInit: () => 0,
      body: (item, state, localValue) => localValue + item,
      localFinally: localValue => { result += localValue; });
  return result;
}
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In this example, the code is again using multiple threads; this time, each thread starts
with its local value initialized to 0 (() => 0), and for each input value processed by
that thread, it adds the input value to its local value ((item, state, localValue) =>
localValue + item). Finally, all the local values are added to the return value (local
Value => { result += localValue; }). The first two steps aren’t problematic
because there’s nothing shared between threads; each thread’s local and input values
are independent from all other threads’ local and input values. The final step is prob‐
lematic, however; when each thread’s local value is added to the return value, this is a
situation where there’s a shared variable (result) that is accessed by multiple threads
and updated by all of them. So, you’d need to use synchronization in that final step
(see Recipe 12.1).

The PLINQ, dataflow, and reactive libraries are very similar to the Parallel exam‐
ples: as long as your code is just dealing with its own input, it doesn’t have to worry
about synchronization. I find that if I use these libraries appropriately, there’s very lit‐
tle need for me to add synchronization to most of my code.

Lastly, let’s discuss collections. Remember that the three conditions requiring syn‐
chronization are multiple pieces of code, shared data, and data updates.

Immutable types are naturally threadsafe because they cannot change; it’s not possible
to update an immutable collection, so no synchronization is necessary. For example,
the following code doesn’t require synchronization because when each separate
threadpool thread pushes a value onto the stack, it’s creating a new immutable stack
with that value, leaving the original stack unchanged:

async Task<bool> PlayWithStackAsync()
{
  ImmutableStack<int> stack = ImmutableStack<int>.Empty;

  Task task1 = Task.Run(() => Trace.WriteLine(stack.Push(3).Peek()));
  Task task2 = Task.Run(() => Trace.WriteLine(stack.Push(5).Peek()));
  Task task3 = Task.Run(() => Trace.WriteLine(stack.Push(7).Peek()));
  await Task.WhenAll(task1, task2, task3);

  return stack.IsEmpty; // Always returns true.
}

When your code uses immutable collections, it’s common to have a shared “root”
variable that is not itself immutable. In that case, you do have to use synchronization.
In the following code, each thread pushes a value onto the stack (creating a new
immutable stack) and then updates the shared root variable; the code does need syn‐
chronization to update the stack variable:

// BAD CODE!!
async Task<bool> PlayWithStackAsync()
{
  ImmutableStack<int> stack = ImmutableStack<int>.Empty;
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  Task task1 = Task.Run(() => { stack = stack.Push(3); });
  Task task2 = Task.Run(() => { stack = stack.Push(5); });
  Task task3 = Task.Run(() => { stack = stack.Push(7); });
  await Task.WhenAll(task1, task2, task3);

  return stack.IsEmpty;
}

Threadsafe collections (e.g., ConcurrentDictionary) are quite different. Unlike
immutable collections, threadsafe collections can be updated. But they have all the
synchronization they need built in, so you don’t have to worry about synchronizing
collection changes. If the following code updated a Dictionary instead of a Concur
rentDictionary, it would need synchronization; but since it’s updating a Concurrent
Dictionary, it doesn’t need synchronization:

async Task<int> ThreadsafeCollectionsAsync()
{
  var dictionary = new ConcurrentDictionary<int, int>();

  Task task1 = Task.Run(() => { dictionary.TryAdd(2, 3); });
  Task task2 = Task.Run(() => { dictionary.TryAdd(3, 5); });
  Task task3 = Task.Run(() => { dictionary.TryAdd(5, 7); });
  await Task.WhenAll(task1, task2, task3);

  return dictionary.Count; // Always returns 3.
}

12.1 Blocking Locks
Problem
You have some shared data and need to safely read and write it from multiple threads.

Solution
The best solution for this situation is to use the lock statement. When a thread enters
a lock, it’ll prevent any other threads from entering that lock until the lock is released:

class MyClass
{
  // This lock protects the _value field.
  private readonly object _mutex = new object();

  private int _value;

  public void Increment()
  {
    lock (_mutex)
    {
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      _value = _value + 1;
    }
  }
}

Discussion
There are many other kinds of locks in the .NET framework, such as Monitor, Spin
Lock, and ReaderWriterLockSlim. In most applications, these lock types should
almost never be used directly. In particular, it’s natural for developers to jump to Read
erWriterLockSlim when there is no need for that level of complexity. The basic lock
statement handles 99% of cases quite well.

There are four important guidelines when using locks:

• Restrict lock visibility.
• Document what the lock protects.
• Minimize code under lock.
• Never execute arbitrary code while holding a lock.

First, you should strive to restrict lock visibility. The object used in the lock state‐
ment should be a private field and never should be exposed to any method outside
the class. There’s usually at most one lock member per type; if you have more than
one, consider refactoring that type into separate types. You can lock on any reference
type, but I prefer to have a field specifically for use with the lock statement, as in the
last example. If you do lock on another instance, be sure that it is private to your
class; it should not have been passed in to the constructor or returned from a prop‐
erty getter. You should never lock(this) or lock on any instance of Type or string;
these locks can cause deadlocks because they are accessible from other code.

Second, document what the lock protects. This step is easy to overlook when initially
writing the code but becomes more important as the code grows in complexity.

Third, do your best to minimize the code that is executed while holding a lock. One
thing to watch for is blocking calls; ideally, your code should never block while hold‐
ing a lock.

Finally, do not ever call arbitrary code under lock. Arbitrary code can include raising
events, invoking virtual methods, or invoking delegates. If you must execute arbitrary
code, do so after the lock is released.

See Also
Recipe 12.2 covers async-compatible locks. The lock statement is not compatible
with await.
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Recipe 12.3 covers signaling between threads. The lock statement is intended to pro‐
tect shared data, not to send signals between threads.

Recipe 12.5 covers throttling, which is a generalization of locking. A lock can be
thought of as throttling to one at a time.

12.2 Async Locks
Problem
You have some shared data and need to safely read and write it from multiple code
blocks, which may be using await.

Solution
The .NET framework SemaphoreSlim type has been updated in .NET 4.5 to be com‐
patible with async. Here’s how you can use it:

class MyClass
{
  // This lock protects the _value field.
  private readonly SemaphoreSlim _mutex = new SemaphoreSlim(1);

  private int _value;

  public async Task DelayAndIncrementAsync()
  {
    await _mutex.WaitAsync();
    try
    {
      int oldValue = _value;
      await Task.Delay(TimeSpan.FromSeconds(oldValue));
      _value = oldValue + 1;
    }
    finally
    {
      _mutex.Release();
    }
  }
}

You can also use the AsyncLock type from the Nito.AsyncEx library, which has a
slightly more elegant API:

class MyClass
{
  // This lock protects the _value field.
  private readonly AsyncLock _mutex = new AsyncLock();

  private int _value;
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  public async Task DelayAndIncrementAsync()
  {
    using (await _mutex.LockAsync())
    {
      int oldValue = _value;
      await Task.Delay(TimeSpan.FromSeconds(oldValue));
      _value = oldValue + 1;
    }
  }
}

Discussion
The same guidelines from Recipe 12.1 also apply here, specifically:

• Restrict lock visibility.
• Document what the lock protects.
• Minimize code under lock.
• Never execute arbitrary code while holding a lock.

Keep your lock instances private; do not expose them outside the class. Be sure to
clearly document (and carefully think through) exactly what a lock instance protects.
Minimize code that is executed while holding a lock. In particular, do not call arbi‐
trary code; this includes raising events, invoking virtual methods, and invoking dele‐
gates.

The AsyncLock type is in the Nito.AsyncEx NuGet package.

See Also
Recipe 12.4 covers async-compatible signaling. Locks are intended to protect shared
data, not act as signals.

Recipe 12.5 covers throttling, which is a generalization of locking. A lock can be
thought of as throttling to one at a time.

12.3 Blocking Signals
Problem
You have to send a notification from one thread to another.
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Solution
The most common and general-purpose cross-thread signal is ManualResetEvent
Slim. A manual-reset event can be in one of two states: signaled or unsignaled. Any
thread may set the event to a signaled state or reset the event to an unsignaled state. A
thread may also wait for the event to be signaled.

The following two methods are invoked by separate threads; one thread waits for a
signal from the other:

class MyClass
{
  private readonly ManualResetEventSlim _initialized =
      new ManualResetEventSlim();

  private int _value;

  public int WaitForInitialization()
  {
    _initialized.Wait();
    return _value;
  }

  public void InitializeFromAnotherThread()
  {
    _value = 13;
    _initialized.Set();
  }
}

Discussion
ManualResetEventSlim is a great general-purpose signal from one thread to another,
but you should only use it when appropriate. If the “signal” is actually a message send‐
ing some piece of data across threads, then consider using a producer/consumer
queue. On the other hand, if the signals are just used to coordinate access to shared
data, then you should use a lock instead.

There are other thread synchronization signal types in the .NET framework that are
less commonly used. If ManualResetEventSlim doesn’t suit your needs, consider
AutoResetEvent, CountdownEvent, or Barrier.

ManualResetEventSlim is a synchronous signal, so WaitForInitialization will
block the calling thread until the signal is sent. If you want to wait for a signal without
blocking a thread, then you want an asynchronous signal, as described in Recipe 12.4.

See Also
Recipe 9.6 covers blocking producer/consumer queues.
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Recipe 12.1 covers blocking locks.

Recipe 12.4 covers async-compatible signals.

12.4 Async Signals
Problem
You need to send a notification from one part of the code to another, and the receiver
of the notification must wait for it asynchronously.

Solution
Use TaskCompletionSource<T> to send the notification asynchronously, if the notifi‐
cation only needs to be sent once. The sending code calls TrySetResult, and the
receiving code awaits its Task property:

class MyClass
{
  private readonly TaskCompletionSource<object> _initialized =
      new TaskCompletionSource<object>();

  private int _value1;
  private int _value2;

  public async Task<int> WaitForInitializationAsync()
  {
    await _initialized.Task;
    return _value1 + _value2;
  }

  public void Initialize()
  {
    _value1 = 13;
    _value2 = 17;
    _initialized.TrySetResult(null);
  }
}

The TaskCompletionSource<T> type can be used to asynchronously wait for any kind
of situation—in this case, a notification from another part of the code. This works
well if the signal is only sent once, but doesn’t work as well if you need to turn the
signal off as well as on.

The Nito.AsyncEx library contains a type AsyncManualResetEvent, which is an
approximate equivalent of ManualResetEvent for asynchronous code. The following
example is fabricated, but it shows how to use the AsyncManualResetEvent type:
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class MyClass
{
  private readonly AsyncManualResetEvent _connected =
      new AsyncManualResetEvent();

  public async Task WaitForConnectedAsync()
  {
    await _connected.WaitAsync();
  }

  public void ConnectedChanged(bool connected)
  {
    if (connected)
      _connected.Set();
    else
      _connected.Reset();
  }
}

Discussion
Signals are a general-purpose notification mechanism. But if that “signal” is a mes‐
sage, used to send data from one piece of code to another, then consider using a pro‐
ducer/consumer queue. Similarly, do not use general-purpose signals just to coordi‐
nate access to shared data; in that situation, use an asynchronous lock.

The AsyncManualResetEvent type is in the Nito.AsyncEx NuGet
package.

See Also
Recipe 9.8 covers asynchronous producer/consumer queues.

Recipe 12.2 covers asynchronous locks.

Recipe 12.3 covers blocking signals, which can be used for notifications across
threads.

12.5 Throttling
Problem
You have highly concurrent code that is actually too concurrent, and you need some
way to throttle the concurrency.
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Code is too concurrent when parts of the application are unable to keep up with other
parts, causing data items to build up and consume memory. In this scenario, throt‐
tling parts of the code can prevent memory issues.

Solution
The solution varies based on the type of concurrency your code is doing. These solu‐
tions all restrict concurrency to a specific value. Reactive Extensions has more power‐
ful options, such as sliding time windows; throttling for System.Reactive observables
is covered more thoroughly in Recipe 6.4.

Dataflow and parallel code all have built-in options for throttling concurrency:

IPropagatorBlock<int, int> DataflowMultiplyBy2()
{
  var options = new ExecutionDataflowBlockOptions
  {
    MaxDegreeOfParallelism = 10
  };

  return new TransformBlock<int, int>(data => data * 2, options);
}

// Using Parallel LINQ (PLINQ)
IEnumerable<int> ParallelMultiplyBy2(IEnumerable<int> values)
{
  return values.AsParallel()
      .WithDegreeOfParallelism(10)
      .Select(item => item * 2);
}

// Using the Parallel class
void ParallelRotateMatrices(IEnumerable<Matrix> matrices, float degrees)
{
  var options = new ParallelOptions
  {
    MaxDegreeOfParallelism = 10
  };
  Parallel.ForEach(matrices, options, matrix => matrix.Rotate(degrees));
}

Concurrent asynchronous code can be throttled by using SemaphoreSlim:

async Task<string[]> DownloadUrlsAsync(HttpClient client,
    IEnumerable<string> urls)
{
  using var semaphore = new SemaphoreSlim(10);
  Task<string>[] tasks = urls.Select(async url =>
  {
    await semaphore.WaitAsync();
    try
    {
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      return await client.GetStringAsync(url);
    }
    finally
    {
      semaphore.Release();
    }
  }).ToArray();
  return await Task.WhenAll(tasks);
}

Discussion
Throttling may be necessary when you find your code is using too many resources
(for example, CPU or network connections). Bear in mind that end users usually
have less powerful machines than developers, so it’s better to throttle by a little too
much than not enough.

See Also
Recipe 6.4 covers throttling for reactive code.
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CHAPTER 13

Scheduling

When a piece of code executes, it has to run on some thread somewhere. A scheduler
is an object that decides where a certain piece of code runs. There are a few different
scheduler types in the .NET framework, and they’re used with slight differences by
parallel and dataflow code.

I recommend that you not specify a scheduler whenever possible; the defaults are
usually correct. For example, the await operator in asynchronous code will automati‐
cally resume the method within the same context unless you override this default, as
described in Recipe 2.7. Similarly, reactive code has reasonable default contexts for
raising its events, which you can override with ObserveOn, as described in Recipe 6.2.

If you need other code to execute in a specific context (e.g., a UI thread context or an
ASP.NET request context), then you can use the scheduling recipes in this chapter to
control the scheduling of your code.

13.1 Scheduling Work to the Thread Pool
Problem
You have a piece of code that you explicitly want to execute on a threadpool thread.

Solution
The vast majority of the time, you’ll want to use Task.Run, which is quite simple. The
following code blocks a threadpool thread for 2 seconds:

Task task = Task.Run(() =>
{
  Thread.Sleep(TimeSpan.FromSeconds(2));
});
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Task.Run also understands return values and asynchronous lambdas just fine. The
task returned by Task.Run in the following code will complete after 2 seconds with a
result of 13:

Task<int> task = Task.Run(async () =>
{
  await Task.Delay(TimeSpan.FromSeconds(2));
  return 13;
});

Task.Run returns a Task (or Task<T>), which can be naturally consumed by asyn‐
chronous or reactive code.

Discussion
Task.Run is ideal for UI applications, when you have time-consuming work to do that
cannot be done on the UI thread. For example, Recipe 8.4 uses Task.Run to push par‐
allel processing to a threadpool thread. However, do not use Task.Run on ASP.NET
unless you’re absolutely sure you know what you’re doing. On ASP.NET, request han‐
dling code is already running on a threadpool thread, so pushing it onto another
threadpool thread is usually counterproductive.

Task.Run is an effective replacement for BackgroundWorker, Delegate.BeginInvoke,
and ThreadPool.QueueUserWorkItem. None of those older APIs should be used in
new code; code using Task.Run is much easier to write correctly and maintain over
time. Furthermore, Task.Run handles the vast majority of use cases for Thread, so
most uses of Thread can also be replaced with Task.Run (with the rare exception of
single-thread apartment threads).

Parallel and dataflow code executes on the thread pool by default, so there’s usually
no need to use Task.Run with code executed by the Parallel, Parallel LINQ, or TPL
Dataflow libraries.

If you’re doing dynamic parallelism, then use Task.Factory.StartNew instead of
Task.Run. This is necessary because the Task returned by Task.Run has its default
options configured for asynchronous use (i.e., to be consumed by asynchronous or
reactive code). It also doesn’t support advanced concepts, such as parent/child tasks,
which are more common in dynamic parallel code.

See Also
Recipe 8.6 covers consuming asynchronous code (such as the task returned from
Task.Run) with reactive code.

Recipe 8.4 covers asynchronously waiting for parallel code, which is most easily done
via Task.Run.
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Recipe 4.4 covers dynamic parallelism, a scenario where you should use Task.Fac
tory.StartNew instead of Task.Run.

13.2 Executing Code with a Task Scheduler
Problem
You have multiple pieces of code that you need to execute in a certain way. For exam‐
ple, you may need all the pieces of code to execute on the UI thread, or you may need
to execute only a certain number at a time.

This recipe deals with how to define and construct a scheduler for those pieces of
code. Actually applying that scheduler is the subject of the next two recipes.

Solution
There are quite a few different types in .NET that can handle scheduling; this recipe
focuses on TaskScheduler because it’s portable and relatively easy to use.

The simplest TaskScheduler is TaskScheduler.Default, which queues work to the
thread pool. You will seldomly specify TaskScheduler.Default in your own code,
but it’s important to be aware of it, since it’s the default for many scheduling scenar‐
ios. Task.Run, parallel, and dataflow code all use TaskScheduler.Default.

You can capture a specific context and later schedule work back to it by using
TaskScheduler.FromCurrentSynchronizationContext:

TaskScheduler scheduler = TaskScheduler.FromCurrentSynchronizationContext();

This code creates a TaskScheduler to capture the current SynchronizationContext
and schedule code onto that context. SynchronizationContext is a type that repre‐
sents a general-purpose scheduling context. There are several different contexts in
the .NET framework; most UI frameworks provide a SynchronizationContext that
represents the UI thread, and ASP.NET before Core provided a SynchronizationCon
text that represented the HTTP request context.

ConcurrentExclusiveSchedulerPair is another powerful type introduced in .NET
4.5; this is actually two schedulers that are related to each other. The Concurrent
Scheduler member is a scheduler that allows multiple tasks to execute at the same
time, as long as no task is executing on the ExclusiveScheduler. The Exclusive
Scheduler only executes code one task at a time, and only when there’s no task
already executing on the ConcurrentScheduler:

var schedulerPair = new ConcurrentExclusiveSchedulerPair();
TaskScheduler concurrent = schedulerPair.ConcurrentScheduler;
TaskScheduler exclusive = schedulerPair.ExclusiveScheduler;
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One common utilization for ConcurrentExclusiveSchedulerPair is to just use the
ExclusiveScheduler to ensure only one task is executed at a time. Code that executes
on the ExclusiveScheduler will run on the thread pool but will be restricted to exe‐
cuting exclusive of all other code using the same ExclusiveScheduler instance.

Another use for ConcurrentExclusiveSchedulerPair is as a throttling scheduler.
You can create a ConcurrentExclusiveSchedulerPair that will limit its own concur‐
rency. In this scenario, the ExclusiveScheduler is usually not used:

var schedulerPair = new ConcurrentExclusiveSchedulerPair(
    TaskScheduler.Default, maxConcurrencyLevel: 8);
TaskScheduler scheduler = schedulerPair.ConcurrentScheduler;

Note that this kind of throttling only throttles code while it is executing; it’s quite dif‐
ferent than the kind of logical throttling covered in Recipe 12.5. In particular, asyn‐
chronous code is not considered to be executing while it is awaiting an operation.
The ConcurrentScheduler throttles executing code; other throttling, such as Sema
phoreSlim, throttles at a higher level (i.e., an entire async method).

Discussion
You may have noticed that the last code example passed TaskScheduler.Default into
the constructor for ConcurrentExclusiveSchedulerPair. This is because Concurren
tExclusiveSchedulerPair applies its concurrent/exclusive logic around an existing
TaskScheduler.

This recipe introduces TaskScheduler.FromCurrentSynchronizationContext,
which is useful for executing code on a captured context. It is also possible to use
SynchronizationContext directly to execute code on that context; however, I don’t
recommend this approach. Whenever possible, use the await operator to resume on
an implicitly captured context, or use a TaskScheduler wrapper.

Don’t ever use platform-specific types to execute code on a UI thread. WPF, Silver‐
light, iOS, and Android all provide the Dispatcher type, Universal Windows uses the
CoreDispatcher, and Windows Forms has the ISynchronizeInvoke interface (i.e.,
Control.Invoke). Do not use any of these types in new code; just pretend they don’t
exist. Using them ties your code to a specific platform unnecessarily. Synchroniza
tionContext is a general-purpose abstraction around these types.

System.Reactive (Rx) introduces a more general scheduler abstraction: IScheduler.
An Rx scheduler is capable of wrapping any other kind of scheduler; the TaskPool
Scheduler will wrap any TaskFactory (which contains a TaskScheduler). The Rx
team also defined an IScheduler implementation that can be manually controlled for
testing. If you do need to use a scheduler abstraction, I’d recommend the IScheduler
from Rx; it’s well designed, well defined, and test friendly. However, most of the time
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you don’t need a scheduler abstraction, and earlier libraries, such as the Task Parallel
Library (TPL) and TPL Dataflow, only understand the TaskScheduler type.

See Also
Recipe 13.3 covers applying a TaskScheduler to parallel code.

Recipe 13.4 covers applying a TaskScheduler to dataflow code.

Recipe 12.5 covers higher-level logical throttling.

Recipe 6.2 covers System.Reactive schedulers for event streams.

Recipe 7.6 covers the System.Reactive test scheduler.

13.3 Scheduling Parallel Code
Problem
You need to control how the individual pieces of code are executed in parallel code.

Solution
Once you create an appropriate TaskScheduler instance (see Recipe 13.2), you can
include it in the options that you pass to a Parallel method. The following code
takes a sequence of sequences of matrices. It starts a bunch of parallel loops and
wants to limit the total parallelism of all loops simultaneously, regardless of how
many matrices are in each sequence:

void RotateMatrices(IEnumerable<IEnumerable<Matrix>> collections, float degrees)
{
  var schedulerPair = new ConcurrentExclusiveSchedulerPair(
      TaskScheduler.Default, maxConcurrencyLevel: 8);
  TaskScheduler scheduler = schedulerPair.ConcurrentScheduler;
  ParallelOptions options = new ParallelOptions { TaskScheduler = scheduler };
  Parallel.ForEach(collections, options,
      matrices => Parallel.ForEach(matrices, options,
          matrix => matrix.Rotate(degrees)));
}

Discussion
Parallel.Invoke also takes an instance of ParallelOptions, so you can pass a Task
Scheduler to Parallel.Invoke the same way as Parallel.ForEach. If you’re doing
dynamic parallel code, you can pass TaskScheduler directly to TaskFactory.Start
New or Task.ContinueWith.

There is no way to pass a TaskScheduler to Parallel LINQ (PLINQ) code.
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See Also
Recipe 13.2 covers common task schedulers and how to choose between them.

13.4 Dataflow Synchronization Using Schedulers
Problem
You need to control how the individual pieces of code are executed in dataflow code.

Solution
Once you create an appropriate TaskScheduler instance (see Recipe 13.2), you can
include it in the options that you pass to a dataflow block. When called from the UI
thread, the following code creates a dataflow mesh that multiplies all of its input val‐
ues by two (using the thread pool) and then appends the resulting values to the items
of a list box (on the UI thread):

var options = new ExecutionDataflowBlockOptions
{
  TaskScheduler = TaskScheduler.FromCurrentSynchronizationContext(),
};
var multiplyBlock = new TransformBlock<int, int>(item => item * 2);
var displayBlock = new ActionBlock<int>(
    result => ListBox.Items.Add(result), options);
multiplyBlock.LinkTo(displayBlock);

Discussion
Specifying a TaskScheduler is especially useful in coordinating the actions of blocks
in different parts of your dataflow mesh. For example, you can utilize the Concurren
tExclusiveSchedulerPair.ExclusiveScheduler to ensure that blocks A and C
never execute code at the same time, while allowing block B to execute whenever it
wants.

Keep in mind that synchronization by TaskScheduler only applies while the code is
executing. For example, if you have an action block that runs asynchronous code and
apply an exclusive scheduler, the code isn’t considered running when it is awaiting.

You can specify a TaskScheduler for any kind of dataflow block. Even though a block
may not execute your code (e.g., BufferBlock<T>), it still has housekeeping tasks that
it needs to do, and it’ll use the provided TaskScheduler for all of its internal work.

See Also
Recipe 13.2 covers common task schedulers and how to choose between them.
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CHAPTER 14

Scenarios

In this chapter, we’ll take a look at a variety of types and techniques to address some
common scenarios when writing concurrent programs. These kinds of scenarios
could fill up another entire book, so I’ve selected just a few that I’ve found the most
useful.

14.1 Initializing Shared Resources
Problem
You have a resource that is shared between multiple parts of your code. This resource
needs to be initialized the first time it is accessed.

Solution
The .NET framework includes a type specifically for this purpose: Lazy<T>. You con‐
struct an instance of the Lazy<T> type with a factory delegate that is used to initialize
the instance. The instance is then made available via the Value property. The follow‐
ing code illustrates the Lazy<T> type:

static int _simpleValue;
static readonly Lazy<int> MySharedInteger = new Lazy<int>(() => _simpleValue++);

void UseSharedInteger()
{
  int sharedValue = MySharedInteger.Value;
}

No matter how many threads call UseSharedInteger simultaneously, the factory del‐
egate is only executed once, and all threads wait for the same instance. Once it’s cre‐
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ated, the instance is cached and all future access to the Value property returns the
same instance (in the preceding example, MySharedInteger.Value will always be 0).

A very similar approach can be used if the initialization requires asynchronous work;
in this case, you can use a Lazy<Task<T>>:

static int _simpleValue;
static readonly Lazy<Task<int>> MySharedAsyncInteger =
    new Lazy<Task<int>>(async () =>
    {
      await Task.Delay(TimeSpan.FromSeconds(2)).ConfigureAwait(false);
      return _simpleValue++;
    });

async Task GetSharedIntegerAsync()
{
  int sharedValue = await MySharedAsyncInteger.Value;
}

In this example, the delegate returns a Task<int>, that is, an integer value determined
asynchronously. No matter how many parts of the code call Value simultaneously, the
Task<int> is only created once and returned to all callers. Each caller then has the
option of (asynchronously) waiting until the task completes by passing the task to
await.

The preceding code is an acceptable pattern, but there are some additional considera‐
tions. For one, the asynchronous delegate may be executed on any thread that calls
Value, and that delegate will execute within that context. If there are different thread
types that may call Value (e.g., a UI thread and a threadpool thread, or two different
ASP.NET request threads), then it may be better to always execute the asynchronous
delegate on a threadpool thread. This is easy enough to do by wrapping the factory
delegate in a call to Task.Run:

static int _simpleValue;
static readonly Lazy<Task<int>> MySharedAsyncInteger =
  new Lazy<Task<int>>(() => Task.Run(async () =>
  {
    await Task.Delay(TimeSpan.FromSeconds(2));
    return _simpleValue++;
  }));

async Task GetSharedIntegerAsync()
{
  int sharedValue = await MySharedAsyncInteger.Value;
}

Another consideration is that the Task<T> instance is only created once. If the asyn‐
chronous delegate throws an exception, then the Lazy<Task<T>> will cache that faul‐
ted task. This is seldom desirable; usually it’s better to re-execute the delegate the next
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time the lazy value is requested rather than to cache the exception. There isn’t a way
to “reset” the Lazy<T>, but you can create a new class that handles re-creating the
Lazy<T> instance:

public sealed class AsyncLazy<T>
{
  private readonly object _mutex;
  private readonly Func<Task<T>> _factory;
  private Lazy<Task<T>> _instance;

  public AsyncLazy(Func<Task<T>> factory)
  {
    _mutex = new object();
    _factory = RetryOnFailure(factory);
    _instance = new Lazy<Task<T>>(_factory);
  }

  private Func<Task<T>> RetryOnFailure(Func<Task<T>> factory)
  {
    return async () =>
    {
      try
      {
        return await factory().ConfigureAwait(false);
      }
      catch
      {
        lock (_mutex)
        {
          _instance = new Lazy<Task<T>>(_factory);
        }
        throw;
      }
    };
  }

  public Task<T> Task
  {
    get
    {
      lock (_mutex)
        return _instance.Value;
    }
  }
}

static int _simpleValue;
static readonly AsyncLazy<int> MySharedAsyncInteger =
  new AsyncLazy<int>(() => Task.Run(async () =>
  {
    await Task.Delay(TimeSpan.FromSeconds(2));
    return _simpleValue++;
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  }));

async Task GetSharedIntegerAsync()
{
  int sharedValue = await MySharedAsyncInteger.Task;
}

Discussion
The final code sample in this recipe is a general code pattern for asynchronous lazy
initialization, and it’s a bit awkward. The AsyncEx library includes an AsyncLazy<T>
type that acts just like a Lazy<Task<T>> that executes its factory delegate on the
thread pool and has an option for retrying on failure. It can also be awaited directly,
so the declaration and usage look like the following:

static int _simpleValue;
private static readonly AsyncLazy<int> MySharedAsyncInteger =
  new AsyncLazy<int>(async () =>
  {
    await Task.Delay(TimeSpan.FromSeconds(2));
    return _simpleValue++;
  },
  AsyncLazyFlags.RetryOnFailure);

public async Task UseSharedIntegerAsync()
{
  int sharedValue = await MySharedAsyncInteger;
}

The AsyncLazy<T> type is in the Nito.AsyncEx NuGet package.

See Also
Chapter 1 covers basic async/await programming.

Recipe 13.1 covers scheduling work to the thread pool.

14.2 System.Reactive Deferred Evaluation
Problem
You want to create a new source observable whenever someone subscribes to it. For
example, you want each subscription to represent a different request to a web service.
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Solution
The System.Reactive library has an operator Observable.Defer, which will execute a
delegate each time the observable is subscribed to. This delegate acts as a factory that
creates an observable. The following code uses Defer to call an asynchronous method
every time someone subscribes to the observable:

void SubscribeWithDefer()
{
  var invokeServerObservable = Observable.Defer(
      () => GetValueAsync().ToObservable());
  invokeServerObservable.Subscribe(_ => { });
  invokeServerObservable.Subscribe(_ => { });

  Console.ReadKey();
}

async Task<int> GetValueAsync()
{
  Console.WriteLine("Calling server...");
  await Task.Delay(TimeSpan.FromSeconds(2));
  Console.WriteLine("Returning result...");
  return 13;
}

If you execute this code, you should see this output:

Calling server...
Calling server...
Returning result...
Returning result...

Discussion
Your own code usually does not subscribe to an observable more than once, but some
System.Reactive operators do in their implementation. For example, the Observa
ble.While operator will resubscribe to a source sequence as long as its condition is
true. Defer enables you to define an observable that is reevaluated every time a new
subscription comes in. This is useful if you need to refresh or update the data for that 
observable.

See Also
Recipe 8.6 covers wrapping asynchronous methods in observables.
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14.3 Asynchronous Data Binding
Problem
You are retrieving data asynchronously and need to data-bind the results (e.g., in the
ViewModel of a Model-View-ViewModel design).

Solution
When a property is used in data binding, it must immediately and synchronously
return some kind of result. If the actual value needs to be determined asynchro‐
nously, you can return a default result and later update the property with the correct
value.

Keep in mind that asynchronous operations may fail as well as succeed. Since you’re
writing a ViewModel, you could use data binding to update the UI for an error condi‐
tion as well.

The Nito.Mvvm.Async library has a type NotifyTask that can be used for this:

class MyViewModel
{
  public MyViewModel()
  {
    MyValue = NotifyTask.Create(CalculateMyValueAsync());
  }

  public NotifyTask<int> MyValue { get; private set; }

  private async Task<int> CalculateMyValueAsync()
  {
    await Task.Delay(TimeSpan.FromSeconds(10));
    return 13;
  }
}

It’s possible to data-bind to various properties on the NotifyTask<T> property, as this
example shows:

<Grid>
  <Label Content="Loading..."
      Visibility="{Binding MyValue.IsNotCompleted,
          Converter={StaticResource BooleanToVisibilityConverter}}"/>
  <Label Content="{Binding MyValue.Result}"
      Visibility="{Binding MyValue.IsSuccessfullyCompleted,
          Converter={StaticResource BooleanToVisibilityConverter}}"/>
  <Label Content="An error occurred" Foreground="Red"
      Visibility="{Binding MyValue.IsFaulted,
          Converter={StaticResource BooleanToVisibilityConverter}}"/>
</Grid>
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The MvvmCross library has a MvxNotifyTask that is much the same as Notify
Task<T>.

Discussion
It’s also possible to write your own data-binding wrapper instead of using the one
from the libraries. The following code gives the basic idea:

class BindableTask<T> : INotifyPropertyChanged
{
  private readonly Task<T> _task;

  public BindableTask(Task<T> task)
  {
    _task = task;
    var _ = WatchTaskAsync();
  }

  private async Task WatchTaskAsync()
  {
    try
    {
      await _task;
    }
    catch
    {
    }

    OnPropertyChanged("IsNotCompleted");
    OnPropertyChanged("IsSuccessfullyCompleted");
    OnPropertyChanged("IsFaulted");
    OnPropertyChanged("Result");
  }

  public bool IsNotCompleted { get { return !_task.IsCompleted; } }
  public bool IsSuccessfullyCompleted
  {
    get { return _task.Status == TaskStatus.RanToCompletion; }
  }
  public bool IsFaulted { get { return _task.IsFaulted; } }
  public T Result
  {
    get { return IsSuccessfullyCompleted ? _task.Result : default; }
  }

  public event PropertyChangedEventHandler PropertyChanged;

  protected virtual void OnPropertyChanged(string propertyName)
  {
    PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
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  }
}

Note that this has an empty catch clause on purpose: that code specifically does want
to catch all exceptions and handle those conditions via data binding. Also, the code
explicitly does not want to use ConfigureAwait(false) because the Property
Changed event should be raised on the UI thread.

The NotifyTask type is in the Nito.Mvvm.Async NuGet package.
The MvxNotifyTask type is in the MvvmCross NuGet package.

See Also
Chapter 1 covers basic async/await programming.

Recipe 2.7 covers using ConfigureAwait.

14.4 Implicit State
Problem
You have some state variables that need to be accessible at different points in your call
stack. For example, you have a current operation identifier that you want to use for
logging but that you don’t want to add as a parameter to every method.

Solution
The best solution is to add parameters to your methods, store data as members of a
class, or use dependency injection to provide data to the different parts of your code.
In some situations, however, that would overcomplicate the code.

The AsyncLocal<T> type enables you to give your state an object where it can live on
a logical “context.” The following code shows how to use AsyncLocal<T> to set an
operation identifier that is later read by a logging method:

private static AsyncLocal<Guid> _operationId = new AsyncLocal<Guid>();

async Task DoLongOperationAsync()
{
  _operationId.Value = Guid.NewGuid();

  await DoSomeStepOfOperationAsync();
}

async Task DoSomeStepOfOperationAsync()
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{
  await Task.Delay(100); // Some async work

  // Do some logging here.
  Trace.WriteLine("In operation: " + _operationId.Value);
}

Many times, it’s useful to have a more complex data structure (such as a stack of val‐
ues) in a single AsyncLocal<T> instance. This is possible, with one caveat: you should
only store immutable data in the AsyncLocal<T>. Whenever you need to update the
data, then you should overwrite the existing value. It is often helpful to hide the Asyn
cLocal<T> inside a helper type that ensures the stored data is immutable and updated
correctly:

internal sealed class AsyncLocalGuidStack
{
  private readonly AsyncLocal<ImmutableStack<Guid>> _operationIds =
      new AsyncLocal<ImmutableStack<Guid>>();

  private ImmutableStack<Guid> Current =>
      _operationIds.Value ?? ImmutableStack<Guid>.Empty;

  public IDisposable Push(Guid value)
  {
    _operationIds.Value = Current.Push(value);
    return new PopWhenDisposed(this);
  }

  private void Pop()
  {
    ImmutableStack<Guid> newValue = Current.Pop();
    if (newValue.IsEmpty)
      newValue = null;
    _operationIds.Value = newValue;
  }

  public IEnumerable<Guid> Values => Current;

  private sealed class PopWhenDisposed : IDisposable
  {
    private AsyncLocalGuidStack _stack;

    public PopWhenDisposed(AsyncLocalGuidStack stack) =>
        _stack = stack;

    public void Dispose()
    {
      _stack?.Pop();
      _stack = null;
    }
  }
}
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private static AsyncLocalGuidStack _operationIds = new AsyncLocalGuidStack();

async Task DoLongOperationAsync()
{
  using (_operationIds.Push(Guid.NewGuid()))
    await DoSomeStepOfOperationAsync();
}

async Task DoSomeStepOfOperationAsync()
{
  await Task.Delay(100); // some async work

  // Do some logging here.
  Trace.WriteLine("In operation: " +
      string.Join(":", _operationIds.Values));
}

The wrapper type ensures that the underlying data is immutable and that new values
are pushed onto the stack. It also provides a convenient IDisposable way of popping
values off the stack.

Discussion
Older code may use the ThreadStatic attribute for contextual state used by synchro‐
nous code. When converting older code to be asynchronous, AsyncLocal<T> is a
prime candidate for replacing ThreadStaticAttribute. AsyncLocal<T> works for
both synchronous and asynchronous code, and should be the default choice for
implicit state in modern applications.

See Also
Chapter 1 covers basic async/await programming.

Chapter 9 covers several immutable collections, for when you need to store complex
data as implicit state.

14.5 Identical Synchronous and Asynchronous Code
Problem
You have some code that needs to be exposed through both synchronous and asyn‐
chronous APIs, but you don’t want to duplicate the logic. You’ll often encounter this
situation when updating code to be asynchronous, but existing synchronous consum‐
ers cannot (yet) be changed.
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Solution
If you can, try to organize your code along modern design guidelines, like Ports and
Adapters (Hexagonal Architecture), which separate your business logic from side
effects such as I/O. If you can get into that situation, then there’s no need to expose
both synchronous and asynchronous APIs for anything; your business logic would
always be synchronous, and the I/O would always be asynchronous.

However, that’s a very lofty goal, and in The Real World, brownfield code can be
messy, and there’s rarely time to make it perfect before adopting asynchronous code.
Existing APIs often need to be maintained for backwards compatibility, even if they
were poorly designed.

There is no perfect solution in this scenario. Many developers attempt to have the
synchronous code call the asynchronous code, or have the asynchronous code call the
synchronous code, but both of those approaches are anti-patterns. The Boolean
Argument Hack is the one that I tend to prefer in this situation. It’s a way to keep all
the logic in a single method while exposing both synchronous and asynchronous
APIs.

The primary idea of the Boolean Argument Hack is that there’s a private core method
containing the logic. That core method has an asynchronous signature and takes a
boolean argument determining whether the core method should be asynchronous or
not. If the boolean argument specifies that the core method should be synchronous,
then it must return an already-completed task. Then you can write both asynchro‐
nous and synchronous API methods that forward to the core method:

private async Task<int> DelayAndReturnCore(bool sync)
{
  int value = 100;

  // Do some work.
  if (sync)
    Thread.Sleep(value); // Call synchronous API.
  else
    await Task.Delay(value); // Call asynchronous API.

  return value;
}

// Asynchronous API
public Task<int> DelayAndReturnAsync() =>
    DelayAndReturnCore(sync: false);

// Synchronous API
public int DelayAndReturn() =>
    DelayAndReturnCore(sync: true).GetAwaiter().GetResult();
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The asynchronous API DelayAndReturnAsync invokes DelayAndReturnCore with the
boolean sync parameter set to false; this means that DelayAndReturnCore may
behave asynchronously, and it uses await on the underlying asynchronous “delay”
API Task.Delay. The task returned from DelayAndReturnCore is returned directly to
the caller of DelayAndReturnAsync.

The synchronous API DelayAndReturn invokes DelayAndReturnCore with the
boolean sync parameter set to true; this means that DelayAndReturnCore must
behave synchronously, and it uses the underlying synchronous “delay” API
Thread.Sleep. The task returned by DelayAndReturnCore must already be complete,
so it’s safe to extract the result. DelayAndReturn uses GetAwaiter().GetResult() to
retrieve the result from the task; this avoids an AggregateException wrapper that can
happen if it were to use the Task<T>.Result property.

Discussion
This isn’t an ideal solution, but it’s one that can help with real-world applications.

Now, a few caveats for this solution. The most disastrous problems will arise if the
Core method doesn’t properly honor its sync parameter. If the Core method ever
returns an incomplete task when sync is true, then the synchronous API can easily
deadlock; the only reason the synchronous API can block on its task is that it knows
that the task is already complete. Similarly, if the Core method blocks a thread when
sync is false, then the application isn’t as efficient as it should be.

One improvement that could be made to this solution is to add a check in the syn‐
chronous API, validating that the returned task is in fact completed. If it’s ever not
completed, then there is a serious coding bug.

See Also
Chapter 1 covers basic async/await programming, including a discussion of dead‐
locks that can happen when blocking on asynchronous code in general.

14.6 Railway Programming with Dataflow Meshes
Problem
You have a dataflow mesh set up, but some data items fail to process. You want to
respond to these errors in a way that keeps your dataflow mesh operational.
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Solution
By default, if a block encounters an exception when processing a data item, that block
will fault, preventing it from processing any more data items. The core idea of this
solution is to treat exceptions as just another kind of data. If the dataflow mesh oper‐
ates on types that can be either an exception or data, then the mesh can remain opera‐
tional even when exceptions occur and continue to process other data items.

This is sometimes called “railway” programming because the items in the mesh can
be viewed as traveling on one of two separate tracks. There’s the normal “data” track:
if everything goes perfectly, the item stays on the “data” track and travels through the
mesh, being transformed and operated on, until it reaches the end of the mesh. The
second track is the “error” track; in any block, if an exception is raised when process‐
ing an item, that exception transfers to the “error” track and travels through the
mesh. Exception items aren’t processed; they are just passed on from block to block,
so they also reach the end of the mesh. The terminal blocks in the mesh end up
receiving a sequence of items, each of which is either a data item or exception item; a
data item represents data that has completed the entire mesh successfully, and an
exception item represents a processing error at some point in the mesh.

In order to set up this kind of “railway” programming, you first need to define a type
that represents either a data item or an exception. If you want to use a pre-built one,
there are a few available. This kind of type is common in the functional programming
community, where it’s commonly called Try or Error or Exceptional, and is a special
case of the Either monad. I’ve defined my own Try<T> type that you can use as an
example; it’s in the Nito.Try NuGet package and the source code is on GitHub.

Once you have some kind of Try<T> type, setting up the mesh is a bit tedious but not
terrible. The type of each dataflow block should be changed from T to Try<T>, and
any processing in that block should be done by mapping one Try<T> value to another.
With my Try<T> type, this is done by calling Try<T>.Map. I find it helpful to define
small factory methods for railway-oriented dataflow blocks instead of having that
extra code inline. The following code is an example of a helper method that con‐
structs a TransformBlock that operates on Try<T> values by calling Try<T>.Map:

private static TransformBlock<Try<TInput>, Try<TOutput>>
    RailwayTransform<TInput, TOutput>(Func<TInput, TOutput> func)
{
  return new TransformBlock<Try<TInput>, Try<TOutput>>(t => t.Map(func));
}

With helpers like these in place, the dataflow mesh creation code is more straightfor‐
ward:

var subtractBlock = RailwayTransform<int, int>(value => value - 2);
var divideBlock = RailwayTransform<int, int>(value => 60 / value);
var multiplyBlock = RailwayTransform<int, int>(value => value * 2);
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var options = new DataflowLinkOptions { PropagateCompletion = true };
subtractBlock.LinkTo(divideBlock, options);
divideBlock.LinkTo(multiplyBlock, options);

// Insert data items into the first block.
subtractBlock.Post(Try.FromValue(5));
subtractBlock.Post(Try.FromValue(2));
subtractBlock.Post(Try.FromValue(4));
subtractBlock.Complete();

// Receive data/exception items from the last block.
while (await multiplyBlock.OutputAvailableAsync())
{
  Try<int> item = await multiplyBlock.ReceiveAsync();
  if (item.IsValue)
    Console.WriteLine(item.Value);
  else
    Console.WriteLine(item.Exception.Message);
}

Discussion
Railway programming is a great way to avoid faulting dataflow blocks. Since railway
programming is a functional programming construct based on monads, it’s a bit awk‐
ward when translated to .NET, but it is usable. If you have a dataflow mesh that needs
to be fault-tolerant, then railway programming is certainly worth it.

See Also
Recipe 5.2 covers the normal way exceptions fault blocks and can propagate through
a mesh if railway programming is not used.

14.7 Throttling Progress Updates
Problem
You have a long-running operation that reports progress, and you display progress
updates in the UI. But the progress updates arrive too rapidly, causing your UI to be
unresponsive.

Solution
Consider the following code, which reports progress very quickly:

private string Solve(IProgress<int> progress)
{
  // Count as quickly as possible for 3 seconds.
  var endTime = DateTime.UtcNow.AddSeconds(3);
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  int value = 0;
  while (DateTime.UtcNow < endTime)
  {
    value++;
    progress?.Report(value);
  }
  return value.ToString();
}

You can execute this code from a GUI application by wrapping it in Task.Run and
passing in an IProgress<T>. The following example code is for WPF, but the same
concepts apply regardless of GUI platform (WPF, Xamarin, or Windows Forms):

// For simplicity, this code updates a label directly.
// In a real-world MVVM application, those assignments
//  would instead be updating a ViewModel property
//  which is data-bound to the actual UI.
private async void StartButton_Click(object sender, RoutedEventArgs e)
{
  MyLabel.Content = "Starting...";
  var progress = new Progress<int>(value => MyLabel.Content = value);
  var result = await Task.Run(() => Solve(progress));
  MyLabel.Content = $"Done! Result: {result}";
}

This code will cause the UI to become unresponsive for quite some time, about 20
seconds on my machine, and then suddenly the UI is responsive again and only dis‐
plays the "Done! Result:" message. The intermediate progress reports were never
seen. What is happening is that the background code is sending progress reports to
the UI thread extremely quickly, so fast that after running for only 3 seconds, it takes
the UI thread another 17 seconds or so just to process all those progress reports,
updating that label over and over. Lastly, the UI thread updates the label one last time
with the "Done! Result:" values, and then finally has time to repaint the screen, dis‐
playing the updated label value to the user.

The first thing to realize is that we need to throttle the progress reports. It’s the only
way to ensure the UI has enough time to repaint itself between progress updates. The
next thing to realize is that we want to throttle based on time, not the number of
reports. While you may be tempted to throttle the progress reports by only sending
one out of every hundred or so, this isn’t ideal for reasons discussed in the “Discus‐
sion” section.

The fact that we want to deal with time indicates that we should consider Sys‐
tem.Reactive. And, in fact, System.Reactive has operators specifically designed to
throttle on time. So, it sounds like System.Reactive will play a role in this solution.

To get started, you can define an IProgress<T> implementation that raises an event
for each progress report, and then create an observable that receives those progress
reports by wrapping that event:
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public static class ObservableProgress
{
  private sealed class EventProgress<T> : IProgress<T>
  {
    void IProgress<T>.Report(T value) => OnReport?.Invoke(value);
    public event Action<T> OnReport;
  }

  public static (IObservable<T>, IProgress<T>) Create<T>()
  {
    var progress = new EventProgress<T>();
    var observable = Observable.FromEvent<T>(
        handler => progress.OnReport += handler,
        handler => progress.OnReport -= handler);
    return (observable, progress);
  }
}

The method ObservableProgress.Create<T> will create a pair: one IObservable<T>
and one IProgress<T>, where all progress reports sent to the IProgress<T> will be
sent to the subscribers of the IObservable<T>. We now have an observable stream for
our progress reports; the next step is to throttle it.

We want to update the UI slowly enough that it can remain responsive, and we want
to update the UI quickly enough that users can see the updates. Human perception is
considerably slower than computer displays, so there’s a large window of possible val‐
ues. If you prefer true readability, throttling to one update every second or so may be
sufficient. If you prefer more real-time feedback, I find that one update every 100 or
200 milliseconds (ms) is fast enough that the user sees that something is happening
fast and gets a general sense of the progress details, while still being slow enough for
the UI to remain responsive.

Another point to keep in mind is that progress reports can be raised from other
threads—in this case, they are raised from a background thread. The throttling
should be done as close to the source as possible, so we want to keep the throttling on
the background thread. However, the code that updates the UI needs to be run on the
UI thread. With this in mind, you can define a CreateForUi method that handles
both the throttling and the transition to the UI thread:

public static class ObservableProgress
{
  // Note: this must be called from the UI thread.
  public static (IObservable<T>, IProgress<T>) CreateForUi<T>(
      TimeSpan? sampleInterval = null)
  {
    var (observable, progress) = Create<T>();
    observable = observable
        .Sample(sampleInterval ?? TimeSpan.FromMilliseconds(100))
        .ObserveOn(SynchronizationContext.Current);
    return (observable, progress);
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  }
}

Now you have a helper method that will throttle your progress updates before they
hit the UI. You can use the helper method in the previous code example in your but‐
ton click handler:

// For simplicity, this code updates a label directly.
// In a real-world MVVM application, those assignments
//  would instead be updating a ViewModel property
//  which is data-bound to the actual UI.
private async void StartButton_Click(object sender, RoutedEventArgs e)
{
  MyLabel.Content = "Starting...";
  var (observable, progress) = ObservableProgress.CreateForUi<int>();
  string result;
  using (observable.Subscribe(value => MyLabel.Content = value))
    result = await Task.Run(() => Solve(progress));
  MyLabel.Content = $"Done! Result: {result}";
}

The new code calls our helper method ObservableProgress.CreateForUi, which
creates the IObservable<T> and IProgress<T> pair. The code subscribes to the pro‐
gress updates and keeps that going until Solve is done. Finally, it passes the IPro
gress<T> to the long-running Solve method. As Solve calls IProgress<T>.Report,
those reports are first sampled within a 100 ms time window, with one update every
100-ms being forwarded to the UI thread and used to update the label text. The UI is
now fully responsive!

Discussion
This recipe is a fun combination of other recipes in this book! No new techniques
were introduced; we just walked through which recipes to combine to come up with
this solution.

An alternative solution to this problem that you may see a lot in the wild is the “mod‐
ulus solution.” The idea behind this solution is that Solve itself has to throttle its own
progress updates; for example, if the code only wanted to process one update for
every 100 actual updates, then the code may use some modulus technique like if
(value % 100 == 0) progress?.Report(value);.

There are a couple of problems with the modulus approach. The first is that there’s no
“correct” modulus value; usually, the developer tries various values until it works well
on their own laptop. The same code, however, may not behave well when running on
a client’s massive server or inside an underpowered virtual machine. In addition, dif‐
ferent platforms and environments cache very differently, which can make code run
much faster (or slower) than expected. And, of course, the capabilities of the “latest”
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computer hardware do change over time. So the modulus value only ends up being a
guess; it’s not going to be correct everywhere and throughout all time.

The other problem with the modulus approach is that it’s trying to fix the problem in
the wrong part of the code. This problem is purely a UI issue; it’s the UI that has a
problem, and it’s the UI layer that should provide the fix for it. In the example code
for this recipe, Solve represents some background business processing logic; it
shouldn’t be concerned with UI-specific issues. A Console app may want to use a very
different modulus than a WPF app.

The one thing that the modulus approach is correct on is that it’s best to throttle the
updates before sending the updates to the UI thread. The solution in this recipe also
does this: it throttles the updates immediately and synchronously on the background
thread before sending them to the UI thread. By injecting its own IProgress<T>
implementation, the UI is able to do its own throttling without requiring any changes
to the Solve method itself.

See Also
Recipe 2.3 covers using IProgress<T> to report progress from long-running opera‐
tions.

Recipe 13.1 covers using Task.Run to run synchronous code on a threadpool thread.

Recipe 6.1 covers using FromEvent to wrap .NET events into observables.

Recipe 6.4 covers using Sample to throttle observables by time.

Recipe 6.2 covers using ObserveOn to move observable notifications to another con‐
text.
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APPENDIX A

Legacy Platform Support

Many of the technologies discussed in this book have some support for older plat‐
forms as well. If you’re in the unfortunate situation where you need to support these
platforms, the information in this appendix may help you determine which technolo‐
gies are available. Using these technologies on older platforms isn’t ideal; and even if
you get it working, bear in mind that the only long-term solution is to update the
platform target for your code. This appendix is intended mainly as a historical refer‐
ence and not as a recommendation; that said, maintainers of old code may find it use‐
ful.

Table A-1 summarizes the support of legacy platforms for different techniques.

Table A-1. Legacy platform support
Platform async Parallel Reactive Dataflow Concurrent collections Immutable collections
.NET 4.5 ✓ ✓ NuGet NuGet ✓ NuGet

.NET 4.0 NuGet ✓ NuGet ✗ ✓ ✗
Windows Phone Apps 8.1 ✓ ✓ NuGet NuGet ✓ NuGet

Windows Phone SL 8.0 ✓ ✗ NuGet NuGet ✗ NuGet

Windows Phone SL 7.1 NuGet ✗ NuGet ✗ ✗ ✗
Silverlight 5 NuGet ✗ NuGet ✗ ✗ ✗

Legacy Platform Support for Async
If you need async support on older legacy platforms, install the NuGet package for
Microsoft.Bcl.Async.
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Do not use Microsoft.Bcl.Async to enable async code on
ASP.NET running on .NET 4.0! The ASP.NET pipeline was upda‐
ted in .NET 4.5 to be async-aware, and you must use .NET 4.5 or
newer for async ASP.NET projects. Microsoft.Bcl.Async is only
for non-ASP.NET applications.

Table A-2. Legacy platform support for async
Platform Async support
.NET 4.5 ✓
.NET 4.0 NuGet: Microsoft.Bcl.Async

Windows Phone Apps 8.1 ✓
Windows Phone SL 8.0 ✓
Windows Phone 7.1 NuGet: Microsoft.Bcl.Async

Silverlight 5 NuGet: Microsoft.Bcl.Async

When using Microsoft.Bcl.Async, many of the members on the modern Task type
are on the TaskEx type, including Delay, FromResult, WhenAll, and WhenAny.

Legacy Platform Support for Dataflow
To use TPL Dataflow, install the NuGet package System.Threading.Tasks.Dataflow
into your application. The TPL Dataflow library has limited platform support for
older platforms (Table A-3).

Do not use the old Microsoft.Tpl.Dataflow package. It is no
longer maintained.

Table A-3. Legacy platform support for TPL Dataflow
Platform Dataflow support
.NET 4.5 NuGet: System.Threading.Tasks.Dataflow

.NET 4.0 ✗
Windows Phone Apps 8.1 NuGet: System.Threading.Tasks.Dataflow

Windows Phone SL 8.0 NuGet: System.Threading.Tasks.Dataflow

Windows Phone SL 7.1 ✗
Silverlight 5 ✗
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Legacy Platform Support for System.Reactive
To use System.Reactive, install the NuGet package System.Reactive into your appli‐
cation. System.Reactive historically has had wide platform support (Table A-4); how‐
ever, most of the legacy platforms are no longer supported:

Table A-4. Legacy platform support for System.Reactive
Platform Reactive support
.NET 4.7.2 NuGet: System.Reactive

.NET 4.5 NuGet: System.Reactive v3.x

.NET 4.0 NuGet: Rx.Main

Windows Phone Apps 8.1 NuGet: System.Reactive v3.x

Windows Phone SL 8.0 NuGet: System.Reactive v3.x

Windows Phone SL 7.1 NuGet: Rx.Main

Silverlight 5 NuGet: Rx.Main

The old Rx.Main package is no longer maintained.
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APPENDIX B

Recognizing and Interpreting
Asynchronous Patterns

The benefits of asynchronous code have been well understood for decades
before .NET was invented. In the early days of .NET, several different styles of asyn‐
chronous code were developed, used here and there, and eventually discarded. These
were not all bad ideas; many of them paved the way for the modern async/await
approach. However, there’s a lot of legacy code out there that uses older asynchronous
patterns. This appendix will discuss the more common patterns, explaining how they
work and how to integrate them with modern code.

Sometimes, the same type is updated over the years, acquiring more and more mem‐
bers as it supports multiple asynchronous patterns. Perhaps the best example of this is
the Socket class. Here are some of the members of the Socket class for the core Send
operation:

class Socket
{
  // Synchronous
  public int Send(byte[] buffer, int offset, int size, SocketFlags flags);

  // APM
  public IAsyncResult BeginSend(byte[] buffer, int offset, int size,
      SocketFlags flags, AsyncCallback callback, object state);
  public int EndSend(IAsyncResult result);

  // Custom, very close to APM
  public IAsyncResult BeginSend(byte[] buffer, int offset, int size,
      SocketFlags flags, out SocketError error,
      AsyncCallback callback, object state);
  public int EndSend(IAsyncResult result, out SocketError error);

  // Custom
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  public bool SendAsync(SocketAsyncEventArgs e);

  // TAP (as an extension method)
  public Task<int> SendAsync(ArraySegment<byte> buffer,
      SocketFlags socketFlags);

  // TAP (as an extension method) using more efficient types
  public ValueTask<int> SendAsync(ReadOnlyMemory<byte> buffer,
      SocketFlags socketFlags, CancellationToken cancellationToken = default);
}

Sadly, with most documentation being alphabetical and with tons of overloads in an
attempt to simplify usage, types like Socket become difficult to understand. Hope‐
fully the guidelines in this section will help.

Task-Based Asynchronous Pattern (TAP)
The Task-Based Asynchronous Pattern (TAP) is the modern asynchronous API pat‐
tern that is ready for use with await. Each asynchronous operation is represented by
a single method that returns an awaitable. An “awaitable” is any type that can be con‐
sumed by await; this is usually Task or Task<T> but may also be ValueTask, Value
Task<T>, a type defined by a framework (e.g., IAsyncAction or IAsyncOperation<T>,
used by Universal Windows applications), or even a custom type defined by a library.

It is common for TAP methods to have an Async suffix. However, this is just a con‐
vention; not all TAP methods have an Async suffix. It can be skipped if the API devel‐
oper believes the asynchronous context is sufficiently implied; e.g., Task.WhenAll and
Task.WhenAny do not have an Async suffix. Furthermore, keep in mind that the Async
suffix may be present on non-TAP methods (e.g., WebClient.DownloadStringAsync
is not a TAP method). The usual pattern in this case is for the TAP method to have a
TaskAsync suffix (e.g., WebClient.DownloadStringTaskAsync is a TAP method).

Methods that return asynchronous streams also follow a TAP-like pattern, with Async
used as a suffix. Even though they don’t return awaitables, they do return awaitable
streams—types that can be consumed using await foreach.

The Task-Based Asynchronous Pattern can be recognized by these characteristics:

1. The operation is represented by a single method.
2. The method returns an awaitable or an awaitable stream.
3. The method usually ends with Async.

Here’s an example of a type with a TAP API:

class ExampleHttpClient
{
  public Task<string> GetStringAsync(Uri requestUri);
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  // Synchronous equivalent, for comparison
  public string GetString(Uri requestUri);
}

Consuming the Task-Based Asynchronous Pattern is done using await and is covered
by large portions of this book. If you somehow got to this appendix without knowing
how to use await, then I’m not sure I can help you at this point, but you can try read‐
ing Chapters 1 and 2 anyway to see if they jog your memory.

Asynchronous Programming Model (APM)
After TAP, the Asynchronous Programming Model (APM) pattern is probably the
next most-common pattern you’ll encounter. It was the first pattern where asynchro‐
nous operations had first-class object representations. The telltale sign of this pattern
is the IAsyncResult objects in conjunction with a pair of methods that manage the
operation, one starting with Begin and the other starting with End.

IAsyncResult was strongly influenced by native overlapped I/O. The APM pattern
allows consuming code to behave either synchronously or asynchronously. The con‐
suming code can choose from these options:

• Block for the operation to complete. This is done by calling the End method.
• Poll for the operation to complete while doing something else.
• Supply a callback delegate to invoke when the operation completes.

In all cases, the consuming code must eventually call the End method to retrieve the
results of the asynchronous operation. If the operation is not completed when End is
called, it’ll block the calling thread until the operation completes.

The Begin method takes an AsyncCallback parameter and an object parameter
(usually called state) as its last two parameters. These are used by consuming code
to provide a callback delegate to invoke when the operation completes. The object
parameter can be whatever you want; this is a holdover from the very early days
of .NET, before lambda methods or even anonymous methods existed. It is just used
to provide context to the AsyncCallback parameter.

The APM is fairly widespread among Microsoft libraries, but is not as common in the
wider .NET ecosystem. This is because there were never any IAsyncResult imple‐
mentations made available for reuse, and implementing that interface correctly is
fairly complex. In addition, it is difficult to compose APM-based systems. I’ve seen
only a few custom IAsyncResult implementations in the wild; all of these were some
version of Jeffrey Richter’s general-purpose IAsyncResult implementation, as pub‐
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lished in his article, “Concurrent Affairs: Implementing the CLR Asynchronous Pro‐
gramming Model,” from the March 2007 edition of MSDN Magazine.

The Asynchronous Programming Model pattern can be recognized by these charac‐
teristics:

1. The operation is represented by a pair of methods, one starting with Begin and
the other starting with End.

2. The Begin method returns an IAsyncResult, and takes all normal input parame‐
ters, along with an extra AsyncCallback parameter and an extra object parame‐
ter.

3. The End method only takes an IAsyncResult, and returns the result value, if any.

Here’s an example of a type with an APM API:

class MyHttpClient
{
  public IAsyncResult BeginGetString(Uri requestUri,
      AsyncCallback callback, object state);
  public string EndGetString(IAsyncResult asyncResult);

  // Synchronous equivalent, for comparison
  public string GetString(Uri requestUri);
}

Consume the APM by converting it to TAP using Task.Factory.FromAsync; see
Recipe 8.2 and the Microsoft docs.

There are some cases in which code almost follows the APM pattern, but not quite;
e.g.,, the old Microsoft.TeamFoundation client libraries did not include the object
parameter in their Begin methods. In these cases, Task.Factory.FromAsync will not
work, and you then have the choice of two options. The less efficient option is to call
the Begin method and pass the IAsyncResult to FromAsync. The less elegant option
is to use the more flexible TaskCompletionSource<T>; see Recipe 8.3.

Event-Based Asynchronous Programming (EAP)
The Event-Based Asynchronous Programming (EAP) defines a matching method/
event pair. The method usually ends in Async, and it eventually causes an event to be
raised that ends in Completed.

There are a few caveats when working with EAP that make it a bit more difficult than
it first appears. First, you have to remember to add your handler to the event before
calling the method; otherwise, you’d have a race condition where the event could hap‐
pen before you subscribed, and then you’d never see it complete. Second, components
written in the EAP pattern usually capture the current SynchronizationContext at
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some point and then raise their event in that context. Some components capture the
SynchronizationContext in the constructor, and others capture it at the time the
method is called and the asynchronous operation begins.

The Event-Based Asynchronous Programming pattern can be recognized by these
characteristics:

1. The operation is represented by an event and a method.
2. The event ends in Completed.
3. The event args type for the Completed event might be descended from

AsyncCompletedEventArgs.
4. The method usually ends in Async.
5. The method returns void.

EAP methods ending in Async are distinguishable from TAP methods ending in
Async because the EAP methods return void, while the TAP methods return an
awaitable type.

Here’s an example of a type with an EAP API:

class GetStringCompletedEventArgs : AsyncCompletedEventArgs
{
  public string Result { get; }
}

class MyHttpClient
{
  public void GetStringAsync(Uri requestUri);
  public event Action<object, GetStringCompletedEventArgs> GetStringCompleted;

  // Synchronous equivalent, for comparison
  public string GetString(Uri requestUri);
}

Consume the EAP by converting it to TAP using TaskCompletionSource<T>; see
Recipe 8.3 and the Microsoft docs.

Continuation Passing Style (CPS)
This is a pattern that is much more common in other languages, particularly Java‐
Script and TypeScript as used by Node.js developers. In this pattern, each asynchro‐
nous operation takes a callback delegate that is invoked when the operation com‐
pletes, either successfully or with error. A variant of this pattern uses two callback del‐
egates, one for success and one for error. This kind of callback is called a “continua‐
tion,” and the continuation is passed as a parameter, hence the name “continuation
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passing style.” This pattern was never common in the .NET world, but there are a few
older open source libraries that used it.

The Continuation Passing Style pattern can be recognized by these characteristics:

1. The operation is represented by a single method.
2. The method takes an extra parameter which is a callback delegate; the callback

delegate takes two arguments, one for errors and the other for results.
3. Alternatively, the operation method takes two extra parameters, both callback

delegates; one callback delegate is only for errors, and the other callback delegate
is only for results.

4. The callback delegates are commonly named done or next.

Here’s an example of a type with a continuation-passing style API:

class MyHttpClient
{
  public void GetString(Uri requestUri, Action<Exception, string> done);

  // Synchronous equivalent, for comparison
  public string GetString(Uri requestUri);
}

Consume CPS by converting it to TAP using TaskCompletionSource<T>, passing
callback delegates that just complete the TaskCompletionSource<T>; see Recipe 8.3.

Custom Async Patterns
Very specialized types will sometimes define their own custom asynchronous pat‐
terns. The most famous example of this is the Socket type, which defined a pattern
that passed around SocketAsyncEventArgs instances representing the operation. The
reason this pattern was introduced was that SocketAsyncEventArgs could be reused,
thus reducing memory churn for applications that do heavy network activity. Modern
applications can use ValueTask<T> with ManualResetValueTaskSourceCore<T> to
get similar performance gains.

Custom patterns do not have any common characteristics and are therefore the hard‐
est to recognize. Thankfully, custom asynchronous patterns are rare.

Here’s an example of a type with a custom asynchronous API:

class MyHttpClient
{
  public void GetString(Uri requestUri,
      MyHttpClientAsynchronousOperation operation);

  // Synchronous equivalent, for comparison
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  public string GetString(Uri requestUri);
}

TaskCompletionSource<T> is the only way to consume custom asynchronous pat‐
terns; see Recipe 8.3.

ISynchronizeInvoke
All the previous patterns are for asynchronous operations that are started, and once
they start, they complete once. Some components follow a subscription model: they
represent a push-based stream of events rather than a single operation that starts once
and completes once. A good example of a subscription model is the FileSystem
Watcher type. To observe file system changes, the consuming code first subscribes to
multiple events and then sets the EnableRaisingEvents property to true. Once
EnableRaisingEvents is true, multiple file system change events may be raised.

Some components use an ISynchronizeInvoke pattern for their events. They expose
a single ISynchronizeInvoke property, and consumers set that property to an imple‐
mentation that allows the component to schedule work. This is most commonly used
to schedule work to a UI thread so that the component’s events are raised on the UI
thread. By convention, if ISynchronizeInvoke is null, then no synchronizing of the
events is done, and they may be raised on background threads.

The ISynchronizeInvoke pattern can be recognized by these characteristics:

1. There is a property of type ISynchronizeInvoke.
2. The property is usually called SynchronizingObject.

Here’s an example of a type that uses the ISynchronizeInvoke pattern:

class MyHttpClient
{
  public ISynchronizeInvoke SynchronizingObject { get; set; }
  public void StartListening();
  public event Action<string> StringArrived;
}

Since ISynchronizeInvoke implies multiple events in a subscription model, the
proper way to consume these components is to translate those events to an observa‐
ble stream, either using FromEvent (see Recipe 6.1) or Observable.Create.
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