
WOW! eBook
www.wowebook.org

Docker	for	Rails	Developers

Build,	Ship,	and	Run	Your	Applications	Everywhere

by	Rob	Isenberg

Version:	P1.0	(February	2019)

WOW! eBook
www.wowebook.org

Copyright	©	2019	The	Pragmatic	Programmers,	LLC.	This	book	is	licensed	to	the	individual	who
purchased	it.	We	don't	copy-protect	it	because	that	would	limit	your	ability	to	use	it	for	your	own	purposes.
Please	don't	break	this	trust—you	can	use	this	across	all	of	your	devices	but	please	do	not	share	this	copy
with	other	members	of	your	team,	with	friends,	or	via	file	sharing	services.	Thanks.

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their	products	are	claimed	as
trademarks.	Where	those	designations	appear	in	this	book,	and	The	Pragmatic	Programmers,	LLC	was
aware	of	a	trademark	claim,	the	designations	have	been	printed	in	initial	capital	letters	or	in	all	capitals.	The
Pragmatic	Starter	Kit,	The	Pragmatic	Programmer,	Pragmatic	Programming,	Pragmatic	Bookshelf	and	the
linking	g	device	are	trademarks	of	The	Pragmatic	Programmers,	LLC.

Every	precaution	was	taken	in	the	preparation	of	this	book.	However,	the	publisher	assumes	no
responsibility	for	errors	or	omissions,	or	for	damages	that	may	result	from	the	use	of	information	(including
program	listings)	contained	herein.

About	the	Pragmatic	Bookshelf
The	Pragmatic	Bookshelf	is	an	agile	publishing	company.	We’re	here	because	we	want	to	improve	the	lives
of	developers.	We	do	this	by	creating	timely,	practical	titles,	written	by	programmers	for	programmers.

Our	Pragmatic	courses,	workshops,	and	other	products	can	help	you	and	your	team	create	better	software
and	have	more	fun.	For	more	information,	as	well	as	the	latest	Pragmatic	titles,	please	visit	us	at
http://pragprog.com.

Our	ebooks	do	not	contain	any	Digital	Restrictions	Management,	and	have	always	been	DRM-free.	We
pioneered	the	beta	book	concept,	where	you	can	purchase	and	read	a	book	while	it’s	still	being	written,	and
provide	feedback	to	the	author	to	help	make	a	better	book	for	everyone.	Free	resources	for	all	purchasers
include	source	code	downloads	(if	applicable),	errata	and	discussion	forums,	all	available	on	the	book's
home	page	at	pragprog.com.	We’re	here	to	make	your	life	easier.

New	Book	Announcements

Want	to	keep	up	on	our	latest	titles	and	announcements,	and	occasional	special	offers?	Just	create	an
account	on	pragprog.com	(an	email	address	and	a	password	is	all	it	takes)	and	select	the	checkbox	to
receive	newsletters.	You	can	also	follow	us	on	twitter	as	@pragprog.

About	Ebook	Formats

If	you	buy	directly	from	pragprog.com,	you	get	ebooks	in	all	available	formats	for	one	price.	You	can	synch
your	ebooks	amongst	all	your	devices	(including	iPhone/iPad,	Android,	laptops,	etc.)	via	Dropbox.	You	get
free	updates	for	the	life	of	the	edition.	And,	of	course,	you	can	always	come	back	and	re-download	your
books	when	needed.	Ebooks	bought	from	the	Amazon	Kindle	store	are	subject	to	Amazon's	polices.
Limitations	in	Amazon's	file	format	may	cause	ebooks	to	display	differently	on	different	devices.	For	more
information,	please	see	our	FAQ	at	pragprog.com/frequently-asked-questions/ebooks.	To	learn	more	about
this	book	and	access	the	free	resources,	go	to	https://pragprog.com/book/ridocker,	the	book's	homepage.

Thanks	for	your	continued	support,

Andy	Hunt
The	Pragmatic	Programmers

The	team	that	produced	this	book	includes:	Andy	Hunt	(Publisher), Janet	Furlow	(VP	of	Operations),
Susan	Conant	(Managing	Editor), Adaobi	Obi	Tulton	(Development	Editor),
Nicole	Abramowitz	(Copy	Editor), Potomac	Indexing,	LLC	(Indexing), Gilson	Graphics	(Layout)

For	customer	support,	please	contact	support@pragprog.com.

For	international	rights,	please	contact	rights@pragprog.com.

WOW! eBook
www.wowebook.org

http://pragprog.com
https://pragprog.com
https://pragprog.com
https://pragprog.com/frequently-asked-questions/ebooks
https://pragprog.com/book/ridocker
mailto:support@pragprog.com
mailto:rights@pragprog.com

Ruth.	In	hindsight,	writing	a	book	whilst	having	a	baby	and	renovating	a	house
probably	wasn’t	the	best	idea—who	knew?	Thank	you	for	your	patience,	love,

and	support.	None	of	this	would	have	been	possible	without	you.

Sammy.	I	couldn’t	have	imagined	the	joy	and	love	you’d	bring	into	our	life.	Be
kind,	be	brave,	and	be	willing	to	take	risks	in	pursuit	of	your	happiness	and

passions.	I	love	you	so	much.

Mum	and	Dad.	Thank	you	for	everything.

WOW! eBook
www.wowebook.org

Table	of	Contents

	 Acknowledgements

	 Introduction
What	Is	Docker?
Why	Use	Docker?
Who	Should	Read	This	Book?
What’s	in	This	Book?
How	to	Read	This	Book
Which	Operating	Systems	Are	Supported?
Online	Resources

Part	I.	Development

1. A	Brave	New	World
Installing	Docker
Verifying	Your	Install
Before	We	Begin
Running	a	Ruby	Script	Without	Ruby	Installed
Generating	a	New	Rails	App	Without	Ruby	Installed
Quick	Recap

2. Running	a	Rails	App	in	a	Container
How	Do	We	Run	Our	Rails	App?
Defining	Our	First	Custom	Image

WOW! eBook
www.wowebook.org

Building	Our	Image
Running	a	Rails	Server	with	Our	Image
Reaching	the	App:	Publishing	Ports
Binding	the	Rails	Server	to	IP	Addresses
	Quick	Recap

3. Fine-Tuning	Our	Rails	Image
Naming	and	Versioning	Our	Image
A	Default	Command
Ignoring	Unnecessary	Files
The	Image	Build	Cache
Caching	Issue	1:	Updating	Packages
Caching	Issue	2:	Unnecessary	Gem	Installs
The	Finishing	Touch
Quick	Recap

4. Describing	Our	App	Declaratively	with	Docker	Compose
Getting	Started	with	Compose
Launching	Our	App
Mounting	a	Local	Volume
Starting	and	Stopping	Services
Other	Common	Tasks
Quick	Recap

5. Beyond	the	App:	Adding	Redis
Starting	a	Redis	Server
Manually	Connecting	to	the	Redis	Server
How	Containers	Can	Talk	to	Each	Other
Our	Rails	App	Talking	to	Redis
Starting	the	Entire	App	with	Docker	Compose

WOW! eBook
www.wowebook.org

Quick	Recap

6. Adding	a	Database:	Postgres
Starting	a	Postgres	Server
Connecting	to	Postgres	from	a	Separate	Container
Connecting	Our	Rails	App	to	Postgres
Using	the	Database	in	Practice
Decoupling	Data	from	the	Container
Quick	Recap

7. Playing	Nice	with	JavaScript
The	JavaScript	Front-End	Options
Rails	JavaScript	Front	End	with	Webpacker

Compiling	Assets	with	Webpacker
A	Hello	World	React	App
Quick	Recap

8. Testing	in	a	Dockerized	Environment
Setting	Up	RSpec
Our	First	Test
Setting	Up	Rails	System	Tests
Running	Tests	That	Rely	on	JavaScript
Debugging
Quick	Recap

9. Advanced	Gem	Management
The	Downside	to	Our	Existing	Approach
Using	a	Gem	Cache	Volume
Quick	Recap

10. Some	Minor	Irritations

WOW! eBook
www.wowebook.org

Rails	tmp/pids/server.pid	Not	Cleaned	Up
Compose	Intermittently	Aborts	with	Ctrl-C
Quick	Recap
Closing	Thoughts	on	Docker	in	Development

Part	II.	Toward	Production

11. The	Production	Landscape
The	“Ops”	in	DevOps
Container	Orchestration
A	Tale	of	Two	Orchestrators:	Swarm	and	Kubernetes
IaaS	vs.	CaaS
Provisioning	Your	Infrastructure
CaaS	Platforms
Serverless	for	Containers
How	to	Decide	What’s	Right	for	Me?
Quick	Recap

12. Preparing	for	Production
Configuring	a	Production	Environment
A	Production	Image:	Precompiling	Assets
Sharing	Images
Quick	Recap

13. A	Production-Like	Playground
Creating	Machines
Introducing	Docker	Swarm
Our	First	(Single	Node)	Swarm
Describing	Our	App	to	Swarm

WOW! eBook
www.wowebook.org

Migrating	the	Database
Deploying	Our	App	on	a	Swarm
Tasks	and	Swarm’s	Scaling	Model
Scaling	Up	the	Service
Quick	Recap

14. Deploying	to	the	Cloud
Creating	a	DigitalOcean	Cluster
Deploying	to	Our	DigitalOcean	Swarm
Visualizing	Containers
Scale	Up	the	Web	Service
Deploying	to	AWS	Instead	of	DigitalOcean
	Quick	Recap

15. Closing	Thoughts	and	Next	Steps
What	Should	I	Learn	About	Next?

A1. Platform	Differences
File	Ownership	and	Permissions

A2. Finding	Images	to	Use
Using	Docker	Hub
Using	the	Docker	CLI

Copyright	©	2019,	The	Pragmatic	Bookshelf.

WOW! eBook
www.wowebook.org

Early	Praise	for	Docker	for	Rails
Developers
With	the	avalanche	of	DevOps	tools	in	use,	this	text	has	definitely	cleared	up	the
mystery.	I’ve	been	waiting	for	a	Docker	book	aimed	at	Rails	projects,	and	I’m
now	convinced	Docker	is	the	way	to	go.

→ Nigel	Lowry
Company	Director	and	Principal	Consultant,	Lemmata

Docker	for	Rails	Developers	is	a	wonderful	book	that	allows	you	to	jump	in	and
start	converting	your	existing	apps	to	run	in	containers.	It	is	well	written,	easy	to
follow,	and	makes	you	want	to	keep	reading.	I	recommend	this	book	for	anyone
with	a	little	Rails	experience	who	wants	to	get	a	jump	start	on	using	Docker.

→ Chris	Johnson
Operations	Manager,	healthfinch

With	this	book	at	my	side,	I	was	able	to	help	my	team	move	our	largest,	highest-
revenue	service	into	containers.	This	migration	made	disaster	recovery	much
faster	and	more	reliable,	and	made	it	possible	to	open	a	data	center	in	a	whole
new	market.

→ Erin	Dees
Lead	Software	Engineer,	New	Relic

This	is	much	more	than	a	how-to	book,	with	the	best	technical	writing	I’ve	seen
recently.	Isenberg’s	excellent	guide	provides	clear	and	understandable
explanations	of	how	to	solve	Rails-specific	Docker	DevOps	issues.	This	is	the
kind	of	thing	I	wish	Docker	had	published	a	long	time	ago.

→David	L.	Bean,	PhD
Director	of	Data	Science,	PayClip,	Inc.

WOW! eBook
www.wowebook.org

Docker	for	Rails	Developers	is	more	than	just	a	fantastic	resource	for	Ruby	and
Rails	developers	looking	to	get	up	to	speed	with	Docker.	It’s	a	great,	no-frills
guide	for	how	to	use	the	technology	in	practical,	real-world	situations,	and	I’d
have	no	hesitation	in	recommending	this	to	Python	or	Node	developers	either.
I’ve	been	waiting	since	2014	for	a	go-to	book	to	hand	to	the	Docker	curious,	and
this	might	just	be	it.

→Alexander	Lynham
Owner,	envoys.io

WOW! eBook
www.wowebook.org

Acknowledgements
	

Thanks	to	Adaobi,	my	editor	at	The	Pragmatic	Bookshelf,	for	her	constant
positivity	and	encouragement,	as	well	as	excellent	editing	feedback	on	the	book
to	help	make	it	as	good	as	it	can	be.	I	will	miss	our	updates	and	bonding	over	our
mutual	love	of	Gordon	Ramsay.

I	owe	a	great	deal	of	thanks	to	the	following	people	who	gave	up	their	valuable
time	to	read	and	provide	feedback	on	the	book	(a	thousand	apologies	if	I	have
left	anyone	out):

John	Paul	Ashenfelter
David	L.	Bean
Erin	Dees
Chris	Johnson
David	Landry
Nigel	Lowry
Alex	Lynham
Lee	Machin
Rory	McCune
Noel	Rappin
Chris	Thorn
John	Yeates

The	book	is	immeasurably	better	as	a	result	of	their	contributions.

I’d	also	like	to	thank	everyone	who	purchased	a	beta	copy	of	the	book	while	it
was	still	being	written.	In	particular,	I’d	like	to	thank	people	who	submitted
errata	during	this	process—your	confusion,	frustration,	and	pain	have	hopefully
saved	others	from	suffering	the	same	fate.

WOW! eBook
www.wowebook.org

Finally,	a	huge	thank	you	to	the	entire	Pragmatic	Bookshelf	team	for	taking	on
and	supporting	this	title.

Copyright	©	2019,	The	Pragmatic	Bookshelf.

WOW! eBook
www.wowebook.org

Introduction
	

If	you	love	Ruby	on	Rails,	you’re	going	to	love	Docker.	They	are	kindred	spirits,
born	out	of	similar	ideals.

For	me,	the	allure	of	Rails	was	its	Big	Ideas:	generators,	migrations,	testing	as	a
first-class	citizen,	convention	over	configuration,	multi-environment	setups	built
in,	live-code	reloading.	While,	individually,	these	features	may	not	have	been
new,	the	combination	made	Rails	more	than	the	sum	of	its	parts:	it	gave	us
superpowers.

Docker	is	doing	for	DevOps	what	Rails	did	for	web	development.	It	too	is
packed	with	Big	Ideas:	a	holistic	view	of	your	app	(hint:	your	app	is	more	than
just	your	Rails	code),	containerization	(lighter-weight,	faster,	and	more	efficient
than	VMs),	software	delivery	that	doesn’t	suck	(for	example,	Ruby	installs	the
first	time	you	run	a	Ruby	script),	fault-tolerant	clustering	and	scaling	out	of	the
box	(spin	up	production-like	clusters	on	your	local	machine),	expert-level
security	features	baked	in	(for	example,	automatic	key	rotation).	The	list	goes
on.

Docker	is	lowering	the	barrier	to	entry,	making	DevOps	tasks	that	previously
would	have	been	unthinkable	suddenly	within	our	grasp.	It	gives	us	a	new	set	of
superpowers.

That	said,	Docker	is	not	a	panacea	or	a	silver	bullet	to	solve	all	your	DevOps
challenges.	As	with	all	technologies,	there	are	trade-offs	(I’ll	try	to	point	these
out	as	we	go).	However,	despite	the	trade-offs,	as	you’ll	discover	in	this	book,
there	is	value	in	adopting	Docker.

WOW! eBook
www.wowebook.org

What	Is	Docker?
Docker,	the	technology,	is	a	set	of	tools	built	around	the	idea	of	packaging	and
running	software	in	small,	sandboxed	environments	known	as	containers	(we’ll
get	to	the	nitty	gritty	of	these	in	​What	Is	a	Container?​).

At	a	high	level,	Docker	provides	five	capabilities:

Packaging.	The	ability	to	package	software	into	a	reusable,	shareable
format	known	as	images.

Distribution.	The	ability	to	easily	share	packaged	software	(images)	with
other	people	and	deploy	it	to	different	machines.

Runtime.	The	ability	to	run,	pause,	restart,	or	stop	packaged	software	in	a
reliable,	repeatable	way.

Infrastructure	creation.	Creating	virtual	machines	ready	to	run	our	Docker
containers.

Orchestration	and	scaling.	Managing	the	release	of	software	to	a	single
Docker	node	or	across	an	entire	cluster.

Together,	these	five	things	combine	to	enable	a	new	way	of	delivering	and
running	software.

WOW! eBook
www.wowebook.org

Why	Use	Docker?
To	build	a	Rails	app,	we	typically	develop	on	our	local	machine.	Rather	than
each	team	member	manually	maintaining	their	own	local	development
environments,	we	can	use	Docker	to	provide	a	common,	standardized
environment.	This	saves	on	repeated	effort	and	helps	avoid	many	forms	of	the
“works	on	my	machine”	issues	that	can	waste	hours.

Other	benefits	of	using	Docker	for	your	development	environment	include:

A	holistic	view	of	your	app.	Rails	apps	typically	need	a	database	and	other
external	dependencies	like	Redis	and	Elasticsearch.	With	Docker,	these
dependencies	are	no	longer	an	afterthought	or	“add-on”	like	in	Heroku;
they	are	described	and	managed	as	fundamental	parts	of	your	app.

Single-command	app	installation	and	setup.	Have	you	ever	set	up	a	Rails
app	on	your	machine	and	spent	an	excessive	amount	of	time	installing
specific	versions	of	its	software	dependencies?	Docker’s	built-in	delivery
mechanism	means	that	new	team	members	can	go	from	zero	to	a	running
app	in	minutes.	No	laborious,	error-prone,	manual	setup	steps	here.

Easy	version	management	of	dependencies.	Want	to	make	sure	everything
works	before	switching	to	a	new	version	of	Ruby	or	upgrading	the
database?	No	problem:	running	containers	is	cheap.	Just	change	the	image
version	and	away	you	go.

Huge	Docker	ecosystem.	We	frequently	need	to	incorporate	other
technologies	as	part	of	our	Rails	apps:	NGINX,	Redis,	Postgres,	MySQL,
Memcached,	Elasticsearch,	HAProxy,	RabbitMQ,	Node,	and	so	on.	All
these	and	more	are	already	packaged	and	ready	to	go	with	Docker.

Simulate	production-like	environments	locally.	We	know	that	how	our	Rails
app	performs	in	development	isn’t	exactly	the	same	as	in	production.	With
Docker,	you	can	simulate	production	scenarios	by	running	your	app	in
multi-node,	production-like	environments	on	your	local	machine.

WOW! eBook
www.wowebook.org

Docker	can	also	help	once	you	move	beyond	development.	It	provides	a
consistent	interface,	whether	you’re	running	locally,	on	a	continuous	integration
(CI)	server,	or	deploying	to	production.	Once	built,	the	same	image	is	run	at
every	stage	of	your	continuous	integration/delivery	pipeline,	giving	us
confidence	that	our	tested	application	will	perform	the	same	in	each
environment.

If	you	need	to	manage	and	deploy	to	your	own	production	infrastructure,	there
are	further	benefits:

Deployment	standardization.	Docker	provides	a	standard	way	of	packaging
and	delivering	applications:	each	part	of	your	app	is	a	container,	and	each
app	is	a	collection	of	containers.	From	a	DevOps	perspective,	one	Docker
app	is	deployed	and	managed	in	the	same	way	as	any	other.

Reliability	and	resiliency	features	built	in.	Ever	been	woken	at	3	a.m.	by	a
cranky	CEO	because	your	app’s	gone	kaput?	Docker	clusters	are	self-
healing:	if	an	instance	dies,	new	copies	of	your	app	will	be	spawned	on	the
remaining	nodes.

Reducing	infrastructure	costs	especially	at	scale.	Containers	are	much
lighter-weight	than	virtual	machines	(VMs),	allowing	resources	to	be	used
more	efficiently.	They	also	let	you	scale	up	the	number	of	containers	on	a
single	host	rather	than	spinning	up	an	entire	new	instance.

Room	to	grow.	If	your	app	is	(or	becomes)	wildly	successful,	it’s	good	to
know	that	Docker	has	been	battle-tested	at	massive	scale.	Google	Compute
Engine,	for	example,	is	built	on	Docker	containers,	using	Google’s	open
source	orchestration	tool,	Kubernetes.

WOW! eBook
www.wowebook.org

Who	Should	Read	This	Book?
This	book	is	for	experienced	Rails	developers	who	want	to	learn	how	to	use
Docker.	I’m	going	to	assume,	throughout	the	book,	that	you’re	proficient	at
using	Rails;	this	will	allow	us	to	focus	on	learning	and	applying	Docker.

This	book	doesn’t	aim	to	be	a	comprehensive	manual	on	Docker:	several	other
books	serve	that	aim.	Rather,	this	book	is	your	field	manual	to	building	Rails
applications	with	Docker.	We’ll	cover	the	most	useful	commands	and	features
that	you’ll	need,	and	I’ll	refer	you	to	reference	material	as	needed.

If	you’re	curious	to	discover	how	Docker	can	fit	into	your	day-to-day	workflow
as	a	Rails	developer,	you’ve	come	to	the	right	place.

WOW! eBook
www.wowebook.org

What’s	in	This	Book?
In	Part	I,	you’ll	learn	everything	you	need	to	know	about	using	Docker	for	local
Rails	development,	including	core	concepts	like	containers	and	images.	You’ll
build	up	real-world	knowledge,	step	by	step,	through	a	series	of	practical	tasks.
We’ll	start	with	the	basics—running	a	Ruby	script	and	generating	a	new	Rails
project—before	learning	how	to	run	our	Rails	app	by	building	our	own	custom
image.

We’ll	quickly	move	on	to	Compose,	a	higher-level	Docker	tool	for	declaratively
describing	an	entire	app,	and	how	it	all	fits	together.	As	you	learn	more,	we’ll
gradually	layer	up	services	like	a	database	and	Redis.	We’ll	cover	how	to	set	up
and	run	your	tests	so	that	you’re	fully	proficient	at	using	Docker	for	Rails
development.

In	Part	II,	we’ll	explore	the	process	of	deploying	and	running	an	application	in
production.	We’ll	start	by	giving	you	an	overview	of	the	production	landscape—
the	tools,	platforms,	and	technologies	that	can	be	used.	Next,	using	Docker’s
own	tools,	we’ll	provision	machines,	create	a	cluster,	and	deploy	our	app.	We’ll
also	scale	our	app’s	resources	to	meet	its	changing	needs.

WOW! eBook
www.wowebook.org

How	to	Read	This	Book
Docker	has	a	challenging	learning	curve.	It’s	a	vast	tool	and	ecosystem,	and
there’s	a	lot	to	understand.	Hopefully	this	book	will	help—it’s	carefully
structured	to	avoid	introducing	too	many	new	things	at	once.

Each	chapter	builds	on	the	one	preceding	it,	so,	especially	if	you’re	unfamiliar
with	Docker,	I	recommend	reading	the	book	in	sequence	to	get	the	most	benefit.
Even	if	you	have	more	Docker	experience	under	your	belt	already,	this	is	the
recommended	approach.

Docker	IDs	and	Following	Along	Yourself
Docker	generates	various	unique	IDs.	When	following	the
examples,	it’s	important	to	remember	that	the	IDs	generated	for	you
will	be	different	from	those	shown	in	the	output.	Don’t	worry,
though;	I’ll	point	this	out	where	it’s	particularly	relevant.

WOW! eBook
www.wowebook.org

Which	Operating	Systems	Are	Supported?
Although	Docker	is	supported	on	all	major	platforms	(macOS,	Windows,	and
Linux)—and	we’ll	lead	you	through	the	process	of	installing	it	on	these	in
Installing	Docker​—there	are	some	minor	differences	between	the	platforms,
particularly	around	file	permissions	and	networking.

For	that	reason,	I’ve	chosen	Docker	for	Mac	as	the	default	platform	in	the
examples	and	discussion,	but	I’ll	point	out	any	differences	between	other
platforms	when	they	come	up.

Some	Linux/Unix	Knowledge	Is	Recommended
Even	with	Docker	on	Windows	or	Mac,
there’s	no	avoiding	the	need	to	understand
some	Linux	basics.	Docker	evolved	out	of
Linux	kernel	features,	so	explanations	and
examples	often	rely	on	Linux	concepts	and
programs.	I’m	going	to	assume	you	have
this	knowledge	already.	If	not,	there	are
plenty	of	free	resources	online	you	can	use
to	learn	more	or	brush	up	if	you	need	to.

WOW! eBook
www.wowebook.org

[1]

Online	Resources
You	can	find	useful	resources	related	to	the	book	online,[1]	including:

The	source	code	used	throughout	the	book	(you’re	free	to	use	this	in	any
way	you’d	like)

An	errata	page,	which	lists	corrections	for	the	current	edition

Let’s	get	started!

Footnotes

http://pragprog.com/book/ridocker

Copyright	©	2019,	The	Pragmatic	Bookshelf.

WOW! eBook
www.wowebook.org

http://pragprog.com/book/ridocker

Part	1
Development

As	developers,	the	bulk	of	our	time	is	typically	spent	developing
applications	in	our	local	environment.

In	this	section,	you’ll	learn,	step	by	step,	how	to	begin	using
Docker	as	part	of	your	local	development	workflow.

WOW! eBook
www.wowebook.org

Chapter	1

A	Brave	New	World
	

In	this	chapter,	we’re	going	to	make	sure	that	you’re	set	up	with	a	working
version	of	Docker	on	your	machine.	This	is	important	so	you	can	actually	try	it
out	for	yourself	and	follow	along	with	the	examples.

Next,	we’ll	dive	straight	in	and	execute	our	first	ever	Docker	command—
running	a	basic	Ruby	script.	However,	rather	than	relying	on	a	version	of	Ruby
installed	on	your	local	machine,	we’ll	be	using	one	supplied	by	Docker.

You’ll	learn	the	fundamentals	of	how	Docker	works,	including	what	images	and
containers	are	and	why	we	need	them.	We’ll	cover	the	basic	anatomy	of	docker

run—probably	the	most	central	command	to	understanding	Docker.

We’ll	also	begin	our	journey	of	incorporating	Docker	into	our	development
workflow	by	learning	how	to	generate	a	new	Rails	project	with	nothing	but
Docker.	This	app	will	become	the	subject	of	our	various	tinkering	and	discovery
throughout	the	rest	of	the	book.

WOW! eBook
www.wowebook.org

Installing	Docker
Let’s	get	you	set	up	with	Docker	on	your	machine.

There’s	little	benefit	to	me	walking	you	through	the	installation	process	step	by
step:	Docker’s	docs	do	a	great	job	at	this	and	will	stay	more	up	to	date.	I’ll
simply	point	you	in	the	right	direction.

We’re	going	to	be	using	the	free,	Community	Edition	(CE),[2]	rather	than	the
Enterprise	Edition	(EE).[3]	Docker	CE	itself	comes	in	two	flavors:	Edge,	which
contains	the	latest	features	being	developed,	and	Stable,	which	is,	well,	more
stable.	Make	sure	to	install	the	latter	as	we	don’t	want	any	unexpected	surprises
getting	in	the	way	of	your	learning	as	you	follow	along	with	this	book.

Go	ahead	and	read	the	following	instructions	for	your	OS,	then	install	Docker
and	meet	me	back	here	when	you’re	done.	Don’t	worry,	I’ll	wait—there’s
nothing	that	floats	my	boat	quite	a	like	a	brand-spanking-new	Docker	install.

macOS
Docker	provides	a	downloadable	installer	called	Docker	for	Mac,	which	has
everything	you	need	in	one	neat	package	(it’s	currently	a	115.6	MB	download).
Go	ahead	and	install	this,	following	the	installation	instructions.[4]

Once	installed,	Docker	for	Mac	adds	a	menu	bar	app	in	the	top	right	of	the
screen	featuring	Docker’s	logo,	which	is	its	whale	mascot	affectionately	named
“Moby	Dock.”	The	menu	bar	not	only	tells	you	whether	Docker	is	running,	but	it
also	provides	other	useful	information	and	settings.	You	can	find	out	more	about
the	advanced	settings	available	in	docs.[5]

Linux
Unfortunately,	getting	started	with	Docker	on	Linux	is	a	bit	more	involved	than
on	other	platforms.	As	you’d	probably	expect,	how	you	install	it	depends	on
your	Linux	distribution.

WOW! eBook
www.wowebook.org

Visit	the	Docker	CE	installation	docs,[6]	select	your	Linux	distribution	from	the
navigation	menu,	then	follow	the	instructions.	Typically,	this	involves	installing
Docker	with	your	distro’s	package	manager,	which	may	need	to	get	the	latest
packages	from	Docker’s	repository,	as	the	distro	packages	are	often	outdated.

You’ll	also	need	to	review	Docker’s	post-installation	instructions[7]	to	make	sure
you’ve	got	everything	set	up	correctly.	It	will	help	you	troubleshoot	any	issues
you	encounter.

In	later	chapters,	we’ll	rely	on	a	tool	called	Docker	Compose,	which,	on	Linux,
is	installed	separately.	Go	ahead	and	install	this	using	the	documentation
provided.[8]	If	you	happen	to	have	it	installed	already,	I	recommend	upgrading	to
the	latest,	stable	version.

Windows
How	to	install	Docker	depends	on	whether	your	system	supports	Hyper-V,
Microsoft’s	homegrown	virtualization	technology.	Professional,	Enterprise,	or
Education	editions	(64-bit	versions)	of	Windows	8	and	up	do	have	support	for	it
—hardware	permitting—but	Windows	Home	edition,	notably,	does	not.[9]

If	your	system	supports	Hyper-V,	download	the	Docker	for	Windows	installer,[10]

launch	it,	and	follow	the	instructions.	Docker	for	Windows	installs	a	widget	in
the	Windows	notification	area	at	the	bottom	right	of	your	screen	(you	may	need
to	click	to	reveal	it).	Clicking	the	widget	will	open	up	a	menu	where	you	can
find	out	more	info	and	adjust	various	settings.[11]

If	your	system	doesn’t	support	Hyper-V,	you	will	need	to	download	and	install
Docker	Toolbox,[12]	a	legacy	way	of	running	Docker	on	Windows.

WOW! eBook
www.wowebook.org

Verifying	Your	Install
Let’s	check	that	Docker	is	installed	and	running	correctly.	Since	Docker	is	a
command-line	tool,	go	ahead	and	crack	open	your	favorite	terminal,	and	enter
the	following	command:

​ ​$ ​​docker​​ ​​version​

If	all	is	well,	you	should	see	some	output	like	the	following:

​ Client: Docker Engine - Community

​ Version: 18.09.0

​ API version: 1.39

​ Go version: go1.10.4

​ Git commit: 4d60db4

​ Built: Wed Nov 7 00:47:43 2018

​ OS/Arch: darwin/amd64

​ Experimental: false

​
​ Server: Docker Engine - Community

​ Engine:

​ Version: 18.09.0

​ API version: 1.39 (minimum version 1.12)

​ Go version: go1.10.4

​ Git commit: 4d60db4

​ Built: Wed Nov 7 00:55:00 2018

​ OS/Arch: linux/amd64

​ Experimental: false

Don’t	worry	if	you	have	a	newer	version	than	shown	here.	You’re	all	set.

WOW! eBook
www.wowebook.org

Before	We	Begin
Got	Docker	installed?	Great,	you’re	just	in	time—I	didn’t	want	to	start	without
you.	Before	we	get	our	hands	dirty	and	start	playing	with	Docker,	it’s	helpful	to
understand	two	fundamental	concepts:	containers	and	images.

What	Is	a	Container?
Conceptually,	a	container	is	an	isolated	or	“sandboxed”	execution	environment
—an	empty	vessel	for	executing	software	in.	Containers	rely	on	virtualization
features	built	in	to	the	Linux	(and	more	recently,	Windows[13])	kernel,	which	let
you	create	a	fully	isolated	set	of	processes	that	don’t	know	(or	care)	about	the
rest	of	the	system.	In	fact,	inside	a	container,	it	appears	to	be	a	complete	Linux
(or	Windows)	system,	even	though,	in	reality,	all	its	resources	and	capabilities
come	from	the	host	machine	it’s	running	on.

Containers	can	be	started,	paused,	resumed,	and	stopped,	leading	many	people	to
draw	comparisons	with	virtual	machines	(VMs).	In	reality,	though,	aside	from
this	similarity,	containers	are	different	beasts.	Whereas	VMs	require	a	host	OS,	a
software	abstraction	layer	known	as	a	hypervisor,	and	an	entire	OS	installation
for	each	instance,	containers	are	very	close	to	the	metal.	Each	container	is	just
piggybacking	on	the	resources	of	a	single	kernel,	with	just	a	thin	layer	of
isolation.	This	means	you	can	run	many	more	containers	on	a	single	machine
than	VMs—they’re	faster	and	use	less	resources.

What	Is	an	Image?
As	we	just	said,	a	container,	in	the	abstract,	is	just	an	empty	vessel	for	executing
software	in.	To	start	a	specific	container,	you	need	to	supply	it	with	some
specific	environment	or	context—what	you’d	need	in	order	to	run	an	NGINX
web	server	in	one	container	would	be	quite	different	from	what	you’d	need	to
run,	say,	MySQL	in	another	container.

The	environment	or	context	that	you	supply	when	you	create	the	container—
known	as	an	image—is	everything	that	makes	the	container	unique.	For

WOW! eBook
www.wowebook.org

example,	what	does	the	filesystem	look	like?	What	environment	variables	are
set?	What	command	is	being	run?	So,	an	image	is	a	bundled	up	package	of
everything	needed	to	run	a	(specific)	container.

Using	an	image,	you	can	spawn	as	many	containers	as	you	like	that	all	look	the
same.	For	this	reason,	you	may	find	it	useful	to	think	of	an	image	as	a	factory	for
creating	specific	containers.	People	have	also	likened	images	to	an	abstract	class
in	programming,	and	containers	to	instances	of	that	class.

Images	are	ideal	for	sharing	and	distributing	software:	they	use	a	standard	format
that	is	designed	to	be	portable.	Docker	provides	built-in	tools	for	distributing
images.	By	sharing	images,	you	can	collaborate	on	software	development
between	your	team	and	make	your	software	available	for	deployment.

WOW! eBook
www.wowebook.org

Running	a	Ruby	Script	Without	Ruby	Installed
We’re	about	to	perform	some	magic.	Using	Docker,	we’re	going	to	run	a	Ruby
application	without	needing	Ruby	installed	on	our	system.

Have	a	look	at	this:

​ ​$ ​​docker​​ ​​run​​ ​​ruby:2.6​​ ​​ruby​​ ​​-e​​ ​​"puts :hello"​
​ Unable to find image 'ruby:2.6' locally

​ 2.6: Pulling from library/ruby

​ cd8eada9c7bb: Pull complete

​ c2677faec825: Pull complete

​ fcce419a96b1: Pull complete

​ 045b51e26e75: Pull complete

​ 3b969ad6f147: Pull complete

​ f2db762ad32e: Pull complete

​ 708e57760f1b: Pull complete

​ 06478b05a41b: Pull complete

​ Digest: sha256:ad724f6982b4a7c2d2a8a4ecb67267a1961a518029244ed943e2d448d6fb7

​ 994

​ Status: Downloaded newer image for ruby:2.6

​ hello

Whoa.	What	just	happened	there?

If	you	look	at	the	final	line	of	output,	you’ll	see	the	output	we	expected	from	our
Ruby	script:	“hello”.	So	somehow	it	worked.	But	how?	Why?

The	docker run	command	has	the	following	format:

​ ​$ ​​docker​​ ​​run​​ ​​[OPTIONS]​​ ​​<image>​​ ​​<command>​

This	command	starts	a	new	container	based	on	<image>,	and	executes	<command>

inside	the	container.	You	may	find	it	helpful	to	think	about	it	in	two	parts:	docker

run [OPTIONS] <image>	says	what	type	of	container	we’re	going	to	run,	whereas
<command>	says	what	we	want	to	run	inside	the	container.

So	looking	back	at	our	command,	we	have:

WOW! eBook
www.wowebook.org

The	first	part	says	that	we	want	to	run	a	container	based	on	the	ruby:2.6	image.	As
we	said	previously	(​Before	We	Begin​),	an	image	is	a	bundled-up	package	of
everything	needed	to	run	(a	specific)	container.	The	ruby:2.6	image	is	no
exception;	it	has	Ruby	2.6	preinstalled,	with	all	its	dependencies,	allowing	us	to
create	containers	capable	of	running	this	version	of	Ruby.

The	second	part	of	the	command	specifies	what	we	want	to	run	inside	the
container.	In	this	case,	we’re	saying	we	want	to	run	the	Ruby	interpreter	with	a
script	passed	in	using	the	command-line	option	-e.	The	script	is	the	most	basic
you	can	imagine:	it	simply	outputs	the	word	“hello”.

Terminology:	Running	an	Image
We	may	occasionally	talk	of	running	an	image,	but	strictly
speaking,	this	is	incorrect.	Images	can’t	be	run	directly;	they	are
immutable	factories	for	creating	containers.	Instead,	what	we	mean
is	that	we	create	a	container	based	on	the	image,	and	it’s	the
container	that	can	be	run.

Our	docker run	command	will	work	on	any	machine	that	has	Docker	installed—
even	one	without	Ruby.

How	is	that	possible?	It’s	all	very	well	that	the	image	ruby:2.6	has	Ruby	installed,
but	how	did	we	magically	have	it	on	our	computer?

In	actual	fact,	we	didn’t.

When	we	executed	the	docker run	command,	you	may	have	noticed	that	it	said
Unable to find image ’ruby:2.6’ locally.	Docker	then	proceeded	to	download	the
ruby:2.6	image,	which	is	why	the	command	took	a	little	while	to	run.	Rather	than
download	the	image	in	one	go,	it	downloaded	the	parts—known	as	layers—that

WOW! eBook
www.wowebook.org

make	up	the	image.	So	Docker	provides	a	seamless	mechanism	for	delivering
exactly	the	images	we	need,	when	we	need	them.

Why	So	Slow?
If	you	run	the	previous	command	yourself,	there’s	one	slight	flaw	you	may
notice:	it	takes	a	looonnng	time.	I	know	interpreted	languages	like	Ruby	are
slow,	but	this	is	ridiculous.

The	prior	discussion	helps	to	explain	why	the	command	took	so	long.	The	thing
that	took	the	time	wasn’t	executing	our	tiny	Ruby	script;	it	was	downloading	the
ruby:2.6	image	over	the	network.	Whenever	you	start	a	container	based	on	an
image	that	you	haven’t	used	before,	Docker	will	need	to	download	it	first.

Although	images	are	typically	much	smaller	than	VMs—MBs	rather	than	GBs—
waiting	20	seconds	for	every	Docker	command	would	be	pretty	frustrating.
Thankfully,	we	don’t	have	to.	Docker	stores	downloaded	images	locally,	so	the
next	time	you	start	a	container	based	on	the	same	image,	it	starts	up	at	virtually
native	speed.	Docker	even	caches	individual	layers	of	the	image,	allowing	for
reuse	of	layers	between	images,	as	we’ll	see	shortly.

Let’s	see	this	for	ourselves.	Try	running	the	same	command	for	a	second	time.

​ ​$ ​​docker​​ ​​run​​ ​​ruby:2.6​​ ​​ruby​​ ​​-e​​ ​​"puts :hello"​
​ hello

Wow.	Much	faster	this	time—no	output	about	images	being	downloaded.

Cleaning	Up	After	Ourselves
Each	time	we	run	the	docker run	command,	Docker	creates	a	new	container	to	run
the	command.	We’ve	now	run	our	Ruby	script	twice,	so	we	have	two	virtually
identical	containers	for	running	this	Ruby	script.

To	list	the	running	containers,	we	use:

​ ​$ ​​docker​​ ​​ps​
​ CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

WOW! eBook
www.wowebook.org

As	you	can	see,	there	are	no	running	containers—that’s	because	when	our	Ruby
command	terminated,	the	container	running	it	also	terminated.	However,	unless
we	tell	it	otherwise,	Docker	will	keep	this	stopped	container	around	in	case	we
want	to	use	it	again.

Let’s	list	all	our	containers,	including	stopped	ones,	by	adding	the	-a	option:

​ ​$ ​​docker​​ ​​ps​​ ​​-a​
​ CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

​ 974e2bcb8266 ruby:2.6 "ruby … 1 seco… Exited… dazzling_ba…

​ 7f8d7dddd6b5 ruby:2.6 "ruby … 3 seco… Exited… hungry_heis…

Here	you	can	see	two	containers:	one	for	each	time	we	ran	the	Ruby	command.
However,	we	no	longer	have	any	need	for	them;	we	can	delete	them	with:

​ ​$ ​​docker​​ ​​rm​​ ​​<container​​ ​​id>​​ ​​[<container​​ ​​id2>​​ ​​...]​

Your	container	IDs	will	differ	from	mine	as	they	are	randomly	generated.	To
delete	these	containers,	I’d	run:

​ ​$ ​​docker​​ ​​rm​​ ​​974e2bcb8266​​ ​​7f8d7dddd6b5​

However,	you	will	need	to	substitute	your	container	IDs	to	run	this.	Do	this	now
to	clean	up	your	containers.

In	the	future,	when	creating	a	container	we	have	no	further	use	for,	we	can	use
the	--rm	option,	which	tells	Docker	to	delete	the	container	after	it	completes.	The
fancy	word	for	short-lived	containers	that	are	deleted	after	they’ve	served	their
purpose	is	ephemeral,	but	I	prefer	the	word	throwaway.	Here’s	how	we’d	run	our
Ruby	script	in	a	throwaway	container:

​ ​$ ​​docker​​ ​​run​​ ​​--rm​​ ​​ruby:2.6​​ ​​ruby​​ ​​-e​​ ​​"puts :hello"​

This	is	a	fairly	common	pattern,	and	you’ll	see	it	throughout	the	book.

WOW! eBook
www.wowebook.org

Generating	a	New	Rails	App	Without	Ruby	Installed
Running	a	Ruby	script	was	cool,	but	what	else	can	we	do?

Wouldn’t	it	be	nice	to	start	using	Docker	for	some	“real-world”	tasks?	Let’s
imagine	we	want	to	create	a	new	Rails	project	(that’s	not	so	far-fetched…we	are
Ruby	developers	after	all).	Can	we	do	that?	You	bet.

We’re	going	to	want	to	run	multiple	commands	in	succession	in	a	container	in
order	to	generate	the	Rails	project.	We	could	craft	a	really	long,	ugly	docker run

that	executes	the	instructions	one	after	another.	However,	that’s	going	to	be	hard
to	comprehend.

Instead,	we	can	do	something	a	little	different.	We	can	start	a	container	running
an	interactive	Bash	shell.	When	we	do	this,	we	literally	get	a	terminal	session
running	inside	the	container.	From	there,	we	can	run	as	many	commands	as	we
like,	much	like	if	we	had	a	local	Bash	session.	This	is	a	very	useful	trick	to	have
up	your	sleeve.

Let’s	give	it	a	whirl.

Before	we	start,	though,	you’ll	need	to	find	a	directory	on	your	machine	where
you	want	to	generate	the	Rails	project	files.	As	our	upcoming	Docker	commands
will	affect	our	local	files	(we’ll	cover	exactly	how	shortly),	I	recommend	that
you	create	a	new,	empty	folder	where	you’ll	run	the	steps	from.	For	example:

​ ​$ ​​mkdir​​ ​​~/docker_for_rails_developers​
​ ​$ ​​cd​​ ​​~/docker_for_rails_developers​

All	set?	Great.	We’re	now	going	to	start	an	interactive	Bash	shell	inside	a
container	based	on	the	now	familiar	ruby:2.6	image:

​ ​$ ​​docker​​ ​​run​​ ​​-i​​ ​​-t​​ ​​--rm​​ ​​-v​​ ​​${PWD}:/usr/src/app​​ ​​ruby:2.6​​ ​​bash​

You	can	see	we’re	using	the	--rm	option	to	create	a	throwaway	container	that	will
be	deleted	once	we	are	done	with	it.	There	are	also	some	new	options	(-i,	-t,	and	-

WOW! eBook
www.wowebook.org

v ${PWD}:/usr/src/app)	that	we	haven’t	seen	before.	We’ll	come	back	to	these	in	a
moment.	For	now,	though,	when	you	run	this	command,	you	should	be	greeted
by	a	terminal	prompt	that	looks	something	like	this:

​ ​root@0c286e8bda42:/#​

This	different	prompt	shows	that	we’re	now	successfully	running	a	Bash	shell
inside	a	container.	The	root@	and	#	indicate	that	we’re	the	root	user—this	is	the
default	user	inside	a	container.

From	this	new	Bash	prompt,	we	now	can	issue	any	commands	we	want	the
container	to	run.	This	begs	the	question…what	do	we	want	to	run?	Remember:
we’re	trying	to	generate	a	new	Rails	project.	So,	first,	let’s	move	into	the	folder
we’re	going	to	use	for	our	project:

​ ​root@0c286e8bda42:/# ​​cd​​ ​​/usr/src/app​

Now	let’s	install	the	Rails	gem:

​ ​root@0c286e8bda42:/usr/src/app# ​​gem​​ ​​install​​ ​​rails​

Rails	Version
The	examples	in	this	book	have	been	built	and	tested	against	Rails
5.2.2—the	latest	version	at	the	time	of	writing.	However,	except
where	we	use	new	Rails	features,	everything	should	largely	work
for	previous	versions	of	Rails	too.

You	should	see	the	Rails	gem	and	all	its	dependencies	being	installed.	This
means	we’re	now	ready	to	generate	our	project:

​ ​root@0c286e8bda42:/usr/src/app# ​​rails​​ ​​new​​ ​​myapp​​ ​​--skip-test​​ ​​--skip-bundle​

We’re	using	the	--skip-test	option	to	tell	Rails	not	to	use	its	default	of	Minitest.
That’s	because	in	Chapter	7,	we	use	RSpec	to	demonstrate	how	to	configure	our
tests	in	a	Dockerized	environment.

We	also	use	the	--skip-bundle	option.	This	tells	Rails	not	to	run	bundle install	after

WOW! eBook
www.wowebook.org

generating	the	project.	The	container	is	just	a	temporary	vehicle	for	us	to
generate	the	Rails	project—since	we’re	going	to	get	rid	of	it,	there’s	no	need	to
install	the	project	dependencies.

When	we	run	our	rails new	command,	we	get	the	following	output,	which	shows
our	Rails	project	files	being	created,	just	as	we’d	expect:

​ create

​ create README.md

​ create Rakefile

​ create .ruby-version

​ create config.ru

​ create .gitignore

​ create Gemfile

​ ...

​ create vendor

​ create vendor/.keep

​ create storage

​ create storage/.keep

​ create tmp/storage

​ create tmp/storage/.keep

​ remove config/initializers/cors.rb

​ remove config/initializers/new_framework_defaults_5_2.rb

Great!	We	can	see	our	Rails	files	being	generated.	Remember,	though,	that	we’re
inside	the	container,	and	we	need	to	get	the	files	onto	our	local	machine.	How	do
we	do	that?

First,	let’s	terminate	our	Bash	shell,	which	will	stop	the	container:

​ ​root@0c286e8bda42:/usr/src/app# ​​exit​

This	returns	us	to	our	familiar	terminal	prompt:	$.

Now	let’s	have	a	look	inside	the	current	directory	on	our	local	machine:

​ ​$ ​​ls​
​ myapp

​ ​$ ​​cd​​ ​​myapp​
​ ​$ ​​ls​
​ Gemfile Rakefile bin config.ru lib package.json storage

WOW! eBook
www.wowebook.org

​ vendor README.md app config db log public

​ tmp

Huh.	Somehow	the	files	generated	inside	the	container	are	here	on	our	local
filesystem.	Aren’t	containers	completely	isolated?	How	did	that	happen?

The	answer	lies	in	the	-v	option	we	ignored	in	our	docker run	command.	In	Docker
parlance,	this	mounts	a	volume—effectively	sharing	a	portion	of	our	local
filesystem	with	the	container.	Specifically,	-v ${PWD}:/usr/src/app	says,	“Mount	our
current	directory	inside	the	container	at	/usr/src/app”	(${PWD}	is	a	Unix
environment	variable	pointing	to	the	current	directory).	This	means	that	any	files
in	our	local	directory	would	be	visible	in	/usr/src/app	inside	the	container.
Similarly,	if	we	create,	delete,	or	edit	files	in	this	container	directory,	the	changes
will	be	reflected	on	our	local	filesystem.

Here,	mounting	the	local	volume	meant	that	the	Rails	project	generated	inside
the	container	(within	/usr/src/app)	remained	in	our	local	directory,	even	after	the
container	terminated.	Additionally,	this	feature	will	be	useful	during
development	to	allow	us	to	edit	files	locally,	and	have	the	changes	be	picked	up
automatically	inside	the	container,	without	having	to	rebuild	the	image.

It’s	worth	noting	a	couple	of	key	points	about	how	this	mounting	behavior
works.	Firstly,	if	the	/usr/src/app	directory	did	not	already	exist	inside	the
container,	Docker	would	create	it.	Secondly,	if	the	directory	does	exist	inside	the
container,	the	mounted	directory	overlays	and	masks	its	contents	while	the
mount	is	in	effect.

Linux	Users	Only:	Change	File	Ownership
You’ll	notice	that	our	newly	generated	Rails	project	files	are	owned
by	root.	That’s	because,	by	default,	containers	run	as	root	(UID	1).
In	order	to	modify	the	files,	you’ll	need	to	change	their	owner:

​ ​$ ​​sudo​​ ​​chown​​ ​​<your_user>:<your_group>​​ ​​-R​​ ​​myapp/​

You’ll	have	to	do	this	whenever	we	generate	files	inside	a	container.
For	more	details,	see	​File	Ownership	and	Permissions​.

WOW! eBook
www.wowebook.org

Finally,	we	come	to	the	-i	and	-t	options.	To	understand	these,	we	first	have	to
understand	Docker’s	architecture.

The	heart	of	Docker—the	Docker	Engine—is	a	client-server	application.	The
Docker	CLI	(the	docker	command)	is	just	a	thin	client	that	tells	a	separate
program—the	Docker	daemon—to	do	what	we’ve	asked.	The	daemon	is
responsible	for	doing	the	heavy	lifting	in	terms	of	starting,	stopping,	and
otherwise	bossing	around	our	containers.

The	following	figure	shows	the	high-level	architecture	of	Docker	on	Linux:

However,	Docker	is	built	on	Linux	containerization	technologies	that	Mac	and
Windows	do	not	have	natively.	Docker	gets	around	this	by	installing	a
lightweight	Linux	virtual	machine	that	runs	the	Docker	daemon.	This	leads	to	a
slightly	different	architecture	for	Docker	for	Mac/Windows,	as	shown	in	the
following	figure.

WOW! eBook
www.wowebook.org

So	how	does	this	help	us	explain	why	we	need	to	use	-i	and	-t	options?

Unix	processes	have	three	channels	for	I/O:	standard	input	(stdin),	standard
output	(stdout),	and	standard	error	(stderr).	Since	the	Docker	daemon	runs	in	a
separate	process,	Docker	would	have	to	actively	do	something	to	forward	our
CLI	input	to	the	Docker	daemon.

By	default,	however,	docker run	only	forwards	the	container’s	output	to	our	client.
That’s	fine	when	we	want	to	run	a	container	that	requires	no	input.	However,
sometimes	we	run	processes	that	do	require	input.	An	interactive	Bash	session	is
a	great	example	of	this—it	waits	to	receive	the	commands	we	enter.	In	this	case,
we	need	to	explicitly	tell	Docker	to	forward	our	CLI	input	on	to	the	Docker
daemon.	We	do	this	with	the	-i	option—“i”	for	input.	If	we	didn’t	specify	this,
the	container	would	terminate	immediately,	because	Bash—receiving	no	input
—would	terminate.

However,	this	alone	is	not	enough.	An	interactive	Bash	session	must	be	run
inside	a	terminal	emulator,	which	is	responsible	for	things	like	displaying	a

WOW! eBook
www.wowebook.org

prompt	and	interpreting	escape	sequences	such	as	Ctrl-C.	If	we	start	a	container	to
run	bash,	by	default	this	runs	in	noninteractive	mode,	executing	any	commands
provided,	and	terminating	once	it’s	done.	To	achieve	a	long-lived,	interactive
Bash	session	inside	a	Docker	container,	we	have	to	tell	Docker	to	set	up	a
terminal	emulator	for	us	(technically	a	pseudoterminal	or	pty)	that	sits	in	front	of
Bash.	We	do	this	by	specifying	the	-t	option	for	docker run.

Now,	if	this	all	sounds	quite	complicated,	just	remember	that	whenever	you	need
a	long-lived,	interactive	session,	you	need	to	specify	both	the	-i	and	-t	options.	In
fact,	these	are	commonly	combined	into	the	shorthand	form	-it,	which	you	can
think	of	as	meaning	“i”-n-“t”-eractive.	Neat.

And	with	that,	our	work	here	is	done.

WOW! eBook
www.wowebook.org

Quick	Recap
Now	that	you’ve	had	your	first	taste	of	Docker,	let’s	pause	for	a	moment	to	catch
our	breath	and	review	what	we’ve	learned.

In	this	chapter:

1.	 We	installed	Docker	on	our	machines.

2.	 We	ran	our	first	ever	Docker	command,	a	helloworld	Ruby	script,	without
needing	Ruby	installed	on	our	machine.

​ ​$ ​​docker​​ ​​run​​ ​​ruby:2.6​​ ​​ruby​​ ​​-e​​ ​​"puts :hello"​

3.	 We	saw	how	to	list	our	running	containers	with	docker ps	and	all	containers
(including	stopped	ones)	with	docker ps -a.

4.	 We	deleted	our	old	containers	with	docker rm <container id>	and	saw	how	to
create	throwaway	containers	using	the	docker run’s	--rm	option.

5.	 We	generated	a	new	Rails	project	using	a	container	by:

Starting	an	interactive	Bash	shell	running	inside	a	container

​ ​$ ​​docker​​ ​​run​​ ​​-i​​ ​​-t​​ ​​--rm​​ ​​-v​​ ​​${PWD}:/usr/src/app​​ ​​ruby:2.6​​ ​​bash​

Installing	the	Rails	gem	inside	the	container

​ ​root@0c286e8bda42:/usr/src/app# ​​gem​​ ​​install​​ ​​rails​

Using	the	freshly	installed	Rails	gem	to	generate	our	project

​ ​root@0c286e8bda42:/usr/src/app# ​​rails​​ ​​new​​ ​​myapp​​ ​​--skip-test​​ ​​\​
​ ​ ​​--skip-bundle​

Nice.	We’re	well	on	our	way	to	Docker	proficiency.	In	the	next	chapter,	we’ll
find	out	how	to	run	our	new	Rails	application.

WOW! eBook
www.wowebook.org

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Footnotes

https://www.docker.com/community-edition

https://www.docker.com/enterprise-edition

https://docs.docker.com/docker-for-mac/install/

https://docs.docker.com/docker-for-mac/#preferences

https://docs.docker.com/install/

https://docs.docker.com/engine/installation/linux/linux-postinstall/

https://docs.docker.com/compose/install/

https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/hyper-v-requirements

https://docs.docker.com/docker-for-windows/install/

https://docs.docker.com/docker-for-windows/#docker-settings

https://docs.docker.com/toolbox/toolbox_install_windows/

https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/

Copyright	©	2019,	The	Pragmatic	Bookshelf.

WOW! eBook
www.wowebook.org

https://www.docker.com/community-edition
https://www.docker.com/enterprise-edition
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/#preferences
https://docs.docker.com/install/
https://docs.docker.com/engine/installation/linux/linux-postinstall/
https://docs.docker.com/compose/install/
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/hyper-v-requirements
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/#docker-settings
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/

Chapter	2

Running	a	Rails	App	in	a	Container
	

By	now	you	should	be	starting	to	become	familiar	with	the	concepts	of	Docker,
like	images,	and	running	containers	based	on	those	images.	Don’t	worry	if	you
don’t	remember	all	the	commands	and	various	options.	The	most	important	thing
is	that	you’re	beginning	to	understand	the	high-level	concepts—all	the	rest	will
follow	as	you	start	to	use	Docker	more	and	more.

In	the	last	chapter,	we	created	our	shiny	new	Rails	app.	After	the	amazement
began	to	wear	off	at	how	cool	it	was	to	generate	an	app	with	Ruby	supplied	by
Docker,	you	were	probably	left	pondering	an	important	question:	how	the	heck
do	I	actually	run	it?

In	this	chapter,	we’re	going	to	pick	up	where	we	left	off	to	get	our	new	app	up
and	running.	So,	have	you	roasted,	ground,	brewed,	and	otherwise	prepared	the
artisanal	beverage	of	your	choice?	(Just	water	for	me,	thanks.)	Right,	let’s	crack
on…

WOW! eBook
www.wowebook.org

How	Do	We	Run	Our	Rails	App?
Unfortunately,	we	can’t	start	a	Rails	server	with	just	the	ruby:2.6	image—Rails
has	a	few	more	requirements.	For	example,	we’re	going	to	need	a	JavaScript
interpreter	(like	Node.js)	to	help	with	the	asset	pipeline,	plus	we’ll	need	to	install
our	gem	dependencies.	How	do	we	run	a	Rails	server	in	a	container	while
making	sure	that	these	requirements	are	satisfied?

There	are	a	few	approaches	we	could	take.	We	could	do	what	we	did	in	the
previous	chapter:	run	bash	inside	a	container	based	on	the	ruby:2.6	image,	and
install	what	we	need	from	there.	However,	running	the	commands	manually	is
not	easily	repeatable.	We	want	a	reliable,	repeatable	way	of	spinning	up	Rails
servers	left,	right,	and	center.	Having	to	run	various	manual	commands	every
time	we	want	to	start	a	Rails	server	just	isn’t	going	to	cut	it.

Another	way	we	could	get	a	container	to	run	Rails	is	by	taking	that	same	set	of
commands	needed	to	install	Rails’	requirements,	and	chain	them	together	into	a
long,	compound	docker run	command.	However,	not	only	would	the	command	be
huge,	ugly,	and	hard	to	remember,	but	worst	of	all,	it	would	be	slow.	The	setup
instructions	would	have	to	be	run	from	scratch	every	time,	including	installing
Node.js	or	our	gem	dependencies.	We	don’t	want	to	have	to	be	waiting	minutes
just	to	start	a	Rails	server.

Compound	docker run	Commands
You	may	be	curious	to	know	how	you’d	run	multiple	commands	in
a	container	with	docker run.	The	problem	is	that	docker run	is	designed
to	start	a	container	and	run	a	single	command.

The	trick	to	get	around	this	limitation	is	to	use	the	bash	command’s	-
c	option,	which	starts	a	Bash	shell	and	immediately	executes
whatever	you	pass	in	as	a	string.	This	lets	you	do	the	following:

​ ​$ ​​docker​​ ​​run​​ ​​<options>​​ ​​[image:version]​​ ​​\​
​ ​ ​​bash​​ ​​-c​​ ​​"command1 && command2 && command3..."​

WOW! eBook
www.wowebook.org

Clever	old	bash.

So	what’s	the	real	solution?

Well,	we	want	to	be	able	to	run	containers	based	on	a	preconfigured	state	that
has	everything	needed	in	order	to	run	Rails.	What	we	really	want	is	a	factory—
hint	hint—for	creating	these	perfect	Rails	server	containers.	Did	you	get	the
subtle	hint?	In	the	previous	chapter,	we	said	that	an	image	is	a	“factory	for
creating	specific	containers.”	Sounds	like	just	what	we	need.

WOW! eBook
www.wowebook.org

Defining	Our	First	Custom	Image
In	real	life,	a	factory	doesn’t	come	out	of	nowhere.	It	has	to	be	constructed	from
blueprints:	detailed	plans	and	instructions	that	describe	exactly	what	it’s
supposed	to	look	like.	Docker’s	container	factories—in	other	words,	images—
are	no	different.	They	require	a	special	blueprint	file	aptly	named	a	Dockerfile.	A
Dockerfile	uses	special	syntax	to	describe	exactly	how	the	image	should	be
constructed.	If	you’ve	heard	the	expression	infrastructure	as	code,	this	is	an
example	of	it:	a	Dockerfile	describes	how	a	machine	image	is	configured	as
shown	in	the	figure.

A	Dockerfile	is	made	up	of	various	instructions—such	as	FROM,	RUN,	COPY,	and
WORKDIR—each	capitalized	by	convention.	Rather	than	talk	about	them	in	the
abstract,	though,	let’s	look	at	a	specific	example.

WOW! eBook
www.wowebook.org

Here’s	a	basic	Dockerfile	for	running	our	Rails	app.	It’s	not	perfect—we’ll	make
several	improvements	in	Chapter	3,	​Fine-Tuning	Our	Rails	Image​—but	it’s	good
enough	for	now.	There’s	no	need	to	create	this	file;	for	now	we’ll	just	discuss	it:

​ FROM ruby:2.6

​
​ RUN apt-get update -yqq

​ RUN apt-get install -yqq --no-install-recommends nodejs

​
​ COPY . /usr/src/app/

​
​ WORKDIR /usr/src/app

​ RUN bundle install

Every	image	has	to	start	from	something:	another,	preexisting	image.	For	that
reason,	every	Dockerfile	begins	with	a	FROM	instruction,	which	specifies	the
image	to	use	as	its	starting	point.	Typically,	we’ll	look	for	a	starting	image	that’s
close	to	what	we	need	but	more	general.	That	way	we	can	extend	and	customize
it	to	our	needs.

The	first	line	of	our	Dockerfile	is

​ FROM ruby:2.6

This	is	saying	that	our	image	will	be	based	off	the	ruby:2.6	image,	which,	as
you’ve	probably	guessed,	has	Ruby	2.6	preinstalled.	We’ve	chosen	to	start	from
this	image	because	having	Ruby	installed	is	our	biggest	requirement,	so	this
image	gets	us	most	of	the	way	there.

Right	at	the	Top:	Base	Images
There	are	several	special	images	with	no	parent	image—known	as	a
base	image—that	ultimately	all	images	depend	on.	They	contain	the
minimal	user	filesystem	for	an	operating	system.

If	you	want	to	build	your	own	stripped-down	image,	you	could
build	your	image	FROM scratch	(reads	well,	doesn’t	it?)	where	scratch

is	a	minimal	base	image.

WOW! eBook
www.wowebook.org

It’s	even	possible	to	create	your	own	base	images,[14]	although	this	is
an	advanced	topic.	We’re	not	going	to	cover	it	since	chances	are
you’ll	never	need	to	do	it.

The	next	two	lines	of	our	Dockerfile	are	RUN	instructions,	which	tell	Docker	to
execute	a	command:

​ RUN apt-get update -yqq

​ RUN apt-get install -yqq --no-install-recommends nodejs

Here,	we	tell	Docker	to	run	apt-get update -yqq,	followed	by	apt-get install -yqq --no-

install-recommends nodejs—but	what	do	these	two	commands	achieve	for	us?

As	you	may	already	know,	apt-get	is	a	command	used	to	install	software	on
Debian	(and	some	other)	Linux	distributions.[15]	We’re	using	it	in	our	Dockerfile

because	the	official	Ruby	image	that	our	image	builds	on	top	of	is	based	on
Debian—specifically,	a	version	called	Stretch.[16]

The	apt-get update	command	tells	the	package	manager	to	download	the	latest
package	information.	Many	Dockerfiles	will	have	a	similar	line,	because	without
it,	apt	has	no	package	information	at	all,	and	therefore	won’t	be	able	to	install
anything.	The	-yqq	option	is	a	combination	of	the	-y	option,	which	says	to	answer
“yes”	to	any	prompts,	and	the	-qq	option,	which	enables	“quiet”	mode	to	reduce
the	printed	output.

Next,	the	apt-get install	command	installs	Node.js,	a	prerequisite	for	running
Rails.	The	--no-install-recommends	says	not	to	install	other	recommended	but
nonessential	packages—we	don’t	need	them,	and	we	want	to	keep	our	image
size	as	small	as	possible	by	not	installing	unnecessary	files.

If	you’re	familiar	with	apt-get	in	Linux,	you	may	be	wondering	why	we’re	not
running	the	commands	as	root	with	sudo.	That’s	because,	by	default,	commands
inside	a	container	are	run	by	the	root	user,	so	sudo	is	unnecessary	(although,	as
we	mention,	this	has	security	implications	for	production	apps).

WOW! eBook
www.wowebook.org

Let’s	shift	gears	briefly	before	we	look	at	the	next	line	of	our	Dockerfile.

Remember	that	images,	and	the	containers	they	spawn,	are	separate	from	our
local	machine—they	are	isolated,	sandboxed	environments.	Therefore,	we	need
a	way	to	include	some	of	our	local	files	inside	the	containers	we	run.

We’ve	already	seen	in	​Generating	a	New	Rails	App	Without	Ruby	Installed​,	that
we	can	mount	a	local	directory	into	a	running	container.	A	mounted	volume	acts
like	a	shared	directory	between	the	container	and	the	host,	and	is	one	way	we
can	make	local	files	accessible	inside	the	container.

However,	mounting	a	volume	has	a	serious	downside	if	it’s	the	only	way	you	get
files	into	a	container.	Files	in	a	volume	aren’t	part	of	the	image	itself;	they	are
overlaid	onto	the	image	at	runtime	(when	you	start	a	container.)	If	the	mounted
files	were	essential,	the	image	wouldn’t	function	without	them,	but	the	whole
point	of	images	is	to	package	up	everything	they	need	in	order	to	run.	Therefore,
it’s	good	practice	to	bake	any	needed	files	into	the	image	itself.

The	next	line	in	our	Dockerfile	serves	exactly	this	purpose:

​ COPY . /usr/src/app/

This	tells	Docker	to	copy	all	the	files	from	our	local,	current	directory	(.)	into
/usr/src/app	on	the	filesystem	of	the	new	image.	Since	our	local,	current	directory
is	our	Rails	root,	effectively	we’re	saying,	“Copy	our	Rails	app	into	the	container
at	/usr/src/app.”	The	source	path	on	our	local	machine	is	always	relative	to	where
the	Dockerfile	is	located.

Having	added	our	Rails	files	into	the	image	at	/usr/src/app,	we’re	going	to	want	to
run	various	commands	that	need	to	operate	in	this	directory	where	the	files	are.
For	example,	soon	we’ll	want	to	run	our	app	with	a	Rails	server	in	a	container
with	a	command	like	this:

​ ​$ ​​docker​​ ​​run​​ ​​[OPTIONS]​​ ​​<our​​ ​​custom​​ ​​image>​​ ​​bin/rails​​ ​​server​

Unfortunately,	this	command	would	fail	because,	by	default,	a	container’s

WOW! eBook
www.wowebook.org

working	directory	is	/,	which	doesn’t	contain	our	Rails	app	files—we	copied
those	into	/usr/src/app.

However,	the	WORKDIR	instruction	can	help	us	fix	the	situation.	Effectively,	it
performs	a	change	directory	(cd)	command,	changing	what	the	image	considers
its	current	directory.	The	next	line	in	our	Dockerfile	uses	it	to	set	/usr/src/app	as	the
working	directory:

​ WORKDIR /usr/src/app

Now	running	bin/rails server	(and	similar)	commands	will	work	because	they	will
be	executed	from	the	correct	directory.

You	can	use	multiple	WORKDIR	instructions	in	your	Dockerfile,	each	one	remaining
in	effect	until	another	one	is	issued.	The	final	WORKDIR	will	be	the	initial	working
directory	for	containers	created	from	the	image.

Finally,	we	come	to	the	last	line	of	our	Dockerfile:

​ RUN bundle install

The	command	is	executed	from	the	container’s	current	working	directory,	which
in	the	previous	command	was	set	to	be	/usr/src/app.	So	this	will	install	the	gems
defined	in	our	Rails	project’s	Gemfile,	which	are	needed	in	order	to	start	the
application.

Putting	It	All	Together
Armed	with	all	this	knowledge,	our	Dockerfile	should	now	be	much	more
understandable.	Let’s	review	it	one	more	time:

​1: FROM ruby:2.6

​2:
​3: RUN apt-get update -yqq

​4: RUN apt-get install -yqq --no-install-recommends nodejs

​5:
​6: COPY . /usr/src/app/

​7:

WOW! eBook
www.wowebook.org

​8: WORKDIR /usr/src/app

​9: RUN bundle install

First,	on	line	1,	we	say	that	our	custom	image	will	use	the	ruby:2.6	image	as	its
starting	point.	Next	we	update	the	apt	package	manager’s	package	information
(line	3),	so	it	knows	where	to	install	things	from.	Then	we	use	it	to	install	nodejs

(line	4),	which	we	need	for	Rails’	asset	pipeline.

With	the	prerequisites	for	Rails	taken	care	of,	we	then	copy	our	Rails	app	files
from	our	local	directory	into	the	container	at	/usr/src/app	(line	6)	so	they	are
baked	into	the	image.	We	make	this	the	current	working	directory	for	the	image
(line	8)	so	that	we	can	execute	Rails	commands	against	the	image	from	the
correct	directory.

Finally,	we	bundle install	(line	9)	to	install	the	gems	we	need	for	our	Rails	project.

Now	that	it	makes	more	sense,	let’s	go	ahead	and	actually	create	this	Dockerfile.
First	let’s	make	sure	we’re	in	the	top-level	(root)	directory	of	our	Rails	app:

​ ​$ ​​ls​
​ Gemfile Rakefile bin config.ru lib package.json storage vendor

​ README.md app config db log public tmp

Then	crack	open	your	editor	of	choice	and	create	a	file	called	Dockerfile	with	the
contents	as	shown.	I’d	highly	recommend	typing	it	in	by	hand	rather	than
copying	and	pasting—when	learning	a	new	skill,	physically	typing	things	out
helps	to	cement	it	in	your	mind	and	build	up	your	muscle	memory.

With	our	swanky	Dockerfile	in	hand,	let’s	turn	our	attention	to	how	we	use	it	to
create	an	actual	image.

WOW! eBook
www.wowebook.org

Building	Our	Image
The	process	of	generating	an	image	from	a	Dockerfile	is	called	building	an	image.
We	do	that	with	the	docker build	command,	which	has	the	following	format:

​ ​$ ​​docker​​ ​​build​​ ​​[options]​​ ​​path/to/build/directory​

In	our	case,	you	should	already	still	be	in	the	directory	containing	our	Dockerfile

and	project	files	so	we	can	use	a	single	dot	to	indicate	the	current	directory.	Let’s
give	it	a	go:

​ ​$ ​​docker​​ ​​build​​ ​​.​
​ Sending build context to Docker daemon 138.8kB

​ Step 1/6 : FROM ruby:2.6

​ ​ --->​​ ​​f28a9e1d0449​
​ Step 2/6 : RUN apt-get update -yqq

​ ​ --->​​ ​​Running​​ ​​in​​ ​​29677ed71d2b​
​ Removing intermediate container 29677ed71d2b

​ ​ --->​​ ​​761da319d69a​
​ ...

​ Step 6/6 : RUN bundle install

​ ​ --->​​ ​​Running​​ ​​in​​ ​​4550030ac412​
​ ...

​ Bundle complete! 15 Gemfile dependencies, 68 gems now installed.

​ Bundled gems are installed into `/usr/local/bundle`

​ ...

​ Removing intermediate container 4550030ac412

​ ​ --->​​ ​​a1df0eddba18​
​ Successfully built a1df0eddba18

Wow,	that’s	quite	a	lot	of	output.	What	is	actually	happening?

Docker	processes	our	Dockerfile	one	instruction	at	a	time.	The	first	instruction
—FROM—is	treated	differently	from	all	the	others.	Docker	checks	whether	we
already	have	the	specified	image	on	our	local	system.	If	the	image	isn’t
available,	Docker	downloads	the	image,	just	like	it	did	in	​Running	a	Ruby	Script
Without	Ruby	Installed​,	when	we	ran	docker run	with	the	ruby:2.6	image	for	the
first	time.

WOW! eBook
www.wowebook.org

All	other	instructions	in	the	Dockerfile	are	processed	in	essentially	the	same	way.
Docker	starts	a	throwaway	container	based	on	the	image	created	in	the	previous
step,	and	it	executes	the	current	Dockerfile	instruction	inside	it.	Then	Docker
commits	the	changes	just	made	as	a	result	of	executing	the	instruction,	creating	a
new	intermediate	image	for	this	step.

You	can	see	all	this	happening	in	the	output,	which	is	split	into	sections:	one	for
each	instruction	in	the	Dockerfile.	The	output	for	each	step	follows	a	very	regular
format:

​1: Step <current step>/<total steps> : <Dockerfile instruction>

​2: ---> Running in <container ID>

​3: [Any output from running the instruction]

​4: Removing intermediate container <container ID>

​5: ---> <image ID>

For	context,	we	are	given	the	Dockerfile	instruction,	along	with	which	step	this	is
in	the	build	process	(line	1).	Next	we	see	the	ID	of	the	throwaway	container	used
to	execute	the	current	Dockerfile	instruction	(line	2)	followed	by	any	output	from
running	the	instruction	(line	3).

Every	image	created—even	intermediate	ones—are	given	a	unique,	randomly
generated	image	ID.	This	is	how	Docker	identifies	images	internally,	and	it	gives
us	a	way	to	refer	to	them.	The	ID	of	the	image	created	in	this	step	is	shown	on
line	5.

Finally,	on	line	4,	Docker	tells	us	that	it	is	deleting	the	throwaway	container	it
used	in	this	step.

When	building	a	custom	image,	it’s	really	the	final	image	we’re	interested	in.
This	represents	the	final	state	after	all	the	instructions	in	the	Dockerfile	have	been
executed.	That’s	why	the	output	concludes	by	giving	us	the	final	image	ID	(if
you’re	following	along,	your	image	ID	will	differ):

​ Successfully built a1df0eddba18

That	all	seems	fair	enough,	but	where	is	the	image	we	just	built?

WOW! eBook
www.wowebook.org

The	docker build	command	doesn’t	output	a	file;	it	simply	makes	the	new	image
available,	adding	it	to	the	list	of	images	that	Docker	knows	about.	Docker
manages	where	and	how	images	are	stored	on	your	filesystem.	We	list	the
images	on	our	system	with	the	following	command:

​ ​$ ​​docker​​ ​​images​
​ REPOSITORY TAG IMAGE ID CREATED SIZE

​ <none> <none> a1df0eddba18 1 second ago 1.01GB

​ ruby 2.6 f28a9e1d0449 6 days ago 868MB

The	first	entry	is	the	custom	image	that	we	just	built—its	image	ID	matches	the
one	specified	at	the	end	of	the	docker build	command.

WOW! eBook
www.wowebook.org

Running	a	Rails	Server	with	Our	Image
Now	that	we’ve	created	our	own	tailor-made	image,	we	should	be	able	to	start
up	a	Rails	server	to	run	our	app.

Let’s	try	doing	that	now.

We	can	refer	to	our	image	by	its	ID.	However,	image	IDs	are	long	and	hard	to
remember,	so	normally	you	would	assign	a	meaningful	name	to	an	image.	We’ll
see	how	to	do	that	later	in	​Naming	and	Versioning	Our	Image​.	For	now,	though,
referring	to	our	image	by	its	ID	is	good	enough	to	let	us	start	using	the	image.
Let’s	crack	on	and	do	just	that.

Image	ID	in	hand,	we	can	start	our	Rails	app	inside	a	container	based	on	our
custom	image	with	the	following	command.	Let’s	run	it	now:

​ ​$ ​​docker​​ ​​run​​ ​​-p​​ ​​3000:3000​​ ​​a1df0eddba18​​ ​​\​
​ ​ ​​bin/rails​​ ​​s​​ ​​-b​​ ​​0.0.0.0​

Aside	from	the	new	-p 3000:3000	option,	which	we’ll	cover	shortly	in	​Reaching
the	App:	Publishing	Ports​,	this	is	a	plain	old	docker run	command.	It	says,	“Start
a	container	based	on	our	custom	image	(a1df0eddba18),	and	run	bin/rails s -b 0.0.0.0

inside	it.”	If	you	haven’t	seen	the	-b	option	before,	we’ll	explain	why	this	is
needed	in	​Binding	the	Rails	Server	to	IP	Addresses​.

We	should	see	that	Rails	starts	up	correctly:

​ => Booting Puma

​ => Rails 5.2.2 application starting in development

​ => Run `rails server -h` for more startup options

​ Puma starting in single mode...

​ * Version 3.12.0 (ruby 2.6.0-p0), codename: Llamas in Pajamas

​ * Min threads: 5, max threads: 5

​ * Environment: development

​ * Listening on tcp://0.0.0.0:3000

​ Use Ctrl-C to stop

It	does!	So	far	so	good.

WOW! eBook
www.wowebook.org

Now	go	ahead	and	visit	http://localhost:3000	in	your	browser.	You	should	see
the	familiar	Rails	welcome	page.

High	five!	We	can	reach	our	app.

In	your	terminal,	you’ll	see	the	Rails	log	output	updated	to	show	our	request:

​ Started GET "/" for 172.17.0.1 at 2019-01-15 09:49:45 +0000

​ ...

​ Rendering /usr/local/bundle/gems/railties-5.2.2/lib/rails/templates/rails/

​ welcome/index.html.erb

​ Rendered /usr/local/bundle/gems/railties-5.2.2/lib/rails/templates/rails/

​ welcome/index.html.erb (2.7ms)

​ Completed 200 OK in 17ms (Views: 10.0ms | ActiveRecord: 0.0ms)

We’re	in	business.	You	can	now	stop	the	Rails	server	by	pressing	 Ctrl - C .

OK,	I’ve	fobbed	you	off	for	long	enough.	It’s	time	to	discuss	what	the	various

WOW! eBook
www.wowebook.org

http://localhost:3000

docker run	command	options	we’ve	been	using	actually	do.	Got	your	thinking	cap
on?	Then	let’s	get	to	it.

WOW! eBook
www.wowebook.org

Reaching	the	App:	Publishing	Ports
As	we	know,	containers	are	isolated	sandboxes.	How	is	it	that	we’re	able	to
reach	our	app	by	visiting	http://localhost:3000	on	our	local	machine?

The	truth	is,	containers	wouldn’t	be	very	useful	if	there	was	no	way	of	reaching
them	from	outside	of	Docker.	The	whole	point	of	a	web	server,	for	example,	is
that	it’s	accessible	to	people	making	requests.

Although,	by	default,	a	container	can	only	be	accessed	from	within	the	Docker
network	it’s	connected	to	(more	on	this	in	​How	Containers	Can	Talk	to	Each
Other​),	we	can	make	it	accessible	externally	by	publishing	one	or	more	ports
with	docker run’s	-p	option.

In	our	command,	we	specified	-p 3000:3000;	this	publishes	the	container’s	port
3000	(the	second	number)	on	port	3000	on	our	local	machine.	That	means	that	a
request	to	http://localhost:3000	will	reach	our	Rails	server	running	inside	the
container	on	port	3000.

How	does	this	work	in	practice?

As	we	saw	in	the	Docker	for	Linux	architecture	diagram,	on	Linux,	the	Docker
daemon	runs	directly	on	the	local	machine.	In	this	case,	publishing	a	port	simply
sets	up	a	port	mapping	(via	an	iptables	rule),	which	forwards	requests	to
http://localhost:3000	on	to	the	Docker	Engine,	which	knows	to	route	the	request
to	the	network	the	container	is	on	(as	shown	in	the	following	figure).

WOW! eBook
www.wowebook.org

http://localhost:3000
http://localhost:3000
http://localhost:3000

Docker	for	Mac/Windows	has	an	added	complication.	Remember,	here	the
Docker	daemon	is	running	inside	a	lightweight	Linux	VM,	as	we	saw	in	the
Docker	for	Mac/Windows	architecture	diagram.	Inside	the	VM,	things	work
exactly	as	Docker	on	Linux—the	port	mapping	will	route	requests	to	the
container.	However,	an	extra	bit	of	magic	is	needed	to	forward	requests	from
http://localhost:3000	to	the	VM’s	port	3000;	Docker	for	Mac/Linux	sets	up	port
forwarding	to	achieve	this,	as	illustrated	in	the	figure.

When	publishing	a	port,	you	don’t	have	to	use	the	same	external	port	as	the

WOW! eBook
www.wowebook.org

http://localhost:3000

service	inside	the	container.	If	we	had	specified	-p 80:3000,	it	would	have	mapped
port	80	on	our	local	machine	to	the	Rails	server	listening	on	port	3000	inside	the
container.	This	gives	us	a	lot	of	flexibility	in	terms	of	how	we	expose	services	to
the	outside	world.

WOW! eBook
www.wowebook.org

Binding	the	Rails	Server	to	IP	Addresses
Normally,	to	start	a	Rails	server,	we’d	simply	run	bin/rails s,	yet	when	we	started
the	Rails	server	with	docker run,	we	used	bin/rails s -b 0.0.0.0.	Why	was	that?

When	you	start	the	Rails	server	with	bin/rails s,	by	default,	it	only	listens	to
requests	on	localhost	(or	127.0.0.1)	on	whatever	machine	it’s	running	on.	This
provides	a	secure	default,	preventing	the	Rails	app	server	from	being	accessible
externally.	However,	in	our	case,	the	server	is	running	inside	a	container,	but	the
request	is	coming	from	outside.

When	we	request	http://localhost:3000	on	our	local	machine,	as	we’ve	just	seen
in	​Reaching	the	App:	Publishing	Ports​,	the	request	is	forwarded	to	the	Docker
Engine.	This	in	turn	routes	the	request	to	the	container	running	the	Rails	server,
by	translating	the	request	to	[IP address of container]:3000.	However,	as	the	Rails
server	is	only	listening	to	requests	on	localhost,	nothing	responds	to	this	request
coming	in	for	a	different	IP	address.

To	fix	this,	we	have	to	tell	our	Rails	server	to	bind	to	all	IP	addresses,	not	just	to
localhost,	using	the	option	-b 0.0.0.0.	The	IP	address	0.0.0.0	is	a	special	address	that
means	“all	IPv4	address	on	this	machine.”

Finding	the	IP	Address	of	a	Running	Container
If	you’re	curious	how	you’d	find	out	the	actual	IP	address	of	a
running	container,	you	can	do	it	as	follows:

1.	 Get	the	container	ID:

​ ​$ ​​docker​​ ​​ps​
​ CONTAINER ID IMAGE more info

​ d7230c4b0595 e28cf982ae39

2.	 Use	this	docker inspect	command	specifying	the	container	ID:

​ ​$ ​​docker​​ ​​inspect​​ ​​--format​​ ​​\​
​ ​ ​​'{{ .NetworkSettings.IPAddress }}'​​ ​​d7230c4b0595​

WOW! eBook
www.wowebook.org

http://localhost:3000

​ 172.17.0.2

WOW! eBook
www.wowebook.org

[14]

	Quick	Recap
Wow,	what	an	action-packed	chapter!	Let’s	review	the	highlights:

1.	 We	saw	our	first,	rough-and-ready	Dockerfile	designed	to	allow	us	to	run	our
app	with	a	Rails	server:

​ FROM ruby:2.6

​
​ RUN apt-get update -yqq

​ RUN apt-get install -yqq --no-install-recommends nodejs

​
​ COPY . /usr/src/app/

​
​ WORKDIR /usr/src/app

​ RUN bundle install

2.	 We	built	our	custom	image	from	this	Dockerfile	with:

​ ​$ ​​docker​​ ​​build​​ ​​.​

3.	 We	listed	the	images	on	our	system	by	issuing:

​ ​$ ​​docker​​ ​​images​

4.	 We	started	up	a	Rails	server	to	run	our	app	with:

​ ​$ ​​docker​​ ​​run​​ ​​-p​​ ​​3000:3000​​ ​​a1df0eddba18​​ ​​\​
​ ​ ​​bin/rails​​ ​​s​​ ​​-b​​ ​​0.0.0.0​

And	we	saw	it	running	in	a	browser	on	http://localhost:3000.

In	the	next	chapter,	we’ll	start	to	make	some	further	refinements	to	our	Dockerfile.
In	the	process,	we’ll	learn	how	to	give	our	images	friendly	names,	and	speed	up
image	builds	by	taking	advantage	of	the	built-in	caching	mechanism.

Footnotes

https://docs.docker.com/engine/userguide/eng-image/baseimages/

WOW! eBook
www.wowebook.org

http://localhost:3000
https://docs.docker.com/engine/userguide/eng-image/baseimages/

[15]

[16]

https://en.wikipedia.org/wiki/Advanced_Packaging_Tool

https://github.com/docker-
library/ruby/blob/a04dd5259eaef8d682dae2bb709f03219a6e5905/2.5/stretch/Dockerfile#L1

Copyright	©	2019,	The	Pragmatic	Bookshelf.

WOW! eBook
www.wowebook.org

https://en.wikipedia.org/wiki/Advanced_Packaging_Tool
https://github.com/docker-library/ruby/blob/a04dd5259eaef8d682dae2bb709f03219a6e5905/2.5/stretch/Dockerfile#L1

Chapter	3

Fine-Tuning	Our	Rails	Image
	

We	covered	a	lot	of	ground	in	the	previous	chapter.	We	saw	our	first	Dockerfile,
which	we	used	to	build	a	custom	image,	tailored	for	running	our	Rails	app.

However,	you	may	recall	that	we	said	this	Dockerfile	was	“good	enough”	but	“not
perfect”	(​Defining	Our	First	Custom	Image​).	The	truth	is,	we	took	a	few
shortcuts	for	the	sake	of	simplicity.	Now	that	you	have	some	Docker
fundamentals	under	your	belt,	we	can	go	back	and	address	these	issues.

By	the	end	of	this	chapter,	we’ll	have	our	Dockerfile	looking	shipshape	and	ready
for	us	to	dive	into	the	final	piece	of	the	development	puzzle—Docker	Compose
—but	I’m	getting	ahead	of	myself.

So	grab	some	overalls,	a	trusty	wrench,	and	plenty	of	spit	and	polish—you’re
going	to	need	them,	metaphorically	speaking	that	is.

WOW! eBook
www.wowebook.org

Naming	and	Versioning	Our	Image
When	we	ran	our	Rails	server	with	this	command:

​ ​$ ​​docker​​ ​​run​​ ​​-p​​ ​​3000:3000​​ ​​a1df0eddba18​​ ​​\​
​ ​ ​​bin/rails​​ ​​s​​ ​​-b​​ ​​0.0.0.0​

we	referred	to	our	custom	image	by	its	ID:	a1df0eddba18	(yours	will	differ).
There’s	no	way	we’re	going	to	remember	that.	Just	like	you	wouldn’t	refer	to	a
Git	branch	using	the	SHA-1	hash	of	its	latest	commit,	the	same	is	true	for
images.	Instead,	we	give	our	images	human-friendly	names	by	tagging	them.
Let’s	say	we	want	to	name	our	image	railsapp.	We	can	do	this	by	running:

​ ​$ ​​docker​​ ​​tag​​ ​​a1df0eddba18​​ ​​railsapp​

which	says,	“Tag	the	image	identified	by	‘a1df0eddba18’	with	‘railsapp’.”	To
verify	this	worked,	let’s	list	our	images	with:

​ ​$ ​​docker​​ ​​images​

The	output	confirms	that	the	image	name	(also	known	as	the	repository)	has
been	set	to	railsapp:

​ REPOSITORY TAG IMAGE ID CREATED SIZE

​ railsapp latest a1df0eddba18 8 minutes ago 1.01GB

​ ...

Notice	that	the	“tag”	field	is	listed	as	latest.	That’s	because	the	docker tag

command	actually	takes	as	its	argument	an	image	reference,	which	is	made	up	of
two	parts:	the	image	(repo)	name,	and	an	optional	tag:

​ <image_name>[:<tag>]

You	can	set	the	tag	to	any	valid	string	made	up	of	letters,	digits,	underscores,
periods,	and	dashes	(with	some	caveats).[17]	If	none	is	provided,	the	default	tag
—latest—will	be	used.

Unfortunately,	the	meaning	of	tag	here	is	slightly	overloaded.	I	recommend

WOW! eBook
www.wowebook.org

thinking	of	the	docker tag	command	as	tagging	an	image	with	both	an
image/repository	name	(in	our	case,	railsapp)	and	a	tag	(in	our	case,	the	default	of
latest).	It’s	a	little	bit	strange,	but	you	get	used	to	it.

We	can	give	an	image	as	many	different	tags	as	we	like.	For	example,	let’s	also
give	our	image	the	version	number	1.0	by	running:

​ ​$ ​​docker​​ ​​tag​​ ​​railsapp​​ ​​railsapp:1.0​

Here	we	refer	to	our	image	as	railsapp	since	we’ve	already	tagged	it	with	that
name	(railsapp:latest	also	would	have	worked).	The	new	tag	railsapp:1.0	is	made	up
of	the	image	name	railsapp	and	version	1.0.	A	quick	listing	shows	this	has
worked:

​ ​$ ​​docker​​ ​​images​
​ REPOSITORY TAG IMAGE ID CREATED SIZE

​ railsapp 1.0 a1df0eddba18 8 minutes ago 1.01GB

​ railsapp latest a1df0eddba18 8 minutes ago 1.01GB

​ ...

Although	there	are	two	separate	lines,	showing	our	railsapp	image	with	both	the
latest	and	1.0	version	tags,	the	“image	ID”	field	confirms	that	these	are	one	and
the	same	image.

Rather	than	tagging	images	after	they’ve	been	built,	we	can	tag	them	when	we
build	the	image	using	the	-t	option.	Multiple	tags	can	be	specified	by	adding
multiple	-t	options,	so	we	could	have	achieved	the	same	result	as	our	two
previous	docker tag	commands	if	we	had	built	the	image	with	the	command:

​ ​$ ​​docker​​ ​​build​​ ​​-t​​ ​​railsapp​​ ​​-t​​ ​​railsapp:1.0​​ ​​.​

Having	named	our	image,	we’re	now	able	to	start	our	Rails	server	using	the
image	name,	like	so:

​ ​$ ​​docker​​ ​​run​​ ​​-p​​ ​​3000:3000​​ ​​railsapp​​ ​​\​
​ ​ ​​bin/rails​​ ​​s​​ ​​-b​​ ​​0.0.0.0​

Ahh.	Much	better.

WOW! eBook
www.wowebook.org

Running	a	specific	version	of	an	image	is	exactly	as	you’d	expect:	using	the
same	colon	notation	as	used	previously.	For	example,	to	explicitly	use	version
1.0	of	our	image,	we’d	run:

​ ​$ ​​docker​​ ​​run​​ ​​-p​​ ​​3000:3000​​ ​​railsapp:1.0​​ ​​\​
​ ​ ​​bin/rails​​ ​​s​​ ​​-b​​ ​​0.0.0.0​

WOW! eBook
www.wowebook.org

A	Default	Command
Currently,	every	time	we	want	to	start	a	Rails	server	in	a	container,	we	have	to
explicitly	specify	the	command	bin/rails s -b 0.0.0.0	as	part	of	our	docker run

command:

​ ​$ ​​docker​​ ​​run​​ ​​-p​​ ​​3000:3000​​ ​​railsapp​​ ​​\​
​ ​ ​​bin/rails​​ ​​s​​ ​​-b​​ ​​0.0.0.0​

This	is	a	shame	because	the	main	purpose	of	our	custom	image	is	to	start	a	Rails
server.	It	would	be	better	if	we	could	embed	the	knowledge	of	how	to	start	the
Rails	server	in	the	image	itself.

We	can	do	this	by	adding	a	new	instruction	to	our	Dockerfile.	The	CMD	instruction,
pronounced	“command,”	specifies	the	default	command	to	run	when	a	container
is	started	from	the	image.	Let’s	use	this	in	our	Dockerfile	to	start	the	Rails	server
by	default:

​ ​FROM​​ ruby:2.6​
​
​ ​RUN ​apt-get update -yqq
​ ​RUN ​apt-get install -yqq --no-install-recommends nodejs
​
​ ​COPY​​ . /usr/src/app/​
​
​ ​WORKDIR​​ /usr/src/app​
​ ​RUN ​bundle install
​
» ​CMD​​ ["bin/rails", "s", "-b", "0.0.0.0"]​

Looking	at	this	new	line,	you	may	notice	the	weird	array	notation	used	to	specify
the	command.	This	form—known	as	the	Exec	form—is	needed	so	that	our	Rails
server	is	started	as	the	first	process	in	the	container	(PID	1)	and	correctly
receives	Unix	signals	such	as	the	signal	to	terminate.	It’s	the	recommended	form,
and	most	commonly	used.

The	other	form	of	the	CMD	instruction,	which	is	rarely	used,	omits	the	array
notation	in	favor	of	writing	the	command	directly:

WOW! eBook
www.wowebook.org

​ ​CMD​​ bin/rails s -b 0.0.0.0​

This	is	known	as	the	Shell	form	because	Docker	executes	the	command	via	a
command	shell,	prefixing	it	with	/bin/sh -c—so	in	our	case,	it	runs	/bin/sh -c

bin/rails s -b 0.0.0.0.	The	problem	is	that	/bin/sh -c,	rather	than	the	Rails	server,	is	the
first	process	inside	the	container;	since	/bin/sh -c	doesn’t	pass	signals	on	to	its
subprocesses,	this	would	cause	issues	when	trying	to	terminate	the	server.
Generally,	you	can	just	avoid	this	form	altogether.

OK,	let’s	rebuild	our	image	with	our	new	CMD	instruction,	remembering	to	tag	as
the	latest	version	of	railsapp:

​ ​$ ​​docker​​ ​​build​​ ​​-t​​ ​​railsapp​​ ​​.​
​ Sending build context to Docker daemon 138.8kB

​ ...

​ Successfully built f87ad761cd0f

​ Successfully tagged railsapp:latest

With	our	newly	built	image,	we	can	launch	the	Rails	server—omitting	the
bin/rails s -b 0.0.0.0—with	just:

​ ​$ ​​docker​​ ​​run​​ ​​-p​​ ​​3000:3000​​ ​​railsapp​

It’s	important	to	note	that	the	CMD	instruction	just	provides	a	default	command—
you	can	specify	a	different	one	when	you	issue	the	docker run	command.	For
example,	to	list	our	Rake	tasks,	we’d	run:

​ ​$ ​​docker​​ ​​run​​ ​​--rm​​ ​​railsapp​​ ​​bin/rails​​ ​​-T​

Note	the	use	of	--rm	to	delete	the	container	after	it	runs.	We	used	it	here	and	not
when	running	the	Rails	server,	because	this	container	has	served	its	purpose	after
it	has	generated	the	Rake	task	output,	whereas	a	container	to	run	the	Rails	server
can	be	reused.

WOW! eBook
www.wowebook.org

Ignoring	Unnecessary	Files
You	may	remember	that	there’s	a	separation	between	the	Docker	CLI	that	we	use
to	run	commands,	and	the	Docker	daemon	that	does	most	of	the	actual	work	(as
we	saw	in	the	architecture	diagrams	for	Docker	for	Linux	and	Docker	for
Mac/Windows).	Building	an	image	is	no	different—it’s	the	Docker	daemon	that
actually	builds	the	image.

How	does	this	work	in	practice?

When	the	docker build	command	is	run,	the	CLI	tool	takes	all	the	files	in	the	build
directory	specified—which	collectively	are	known	as	the	build	context—and
sends	them	to	the	Docker	daemon.	The	daemon	is	then	able	to	process	the
Dockerfile	and	carry	out	the	instructions	in	it	to	generate	the	image.

We	need	a	way	to	restrict	which	files	are	sent	as	part	of	the	build	context	because
sending	more	files	slows	down	your	builds	(especially	true	on	Docker	for	Mac
or	Windows	where	the	daemon	is	running	in	a	virtualized	host).	Also,	we	might
want	to	prevent	sensitive	files	containing	secrets	from	being	included	in	our
image—particularly	if	we	plan	to	share	the	image	publicly.

To	exclude	certain	files	and	directories	from	being	sent	as	part	of	the	build
context,	we	list	them	in	a	.dockerignore	file	in	our	build	directory.	The
.dockerignore	file	works	on	a	similar	basis	to	a	.gitignore	file,	which	you’re
probably	familiar	with,	although	the	pattern	matching	syntax	is	slightly	different.
[18]

Let’s	create	a	basic	.dockerignore	file	for	our	project:

​1: ​# Git​
​- .git

​- .gitignore

​-
​5: ​# Logs​
​- log/*

​-

WOW! eBook
www.wowebook.org

​- ​# Temp files​
​- tmp/*

​10:
​- ​# Editor temp files​
​- *.swp

​- *.swo

We	exclude	the	.git	directory	(line	2),	which	contains	the	Git	history	and	config,
as	our	image	only	needs	the	latest	version	of	the	files.	Although	a	minor	thing,
while	we’re	at	it,	we’ve	excluded	the	.gitignore	file	too	(line	3).

Similarly,	we	exclude	any	logs	(line	6)	or	temp	files	(9),	as	these	are	generated
and	can	safely	be	ignored.	Finally,	I’m	excluding	Vim’s	temporary	.swp	and	.swo

files	(lines	12	and	13)—feel	free	to	do	the	same	for	your	editor	of	choice.

This	.dockerignore	file	is	a	good	starting	place,	but	you	can	really	go	to	town	and
ignore	all	cached	or	generated	files.

Let’s	rebuild	our	image	with	the	.dockerignore	file	in	place.

​ ​$ ​​docker​​ ​​build​​ ​​-t​​ ​​railsapp​​ ​​.​
​ Sending build context to Docker daemon 102.9kB

​ ...

​ Successfully built 577a1a5a2d2c

​ Successfully tagged railsapp:latest

The	size	of	the	build	context	is	reported	in	the	output—102.9	KB—which	is
smaller	than	prior	to	adding	the	Docker	.dockerignore	(138.8	KB).	The	savings
will	increase	over	time,	especially	as	the	Git	history	gets	larger.

WOW! eBook
www.wowebook.org

The	Image	Build	Cache
During	development,	we	rebuild	our	image	fairly	regularly,	either	to	install	new
gems	(bundle install	is	one	of	the	steps	in	our	Dockerfile)	or	to	update	our
dependencies	such	as	Node.js.

Just	like	a	fast	test	suite	helps	by	reducing	the	feedback	loop,	it’s	important	to
keep	our	image	builds	as	fast	as	possible	too.	One	way	that	Docker	helps	is	by
caching	each	step	in	our	build,	meaning	that	it	only	needs	to	rebuild	from	the
first	instruction	in	the	Dockerfile	where	there	is	a	change.	A	change	could	either
be	literally	deleting	or	modifying	the	Dockerfile	instruction,	or	it	could	be
associated	with	filesystem	changes,	as	we’ll	see	shortly.

Since	there	are	no	changes	to	our	Dockerfile	or	files	since	our	last	build,	it	would
be	extremely	fast	to	rebuild	the	image	now.	Each	step	has	already	been	built	and
cached,	so	Docker	will	have	to	do	very	little	work.

Let’s	try	rebuilding	our	image	now:

​ ​$ ​​docker​​ ​​build​​ ​​-t​​ ​​railsapp​​ ​​.​
​ Sending build context to Docker daemon 102.9kB

​ Step 1/7 : FROM ruby:2.6

​ ​ --->​​ ​​f28a9e1d0449​
​ Step 2/7 : RUN apt-get update -yqq

​ ​ --->​​ ​​Using​​ ​​cache​
​ ​ --->​​ ​​761da319d69a​
​ Step 3/7 : RUN apt-get install -yqq --no-install-recommends nodejs

​ ​ --->​​ ​​Using​​ ​​cache​
​ ​ --->​​ ​​145b025f550c​
​ Step 4/7 : COPY . /usr/src/app/

​ ​ --->​​ ​​Using​​ ​​cache​
​ ​ --->​​ ​​045a92afdc82​
​ Step 5/7 : WORKDIR /usr/src/app

​ ​ --->​​ ​​Using​​ ​​cache​
​ ​ --->​​ ​​1d89cb7f0720​
​ Step 6/7 : RUN bundle install

​ ​ --->​​ ​​Using​​ ​​cache​
​ ​ --->​​ ​​81ad2d531548​

WOW! eBook
www.wowebook.org

​ Step 7/7 : CMD ["bin/rails", "s", "-b", "0.0.0.0"]

​ ​ --->​​ ​​Using​​ ​​cache​
​ ​ --->​​ ​​577a1a5a2d2c​
​ Successfully built 577a1a5a2d2c

​ Successfully tagged railsapp:latest

The	image	should	build	very	quickly.	If	you	look	at	the	output,	you’ll	see	that	for
each	step	(other	than	the	FROM	instruction),	it	explicitly	says	Using cache.	This
indicates	that	Docker	didn’t	need	to	create	a	new	image	for	that	step;	it	simply
reused	an	intermediate	image	cached	from	a	previous	build.

The	cache	for	a	given	step	is	invalidated	when	you	modify	the	Dockerfile

instruction	to	something	that	hasn’t	been	built	before.	Additionally,	COPY

instructions	can	have	their	cache	invalidated	if	copied	files	have	changed	since
the	step	was	last	built.	The	comparison	is	made	by	the	Docker	daemon	based	on
files	in	the	build	context—so	ignoring	irrelevant	files	in	your	.dockerignore	file
can	also	prevent	cache	invalidations.

Since	a	Dockerfile	is	sequential,	with	each	instruction	building	on	the	previous
(intermediate)	image,	when	the	cache	is	invalidated	for	one	step,	Docker	must
rebuild	every	subsequent	step.	It	therefore	hurts	more	when	an	earlier	step	is
invalidated,	because	Docker	has	more	steps	to	rebuild.

Understanding	this	is	useful	for	keeping	our	image	builds	fast	as	we	develop,
without	taking	unnecessary	hits	from	busting	the	image	build	cache.

In	fact,	our	Dockerfile	already	has	a	slight	issue	with	how	the	caching	works…

WOW! eBook
www.wowebook.org

Caching	Issue	1:	Updating	Packages
Currently,	our	Dockerfile	has	the	following	two	lines:

​ ​RUN ​apt-get update -yqq
​ ​RUN ​apt-get install -yqq --no-install-recommends nodejs

Although	this	works,	there’s	a	hidden	problem	lurking.	Let’s	say	we	come	along
at	a	later	stage	and	realize	we	need	to	install	an	extra	package—for	example,	the
Vim	editor.	We	add	the	vim	package	to	the	apt-get install	RUN	instruction,	busting
the	cache	and	causing	that	instruction	to	be	rerun:

​ ​RUN ​apt-get update -yqq
​ ​RUN ​apt-get install -yqq --no-install-recommends nodejs vim

However,	the	apt-get update	RUN	instruction	remains	unchanged,	and	the	cached
repository	details	will	be	used.	Rather	than	getting	the	current,	latest	version	of
the	new	package	we’ve	added,	we’ll	be	getting	whatever	was	the	latest	at	the
time	we	last	built	our	image.	That	behavior	is	almost	never	what	we	want.

For	that	reason,	it’s	recommended	to	always	combine	the	apt-get update	and	apt-

get install	commands	into	a	single	RUN	instruction	like	so:[19]

​ ​RUN ​apt-get update -yqq && ​\​
​ apt-get install -yqq --no-install-recommends nodejs vim

This	ensures	that	whenever	you	change	the	packages	being	installed,	you’ll	also
get	the	latest	repository	information	at	the	same	time.

Finally,	it’s	good	practice	to	format	the	apt-get install	command	as	follows:

​ ​RUN ​apt-get update -yqq && apt-get install -yqq --no-install-recommends ​\​
​ nodejs ​\​
​ vim

Using	one	package	per	line	and	keeping	packages	in	alphabetical	order	makes	it
easier	to	see	which	packages	are	installed,	and	locate	ones	that	need	to	be
changed	if	you	have	many	packages	installed.

WOW! eBook
www.wowebook.org

Let’s	fix	this	issue	in	our	Dockerfile	now.	We	don’t	actually	need	Vim	installed
currently,	so	our	two	RUN	instructions	for	apt-get update	and	apt-get install	will
become:

​ RUN apt-get update -yqq && apt-get install -yqq --no-install-recommends \

​ nodejs

Let’s	rebuild	our	image	to	include	this	change:

​ ​$ ​​docker​​ ​​build​​ ​​-t​​ ​​railsapp​​ ​​.​
​ Sending build context to Docker daemon 102.9kB

​ Step 1/6 : FROM ruby:2.6

​ ​ --->​​ ​​f28a9e1d0449​
​ ...

​ Successfully built 621ceaca3298

​ Successfully tagged railsapp:latest

WOW! eBook
www.wowebook.org

Caching	Issue	2:	Unnecessary	Gem	Installs
Imagine	that	we	want	to	make	a	change	to	our	README.md	file.	Open	this	file	in
an	editor,	and	replace	the	Rails	default	version	with	the	following:

​ # README

​
​ This is a sample Rails application from Docker for Rails Developers (PragProg).

​ It was generated using Docker without Ruby installed on the local machine.

​
​ We're using the app to discover the wonderful world of Rails with Docker.

Now	let’s	try	something.	What	happens	if	we	rebuild	our	image:

​ ​$ ​​docker​​ ​​build​​ ​​-t​​ ​​railsapp​​ ​​.​
​ Sending build context to Docker daemon 102.9kB

​ Step 1/6 : FROM ruby:2.6

​ ​ --->​​ ​​f28a9e1d0449​
​ Step 2/6 : RUN apt-get update -yqq && apt-get install -yqq --no-install-

​ recommends nodejs

​ ​ --->​​ ​​Using​​ ​​cache​
​ ​ --->​​ ​​29c3dee2b8c7​
​ Step 3/6 : COPY . /usr/src/app/

​ ​ --->​​ ​​fff98079f6ac​
​ Step 4/6 : WORKDIR /usr/src/app

​ ​ --->​​ ​​Running​​ ​​in​​ ​​3e36b19fecbf​
​ Removing intermediate container 3e36b19fecbf

​ ​ --->​​ ​​34e46dae43ab​
​ Step 5/6 : RUN bundle install

​ ​ --->​​ ​​Running​​ ​​in​​ ​​f4528be7eb2b​
​ ...

​ Bundle complete! 15 Gemfile dependencies, 68 gems now installed.

​ Bundled gems are installed into `/usr/local/bundle`

​ ...

​ Removing intermediate container f4528be7eb2b

​ ​ --->​​ ​​5965a3004093​
​ Step 6/6 : CMD ["bin/rails", "s", "-b", "0.0.0.0"]

​ ​ --->​​ ​​Running​​ ​​in​​ ​​fe59ed9392a7​
​ Removing intermediate container fe59ed9392a7

​ ​ --->​​ ​​1fbb2af53579​
​ Successfully built 1fbb2af53579

​ Successfully tagged railsapp:latest

WOW! eBook
www.wowebook.org

Wow,	that	took	quite	a	while.	The	biggest	cause	of	this	slowness	was	that	all	our
gems	were	rebuilt	from	scratch,	yet	all	we	did	was	change	our	README.md	file—
what	gives?

If	you	look	through	the	output,	you’ll	see	that	steps	1	to	3	all	say	Using cache.
Docker	didn’t	have	to	rebuild	those	layers	because	it	could	compare	the
Dockerfile	instruction	with	the	cached	intermediate	image	for	that	step,	and	see
that	they	were	the	same.

However,	that’s	not	the	case	with	step	4	(COPY . /usr/src/app)—this	step	isn’t	using
the	cache.	Although	the	Dockerfile	instruction	remained	the	same,	since	it’s	a
COPY	instruction,	Docker	checks	the	files	being	copied	(excluding	any	in	the
.dockerignore	file)	and	compares	them	with	those	copied	previously.	It	realizes
that	README.md	has	changed,	so	it	knows	to	rebuild	from	this	step.

There’s	no	getting	around	the	fact	that,	if	files	change,	a	new	image	needs	to	be
created	containing	the	changed	files.	However,	in	our	case,	it’s	unfortunate	that
merely	changing	the	README.md	causes	bundle install	to	be	run	again.	It’s	both
slow	and	completely	unnecessary:	our	change	to	README.md	had	no	impact	on
the	gem	dependencies.	The	only	reason	it’s	being	rerun	is	because	an	earlier	step
was	invalidated	in	our	Dockerfile.

Let’s	see	if	there’s	something	we	can	do	about	this	problem.

The	Gemfile	Caching	Trick
It	turns	out	there’s	an	effective	way	to	prevent	changes	to	unrelated	files	busting
our	cache	and	causing	a	rebuild	of	all	our	gems	from	scratch.	The	trick	is	to
separate	the	copying	of	files	that	should	trigger	a	rebuild	of	our	gems	from	those
that	shouldn’t.

Let’s	update	our	Dockerfile	to	do	this:

​1: FROM ruby:2.6

​-
​- RUN apt-get update -yqq && apt-get install -yqq --no-install-recommends \

WOW! eBook
www.wowebook.org

​- nodejs

​5:
​- COPY Gemfile* /usr/src/app/

​- WORKDIR /usr/src/app

​- RUN bundle install

​-
​10: COPY . /usr/src/app/
​-
​- CMD [​"bin/rails"​, ​"s"​, ​"-b"​, ​"0.0.0.0"​]

The	first	three	instructions	remain	the	same,	but	line	6	is	new.	It	copies	our
Gemfile	and	Gemfile.lock	into	our	image	before	the	rest	of	our	code.

​ COPY Gemfile* /usr/src/app/

This	creates	a	separate,	independent	layer.	Docker’s	cache	for	this	layer	will	only
be	busted	if	either	of	these	two	files	change.

Having	copied	our	Gemfile	and	Gemfile.lock	into	our	image,	we	can	now	change
into	the	directory	where	they	are	and	install	our	gems:

​ ​WORKDIR​​ /usr/src/app​
​ ​RUN ​bundle install

Finally,	with	our	gems	installed,	we	can	copy	the	remainder	of	our	source	files
into	the	image:

​ ​COPY​​ . /usr/src/app/​

Now,	changes	to	all	remaining	files	copied	in	this	step	will	only	bust	the	cache	at
this	instruction,	which	is	after	our	gems	have	been	installed—just	what	we	want.

Now,	let’s	rebuild	our	image	using	this	updated	Dockerfile.	Remember,	though,
that	we’ve	now	changed	all	except	the	first	three	instructions	in	the	Dockerfile,	so
we’re	expecting	the	cache	to	be	busted	after	that.	This	means	that	the	remaining
steps	will	have	to	be	built	from	scratch,	including	the	bundle install,	which	will
take	some	time.

​ ​$ ​​docker​​ ​​build​​ ​​-t​​ ​​railsapp​​ ​​.​

WOW! eBook
www.wowebook.org

With	our	newly	built	image,	let’s	see	what	happens	when	we	modify	our
README.md	file	again.	Go	ahead	and	make	any	minor	change	to	README.md,	save
the	change,	and	then	rebuild	the	image:

​ ​$ ​​docker​​ ​​build​​ ​​-t​​ ​​railsapp​​ ​​.​
​ Sending build context to Docker daemon 102.9kB

​ Step 1/7 : FROM ruby:2.6

​ ​ --->​​ ​​f28a9e1d0449​
​ Step 2/7 : RUN apt-get update -yqq && apt-get install -yqq --no-install-

​ recommends nodejs

​ ​ --->​​ ​​Using​​ ​​cache​
​ ​ --->​​ ​​29c3dee2b8c7​
​ Step 3/7 : COPY Gemfile* /usr/src/app/

​ ​ --->​​ ​​Using​​ ​​cache​
​ ​ --->​​ ​​050a87002be1​
​ Step 4/7 : WORKDIR /usr/src/app

​ ​ --->​​ ​​Using​​ ​​cache​
​ ​ --->​​ ​​d227daeedb1e​
​ Step 5/7 : RUN bundle install

​ ​ --->​​ ​​Using​​ ​​cache​
​ ​ --->​​ ​​616b88058c4b​
​ Step 6/7 : COPY . /usr/src/app/

​ ​ --->​​ ​​b189758b9ded​
​ Step 7/7 : CMD ["bin/rails", "s", "-b", "0.0.0.0"]

​ ​ --->​​ ​​Running​​ ​​in​​ ​​fad4be04ab20​
​ Removing intermediate container fad4be04ab20

​ ​ --->​​ ​​9be0cf184e64​
​ Successfully built 9be0cf184e64

​ Successfully tagged railsapp:latest

That	was	much	faster	than	when	we	changed	the	README.md	earlier.	This	time,	it
didn’t	result	in	the	gems	being	rebuilt.	Lines	6–8	in	the	Dockerfile	could	use	the
cache	because	nothing	had	changed	at	that	point.	Docker	just	has	to	rebuild	the
final	two	steps,	both	of	which	are	fast.

WOW! eBook
www.wowebook.org

The	Finishing	Touch
Our	Dockerfile	is	glorious,	isn’t	it?	A	masterpiece.	This	little	baby	is	going	to	get
our	Rails	app	development	really	going	places.	So	let’s	do	what	all	true	artists	do
and	sign	our	work.

Unlike	a	painter	who	signs	the	bottom	right	of	their	canvas,	Docker	aficionados
typically	assert	their	authorship	of	an	image	by	setting	a	maintainer	label	as	the
second	instruction.	A	label	is	simply	a	piece	of	metadata	associated	with	an
image.

We	set	a	label	using	the	LABEL	instruction,	which	has	the	following	format:

​ ​LABEL​​ <key>=<value>​

This	gives	the	image	a	label	named	key	set	to	value.

To	indicate	who	is	responsible	for	maintaining	the	file,	we	would	modify	our
Dockerfile	to	specify	their	email	address	like	so	(you	can	substitute	your	email
address	instead	of	mine):

​ FROM ruby:2.6

​
» LABEL maintainer=​"rob@DockerForRailsDevelopers.com"​
​
​ RUN apt-get update -yqq && apt-get install -yqq --no-install-recommends \

​ nodejs

​
​ COPY Gemfile* /usr/src/app/

​ WORKDIR /usr/src/app

​ RUN bundle install

​
​ COPY . /usr/src/app/

​
​ CMD [​"bin/rails"​, ​"s"​, ​"-b"​, ​"0.0.0.0"​]

And	with	that,	our	Dockerfile	is	complete.

WOW! eBook
www.wowebook.org

It’s	worth	noting	that	labels	can	be	used	to	store	any	kind	of	metadata	you	like
on	your	images.	You	can	use	as	many	LABEL	instructions	as	you	like,	or	combine
them	into	a	single	line	like	so:

​ ​LABEL​​ <key>=<value> <key>=<value> <key>=<value> ...​

The	choice	is	yours.

Before	we	finish	up,	remember	to	rebuild	your	image	with	this	change:

​ ​$ ​​docker​​ ​​build​​ ​​-t​​ ​​railsapp​​ ​​.​

On	this	occasion,	because	we’re	introducing	a	new	instruction	early	in	our
Dockerfile,	the	build	will	necessarily	be	slower	as	the	gems	do	have	to	be	installed
from	scratch.

WOW! eBook
www.wowebook.org

Quick	Recap
Our	Dockerfile	scrubs	up	pretty	well.	You	can	put	the	wrench	down,	take	off	those
oil-stained	overalls,	and	put	your	feet	up—again,	metaphorically	speaking.	You
deserve	it.

Let’s	review	what	we	covered:

1.	 We	saw	how	to	name	and	version	our	images	by	giving	them	tags,	either
after	they’re	built:

​ ​$ ​​docker​​ ​​tag​​ ​​a1df0eddba18​​ ​​railsapp​

or	at	build	time	(here	setting	two	tags):

​ ​$ ​​docker​​ ​​build​​ ​​-t​​ ​​railsapp​​ ​​-t​​ ​​railsapp:1.0​​ ​​.​

2.	 We	added	a	default	command	to	our	image	using	the	CMD	instruction:

​ ​CMD​​ ["bin/rails", "s", "-b", "0.0.0.0"]​

3.	 We	sped	up	our	image	builds	by	using	a	.dockerignore	to	prevent	unnecessary
files	from	being	sent	to	the	Docker	daemon	as	part	of	our	build	context.

4.	 We	ensured	that	we	always	use	up-to-date	package	repository	information
when	altering	the	packages	we	install	by	combining	apt-get update	and	apt-

get install	into	a	single	RUN	instruction:

​ RUN apt-get update -yqq && apt-get install -yqq --no-install-recommends \

​ nodejs

5.	 We	prevented	file	changes	from	causing	our	gems	to	be	rebuilt	by	copying
our	Gemfiles	earlier	in	our	Dockerfile	so	they	could	be	cached	separately:

​ COPY Gemfile* /usr/src/app/

​ WORKDIR /usr/src/app

​ RUN bundle install

WOW! eBook
www.wowebook.org

[17]

[18]

[19]

6.	 Finally,	we	indicated	who	was	responsible	for	our	image	by	setting	a
maintainer	with	the	LABEL	instruction:

​ ​LABEL​​ maintainer="rob@DockerForRailsDevelopers.com"​

Not	bad	for	a	day’s	work.

If	you	thought	using	Docker	for	development	couldn’t	get	any	better,	or	perhaps
still	have	some	reservations,	brace	yourselves.	Up	next,	we’ll	discover	an	even
more	powerful	tool	that	will	supercharge	our	development.	Onward!

Footnotes

https://docs.docker.com/engine/reference/commandline/tag/#extended-description

https://docs.docker.com/engine/reference/builder/#dockerignore-file

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#run

Copyright	©	2019,	The	Pragmatic	Bookshelf.

WOW! eBook
www.wowebook.org

https://docs.docker.com/engine/reference/commandline/tag/#extended-description
https://docs.docker.com/engine/reference/builder/#dockerignore-file
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#run

Chapter	4

Describing	Our	App	Declaratively
with	Docker	Compose

	

We’ve	seen	how	to	start	containers	using	the	docker run	command.	However,	this
is	limited	to	starting	a	single	container	at	a	time.	While	that’s	great	for	one-off
tasks,	as	developers,	our	applications	are	typically	made	up	of	multiple
components,	or	in	Docker	terminology,	services.	For	example,	in	addition	to	our
Rails	server,	we	typically	need	at	least	a	database.

Once	you’re	thinking	about	an	application	as	a	whole,	running	containers	with
docker run	becomes	too	cumbersome.	We	need	a	different,	higher-level	tool	that
lets	us	coordinate	and	manage	containers	for	the	different	services	that	make	up
our	application.

Enter	Docker	Compose.

WOW! eBook
www.wowebook.org

Getting	Started	with	Compose
Docker	Compose—or	just	Compose	for	short—is	a	tool	for	managing	an
application	that	needs	several	different	containers	to	work	together.	Compose	is
declarative:	you	describe	each	part	of	your	application—known	as	a	service—
and	Compose	handles	the	grunt	work	of	ensuring	the	right	containers	are	run
when	and	how	you	need.	It	also	manages	creating	and	destroying	the	resources
needed	for	the	app.	For	example,	it	creates	a	separate,	private	network	for	your
application,	giving	you	a	predictable,	isolated	environment.	As	we’ll	see	in	Part
2,	​Toward	Production​,	it	also	plays	a	key	role	in	how	we	deploy	and	scale
applications	with	Docker.

Compose	is	designed	with	developers	in	mind.	It	lets	us	interact	with	our
application	in	terms	of	concepts	we’re	familiar	with—for	example,	“run	our	web
service”	or	“stop	the	database.”	This	is	in	stark	contrast	to	the	low-level	docker

run	commands	we’ve	seen,	where	the	context	of	what	we’re	trying	to	achieve	is
harder	to	see.

Before	we	can	get	Compose	to	do	our	bidding,	though,	we	first	have	to	describe
our	application	by	creating	a	docker-compose.yml	file.	This	doesn’t	replace	the
need	for	Dockerfiles—blueprints	for	creating	containers—but	it	describes	what
images	our	app	requires	and	how	they	are	run	in	concert.

Here’s	an	initial	docker-compose.yml	for	our	Rails	project:

​1: version: ​'​​3'​
​2:
​3: services:

​4:
​5: web:

​6: build: ​.​
​7: ports:

​8: - ​"​​3000:3000"​

A	Compose	file	always	starts	with	a	version	number	(line	1),	which	specifies	the
file	format	being	used.	This	helps	ensure	that	apps	continue	to	run	as	expected	as

WOW! eBook
www.wowebook.org

new	features,	or	breaking	changes,	are	added	to	Compose.	We’re	using	version	3
—the	latest	major	version	at	the	time	of	writing.[20]

Next	we	have	a	collection	called	services	(line	3),	which	is	used	to	group	the
constituent	parts	of	our	application.	Currently,	our	Rails	app	is	our	entire	app,	so
we’re	declaring	a	single	service—which	we’ve	chosen	to	call	web—to	represent
it	(line	5).	We’ll	soon	be	adding	another	service	in	Chapter	5,	​Beyond	the	App:
Adding	Redis​.

Nested	under	web	are	its	various	configuration	options	(lines	6–8).

The	first	of	these:

​ build: ​.​

tells	Compose	where	to	find	the	Dockerfile	it	should	use	to	build	our	image.	The
path	we	specify	is	relative	to	the	docker-compose.yml	file.	In	this	case,	it’s	in	the
same	directory.

Next	we	come	to	lines	7–8:

​ ports:

​ - ​"​​3000:3000"​

This	is	equivalent	to	the	-p 3000:3000	option	we	specified	in	our	docker run

command.	If	you	recall,	this	was	used	to	map	the	container’s	port	3000	to	port
3000	on	our	local	machine.	It’s	needed	to	make	our	Rails	app	accessible	from
our	local	machine.

WOW! eBook
www.wowebook.org

Launching	Our	App
With	our	docker-compose.yml	in	hand,	Compose	is	now	set	up	to	manage	our
application.	However,	before	we	start	our	app,	first	a	tiny	bit	of	housekeeping.
By	default,	Ruby	buffers	output	to	stdout,	which	doesn’t	play	well	with
Compose.[21]	Let’s	fix	this	by	switching	off	Ruby’s	output	buffering.

Add	the	following	line	to	the	top	of	your	config/boot.rb	file:

​ $stdout.​sync​ = ​true​

With	that	out	of	the	way,	we’re	ready	to	launch	our	app.	Instead	of	the	long
docker run	command,	we	can	now	use:

​ ​$ ​​docker-compose​​ ​​up​

Before	we	go	through	the	output,	let’s	discuss	what	this	command	does.

When	you	run	docker-compose up,	Compose	makes	sure	that	the	necessary
resources	have	been	set	up,	creating	any	that	are	missing	before	launching	a
container	for	each	service.

Specifically,	it:

1.	 Creates	a	separate	network	just	for	the	app

2.	 Creates	any	non-locally	mounted	volumes	defined	for	the	app	(we	don’t
have	any	yet—more	on	this	in	Chapter	6,	​Adding	a	Database:	Postgres​)

3.	 Builds	an	image	for	any	services	with	a	build	directive

4.	 Creates	a	container	for	each	service

5.	 Launches	a	container	per	service

Pretty	impressive	for	a	single	command.

WOW! eBook
www.wowebook.org

If	we	turn	our	attention	back	to	the	output	of	the	command,	we	can	see	much	of
this	happening.	First	the	network	is	created:

​ Creating network "myapp_default" with the default driver

By	convention,	Compose	names	the	network	<appname>_default,	where	appname	is
inferred	from	the	containing	directory.

Next	it	builds	the	image	for	our	web	service:

​ Building web

​ Step 1/8 : FROM ruby:2.6

​ ​ --->​​ ​​f28a9e1d0449​
​ Step 2/8 : LABEL maintainer="rob@DockerForRailsDevelopers.com"

​ ​ --->​​ ​​Using​​ ​​cache​
​ ​ --->​​ ​​d69ea7d90f89​
​ Step 3/8 : RUN apt-get update -yqq && apt-get install -yqq --no-install-

​ recommends nodejs

​ ​ --->​​ ​​Using​​ ​​cache​
​ ​ --->​​ ​​463750079bef​
​ ...

​ Step 8/8 : CMD ["bin/rails", "s", "-b", "0.0.0.0"]

​ ​ --->​​ ​​Running​​ ​​in​​ ​​b11e989011fc​
​ Removing intermediate container b11e989011fc

​ ​ --->​​ ​​a18b3079c84b​
​ Successfully built a18b3079c84b

Compose	gives	the	image	a	name	and	version	by	tagging	it:

​ Successfully tagged myapp_web:latest

using	the	convention	<appname>_<service_name>:latest,	again	inferring	the	appname

from	the	enclosing	directory.	In	our	case,	this	becomes	myapp_web:latest.

You	can	verify	that	the	myapp_web	image	was	created	by	running	the	following	in
a	separate	terminal	window:

​ ​$ ​​docker​​ ​​images​

You	should	see	it	listed	in	one	of	the	lines	of	the	output:

​ REPOSITORY TAG IMAGE ID CREATED SIZE

WOW! eBook
www.wowebook.org

​ myapp_web latest a18b3079c84b About a minute ago 1.01GB

​ ​...​

Compose	will	only	build	images	if	they	don’t	exist,	which	will	either	be	because
it’s	the	first	time	you’ve	run	docker-compose up	or	because	you’ve	deleted	them.
This	is	an	important	point:	you	are	responsible	for	rebuilding	your	images	as
needed	(see	​Rebuilding	Our	Images​);	in	fact,	Compose	reminds	us	of	this	in	the
output:

​ WARNING: Image for service web was built because it did not already exist.

​ To rebuild this image you must use `docker-compose build` or `docker-compose

​ up --build`.

Next,	Compose	creates	and	starts	a	single	container	for	our	web	service	based	on
the	image	it	has	just	created.	It	will	name	containers	using	the	format
<appname>_<service name>_<n>:

​ Creating myapp_web_1 ... done

In	a	process	known	as	attaching,	Compose	then	connects	our	local	IO	streams
(stdin,	stdout,	and	stderr)	to	the	running	container,	so	we	can	see	its	output:

​ Attaching to myapp_web_1

As	a	result,	we’re	able	to	see	our	Rails	server	starting	inside	the	container:

​ web_1 | => Booting Puma

​ web_1 | => Rails 5.2.2 application starting in development

​ web_1 | => Run `rails server -h` for more startup options

​ web_1 | Puma starting in single mode...

​ web_1 | * Version 3.12.0 (ruby 2.6.0-p0), codename: Llamas in Pajamas

​ web_1 | * Min threads: 5, max threads: 5

​ web_1 | * Environment: development

​ web_1 | * Listening on tcp://0.0.0.0:3000

​ web_1 | Use Ctrl-C to stop

The	Rails	server	launched	thanks	to	the	default	CMD	instruction	we	set	up	in	​A
Default	Command​.	We	could	have	specified	the	command	directly	in	the	docker-

compose.yml	file	by	setting	a	command	option	for	web—this	would	have	overridden
the	CMD	instruction	specified	in	the	Dockerfile.

WOW! eBook
www.wowebook.org

Go	ahead	and	verify	that	our	app	is	running:	visit	http://localhost:3000	in	the
browser.	You	should	see	the	familiar	Rails	welcome	page	again.

Great!	Our	docker-compose.yml	is	working	and	everything	is	hunky-dory.

You	can	then	terminate	Compose	by	pressing	 Ctrl - C ;	you	should	see	the
containers	being	shut	down.

Containers	Not	Shutting	Down	Gracefully
Unfortunately,	Compose	has	an	intermittent	issue	you’ll	need	to
watch	out	for.	Occasionally,	on	terminating	Compose	with	Ctrl-C,
you	may	see	^CERROR: Aborting	and	find	the	containers	aren’t	shut
down.	Unfortunately,	if	this	happens,	you’ll	have	to	stop	the
containers	manually	with	docker-compose stop.	See	Chapter	9	for
more	details.

There’s	no	need	to	run	this	now,	but	if	we	don’t	care	about	viewing	the	container
output,	we	can	start	the	containers	in	detached	mode	by	specifying	the	-d	option.
This	launches	the	application	in	the	background	and	returns	you	to	the	shell
prompt.

​ ​$ ​​docker-compose​​ ​​up​​ ​​-d​
​ Starting myapp_web_46768de21d89 ... done

Note,	however,	that	it	may	take	some	time	for	Rails	to	launch	and	the	application
to	become	available.

Problem	Starting	Rails?
If	you	encounter	an	error	on	starting	the	server	that	says	something
like,	“A	server	is	already	running,”	you’ve	run	into	a	bug	with
Compose.	For	now,	simply	delete	the	tmp/pids/server.pid	on	your
local	machine.	See	Chapter	9	for	a	better	solution.

WOW! eBook
www.wowebook.org

http://localhost:3000

Mounting	a	Local	Volume
Before	we	leave	our	docker-compose.yml,	let’s	make	a	small	addition.

We’ve	already	seen	how	to	mount	a	local	directory	inside	a	container	with	docker

run	by	using	the	-v	option—we	did	this	in	​Generating	a	New	Rails	App	Without
Ruby	Installed​,	so	that	the	Rails	project	files	generated	inside	the	container
would	be	available	on	our	local	machine.

A	mounted	local	volume	represents	some	filesystem	that’s	shared	between	your
local	machine	and	the	container.	Files	in	the	mounted	volume	are	synced	both
ways	between	your	local	filesystem	and	the	container.	Because	of	this,	a	local
volume	mount	can	allow	us	to	develop	locally	and	have	the	Rails	server	running
in	the	container	automatically	pick	up	the	file	changes	without	restarting—just
like	we’re	used	to.

We	are	going	to	set	up	this	locally	mounted	volume	using	Compose	rather	than
using	docker run	this	time.	In	our	docker run	command,	we	used	the	option	-v
$PWD:/usr/src/app	to	mount	our	current,	local	directory	inside	the	Rails	container
at	/usr/src/app.	We	can	achieve	the	same	with	Compose	by	adding	the	following
to	our	docker-compose.yml:

​ version: ​'​​3'​
​
​ services:

​
​ web:

​ build: ​.​
​ ports:

​ - ​"​​3000:3000"​
» volumes:

» - ​.:/usr/src/app​

Here	we	specify	our	volume	mapping	under	the	volumes	property	we’ve	added
for	the	web	service.	Although	the	volume	mapping	is	very	similar	to	the	docker

run	option	we	used,	there	is	one	slight	difference.	We	were	able	to	refer	to	the

WOW! eBook
www.wowebook.org

current	directory	by	simply	using	a	period	(.)	instead	of	the	$PWD	environment
variable.	Compose	allows	for	relative	paths	like	this	based	on	where	the	docker-

compose.yml	is	located—a	nice	little	bonus.

On	relaunching	our	app	with	this	change:

​ ​$ ​​docker-compose​​ ​​up​​ ​​-d​

we’re	now	able	to	follow	the	typical	development	flow	of	editing	files	locally
and	immediately	seeing	the	changes	simply	by	reloading	the	browser.

Rails	Server	Not	Starting?
On	starting	Rails,	it’s	possible	you	may	encounter	the	same	issue
mentioned	earlier.	If	Rails	thinks	the	server	is	already	running,
you’ll	need	to	delete	tmp/pids/server.pid	on	your	local	machine.	We’ll
see	a	better	way	to	handle	this	in	Chapter	9.

WOW! eBook
www.wowebook.org

Starting	and	Stopping	Services
A	common	thing	we’ll	need	to	do	while	developing	our	application	is	to	stop	or
start	the	various	services	that	make	it	up.	In	a	moment,	we’ll	dive	into	the	fine-
grained	control	Compose	gives	us	to	do	this.	Before	we	do,	though,	it’s	helpful
to	have	in	mind	the	journey	that	containers	go	through,	from	creation	until	they
are	no	longer	needed.

The	following	figure	shows	a	simplified	version	of	a	container’s	life	cycle:

A	container	comes	into	existence	in	the	created	state.	It	doesn’t	execute	any
code;	it	merely	sits	around	waiting	until	it’s	called	for.	When	the	container	is
started,	it	moves	into	the	running	state,	where	it	actively	executes	code.	The
docker run	command	we’ve	seen	creates	a	new	container,	then	starts	it	running.

In	the	running	state,	a	container	can	be	restarted,	stopped,	killed,	or	paused.
Pausing	a	container	suspends	the	running	processes	so	that	they	can	be	resumed
some	time	later.	Stopping	a	container	attempts	to	shut	down	gracefully	by
sending	a	terminate	signal	(SIGTERM)	to	the	main	process	inside	the	container—
falling	back	to	a	forceful	shutdown	with	a	kill	signal	(SIGKILL)	if	this	fails.	Killing

WOW! eBook
www.wowebook.org

a	container	jumps	straight	to	the	forceful	termination.

A	container	moves	into	the	stopped	state	if	it	is	stopped,	or	killed,	or	if	the	main
process	running	inside	it	terminates.	The	stopped	state	is	similar	to	the	created
state:	the	container	sits	there	doing	nothing	until	it	is	called	upon.	From	there,
the	container	can	either	be	restarted	or,	if	you	have	no	more	use	for	it,	removed
from	the	system.	With	that	in	mind,	let’s	see	how	this	works	in	practice	using
Compose.

First	of	all,	let’s	check	what	containers	are	currently	running.	To	do	this,	we	use
the	ps	command:

​ ​$ ​​docker-compose​​ ​​ps​
​ Name Command State Ports

​ ---

​ myapp_web_1 bin/rails s -b 0.0.0.0 Up 0.0.0.0:3000->3000/tcp

The	listing	includes	the	container	name,	the	command	used	to	start	it,	its	current
state,	and	its	port	mappings.	Here	you	can	see	the	container	for	our	Rails	server;
it’s	still	running	from	when	we	previously	ran	docker-compose up -d	(Up	means	it’s
running).

If	we	now	wanted	to	stop	the	Rails	server,	we’d	do	so	with	the	stop	command.
By	default,	the	command	would	apply	to	all	services	listed	in	our	docker-

compose.yml	file.	For	example,	to	stop	all	containers	in	the	entire	application,	we
would	run:

​ ​$ ​​docker-compose​​ ​​stop​

To	target	a	particular	service,	we’d	specify	the	service	name	after	the	action	like
so:

​ ​$ ​​docker-compose​​ ​​stop​​ ​​<service_name>​

This	may	seem	like	a	moot	point	since,	currently,	web	is	the	only	service	we	have
defined.	However,	we’ll	soon	be	adding	more	services,	starting	in	Chapter	5,
Beyond	the	App:	Adding	Redis​.	It’s	common	to	want	to	target	commands	at	a

WOW! eBook
www.wowebook.org

specific	service,	so	it’s	very	useful	to	remember	this	pattern—particularly	as	all
the	docker-compose	commands	follow	it.

Let’s	go	ahead	and	stop	the	web	service:

​ ​$ ​​docker-compose​​ ​​stop​​ ​​web​
​ Stopping myapp_web_1 ... done

Loading	localhost:3000	in	the	browser	will	now	fail,	and	listing	the	containers	will
report	that	the	Rails	server	has	terminated:

​ ​$ ​​docker-compose​​ ​​ps​
​ Name Command State Ports

​ ---

​ myapp_web_1 bin/rails s -b 0.0.0.0 Exit 1

Having	stopped	a	container,	we	can	start	it	again	with	the	start	command:

​ ​$ ​​docker-compose​​ ​​start​​ ​​web​
​ Starting web ... done

There’s	also	a	restart	command	that’s	handy	if,	for	example,	you’ve	made	some
config	changes	and	want	the	Rails	server	to	pick	them	up.

​ ​$ ​​docker-compose​​ ​​restart​​ ​​web​
​ Restarting myapp_web_1 ... done

The	various	Compose	commands	we’ve	seen	all	rely	on	underlying	docker

commands.[22]	However,	we	won’t	cover	those	in	detail	since	we’ll	be	using
Compose	from	now	on.	Compose	gives	us	all	the	power	of	the	lower-level	docker

commands,	but	with	simpler,	app-centric	commands.

WOW! eBook
www.wowebook.org

Other	Common	Tasks
Besides	starting	and	stopping	our	services,	there	are	a	few	more	things	that	we
do	frequently	as	part	of	our	day-to-day	development.	We’re	going	to	take	a
whistle-stop	tour	of	the	highlights,	since	we’ll	be	needing	them	in	the	upcoming
chapters.

Viewing	the	Container	Logs
We’ve	seen	that	the	docker-compose up,	without	the	-d	option,	attaches	to	the
containers	it	starts	and	follows	their	output.	However,	there’s	also	a	dedicated
command	for	viewing	the	container	output,	which	is	more	flexible.

Let’s	view	the	container	logs:

​ ​$ ​​docker-compose​​ ​​logs​​ ​​-f​​ ​​web​

You	should	see	some	output	showing	the	Rails	server	starting	up,	similar	to:

​ web_1 | => Booting Puma

​ web_1 | => Rails 5.2.2 application starting in development

​ web_1 | => Run `rails server -h` for more startup options

​ web_1 | Puma starting in single mode...

​ web_1 | * Version 3.12.0 (ruby 2.6.0-p0), codename: Llamas in Pajamas

​ web_1 | * Min threads: 5, max threads: 5

​ web_1 | * Environment: development

​ web_1 | * Listening on tcp://0.0.0.0:3000

​ web_1 | Use Ctrl-C to stop

The	-f	flag	tells	the	command	to	follow	the	output—that	is,	to	stay	connected	and
continue	to	append	to	the	screen	any	new	output	to	the	logs,	similar	to	the	tail

Unix	command.

Press	 Ctrl - C 	to	terminate	the	logging	stream.

It’s	important	to	realize	this	command	displays	the	container	output	logs	rather
than	the	Rails	server	logs,	which,	by	default,	are	stored	in	the	log/	directory.
However,	as	we’ll	see	later,	in	Part	2,	​Toward	Production​,	it’s	common	to

WOW! eBook
www.wowebook.org

configure	Rails	to	log	to	stdout	when	using	Docker.

Check	out	Docker’s	documentation[23]	for	more	docker logs	options.

Running	One-Off	Commands
Up	until	now,	we’ve	only	run	our	web	container	using	the	image’s	default	CMD,
which	starts	a	Rails	server.	What	if	we	need	to	run	a	different	command?	For
example,	frequently	we’ll	want	to	do	things	like	migrate	our	database	with
db:migrate,	run	our	tests,	update	our	gems,	or	perform	the	many	Rails	commands
we’re	used	to	running	as	part	of	our	development.	How	do	we	do	that?

There	are	actually	two	different	ways	to	achieve	this,	which	we’ll	demonstrate
with	a	trivial	example:	echoing	something	to	the	screen.	Don’t	let	this	trivial
example	fool	you;	the	approaches	use	the	same	mechanism	we’ll	employ	to	run
all	our	favorite	commands	in	the	upcoming	chapters.

First,	we	can	use	docker run	to	start	a	new	container	for	our	one-off	command.	We
provide	the	command	after	the	service	name,	as	follows,	which	overrides	any
default	commands	specified	either	in	the	docker-compose.yml	file	or	in	the
Dockerfile	itself:

​ ​$ ​​docker-compose​​ ​​run​​ ​​--rm​​ ​​web​​ ​​echo​​ ​​'ran a different command'​
​ ran a different command

The	echo	command	executed	successfully.	Notice	that,	unlike	when	we’re
running	the	Rails	server,	the	container	terminates	immediately	after	running	the
command.	That’s	because	the	echo	command	completes	and	returns	its	exit
status,	whereas	the	Rails	server’s	run	loop	keeps	it	executing	until	you	ask	it	to
stop	(or	it	crashes).	Additionally,	since	this	is	a	one-off	command,	we’ve	used
the	--rm	option	to	delete	the	container	once	it	completes—otherwise,	we’ll	end	up
with	lots	of	extra	containers	lying	about.

The	second	way	to	run	a	one-off	command	avoids	starting	up	a	new	container
altogether.	Instead,	it	relies	on	a	running	container,	and	executes	the	command
on	that.	This	is	done	with	the	docker-compose exec	command.

WOW! eBook
www.wowebook.org

Assuming	our	Rails	server	is	running,	we	can	run	our	echo	example	like	this:

​ ​$ ​​docker-compose​​ ​​exec​​ ​​web​​ ​​echo​​ ​​'ran a different command'​
​ ran a different command

Although	this	only	works	if	a	container	is	already	running,	since	it	doesn’t	start	a
new	container,	we	don’t	have	to	remember	to	clean	up	additional	containers	or
use	the	--rm	option.

Rebuilding	Our	Images
We	can	ask	Compose	to	build	our	images	for	us	instead	of	using	the	underlying
docker build	command.	This	is	useful	to	avoid	switching	between	docker	and
docker-compose	commands,	but	also	because	our	app	may	contain	Dockerfiles	for
more	than	one	service;	our	docker-compose.yml	file	will	keep	track	of	which
Dockerfile	is	used	for	which	service.

To	rebuild	our	Rails	app	server	image,	known	to	Compose	as	our	web	service,
you	would	issue	the	command:

​ ​$ ​​docker-compose​​ ​​build​​ ​​web​

There	are	a	few	different	reasons	why	you	may	need	to	rebuild	your	image.
Often,	it’s	because	you’ve	updated	your	Gemfile	and	need	to	reinstall	your	gems
(the	Dockerfile	contains	the	bundle install	command).	Occasionally,	it’s	because
you	have	to	modify	your	Dockerfile	to	install	additional	dependencies.	Or
sometimes	you	want	to	share	your	image	and	need	to	include	the	latest	code
changes	(thanks	to	the	Dockerfile	COPY	instruction),	as	we’ll	see	in	Part	2,	​Toward
Production​.

Cleaning	Up	After	Ourselves
You	may	recall	that	when	we	first	issue	the	docker-compose up	for	a	project,	it
creates	a	network,	the	volumes,	and	any	containers	needed	for	the	app.	The
corresponding	docker-compose down	command	stops	any	running	containers	and
removes	them	along	with	the	app’s	dedicated	network	and	volumes.

WOW! eBook
www.wowebook.org

This	is	useful	when	you’re	done	with	a	project	and	want	to	free	up	space	that	its
resources	were	using.	If	you	just	want	to	remove	the	app’s	containers,	there’s	the
docker-compose rm	command	for	this	purpose.

Pruning:	Freeing	Up	Unused	Resources
Since	we’re	talking	about	freeing	up	resources,	there	are	some	other
commands	that	help	us	with	this	aim.

As	we	change	our	Dockerfile	and	rebuild	images,	some	images
inevitably	will	no	longer	be	needed	or	used,	yet	sit	there	taking	up
precious	disk	space.	These	are	known	as	dangling	images;	they	can
be	removed	with	the	docker image prune[24]	command.

There’s	an	entire	family	of	prune	commands	to	free	up	other	unused
resources	(for	example,	docker container prune).[25]	There’s	even	a
single	command	to	free	up	all	resources	in	one	go:[26]

​ $ docker system prune

WOW! eBook
www.wowebook.org

Quick	Recap
We’ve	introduced	a	powerful	new	tool	into	our	arsenal:	Docker	Compose.	It
really	is	a	one-stop-shop	command	for	developing	our	app	with	Docker.

Let’s	review	what	we	covered.	In	this	chapter:

1.	 We	introduced	the	docker-compose.yml	and	its	format.

2.	 We	created	our	own	docker-compose.yml	for	our	Rails	app,	including	a	locally
mounted	volume	to	allow	live	editing	of	local	files.

3.	 We	saw	how	to	spin	up	our	entire	app	and	start	the	Rails	server	by	using	the
command:

​ ​$ ​​docker-compose​​ ​​up​

4.	 We	learned	various	commands	for	managing	our	app	with	Compose:

List	running	containers

​ ​$ ​​docker-compose​​ ​​ps​

Manage	container	life	cycle

​ ​$ ​​docker-compose​​ ​​[start|stop|kill|restart|pause|unpause|rm]​​ ​​\​
​ ​ ​​<service​​ ​​name>​

View	the	logs

​ ​$ ​​docker-compose​​ ​​logs​​ ​​[-f]​​ ​​<service​​ ​​name>​

Run	a	one-off	command	in	a	new,	throwaway	container

​ ​$ ​​docker-compose​​ ​​run​​ ​​--rm​​ ​​<service​​ ​​name>​​ ​​<some​​ ​​command>​

Run	a	one-off	command	in	an	existing	container

​ ​$ ​​docker-compose​​ ​​exec​​ ​​<service​​ ​​name>​​ ​​<some​​ ​​command>​

WOW! eBook
www.wowebook.org

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Rebuild	an	image

​ ​$ ​​docker-compose​​ ​​build​​ ​​<service​​ ​​name>​

By	making	use	of	this	Compose	goodness,	we’ve	replaced	our	more	complicated
docker run	commands	with	something	clean,	easy	to	remember,	and	manageable.
We	can	now	launch	our	entire	app	from	scratch	with	just	a	single	command:

​ ​$ ​​docker-compose​​ ​​up​

Hurrah!

Now	it’s	time	to	start	using	Compose	to	extend	the	capabilities	of	our	app	by
adding	services.

Footnotes

https://docs.docker.com/compose/compose-file/compose-versioning/

https://github.com/sinatra/sinatra/issues/1118

https://docs.docker.com/engine/reference/commandline/start/

https://docs.docker.com/engine/reference/commandline/logs/

https://docs.docker.com/engine/reference/commandline/image_prune/

https://docs.docker.com/engine/reference/commandline/container_prune/

https://docs.docker.com/engine/reference/commandline/system_prune/

Copyright	©	2019,	The	Pragmatic	Bookshelf.

WOW! eBook
www.wowebook.org

https://docs.docker.com/compose/compose-file/compose-versioning/
https://github.com/sinatra/sinatra/issues/1118
https://docs.docker.com/engine/reference/commandline/start/
https://docs.docker.com/engine/reference/commandline/logs/
https://docs.docker.com/engine/reference/commandline/image_prune/
https://docs.docker.com/engine/reference/commandline/container_prune/
https://docs.docker.com/engine/reference/commandline/system_prune/

Chapter	5

Beyond	the	App:	Adding	Redis
	

OK,	fess	up.	Did	you	look	at	the	title	of	this	chapter	and	think	“Redis?!	What
about	setting	up	the	database?!”	If	so,	I	promise	I’m	not	crazy:	there’s	a	very
good	reason	for	tackling	Redis	first,	as	you’ll	discover	shortly.

First,	let’s	review	what	we’ve	achieved.	We’ve	already	learned	how	to:

Use	Docker	to	generate	a	fresh	Rails	project	without	Ruby	installed
Start	the	Ruby	server	to	run	our	application
Ensure	our	gems	are	installed	and	up	to	date
Create	our	very	own	Docker	image	suited	to	running	our	Rails	app
Use	Docker	Compose	to	manage	the	whole	process

That’s	not	a	bad	start,	but	currently	it	isn’t	enough	to	build	anything	other	than
the	most	basic	of	websites	or	apps.	We’re	missing	a	key	piece	of	the	puzzle:	how
to	connect	our	Rails	app	to	external	services	like…a	database.	In	this	chapter,
you’ll	learn	how	to	do	just	that,	starting	with	Redis	(if	you’re	not	familiar	with
Redis,	it’s	an	in-memory,	key-value	store	commonly	used	for	pub/sub
messaging,	queues,	caching,	and	more—all	the	cool	kids	use	it,	and	after	this
chapter,	you	will	too).

Why	Redis	before	a	database?	Because,	while	the	process	of	adding	services	to
our	app	is	similar,	it	turns	out	that	Redis	is	easier	to	integrate	into	our	app	than	a
database.	Take	my	word	for	it:	doing	it	this	way	around	will	give	you	a	smoother
ride.

In	fact,	this	chapter	teaches	the	basic	skills	to	add	any	service	to	your	app,	be	it	a

WOW! eBook
www.wowebook.org

database	(which	we’ll	do	in	the	very	next	chapter),	background	workers,
Elasticsearch,	or	even	a	separate	JavaScript	front	end.	Soon	our	Docker-fueled
apps	will	be	every	bit	as	powerful	as	we’re	used	to,	and	then	some.

Props	to	Aanand
The	demo	app	used	in	this	chapter	was	inspired	by	Aanand	Prasad’s
demo,	which	shows	how	to	connect	a	basic	Python	Flask	app	to
Redis	using	Compose.[27]

Aanand	is	the	creator	of	Fig—the	precursor	to	Docker	Compose—
and	a	former	employee	of	Docker.

WOW! eBook
www.wowebook.org

Starting	a	Redis	Server
So	we	want	our	Rails	app	to	talk	to	Redis,	huh?	Well,	first	we’re	going	to	need	a
Redis	server	that	our	application	can	talk	to.	As	you	might	expect,	we’re	not
going	to	install	and	run	Redis	on	our	local	machine.	Instead,	let’s	leverage	the
power	of	Docker	and	start	a	Redis	server	inside	a	container.

Ultimately,	we	want	to	add	Redis	as	a	new	service	with	Compose.	However,
since	this	is	the	first	we’ve	added,	we’re	going	to	take	baby	steps.	We’ll	start	by
seeing	how	to	run	Redis	in	a	container	using	docker run	before	we	circle	back	to
get	Compose	to	do	this	for	us	automatically.	As	you	gain	more	experience	and
confidence,	you’ll	be	able	to	skip	this	first	step	and	jump	straight	to	setting	up	a
service	in	Compose.

Using	docker	run
To	start	a	Redis	server	with	docker run,	we’d	issue	the	following	command:

​ ​$ ​​docker​​ ​​run​​ ​​--name​​ ​​redis-container​​ ​​redis​

This	command	should	mostly	be	familiar:	it	tells	Docker	to	run	a	container	based
on	the	official	Docker	redis	image.[28]	However,	there	are	a	couple	of	options	we
haven’t	seen	before.

Docker	gives	each	new	container	a	unique	container	ID	to	identify	it.	However,
these	long	identifiers	aren’t	very	human-friendly.	Just	like	when	we	tagged	an
image	to	give	it	a	friendlier	name,	the	--name	option	tells	Docker	to	give	our	new
container	a	nice,	human-readable	name.

Now	stop	the	Redis	server	by	pressing	 Ctrl - C .

Our	ultimate	aim	is	for	our	docker-compose.yml	file	to	fully	describe	our
application,	including	all	its	dependencies.	Having	seen	how	to	start	a	Redis
server	with	docker run,	we’re	ready	to	set	up	Compose	to	manage	Redis	for	us.

WOW! eBook
www.wowebook.org

Let’s	review	our	docker-compose.yml	file:

​ version: ​'​​3'​
​
​ services:

​
​ web:

​ build: ​.​
​ ports:

​ - ​"​​3000:3000"​
​ volumes:

​ - ​.:/usr/src/app​

Let’s	modify	it	to	include	a	new	service	that	we’ll	call	redis:

​ version: ​'​​3'​
​
​ services:

​
​ web:

​ build: ​.​
​ ports:

​ - ​"​​3000:3000"​
​ volumes:

​ - ​.:/usr/src/app​
​
» redis:

» image: ​redis​

The	definition	for	our	new	redis	service	is	quite	different	from	that	of	our	web

service.	For	a	start,	it’s	a	lot	simpler;	it	only	has	a	single	property	called	image.

When	defining	a	service,	there	are	two	ways	to	specify	the	image	to	be	used	for
creating	containers.	Our	web	service	uses	the	build	property	to	instruct	Compose
to	build	our	custom	image	from	a	Dockerfile.	However,	to	use	a	preexisting	image
instead,	we	can	specify	the	image’s	name	with	the	image	property.	Here	we
specify	the	redis	image,	just	like	in	our	docker run	command.

Other	than	this,	the	main	difference	is	what	we	don’t	specify.

We	don’t	publish	any	ports.	Our	web	service	needs	a	published	port	so	that	web

WOW! eBook
www.wowebook.org

requests	made	on	our	local	machine	will	reach	the	Rails	server,	running	inside	a
container.	Redis,	however,	doesn’t	need	to	be	accessed	externally;	in	fact,	for
security,	we’d	prefer	it	wasn’t.	By	not	exposing	a	port,	it’s	hidden	and
inaccessible	to	the	outside	world.

We	also	don’t	specify	any	volumes	to	be	mounted.	The	web	service	used
volumes	to	mount	our	local	directory	containing	our	Rails	project	code	inside	the
container.	We	did	this	so	that,	as	we	edit	the	files	locally,	the	changes	are
automatically	picked	up	inside	the	container	too.	For	Redis,	we	don’t	need	this
behavior—we’re	not	modifying	any	files.

Now,	let’s	start	our	Redis	server:

​ ​$ ​​docker-compose​​ ​​up​​ ​​-d​​ ​​redis​

We	can	see	Redis	starting	up	by	viewing	the	logs:

​ ​$ ​​docker-compose​​ ​​logs​​ ​​redis​
​ Attaching to myapp_redis_1

​ redis_1 | 1:C 15 Jan 2019 10:03:52.794 ​# oO0OoO0OoO0Oo Redis is starting oO​
​ 0OoO0OoO0Oo

​ redis_1 | 1:C 15 Jan 2019 10:03:52.794 ​# Redis version=5.0.3, bits=64,​
​ commit=00000000, modified=0, pid=1, just started

​ ...

​ redis_1 | 1:M 15 Jan 2019 10:03:52.796 * Running mode=standalone, port=6379

​ ...

​ redis_1 | 1:M 15 Jan 2019 10:03:52.796 ​# Server initialized​
​ ...

​ redis_1 | 1:M 15 Jan 2019 10:03:52.796 * Ready to accept connections

Great!	We’ve	successfully	set	up	Redis	as	a	new	service	for	our	application.

WOW! eBook
www.wowebook.org

Manually	Connecting	to	the	Redis	Server
We’ve	just	started	Redis	using	Compose	and	saw	from	the	output	that	it	was
running.	However,	since	we’re	still	getting	familiar	with	Docker,	let’s	manually
connect	to	the	Redis	server	and	interact	with	it	to	prove	to	ourselves	it	really
does	work.

A	quick	way	to	do	this	is	using	the	Redis	command-line	interface	(redis-cli).	We
can	leverage	the	same	redis	image,	which	already	has	redis-cli	installed.	Handy.

Rather	than	having	to	set	up	a	new,	separate	service	in	Compose,	we	can
piggyback	on	the	existing	redis	service,	since	it	uses	the	redis	image	we	need.
Using	what	we	learned	in	​Running	One-Off	Commands​,	we	can	run	redis-cli	and
connect	to	our	Redis	server	with	the	following	command:

​ ​$ ​​docker-compose​​ ​​run​​ ​​--rm​​ ​​redis​​ ​​redis-cli​​ ​​-h​​ ​​redis​

This	command	says,	“In	a	throwaway	container	(--rm)	for	the	redis	service,	run
the	command	redis-cli -h redis.”	On	running	it,	you	should	see	the	standard	Redis
prompt	showing	the	hostname	and	port	it’s	running	on:

​ ​redis:6379>​

Feel	free	to	play	around.	For	example,	try	running	the	ping	command,	which
should	give	you	the	"PONG"	response.	When	you’re	done,	exit	with	the	command
quit—this	will	terminate	the	Redis	client	and,	as	a	result,	the	container.

So	there	you	have	it.	Our	Redis	server	is	up	and	running,	and	we	can	connect	to
it	from	a	separate	container.	Note	that	we’re	using	docker-compose run—rather
than	exec—specifically	so	that	the	redis-cli	runs	in	a	new,	separate	container,	albeit
based	on	the	same	redis	image.	This	shows	that	we’re	able	to	access	the	Redis
server	from	a	different	container.

But,	hang	on	a	sec!	Aren’t	containers	supposed	to	be	isolated?	How	come	we
were	able	to	connect	from	the	container	running	redis-cli	to	the	container	running

WOW! eBook
www.wowebook.org

the	redis	server?

Good	question.	Let’s	explore	this	in	the	next	section.

WOW! eBook
www.wowebook.org

How	Containers	Can	Talk	to	Each	Other
If	two	containers	are	isolated,	independent	processes,	how	come,	as	we	just	saw,
that	they	are	able	to	talk	to	one	another?	While	it’s	true	that	the	code	and
processes	running	in	a	container	are	sandboxed,	that	does	not	mean	the	container
has	no	way	to	communicate	with	the	outside	world.	If	containers	could	not
communicate,	we	would	not	be	able	to	connect	them	together	to	create	a
powerful,	connected	system	of	services	that	together	make	up	our	application.

If	you	remember	back	to	​Launching	Our	App​,	we	said	that	docker-compose up

creates	a	new	network	for	the	app.	By	default,	all	containers	for	our	app	are
connected	to	the	app’s	network	and	can	communicate	with	each	other.	This
means	that	our	containers,	just	like	a	physical	or	virtual	server,	can	communicate
outside	themselves	using	TCP/IP	networking.

Let’s	list	our	currently	defined	networks	using	the	command:

​ ​$ ​​docker​​ ​​network​​ ​​ls​

You	should	see	some	output	similar	to	the	following:

​ NETWORK ID NAME DRIVER SCOPE

​ 128925dfad81 bridge bridge local

​ 5bd7167263e8 host host local

​ e2af02026928 myapp_default bridge local

​ d1145155d62a none null local

The	first	network	called	bridge	is	a	legacy	network	to	provide	backwards
compatibility	with	some	older	Docker	features—we	won’t	be	using	it	now	that
we’ve	switched	to	Compose.	Similarly,	the	host	and	none	networks	are	special
networks	that	Docker	sets	up	that	we	don’t	need	to	care	about.

The	network	we	do	care	about	is	called	myapp_default—this	is	our	app’s
dedicated	network	that	Compose	created	for	us	(Compose	uses	the
<appname>_default	naming	convention).	The	reason	Compose	creates	this	network
for	us	is	simple:	it	knows	that	the	services	we’re	defining	are	all	related	to	the

WOW! eBook
www.wowebook.org

same	application,	so	inevitably	they	are	going	to	need	to	talk	to	one	another.

But	how	do	containers	on	this	network	find	each	other?

All	Docker	networks	(except	for	the	legacy	bridge	network)	have	built-in	Domain
Name	System	(DNS)	name	resolution.	That	means	that	we	can	communicate
with	other	containers	running	on	the	same	network	by	name.	Compose	uses	the
service	name	(as	defined	in	our	docker-compose.yml)	as	the	DNS	entry.	So	if	we
wanted	to	reach	our	web	service,	that’s	accessible	via	the	hostname	web.	This
provides	a	basic	form	of	service	discovery—a	consistent	way	of	finding
container-based	services,	even	across	container	restarts.

This	explains	how	we	were	able	to	connect	from	the	ad-hoc	container	running
the	redis-cli	to	our	Redis	server	running	as	the	redis	service.	Here’s	the	command
we	used:

​ ​$ ​​docker-compose​​ ​​run​​ ​​--rm​​ ​​redis​​ ​​redis-cli​​ ​​-h​​ ​​redis​

The	option	-h redis	says,	“Connect	to	the	host	named	redis.”	This	only	worked
because	Compose	had	already	created	our	app’s	network	and	set	up	DNS	entries
for	each	service.	In	particular,	our	redis	service	can	be	referred	to	by	the
hostname	redis.

WOW! eBook
www.wowebook.org

Our	Rails	App	Talking	to	Redis
Although	it’s	great	that	we’ve	started	up	a	Redis	server	using	Compose,	it’s	not
much	use	to	us	by	itself.	The	whole	point	of	running	the	Redis	server	is	so	our
Rails	app	can	talk	to	it	and	use	it	as	a	key-value	store.	So	let’s	connect	our	Rails
app	to	Redis	and	actually	use	it	for	something.	Sound	like	fun?

Now,	there	are	a	million	ways	an	app	might	want	to	use	Redis.	For	our	purposes,
though,	we	don’t	really	care	what	we	use	Redis	for;	we	care	more	about	how	to
use	it.	We’re	going	to	use	an	intentionally	basic	example:	our	Rails	app	will
simply	store	and	retrieve	a	value.	However,	keep	the	larger	point	in	mind—once
you	know	how	to	set	up	the	Rails	app	to	talk	to	the	Redis	server	in	a	container,
you	can	use	it	however	you	like.

Ready?	Let’s	begin.

Installing	the	Redis	Gem
The	first	thing	we	need	to	do	to	get	our	Rails	app	talking	to	Redis	is	to	install	the
redis	gem.	You	may	remember	that	to	update	our	gems,	we	need	to	update	our
image	as	we	saw.

So	first,	in	our	Gemfile,	uncomment	the	Redis	gem	in	the	Gemfile	like	so:

​ gem ​'redis'​, ​'~> 4.0'​

Next,	stop	our	Rails	server:

​ ​$​ docker-compose stop web

and	rebuild	our	custom	Rails	image:

​ ​$ ​​docker-compose​​ ​​build​​ ​​web​

Among	other	things,	this	runs	bundle install,	which	installs	the	Redis	gem:

​ Building web

​ Step 1/8 : FROM ruby:2.6

WOW! eBook
www.wowebook.org

​ ...

​ Step 6/8 : RUN bundle install

​ ...

​ Installing redis 4.1.0

​ ...

​ Bundle complete! 16 Gemfile dependencies, 69 gems now installed.

​ Bundled gems are installed into `/usr/local/bundle`

​ ...

​ Removing intermediate container 3831c10d2cb5

​ ​ --->​​ ​​1ca01125bd35​
​ Step 7/8 : COPY . /usr/src/app/

​ ​ --->​​ ​​852dc1f2b419​
​ Step 8/8 : CMD ["bin/rails", "s", "-b", "0.0.0.0"]

​ ​ --->​​ ​​Running​​ ​​in​​ ​​280c7e2eb556​
​ Removing intermediate container 280c7e2eb556

​ ​ --->​​ ​​d9b3e5325308​
​ Successfully built d9b3e5325308

​ Successfully tagged myapp_web:latest

It’s	good	to	get	into	the	habit	of	rebuilding	our	image	to	perform	bundle install	for
us,	having	updated	our	Gemfile.	That	said,	we’ll	learn	about	a	more	advanced
approach	to	gem	management	that,	as	well	as	being	much	faster,	allows	us	to
stick	with	our	familiar	bundle install	workflow.

Let’s	start	up	our	newly	built	Rails	server	again:

​ ​$ ​​docker-compose​​ ​​up​​ ​​-d​​ ​​web​

Updating	Our	Rails	App	to	Use	Redis
Next,	we’re	going	to	actually	use	Redis	from	our	Rails	app.	As	we	said	before,
we	just	want	a	basic	demonstration	that	we	can	connect	to	the	Redis	server	and
store	and	retrieve	values.	So	let’s	start	by	generating	a	welcome	controller	in	our
Rails	app	with	a	single	index	action:

Linux	Users:	File	Ownership
Make	sure	you	have	chowned	the	files	by	running:

​ ​$ ​​sudo​​ ​​chown​​ ​​<your_user>:<your_group>​​ ​​-R​​ ​​.​

WOW! eBook
www.wowebook.org

See	​File	Ownership	and	Permissions​,	for	more	details.

​ ​$ ​​docker-compose​​ ​​exec​​ ​​web​​ ​​bin/rails​​ ​​g​​ ​​controller​​ ​​welcome​​ ​​index​
​ create app/controllers/welcome_controller.rb

​ route get 'welcome/index'

​ invoke erb

​ create app/views/welcome

​ create app/views/welcome/index.html.erb

​ invoke helper

​ create app/helpers/welcome_helper.rb

​ invoke assets

​ invoke coffee

​ create app/assets/javascripts/welcome.coffee

​ invoke scss

​ create app/assets/stylesheets/welcome.scss

Let’s	modify	our	welcome#index	action	(in	app/controllers/welcome_controller.rb)	to
be	as	follows:

​1: ​class​ WelcomeController < ApplicationController
​2: ​def​ ​index​
​3: redis = Redis.​new​(​host: ​​"redis"​, ​port: ​6379)
​4: redis.​incr​ ​"page hits"​
​5:
​6: @page_hits = redis.​get​ ​"page hits"​
​7: ​end​
​8: ​end​

In	our	index	action,	on	line	3,	we	use	the	Redis	client	gem	to	connect	to	the	Redis
server	by	name	and	by	the	port	number	we	expect	it	to	be	running	on.	Then,	on
line	4,	we	increment	a	Redis	key-value	pair,	called	“page	hits.”	If	you’re
wondering	what	happens	the	very	first	time	this	code	is	run,	don’t	fret:	if	the	key
is	not	found,	Redis	will	initialize	it	to	zero,	so	our	code	will	work	as	expected.
Finally,	on	line	6,	we	fetch	the	current	number	of	page	hits	from	Redis,	storing	it
in	an	instance	variable,	ready	to	display	it	in	our	view.

Now	let’s	edit	our	view	file	(app/views/welcome/index.html.erb)	to	display	the
number	of	page	hits:

​ <h1>This page has been viewed <​%= pluralize(@page_hits, 'time') %>!</h1>​

WOW! eBook
www.wowebook.org

Finally,	in	config/routes.rb,	let’s	change	the	autogenerated	route	so	we	can	access
our	new	WelcomeController’s	index	action	from	/welcome	(rather	than
/welcome/index):

​ Rails.​application​.​routes​.​draw​ ​do​
​ get ​'welcome'​, ​to: ​​'welcome#index'​
​ ​end​

Now	let’s	visit	our	Rails	app	in	the	browser	at	http://localhost:3000/welcome.
You	should	see	a	page	with	our	rendered	welcome	index.html.erb	file,	as	shown	in
the	following	figure:

The	page	loads	without	errors—a	good	sign.	Now	try	reloading	the	page.	Every
time	you	do,	you	should	see	the	number	of	page	hits	increasing.

What	does	this	mean?	It	means	that	our	Rails	app	connected	to	the	Redis	server,
incremented	the	value	of	“page	hits”	from	default	of	0	to	1,	and	finally	displayed
our	welcome	message	with	the	number	of	page	hits.	More	generally,	we
successfully	got	two	containers	to	talk	to	each	other.	This	is	possible	thanks	to
Compose	creating	the	network	for	the	app	and	automatically	attaching	containers
to	it.

WOW! eBook
www.wowebook.org

http://localhost:3000/welcome

Starting	the	Entire	App	with	Docker	Compose
We’ve	just	added	Redis	as	a	new	service	to	our	Compose	file	and	configured	our
Rails	app	to	talk	to	it.	As	we	did	this,	the	Rails	server	was	already	running,	so	we
started	the	Redis	server	by	itself	with	docker-compose run redis.	However,	one	of
the	beauties	of	Compose	is	that	no	matter	how	many	services	we	add	to	our
application,	we	can	manage	it,	in	its	entirety,	with	a	single	command,	replacing
the	need	for	gems	like	Foreman.[29]

We	can	stop	both	the	Rails	server	and	Redis	server	in	one	go	with:

​ ​$ ​​docker-compose​​ ​​stop​

You	can	verify	that	both	services	are	stopped	by	running:

​ ​$ ​​docker-compose​​ ​​ps​

You	should	see	something	like	this:

​ Name Command State Ports

​ ---

​ myapp_redis_1 docker-entrypoint.sh redis ... Exit 0

​ myapp_web_1 bin/rails s -b 0.0.0.0 Exit 1

This	shows	that	both	Redis	and	our	web	service	have	stopped;	the	State	column
says	Exit	along	with	the	status	code	the	command	terminated	with	(your	exit
status	may	be	different).	If,	for	some	reason,	either	are	still	running,	stop	them
with	the	docker-compose stop	(or	kill)	command.

Now	let’s	start	up	the	entire	app	again—both	the	Rails	server	and	Redis:

​ ​$ ​​docker-compose​​ ​​up​​ ​​-d​

Now	if	we	run:

​ ​$ ​​docker-compose​​ ​​ps​

we	can	see	both	services	are	running:

WOW! eBook
www.wowebook.org

​ Name Command State Ports

​ --

​ myapp_redis_1 docker-entrypoint.sh redis… Up 6379/tcp

​ myapp_web_1 bin/rails s -b 0.0.0.0 Up 0.0.0.0:3000->3000/tcp

Now,	the	moment	of	truth.	Is	our	welcome#index	action	still	connecting	to	the
Redis	server?	Browse	to	http://localhost:3000/welcome	again	(or	refresh	the
page	if	it’s	still	open),	and	you	should	see	the	following	familiar	screen	(but	with
the	hit	counter	continuing	to	increase):

WOW! eBook
www.wowebook.org

http://localhost:3000/welcome

Quick	Recap
The	true	power	of	using	containers	for	our	apps	is	not	running	a	process	in	an
individual	container	(though	that’s	useful),	but	rather	how	we’re	able	to	wire
containers	together	so	they	can	talk	to	each	other.

In	this	chapter,	we’ve	seen	how	we	can	add	services	to	our	application,	running
in	separate	containers.	More	importantly,	we’ve	seen	how	Docker’s	built-in
networking	is	used	to	let	the	services	talk	to	each	other.

Let’s	review	the	highlights:

1.	 We	started	a	Redis	server	in	a	container,	using	docker run.	We	covered	two
new	options:	--name	for	giving	containers	a	human-friendly	name,	and	-d	for
running	a	container	in	detached	mode.

2.	 We	added	a	separate	service	in	Compose	for	running	the	Redis	server.

3.	 We	verified	that	the	Redis	server	was	running	(and	that	we	could	connect	to
it	from	a	separate	container)	by	starting	a	new	container	to	run	redis-cli.

4.	 We	discussed	the	networking	features	Docker	provides,	and	how	Compose
facilitates	containers	talking	to	each	other.

5.	 We	connected	our	Rails	app	to	the	Redis	server,	making	it	store	and
increment	a	value,	which	we	then	retrieved	and	displayed.

6.	 Finally,	we	saw	that	our	trusty	docker-compose up	just	works,	and	will	start	up
both	the	Rails	and	Redis	servers	in	one	go.

Next,	we’re	going	to	take	what	we’ve	learned	about	Compose	and	use	it	to	add	a
Postgres	database.	We’ll	go	a	step	further	and	see	how	to	ensure	our	data	persists
even	if	the	container	running	our	database	were	deleted.

Footnotes

WOW! eBook
www.wowebook.org

[27]

[28]

[29]

https://www.slideshare.net/Docker/compose-breakout-aanand-prasad#8

https://hub.docker.com/_/redis/

https://rubygems.org/gems/foreman

Copyright	©	2019,	The	Pragmatic	Bookshelf.

WOW! eBook
www.wowebook.org

https://www.slideshare.net/Docker/compose-breakout-aanand-prasad#8
https://hub.docker.com/_/redis/
https://rubygems.org/gems/foreman

Chapter	6

Adding	a	Database:	Postgres
	

I	don’t	know	about	you,	but	I’m	feeling	great	about	our	progress.	We’ve
gradually	been	leveling	up	our	skills	and	are	now	within	touching	distance	of	our
Dockerized	Rails	app	having	all	the	capabilities	we’re	used	to	when	running
Rails	locally.

However,	there’s	still	one	glaring	omission:	we	haven’t	set	up	a	database.	The
vast	majority	of	Rails	applications	require	some	persistent	storage.

In	this	chapter,	we’ll	rectify	that,	building	on	our	experience	of	adding	the	Redis
server,	to	connect	a	Postgres	database.

While	reading	this	chapter,	remember	to	keep	the	bigger	picture	in	mind.	The
skills	you’re	learning	apply	to	any	services	you	might	want	to	add	to	your	app,
be	it	running	background	jobs	(such	as	Sidekiq),	Elasticsearch,	or	a	JavaScript
front	end	for	a	Rails	API.

WOW! eBook
www.wowebook.org

Starting	a	Postgres	Server
We	want	to	run	a	Postgres	server	for	our	Rails	app	to	use.	The	process	is	very
similar	to	how	we	added	Redis.

In	the	previous	chapter,	we	started	by	familiarizing	ourselves	with	how	to	run	the
Redis	server	with	docker run.	However,	now	that	we’ve	had	some	experience	with
adding	a	service,	let’s	take	the	safety	wheels	off	and	jump	straight	to	setting	up
Postgres	directly	with	Compose.

Let’s	add	Postgres	to	our	docker-compose.yml	file:

​ version: ​'​​3'​
​
​ services:

​
​ web:

​ build: ​.​
​ ports:

​ - ​"​​3000:3000"​
​ volumes:

​ - ​.:/usr/src/app​
​
​ redis:

​ image: ​redis​
​
» database:

» image: ​postgres​
» environment:

» POSTGRES_USER: ​postgres​
» POSTGRES_PASSWORD: ​some-long-secure-password​
» POSTGRES_DB: ​myapp_development​

We’ve	defined	a	new	database	service	using	the	official	postgres	image.[30]	We’re
relying	on	this	image’s	default	CMD	instruction—CMD ["postgres"]—which	starts
the	Postgres	server.[31]

As	with	redis,	our	new	database	service	has	no	need	for	port	mappings	or
volumes.	We	don’t	want	the	database	to	be	accessible	externally	to	our

WOW! eBook
www.wowebook.org

application,	and	we	don’t	need	to	mount	any	files	into	the	Postgres	container.

We	do,	however,	specify	a	new	property	called	environment.	You	may	well	be
able	to	guess	what	this	does:	it	tells	Docker	to	set	the	subsequent	environment
variables	inside	the	container.	Here,	we’re	specifying	that	POSTGRES_USER	should
be	set	to	postgres;	POSTGRES_PASSWORD	should	be	set	to	some-long-secure-password;
and	POSTGRES_DB	should	be	set	to	myapp_development.

Why	do	we	set	these?

Just	like	the	non-Dockerized	version	of	Postgres	allows	you	to	specify	certain
parameters	as	environment	variables,[32]	the	same	is	true	for	the	Dockerized
version.[33]	When	Postgres	launches,	if	POSTGRES_USER	is	set,	its	value	will	be
used	as	the	name	of	the	superuser	account.	Similarly,	if	POSTGRES_PASSWORD	is
set,	this	will	be	used	as	the	superuser	password.	Finally,	if	POSTGRES_DB	is	set,
this	will	be	used	as	the	name	of	the	default	database	that’s	created	on	launch.

It’s	not	ideal	to	have	our	database	password	in	the	docker-compose.yml	file:	this	file
should	be	committed	to	version	control,	but	it’s	a	security	risk	to	commit	files
containing	secrets.	We’ll	revisit	this	shortly.	Also,	technically,	we	didn’t	need	to
set	POSTGRES_USER	since	we’re	setting	its	default	value.	However,	I’ve	included	it
because	it’s	good	practice	to	make	things	configurable.[34]

OK.	With	our	docker-compose.yml	updated,	we	can	start	Postgres:

​ ​$ ​​docker-compose​​ ​​up​​ ​​-d​​ ​​database​

We’re	starting	our	database	service	in	detached	mode.	We	can	verify	it’s	up	and
running	with:

​ ​$ ​​docker-compose​​ ​​ps​
​ Name Command State Ports

​ --

​ myapp_database_1 docker-entrypoint.sh pos… Up 5432/tcp

​ myapp_redis_1 docker-entrypoint.sh red… Up 6379/tcp

​ myapp_web_1 bin/rails s -b 0.0.0.0 Up 0.0.0.0:3000->3000/tcp

WOW! eBook
www.wowebook.org

We	now	have	three	containers	for	our	app,	and	we	can	see	that	our	new	addition
—the	database—is	running.

As	a	further	check,	we	can	view	the	database	container’s	output:

​ ​$ ​​docker-compose​​ ​​logs​​ ​​database​
​ Attaching to myapp_database_1

​ ...

​ database_1 | PostgreSQL init process complete; ready for start up.

​ database_1 |

​ database_1 | 2019-01-15 10:07:29.394 UTC [1] LOG: listening on IPv4 address

​ "0.0.0.0", port 5432

​ database_1 | 2019-01-15 10:07:29.394 UTC [1] LOG: listening on IPv6 address

​ "::", port 5432

​ database_1 | 2019-01-15 10:07:29.397 UTC [1] LOG: listening on Unix socket

​ "/var/run/postgresql/.s.PGSQL.5432"

​ database_1 | 2019-01-15 10:07:29.409 UTC [60] LOG: database system was shut

​ down at 2019-01-15 10:07:29 UTC

​ database_1 | 2019-01-15 10:07:29.414 UTC [1] LOG: database system is ready

​ to accept connections

Remember	that	this	command	shows	the	container’s	logs—that	is,	its	output
rather	than	Postgres’	log	file	output.

WOW! eBook
www.wowebook.org

Connecting	to	Postgres	from	a	Separate	Container
As	you	become	more	and	more	comfortable	with	using	Compose,	you’ll	find
that	you	trust	it	to	do	what	you	need.	A	quick	docker-compose ps	is	probably	all
you	need	to	verify	a	service	is	running	(sometimes	you	may	even	skip	that).

However,	since	running	services	like	Postgres	inside	a	container	is	still	fairly
new	for	us,	let’s	take	the	extra	step	of	manually	connecting	to	it	from	a	different
container,	just	like	we	did	with	Redis.	While	learning,	for	me	at	least,	this	helps
build	my	confidence	in	the	tools.

As	was	the	case	with	Redis,	the	postgres	image	comes	preinstalled	with	psql—the
Postgres	client.	This	means	we	can	piggyback	on	our	new	database	service	in
order	to	run	a	one-off	container,	based	on	the	postgres	image.	However,	instead
of	using	the	default	command	for	the	image,	which	starts	the	Postgres	server,	we
instead	run	a	command	to	start	the	Postgres	client.

We	can	do	this	by	running	the	following	command:

​ ​$ ​​docker-compose​​ ​​run​​ ​​--rm​​ ​​database​​ ​​psql​​ ​​-U​​ ​​postgres​​ ​​-h​​ ​​database​

Here	we’re	saying,	“Start	a	new,	throwaway	container	(run --rm)	for	the	database

service	and	run	the	command	psql -u postgres -h database	inside	it.”	This	command
starts	the	Postgres	client,	telling	it	to	connect	to	the	hostname	database	with	the
postgres	user.	We’re	relying	on	the	fact	that	Compose	magically	sets	up	a
network	for	our	application	with	DNS	configured	so	that	the	hostname	database

will	reach	the	container	running	our	database	service.

We	could	have	used	exec	instead	of	run --rm,	which	would	have	avoided	starting	a
new	container	and,	instead,	executed	the	command	on	the	database	container
that’s	already	running.	However,	we	deliberately	wanted	the	extra	verification	of
connecting	from	a	different	container.

When	you	run	this	command,	you’ll	be	prompted	to	enter	a	password:

WOW! eBook
www.wowebook.org

​ Password for user postgres:

Go	ahead	and	enter	 some-long-secure-password —the	password	we	set	in	our
docker-compose.yml	file.	This	should	be	accepted	and	take	you	to	the	psql	prompt:

​ psql (11.1 (Debian 11.1-1.pgdg90+1))

​ Type "help" for help.

​
​ ​postgres=#​

Excellent.	We’re	connected	to	our	database	service,	running	Postgres,	and	have
proven	that	everything	is	working	as	we	hoped.	When	you’re	ready,	you	can	quit
the	psql	client	as	follows	by	typing	 \q <Enter> .

WOW! eBook
www.wowebook.org

Connecting	Our	Rails	App	to	Postgres
We’ve	just	seen	that	our	database	is	up	and	running	and	reachable	from	other
containers	in	our	app’s	network.	However,	before	we	can	start	making	use	of	it,
we	have	to	configure	our	Rails	app	to	connect	to	it.

Let’s	do	this	now.

Installing	the	Postgres	Gem
First	things	first.	In	order	to	get	our	Rails	app	talking	to	Postgres,	we	need	to
install	the	Postgres	client	gem.	Open	up	your	Gemfile	and	update	it	to	replace:

​ gem ​'sqlite3'​

with:

​ gem ​'pg'​, ​'~> 1.0'​

To	actually	install	the	new	gem,	we	need	to	run	bundle install,	which	we	do	by
rebuilding	our	image	(we	discuss	gem	management	further).	Let’s	first	stop	our
Rails	server:

​ ​$ ​​docker-compose​​ ​​stop​​ ​​web​

and	then	rebuild	our	image:

​ ​$ ​​docker-compose​​ ​​build​​ ​​web​
​ Building web

​ Step 1/8 : FROM ruby:2.6

​ ...

​ Step 6/8 : RUN bundle install

​ ...

​ Installing pg 1.1.4 with native extensions

​ ...

​ Bundle complete! 16 Gemfile dependencies, 69 gems now installed.

​ Bundled gems are installed into `/usr/local/bundle`

​ ...

​ Removing intermediate container 9b01b1fa29fc

​ ​ --->​​ ​​f9e6330d40b6​

WOW! eBook
www.wowebook.org

​ Step 7/8 : COPY . /usr/src/app/

​ ​ --->​​ ​​70fb0e2e0091​
​ Step 8/8 : CMD ["bin/rails", "s", "-b", "0.0.0.0"]

​ ​ --->​​ ​​Running​​ ​​in​​ ​​16cc0923b855​
​ Removing intermediate container 16cc0923b855

​ ​ --->​​ ​​d4ffbe8f72d3​
​ Successfully built d4ffbe8f72d3

​ Successfully tagged myapp_web:latest

With	the	Postgres	gem	installed,	we	can	move	on	to	configuring	our	database.yml.

Creating	Our	App	Databases
When	we	created	our	Rails	project,	we	did	so	with	the	default	settings,	which
assumed	we	were	using	sqlite	for	our	database.	Now	that	we’re	setting	up
Postgres	instead,	the	generated	database.yml	file	is	not	correct.	We	need	to	change
it	to	something	more	suitable.

Let’s	open	up	config/database.yml	in	an	editor	and	replace	its	contents	with	the
following	Postgres	configuration:

​ default: &default

​ adapter: ​postgresql​
​ encoding: ​unicode​
​ host: ​<%= ENV.fetch('DATABASE_HOST') %>​
​ username: ​<%= ENV.fetch('POSTGRES_USER') %>​
​ password: ​<%= ENV.fetch('POSTGRES_PASSWORD') %>​
​ database: ​<%= ENV.fetch('POSTGRES_DB') %>​
​ pool: ​5​
​ variables:

​ statement_timeout: ​5000​
​
​ development:

​ ​<<​: *default
​
​ test:

​ ​<<​: *default
​ database: ​myapp_test​
​
​ production:

​ ​<<​: *default

WOW! eBook
www.wowebook.org

Hopefully,	this	all	looks	pretty	familiar	to	you.

We’re	specifying	the	most	important	config	(host,	username,	password,	and
database)	via	environment	variables.	Generally	this	is	considered	a	good	practice,
[35]	although,	as	we’ll	see	later,	Docker	provides	an	even	more	secure	approach.
Currently,	though,	these	environment	variables	are	not	set	for	our	web	service.

Let’s	fix	that.	We	have	to	update	our	docker-compose.yml	to	ensure	these	variables
are	set	in	our	Rails	app	container,	like	so:

​ version: ​'​​3'​
​
​ services:

​
​ web:

​ build: ​.​
​ ports:

​ - ​"​​3000:3000"​

​ volumes:

​ - ​.:/usr/src/app​
» environment:

» DATABASE_HOST: ​database​
» POSTGRES_USER: ​postgres​
» POSTGRES_PASSWORD: ​some-long-secure-password​
» POSTGRES_DB: ​myapp_development​
​
​ redis:

​ image: ​redis​
​
​ database:

​ image: ​postgres​
​ environment:

​ POSTGRES_USER: ​postgres​
​ POSTGRES_PASSWORD: ​some-long-secure-password​
​ POSTGRES_DB: ​myapp_development​

In	the	pre-Docker	world,	we’d	normally	set	DATABASE_HOST	to	localhost	since	the
database	would	be	running	on	our	local	machine.	Here,	though,	we	specify	the
name	of	our	service	that	runs	Postgres:	database.	This	resolves	to	our	database

service’s	containers	thanks	to	DNS	provided	by	our	app’s	network.

WOW! eBook
www.wowebook.org

We	also	set	the	POSTGRES_USER,	POSTGRES_PASSWORD,	and	POSTGRES_DB

environment	variables	to	match	those	set	for	the	database	service;	this	means	our
web	service	will	have	the	correct	credentials	to	log	into	the	database.

This	should	now	work,	but	notice	that	we	now	have	quite	a	lot	of	environment
variables,	and	two	are	duplicated	across	the	web	and	database	services.	We	also
said	we’d	rather	not	include	secrets	in	our	docker-compose.yml	file	so	we	can
commit	it	to	our	source	repo.	Let’s	kill	two	birds	with	one	stone	and	extract	the
environment	variables	into	separate	files.

First,	let’s	create	some	directories	to	store	our	environment-specific	config:

​ ​$ ​​mkdir​​ ​​-p​​ ​​.env/development​

Then	create	the	file	.env/development/web	(without	a	file	extension),	which
contains	our	web-service-specific	environment	variables:

​ ​DATABASE_HOST=database​

and	another	file,	.env/development/database,	containing	those	for	our	database

service:

​ ​POSTGRES_USER=postgres​
​ ​POSTGRES_PASSWORD=some-long-secure-password​
​ ​POSTGRES_DB=myapp_development​

Now	we	need	to	tell	Compose	to	use	these	files	instead	of	explicitly	setting	the
variables	directly.	We	do	this	using	the	env_file	directive:

​ version: ​'​​3'​
​
​ services:

​
​ web:

​ build: ​.​
​ ports:

​ - ​"​​3000:3000"​
​ volumes:

​ - ​.:/usr/src/app​
» env_file:

WOW! eBook
www.wowebook.org

» - ​.env/development/database​
» - ​.env/development/web​
​
​ redis:

​ image: ​redis​
​
​ database:

​ image: ​postgres​
» env_file:

» - ​.env/development/database​

We	could	have	named	the	environment	files	anything	we	liked,	but	I	chose	a
simple	naming	scheme	that	makes	sense.	Similarly,	you	are	free	to	use	whatever
file	structure	and	naming	conventions	you	like	for	the	environment	variable	files
(currently	under	.env),	so	long	as	you	refer	to	them	correctly	in	the	Compose	file.

With	this	small	refactor	done,	we’re	ready	to	create	our	development	and	test
databases	using	the	standard	Rails	command	bin/rails db:create,	targeting	the
command	at	our	web	service:

​ ​$ ​​docker-compose​​ ​​run​​ ​​--rm​​ ​​web​​ ​​bin/rails​​ ​​db:create​

In	this	case,	we	used	run --rm	rather	than	exec	because	the	currently	running	web

container	won’t	have	the	newly	added	environment	variables	set	until	we	restart.
The	new,	throwaway	container	that	runs	this	command	will.

You	should	see	the	following	output	showing	our	databases	have	been	created
successfully:

​ Database 'myapp_development' already exists

​ Created database 'myapp_test'

You’ll	notice	that	the	myapp_development	database	already	exists,	which	is	a	bit
strange	since	this	is	the	first	time	we’ve	said	to	create	it.	That’s	because	the
postgres	image	will	automatically	create	a	default	database	when	it’s	first	started;
if	set,	it	uses	the	value	of	the	POSTGRES_DB	environment	variable	as	the	name	for
this	table.	In	our	case,	that’s	myapp_development,	which	is	why	the	table	already
exists.

WOW! eBook
www.wowebook.org

Great,	we’re	almost	there.

Restarting	the	Rails	Server
Having	set	up	Rails	to	use	our	Postgres	database	running	in	a	container	and
created	the	databases,	the	final	step	is	to	start	up	our	Rails	server	with	the	new
config	and	environment	variables.	However,	because	Compose	will	just	reuse
existing	containers	for	a	server,	we	have	to	explicitly	tell	it	to	recreate	the
container	for	our	web	service.

Here’s	how	we	do	that:

​ ​$ ​​docker-compose​​ ​​up​​ ​​-d​​ ​​--force-recreate​​ ​​web​

The	--force-recreate	says,	“Recreate	the	service’s	containers.”

Now,	go	ahead	and	visit	http://localhost:3000	to	verify	the	app	is	connected	to
Postgres;	if	all	is	well,	you’ll	see	the	standard	Rails	start	screen,	whereas
ActiveRecord	will	raise	a	PG::ConnectionBad	error	if	it	can’t	connect.

That’s	it—we’re	up	and	running	with	Postgres.

WOW! eBook
www.wowebook.org

http://localhost:3000

WOW! eBook
www.wowebook.org

Using	the	Database	in	Practice
We	know	that,	having	configured	our	Rails	app	to	talk	to	our	Postgres	database,
our	Rails	app	started	successfully;	however,	we’re	relying	on	the	absence	of	an
error	as	proof	that	the	database	is	connected	correctly.	While,	technically,	that’s
all	we	need,	let’s	make	sure	it’s	working	as	expected	by	interacting	with	the
database	from	our	app.	This	will	also	give	us	more	practice	at	developing	our
Rails	app	with	Docker,	via	the	Compose	CLI.

Let’s	generate	a	basic	UsersController	in	our	Rails	app.	For	the	sake	of	speed,
we’re	going	to	just	use	Rail’s	generate scaffold	command:

​ ​$ ​​docker-compose​​ ​​exec​​ ​​web​​ ​​\​
​ ​ ​​bin/rails​​ ​​g​​ ​​scaffold​​ ​​User​​ ​​first_name:string​​ ​​last_name:string​
​ invoke active_record

​ create db/migrate/20190115100954_create_users.rb

​ create app/models/user.rb

​ invoke resource_route

​ route resources :users

​ invoke scaffold_controller

​ create app/controllers/users_controller.rb

​ invoke erb

​ create app/views/users

​ create app/views/users/index.html.erb

​ create app/views/users/edit.html.erb

​ create app/views/users/show.html.erb

​ create app/views/users/new.html.erb

​ ...

Linux	Users:	File	Ownership
Remember	to	chown	the	files	we’ve	just	generated	by	running	the
following	command:

​ ​$ ​​sudo​​ ​​chown​​ ​​<your_user>:<your_group>​​ ​​-R​​ ​​.​

See	​File	Ownership	and	Permissions​,	for	more	details.

WOW! eBook
www.wowebook.org

Now	we	need	to	run	the	migrations	to	create	the	Users	table.	You	should	be
starting	to	get	comfortable	with	running	standard	Rails	commands	targeted
against	our	web	service	using	Compose,	just	like	this:

​ ​$ ​​docker-compose​​ ​​exec​​ ​​web​​ ​​bin/rails​​ ​​db:migrate​
​ == 20190115100954 CreateUsers: migrating ===================================

​ -- create_table(:users)

​ ​ ->​​ ​​0.0585s​
​ == 20190115100954 CreateUsers: migrated (0.0587s) ==========================

OK,	we	should	be	good	to	go—let’s	try	this	out.	With	the	app	still	running,
navigate	to	http://localhost:3000/users	in	a	browser.	You	should	see	the	familiar
Rails	scaffold	for	creating	and	listing	users	as	shown	in	the	following	figure.
Make	sure	you	can	create	and	delete	users.	

	
Great,	we	have	Postgres	all	set	up	with	Compose.

WOW! eBook
www.wowebook.org

http://localhost:3000/users

Decoupling	Data	from	the	Container
It’s	great	that	we’ve	set	up	our	database	so	we	can	persist	data	in	our	Rails	app.
However,	currently,	there’s	a	major	failing	in	how	it	works.	Let’s	see	what	the
problem	is,	and	see	how	to	get	around	it.

Part	of	the	philosophy	of	using	Docker	is	that	we	should	treat	containers	as
ephemeral—throwaway	things	that	we	spin	up,	use,	and	then	delete.	However,
our	Postgres	database	is	running	in	a	container	and	persisting	our	data	by	writing
and	modifying	files	on	disk	inside	the	container.	What	happens	to	our	data	if	we
delete	our	database	container?	Yep,	you’ve	guessed	it:	we	say	bye	bye	to	all	our
lovely	data.	Not	really	what	we	want.

Now	that	we’re	going	to	be	storing	important	data	in	our	database,	we	need	to
think	a	bit	more	carefully	about	this.

Just	like	in	our	code	where	we	try	to	decouple	things	that	change	frequently	from
things	that	don’t,	we	want	to	decouple	our	data	from	the	containers	that	generate
and	use	it.	Our	data	should	be	stored	separately	from	the	container	running	the
database.	That	way,	we	could	delete,	remove,	and	recreate	the	container	without
affecting	the	data.

The	answer:	we	store	persistent	data	in	volumes,	which	by	their	very	nature	are
decoupled	from	the	life	cycle	of	containers.	Even	if	we	delete	a	container	with	a
connected	volume,	the	volume	continues	to	exist	independently,	storing	our	data
safely.	We	can	then	recreate	the	container,	hooking	up	the	volume,	and
everything	is	hunky-dory.

Docker	allows	us	to	create	a	few	different	types	of	volumes,	all	of	which	would
do	the	job.	For	example,	we’ve	already	seen	how	to	mount	a	local	volume.
However,	there’s	another	type	of	volume	better	suited	to	our	purpose.	We	don’t
really	care	where	or	how	the	files	are	stored,	we	just	care	that	they	are	stored
somewhere	separately.	For	this,	we	can	create	a	named	volume:	a	self-contained
bucket	of	file	storage,	completely	managed	by	Docker.

WOW! eBook
www.wowebook.org

But	enough	of	the	theory;	let’s	see	how	we	do	this	in	practice.

Named	volumes	can	be	created	and	managed	through	the	docker volume

command.	While	that’s	worth	knowing	about,	since	we’re	using	Compose,	we
can	let	it	handle	the	management	of	the	volumes	for	us.

Here’s	our	docker-compose.yml	modified	to	store	our	persistent	data	on	a	volume:

​1: version: ​'​​3'​
​-
​- services:

​-
​5: web:

​- build: ​.​
​- ports:

​- - ​"​​3000:3000"​
​- volumes:

​10: - ​.:/usr/src/app​
​- env_file:

​- - ​.env/development/database​
​- - ​.env/development/web​
​-
​15: redis:
​- image: ​redis​
​-
​- database:

​- image: ​postgres​
​20: env_file:
​- - ​.env/development/database​
​- volumes:

​- - ​db_data:/var/lib/postgresql/data​
​-
​25: volumes:
​- db_data:

The	first	step	is	to	tell	Compose	that	we	need	a	named	volume.	Named	volumes
are	defined	under	the	top-level	volumes	property	(line	25);	here,	we’ve	defined	a
named	volume	called	db_data	(line	26).

Next,	we	need	to	tell	Compose	to	mount	the	named	volume	inside	our	database
container,	using	the	familiar	volumes	property	(line	22).	Mounting	a	named

WOW! eBook
www.wowebook.org

volume	(line	23)	is	similar	to	mounting	a	local	directory	(line	10)—the
difference	is	that	the	part	before	the	colon	refers	to	the	name	of	the	named
volume	rather	than	a	local	path.	Here	(line	23)	we’re	saying,	“Mount	the	db_data

named	volume	at	/var/lib/postgresql/data”—the	directory	where	the	Postgres
image	stores	its	database	files	that	we	want	to	persist.[36]

OK,	let’s	give	this	a	whirl.	We’ve	changed	our	Compose	definition	for	our
database	service,	so	that’s	the	one	we	need	to	restart.	However,	again,	because
Compose	reuses	the	same	container	for	a	service	unless	we	tell	it	otherwise,	we
have	to	explicitly	tell	Compose	to	recreate	the	database	container	to	pick	up	our
new	volume	settings.

First	stop	the	database	service:

​ ​$ ​​docker-compose​​ ​​stop​​ ​​database​

Then	let’s	explicitly	remove	its	container:

​ ​$ ​​docker-compose​​ ​​rm​​ ​​-f​​ ​​database​

Compose	would	normally	ask	us	to	confirm	before	removing	the	container—the
force	(-f)	option	tells	it	to	just	go	ahead	and	do	it.

OK,	it’s	time	to	bring	our	database	back	up:

​ ​$ ​​docker-compose​​ ​​up​​ ​​-d​​ ​​database​
​ Creating volume "myapp_db_data" with default driver

​ Creating myapp_database_1 ... done

Since	our	new	volume	is	now	mounted	in	the	container,	we’ve	wiped	any
previous	databases	and	data	we	had	stored,	so	we’ll	need	to	recreate	and	migrate
the	databases.

Let’s	do	this	now:

​ ​$ ​​docker-compose​​ ​​exec​​ ​​web​​ ​​bin/rails​​ ​​db:create​​ ​​db:migrate​
​ Database 'myapp_development' already exists

​ Created database 'myapp_test'

​ == 20190115100954 CreateUsers: migrating ===================================

WOW! eBook
www.wowebook.org

​ -- create_table(:users)

​ ​ ->​​ ​​0.0127s​
​ == 20190115100954 CreateUsers: migrated (0.0143s) ==========================

OK,	now	let’s	make	sure	our	app	is	still	working.	Visit
http://localhost:3000/users	in	the	browser,	and	make	sure	you	see	our	User

scaffold.	Great—the	volume	seems	to	be	working.

Let’s	prove	that	our	data	is	now	persisted	even	if	we	delete	the	database
container.	First,	we	need	to	store	some	data:	add	one	or	more	users	through	the
Rails	scaffold.	In	the	following	figure,	I’ve	created	a	single	user	for	myself.	

	
Now	that	we	have	some	data	stored,	let’s	stop	the	database	container:

​ ​$ ​​docker-compose​​ ​​stop​​ ​​database​
​ Stopping myapp_database_1 ... done

and	then	delete	it	(you	will	need	to	confirm	when	asked):

​ ​$ ​​docker-compose​​ ​​rm​​ ​​database​
​ Going to remove myapp_database_1

​ Are you sure? [yN] y

​ Removing myapp_database_1 ... done

Next,	we	recreate	it	and	start	it	up	with:

​ ​$ ​​docker-compose​​ ​​up​​ ​​-d​​ ​​database​

WOW! eBook
www.wowebook.org

http://localhost:3000/users

If	this	works,	we	should	see	our	user	data,	exactly	as	it	was	before	we	deleted	the
database	container.	Reload	the	browser	(at	http://localhost:3000/users),	and…our
data	is	still	there.	Hurrah!

But	Where	Actually	Is	My	Data?
We	said	that	Docker	manages	an	area	of	the	filesystem	for	named
volumes,	but	where	actually	is	it?	We	can	find	out	where	our	db_data

named	volume	(which	Compose	prefixes	with	our	app	folder	to
become	myapp_db_data)	is	located	by	running:

​ ​$ ​​docker​​ ​​volume​​ ​​inspect​​ ​​--format​​ ​​'{{ .Mountpoint }}'​​
​​myapp_db_data​

​ /var/lib/docker/volumes/myapp_db_data/_data

As	we	can	see,	named	volumes	are	stored	in	/var/lib/docker/volumes/.
[37]	On	Linux,	this	will	be	a	path	on	the	local	filesystem,	but	on
macOS	or	Windows,	this	refers	to	the	path	inside	the	Dockerhost
VM.

WOW! eBook
www.wowebook.org

http://localhost:3000/users

[30]

[31]

Quick	Recap
In	this	chapter,	we	learned	how	to	set	up	and	configure	a	database	for	our	Rails
app—something	the	vast	majority	of	Rails	apps	typically	need.

Let’s	review	what	we	covered:

We	started	up	a	Postgres	server	in	a	container	using	Compose.

We	verified	that	the	Postgres	server	was	running	by	connecting	with	the
Postgres	client	from	a	separate	container.

We	configured	our	Rails	app	to	talk	to	Postgres	by	installing	the	Postgres
gem,	modifying	our	database.yml	file,	and	running	the	Rake	task	to	create
the	databases.

We	put	our	new	database	through	its	paces	by	generating	a	scaffold,
running	migrations,	and	inserting,	deleting,	and	updating	records.

We	discussed	why	it’s	a	good	idea	to	decouple	our	database	container	from
data	we	want	to	persist.

Finally,	we	used	a	named	volume	to	store	our	data	separately,	allowing	us	to
manage	its	life	cycle	independently	of	the	container.

You’ve	now	seen	how	to	add	two	services:	Redis	and	Postgres.	You	should	be
able	to	apply	this	same	knowledge	to	add	any	other	services	you	can	think	of.	In
fact,	we’ll	add	yet	another	service	in	the	next	chapter,	as	we	turn	our	attention
away	from	back-end	technologies	to	explore	how	to	incorporate	a	modern,
JavaScript	front	end	for	your	Rails	app.

Footnotes

https://hub.docker.com/_/postgres/

https://github.com/docker-

WOW! eBook
www.wowebook.org

https://hub.docker.com/_/postgres/
https://github.com/docker-library/postgres/blob/674466e0d47517f4e05ec2025ae996e71b26cae9/10/Dockerfile#L133

[32]

[33]

[34]

[35]

[36]

[37]

library/postgres/blob/674466e0d47517f4e05ec2025ae996e71b26cae9/10/Dockerfile#L133

https://www.postgresql.org/docs/9.1/static/libpq-envars.html

https://hub.docker.com/_/postgres/

https://12factor.net/config

https://12factor.net/config

https://hub.docker.com/_/postgres/

https://docs.docker.com/storage/#choose-the-right-type-of-mount

Copyright	©	2019,	The	Pragmatic	Bookshelf.

WOW! eBook
www.wowebook.org

https://www.postgresql.org/docs/9.1/static/libpq-envars.html
https://hub.docker.com/_/postgres/
https://12factor.net/config
https://12factor.net/config
https://hub.docker.com/_/postgres/
https://docs.docker.com/storage/#choose-the-right-type-of-mount

Chapter	7

Playing	Nice	with	JavaScript
	

We’re	living	in	a	JavaScript	renaissance—no	longer	is	it	the	whipping	boy	of
language	purists.	Rails	has	embraced	modern	JavaScript	technologies	like	React
through	its	inclusion	of	Webpacker:	a	gem	that	brings	webpack	support.

As	Rails	developers,	it’s	important	to	be	able	to	incorporate	these	technologies
into	our	apps	as	needed,	so	our	Docker	environment	needs	to	support	us	in	that
endeavor.

In	this	chapter,	we’ll	explore	the	options	for	working	with	JavaScript	as	part	of
our	Rails	development.	We’ll	also	see	how	to	include	a	React	front	end	in	our
Rails	app	by	installing	and	configuring	Webpacker.

By	the	end	of	this	chapter,	our	Docker-based	development	environment	will	play
nice	with	all	this	modern	JavaScript	goodness.

WOW! eBook
www.wowebook.org

The	JavaScript	Front-End	Options
There	are	a	number	of	different	options	when	it	comes	to	combining	JavaScript
into	the	front	end	for	your	Rails	apps.	Perhaps	the	biggest	choice	is	whether	your
Rails	app	will	serve	up	the	front	end	or	not.	Both	are	equally	valid	options,	and
each	way	has	some	advantages	and	disadvantages	and	will	lead	to	different
setups.

If	your	Rails	app	is	not	serving	up	your	front	end,	that	means	you’re	using	your
Rails	app	as	an	API	layer.	In	this	case,	you’d	have	a	separate	front	end,	typically
written	purely	in	JavaScript,	whether	that’s	React,	Ember,	Vue.js,	or	something
else.	This	scenario	is	outside	the	scope	of	the	book,	since	it	involves	getting	very
JavaScript-specific	with	your	setup.	However,	in	general	terms,	it’s	quite
straightforward,	and	you	will	largely	be	applying	the	skills	you’ve	already
learned.

Here’s	a	basic	outline:

Rename	your	web	service.	Naming	is	important.	In	this	scenario,	your	Rails
app	is	really	the	API	or	back	end,	so	you	should	name	it	as	such.

Create	a	custom	image	for	running	your	JavaScript	front-end	app.	In	the
same	way	we’ve	created	a	custom	image	to	run	our	Rails	app,	you	would
do	the	same	but	for	your	JS	front	end.	Its	Dockerfile	could	build	on	top	of	a
standard	Node.js	image,[38]	adding	the	app-specific	setup	required.

Create	a	separate,	front-end	service	in	your	docker-compose.yml.	This	would
be	your	standalone	JavaScript	application.	You	would	configure,	via
environment	variables,	the	API	endpoint	it	should	use	(the	domain	name
and	port	of	the	Rails	API).

If,	on	the	other	hand,	you’re	using	Rails	to	serve	up	your	front	end,	that	means
using	the	facilities	that	Rails	provides.	Rails	offers	two	mechanisms	for	serving
up	JavaScript	front	ends:	the	(Sprockets-based)	asset	pipeline	or	the	new

WOW! eBook
www.wowebook.org

Webpacker	approach	added	in	Rails	5.1.

The	traditional	Sprockets-based	asset	pipeline	works	out	of	the	box	without	any
special	setup.	As	part	of	running	the	Rails	server,	your	assets	will	automatically
be	compiled	and	served	up	in	your	views	in	the	standard	Rails	way.	We’ll	see	an
example	of	this	in	the	upcoming	testing	chapter.

Getting	your	Rails	app	working	with	Webpacker	takes	a	little	bit	more	setup	with
Docker.	Since	this	is	such	a	popular	approach,	we’re	going	to	guide	you	through
how	to	set	this	up	throughout	the	rest	of	the	chapter.

WOW! eBook
www.wowebook.org

Rails	JavaScript	Front	End	with	Webpacker
Rails	has	included	a	way	to	build	rich	JavaScript	front	ends	into	your	apps	since
version	5.1,	using	a	gem	called	webpacker.	Webpacker	has	a	modular	architecture,
allowing	you	to	integrate	different	front-end	technologies,	be	it	React,	Ember,
Vue.js,	or	even	Elm.

Using	React	as	an	example,	let’s	see	how	we’d	configure	Webpacker	in	our
Dockerized	app.

First	things	first.	Webpacker	requires	Yarn	and	a	current	version	of	Node.	This
requires	an	update	to	our	Docker	image:

​1: ​FROM ruby:2.6​
​- ​LABEL maintainer="rob@DockerForRailsDevelopers.com"​
​-
​- ​# Allow apt to work with https-based sources​
​5: ​RUN apt-get update -yqq && apt-get install -yqq --no-install-recommends \​
​- ​apt-transport-https​
​-
​- ​# Ensure we install an up-to-date version of Node​
​- ​# See https://github.com/yarnpkg/yarn/issues/2888​
​10: ​RUN curl -sL https://deb.nodesource.com/setup_8.x | bash -​
​-
​- ​# Ensure latest packages for Yarn​
​- ​RUN curl -sS https://dl.yarnpkg.com/debian/pubkey.gpg | apt-key add -​
​- ​RUN echo "deb https://dl.yarnpkg.com/debian/ stable main" | \​
​15: ​tee /etc/apt/sources.list.d/yarn.list​
​-
​- ​# Install packages​
​- ​RUN apt-get update -yqq && apt-get install -yqq --no-install-recommends \​
​- ​nodejs \​
​20: ​yarn​
​-
​- ​COPY Gemfile* /usr/src/app/​
​- ​WORKDIR /usr/src/app​
​- ​RUN bundle install​
​25:
​- ​COPY . /usr/src/app/​
​-

WOW! eBook
www.wowebook.org

​- ​CMD ["bin/rails", "s", "-b", "0.0.0.0"]​

To	install	an	up-to-date	version	of	Yarn,	we	have	to	add	Yarn’s	Debian	package
repository	to	the	list	of	sources	(lines	13–15).	However,	since	Yarn’s	package
repo	uses	HTTPS,	we	have	to	install	the	apt-transport-https	package	(lines	5–6)	to
allow	this	to	work.

Unfortunately,	there’s	a	dependency	issue	between	Yarn	and	the	(old)	version	of
Node.js	installed	by	default.	We	solve	this	on	line	10	by	adding	Node’s	package
repository	to	the	list	of	sources;	this	ensures	we	install	a	more	up-to-date	version
of	Node.

Finally,	on	line	20,	we	add	yarn	to	the	list	of	packages	we	install.	With	yarn	and
an	up-to-date	version	of	Node	installed,	we’re	now	ready	to	configure	our	app	to
use	Webpacker.

Had	we	known	we	were	going	to	be	using	Webpacker	when	first	creating	our	app,
we	could	have	included	support	using	the	--webpack	option—for	example:

​ ​$ ​​rails​​ ​​new​​ ​​myapp​​ ​​--webpack=react​​ ​​<other​​ ​​options>​

The	--webpack=react	option	would	have	generated	our	app	with	support	for	React
out	of	the	box.	However,	having	already	generated	our	app,	adding	Webpacker

support	requires	a	couple	of	manual	steps.

We	first	have	to	update	our	Gemfile	to	include	the	Webpacker	gem:

​ gem ​'webpacker'​, ​'~> 3.5'​

Then	we	run	bundle install	via	rebuilding	our	image:

​ ​$ ​​docker-compose​​ ​​build​​ ​​web​

Let’s	stop	the	web	service	because	it’s	currently	running	our	old	version	without
the	Webpacker	gem	installed:

​ ​$ ​​docker-compose​​ ​​stop​​ ​​web​

WOW! eBook
www.wowebook.org

Now	we	can	install	Webpacker	in	our	app:

​ ​$ ​​docker-compose​​ ​​run​​ ​​web​​ ​​bin/rails​​ ​​webpacker:install​

inotify	Overflow	Error
Unfortunately,	when	running	the	previous	command,	you	may
encounter	the	following	error	message,	which	appears	to	be	caused
by	a	bug	in	the	rb-inotify	gem:[39]

​ run() in thread failed: inotify event queue has overflowed.

Although	unsightly,	it	doesn’t	seem	to	have	any	material	impact,
and	you	can	safely	ignore	it.

followed	by	the	Webpacker	React	integration:

​ ​$ ​​docker-compose​​ ​​run​​ ​​web​​ ​​bin/rails​​ ​​webpacker:install:react​

OK,	our	app	is	configured	for	Webpacker	and	React.	However,	before	we	can
truly	say	we’re	done,	we	need	a	way	to	compile	our	React	assets	automatically.

WOW! eBook
www.wowebook.org

Compiling	Assets	with	Webpacker
As	part	of	Webpacker,	Rails	provides	the	webpack-dev-server	binary.	This	is	a	small
server	that	runs	in	the	background,	automatically	compiling	our	webpack-
managed	files.

If	you	were	developing	locally,	this	would	just	be	another	command	you’d	issue
from	your	terminal.	However,	the	Docker	way	is	to	run	this	as	a	separate	service
in	its	own	container.

Let’s	add	a	new	service	for	it	to	our	docker-compose.yml	file:

​1: version: ​'​​3'​
​-
​- services:

​- web:

​5: build: ​.​
​- ports:

​- - ​"​​3000:3000"​
​- volumes:

​- - ​.:/usr/src/app​
​10: env_file:
​- - ​.env/development/web​
​- - ​.env/development/database​
​- environment:

​- - ​WEBPACKER_DEV_SERVER_HOST=webpack_dev_server​
​15:
​- webpack_dev_server:

​- build: ​.​
​- command: ​./bin/webpack-dev-server​
​- ports:

​20: - ​3035:3035​
​- volumes:

​- - ​.:/usr/src/app​
​- env_file:

​- - ​.env/development/web​
​25: - ​.env/development/database​
​- environment:

​- - ​WEBPACKER_DEV_SERVER_HOST=0.0.0.0​
​-

WOW! eBook
www.wowebook.org

​- redis:

​30: image: ​redis​
​-
​- database:

​- image: ​postgres​
​- env_file:

​35: - ​.env/development/database​
​- volumes:

​- - ​db_data:/var/lib/postgresql/data​
​-
​- volumes:

​40: db_data:

The	Rails	webpack_dev_server	is	designed	to	work	in	the	root	of	your	Rails
application;	that’s	why	we	build	from	the	same	Dockerfile	(line	17)	as	our	web

service.

Although	it	uses	the	same	image	and	code,	we	start	our	new	service	with	a
different	command.	Instead	of	starting	the	Rails	server,	we	run	the
./bin/webpack_dev_server	command	itself	(line	18).

We	expose	the	service	on	webpack-dev-server’s	default	port	of	3035	(line	20).

We	want	the	webpack-dev-server	to	pick	up	and	recompile	our	changes
automatically	as	we	develop	locally	without	having	to	restart.	That’s	why	on	line
22,	like	in	our	web	service,	we	mount	our	local	files	into	the	container.

The	webpack-dev-server	command	expects	to	be	run	with	the	same	configuration
as	our	Rails	app.	Luckily,	having	extracted	these	into	files,	we	can	simply	reuse
the	same	env_files	(lines	23–25).

However,	to	ensure	that	webpacker-dev-server	responds	to	requests	from	any	IP
address,	we	set	WEBPACKER_DEV_SERVER_HOST	to	0.0.0.0	(line	27),	much	like	we
did	with	the	Rails	server.

Having	configured	our	webpack_dev_server	service,	we	also	need	to	set	a	Rails
environment	variable	for	our	web	service,	so	it	knows	where	to	find	the	webpack-

dev-server	(line	14).

WOW! eBook
www.wowebook.org

Now	we	need	to	start	our	web	service	to	use	our	new	image	and	pick	up	these
config	changes:

​ ​$ ​​docker-compose​​ ​​up​​ ​​-d​​ ​​web​

and	then	launch	our	new	service:

​ ​$ ​​docker-compose​​ ​​up​​ ​​-d​​ ​​webpack_dev_server​

WOW! eBook
www.wowebook.org

A	Hello	World	React	App
Our	purpose	here	is	to	ensure	we	can	configure	our	Rails	app,	using	Docker,	to
allow	us	to	develop	modern	JavaScript	apps	using	technologies	like	React.	To
that	end,	we	just	need	to	show	that	a	simple	React	app	is	compiled	and	loads
correctly	with	our	setup.

When	we	install	Webpacker,	it	adds	a	sample	“Hello	World”	React	app	in
app/javascript/packs/hello_react.jsx	that	renders	a	<div>	saying	“Hello	React!”:

​ import React from 'react'

​ import ReactDOM from 'react-dom'

​ import PropTypes from 'prop-types'

​
​ const Hello = props => (

​ <div>Hello {props.name}!</div>

​)

​
​ Hello.defaultProps = {

​ name: 'World'

​ }

​ Hello.propTypes = {

​ name: PropTypes.string

​ }

​
​ document.addEventListener('DOMContentLoaded', () => {

​ ReactDOM.render(

​ <Hello name=​"React"​ />,
​ document.body.appendChild(document.createElement('div')),

​)

​ })

We’re	going	to	use	this	app	to	verify	Webpacker	is	set	up	correctly.	First,	we	need
to	generate	a	page	that	the	React	app	will	be	loaded	on:

​ ​$ ​​docker-compose​​ ​​exec​​ ​​web​​ ​​bin/rails​​ ​​g​​ ​​controller​​ ​​pages​​ ​​home​
​ create app/controllers/pages_controller.rb

​ route get 'pages/home'

​ invoke erb

WOW! eBook
www.wowebook.org

​ create app/views/pages

​ create app/views/pages/home.html.erb

​ invoke helper

​ create app/helpers/pages_helper.rb

​ invoke assets

​ invoke coffee

​ create app/assets/javascripts/pages.coffee

​ invoke scss

​ create app/assets/stylesheets/pages.scss

Let’s	modify	the	generated	view	(app/views/pages/home.html.erb)	to	load	the	React
app;	while	we	are	at	it,	let’s	delete	the	default	content	and	give	the	page	a	new
title:

​ ​<%=​ javascript_pack_tag ​'hello_react'​ ​%>​
​
​ <h1>React App</h1>

OK,	let’s	try	this	out.	Navigate	to	http://localhost:3000/pages/home,	and	you
should	see	the	content	“Hello	React!”	displayed	on	the	page.	This	confirms	that
our	React	app	is	being	compiled	and	loaded	correctly.

Auto-updating	works	too.	Update	app/javascript/packs/hello_react.jsx	to	set	the
defaultProps.name	to	your	name:

​ <Hello name=​"<Your name>"​ />

Now	when	you	reload	the	browser,	you	should	see	the	page	has	updated	(unless
your	name,	coincidentally,	is	“React”).

Thrilling,	this	app	isn’t.	But	with	these	basics	in	place,	you	can	now	develop
with	React	as	part	of	your	Rails	app,	and	build	whatever	you	like.

WOW! eBook
www.wowebook.org

http://localhost:3000/pages/home

[38]

[39]

Quick	Recap
That’s	it—we’ve	finally	done	it.	We	now	have	a	fully	fledged	Rails	app	running
with	Docker,	fully	managed	through	Compose.	It’s	a	thing	of	beauty,	isn’t	it?
Let’s	quickly	recap	what	we	covered	in	this	chapter:

1.	 We	installed	Yarn	and	a	more	up-to-date	version	of	Node	to	meet
Webpacker’s	requirements.

2.	 We	installed	the	Webpacker	gem.

3.	 We	added	a	new	service	to	our	docker-compose.yml	file	that	runs	the
webpack_dev_server	to	automatically	compile	our	Webpacker	JavaScript	assets.

4.	 We	created	a	Hello	World	React	application	to	verify	everything	was
configured	correctly	to	compile	and	run	a	React	app.

Now	that	our	app	is	up	and	running	in	all	its	glory,	next	we’ll	turn	our	attention
to	setting	up	and	running	our	tests	in	a	Dockerized	environment.

Footnotes

https://hub.docker.com/_/node/

https://github.com/guard/rb-inotify/issues/61

Copyright	©	2019,	The	Pragmatic	Bookshelf.

WOW! eBook
www.wowebook.org

https://hub.docker.com/_/node/
https://github.com/guard/rb-inotify/issues/61

Chapter	8

Testing	in	a	Dockerized	Environment
	

In	the	previous	chapter,	we	completed	our	standard	app	setup	by	adding	a
Postgres	database.	However,	we’re	not	quite	done	with	development	yet.	As
professional	Ruby	developers,	we	value	well-tested	code	that	gives	us
confidence	that	we’re	delivering	reliable	software.	As	we	rebuild	our
development	environment	around	Docker,	we	need	to	find	out	how	testing	fits
into	the	picture.	Whatever	your	personal	preferences	around	testing,	it’s
important	to	know	how	to	get	our	testing	tools	working	and	playing	nice	with
Docker	so	that	you	can	use	them	as	needed.

In	this	chapter,	we’re	going	to	set	up	the	popular	Ruby	testing	framework:
RSpec.	I’ve	chosen	RSpec	over	Rails’	default—Minitest—for	a	couple	of
reasons.	First,	slightly	more	effort	is	needed	to	set	up	RSpec,	so	there’s	more	to
learn	along	the	way.	Second,	it	happens	to	be	my	testing	framework	of	choice	for
Rails	projects.

That	said,	if	you’re	an	ardent	Minitest	fan,	never	fear.	It’s	still	worth	reading	this
chapter	to	continue	to	build	up	your	familiarity	with	the	Docker	commands
needed	in	our	normal	workflow.	Also,	the	configuration	required,	especially	for
Capybara,	will	be	very	similar	and	may	largely	be	translated	across	to	Minitest.

If	you’ve	ever	set	up	RSpec	on	a	Rails	project	before,	the	majority	of	what	you’ll
see	in	this	chapter	will	be	very	familiar.	In	fact,	squint	and	you	could	miss	the
fact	that	we’re	using	Docker	at	all.	This	is	both	a	testament	to	how	far	you’ve
come	in	your	learning	and	understanding	of	Docker,	and	to	the	fact	that,	once	set
up,	the	Docker	tools	get	out	of	your	way	and	fade	into	the	background	until	you

WOW! eBook
www.wowebook.org

need	them.

Despite	that,	this	chapter	is	not	without	its	challenges.	There	are	a	few	nuances
to	testing	with	Docker	that	we’ll	tease	out.	We’ll	also	see	that	things	aren’t	as
straightforward	when	we	get	to	configuring	system	specs	with	Capybara	for	end-
to-end	browser	testing.

Keep	in	mind	our	focus	here	is	not	on	how	to	test	your	code—I’m	assuming
you’re	already	bringing	that	knowledge	and	experience	to	the	table	(and	if	you
aren’t,	there	are	plenty	of	good	books	on	the	subject[40]).	We’re	just	interested	in
getting	some	common	testing	tools	set	up	in	a	Dockerized	environment.

Once	more	into	the	breach…

WOW! eBook
www.wowebook.org

Setting	Up	RSpec
Now	that	our	app	is	configured	correctly	with	Compose,	setting	up	RSpec	is
going	to	be	very	familiar.	Let’s	whiz	through	this	quickly.

Following	the	instructions	from	rspec-rails,[41]	we	need	to	add	the	following	to	our
Gemfile:

​ group ​:development​, ​:test​ ​do​
​ ​# Call 'byebug' anywhere in the code to stop execution and get a debugger…​
​ gem ​'byebug'​, ​platforms: ​[​:mri​, ​:mingw​, ​:x64_mingw​]
» gem ​'rspec-rails'​, ​'~> 3.8'​
​ ​end​

First,	let’s	stop	our	web	service:

​ ​$ ​​docker-compose​​ ​​stop​​ ​​web​

Next,	we	need	to	rebuild	our	image	to	run	bundle install,	and	then	create	a	new
container	from	it:

​ ​$ ​​docker-compose​​ ​​build​​ ​​web​
​ Building web

​ Step 1/12 : FROM ruby:2.6

​ ...

​ Step 7/12 : RUN apt-get update -yqq && apt-get install -yqq --no-install-

​ recommends nodejs yarn

​ ...

​ Bundle complete! 18 Gemfile dependencies, 77 gems now installed.

​ Bundled gems are installed into `/usr/local/bundle`

​ ...

​ Removing intermediate container dcb3ac9ef4e5

​ ​ --->​​ ​​a1bf00e74754​
​ Step 11/12 : COPY . /usr/src/app/

​ ​ --->​​ ​​395cd4848b46​
​ Step 12/12 : CMD ["bin/rails", "s", "-b", "0.0.0.0"]

​ ​ --->​​ ​​Running​​ ​​in​​ ​​47ec46df6236​
​ Removing intermediate container 47ec46df6236

​ ​ --->​​ ​​ea5d358cb673​
​ Successfully built ea5d358cb673

​ Successfully tagged myapp_web:latest

WOW! eBook
www.wowebook.org

​ ​$ ​​docker-compose​​ ​​up​​ ​​-d​​ ​​--force-recreate​​ ​​web​
​ Recreating myapp_web_1 ... done

Next	we	need	to	install	RSpec,	setting	up	its	file	structure:

​ ​$ ​​docker-compose​​ ​​exec​​ ​​web​​ ​​bin/rails​​ ​​generate​​ ​​rspec:install​
​ create .rspec

​ create spec

​ create spec/spec_helper.rb

​ create spec/rails_helper.rb

With	RSpec	set	up,	we’re	able	to	run	the	specs	like	so:

​ ​$ ​​docker-compose​​ ​​exec​​ ​​web​​ ​​bin/rails​​ ​​spec​

However,	as	you’d	expect,	this	reports	that	we	have	no	specs	currently:

​ No examples found.

​
​
​ Finished in 0.00509 seconds (files took 0.30574 seconds to load)

​ 0 examples, 0 failures

Let’s	take	RSpec	for	a	proper	test-drive	by	creating…

WOW! eBook
www.wowebook.org

Our	First	Test
Having	installed	RSpec	in	our	project,	it’s	not	very	satisfying	to	see	zero	tests
running.	Let’s	rectify	that	right	now	by	creating	our	first	test,	so	that	we	can	see
some	actual	test	code	running.

Let’s	generate	a	spec	for	our	User	model:

​ ​$ ​​docker-compose​​ ​​exec​​ ​​web​​ ​​bin/rails​​ ​​generate​​ ​​rspec:model​​ ​​user​
​ create spec/models/user_spec.rb

Linux	Users:	File	Ownership
Remember	to	chown	the	files	we’ve	generated	so	you	can	edit	them
(see	​File	Ownership	and	Permissions​):

​ ​$ ​​sudo​​ ​​chown​​ ​​<your_user>:<your_group>​​ ​​-R​​ ​​.​

Open	the	newly	created	spec/models/user_spec.rb	file	in	your	editor.	This	isn’t	a
book	about	testing—we	just	need	a	basic	test	to	show	RSpec	is	working	like	we
expect.	The	following	should	do	the	trick:

​ require ​'rails_helper'​
​
​ RSpec.​describe​ User ​do​
​ describe ​"validations"​ ​do​
​ it ​"requires first_name to be set"​ ​do​
​ expect(subject.​valid?​).​to_not​ be
​ expect(subject.​errors​[​:first_name​].​size​).​to​ eq(1)
​ ​end​
​
​ it ​"requires last_name to be set"​ ​do​
​ expect(subject.​valid?​).​to_not​ be
​ expect(subject.​errors​[​:last_name​].​size​).​to​ eq(1)
​ ​end​
​ ​end​
​ ​end​

WOW! eBook
www.wowebook.org

Now	when	we	run	the	tests	again:

​ ​$ ​​docker-compose​​ ​​exec​​ ​​web​​ ​​bin/rails​​ ​​spec​

we	see	our	specs	correctly	failing	because	we	haven’t	implemented	any
validations	on	the	User	model:

​ Failures:

​
​ 1) User validations requires first_name to be set

​ Failure/Error: expect(subject.valid?).to_not be

​ expected true to evaluate to false

​ ​ # ./spec/models/user_spec.rb:6:in `block (3 levels) in <top (required)>'​
​
​ 2) User validations requires last_name to be set

​ Failure/Error: expect(subject.valid?).to_not be

​ expected true to evaluate to false

​ ​ # ./spec/models/user_spec.rb:11:in `block (3 levels) in <top (required)>'​
​
​ Finished in 0.09403 seconds (files took 17.39 seconds to load)

​ 2 examples, 2 failures

Let’s	make	these	tests	pass	by	updating	our	User	model	(app/models/user.rb)	to
look	like	this:

​ ​class​ User < ApplicationRecord
​ validates_presence_of ​:first_name​, ​:last_name​
​ ​end​

Now	when	we	rerun	the	specs:

​ ​$ ​​docker-compose​​ ​​exec​​ ​​web​​ ​​bin/rails​​ ​​spec​

we	can	see	that	they	pass:

​ ..

​
​ Finished in 0.07523 seconds (files took 4.69 seconds to load)

​ 2 examples, 0 failures

And	that’s	all	there	is	to	it.	Once	set	up,	the	key	difference	when	using	RSpec
with	Docker	is	simply	that	we	have	to	prefix	our	commands	with	docker-compose

WOW! eBook
www.wowebook.org

exec web—hopefully,	you’re	starting	to	get	used	to	this.

WOW! eBook
www.wowebook.org

Setting	Up	Rails	System	Tests
Rails	system	tests[42]—added	in	Rails	5.1[43]—allow	you	to	perform	high-level,
end-to-end	tests	of	your	application.	Rather	than	testing	that	individual	functions
or	methods	perform	as	they	should	(unit	testing),	they	test	the	application	based
on	how	the	user	interacts	with	it—that	is,	via	a	web	interface.	They	allow	us	to
assert	that	when	a	user	interacts	with	our	application	in	a	certain	way	(such	as
filling	in	forms,	clicking	links	or	buttons),	the	app	responds	as	we’d	expect	(such
as	displaying	the	correct	page,	having	the	correct	things	appear	on	the	page).

Although	this	kind	of	end-to-end	test	was	possible	previously—for	example,
with	RSpec	Feature	specs[44]—system	tests	bring	a	number	of	benefits.	We	no
longer	have	to	worry	about	the	cleanup	of	our	database	during	the	tests,	which
was	commonly	done	using	the	Database	Cleaner	gem;[45]	instead,	system	tests
run	the	browser	driver	code	in	the	same	process	as	Rails,	allowing	the	tests	to	be
performed	in	transactions	that	are	rolled	back.

Though	slower	to	run,	end-to-end	tests	like	these	are	arguably	the	most
important	type	of	tests	for	your	app	since	they	verify	that	the	capabilities	an	app
was	created	to	provide	actually	work	as	expected.	Even	with	100	percent	unit
test	coverage,	one	typo	in	a	config	file	can	stop	the	entire	application	from
functioning	correctly.	The	only	way	to	know	for	sure	is	to	load	the	app	in	a
browser	and	actually	use	it.	You	can	probably	tell	I’m	a	fan.

System	specs	rely	on	the	Capybara	gem[46]	in	order	to	function—this	provides	a
nice	domain-specific	language	(DSL)	for	interacting	with	the	browser.	Following
the	instructions	for	Capybara,[47]	the	first	step	is	to	install	the	gem.

Let’s	add	it	to	our	Gemfile	now:

​ group ​:development​, ​:test​ ​do​
​ ​# Call 'byebug' anywhere in the code to stop execution and get a debugger…​
​ gem ​'byebug'​, ​platforms: ​[​:mri​, ​:mingw​, ​:x64_mingw​]
​ gem ​'rspec-rails'​, ​'~> 3.8'​
» gem ​'capybara'​, ​'~> 3.7'​
​ ​end​

WOW! eBook
www.wowebook.org

Next	we	need	to	install	this	new	gem	by	rebuilding	the	image.	We’ll	recreate	the
web	container	at	the	same	time:

​ ​$ ​​docker-compose​​ ​​build​​ ​​web​
​ ​$ ​​docker-compose​​ ​​stop​​ ​​web​
​ ​$ ​​docker-compose​​ ​​up​​ ​​-d​​ ​​--force-recreate​​ ​​web​

We’re	now	ready	to	create	our	first	system	spec.	By	default,	RSpec	expects	to
find	these	in	the	spec/system	directory,	so	let’s	create	this	now:

​ ​$ ​​mkdir​​ ​​spec/system​

Let’s	start	by	creating	the	file	spec/system/page_views_spec.rb	and	edit	it	as	follows:

​ require ​'rails_helper'​
​
​ RSpec.​describe​ ​"PageViews"​ ​do​
​ it ​"shows the number of page views"​ ​do​
​ visit ​'/welcome'​
​ expect(page.​text​).​to​ match(​/This page has been viewed [0-9]+ times?!/​)
​ ​end​
​ ​end​

Linux	Users:	File	Ownership
Again,	you	will	have	to	chown	the	files	(see	​File	Ownership	and
Permissions​):

​ ​$ ​​sudo​​ ​​chown​​ ​​<your_user>:<your_group>​​ ​​-R​​ ​​.​

Before	we	run	this	test,	let’s	switch	to	using	the	RackTest	driver	for	standard
system	tests.	Not	only	is	this	faster,	but	it	saves	us	having	to	install	a	full	browser
driver	with	JavaScript	support	(Selenium	is	the	default)	until	we	actually	need	it.

Edit	spec/rails_helper.rb,	adding	the	following	lines	just	before	the	final	end:

​ config.​before​(​:each​, ​type: :system​) ​do​
​ driven_by ​:rack_test​
​ ​end​

WOW! eBook
www.wowebook.org

This	uses	RSpec’s	before	configuration	hook	to	perform	some	of	the	setup	before
every	system	spec	is	run;	specifically,	we	use	the	driven_by	method—a	new	Rails
method	provided	for	system	tests—to	set	the	Capybara	driver	to	rack_test.

With	that	done,	let’s	run	the	tests:

​ ​$ ​​docker-compose​​ ​​exec​​ ​​web​​ ​​rspec​​ ​​spec/system/​
​ .

​
​ Finished in 27.2 seconds (files took 11.57 seconds to load)

​ 1 example, 0 failures

Great!	We’ve	configured	Capybara	and	our	system	specs.

WOW! eBook
www.wowebook.org

Running	Tests	That	Rely	on	JavaScript
OK,	let’s	take	this	up	a	notch.	Setting	up	testing	with	JavaScript	support	is	not
going	to	be	so	straightforward	with	Docker.	But	I	think	you’re	ready	to	handle	it.

Imagine,	if	you	will,	that	we	have	an	enhanced	version	of	our	/welcome	page	that
has	extra	behavior	that	only	works	with	JavaScript	enabled.	In	fact,	when
functioning	correctly,	this	JavaScript	literally	adds	the	message	“ENHANCED!”
on	the	page.

Here’s	my	rather	crude	implementation	in	app/views/welcome/index.html.erb:

​ ​<%​ content_for ​:head​ ​do​ ​%>​
​ <script type=​"text/javascript"​>
​ document.addEventListener(​"DOMContentLoaded"​,​function​(){
​ document.getElementsByTagName(​'h1'​)[0].append(​' ENHANCED!'​);
​ });

​ </script>

​ ​<%​ ​end​ ​%>​
​
​ <h1>This page has been viewed ​<%=​ pluralize(@page_hits, ​'time'​) ​%>​!</h1>

We	also	need	a	tweak	to	app/views/layouts/application.html.erb	to	make	this	work:

​ ​<!DOCTYPE html>​
​ <html>

​ <head>

​ <title>Myapp</title>

​ ​<%=​ csrf_meta_tags ​%>​
​
​ ​<%=​ stylesheet_link_tag ​'application'​,
​ ​media: ​​'all'​,
​ ​'data-turbolinks-track'​: ​'reload'​ ​%>​
​
​ ​<%=​ javascript_include_tag ​'application'​,
​ ​'data-turbolinks-track'​: ​'reload'​ ​%>​
» ​ <%= yield :head %>​
​ ​ </head>​
​
​ ​ <body>​

WOW! eBook
www.wowebook.org

​ ​ <%= yield %>​
​ </body>

​ </html>

Let’s	add	a	second	scenario	to	our	PageViews	system	spec	to	test	this	behavior
(remember,	our	aim	here	is	to	demonstrate	how	to	configure	JavaScript	testing,
so	I’ll	trust	you	to	write	more	useful	tests	in	your	own	apps):

​1: require ​'rails_helper'​
​-
​- RSpec.​describe​ ​"PageViews"​ ​do​
​- it ​"shows the number of page views"​ ​do​
​5: visit ​'/welcome'​
​- expect(page.​text​).​to​ match(​/This page has been viewed [0-9]+ times?!/​)
​- ​end​
​-
​- it ​"is enhanced with JavaScript on"​, ​js: ​​true​ ​do​
​10: visit ​'/welcome'​
​- expect(page).​to​ have_text(​"ENHANCED!"​)
​- ​end​
​- ​end​

As	per	the	RSpec	convention,	we’ve	indicated	that	this	new	scenario	(line	9)	is
only	expected	to	pass	with	JavaScript	enabled,	by	specifying	js: true.

However,	we	have	a	problem.	As	you	may	know,	the	default	driver	used	by
Capybara	is	RackTest,	which,	although	fast	to	run,	doesn’t	have	JavaScript
support.	If	we	were	to	run	the	system	specs	now,	they	would	fail	even	though
(we	believe)	this	feature	is	working.

To	be	able	to	run	specs	that	rely	on	JavaScript	being	executed	in	the	application,
we	have	to	use	a	different,	more	full-fledged	driver.	There	are	a	number	of
options:

Selenium,[48]	which	supports	several	browsers	including	Chrome	with	its
recently	announced	headless	Chrome	support[49]

Capybara-webkit,[50]	a	driver	for	the	headless	WebKit	implementation	from
the	Qt	cross-platform	toolkit

WOW! eBook
www.wowebook.org

Poltergeist,[51]	a	driver	for	headless	WebKit	using	PhantomJS[52]

Rails	system	tests	use	Selenium	by	default,	so	we’ll	stick	with	that.	I’m	opting	to
go	with	Chrome	via	Selenium.	Chrome	is	the	most	popular	desktop	browser,	and
people	are	saying	good	things	about	its	headless	support	compared	to	Capybara-
webkit.[53]

To	use	Selenium,	we’ll	need	to	add	the	selenium-webdriver	gem	to	our	Gemfile:

​ group ​:development​, ​:test​ ​do​
​ ​# Call 'byebug' anywhere in the code to stop execution and get a debugger…​
​ gem ​'byebug'​, ​platforms: ​[​:mri​, ​:mingw​, ​:x64_mingw​]
​ gem ​'rspec-rails'​, ​'~> 3.8'​
​ gem ​'capybara'​, ​'~> 3.7'​
» gem ​'selenium-webdriver'​, ​'~> 3.14'​
​ ​end​

and	then	install	it	by	rebuilding	our	image	and	recreating	our	web	container:

​ ​$ ​​docker-compose​​ ​​build​​ ​​web​
​ ​$ ​​docker-compose​​ ​​stop​​ ​​web​
​ ​$ ​​docker-compose​​ ​​up​​ ​​-d​​ ​​--force-recreate​​ ​​web​

But	how	are	we	going	to	run	Chrome	with	Docker?	The	same	way	we	typically
run	any	software	with	Docker—in	a	container.	There	are	prepared	images	for
running	standalone	versions	of	Chrome,	and	in	fact,	we’re	going	to	use	one	such
image	maintained	by	Selenium	itself.[54]

Let’s	add	that	to	our	Compose	file:

​ selenium_chrome:

​ image: ​selenium/standalone-chrome-debug​
​ logging:

​ driver: ​none​
​ ports:

​ - ​"​​5900:5900"​

This	adds	a	new	service	that	we’ve	chosen	to	call	selenium_chrome,	whose
containers	will	be	based	on	the	selenium/standalone-chrome-debug	image.	We’ve
opted	for	the	debug,[55]	rather	than	the	standard	version	of	this	image,[56]	because

WOW! eBook
www.wowebook.org

it	includes	and	runs	a	VNC	server.	This	gives	us	the	option	to	visually	see
Chrome	running	inside	the	container	using	a	VNC	client—useful	if	you	want	to
actually	see	the	tests	running.

We’ve	also	turned	logging	off	by	setting	the	logging	driver	to	none	because	the
Selenium	Chrome	image	has	noisy	output	that	we	don’t	need	to	see.	We	create	a
port	mapping	so	that	the	VNC	server	running	inside	the	container	on	port	5900	is
reachable	from	outside	the	container	on	that	same	port.	You	can	check	out
Docker’s	docs	for	more	details	on	the	logging	options	available.[57]

Let’s	start	our	new	service	so	Selenium	Chrome	is	available	for	our	system	tests:

​ ​$ ​​docker-compose​​ ​​up​​ ​​-d​​ ​​selenium_chrome​

Problems	Starting	Chrome?
If	you	get	an	error	when	starting	the	selenium_chrome	service,	it’s
likely	because	you	have	another	VNC	client	running	on	port	5900.
For	example,	on	macOS,	make	sure	you	have	Screen	Sharing	turned
off	in	your	System	Preferences.

Next,	we	have	to	configure	Capybara	to	use	Chrome	running	in	a	container.
Let’s	create	the	file	spec/support/capybara.rb	and	add	the	following	config:

​1: Capybara.​register_driver​ ​:selenium_chrome_in_container​ ​do​ |app|
​2: Capybara::Selenium::Driver.​new​ app,
​3: ​browser: :remote​,
​4: ​url: ​​"http://selenium_chrome:4444/wd/hub"​,
​5: ​desired_capabilities: :chrome​
​6: ​end​

This	registers	a	new	driver	with	Capybara—called	:selenium_chrome_in_container—
configured	to	use	the	Selenium	driver	to	control	a	remote	Selenium	instance	of
Chrome	running	at	http://selenium_chrome:4444/wd/hub	(line	5.)	Why	this	specific
URL?	Selenium	listens	for	incoming	client	requests	at	http://<host>:<port>/wd/hub.
Port	4444	is	the	default	port	that	Selenium	listens	on,	and	the	hostname
selenium_chrome,	which	matches	our	new	service	in	docker-compose.yml,	will	reach

WOW! eBook
www.wowebook.org

our	container	running	Chrome.	You	may	recall	from	Chapter	5,	​Beyond	the	App:
Adding	Redis​,	that	Compose	sets	up	hostnames	to	reach	other	Compose	services.

Linux	Users:	File	Ownership
As	always,	remember	to	chown	the	new	file	(see	​File	Ownership	and
Permissions​):

​ ​$ ​​sudo​​ ​​chown​​ ​​<your_user>:<your_group>​​ ​​-R​​ ​​.​

Configuring	RSpec	System	Tests
We’ve	created	a	new	Capybara	driver,	but	how	do	we	configure	RSpec	to	use	it?

First,	we	have	to	edit	spec/rails_helper.rb	to	require	our	new	Capybara	driver	so
that	it’s	loaded:

​ require ​'rspec/rails'​
​ ​# Add additional requires below this line. Rails is not loaded until this…​
» require_relative ​'./support/capybara.rb'​

Often	apps	will	auto-require	all	.rb	files	inside	the	spec/support	directory.	If	that’s
the	case	for	your	app,	this	require	could	be	omitted.

OK,	what	next?	Recall	that	earlier,	we	used	RSpec’s	configuration	hooks	to	set
rack_test	as	the	default	driver	for	our	system	tests.	We	now	need	to	make	it	so
that	non-JavaScript	system	tests	continue	to	use	that,	whereas	JavaScript	tests
(indicated	with	the	js: true	tag	in	the	test	definition)	should	use	our	new	Selenium
Chrome	Capybara	driver.

We	can	achieve	this	by	adding	the	following	lines	to	spec/rails_helper.rb	(add	them
in	between	the	previous	before	hook	we	added	and	the	final	end):

​1: config.​before​(​:each​, ​type: :system​, ​js: ​​true​) ​do​
​2: driven_by ​:selenium_chrome_in_container​
​3: Capybara.​server_host​ = ​"0.0.0.0"​
​4: Capybara.​server_port​ = 4000
​5: Capybara.​app_host​ = ​'http://web:4000'​

WOW! eBook
www.wowebook.org

​6: ​end​

System	specs	that	specify	js: true	will	use	this	new	config	(ones	without	will
continue	to	use	our	old	config,	which	sets	the	rack_test	driver).	This	new	config
sets	the	Capybara	driver	(line	2)	to	selenium_chrome_in_container:	our	new	driver
that	runs	the	tests	via	our	remote	Selenium	Chrome	browser.

Since	the	browser	executing	the	tests	will	be	running	in	a	separate	container,
rather	than	on	the	same	machine,	some	additional	config	is	required.	Capybara
will	start	a	new	Puma	server	to	run	a	test	version	of	our	app.	Normally,	this	just
happens	on	localhost	on	the	same	machine	that	the	tests	are	running	on,	and
everything	just	works.	Here,	however,	this	test	version	of	our	app	needs	to	be
accessible	externally,	from	the	Selenium	Chrome	container.	That	means	we	have
to	start	the	test	app	on	a	known	port—I’ve	chosen	port	4000	(line	4),	but	you
could	choose	anything.	Also,	much	like	when	we	started	the	Rails	server	with
the	-b 0.0.0.0	to	listen	on	all	ports,	Capybara	must	start	the	test	app	server	listening
on	all	IP	addresses.	That’s	why	we	set	server_host	to	0.0.0.0	(line	3);	without	this,
the	server	would	be	started	on	localhost,	and	only	incoming	requests	within	the
container	would	be	serviced.

Finally,	we	need	to	tell	Capybara	to	use	a	URL	for	the	app	that	will	work	when
connecting	from	within	the	Selenium	Chrome	container	(line	5).	Remember,
Docker	sets	up	DNS	entries	to	allow	us	to	reference	other	services’	containers	by
name.	So	the	Selenium	Chrome	container	would	access	the	app	running	in	our
Rails	container	running	the	tests	with	the	URL	http://web:4000	(we	previously
configured	the	test	server	to	start	on	port	4000).

Right.	We’re	almost	ready	to	try	all	this	out,	but	first	we	must	do	one	more	thing.
We’ve	told	Capybara	to	start	the	test	app	on	port	4000,	and	we	configured	the
tests	that	will	be	run	remotely	on	our	Selenium	Chrome	container	to	access	this.
However,	currently	port	4000	is	not	accessible	from	outside	the	web	container,
which	currently	only	exposes	port	3000.

Let’s	fix	this	by	adding	the	following	line	to	our	web	ports	config	in	our	docker-

compose.yml:

WOW! eBook
www.wowebook.org

​ ports:

​ - ​"​​3000:3000"​
» - ​"​​4000:4000"​

To	pick	up	this	change,	we	need	to	stop	our	web	container	and	--force-recreate	it.

​ ​$ ​​docker-compose​​ ​​stop​​ ​​web​
​ Stopping myapp_web_1 ... done

​ ​$ ​​docker-compose​​ ​​up​​ ​​-d​​ ​​--force-recreate​​ ​​web​
​ Recreating myapp_web_1 ... done

Now	we	should	be	good	to	run	the	specs:

​ ​$ ​​docker-compose​​ ​​exec​​ ​​web​​ ​​rspec​​ ​​spec/system/​
​ .Capybara starting Puma...

​ * Version 3.12.0 , codename: Llamas in Pajamas

​ * Min threads: 0, max threads: 4

​ * Listening on tcp://0.0.0.0:4000

​ .

​
​ Finished in 31.17 seconds (files took 8.8 seconds to load)

​ 2 examples, 0 failures

This	time	when	we	run	the	tests,	our	JavaScript-dependent	system	spec	now
passes.

Seeing	the	Tests	Run
As	I	said	before,	we	specifically	chose	the	selenium/standalone-chrome-debug	image
because	it	includes	a	running	VNC	server.	This	allows	us	to	connect	and	actually
view	tests	as	they	run	in	the	browser.

In	order	to	see	the	desktop	of	our	container,	we’ll	need	a	VNC	client	to	connect
with.	If	you’re	on	a	Mac,	you	can	use	the	Screen	Sharing	app	that	comes	as
standard	on	macOS.	On	Linux,	it	depends	on	your	distribution	and	installed
software,	but	installing	a	VNC	client	should	be	easy	enough	through	your
package	manager.	For	Windows,	there	are	several	options,[58]	some	of	which	are
free.

OK,	VNC	client	at	the	ready?	Go	ahead	and	launch	it	and	connect	to

WOW! eBook
www.wowebook.org

vnc://localhost:5900.	Port	5900	is	the	default	port	for	VNC	servers—you	may
remember	that	we	exposed	this	port	when	we	defined	the	selenium_chrome	service
in	our	docker-compose.yml.	You	should	be	prompted	to	enter	a	password,	which	is
“secret”.[59]	Enter	this	now,	and	you	should	see	a	window	open	that	looks
something	like:

This	is	showing	us	the	Linux	desktop	that’s	running	in	our	selenium_chrome

service’s	container.	If	everything	is	working	as	we	expect,	when	we	rerun	our
tests,	we	should	see	something	happen.	Let’s	give	it	a	whirl:

​ ​$ ​​docker-compose​​ ​​exec​​ ​​web​​ ​​rspec​​ ​​spec/system/​

In	the	VNC	client	window,	you	should	see	a	new	Chrome	browser	open	up	and
load	a	page	of	our	application	(as	shown	in	the	figure.)	The	browser	will	close
again	very	quickly,	so	you	may	want	to	add	a	sleep 10	in	the	middle	of	the
JavaScript	scenario	to	actually	see	the	page	once	it’s	loaded.

WOW! eBook
www.wowebook.org

Headless	Browsing
Being	able	to	see	our	tests	running	is	a	useful	option	to	have.	We	typically	need
it	when	something	isn’t	working	as	expected	and	we	want	to	see	what’s	actually
happening.	However,	most	of	the	time	we	don’t	care	about	seeing	the	tests	run—
we	just	want	them	to	run	as	fast	as	humanly	(or	is	that	computerly)	possible.	For
that	reason,	we	typically	run	our	system	specs	in	headless	mode,	without	a
browser	window	actually	being	displayed.	Without	the	overhead	of	driving	a	real
UI,	the	tests	can	run	a	lot	faster.

To	achieve	this,	let’s	register	a	second	driver	in	spec/support/capybara.rb	for
running	Selenium	Chrome	in	headless	mode:

» require ​"selenium/webdriver"​
​
​ Capybara.​register_driver​ ​:selenium_chrome_in_container​ ​do​ |app|
​ Capybara::Selenium::Driver.​new​ app,
​ ​browser: :remote​,
​ ​url: ​​"http://selenium_chrome:4444/wd/hub"​,
​ ​desired_capabilities: :chrome​
​ ​end​
​
» Capybara.​register_driver​ ​:headless_selenium_chrome_in_container​ ​do​ |app|
» Capybara::Selenium::Driver.​new​ app,
» ​browser: :remote​,
» ​url: ​​"http://selenium_chrome:4444/wd/hub"​,
» ​desired_capabilities: ​Selenium::WebDriver::Remote::Capabilities.​chrome​(
» ​chromeOptions: ​{ ​args: ​​%w(headless disable-gpu)​ }
»)

» ​end​

WOW! eBook
www.wowebook.org

The	new	Capybara	driver	definition	is	virtually	identical	to	the	first;	the	only
difference	is	we	specify	the	headless	and	disable-gpu	when	starting	Chrome.	Note
that	we	also	had	to	require	selenium/webdriver	since	we	need	to	use	the
Selenium::WebDriver::Remote::Capabilities	class.

To	switch	to	using	this	headless	driver,	we	have	to	modify	the	RSpec	config	we
added	in	spec/rails_helper.rb	to	use	this	driver	for	our	JavaScript	system	specs:

​ config.​before​(​:each​, ​type: :system​, ​js: ​​true​) ​do​
» driven_by ​:headless_selenium_chrome_in_container​
​
​ Capybara.​server_host​ = ​"0.0.0.0"​
​ Capybara.​server_port​ = 4000
​ Capybara.​app_host​ = ​'http://web:4000'​
​ ​end​

Now	if	you	rerun	the	system	specs:

​ ​$ ​​docker-compose​​ ​​exec​​ ​​web​​ ​​rspec​​ ​​spec/system/​

you	won’t	actually	see	the	browser	appear	in	the	VNC	window,	but	the	test	will
pass.

WOW! eBook
www.wowebook.org

Debugging
No	chapter	on	testing	would	be	complete	without	some	mention	of	how	to	debug
our	application	when	it	isn’t	behaving	as	we’d	expect.

Imagine	there’s	a	problem	with	our	welcome_controller.rb.	Let’s	use	the	byebug

debugger	that’s	included	as	standard	with	a	Rails	app.	Let’s	add	a	byebug

breakpoint	to	our	welcome_controller.rb:

​ ​class​ WelcomeController < ApplicationController
​ ​def​ ​index​
​ redis = Redis.​new​(​host: ​​"redis"​, ​port: ​6379)
​ redis.​incr​ ​"page hits"​
​
​ @page_hits = redis.​get​ ​"page hits"​
» byebug

​ ​end​
​ ​end​

Let’s	stop	our	Rails	server:

​ ​$ ​​docker-compose​​ ​​stop​​ ​​web​

When	we	want	an	interactive	session	with	a	container,	rather	than	using	docker-

compose up,	we	instead	use	docker-compose run.	Let’s	start	an	interactive	session
with	our	web	server	like	this:

​ ​$ ​​docker-compose​​ ​​run​​ ​​--service-ports​​ ​​web​

By	default,	docker-compose run	will	ignore	the	port	mappings	specified	in	our
docker-compose.yml	file	for	the	service.	The	--service-ports	option	changes	this
behavior	and	ensures	they	are	mapped;	without	this,	our	Rails	server	wouldn’t	be
accessible	on	port	3000	from	the	browser.

Now,	visit	http://localhost:3000/welcome	in	the	browser:	the	page	will	hang	as	the
request	hits	our	byebug	breakpoint.	Back	in	the	terminal,	you	should	see	a
familiar	byebug	interface	waiting	for	you:

WOW! eBook
www.wowebook.org

​ => Booting Puma

​ => Rails 5.2.2 application starting in development

​ => Run `rails server -h` for more startup options

​ Puma starting in single mode...

​ ...

​ [2, 11] in /usr/src/app/app/controllers/welcome_controller.rb

​
​ 2: def index

​ 3: redis = Redis.new(host: "redis", port: 6379)

​ 4: redis.incr "page hits"

​ 5:

​ 6: @page_hits = redis.get "page hits"

​ 7: byebug

​ => 8: end

​ 9: end

​ 10:

​ 11:

​ (byebug)

Feel	free	to	experiment	here	to	verify	it	works;	for	example,	you	could	output
the	@page_hits	variable	to	see	its	value.	When	you’re	ready	to	exit,	press	 c 	(for
“continue”),	then	 Enter ;	the	request	will	continue	as	normal,	and	the	page
should	display	in	the	browser.	Press	 Ctrl - C 	to	stop	the	web	container.

Before	moving	on,	remember	to	remove	the	byebug	breakpoint	from
welcome_controller.rb,	then	start	up	the	web	server	again:

​ ​$ ​​docker-compose​​ ​​up​​ ​​-d​​ ​​web​

Rails	Server	Not	Starting?
If	Rails	fails	to	start	because	it	thinks	a	server	is	already	running,
delete	tmp/pids/server.pid	on	your	local	machine	and	try	again.	We’ll
see	a	better	way	to	handle	this	in	Chapter	9.

If	you	use	IntelliJ	or	RubyMine,	they	have	built-in	support	for	using	Ruby	via
docker-compose,	including	support	for	their	debugger.[60]

WOW! eBook
www.wowebook.org

[40]

[41]

Quick	Recap
By	now,	using	Docker	should	be	starting	to	feel	pretty	familiar.	In	fact,	much	of
this	chapter	was	standard	stuff	we’d	do	in	Rails—Docker	got	out	of	our	way.
Things	got	a	little	more	tricky	when	it	came	to	tests	requiring	JavaScript,	but
having	a	ready-made	image	with	Selenium-driven	Chrome	made	the	installation
of	these	a	breeze—that’s	where	Docker	shines.

In	summary:

1.	 We	set	up	and	installed	RSpec.

2.	 We	saw	how	to	run	our	specs	in	a	Docker	environment.

3.	 We	set	up	system	specs	and	ran	tests	using	the	default	RackTest	driver.

4.	 We	got	our	system	specs	to	work	even	when	JavaScript	is	required,	by
configuring	Capybara	to	use	a	Selenium-driven	Chrome	browser	running	in
a	separate	container.

5.	 We	made	our	JavaScript	system	tests	faster	by	configuring	headless
Chrome	in	normal	use.

6.	 We	learned	how	to	debug	our	application,	even	though	it’s	running	inside	a
container.

Although	we’ve	gradually	been	leveling	up	our	Docker	skills,	you	may	have
noticed	one	area	where	things	have	felt	sluggish—rebuilding	our	image	still
feels	slow	whenever	we	need	to	add	or	modify	our	gems.	In	the	next	chapter,
we’ll	see	what	we	can	do	to	mitigate	this	and	speed	up	image	builds.

Footnotes

https://pragprog.com/book/rspec3/effective-testing-with-rspec-3

https://github.com/rspec/rspec-rails

WOW! eBook
www.wowebook.org

https://pragprog.com/book/rspec3/effective-testing-with-rspec-3
https://github.com/rspec/rspec-rails

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

https://guides.rubyonrails.org/testing.html#system-testing

https://guides.rubyonrails.org/5_1_release_notes.html#system-tests

https://relishapp.com/rspec/rspec-rails/docs/feature-specs/feature-spec

https://rubygems.org/gems/database_cleaner

https://rubygems.org/gems/capybara

https://github.com/teamcapybara/capybara#setup

https://github.com/teamcapybara/capybara#selenium

https://developers.google.com/web/updates/2017/04/headless-chrome

https://github.com/thoughtbot/capybara-webkit

https://github.com/teampoltergeist/poltergeist

http://phantomjs.org

https://robots.thoughtbot.com/headless-feature-specs-with-chrome

https://hub.docker.com/r/selenium/standalone-chrome-debug/

https://hub.docker.com/r/selenium/standalone-chrome-debug/

https://hub.docker.com/r/selenium/standalone-chrome/

https://docs.docker.com/compose/compose-file/#logging

https://www.techrepublic.com/blog/five-apps/five-apps-for-vnc-remote-desktop-access-on-windows/

https://github.com/SeleniumHQ/docker-selenium#debugging

https://blog.jetbrains.com/ruby/2017/05/rubymine-2017-2-eap-1-docker-compose/

Copyright	©	2019,	The	Pragmatic	Bookshelf.

WOW! eBook
www.wowebook.org

https://guides.rubyonrails.org/testing.html#system-testing
https://guides.rubyonrails.org/5_1_release_notes.html#system-tests
https://relishapp.com/rspec/rspec-rails/docs/feature-specs/feature-spec
https://rubygems.org/gems/database_cleaner
https://rubygems.org/gems/capybara
https://github.com/teamcapybara/capybara#setup
https://github.com/teamcapybara/capybara#selenium
https://developers.google.com/web/updates/2017/04/headless-chrome
https://github.com/thoughtbot/capybara-webkit
https://github.com/teampoltergeist/poltergeist
http://phantomjs.org
https://robots.thoughtbot.com/headless-feature-specs-with-chrome
https://hub.docker.com/r/selenium/standalone-chrome-debug/
https://hub.docker.com/r/selenium/standalone-chrome-debug/
https://hub.docker.com/r/selenium/standalone-chrome/
https://docs.docker.com/compose/compose-file/#logging
https://www.techrepublic.com/blog/five-apps/five-apps-for-vnc-remote-desktop-access-on-windows/
https://github.com/SeleniumHQ/docker-selenium#debugging
https://blog.jetbrains.com/ruby/2017/05/rubymine-2017-2-eap-1-docker-compose/

Chapter	9

Advanced	Gem	Management
	

We	now	have	a	working	development	environment,	all	based	on	Docker.
However,	there’s	one	area	that	is	worth	a	bit	more	thought:	gem	management.

Up	until	now,	to	install	or	update	gems,	we’ve	simply	been	rebuilding	the	image
for	our	Rails	app.	This	works	because	bundle install	is	one	of	the	steps	in	our
Dockerfile.	However,	as	we’ll	see	in	a	moment,	there’s	a	slight	downside	to	this
approach	compared	to	what	we’re	used	to	when	managing	gems	in	a	non-
Dockerized	environment	(you	may	have	already	spotted	this).

In	this	chapter,	we’ll	explore	an	alternative	approach	to	managing	our	gems	that
attempts	to	avoid	the	drawback	by	making	different	trade-offs	(it’s	more
complicated	for	a	start).

Whether	you	stick	with	the	simple	approach	we’ve	been	using	so	far,	or	this	new
approach,	is	completely	up	to	you.	I	will	present	the	technique,	explain	the	trade-
offs,	and	then	you	can	choose	based	on	your	needs	and	preferences.	Deal?

WOW! eBook
www.wowebook.org

The	Downside	to	Our	Existing	Approach
Our	current	approach	for	managing	gems	is	to	rebuild	the	image	any	time	we
need	to	update	our	gems.	However,	you	may	have	noticed	that	any	time	we
change	our	Gemfile,	even	if	it’s	just	adding	a	single	gem,	all	our	gems	have	to	be
reinstalled	from	scratch.	As	a	result,	updating	our	gems	takes	longer	than	we’re
typically	used	to.

Why	does	this	happen?

Bundler	and	Docker	images	are	both	trying	to	achieve	the	same	goal	of	ensuring
a	consistent	environment,	but	they	achieve	it	in	different	ways.	Docker’s	image-
build	process	breaks	some	of	Bundler’s	key	assumptions,	which	means	it	doesn’t
quite	work	how	we’re	used	to.

Bundler	was	primarily	designed	for	use	on	a	long-running	system	where
installed	gems	hang	around;	the	main	use	case	is	updating	the	set	of	currently
installed	gems.	However,	rebuilding	an	image	is	akin	to	building	a	new	machine
from	scratch—in	this	scenario,	Bundler	is	not	being	used	on	a	long-running
system.	This,	in	essence,	is	the	source	of	the	issue.

Let’s	have	another	look	at	our	Dockerfile	and	walk	through	what	happens	when
we	rebuild	our	image.	Here	are	the	last	seven	lines:

​1: COPY Gemfile* /usr/src/app/

​2: WORKDIR /usr/src/app

​3: RUN bundle install

​4:
​5: COPY . /usr/src/app/

​6:
​7: CMD [​"bin/rails"​, ​"s"​, ​"-b"​, ​"0.0.0.0"​]

When	we	modify	our	Gemfile,	it	busts	the	cache	for	line	1	of	the	extract.	That
means	the	cached	intermediate	layers	for	subsequent	steps	are	thrown	away,
including	the	gems	previously	installed	in	the	bundle install	step	(line	3).	When
the	image	build	reaches	this	step	again,	it’s	as	if	we’ve	never	run	bundle install	on

WOW! eBook
www.wowebook.org

this	machine	before.	No	wonder	the	gems	must	be	reinstalled	from	scratch.

How	big	a	problem	is	this?

It	depends	on	your	situation.	You	may	have	more	or	less	gems	in	your	project(s),
and	more	or	less	tolerance	for	waiting	while	gems	install.	The	thing	our	basic
approach	has	going	for	it	is	just	that—it’s	basic.	No	extra	things	to	configure	or
remember—just	rebuild	your	image	and	you’re	done.	This	may	be	a	perfectly
acceptable	option	for	many	people.

However,	if	the	time	waiting	for	gems	to	build	bothers	you,	then	it’s	worth
considering	another	option.

WOW! eBook
www.wowebook.org

Using	a	Gem	Cache	Volume
As	we’ve	seen,	the	key	problem	is	that	Docker’s	image	building,	akin	to	building
a	machine	from	scratch,	is	at	odds	with	the	caching	of	gems	with	Bundler.	What
if,	instead	of	fighting	the	image	build	process,	we	bypassed	it?	We’ve	already
seen	how	volumes	provide	persistent	file	storage	that’s	separate	from	the
container	filesystem;	we	can	use	this	to	solve	our	thorny	problem.

Here’s	the	gist.

By	mounting	a	volume	in	the	directory	where	Bundler	installs	our	gems,	we	can
execute	Bundler	commands	to	populate	and	manage	the	gems	on	this	volume,
which	effectively	becomes	a	local	gem	cache.	Remember	that	a	mounted	volume
overlays,	and	is	separate	from,	the	container’s	filesystem;	its	files	persist	beyond
the	life	cycle	of	the	container	itself.

Let’s	see	how	this	works	in	practice.

First,	we	need	to	configure	Bundler	to	use	an	explicit,	known	directory	for
installing	gems	to…/gems,	say.	We	do	this	by	setting	the	BUNDLE_PATH

environment	variable.	Let’s	update	our	Dockerfile	as	follows:

​ ​COPY​​ Gemfile* /usr/src/app/​
​ ​WORKDIR​​ /usr/src/app​
​
» ​ENV​​ BUNDLE_PATH /gems​
​
​ ​RUN ​bundle install
​
​ ​COPY​​ . /usr/src/app/​
​
​ ​CMD​​ ["bin/rails", "s", "-b", "0.0.0.0"]​

The	real	magic,	though,	comes	in	our	docker-compose.yml	file:

​ version: ​'​​3'​
​
​ services:

WOW! eBook
www.wowebook.org

​ web:

​ build: ​.​
​ ports:

​ - ​"​​3000:3000"​
​ - ​"​​4000:4000"​
​ volumes:

​ - ​.:/usr/src/app​
» - ​gem_cache:/gems​
​ env_file:

​ - ​.env/development/web​
​ - ​.env/development/database​
​ environment:

​ - ​WEBPACKER_DEV_SERVER_HOST=webpack_dev_server​
​
​ webpack_dev_server:

​ build: ​.​
​ command: ​./bin/webpack-dev-server​
​ ports:

​ - ​3035:3035​
​ volumes:

​ - ​.:/usr/src/app​
» - ​gem_cache:/gems​
​ env_file:

​ - ​.env/development/web​
​ - ​.env/development/database​
​ environment:

​ - ​WEBPACKER_DEV_SERVER_HOST=0.0.0.0​
​
​ redis:

​ image: ​redis​
​
​ database:

​ image: ​postgres​
​ env_file:

​ - ​.env/development/database​
​ volumes:

​ - ​db_data:/var/lib/postgresql/data​
​
​ selenium_chrome:

​ image: ​selenium/standalone-chrome-debug​
​ logging:

​ driver: ​none​
​ ports:

​ - ​"​​5900:5900"​
​

WOW! eBook
www.wowebook.org

​ volumes:

​ db_data:

» gem_cache:

Just	like	we	did	in	​Decoupling	Data	from	the	Container​,	we	create	a	new	named
volume—this	time	called	gem_cache—by	adding	this	to	our	list	of	volumes.
Compose	will	handle	the	details	of	where	this	volume	is	stored.

Then,	in	the	definition	for	our	web	service,	we	tell	Compose	to	mount	our
gem_cache	volume	at	/gems	in	the	container,	which	is	now	where	Bundler	is
configured	to	install	gems	to.

To	try	out	this	approach,	we	first	need	to	rebuild	our	image:

​ ​$ ​​docker-compose​​ ​​build​​ ​​web​

Our	web	service	should	already	be	stopped,	and	we	removed	its	container	earlier,
so	to	create	a	new	web	container	along	with	the	gem_cache	volume,	we	just	do:

​ ​$ ​​docker-compose​​ ​​up​​ ​​-d​​ ​​web​
​ Creating volume "myapp_gem_cache" with default driver

​ Recreating myapp_web_1 ... done

With	the	app	running,	and	our	gem_cache	created,	we	can	now	execute	Bundler
commands	directly	against	our	running	web	container:

​ ​$ ​​docker-compose​​ ​​exec​​ ​​web​​ ​​bundle​​ ​​install​

Thanks	to	our	BUNDLE_PATH,	this	installs	the	projects’	gems	to	the	container’s
/gems	directory.	As	we	know,	that’s	where	our	gem_cache	volume	is	mounted,
courtesy	of	our	volume	mapping.	As	a	consequence,	all	our	gems	are	now
installed	on	our	gem_cache	volume.

With	our	gem	cache	populated,	let’s	try	installing	a	new	gem.	Imagine	we	want
to	add	Devise	for	authentication.	Let’s	add	it	to	our	Gemfile:

​ ...

​ gem ​'redis'​, ​'~> 4.0'​
​ ​# Authentication​

WOW! eBook
www.wowebook.org

​ gem ​'devise'​, ​'~> 4.4'​, ​'>= 4.4.1'​
​ ...

OK.	Now,	like	we’d	typically	do	in	a	non-Dockerized	environment,	we	install
the	gem	by	running	the	bundle install	command:

​ ​$ ​​docker-compose​​ ​​exec​​ ​​web​​ ​​bundle​​ ​​install​

You	should	see	output	similar	to	the	following:

​ The dependency tzinfo-data (>= 0) will be unused by any of the platforms

​ Bundler is installing for. Bundler is installing for ruby but the dependency

​ is only for x86-mingw32, x86-mswin32, x64-mingw32, java. To add those plat-

​ forms to the bundle, run `bundle lock --add-platform x86-mingw32 x86-mswin32

​ x64-mingw32 java`.

​ Fetching gem metadata from https://rubygems.org/.........

​ Fetching gem metadata from https://rubygems.org/.

​ Resolving dependencies.....

​ Using rake 12.3.2

​ Using concurrent-ruby 1.1.4

​ ...

​ Fetching warden 1.2.8

​ Installing warden 1.2.8

​ Fetching devise 4.5.0

​ Installing devise 4.5.0

​ ...

​ Using turbolinks-source 5.2.0

​ Using turbolinks 5.2.0

​ Using uglifier 4.1.20

​ Using web-console 3.7.0

​ Using webpacker 3.5.5

​ Bundle complete! 21 Gemfile dependencies, 90 gems now installed.

​ Bundled gems are installed into `/gems`

The	output	shows	that	Devise	is	the	only	gem	that’s	installed—the	others	are
reused	from	our	gem	cache.

There’s	one	final	complication:	our	webpack_dev_server	service.	Since	this	uses
the	same	Dockerfile	as	our	web	service,	we	also	need	to	rebuild	its	image:

​ ​$ ​​docker-compose​​ ​​build​​ ​​webpack_dev_server​

Similarly,	we	then	need	to	recreate	the	webpack_dev_server	container	from	the	new

WOW! eBook
www.wowebook.org

image:

​ ​$ ​​docker-compose​​ ​​up​​ ​​-d​​ ​​webpack_dev_server​
​ Recreating myapp_webpack_dev_server_1 ... done

Since	we’re	using	the	same	gem_cache	volume	for	both	our	web	and
webpack_dev_server	services,	gems	added	by	updating	the	web	service	will
automatically	be	available	to	the	webpack_dev_server	service,	and	vice	versa.

Let’s	review	the	benefits	and	downsides	to	this	strategy:

Pros:

Speeds	up	gem	management	for	all	Bundler	actions:	adding,	removing,	or
updating	gems

Uses	familiar	bundle install	workflow	predominantly	during	development

Cons:

Bundle	commands	only	update	our	local	volume;	we	still	ultimately	need	to
build	the	image

Possibility	for	confusion	over	which	gems	are	being	loaded	or	used

Extra	complexity	of	changes	to	both	Dockerfile	and	docker-compose.yml,	plus
the	need	to	understand	the	nuance	of	gems	being	overlaid	in	local	volume

Many	Rails	developers	will	find	this	approach	appealing	because	we	explicitly
manage	our	gems	with	Bundler	like	we’re	used	to,	instead	of	relying	on
rebuilding	our	image	to	run	bundle install.	If	you	can	get	your	head	around	the
complexity,	this	strategy	will	definitely	make	your	local	development	feel
snappier,	especially	if	you’re	making	a	lot	of	gem	changes.

WOW! eBook
www.wowebook.org

Quick	Recap
Who	knew	that	gem	management	could	be	such	a	hot	topic?	With	this	new
option	at	your	disposal,	you	should	feel	ready	for	anything.

Let’s	take	a	look	back	at	what	we	covered	in	this	chapter:

1.	 We	discussed	the	downsides	to	our	previous	approach	to	managing	gems:
any	gem	changes	required	all	gems	to	be	reinstalled	from	scratch.

2.	 We	explored	a	way	to	speed	up	gem	changes	that	involved	creating	a
volume	for	caching	our	gems.	By	mounting	the	volume	into	our	container
(and	setting	BUNDLE_PATH),	we	could	manage	our	gems	manually	and
benefit	from	faster	builds.

Hopefully,	you’re	also	starting	to	appreciate	the	meta	point	here:	how	problems
with	our	Docker	setup	can	be	identified,	thought	through,	and	eventually	solved
in	creative	ways.	The	more	you	use	Docker	and	understand	how	it	works,	the
more	you’ll	start	spotting	opportunities	for	improvements	yourself.

Good	as	it	is,	Compose	is	not	without	failings.	Before	we	close	out	the
development	section,	in	the	spirit	of	full	disclosure,	we’re	going	to	explore	a
couple	of	common	pain	points	you	may	encounter	when	using	Compose.	In	the
following	chapter,	you’ll	learn	about	these	irritations	and	what	we	can	do	to
minimize	their	impact.

Copyright	©	2019,	The	Pragmatic	Bookshelf.

WOW! eBook
www.wowebook.org

Chapter	10

Some	Minor	Irritations
	

Well,	isn’t	this	embarrassing.

Unfortunately,	Compose	has	a	couple	of	irritating	issues.	Since	you	may	have
encountered	them	in	the	preceding	chapters,	or	as	you	go	on	to	use	Compose
yourself,	it	seems	irresponsible	to	ignore	them.	Here	we’ll	take	a	quick	look	at
each	in	turn.

Fortunately,	we	can	work	around	the	first	issue—with	a	little	effort.	However,
the	second	problem	remains	elusively	unsolved.

WOW! eBook
www.wowebook.org

Rails	tmp/pids/server.pid	Not	Cleaned	Up
For	some	reason,	occasionally	upon	terminating	the	app	with	Compose	(pressing
Ctrl - C),	the	Rails	server	doesn’t	seem	to	shut	down	cleanly,	and	its	server.pid

file—which	Rails	stores	in	tmp/pids/—isn’t	deleted.	This	means	that	upon
starting	the	app	again	with:

​ ​$ ​​docker-compose​​ ​​up​

you	may	find	yourself	confronted	by	the	following	error	in	the	output:

​ ​...​
​ A server is already running. Check /usr/src/app/tmp/pids/server.pid

​ ​...​

The	existence	of	the	pid	file	makes	the	Rails	server	starting	up	believe	that
there’s	a	server	already	running,	so	it	won’t	launch.

Rails	saves	the	server.pid	file	in	tmp/pids.	Since	we’re	mounting	our	local	app
directory	into	the	container,	the	file	ends	up	in	the	tmp/pids/	directory	on	our
local	machine	and	is	persisted	until	we	delete	it.

How	do	we	solve	this?

Since	we’re	mounting	our	app	directory	into	the	container,	it’s	easy	enough	to
delete	the	server.pid	file	manually:

​ ​$ ​​rm​​ ​​tmp/pids/server.pid​

This	done,	the	Rails	server	should	now	start:

​ ​$ ​​docker-compose​​ ​​up​

You	should	see	in	the	output	that	Rails	is	now	up	and	running.	However,	this
doesn’t	really	solve	the	problem	if	it	keeps	happening.	Luckily,	we	can	put	in
place	a	workaround.

Let’s	see	the	workaround,	and	then	discuss	it:

WOW! eBook
www.wowebook.org

1.	 Create	a	docker-entrypoint.sh	file	in	your	Rails	root	as	follows:

​ ​#!/bin/sh​
​ set -e

​
​ ​if​ [-f tmp/pids/server.pid]; ​then​
​ rm tmp/pids/server.pid

​ ​fi​
​
​ exec ​"​$@​"​

2.	 Make	this	file	executable:

​ ​$ ​​chmod​​ ​​+x​​ ​​docker-entrypoint.sh​

3.	 Specify	an	ENTRYPOINT	instruction	in	our	Dockerfile	file	by	adding	the
following	line	just	before	the	final	CMD	instruction:

​ ENTRYPOINT [​"./docker-entrypoint.sh"​]

4.	 Stop,	rebuild,	and	restart	the	web	service:

​ ​$ ​​docker-compose​​ ​​stop​​ ​​web​
​ ​$ ​​docker-compose​​ ​​build​​ ​​web​
​ ​$ ​​docker-compose​​ ​​up​​ ​​-d​​ ​​web​

So	what’s	all	this	doing?

An	entrypoint	is	prepended	to	the	command	run	upon	starting	a	new	container.	In
our	case,	we’ve	set	./docker-entrypoint.sh	as	the	ENTRYPOINT	for	the	web	service.
This	means,	when	we	start	a	new	web	container,	rather	than	simply	running	the
default	command	of:

​ bin/rails s -b 0.0.0.0

it	will	actually	run	this,	thanks	to	our	new	ENTRYPOINT	instruction:

​ ./docker-entrypoint.sh bin/rails s -b 0.0.0.0

Since	this	shell	script	will	be	run,	we	need	to	give	the	file	execute	permissions,	as
we	do	in	step	2.

WOW! eBook
www.wowebook.org

What	is	our	docker-entrypoint.sh	shell	script	actually	doing?	In	case	you’re	not
familiar	with	Bash,	let’s	quickly	go	through	it	step	by	step	(feel	free	to	skip
ahead	if	it’s	already	clear).

​1: ​#!/bin/sh​
​2: set -e

​3:
​4: ​if​ [-f tmp/pids/server.pid]; ​then​
​5: rm tmp/pids/server.pid

​6: ​fi​
​7:
​8: exec ​"​$@​"​

It’s	good	practice	in	Bash	scripts	to	start	with	set -e	(line	2)—this	makes	the
script	fail	fast	if	any	subsequent	commands	terminate	with	an	error	(non-zero
exit	status).

The	if	statement	on	line	4	checks	to	see	if	the	tmp/pids/server.pid	file	exists;	if	it
does,	we	delete	it	on	line	5.	This	is	the	cleanup	portion	of	the	script	that	ensures
our	Rails	server	will	always	start,	even	if	the	server.pid	file	is	left	behind.

However,	ultimately	we	want	the	container	to	start	our	Rails	server,	not	this	Bash
script.	That’s	where	the	exec	command	on	line	8	comes	in.	It	says,	“Replace	the
currently	running	process	(this	Bash	script)	by	running	the	following
program”—almost	as	if	the	shell	script	had	never	existed.	But	what	program
does	exec	run?	The	"$@"	means	“all	arguments	that	were	provided	to	this	Bash
script,”	which	in	our	case	would	be	bin/rails s -b 0.0.0.0.	So	effectively,	we’re
saying,	“Replace	this	running	Bash	script	with	a	Rails	server.”

In	summary,	docker-entrypoint.sh	acts	as	a	wrapper	script,	giving	us	an	opportunity
to	do	our	small	cleanup	of	the	pid	file	and	then	start	up	the	Rails	server	as	if
nothing	had	happened.	Now	you	can	just	run	docker-compose up	to	your	heart’s
content,	safe	in	the	knowledge	that	this	pesky	bug	won’t	affect	you.

Entrypoints,	especially	following	this	pattern,	are	a	good	tool	to	have	in	your
arsenal;	you	may	find	other,	creative	uses	for	them.	It’s	also	worth	knowing	that
you	can	specify	an	entrypoint	directly	in	the	Dockerfile	too,	using	the	ENTRYPOINT

WOW! eBook
www.wowebook.org

instruction.	See	Docker’s	docs	for	more	details.[61]

WOW! eBook
www.wowebook.org

Compose	Intermittently	Aborts	with	Ctrl-C
When	you	start	your	application	with	Compose	in	the	default,	attached	mode—
in	other	words,	without	the	-d	option—Compose	connects	to	each	container’s
stdout,	tailing	the	output.

When	you	press	 Ctrl - C ,	Compose	is	supposed	to	instruct	the	containers	to
terminate	by	sending	the	main	process	the	SIGTERM	signal.	The	process	should
exit	gracefully	and	then	the	container	should	terminate.	When	this	happens
correctly,	the	Compose	output	on	pressing	Ctrl-C	is:

​ Killing myapp_web_1 ... done

​ Gracefully stopping... (press Ctrl+C again to force)

However,	maybe	10–50	percent	of	the	time	for	me,	instead	of	the	containers
shutting	down	gracefully,	we	get	this:

​ ^CERROR: Aborting.

and	the	termination	fails,	leaving	the	containers	still	running.	Not	good.

Unfortunately,	this	seems	to	be	a	long-standing,[62]	known[63]	issue.[64]	It	seems	to
be	caused	by	a	problem	in	PyInstaller,	an	open	source	tool	for	creating
executables	from	Python	scripts,	which	Compose	relies	on.

The	issue	is	an	irritation	rather	than	a	showstopper.	We	can	manually	shut	down
the	containers	by	issuing	a	docker-compose stop	(or	kill)	command.	However,
although	it	seems	to	be	an	issue	with	a	third-party	dependency,	it	can’t	help	but
undermine	our	feeling	of	confidence	in	Compose	itself,	which	is	a	shame.

Despite	researching	the	issue	and	attempting	the	various,	suggested	fixes,	I’ve
been	unable	to	find	a	workaround	to	prevent	it.	If	you	find	yourself	affected,	my
advice	is	simply	to	avoid	starting	your	application	in	attached	mode,	and	instead,
always	use	detached	mode	with	the	-d	option.	To	date,	I	haven’t	experienced	the
issue	with	that.

WOW! eBook
www.wowebook.org

Quick	Recap
No	software	is	perfect,	but	it’s	unfortunate	when	your	experience	with	using	a
tool	is	diminished	due	to	bugs.	I	have	to	confess:	it	pained	me	to	write	this
chapter.	I	wanted	your	experience	of	using	Docker	to	be	uniformly	positive.

In	the	end,	though,	I	felt	these	issues	were	important	enough	to	bring	to	your
attention.	Hopefully,	you	should	now	be	aware	of	the	main	problems	and
prepared	to	face	them.

Let’s	review	what	we	covered	in	this	chapter:

1.	 We	explored	an	issue	where	Rails’	tmp/pids/server.pid	file	doesn’t	always	get
removed	upon	terminating	the	containers.

2.	 We	learned	about	entrypoints,	which	are	prepended	to	the	command	run	on
starting	a	new	container.

3.	 We	utilized	an	entrypoint	to	create	a	wrapper	script	that	deletes	the
tmp/pids/server.pid	on	starting	a	container,	working	around	the	issue.

4.	 We	discussed	an	issue	where	Compose	intermittently	aborts	instead	of
terminating	containers	gracefully,	deciding	that	the	best	approach	to	avoid	it
may	be	running	Compose	in	detached	mode	(-d.)

OK,	enough	about	annoyances.	It’s	time	to	think	about	the	positives.

WOW! eBook
www.wowebook.org

Closing	Thoughts	on	Docker	in	Development
As	we	draw	to	the	close	of	this	section	on	development,	let’s	take	a	moment	to
reflect	on	what	we’ve	achieved.	At	first	glance,	it’s	easy	to	mistakenly	think
we’ve	gone	through	a	fair	amount	of	effort	only	to	arrive	back	where	we	started
—with	a	standard,	working	Rails	app.

In	fact,	though,	we’ve	achieved	some	major	benefits:

Our	Dockerfile	and	docker-compose.yml	file	give	us	a	declarative	description	of
our	entire	application—with	all	its	required	parts,	such	the	database—
helping	to	give	a	clear	picture	of	what	makes	up	the	application.

We	can	spin	up	the	entire	application	with	a	single	command—even	with
nothing	previously	installed.	Docker	downloads	and	installs	what	we	need.

We’ve	eliminated	the	need	to	manually	install	our	app’s	main	software
dependencies	on	our	local	machine.	No	more	fiddling	with	getting	Redis,
Postgres,	or	even	Ruby	installed	and	running	on	compatible	versions	across
the	whole	team.	Docker	is	taking	care	of	all	of	this	for	us.

That	last	point	is	a	big	one.	It	also	means	that	our	app	can	run	on	any
machine	with	Docker	installed.	It	gives	us	freedom	and	portability.

Upgrading	parts	of	our	application	is	as	simple	as	updating	the	version
number	of	the	image	we	refer	to	in	our	Compose	file.	It’s	a	breeze	to	see
how	our	app	works	on	a	newer	version	of	Ruby,	for	example.

For	all	these	reasons,	using	Docker	in	development	is	useful	in	and	of	itself—
you	should	feel	proud	for	having	reached	this	milestone.	However,	the	journey
doesn’t	stop	here.	Docker	can	bring	even	more	benefits,	as	we	prepare	to	move
toward	production.

Footnotes

WOW! eBook
www.wowebook.org

[61]

[62]

[63]

[64]

https://docs.docker.com/engine/reference/builder/#entrypoint

https://github.com/docker/compose/issues/2904

https://github.com/docker/compose/issues/3317

https://github.com/docker/compose/issues/3347

Copyright	©	2019,	The	Pragmatic	Bookshelf.

WOW! eBook
www.wowebook.org

https://docs.docker.com/engine/reference/builder/#entrypoint
https://github.com/docker/compose/issues/2904
https://github.com/docker/compose/issues/3317
https://github.com/docker/compose/issues/3347

Part	2
Toward	Production

Now	that	we’ve	got	the	basics	down	of	how	to	develop	our	app
with	Docker,	we’ve	got	bigger	fish	to	fry.	In	this	section,	we’ll
take	our	Dockerized	Rails	app	and	really	start	going	places.

How	do	we	get	our	application	into	the	eager	hands	of	users?
That’s	the	key	question	we’ll	be	answering	as	we	explore	the
real-world	considerations	along	the	way.

Buckle	up,	because	where	we’re	going,	we	don’t	need	roads.

WOW! eBook
www.wowebook.org

Chapter	11

The	Production	Landscape
	

Docker,	and	more	generally,	containerization	establishes	a	new	paradigm	for
packaging,	running,	and	coordinating	pieces	of	software.	It’s	no	surprise	that	this
has	a	major	impact	on	the	way	we	deliver	and	manage	software	running	in
production.	If	you’re	inexperienced	with	operations,	particularly	now	that
Docker	is	in	the	mix,	this	world	can	feel	like	a	maze.	So,	before	we	get	our
hands	dirty	with	preparing	to	deploy	our	app	in	a	production-like	environment,
we	first	need	to	familiarize	ourselves	with	the	lay	of	the	land.

In	this	chapter,	we’ll	start	with	a	refresher	on	what	it	means	to	deliver	and	run
software	in	production.	Next,	we’ll	explore	how	Docker	shifts	that	landscape,
and	what	delivery	looks	like	if	you	embrace	Docker.	We’ll	cover	the	various
hosting	options,	the	tools	you’ll	encounter	(and	their	purpose),	and	the	trade-offs
you’ll	need	to	consider	when	choosing	what	you’ll	use	for	your	production
environment.

This	chapter	is	unique	in	that	it’s	purely	informational:	there	are	no	practical
steps	to	follow	along	with.	So	put	your	feet	up,	relax	for	a	moment,	and	enjoy
the	change	of	pace.

WOW! eBook
www.wowebook.org

The	“Ops”	in	DevOps
Our	focus	as	software	developers	is	often	on	the	development	phase,	with	its
discovery,	analysis,	testing,	and	building	activities.

Depending	on	your	work	environment,	you	may	or	may	not	be	heavily	involved
in	operations—or	just	Ops—which	involves	delivering	and	running	software	in
production.	We	can	break	this	down	into	a	number	of	different	areas:

1.	 Provisioning
2.	 Configuration	management
3.	 Release	management
4.	 Monitoring	and	alerting
5.	 Operating

Although	you	probably	have	some	idea	of	what	these	things	mean,	let’s	describe
them	so	that	we’re	on	the	same	page.

Provisioning—also	known	as	creating	stuff.	Software	needs	computers	and
resources	to	run	on.	Ensuring	there	are	enough	computing	resources	available—
and	creating	them	if	not—is	an	important	part	of	that.	In	fact,	it’s	not	just
machines	or	instances	that	we	need;	when	deploying	apps	to	the	cloud,	we	may
also	need	other	physical	or	virtual	infrastructure,	such	as:

Networks,	also	known	as	virtual	private	clouds	(VPCs)
Network	address	translation	(NAT)	gateways
Routers
Firewalls
Internet	gateways
Proxies
Security	rules

Configuration	management.	Once	our	raw	infrastructure	has	been	created,	it
typically	isn’t	ready	to	perform	its	true	purpose	in	life;	it	has	to	be	configured.
For	some	(possibly	virtual)	infrastructure,	such	as	routers	or	firewalls,	this
means	ensuring	they	have	the	right	settings	or	rules	applied.	For	a	server,	it

WOW! eBook
www.wowebook.org

typically	means	installing	the	necessary	software	packages	and	dependencies
needed	to	run	an	application.

Release	management.	Most	systems	need	regular	maintenance	or	continued
development,	which	implies	an	ongoing	need	to	deploy—or	release—newer
versions.	Typically,	we’d	like	to	be	able	to	release	easily,	repeatedly	at	any	time,
and	with	minimal	or	no	impact	to	users	of	the	system.	This	can	be	achieved
through	automation,	good	tooling,	and	techniques	such	as	blue-green	deploys	or
canary	releases.	Additionally,	when	things	go	wrong,	the	ability	to	roll	back	to	a
known-good	version	of	the	software	can	be	invaluable.

Monitoring	and	alerting.	In	a	perfect	world,	our	application,	once	deployed,
would	perform	as	expected	forever.	In	reality,	things	go	wrong:	servers	fail,
software	has	bugs,	our	assumptions	don’t	hold	true.	Rather	than	bury	our	heads
in	the	sand,	we	proactively	take	steps	to	know	the	health	of	our	software	and
how	well	it’s	functioning.	This	typically	involves	tracking	health	metrics	for	the
system	and	being	alerted	when	things	start	to	go	wrong.

Operating.	In	the	day-to-day	running	of	production	systems,	there	are	some
common	things	we	may	need	to	do:	scaling	up	to	handle	increased	load,	scaling
down	to	save	costs,	diagnosing	and	debugging	issues,	and	generally,	keeping	the
lights	on.	Smart	operations	teams	try	to	automate	as	much	as	possible	to
minimize	human	error	and	free	up	their	time	so	they	can	be	proactive	rather	than
fighting	fires.

Adopting	Docker	changes	the	way	we	think	about	many	of	these	areas.

Take	configuration	management,	for	example.	Although	tools	like	Chef,	Puppet,
or	Ansible	are	extremely	popular,	their	role	in	a	containerized	world	is
considerably	diminished.	With	Docker,	each	piece	of	software	has	its
dependencies	baked	into	its	image,	isolating	it	from	those	in	another	container.
This	dramatically	simplifies	the	problem.	Since	app-level	dependencies	are
managed	by	the	app	itself,	in	its	Dockerfile,	configuring	your	infrastructure
instances	is	largely	just	a	case	of	ensuring	that	Docker	is	installed.

WOW! eBook
www.wowebook.org

As	we’ll	see	shortly,	Docker	also	has	other	implications,	especially	on	how	we
release	and	operate	our	software.

WOW! eBook
www.wowebook.org

Container	Orchestration
Docker	has	changed	the	Ops	landscape	in	two	key	ways.	Firstly,	its	built-in
delivery	mechanism—the	ability	to	push	images	to	a	Docker	Registry	and	pull
them	down	as	needed—solves	a	common	question:	how	do	I	get	my	software
onto	the	target	machine?	Secondly,	containers	let	us	treat	hugely	disparate
software	in	essentially	the	same	way;	we	use	the	same	mechanism	to	start,	stop,
and	restart	containers,	whatever	they	happen	to	be	running.

This	standardization,	both	in	terms	of	delivery	mechanism	and	how	we	manage
software,	reshapes	the	way	we	think	of	operations.	The	focus	shifts	to	how	we
configure,	run,	and	update	the	multiple	containers	that	make	up	an	application	in
concert,	a	process	known	as	(container)	orchestration.

A	new	breed	of	tools	has	emerged	to	help	orchestrate	our	app	containers;	they’re
named	(rather	uncreatively)	orchestrators.

So	what	do	these	orchestrators	do	for	us?	First,	they	provide	an	environment	or
platform	on	which	we	can	run	and	manage	our	containerized	applications.	They
do	this	by	creating	an	abstraction	above	the	(physical	or	virtual)	servers	needed
to	run	the	software.	When	deploying	applications,	it’s	more	convenient	to	think
of	our	group	of	“compute”	servers	as	a	single	logical	unit:	a	cluster.	This	lets	us
say	things	like,	“Let’s	deploy	this	app	to	the	cluster,”	without	caring	how	it	gets
deployed	or	on	exactly	which	instance—we	can	(mostly)	let	our	orchestration
layer	handle	those	details	for	us.

Since	orchestrators	provide	the	platform	for	running	our	apps,	they	are	central	to
releasing	new	software	(release	management),	knowing	and	managing	how	our
cluster	is	using	its	resources	(configuration	management),	and	tasks	like
restarting	services	or	scaling	to	match	demand	(operating).

What’s	nice	about	these	tools	is	that	they’re	declarative	rather	than	imperative.
Instead	of	our	having	to	give	the	orchestrator	a	list	of	instructions	that,	if	it
follows,	will	achieve	our	desired	state,	we	simply	specify	the	desired	state,	and

WOW! eBook
www.wowebook.org

the	orchestrator	figures	out	how	to	achieve	and	maintain	it.	This	allows	us	to
think	at	a	higher	level,	with	the	orchestrator	handling	many	of	the	uninteresting,
low-level	details	for	us.

Because	orchestrators	understand	the	desired	state,	they	are	able	to	be	smarter
and	more	resilient	to	failure.	If	the	code	running	in	one	of	the	containers	crashes
for	some	reason,	the	orchestrator	can	automatically	restart	it.	If	an	entire	node	in
the	cluster	fails,	meaning	all	the	containers	it	had	been	running	are	gone,	again
the	orchestrator	can	recover	and	start	up	new	replacement	containers	on	the
remaining	nodes.

When	you	want	to	release	a	new	version	of	your	software,	you	tell	the
orchestrator	that	the	desired	state	now	uses	your	newer	version	of	an	image,	and
the	orchestrator	gets	to	work	updating	it.	Orchestrators	therefore	play	a	key	role
in	deployment	and	provide	capabilities	to	perform	rolling	updates	to	help
achieve	zero-downtime	deploys.

Orchestrators	can	help	in	other	ways,	too.	Providing	keys	and	sensitive
configuration	to	apps	is	an	age-old	problem.	However,	in	order	to	function,
orchestrators	need	a	secure,	distributed	way	of	managing	the	internal	state	of	the
cluster	and	communicating	parts	of	it	to	nodes	and	containers	on	a	need-to-know
basis.	That	sounds	suspiciously	similar	to	distributed	secret	management.	It’s	no
surprise	then	that	orchestrators	expose	secret	management	as	an	application-
level	feature.

Finally,	as	orchestrators	play	such	a	critical	role	at	the	heart	of	your	production
environment,	they	tend	to	have	highly	sophisticated	security	features—such	as
automatic	key	rotation—built	in.

WOW! eBook
www.wowebook.org

A	Tale	of	Two	Orchestrators:	Swarm	and	Kubernetes
There	are	currently	two	competing	orchestration	layers	that	can	be	used	with
Docker:	Swarm	and	Kubernetes.	Both	have	many	similarities	but	also	significant
differences.

Swarm	(or	Swarm	mode)—Docker’s	homegrown	solution—has	been	built	into
the	Docker	Engine	since	version	1.12,	so	you	already	have	it	installed.	Although
it	took	some	time	to	become	production-ready,	Swarm	is	now	a	mature,	capable,
low-ceremony	orchestrator.	While	it’s	still	missing	one	or	two	desirable	features
(such	as	autoscaling),	it’s	a	well-thought-out	piece	of	software	and	puts	a	lot	of
power	at	your	fingertips.	You’ll	get	to	experience	Swarm	first-hand	in	the
upcoming	chapters.

The	other	big	player	is	Kubernetes,	which	is	an	open	source	tool	created	by
Google,	but	it	is	now	under	the	care	of	the	Cloud	Native	Computing	Foundation
(CNCF).[65]	Not	only	does	Kubernetes	support	autoscaling,	but	it	also	provides
more	control	over	how	your	apps	are	architected.	However,	this	rich	feature	set
and	expressiveness	comes	at	a	cost:	it	is	considerably	more	complex	than
Swarm,	takes	more	effort	to	learn,	and	its	config	files	are	more	verbose.
Additionally,	installing	Kubernetes	by	hand	can	be	a	lengthy	and	complicated
task	itself.

Kubernetes	and	Swarm	have	a	similar	high-level	architecture.	Both	distinguish
between	worker	nodes	that	run	containers	and	manager	nodes	that	manage	the
workers	and	orchestrate	containers	on	them.	One	notable	difference	is	that
Swarm	manager	nodes	can	run	workload	containers	in	addition	to	their	cluster
management	and	orchestration	role,	whereas	Kubernetes	manager	nodes	can’t.
Also	of	note,	Kubernetes	currently	uses	offensive	master/slave	terminology	to
refer	to	manager	and	worker	nodes,	though	I	am	hopeful	this	will	soon	be
changed.[66]

When	learning	either	Swarm	or	Kubernetes,	getting	to	grips	with	their
conceptual	models[67][68]	is	key.	Although	there	are	similarities,	each	requires

WOW! eBook
www.wowebook.org

some	getting	used	to.	For	example,	Swarm	has	the	concept	of	a	stack,	which
envisions	the	application	as	a	group	of	underlying	services.	Kubernetes,	on	the
other	hand,	breaks	this	down	further	into	a	Deployment,	made	up	of	ReplicaSets,
which	in	turn	are	made	up	of	Pods.

Here’s	a	very	high-level	summary	of	the	two:

Swarm Kubernetes
Open	source Yes Yes
Created	by Docker Google
Overseen	by Docker CNCF
Installation Simple Complex
Learning	curve Easy Difficult
Feature	set Smaller Large
Built-in	autoscaling? No Yes
Community	support Good Excellent

Although	Swarm	still	has	its	place,	Kubernetes	seems	to	have	gained	a	lot	of
traction	and	mindshare,	and	is	fast	becoming	the	de	facto	standard	for
orchestration.	In	fact,	in	a	nod	to	this,	Docker	has	added	built-in	Kubernetes
support	out	of	the	box.[69]	In	reality,	Swarm	vs.	Kubernetes	is	not	an	either	or:	it’s
worth	spending	some	time	to	become	familiar	with	both	and	having	both	options
available	to	you.

With	that	in	mind,	Swarm	is	going	to	be	our	focus	in	the	remaining	chapters.	It
has	a	simpler	conceptual	model	and	more	succinct	config,	making	it	a	better
learning	tool.	Picking	up	Kubernetes	will	be	easier	having	experienced	Swarm,
since	you’ll	have	a	good	feel	for	how	orchestrators	work.

One	final	point:	although	Swarm	and	Kubernetes	are	the	two	main	orchestrators,
some	hosting	providers	have	their	own,	platform-specific	orchestration	layer—
notably,	Amazon	Elastic	Container	Service	(Amazon	ECS).

WOW! eBook
www.wowebook.org

IaaS	vs.	CaaS
Now	that	we	have	a	better	understanding	of	where	container	orchestrators	fit	in,
there’s	still	a	choice	to	be	made	if	you’re	considering	deploying	containers	to	the
cloud.	You	can	either	manage	things	at	the	infrastructure	level	and	set	up	the
orchestrator	yourself,	or	you	can	use	a	container	platform	that	handles	the
underlying	infrastructure	and	provides	a	preinstalled	orchestrator	ready	for	you
to	deploy	and	scale	your	containers.

The	former—known	as	Infrastructure	as	a	Service	(IaaS)	platforms—are	bare-
bones	offerings.	They	give	you	all	the	low-level	building	blocks	to	create	the
environment	for	your	applications	to	run.	As	you	would	expect,	this	gives	you
the	most	flexibility	and	customization	in	terms	of	tailoring	your	environment	for
your	own	needs.	However,	you	have	to	do	the	work	of	provisioning	your
instances,	configuring	them,	and	installing	your	orchestration	layer.

The	latter—known	as	Containers	as	a	Service	(CaaS)	platforms—are	the	closest
thing	to	Heroku	in	a	containerized	world.	They	let	you	focus	on	your	app	and
worry	less	about	the	infrastructure	it	runs	on.	For	many,	this	is	a	popular	option
to	get	started.	It’s	fast	to	get	something	up	and	running,	and	you	offload	a	lot	of
the	responsibilities,	including	many	security	considerations,	to	the	platform.
However,	this	comes	at	the	price	of	less	flexibility	and	customization—you’re
limited	by	the	capabilities	exposed	by	the	platform.

The	choice	is	not	as	discrete	as	it	sounds.	Even	across	different	CaaS	platforms,
you’ll	find	that	more	or	less	work	is	done	for	you.

Next,	we’ll	look	at	some	options	around	tools	for	provisioning	IaaS
infrastructure,	were	you	to	go	down	that	route,	before	taking	a	brief	tour	of	the
big	players	in	the	CaaS	space.

WOW! eBook
www.wowebook.org

Provisioning	Your	Infrastructure
If	you	go	down	the	IaaS	route,	in	theory	you	can	go	with	any	cloud	provider;
they	are	just	providing	the	raw	infrastructure	that	you’ll	run	your	Docker
containers	on	top	of.

Here	are	some	of	the	big	players	that	you’ve	probably	heard	of:

Amazon	AWS[70]
Microsoft	Azure[71]
Google	Compute	Engine	(GCE)[72]
DigitalOcean[73]

However,	you’re	going	to	need	to	provision	your	infrastructure,	and	in	particular,
the	instances	that	Docker	and	your	orchestration	layer	will	be	installed	on.	There
are	a	number	of	tools	that	can	assist	you	in	this	endeavor.

Docker	Machine
Docker	Machine[74]	is	a	standalone	tool	for	provisioning	and	managing	Docker-
ready	instances.	It	not	only	creates	an	instance,	but	it	installs	Docker	on	the
instance	at	the	same	time.	This	makes	Docker	Machine	a	really	lightweight,
friendly	tool	to	get	started	with.

Docker	Machine	uses	the	adapter	pattern,[75]	providing	different	drivers	capable
of	creating	instances	on	a	wide	variety	of	platforms.[76]	We’ll	use	this	shortly	to
create	local	VirtualBox	instances	and	then	create	cloud-based	infrastructure.

Sometimes	you	need	to	provision	more	than	just	instances.	Perhaps	you	may
have	security	constraints	that	need	to	be	enforced,	or	maybe	specific	networking
requirements	that	involve	the	creation	of	networking	devices	(firewalls,	NAT
gateways,	and	so	on)	in	a	specific	arrangement.	In	this	case,	Docker	Machine
alone	wouldn’t	be	enough;	you’d	have	to	consider	other	tools	to	assist.

Chef,	Puppet,	and	Ansible

WOW! eBook
www.wowebook.org

Traditionally,	configuration	management	tools	like	Chef,	Ansible,	and	Puppet
have	been	used	to	provision	infrastructure	and	configure	it,	including	installing
and	managing	software	on	instances.	However,	as	we’ve	already	discussed,	since
Docker	images	are	now	responsible	for	most	of	your	server	configuration,	the
need	for	these	other	tools	is	greatly	diminished.

Additionally,	these	tools	all	predate	Docker—especially	Puppet	(2005)	and	Chef
(2009)—so	they	weren’t	born	out	of	a	worldview	that	included	containers.	That
said,	they	can	still	be	used	to	bootstrap	a	cluster	with	Docker	and	your
orchestration	layer,	but	depending	on	your	needs,	may	be	overkill.

Terraform
Released	in	2014,	a	year	after	Docker,	HashiCorp’s	Terraform	is	the	relative
newcomer	to	the	scene.	Rather	than	being	a	fully	fledged	configuration
management	system,	it	considers	itself	an	infrastructure	orchestrator,	with	the
more	modest	aim	of	provisioning	and	updating	your	infrastructure	in	a	safe,
controlled	way.

It	has	only	lightweight	capabilities	for	configuring	servers,	allowing	you	to	use
other	tools	for	this	where	it	makes	sense.[77]	However,	because	only	minimal
server	configuration	is	needed	when	using	Docker,	going	Terraform-only	is	a
lightweight	and	popular	choice.[78]

WOW! eBook
www.wowebook.org

CaaS	Platforms
Now	that	we’ve	had	a	brief	overview	of	our	options	if	we	choose	to	build	on	top
of	IaaS,	let’s	turn	our	attention	to	the	Container	as	a	Service	(CaaS)	space.

As	we’ve	already	discussed,	CaaS	offerings	let	you	hit	the	ground	running	faster.
They	provide	a	managed	service,	where	your	starting	point	is	a	platform	capable
of	running	Dockerized	applications.

In	this	area,	Kubernetes	is	king.	It	is	the	predominant	orchestration	service
offered	by	providers.	This	means	that,	once	your	Kubernetes	workload	cluster	is
up	and	running,	you	interact	with	it	via	the	kubectl	command	to	deploy,	update,
or	scale	your	app.	Similarly,	your	config	manifests	that	describe	the	services	you
want	running	and	how	they	should	be	connected	will	need	to	be	in	Kubernetes
format.

Each	offering	is	at	a	slightly	different	place	in	terms	of	features	and	maturity,	so
let’s	review	the	major	players.

Amazon	Elastic	Container	Service
The	odd	one	out	in	this	list,	Amazon	Elastic	Container	Service	(Amazon	ECS),
[79]	sports	Amazon’s	own	container	orchestration	layer,	rather	than	Kubernetes.

The	AWS	way—ECS	being	no	exception—is	to	provide	the	building	blocks	to
architect	your	cloud	infrastructure	and	apps	from	the	ground	up.	This	gives	you
very	fine-grained	control,	but	the	trade-off	is	that	you	are	exposed	to	additional
complexity	and	have	more	work	to	hook	things	together.	Most	people	either	love
it	or	hate	it.

The	service	can	be	managed	through	the	AWS	Management	Console[80]	or	via
the	ECS	CLI,[81]	both	of	which	let	you	provision	the	infrastructure	needed.
Additionally,	CloudFormation[82]—Amazon’s	proprietary	infrastructure
provisioning	language—can	also	be	used.

WOW! eBook
www.wowebook.org

In	ECS,	you	describe	your	application’s	containers	using	config	files	known	as
task	definitions[83]	in	JSON	format.	It	also	provides	compatibility	with	Compose
files[84]—with	some	caveats—which	can	let	you	sidestep	the	native	task
definition	format.

Despite	this	compatibility	with	Compose,	there’s	no	getting	around	the	need	to
understand	ECS’s	conceptual	model,	which	includes	the	heady	delights	of	ECS
clusters,	services,	tasks,	Application	Load	Balancers	(ALBs)	and	Elastic	Load
Balancers	(ELBs),	VPCs,	and	more.

Google	Kubernetes	Engine
Google	Kubernetes	Engine	(GKE)[85]	offers	a	true	CaaS	model	that	lets	you
forget	about	the	underlying	hardware.	It	provides	fully	managed	clusters,
meaning	that	they	look	after	the	running	of	the	infrastructure	and	ensure	clusters
remain	healthy.

Creating	a	basic	cluster	is	done	with	a	short,	clear	command—for	example:

​ ​$ ​​gcloud​​ ​​container​​ ​​clusters​​ ​​create​​ ​​guestbook​​ ​​--num-nodes=3​

This	says,	“Create	new	cluster	called	guestbook	with	three	nodes”	and,	as	you’d
expect,	GKE	handles	the	creation	of	the	infrastructure	for	you.	There	are	lots	of
other	possible	cluster	configurations,[86]	such	as	multiregion	clusters.

GKE	seems	to	be	the	most	mature,	user-friendly	offering	in	the	space—not
entirely	surprising	given	that	Kubernetes	was	created	at	Google.

Amazon	Elastic	Container	Service	for	Kubernetes
A	key	drawback	of	Amazon	Elastic	Container	Service	for	Kubernetes	(Amazon
EKS)[87]	at	the	time	of	writing	is	its	limited	availability—currently	only	in	US
North	Virginia	(us-east-1),	US	Oregon	(us-west-2),	and	US	Ohio	(us-east-2)	regions.
[88]	However,	this	will	no	doubt	improve	over	time.

Unlike	GKE,	the	underlying	AWS	underpinnings	leak	through.	For	example,
since	EKS	needs	the	ability	to	create	Amazon	Elastic	Compute	Cloud	(Amazon

WOW! eBook
www.wowebook.org

EC2)[89]	instances	on	your	behalf,	you	have	to	create	an	AWS	Identify	&	Access
Management	(IAM)[90]	service	role	with	the	correct	permissions	in	order	to	get
started	with	EKS.[91]

This	is	evident	in	the	command	to	create	a	cluster:

​ ​$ ​​aws​​ ​​eks​​ ​​create-cluster​
​ --name prod \

​ --role-arn \

​ arn:aws:iam::012345678910:role/eks-service-role-AWSServiceRoleFor... \

​ --resources-vpc-config \

​ subnetIds=subnet-6782e71e,subnet-e7e761ac,securityGroupIds=sg-6979fe18

where,	once	again,	AWS	concepts	such	as	IAM	roles,	subnet	IDs,	and	security
groups	leak	through.	Admittedly,	much	of	this	will	be	prepopulated	if	you	create
the	cluster	through	the	AWS	Console;	however,	these	settings	can	certainly	be
scary	and	a	bit	off-putting	to	the	uninitiated.	That	said,	we	do	end	up	with	a	high
availability	cluster	spread	across	different	Availability	Zones	(AZs).

EKS	tends	to	work	out	pricier	than	the	other	offerings,	in	part	because	Amazon
charges	a	$0.20/hour	fee	per	cluster	for	the	management	layer.

Azure	Kubernetes	Service
Azure	Kubernetes	Service	(AKS)[92]	is	a	solid	contender,	but	probably	is	a
runner-up	to	GKE	in	terms	of	features	and	ease	of	use.

Here’s	the	command	to	create	a	cluster	for	comparison:

​ az aks create \

​ --name myAKSCluster \

​ --resource-group myResourceGroup \

​ --node-count 1 \

​ --generate-ssh-keys \

​ --service-principal <appId> \

​ --client-secret <password>

The	field	is	changing	fast,	so	AKS	is	definitely	one	to	watch.

Choosing	Between	These	CaaS	Platforms

WOW! eBook
www.wowebook.org

If	you’re	deciding	between	these	platforms,	there	are	plenty	of	good	articles	on
the	relative	merits	of	each.[93]

Amazon	is	the	oddity	in	the	group.	ECS	has	a	proprietary	orchestration	layer,
and	EKS	requires	more	manual	work	to	get	your	clusters	up	and	running.	Both
expose	AWS-specific	internals,	giving	you	more	flexibility	at	the	expense	of	the
ease	of	use	you’d	typically	expect	from	a	managed	service.

The	main	reasons	to	go	with	Amazon’s	platforms	are	if	you:

Are	already	heavily	invested	in	AWS
Want	to	integrate	with	your	existing	AWS	infrastructure
Want	to	integrate	with	other	AWS	services
Have	a	lot	of	AWS	experience	on	the	team
Want	to	build	something	extremely	custom

If	you	have	no	existing	baggage	and	just	want	to	get	up	and	running	fast,	I’d
recommend	Google	Kubernetes	Engine	as	a	starting	point.	It	seems	to	be	the
most	mature	offering,	and	Kubernetes	started	life	at	Google.

WOW! eBook
www.wowebook.org

Serverless	for	Containers
Much	fuss	has	been	made	about	the	name	serverless	computing,[94][95][96]	but
putting	that	aside,	there’s	a	growing	demand	for	ever-more-abstracted	services.

Popularized	by	services	like	Amazon’s	AWS	Lambda,[97]	Serverless	Computing
has	become	synonymous	with	Functions	as	a	Service	(FAAS).	You	supply	some
code	to	be	run	when	a	particular	event	occurs,	and	the	platform	takes	care	of
how	and	where	it’s	run.	Although	the	code	you	supply	is	typically	turned	into
containers	behind	the	scenes,	that’s	an	implementation	detail	you	don’t	need	to
care	about.	The	benefit	to	this	computing	model	is	that	you	completely	remove
the	need	to	provision	infrastructure,	and	scaling	happens	automatically	based	on
load.

However,	a	major	downside	is	that	you	are	limited	by	the	languages	and	tooling
supported	by	the	FAAS	platform.[98]	If,	instead	of	supplying	raw	code	files,	you
provide	your	own	Docker	images,	you	get	all	the	benefits	of	FAAS,	but	with
fewer	runtime	limitations.	Rather	than	being	constrained	by	the	platform,	you
have	full	control	over	what	languages	and	tooling	your	code	uses.

Sound	too	good	to	be	true?	Well,	the	future	is	already	here—at	least,	a	limited
version	of	it.	There	are	only	two	offerings	so	far,	but	no	doubt	more	will
gradually	appear,	and	the	services	will	continue	to	mature.

AWS	Fargate
AWS	Fargate[99]	is	a	new	platform	from	Amazon	that	puts	a	serverless	spin	on
their	ECS	and	EKS	services.	Both	ECS	and	EKS,	by	default,	require	some
manual	steps	to	create	the	EC2	instances	that	will	run	the	containers.	Fargate	is	a
drop-in	replacement	compute	engine	for	ECS	and	EKS	that	removes	the	need	to
think	about	and	manage	server	instances.

How	does	this	work	in	practice?	You	specify	your	containers,	as	well	as	config
regarding	how	the	containers	should	be	managed	at	runtime.	Based	on	the	CPU
and	memory	parameters	you	set,	Fargate	will	automatically	scale	your	containers

WOW! eBook
www.wowebook.org

up	or	down	as	necessary,	based	on	load;	you	don’t	need	to	care	where	or	how
they’re	run.

Fargate	containers	can	be	used	to	run	one-off,	short-lived	tasks—much	like	AWS
Lambdas.	In	addition,	Fargate	is	currently	the	only	Serverless	offering	that
supports	traditional-style	applications	and	microservices.

Although	Fargate	removes	a	lot	of	the	orchestration	burden	of	running	containers
in	production,	as	with	AWS	EKS,	you	still	have	to	have	some	interaction	with
underlying	AWS	services	to	configure	your	networking	and	specify	security
policies.

Pricing	for	Fargate	is	based	on	virtual	CPU	and	memory	usage,	and	is	currently
anything	from	two	to	six	times	more	expensive	than	running	an	EC2	instance.
The	gap	is	even	wider	when	you	consider	that	an	EC2	instance	is	capable	of
running	multiple	containers.	So,	although	an	interesting	service	to	watch,	the
price	needs	to	come	down	before	it	will	gain	real	momentum.

Microsoft	Azure	Container	Instances
Microsoft	Azure	Container	Instances	(ACI)[100]	is	a	much	more	limited	form	of
serverless	for	containers.	It	can’t	be	used	to	run	a	standard	containerized
application	like	our	Rails	app	we’ve	been	building	throughout	the	book.	Instead,
it’s	intended	for	applications	that	have	built	from	the	ground	up	to	be	Serverless;
it’s	suitable	for	discrete	tasks	(such	as	data	processing)	or	event-driven
applications.

As	with	Fargate,	pricing	is	based	on	virtual	CPU	and	memory	usage,	and	the	two
services	cost	roughly	the	same.

WOW! eBook
www.wowebook.org

How	to	Decide	What’s	Right	for	Me?
When	it	comes	to	choosing	your	production	environment,	there’s	no	right
answer;	one	size	does	not	fit	all.	Rather	than	give	you	specific	advice	or
recommendations,	instead	it’s	important	to	highlight	some	key	criteria	that	you’ll
need	to	think	about	when	deciding.

Here	are	the	trade-offs	to	think	about:

Upfront	cost	vs.	long-term	cost.	The	unit	cost	for	services	generally	increases
with	the	amount	they	manage	for	you;	IaaS	is	typically	cheaper	than	CaaS,
which	is	cheaper	than	Serverless.	However,	the	less	managed,	the	more	upfront
engineering	effort	is	required.	It’s	often	larger,	more	established	companies	that
go	down	the	IaaS	route;	they	have	the	deep	pockets	required,	and	more	certainty
that	they’ll	be	around	long	enough	to	benefit	from	the	multiyear	cost	savings.
For	smaller	companies,	and	especially	startups,	these	upfront	costs	are	hard	to
justify	unless	they	give	a	key	competitive	advantage.

Focus	and	developer	bandwidth.	Similar	to	cost,	can	you	afford	the	time	and	loss
of	focus	spent	building	your	platform	on	top	of	IaaS,	rather	than	just	getting
something	working	faster	with	a	managed	service?	The	general	wisdom	is	that
you	should	focus	on	what	makes	you	and	your	product	unique—in	most	cases,
this	won’t	be	your	production	environment.

Support	and	maintenance	costs.	If	you	use	a	CaaS	platform,	the	service	is
managed,	maintained,	and	improved	by	someone	else.	If	things	go	wrong,	it’s
most	likely	someone	else’s	problem	to	fix.	If	you	roll	your	own	solution,	be
prepared	for	more	support	and	maintenance	to	fall	on	your	shoulders.

Control	and	flexibility.	With	a	CaaS,	you	have	limited	control	to	change	the
fundamental	features	or	capability	of	the	system,	whereas	IaaS	gives	you
ultimate	control	to	build	systems	as	you	like.	Consider	how	much	control	you
need	and	along	what	dimensions.	Some	industries	have	very	specific	security	or
audit	requirements	that	might	necessitate	a	bespoke	solution.	However,

WOW! eBook
www.wowebook.org

Kubernetes	gives	you	lots	of	options	for	architecting	your	software,	so	it	may
provide	as	much	flexibility	as	you	need.

Regional	availability.	If	you’re	based	in	Sydney	and	delivering	software	for
users	in	Sao	Paulo,	to	avoid	high	latency,	your	app	should	probably	be	hosted
close	to	the	end	users.	Some	of	the	managed	CaaS	services	have	limited	regional
availability,	which	may	rule	out	certain	offerings.

Level	of	expertise	required	vs.	ability	of	team.	Building	your	own	secure	cloud
platform,	even	if	leveraging	some	good	defaults	that	may	be	provided	in	an	IaaS,
will	require	more	specialist	skills	and	experience	from	your	team.	If	your	team
doesn’t	have	these,	steer	clear.

Vendor/platform	lock-in.	Using	a	particular	tool	or	service	both	ties	you	to	it	and
frees	you	from	something	else.	Adopting	Kubernetes	will	necessarily	mean
thinking	in	its	conceptual	model,	defining	config	files	a	certain	way,	and	more
generally,	building	your	team’s	workflows	around	it:	all	forms	of	lock-in.	On	the
other	hand,	managing	apps	with	Kubernetes	on	one	host	will	be	very	similar,	if
not	the	same,	as	on	any	other,	so	it	reduces	hosting	platform	lock-in.	Similarly,
building	on	top	of	IaaS	gives	certain	freedoms,	but	couples	you	to	the	hosting
provider.	Choose	your	poison	wisely.

WOW! eBook
www.wowebook.org

[65]

Quick	Recap
In	this	chapter,	we	took	a	step	back	to	fill	in	some	context	around	choosing	your
production	platform,	and	we	discussed	what’s	involved	with	deploying	and
operating	applications.	Although	much	of	this	may	have	already	been	familiar	to
you,	we	took	a	very	Docker-centric	slant	to	understand	how	the	production
landscape	differs	once	you’ve	adopted	Docker.

In	particular:

1.	 We	reviewed	what	is	meant	by	“Ops”	and	explored	how	using	Docker
answers	some	common	pieces	of	the	puzzle.

2.	 We	learned	about	orchestration	tools,	which	provide	us	with	a	platform	for
creating	and	managing	compute	clusters	capable	of	delivering	and	running
our	containerized	apps	in	a	resilient	way.

3.	 We	discussed	Swarm	and	Kubernetes,	giving	a	brief	outline	of	their	relative
strengths	and	weaknesses.

4.	 We	considered	the	decision	of	whether	to	build	on	top	of	an	IaaS	platform
or	go	the	more	managed	route	with	a	CaaS	provider.

5.	 We	looked	at	the	tools	you	might	use	to	provision	IaaS	infrastructure.

6.	 We	had	a	quick	tour	of	some	popular	CaaS	platforms.

7.	 We	considered	the	trade-offs	involved	in	deciding	which	platform	and	tools
are	right	for	you.

Armed	with	these	insights,	let’s	dive	back	into	the	practical	details	again,	and
turn	our	attention	to	prepping	our	app	for	production.	Full	steam	ahead!

Footnotes

https://www.cncf.io

WOW! eBook
www.wowebook.org

https://www.cncf.io

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

https://github.com/kubernetes/website/issues/6525

https://docs.docker.com/engine/swarm/key-concepts/

https://kubernetes.io/docs/concepts/

https://www.docker.com/products/orchestration

https://aws.amazon.com

https://azure.microsoft.com

https://cloud.google.com/compute/

https://www.digitalocean.com

https://docs.docker.com/machine/overview/

https://en.wikipedia.org/wiki/Adapter_pattern

https://docs.docker.com/machine/drivers/

https://www.terraform.io/intro/vs/chef-puppet.html

https://blog.gruntwork.io/why-we-use-terraform-and-not-chef-puppet-ansible-saltstack-or-
cloudformation-7989dad2865c

https://aws.amazon.com/ecs/

https://aws.amazon.com/console/

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_CLI.html

https://aws.amazon.com/cloudformation/

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definitions.html

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cmd-ecs-cli-compose.html

https://cloud.google.com/kubernetes-engine/

https://cloud.google.com/kubernetes-engine/docs/how-to/creating-a-cluster

https://aws.amazon.com/eks/

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

https://aws.amazon.com/ec2/

https://aws.amazon.com/iam/

https://docs.aws.amazon.com/eks/latest/userguide/getting-started.html

WOW! eBook
www.wowebook.org

https://github.com/kubernetes/website/issues/6525
https://docs.docker.com/engine/swarm/key-concepts/
https://kubernetes.io/docs/concepts/
https://www.docker.com/products/orchestration
https://aws.amazon.com
https://azure.microsoft.com
https://cloud.google.com/compute/
https://www.digitalocean.com
https://docs.docker.com/machine/overview/
https://en.wikipedia.org/wiki/Adapter_pattern
https://docs.docker.com/machine/drivers/
https://www.terraform.io/intro/vs/chef-puppet.html
https://blog.gruntwork.io/why-we-use-terraform-and-not-chef-puppet-ansible-saltstack-or-cloudformation-7989dad2865c
https://aws.amazon.com/ecs/
https://aws.amazon.com/console/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_CLI.html
https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definitions.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cmd-ecs-cli-compose.html
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/docs/how-to/creating-a-cluster
https://aws.amazon.com/eks/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://aws.amazon.com/ec2/
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/eks/latest/userguide/getting-started.html

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

https://azure.microsoft.com/en-gb/services/kubernetes-service/

https://blog.hasura.io/gke-vs-aks-vs-eks-411f080640dc

https://twitter.com/thepracticaldev/status/857075416217010178

https://news.ycombinator.com/item?id=14742273

https://hackernoon.com/what-the-hell-does-serverless-mean-219a5f6e3c6a

https://aws.amazon.com/lambda

https://docs.aws.amazon.com/lambda/latest/dg/current-supported-versions.html

https://aws.amazon.com/fargate/

https://azure.microsoft.com/en-gb/services/container-instances/

Copyright	©	2019,	The	Pragmatic	Bookshelf.

WOW! eBook
www.wowebook.org

https://azure.microsoft.com/en-gb/services/kubernetes-service/
https://blog.hasura.io/gke-vs-aks-vs-eks-411f080640dc
https://twitter.com/thepracticaldev/status/857075416217010178
https://news.ycombinator.com/item?id=14742273
https://hackernoon.com/what-the-hell-does-serverless-mean-219a5f6e3c6a
https://aws.amazon.com/lambda
https://docs.aws.amazon.com/lambda/latest/dg/current-supported-versions.html
https://aws.amazon.com/fargate/
https://azure.microsoft.com/en-gb/services/container-instances/

Chapter	12

Preparing	for	Production
	

Ever	heard	the	culinary	term	mise	en	place?	Translated	literally,	it	means
everything	in	its	place;	it	refers	to	the	prep	work	done	before	actually	starting	to
cook.	I’ve	watched	enough	Ramsay’s	Kitchen	Nightmares	to	know	that	no	self-
respecting	chef	begins	without	it.	Similarly,	eager	as	we	are	to	see	our	app
running	in	production,	there	are	a	few	preliminaries	to	take	care	of	first.

In	this	chapter,	we’ll	lay	the	groundwork	for	deploying	to	production,	starting
with	how	to	configure	different	environments	in	a	Docker-centric	world.	We’ll
also	precompile	our	assets	and	bake	them	into	our	image,	ready	to	be	served	up
in	production.

Finally,	we’ll	learn	how	to	share	our	custom	images	to	make	them	available	for
use	beyond	our	local	machine.

Chopping	board	and	peeler	at	the	ready?	Let’s	get	to	it.

WOW! eBook
www.wowebook.org

Configuring	a	Production	Environment
Rails	pioneered	out-of-the-box	support	for	multiple	environments.	How	does	this
fit	in	with	our	Docker	setup?	We	know	that	our	production	config	will	differ
from	that	in	development,	but	what	settings	do	we	need	and	how	do	we	organize
things?

Previously,	we	created	the	following	file	structure	for	our	config:

​ $ tree .env

​ .env

​ └── development

​ ├── database

​ └── web

​
​ 1 directory, 2 files

Let’s	create	a	copy	of	our	development	config	as	a	starting	point	for	our
production	config:

​ ​$ ​​cp​​ ​​-r​​ ​​.env/development​​ ​​.env/production​

This	should	leave	us	with	the	following	file	structure:

​ $ tree .env

​ .env

​ ├── development

​ │ ├── database

​ │ └── web

​ └── production

​ ├── database

​ └── web

​
​ 2 directories, 4 files

Now	let’s	edit	the	.env/production/web	file	to	look	like	this:

​ DATABASE_HOST=database

» RAILS_ENV=production

» SECRET_KEY_BASE=

» RAILS_LOG_TO_STDOUT=true

WOW! eBook
www.wowebook.org

» RAILS_SERVE_STATIC_FILES=true

We	have	to	remember	to	set	RAILS_ENV	to	production	so	that	the	app	starts	in
production	mode.

Rails	uses	SECRET_KEY_BASE	as	a	security	mechanism	to	sign	the	cookies	it	sets,
allowing	it	to	verify	that	cookies	it	receives	can	be	trusted.	We’ve	intentionally
left	it	blank	because	we	need	to	generate	a	new	one	for	our	production	config.
Let’s	do	that	now	using	Rails’	handy	Rake	task:

​ ​$ ​​docker-compose​​ ​​exec​​ ​​web​​ ​​bin/rails​​ ​​secret​
​ 9d6d05e1990f81bbba154b1fc54c23c6ffaafb081a07e5ac3731160a6126e711c2f1d7623b6d

​ 5140c03686462cda966344fe6f1b35fa44c14eaba50769692c74

Paste	your	generated	secret	key	into	your	.env/production/web	file	as	the	value	for
the	SECRET_KEY_BASE	environment	variable.

By	default,	Rails	logs	to	a	file	on	disk	in	logs/<environment>.log.	In	a	Docker
environment,	we	don’t	want	the	logs	to	be	written	to	the	filesystem	inside	the
container	as	they’re	hard	to	get	to	from	there.	Instead,	we	want	to	configure	the
app	to	output	its	logs	to	stdout,	which	allows	us	to	view	the	log	using	Docker’s
log	commands.	We	can	do	this	by	setting	the	RAILS_LOG_TO_STDOUT	environment
variable	(added	in	Rails	5)	to	true.

Also,	we	are	going	to	have	Rails	serve	our	static	assets,	so	we	need	to	set
RAILS_SERVE_STATIC_FILES	to	true	to	make	them	available	in	production.

Now	let’s	edit	your	.env/production/database	file	to	be	as	follows:

​ POSTGRES_USER=postgres

» POSTGRES_PASSWORD=my-production-password

» POSTGRES_DB=myapp_production

We’ve	changed	the	Postgres	password	so	that	it’s	different	from	development.
We’ve	also	updated	the	database	name	to	be	myapp_production	instead	of
myapp_development.

Although	there’s	more	that	could	be	tweaked,	we’ve	completed	the	essential

WOW! eBook
www.wowebook.org

configuration	for	production.

WOW! eBook
www.wowebook.org

A	Production	Image:	Precompiling	Assets
In	development,	by	default,	Rails	compiles	our	assets	for	each	request	so	that	our
changes	are	picked	up	automatically.	However,	typically	in	production,	we
precompile	our	assets	once	and	then	serve	them	up	as	static	files	for	faster	load
times.	Rails	provides	the	following	Rake	task	for	this:

​ bin/rails assets:precompile

Up	until	now,	the	changes	we’ve	needed	to	make	for	our	app	to	run	in
production	have	just	been	config	changes,	or	tweaks	that	would	be	fine	in
development	too.	Here,	however,	the	production	version	of	our	app	needs
additional	files:	the	compiled	assets.

How	do	we	achieve	this	with	our	Docker	setup?

The	solution	is	to	create	a	second,	production-flavored	image	that	precompiles
the	assets	at	build	time,	so	the	compiled	assets	are	baked	into	the	image	itself.
Generally,	it’s	a	good	idea	to	keep	your	development	environment	as	similar	to
production	as	possible.	However,	some	changes,	like	this	need	to	precompile
assets	for	production,	require	that	our	development	and	production	environments
diverge	slightly.

Let’s	create	a	Dockerfile	for	our	production	image.	Start	by	taking	a	copy:

​ ​$ ​​cp​​ ​​Dockerfile​​ ​​Dockerfile.prod​

Next,	let’s	update	our	Dockerfile.prod	to	precompile	assets	by	adding	the
following	line	just	before	the	ENTRYPOINT	command:

» ​RUN ​bin/rails assets:precompile
​
​ ​ENTRYPOINT​​ ["./docker-entrypoint.sh"]​
​
​ ​CMD​​ ["bin/rails", "s", "-b", "0.0.0.0"]​

We	now	have	a	Dockerfile	to	create	a	production	version	of	our	image.	There	are

WOW! eBook
www.wowebook.org

further	enhancements	that	we	might	want	to	make,	but	it’s	a	good	start.	It	allows
us	to	deploy	a	production	version	of	our	app	and	see	it	running.	Note	that	we
haven’t	built	the	image	yet:	we’ll	get	to	that	shortly.

WOW! eBook
www.wowebook.org

Sharing	Images
Up	until	now,	during	development,	we’ve	been	building	our	custom	images	on
our	local	machine.	Initially,	we	did	this	with	this	command:

​ ​$ ​​docker​​ ​​build​​ ​​[OPTIONS]​​ ​​.​

We	quickly	progressed	to	using	Compose	to	build	images	for	us—for	example:

​ ​$ ​​docker-compose​​ ​​build​​ ​​web​

However,	we	have	a	problem.	We’re	going	to	need	to	run	those	same	images
we’ve	been	building	locally	on	different	machines	as	our	app	progresses	through
our	build	pipeline	environments	(such	as	testing,	integration,	staging,	and
production).	How	will	we	get	our	images	onto	the	different	machines?

One	possibility	is	to	rebuild	the	image	on	each	machine	that	needs	it,	but	this	is
wasteful	and	time-consuming.	Images	are	more	than	just	a	convenient	way	to
package	up	our	code	to	be	run	in	isolated	containers.	Since	they	contain
everything	needed	to	run	the	software,	they	are	the	perfect	unit	for	sharing.

Docker	has	a	built-in	mechanism	for	distributing	images.	In	fact,	we’ve	already
seen	it	in	action.	Think	back,	for	example,	to	one	of	our	first	Docker	commands:

​ ​$ ​​docker​​ ​​run​​ ​​ruby:2.6​​ ​​ruby​​ ​​-e​​ ​​"puts :hello"​

When	we	tried	to	run	a	container	based	on	the	ruby:2.6	image,	Docker	detected
that	we	didn’t	have	that	image	locally,	and	proceeded	to	download	it.

​ Unable to find image 'ruby:2.6' locally

​ 2.6: Pulling from library/ruby

​ cd8eada9c7bb: Pull complete

​ c2677faec825: Pull complete

​ fcce419a96b1: Pull complete

​ 045b51e26e75: Pull complete

​ 3b969ad6f147: Pull complete

​ f2db762ad32e: Pull complete

​ 708e57760f1b: Pull complete

​ 06478b05a41b: Pull complete

WOW! eBook
www.wowebook.org

​ Digest: sha256:ad724f6982b4a7c2d2a8a4ecb67267a1961a518029244ed943e2d448d6fb7

​ 994

​ Status: Downloaded newer image for ruby:2.6

​ hello

We	want	this	capability	for	our	own	images.

If	you	think	about	it,	this	mechanism	presupposes	that	images	are	hosted
somewhere:	somewhere	that	Docker	knows	to	find	them.

Enter	Docker	Registries.

Much	like	you’d	share	a	Git	repo	by	pushing	it	to	a	centralized	hosting	service
like	GitHub,	we	can	share	our	Docker	images	by	pushing	them	to	a	centralized
Docker	image-hosting	service—or	in	Docker	parlance,	Docker	Registries.

Docker	provides	its	own	hosted	Registry	called	Docker	Hub,[101]	which	with	a
free	account,	gives	you	unlimited	public	repos	and	one	private	repo.	For	more
private	repos,	you	can	sign	up	for	one	of	its	paid	plans.[102]	However,	as	we’ll	see
shortly,,	there	are	other	options,	including	hosting	your	own	Docker	Registry.[103]

For	simplicity,	we’re	going	to	use	Docker	Hub	as	our	Registry	throughout	the
rest	of	this	book,	so	to	follow	along,	you’ll	need	a	Docker	Hub	account.	If	you
don’t	already	have	one,	let’s	create	it	now.

Visit	https://hub.docker.com	in	a	browser,	and	sign	up	for	an	account.	You’ll
need	to	choose	a	username—known	as	a	Docker	ID.	I	recommend	using	the
same	name	as	your	GitHub	account	to	keep	things	simple,	although	this	is	not
necessary.	Join	me	back	here	when	you’re	done.

WOW! eBook
www.wowebook.org

https://hub.docker.com

Referring	to	Images	Unambiguously
Previously,	when	we	named	our	image,	we	simply	called	it	railsapp.	Similarly,
Compose	automatically	named	our	web	service	image	myapp_web.	Although	these
names	worked	fine	when	working	on	a	single	Docker	Machine,	they	aren’t
suitable	for	sharing	our	image	on	a	Docker	Registry.

Why?	Because	what	if	different	people,	teams,	or	organizations	all	want	to	have
an	image	called	railsapp	or	myapp_web?	How	would	we	know	which	image	to
refer	to?	This	is	a	solved	problem:	by	referring	to	both	the	image	name	and	a
user	account,	we	disambiguate	which	image	we’re	referring	to	and	allow	people
to	call	their	images	whatever	they	like	without	fear	of	name	clashes.

We	refer,	unambiguously,	to	a	particular	image	(more	precisely,	a	specific
version	of	an	image)	by	using	the	following	naming	convention:

​ [<registry hostname>[:port]/]<username>/<image name>[:<tag>]

The	Registry	hostname	is	optional;	leaving	it	out	indicates	you’re	referring	to	the
default	Registry:	Docker	Hub.	If	a	Registry	hostname	is	provided	without	an
explicit	port,	the	standard	SSL	port	443	is	assumed.[104]

WOW! eBook
www.wowebook.org

As	we’ll	see	in	a	moment,	an	account	is	needed	to	store	images	on	a	Registry,
and	an	account	can	house	any	number	of	distinctly	named	images.	The
<username>/<image name>	combination	refers	to	the	particular	image	in	a	given
user	account.	In	fact,	everything	up	until	the	optional	tag	is	known	as	the
repository	name:

​ [<registry hostname>[:port]/]<username>/<image name>

A	repository	can	store	multiple	tagged	versions	of	the	image;	we	refer	to	a
particular	version	of	the	image	either	by	specifying	an	explicit	tag	or,	as	we	saw
previously,	by	letting	the	default	tag—latest—be	used.

For	example,	since	my	Docker	Hub	username	is	robisenberg,	to	share	the	latest

version	of	an	image	called	myapp_web	on	Docker	Hub,	I’d	use	the	repository
name	robisenberg/myapp_web.

Repository	Names	in	Examples
In	the	commands	that	follow,	you	will	need	to	replace	my	account
name	(robisenberg)	with	whatever	you	called	yours.

You	may	be	wondering	how	we	were	able	to	download	images	like	ruby:2.6,	redis,
and	postgres	that	aren’t	fully	qualified	image	names.	Good	question.	Docker
elevates	certain	popular	images	by	calling	them	Docker	Official	Images.	These
are	placed	in	a	special,	top-level	namespace	that	lets	you	refer	to	them	simply	by
their	image	name.	However,	for	our	own	images,	we	will	always	need	to	use
fully	qualified	image	names	that	include	our	repository	name.

Pushing	Our	Image	to	a	Registry
Now	that	we	have	a	user	account	and	understand	fully	qualified	image	names,
we’re	ready	to	share	our	image	by	pushing	it	to	a	Docker	Registry.	As	we	said
earlier,	we’re	going	to	use	Docker	Hub	since	it’s	free	(within	certain	limits),
requires	no	setup,	and	is	the	default.

Right	now,	we’re	more	concerned	with	sharing	the	production	(rather	than

WOW! eBook
www.wowebook.org

development)	version	of	our	image,	although	sharing	the	development	image
works	in	exactly	the	same	way.	Bear	in	mind	throughout	this	section	that	on	a
real	project,	we	wouldn’t	build	and	push	images	ourselves	from	our	local
machine:	this	would	happen	automatically	as	part	of	our	CI	pipeline.	However,
there’s	no	magic	to	it,	so	learning	how	to	do	this	manually	will	put	you	in	good
stead	for	setting	up	your	CI.

First,	we	need	to	tag	our	image	with	the	correct	repository	name	we	want	to	push
it	to.	As	we	saw	earlier,	if	our	image	is	already	built,	we	could	tag	it	with	the
command:

​ ​$ ​​docker​​ ​​tag​​ ​​<image​​ ​​ref>​​ ​​robisenberg/<image_name>​

where	<image ref>	is	either	an	image	ID	or	a	name	we’ve	already	given	it.
However,	since	we	haven’t	built	our	production	image	yet,	we	can	build	and	tag
it	in	one	go.

Let’s	do	this	now:

​ ​$ ​​docker​​ ​​build​​ ​​-f​​ ​​Dockerfile.prod​​ ​​-t​​ ​​robisenberg/myapp_web:prod​​ ​​.​
​ ...

​ Successfully built 6828234d25af

​ Successfully tagged robisenberg/myapp_web:prod

The	-f	option	lets	us	specify	the	name	of	a	different	filename	for	the	Dockerfile	to
build	the	image	from:	in	this	case,	our	production	image	(Dockerfile.prod).	As
we’ve	seen	previously,	the	-t	option	tags	the	image	with
robisenberg/myapp_web:prod;	this	indicates	the	repository	robisenberg/myapp_web	on
Docker	Hub	and	a	specific	tag	of	prod.

OK,	now	that	we	have	an	image	correctly	tagged	with	the	correct	repository
name,	the	next	step	is	to	push	our	image	to	our	Docker	Hub	repository.	However,
before	we	can	do	this,	we	must	first	log	in	to	our	Docker	Hub	account	from	the
CLI.	Run	the	following	command,	and	enter	your	(Docker	Hub)	username	and
password	when	prompted:

​ ​$ ​​docker​​ ​​login​

WOW! eBook
www.wowebook.org

​ Login with your Docker ID to push and pull images from Docker Hub. If you

​ don't have a Docker ID, head over to https://hub.docker.com to create one.

​ Username: robisenberg

​ Password:

​ Login Succeeded

Having	logged	in	successfully,	we	can	now	push	our	image	to	our	Docker	Hub
account	by	issuing:

​ ​$ ​​docker​​ ​​push​​ ​​robisenberg/myapp_web:prod​
​ The push refers to repository [docker.io/robisenberg/myapp_web]

​ e596ed08a285: Pushed

​ ba1dbb2e536f: Pushed

​ 68de2d8742b3: Pushed

​ 58c9140d449b: Pushed

​ 3261213dc16c: Pushed

​ 7dc2478de08a: Pushed

​ 5f96433196b2: Pushed

​ a102504f2bb1: Pushed

​ 713891529def: Pushed

​ 723beaa0cfe6: Layer already exists

​ c273f4e91860: Layer already exists

​ a334a91e3fd1: Layer already exists

​ 1a36262221c3: Layer already exists

​ d2217ead3a1c: Layer already exists

​ b53b57a50746: Layer already exists

​ d2518892581f: Layer already exists

​ c581f4ede92d: Layer already exists

​ prod: digest: sha256:83148118939d4ae1b992e70ee08d0c155325e5c4dfed9f270dd8473

​ ec3a56e0a size: 3897

Let’s	verify	our	image	has	been	pushed	to	Docker	Hub.	Visit
https://hub.docker.com	and	log	in	to	your	account.	You	should	see	it	listed	there
as	shown	in	the	figure.

WOW! eBook
www.wowebook.org

https://hub.docker.com

With	our	image	now	hosted	on	Docker	Hub,	we	could	run	this	image	on	any
Internet-connected	machine	with	Docker	installed,	and	just	like	with	our	ruby:2.6

hello	example,	our	image	would	be	downloaded	automatically.

Before	we	conclude	this	chapter,	consider	one	final	point.	You	may	not	want	to
share	your	Docker	images	with	the	world.	Just	like	you	can	have	private	Git
repos,	Docker	Hub	lets	you	have	private	image	repos.	Although,	by	default,	the
image	we	pushed	was	public,	there’s	a	setting	to	make	this	private	(we	could
have	created	a	private	repo	first	through	the	interface	too).

In	fact,	there	are	lots	of	options	when	it	comes	to	sharing	your	images,
depending	on	your	requirements.	Docker	Hub	is	only	one	of	several	hosted
registries	available.	Other	options	include:

Amazon	Elastic	Container	Registry[105]
Google	Cloud	Container	Registry[106]
Microsoft	Azure	Container	Registry[107]
Quay[108]

For	security	(or	other)	reasons,	some	organizations	may	need	to	host	their	own

WOW! eBook
www.wowebook.org

internal	Docker	Registries.	Docker	Registry	is	an	open	source	project[109]	that
you	can	run	on	your	own	infrastructure.[110]	Another	good	option	is	Harbor,[111]	a
more	fully	featured	Docker	Registry	under	the	care	of	the	CNCF.[112]

WOW! eBook
www.wowebook.org

[101]

[102]

[103]

[104]

Quick	Recap
Ahh,	that’s	better;	we	can	hang	up	our	apron.	Our	preparation—or	mise	en	place
—is	complete.

Let’s	review	what	we	covered	in	this	chapter:

1.	 We	configured	our	app	to	run	in	production,	with	the	necessary
environment	variables	set.

2.	 We	created	an	enhanced	production	image	that	precompiled	our	assets.

3.	 We	discussed	the	need	for	making	our	images	available	on	different
machines,	and	you	learned	how	Docker	Registries	facilitate	this.

4.	 We	saw	the	naming	convention	we	need	to	refer	to	a	specific	version	of	an
image	unambiguously:

​ [<registry hostname>[:port]/]<username>/<image name>[:<tag>]

5.	 You	created	a	Docker	Hub	account	(if	you	didn’t	already	have	one).

6.	 We	built	our	production	image	and	pushed	it	to	a	public	Docker	Registry
(Docker	Hub),	making	it	available	for	download	on	our	production
machines.

With	our	production	config	in	place	and	image	pushed	to	Docker	Hub,	we’re
ready	to	start	deploying	our	app	to	production-like	environments.

Footnotes

https://hub.docker.com

https://hub.docker.com/billing-plans/

https://docs.docker.com/registry/deploying/

https://docs.docker.com/registry/deploying/#run-an-externally-accessible-registry

WOW! eBook
www.wowebook.org

https://hub.docker.com
https://hub.docker.com/billing-plans/
https://docs.docker.com/registry/deploying/
https://docs.docker.com/registry/deploying/#run-an-externally-accessible-registry

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

https://aws.amazon.com/ecr/

https://cloud.google.com/container-registry/

https://azure.microsoft.com/en-gb/services/container-registry/

https://quay.io

https://github.com/docker/distribution

https://docs.docker.com/registry/deploying/

https://goharbor.io/

https://www.cncf.io

Copyright	©	2019,	The	Pragmatic	Bookshelf.

WOW! eBook
www.wowebook.org

https://aws.amazon.com/ecr/
https://cloud.google.com/container-registry/
https://azure.microsoft.com/en-gb/services/container-registry/
https://quay.io
https://github.com/docker/distribution
https://docs.docker.com/registry/deploying/
https://goharbor.io/
https://www.cncf.io

Chapter	13

A	Production-Like	Playground
	

We’re	so	close.	In	the	previous	chapter,	we	configured	our	application	so	it’s
ready	to	run	in	production	environments,	and	we	pushed	our	image	to	Docker
Hub.	However,	before	we	start	setting	up	cloud-based	infrastructure	and
deploying	it	there,	we’re	first	going	to	get	our	sea	legs,	so	to	speak,	by	having	a
practice	run	locally.

In	this	chapter,	we’ll	make	use	of	virtualization	technologies—specifically,
VirtualBox—to	create	virtual	infrastructure	on	our	local	machine	that	can
simulate	a	production	environment.	We’ll	create	a	single	node	cluster,	capable	of
running	Docker	containers.	Not	only	will	we	deploy	our	application,	we’ll	also
see	how	to	scale	up	the	app	and	run	multiple	copies	of	it	on	this	single	instance.

In	the	process,	we’ll	learn	about	the	additional	tools	Docker	provides	for
creating	infrastructure,	and	deploying	and	managing	production	apps.	Although
we’re	working	locally,	the	skills	will	translate	directly	to	doing	these	same	things
on	cloud-based	infrastructure.

WOW! eBook
www.wowebook.org

Creating	Machines
If	we’re	going	to	deploy	our	application	in	production,	we	need	to	have
somewhere	to	deploy	it	to.	That	means,	infrastructure:	machine	instances
capable	of	running	code.

As	we	saw	in	Chapter	11,	​The	Production	Landscape​,	there	are	a	number	of
tools	available	for	creating	and	configuring	our	infrastructure.	However,	since
this	is	a	book	about	Docker,	we’re	going	to	stick	with	Docker’s	own	tool—
Docker	Machine—for	handling	this.

Docker	Machine	is	a	command-line	tool	that	can	create	Docker-ready	instances
for	us.	It	uses	the	adapter	pattern,	providing	a	number	of	different	drivers[113]

capable	of	creating	instances	on	different	platforms.	This	means	we	can	use
similar	commands	to	create	instances,	whether	they’re	virtual	instances	running
on	our	local	machine	or	cloud-based	infrastructure.

In	this	chapter,	we’re	going	to	use	VirtualBox	to	run	our	local	instances.	If	you
don’t	already	have	it	and	want	to	follow	along,	you’ll	have	to	install	it.
VirtualBox’s	documentation[114]	is	pretty	comprehensive.	Go	to	the	installation
section[115]	and	follow	the	instructions	for	whichever	platform	you’re	running.
Meet	me	back	here	when	you’re	done.

Windows	10:	Hyper-V	or	VirtualBox?
If	you	installed	Docker	via	Docker	for	Windows—which	relies	on
Microsoft	Hyper-V—	you	will	need	to	use	Hyper-V	instead	of
VirtualBox	for	local	virtualization.	Make	sure	you	have	Hyper-V	set
up	correctly	to	work	with	Docker	Machine	as	per	Docker’s
example.[116]

Unlike	VirtualBox	users,	you	will	need	to	use	a	command	like	this
to	create	a	machine	with	Hyper-V:

​ ​$ ​​docker-machine​​ ​​create​​ ​​\​
​ ​ ​​--driver​​ ​​hyperv​​ ​​\​

WOW! eBook
www.wowebook.org

​ ​ ​​--hyperv-virtual-switch​​ ​​"myswitch"​​ ​​\​
​ ​ ​​local-vm-1​

All	set?	Great.

Now	that	you	have	VirtualBox	running,	we	can	create	a	new	virtual	machine	for
running	our	app:

​ ​$ ​​docker-machine​​ ​​create​​ ​​--driver​​ ​​virtualbox​​ ​​local-vm-1​
​ Running pre-create checks...

​ Creating machine...

​ (local-vm-1) Copying /Users/rob/.docker/machine/cache/boot2docker.iso to

​ /Users/rob/.docker/machine/machines/local-vm-1/boot2docker.iso...

​ (local-vm-1) Creating VirtualBox VM...

​ (local-vm-1) Creating SSH key...

​ (local-vm-1) Starting the VM...

​ (local-vm-1) Check network to re-create if needed...

​ (local-vm-1) Waiting for an IP...

​ Waiting for machine to be running, this may take a few minutes...

​ Detecting operating system of created instance...

​ Waiting for SSH to be available...

​ Detecting the provisioner...

​ Provisioning with boot2docker...

​ Copying certs to the local machine directory...

​ Copying certs to the remote machine...

​ Setting Docker configuration on the remote daemon...

​ Checking connection to Docker...

​ Docker is up and running!

​ To see how to connect your Docker Client to the Docker Engine running on

​ this virtual machine, run: docker-machine env local-vm-1

This	command	says,	“Create	a	VirtualBox	instance	named	local-vm-1.”	The	output
shows	the	various	steps	it	goes	through	to	provision	our	instance.	You	can	see,
for	example,	that	it	uses	an	image	called	boot2docker.iso;	boot2docker	is	a
lightweight	Linux	distro	that’s	optimized	for	running	Docker.

We	can	verify	our	instance	has	been	created	by	listing	the	instances	that	docker-

machine	knows	about:

​ ​$ ​​docker-machine​​ ​​ls​

WOW! eBook
www.wowebook.org

​ NAME ACTIVE DRIVER STATE URL SWARM DOCKER ERRORS

​ local-vm-1 - virtualbox Running tcp://19… v18.09.1

What	can	we	do	with	our	new	instance?	Let’s	take	it	for	a	little	spin.

For	a	start,	we	can	SSH	onto	it:

​ ​$ ​​docker-machine​​ ​​ssh​​ ​​local-vm-1​
​ ('>')

​ /) TC (\ Core is distributed with ABSOLUTELY NO WARRANTY.

​ (/-_--_-\) www.tinycorelinux.net

​
​ ​docker@local-vm-1:~$​

We	can	see	that	Docker	is	installed:

​ ​docker@local-vm-1:~$ ​​docker​​ ​​-v​
​ Docker version 18.09.1, build 4c52b90

Having	SSH’d	onto	the	machine,	we	could	issue	our	Docker	commands	directly
here	to	start	Docker	services	on	this	new	host.

Alternatively,	if	we	exit	this	SSH	session	and	return	to	our	local	machine:

​ ​docker@local-vm-1:~$ ​​exit​

we	can	then	issue	commands	against	this	new	instance	by	specifying	a	command
string	at	the	end	of	the	SSH	command:

​ ​$ ​​docker-machine​​ ​​ssh​​ ​​<instance​​ ​​name>​​ ​​"<command>"​

This	runs	the	command	on	the	instance	by	logging	in	with	SSH.	Typically,	this	is
more	convenient	for	one-off	commands	to	avoid	having	to	SSH	in	and	terminate
a	session	manually.

Let’s	try	this	now:

​ ​$ ​​docker-machine​​ ​​ssh​​ ​​local-vm-1​​ ​​"echo 'hello'"​
​ hello

As	you	can	see,	this	ran	the	command	on	our	local	VirtualBox	instance	and
displayed	the	output.

WOW! eBook
www.wowebook.org

Configuring	the	Docker	CLI
There’s	yet	another	way	to	perform	actions	on	our	docker-machine-managed
instance:	we	can	configure	our	(local)	Docker	client	to	talk	to	our	new	instance’s
Docker	Engine.	This	is	a	huge	benefit	of	Docker’s	client-server	architecture	we
saw	earlier.	We	can	use	the	same	commands	with	the	client	CLI	locally	and	have
it	take	effect	on	any	remote	machine	of	our	choosing;	we	simply	configure	our
CLI	to	point	to	different	machines.

Configuring	the	Docker	CLI	to	point	at	a	different	instance’s	Docker	Engine	is
done	via	environment	variables.	However,	we	don’t	have	to	manage	them
manually;	Docker	Machine	provides	a	shortcut.	If	you	look	back	at	the	output
when	we	created	our	new	instance,	the	final	line	said:

​ To see how to connect your Docker Client to the Docker Engine running on

​ this virtual machine, run: docker-machine env local-vm-1

Let’s	run	this	now:

​ ​$ ​​docker-machine​​ ​​env​​ ​​local-vm-1​
​ export DOCKER_TLS_VERIFY="1"

​ export DOCKER_HOST="tcp://192.168.99.100:2376"

​ export DOCKER_CERT_PATH="/Users/rob/.docker/machine/machines/local-vm-1"

​ export DOCKER_MACHINE_NAME="local-vm-1"

​ ​# Run this command to configure your shell:​
​ ​# eval $(docker-machine env local-vm-1)​

This	command	prints	the	environment	variables	that	must	be	set,	but	doesn’t
actually	set	them.	To	set	them,	we	can	follow	the	instructions	in	the	output	and
run:

​ ​$ ​​eval​​ ​​$(docker-machine​​ ​​env​​ ​​local-vm-1)​

Our	current	terminal	session	is	now	configured	so	our	Docker	commands	will
run	on	our	new,	virtual	instance,	rather	than	our	normal	Docker	installation.

To	verify	this,	we	can	rerun:

​ ​$ ​​docker-machine​​ ​​ls​
​ NAME ACTIVE DRIVER STATE URL SWARM DOCKER ERRORS

WOW! eBook
www.wowebook.org

​ local-vm-1 * virtualbox Running tcp://19… v18.09.1

You	can	see	there’s	a	star	in	the	“Active”	column	for	our	new	instance.	If	we
were	using	our	local	Docker	Engine,	this	would	instead	be	-.

What	does	this	mean	in	practice?	All	our	standard	Docker	commands	will	now
apply	and	run	against	our	new	VirtualBox	instance.	For	example,	if	we	list	our
images,	rather	than	outputting	the	various	images	we	know	we	have	on	our	local
Docker	installation,	we	get	an	empty	list:

​ ​$ ​​docker​​ ​​images​
​ REPOSITORY TAG IMAGE ID CREATED SIZE

That’s	because,	on	our	new	instance,	no	images	have	been	built	or	pulled	down
yet.

This	leads	to	an	important	question:	how	do	we	get	images	on	the	new	instance?
You	may	already	know,	but	let’s	answer	this	by	rerunning	our	very	first	Docker
command	in	the	book,	but	this	time,	let’s	target	our	new	instance:

​ ​$ ​​docker​​ ​​run​​ ​​ruby:2.6​​ ​​ruby​​ ​​-e​​ ​​"puts :hello"​
​ Unable to find image 'ruby:2.6' locally

​ 2.6: Pulling from library/ruby

​ cd8eada9c7bb: Pull complete

​ c2677faec825: Pull complete

​ fcce419a96b1: Pull complete

​ 045b51e26e75: Pull complete

​ 3b969ad6f147: Pull complete

​ f2db762ad32e: Pull complete

​ 708e57760f1b: Pull complete

​ 06478b05a41b: Pull complete

​ Digest: sha256:ad724f6982b4a7c2d2a8a4ecb67267a1961a518029244ed943e2d448d6fb7

​ 994

​ Status: Downloaded newer image for ruby:2.6

​ hello

Running	this	command	causes	Docker	to	pull	down	the	ruby:2.6	image	on	our
new	instance,	so	now	when	we	list	the	images	again,	we	can	see	it	there:

​ ​$ ​​docker​​ ​​images​
​ REPOSITORY TAG IMAGE ID CREATED SIZE

WOW! eBook
www.wowebook.org

​ ruby 2.6 f28a9e1d0449 6 days ago 868MB

Having	configured	our	Docker	CLI	to	point	to	the	new	instance,	we	can	run
Docker	commands	locally	and	have	them	seamlessly	take	effect	on	the	remote
instance.	Images	that	aren’t	available	on	the	remote	instance	will	be	downloaded
as	needed,	just	like	they	were	locally.

WOW! eBook
www.wowebook.org

Introducing	Docker	Swarm
Remember,	we’re	treating	this	virtual	instance	as	if	it	were	a	production	instance
for	our	application.	Our	objective	is	to	start	our	application	on	this	instance	so
that	it	can	be	used	to	service	real	requests.

There	are	number	of	ways	you	could	do	this.	For	example,	you	could	use	low-
level	Docker	commands	to	start	the	various	containers	for	our	application.
However,	having	created	a	nice	abstraction	for	our	application	with	our	docker-

compose.yml	file,	that	doesn’t	sound	appealing.	If	you’re	thinking	that	we	could
use	Compose	directly	to	manage	our	app	on	this	new	instance,	you’re	close	to
where	we’re	headed.

The	truth,	though,	is	that	Compose,	as	a	tool,	is	really	designed	to	help	us	during
development.	Once	we	get	to	a	production	environment,	we	have	a	whole
different	set	of	concerns	that	didn’t	really	affect	us	in	development,	such	as:

How	do	we	make	our	app	resilient	to	failures?
How	can	we	scale	our	application	to	handle	varying	load?
How	do	we	deploy	new	versions	of	our	application	with	no	(or	minimal)
downtime	for	users?

Instead,	as	we	saw	earlier,	Docker	provides	a	container	orchestrator,	Swarm,	for
managing	apps	in	production.

Using	Swarm	(the	tool),	you	create	clusters—swarms—	of	one	or	more
connected	instances;	these	work	as	a	single,	resilient	unit	on	which	to	run
services	in	containers.	Swarm	is	declarative:	we	tell	it	the	state	we	want	our
application	to	be	in,	and	it	pulls	the	various	knobs	and	levers	to	make	this
happen.	As	you’d	hope,	it	leverages	the	docker-compose.yml	format	that	we’ve
used	to	specify	our	application.

WOW! eBook
www.wowebook.org

Our	First	(Single	Node)	Swarm
It’s	time	to	dive	deeper	into	Swarm	and	start	getting	our	hands	dirty.

Previously,	we	created	a	plain-vanilla	Docker	instance:	local-vm-1.	To	turn	our
instance	into	a	swarm,	we	have	to	initialize	it	explicitly.	With	our	CLI	targeting
our	new	instance,	we	can	do	this	by	running:

​ ​$ ​​docker​​ ​​swarm​​ ​​init​​ ​​--advertise-addr​​ ​​<IP​​ ​​address​​ ​​of​​ ​​instance>​

where	<IP address of instance>,	in	our	case,	is	local-vm-1’s	public	IP	address.	We	can
easily	find	that	out	by	rerunning:

​ ​$ ​​docker-machine​​ ​​ls​
​ NAME … … … URL … … …

​ local-vm-1 * … … tcp://192.168.99.100:2376 …

The	IP	address	of	the	instance	is	listed	in	the	“URL”	column.	For	me,	the	IP
address	is	192.168.99.100,	but	yours	will	differ.

Let’s	go	ahead	and	run	this	now	(substituting	the	correct	IP):

​ ​$ ​​docker​​ ​​swarm​​ ​​init​​ ​​--advertise-addr​​ ​​192.168.99.100​
​ Swarm initialized: current node (kun8mrdiuhewsydse3exvdq4a) is now a manager

​
​ To add a worker to this swarm, run the following command:

​
​ docker swarm join --token SWMTKN-1-64vcnpwr3sv6pco6ha8fyzm3pbi71h72cqq89

​ owty12uvlrd80-a0g240eqg899rbidxnw7q3fa4 192.168.99.100:2377

​
​ To add a manager to this swarm, run 'docker swarm join-token manager' and

​ follow the instructions.

For	now,	we’re	going	to	stick	with	a	single-node	Swarm	cluster.	However,	you’ll
notice	in	the	output	instructions	for	connecting	more	instances	to	the	swarm—
we’ll	come	back	to	this	later.

OK,	single-node	swarm	at	the	ready.	How	do	we	deploy	our	application	to	it?

WOW! eBook
www.wowebook.org

Describing	Our	App	to	Swarm
You’re	probably	becoming	pretty	comfortable	describing	our	app	as	a	set	of
services	defined	in	a	Compose	file.	However,	a	docker-compose.yml	file	is
development-focused;	it	lets	us	rebuild	images	easily	and	not	get	bogged	down	in
unnecessary	details	such	as	deployment	configuration.	However,	now	when	we
come	to	deployment,	we	need	something	that	is	deployment-focused.

Swarm	introduces	the	concept	of	a	stack	to	mean	an	application	made	up	of	a
group	of	services	that	are	capable	of	being	deployed.	We	describe	our	stack	to
Swarm	with	a	deployment-focused	variant	of	a	Compose	file	known	as	a	stack
file.	Although	you’ll	sometimes	still	hear	this	referred	to	as	a	Compose	file,
we’ll	stick	with	the	latter	since	it	clearly	distinguishes	it	from	a	normal	Compose
file.

Ready	to	create	your	first	stack	file?	Copy	our	docker-compose.yml	file	to	one
called	docker-stack.yml,	then	modify	it	so	it	looks	as	follows:

​1: version: ​'​​3'​
​-
​- services:

​- web:

​5: image: ​robisenberg/myapp_web:prod​
​- ports:

​- - ​"​​80:3000"​
​- env_file:

​- - ​.env/production/database​
​10: - ​.env/production/web​
​-
​- redis:

​- image: ​redis​
​-
​15: database:
​- image: ​postgres​
​- env_file:

​- - ​.env/production/database​
​- volumes:

​20: - ​db_data:/var/lib/postgresql/data​
​-

WOW! eBook
www.wowebook.org

​- volumes:

​- db_data:

You’ll	notice	a	number	of	changes.	For	a	start,	we’ve	completely	removed	the
webpack_dev_server	and	selenium_chrome	services:	these	were	only	needed	for
development	and	testing.

The	remaining	changes	relate	to	the	web	service.	We’ve	removed	the	build

attribute	from	the	web	service	since	building	an	image	from	a	Dockerfile	only
works	with	Compose;	with	Swarm,	we	must	specify	a	preexisting	image	to	use.
Here	we	specify	the	fully	qualified	name	for	the	production	image	we	pushed	to
Docker	Hub:	robisenberg/myapp_web:prod	(line	5);	in	particular,	we	specify	the
version	of	this	image	tagged	as	prod.

We’ve	also	removed	the	web	service’s	volumes	attribute,	which	we	previously
used	to	mount	our	local	Rails	folder	into	the	container	(for	live	code	reloading)
and	mount	our	gem	cache	(to	speed	up	gem	changes).	Since	we	won’t	be
developing	or	changing	the	code	in	production,	neither	of	these	are	necessary.

We’ve	changed	the	env_files	to	point	to	our	production	config	(lines	9–10).

Finally,	we’ve	changed	the	mapped	port	for	the	web	service	so	it	exposes	the
Rails	server	on	the	default	HTTP	port	80	(line	7).

There	are	lots	more	options	and	features	we	could	use,[117]	but	this	basic	docker-

stack.yml	file	is	a	good	starting	point.	However,	before	we	can	use	it	to	deploy	our
app,	we	need	to	make	some	changes	to	it	to	set	up	our	database.

WOW! eBook
www.wowebook.org

Migrating	the	Database
We	saw	here	that	the	Postgres	image	automatically	creates	the	default	database	if
it	doesn’t	exist.	However,	currently	nothing	ensures	that	the	migrations	have
been	run;	in	development,	we	just	did	this	manually.	We	need	to	ensure	that	our
app	has	a	fully	migrated	database	when	it	launches.

One	way	you	might	think	of	achieving	this	is	with	the	entrypoint	concept	we
introduced	to	solve	the	server	PID	issue.	We	already	have	a	docker-entrypoint.sh

file	that	is	run	just	prior	to	launching	our	app;	this	might	lead	you	to	try
migrating	the	database	as	follows:

​ ​#!/bin/sh​
​
​ set -e

​
​ ​if​ [-f tmp/pids/server.pid]; ​then​
​ ​ ​rm tmp/pids/server.pid
​ ​fi​
​
​
» ​# BAD IDEA...​
» bin/rails db:migrate

​
​ exec ​"​$@​"​

Although	it	seems	like	this	approach	should	work,	unfortunately	it	doesn’t	scale
well.	Were	you	to	start	three	replicas	of	your	app	at	the	same	time,	each	would
try	to	migrate	the	database,	which	can	lead	to	locking	issues	that	prevent	the	app
from	starting.	Another	downside	is	that	you	can’t	migrate	the	database
independently;	it	is	tied	to	the	app	launch.

A	better	solution	is	to	create	a	separate	service	whose	sole	responsibility	is	to
migrate	the	database.	Unlike	our	other	services	which	are	long-lived,	this	would
be	a	one-shot	container[118]—it	would	execute	a	single	command	that	is	expected
to	terminate	(we’ll	see	how	to	declare	this	shortly).	The	nice	thing	about	this
approach	is	that	it	gives	us	fine-grained	control	to	migrate	our	production

WOW! eBook
www.wowebook.org

database	at	any	point,	just	by	relaunching	the	db-migrator	service.	However,	it
also	introduces	a	challenge.

Let’s	think	about	timing	for	a	moment.	Unlike	our	redis	and	database	services,
which	have	no	dependencies,	our	web	service	relies	on	the	database	service	being
available	in	order	to	start	successfully	(it	also	relies	on	redis,	but	as	we	only
connect	in	a	controller,	this	wouldn’t	cause	an	error	at	startup).	However,	the
order	that	services	launch	is	indeterminate;	it	is	affected	by	image	size,
download	speeds,	load,	and,	importantly,	how	long	it	takes	for	the	container’s
command	to	have	performed	any	initialization.	What	happens	if	our	web	service
launches	before	the	database	service	is	ready	for	connections?

We	have	largely	been	shielded	from	having	to	care	about	this	lack	of
determinism	because—thanks	to	Swarm’s	default	behavior—our	web	service
automatically	restarts	if	it	fails	to	launch	for	any	reason,	including	being	unable
to	connect	to	the	database.	However,	using	a	one-shot	container	changes	things.
If	our	planned	database-migrator	service	launched	before	Postgres	was	ready	for
connections,	it	would	fail	with	a	PG::ConnectionBad	error,	and	terminate.	Our	one-
shot	container	would	have	missed	its	one	chance,	leaving	our	database
unmigrated.	Not	a	pretty	sight.

Generally,	we	should	design	our	apps	to	be	resilient	to	services	coming	and
going,	and	not	being	available	when	expected.[119]	Here,	a	good	solution	is	to
wrap	the	rails db:migrate	command	with	a	script	that	waits	until	the	database	is	not
just	started,	but	ready	to	handle	connections.	You	can	think	of	this	as	a	readiness
health	check.	We’re	going	to	use	a	shell	script	called	wait-for[120]	to	perform	this
checking	for	us.

Download	the	wait-for	script	in	your	Rails	root	folder.

We’ll	need	to	include	this	file	in	our	myapp_web:prod	image,	so	we’ll	rebuild	the
image	shortly.	However,	the	wait-for	script	relies	on	having	the	netcat	Unix
tool[121]	available	in	order	to	determine	whether	the	database	is	accepting
connections	on	its	designated	port,	so	we’ll	need	to	install	that	too.

WOW! eBook
www.wowebook.org

Modify	your	Dockerfile.prod	file	to	add	netcat	to	the	apt-get install	command:

​ ​RUN ​apt-get update -yqq && apt-get install -yqq --no-install-recommends ​\​
» netcat \ # needed for `wait-for` TCP connection checking

​ nodejs \

​ yarn

We	also	need	to	make	the	wait-for	script	executable	inside	the	image.	On	Linux	or
macOS,	you	can	do	this	by	running	chmod +x wait-for	locally;	the	file	will	retain	its
execute	permissions	when	added	to	the	image.	However,	this	won’t	work	on
Windows	because	file	permissions	are	handled	differently.	Instead,	we	can	set
this	file’s	permission	in	our	Dockerfile.prod	file	itself	(it’s	not	a	bad	thing	for	this
to	be	explicit	anyway,	whichever	platform	you’re	on):

​ ​COPY​​ . /usr/src/app/​
​
» ​RUN ​[​"chmod"​, ​"+x"​, ​"/usr/src/app/wait-for"​]

OK,	time	to	rebuild	our	image.	Remember,	though,	that	our	Docker	Engine	is
currently	targeting	local-vm-1.	Since	this	VM	is	simulating	our	production
environment,	it	doesn’t	make	sense	to	rebuild	our	image	there;	we	normally
build	images	either	locally	or	as	part	of	our	CI	pipeline.	So	let’s	quickly	switch
back	to	targeting	our	local	Docker	Engine:

​ ​$ ​​eval​​ ​​$(docker-machine​​ ​​env​​ ​​-u)​

Now	let’s	rebuild	our	image	with	these	changes	and	push	it	to	DockerHub:

​ ​$ ​​docker​​ ​​build​​ ​​-f​​ ​​Dockerfile.prod​​ ​​-t​​ ​​robisenberg/myapp_web:prod​​ ​​.​
​ ​$ ​​docker​​ ​​push​​ ​​robisenberg/myapp_web:prod​

Now	we’re	ready	to	define	our	one-shot	db-migrator	service	in	our	docker-stack.yml

file:

​1: db-migrator:

​2: image: ​robisenberg/myapp_web:prod​
​3: command: [​"​​./wait-for"​, ​"​​--timeout=300"​, ​"​​database:5432"​, ​"​​--"​,
​4: ​"​​bin/rails"​, ​"​​db:migrate"​]
​5: env_file:

​6: - ​.env/production/database​

WOW! eBook
www.wowebook.org

​7: - ​.env/production/web​
​8: deploy:

​9: restart_policy:

​10: condition: ​none​

The	command	(lines	3–4)	says,	“Wait	for	up	to	5	mins	(300	seconds)	until	the
host	called	database	is	accepting	connections	on	port	5432,	and	as	soon	as	it’s
available,	run	the	command	bin/rails db:migrate.”	This	means	that	our	database
will	be	migrated	successfully	even	if	it	takes	a	considerable	time	for	the	database
to	become	available.

The	restart_policy	(line	9)	prevents	Swarm	from	trying	to	restart	it	once	it	has
terminated;	this	setting	is	what	gives	the	service	its	one-shot	nature.

Sorted.	Now	our	app	can	be	deployed	with	the	database	fully	migrated.

WOW! eBook
www.wowebook.org

Deploying	Our	App	on	a	Swarm
With	our	newly	created	docker-stack.yml,	we	have	a	description	of	our	app	that
Swarm	can	use.	We’re	ready	to	deploy	our	app	onto	our	(single-node)	swarm.

First,	we	must	remember	to	retarget	our	swarm:

​ ​$ ​​eval​​ ​​$(docker-machine​​ ​​env​​ ​​local-vm-1)​

Now	we	can	deploy	our	app	with	the	command:

​ ​$ ​​docker​​ ​​stack​​ ​​deploy​​ ​​-c​​ ​​docker-stack.yml​​ ​​myapp​
​ Creating network myapp_default

​ Creating service myapp_web

​ Creating service myapp_redis

​ Creating service myapp_database

​ Creating service myapp_db-migrator

This	says,	“Deploy	the	services	described	in	docker-stack.yml	as	a	stack	called
myapp.”	You	can	see	the	various	services	being	created.

We	can	list	the	services	in	our	stack	by	running:

​ ​$ ​​docker​​ ​​stack​​ ​​services​​ ​​myapp​
​ ID NAME MODE REP… IMAGE PORTS

​ p9… myapp_db-migrator rep… 0/1 robisenberg/myapp_w…

​ s5… myapp_web rep… 1/1 robisenberg/myapp_w… *:80->3000/tcp

​ ue… myapp_database rep… 1/1 postgres:latest

​ ws… myapp_redis rep… 1/1 redis:latest

Services	deployed	on	Swarm	can	be	scaled	up	by	creating	additional	replica
containers	for	the	service.	The	“replicas”	column	shows	how	many	replicas	are
running	vs.	the	desired	number	of	replicas	(which,	by	default,	is	one).

When	you	run	this	command,	you’ll	probably	find	that	one	or	more	of	our
services	haven’t	started	up	yet,	indicated	by	“0/1”	in	the	“replicas”	column.	It
may	take	a	while	until	all	the	services	have	started,	especially	on	the	very	first
deploy,	since	each	service’s	image	needs	to	be	downloaded	from	scratch.	Wait

WOW! eBook
www.wowebook.org

until	all	the	services	except	db-migrator	have	started	by	rerunning	the	command
and	waiting	until	the	“replicas”	column	shows	“1/1”	(db-migrator	runs	and	then
terminates).

As	a	shortcut,	you	can	also	run	the	similar	command:

​ ​$ ​​docker​​ ​​service​​ ​​ls​
​ ID NAME MODE REP… IMAGE PORTS

​ ue… myapp_database rep… 1/1 postgres:latest

​ p9… myapp_db-migrator rep… 0/1 robisenberg/myapp_w…

​ ws… myapp_redis rep… 1/1 redis:latest

​ s5… myapp_web rep… 1/1 robisenberg/myapp_w… *:80->3000/tcp

This	lists	all	the	services	that	have	been	deployed	to	the	swarm.	With	multiple
stacks	deployed	on	the	swarm,	you’d	see	the	services	for	all	stacks	listed	here.
However,	since	we	only	have	a	single	stack	deployed,	the	output	is	the	same	as
for	docker stack services myapp,	which	lists	the	services	for	a	specific	stack.

OK,	now	that	the	services	are	running,	we	should	be	able	to	load	our	app	in	a
browser.	On	your	local	machine,	visit	http://<instance IP address>/welcome,	which
for	me	is	http://192.168.99.100/welcome	(if	you’ve	forgotten	the	IP	address	of	your
instance,	you	can	get	it	by	running	docker-machine ls).	You	should	see	our	hit
counter	running	correctly	and	incrementing	on	each	page	load.	This	shows	that
Redis	is	running	and	our	app	is	connected	to	it	successfully.

Similarly,	visit	http://<instance IP address>/users	(for	me,	it’s
http://192.168.99.100/users),	and	you’ll	see	our	User	scaffold	showing	that	our
database	is	running	and	our	app	is	connected	to	it	successfully.

We’ve	now	successfully	deployed	our	application	to	the	separate	VirtualBox
instance,	which	constitutes	our	single-node	swarm	cluster.

WOW! eBook
www.wowebook.org

Tasks	and	Swarm’s	Scaling	Model
Services	running	on	Swarm	are	self-regulating.	That	is,	we	define	a	desired	state
for	a	service	in	terms	of	the	number	of	containers	that	should	run	for	it,	and
Swarm	acts	to	ensure	that	this	state	is	achieved	and	maintained.

It	is	this	self-regulation	that	is	key	to	how	scaling	is	implemented,	as	well	as
Swarm’s	self-healing	properties,	which	we’ll	see	in	the	next	chapter.

Swarm	is	made	up	of	different	parts.	We	can	consider	one	part	to	be	the
orchestrator.	Having	told	Swarm	to	deploy	a	service,	the	orchestrator	is
responsible	for	determining	whether	the	service	is	in	the	desired	state	and,	if	not,
taking	action	to	correct	this.

If	the	orchestrator	sees	that	an	additional	container	is	needed,	it	creates	a	task,
which	represents	the	desire	for	a	container	to	exist.	It	then	sees	what	nodes	are
available	in	the	cluster,	and	allocates	the	task	to	a	node.

In	our	single-node	cluster,	the	orchestrator	has	no	choice	but	to	allocate	all	of	the
tasks	onto	our	only	node.	However,	you	can	imagine	that,	in	a	multinode	setup,
tasks	could	be	allocated	evenly	across	multiple	instances	in	the	cluster.

Nodes	in	the	cluster	check	with	the	orchestrator	to	know	what	tasks	they’ve	been
allocated.	They	are	then	responsible	for	creating	one	container	per	task,	thus
achieving	the	desired	state	of	the	system.

An	example	should	make	this	clearer.	When	we	deployed	our	web	service,	we
didn’t	specify	the	number	of	replica	containers	needed,	so	the	default	of	one	was
assumed.	The	orchestrator	sees	that	we	want	one	web	service	container	running,
but	that,	initially,	none	are.	It	creates	a	task	for	the	web	service	and	assigns	it	to
our	node.	The	node	sees	that	it	has	been	allocated	a	web	service	task,	and	it
launches	a	web	container,	meeting	our	desired	state.

We	can	list	the	tasks	in	a	stack	with	the	following	command:

WOW! eBook
www.wowebook.org

​ ​$ ​​docker​​ ​​stack​​ ​​ps​​ ​​myapp​
​ ID NAME IMAGE … DESIRED… CURRENT… … …

​ qo… myapp_db-migrator… robise… … Shutdown Complet…

​ ic… myapp_database.1 postgr… … Running Running…

​ 8a… myapp_redis.1 redis:… … Running Running…

​ iw… myapp_web.1 robise… … Running Running…

The	listing	also	tells	us	the	current	state	of	the	task,	whether	that’s	successfully
“Running,”	in	the	process	of	being	started	(such	as	“Pending”	or	“Preparing”),	or
in	a	number	of	other	possible	states.[122]

We	can	also	list	the	tasks	for	a	specific	service.	For	example,	to	see	the	tasks
running	for	our	myapp_web	service,	we’d	do:

​ ​$ ​​docker​​ ​​service​​ ​​ps​​ ​​myapp_web​

WOW! eBook
www.wowebook.org

Scaling	Up	the	Service
Currently,	each	of	our	services	has	been	backed	by	a	single	task	(and	therefore
container).	We	can	instruct	Swarm	to	increase	or	decrease	the	number	of
containers	backing	a	service—known	as	scaling	the	service.

From	the	previous	discussion,	it	should	be	clear	how	Swarm	implements	scaling.
Imagine	that	the	swarm	receives	a	new	definition	of	the	web	service,	which
specifies	three	containers.	The	orchestrator	sees	that	only	one	task	has	been
scheduled,	and	that	therefore	two	more	containers	are	required.	It	proceeds	to
create	two	new	tasks,	scheduling	them	across	the	available	nodes	in	the	cluster.
The	node	(or	nodes)	allocate	the	tasks,	then	start	up	one	container	for	each	task
they’ve	been	assigned.	And	voilà,	we	have	scaled	up	our	service	to	three
containers.

OK,	enough	theory,	let’s	see	this	in	action.

Updating	Our	App
If	we	scale	our	app	currently,	it	will	be	hard	to	tell	the	difference.	How	will	we
know	that	requests	are	being	handled	by	different	containers?	Let’s	first	make
some	changes	to	our	app	that	will	make	this	more	obvious.

Edit	app/controllers/welcome_controller.rb	to	look	as	follows:

​ ​class​ WelcomeController < ApplicationController
​ ​def​ ​index​
​ redis = Redis.​new​(​host: ​​"redis"​, ​port: ​6379)
​ redis.​incr​ ​"page hits"​
​
​ @page_hits = redis.​get​ ​"page hits"​
» @hostname = Socket.​gethostname​
​ ​end​
​ ​end​

Now	let’s	output	the	hostname	in	our	view	(app/views/welcome/index.html.erb):

​ ​<%​ content_for ​:head​ ​do​ ​%>​

WOW! eBook
www.wowebook.org

​ <script type=​"text/javascript"​>
​ document.addEventListener(​"DOMContentLoaded"​,​function​(){
​ document.getElementsByTagName(​'h1'​)[0].append(​' ENHANCED!'​);
​ });

​ </script>

​ ​<%​ ​end​ ​%>​
​
​
​ <h1>This page has been viewed ​<%=​ pluralize(@page_hits, ​'time'​) ​%>​!</h1>
» <p>Request handled by host: ​<%=​ @hostname ​%>​</p>

We’ve	changed	our	code,	so	we	need	to	rebuild	our	image.	However,	remember
that	our	Docker	CLI	is	currently	configured	to	target	our	VirtualBox	instance.
Really,	we	should	switch	back	to	our	local	Docker	installation	to	build	the
image,	rather	than	using	the	swarm	instance.	Typically,	you	won’t	have	to
remember	this,	as	the	images	can	be	built	as	part	of	your	continuous
integration/continuous	delivery	(CI/CD)	pipeline.

Let’s	switch	our	Docker	CLI	back	to	targeting	commands	at	our	local	Docker
installation.	We	do	this	by	running:

​ ​$ ​​eval​​ ​​$(docker-machine​​ ​​env​​ ​​-u)​

This	unsets	the	environment	variables	that	we’d	previously	set,	which	made	our
Docker	CLI	target	our	Docker	Machine–created	VirtualBox	instance.

Now	we’re	good	to	rebuild	our	image:

​ ​$ ​​docker​​ ​​build​​ ​​-f​​ ​​Dockerfile.prod​​ ​​-t​​ ​​robisenberg/myapp_web:prod​​ ​​.​
​ ...

​ Successfully built dd61876489b2

​ Successfully tagged robisenberg/myapp_web:prod

As	we	saw	previously,	the	next	step	is	to	push	our	updated	image	to	a	Docker
Registry—in	our	case,	Docker	Hub:

​ ​$ ​​docker​​ ​​push​​ ​​robisenberg/myapp_web:prod​

Now	let’s	switch	back	to	targeting	our	VirtualBox	swarm	instance:

​ ​$ ​​eval​​ ​​$(docker-machine​​ ​​env​​ ​​local-vm-1)​

WOW! eBook
www.wowebook.org

Now	we	can	update	our	web	service.	The	easiest	way	to	do	this	is	simply	to
redeploy	the	stack.	Swarm	checks	the	Docker	Registry	for	the	latest	versions	of
any	images	specified,	and	updates	the	services	to	use	these	versions:

​ ​$ ​​docker​​ ​​stack​​ ​​deploy​​ ​​-c​​ ​​docker-stack.yml​​ ​​myapp​
​ Updating service myapp_database (id: uebqig2as2r5purj7jj578brq)

​ Updating service myapp_db-migrator (id: p9qxhekimvz7x9glgd8pt7x5c)

​ Updating service myapp_web (id: s5e5ka2xss1p4yrm2rjrz9ci8)

​ Updating service myapp_redis (id: ws7b498dfpxxeninbgeo191qq)

You	can	also	update	a	service’s	image	with:

​ ​$ ​​docker​​ ​​service​​ ​​update​​ ​​--image​​ ​​robisenberg/myapp_web:prod​​ ​​myapp_web​
​ myapp_web

​ overall progress: 1 out of 1 tasks

​ 1/1: running [==>]

​ verify: Service converged

Now	view	the	page	http://<instance IP address>/welcome	(for	me,
192.168.99.100/welcome).	You	should	now	see	the	hostname	of	the	container
running	the	web	service.	For	me,	it’s	c1ca8a915a90,	but	yours	will	differ.

Refresh	the	page	a	few	times:	you’ll	see	that	it’s	always	the	same	hostname
(because	we	have	only	one	production	task	running	it).

Scaling	the	App
OK,	we’re	about	to	scale	the	app.	Let’s	recap	what	the	service	listing	shows:

​ ​$ ​​docker​​ ​​service​​ ​​ls​
​ ID NAME MODE REP… IMAGE PORTS

​ ue… myapp_database rep… 1/1 postgres:latest

​ p9… myapp_db-migrator rep… 1/1 robisenberg/myapp_w…

​ ws… myapp_redis rep… 1/1 redis:latest

​ s5… myapp_web rep… 1/1 robisenberg/myapp_w… *:80->3000/tcp

We	have	a	single	container	for	the	myapp_web	service	(replicas	1/1).

Now	let’s	scale	up	our	service:

​ ​$ ​​docker​​ ​​service​​ ​​scale​​ ​​myapp_web=3​

WOW! eBook
www.wowebook.org

​ myapp_web scaled to 3

​ overall progress: 3 out of 3 tasks

​ 1/3: running [==>]

​ 2/3: running [==>]

​ 3/3: running [==>]

​ verify: Service converged

If	we	check	again,	we’ll	see	that	the	web	service	has	three	replicas	running:

​ ​$ ​​docker​​ ​​service​​ ​​ls​
​ ID NAME MODE REP… IMAGE PORTS

​ ue… myapp_database rep… 1/1 postgres:latest

​ p9… myapp_db-migrator rep… 0/1 robisenberg/myapp_w…

​ ws… myapp_redis rep… 1/1 redis:latest

​ s5… myapp_web rep… 3/3 robisenberg/myapp_w… *:80->3000/tcp

So	we	now	have	three	containers	each	running	a	copy	of	our	Rails	app.	Swarm
load	balances	between	replicas	of	your	service,	distributing	requests	to	the
service	across	the	containers	backing	that	service.	However,	the	load	balancing
is	nondeterministic,	and	Swarm	can	send	requests	to	whichever	container	it	sees
fit.

Now	for	the	real	test:	let’s	see	this	load	balancing	in	action.	Refresh	the	page
http://<instance IP address>/welcome.	As	you	refresh	the	page	several	times,	you
should	see	the	hostname	changing,	indicating	that	different	containers	are
handling	the	request.

You	may	find	that	the	hostnames	don’t	change	when	refreshing	in	a	browser;	this
is	likely	due	to	browsers	reusing	TCP	connections	across	multiple	requests.	You
could	try	pressing	and	holding	the	keyboard	shortcut	for	refresh	(Ctrl - R 	or
Cmd - R)—this	will	reload	the	page	quickly	multiple	times,	which	allows	you	to
see	the	hostname	changing.

Alternatively,	fetching	the	page	with	curl	shows	you	the	hostname	changing	as
you	make	multiple	requests:

​ ​$ ​​curl​​ ​​-4​​ ​​http://localhost:3000/welcome​

Note:	the	-4	here	is	telling	curl	to	use	IPv4.

WOW! eBook
www.wowebook.org

Swarm	gives	you	the	freedom	to	scale	your	web	app	however	you’d	like	by
setting	the	desired	number	of	containers:

​ ​$ ​​docker​​ ​​service​​ ​​scale​​ ​​myapp_web=<n>​

WOW! eBook
www.wowebook.org

Quick	Recap
Another	action-packed	chapter.	You’ve	now	learned	the	major	tools	in	our	belt
for	deploying	apps	with	Docker.

Let’s	review	what	we	covered	in	this	chapter:

1.	 We	introduced	Docker	Machine	and	used	it	to	create	a	virtualized	Docker-
ready	instance:

​ ​$ ​​docker-machine​​ ​​create​​ ​​--driver​​ ​​virtualbox​​ ​​local-vm-1​

2.	 We	logged	onto	the	new	instance	using	SSH:

​ ​$ ​​docker-machine​​ ​​ssh​​ ​​local-vm-1​

and	issued	commands	against	it	from	our	local	shell	session:

​ ​$ ​​docker-machine​​ ​​ssh​​ ​​<instance​​ ​​name>​​ ​​"<command>"​

3.	 We	saw	how	to	configure	our	Docker	Client	to	target	the	Docker	Engine	on
our	virtual	instance:

​ ​$ ​​eval​​ ​​$(docker-machine​​ ​​env​​ ​​local-vm-1)​

and	to	reset	it	again	with:

​ ​$ ​​eval​​ ​​$(docker-machine​​ ​​env​​ ​​-u)​

4.	 We	turned	our	vanilla	Docker	instance	into	a	single-node	swarm	cluster:

​ ​$ ​​docker​​ ​​swarm​​ ​​init​​ ​​--advertise-addr​​ ​​<IP​​ ​​address​​ ​​of​​ ​​instance>​

5.	 Having	created	a	production	version	of	our	docker-compose.yml	called	docker-

stack.yml,	we	deployed	our	application	on	the	swarm	as	a	stack	using:

​ ​$ ​​docker​​ ​​stack​​ ​​deploy​​ ​​-c​​ ​​docker-stack.yml​​ ​​myapp​

6.	 We	saw	how	to	list	the	services	in	our	stack	with:

WOW! eBook
www.wowebook.org

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

​ ​$ ​​docker​​ ​​stack​​ ​​services​​ ​​myapp​

or	list	all	services	on	the	swarm	with:

​ ​$ ​​docker​​ ​​service​​ ​​ls​

7.	 We	saw	how	to	deploy	an	updated	version	of	the	app:

​ ​$ ​​docker​​ ​​stack​​ ​​deploy​​ ​​-c​​ ​​docker-stack.yml​​ ​​myapp​

8.	 We	scaled	up	our	web	service	by	running	multiple	containers,	utilizing
Swarm’s	built-in	load	balancing:

​ ​$ ​​docker​​ ​​service​​ ​​scale​​ ​​myapp_web=<n>​

Not	too	shabby.

Now	that	we’ve	started	to	get	a	feel	for	Docker	Machine	and	Swarm,	and	have
seen	how	to	deploy	and	scale	our	application,	it’s	time	to	move	into	the	big
leagues.	In	the	next	chapter,	we’ll	finally	move	off	our	local	machine	and	into
the	big,	wide	world	that	is	the	cloud.

Footnotes

https://docs.docker.com/machine/drivers/

https://www.virtualbox.org/manual/

https://www.virtualbox.org/manual/ch02.html

https://docs.docker.com/machine/drivers/hyper-v/#example

https://docs.docker.com/compose/compose-file/#deploy

https://blog.alexellis.io/containers-on-swarm/

https://docs.docker.com/compose/startup-order/

https://github.com/mrako/wait-for

https://en.wikipedia.org/wiki/Netcat

https://docs.docker.com/engine/swarm/how-swarm-mode-works/swarm-task-states/

WOW! eBook
www.wowebook.org

https://docs.docker.com/machine/drivers/
https://www.virtualbox.org/manual/
https://www.virtualbox.org/manual/ch02.html
https://docs.docker.com/machine/drivers/hyper-v/#example
https://docs.docker.com/compose/compose-file/#deploy
https://blog.alexellis.io/containers-on-swarm/
https://docs.docker.com/compose/startup-order/
https://github.com/mrako/wait-for
https://en.wikipedia.org/wiki/Netcat
https://docs.docker.com/engine/swarm/how-swarm-mode-works/swarm-task-states/

Copyright	©	2019,	The	Pragmatic	Bookshelf.

WOW! eBook
www.wowebook.org

Chapter	14

Deploying	to	the	Cloud
	

The	cloud:	our	final	frontier.	We’ve	already	seen	how	to	deploy	to	a	local	Swarm
cluster	(albeit	with	only	a	single	node).	In	this	chapter,	we	take	this	a	step	further
and	create	infrastructure	running	in	the	cloud.	We’ll	start	by	creating	a	cluster	on
DigitalOcean,	and	then	see	how	similar	this	is	to	creating	a	cluster	on	Amazon
Web	Services	(AWS).

By	the	end	of	this	chapter,	we’ll	have	our	application	deployed	and	running	in
both	DigitalOcean	and	AWS.	Although	our	cloud	deployment	won’t	be
production-grade,	you’ll	have	gained	some	valuable	experience	and	started	to
get	a	feel	for	some	of	the	real-world	considerations	at	play.

Note	that,	as	the	cloud	services	we	use	in	this	chapter	aren’t	free,	some	(small)
costs	are	associated	with	running	the	application.	However,	assuming	you’re
diligent	and	clean	up	or	stop	the	resources	when	we’re	done,	the	costs	will	be
neglible—measured	in	the	pennies.

WOW! eBook
www.wowebook.org

Creating	a	DigitalOcean	Cluster
Before	we	can	deploy	our	app	to	the	cloud,	we	need	cloud-based	instances	on
which	to	deploy	it.	We’re	going	to	start	by	creating	a	Docker	swarm	on
DigitalOcean.	The	prices[123]	are	very	modest:	$0.007	per	hour	for	the	smallest,
standard	Droplet—their	term	for	an	instance.	In	real	terms,	a	three-node	cluster
running	for	48	hours	will	cost	$1.

To	follow	along,	you’ll	need	your	own	DigitalOcean	account.	Go	to	the
DigitalOcean	homepage	and	complete	the	sign-up	form.[124]	You’ll	need	to	enter
your	credit	card	details,	since	there	is	a	charge	for	using	their	cloud	resources.

Once	you’ve	created	an	account,	you’ll	need	to	generate	an	API	token	so	that
you	can	set	up	infrastructure	from	the	command	line.	Log	in	and	navigate	to	the
API	tokens	page	and	press	the	“Generate	New	Token”	button.[125]	Give	your
token	a	name	(for	example,	docker-for-rails-developers)	with	read/write	access	and
then	copy	the	generated	token.	I	recommend	you	set	this	in	your	terminal	as	an
environment	variable	DIGITAL_OCEAN_TOKEN	for	use	with	the	following
commands.	On	Linux	or	Mac,	you	can	do	this	with	a	line:

export DIGITAL_OCEAN_TOKEN=<your token>

Put	this	in	your	.bash_rc	file	or	equivalent,	and	remember	to	source	the	file	now
so	that	it’s	available	in	your	current	terminal	session.	Windows	PowerShell	has	a
similar	approach.[126]

With	our	account	set	up,	let’s	create	our	first	cloud	instance.	We’ll	use	the	docker-

machine create	command	like	in	the	previous	chapter,	but	specify	the	digitalocean

driver	rather	than	virtualbox:

​ ​$ ​​docker-machine​​ ​​create​​ ​​\​
​ ​ ​​--driver​​ ​​digitalocean​​ ​​\​
​ ​ ​​--digitalocean-access-token​​ ​​$DIGITAL_OCEAN_TOKEN​​ ​​\​
​ ​ ​​--digitalocean-region​​ ​​lon1​​ ​​\​
​ ​ ​​do-manager-1​
​ Running pre-create checks...

WOW! eBook
www.wowebook.org

​ Creating machine...

​ (do-manager-1) Creating SSH key...

​ (do-manager-1) Creating Digital Ocean droplet...

​ (do-manager-1) Waiting for IP address to be assigned to the Droplet...

​ Waiting for machine to be running, this may take a few minutes...

​ Detecting operating system of created instance...

​ Waiting for SSH to be available...

​ Detecting the provisioner...

​ Provisioning with ubuntu(systemd)...

​ Installing Docker...

​ Copying certs to the local machine directory...

​ Copying certs to the remote machine...

​ Setting Docker configuration on the remote daemon...

​ Checking connection to Docker...

​ Docker is up and running!

​ To see how to connect your Docker Client to the Docker Engine running on

​ this virtual machine, run: docker-machine env do-manager-1

Each	driver	has	its	own	set	of	custom	configuration	options.[127]	We	need	to	use
the	--digtialocean-access-token	so	docker-machine	has	permission	to	access	and	create
instances	in	our	account.	I’ve	also	chosen	a	region	in	London	(--digitalocean-region

lon1)	to	be	close	to	where	I’m	located—you	can	pick	a	region	close	to	you	from
the	list	of	regions	offered	by	DigitalOcean.[128]

We’ve	called	the	new	instance	do-manager-1,	as	we’re	going	to	use	it	to	act	as	the
manager	for	our	Swarm	cluster.	You	can	see	that	it’s	now	listed	if	we	run:

​ ​$ ​​docker-machine​​ ​​ls​
​ NAME ACTIVE DRIVER STATE URL SWARM DOCKER ERRORS

​ do-manage… - digitaloc… Running tcp://46… v18.09.1

​ local-vm-1 * virtualbox Running tcp://19… v18.09.1

Just	like	with	our	local	VirtualBox	instance,	we	can	SSH	onto	the	instance	by
running	docker-machine ssh <instance name>:

​ ​$ ​​docker-machine​​ ​​ssh​​ ​​do-manager-1​
​ Welcome to Ubuntu 16.04.5 LTS (GNU/Linux 4.4.0-141-generic x86_64)

​
​ * Documentation: https://help.ubuntu.com

​ * Management: https://landscape.canonical.com

​ * Support: https://ubuntu.com/advantage

​

WOW! eBook
www.wowebook.org

​ Get cloud support with Ubuntu Advantage Cloud Guest:

​ http://www.ubuntu.com/business/services/cloud

​
​ 18 packages can be updated.

​ 15 updates are security updates.

While	we’re	logged	in,	let’s	initialize	the	instance	as	the	swarm	manager.	To	do
this,	we	need	to	know	the	instance’s	internal	IP	address,	which	we	can	find	by
running:

​ ​# ifconfig eth0​
​ eth0 Link encap:Ethernet HWaddr 3a:87:d5:2e:22:9a

​ inet addr:46.101.90.10 Bcast:46.101.95.255 Mask:255.255.240.0

​ inet6 addr: fe80::3887:d5ff:fe2e:229a/64 Scope:Link

​ UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

​ RX packets:5519 errors:0 dropped:0 overruns:0 frame:0

​ TX packets:3666 errors:0 dropped:0 overruns:0 carrier:0

​ collisions:0 txqueuelen:1000

​ RX bytes:77351515 (77.3 MB) TX bytes:359679 (359.6 KB)

The	IP	address	is	listed	on	the	second	line	as	the	inet addr	value,	which	for	me	is
46.101.90.10,	but	for	you	this	will	differ.	Now	we	can	initialize	the	instance	as	the
swarm	manager:

​ ​root@do-manager-1:~# ​​docker​​ ​​swarm​​ ​​init​​ ​​--advertise-addr​​ ​​46.101.90.10​
​ Swarm initialized: current node (e2gaylk0nnr1geabo40cn3uf9) is now a manager

​
​ To add a worker to this swarm, run the following command:

​
​ docker swarm join --token SWMTKN-1-0axry1rp0wxy6u48t4epiml4mubf9qy2y2o2f

​ dmq1u7n2vnj08-aoqoyn55bypasn82emb3sae27 46.101.90.10:2377

​
​ To add a manager to this swarm, run 'docker swarm join-token manager' and

​ follow the instructions.

Now	that	we’ve	set	up	our	swarm	manager	instance,	we	can	exit	from	the	box:

​ ​root@do-manager-1:~# ​​exit​
​ logout

For	redundancy	and	resiliency	in	production	environments,	you’d	typically	run
your	containers	on	a	cluster	with	multiple	instances.	This	way,	if	a	single	node

WOW! eBook
www.wowebook.org

went	down,	the	containers	lost	can	be	started	up	again	on	the	remaining
instances.	We’re	going	to	have	a	three-node	cluster.	To	achieve	this,	let’s	create
two	worker	instances	as	follows:

​ ​$ ​​docker-machine​​ ​​create​​ ​​\​
​ ​ ​​--driver​​ ​​digitalocean​​ ​​\​
​ ​ ​​--digitalocean-access-token​​ ​​$DIGITAL_OCEAN_TOKEN​​ ​​\​
​ ​ ​​--digitalocean-region​​ ​​lon1​​ ​​\​
​ ​ ​​do-worker-1​
​ Running pre-create checks...

​ Creating machine...

​ ...

​ Docker is up and running!

​ To see how to connect your Docker Client to the Docker Engine running on

​ this virtual machine, run: docker-machine env do-worker-1

​ ​$ ​​docker-machine​​ ​​create​​ ​​\​
​ ​ ​​--driver​​ ​​digitalocean​​ ​​\​
​ ​ ​​--digitalocean-access-token​​ ​​$DIGITAL_OCEAN_TOKEN​​ ​​\​
​ ​ ​​--digitalocean-region​​ ​​lon1​​ ​​\​
​ ​ ​​do-worker-2​
​ Running pre-create checks...

​ Creating machine...

​ ...

​ Docker is up and running!

​ To see how to connect your Docker Client to the Docker Engine running on

​ this virtual machine, run: docker-machine env do-worker-2

We’ve	now	created	two	more	machines	in	our	DigitalOcean	account,	as	we	can
verify	by	running:

​ ​$ ​​docker-machine​​ ​​ls​
​ NAME ACTIVE DRIVER STATE URL SWARM DOCKER ERRORS

​ do-manager-1 - digitaloc… Running tcp://46… v18.09.1

​ do-worker-1 - digitaloc… Running tcp://13… v18.09.1

​ do-worker-2 - digitaloc… Running tcp://14… v18.09.1

​ local-vm-1 * virtualbox Running tcp://19… v18.09.1

However,	at	present,	these	two	new	instances	aren’t	part	of	our	Swarm	cluster.
When	we	initialized	our	swarm,	the	output	provided	the	following	instructions
for	adding	workers:

​ To add a worker to this swarm, run the following command:

WOW! eBook
www.wowebook.org

​
​ docker swarm join --token SWMTKN-1-0axry1rp0wxy6u48t4epiml4mubf9qy2y2o2f

​ dmq1u7n2vnj08-aoqoyn55bypasn82emb3sae27 46.101.90.10:2377

Let’s	make	our	worker	instances	join	the	swarm	now.	For	convenience,	I	suggest
setting	temporary	environment	variables	in	your	terminal	session	for	both	the
swarm	token	and	the	manager	node’s	internal	IP	address:

​ SWARM_TOKEN=SWMTKN-1-0axry1rp0wxy6u48t4epiml4mubf9qy2y2o2fdmq1u7n2vnj08-aoq

​ oyn55bypasn82emb3sae27

​ MANAGER_INTERNAL_IP=46.101.90.10

Now	we	can	make	the	workers	join	the	swarm	with	the	commands:

​ ​$ ​​docker-machine​​ ​​ssh​​ ​​do-worker-1​​ ​​\​
​ ​ ​​"docker swarm join --token $SWARM_TOKEN $MANAGER_INTERNAL_IP:2377"​
​ This node joined a swarm as a worker.

and:

​ ​$ ​​docker-machine​​ ​​ssh​​ ​​do-worker-2​​ ​​\​
​ ​ ​​"docker swarm join --token $SWARM_TOKEN $MANAGER_INTERNAL_IP:2377"​
​ This node joined a swarm as a worker.

If	we’re	using	a	suitable	scripting	environment,	we	could	have	automated	the
creation	of	the	worker	instances	and	joining	the	swarm	with	a	script	like	the
following	(using	Bash):

​ SWARM_TOKEN=SWMTKN-1-0axry1rp0wxy6u48t4epiml4mubf9qy2y2o2fdmq1u7n2vnj08-aoq

​ oyn55bypasn82emb3sae27

​ MANAGER_INTERNAL_IP=46.101.90.10

​
​ for i in 1 2

​ do

​ ​ # create the node​
​ docker-machine create \

​ --driver digitalocean \

​ --digitalocean-access-token $DIGITAL_OCEAN_TOKEN \

​ ​ do-worker-$​​i​

​ ​ # join the swarm​
​ docker-machine ssh do-worker-$i \

​ "docker swarm join --token $SWARM_TOKEN $MANAGER_INTERNAL_IP:2377"

WOW! eBook
www.wowebook.org

​ done

WOW! eBook
www.wowebook.org

Deploying	to	Our	DigitalOcean	Swarm
We	now	have	a	three-node	cluster	in	DigitalOcean.	The	next	step	is	to	deploy
our	app	onto	it.	With	Swarm,	we	use	the	same	process	whether	we’re	deploying
to	a	one-node	cluster	(as	we	did	in	the	previous	chapter),	a	three-node	cluster	(as
we’re	about	to	do),	or	even	a	twenty-node	cluster.

We	start	by	configuring	our	Docker	CLI	to	point	to	one	of	the	manager	nodes	in
the	swarm	(it’s	possible	to	have	more	than	one	manager).	We	can	do	this	with
docker-machine	by	setting	the	environment	variables	for	the	manager	node:

​ ​$ ​​eval​​ ​​$(docker-machine​​ ​​env​​ ​​do-manager-1)​

Then,	deploying	our	application	is	just	a	matter	of	running	the	docker stack deploy

command.	Let’s	do	this	now:

​ ​$ ​​docker​​ ​​stack​​ ​​deploy​​ ​​-c​​ ​​docker-stack.yml​​ ​​myapp​
​ Creating network myapp_default

​ Creating service myapp_db-migrator

​ Creating service myapp_web

​ Creating service myapp_redis

​ Creating service myapp_database

With	our	app	deployed,	we	can	see	our	services	running	on	the	Swarm	cluster
(although	it	may	take	a	moment	for	them	to	all	start):

​ ​$ ​​docker​​ ​​service​​ ​​ls​
​ ID NAME MODE REP… IMAGE PORTS

​ tj… myapp_database rep… 0/1 postgres:latest

​ zy… myapp_db-migrator rep… 0/1 robisenberg/myapp_w…

​ sx… myapp_redis rep… 0/1 redis:latest

​ vo… myapp_web rep… 0/1 robisenberg/myapp_w… *:80->3000/tcp

We	can	also	view	the	actual	containers	running	for	this	stack	(remember,	it’s
possible	to	have	more	than	one	container	running	per	service):

​ ​$ ​​docker​​ ​​stack​​ ​​ps​​ ​​myapp​
​ ID NAME IMAGE … DESIRED… CURRENT… … …

​ gm… myapp_database.1 postgr… … Running Prepari…

WOW! eBook
www.wowebook.org

​ g8… myapp_redis.1 redis:… … Running Startin…

​ xx… myapp_web.1 robise… … Running Prepari…

​ kh… myapp_db-migrator… robise… … Running Prepari…

That’s	it.	Our	app	is	live	on	the	Swarm	cluster.	Let’s	visit	http://any of nodes

ips/welcome—you	should	see	the	hit	counter.	Also	navigate	to	http://any of nodes

ips/users	to	see	that	the	User	scaffold	is	working	too.

If	you’re	wondering	how	our	database	exists,	that’s	thanks	to	our	database

service’s	Postgres	image,	which	automatically	creates	the	default	database,	as
specified	by	the	POSTGRES_DB	environment	variable	we	set.[129]	The	database	has
also	been	migrated	thanks	to	our	handy	database-migrator service	we	added.

WOW! eBook
www.wowebook.org

Visualizing	Containers
As	we’ve	discussed,	Swarm’s	orchestrator	schedules	containers	(or	more	strictly,
tasks	to	run	containers)	on	whichever	nodes	it	sees	fit.	That	means	we	don’t
know	where	a	container	for	a	service	will	end	up	running.

For	educational	purposes,	we’re	going	to	use	a	new	“visualizer”	tool	that
provides	a	web	interface	for	seeing	the	nodes	in	our	clusters,	and	the	containers
running	on	them;	Docker	provides	a	handy	image	for	this.	You	wouldn’t
typically	run	the	visualizer	in	production,	but	it	will	give	us	a	feel	for	how
containers	are	scheduled	across	the	cluster.

Let’s	add	a	visualizer	service	to	our	docker-stack.yml	file:

​1: ​visualizer:​
​2: ​ image: ​dockersamples/visualizer​:stable​
​3: ​ports: ​
​4: - ​"8080:8080"​
​5: ​volumes:​
​6: ​ ​- ​"/var/run/docker.sock:/var/run/docker.sock"​
​7: ​deploy: ​
​8: ​placement:​
​9: ​ constraints: ​[node.​role​ == manager]

In	order	to	view	the	web	interface,	we	need	to	expose	a	port	publicly.	Internally,
the	visualizer	runs	on	port	8080.	Since	nothing	else	in	our	cluster	runs	on	this	port,
we’ve	chosen	to	use	it	as	the	public	port	we	expose	(lines	3–4).

The	visualizer	relies	on	having	access	to	a	file	called	/var/run/docker.sock,	which	is
available	on	the	Dockerhost.	We	mount	it	into	the	container	as	a	volume	(line	6).

For	the	Curious:
‘/var/run/docker.sock‘

The	/var/run/docker.sock	file	is	a
socket	created	by	the	Docker
daemon	to	allow	other	processes	to

WOW! eBook
www.wowebook.org

communicate	with	it	via	a	(mostly)
RESTful	API.[130]	We	can	use	curl	to
try	it	out—for	example:

​ $ SOCKET=/var/run/docker.sock

​ $
ENDPOINT=http:/v1.37/containers/json

​ $ docker-machine ssh do-
manager-1 \

​ "curl --unix-socket
$SOCKET $ENDPOINT"

You	should	see	JSON	output	listing
the	various	containers.

See	the	API	documentation[131]	and
version	history[132]	for	further
details.

Next	come	lines	7–9.	We	haven’t	seen	the	deploy	attribute	for	a	service	before.
[133]	Swarm	uses	attributes	under	this	to	specify	various	deployment-related
configuration	options.	Here	we	specify	what’s	known	as	a	placement	constraint:
[134]

​ [node.role == manager]

This	says,	“Only	deploy	this	service	to	nodes	acting	as	a	swarm	manager.”	This
is	necessary	because	only	a	swarm	manager	will	have	the	full	information	about
the	swarm	that	the	visualizer	needs	to	display.

OK,	let’s	deploy	the	new	visualizer	service	to	our	swarm:

​ ​$ ​​docker​​ ​​stack​​ ​​deploy​​ ​​-c​​ ​​docker-stack.yml​​ ​​myapp​
​ Updating service myapp_database (id: tjlxqvm3vxop9flor3u4q21y2)

​ Creating service myapp_visualizer

​ Updating service myapp_db-migrator (id: zy14mg5nosigzi9i0ysr2f51y)

​ Updating service myapp_web (id: vo89apdhl4y0sfobb47ly8ctp)

​ Updating service myapp_redis (id: sxum5csqxwcujgy0g7418fv9y)

WOW! eBook
www.wowebook.org

Wait	until	the	visualizer	is	running—the	following	command	will	show	replicas
“1/1”	for	the	visualizer	service	when	it	is:

​ ​$ ​​docker​​ ​​stack​​ ​​services​​ ​​myapp​
​ ID NAME MODE REP… IMAGE PORTS

​ sx… myapp_redis rep… 1/1 redis:latest

​ tj… myapp_database rep… 1/1 postgres:latest

​ vo… myapp_web rep… 1/1 robisenberg/myapp_w… *:80->3000/tcp

​ za… myapp_visualizer rep… 0/1 dockersamples/visua… *:8080->8080/…

​ zy… myapp_db-migrator rep… 0/1 robisenberg/myapp_w…

Now	we	can	access	the	web	interface	for	the	visualizer	on	any	IP	address	in	our
swarm	on	port	8080.	Once	again,	to	get	the	IPs	for	our	DigitalOcean	nodes,	you
can	run:

​ ​$ ​​docker-machine​​ ​​ls​
​ NAME … … … URL … … …

​ do-manager-1 * … … tcp://46.101.90.10:2376 …

​ do-worker-1 - … … tcp://139.59.180.203:2376 …

​ do-worker-2 - … … tcp://142.93.32.124:2376 …

​ local-vm-1 - … … tcp://192.168.99.100:2376 …

For	example,	I	can	visit	http://139.59.180.203:8080	(your	IP	address	will	differ).
You	should	see	something	similar	to	the	following	image:

WOW! eBook
www.wowebook.org

We	see	three	columns:	one	for	each	of	our	nodes.	You	can	see	that	there’s	one
container	running	for	each	of	our	services,	with	the	containers	spread	across	the
cluster.	The	visualizer	service	is	running	on	our	manager	node—thanks	to	our
placement	constraint.

Keep	this	window	open,	as	it	will	be	useful	to	see	things	change	as	we…

WOW! eBook
www.wowebook.org

Scale	Up	the	Web	Service
Currently,	we	have	a	single	container	(or	replica)	of	each	service	running	on	our
swarm.	However,	with	Swarm,	we	can	scale	up	services	to	meet	real	or
anticipated	demand.	Here	we’re	talking	about	horizontally	scaling	your	app—
running	multiple	containers	for	a	service,	each	of	which	can	handle	a	certain
amount	of	load.

Ready	to	try	this	out?	Let’s	scale	our	web	service	up	to	run	three	containers;
watch	what	happens	in	the	visualizer	as	you	run	the	following	command:

​ ​$ ​​docker​​ ​​service​​ ​​scale​​ ​​myapp_web=3​
​ myapp_web scaled to 3

​ overall progress: 3 out of 3 tasks

​ 1/3: running [==>]

​ 2/3: running [==>]

​ 3/3: running [==>]

​ verify: Service converged

You	should	see	the	visualizer	updating	in	real	time	as	containers	are	launched
and	move	into	the	“running”	state.	When	the	command	has	completed,	you’ll	see
there	are	now	three	web	containers.	Notice	that	they	are	running	across	different
nodes	in	the	swarm,	as	shown	in	the	following	figure:

WOW! eBook
www.wowebook.org

If	you	weren’t	running	the	visualizer,	you	could	verify	how	many	containers	are
running	for	each	service	with:

​ ​$ ​​docker​​ ​​stack​​ ​​services​​ ​​myapp​
​ ID NAME MODE REP… IMAGE PORTS

​ sx… myapp_redis rep… 1/1 redis:latest

​ tj… myapp_database rep… 1/1 postgres:latest

​ vo… myapp_web rep… 3/3 robisenberg/myapp_w… *:80->3000/tcp

​ za… myapp_visualizer rep… 1/1 dockersamples/visua… *:8080->8080/…

​ zy… myapp_db-migrator rep… 0/1 robisenberg/myapp_w…

and	see	where	they’re	running	by	issuing	the	command:

​ ​$ ​​docker​​ ​​stack​​ ​​ps​​ ​​myapp​
​ ID NAME IMAGE … DESIRED… CURRENT… … …

​ 92… myapp_visualizer.1 docker… … Running Running…

​ gm… myapp_database.1 postgr… … Running Running…

​ g8… myapp_redis.1 redis:… … Running Running…

​ xx… myapp_web.1 robise… … Running Running…

​ kh… myapp_db-migrator… robise… … Shutdown Complet…

​ uz… myapp_web.2 robise… … Running Running…

​ hy… myapp_web.3 robise… … Running Running…

To	scale	a	service	down,	you	use	the	same	command	as	before,	but	specify	a

WOW! eBook
www.wowebook.org

lower	number	of	replicas	than	are	currently	running.	For	example,	to	scale	back
to	a	single	web	container,	we	can	run:

​ ​$ ​​docker​​ ​​service​​ ​​scale​​ ​​myapp_web=1​

Once	again,	in	the	visualizer,	you	should	see	only	a	single	web	container.

Although	we	can	scale	a	service	via	the	docker service scale	command,	sometimes
we	want	to	specify	this	at	deploy	time.	In	our	docker-stack.yml	file,	we	can	specify
the	number	of	containers	to	run	for	a	service	with	the	replicas	attribute	under
deploy.

Let’s	modify	our	docker-stack.yml	to	make	our	web	service	start	two	containers
when	it’s	deployed:

​ ​web:​
​ ​ image: ​robisenberg/myapp_web​:prod​
​ ​ports:​
​ ​ ​- ​"80:3000"​
​ ​env_file:​
​ ​ ​- .​env​/production/database
​ - .​env​/production/web
» ​deploy:​
» ​ replicas: ​2

Let’s	see	this	in	practice.	When	we	deploy	the	app:

​ ​$ ​​docker​​ ​​stack​​ ​​deploy​​ ​​-c​​ ​​docker-stack.yml​​ ​​myapp​
​ Updating service myapp_database (id: tjlxqvm3vxop9flor3u4q21y2)

​ Updating service myapp_visualizer (id: zame53zwvvmmm70m6njrf0zd2)

​ Updating service myapp_db-migrator (id: zy14mg5nosigzi9i0ysr2f51y)

​ Updating service myapp_web (id: vo89apdhl4y0sfobb47ly8ctp)

​ Updating service myapp_redis (id: sxum5csqxwcujgy0g7418fv9y)

we	should	now	see	our	two	web	containers	running	in	the	visualizer.

WOW! eBook
www.wowebook.org

Deploying	to	AWS	Instead	of	DigitalOcean
In	this	chapter,	we’ve	created	a	three-node	Swarm	cluster	running	on
DigitalOcean.	However,	you	may	be	thinking,	“That’s	all	very	well,	but	what
about	deploying	to	(insert	your	cloud	provider	of	choice)?”	Good	question.

Before	we	close	out	the	chapter,	we’re	going	to	see	what	it	would	take	to	deploy
our	app	to	a	second	cloud	provider:	AWS.	The	process	is	very	similar	to	that	for
DigitalOcean;	there	are	just	two	or	three	key	differences.

Here	are	the	steps:

1.	 Sign	up	for	an	AWS	account	if	you	don’t	already	have	one,	and	set	the
AWS	environment	variables:

​ export AWS_ACCESS_KEY_ID=<your access key id>

​ export AWS_SECRET_ACCESS_KEY=<your secret access key>

​ export AWS_DEFAULT_REGION=<your default region>

2.	 Create	the	manager	instance:

​ ​$ ​​docker-machine​​ ​​create​​ ​​\​
​ ​>​​ ​​--driver​​ ​​amazonec2​​ ​​\​
​ ​>​​ ​​--amazonec2-open-port​​ ​​80​​ ​​\​
​ ​>​​ ​​--amazonec2-open-port​​ ​​8080​​ ​​\​
​ ​>​​ ​​--amazonec2-region​​ ​​eu-west-2​​ ​​\​
​ ​>​​ ​​aws-manager-1​

Note	that	we	use	the	AWS-specific	--amazonec2-open-port	option	to	open	up
the	firewall	to	allow	us	to	hit	ports	80	(for	web)	and	8080	(for	visualizer).

3.	 Get	the	manager’s	internal	IP	address	as	before,	using:

​ ​$ ​​docker-machine​​ ​​ssh​​ ​​aws-manager-1​​ ​​"ifconfig eth0"​

4.	 Add	the	user	to	the	docker	group:

​ ​$ ​​docker-machine​​ ​​ssh​​ ​​aws-manager-1​​ ​​\​
​ ​ ​​'sudo usermod -a -G docker $USER'​

WOW! eBook
www.wowebook.org

With	DigitalOcean,	docker-machine’s	SSH	session	is	configured	to	connect	as
the	root	user.	However,	with	the	AWS	driver,	we	connect	via	SSH	as	the
ubuntu,	non-root	user.	In	order	to	have	permissions	to	run	Docker
commands,	we	add	the	ubuntu	user	to	the	docker	group.[135]

5.	 Initialize	the	swarm:

​ ​$ ​​docker-machine​​ ​​ssh​​ ​​aws-manager-1​​ ​​\​
​ ​ ​​"docker swarm init --advertise-addr 172.31.29.132"​

Capture	the	swarm	token	that	will	be	given	in	the	output.

6.	 Create	two	instances	and	connect	them	to	the	swarm:

​ SWARM_TOKEN=SWMTKN-1-3nzypy20thm9zd1whfsyu4kcmhxfnyo6hbivrgbec5yyz2o9yq-2

​ zvdcauxzl1ncs75oe8775qdg

​ for i in 1 2

​ do

​ ​ # create the node​
​ docker-machine create \

​ --driver amazonec2 \

​ --amazonec2-open-port 80 \

​ --amazonec2-region eu-west-2 \

​ ​ aws-worker-$​​i​
​
​ ​ # add ubuntu user to `docker` group​
​ docker-machine ssh aws-worker-$i \

​ 'sudo usermod -a -G docker $USER'

​
​ ​ # join the swarm​
​ docker-machine ssh aws-worker-$i \

​ "docker swarm join --token $SWARM_TOKEN 172.31.29.132:2377"

​ done

7.	 Point	our	CLI	to	the	manager:

​ eval $(docker-machine env aws-manager-1)

8.	 Update	security	group	to	allow	swarm	ports.

Docker’s	docs	say	that	Swarm	needs	the	following	ports	to	be	open:[136]

WOW! eBook
www.wowebook.org

•	TCP	port	2377	for	cluster	management	communications

•	TCP	and	UDP	port	7946	for	communication	among	nodes

•	UDP	port	4789	for	overlay	network	traffic

With	DigitalOcean,	these	ports	were	open	by	default.	However,	with	AWS,
it’s	a	little	more	complicated.	Docker	Machine	instances	are	added	to	a
security	group	called	docker-machine,	which	restricts	incoming	connections
(ingress)	to	a	small	number	of	ports	that	don’t	include	those	listed	above.
For	Swarm	to	work	correctly,	we	must	add	them.

Log	in	to	the	AWS	Console,	and	go	to	EC2	>	security	groups.	Click	on	the
docker-machine	security	group,	then	on	its	Inbound	Rules	tab.	Here,	click	to
edit	the	rules	and	add	the	missing	rules.	It’s	possible	to	automate	this
process	using	the	AWS	CLI.[137]

9.	 Deploy	the	app:

​ ​$ ​​docker​​ ​​stack​​ ​​deploy​​ ​​-c​​ ​​docker-stack.yml​​ ​​myapp​

10.	 You	should	now	be	able	to	reach	the	app	by	visiting	http://ip address of a

node/welcome.	You	can	list	the	node	IPs	by	doing:

​ ​$ ​​docker-machine​​ ​​ls​

Remember	to	Turn	Out	the	Lights
When	you’re	done	trying	things	out	in	this	chapter,	remember	to
stop	or	delete	your	cloud	instances	to	avoid	continued	charges.

To	stop	your	instances,	you	can	run:

​ ​$ ​​docker-machine​​ ​​stop​​ ​​<instance​​ ​​1>​​ ​​<instance​​ ​​2>​​ ​​...​

or	to	completely	remove	them,	run:

​ ​$ ​​docker-machine​​ ​​rm​​ ​​<instance​​ ​​1>​​ ​​<instance​​ ​​2>​​ ​​...​

WOW! eBook
www.wowebook.org

	Quick	Recap
Excellent!	We’ve	been	Docker	Machining	and	Swarming	like	a	boss.	We’ve
deployed	our	application	to	not	one,	but	two	cloud	providers,	creating	the
infrastructure	we	needed	as	we	went.

To	recap:

1.	 We	covered	the	steps	necessary	to	create	a	multinode	Swarm	cluster	on
DigitalOcean	or	AWS.

2.	 We	deployed	our	application	to	the	Swarm	cluster	by	making	our	Docker
CLI	target	the	manager	node:

​ ​$ ​​eval​​ ​​$(docker-machine​​ ​​env​​ ​​do-manager-1)​

and	then	deploying	the	application:

​ ​$ ​​docker​​ ​​stack​​ ​​deploy​​ ​​-c​​ ​​docker-stack.yml​​ ​​myapp​

3.	 We	used	the	visualizer	to	see	the	placement	of	containers	on	our	nodes.

4.	 We	learned	about	deploy:	options	that	can	be	specified	in	our	docker-stack.yml

file,	including	placement	constraints.[138]

5.	 We	scaled	up	the	service	using	both	the	command:

​ ​$ ​​docker​​ ​​service​​ ​​scale​​ ​​myapp_web=3​

and	by	specifying	the	number	of	replicas	for	a	service	in	our	docker-

stack.yml:

​ service:

​ deploy:

​ replicas: 2

It’s	sad	to	say,	but	our	Docker	adventures	(in	this	book	at	least)	are	coming	to	an
end.	In	the	next—and	final—chapter,	we’ll	draw	things	to	a	close,	and	give	you

WOW! eBook
www.wowebook.org

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

some	helpful	pointers	for	continuing	your	journey	with	Docker,	especially	when
it	comes	to	deploying	to	production.

Footnotes

https://www.digitalocean.com/pricing/

https://www.digitalocean.com

https://cloud.digitalocean.com/settings/api/tokens

https://docs.microsoft.com/en-
us/powershell/module/microsoft.powershell.core/about/about_environment_variables?
view=powershell-6#changing-environment-variables

https://docs.docker.com/machine/drivers/digital-ocean/#options

https://developers.digitalocean.com/documentation/v2/#regions

https://hub.docker.com/_/postgres/

https://docs.docker.com/develop/sdk/examples/

https://docs.docker.com/engine/api/v1.37/

https://docs.docker.com/engine/api/version-history/

https://docs.docker.com/compose/compose-file/#deploy

https://docs.docker.com/engine/reference/commandline/service_create/#specify-service-constraints---
constraint

https://docs.docker.com/install/linux/linux-postinstall/#manage-docker-as-a-non-root-user

https://docs.docker.com/engine/swarm/swarm-tutorial/#open-protocols-and-ports-between-the-hosts

https://semaphoreci.com/community/tutorials/bootstrapping-a-docker-swarm-mode-cluster

https://docs.docker.com/engine/reference/commandline/service_create/#specify-service-constraints---
constraint

Copyright	©	2019,	The	Pragmatic	Bookshelf.

WOW! eBook
www.wowebook.org

https://www.digitalocean.com/pricing/
https://www.digitalocean.com
https://cloud.digitalocean.com/settings/api/tokens
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_environment_variables?view=powershell-6#changing-environment-variables
https://docs.docker.com/machine/drivers/digital-ocean/#options
https://developers.digitalocean.com/documentation/v2/#regions
https://hub.docker.com/_/postgres/
https://docs.docker.com/develop/sdk/examples/
https://docs.docker.com/engine/api/v1.37/
https://docs.docker.com/engine/api/version-history/
https://docs.docker.com/compose/compose-file/#deploy
https://docs.docker.com/engine/reference/commandline/service_create/#specify-service-constraints---constraint
https://docs.docker.com/install/linux/linux-postinstall/#manage-docker-as-a-non-root-user
https://docs.docker.com/engine/swarm/swarm-tutorial/#open-protocols-and-ports-between-the-hosts
https://semaphoreci.com/community/tutorials/bootstrapping-a-docker-swarm-mode-cluster
https://docs.docker.com/engine/reference/commandline/service_create/#specify-service-constraints---constraint

Chapter	15

Closing	Thoughts	and	Next	Steps
	

Congratulations!	You’ve	made	it	to	the	end.

Let’s	take	a	moment	to	reflect	on	our	journey	throughout	this	book.	We	started
with	just	the	basics:	what	are	containers	and	images?	We	saw	how	Docker
provides	packaging	(images),	delivery	(automatic	pulling	of	images),	and	an
execution	runtime	(containers).	We	learned	how	these	fundamental	pieces
provide	a	new	way	of	thinking	about	software	delivery.

The	rest	of	the	book	has	been	an	extended	tutorial,	guiding	you	through	the
process	of	creating,	developing,	and	deploying	a	fully	featured	Rails	app	with
Docker.	We	generated	the	Rails	app	using	a	container,	and	we	created	a	custom
image	for	running	our	Rails	app,	which	we	gradually	enhanced.	We	introduced
Docker	Compose,	using	it	to	build	up	to	a	multiservice	application	with	Redis,	a
database	with	decoupled	volume	for	its	data.

We	made	our	Dockerized	setup	play	nice	with	JavaScript,	as	we	saw	how	to
work	with	both	the	standard	asset	pipeline	and	webpacker,	Rails’	newest	approach
for	integrating	modern	JavaScript	front	ends.	We	also	covered	how	to	test	our
app,	going	as	far	as	running	end-to-end	tests	relying	on	JavaScript	in	Chrome	in
both	headless	and	non-headless	mode.

However,	even	in	Docker-land,	nothing	is	perfect.	We	explored	a	couple	of
irritations	you	might	encounter	when	working	with	Docker,	and	we	did	our	best
to	mitigate	these.

WOW! eBook
www.wowebook.org

Finally,	we	started	our	journey	toward	production.	After	a	quick	tour	of	the
production	landscape	to	understand	the	capabilities	we	need	and	the	tools
available,	we	enhanced	our	app	to	be	deployable	in	a	production	environment.
We	learned	how	to	push	our	Docker	images	to	a	Registry,	making	them	available
for	delivery	to	other	machines.	Next	we	introduced	Swarm	and	used	it	to	create
our	very	own	production-like	playground	on	our	local	machine.	Finally,	we	took
this	to	the	next	level	and	deployed	our	app	to	the	Cloud,	using	a	three-node
cluster	on	both	DigitalOcean	and	AWS,	and	we	used	this	to	demonstrate
Swarm’s	scaling	capabilities.

That’s	a	heck	of	a	lot	to	have	achieved	(especially	for	a	book	of	this	size!).	I’ll
leave	the	choice	of	celebration	in	your	capable	hands,	although	I’d	urge	you	to
think	bigger	than	the	proverbial	pat	on	the	back.

However,	although	we’ve	started	our	journey	toward	production,	there’s	too
much	to	cover	to	get	to	a	fully	resilient,	CI/CD	pipeline-driven,	secure,	scalable
production	environment.	Hopefully,	you’ve	had	a	taste	of	the	power	that	Docker
offers,	and	you	can	see	its	potential	and	are	inspired	to	learn	more.

This	short	chapter	is	a	grab	bag	of	various	things	we	couldn’t	squeeze	in
elsewhere.	As	well	as	planting	some	seeds	of	ideas	in	your	mind	that	you’ll	find
useful,	this	chapter	will	provide	you	some	pointers	on	continuing	your	journey
with	Docker.

WOW! eBook
www.wowebook.org

What	Should	I	Learn	About	Next?
Great	question.	As	you	no	doubt	are	aware,	our	learning	never	ends.	The	more
you	know,	the	more	you	realize	you	don’t	know.	C’est	la	vie.

To	help	in	this	effort,	I’m	going	to	share	my	thoughts	on	(what	I	consider	to	be)
valuable	areas	for	further	learning.	For	each	topic,	I’ll	provide	a	brief	summary,
but	you’ll	have	to	do	a	bit	of	digging	to	learn	more	and	think	about	how	to	apply
these	to	your	application.	Some	areas	will	be	more	or	less	appealing	and	more	or
less	useful	in	your	situation,	so	dig	deeper	into	the	areas	you	need,	and	feel	free
to	leave	what	you	don’t.

Enjoy!

Limiting	Resources
As	you	run	more	containers	in	your	cluster,	you	may	find	the	need	to	constrain
the	CPU	resources	and	memory	given	to	certain	containers.	Both	Swarm[139]	and
Kubernetes[140]	provide	a	way	to	specify	limits	on	the	resources	a	container	is
allowed.

Here’s	an	example	with	Swarm	that	means	containers	for	some-service	will	only
receive	a	maximum	of	50	MB	of	memory,	and	one	tenth	of	a	single	CPU	core.

​ services:

​ some-service:

​ deploy:

​ resources:

​ limits:

​ cpus: ​"0.1"​
​ memory: 50M

Autoscaling
What’s	better	than	running	a	command	to	scale	up	a	service?	Running	no
commands	to	scale	up	a	service.	This	is	known	as	autoscaling.	It	involves
monitoring	key	usage	and	load	metrics	for	containers	and	detecting	when	they

WOW! eBook
www.wowebook.org

get	close	to	becoming	overloaded.	At	this	point,	the	new	containers	for	the
service	are	launched	to	meet	with	additional	demand.	As	the	load	dies	down,	this
is	again	detected,	and	the	service	is	scaled	back	down,	freeing	up	more
resources.

Unfortunately,	Swarm	does	not	provide	built-in	autoscaling,	although	it’s
possible	to	engineer	it	yourself	with	each	node	in	the	cluster	exporting	metrics
(using	something	like	cadvisor[141]	to	a	central	metric	service,	such	as
Prometheus[142]).	If	that	sounds	like	too	much	work,	you	could	consider	one	of
various	open	source	solutions,	such	as	Orbiter.[143]	Your	final	option	is	to	switch
to	using	Kubernetes[144]	for	your	container	orchestration.	Although	more
complex,	it	is	more	fully	featured	and	has	autoscaling	built	in.[145]

Zero-Downtime,	Blue-Green	Deploys
The	pinnacle	of	a	good	continuous	deployment	pipeline	is	being	able	to	deploy
updates	to	your	app	in	a	seamless,	safe	way,	with	no	downtime	or	impact	on
users.	Typically,	this	is	achieved	with	blue-green	deploys,	where	a	second
version	of	the	application	is	started,	and	then	traffic	is	(usually	gradually)	cut
over	to	the	new	version	of	the	app.	The	previous	version	of	the	app	is	kept
around	(at	least	for	a	while)	in	case	a	problem	emerges	that	means	you	need	to
roll	back.

Docker	Swarm	provides	some	capabilities	for	performing	these	type	of	rolling
updates.[146]	While	this	can	be	useful,	unfortunately	Swarm	currently	doesn’t
support	session	affinity,	also	known	as	sticky	sessions.	That	is,	once	an	updated
version	of	your	app	has	been	deployed,	any	new	sessions	will	be	handled	by	this
latest	version,	but	any	existing	user	sessions	will	continue	to	be	serviced	by	the
old	version.	This	is	important	because	the	old	version	may	be	incompatible	with
your	updated	version	of	the	app	in	some	way,	particularly	if	routes	or	database
schemas	have	changed.

You	can	still	achieve	zero-downtime	deploys	with	Swarm,	but	it	will	involve
some	extra	work,	typically	requiring	you	to	run	a	reverse	proxy	in	front	of	the
app	that	does	provide	session	affinity.	Zero-downtime	deploys	can	also	be

WOW! eBook
www.wowebook.org

achieved	with	Kubernetes,	but	this	similarly	involves	some	work.[147]

Security
It’s	beyond	the	scope	of	this	book	to	teach	you	the	ins	and	outs	of	securing	your
cloud-based	infrastructure,	but	if	you’re	building	a	production	environment,	this
will	be	a	key	area	to	get	right.	Unfortunately,	there’s	no	one-size-fits-all
approach,	particularly	as	things	can	vary	greatly	between	cloud	platforms.

A	good	starting	place	is	Docker’s	own	docs	on	the	subject.[148]	Make	sure	you	see
the	various	pages	under	“Security”	in	the	menu—there’s	no	“Next”	button	at	the
bottom	of	the	page.	Key	topics	are:	only	using	trusted	images,	scanning	images
for	vulnerabilities,	not	running	containers	as	root,[149]	and	locking	down	firewalls
to	the	bare	minimum	ports	required,	plus	more	involved	ways	to	lock	down	your
Docker	installation.

More	Advanced	Architectural	Possibilities
So	far	we’ve	used	Swarm’s	built-in	load-balancing	capabilities	to	distribute
incoming	requests	to	different	containers	backing	a	given	service.	However,	as
you	get	more	experienced,	you	may	want	to	use	more	sophisticated	setups	with
things	like	HAProxy[150]	or	NGINX[151]	to	do	your	own	proxying	and	load
balancing.

Not	only	is	this	possible,	but	you	can	run	HAProxy	or	NGINX	instances	in
containers	themselves,	building	your	own	images	with	your	config	files.	You	can
also	use	Docker’s	network	primitives[152]	to	create	different	network
configurations.	This	can	allow	you	to	wall	off	containers	from	each	other	and
control	which	containers	can	communicate	with	others.

Secret	Management
In	this	book,	we	followed	many	of	the	twelve-factor	app	principles.[153]	For
example,	we	externalized	our	app	config,	making	it	available	as	environment
variables.[154]	However,	it	turns	out	that	environment	variables	aren’t	particularly
secure—they’re	available	to	the	entire	process,	easily	leaked,	and	violate	the
principle	of	least	privilege.[155]	Docker	offers	a	more	secure,	built-in	option

WOW! eBook
www.wowebook.org

called	Docker	secrets.[156]

Docker	secrets	are	added	to	a	swarm	with	the	docker secret create	command
(having	first	targeted	a	swarm	manager).	Alternatively,	you	can	specify	secrets	in
your	deploy	file	(in	Compose	format).[157]

Secrets	are	encrypted	inside	Swarm’s	data	structures	that	store	them	(encryption
at	rest),	as	well	as	on	their	entire	journey	to	reach	the	containers	that	need	them
(encryption	in	transit).	They	are	made	available	to	a	container	via	an	in-memory
filesystem	that’s	mounted	at	/run/secrets/<secret_name>.	Only	containers	explicitly
given	access	to	a	secret	are	able	to	access	it.

There’s	even	a	built-in	mechanism	for	rotating	secrets,[158]	which	makes	it	more
likely	you’ll	do	the	Right	Thing	and	rotate	your	secrets	frequently.

Restarting	on	Failure
By	default,	when	the	process	running	inside	a	container	terminates,	the	container
is	stopped.	Sometimes,	this	behavior	is	exactly	what	we	want.	For	example,	our
database-migrator	service	is	supposed	to	do	its	job	of	migrating	the	database	and
then	exit.

However,	what	about	our	Rails	app	containers	running	in	production?	If
something	goes	wrong	that	causes	the	app	to	crash	(for	example,	in	the	case	of	a
memory	leak),	it	would	be	nice	if	the	containers	themselves	could	be	resilient
and	handle	failures	more	gracefully.	Who	wants	to	be	woken	in	the	middle	of	the
night	to	fix	issues?

Docker	allows	you	to	define	a	restart	policy	that	says	how	it	should	behave
when	the	container	terminates.[159]	By	setting	this	to	on-failure:

​ deploy:

​ restart_policy:

​ condition: on-failure

Swarm	will	now	automatically	restart	our	Rails	app	were	it	to	crash.	Here’s	a
good	article	with	more	details.[160]

WOW! eBook
www.wowebook.org

Multi-stage	Builds
Large	Docker	images	are	slower	to	push	and	pull.	As	you	become	more
experienced	with	Docker,	you’ll	want	to	find	ways	to	make	your	images.	Since
version	17.05,	Docker	has	had	a	feature	called	multi-stage	builds[161]—this	lets
you	use	multiple	FROM	statements	in	a	single	Dockerfile.	Each	new	FROM	is
considered	a	new	stage,	and	starts	as	a	fresh	new	image.	However,	the	COPY

instruction	has	been	enhanced	to	let	you	copy	files	from	earlier	stages.

The	most	obvious	use	case	is	where	you	need	a	lot	of	development	tools	that
produce	a	final	artifact.	Think	of	a	static	site	generator	like	Jekyll[162]	or
Middleman[163]—you	need	various	tools	to	develop	and	generate	the	site,	but
once	the	static	files	are	generated,	they’re	the	only	thing	needed	to	run	the	site.
Multi-stage	builds	let	you	create	an	initial	stage	that	generates	the	site,	and	a
separate,	final	stage	that	copies	those	files	into	a	clean	web	server	image.	The
same	goes	for	compiled	languages	like	Go	where,	typically,	the	only	thing	you
need	to	include	in	your	final	image	is	the	compiled	binary.

In	the	case	of	our	Rails	app,	a	quick	win	could	be	copying	the	precompiled
assets	into	a	final	image,	avoiding	the	need	for	all	the	JavaScript	dependencies.
There	are	other	ways	to	save	space	if	you	think	creatively	and	see	what	other
people	are	doing.

Docker	Stats
Often,	especially	in	production,	it’s	useful	to	have	a	quick	way	to	find	out
metrics	about	the	resources	being	used.	The	Docker	docs[164]	provide	some	useful
information	on	various	metrics	you	can	check	out.

One	of	the	simplest	and	most	useful	is	the	docker stats	command.	This	provides
various	metrics,	including	CPU,	memory	usage,	and	network	IO,	which	can	be
helpful	for	monitoring	or	debugging	containers	in	production.

Here’s	an	example	from	Docker’s	docs:[165]

​ ​$ ​​docker​​ ​​stats​​ ​​redis1​​ ​​redis2​
​

WOW! eBook
www.wowebook.org

​ CONTAINER CPU % MEM USAGE / LIMIT MEM % NET I/O BLOCK I/O

​ redis1 0.07% 796 KB / 64 MB 1.21% 788 B / 648 B ...

​ redis2 0.07% 2.746 MB / 64 MB 4.29% 1.266 KB / 648 B ...

Sharing	Config	Between	Compose	Files
We’re	currently	maintaining	two	files	in	Compose	format:	docker-compose.yml	and
docker-compose.prod.yml.	You	may	find	that,	as	you	develop	your	app,	you	notice
quite	a	lot	of	duplication	between	the	Compose	files	for	different	environments.

Compose	provides	a	mechanism	that	lets	you	extract	the	commonalities.[166]	It
does	this	by	allowing	you	to	specify	multiple	Compose	files:

​ docker-compose -f <file1> -f <file2> ... -f <fileN> up -d

Compose	merges	the	config	from	the	specified	files,	with	config	in	later	files
taking	precedence	over	config	in	earlier	files.

As	always,	keeping	or	eliminating	duplication	both	have	trade-offs.	On	the	plus
side,	extracting	the	duplication	to	a	common	file	makes	the	differences	between
your	environments	clearer—these	are	the	parts	you	will	have	to	specify	for	an
environment	beyond	the	common	base.	It	also	(potentially)	makes	it	(marginally)
quicker	to	update	the	config	for	both	sets	of	services.	On	the	downside,	you	have
to	piece	together	the	definitions	from	multiple	files	to	understand	your	app	as	a
whole.	As	you	can	probably	tell,	this	is	an	instance	where	I	think	the	benefits	of
keeping	the	duplication	outweigh	our	programmer	instinct	to	keep	things	DRY.
[167]

However,	it’s	worth	knowing	you	have	this	option	at	your	disposal	should	you
need	it.	For	example,	this	can	also	be	put	to	use	to	keep	common,	one-off
container	admin	tasks	in	a	separate	Compose	file,	rather	than	the	same	one	as	the
application.

Database	Resiliency
Ensuring	we	back	up	our	production	database	regularly	is	critical	to	ensure	we
can	recover	in	case	of	error;	it’s	possible	to	back	up	a	database	by	running	the
normal	database	dump	command	inside	a	container.	However,	what’s	slightly

WOW! eBook
www.wowebook.org

trickier	is	how	to	make	this	happen	automatically	in	production.

There	are	a	number	of	different	ways	to	handle	this:

Platform-specific.	Some	container	platforms	allow	you	to	schedule
containers	(for	example,	Amazon	ECS	scheduled	tasks).[168]	Using	these
schedulers,	you	can	run	containers	to	back	up	the	database	at	regular
intervals.	Additionally,	platforms	may	offer	backup	capabilities;	for
example,	Amazon	Elastic	Block	Store	(Amazon	EBS)	volumes	provide
automated	incremental	snapshotting	capabilities.[169]	This	can	be	a	low-
hassle,	reliable	approach	to	maintaining	backups.

Cron	running	on	the	Dockerhost.	There’s	nothing	stopping	you	from	setting
up	cron	or	a	similar	scheduler	on	your	Dockerhost	that	triggers	a	container
(or	noncontainerized	script)	for	backing	up	the	database.	Some	people	like
this	approach,	particularly	because	of	its	simplicity.	However,	the	downside
is	the	risk	that	your	Dockerhost	becomes	a	special	snowflake	that’s	harder
to	maintain.	Your	database	backup	mechanism	is	living	outside	of	your
containerization,	so	you	lose	all	the	benefits	that	brings.

Use	third-party	tools.	For	example,	Barman	for	Postgres.[170]

Containers	on	Autopilot
There’s	a	broader	approach	that’s	beginning	to	emerge	known	as	the	autopilot
pattern.[171]	This	involves	baking	standard	operational	tasks	(such	as	scaling	and
resiliency)	directly	into	your	containerized	services	themselves.

Rather	than	maintaining	this	operational	logic	spread	externally	with	schedulers
and	separate	task-based	containers,	your	app	containers	have	the	smarts	to
perform	their	own	life-cycle	management.	For	example,	imagine	launching	a
Postgres	container	configured	to	check	if	its	database	was	populated,	and	if	it
finds	that	it	wasn’t,	goes	and	fetches	and	restores	the	latest	backup.	Done	well,
maintenance	and	resiliency	become	automatic.

Joyent[172]	has	been	championing	this	approach,	with	several[173]	compelling

WOW! eBook
www.wowebook.org

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

articles[174]	on	the	subject.	It	also	provides	an	open	source	tool	called
ContainerPilot[175]	to	help	with	the	coordination	of	life-cycle	events.
Alternatively,	you	can	roll	your	own	solution.	I	suspect	we’ll	see	more	in	this
space	over	time.

Database	Replication	and	High	Availability
To	replicate	your	database,	you	typically	need	to	rely	on	the	built-in	capabilities
of	your	database	(rather	than	a	super	naive	approach	of	trying	to	use	a	shared
filesystem).

Postgres	offers	many	different	options	for	clustering.[176]	Rather	than	reinventing
the	wheel,	however,	you	can	leverage	the	work	that	others	have	done	in	this	area
—for	example:

Patroni[177]
Barman[178]
Crunchy[179]

You’ll	find	similar	work	has	been	done	for	clustering	and	replicating	other
databases	too.

Footnotes

https://docs.docker.com/config/containers/resource_constraints/

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

https://github.com/google/cadvisor

https://prometheus.io

https://github.com/gianarb/orbiter

https://kubernetes.io

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/

https://medium.com/@diegomrtnzg/redirect-your-users-to-the-same-pod-by-using-session-affinity-on-
kubernetes-baebf6a1733b

WOW! eBook
www.wowebook.org

https://docs.docker.com/config/containers/resource_constraints/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://github.com/google/cadvisor
https://prometheus.io
https://github.com/gianarb/orbiter
https://kubernetes.io
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/
https://medium.com/@diegomrtnzg/redirect-your-users-to-the-same-pod-by-using-session-affinity-on-kubernetes-baebf6a1733b

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

https://docs.docker.com/engine/security/security/

https://docs.docker.com/engine/security/userns-remap/

http://www.haproxy.org

https://www.nginx.com

https://docs.docker.com/v17.09/engine/swarm/networking/

https://12factor.net

https://12factor.net/config

http://movingfast.io/articles/environment-variables-considered-harmful/

https://docs.docker.com/engine/swarm/secrets/

https://docs.docker.com/engine/swarm/secrets/#use-secrets-in-compose

https://docs.docker.com/engine/swarm/secrets/#example-rotate-a-secret

https://docs.docker.com/config/containers/start-containers-automatically/#use-a-restart-policy

https://blog.codeship.com/ensuring-containers-are-always-running-with-dockers-restart-policy/

https://docs.docker.com/develop/develop-images/multistage-build/

https://jekyllrb.com

https://middlemanapp.com

https://docs.docker.com/config/containers/runmetrics/

https://docs.docker.com/config/containers/runmetrics/#docker-stats

https://docs.docker.com/compose/extends/

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/scheduled_tasks.html

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/snapshot-lifecycle.html

https://www.pgbarman.org/about/

http://autopilotpattern.io

https://www.joyent.com

https://www.joyent.com/blog/app-centric-micro-orchestration

WOW! eBook
www.wowebook.org

https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/userns-remap/
http://www.haproxy.org
https://www.nginx.com
https://docs.docker.com/v17.09/engine/swarm/networking/
https://12factor.net
https://12factor.net/config
http://movingfast.io/articles/environment-variables-considered-harmful/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/#use-secrets-in-compose
https://docs.docker.com/engine/swarm/secrets/#example-rotate-a-secret
https://docs.docker.com/config/containers/start-containers-automatically/#use-a-restart-policy
https://blog.codeship.com/ensuring-containers-are-always-running-with-dockers-restart-policy/
https://docs.docker.com/develop/develop-images/multistage-build/
https://jekyllrb.com
https://middlemanapp.com
https://docs.docker.com/config/containers/runmetrics/
https://docs.docker.com/config/containers/runmetrics/#docker-stats
https://docs.docker.com/compose/extends/
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/scheduled_tasks.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/snapshot-lifecycle.html
https://www.pgbarman.org/about/
http://autopilotpattern.io
https://www.joyent.com
https://www.joyent.com/blog/app-centric-micro-orchestration

[175]

[176]

[177]

[178]

[179]

https://www.joyent.com/blog/persistent-storage-patterns

https://www.joyent.com/containerpilot

https://wiki.postgresql.org/wiki/Replication,_Clustering,_and_Connection_Pooling

https://github.com/zalando/patroni

https://hub.docker.com/r/postdock/barman/

http://info.crunchydata.com/blog/an-easy-recipe-for-creating-a-postgresql-cluster-with-docker-swarm

Copyright	©	2019,	The	Pragmatic	Bookshelf.

WOW! eBook
www.wowebook.org

https://www.joyent.com/blog/persistent-storage-patterns
https://www.joyent.com/containerpilot
https://wiki.postgresql.org/wiki/Replication,_Clustering,_and_Connection_Pooling
https://github.com/zalando/patroni
https://hub.docker.com/r/postdock/barman/
http://info.crunchydata.com/blog/an-easy-recipe-for-creating-a-postgresql-cluster-with-docker-swarm

Appendix	1

Platform	Differences
	

Although	Docker	strives	for	complete	platform	independence,	there’s	at	least
one	notable	way	in	which	the	platforms	differ.	Let’s	take	a	quick	look	and	see
what	the	deal	is.

WOW! eBook
www.wowebook.org

File	Ownership	and	Permissions
There	are	some	subtle	differences	when	it	comes	to	how	file	ownership	and
permissions	are	handled	on	the	different	Docker	platforms	(Mac,	Linux,	and
Windows).	These	differences	can	cause	a	slight	issue	when	you	write	files	to	a
mounted	volume	from	inside	a	container.

The	issue	stems	from	the	fact	that	there	are	usually	different	user	accounts	being
used	inside	and	outside	a	container.	Typically,	you	use	your	normal	user	account
on	your	machine,	but	inside	a	container,	the	default	user	is	the	container’s	root

account.	This	means	that	files	created	inside	the	container	are	owned	by	that	root

user.

When	you	exit	the	container,	the	question	is,	will	you	be	able	to	modify	these
files	that	are	owned	by	root?	The	answer	is	slightly	different	for	each	platform.

On	Docker	for	Windows,	files	created	inside	the	container	have	file	permissions
that	allow	them	to	be	modified	by	anyone	(the	equivalent	of	Unix	file	permission
777).	This	means	there’s	no	issue	with	using	and	modifying	the	files	outside	the
container.

Docker	for	Mac	uses	its	own	separate	file-sharing	system	called	osxfs.[180]	It	does
some	trickery[181]	to	make	it	seem	like	the	mounted	files	are	owned	by	whichever
user	in	the	container	accesses/creates	them.	However,	in	reality,	the	files	on	your
local	filesystem	are	owned	by	whichever	macOS	user	account	owns	them.	In
practice,	this	means	that	mounted	files	are	readable	and	writeable	both	inside
and	outside	the	container	without	having	to	modify	file	ownership.

On	Linux,	there	is	no	magic	or	trickery	to	insulate	you	from	the	file	ownership
differences	between	inside	a	container	and	outside	the	container	on	your	local
machine.	If	files	inside	the	container	are	owned	by	root,	then	outside	the
container	they	are	still	owned	by	root.	We	always	have	to	do	something	to	ensure
files	generated	inside	our	container	are	editable	by	us	outside	the	container.

WOW! eBook
www.wowebook.org

[180]

[181]

We	can	take	one	of	two	approaches:

1.	 Use	the	--user "$(id -u):$(id -g)"	option,	which	runs	the	command	with	your
local	user’s	ID	and	group	ID—for	example:

​ ​$ ​​docker-compose​​ ​​exec​​ ​​--user​​ ​​"$(id -u):$(id -g)"​​ ​​web​​ ​​\​
​ ​ ​​bin/rails​​ ​​generate​​ ​​controller​​ ​​welcome​​ ​​index​

2.	 chown	the	files	by	running	the	following	from	your	Rails	root:

​ ​$ ​​sudo​​ ​​chown​​ ​​<your_user>:<your_group>​​ ​​-R​​ ​​.​

For	me,	the	latter	seems	the	most	straightforward,	and	this	is	the	one	I	suggest
throughout	the	book.	To	save	on	typing,	you	could	even	create	a	Rake	task	or
shell	command	alias.

Footnotes

https://docs.docker.com/docker-for-mac/osxfs/

https://stackoverflow.com/questions/43097341/docker-on-macosx-does-not-translate-file-ownership-
correctly-in-volumes

Copyright	©	2019,	The	Pragmatic	Bookshelf.

WOW! eBook
www.wowebook.org

https://docs.docker.com/docker-for-mac/osxfs/
https://stackoverflow.com/questions/43097341/docker-on-macosx-does-not-translate-file-ownership-correctly-in-volumes

Appendix	2

Finding	Images	to	Use
	

Throughout	the	book,	we	use	a	number	of	different	known	images.	You	may	be
wondering	how	you’d	find	images	to	use	if	you	had	to	do	this	yourself.	By	the
time	you	finish	this	book,	it’s	important	for	you	to	be	self-sufficient	and	able	to
figure	things	out	for	yourself,	so	let’s	delve	into	this	now.

Imagine	we	want	to	run	a	Postgres	database,	and	we	need	to	find	an	image	that
provides	it.	There	are	two	ways	you	can	go	about	finding	images:	using	Docker
Hub—Docker’s	online	service	for	storing	images—or	Docker’s	command-line
interface	(CLI.)	Let’s	look	at	both	in	turn.

WOW! eBook
www.wowebook.org

Using	Docker	Hub
You	may	remember	we’ve	already	visited	Docker	Hub	to	create	our	account
there	in	Chapter	1.	Let’s	visit	it	again	and	see	how	we	can	use	it	to	find	images.

Go	to	https://hub.docker.com	in	your	browser.	Type	“postgres”	in	the	main
search	box	and	press	 Enter .	You	should	see	a	results	screen	that	looks	like	the
following:

The	top	result	should	be	the	official	Postgres	image.	Click	that,	and	it	will	take
you	to	the	following	information	page:[182]

WOW! eBook
www.wowebook.org

https://hub.docker.com

The	really	great	thing	about	these	Docker	Hub	repository	pages	is	that	image
providers—Postgres,	in	this	case—can,	and	usually	do,	provide	detailed
information	on	how	to	use	the	image.

I	recommend	sticking	with	Docker	Official	Images[183]	wherever	possible	since
these	are	vetted	for	security	vulnerabilities	by	Docker,	and	they	commit	to
applying	security	updates	in	a	timely	manner.	Outside	of	these,	you	have	no
guarantees	about	what	software	an	image	may	be	running	or	how	quickly	the
image	is	updated.

WOW! eBook
www.wowebook.org

[182]

[183]

Thank	you!
How	did	you	enjoy	this	book?	Please	let	us	know.	Take	a	moment	and	email	us	at
support@pragprog.com	with	your	feedback.	Tell	us	your	story	and	you	could	win
free	ebooks.	Please	use	the	subject	line	“Book	Feedback.”

Ready	for	your	next	great	Pragmatic	Bookshelf	book?	Come	on	over	to
https://pragprog.com	and	use	the	coupon	code	BUYANOTHER2019	to	save	30%	on

Using	the	Docker	CLI
The	other	way	to	find	images	is	by	using	the	Docker	CLI.	For	example,	to	find
Postgres-related	images,	you	would	use	the	following	command:

​ ​$ ​​docker​​ ​​search​​ ​​postgres​

If	you	run	this	now,	you’ll	see	output	similar	to	the	following:

​ NAME DESCRIPTION STARS OFFICIAL AUTOMATED

​ postgres The PostgreSQL object-r... 3828 [OK]

​ kiasaki/alpine-postgres PostgreSQL docker image... 33 [OK]

​ nornagon/postgres 10 [OK]

​ macadmins/postgres Postgres that accepts r... 8 [OK]

​ ...

As	you	can	see,	the	official	postgres	image	is	shown	first,	along	with	several
others.	Images	are	shown	in	order	of	the	number	of	times	the	image	has	been
“starred,”	which	is	an	indication	of	how	popular	the	image	is.	The	output	also
has	a	column	to	tell	us	whether	this	is	an	official	(in	other	words,	Docker-
approved)	image	or	not.	Again,	stick	with	official	images	from	Docker	Hub
wherever	possible.

Footnotes

https://hub.docker.com/_/postgres/

https://docs.docker.com/docker-hub/official_images/

Copyright	©	2019,	The	Pragmatic	Bookshelf.

WOW! eBook
www.wowebook.org

https://hub.docker.com/_/postgres/
https://docs.docker.com/docker-hub/official_images/
https://pragprog.com

your	next	ebook.

Void	where	prohibited,	restricted,	or	otherwise	unwelcome.	Do	not	use	ebooks	near
water.	If	rash	persists,	see	a	doctor.	Doesn’t	apply	to	The	Pragmatic	Programmer
ebook	because	it’s	older	than	the	Pragmatic	Bookshelf	itself.	Side	effects	may
include	increased	knowledge	and	skill,	increased	marketability,	and	deep	satisfaction.
Increase	dosage	regularly.

And	thank	you	for	your	continued	support,

Andy	Hunt,	Publisher

WOW! eBook
www.wowebook.org

Agile	Web	Development	with	Rails	5.1
Learn	Rails	the	way	the	Rails	core	team	recommends	it,
along	with	the	tens	of	thousands	of	developers	who	have
used	this	broad,	far-reaching	tutorial	and	reference.	If
you’re	new	to	Rails,	you’ll	get	step-by-step	guidance.	If
you’re	an	experienced	developer,	get	the	comprehensive,
insider	information	you	need	for	the	latest	version	of
Ruby	on	Rails.	The	new	edition	of	this	award-winning

classic	is	completely	updated	for	Rails	5.1	and	Ruby	2.4,	with	information	on
system	testing,	Webpack,	and	advanced	JavaScript.

Sam	Ruby	and	David	Bryant	Copeland

(494	pages)	ISBN:	9781680502510	$57.95

Rails	5	Test	Prescriptions
Does	your	Rails	code	suffer	from	bloat,	brittleness,	or
inaccuracy?	Cure	these	problems	with	the	regular
application	of	test-driven	development.	You’ll	use	Rails
5.2,	Minitest	5,	and	RSpec	3.7,	as	well	as	popular	testing
libraries	such	as	factory_bot	and	Cucumber.	Updates
include	Rails	5.2	system	tests	and	Webpack	integration.
Do	what	the	doctor	ordered	to	make	your	applications

feel	all	better.	Side	effects	may	include	better	code,	fewer	bugs,	and	happier
developers.

Noel	Rappin

You	May	Be	Interested	In…
Select	a	cover	for	more	information

WOW! eBook
www.wowebook.org

http://pragmaticprogrammer.com/titles/rails51
http://pragmaticprogrammer.com/titles/nrtest3

(404	pages)	ISBN:	9781680502503	$47.95

Exercises	for	Programmers
When	you	write	software,	you	need	to	be	at	the	top	of	your
game.	Great	programmers	practice	to	keep	their	skills	sharp.
Get	sharp	and	stay	sharp	with	more	than	fifty	practice
exercises	rooted	in	real-world	scenarios.	If	you’re	a	new
programmer,	these	challenges	will	help	you	learn	what	you
need	to	break	into	the	field,	and	if	you’re	a	seasoned	pro,
you	can	use	these	exercises	to	learn	that	hot	new	language

for	your	next	gig.

Brian	P.	Hogan

(118	pages)	ISBN:	9781680501223	$24

A	Common-Sense	Guide	to	Data	Structures	and	Algorithms
If	you	last	saw	algorithms	in	a	university	course	or	at	a
job	interview,	you’re	missing	out	on	what	they	can	do
for	your	code.	Learn	different	sorting	and	searching
techniques,	and	when	to	use	each.	Find	out	how	to	use
recursion	effectively.	Discover	structures	for	specialized
applications,	such	as	trees	and	graphs.	Use	Big	O
notation	to	decide	which	algorithms	are	best	for	your

production	environment.	Beginners	will	learn	how	to	use	these	techniques
from	the	start,	and	experienced	developers	will	rediscover	approaches	they
may	have	forgotten.

Jay	Wengrow

(220	pages)	ISBN:	9781680502442	$45.95

WOW! eBook
www.wowebook.org

http://pragmaticprogrammer.com/titles/bhwb
http://pragmaticprogrammer.com/titles/jwdsal

Your	Code	as	a	Crime	Scene
Jack	the	Ripper	and	legacy	codebases	have	more	in
common	than	you’d	think.	Inspired	by	forensic
psychology	methods,	this	book	teaches	you	strategies	to
predict	the	future	of	your	codebase,	assess	refactoring
direction,	and	understand	how	your	team	influences	the
design.	With	its	unique	blend	of	forensic	psychology	and
code	analysis,	this	book	arms	you	with	the	strategies	you

need,	no	matter	what	programming	language	you	use.

Adam	Tornhill

(218	pages)	ISBN:	9781680500387	$36

The	Nature	of	Software	Development
You	need	to	get	value	from	your	software	project.	You
need	it	“free,	now,	and	perfect.”	We	can’t	get	you	there,
but	we	can	help	you	get	to	“cheaper,	sooner,	and	better.”
This	book	leads	you	from	the	desire	for	value	down	to
the	specific	activities	that	help	good	Agile	projects
deliver	better	software	sooner,	and	at	a	lower	cost.	Using
simple	sketches	and	a	few	words,	the	author	invites	you

to	follow	his	path	of	learning	and	understanding	from	a	half	century	of
software	development	and	from	his	engagement	with	Agile	methods	from
their	very	beginning.

Ron	Jeffries

(176	pages)	ISBN:	9781941222379	$24

WOW! eBook
www.wowebook.org

http://pragmaticprogrammer.com/titles/atcrime
http://pragmaticprogrammer.com/titles/rjnsd

Mazes	for	Programmers
A	book	on	mazes?	Seriously?	Yes!	Not	because	you
spend	your	day	creating	mazes,	or	because	you
particularly	like	solving	mazes.	But	because	it’s	fun.
Remember	when	programming	used	to	be	fun?	This
book	takes	you	back	to	those	days	when	you	were
starting	to	program,	and	you	wanted	to	make	your	code
do	things,	draw	things,	and	solve	puzzles.	It’s	fun

because	it	lets	you	explore	and	grow	your	code,	and	reminds	you	how	it	feels
to	just	think.	Sometimes	it	feels	like	you	live	your	life	in	a	maze	of	twisty
little	passages,	all	alike.	Now	you	can	code	your	way	out.

Jamis	Buck

(286	pages)	ISBN:	9781680500554	$38

Good	Math
Mathematics	is	beautiful—and	it	can	be	fun	and	exciting	as
well	as	practical.	Good	Math	is	your	guide	to	some	of	the
most	intriguing	topics	from	two	thousand	years	of
mathematics:	from	Egyptian	fractions	to	Turing	machines;
from	the	real	meaning	of	numbers	to	proof	trees,	group
symmetry,	and	mechanical	computation.	If	you’ve	ever
wondered	what	lay	beyond	the	proofs	you	struggled	to

complete	in	high	school	geometry,	or	what	limits	the	capabilities	of	the
computer	on	your	desk,	this	is	the	book	for	you.

Mark	C.	Chu-Carroll

(282	pages)	ISBN:	9781937785338	$34

WOW! eBook
www.wowebook.org

http://pragmaticprogrammer.com/titles/jbmaze
http://pragmaticprogrammer.com/titles/mcmath

	Acknowledgements
	Introduction
	What Is Docker?
	Why Use Docker?
	Who Should Read This Book?
	What’s in This Book?
	How to Read This Book
	Which Operating Systems Are Supported?
	Online Resources

	Part I. Development
	1. A Brave New World
	Installing Docker
	Verifying Your Install
	Before We Begin
	Running a Ruby Script Without Ruby Installed
	Generating a New Rails App Without Ruby Installed
	Quick Recap

	2. Running a Rails App in a Container
	How Do We Run Our Rails App?
	Defining Our First Custom Image
	Building Our Image
	Running a Rails Server with Our Image
	Reaching the App: Publishing Ports
	Binding the Rails Server to IP Addresses
	Quick Recap

	3. Fine-Tuning Our Rails Image
	Naming and Versioning Our Image
	A Default Command
	Ignoring Unnecessary Files
	The Image Build Cache
	Caching Issue 1: Updating Packages
	Caching Issue 2: Unnecessary Gem Installs
	The Finishing Touch
	Quick Recap

	4. Describing Our App Declaratively with Docker Compose
	Getting Started with Compose
	Launching Our App
	Mounting a Local Volume
	Starting and Stopping Services
	Other Common Tasks
	Quick Recap

	5. Beyond the App: Adding Redis
	Starting a Redis Server
	Manually Connecting to the Redis Server
	How Containers Can Talk to Each Other
	Our Rails App Talking to Redis
	Starting the Entire App with Docker Compose
	Quick Recap

	6. Adding a Database: Postgres
	Starting a Postgres Server
	Connecting to Postgres from a Separate Container
	Connecting Our Rails App to Postgres
	Using the Database in Practice
	Decoupling Data from the Container
	Quick Recap

	7. Playing Nice with JavaScript
	The JavaScript Front-End Options
	Rails JavaScript Front End with Webpacker
	Compiling Assets with Webpacker
	A Hello World React App
	Quick Recap

	8. Testing in a Dockerized Environment
	Setting Up RSpec
	Our First Test
	Setting Up Rails System Tests
	Running Tests That Rely on JavaScript
	Debugging
	Quick Recap

	9. Advanced Gem Management
	The Downside to Our Existing Approach
	Using a Gem Cache Volume
	Quick Recap

	10. Some Minor Irritations
	Rails tmp/pids/server.pid Not Cleaned Up
	Compose Intermittently Aborts with Ctrl-C
	Quick Recap
	Closing Thoughts on Docker in Development

	Part II. Toward Production
	11. The Production Landscape
	The “Ops” in DevOps
	Container Orchestration
	A Tale of Two Orchestrators: Swarm and Kubernetes
	IaaS vs. CaaS
	Provisioning Your Infrastructure
	CaaS Platforms
	Serverless for Containers
	How to Decide What’s Right for Me?
	Quick Recap

	12. Preparing for Production
	Configuring a Production Environment
	A Production Image: Precompiling Assets
	Sharing Images
	Quick Recap

	13. A Production-Like Playground
	Creating Machines
	Introducing Docker Swarm
	Our First (Single Node) Swarm
	Describing Our App to Swarm
	Migrating the Database
	Deploying Our App on a Swarm
	Tasks and Swarm’s Scaling Model
	Scaling Up the Service
	Quick Recap

	14. Deploying to the Cloud
	Creating a DigitalOcean Cluster
	Deploying to Our DigitalOcean Swarm
	Visualizing Containers
	Scale Up the Web Service
	Deploying to AWS Instead of DigitalOcean
	Quick Recap

	15. Closing Thoughts and Next Steps
	What Should I Learn About Next?

	A1. Platform Differences
	File Ownership and Permissions

	A2. Finding Images to Use
	Using Docker Hub
	Using the Docker CLI

