

JavaScript Design Patterns

Deliver fast and efficient production-grade JavaScript
applications at scale

Hugo Di Francesco

JavaScript Design Patterns
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Rohit Rajkumar
Publishing Product Manager: Kushal Dave
Senior Content Development Editor: Feza Shaikh
Technical Editor: Simran Udasi
Copy Editor: Safis Editing
Project Coordinator: Aishwarya Mohan
Indexer: Subalakshmi Govindhan
Production Designer: Jyoti Kadam
Marketing Coordinators: Nivedita Pandey and Anamika Singh

First published: March 2024

Production reference: 1150224

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK

ISBN 978-1-80461-227-9

www.packtpub.com

http://www.packtpub.com

To my wife, Amalia, for being my first supporter in all my endeavors.
To my daughter, Zoë, for making me want to show that the impossible sometimes is.

– Hugo Di Francesco

Contributors

About the author
Hugo Di Francesco is a software engineer who has worked extensively with JavaScript. He holds an
MEng degree in mathematical computation from University College London (UCL). He has used
JavaScript across the stack to create scalable and performant platforms at companies such as Canon
and Elsevier, and in industries such as print on demand and mindfulness. He is currently tackling
problems in the travel industry at Eurostar with Node.js, TypeScript, React, and Kubernetes, while
running the eponymous Code with Hugo website. Outside of work, he is an international fencer, in
the pursuit of which he trains and competes across the globe.

I want to thank all the people who have supported me in my life and writing journey, particularly my
wife Amalia, and my family.

About the reviewers
Dr. Murugavel, a distinguished and versatile educator in the realms of computer science engineering
and information technology. With over 13 years of enriching experience at renowned universities
and an additional 8+ years dedicated to the dynamic field of data analytics, Dr. Murugavel stands as
a beacon of expertise at the intersection of academia and technology.

His journey is marked by successive achievements, particularly in handling core subjects and
programming languages, with a keen emphasis on practical knowledge. As a mentor and guide for
major projects, Dr. Murugavel actively engages in groundbreaking research within his specialized field.
His commitment to bridging theory and application has made him a valuable resource for students
and researchers alike.

His technical proficiency extends across a spectrum of disciplines. He is well-versed in full stack
web development, SQL, data analytics, Python, and BI tools, showcasing theoretical knowledge and
a hands-on understanding of these technologies. His extensive portfolio includes the development
of numerous applications using JSP, ASP, and ASP.NET, reflecting his prowess in both frontend and
backend development.

In the realm of databases, he demonstrates versatility across MS-SQL Server, MySQL, MongoDB, Django,
MS Access, Oracle, and FoxPro. His proficiency in various Integrated Development Environments
(IDEs) and tools such as Anaconda, Visual Studio, GitHub, JBuilder, JCreator, MATLAB, Sublime 3,
and Adobe Dreamweaver further solidifies his standing in the technological landscape.

In the realm of data science and Business Intelligence (BI) tools, his skills are extensive, encompassing
PowerBI, DAX, VBA Macros for Excel, SSAS, and SSIS. His ability to harness these tools illuminates
the path to insightful data analysis and visualization.

Shubham Thakur, a dynamic senior software engineer (A3 grade) at EPAM, specializes in technologies
such as JavaScript, Angular, Next.js, Node, MySQL, MongoDB, AWS Cloud, and IoT. His expertise
in these domains has significantly contributed to his project successes. He expresses deep gratitude
to Priya for her unwavering love and to his brother, Yash, for his constant support. Shubham also
acknowledges the profound impact of his mentors, Avnish Aggarwal, Yogesh Dhandekar, and Amit
Jain, whose guidance has been instrumental in shaping his professional journey. Their mentorship
has not only honed his technical skills but also enriched his approach to complex problem-solving
in the tech industry.

Preface� xiii

Part 1: Design Patterns

1
Working with Creational Design Patterns� 3

What are creational design patterns?� 4
Implementing the prototype pattern
in JavaScript� 4
Implementation� 4
A use case� 7

The singleton pattern with eager
and lazy initialization in JavaScript� 11
Implementation� 11
Use cases� 15

Improvements with the “class singleton” pattern� 16
A singleton without class fields using ES
module behavior� 18

The factory pattern in JavaScript� 20
Implementation� 20
Use cases� 22
Improvements with modern JavaScript� 22

Summary� 24

2
 Implementing Structural Design Patterns� 25

Technical requirements� 25
What are structural design patterns?� 26
Implementing the Proxy pattern
with Proxy and Reflect� 26
A redaction proxy implementation� 26
Use cases� 27

Improving the proxy pattern in JavaScript
with the Proxy and Reflect global objects� 28

Decorator in JavaScript� 33
Implementation� 34
Use cases� 35
Improvements/limitations� 35

Table of Contents

Table of Contentsviii

Flyweight in JavaScript� 37
Implementation� 37
Use cases� 41
Improvements/limitations� 41

Adapter in JavaScript� 44
Use cases� 48
Improvements/limitations� 49

Summary� 52

3
Leveraging Behavioral Design Patterns� 53

Technical requirements� 53
What are behavioral design patterns?� 54
The observer pattern in JavaScript� 54
Implementation� 54
Use cases of the observer pattern� 58
Limitations and improvements� 58

State and strategy in JavaScript
and a simplified approach� 61

Implementation� 61
Use cases of the state and strategy patterns� 69
Limitations and improvements� 69

Visitor in JavaScript� 75
Implementation� 76
Use cases of the visitor pattern� 78

Summary� 79

Part 2: Architecture and UI Patterns

4
Exploring Reactive View Library Patterns� 83

Technical requirements� 83
What are reactive view library
patterns?� 84
The render prop pattern� 84
Use cases� 85
Implementation/example� 89
Limitations� 95

The higher-order component pattern� 96
Implementation/example� 96
Use cases� 97

Limitations� 97

The hooks pattern� 98
An implementation/example� 99
Use cases� 103
Limitations� 103

The provider pattern� 103
Use case – the prop drilling problem� 103
An implementation/example� 104
Limitations� 109

Summary� 110

Table of Contents ix

5
Rendering Strategies and Page Hydration� 111

Technical requirements� 111
Client and server rendering
with React� 112
Client-side rendering in React� 113
Server rendering in React� 114
Trade-offs between client and server rendering� 117

Static rendering with Next.js� 118
Automatic static generation� 119

Static generation with a third-party
data source� 121
Static generation with dynamic paths� 125
Page hydration strategies� 132
Common React rehydration issues� 137
React streaming server-side rendering� 140

Summary� 144

6
Micro Frontends, Zones, and Islands Architectures� 145

Technical requirements� 145
An overview of micro frontends� 146
Key benefits� 146
“Classic” micro frontend patterns� 147
Other concerns in a micro frontend world� 149

Composing applications
with Next.js “zones”� 150
Root app� 151
Adding a /search app� 154
Adding /checkout app� 157
The benefits/supporting team scaling� 162

The drawbacks of Next.js zones� 163

Scaling performance-sensitive pages
with the “islands” architecture� 163
Islands setup with is-land� 164
Product island� 165
Cart island� 168
A related products island� 172
Scaling with a team – bundling islands� 179
Drawbacks� 179

Summary� 180

Table of Contentsx

Part 3: Performance and Security Patterns

7
Asynchronous Programming Performance Patterns� 183

Technical requirements� 183
Controlling sequential asynchronous
operations with async/await
and Promises� 183
Parallel asynchronous
operation patterns� 189

Asynchronous cancellation and
timeouts with AbortController� 196
Throttling, debouncing, and batching
asynchronous operations� 200
Summary� 207

8
Event-Driven Programming Patterns� 209

Technical requirements� 209
Optimizing event listeners
through event delegation� 210

Patterns for secure frame/native
WebView bridge messaging� 218
Event listener performance
antipatterns� 231
Summary� 232

9
Maximizing Performance – Lazy Loading and Code Splitting� 233

Technical requirements� 233
Dynamic imports and code
splitting with Vite� 233

Route-based code splitting
and bundling� 237
Loading JavaScript on element
visibility and interaction� 241
Summary� 259

Table of Contents xi

10
Asset Loading Strategies and Executing Code off the Main Thread� 261

Technical requirements� 261
Asset loading optimization – async,
defer, preconnect, preload, and
prefetch� 262

Using Next.js Script’s strategy
option to optimize asset loading� 270
Loading and running scripts
in a worker thread� 272
Summary� 276

Index� 279

Other Books You May Enjoy� 284

Preface

Welcome! JavaScript design patterns are techniques that allow us to write more robust, scalable, and
extensible applications in JavaScript. JavaScript is the main programming language available in web
browsers and is one of the most popular programming languages with support beyond browsers.

Design patterns are solutions to common problems that can be reused. The most-written-about design
patterns come from the world of object-oriented programming.

JavaScript’s attributes as a lightweight, multi-paradigm, dynamic, single-threaded language give it
different strengths and weaknesses to other mainstream programming languages. It’s common for
software engineers to use JavaScript in addition to being well versed in a different programming
language. JavaScript’s different gearing means that implementing design patterns verbatim can lead
to non-idiomatic and under-performing JavaScript applications.

There are many resources on JavaScript and design patterns, but this book provides a cohesive and
comprehensive view of design patterns in modern (ECMAScript 6+) JavaScript with real-world
examples of how to deploy them in a professional setting. In addition to this complete library of
patterns to apply to projects, this book also provides an overview of how to structure different parts
of an application to deliver high performance at scale.

In this book, you will be provided with up-to-date guidance through the world of modern JavaScript
patterns based on nine years of experience building and deploying JavaScript and React applications
at scale at companies such as Elsevier, Canon, and Eurostar, delivering multiple system evolutions,
performance projects, and a next-generation frontend application architecture.

Who this book is for
This book is for developers and software architects who want to leverage JavaScript and the web
platform to increase productivity, software quality, and the performance of their applications.

Familiarity with software design patterns would be a plus but is not required.

The three main challenges faced by developers and architects who are the target audience of this
content are as follows:

•	 They are familiar with programming concepts but not how to effectively implement them in
JavaScript

•	 They want to structure JavaScript code and applications in a way that is maintainable and
extensible

•	 They want to deliver more performance to the users of their JavaScript applications

Prefacexiv

What this book covers
Chapter 1, Working with Creational Design Patterns, covers creational design patterns, which help to
organize object creation. We’ll look at implementing the prototype, singleton, and factory patterns
in JavaScript.

Chapter 2, Implementing Structural Design Patterns, looks at structural design patterns, which help to
organize relationships between entities. We’ll implement the proxy, decorator, flyweight, and adapter
patterns in JavaScript.

Chapter 3, Leveraging Behavioral Design Patterns, delves into behavioral design patterns, which help
to organize communication between objects. We’ll learn about the observer, state, strategy, and visitor
patterns in JavaScript.

Chapter 4, Exploring Reactive View Library Patterns, explores reactive view libraries, such as React,
which have taken over the JavaScript application landscape. With these libraries come new patterns
to explore, implement, and contrast.

Chapter 5, Rendering Strategies and Page Hydration, takes a look at optimizing page performance, which
is a key concern nowadays. It’s a concern both for improving the on-page conversion of customers and
search engine optimization, since search engines such as Google take core web vitals into account.

Chapter 6, Micro Frontends, Zones, and Islands Architectures, explores micro frontends. Akin to the
microservices movement in the service tier, micro frontends are designed to split a large surface area
into smaller chunks that can be worked on and delivered at higher velocity.

Chapter 7, Asynchronous Programming Performance Patterns, looks at how JavaScript’s single-threaded
event-loop-based concurrency model is one of its greatest strengths but is often misunderstood or
under-leveraged in performance-sensitive situations. Writing asynchronous-handling code in JavaScript
in a performant and extensible manner is key to delivering a smooth user experience at scale.

Chapter 8, Event-Driven Programming Patterns, explores how event-driven programming in JavaScript
is of paramount importance in security-sensitive applications as it is a way to pass information from
and to different web contexts. Event-driven applications can often be optimized to enable better
performance and scalability.

Chapter 9, Maximizing Performance – Lazy Loading and Code Splitting, deals with how, in order to
maximize the performance of a JavaScript application, reducing the amount of unused JavaScript
being loaded and interpreted is key. The techniques that can be brought to bear on this problem are
called lazy loading and code splitting.

Chapter 10, Asset-Loading Strategies and Executing Code off the Main Thread, looks at how there are
situations in the lifecycle of an application where loading more JavaScript or assets is inevitable. You
will learn about asset-loading optimizations in the specific case of JavaScript, as well as other web
resources, and finally how to execute JavaScript off the main browser thread.

Preface xv

To get the most out of this book
You will need to have prior experience with JavaScript and developing for the web. Some of the more
advanced topics in the book will be of interest to developers with intermediate experience in building
for the web with JavaScript.

Software/hardware covered in the book Operating system requirements

Node.js 20+ Windows, macOS, or Linux
NPM v8+ Windows, macOS, or Linux
ECMAScript 6+ Windows, macOS, or Linux
React v16+ Windows, macOS, or Linux
Next.js Windows, macOS, or Linux

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/JavaScript-Design-Patterns. If there’s an update to the code, it
will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “ In order
to make the code easier to follow, we’ll switch on the lowercased version of tagName.”

https://github.com/PacktPublishing/JavaScript-Design-Patterns
https://github.com/PacktPublishing/JavaScript-Design-Patterns
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Prefacexvi

A block of code is set as follows:

<script>
  // handle receiving messages from iframe -> parent
  const allowedMessageOrigins = ['http://127.0.0.1:8000'];
  window.addEventListener('message', (event) => {
    if (!allowedMessageOrigins.includes(event.origin)) {
      console.warn(
        `Dropping message due to non-allowlisted origin ${event.
origin}`,
        event,
      );
      return;
    }
    // no change to the rest of the message handler
  });
</script>

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “When opening the select, things seem
to work ok, we’re seeing the Fruit: prefix for all the options.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

Preface xvii

Share Your Thoughts
Once you’ve read JavaScript Design Patterns, we’d love to hear your thoughts! Please click here
to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/1804612278
https://packt.link/r/1804612278

Prefacexviii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-80461-227-9

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-80461-227-9

Part 1:
Design Patterns

In this part, you will get an overview of design patterns and how they can be implemented effectively
in modern JavaScript. You will learn how and when to implement creational, structural, and behavioral
design patterns in the “classical” object-oriented way and how modern JavaScript features can be used
to make this implementation more idiomatic to the language. Finally, you’ll see real-world examples
of design patterns being applied in the JavaScript ecosystem, thereby learning how to recognize them.

This part has the following chapters:

•	 Chapter 1, Working with Creational Design Patterns

•	 Chapter 2, Implementing Structural Design Patterns

•	 Chapter 3, Leveraging Behavioral Design Patterns

1
Working with Creational Design

Patterns

JavaScript design patterns are techniques that allow us to write more robust, scalable, and extensible
applications in JavaScript. JavaScript is a very popular programming language, in part due to its
place as a way to deliver interactive functionality on web pages. The other reason for its popularity is
JavaScript’s lightweight, dynamic, multi-paradigm nature, which means that design patterns from other
ecosystems can be adapted to take advantage of JavaScript’s strengths. JavaScript’s specific strengths and
weaknesses can also inform new patterns specific to the language and the contexts in which it’s used.

Creational design patterns give structure to object creation, which enables the development of systems
and applications where different modules, classes, and objects don’t need to know how to create
instances of each other. The design patterns most relevant to JavaScript – the prototype, singleton, and
factory patterns – will be explored, as well as situations where they’re helpful and how to implement
them in an idiomatic fashion.

We’ll cover the following topics in this chapter:

•	 A comprehensive definition of creational design patterns and definitions for the prototype,
singleton, and factory patterns

•	 Multiple implementations of the prototype pattern and its use cases

•	 An implementation of the singleton design pattern, eager and lazy initialization, use cases for
singleton, and what a singleton pattern in modern JavaScript looks like

•	 How to implement the factory pattern using classes, a modern JavaScript alternative, and use cases

By the end of this chapter, you’ll be able to identify when a creational design pattern is useful and
make an informed decision on which of its multiple implementations to use, ranging from a more
idiomatic JavaScript form to a classical form.

Working with Creational Design Patterns4

What are creational design patterns?
Creational design patterns handle object creation. They allow a consumer to create object instances
without knowing the details of how to instantiate the object. Since, in object-oriented languages,
instantiation of objects is limited to a class’s constructor, allowing object instances to be created
without calling the constructor is useful to reduce noise and tight coupling between the consumer
and the class being instantiated.

In JavaScript, there’s ambiguity when we discuss “object creation,” since JavaScript’s multi-paradigm
nature means we can create objects without a class or a constructor. For example, in JavaScript this
is an object creation using an object literal – const config = { forceUpdate: true }.
In fact, modern idiomatic JavaScript tends to lean more toward procedural and function paradigms
than object orientation. This means that creational design patterns may have to be adapted to be fully
useful in JavaScript.

In summary, creational design patterns are useful in object-oriented JavaScript, since they hide instantiation
details from consumers, which keeps coupling low, thereby allowing better module separation.

In the next section, we’ll encounter our first creational design pattern – the prototype design pattern.

Implementing the prototype pattern in JavaScript
Let’s start with a definition of the prototype pattern first.

The prototype design pattern allows us to create an instance based on another existing instance
(our prototype).

In more formal terms, a prototype class exposes a clone() method. Consuming code, instead
of calling new SomeClass, will call new SomeClassPrototype(someClassInstance).
clone(). This method call will return a new SomeClass instance with all the values copied
from someClassInstance.

Implementation

Let’s imagine a scenario where we’re building a chessboard. There are two key types of squares – white
and black. In addition to this information, each square contains information such as its row, file, and
which piece sits atop it.

A BoardSquare class constructor might look like the following:

class BoardSquare {
  constructor(color, row, file, startingPiece) {
    this.color = color;
    this.row = row;

Implementing the prototype pattern in JavaScript 5

    this.file = file;
  }
}

A set of useful methods on BoardSquare might be occupySquare and clearSquare, as follows:

class BoardSquare {
  // no change to the rest of the class
  occupySquare(piece) {
    this.piece = piece;
  }
  clearSquare() {
    this.piece = null;
  }
}

Instantiating BoardSquare is quite cumbersome, due to all its properties:

const whiteSquare = new BoardSquare('white');
const whiteSquareTwo = new BoardSquare('white');
// ...
const whiteSquareLast = new BoardSquare('white');

Note the repetition of arguments being passed to new BoardSquare, which will cause issues if we
want to change all board squares to black. We would need to change the parameter passed to each call
of BoardSquare is one by one for each new BoardSquare call. This can be quite error-prone;
all it takes is one hard-to-find mistake in the color value to cause a bug:

const blackSquare = new BoardSquare('black');
const blackSquareTwo = new BoardSquare('black');
// ...
const blackSquareLast = new BoardSquare('black');

Implementing our instantiation logic using a classical prototype looks as follows. We need a
BoardSquarePrototype class; its constructor takes a prototype property, which it stores
on the instance. BoardSquarePrototype exposes a clone() method that takes no arguments
and returns a BoardSquare instance, with all the properties of prototype copied onto it:

class BoardSquarePrototype {
  constructor(prototype) {
    this.prototype = prototype;
  }
  clone() {
    const boardSquare = new BoardSquare();
    boardSquare.color = this.prototype.color;

Working with Creational Design Patterns6

    boardSquare.row = this.prototype.row;
    boardSquare.file = this.prototype.file;
    return boardSquare;
  }
}

Using BoardSquarePrototype requires the following steps:

1.	 First, we want an instance of BoardSquare to initialize – in this case, with 'white'. It
will then be passed as the prototype property during the BoardSquarePrototype
constructor call:

const whiteSquare = new BoardSquare('white');
const whiteSquarePrototype = new BoardSquarePrototype
  (whiteSquare);

2.	 We can then use whiteSquarePrototype with .clone() to create our copies of
whiteSquare. Note that color is copied over but each call to clone() returns a new instance.

const whiteSquareTwo = whiteSquarePrototype.clone();
// ...
const whiteSquareLast = whiteSquarePrototype.clone();

console.assert(
  whiteSquare.color === whiteSquareTwo.color &&
    whiteSquareTwo.color === whiteSquareLast.color,
  'Prototype.clone()-ed instances have the same color
     as the prototype'
);
console.assert(
  whiteSquare !== whiteSquareTwo &&
    whiteSquare !== whiteSquareLast &&
    whiteSquareTwo !== whiteSquareLast,
  'each Prototype.clone() call outputs a different
     instances'
);

Per the assertions in the code, the cloned instances contain the same value for color but are different
instances of the Square object.

Implementing the prototype pattern in JavaScript 7

A use case

To illustrate what it would take to change from a white square to a black square, let’s look at some
sample code where 'white' is not referenced in the variable names:

const boardSquare = new BoardSquare('white');
const boardSquarePrototype = new BoardSquarePrototype(boardSquare);

const boardSquareTwo = boardSquarePrototype.clone();
// ...
const boardSquareLast = boardSquarePrototype.clone();

console.assert(
  boardSquareTwo.color === 'white' &&
    boardSquare.color === boardSquareTwo.color &&
    boardSquareTwo.color === boardSquareLast.color,
  'Prototype.clone()-ed instances have the same color as
     the prototype'
);
console.assert(
  boardSquare !== boardSquareTwo &&
    boardSquare !== boardSquareLast &&
    boardSquareTwo !== boardSquareLast,
  'each Prototype.clone() call outputs a different
    instances'
);

In this scenario, we would only have to change the color value passed to BoardSquare to change
the color of all the instances cloned from the prototype:

const boardSquare = new BoardSquare('black');
// rest of the code stays the same
console.assert(
  boardSquareTwo.color === 'black' &&
    boardSquare.color === boardSquareTwo.color &&
    boardSquareTwo.color === boardSquareLast.color,
  'Prototype.clone()-ed instances have the same color as
     the prototype'
);
console.assert(
  boardSquare !== boardSquareTwo &&
    boardSquare !== boardSquareLast &&
    boardSquareTwo !== boardSquareLast,
  'each Prototype.clone() call outputs a different

Working with Creational Design Patterns8

     instances'
);

The prototype pattern is useful in situations where a “template” for the object instances is useful. It’s
a good pattern to create a “default object” but with custom values. It allows faster and easier changes,
since they are implemented once on the template object but are applied to all clone()-ed instances.

Increasing robustness to change in the prototype’s instance variables with
modern JavaScript

There are improvements we can make to our prototype implementation in JavaScript.

The first is in the clone() method. To make our prototype class robust to changes in the prototype’s
constructor/instance variables, we should avoid copying the properties one by one.

For example, if we add a new startingPiece parameter that the BoardSquare constructor takes
and sets the piece instance variable to, our current implementation of BoardSquarePrototype
will fail to copy it, since it only copies color, row, and file:

class BoardSquare {
  constructor(color, row, file, startingPiece) {
    this.color = color;
    this.row = row;
    this.file = file;
    this.piece = startingPiece;
  }
  // same rest of the class
}

const boardSquare = new BoardSquare('white', 1, 'A',
  'king');
const boardSquarePrototype = new BoardSquarePrototype
  (boardSquare);
const otherBoardSquare = boardSquarePrototype.clone();

console.assert(
  otherBoardSquare.piece === undefined,
  'prototype.piece was not copied over'
);

Note
Reference for Object.assign: https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Global_Objects/Object/assign.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign

Implementing the prototype pattern in JavaScript 9

If we amend our BoardSquarePrototype class to use Object.assign(new BoardSquare(),
this.prototype), it will copy all the enumerable properties of prototype:

class BoardSquarePrototype {
  constructor(prototype) {
    this.prototype = prototype;
  }
  clone() {
    return Object.assign(new BoardSquare(), this.prototype);
  }
}

const boardSquare = new BoardSquare('white', 1, 'A',
  'king');
const boardSquarePrototype = new BoardSquarePrototype
  (boardSquare);
const otherBoardSquare = boardSquarePrototype.clone();

console.assert(
  otherBoardSquare.piece === 'king' &&
    otherBoardSquare.piece === boardSquare.piece,
  'prototype.piece was copied over'
);

The prototype pattern without classes in JavaScript

For historical reasons, JavaScript has a prototype concept deeply embedded into the language. In fact,
classes were introduced much later into the ECMAScript standard, with ECMAScript 6, which was
released in 2015 (for reference, ECMAScript 1 was published in 1997).

This is why a lot of JavaScript completely forgoes the use of classes. The JavaScript “object prototype”
can be used to make objects inherit methods and variables from each other.

One way to clone objects is by using the Object.create to clone objects with their methods. This
relies on the JavaScript prototype system:

const square = {
  color: 'white',
  occupySquare(piece) {
    this.piece = piece;
  },
  clearSquare() {
    this.piece = null;
  },

Working with Creational Design Patterns10

};
const otherSquare = Object.create(square);

One subtlety here is that Object.create does not actually copy anything; it simply creates a new
object and sets its prototype to square. This means that if properties are not found on otherSquare,
they’re accessed on square:

console.assert(otherSquare.__proto__ === square, 'uses JS
  prototype');

console.assert(
  otherSquare.occupySquare === square.occupySquare &&
    otherSquare.clearSquare === square.clearSquare,
  "methods are not copied, they're 'inherited' using the
     prototype"
);

delete otherSquare.color;
console.assert(
  otherSquare.color === 'white' && otherSquare.color ===
    square.color,
  'data fields are also inherited'
);

A further note on the JavaScript prototype, and its existence before classes were part of JavaScript, is
that subclassing in JavaScript is another syntax for setting an object’s prototype. Have a look at the
following extends example. BlackSquare extends Square sets the prototype.__
proto__ property of BlackSquare to Square.prototype:

class Square {
  constructor() {}
  occupySquare(piece) {
    this.piece = piece;
  }
  clearSquare() {
    this.piece = null;
  }
}

class BlackSquare extends Square {
  constructor() {
    super();
    this.color = 'black';
  }

The singleton pattern with eager and lazy initialization in JavaScript 11

}

console.assert(
  BlackSquare.prototype.__proto__ === Square.prototype,
  'subclass prototype has prototype of superclass'
);

In this section, we learned how to implement the prototype pattern with a prototype class that exposes
a clone() method, which code situations the prototype patterns can help with, and how to further
improve our prototype implementation with modern JavaScript features. We also covered the JavaScript
“prototype,” why it exists, and its relationship with the prototype design pattern.

In the next part of the chapter, we’ll look at another creational design pattern, the singleton design
pattern, with some implementation approaches in JavaScript and its use cases.

The singleton pattern with eager and lazy initialization in
JavaScript
To begin, let’s define the singleton design pattern.

The singleton pattern allows an object to be instantiated only once, exposes this single instance to
consumers, and controls the instantiation of the single instance.

The singleton is another way of getting access to an object instance without using a constructor,
although it’s necessary for the object to be designed as a singleton.

Implementation

A classic example of a singleton is a logger. It’s rarely necessary (and often, it’s a problem) to instantiate
multiple loggers in an application. Having a singleton means the initialization site is controlled, and
the logger configuration will be consistent across the application – for example, the log level won’t
change depending on where in the application we call the logger from.

A simple logger looks something as follows, with a constructor taking logLevel and transport, and
an isLevelEnabled private method, which allows us to drop logs that the logger is not configured
to keep (for example, when the level is warn we drop info messages). The logger finally implements
the info, warn, and error methods, which behave as previously described; they only call the
relevant transport method if the level is “enabled” (i.e., “above” what the configured log level is).

The possible logLevel values that power isLevelEnabled are stored as a static field on Logger:

class Logger {
  static logLevels = ['info', 'warn', 'error'];
  constructor(logLevel = 'info', transport = console) {

Working with Creational Design Patterns12

    if (Logger.#loggerInstance) {
      throw new TypeError(
        'Logger is not constructable, use getInstance()
           instead'
      );
    }
    this.logLevel = logLevel;
    this.transport = transport;
  }
  isLevelEnabled(targetLevel) {
    return (
      Logger.logLevels.indexOf(targetLevel) >=
      Logger.logLevels.indexOf(this.logLevel)
    );
  }
  info(message) {
    if (this.isLevelEnabled('info')) {
      return this.transport.info(message);
    }
  }
  warn(message) {
    if (this.isLevelEnabled('warn')) {
      this.transport.warn(message);
    }
  }
  error(message) {
    if (this.isLevelEnabled('error')) {
      this.transport.error(message);
    }
  }
}

In order to make Logger a singleton, we need to implement a getInstance static method that
returns a cached instance. In order to do, this we’ll use a static loggerInstance on Logger.
getInstance will check whether Logger.loggerInstance exists and return it if it does;
otherwise, it will create a new Logger instance, set that as loggerInstance, and return it:

class Logger {
  static loggerInstance = null;
  // rest of the class
  static getInstance() {
    if (!Logger.loggerInstance) {
      Logger.loggerInstance = new Logger('warn', console);
    }

The singleton pattern with eager and lazy initialization in JavaScript 13

    return Logger.loggerInstance;
  }
}

Using this in another module is as simple as calling Logger.getInstance(). All getInstance
calls will return the same instance of Logger:

const a = Logger.getInstance();
const b = Logger.getInstance();
console.assert(a === b, 'Logger.getInstance() returns the
  same reference');

We’ve implemented a singleton with “lazy” initialization. The initialization occurs when the first
getInstance call is made. In the next section, we’ll see how we might extend our code to have an
“eager” initialization of loggerInstance, where loggerInstance will be initialized when
the Logger code is evaluated.

 Ensuring only one singleton instance is constructed

A characteristic of a singleton is the “single instance” concept. We want to “force” consumers to use
the getInstance method.

In order to do this, we can check for the existence of loggerInstance when the contructor is called:

class Logger {
  // rest of the class
  constructor(logLevel = 'info', transport = console) {
    if (Logger.loggerInstance) {
      throw new TypeError(
        'Logger is not constructable, use getInstance()
          instead'
      );
    }
    this.logLevel = logLevel;
    this.transport = transport;
  }
  // rest of the class
}

In the case where we call getInstance (and, therefore, Logger.loggerInstance is populated),
the constructor will now throw an error:

Logger.getInstance();
new Logger('info', console); // new TypeError('Logger is
  not constructable, use getInstance() instead');

Working with Creational Design Patterns14

This behavior is useful to ensure that consumers don’t instantiate their own Logger and they use
getInstance instead. All consumers using getInstance means the configuration to set up
the logger is encapsulated by the Logger class.

There’s still a gap in the implementation, as constructing new Logger() before any getInstance()
calls will succeed, as shown in the following example:

new Logger('info', console); // Logger { logLevel: 'info',
  transport: ... }
new Logger('info', console); // Logger { logLevel: 'info',
  transport: ... }
Logger.getInstance();
new Logger('info', console); // new TypeError('Logger is
  not constructable, use getInstance() instead');

In multithreaded languages, our implementation would also have a potential race condition – multiple
consumers calling Logger.getInstance() concurrently could cause multiple instances to
exist. However, since popular JavaScript runtimes are single-threaded, we won’t have to worry about
such a race condition – getInstance is a “synchronous” method, so multiple calls to it would be
interpreted one after the other. For reference, Node.js, Deno, and the mainstream browsers Chrome,
Safari, Edge, and Firefox provide a single-threaded JavaScript runtime.

Singleton with eager initialization

Eager initialization can be useful to ensure that the singleton is ready for use and features, such as
disabling the constructor when an instance exists, work for all cases.

We can eager-initialize by setting Logger.loggerInstance in the Logger constructor:

class Logger {
  // rest of the class unchanged
  constructor(logLevel = 'info', transport = console) {
    // rest of the constructor unchanged
    Logger.loggerInstance = this;
  }
}

This approach has the downside of the constructor performing a global state mutation, which isn’t
ideal from a “single responsibility principle” standpoint; the constructor now has a side-effect of sorts
(mutating global state) beyond its responsibility to set up an object instance.

The singleton pattern with eager and lazy initialization in JavaScript 15

An alternative way to eager-initialize is by running Logger.getInstance() in the logger’s
module; it’s useful to pair it with an export default statement:

export class Logger {
  // no changes to the Logger class
}
export default Logger.getInstance();

With the preceding exports added, there are now two ways to access a logger instance. The first is to
import Logger by name and call Logger.getInstance():

import { Logger } from './logger.js';
const logger = Logger.getInstance();
logger.warn('testing testing 12'); // testing testing 12

The second way to use the logger is by importing the default export:

import logger from './logger.js';
logger.warn('testing testing 12'); // testing testing 12

Any code now importing Logger will get a pre-determined singleton instance of the logger.

Use cases

A singleton shines when there should only be one instance of an object in an application – for example,
a logger that shouldn’t be set up/torn down on every request.

Since the singleton class controls how it gets instantiated, it’s also a good fit for objects that are tricky to
configure (again, a logger, a metrics exporter, and an API client are good examples). The instantiation
is completely encapsulated if, like in our example, we “disable” the constructor.

There’s a performance benefit to constraining the application to a single instance of an object in terms
of memory footprint.

The major drawbacks of singletons are an effect of their reliance on global state (in our example, the
static loggerInstance). It’s hard to test a singleton, especially in a case where the constructor is
“disabled” (like in our example), since our tests will want to always have a single instance of the singleton.

Singletons can also be considered “global state” to some extent, which comes with all its drawbacks.
Global state can sometimes be a sign of poor design, and updating/consuming global state is error-
prone (e.g., if a consumer is reading state but it is then updated and not read again).

Working with Creational Design Patterns16

Improvements with the “class singleton” pattern

With our singleton logger implementation, it’s possible to modify the internal state of the singleton
from outside of it. This is nothing specific to our singleton; it’s the nature of JavaScript. By default, its
fields and methods are public.

However, this is a bigger issue in our singleton scenario, since a consumer could reset loggerInstance
using a statement such as Logger.loggerInstance = null or delete Logger.
loggerInstance. See the following example:

const logger = Logger.getInstance();
Logger.loggerInstance = null;
const logger = new Logger('info', console); // should throw but
creates a new instance

In order to stop consumers from modifying the loggerInstance static field, we can make it
a private field. Private fields in JavaScript are part of the ECMAScript 2023 specification (the 13th
ECMAScript edition).

To define a private field, we use the # prefix for the field name – in this case, loggerInstance
becomes #loggerInstance. The isLevelEnabled method becomes #isLevelEnabled,
and we also declare logLevel and transport as #logLevel and #transport, respectively:

export class Logger {
  // other static fields are unchanged
  static #loggerInstance = null;
  #logLevel;
  #transport;
  constructor(logLevel = 'info', transport = console) {
    if (Logger.#loggerInstance) {
      throw new TypeError(
        'Logger is not constructable, use getInstance()
          instead'
      );
    }
    this.#logLevel = logLevel;
    this.#transport = transport;
  }
  #isLevelEnabled(targetLevel) {
    // implementation unchanged
  }
  info(message) {
    if (this.#isLevelEnabled('info')) {
      return this.#transport.info(message);
    }

The singleton pattern with eager and lazy initialization in JavaScript 17

  }
  warn(message) {
    if (this.#isLevelEnabled('warn')) {
      this.#transport.warn(message);
    }
  }
  error(message) {
    if (this.#isLevelEnabled('error')) {
      this.#transport.error(message);
    }
  }
  getInstance() {
    if (!Logger.#loggerInstance) {
      Logger.#loggerInstance = new Logger('warn', console);
    }

    return Logger.#loggerInstance;
  }
}

It’s not possible to delete loggerInstace or set it to null, since attempting to access
Logger.#loggerInstance is a syntax error:

  Logger.#loggerInstance = null;
        ^

SyntaxError: Private field '#loggerInstance' must be
  declared in an enclosing class

Another useful technique is to disallow modification of fields on an object. In order to disallow
modification, we can use Object.freeze to freeze the instance once it’s created.

class Logger {
  // no changes to the logger class
}
export default Object.freeze(new Logger('warn', console));

Now, when someone attempts to change a field on the Logger instance, they’ll get TypeError:

import logger from './logger.js';
logger.transport = {}; // new TypeError('Cannot add
  property transport, object is not extensible')

Working with Creational Design Patterns18

We’ve now refactored our singleton implementation to disallow external modifications to it by using
private fields and Object.freeze. Next, we’ll see how to use EcmaScript (ES) modules to deliver
singleton functionality.

A singleton without class fields using ES module behavior

The JavaScript module system has the following caching behavior – if a module is loaded, any further
imports of the module’s exports will be cached instances of exports.

Therefore, it’s possible to create a singleton as follows in JavaScript.

class MySingleton {
  constructor(value) {
    this.value = value;
  }
}
export default new MySingleton('my-value');

Multiple imports of the default export will result in only one existing instance of the MySingleton
object. Furthermore, if we don’t export the class, then the constructor doesn’t need to be “protected.”

As the following snippet with dynamic imports shows, both import('./my-singleton.js')
result in the same object. They both return the same object because the output of the import for a
given module is a singleton:

await Promise.all([
  import('./my-singleton.js'),
  import('./my-singleton.js'),
]).then(([import1, import2]) => {
  console.assert(
    import1.default.value === 'my-value' &&
      import2.default.value === 'my-value',
    'instance variable is equal'
  );
  console.assert(
    import1.default === import2.default,
    'multiple imports of a module yield the same default
      object value, a single MySingleton instance'
  );
  console.assert(import1 === import2, 'import objects are a
    single reference');
});

The singleton pattern with eager and lazy initialization in JavaScript 19

For our logger, this means we could implement an eager-initialized singleton in JavaScript without
any of the heavy-handed guarding of the constructor or even a getInstance method. Note the
use of logLevel and isLevelEnabled as a public instance property and a public method,
respectively (since it might be useful to have access to them from a consumer). In the meantime,
#transport remains private, and we’ve dropped loggerInstance and getInstance. We’ve
kept Object.freeze(), which means that even though logLevel is readable from a consumer,
it’s not available to modify:

class Logger {
  static logLevels = ['info', 'warn', 'error'];
  #transport;
  constructor(logLevel = 'info', transport = console) {
    this.logLevel = logLevel;
    this.#transport = transport;
  }
  isLevelEnabled(targetLevel) {
    return (
      Logger.logLevels.indexOf(targetLevel) >=
      Logger.logLevels.indexOf(this.logLevel)
    );
  }
  info(message) {
    if (this.isLevelEnabled('info')) {
      return this.#transport.info(message);
    }
  }
  warn(message) {
    if (this.isLevelEnabled('warn')) {
      this.#transport.warn(message);
    }
  }
  error(message) {
    if (this.isLevelEnabled('error')) {
      this.#transport.error(message);
    }
  }
}

export default Object.freeze(new Logger('warn', console));

Working with Creational Design Patterns20

In this part of the chapter, we learned how to implement the singleton pattern with a class that exposes
a getInstance() method, as well as the difference between the eager and lazy initialization of a
singleton. We’ve covered some JavaScript features, such as private class fields and Object.freeze,
which can be useful when implementing the singleton pattern. Finally, we explored how JavaScript/
ECMAScript modules have singleton-like behavior and can be relied upon to provide this behavior
for a class instance.

In the next section, we’ll explore the final creational design pattern covered in this chapter – the
factory design pattern.

The factory pattern in JavaScript
In a similar fashion to the discussion about the JavaScript “prototype” versus the prototype creational
design pattern, “factory” refers to related but different concepts when it comes to general program
design discussions and design patterns.

A “factory,” in the general programming sense, is an object that’s built with the goal of creating other
objects. This is hinted at by the name that refers to a facility that processes items from one shape into
another (or from one type of item to another). This factory denomination means that the output of a
function or method is a new object. In JavaScript, this means that something as simple as a function
that returns an object literal is a factory function:

const simpleFactoryFunction = () => ({}); // returns an object,
therefore it's a factory.

This definition of a factory is useful, but this section of the chapter is about the factory design pattern,
which does fit into this overall “factory” definition.

The factory or factory method design pattern solves a class inheritance problem. A base or superclass
is extended (the extended class is a subclass). The base class’s role is to provide orchestration for the
methods implemented in the subclasses, as we want the subclasses to control which other objects to
populate an instance with.

Implementation

A factory example is as follows. We have a Building base class that implements a
generateBuilding() method. For now, it’s going to create a top floor using the makeTopFloor
instance method. In the base class (Building), makeTopFloor is implemented, mainly because
JavaScript doesn’t provide a way to define abstract methods. The makeTopFloor implementation
throws an error because subclasses should override it; makeTopFloor is the “factory method” in
this case. It’s how the base class defers the instantiation of objects to the subclasses:

class Building {
  generateBuilding() {

The factory pattern in JavaScript 21

    this.topFloor = this.makeTopFloor();
  }
  makeTopFloor() {
    throw new Error('not implemented, left for subclasses
      to implement');
  }
}

If we wanted to implement a single-story house, we would extend Building and override
makeTopFloor; in this instance, topFloor will have level: 1.

class House extends Building {
  makeTopFloor() {
    return {
      level: 1,
    };
  }
}

When we instantiate House , which is a subclass of Building , we have access to the
generateBuilding method; when called, it sets topFloor correctly (to { level: 1 }).

const house = new House();
house.generateBuilding();
console.assert(house.topFloor.level === 1, 'topFloor works
  in House');

Now, if we want to create a different type of building that has a very different top floor, we can still
extend Building; we simply override makeTopFloor to return a different floor. In the case of a
skyscraper, we want the top floor to be very high, so we’ll do the following:

class SkyScraper extends Building {
  makeTopFloor() {
    return {
      level: 125,
    };
  }
}

Working with Creational Design Patterns22

Having defined our SkyScraper, which is a subclass of Building, we can instantiate it and call
generateBuilding. As in the preceding House case, the generateBuilding method will
use SkyScraper’s makeTopFloor method to populate the topFloor instance property:

const skyScraper = new SkyScraper();
skyScraper.generateBuilding();
console.assert(skyScraper.topFloor.level > 100, 'topFloor
  works in SkyScraper');

The “factory method” in this case is makeTopFloor. The makeTopFloor method is “not
implemented” in the base class, in the sense that it’s implemented in a manner that forces subclasses
that wish to use generateBuilding to define a makeTopFloor override.

Note that makeTopFloor in our examples returned object literals, as mentioned earlier in the
chapter; this is a feature of JavaScript not available in all object-oriented languages (JavaScript is multi-
paradigm). We’ll see different ways to implement the factory pattern later in this section.

Use cases

The benefit of using a factory method is that we can create a wide variety of subclasses without
modifying the base class. This is the “open/closed principle” at play – the Building class in our
example is “open” to extension (i.e., can be subclassed to infinity for different types of buildings) but
“closed” to modification (i.e., we don’t need to make changes in Building for every subclass, only
when we want to add new behaviors).

Improvements with modern JavaScript

The key improvement we can make with JavaScript is enabled by its first-class support for functions
and the ability to define objects using literals (instead of classes being instantiated).

JavaScript having “first-class functions” means functions are like any other type – they can be passed
as parameters, set as variable values, and returned from other functions.

A more idiomatic implementation of this pattern would probably involve a generateBuilding
standalone function instead of a Building class. generateBuilding would take makeTopFloor
either as a parameter or take an object parameter with a makeTopFloor key. The output of
generateBuilding would be an object created using an object literal, which takes the output of
makeTopFloor() and sets it as the value to a topFloor key:

function generateBuilding({ makeTopFloor }) {
  return {
    topFloor: makeTopFloor(),
  };
}

The factory pattern in JavaScript 23

In order to create our house and skyscraper, we would call generateBuilding with the relevant
makeTopFloor functions. In the case of the house, we want a top floor that is on level 1; in the case
of the skyscraper, we want a top floor on level 125.

const house = generateBuilding({
  makeTopFloor() {
    return {
      level: 1,
    };
  },
});
console.assert(house.topFloor.level === 1, 'topFloor works
  in house');

const skyScraper = generateBuilding({
  makeTopFloor() {
    return {
      level: 125,
    };
  },
});
console.assert(skyScraper.topFloor.level > 100, 'topFloor works in
skyScraper');

One reason why using functions directly works better in JavaScript is that we didn’t have to implement
a “throw an error to remind consumers to override me” makeFloor method that we had with the
Building class.

In languages other than JavaScript that have support for abstract methods, this pattern is more useful
and natural to implement than in JavaScript, where we have first-class functions.

You also have to bear in mind that the original versions of JavaScript/ECMAScript didn’t include a
class construct.

In the final section of the chapter, we learned what the factory method pattern is and how it contrasts
with the factory programming concept. We then implemented a class-based factory pattern scenario
as well as a more idiomatic JavaScript version. Interspersed through this section, we covered the use
cases, benefits, and drawbacks of the factory method pattern in JavaScript.

Working with Creational Design Patterns24

Summary
Throughout this chapter, we discussed how creational design patterns allow us to build more extensible
and maintainable systems in JavaScript.

The prototype design pattern shines when creating many instances of objects that contain the same
values. This design pattern allows us to change the initial values of the prototype and affect all the
cloned instances.

The singleton design pattern is useful to completely hide initialization details of a class that should
really only be instantiated once. We saw how JavaScript’s module system generates singletons and
how that can be leveraged to simplify a singleton implementation.

The factory method design pattern allows a base class to defer the implementation of some object
creations to subclasses. We saw which features would make this pattern more useful in JavaScript, as
well as an alternative idiomatic JavaScript approach with factory functions.

We can now leverage creational design patterns to build classes that are composable and can be evolved
as necessary to cover different use cases.

Now that we know how to create objects efficiently with creational design patterns, in the next chapter,
we’ll cover how to use structural design patterns to organize relationships between different objects
and classes.

2
 Implementing Structural

Design Patterns

Structural design patterns give us tools to handle connecting different objects; in other words, managing
the relationships between objects. This includes techniques to reduce memory usage and develop
functionality with existing classes without modifying these existing classes. In addition, JavaScript
features allow us to more effectively apply these patterns. Modern JavaScript includes some built-ins
that allow us to implement structural design patterns in a more efficient manner.

We’ll cover the following topics in this chapter:

•	 Defining structural design patterns as a whole, and proxy, decorator, flyweight, and
adapter specifically

•	 An implementation of the proxy pattern with a class-based approach as well as an alternative
using Proxy and Reflect

•	 Multiple implementations of the decorator pattern, leveraging JavaScript first-class support
for functions

•	 An iterative approach to implementing flyweight in JavaScript, including ergonomic improvements
using modern JavaScript features

•	 Class- and function-based adapter implementations

At the end of this chapter, you’ll be able to make informed decisions on when and how to use structural
design patterns in JavaScript.

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/
Javascript-Design-Patterns

https://github.com/PacktPublishing/Javascript-Design-Patterns
https://github.com/PacktPublishing/Javascript-Design-Patterns

 Implementing Structural Design Patterns26

What are structural design patterns?
When building software, we want to be able to connect different pieces of code (e.g., classes and
functions) and change how the parties involved in these connections and relationships interact without
having to jump through multiple fragmented parts of the codebase.

Structural design patterns allow us to add, remove, and change functionality in modules and classes
safely. The “structural” aspect of these patterns is due to the fact that we can play around with
implementations if the exposed interfaces are stable.

Structural design patterns are a good way to maintain the separation of concerns and loose coupling
of different classes and modules while maintaining a high development velocity.

In the next section, we’ll look at multiple approaches to implement the Proxy pattern in JavaScript.

Implementing the Proxy pattern with Proxy and Reflect
The proxy pattern involves providing an object (the subject, or real object) that fulfills a certain
interface. The proxy (a placeholder or wrapper object) controls access to the subject. This
allows us to provide additional functionality on top of the subject without changing a consumer’s
interactions with the subject.

This means that a proxy needs to provide an interface matching the subject.

By using the proxy pattern, we can intercept all operations on the original object and either pass
them through or change their implementation. This follows the open/closed principle, where both
the subject and consumer are closed for modification, but the proxy provides us with a hook to
extend, which means the design is open to extension.

A redaction proxy implementation

We’ll start with the following implementation class that has a couple of methods that output strings:

class Implementation {
  someFn() {
    return 'some-output';
  }
  sensitiveFn() {
    return 'sensitive-output';
  }
}

Let’s imagine that the sensitive string in the output should be redacted.

Implementing the Proxy pattern with Proxy and Reflect 27

Here’s how a RedactionProxy class could look:

class RedactionProxy {
  constructor() {
    this.impl = new Implementation();
  }
  someFn() {
    return this.impl.someFn();
  }
  sensitiveFn() {
    return this.impl.sensitiveFn().replace('sensitive',
      '[REDACTED]');
  }
}

In this case, RedactionProxy does what we call a pass-through of someFn() calls. In other
words, RedactionProxy#someFn simply forwards the someFn call to Implementation.
See the following illustration:

const redactionProxy = new RedactionProxy();
console.assert(
  redactionProxy.someFn() === newImplementation().someFn(),
    'Proxy implementation calls through to original'
);

When it comes to sensitiveFn, RedactionProxy implements the same interface as
Implementation except it overrides the output, replacing sensitive with [REDACTED].

This means the interface for RedactionProxy and Implementation is the same, but
RedactionProxy can control which method calls and fields are available along with their
implementation. See the following example of this behavior:

console.assert(
  redactionProxy.sensitiveFn() !== new
    Implementation().sensitiveFn()&&
      redactionProxy.sensitiveFn() === '[REDACTED]-output',
      'Proxy implementation adds new behaviour'
);

Use cases

The proxy pattern allows us to intercept calls to an object (the implementation or subject)
and augment them, either by manipulating the output or by adding a side-effect.

 Implementing Structural Design Patterns28

Our example of redaction is a good use case for it, but any other type of instrumentation is also a good
use case. The instrumentation could be concerned with measuring something about a function/field
access (e.g. the time it takes) or ensuring access to a property triggers a certain effect. For example, the
reactivity system of Vue.js and Alpine.js is based on proxies, where a JavaScript Proxy object is used
to wrap the reactive data objects. This allows the library (Vue or Alpine) to detect when properties
are changed and run things such as watchers, effects, and re-renders.

Improving the proxy pattern in JavaScript with the Proxy and
Reflect global objects

Back to our example, what happens when we need to redact more functions?

Let’s take an Implementation class with three methods (someFn, sensitiveFn,
and otherSensitiveFn):

class Implementation {
  someFn() {
    return 'sensitive-some-output';
  }
  sensitiveFn() {
    return 'sensitive-output';
  }
  otherSensitiveFn() {
    return 'sensitive-other-output';
  }
}

A naïve implementation of an extended proxy looks as follows, where each method calls the
implementation’s method and then replaces sensitive in its output:

class RedactionProxyNaive {
  constructor() {
    this.impl = new Implementation();
  }
  someFn() {
    return this.impl.someFn().replace
      ('sensitive', '[REDACTED]');
  }
  sensitiveFn() {
    return this.impl.sensitiveFn().replace('sensitive',
      '[REDACTED]');
  }
  otherSensitiveFn() {
    return this.impl.otherSensitiveFn().

Implementing the Proxy pattern with Proxy and Reflect 29

      replace('sensitive', '[REDACTED]');
  }
}

This implementation of the Proxy works, as we can ensure with the following code:

console.assert(
  !new RedactionProxyNaive().someFn().includes('sensitive')
    &&
    !new RedactionProxyNaive().sensitiveFn().includes
      ('sensitive') &&
    !new RedactionProxyNaive().otherSensitiveFn().includes
      ('sensitive'),
  'naive proxy redacts correctly'
);

One improvement we can make here is to extract a #redact private method to handle the replacement
of sensitive:

class RedactionProxyNaiveRefactored {
  constructor() {
    this.impl = new Implementation();
  }
  #redact(str) {
    return str.replace('sensitive', '[REDACTED]');
  }
  someFn() {
    return this.#redact(this.impl.someFn());
  }
  sensitiveFn() {
    return this.#redact(this.impl.sensitiveFn());
  }
  otherSensitiveFn() {
    return this.#redact(this.impl.otherSensitiveFn());
  }
}

console.assert(
  !new RedactionProxyNaiveRefactored().someFn().includes
    ('sensitive') &&
    !new RedactionProxyNaiveRefactored().sensitiveFn().
      includes('sensitive') &&
    !new RedactionProxyNaiveRefactored()
      .otherSensitiveFn()

 Implementing Structural Design Patterns30

      .includes('sensitive'),
  'refactored naive proxy redacts correctly'
);

The downside of this approach is that every method on the Implementation object (the subject)
will require a change to our Proxy implementation.

Fortunately, JavaScript has a built-in class to programmatically manage these situations. The JavaScript
class is aptly called Proxy.

Let’s take the following plain JavaScript object (this also works for class instances) with both fields
and functions:

const obj = {
  someFn() {
    return 'sensitive-some-output';
  },
  sensitiveFn() {
    return 'sensitive-output';
  },
  otherSensitiveFn() {
    return 'sensitive-other-output';
  },
  field: 'sensitive-data',
  sensitiveField: 'redact-everything',
};

We want to be able to completely redact (i.e., keep none of the original output) those fields that contain
sensitive in the field or method name. We also want to have a value redaction functionality when
the output contains the string sensitive, where we replace sensitive with [REDACTED].

To achieve this, we define a Proxy that will wrap our obj object. We instantiate the Proxy with a “get
trap,” which allows us to intercept all property accesses (which includes function access).

The get function receives a target and property. The target is the object being wrapped (obj),
property is the property being accessed.

Based on whether target[property] is a function or not, we’ll replace it with a wrapper function
that will collect all the arguments, call target[property] with those arguments, intercept the
output, and replace sensitive with [REDACTED]. We also return [REDACTED] if the property
name includes sensitive (in our case, using sensitiveFn).

Implementing the Proxy pattern with Proxy and Reflect 31

In cases where target[property] is not a function, we’ll do a full redaction if the property name
includes sensitive and also replace sensitive in the output for all other properties:

const redactedObjProxy = new Proxy(obj, {
  get(target, property, _receiver) {
    if (target[property] instanceof Function) {
      return (...args) => {
        if (property.includes('sensitive')) {
          return '[REDACTED]';
        }
        const output = target[property](...args);
        if (typeof output === 'string') {
          return output.replace('sensitive', '[REDACTED]');
        }
        return output;
      };
    }
    if (property.includes('sensitive')) {
      return '[REDACTED]';
    }
    return target[property].replace('sensitive',
      '[REDACTED]');
  },
});

The following code ensures our Proxy implementation works as expected. sensitive is not present
in any of the function output or in the field value:

console.assert(
  !redactedObjProxy.someFn().includes('sensitive') &&
    !redactedObjProxy.sensitiveFn().includes('sensitive') &&
    !redactedObjProxy.otherSensitiveFn().includes
      ('sensitive'),
  'JavaScript Proxy redacts correctly for all functions'
);
console.assert(
  !redactedObjProxy.field.includes('sensitive'),
  'JavaScript Proxy redacts field values by value
    correctly'
);
console.assert(
  redactedObjProxy.sensitiveField === '[REDACTED]',

 Implementing Structural Design Patterns32

  'JavaScript Proxy redacts field values by property name
    correctly'
);

One of the key benefits is the simplicity of the setup; all the redaction logic is contained in the get
function, which keeps it localized.

As an effect of the co-located logic, we’ve been able to add redaction by property name in addition
to redacting values.

There are still some slight issues with our current Proxy-based approach since we’re losing the this
context on functions. We call target[property](...args), which is fine as long as our object
is not accessing this. We’ll further refactor our implementation to make further extension easier, as
well as leveraging the Reflect global built-in object to simplify our code.

Reflect provides functions with the same name as the Proxy trap with the same arguments; for
example, Reflect.get(target, property, receiver).

We’ll extract a redact function, which takes a propertyName and a redactionValue. It will
keep our redaction logic even more in sync by abstracting it to a separate function:

const redact = (propertyName, redactionValue) => {
  if (propertyName.includes('sensitive')) {
    return '[REDACTED]';
  }
  if (typeof redactionValue === 'string') {
    return redactionValue.replace('sensitive','[REDACTED]'
    );
  }
  // Could implement redaction of objects/Arrays and so on
  return redactionValue;
};

We can then use redact where necessary, use Reflect.get() as a shortcut to target[property],
and use Reflect.apply to maintain the this context:

const redactedObjProxyImproved = new Proxy(obj, {
  get(target, property, receiver) {
    const targetPropertyValue = Reflect.get(target,
      property, receiver);
    if (targetPropertyValue instanceof Function) {
      return (...args) => {
        const output = Reflect.apply(
          targetPropertyValue,
          this === receiver ? this : target,
          args

Decorator in JavaScript 33

        );
        return redact(property, output);
      };
    }
    return redact(property, targetPropertyValue);
  },
});

Our redaction still functions the same over values, function outputs, and property and function names:

console.assert(
  !redactedObjProxyImproved.someFn().includes
    ('sensitive') &&
    !redactedObjProxyImproved.sensitiveFn().includes
      ('sensitive') &&
    !redactedObjProxyImproved.otherSensitiveFn().includes
      ('sensitive'),
  'JavaScript Proxy with Reflect redacts correctly for all
    functions'
);
console.assert(
  !redactedObjProxyImproved.field.includes('sensitive'),
  'JavaScript Proxy with Reflect redacts field values
    correctly'
);
console.assert(
  redactedObjProxyImproved.sensitiveField === '[REDACTED]',
  'JavaScript Proxy with Reflect redacts field values
    correctly'
);

Now that we’ve delved into how to implement the proxy pattern, we’ll contrast it with the decorator
pattern and which JavaScript tools we can use to implement it.

Decorator in JavaScript
The decorator pattern is similar to the proxy pattern in that it’s about “wrapping” an object. However,
the decorator pattern is about adding functionality to an object at runtime. Different decorators can
be applied to an object to add different functionalities to it.

 Implementing Structural Design Patterns34

Implementation

Given the following HttpClient class based on the fetch API, we want to instrument the
requests made through this client. HttpClient implements getJson and returns JSON output
if the fetch request succeeds:

class HttpClient {
  async getJson(url) {
    const response = await fetch(url);
    if (response.ok) {
      return response.json();
    }
    throw new Error(`Error loading ${url}`);
  }
}

InstrumentedHttpClient, which is a decorator, might look like the following, where we expose
the same getJson method but have the added requestTimings field on the instance.

When getJson is called, we track the start and end time of the HttpClient#getJson method
call and add it to the instance’s requestTimings:

class InstrumentedHttpClient {
  constructor(client) {
    this.client = client;
    this.requestTimings = {};
  }
  async getJson(url) {
    const start = performance.now();
    const output = await this.client.getJson(url);
    const end = performance.now();
    if (!Array.isArray(this.requestTimings[url])) {
      this.requestTimings[url] = [];
    }
    this.requestTimings[url].push(end - start);
    return output;
  }
}

We can ensure that the InstrumentedHttpClient works as described with the following code:

const httpClient = new HttpClient();
const instrumentedClient = new InstrumentedHttpClient
  (httpClient);

Decorator in JavaScript 35

await instrumentedClient.getJson
  ('https://ifconfig.io/all.json');
console.assert(
  Object.keys(instrumentedClient.requestTimings).length >0,
  'Tracks request timings'
);
await instrumentedClient.getJson
  ('https://ifconfig.io/all.json');
console.assert(
  instrumentedClient.requestTimings
    ['https://ifconfig.io/all.json'].length === 2,
  'Tracks per URL timings'
);

Use cases

The decorator pattern, much like the proxy pattern, can be used to instrument or intercept operations
on a “subject”.

One key difference is that the decorator is about adding “new members” to the class, not just maintaining
the interface one to one. That’s why it’s normal for us to save an additional requestTimings field
and access it from the “decorated” class, InstrumentedHttpClient.

This means that multiple decorators can “stack” on top of each other. For example, we can have our
InstrumentedHttpClient, which has requestTimings, and then create another decorator
class that does something useful with the timing information. An example here is sending a “client-
time” heuristic header that allows the server to stop processing a request once a certain amount time
of time has passed since it knows the client will have aborted the connection by then.

Improvements/limitations

Due to JavaScript’s first-class support for functions, we can use functions as the basis for decoration
instead of classes.

Our getJson function could look as follows, with similar logic to the HttpClient.getJson method:

async function getJson(url) {
  const response = await fetch(url);
  if (response.ok) {
    return response.json();
  }
  throw new Error(`Error loading ${url}`);
}

 Implementing Structural Design Patterns36

We can then create an addTiming method that stores the request times in an allOperationTimings
Map instance.

We’re using both aspects of first-class functions here – we’re passing a function as a parameter
(getJson) and returning a function:

const allOperationTimings = new Map();
function addTiming(getJson) {
  return async (url) => {
    const start = performance.now();
    const output = await getJson(url);
    const end = performance.now();
    const previousOperationTimings =
       allOperationTimings.get(url) || [];
    allOperationTimings.set(url,
      previousOperationTimings.concat(end - start));
    return output;
  };
}

Using our decorator function is done as follows:

const getJsonWithTiming = addTiming(getJson);

We can then invoke our instrumented function and check that it adds timings to our
allOperationTimings Map:

await getJsonWithTiming('https://ifconfig.io/all.json');
await getJsonWithTiming('https://ifconfig.io/all.json');
console.assert(
  allOperationTimings.size === 1,
  'operation timings tracks by url'
);
console.assert(
  allOperationTimings.get('https://ifconfig.io/all.json').
    length === 2,
  'operation timings tracks number of calls by url'
);

One thing you might’ve noticed is that our addTiming is still aware of the getJson interface (it
knows to pass a URL parameter and that getJson returns a Promise object). We’ll leave it as an
exercise for the reader to implement, but it would be possible to turn addTiming into a function
that can instrument the operation time of any JavaScript function; the tricky part is to find a good
key for our operations map.

Flyweight in JavaScript 37

In the next part of the chapter, we’ll look at the flyweight pattern.

Flyweight in JavaScript
The flyweight pattern is where the subset of object properties that have the same value are stored in
shared “flyweight” objects.

The flyweight pattern is useful when generating large quantities of objects that share a subset of the
same values.

Implementation

One concept from domain-driven design by Eric Evans is “value objects”. These value objects have the
property that their contents matter more than their identity. Let’s take the example of a value object
being a “coin” where, for the purposes of payment, two 50-cent coins are interchangeable.

Value objects are interchangeable and immutable (a 50-cent coin can’t become a 10-cent coin). These
types of objects are therefore a great fit for the Flyweight pattern.

Not all properties of a “coin” are “value”-driven, for example, certain coins are made from certain
materials and coins tend to be issued in a certain year. These two properties (material and year of
issue) might be interesting to collectors and in this respect, real-world coins are not only value objects
as two 1993 coins might be interesting in different ways in the context of a coin collection.

We therefore model our Wallet as containing a list of coins and our Coin as containing an amount
(in cents or other “minor currency”), a currency, a year of issue, and a list of materials.

Figure 2.1: Class diagram where a Wallet has associated coins and methods to operate over them

Our CoinFlyweight will be our “value object” and contain the amount and currency, as follows:

class CoinFlyweight {
  /**
   * @param {Number} amount – amount in minor currency
   * @param {String} currency
   */
  constructor(amount, currency) {
    this.amount = amount;

 Implementing Structural Design Patterns38

    this.currency = currency;
  }
}

The key benefit of the flyweight pattern is that we can reuse our flyweight objects. In order to do
so, we need to control the instantiation of the flyweights with a factory (as covered in Chapter 1,
Working with Creational Design Patterns, The factory pattern in JavaScript section). We therefore
define CoinFlyweightFactory with a static get method that takes the flyweight’s initialization
parameters but only instantiates a new CoinFlyweight if one with the right amount and currency
is not already present in memory. It also provides a getCount method to return the amount of
flyweights currently instantiated:

class CoinFlyweightFactory {
  static flyweights = {};
  static get(amount, currency) {
    const flyWeightKey = `${amount}-${currency}`;
    if (this.flyweights[flyWeightKey]) {
      return this.flyweights[flyWeightKey];
    }
    const instance = new CoinFlyweight(amount, currency);
    this.flyweights[flyWeightKey] = instance;
    return instance;
  }
  static getCount() {
    return Object.keys(this.flyweights).length;
  }
}

Another opportunity to use the Flyweight pattern is with materials. We can similarly create a
MaterialFlyweight and reuse its values via a MaterialFlyweightFactory:

class MaterialFlyweight {
  constructor(materialName) {
    this.name = materialName;
  }
}

class MaterialFlyweightFactory {
  static flyweights = {};
  static get(materialName) {
    if (this.flyweights[materialName]) {
      return this.flyweights[materialName];
    }
    const instance = new MaterialFlyweight(materialName);

Flyweight in JavaScript 39

    this.flyweights[materialName] = instance;
    return instance;
  }
  static getCount() {
    return Object.keys(this.flyweights).length;
  }
}

Finally, we can implement the Coin and Wallet classes. Our Coin instance has a flyweight
field, which is populated using the CoinFlyweightFactory. The Coin#materials field is
populated with a regular array but the array’s contents are of MaterialFlyweight, loaded using
the MaterialFlyweightFactory:

class Coin {
  constructor(amount, currency, yearOfIssue, materials) {
    this.flyweight = CoinFlyweightFactory.get
      (amount, currency);
    this.yearOfIssue = yearOfIssue;
    this.materials = materials.map((material) =>
      MaterialFlyweightFactory.get(material)
    );
  }
}

The Wallet is a plain JavaScript object. Its add method creates a new Coin instance and pushes
it into the Wallet’s coins field. getTotalValueForCurrency sums the coin’s values for a
given currency:

class Wallet {
  constructor() {
    this.coins = [];
  }
  add(amount, currency, yearOfIssue, materials) {
    const coin = new Coin(amount, currency, yearOfIssue,
      materials);
    this.coins.push(coin);
  }
  getCount() {
    return this.coins.length;
  }
  getTotalValueForCurrency(currency) {
    return this.coins
      .filter((coin) => coin.flyweight.currency ===
        currency)

 Implementing Structural Design Patterns40

      .reduce((acc, curr) => acc + curr.flyweight.amount, 0);
  }
}

The wallet can be used as follows, adding GBP and USD of different denominations:

const wallet = new Wallet();

wallet.add(100, 'GBP', '2023', ['nickel-brass',
  'nickel-plated alloy']);
wallet.add(100, 'GBP', '2022', ['nickel-brass',
  'nickel-plated alloy']);
wallet.add(100, 'GBP', '2021', ['nickel-brass',
  'nickel-plated alloy']);
wallet.add(100, 'GBP', '2021', ['nickel-brass',
  'nickel-plated alloy']);
wallet.add(200, 'GBP', '2021', ['nickel-brass',
  'cupro-nickel']);
wallet.add(100, 'USD', '1990', ['copper', 'nickel']);
wallet.add(5, 'USD', '1990', ['copper', 'nickel']);
wallet.add(1, 'USD', '2010', ['copper', 'zinc']);

Note that while the wallet instance contains eight coins, we’ve created six CoinFlyweight and five
MaterialFlyweight instances:

console.assert(
  wallet.getCount() === 8,
  'wallet.add adds coin instances are created once given
    the same cache key'
);
console.assert(
  CoinFlyweightFactory.getCount() === 5,
  'CoinFlyweights are created once given the same
    cache key'
);
console.assert(
  MaterialFlyweightFactory.getCount() === 6,
  'MaterialFlyweights are created once given the same
     cache key'
);
console.assert(
  wallet.getTotalValueForCurrency('GBP') === 600,
  'Summing GBP works'
);

Flyweight in JavaScript 41

console.assert(
  wallet.getTotalValueForCurrency('USD') === 106,
  'Summing USD works'
);

Use cases

The flyweight pattern is a normalization technique that reduces the memory footprint at the cost
of cognitive overhead when accessing and running computations over objects using this pattern.
Flyweight can be leveraged as a performance optimization when handling large numbers of objects.

It’s very well suited to modeling value objects as we’ve shown in the previous section. The only drawback
was the getTotalValueForCurrency, where we had to read coin.flyweight.currency
and coin.flyweight.amount.

Improvements/limitations

There are a few improvements we can make to our flyweight wallet/coin setup. A few of the improvements
center on the “factories”. The flyweights shouldn’t really be accessed from outside of the get
function, so we can make it a private field using #flyweights. We can also leverage the Map object,
still with the same cache key, although Map has greater flexibility in terms of what keys can be used
and a different property access interface (.get(key) instead of [key] access). Using a Map means
we need to use this.#flyweights.size in getCount:

class CoinFlyweightFactory {
  static #flyweights = new Map();
  static get(amount, currency) {
    const flyWeightKey = `${amount}-${currency}`;
    if (this.#flyweights.get(flyWeightKey)) {
      return this.#flyweights.get(flyWeightKey);
    }
    const instance = new CoinFlyweight(amount, currency);
    this.#flyweights.set(flyWeightKey, instance);
    return instance;
  }
  static getCount() {
    return this.#flyweights.size;
  }
}

Another change we’ll make is in light of the fact that there were not any material gains by making
materials a flyweight, so we’ll revert it to storing the list of strings per Coin instance.

 Implementing Structural Design Patterns42

Again, we want to make #flyweight private, this will change the interface of Coin since consumers
will not be able to access coin.#flyweight (it’s a private field).

What we’ll do is tackle the mismatch of having to read coin.flyweight.amount and coin.
flyweight.currency. We’ll supply two getters, get amount() and get currency(), which
will return this.#flyweight.amount and this.#flyweight.currency respectively:

class Coin {
  #flyweight;
  constructor(amount, currency, yearOfIssue, materials) {
    this.#flyweight = CoinFlyweightFactory.get
      (amount, currency);
    this.yearOfIssue = yearOfIssue;
    this.materials = materials;
  }
  get amount() {
    return this.#flyweight.amount;
  }
  get currency() {
    return this.#flyweight.currency;
  }
}

As mentioned, the interface of Coin doesn’t have a flyweight property so
getTotalValueForCurrency will read from Coin#currency and Coin#amount. As
far as Wallet is concerned, currency and amount are fields on the Coin instance, although
they’re getters:

class Wallet {
  constructor() {
    this.coins = [];
  }
  add(amount, currency, yearOfIssue, materials) {
    const coin = new Coin(amount, currency, yearOfIssue,
      materials);
    this.coins.push(coin);
  }
  getCount() {
    return this.coins.length;
  }
  getTotalValueForCurrency(currency) {
    return this.coins
      .filter((coin) => coin.currency === currency)
      .reduce((acc, curr) => acc + curr.amount, 0);

Flyweight in JavaScript 43

  }
}

We can check that our new Wallet and Coin implementations work as expected by using the same
tests as in our earlier iteration of the code:

const wallet = new Wallet();

wallet.add(100, 'GBP', '2023', ['nickel-brass',
  'nickel-plated alloy']);
wallet.add(100, 'GBP', '2022', ['nickel-brass',
  'nickel-plated alloy']);
wallet.add(100, 'GBP', '2021', ['nickel-brass',
  'nickel-plated alloy']);
wallet.add(100, 'GBP', '2021', ['nickel-brass',
  'nickel-plated alloy']);
Wallet.add(200, 'GBP', '2021', ['nickel-brass',
  'cupro-nickel']);
wallet.add(100, 'USD', '1990', ['copper', 'nickel']);
wallet.add(5, 'USD', '1990', ['copper', 'nickel']);
wallet.add(1, 'USD', '2010', ['copper', 'zinc']);

console.assert(
  wallet.getCount() === 8,
  'wallet.add adds coin instances are created once
    given the same cache key'
);
console.assert(
  CoinFlyweightFactory.getCount() === 5,
  'CoinFlyweights are created once given the same
   cache key'
);
console.assert(
  wallet.getTotalValueForCurrency('GBP') === 600,
  'Summing GBP works'
);
console.assert(
  wallet.getTotalValueForCurrency('USD') === 106,
  'Summing USD works'
);

We’ve seen how the flyweight pattern can be used to optimize memory usage by using shared value objects.

 Implementing Structural Design Patterns44

In the next part of the chapter, we’ll look at the last structural design pattern covered in this book,
the adapter pattern in JavaScript.

Adapter in JavaScript
The adapter pattern, similar to the other structural design patterns, focuses on interfaces.

In the adapter pattern’s case, it involves being able to use a new implementation without changing the
consumer or the implementation’s interface. The “adapter” takes the new implementation and “adapts”
the interface to match what the consumer expects.

We’re not changing the implementation or the consumer; rather, we’re building an adapter to wrap
the implementation and plug it into the consumer without changing either.

Implementation

Let’s start with a simple in-memory database that uses a naive IdGenerator to generate keys for
the database entries by encoding the object as a string.

Database has a createEntry method that stores given data using the IdGenerator to generate
a key. Database also has a get method to recall entries by ID:

class IdGenerator {
  get(entry) {
    return JSON.stringify(entry);
  }
}

class Database {
  constructor(idGenerator) {
    this.idGenerator = idGenerator;
    this.entries = {};
  }
  createEntry(entryData) {
    const id = this.idGenerator.get(entryData);
    this.entries[id] = entryData;
    return id;
  }
  get(id) {
    return this.entries[id];
  }
}

Adapter in JavaScript 45

By composing Database with an IdGenerator instance, we get a key-value lookup database
instance with the key equal to the JSON representation of the value:

const naiveIdDatabase = new Database(new IdGenerator());
naiveIdDatabase.createEntry({
  name: 'pear',
});

console.assert(
  naiveIdDatabase.get('{"name":"pear"}').name === 'pear',
  'stringIdDatabase recalls entries by stringified entry'
);

Now, the naive ID generation that encodes the whole entry value in the key is not ideal. An alternative
is to use a UUID. Here’s a UuidFactory using the uuid npm module. The key operation it exposes
is generateUuid:

import { v4 as uuidv4 } from 'uuid';

class UuidFactory {
  generateUuid() {
    return uuidv4();
  }
}

To use the UuidFactory with our Database, we would need a get method instead of a
generateUuid method. This is where our adapter comes in – we can wrap the UuidFactory
in a class that exposes get(entry) but calls generateUuid on the UuidFactor instance:

class UuidIdGeneratorAdapter {
  constructor() {
    this.uuidFactory = new UuidFactory();
  }
  get(_entry) {
    return this.uuidFactory.generateUuid();
  }
}

The UuidIdGeneratorAdapter can then be passed as the idGenerator to Database. It
all works as expected, where the entry IDs for the database are UUIDs:

const uuidIdDatabase = new Database(new UuidIdGeneratorAdapter());
const uuidEntryId = uuidIdDatabase.createEntry({
  name: 'pear',
});

 Implementing Structural Design Patterns46

console.assert(
  uuidIdDatabase.get(uuidEntryId).name === 'pear',
  'uuidIdDatabase recalls entries by uuid'
);
import { validate as isUuid } from 'uuid';
console.assert(isUuid(uuidEntryId), 'uuidIdDatabase generated uuid
ids');

Another example that makes use of the fact that the entry is being passed to idGenerator.
get() is to generate prefixed auto-incrementing IDs based on the entry contents. Here, name will
be used as the prefix. We have a Counter class that implements getAndIncrement(prefix),
which generates incrementing IDs given a prefix (or no prefix):

class Counter {
  constructor(startValue = 1) {
    this.startValue = startValue;
    this.nextId = startValue;
    this.nextIdByPrefix = {};
  }
  getAndIncrement(prefix) {
    if (prefix) {
      if (!this.nextIdByPrefix[prefix]) {
        this.nextIdByPrefix[prefix] = this.startValue;
      }
      const nextId = this.nextIdByPrefix[prefix]++;
      return `${prefix}:${nextId}`;
    }
    return String(this.nextId++);
  }
}

Again, getAndIncrement(prefix) doesn’t match the IdGenerator interface (no get
method). We can wrap Counter in a PrefixedAutoIncrementIdGeneratorAdapter to
expose an IdGenerator interface but using the Counter implementation:

class PrefixedAutoIncrementIdGeneratorAdapter {
  constructor() {
    this.counter = new Counter();
  }
  get(entry) {
    return this.counter.getAndIncrement(entry.name);
  }
}

Adapter in JavaScript 47

We can ensure the prefixing logic works as expected for the Database since it creates entries keyed
by prefixed auto-incrementing IDs:

const prefixAutoIncrementDatabase = new Database(
  new PrefixedAutoIncrementIdGeneratorAdapter()
);

We can check that the case where no name field is set works as expected:

const noPrefixIncrementingEntryId1 =
  prefixAutoIncrementDatabase.createEntry({
  type: 'no-prefix',
});
const noPrefixIncrementingEntryId2 =
  prefixAutoIncrementDatabase.createEntry({
  type: 'no-prefix',
});

console.assert(
  noPrefixIncrementingEntryId1 === '1' &&
    noPrefixIncrementingEntryId2 === '2',
  'prefixAutoIncrementDatabase generates autoincrementing
    ids with no prefix if no name property is set'
);
console.assert(
  prefixAutoIncrementDatabase.get
    (noPrefixIncrementingEntryId1).type ===
    'no-prefix' &&
    prefixAutoIncrementDatabase.get
      (noPrefixIncrementingEntryId2).type ===
      'no-prefix',
  'prefixAutoIncrementDatabase recalls entries by
     autoincrementing id'
);

And the scenarios where a prefix is available also functions correctly per the following example:

const prefixIncrementingEntryIdPear1 =
  prefixAutoIncrementDatabase.createEntry({
  name: 'pear',
});
const prefixIncrementingEntryIdPear2 =
  prefixAutoIncrementDatabase.createEntry({
  name: 'pear',
});

 Implementing Structural Design Patterns48

const prefixIncrementingEntryIdApple1 =
  prefixAutoIncrementDatabase.createEntry(
  {
    name: 'apple',
  }
);
console.assert(
  prefixIncrementingEntryIdPear1 === 'pear:1' &&
    prefixIncrementingEntryIdPear2 === 'pear:2' &&
    prefixIncrementingEntryIdApple1 === 'apple:1',
  'prefixAutoIncrementDatabase generates prefixed
    autoincrementing ids'
);
console.assert(
  prefixAutoIncrementDatabase.get
    (prefixIncrementingEntryIdPear1).name ===
    'pear',
  prefixAutoIncrementDatabase.get
    (prefixIncrementingEntryIdPear2).name ===
    'pear',
  prefixAutoIncrementDatabase.get
    (prefixIncrementingEntryIdApple1).name ===
    'apple',
  'prefixAutoIncrementDatabase recalls entries by prefixed
    id'
);

Use cases

The adapter pattern is useful when you need to use two classes that weren’t specifically designed to work
together. Consider, for example, a third-party library or module that exposes a function (such as the
uuid module or even UuidFactory from our scenario). We want to abstract the implementation
behind an interface, in our case the interface of IdGenerator, which is just a get method, so that
any implementation can be used.

Our example showcased the value of the adapter pattern. We were able to create very differently
behaving databases without changing UuidFactory, Counter, or Database for that matter.
This is very important when having to connect two third-party modules or modules which are self-
contained and shouldn’t be changed.

Using the adapter pattern therefore means that we can avoid changing difficult-to-understand code
while delivering the required functionality.

Adapter in JavaScript 49

Improvements/limitations

Similarly, to the Decorator in JavaScript - Improvements/limitations section, one of the JavaScript features
that can help when implementing structural design patterns is the first-class support for functions.

Instead of an IdGenerator class, we can have a defaultIdGenerator function that takes an
entry and returns a string:

function defaultIdGenerator(entry) {
  return JSON.stringify(entry);
}

The Database class would now look something as follows, where this.idGenerator(entryData)
is called directly:

class Database {
  constructor(idGenerator) {
    this.idGenerator = idGenerator;
    this.entries = {};
  }
  createEntry(entryData) {
    const id = this.idGenerator(entryData);
    this.entries[id] = entryData;
    return id;
  }
  get(id) {
    return this.entries[id];
  }
}

We can validate that the naive implementation still works by serializing whatever is passed to it as JSON:

const naiveIdDatabase = new Database(defaultIdGenerator);
naiveIdDatabase.createEntry({
  name: 'pear',
});

console.assert(
  naiveIdDatabase.get('{"name":"pear"}').name === 'pear',
  'stringIdDatabase recalls entries by stringified entry'
);

This approach shines when we need to plug in the UUID and prefix generators.

 Implementing Structural Design Patterns50

A uuidGenerator function can call uuidv4(). We can validate that uuidIdDatabase uses
UUIDs to key and recall the entries:

function uuidGenerator() {
  return uuidv4();
}
const uuidIdDatabase = new Database(uuidGenerator);
const uuidEntryId = uuidIdDatabase.createEntry({
  name: 'pear',
});
console.assert(
  uuidIdDatabase.get(uuidEntryId).name === 'pear',
  'uuidIdDatabase recalls entries by uuid'
);
console.assert(isUuid(uuidEntryId), 'uuidIdDatabase
  generated uuid ids');

Finally, a prefixAutoIncrementIdGenerator would look as follows. We’re using module-
scoped variables, which is another feature of JavaScript:

const startValue = 1;
let nextId = startValue;
let nextIdByPrefix = {};
function prefixAutoIncrementIdGenerator(entry) {
  const prefix = entry.name;
  if (prefix) {
    if (!nextIdByPrefix[prefix]) {
      nextIdByPrefix[prefix] = startValue;
    }
    const nextId = nextIdByPrefix[prefix]++;
    return `${prefix}:${nextId}`;
  }
  return String(nextId++);
}

This code would be in a different module than its consumer, so it would be export
function prefixAutoIncrementIdGenerator and its consumer would import
{prefixAutoIncrementIdGenerator} from './path-to-module.js'.

prefixAutoIncrementIdGenerator functions like the
PrefixedAutoIncrementIdGeneratorAdapter class did, generating auto-incrementing
IDs and prefixing them where possible by entry.name:

const prefixAutoIncrementDatabase = new Database(
  prefixAutoIncrementIdGenerator
);

Adapter in JavaScript 51

const noPrefixIncrementingEntryId1 =
  prefixAutoIncrementDatabase.createEntry({
  type: 'no-prefix',
});
const noPrefixIncrementingEntryId2 =
  prefixAutoIncrementDatabase.createEntry({
  type: 'no-prefix',
});

console.assert(
  noPrefixIncrementingEntryId1 === '1' &&
    noPrefixIncrementingEntryId2 === '2',
  'prefixAutoIncrementDatabase generates autoincrementing
     ids with no prefix if no name property is set'
);
console.assert(
  prefixAutoIncrementDatabase.get
    (noPrefixIncrementingEntryId1).type ===
    'no-prefix' &&
    prefixAutoIncrementDatabase.get
      (noPrefixIncrementingEntryId2).type ===
      'no-prefix',
  'prefixAutoIncrementDatabase recalls entries by
    autoincrementing id'
);
const prefixIncrementingEntryIdPear1 =
  prefixAutoIncrementDatabase.createEntry({
  name: 'pear',
});
const prefixIncrementingEntryIdPear2 =
  prefixAutoIncrementDatabase.createEntry({
  name: 'pear',
});
const prefixIncrementingEntryIdApple1 =
  prefixAutoIncrementDatabase.createEntry(
  {
    name: 'apple',
  }
);
console.assert(
  prefixIncrementingEntryIdPear1 === 'pear:1' &&
    prefixIncrementingEntryIdPear2 === 'pear:2' &&
    prefixIncrementingEntryIdApple1 === 'apple:1',

 Implementing Structural Design Patterns52

  'prefixAutoIncrementDatabase generates prefixed
    autoincrementing ids'
);
console.assert(
  prefixAutoIncrementDatabase.get
    (prefixIncrementingEntryIdPear1).name ===
    'pear',
  prefixAutoIncrementDatabase.get
    (prefixIncrementingEntryIdPear2).name ===
    'pear',
  prefixAutoIncrementDatabase.get
    (prefixIncrementingEntryIdApple1).name ===
    'apple',
  'prefixAutoIncrementDatabase recalls entries by prefixed
    id'
);

In this final section of the chapter, we covered the adapter pattern and how to use it when the consumer
expects a class but also a function in JavaScript.

Summary
In this chapter, we’ve looked at how structural design patterns enable the extension of functionality
without needing to rework interfaces in JavaScript.

The proxy design pattern is useful when we want to intercept calls to an object without changing
the interface.

By contrast, the decorator design pattern concerns itself with dynamically adding functionality through
new instance members.

The flyweight pattern can be used effectively for managing large numbers of objects, which is especially
useful for value objects. There are workarounds in JavaScript for some of the ergonomic drawbacks of it.

The adapter pattern allows us to integrate multiple classes, modules, or functions with different
opinions and interfaces without modifying them. The shape of the adapter is dictated by the existing
modules and classes that we’re attempting to connect together.

Now that we know how to organize relationships between different objects and classes with structural
design patterns, in the next chapter, we’ll cover how to use behavioral design patterns to organize
communication between objects.

3
Leveraging Behavioral

Design Patterns

Behavioral design patterns help to organize communication between objects. This includes the ability
to extend functionality without modifying these existing classes. By implementing the behavioral
design patterns covered in this chapter and how they’re used in the JavaScript ecosystem, we’ll learn
to build JavaScript applications that can be extended without touching existing functionality.

We’ll cover the following topics in this chapter:

•	 An understanding of the behavioral design pattern classification

•	 An implementation of the observer pattern and how the common Web EventTarget API
exposes it

•	 Implementations of the state and strategy pattern, both with a class-based approach and a
function-based approach

•	 A simplified visitor example, as well as common usage for the visitor pattern in the
JavaScript ecosystem

By the end of this chapter, you’ll be able to leverage behavioral design patterns in JavaScript to scale
your code base and expose extension points for functionality.

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/
Javascript-Design-Patterns

https://github.com/PacktPublishing/Javascript-Design-Patterns
https://github.com/PacktPublishing/Javascript-Design-Patterns

Leveraging Behavioral Design Patterns54

What are behavioral design patterns?
Communicating between objects is key to building software. Behavioral design patterns help us
organize this communication and usually decouple the possible implementations from other objects.
This makes us more able to extend our code base.

Behavioral design patterns help us follow the open/closed principle, where we can extend functionality
without modifying the existing implementation modules.

All the patterns we’ll cover allow us to “add functionality” without modifying the existing consumer/
concrete implementation. In large software code bases, this is useful, since it means we can limit
the scope of changes and lower the risk of breaking existing functionality. We’re able to effectively
de-correlate “adding functionality” from “changing the existing code for other unrelated functionality,”
and new features and behaviors can be added without having to do modifications to existing consumers.

With behavioral design patterns, new behaviors can be purely additive. The observer pattern allows
multiple decoupled consumers (also called listeners). With the state, strategy, and visitor patterns, new
implementations and transitions can be added without interfering with the existing ones.

In the next section, we’ll look at our first behavioral design pattern, the observer pattern in JavaScript.

The observer pattern in JavaScript
The observer pattern allows an object (the observable or subject) to maintain a list of other objects
that depend on it (observers). When a state update occurs in the subject, such as an entity object being
created or updated, it notifies the observers.

Implementation

A sample use case for the observer pattern is an in-memory queue. The Queue instance will have the
subscribe, unsubscribe, and notify methods.

subscribe will add an additional “handler” function, unsubscribe will remove a particular
“handler” function if it has been registered, and finally, notify will call each handler with a “message”
payload. This is the “notification of the observers” piece, where the observable or subject ensures that
each registered observer is notified.

subscribe and unsubscribe turn “observer” functionality on and off, respectively. subscribe
has to be used to become an “observer,” and unsubscribe is useful for situations where we don’t
want to observe something anymore (for example, we’ve reached an end state). Meanwhile, the notify
method ensures that each “subscribed” observer receives an update.

The observer pattern in JavaScript 55

A “handler” function, as the name suggests, is a function passed to another module to be executed at
that other module’s discretion, usually in response to an “event”:

class Queue {
  constructor() {
    this.handlers = [];
  }
  subscribe(handlerFn) {
    this.handlers.push(handlerFn);
  }
  unsubscribe(handlerFn) {
    this.handlers = this.handlers.filter((handler) =>
      handler !== handlerFn);
  }
  notify(message) {
    this.handlers.forEach((handler) => {
      handler(message);
    });
  }
}

We can implement three simple “subscribers” that will, respectively, only record 'CREATE' messages,
only record 'UPDATE' messages, and record all messages:

const queue = new Queue();
const createMessages = [];
queue.subscribe((message) => {
  if (message.type === 'CREATE') {
    createMessages.push(message);
  }
});

const updateMessages = [];
queue.subscribe((message) => {
  if (message.type === 'UPDATE') {
    updateMessages.push(message);
  }
});

const allMessages = [];
queue.subscribe((message) => {
  allMessages.push(message);
});

Leveraging Behavioral Design Patterns56

When we trigger notifications by calling notify, we can ensure that the subscribers work as expected
by inspecting the arrays on which they store the messages:

queue.notify({ type: 'CREATE', data: { user: { id: 1 } }
});
queue.notify({ type: 'CREATE', data: { user: { id: 2 } } });
queue.notify({ type: 'CREATE', data: { user: { id: 3 } } });
queue.notify({ type: 'UPDATE', data: { user: { id: 1, role:
  'ADMIN' } } });
queue.notify({
  type: 'UPDATE',
  data: { user: { id: 3, role: 'DEVELOPER' } },
});
queue.notify({ type: 'UPDATE', data: { user: { id: 3, role:
  'ADMIN' } } });

console.assert(
  createMessages.length === 3,
  '%o collects CREATE messages',
  allMessages
);
console.assert(
  updateMessages.length === 3,
  '%o collects UPDATE messages',
  allMessages
);
console.assert(
  allMessages.length === 6,
  '%o collects all message',
  allMessages
);

Note that our observer implementation takes advantage of first-class support for functions in JavaScript,
which means we can pass a callback function to the subscribe method, instead of notify having
to call a method on an instance.

In programming languages with limited or no first-class function support, such as older versions of
Java and PHP, the approach would’ve required passing an observer to subscribe and notify
calling a method on each observer instance. In JavaScript, if we don’t use “handler” functions, we’ll
create an observer object that gets instantiated and has a handle function, which takes a message
and implements some logic around it; in this case, it simply stores it on an instance variable:

class UpdateMessageObserver {
  constructor() {

The observer pattern in JavaScript 57

    this.updateMessages = [];
  }
  handle(message) {
    if (message.type === 'UPDATE') {
      this.updateMessages.push(message);
    }
  }
}

This would require modification of the Queue class to work correctly:

class QueueObserverObjects {
  constructor() {
    this.observers = [];
  }
  subscribe(observerObj) {
    this.observers.push(observerObj);
  }
  unsubscribe(observerObj) {
    this.observers = this.observers.filter(
      (observer) => observer !== observerObj,
    );
  }
  notify(message) {
    this.observers.forEach((observer) => {
      observer.handle(message);
    });
  }
}

We can ensure that it does function as expected by calling notify with a few messages and
checking the contents of UpdateMessageObserver().updateMessages, as the following
code sample shows:

const queueObserverObjects = new QueueObserverObjects();
const updateMessageObserver = new UpdateMessageObserver();
queueObserverObjects.subscribe(updateMessageObserver);
queueObserverObjects.notify({
  type: 'CREATE',
  data: { user: { id: 1 } },
});
queueObserverObjects.notify({
  type: 'UPDATE',
  data: { user: { id: 1, role: 'ADMIN' } },

Leveraging Behavioral Design Patterns58

});
queueObserverObjects.notify({
  type: 'UPDATE',
  data: { user: { id: 3, role: 'DEVELOPER' } },
});

console.assert(
  updateMessageObserver.updateMessages.length === 2,
  '%o collects update messages',
  updateMessageObserver.updateMessages,
);

We’ve now seen how to implement the observer pattern with “handler” functions and Observer
object instances, with a Queue observable. Next, we’ll look at where the observer pattern is used
in JavaScript.

Use cases of the observer pattern

The observer pattern is great for dealing with loosely coupled events or messages. In the context
of a web application, this could be DOM events. EventTarget.addEventListener() and
EventTarget.removeEventListener(), which are available (among others) on the Window,
Document, and Element objects, are a widely used implementation of the observer pattern. They’re
used by client-side JavaScript applications to register handlers for user interactions (for example, click,
form submit, hover, and mouseover).

Limitations and improvements

In our queue implementation, handlers are readable from outside of the instance. The handlers are an
implementation detail of the queue, which we should be able to change without affecting consuming
modules. This means we want to encapsulate the handlers to make them unavailable for consumption
by code outside of the Queue class. If we keep the handlers array available, it’s possible for code
outside of the Queue class to access and modify it, which means the Queue abstraction breaks down,
since consumers integrate against implementation details. This means consumers are tightly coupled
to the Queue’s internal implementation.

Therefore, we can use a private field; in modern JavaScript, that’s done using the # syntax. For handlers,
it would involve a #handlers declaration in the class followed by access to this.#handlers:

class Queue {
  #handlers;
  constructor() {
    this.#handlers = [];
  }
  subscribe(handlerFn) {

The observer pattern in JavaScript 59

    this.#handlers.push(handlerFn);
  }
  unsubscribe(handlerFn) {
    this.#handlers = this.#handlers.filter((handler) =>
      handler !== handlerFn);
  }
  notify(message) {
    this.#handlers.forEach((handler) => {
      handler(message);
    });
  }
}

Another improvement we can make to our queue is to provide a fluent interface so that we can “chain”
calls. To do this, we simply need to return this from each of the subscribe, unsubscribe,
and notify handlers. This allows us to call the instance methods in a single “chain”; instead of using
queue.subscribe() followed by queue.notify(), we can write it as a single statement –
queue.subscribe().notify():

class Queue {
  #handlers;
  constructor() {
    this.#handlers = [];
  }
  subscribe(handlerFn) {
    this.#handlers.push(handlerFn);
    return this;
  }
  unsubscribe(handlerFn) {
    this.#handlers = this.#handlers.filter((handler) =>
      handler !== handlerFn);
    return this;
  }
  notify(message) {
    this.#handlers.forEach((handler) => {
      handler(message);
    });
    return this;
  }
}

Leveraging Behavioral Design Patterns60

We can validate that the queue functions as expected with regards to notifying observers, as well as
being usable with the fluent (“chained”) interface:

const queue = new Queue();
const createMessages = [];
const updateMessages = [];
const allMessages = [];

queue
  .subscribe((message) => {
    if (message.type === 'CREATE') {
      createMessages.push(message);
    }
  })
  .subscribe((message) => {
    if (message.type === 'UPDATE') {
      updateMessages.push(message);
    }
  })
  .subscribe((message) => {
    allMessages.push(message);
  });

queue
  .notify({ type: 'CREATE', data: { user: { id: 1 } } })
  .notify({ type: 'CREATE', data: { user: { id: 2 } } })
  .notify({ type: 'CREATE', data: { user: { id: 3 } } })
  .notify({ type: 'UPDATE', data: { user: { id: 1, role:
    'ADMIN' } } })
  .notify({
    type: 'UPDATE',
    data: { user: { id: 3, role: 'DEVELOPER' } },
  })
  .notify({ type: 'UPDATE', data: { user: { id: 3, role:
    'ADMIN' } } });

console.assert(
  createMessages.length === 3,
  '%o collects CREATE messages',
  allMessages
);
console.assert(
  updateMessages.length === 3,
  '%o collects UPDATE messages',

State and strategy in JavaScript and a simplified approach 61

  allMessages
);
console.assert(
  allMessages.length === 6,
  '%o collects all message',
  allMessages
);

We’ve now seen how to implement the observer pattern in JavaScript as well as how to use private
fields and a fluent interface to improve our implementation.

In the next section, we’ll implement the state and strategy patterns.

State and strategy in JavaScript and a simplified approach
The state and strategy patterns are closely related, in that they allow the extension of a software system‘s
functionality by changing decoupled implementation objects, instead of changing the core subject object.

State allows an object to display different behavior based on what state it’s in. This is very useful for
modeling state machines. Each state provides the same interface, and the core object calls methods
on the different states.

Strategy similarly allows an object to dynamically select an implementation at runtime. In order to
do this, the implementation is injected into the object and used.

We can classify the state pattern as a subset of the strategy pattern, where the implementation is
dynamically changed by the state instances.

Next, we’ll see how to implement a state machine in JavaScript with the state pattern, as well as
implement an object, merging abstraction with the strategy pattern.

Implementation

For our implementation of the state pattern, we’ll use a simplified pull request/merge request/change
request example.

A pull request starts in either a draft or open state. From there, it can transition between open and
draft, and then transition to a closed or merged state. The merged state is a final state; closed can be
undone by reopening the pull request, so it is not final.

To visualize the transitions from all the states, we can use a state diagram representing pull request
states and allowed transitions. In Figure 3.1, the initial state is either draft or open. Both of these states
can transition to each other. Open can change to merged or closed, where merged is a valid end state.
Draft can also change to closed.

Leveraging Behavioral Design Patterns62

Figure 3.1: A pull request state diagram

It’s useful to sketch out our PullRequest class first. The possible actions on our PullRequest
are open, markDraft, markReadyForReview, close, and merge.

To implement that state pattern, we also expose a setState method. Each state will take the
PullRequest instance as a constructor argument, and the initial states of PullRequest are
either DraftState or OpenState, based on an isDraft boolean parameter:

class PullRequest {
  constructor(isDraft = false) {
    this.state = isDraft ? new DraftState(this) : new
      OpenState(this);
  }
  setState(state) {
    this.state = state;
  }
  open() {
    this.state.open();
  }
  markDraft() {
    this.state.markDraft();
  }
  markReadyForReview() {
    this.state.markReadyForReview();
  }
  close() {
    this.state.close();
  }

State and strategy in JavaScript and a simplified approach 63

  merge() {
    this.state.merge();
  }
}

We’ll implement the state machine, starting with the initial and final states. For the initial states, we
have DraftState and OpenState; for the final states, we have MergedState.

DraftState only implements markReadyForReview and close, which transition pullRequest
to OpenState or ClosedState, respectively:

class DraftState {
  constructor(pullRequest) {
    this.pullRequest = pullRequest;
  }
  markReadyForReview() {
    this.pullRequest.setState(new OpenState
      (this.pullRequest));
  }
  close() {
    this.pullRequest.setState(new ClosedState
      (this.pullRequest));
  }
}

OpenState implements markDraft, close, and merge, which transitions pullRequest to
DraftState, ClosedState, and MergedState, respectively:

class OpenState {
  constructor(pullRequest) {
    this.pullRequest = pullRequest;
  }
  markDraft() {
    this.pullRequest.setState(new DraftState
      (this.pullRequest));
  }
  close() {
    this.pullRequest.setState(new ClosedState
      (this.pullRequest));
  }
  merge() {
    this.pullRequest.setState(new MergedState
      (this.pullRequest));
  }
}

Leveraging Behavioral Design Patterns64

As a final state, MergedState does not implement any of the methods:

class MergedState {
  constructor(pullRequest) {
    this.pullRequest = pullRequest;
  }
}

Finally, ClosedState implements the open method, which transitions pullRequest
to OpenState:

class ClosedState {
  constructor(pullRequest) {
    this.pullRequest = pullRequest;
  }
  open() {
    this.pullRequest.setState(new OpenState
      (this.pullRequest));
  }
}

We can check that our pull request and states work as expected.

A PullRequest instantiated with isDraft set to true will begin in DraftState. A
markReadyForReview call will transition it to OpenState:

const pullRequest1 = new PullRequest(true);
console.assert(pullRequest1.state instanceof DraftState,
  pullRequest1.state);
pullRequest1.markReadyForReview();
console.assert(pullRequest1.state instanceof OpenState,
  pullRequest1.state);

Once a pull request is merged with pullRequest.merge(), no method is available (they’ll all
throw errors):

pullRequest1.merge();

console.assert(
  captureError(() => pullRequest1.open()) instanceof Error,
  pullRequest1.state
);
console.assert(
  captureError(() => pullRequest1.markReadyForReview())

State and strategy in JavaScript and a simplified approach 65

    instanceof Error,
  pullRequest1.state
);
console.assert(
  captureError(() => pullRequest1.close()) instanceof
    Error,
  pullRequest1.state
);

A pull request starting in the open state can be closed. Once in ClosedState, it’s not possible to
do anything other than execute open() on it – for example, markDraft will fail with an error:

const pullRequest2 = new PullRequest(false);
console.assert(pullRequest2.state instanceof OpenState,
  pullRequest2.state);
pullRequest2.close();
console.assert(pullRequest2.state instanceof ClosedState,
  pullRequest2.state);
console.assert(
  captureError(() => pullRequest2.markDraft())
    instanceof Error,
  pullRequest2.state
);
pullRequest2.open();
console.assert(pullRequest2.state instanceof OpenState,
  pullRequest2.state);

We’ve now seen how to implement a pull request state machine using the state pattern.

Next, we’ll have a look at implementing strategy.

Our example is an ObjectMerger class, which merges JavaScript objects. There are multiple ways
to achieve this in JavaScript, so we structure our ObjectMerger to accept a strategy object
and allow updates to it with a setStrategy method. Finally, we expose a combinedObjects
method, which calls the instance’s strategy’s combineObjects method with two objects:

class ObjectMerger {
  constructor(defaultStrategy) {
    this.strategy = defaultStrategy;
  }
  setStrategy(newStrategy) {
    this.strategy = newStrategy;
  }

Leveraging Behavioral Design Patterns66

  combineObjects(obj1, obj2) {
    return this.strategy.combineObjects(obj1, obj2);
  }
}

An example strategy in this case would be to use Object.assign with {} (a new object literal)
as the target of the assignment. This has the benefit of not mutating the obj1 and obj2 parameters:

class PureObjectAssignStrategy {
  constructor() {}
  combineObjects(obj1, obj2) {
    return Object.assign({}, obj1, obj2);
  }
}

Our ObjectMerger can be instantiated with the PureObjectAssignStrategy, as follows:

const objectMerger = new ObjectMerger
  (new PureObjectAssignStrategy());

It can then be used to merge objects without mutating obj1 or obj2:

const obj1 = {
  keys: '123',
};
const obj2 = {
  keys: '456',
};

const defaultMergeStrategyOutput =
  objectMerger.combineObjects(obj1, obj2);
console.assert(defaultMergeStrategyOutput.keys === '456',
  '%o has keys = 456');
console.assert(obj1.keys === '123' && obj2.keys === '456',
  obj1, obj2);

An example of a naive implementation using Object.assign that doesn’t use a new object as the
assignment target (and, therefore, mutates obj1) looks as follows:

class MutatingObjectAssignStrategy {
  constructor() {}
  combineObjects(obj1, obj2) {
    return Object.assign(obj1, obj2);
  }
}

State and strategy in JavaScript and a simplified approach 67

It can be used as follows and does indeed mutate obj1:

objectMerger.setStrategy(new
  MutatingObjectAssignStrategy());
const mutatingMergedStrategyOutput =
  objectMerger.combineObjects(obj1, obj2);
console.assert(
  mutatingMergedStrategyOutput.keys === '456',
  '%o has keys = 456',
  mutatingMergedStrategyOutput
);
console.assert(
  obj1.keys === '456' && obj2.keys === '456',
  'Mutates the original object obj1 %o, obj2 %o',
  obj1,
  obj2
);

An equivalent strategy to our initial Object.assign({}, obj1, obj2) strategy is to use
the spread syntax:

class ObjectSpreadStrategy {
  constructor() {}
  combineObjects(obj1, obj2) {
    return { ...obj1, ...obj2 };
  }
}

We can validate that spreading obj1 and obj2 yields the same strategy characteristics as our
earlier PureObjectAssignStrategy:

objectMerger.setStrategy(new ObjectSpreadStrategy());

const newObj1 = { keys: '123' };
const newObj2 = { keys: '456', obj1: newObj1 };

const objectSpreadStrategyOutput =
  objectMerger.combineObjects(
  newObj1,
  newObj2
);
console.assert(
  objectSpreadStrategyOutput.keys === '456',
  '%o has keys = 456',
  objectSpreadStrategyOutput

Leveraging Behavioral Design Patterns68

);
console.assert(
  newObj1.keys === '123' && newObj2.keys === '456',
  'Does not mutate the original object newObj1 %o,
    newObj2 %o',
  newObj1,
  newObj2
);

One interesting aspect is that this approach only creates a shallow clone; object references inside of
the objects are copied, but the contents of the target objects are the same:

console.assert(
  objectSpreadStrategyOutput.obj1 === newObj1,
  'Does a shallow clone so objectSpreadStrategyOutput.obj1
    references newObj1'
);

We can remediate this by implementing a deep cloning strategy based on structuredClone:

class DeepCloneObjectAssignStrategy {
  constructor() {}
  combineObjects(obj1, obj2) {
    return Object.assign(structuredClone(obj1),
      structuredClone(obj2));
  }
}

DeepCloneObjectAssignStrategy has all the properties of PureObjectAssignStrategy
and ObjectSpreadStrategy, with the addition of doing a deep copy, recursively copying the
contents of nested objects instead of copying references to those objects:

objectMerger.setStrategy(new DeepCloneObjectAssignStrategy());

const deepCloneStrategyOutput = objectMerger.
  combineObjects(newObj1, newObj2);
console.assert(
  deepCloneStrategyOutput.keys === '456',
  '%o has keys = 456',
  deepCloneStrategyOutput
);
console.assert(
  newObj1.keys === '123' && newObj2.keys === '456',
  'Does not mutate the original object newObj1 %o,
    newObj2 %o',

State and strategy in JavaScript and a simplified approach 69

  newObj1,
  newObj2
);

console.assert(
  deepCloneStrategyOutput.obj1 !== newObj1 &&
    deepCloneStrategyOutput.obj1.keys === newObj1.keys,
  'Does a shallow clone so deepCloneStrategyOutput.obj1
    references newObj1'
);

We’ve now seen how to implement the state and strategy patterns. Next, we’ll look at where the state
and strategy patterns are most often used in JavaScript.

Use cases of the state and strategy patterns

As mentioned earlier in the chapter, the state pattern is useful for implementing state machines.

A key difference between state and strategy is that, in the state pattern, it tends to be the case that
different states know about each other – for example, ClosedState creates a new instance of
OpenState to transition to it. Similarly, OpenState is aware of all the potential states it can be
transitioned to (DraftState, ClosedState, and MergedState). In contrast, when implementing
the strategy pattern, different strategies are self-contained and not aware of each other. For example,
PureObjectAssignStrategy and MutatingObjectAssignStrategy don’t reference
each other.

Strategy is useful to provide a consistent interface with different internal implementations. It’s a useful
abstraction when different implementing algorithms should be swappable without an integrating
consumer knowing about it.

Limitations and improvements

In our state example, note how much of our code is a duplicated class constructor, which takes a
pullRequest instance. We can refactor our code by providing a PullRequestBaseState
class, which throws IllegalOperationError for each of the state methods:

class IllegalOperationError extends Error {
  constructor(stateInstance) {
    this.stateInstance = stateInstance;
    throw new Error('Illegal operation for State');
  }
}
class PullRequestBaseState {
  constructor(pullRequest) {

Leveraging Behavioral Design Patterns70

    this.pullRequest = pullRequest;
  }
  markDraft() {
    throw new IllegalOperationError(this);
  }
  markReadyForReview() {
    throw new IllegalOperationError(this);
  }
  open() {
    throw new IllegalOperationError(this);
  }
  close() {
    throw new IllegalOperationError(this);
  }
  merge() {
    throw new IllegalOperationError(this);
  }
}

This means we can define our different states by extending PullRequestBaseState:

class ClosedState extends PullRequestBaseState {
  open() {
    this.pullRequest.setState(new OpenState
      (this.pullRequest));
  }
}

class DraftState extends PullRequestBaseState {
  markReadyForReview() {
    this.pullRequest.setState(new OpenState
      (this.pullRequest));
  }
  close() {
    this.pullRequest.setState(new ClosedState
      (this.pullRequest));
  }
}

class OpenState extends PullRequestBaseState {
  markDraft() {
    this.pullRequest.setState(new DraftState
      (this.pullRequest));
  }

State and strategy in JavaScript and a simplified approach 71

  close() {
    this.pullRequest.setState(new ClosedState
      (this.pullRequest));
  }
  merge() {
    this.pullRequest.setState(new MergedState
      (this.pullRequest));
  }
}
class MergedState extends PullRequestBaseState {}

The PullRequest class doesn’t change, and these new state implementations work the same as
our previous implementation:

const pullRequest1 = new PullRequest(true);
console.assert(pullRequest1.state instanceof DraftState,
  pullRequest1.state);
pullRequest1.markReadyForReview();
console.assert(pullRequest1.state instanceof OpenState,
  pullRequest1.state);
pullRequest1.merge();
console.assert(
  captureError(() => pullRequest1.open()) instanceof Error,
  pullRequest1.state
);
console.assert(
  captureError(() => pullRequest1.markReadyForReview())
    instanceof Error,
  pullRequest1.state
);
console.assert(
  captureError(() => pullRequest1.close()) instanceof
   Error,
  pullRequest1.state
);

const pullRequest2 = new PullRequest(false);
console.assert(pullRequest2.state instanceof OpenState,
  pullRequest2.state);
pullRequest2.close();
console.assert(pullRequest2.state instanceof ClosedState,
  pullRequest2.state);
console.assert(
  captureError(() => pullRequest2.markDraft())

Leveraging Behavioral Design Patterns72

    instanceof Error,
  pullRequest2.state
);
pullRequest2.open();
console.assert(pullRequest2.state instanceof OpenState,
  pullRequest2.state);

For strategy, one thing we can leverage is JavaScript’s first-class function support. Instead of implementing
each strategy as an object, we can make them functions.

Our ObjectMerger’s implementation looks as follows:

class ObjectMerger {
  constructor(defaultStrategy) {
    this.strategy = defaultStrategy;
  }
  setStrategy(newStrategy) {
    this.strategy = newStrategy;
  }
  combineObjects(obj1, obj2) {
    return this.strategy(obj1, obj2);
  }
}

We can then re-implement all our strategies as functions:

function pureObjectAssignStrategy(obj1, obj2) {
  return Object.assign({}, obj1, obj2);
}
function mutatingObjectAssignStrategy(obj1, obj2) {
  return Object.assign(obj1, obj2);
}
function objectSpreadStrategy(obj1, obj2) {
  return { ...obj1, ...obj2 };
}
function deepCloneObjectAssignStrategy(obj1, obj2) {
  return Object.assign(structuredClone(obj1),
    structuredClone(obj2));
}

The function-based strategy ObjectMerger class has the same attributes as the class-based one
that we implemented earlier. The constructor takes a “strategy function”, which it sets on the instance;
each instance exposes a setStrategy method, which overrides the strategy function, and a
combineObjects method, which we can call to merge objects.

State and strategy in JavaScript and a simplified approach 73

This means we can use our ObjectMerger with all four function-based strategies
(pureObjectAssignStrategy, mutatingObjectAssignStrategy,
objectSpreadStrategy, and deepCloneObjectAssignStrategy), as the
following demonstrates:

const objectMerger = new ObjectMerger
  (pureObjectAssignStrategy);
const obj1 = {
  keys: '123',
};
const obj2 = {
  keys: '456',
};

const defaultMergeStrategyOutput =
  objectMerger.combineObjects(obj1, obj2);
console.assert(defaultMergeStrategyOutput.keys === '456',
  '%o has keys = 456');
console.assert(obj1.keys === '123' && obj2.keys === '456',
  obj1, obj2);
objectMerger.setStrategy(mutatingObjectAssignStrategy);
const mutatingMergedStrategyOutput =
  objectMerger.combineObjects(obj1, obj2);
console.assert(
  mutatingMergedStrategyOutput.keys === '456',
  '%o has keys = 456',
  mutatingMergedStrategyOutput
);
console.assert(
  obj1.keys === '456' && obj2.keys === '456',
  'Mutates the original object obj1 %o, obj2 %o',
  obj1,
  obj2
);

objectMerger.setStrategy(objectSpreadStrategy);

const newObj1 = { keys: '123' };
const newObj2 = { keys: '456', obj1: newObj1 };

const objectSpreadStrategyOutput =
  objectMerger.combineObjects(
  newObj1,
  newObj2

Leveraging Behavioral Design Patterns74

);
console.assert(
  objectSpreadStrategyOutput.keys === '456',
  '%o has keys = 456',
  objectSpreadStrategyOutput
);
console.assert(
  newObj1.keys === '123' && newObj2.keys === '456',
  'Does not mutate the original object newObj1 %o,
    newObj2 %o',
  newObj1,
  newObj2
);
console.assert(
  objectSpreadStrategyOutput.obj1 === newObj1,
  'Does a shallow clone so objectSpreadStrategyOutput.obj1
    references newObj1'
);
objectMerger.setStrategy(deepCloneObjectAssignStrategy);
const deepCloneStrategyOutput = objectMerger.combineObjects
  (newObj1, newObj2);
console.assert(
  deepCloneStrategyOutput.keys === '456',
  '%o has keys = 456',
  deepCloneStrategyOutput
);
console.assert(
  newObj1.keys === '123' && newObj2.keys === '456',
  'Does not mutate the original object newObj1 %o,
    newObj2 %o',
  newObj1,
  newObj2
);

console.assert(
  deepCloneStrategyOutput.obj1 !== newObj1 &&
    deepCloneStrategyOutput.obj1.keys === newObj1.keys,
  'Does a shallow clone so deepCloneStrategyOutput.
    obj1 references newObj1'
);

We’ve shown how to implement the state and strategy patterns in JavaScript, as well as their limitations
and improvements, which can be done using modern JavaScript features.

Visitor in JavaScript 75

In the next section, we’ll introduce the visitor pattern and its usage in the JavaScript ecosystem.

Visitor in JavaScript
The visitor design pattern concerns itself with being able to add functionality to objects without
modifying the structure of them.

With classical inheritance, we often end up with a “base class” that is not used directly; it’s used as
an “abstract class,” from which “concrete” classes inherit from our “base class.” For example, with
BankAccount and BankAccountWithInterest, our class diagram would look as follows,
where BankAccountWithInterest extends BankAccount and overrides setBalance.

Figure 3.2: A class diagram for BankAccountWithInterest inheriting from BankAccount

What we can do with the visitor pattern is define BankAccount, which accepts a visitor and an
InterestRateVisitor visitor class. As a class diagram, it looks as follows. BankAccount
and InterestRateVisitor are not linked via inheritance; they will be linked at runtime when
InterestRateVisitor is called by the BankAccount().accept method. This means
InterestRateVisitor knows about the structure of BankAccount but not the other way
around. Furthermore, a visitor might not need to know the full structure of what it’s visiting, only
what’s relevant to implement the visitor’s functionality.

Leveraging Behavioral Design Patterns76

Figure 3.3: A class diagram for BankAccount and an independent InterestRateVisitor

We’ll now see how to implement the BankAccount and InterestRateVisitor scenario.

Implementation

To implement a visitor, let’s start with a simple BankAccount class. The constructor sets the account
type (either a current account or a savings account), the currency, and the initial balance. BankAccount
has a setBalance method that can set the value of an account’s balance. The accept method will
allow us to accept visitors and call their visit method on the instance:

class BankAccount {
  /**
   *
   * @param {'CURRENT' | 'SAVINGS'} accountType
   * @param {String} currency
   * @param {Number} balance - balance in minor currency
     unit
   */
  constructor(accountType = 'CURRENT', currency = 'USD',
    balance = 0) {
    this.accountType = accountType;
    this.currency = currency;
    this.balance = balance;
  }
  setBalance(balance) {
    this.balance = balance;
  }
  accept(visitor) {
    visitor.visit(this);
  }
}

Visitor in JavaScript 77

A way to structure InterestVisitor is to initialize it with an interest rate and currency. The
visit method takes bankAccount and, if the account matches the currency and is a savings
account, applies a new balance, based on the interest rate and current balance:

class InterestVisitor {
  constructor(interestRate, currency) {
    this.interestRate = interestRate;
    this.currency = currency;
  }
  /**
   * @param {BankAccount} bankAccount
   */
  visit(bankAccount) {
    if (
      bankAccount.currency === this.currency &&
      bankAccount.accountType === 'SAVINGS'
    ) {
      bankAccount.setBalance((bankAccount.balance *
        this.interestRate) / 100);
    }
  }
}

Given a set of accounts, we can create USD and GBP InterestVisitor instances:

const accounts = [
  new BankAccount('SAVINGS', 'GBP', 500),
  new BankAccount('SAVINGS', 'USD', 500),
  new BankAccount('CURRENT', 'USD', 10000),
];

const usdInterestVisitor = new InterestVisitor(105, 'USD');
const gbpInterestVisitor = new InterestVisitor(110, 'GBP');

We can then loop through the accounts and call the accept method with the relevant visitor:

accounts.forEach((account) => {
  account.accept(usdInterestVisitor);
  account.accept(gbpInterestVisitor);
});

console.assert(
  accounts[0].balance === 550 &&
    accounts[1].balance === 525 &&
    accounts[2].balance === 10000,

Leveraging Behavioral Design Patterns78

  '%o',
  accounts
);

We’ve now seen how to implement the visitor pattern in a band account scenario. Next, we’ll look at
popular use cases for the visitor pattern in JavaScript.

Use cases of the visitor pattern

The visitor pattern provides a simple interface for library authors to allow consumers to extend a
library’s functionality. This is especially effective in libraries that deal with trees or other “sets of
nodes”. This explains why the visitor pattern is popular for custom plugins for parsing systems such
as GraphQL implementations, or compilers such as Babel.

For example, the way to write a custom directive in Apollo Server v2 is to extend
SchemaDirectiveVisitor:

import { SchemaDirectiveVisitor } from 'apollo-server';
class CustomDirective extends SchemaDirectiveVisitor {
  visitFieldDefinition(field) {
    // we can replace/augment the field's resolver
       implementation here
  }
}

The Babel compiler can be extended using a visitor. For example, the following visitor inspects function
declaration names for a given code snippet, parsed using the '@babel/parser' package:

import * as parser from '@babel/parser';
import traverse from '@babel/traverse';

const ast = parser.parse(`function triple(n) {
  return n * 3;
}`);

const CustomVisitor = {
  FunctionDeclaration(path) {
    console.assert(path.node.id.name === 'triple');
  },
};

traverse(ast, CustomVisitor);

Summary 79

We’ve now seen how the visitor pattern is used for libraries that manipulate tree data structures. Next,
we’ll recapitulate what we’ve learned in this chapter.

Summary
In this chapter, we saw how behavioral design patterns enable the extension of functionality by
supporting different implementations and decoupling parts of the code base.

The observer pattern is useful to support communication with loosely coupled observable/observer pairs.
The state and strategy patterns can be used to implement state machines and swap implementations
effectively. The visitor pattern is a great way to expose an extension mechanism that’s decoupled from
the structure of the objects it’s operating on.

Now that we know how to organize communication between different objects and classes with
behavioral design patterns, in the next chapter, we’ll cover reactive view library patterns in React.

Part 2:
Architecture and

UI Patterns

In this part, you will get an overview of architecture and UI patterns in JavaScript. You will learn
about common reactive view library patterns in React and rendering strategies with React and Next.
js. Finally, you’ll learn about two approaches to scaling your application via micro frontends with the
zones and islands architectures.

This part has the following chapters:

•	 Chapter 4, Exploring Reactive View Library Patterns

•	 Chapter 5, Rendering Strategies and Page Hydration

•	 Chapter 6, Micro Frontends, Zones, and Islands Architectures

4
Exploring Reactive View

Library Patterns

Reactive view library patterns give us tools to build applications in a scalable and maintainable manner
when we could benefit from breaking out of the component primitive. Using the React view library,
we’ll cover different techniques for going beyond component-based composition to inject functionality
into our components – the render prop, a higher-order component, hooks, and provider patterns.

We’ll cover the following main topics in this chapter:

•	 An introduction to reactive view library patterns and where we can benefit the most by using them

•	 Examples and implementation approaches for the render prop pattern

•	 Implementing and using the higher-order component pattern

•	 Using hooks to build React function components

•	 Multiple ways to implement the provider pattern

By the end of this chapter, you’ll be able to discern when and how to use Reactive view library patterns
to build React applications.

Technical requirements
To follow along in this chapter, you’ll need the following:

•	 Node.js 20+: https://nodejs.org/en

•	 Npm 8+: Comes with most Node.js installations

https://nodejs.org/en

Exploring Reactive View Library Patterns84

•	 https://parceljs.org/ is used in some examples and has similar platform support
to Node.js

•	 React: React DOM and Formik are installed via npm; an understanding of https://react.
dev/ basics in a web context is required

You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/
Javascript-Design-Patterns

What are reactive view library patterns?
Reactive view libraries are extensively used for JavaScript and web frontend development. A few very
popular options are React, Angular, and Vue.

Reactive view libraries provide a way to write applications in a more scalable fashion by allowing
the user interface (usually the browser) to react to changes in the data. Application development is,
therefore, simplified, since the view library or framework takes care of all the direct manipulation
necessary to maintain synchronization between the underlying data and the browser.

One of the key common denominators between these libraries and frameworks is the concept of a
component, which contains business logic and/or rendering logic. The component is a key building
block of an application. It can be reused or not, but it usually encapsulates a set of responsibilities and
enforces interfaces around it.

A trait of components is that a developer should be able to use them as building blocks, and without
component internals changing significantly, an application’s behavior can be changed significantly.

Reactive view library patterns, therefore, help us build components in a reusable fashion, but they
also cover techniques to work around situations where the component abstraction has shortcomings.

In the following sections, we’ll cover the render props, higher-order component, hooks, and the provider
pattern in React. We’ll be focusing on React, but the patterns have equivalents in Vue.

The render prop pattern
The render prop pattern is apparent when a component allows its consumer to define how a part of
that component is rendered, via a function prop. These can be children as a function or another prop,
which is a function that takes some parameters and returns JSX.

Render props allow for a level of inversion of control. Although a component could completely
encapsulate rendering and business logic, it instead yields control of some parts of the rendering
logic to its consumer.

https://parceljs.org/
https://react.dev/
https://react.dev/
https://github.com/PacktPublishing/Javascript-Design-Patterns
https://github.com/PacktPublishing/Javascript-Design-Patterns

The render prop pattern 85

Such inversion of control is useful to share logic without sharing the visuals or actually rendering the
UI. Therefore, this pattern is widespread among libraries. A prime example is Formik, which gives
consumers flexibility on how to render a form while providing an abstraction over the form’s state
management logic.

Use cases

Let’s start with a scenario where we build a CoupledSelect component, which is a wrapper for
the select native element. We’ll build this component in a way that the data and the rendering are
closely coupled, providing a simple example of when render props can be useful.

A consumer’s expectation from CoupledSelect is that it would behave mostly like the select
native element, with some caveats.

Our CoupledSelect component takes the following props:

•	 selectedOption: This sets the selected option; it is akin to the selected prop on the option
native element

•	 options: This is an array of strings that are rendered as option elements

•	 onChange: This is an optional callback for the component rendering CoupledSelect to
react to option selections

We can implement it as follows. CoupledSelect will wrap around onChange, since it’s optional:

import React from 'react';
export function CoupledSelect({ selectedOption, options,
  onChange }) {
  const onChangeHandler = (event) => {
    if (onChange) onChange(event.target.value);
  };
}

Let’s move on to the rendering logic. We’ll return a select element with onChange={onChangeHandler}
and value={selectedOption} so that select will be in sync with selectedOption and
propagate changes back:

import React from 'react';
export function CoupledSelect({ selectedOption, options,
  onChange }) {
  const onChangeHandler = (event) => {
    if (onChange) onChange(event.target.value);
  };
  return <select onChange={onChangeHandler}
    value={selectedOption}></select>;
}

Exploring Reactive View Library Patterns86

Finally, we’ll render the props.options using .map, which will return an <option> element,
with the value and key properties set to option and whose content will be the option value also:

export function CoupledSelect({ selectedOption, options,
  onChange }) {
  // no change to onChangeHandler
  return (
    <select onChange={onChangeHandler}
      value={selectedOption}>
      {options.map((option) => (
        <option value={option} key={option}>
          {option}
        </option>
      ))}
    </select>
  );
}

Using our CoupledSelect might look something as follows.

We define an array of options. Here, we structure them as a list of objects with a value key that’s
a string:

const options = [
  { value: 'apple' },
  { value: 'pear' },
  { value: 'orange' },
  { value: 'grape' },
  { value: 'banana' },
];

We can then use CoupledSelect by ensuring that props.options is an array of strings:

function App() {
  return (
    <>
      <CoupledSelect
        options={options.map((option) => option.value)}
      />
    <>
  );
}

The render prop pattern 87

Next, we can save selectedOption by using the useState hook. We will name this particular
piece of state selectedOption and its update function setSelectedOption. This will allow
us to make CoupledSelect interactive:

function App() {
  const [selectedOption, setSelectedOption] = useState();
  return (
    <>
      <p>Selected Option: {selectedOption}</p>
      <CoupledSelect
        selectedOption={selectedOption}
        onChange={(selectedOption) => setSelectedOption
          (selectedOption)}
        options={options.map((option) => option.value)}
      />
    <>
  );
}

Finally, we will set an initial value for selectedOption to show that this functionality of the
CoupledSelect component works:

function App() {
  const [selectedOption, setSelectedOption] = useState
    (options[3].value);
  // no change to the returned JSX
}

Starting with the initial selectedOption functionality, we can see that the item at index 3 of
the options array, { value: 'grape' }, is the initially selected option, as shown in Figure 4.1:

Figure 4.1: The CoupledSelect initial state, with grape selected

Exploring Reactive View Library Patterns88

When opening select, the grape is also selected, which means select is in the correct state.

Figure 4.2: The CoupledSelect select open state, hovering on the orange option

Finally, when we select a different option, orange, we see it’s reflected both in the select element and
out of it (see Figure 4.3), meaning our integrated onChange handler also works as expected.

Figure 4.3: In the CoupledSelect post-selection state, orange is now selected

The CoupledSelect component has limited flexibility due to the options.map() call in the
render function. Since we’re using the option variable as the option element’s value, it must be a string
or number. The value is also equal to the rendered text content of the option element, but there are
often situations where we want to display something different from the value that we’re storing. It’s
a presentation versus persistence concern here. For example, we can’t change the values rendered
without changing what’s being stored in onChange.

If we want to add a Fruit: prefix to select, a naive approach is to implement it as follows:

<CoupledSelect
  {/* other props don't change */}
  options={options.map((option) => `Fruit:
     ${option.value}`)}
/>

Unfortunately, this doesn’t work as expected, as the initial selection doesn’t work anymore:

Figure 4.4: The CoupledSelect initial state, where the initial selection does not work correctly

The render prop pattern 89

When opening the select, things seem to work OK; we can see the Fruit: prefix for all the options,
as shown in Figure 4.5.

Figure 4.5: The CoupledSelect open state, with the Fruit: prefix

On selection of a new option, we can see that what’s being stored in the selectedOption is Fruit:
pear instead of pear.

Figure 4.6: The CoupledSelect post-selection state – note that the

selected option Fruit: pear includes the prefix Fruit:

Therefore, the CoupledSelect component can’t be used flexibly, due to the coupling of the render
logic and the data logic.

We’ll now see how render props could have alleviated this issue by decoupling data and rendering logic.

Implementation/example

In our CoupledSelect example, we saw how the stored data and what is displayed to the user are
tightly coupled. We’ll now see how to break that coupling using render props.

Decoupling presentation from data logic by using render props

An alternative way to have written the CoupledSelect component with render props is as follows.
The key additional prop we’re passing is renderOption, a render prop. Most of the remaining
components are similar but are included for completeness:

export function SelectRenderProps({
  selectedOption,
  options,
  renderOption,
  onChange,
}) {

Exploring Reactive View Library Patterns90

  const onChangeHandler = (event) => {
    if (onChange) onChange(event.target.value);
  };
  return (
    <select onChange={onChangeHandler} value=
      {selectedOption}>
      {options.map((option) => renderOption(option))}
    </select>
  );
}

Usage of the SelectRenderProps component is very similar to that of CoupledSelect. The
only additional prop we need to provide an implementation for is the renderOption prop, which
we implement with a function that returns an option element:

function App() {
  return (
    <SelectRenderProps
      selectedOption={selectedOption}
      onChange={(selectedOption) => setSelectedOption
        (selectedOption)}
      options={options.map((option) => option.value)}
      renderOption={(option) => (
        <option value={option} key={option}>
          {option}
        </option>
      )}
    />
  );
}

So far, the implementation is very similar to CoupledSelect, apart from the fact that the parent
of SelectRenderProps now decides how to render an option.

Given the same requirement to prefix the options with Fruit:, we can now implement it as follows:

<SelectRenderProps
  {/* rest of the props remain unchanged */}
  renderOption={(option) => (
    <option value={option} key={option}>
      Fruit: {option}
    </option>
  )}
/>

The render prop pattern 91

Note that counter to what we did with CoupledSelect, we’re not even touching the options prop.
Our only change is to the renderOption prop. We’ll now test this example and show that decoupling
the rendering logic (with a render prop) from the data logic works much better for extensibility.

The SelectRenderProps initial state renders correctly, with Fruit: grape inside select and
grape in the parent component:

Figure 4.7: The SelectRenderProps initial state – the options and initial selection are displayed correctly

When we open select, we can see that the Fruit: prefix is rendered.

Figure 4.8: The SelectRenderProps open state – the options include the Fruit: prefix

Finally, upon selection of an option, the state is updated correctly, the parent stores banana, and
select has Fruit: banana selected:

Figure 4.9: The SelectRenderProps post-selection state – the

selected option does not include the Fruit: prefix

We’ve now seen how render props can allow the rendering logic and data logic to be edited separately
when making a rendering change.

Now that we’ve implemented a basic example of the render prop pattern, we’ll see how libraries leverage
it to provide flexibility to consumers.

Exploring Reactive View Library Patterns92

Additional render prop patterns when providing components with flexible
presentation

The React form management library Formik uses a render prop to provide form state back to consumers.
The render prop is the children prop of the Formik component. In other words, what’s between the
opening <Formik> tag and the closing </Formik> tag is a function, which provides props such
as values, isSubmitting, and handleChange.

See the following example, which is a single-input form that takes a name, validates that it’s at least
two characters long, and allows the form to be submitted.

To begin, we’ll render the form and input that will store the fields value in Formik:

import { Formik } from 'formik';

export function FormikIntegrationExample() {
  return (
    <Formik
      initialValues={{ name: '' }}
    >
      {({
        values,
        errors,
        touched,
        handleChange,
        handleBlur,
        handleSubmit,
        isSubmitting,
      }) => (
        <form onSubmit={handleSubmit}>
          <fieldset>
            <input
              type="text"
              id="name"
              name="name"
              onChange={handleChange}
              onBlur={handleBlur}
              value={values.name}
              aria-required="true"
            />
          </fieldset>
        </form>
      )}
    </Formik>

The render prop pattern 93

  );
}

Next, we can add submission handling and an inline validation error display:

import { Formik } from 'formik';

export function FormikIntegrationExample() {
  return (
    <Formik
      initialValues={{ name: '' }}
      validate={(values) => {
        const errors = {};

        if (!values.name) {
          errors.name = 'Required';
        } else if (values.name.length < 2) {
          errors.name = 'Name too short';
        }

        return errors;
      }}
      onSubmit={(values, { setSubmitting }) => {
        setTimeout(() => {
          alert(JSON.stringify(values, null, 2));

          setSubmitting(false);
        }, 400);
      }}
    >
      {({
        /* no change to props in render prop */
      }) => (
        <form onSubmit={handleSubmit}>
          <fieldset>
            <div>
              <label htmlFor="name">
                Name (Required)
                

                {errors.name && touched.name ? (
                  <>Error: {errors.name}</>
                ) : (
                  <> </>
                )}

Exploring Reactive View Library Patterns94

              </label>
            </div>
            {/* no change to the input */}
          </fieldset>

          <button type="submit" disabled={isSubmitting}>
            Submit
          </button>
        </form>
      )}
    </Formik>
  );
}

In the initial state, we see the form with a single input and a submit button:

Figure 4.10: The Formik single field and Submit button in its initial

state, which includes the Name (Required) label

When we click (or otherwise focus) on the name input and then un-focus (the blur web event), the
validation triggers, letting us know that the field is required.

Figure 4.11: Name input blur validation - Error: Required validation error

If we input only one character and blur, we get a validation error, Name too short.

Figure 4.12: H in the name input triggers the validation error Name too short

The render prop pattern 95

When a name that meets the validation criteria is met, the validation errors are cleared.

Figure 4.13: A valid Formik field clears the validation errors

Finally, when we click Submit, we get a browser alert with { “name”: “Hugo” }.

Figure 4.14: An alert on submission with { “name”: “Hugo” }

Now, let’s take a look at some limitations of the render prop pattern.

Limitations

One key limitation of the render prop pattern is that it provides units of reuse and integration that are
functions and not components. It’s possible for a lot of the logic to end up in the render prop function
itself that could have been better served by creating a new component.

Render props can make code harder to test when using a shallow renderer such as Enzyme’s shallow,
which won’t render the full component tree. Components making heavy use of render props should
probably use a full “mount” rendering approach so that all the children of the component (including
the render props) are rendered.

In this section, we introduced you to the render prop pattern and described its use cases, examples,
and limitations.

In the next section, we’ll learn about another reactive view library pattern – higher-order components.

Exploring Reactive View Library Patterns96

The higher-order component pattern
A higher-order component is a function that takes a component and returns a component. The
definition of higher-order components is similar to higher-order functions, which JavaScript supports.
Higher-order functions are functions that receive a function as a parameter or return a function.

The higher-order component pattern allows us to pass additional props to a component.

Implementation/example

The following is a simple render prop, withLocation, which injects window.location.href
and window.location.origin into a component as props:

const location = {
  href: window.location.href,
  origin: window.location.origin,
};

export function withLocation(Component) {
  return (props) => {
    return <Component location={location} {...props} />;
  };
}

The pattern that’s used when using higher-order components is to export default the higher-order
component called with the local component – in this case, withLocation(Location). The
Location component is a simple component that takes location as provided by withLocation
and renders it:

// in `location.jsx` file
function Location({ location }) {
  return (
    <>
      location.href: {location.href}, location.origin:
        {location.origin}
    </>
  );
}

export default withLocation(Location);

The higher-order component pattern 97

In the consumer of Location, what we import as Location is the default export – that
is, withLocation(Location):

import Location from './location';

function App() {
  return <Location>;
}

The Location component renders location.href and location.origin, based on what’s
provided by withLocation.

Figure 4.15: The Location component rendering the href and origin, based on what’s provided by

withlocation

We’ve now seen a simple example of a key benefit of higher-order components, which is that the
component doing the rendering doesn’t need to be directly aware of where to receive information; it
can read props instead.

Use cases

The withLocation example already showed a simple reason why we could use higher-order
components – to maintain separation of concerns.

In our Location component example, it’s completely possible for Location to access window.
location directly. What that would mean, however, is that the Location component is aware of
global objects, which could be undesirable. For example, it might make unit-testing of Location
more difficult, since it’s accessing something beyond its props.

Limitations

As with all abstractions, higher-order components are a layer of indirection. This means that tracing
where a prop comes from can be more difficult than when props are passed explicitly from the
parent component.

Tracing the props becomes even more difficult when the higher-order component comes from a
third-party library (and thus is harder to inspect).

Higher-order components can have a cost in terms of rendering in the browser, since we wrap our
component in another component if we stack too many higher-order components on top of each other.

Exploring Reactive View Library Patterns98

For example, the following ConnectedComponent uses three higher-level components:

const ConnectedComponent = withRouter(
  withHttpClient(withAnotherDependency
    (ComponentWithDependencies))
);

As a consumer of ConnectedComponent, we’ll likely render four components – the
ones provided by withRouter, withHttpClient, withAnotherDependency,
and ComponentWithDependencies. If we had another way to inject the router, HTTP
client and another dependency, we could reduce the number of components to one, only
needing ComponentWithDependencies.

This drawback leads us to the next topic in this chapter – hooks. Hooks provide us a way to access
data and logic in similar scenarios as higher-order components, without additional components being
rendered. Hooks are a great replacement for logic-heavy higher-order components.

The hooks pattern
We’ve now covered what might be considered legacy patterns in React – render props and
higher-order components.

You’ll note that the React documentation page about higher-order components has
the following disclaimer: “Higher-order components are not commonly used in

modern React code.”

Additional reading
The React documentation for useState and useEffect hooks:

useState: https://react.dev/reference/react/useState

useEffect: https://react.dev/reference/react/useEffect

So, what we know so far is that hooks allow us to do what we did with render props and that higher-
order components are not recommended any more. This is because hooks provide a way to access all
the React primitives, including state and the component life cycle.

React provides built-in hooks. The two we’ll focus on are useState and useEffect. One key
feature of hooks is that we can write custom hooks that build on top of React built-in hooks and other
custom hooks, which means we have a new way to share logic in React.

https://react.dev/reference/react/useState
https://react.dev/reference/react/useEffect

The hooks pattern 99

An implementation/example

We’ll implement simple data fetching using the class React components, and then hooks. This will
showcase how state and life cycle events are handled in both cases.

We’ll start with the class components. The regular way to implement data fetching is by using life cycle
hooks; the initial one tends to be componentDidMount.

Our BasketItemsClassical component takes httpClient and basketId.

The component’s constructor initializes a state.basketSession variable to an empty object, {}:

import React from 'react';

export class BasketItemsClassical extends React.Component {
  constructor(props) {
    super(props);
    this.state = {
      basketSession: {},
    };
  }

Next, we’ll add a setBasketSession method, which will call this.setState to set
basketSession as the passed parameter.

We’ll also add componentDidMount, which calls httpClient.get() with the fakestoreapi.
com URL to load carts, using the basketId prop:

export class BasketItemsClassical extends React.Component {
  // no change to the constructor
  componentDidMount() {
    this.props.httpClient
      .get(`https://fakestoreapi.com/carts/${this.props.basketId}`)
      .then((session) => this.setBasketSession(session));
  }
  setBasketSession(session) {
    this.setState({ basketSession: session });
  }
}

What this now means is that we should be able to render out the contents of this.state.
basketSession in the component’s render() method:

export class BasketItemsClassical extends React.Component {
  // no change to the constructor, componentDidMount or
     setBasketSession

Exploring Reactive View Library Patterns100

  render() {
    return <pre>{JSON.stringify(this.state.basketSession,
      null, 2)}</pre>;
  }
}

Our BasketItemsClassical can be used as follows by passing httpClient and basketId
as props:

export function BasketClassical({ basketId, httpClient }) {
  return (
    <form>
      <fieldset>
        <label>Class</label>
        <BasketItemsClassical basketId={basketId}
           httpClient={httpClient} />
      </fieldset>
    </form>
  );
}

BasketClassical can then be used in our App, as follows:

const httpClient = {
  async get(url) {
    const response = await fetch(url);
    return await response.json();
  },
};

function App() {
  return (
    <>
      <BasketClassical basketId="5" httpClient={httpClient} />
    </>
  );
}

The hooks pattern 101

In the browser, this displays as follows:

Figure 4.16: The Basket class component loading JSON data

Here’s the same example with hooks; instead of using componentDidMount, we can use the
useEffect hook, and instead of this.state in the constructor and this.setState, we
use the useState hook. In order to use hooks, we use a React function component (React class
components don’t support hooks):

export function BasketItemsHooks({ basketId, httpClient }) {
  const [basketSession, setBasketSession] = useState({});
  useEffect(() => {
    httpClient
      .get(`https://fakestoreapi.com/carts/${basketId}`)
      .then((session) => setBasketSession(session));
  }, []);
  return <pre>{JSON.stringify(basketSession, null, 2)}</pre>;
}

Our BasketItemsHooks can be used in the same way as BasketItemsClassical, by passing
httpClient and basketId as props:

export function BasketHooks({ basketId, httpClient }) {
  return (
    <form>
      <fieldset>
        <label>Hooks</label>
        <BasketItemsHooks basketId={basketId}
          httpClient={httpClient} />
      </fieldset>

Exploring Reactive View Library Patterns102

    </form>
  );
}

We’ll also need to modify App to render BasketHooks in addition to BasketClassical:

// no change to httpClient
function App() {
  return (
    <>
      <BasketClassical basketId="5" httpClient={httpClient} />
      <BasketHooks basketId="5" httpClient={httpClient} />
    </>
  );
}

Both BasketHooks (Figure 4.17) and BasketClassical (Figure 4.16) yield the same JSON
output after the HTTP requests are completed.

Figure 4.17: The Hooks basket loading JSON data

The hooks approach is slightly more compact; each part of the functionality does feel a bit more self-
contained. For example, the initial state is handled in the same place that defines what the state update
function will be in the hooks version. In the class example, the initialisation state is in the
constructor, and the state update function is a method. In the BasketClassical example, there
was the option to simplify the component by removing the state update method and using a direct
this.setState({ bookingSession: session }) call.

The provider pattern 103

Use cases

A simple way to think about hooks and class or function components is as follows:

•	 Hooks for shared logic

•	 Components for logic that is related to rendering

The higher-order component and render prop patterns, which are used to separate presentation and
business logic, are unlikely to be needed any more and can be replaced by custom hooks.

React hooks and function components are the recommended way to develop modern React applications.

Limitations

Hooks can’t be used in React class components, as detailed in the React documentation: https://
react.dev/reference/react/Component#defining-a-class-component. Note
that function components are the recommended way to build React components.

In code bases with heavy usage of class components, higher-order components should remain in use
instead of migrating components to functions in order to use hooks.

The last piece of the puzzle with React components is how to bypass the prop drilling problem and
pass data without changing each component in a React component tree. The pattern we use for this
is the provider pattern, which we’ll cover in the next section.

The provider pattern
The provider pattern in React is where one component in the tree makes data accessible to all its
descendants. This is usually accomplished using the React Context primitive.

Use case – the prop drilling problem

The key use case for the provider pattern is to avoid the prop drilling problem.

A large majority of the time, a component’s main input is the prop it receives from its parent component.
A state management pattern to share state between components in React is to lift state up. Lifting state
up means to store relevant state in a common ancestor of the components that require the shared state.

As stated in the React.js docs (https://react.dev/learn/sharing-state-between-
components)

 When you want to coordinate two components, move their state to their common
parent. Then pass the information down through props from their common parent

https://react.dev/reference/react/Component#defining-a-class-component
https://react.dev/reference/react/Component#defining-a-class-component
https://react.dev/learn/sharing-state-between-components
https://react.dev/learn/sharing-state-between-components

Exploring Reactive View Library Patterns104

This can lead to prop drilling when the common parent has multiple components between it and the
components requiring the props. This means all the intermediate components will receive the props,
but they will only use them to forward them on to the next layer of components.

As stated in the React.js docs (https://react.dev/learn/passing-data-deeply-
with-context#the-problem-with-passing-props)

 Passing props is a great way to explicitly pipe data through your UI tree to the
components that use it. But passing props can become verbose and inconvenient

when you need to pass some prop deeply through the tree, or if many components
need the same prop. The nearest common ancestor could be far removed from the
components that need data, and lifting state up that high can lead to a situation

called “prop drilling

The provider pattern is a solution to the prop drilling problem, since every descendent of the provider
component will have access to the data it provides.

An implementation/example

Let’s look back to the examples from The hooks pattern section, where we had the App rendering
BasketClassical and BasketHooks, which render BasketItemsClassical and
BasketItemsHooks, respectively.

Figure 4.18: A React app tree with BasketClassical, BasketHooks, and their descendants

This illustrates the prop drilling problem, since BasketClassical and BasketHooks
don’t use basketId or httpClient beyond passing it to BasketItemsClassical
and BasketItemsHooks.

There are multiple ways to consume a context in React, but it all begins by creating a context:

import React, { createContext } from 'react';

const HttpClientContext = createContext(null);

The provider pattern 105

export function HttpClientProvider({ httpClient, children
  }) {
  return (
    <HttpClientContext.Provider value={httpClient}>
      {children}
    </HttpClientContext.Provider>
  );
}

HttpClientContext is a context that’s initialized with the null value. HttpClientProvider
is a component that takes a httpClient value, setting it as the value that HttpClientContext.
Provider will pass to its descendants in the component tree.

In order to use HttpClientContext, we can use HttpClientContext.Consumer:

export const HttpClientConsumer = HttpClientContext.Consumer;

HttpClientContext.Consumer has a children render-prop (function) that takes the value of
the context (in this case, httpClient) and returns some JSX to render:

// no change to httpClient
function App() {
  return (
    <HttpClientProvider httpClient={httpClient}>
      {/* what's below could be however deep in the
          component tree */}
      <HttpClientConsumer>
        {(httpClient) => (
          <BasketItemsClassical basketId="5" httpClient=
           {httpClient} />
        )}
      </HttpClientConsumer>
    </HttpClientProvider>
  );
}

Exploring Reactive View Library Patterns106

This yields the following output in the browser:

Figure 4.19: The JSON contents of basketId=5 from fakestoreapi.com

The approach using HttpClientContext.Consumer directly is a bit unwieldy. Instead, we could
wrap it in a higher-order component, withHttpClient, which consumes HttpClientConsumer.
The benefit here is that we only have one place that uses HttpClientConsumer:

export function withHttpClient(Component) {
  return (props) => (
    <HttpClientConsumer>
      {(httpClient) => <Component {...props} httpClient=
        {httpClient} />}
    </HttpClientConsumer>
  );
}

With a slight difference from our example of a higher-order component, we’ll export const Connected
BasketItemsClassical with the value withHttpClient(BasketItemsClassical).
The connected nomenclature is a call back to the large React Redux code bases where the components
are often split among presentation and container components. The Redux higher-order component is
called connect, and all the containers are connected:

export const ConnectedBasketItemsClassical =
  withHttpClient(BasketItemsClassical);

The provider pattern 107

We can then use ConnectedBasketItemsClassical as follows. Note that we don’t pass an
httpClient prop:

function App() {
  return (
    <HttpClientProvider httpClient={httpClient}>
      {/* what's below could be however deep in the
          component tree */}
      <ConnectedBasketItemsClassical basketId="5" />
    </HttpClientProvider>
  );
}

The higher-order component version using withHttpClient outputs the same value as the direct
HttpClientConsumer implementation.

Figure 4.20: The JSON contents of basketId=5 from fakestoreapi.com

The final approach to using context and the provider pattern is to leverage the React useContext
hook. Similar to how HttpClientContext.Consumer allows us to access the context provider’s
value, the hook fulfills that same role. So, the output of useContext(context) is the current
value, based on where the hook renders in the component tree.

It’s customary to wrap the useContext hook in a more descriptive name (as we did
for HttpClientContext.Consumer):

import React, { createContext, useContext } from 'react';

// no changes to HttpClientContext definition or

Exploring Reactive View Library Patterns108

    HttpClientContextConsumer

export function useHttpClient() {
  const httpClient = useContext(HttpClientContext);
  return httpClient;
}

This time, using httpClient from the HttpClientContext requires component-level changes.
So, we’ll write the following implementation of BasketItemsHooksUseContext:

export function BasketItemsHooksUseContext({ basketId }) {
  const httpClient = useHttpClient();
  const [basketSession, setBasketSession] = useState({});
  useEffect(() => {
    // @ts-ignore
    httpClient
      .get(`https://fakestoreapi.com/carts/${basketId}`)
      .then((session) => setBasketSession(session));
  }, []);
  return <pre>{JSON.stringify(basketSession,
   null, 2)}</pre>;
}

BasketItemsHooksUseContext can be used as follows. Note that we’re not passing
BasketItemsHooksUseContext, a httpClient prop:

function App() {
  return (
    <HttpClientProvider httpClient={httpClient}>
      {/* what's below could be however deep in the
      component tree */}
      <BasketItemsHooksUseContext basketId="5" />
    </HttpClientProvider>
  );
}

The provider pattern 109

This implementation is yet again equivalent to the previous implementations we did with
HttpClientConsumer and HttpClient.

Figure 4.21: The JSON contents of basketId=5 from fakestoreapi.com

We saw how to use the provider pattern to solve the prop drilling problem in React apps. Let’s now
look at some limitations of this pattern in the next section.

Limitations

The provider pattern is a layer of indirection. It might not always be obvious where a context’s value is
coming from, or it might sometimes be necessary to change the provider/context shape to make some
changes at the component level. For example, when using context with hooks, the hook shows a direct
link between consuming component and the context, but it doesn’t necessarily show the provider or
how the value inside the context is defined.

It’s also sometimes possible to solve the prop drilling problem by making liberal use of children and
composing the components in a single large JSX return, such as the following:

function MyComponent() {
  return <ContainerComponent requiredProp={'value'}>
    <OtherComponent prop="other-value"/>
    <FinalComponent prop="final-value"/>
  </ContainerComponent>
}

Exploring Reactive View Library Patterns110

In MyComponent, we pass the props directly to OtherComponent and FinalComponent
from MyComponent. If we had ContainerComponent encapsulating OtherComponent and
FinalComponent, the props would be drilled via ContainerComponent (it doesn’t use the
props but receives them, in order to pass them to its descendants).

Summary
In this chapter, we looked at how reactive view library patterns enable us to build React applications
more effectively when the component paradigm starts to break down.

The render prop pattern allows us to decouple data logic and rendering logic by yielding rendering
control back to the consumer of a component.

The higher-order component pattern allows components to implement logic (data or rendering)
against their props, without having to concern themselves with where the information comes from.

The hooks pattern means that React primitives that were only available in class components are now
available as self-contained logic chunks to function components. Hooks can be composed separately
of components, which makes hooks a powerful primitive and can partly replace the render prop and
higher-order component patterns.

The provider pattern allows React components to pass data not only to their children but also to any
descendent component.

Now that we’re familiar with reactive view library patterns, in the next chapter, we will look at rendering
and page hydration strategies to improve web applications’ performance.

5
Rendering Strategies and Page

Hydration

Rendering strategies and page hydration approaches allow us to leverage the JavaScript client and
server ecosystem to serve performant and scalable web applications, depending on the needs of our
end users. The React and JavaScript techniques covered in this chapter are another set of tools to
augment the Chapter 4 chapter. We’ll use the strengths of the client (browser) and server (specifically,
Node.js) runtimes to deliver fast and scalable React websites to users.

In this chapter, we’ll cover the following topics:

•	 What the trade-offs are between client and server rendering of React applications by implementing
pure client and server rendering applications

•	 The types of advantages that frameworks such as Next.js can bring with static site generation
functionality, alongside server-side rendering

•	 Bridging the client-server rendering gap with a React page rehydration example and its gotchas

•	 Streaming server rendering in React

By the end of this chapter, you’ll be able to select appropriate rendering and page hydration strategies
with React and be able to implement framework-level functionality, enabling you to make better
technology choices.

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/
Javascript-Design-Patterns

https://github.com/PacktPublishing/Javascript-Design-Patterns
https://github.com/PacktPublishing/Javascript-Design-Patterns

Rendering Strategies and Page Hydration112

Client and server rendering with React
In a web context, client-side rendering is the process by which JavaScript is used inside a user’s
browser to generate or update the page contents. A fully client-side-rendered application will only
display meaningful content when the relevant JavaScript code has completed downloading, parsing,
and running.

In the following sequence diagram, we use the term “origin” instead of something such as “server,” since
one benefit of full client-side rendering is that the resources “serving” our content can be what’s called
static hosting. This includes services such as AWS Simple Storage Service (S3), Netlify, Cloudflare
Pages, and GitHub Pages, among others. There’s no dynamic server-side component in these services.

Figure 5.1: A client-side-rendering sequence diagram

Client and server rendering with React 113

In contrast, server-side rendering denotes the process by which a server generates a full HTML
document when a browser requests it and returns it.

Figure 5.2: A server-side-rendering sequence diagram

Client-side rendering in React

Client rendering is the default rendering method with React. Let’s build an application that renders
client-side from scratch:

1.	 We start with an App component that renders some text and its type prop:

export function App({ type = '' }) {
  return (
    <div>
      <p>Hello from the {type + ' '}app</p>
    </div>
  );
}

2.	 We then create an entry point file, client.jsx, which imports the app and uses ReactDOM
to render it, with the type prop set to "client render".

import React from 'react';
import ReactDOM from 'react-dom/client';
import { App } from './src/app';

Rendering Strategies and Page Hydration114

ReactDOM.createRoot(document.querySelector
  ('#app')).render(
  <App type={`"client render"`} />
);

3.	 In order for this example to run, we need an HTML document that allows ReactDOM.
createRoot to run successfully. In other words, we need an HTML document that has an
element with id=app and references our entry point:

<div id="app"></div>
<script src="./dist/client.js"></script>

4.	 Note that the entry point is dist/client.js instead of client.jsx. That’s due to the
fact that React’s JSX syntax can’t be run natively in the browser. Instead, we run our entry point
file, client.jsx, through a compilation and bundling step using esbuild. Our build
command looks something like this:

npx esbuild client.jsx --bundle --outdir=dist

Now, if we load the index.html file in the browser, we see the following:

Figure 5.3: Hello from the “client render” app rendered in the browser

Server rendering in React

Node.js, introduced on its website as “an open-source, cross-platform JavaScript runtime environment,”
gives us the ability to run JavaScript on a server. A commonly used package to build servers in Node.
js is Express.

In this section, we’ll see how to use Node.js and Express to server-render a React application.

A simple Express server that returns 'Server-rendered hello' when the root path is loaded
looks as follows:

import express from 'express';
const app = express();
app.get('/', (_req, res) => {
  res.send('Server-rendered hello');
});

Client and server rendering with React 115

const { PORT = 3000 } = process.env;
app.listen(PORT, () => {
  console.log(`Server started on
    http://localhost:${PORT}`);
});

Again, we’ll use esbuild to bundle and compile the JSX to JavaScript:

npx esbuild server.js --bundle --platform=node --outdir=dist

We can then start the server using the following:

node dist/server.js

By default, it runs on port 3000, but that can be overridden with environment variables.

When we load localhost:3000, we see this message in the browser.

Figure 5.4: Server-rendered hello rendered in the browser

This is a really minimal example of server-rendering using Node.js and Express.

Next, we’ll see how to leverage the ReactDOM package to take React components and server-render them:

1.	 The ReactDOM package provides both a react-dom/client entry point (which we used
in the previous section) and a react-dom/server entry point. As the names allude to, the
client entry point is meant to be used on the client (in the browser, “client-side” JavaScript),
and the server entry point is meant to be used on the server (via Node.js or another server-side
JavaScript runtime).

2.	 The two methods we’ll use are ReactDOMServer.renderToStaticMarkup and
ReactDOMServer.renderToString; these two methods will allow us to server-render
our React application to HTML.

3.	 In a src/server-render.jsx file, we have the following renderNav and
serverRenderApp functions, which use ReactDOMServer.renderToStaticMarkup
and ReactDOMServer.renderToString to render Nav and App, respectively:

import React from 'react';
import ReactDOMServer from 'react-dom/server';
import { App } from './app';

Rendering Strategies and Page Hydration116

import { Nav } from './nav';

export function renderNav() {
  return ReactDOMServer.renderToStaticMarkup(<Nav />);
}
export function serverRenderApp() {
  return ReactDOMServer.renderToString(<App
    type={`"server render"`} />);
}

Here, app.jsx is the same as we had in the previous section, and nav.jsx is as follows:
import React from 'react';

export function Nav() {
  return (
    
      
        Server-render only
      
    
  );
}

4.	 We can then use renderNav and serverRenderApp in server.js. We modify the
app.get('/') handler to render the navigation and the app:

// no other changes
app.get('/', (_req, res) => {
  res.send(`
    <!DOCTYPE html>
    ${renderNav()}
    <h1>Server-render only</h1>
    <div id="app">${serverRenderApp()}</div>
  `);
});

Client and server rendering with React 117

5.	 When we rebuild the server, we run node dist/server.js and open localhost:3000
to see the following:

Figure 5.5: Hello from the “server render” app being rendered alongside a heading and the nav

What’s the difference between ReactDOMServer.renderToStaticMarkup and
ReactDOMServer.renderToString? The short answer is that renderToStaticMarkup
can’t be rehydrated client-side; in other words, it can’t be used as the initial HTML, and then the same
React application code can be run client-side to give a fully interactive experience. We’ll revisit this
in a later section of the chapter.

Trade-offs between client and server rendering

So, what are the benefits and drawbacks of client and server rendering?

Client rendering’s main benefit is that the application’s “work” is done fully in the user’s browsers,
which makes it highly scalable since the amount of users using the system will not put pressure on the
origin servers. Client rendering’s main drawbacks relate to functionality that is only available on the
server side – for example, server-side-only cookies or setting the meta tags for social media preview.

Server rendering’s main drawback is that work has to happen on the server. As stated previously, the
server being a “controlled” environment has some benefits, namely its latency to other co-located
systems will tend to be lower than a full browser-server round trip, since the server’s network is
known and unlikely to have as much variance in performance as an end user’s network. By not
waiting for a full-page load, followed by an asset load, followed by a JavaScript “parse and execute”
cascade, server-rendering can improve “core web vitals”, such as largest contentful paint (LCP) and
cumulative layout shift (CLS).

Ultimately, client-rendered functionality is a key reason we use JavaScript, which means removing
that ability will only make sense in constrained use cases such as content sites (e.g., blogs, news sites,
and documentation sites).

Rendering Strategies and Page Hydration118

We’ve now seen the difference between client and server rendering, as well as how to implement both
with React and Node.js. In the following section, we’ll look at rendering approaches enabled by the
Next.js framework for React.

Static rendering with Next.js
Next.js is a React framework for creating full stack web applications. What this means is that it provides
tools and opinions that will help developers be more productive in the short and long term.

Next.js includes a filesystem router for “pages”, a set of routing primitives for React, support for client
and server rendering, and data fetching primitives, among others.

The features of Next.js we’ll focus on are the static site generation (SSG) ones. This type of rendering
methodology resembles server rendering but mitigates some of its drawbacks, since the rendering
pass is done at build time instead of at request time.

Figure 5.6: A sequence diagram for a pre-rendered/static site generation use case

Now that we’ve looked at how static site generation changes the data flow when a user requests a
website, we’ll look at Next.js automatic static generation.

Automatic static generation 119

Automatic static generation
In Next.js, the filesystem-based routing means that each path in your web application corresponds to a
file in the pages directory of your application. For example, / corresponds to pages/index.js.

Next.js defaults to static generation when no Next.js data fetching methods are used for a given page. You
can find more information from the Next.js documentation – Automatic Static Optimization (https://
nextjs.org/docs/pages/building-your-application/rendering/automatic-
static-optimization).

Next.js automatically determines that a page is static (i.e., can be prerendered) if it
has no blocking data requirements. This determination is made by the absence of

getServerSideProps and getInitialProps on the page.

For example, the following page in a Next.js application will be statically generated, since it only exports a
page component (the default export of Index); no getServerSideProps or getInitialProps
function is exported:

import React from 'react';
import Head from 'next/head';
import Link from 'next/link';

export default function Index() {
  return (
    <>
      <Head>
        <title>Next Static Rendering - Automatic Static
          Generation</title>
        <meta name="viewport" content="width=device-width,
          initial-scale=1" />
      </Head>
      <main>
        
          
            <Link href="/products">Products Page (SSG)
            </Link>
          
          
            <Link href="/cart">Cart Page (SSR)</Link>
          
        
      </main>
    </>
  );
}

https://nextjs.org/docs/pages/building-your-application/rendering/automatic-static-optimization
https://nextjs.org/docs/pages/building-your-application/rendering/automatic-static-optimization
https://nextjs.org/docs/pages/building-your-application/rendering/automatic-static-optimization

Rendering Strategies and Page Hydration120

We can see this during next build in the following screenshot; / route (page) is marked
as Static in the output:

npx next build

info  - Linting and checking validity of types
info  - Creating an optimized production build
info  - Compiled successfully
info  - Collecting page data
info  - Generating static pages (3/3)
info  - Finalizing page optimization

Route (pages)                              Size     First Load JS
┌ ○ /                                      2.73 kB        75.8 kB
└ ○ /404                                   182 B          73.2 kB
+ First Load JS shared by all              73.1 kB
  ├ chunks/framework-fcfa81c6fe8caa42.js   45.2 kB
  ├ chunks/main-7039e34bfb6f1a68.js        26.9 kB
  ├ chunks/pages/_app-c7a111f3ee9d686c.js  195 B
  └ chunks/webpack-8fa1640cc84ba8fe.js     750 B

○  (Static)  automatically rendered as static HTML (uses no initial
props)

When we run the built Next.js output with next start, the page behaves as expected.

Figure 5.7: Links to the Products and Cart pages rendering

This example is a relatively constrained use case since we have no dynamic data fetching requirements.
It still showcases Next.js defaulting to static rendering if the page does not use any functionality that
excludes static generation. For more advanced use cases, Next.js also allows use of “build-time” dynamic
data, which means we can use a third-party data source to generate the page content, and more.

We’ve seen how Next.js defaults to automatic static generation. Next, we’ll see how to configure a Next.
js page to load data to render a page as static.

Static generation with a third-party data source 121

Static generation with a third-party data source
Next.js has a getStaticProps data fetching method that allows us to load data at build time,
which will be passed to a page.

The following sequence diagram illustrate what this involves:

Figure 5.8: A sequence diagram of Next.js pre-rendering using getStaticProps

Rendering Strategies and Page Hydration122

For example, if we want to build a “product list” page based on fakestoreapi.com data, we can
write the following getStaticProps method in a pages/products/index.js page:

export async function getStaticProps() {
  const products = await fetch
    ('https://fakestoreapi.com/products').then(
    (res) => res.json()
  );
  return {
    props: {
      products,
    },
  };
}

Here’s a product example in the response to illustrate the data shape:

{
  id: 1,
  title: 'Fjallraven - Foldsack No. 1 Backpack, Fits 15
    Laptops',
  price: 109.95,
  description: 'Your perfect pack for everyday use and
  walks in the forest. Stash your laptop (up to 15 inches)
  in the padded sleeve, your everyday',
  category: "men's clothing",
  image: 'https://fakestoreapi.com/img/
    81fPKd-2AYL._AC_SL1500_.jpg',
  rating: { rate: 3.9, count: 120 }
}

Based on the data provided by getStaticProps, we can build a ProductIndexPage component.
We’ll loop through each product from props.products and render them in an unordered list.
Each item will include a link to the /products/[id] page (which doesn’t exist yet):

import React from 'react';
import Link from 'next/link';
import Head from 'next/head';

export default function ProductIndexPage({ products }) {
  return (
    <>
      <Head>
        <title>Products</title>
      </Head>

Static generation with a third-party data source 123

      <div>
        <h2>Products</h2>
        
          {products.map((product) => {
            return (
              <li key={product.id}>
                <Link
                  href={{
                    pathname: '/products/[id]',
                    query: { id: product.id },
                  }}
                >
                  {product.title}
                </Link>
              
            );
          })}
        
      </div>
    </>
  );
}
// no change to getStaticProps

This page will now be built when next build is run. As we can see from the output, the /products
page is marked as SSG (static site generation):

info  - Linting and checking validity of types...
info  - Creating an optimized production build...
info  - Compiled successfully
info  - Collecting page data
info  - Generating static pages (4/4)
info  - Finalizing page optimization

Route (pages)                              Size     First Load JS
┌ ○ /                                      464 B          75.9 kB
├ ○ /404                                   182 B          73.2 kB
└ ● /products                              426 B          75.9 kB
+ First Load JS shared by all              73.1 kB
  ├ chunks/framework-fcfa81c6fe8caa42.js   45.2 kB
  ├ chunks/main-7039e34bfb6f1a68.js        26.9 kB
  ├ chunks/pages/_app-c7a111f3ee9d686c.js  195 B
  └ chunks/webpack-8fa1640cc84ba8fe.js     750 B

Rendering Strategies and Page Hydration124

○  (Static)  automatically rendered as static HTML (uses no initial
props)
●  (SSG)     automatically generated as static HTML + JSON (uses
getStaticProps)

When we start the Next.js server with next start and navigate to /products, we see the following.
Note that the products on the page won’t change unless we rebuild the application.

Figure 5.9: The Products list page is statically pre-rendered with products from fakestoreapi.com

We’ve seen how to use getStaticProps to generate pages based on a third-party API, but how
would we generate the /products/[id] pages ahead of them being requested? To do that, we
need to be able to provide the “required paths” (or URLs) that Next.js needs to generate. This is what
we’ll look at in the following section.

Static generation with dynamic paths 125

Static generation with dynamic paths
It can be useful to pre-generate pages with dynamic paths and contents.

We could use getServerSideProps and render the pages on demand. In the context that we’re
working in, that would be valid for a “cart” page.

getServerSideProps is server-side rendering, as we’ve seen previously. The reason a cart page
should probably be server-rendered is that it can change very quickly, based on end user interaction.
An example of a page that is dynamic but wouldn’t change quickly based on an end user action is a
“view single product” page. We’ll see how to statically generate that after the cart page example.

We create a pages/cart.js file, where we provide the following getServerSideProps, which
loads the cart, figures out the relevant product IDs (per cart content), and loads them (in order to
display some information about them):

export async function getServerSideProps({ query }) {
  const { cartId = 1 } = query;
  const cart = await fetch(`https://fakestoreapi.com/
carts/${cartId}`).then(
    (res) => res.json()
  );
  const productsById = (
    await Promise.all(
      cart.products.map(async (product) => {
        return await fetch(
          `https://fakestoreapi.com/products/
            ${product.productId}`
        ).then((res) => res.json());
      })
    )
  ).reduce((acc, curr) => {
    acc[curr.id] = curr;
    return acc;
  }, {});
  return {
    props: {
      cart,
      productsById,
    },
  };
}

Rendering Strategies and Page Hydration126

We can then build a page component and make it the default export. In the component, we loop
through the cart products, rendering some count information and some product information, based
on props.productsById:

import Head from 'next/head';
import React from 'react';
export default function CartPage({ cart, productsById }) {
  return (
    <>
      <Head>
        <title>Cart Page</title>
      </Head>
      <div>
        
          {cart.products.map((product) => {
            return (
              <li key={product.productId}>
                {product.quantity} x {productsById
                  [product.productId]?.title}
              
            );
          })}
        
      </div>
    </>
  );
}

We know this is a server-side rendered page because when we run next build, it gets marked as
such (and doesn’t increase the Generating static pages count):

npx next build

info  - Linting and checking validity of types
info  - Creating an optimized production build
info  - Compiled successfully
info  - Collecting page data
info  - Generating static pages (4/4)
info  - Finalizing page optimization

Route (pages)                              Size     First Load JS
┌ ○ /                                      464 B          75.9 kB
├ ○ /404                                   182 B          73.2 kB
├ λ /cart                                  445 B          73.5 kB

Static generation with dynamic paths 127

└ ● /products                              426 B          75.9 kB
+ First Load JS shared by all              73.1 kB
  ├ chunks/framework-fcfa81c6fe8caa42.js   45.2 kB
  ├ chunks/main-7039e34bfb6f1a68.js        26.9 kB
  ├ chunks/pages/_app-c7a111f3ee9d686c.js  195 B
  └ chunks/webpack-8fa1640cc84ba8fe.js     750 B

λ  (Server)  server-side renders at runtime (uses
  getInitialProps or getServerSideProps)
○  (Static)  automatically rendered as static HTML (uses no
  initial props)
●  (SSG)     automatically generated as static HTML + JSON
   (uses getStaticProps)

We can load the /carts page with a ?cartId=1 query param and see Cart 1.

Figure 5.10: The cart page with Cart 1 loaded and contents displaying

We can also load the /carts page with cartId=3 query param and see Cart 3.

Figure 5.11: Cart page with Cart 3 loaded and contents displaying

We’ve now seen how to render the cart page on demand; a page that we mentioned is a good fit for
build-time pre-rendering (i.e., static site generation) is the products/[id] page. In order to
render this page, we need to provide the “paths” that Next.js needs to attempt to pre-render, since
[id] is dynamic.

The following diagram shows how getStaticPaths and getStaticProps interact with each
other. In short, getStaticPaths returns a list of “paths”; getStaticProps is then called on
each item in that list of paths and can make the relevant I/O calls to provide the page’s props.

Rendering Strategies and Page Hydration128

Figure 5.12: Sequence diagram of Next.js pre-rendering using getStaticPaths and getStaticProps

Static generation with dynamic paths 129

Figure 5.13: Sequence of a request to a pre-rendered Next.js app

In our sample Next.js app, we can create a pages/products/[id].js file with the following
getStaticPaths and getStaticProps functions:

export async function getStaticPaths() {
  const products = await fetch('https://fakestoreapi.com/
    products')
    .then((res) => res.json())
    .then((json) => json);

  const paths = products.map((product) => ({
    params: { id: String(product.id) },
  }));

  return { paths, fallback: false };
}

One quirk of the paths generation is that we’re converting product.id from a number to a
string, since the [id] path parameter needs to be a string. Next.js would error with Error: A
required parameter (id) was not provided as a string received number
in getStaticPaths for /products/[id] otherwise.

Rendering Strategies and Page Hydration130

getStaticProps takes the params object, which is contained in the objects returned from
getStaticPaths, and makes further fetch calls to load the product by ID. Finally, it returns
product for the Page component to use:

export async function getStaticProps({ params }) {
  const product = await fetch(
    `https://fakestoreapi.com/products/${params.id}`
  ).then((res) => res.json());
  return {
    props: {
      product,
    },
  };
}

Our ProductPage component can then look like the following, where we use product.title
both as the title of the page and as the page’s h2 element content. From here, we could display anything
contained in the product response, including price and stock information and images:

import React from 'react';
import Link from 'next/link';
import Head from 'next/head';

export default function ProductPage({ product }) {
  return (
    <>
      <Head>
        <title>{product.title}</title>
      </Head>
      <div>
        <Link href={'/products'}>Back</Link>
        <h2>{product.title}</h2>
      </div>
    </>
  );
}

Static generation with dynamic paths 131

When we run next build, the build will take longer, since each products/[id] page needs
to make a request to fakestoreapi.com. Note that the products/[id] pages are marked as
SSG. We also see the number of static pages being generated increasing to 24 and a truncated subset
of products/[id] pages:

npx next build
info  - Linting and checking validity of types
info  - Creating an optimized production build
info  - Compiled successfully
info  - Collecting page data
info  - Generating static pages (24/24)
info  - Finalizing page optimization

Route (pages)                              Size     First Load JS
┌ ○ /                                      464 B          75.9 kB
├ ○ /404                                   182 B          73.2 kB
├ λ /cart                                  445 B          73.5 kB
├ ● /products                              426 B          75.9 kB
└ ● /products/[id]                         383 B          75.9 kB
    ├ /products/1
    ├ /products/2
    ├ /products/3
    └ [+17 more paths]
+ First Load JS shared by all              73.1 kB
  ├ chunks/framework-fcfa81c6fe8caa42.js   45.2 kB
  ├ chunks/main-7039e34bfb6f1a68.js        26.9 kB
  ├ chunks/pages/_app-c7a111f3ee9d686c.js  195 B
  └ chunks/webpack-8fa1640cc84ba8fe.js     750 B

λ  (Server)  server-side renders at runtime (uses getInitialProps or
getServerSideProps)
○  (Static)  automatically rendered as static HTML (uses no initial
props)
●  (SSG)     automatically generated as static HTML + JSON (uses
getStaticProps)

Rendering Strategies and Page Hydration132

After building and starting the server with next start, when we load the /products/1 path,
we see product 1’s name.

Figure 5.14: /products/1 content

And when we load the /products/8 path, we see product 8’s name.

Figure 5.15: /products/8 content

We’ve now seen how to leverage Next.js features that automatically statically render pages with no data
fetching, getStaticProps and getStaticPaths to render pages with dynamic content and with
dynamic paths at build time, as well as how these approaches contrast with getServerSideProps.

Next, we’ll deep-dive into how to rehydrate a server-rendered react page on the client.

Page hydration strategies
As we’ve seen in the first section of the chapter, react provides primitives to render applications on the
server and the client. However, we only looked at examples where we did exclusively client or server
rendering. One key feature of React frameworks such as Next.js is that they allow you to seamlessly switch
between static, client, and server rendering. We’ll look at how to achieve this using React primitives.

Page hydration strategies 133

Figure 5.16: A sequence diagram for a server-rendered page that is subsequently rehydrated on the client

We’ll start by extending our React client/server rendering app.jsx with a ClientCounter
component. Event handlers are one of the simplest ways to observe interactivity primitives. Our
ClientCounter component displays a counter that initializes with 0, and on every click of the Add
button, it increments the count value. We put this component in a src/client-counter.jsx file:

import React, { useState } from 'react';

export function ClientCounter() {
  const [count, setCount] = useState(0);
  return (
    <div>
      Dynamic Counter, count: {count}

Rendering Strategies and Page Hydration134

      

      <button onClick={() => setCount(count + 1)}>
        Add</button>
    </div>
  );
}

We can render it in our app.jsx component, like so:

import React from 'react';
import { ClientCounter } from './client-counter';

export function App({ type = '' }) {
  return (
    <>
      <div>
        <p>Hello from the {type + ' '}app</p>
        <ClientCounter />
      </div>
    </>
  );
}

If we build the client-side entry point and load it in the browser, it works correctly, incrementing on
each Add click:

npx esbuild client.jsx --bundle --outdir=dist

If we open the index.html file (which is unchanged), we’ll be able to see the counter and increment
it, as shown in the following screenshot.

Figure 5.17: The React client-side rendered counter with an increment of 7 displayed

Page hydration strategies 135

However, if we build and run our server-side entry point, the component remains at 0:

npx esbuild server.js --bundle --platform=node --outdir=dist

We can then start the server using the following:

node dist/server.js

As the following screenshot shows, no matter how many times we click Add, the component only
ever displays 0.

Figure 5.18: React server-rendering does not allow for interactive counter

component, the count shows 0 despite multiple Add button clicks

In order to “hydrate” our server-rendered page, we can create a new entry point, rehydrate.jsx.
This uses react-dom/client’s hydrateRoot function on the element that contains our app:

import React from 'react';
import ReactDOM from 'react-dom/client';
import { App } from './src/app';

ReactDOM.hydrateRoot(
  document.querySelector('#app'),
  <App type={`"server render"`} />
);

We’ll bundle the rehydration entry point using esbuild, in a similar fashion to previous entry points:

npx esbuild rehydrate.jsx --bundle --outdir=dist

Rendering Strategies and Page Hydration136

Once our new dist/rehydrate.js file is built, we need to use it in our server-rendered app. We
modify server.js to statically serve dist, which means that dist/rehydrate.js is available
as rehydrate.js. We then create a new GET route, /rehydrate. This route returns the navigation
elements seen previously, but now the application also has a script that will load rehydrate.js:

// no changes to other routes
app.use(express.static('./dist'));
app.get('/rehydrate', (_req, res) => {
  res.send(`
    <!DOCTYPE html>
    ${renderNav()}
    <h1>Server-render with client-side rehydration</h1>
    <div id="app">${serverRenderApp()}</div>
    <script src="./rehydrate.js"></script>
  `);
});
// no changes to server startup

We also include /rehydrate in the nav.jsx, which now looks as follows:

import React from 'react';
export function Nav() {
  return (
    
      
        Server-render only
      
      
        Server-render with client-side
          rehydration
      
    
  );
}

We can then rebuild our entry points and start the server. When we navigate to /rehydrate, the
counter is interactive, and we see the navigation and h1 as rendered server-side.

Page hydration strategies 137

Figure 5.19: The rehydrated server-rendered application allows the interactive

use of a client-side counter, displayed here with a count of 5

We’ve now seen how to rehydrate a server-rendered React application, next we’ll delve into common
React rehydration issues.

Common React rehydration issues

Rehydration has some key gotchas.

It’s quite common to see the following runtime environment detection code in an application.

export const isServer = () => typeof window ===
  'undefined';

Let’s say we placed isServer in a src/rendering-utils.js file; we can use it as follows
to conditionally render content such as 'from client' or 'not from client', or avoid
rendering ClientCounter altogether when server-rendering:

import React from 'react';
import { ClientCounter } from './client-counter';
import { isServer } from './rendering-utils';

export function App({ type = '' }) {
  return (
    <>
      <div>

Rendering Strategies and Page Hydration138

        <p>Hello from the {type + ' '}app</p>
        <p>Rendering: {isServer() ? 'not from client' :
           'from client'}</p>
        {!isServer() && <ClientCounter />}
      </div>
    </>
  );
}

This works fine in the purely server-rendered use case, where we display 'not from client'
and hide ClientCounter.

Figure 5.20: isServer detection working successfully for server-side-only rendering

At first glance, it looks to be working for the server-render followed by client-side rehydration use
case. It displays from client and shows the client-side counter component.

Figure 5.21: isServer detection looking to work for server-side rendering followed rehydration

Page hydration strategies 139

However, if we look at the console, we can see that we have some errors.

Figure 5.22: Console errors during rehydration

The issue is client render versus server render mismatches – for example, Warning: Text content did
not match. Server: “from client” Client: “not from client”. ReactDOM.rehydrateRoot expects
the application to render the same way on the server and the client. React, in this situation, falls back
to full client-side rendering (An error occurred during hydration. The server HTML was replaced
with client content in <div>.), meaning the server-rendered HTML is completely thrown away.

To fix this, a better detection of server versus client is required. A simple detection would involve a
hook using useEffect. The useClientRenderingOnly function will always be false until
the application runs our useEffect, which is only run client-side:

export function useClientRenderingOnly() {
  const [hasMounted, setHasMounted] = useState(false);
  useEffect(() => {
    setHasMounted(true);
  });
  return hasMounted;
}

It can be used as follows in src/client-counter.jsx instead of isServer in app.jsx:

import React, { useState } from 'react';
import { useClientRenderingOnly } from './rendering-utils';

export function ClientCounter() {

Rendering Strategies and Page Hydration140

  const isClientRendering = useClientRenderingOnly();
  const [count, setCount] = useState(0);
  if (!isClientRendering) return null;

  // no change to JSX return
}

app.jsx can become the following, leveraging isClientRendering to display 'from client'
and 'not from client':

import React from 'react';
import { ClientCounter } from './client-counter';
import { isClientRendering } from './rendering-utils';

export function App({ type = '' }) {
  return (
    <>
      <div>
        <p>Hello from the {type + ' '}app</p>
        <p>
          Rendering: {isClientRendering ? 'from client' :
            'not from client'}
        </p>
        <ClientCounter />
      </div>
    </>
  );
}

In the server-rendering-only case, this works, and in the rehydration case, we now know whether to
display something on the server or client without getting rehydration issues.

Other common issues that cause rehydration errors are invalid markup (some HTML tags are not
supposed to be inside other HTML tags).

React provides one more rendering approach that allows the server to start returning data to the
client earlier via streaming.

React streaming server-side rendering

React streaming server-side rendering leverages streaming so that the server can start return data
to the browser earlier (chunks in a stream instead of a one-off response). This also means that the
browser can start working on rendering earlier.

Page hydration strategies 141

There’s a major caveat to streaming, which is that one of its key advantages over non-streaming server-
rendering is that it has support for the new suspense primitive. This primitive is supported by specific
libraries and frameworks and is quite difficult to illustrate using React primitives.

According to the React documentation on suspense usage (https://react.dev/reference/
react/Suspense#usage):

Suspense-enabled data fetching without the use of an opinionated framework is not
yet supported. The requirements for implementing a Suspense-enabled data source
are unstable and undocumented. An official API for integrating data sources with

Suspense will be released in a future version of React.

When rehydrating a React streaming server rendered page, we need to replace the whole document,
so we’ll create a new <Page> component, which will be a full page. We’ll also create a streaming-
rehydrate.jsx entry point for use client-side.

The following are the contents of a new src/page.jsx file. The full page including html and
head are necessary to do streaming server-side rendering:

import React from 'react';
import { App } from './app';
import { Nav } from './nav';

export default function Page() {
  return (
    <html>
      <head>
        <title>Streaming</title>
      </head>
      <body>
        <Nav />
        <h1>Server-render with streaming</h1>
        <div id="app">
          <App type={`"streaming server render"`} />
        </div>
      </body>
    </html>
  );
}

https://react.dev/reference/react/Suspense#usage
https://react.dev/reference/react/Suspense#usage

Rendering Strategies and Page Hydration142

Our streaming-rehydrate.jsx entry point is quite similar to our rehydrate.jsx entry
point with the exception that it hydrates document, instead of an element with the app ID. This is
due to the aforementioned limitation of streaming server-side rendering – the whole document has
to be controlled by React:

import React from 'react';
import ReactDOM from 'react-dom/client';
import Page from './src/page';

ReactDOM.hydrateRoot(document, <Page />);;

We’ll build the entry point to JavaScript using the following:

npx esbuild streaming-rehydrate.jsx.jsx --bundle --outdir=dist

We can now start working on the server rendering in src/server-rendering.jsx. We create a
new serverRenderAppStream function that takes an Express/Node.js res object as a parameter.
It calls ReactDOMServer.renderToPipeableStream with the Page component, and with
bootstrapScripts set to include our streaming-rehydrate.js entry point:

import React from 'react';
import ReactDOMServer from 'react-dom/server';
// no changes to other imports
import Page from './page';

export function serverRenderAppStream(res) {
  const { pipe } = ReactDOMServer.renderToPipeableStream
    (<Page />, {
    bootstrapScripts: ['./streaming-rehydrate.js'],
  });
  pipe(res);
}

In server.js, we can create a new GET route for the /streaming path, which simply calls
serverRenderAppStream with the res object per the Express route handler definition:

// no change to other imports
import {
  // no change to other imports
  serverRenderAppStream,
} from './src/server-render';

// no change to other routes
app.get('/streaming', (_req, res) => {
  serverRenderAppStream(res);

Page hydration strategies 143

});
// no change to startup logic

We’ll also add the /streaming route to src/nav.jsx:

import React from 'react';

export function Nav() {
  return (
    
      {/* no change to the other li elements */}
      
        Server-render with streaming
          
      
    
  );
}

We can now load the /streaming page and see it in action.

Figure 5.23: React streaming server rendering with rehydration

We’ve now seen how to implement React streaming server rendering with rehydration.

Rendering Strategies and Page Hydration144

Summary
In this chapter, we covered how a deeper understanding of rendering and page hydration strategies
can help us deliver optimal and scalable web user interfaces with React.

Client and server rendering have benefits and drawbacks that are complimentary to each other.
Client rendering takes longer to start up but provides more interactivity and doesn’t require as much
server-side computer power; server rendering can return content faster but requires infrastructure
and doesn’t provide the same level of interactivity.

The static site generation functionality of Next.js can be leveraged alongside classic server rendering
to judiciously decide on a rendering strategy for a given set of pages, based on the access pattern and
how often the content changes.

Finally, page hydration and rehydration alongside streaming server-side rendering bridges the gap
between server and client rendering, allowing the benefits of both to be included in one page.

Now that we’re familiar with rendering and page hydration strategies, we can look at implementing
micro-frontends using both the “zones” and “islands” architectures in the next chapter.

6
Micro Frontends, Zones, and

Islands Architectures

The micro frontend architecture, and specifically the “zones” and “islands” patterns, mirror the
microservices architecture for backend systems. Given the right tooling, they allow multiple teams to
maintain high-velocity development on a single product. The techniques covered in this chapter look
at system-level interaction and integration patterns. Each system can leverage creational, structural,
behavioral, and reactive view library patterns, as covered in Chapters 1, 2, 3, and 4 respectively. Micro
frontend architectures help link systems together as opposed to structuring the code within each of
them better.

We’ll cover the following topics in this chapter:

•	 The problem space that micro frontends address, including some common approaches and
their drawbacks

•	 Leveraging Next.js features to build a “zones” micro frontend setup

•	 Using the is-land package to deliver an “islands” micro frontend setup with islands in
Preact and Vue.js

By the end of this chapter, you’ll be able to discuss the trade-offs and deliver modern micro frontend
approaches in JavaScript.

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/
Javascript-Design-Patterns

https://github.com/PacktPublishing/Javascript-Design-Patterns
https://github.com/PacktPublishing/Javascript-Design-Patterns

Micro Frontends, Zones, and Islands Architectures146

An overview of micro frontends
A micro frontend setup is one where multiple frontend applications or components are composed.
This is akin to microservices, where a micro frontend would encapsulate a subset of functionality, or
“bounded context.”

For example, in an e-commerce setting, we might have a “search” micro frontend and a “cart” or
“checkout” micro frontend.

Figure 6.1: A simplified micro frontends diagram

We’ve now introduced the micro frontends architecture; next, we’ll see at the key benefits micro
frontends deliver.

Key benefits

The benefits of the micro frontend patterns are similar to microservice benefits. They usually come
in the sociotechnical aspect of development.

Each micro frontend can use a different set of technologies, which means the right tool for the job can
be selected. A very page-load performance-sensitive page might use a different stack than an admin
interface or a high-volume SVG visualization page.

Incremental upgrades are available, and changes can be tested in one component before being rolled
out to all components.

The releases of different micro frontends are not locked together. This can help when scaling, where
each team might work on one or more of the micro frontends. They can be released independently of
other teams, meaning the cadence can increase; this is related to the last benefit we’ll discuss.

Each micro frontend can have its own code base, and “bounded contexts” can be strictly enforced.

An overview of micro frontends 147

“Classic” micro frontend patterns

We’ll cover five different “classic” approaches to creating a micro frontend setup.

The first is the “container application” using server-side includes. This leverages a server that will
fetch from the different micro frontends and stitch them together. This is illustrated in the following
diagram, where the container application loads a “cart” HTML section and a “search” HTML section
and injects them into its own template, before returning to the client.

Figure 6.2: The “container application” sequence

The benefits of server-side include, or the “container application,” is that deployments of each micro
frontend are decoupled (e.g., we can deploy changes to the cart without deploying changes to the
search section or the container); in addition, it’s completely technology-agnostic, as micro frontends
don’t even need to use JavaScript.

The next “classic” approach we’ll see is different, using “build-time composition,” where each micro
frontend is a package, usually a npm package (part of the Node.js/JavaScript toolchain). Each package
is then imported where necessary and composed at “build-time” (when each application is packaged
for deployment).

The key drawback of “build-time” composition is that releases now require deployment cascades.
For all the applications to receive updates to the “cart”, we need to update the version and release all
the applications.

Micro Frontends, Zones, and Islands Architectures148

The three final “classic” approaches are similar conceptually although use different technologies. They’re
all “runtime integrations”; the technologies are iframes, JavaScript, and web components. Runtime
integrations mean that the micro frontend requests the micro frontend resource from the browser.

In the case of iframes, this involves using the iframe src attribute. The main downside of this is that
each micro frontend needs to be secured against all public network exploits. What’s more, allowing
the iframing of an application’s content can lead to click-jacking vulnerabilities if not done carefully,
so there are security implications.

Figure 6.3: Runtime integration with iframes

In the case of JavaScript or Web Component “runtime” integration, the composition is managed by
loading JavaScript files. This is more ideal than using iframes, since serving JavaScript to the browser
has fewer security implications than allowing the framing of your content. In the Web Components
case, you would have both the web component referenced in the body of the HTML and a reference
to the scripts required to run the Web Component.

An overview of micro frontends 149

Figure 6.4: Runtime integration with JavaScript or web components

Runtime integrations have a performance impact on the user experience, as shown by the difference
in diagrams between our “server-side includes” and “runtime integration” diagrams. In the “server-
side includes” case, the server composes a full application before returning it to the customer. In the
“runtime integration”, the server returns what are essentially resource references to the browser, which
then has to load these resources.

As we explore the “zones” and “islands” modern implementations of micro frontends, we’ll encounter
several instances of these techniques used together.

Other concerns in a micro frontend world

Similar to a microservice setup, micro frontends that allow different teams to build in their own way
can be a benefit and a drawback.

Micro Frontends, Zones, and Islands Architectures150

At the end of the day, most frontend systems will need to communicate with a backend service. How
to do this remains something to be decided – should each team deploy its own backend for frontend
(BFF), should a single gateway be deployed that exposes relevant service endpoints, or should it be a
gateway that wraps services in a different query system such as GraphQL?

Micro frontends also cause challenges for testing. How do we reliably test at the “user journey” level,
which might go through multiple micro frontends, when each of the micro frontends also has its
own test suite?

Similar to the questions about which backend integrations to use, there’s a challenge related to shared
styles and potentially component libraries. Teams doing micro frontends might standardize on a set
technology (React, Vue, etc) in order to gain the benefits of a component library. Component libraries
are more difficult to maintain in multiple technologies, but companies sometimes opt for this to
support their engineers in picking the right tool for the job.

One big challenge of micro frontends is how to keep them performant. Even in a case where all teams
use the same technologies, it’s likely that the same dependency is duplicated across micro frontends,
which has a performance impact. When technologies and build and deploy processes diverge (which
is possible with micro frontends), this problem is exacerbated.

The other performance issue that occurs with, for example, “server-side includes” is that the page will
only load as fast as the slowest component on the page. This is less of an issue with runtime integrations,
but the idea that each micro frontend might affect a whole page’s performance is a relevant one with
regard to the challenges of building a system using micro frontends.

Finally, as we’ve alluded to with regard to testing micro frontends, it causes operational and governance
complexities. For example, environment mismatch issues are harder to detect. Running or deploying
a full environment for development or testing with multiple micro frontends is more complex than
with a monolithic application.

Now that we’ve defined and contrasted the benefits and drawbacks of micro frontends in general and
specific micro frontend approaches, we can look at modern implementations of micro frontends. In the
following section, we’ll look at leveraging Next.js and “zones” in order to build flexible micro frontends.

Composing applications with Next.js “zones”
Next.js “zones” are a URL “base path”-driven approach to composing Next.js applications. This allows
us to build a micro frontend setup with Next.js.

What this means, as shown in the figure that follows, is that an e-commerce use case, where the user
might request four sets of URLs (GET /, GET /careers, GET /search, and GET /
cart/{id}), "{id}"), denotes that the cart has a dynamic segment, which is the cart ID that
is requested. For GET / and GET /careers, the request first goes to the root frontend, which
handles rendering directly. For GET /search, the request goes to the root frontend, which forwards
the request to the search frontend. Similarly, for GET /cart/{id} requests, the request initially
is sent to the root frontend, which proxies the request to the checkout frontend.

Composing applications with Next.js “zones” 151

Figure 6.5: An overview flowchart of a three-app Next.js zone setup

We’ve now introduced Next.js “zones” and an overview of our implementation, next we’ll implement
the “root app”.

Root app

The root app contains two pages, / (pages/index.js) and /careers (pages/careers.
js). Both of these pages are statically rendered, index.js via automatic static generation (since it
doesn’t have getServerSideProps or getInitialProps) and careers.js via static site
generation (since it has getStaticProps).

index.js contains a heading as well as Head content.

import React from 'react';
import Head from 'next/head';

export default function Home() {
  return (
    <>
      <Head>
        <title>Homepage (Root zone)</title>
      </Head>
      <main>
        <h1>Root</h1>
      </main>
    </>
  );
}

Micro Frontends, Zones, and Islands Architectures152

When we load the GET / path, our root app renders the h1 element we placed within it, with 'Root'
as its content.

Figure 6.6: The Root page rendered

The /careers page loads roles from an API using getStaticProps and displays them in a list.

We can start with a getStaticProps function in pages/careers.js. This function loads
from a “fake jobs” API and returns a roles prop, which includes the returned data from the API:

export async function getStaticProps() {
  const jobs = await fetch(
    'https://apis.camillerakoto.fr/fakejobs/
      jobs?fulltime=true').then((res) => res.json());
  return {
    props: { roles: jobs },
  };
}

Next, we’ll add a CareersPages component. It includes the page scaffolding with title and h1.
It also loops through the roles prop to render it as a list, using ul and li:

import React from 'react';
import Head from 'next/head';

export default function CareersPage({ roles }) {
  return (
    <>
      <Head>
        <title>Careers (Root zone)</title>
      </Head>
      <main>
        <h1>Careers</h1>
        
          {roles.map((role) => {
            return (
              <li key={role.id}>
                {role.title} ({role.country})
              

Composing applications with Next.js “zones” 153

            );
          })}
        
      </main>
    </>
  );
}

It displays as follows.

Figure 6.7: The Careers page in the root zone

The next build output shows that index.js is indeed statically rendered, while /careers
uses static site generation:

Route (pages)                              Size     First Load JS
┌ ○ /                                      430 B          77.7 kB
├ ○ /404                                   182 B          77.5 kB
├ λ /api/health                            0 B            77.3 kB
└ ● /careers                               498 B          77.8 kB
+ First Load JS shared by all              77.3 kB
  ├ chunks/framework-4725d5bb117f1d8e.js   45.2 kB
  ├ chunks/main-7a398668474d4dd1.js        31.1 kB
  ├ chunks/pages/_app-ecd5712b2c05cb6a.js  195 B
  └ chunks/webpack-8fa1640cc84ba8fe.js     750 B

λ  (Server)  server-side renders at runtime (uses getInitialProps or
getServerSideProps)
○  (Static)  automatically rendered as static HTML (uses no initial
props)
●  (SSG)     automatically generated as static HTML + JSON (uses
getStaticProps)

Micro Frontends, Zones, and Islands Architectures154

We’ve now started implementing the root app, we’ll move on to our second zone, the “search” zone.

Adding a /search app

Next, we’ll build and mount a /search page.

search/pages/index.js displays an input and makes a call to the /search/api/search
route on change:

import React, { useState } from 'react';
import Head from 'next/head';

export default function Home() {
  const [searchResult, setSearchResult] = useState({
    count: 0,
    matches: [],
  });
  return (
    <>
      <Head>
        <title>Search Page (Search zone)</title>
      </Head>
      <main>
        <h1>Search</h1>
        <input
          type="search"
          onChange={async (event) => {
            const data = await fetch(
              `/search/api/search?q=${event.target.value}`
            ).then((res) => res.json());
            setSearchResult(data);
          }}
        />

        <div>
          <h2>Results ({searchResult.count})</h2>
          {searchResult.matches.map((product) => {
            return <div key={product.id}>
              {product.title}</div>;
          })}
        </div>
      </main>

Composing applications with Next.js “zones” 155

    </>
  );
}

To implement the search/pages/api/search API route, we create pages/api/search, which
loads products from fakestoreapi and finds a match between the title, description and category:

export default async function handler(req, res) {
  const allProducts = await fetch
    ('https://fakestoreapi.com/products').then(
      (res) => res.json()
  );
  const { q } = req.query;
  const searchQuery = Array.isArray(q) ? q[0] : q;
  const matches = allProducts.filter(
    (product) =>
      product.title.includes(searchQuery) ||
      product.description.includes(searchQuery) ||
      product.category.includes(searchQuery)
  );
  return res.status(200).json({ matches,
    count: matches.length });
}

In order for search-app/ to be mounted under search-app/search, we’ll use basePath
in next.config.js in the search app:

module.exports = {
  basePath: '/search',
};

We’ll expose search via the root app’s next.config.js:

module.exports = {
  async rewrites() {
    return [
      {
        source: '/search/:path*',
        destination: 'http://localhost:3001/search/:path*',
      },
    ];
  },
};

Micro Frontends, Zones, and Islands Architectures156

We can then load the Search page, which displays as follows:

Figure 6.8: The Search page on load

The search works – for example, with the jacket search term.

Figure 6.9: The Search page with the jacket search term

/search is statically rendered via automatic static rendering:

Route (pages)                              Size     First Load JS
┌ ○ /                                      607 B          73.7 kB
├   └ css/776983a5dfcef528.css             271 B
├ ○ /404                                   182 B          73.2 kB
├ λ /api/health                            0 B            73.1 kB
└ λ /api/search                            0 B            73.1 kB
+ First Load JS shared by all              73.1 kB
  ├ chunks/framework-4725d5bb117f1d8e.js   45.2 kB
  ├ chunks/main-ee0b7fc0f7162449.js        26.9 kB
  ├ chunks/pages/_app-ecd5712b2c05cb6a.js  195 B
  └ chunks/webpack-ab5c478f511867a3.js     756 B

Composing applications with Next.js “zones” 157

λ  (Server)  server-side renders at runtime (uses getInitialProps or
getServerSideProps)
○  (Static)  automatically rendered as static HTML (uses no initial
props)

We’ve now implemented the search “zone”, next we’ll implement the checkout “zone”.

Adding /checkout app

We’ll add a “view cart” page in a new checkout Next.js app under pages/cart/[id].js.

The cart page loads a cart and its contained products from fakestoreapi, displaying them via a
CartContents component.

First, we’ll define a CartContents component that takes cart and productsById props. It
then maps through cart.products, extracting the product’s title and the quantity requested in
the cart, before computing and formatting the price in euros using .toLocaleString.

The reason we need cart and productsById is that the cart comes back in a normalized data
format, meaning it contains only cart-specific information and none of the related product’s information,
except the product ID. Therefore, we need to do a lookup based on the product ID.

Our rendering logic uses an unordered list container (the ul HTML element) and list item elements
(li HTML elements). We render the title in an h3 heading and the rest of the information using
span elements:

import React from 'react';

function CartContents(props) {
  const { cart, productsById } = props;
  return (
    
      {cart.products.map((product) => {
        const fullProductInformation = productsById
          [product.productId];
        return (
          <li key={product.productId} className=
            "cart-item-product">
            <h3 className="cart-item-product-name">
              {fullProductInformation?.title}
            </h3>
            
              {' '}
              x {product.quantity}
            
            

Micro Frontends, Zones, and Islands Architectures158

              Price:
              {(
                product.quantity *
                  fullProductInformation?.price)
                  .toLocaleString('en', {
                style: 'currency',
                currency: 'EUR',
              })}
            
          
        );
      })}
    
  );
}

Now that we’re rendering the contents of the cart, the additional functionality we’ll add to CartContents
is a display of the cart’s total price.

This is done by adding another li, which displays “Total:” and computes the total price, using reduce
over cart.products. Remember from the previous code block that cart.products is normalized,
meaning that it doesn’t contain any information about the product (e.g., its price), apart from the
product’s ID. This means that our reduce handler does a lookup on productsById[product.
productId] in order to access the product’s price.

Once we have the quantity of a given product in the cart and the price of the product, we simply
multiply them together and sum the quantity times the price result to the accumulator, which we
initialized as 0.

Similar to the cart items, we use toLocaleString to format the total price in euros as an en
localized string:

// no change to imports

function CartContents(props) {
  // no change to the function body
  return (
    
      {/* no change to `cart.products` mapping */}
      <li className="cart-item-product">
        <strong className="cart-item-product-price">
          Total:
          {cart.products
            .reduce((acc, curr) => {
              const fullProductInformation = productsById

Composing applications with Next.js “zones” 159

                [curr.productId];
              return acc + curr.quantity *
                fullProductInformation.price;
            }, 0)
            .toLocaleString('en', {
              style: 'currency',
              currency: 'EUR',
            })}
        
      
    
  );
}

We’ll leverage getServerSideProps to load the cart, and then the relevant products from
fakestoreapi. As mentioned in the previous code blocks, fakestoreapi’s cart response is
normalized and, therefore, doesn’t include all the product data we need, which is why we load the
products by ID.

Once we have a cart response and all relevant product responses, we process the products to allow
them to be looked up by ID. Finally, getServerSideProps returns id (the cart ID from the
Next.js context), productsById, and cart in a props property of an object so that Next.js can
pass them to our page component:

// no changes to imports
// no changes to CartContents definition
export async function getServerSideProps(ctx) {
  const { params } = ctx;
  const cartId = params.id;
  const cart = await fetch(`https://fakestoreapi.com/carts
    /${cartId}`).then(
    (res) => res.json()
  );
  if (!cart?.products) {
    return {
      props: {
        id: cartId,
      },
    };
  }
  const productsById = (
    await Promise.all(
      cart.products.map(async (product) => {
        return await fetch(

Micro Frontends, Zones, and Islands Architectures160

          `https://fakestoreapi.com/products/$
             {product.productId}`
        ).then((res) => res.json());
      })
    )
  ).reduce((acc, curr) => {
    acc[curr.id] = curr;
    return acc;
  }, {});
  return {
    props: {
      id: cartId,
      cart,
      productsById,
    },
  };
}

Finally, we’ll add our GetCartPage component, which will take props as passed by Next.js (based
on the output of getServerSideProps), and we’ll use them to render CartContents, as well
as a heading and title:

import Head from 'next/head';
import React from 'react';

// no changes to CartContents definition

export default function GetCartPage({ id, cart, productsById }) {
  return (
    <>
      <Head>
        <title>GetCartPage (Checkout zone)</title>
      </Head>
      <main>
        <h1>GetCartPage (Checkout zone)</h1>
        <CartContents cart={cart} productsById=
          {productsById} />
      </main>
    </>
  );
}

// no changes to getServerSideProps definition

Composing applications with Next.js “zones” 161

For the checkout app to mount under the right path, we set basePath in its next.config.js:

module.exports = {
  basePath: '/checkout',
};

We again need to modify the root app’s next.config.js so that relevant requests are proxied to
the checkout app:

module.exports = {
  async rewrites() {
    return [
      // no change to other entries
      {
        source: '/checkout/:path*',
       destination:'http://localhost:3002/checkout/:path*',
      },
    ];
  },
};

We can load /checkout/cart/2, and the following will display:

Figure 6.10: The cart/[id] page in the checkout zone with cart 2 loaded

Micro Frontends, Zones, and Islands Architectures162

In the build output, we can see that /cart/[id] is server-side rendered, since it
uses getServerSideProps:

Route (pages)                              Size     First Load JS
┌ ○ /                                      445 B          73.5 kB
├ ○ /404                                   182 B          73.3 kB
└ λ /cart/[id]                             3.95 kB          77 kB

λ  (Server)  server-side renders at runtime (uses getInitialProps or
getServerSideProps)
○  (Static)  automatically rendered as static HTML (uses no initial
props)

We’ve now seen how to add a checkout “zone” to our micro frontend setup, next we’ll cover the benefits
of a micro frontend “zones” architecture specifically with regards to working in growing teams.

The benefits/supporting team scaling

Using “zones” with basePath means that Next.js features work out of the box. For example, client-side
transitions and getServerSideProps re-fetches work (where Next.js loads {basePath}/_
next/...) as well as the API routes that we used in the search example.

Adding new pages also “just works”; a new page at /cart/[id]/checkout wouldn’t require any
changes to the root app to be available to users.

The only time we would change the root application config is to add a whole new app (top-level
path) – for example, if we wanted an admin app, we would need to create that and configure the
root next.config.js.

In the case where there’s a lot of traffic to applications and we want to be more efficient with our
resource, we don’t need to use the root app to forward all requests to the other micro frontends; we
could leverage any reverse proxy (web servers such as NGINX and Caddy) or even the infrastructure
provider’s CDN (e.g., Fastly, Akamai, Cloudflare and AWS) can be configured to forward all requests from
domain.tld/{path}/* (all requests to domain.tld starting with {path}) to a specific origin.

By having a suite of applications that all use Next.js, pages can be built in the root app experimentally
and then spun off to a full Next.js application.

For debugging and communication purposes, having the app name in the URL can help when discussing
apps and pages with technical and non-technical team members. For example, even non-technical
team members will understand that “this first section of the URL is the application name.”

One other benefit of using zones is that that request is not rewritten during a reverse-proxy pass. For
example, in some setups, the reverse proxy would receive /search but load / on the search app.
This means that there’s a subtle mismatch when running the search app locally versus when proxied.

Scaling performance-sensitive pages with the “islands” architecture 163

Next.js was used for all systems here but is not required; most tools can be configured to serve out of
a “sub-path,” or basePath as Next.js calls it.

The drawbacks of Next.js zones

In the setup we’ve demonstrated, the key drawback is that the “framework” bundle is not shared across
apps. That means that as a user goes from one zone to another, they load a different version of Next.js,
React, and React DOM. This is suboptimal but probably acceptable for a lot of use cases. When it’s not
acceptable, a technique such as module federation or its predecessor, vendor bundles, can be deployed.

Another drawback is that when developing locally, using next dev, and using the root app to proxy
requests, we lose features such as fast refresh/live reload. This can be worked around by going directly
to the micro frontend during local development.

Now that we understand how we can use Next.js path-based routing, proxying, and base URL
functionality to deliver a “zones” implementation, where the micro frontends each serve different
subsets of the URLs, we’ll now look at how to deliver a micro frontend application where all the micro
frontends are visible on one page, using the “islands” architecture with the is-land package. The
micro frontends will be built using Preact and Vue.js.

Scaling performance-sensitive pages with the “islands”
architecture
According to the is-land library documentation (https://github.com/11ty/is-land),
is-land is “A new performance-focused way to add interactive client-side components to your web site.
Or, more technically: a framework independent partial hydration islands architecture implementation.”

Let’s start by looking at what a “islands architecture” is. The islands architecture is a paradigm where
a page is mainly server-rendered, and interactivity is added specifically where necessary. This reduces
the page load time, as well as the amount of JavaScript being delivered (JavaScript is only delivered for
specific client-side interactions). This is in contrast to situations where a JavaScript application “takes
over” the full page – for example, in a Next.js app, where the client-side JavaScript will remount what’s
been server-rendered, meaning the minimum amount of JavaScript running client-side by default is
Next.js client code + React + React DOM.

The following diagram shows how the islands architecture can be leveraged to deliver a micro
frontend experience.

https://github.com/11ty/is-land

Micro Frontends, Zones, and Islands Architectures164

Each island is responsible for its own data fetching from the server.

Figure 6.11: An app page composed of islands

One additional element in the islands architecture is loading JavaScript on user interaction – for
example, on a click, hover, or scroll into view of an element. The is-land package provides primitives
to create islands with these types of hydration strategies.

Islands setup with is-land

We’ll look at how to implement the three-islands page with a product island that is immediately
initialized, a cart island that is initialized on interaction, and a related products island that is initialized
when scrolled into view.

Our example will demonstrate the usage of all the tools without a bundler in the first instance. We’ll
use Preact with htm (since we don’t have a JSX compilation pipeline) and Vue with DOM templates.

In order to enable simple imports in our scripts, we’ll leverage an import map, loading from the
unpkg.com CDN:

<script type="importmap">
  {
    "imports": {"@11ty/is-land/is-land.js":
      "https://unpkg.com/@11ty/is-land@4.0.0/is-land.js",
      "htm/preact": "https://unpkg.com/htm@3.1.1/
         preact/index.module.js",
      "htm": "https://unpkg.com/htm@3.1.1/dist/htm.mjs",
      "preact": "https://unpkg.com/preact@10.15.1/
         dist/preact.mjs",
      "vue": "https://unpkg.com/vue@3.2.36/dist
        /vue.esm-browser.prod.js"

http://unpkg.com

Scaling performance-sensitive pages with the “islands” architecture 165

    }
  }
</script>

In order to initialize the islands, we’ll include the is-land package at the end of the page:

<script type="module">
  import '@11ty/is-land/is-land.js';
</script>

We’ve now introduced the page we’ll be building and configured is-land to initialize on page load,
next we’ll implement the product island.

Product island

We’ll use Vue to build our product island.

The first step is to create an <is-land> element and script.

We set on:visible so that the contents of the island are initialized by is-land when the element
is within the viewport; since our HTML contains only the product island, this will occur on page load.

We’ll create a Vue app that, on mount, makes an API call to fakestoreapi.com to fetch a product
based on the query parameters. Around the API call using fetch, we’ll set this.loading =
true (before the API call starts) and this.loading = false (when the API call completes).

The data method of the Vue app will read productId from the URL query string, set loading to
true, and set product to an empty object literal ({}):

<is-land on:visible>
  <div id="vue-product-island"></div>

  <template data-island>
    <script type="module">
      import { createApp } from 'vue';

      createApp({
        async mounted() {
          this.loading = true;
          const product = await fetch(
            `https://fakestoreapi.com/
              products/${this.productId}`
          ).then((res) => res.json());
          this.product = product;
          this.loading = false;
        },

Micro Frontends, Zones, and Islands Architectures166

        data: () => ({
          productId:
            new URLSearchParams(window.location.search).
              get('productId') || '1',
          loading: true,
          product: {},
        }),
      }).mount('#vue-product-island');
    </script>
  </template>
</is-land>

Now that the data is loaded, we can focus on the template; we’ll render the title, description, and other
product information:

<is-land on:visible>
  <div id="vue-product-island" class="product-container">
    <h2 v-text="product.title"></h2>
    <p v-text="product.description"></p>

    <p v-cloak>
      <span
        v-text="product.price?.toLocaleString('en', {
          style: 'currency', currency: 'EUR'})"
      >
      

        /5.0 (<span
        v-text="product?.rating?.count"
      >)
    </p>
    <img v-bind:src="product.image" width="320px"
      class="product-image" />
  </div>

  <style>
    .product-container {
      min-height: 100vh;
      border-bottom: solid 1px black;
    }
    [v-cloak] {
      display: none;
    }
  </style>

Scaling performance-sensitive pages with the “islands” architecture 167

  <template data-island>
    <style>
      .product-image {
        min-width: 320px;
        display: block;
        margin: auto;
      }
    </style>
    <!-- no change to the script -->
  </template>
</is-land>

When we load this page with productId=1 or no productId (since it’s defaulted), we see the
following output:

Figure 6.12: The product with ID 1 displaying in the product island

We’ve now seen how to implement a product island using is-land and Vue. Next, we’ll build the
cart island.

Micro Frontends, Zones, and Islands Architectures168

Cart island

Again, we’ll start with an is-land element, this time with on:interaction, which means the
island will initialize only when the user clicks on it (we’ll show a button for them to do so):

<is-land on:interaction>
  <div id="preact-cart-island">
    <button>My Cart</button>
  </div>
</is-land>

Next, we’ll build a CartContainer component that will be mounted using Preact.

CartContainer loads cart and product information from fakestoreapi.com and stores it
in state for a CartContents component to render:

<is-land on:interaction>
  <div id="preact-cart-island">
    <button>My Cart</button>
  </div>
  <template data-island>
    <script type="module">
      import { html, render } from 'htm/preact';
      import { useState, useEffect } from 'preact/hooks';

      function CartContents() {
        // empty for now
        return null;
      }

      function CartContainer(props) {
        const cartId = props.id ?? 1;
        const [open, setOpen] = useState(true);
        const [isLoading, setIsLoading] = useState(false);
        const [cartContents, setCartContents] = useState({
          cart: null,
          productsById: null,
        });
        useEffect(async () => {
          setIsLoading(true);
          const cart = await fetch(
            `https://fakestoreapi.com/carts/${cartId}`
          ).then((res) => res.json());
          if (!cart?.products) {
            return {

Scaling performance-sensitive pages with the “islands” architecture 169

              props: {
                id: cartId,
              },
            };
          }
          const productsById = (
            await Promise.all(
              cart.products.map(async (product) => {
                return await fetch(
                   `https://fakestoreapi.com/
                     products/${product.productId}`
                ).then((res) => res.json());
              })
            )
          ).reduce((acc, curr) => {
            acc[curr.id] = curr;
            return acc;
          }, {});

          setCartContents({
            cart,
            productsById,
          });
          setIsLoading(false);
        }, [cartId]);

        const cartItemCount = cartContents?.
          cart?.products?.length;

        return html`<div>
          <button onClick=${() => setOpen(!open)}>
            My Cart ${cartItemCount !== undefined ? `
              (${cartItemCount})` : ''}
          </button>
          ${open && isLoading && html`<div>
            Loading...</div>`} ${open &&
          !isLoading &&
          cartContents.cart &&
          cartContents.productsById &&
          html`<${CartContents}
            cart=${cartContents.cart}
            productsById=${cartContents.productsById}
          />`}

Micro Frontends, Zones, and Islands Architectures170

        </div>`;
      }

      const appContainer = document.querySelector
        ('#preact-cart-island');
      render(
        html`<${CartContainer}
          id=${new URLSearchParams(window.location.search)
            .get('cartId')}
        />`,
        appContainer,
        appContainer
      );
    </script>
  </template>
</is-land>

Finally, we’ll implement CartContents, in which we loop through the cart and render
pricing information:

<template data-island>
  <script type="module">
    import { html, render } from 'htm/preact';
    // no changes to imports

    function CartContents(props) {
      const { cart, productsById } = props;
      return html`
        ${cart.products.map((product) => {
          const lineItemQueryParams = new URLSearchParams([
            ['productId', product.productId],
            ['cartId', cart.id],
          ]);
          const fullProductInformation = productsById
            [product.productId];
          return html`<li class="cart-item-product"
            key=${product.productId}>
            ${html`<a href=${'?' +
              lineItemQueryParams.toString()}
              >${fullProductInformation?.title}`}
            <span class="cart-item-product-quantity"
              >x ${product.quantity}

Scaling performance-sensitive pages with the “islands” architecture 171

            
              Price:${' '}${(
                product.quantity * fullProductInformation
              ?.price).toLocaleString(navigator.language, {
                style: 'currency',
                currency: 'EUR',
              })}
            
          `;
        })}
        <li class="cart-item-product">
          <strong class="cart-item-product-price">
            Total:${' '} ${cart.products
              .reduce((acc, curr) => {
                const fullProductInformation =
                   productsById[curr.productId];
                return acc + curr.quantity *
                  fullProductInformation.price;
              }, 0)
              .toLocaleString(navigator.language, {
                style: 'currency',
                currency: 'EUR',
              })}
          
        
       `;
    }
    // no changes to CartContainer component
  </script>
</template>

When we load our page with cartId 1 and productId 1 and open the cart contents, we can
see that it renders the cart with ID 1, including the three line items, their amount, the subtotal per
item, and the cart total.

Micro Frontends, Zones, and Islands Architectures172

Figure 6.13: Cart 1 rendering in the cart island

We’ve now implemented the cart island with Preact, next we’ll implement a related products island
which initializes only when it’s visible.

A related products island

Finally, we’ll build our related products island. The island itself is quite straightforward, but communicating
which product is being displayed and its category is trickier.

We’ll build an island that waits to be visible to initialize itself, again using on:visible but also
on:idle. This means the island will load either when it’s visible or when other processing has completed.

The island will mount if it receives a product-category-load custom event.

We’ll start by building the RelatedProducts component, which will receive three props –
selectedProductId, category, and from. The from value will be displayed in an h3 element
we render to illustrate how the island received its data:

<is-land on:visible on:idle id="related-products-island-wrapper">
  <template data-island="">
    <script type="module">
      import { html } from 'htm/preact';

      function RelatedProducts({ selectedProductId,
        category, from }) {
        return html`<div>
          <h3>Related Products (from ${from})</h3>
        </div>`;
      }

Scaling performance-sensitive pages with the “islands” architecture 173

    </script>
  </template>
</is-land>

Next, based on the category, we want to load all possible products from fakestoreapi.com.
We’ll store the value using the useState() hook, and loading the related products will be done on
component mount, using the useEffect() hook.

The data fetching logic is as follows. We’ll make an API call to fakestoreapi.com using the provided
category. To fulfill the “related” requirement of the “related products,” we’ll exclude the product that’s
currently being displayed – that is, remove the product with an ID equal to selectedProductId
from the products list. Finally, we sort the related products by rating and persist the first three items
to state, using setRelatedProducts:

<is-land on:visible on:idle id="related-products-island-wrapper">
  <template data-island="">
    <script type="module">
      // no changes to other imports
      import { useState, useEffect } from 'preact/hooks';

      function RelatedProducts({ selectedProductId,
        category, from }) {
        const [relatedProducts, setRelatedProducts] =
          useState([]);
        useEffect(async () => {
          const productsInCategory = await fetch(
            `https://fakestoreapi.com/products/category/$
              {encodeURIComponent(
              category
            )}`
          ).then((res) => res.json());

          const topRelatedProductsByRating =
             productsInCategory
            .filter((el) => {
              return el.id !== parseInt(selectedProductId,
                10);
            })
            .sort((a, b) => b.rating.rate – a.rating.rate);

          setRelatedProducts
            (topRelatedProductsByRating.slice(0, 3));
        }, [selectedProductId, category]);

Micro Frontends, Zones, and Islands Architectures174

        // no change to returned template
      }
    </script>
  </template>
</is-land>

With the data persisted to relatedProducts, we can now render them using the .map function
which returns a list. For each product, we want to show a title that’s also a link to view the product,
its price, an image, and the rating information:

<is-land on:visible on:idle id="related-products-island-wrapper">
  <template data-island="">
    <script type="module">
      // no changes to imports

      function RelatedProducts({ selectedProductId,
        category, from }) {
        const [relatedProducts, setRelatedProducts] =
          useState([]);
        // no change to useEffect

        return html`<div>
          <h3>Related Products (from ${from})</h3>
          <ul class="related-product-card-row">
            ${relatedProducts.map((product) => {
              const productSearchParams = new
                URLSearchParams([
                ['productId', product.id],
              ]);
              const currentCartId = new URLSearchParams(
                window.location.search
              ).get('cartId');
              if (currentCartId) {
                productSearchParams.set('cartId',
                  currentCartId);
              }
              return html`<li class="related-product-card">
                <a href=${'?' + productSearchParams
                  .toString()}>
                  <h4>${product.title}</h4>
                  <p>
                    ${product.price.toLocaleString
                      (navigator.language, {
                      style: 'currency',

Scaling performance-sensitive pages with the “islands” architecture 175

                      currency: 'EUR',
                    })}
                  </p>
                  
                  <p>${product.rating.rate}/5.0
                    (${product.rating.count})</p>
                
              `;
            })}
          
        </div>`;
      }
    </script>
  </template>
</is-land>

Finally, we’ll add logic to mount RelatedProducts, based on an event listener for the product-
category-load custom event:

<is-land on:visible on:idle id="related-products-island-wrapper">
  <div id="preact-related-products-island">
    <h3>Related Products</h3>
    <div class="related-product-card-row">Loading...</div>
  </div>
  <template data-island="">
    <script type="module">
      import { html, render } from 'htm/preact';
      // no change to preact/hooks import or
         RelatedProducts

      const relatedProductsIslandContainer =
        document.querySelector(
        '#preact-related-products-island'
      );
      function mountRelatedProductsIsland(
        relatedProductsIslandContainer,
        category,
        selectedProductId,
        from
      ) {
        if (category && selectedProductId) {
          render(
            html`<${RelatedProducts}
              category=${category}

Micro Frontends, Zones, and Islands Architectures176

              selectedProductId=${selectedProductId}
              from=${from}
            />`,
            relatedProductsIslandContainer,
            relatedProductsIslandContainer
          );
        }
      }

      document.addEventListener('product-category-load',
        (event) => {
        const category = event.detail.category;
        const selectedProductId = event.detail.
          selectedProductId;

        mountRelatedProductsIsland(
          relatedProductsIslandContainer,
          category,
          selectedProductId,
          'custom-event'
        );
      });
    </script>
  </template>
</is-land>

Now, we need to ensure that product-category-load is dispatched from the product island. We
need to make the following change to the “mounted” life cycle hook of the Vue.js product island script:

<script type="module">
  import { createApp } from 'vue';

  createApp({
    async mounted() {
      // no changes
      document.dispatchEvent(
        new CustomEvent('product-category-load', {
          detail: {
            category: this.product.category,
            selectedProductId: this.product.id,
          },
        })
      );
    },

Scaling performance-sensitive pages with the “islands” architecture 177

    // no changes to other properties
  });
</script>

There’s also a condition whereby the product-category-load is emitted before the related
products island is initialized; in order to work around this, we’ll store the information in the #related-
products-island-wrapper element’s dataset property:

<script>
  document.addEventListener('product-category-load',
    (event) => {
    const category = event.detail.category;
    const selectedProductId = event.detail.
      selectedProductId;
    Object.assign(
      document.querySelector('#related-products-island-
        wrapper').dataset,
      { category, selectedProductId }
    );
  });
</script>

We can then use that information as a mounting condition as well:

<is-land on:visible on:idle id="related-products-island-wrapper">
  <!-- no changes to template -->
  <script type="module">
    // no changes to the rest of the code
    const { selectedProductId, category } =
      document.querySelector(
      '#related-products-island-wrapper'
    ).dataset;

    mountRelatedProductsIsland(
      relatedProductsIslandContainer,
      category,
      selectedProductId,
      'data-*'
    );
  </script>
</is-land>

We render from to illustrate that both the dataset-based approach and the event-based approach
both function in different scenarios.

Micro Frontends, Zones, and Islands Architectures178

If we load the page and scroll down to the related products (which are initially below outside the
viewport), we’ll see the following:

Figure 6.14: The related products island with category information from data attributes

If we then reload the page, the scroll position will be such that the related products island is in view
and initializes immediately, meaning the data comes from the custom event directly.

Figure 6.15: The related products island with category information from the custom event

We’ve now implemented the related products island with Preact and two approaches to reading the
product category. Next, we’ll see how to use bundling in conjunction with the islands architecture.

Scaling performance-sensitive pages with the “islands” architecture 179

Scaling with a team – bundling islands

We can move the bulk of the code for a particular island to an external file and then use a tool such
as esbuild to bundle it together. The following uses .jsx files for Preact, but a copy and paste of
the existing files using htm would also work:

npx esbuild ./src/preact-cart-island.jsx --jsx-import-source=preact
--jsx=automatic --bundle --outdir=dist --format=esm --minify
npx esbuild ./src/vue-product-island.js --alias:vue=vue/dist/vue.esm-
bundler.js --bundle --outdir=dist --format=esm --minify
npx esbuild ./src/preact-related-products-island.jsx --jsx-import-
source=preact --jsx=automatic --bundle --outdir=dist --format=esm
--minify

The outputted files can then be used as follows:

<script type="module" src="./dist/
   preact-cart-island.js"></script>
<script type="module" src="./dist/
  vue-product-island.js"></script>
<script type="module">
  import { mountRelatedProductsIsland } from './dist/
    preact-related-products-island.js';
  // use mountRelatedProductsIsland
</script>

Each team can own one or more islands by providing a JavaScript bundle for them and/or a template
(the template needs to be a server-side include).

Drawbacks

In the bundled use case, our two Preact islands don’t share a Preact version, which means that this
dependency will be loaded twice in the browser. This can be fixed with vendor bundles or module
federation, as mentioned in the previous section. Also, note that it’s not an issue for the initial version
of the code where the scripts for the islands were in the page itself.

Challenges in an islands architecture mainly relate to component communication (as we’ve illustrated
with the related products island) and the mechanism used to compose the templates and scripts in
a unified page.

Micro Frontends, Zones, and Islands Architectures180

Summary
In this chapter, we’ve covered micro frontends, common approaches, and how the zones and islands
architectures with Next.js and is-land allow us to build high-development velocity systems without
compromising the user experience.

Micro frontends allow teams to have strong governance over different parts of a frontend ecosystem
without compromising the user experience. Micro frontends allow more teams and their skills to be
brought to bear effectively, which increases delivery velocity across the board. Common approaches
include a container application with “server-side includes,” build-time integration via shared packages,
and runtime integrations (e.g., iframes, JavaScript, and Web Components).

The recommended Next.js “zones” approach allows different micro frontends to be mounted on different
“base paths.” The zones approach is a more flexible type of server-side includes; apps are “included”
via a reverse-proxy and URLs. On a conceptual level, domain-specific applications that can deliver
multiple pages and API routes are a great tool to leverage for larger teams.

Finally, we discussed the “islands” architecture implemented via the is-land package, which
demonstrated a lightweight micro frontend approach with multiple JavaScript based libraries for
different components. is-land’s ability to do partial hydration is a clear benefit to end users.
Cross-island communication, a common challenge of the islands architecture, was addressed with
an approach that includes CustomEvent’s and HTML data attributes.

Now that we’ve covered modern micro frontend approaches and the “zones” and “islands” architectures,
we will look at patterns for performant asynchronous programming in JavaScript in the next chapter.

Part 3:
Performance and
Security Patterns

In this part, we will deep dive into performance and security patterns in JavaScript. You will learn
how to optimize your asynchronous and event-driven JavaScript code for performance and security-
sensitive contexts. In addition, you will learn about and implement asset-level optimizations, including
lazy-loading and code-splitting JavaScript in a Next.js application, how to prioritize asset loading, and
executing JavaScript off the main thread with Next.js and Partytown.

This part has the following chapters:

•	 Chapter 7, Asynchronous Programming Performance Patterns

•	 Chapter 8, Event-Driven Programming Patterns

•	 Chapter 9, Maximizing Performance – Lazy Loading and Code Splitting

•	 Chapter 10, Asset Loading Strategies and Executing Code off the Main Thread

7
Asynchronous Programming

Performance Patterns

A key strength of JavaScript runtimes is the event loop, which couples “non-blocking input/output”
within a single-threaded execution model. This means JavaScript is great for high-concurrency systems
as long as they are not compute-bound systems (i.e., they’re IO-bound).

With the asynchronous and non-blocking IO, JavaScript has strong built-ins to orchestrate requests.
In this chapter, we’ll cover the following topics:

•	 Sequential and parallel asynchronous operation patterns in JavaScript, both with Promises
only and with async/await

•	 The cancellation and timeout of fetch requests with AbortController

•	 Advanced asynchronous operation patterns: throttling, debouncing, and batching

At the end of this chapter, you’ll be able to spot and remedy situations where the asynchronous
operation orchestration could be improved in JavaScript.

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/
Javascript-Design-Patterns

Controlling sequential asynchronous operations with
async/await and Promises
Promises were introduced in ES2015 (ES6), along with other modern data structures.

https://github.com/PacktPublishing/Javascript-Design-Patterns
https://github.com/PacktPublishing/Javascript-Design-Patterns

Asynchronous Programming Performance Patterns184

For those familiar with JavaScript prior to ES2015, asynchronous behavior was modeled with callback-
based interfaces, for example, request(url, (error, response) => { /* do work
with response */ }). The key issues that Promises resolved were the chaining of asynchronous
requests and issues around managing parallel requests, which we’ll cover in this section.

ES2016 included the initial specification for the async/await syntax. It built on top of the Promise
object in order to write asynchronous code that didn’t involve “Promise chains,” where different
Promises are processed using the Promise().then function. Promise functionality and async/
await interoperate nicely. In fact, calling an async function returns a Promise.

We’ll start by showing how to use Promises to manage sequential asynchronous operations. We’ll
use the Fetch API (which returns a Promise) to load fakestoreapi.com/auth/login. Given
a username and password, and based on the output, we’ll load all the relevant carts for that user.
Subsequently, we’ll load the relevant carts for that user using the fakestoreapi.com/carts/
user/{userId} endpoint. This request flow is visualized in the following diagram.

Figure 7.1: Sequence of /auth/login and /carts/user/{userId} requests

We’ll start by sending a POST request to the auth/login endpoint. We add .then((res) =>
res.json()), which will wait for the initial fetch() output Promise to resolve to a “response”
(hence the res name). We then call the .json() method on the response, which again is a Promise,
which resolves to the JSON-decoded response body:

function fetchAuthUserThenCartsPromiseThen(username,
  password) {
  return fetch('https://fakestoreapi.com/auth/login', {
    method: 'POST',
    body: JSON.stringify({
      username,
      password,
    }),
    headers: {
      'Content-Type': 'application/json',
    },
  }).then((res) => res.json());
}

Controlling sequential asynchronous operations with async/await and Promises 185

The Promise returned from res.json() can be accessed in another .then() callback, in which
we parse the token field, which is a JSON Web Token (JWT), using the jwt-decode package.

We extract the sub field from the decoded token. This is the “subject” claim, which tells us which
user this token is about. In the case of the fakestoreapi token, userId is used as the “subject”
claim. We can therefore use the sub claim as the user ID for which to load the carts in our following
API call to https://fakestoreapi.com/carts/user/{userId}:

import jwt_decode from 'https://esm.sh/jwt-decode';

function fetchAuthUserThenCartsPromiseThen(username,
  password) {
  return // no change to the fetch() call
    .then((res) => res.json())
    .then((responseData) => {
      const parsedValues = jwt_decode(responseData.token);
      const userId = parsedValues.sub;
      return userId;
    })
    .then((userId) =>
      fetch(`https://fakestoreapi.com/carts/user/${userId}
        ?sort=desc`)
    )
    .then((res) => res.json());
}

This function can then be used as follows. Note that a password shouldn’t be stored in the source of
a production application (as it is in this example).

When we call the fetchAuthUserThenCartsPromiseThen function, it makes both the /
auth/login call and then the /carts/user/{userId} call, which means we receive an
array with the relevant carts for the requested user (note userId = 3, which is the correct ID for
the kevinryan user).

Note that we’re using async/await here to “f latten” the Promise output into
userCartsDataPromiseThen, which we can assert on:

const username = 'kevinryan';
const password = 'kev02937@';

const userCartsDataPromiseThen = await
  fetchAuthUserThenCartsPromiseThen(
  username,
  password
);

https://fakestoreapi.com/carts/user/

Asynchronous Programming Performance Patterns186

assert.deepEqual(userCartsDataPromiseThen, [
  {
    __v: 0,
    date: '2020-01-01T00:00:00.000Z',
    id: 4,
    products: [
      {
        productId: 1,
        quantity: 4,
      },
    ],
    userId: 3,
  },
  {
    __v: 0,
    date: '2020-03-01T00:00:00.000Z',
    id: 5,
    products: [
      {
        productId: 7,
        quantity: 1,
      },
      {
        productId: 8,
        quantity: 1,
      },
    ],
    userId: 3,
  },
]);

As we’ve just seen in the code that calls fetchAuthUserThenCartsPromiseThen, the key
benefit of async/await over Promise().then() chains is that the code is structured more similarly
to synchronous code.

In synchronous code, the output of an operation can be, for example, assigned to a constant:

const output = syncGetAuthUserCarts();
console.log(output);

Whereas with Promise().then(), the output is available only in an additional .then callback:

promisifiedGetAuthUserCarts().then((output) => {
  console.log(output);
});

Controlling sequential asynchronous operations with async/await and Promises 187

What await allows us to do is to structure the code as follows:

const output = await promisifiedGetAuthUserCarts();
console.log(output);

One way to think of it is that await can unfurl Promises. A Promise’s “resolved value”, usually only
accessible in a Promise().then() callback is available directly.

For sequential operations, this is very useful, since it makes the code structured with a set of variable
assignments per async operation.

The await operator is available at the top level of ECMAScript modules in modern runtime
environments as part of the ES2022 specification.

However, in order to use await inside of a function, we need to mark the function as async. This
usage of await in async functions has been available since ES2016.

Code editors and IDEs such as Visual Studio Code provide a refactor from chained Promise().
then() calls to async/await. In our case, we can build a fetchAuthUserThenCartsAsyncAwait
function as follows.

Instead of using fetch().then(res => res.json()), we’ll first use await fetch()
and then await authResponse.json():

async function fetchAuthUserThenCartsAsyncAwait
  (username, password) {
  const authResponse = await fetch('https://fakestoreapi.com/auth/
login', {
    method: 'POST',
    body: JSON.stringify({
      username,
      password,
    }),
    headers: {
      'Content-Type': 'application/json',
    },
  });
  const authData = await authResponse.json();
}

We now have access to authData. We can decode authData.token as before using the
jwt-decode package. This gives us access to the sub (subject) claim, which is the user ID:

Import jwt_decode from 'https://esm.sh/jwt-decode';

async function fetchAuthUserThenCartsAsyncAwait
  (username, password) {

Asynchronous Programming Performance Patterns188

  // no change to /auth/login API call code
  const parsedValues = jwt_decode(authData.token);
  const userId = parsedValues.sub;
}

Now that we have the relevant user ID, we can call the /carts/user/{userId} endpoint to
load the user’s carts:

async function fetchAuthUserThenCartsAsyncAwait
  (username, password) {
  // no change to /auth/login call or token parsing logic
  const userCartsResponse = await fetch(
    `https://fakestoreapi.com/carts/user/${userId}?sort=desc`
  );
  const userCartsResponseData = await userCartsResponse.
    json();
  return userCartsResponseData;
}

Given the same input data as the approach using Promise().then(), the loaded carts are the
same. Note, again, that passwords and credentials should not be stored in source code files:

const username = 'kevinryan';
const password = 'kev02937@';

const userCartsDataAsyncAwait = await
fetchAuthUserThenCartsAsyncAwait(
  username,
  password
);
assert.deepEqual(userCartsDataAsyncAwait, userCartsDataPromiseThen);

One difference between the approaches is that with async/await, all the variables are defined in a
single function scope, whereas the Promise().then() approach uses multiple function scopes
(for each of the callbacks passed to .then()). With a single large function scope, variable names
can’t clash, which makes the code more verbose since, for example, each response object needs a
qualifier to avoid variable name clashes, for example, authResponse and userCartsResponse.

The benefit of a single larger function scope is that all the outputs of previous API calls are available
to subsequent ones without having to explicitly set them as values passed as a return in the callback
passed to .then().

Finally, a fetch()-specific example, is that since there are multiple Promises that require handling
when doing a fetch and accessing the JSON response, the await approach can be a bit “noisier.”

Parallel asynchronous operation patterns 189

See the two following samples. First, with async/await, we assign a variable for the fetch response value:

const response = await fetch(url);
const data = await response.json();

Next, with .then(), we assign only a data variable and use an arrow function to handle the
.json() unfurling:

const data = await fetch(url).then((response) => response.json());

As you see, our final example is a mix of async/await and Promise().then() so that the
most “important” parts of the code are obvious. The specifics of how we extract the JSON output from
fetch are not necessarily core to our logic so might be better expressed with Promise().then().

In general, this slight difference in style wouldn’t occur since parts of the code that are “less important,”
such as how we interact with the fetch API to process a request to JSON, tend to be abstracted – in this
case, in an HTTP client of some kind. We would expect that the HTTP client could handle checking
response.ok and accessing the response body as parsed JSON (using response.json()).

We’ve now seen how to implement sequential asynchronous operations using a Promise-only approach,
an async/await-based approach, and finally, how both the async/await and Promise techniques can
be used together to improve code readability and performance.

Parallel asynchronous operation patterns
A common source of bad performance is running operations sequentially that could be completed
in parallel.

For example, a naive implementation of loading a cart and then the contained products would be
as follows:

Figure 7.2: Load cart then each of the three products contained from fakestoreapi

Asynchronous Programming Performance Patterns190

In this case, the operation completion time is composed of the sum of the following:

•	 Request-response time for GET /carts/{cartId}

•	 Request-response time for GET /products/1

•	 Request-response time for GET /products/2

•	 Request-response time for GET /products/3

There is a requirement for the /products/{productId} calls to be done after the GET /carts/
{cartId} call completes since that’s where the product IDs are coming from. What isn’t required
is for each product call to wait for the previous one to complete; the calls only depend on data from
the GET /carts/{cartId} call. This is an optimization opportunity. We can start all of the GET
/products/{id} API calls together. We get the following sequence:

Figure 7.3: Load cart then each of the three products contained in parallel

In this case, the operation completion time is composed of the sum of the following:

•	 Request-response time for GET /carts/{cartId}

•	 The longest request-response time between GET /products/1, GET /products/2,
and GET /products/3

This means we’re saving the request-response time of two API calls at least.

JavaScript is especially well suited to these workloads since its concurrency model is based on an
event loop. While JavaScript waits for an asynchronous operation to complete, it can complete other
synchronous operations.

Parallel asynchronous operation patterns 191

In layman’s terms, triggering an asynchronous operation in JavaScript is “cheap and lightweight”
compared to thread-based concurrency models that are common in popular programming languages
such as Java and C++.

There are multiple constructs in JavaScript that allow us to convert an array of Promises into a Promise
that resolves to an array. Promise.all is one such construct.

Implementing the scenario we described earlier, where we load a cart and then load the relevant
product details, would look as follows with Promise.all and Promise().then.

First, we need to make the API call to load the cart and extract the JSON in the response body:

function fetchCartPromiseThen(cartId = '1') {
  return fetch(`https://fakestoreapi.com/carts/${cartId}`).
    then((res) =>
    res.json()
  );
}

We then need to set up the fetching of the right product URLs once the request to the /carts/
{cartId} URL has loaded. The pattern used in order to execute our code after the fetch completes
uses .then() on the returned promise:

function fetchCartPromiseThen(cartId = '1') {
    // no change to previous operations
    .then((cart) => {
      const productUrls = cart.products.map(
        (p) => `https://fakestoreapi.com/products/$
           {p.productId}`
      );
    })
}

Next, we’ll use Promise.all to load all the product URLs with fetch. Since our goal is to return
both the cart and the products, we’ll return { cart } as the first item in the array we’re passing to
Promise.all(). The rest of the array passed to Promise.all will be the Promises generated by
calling fetch().then((res) => res.json()) on each of the product URLs. In order to do
this, we use the spread operation (...) on ...productUrls.map(/* mapping function
*/) in the array:

function fetchCartPromiseThen(cartId = '1') {
    // no change to previous operations
    .then((cart) => {
      // no change to productUrls generation
      return Promise.all([

Asynchronous Programming Performance Patterns192

        { cart },
        ...productUrls.map((url) => fetch(url).then
          ((res) => res.json())),
      ]);
    })
}

Finally, we’re going to create an object with all the cart fields and a new products field based on the
output of the /products/{id} fetches:

function fetchCartPromiseThen(cartId = '1') {
    // no change to previous operations
    .then(([prev, ...products]) => {
      return {
        ...prev,
        products,
      };
    });
}

We can test the output of the function by loading cart ID 1:

const cartDataFromPromiseThen = await fetchCartPromiseThen
  ('1');

The cart is as we expect – it returns three products:

assert.deepEqual(cartDataFromPromiseThen.cart, {
  __v: 0,
  date: '2020-03-02T00:00:00.000Z',
  id: 1,
  products: [
    {
      productId: 1,
      quantity: 4,
    },
    {
      productId: 2,
      quantity: 1,
    },
    {
      productId: 3,
      quantity: 6,
    },
  ],

Parallel asynchronous operation patterns 193

  userId: 1,
});

The products field of our response contains the correct items in positions at indexes 0, 1, and 2:

assert.deepEqual(cartDataFromPromiseThen.products[0], {
  category: "men's clothing",
  description:
    'Your perfect pack for everyday use and walks in the
     forest. Stash your laptop (up to 15 inches) in the
     padded sleeve, your everyday',
  id: 1,
  image: 'https://fakestoreapi.com/img/
    81fPKd-2AYL._AC_SL1500_.jpg',
  price: 109.95,
  rating: {
    count: 120,
    rate: 3.9,
  },
  title: 'Fjallraven - Foldsack No. 1 Backpack, Fits 15
    Laptops',
});
assert.deepEqual(cartDataFromPromiseThen.
  products[1], {
  category: "men's clothing",
  description:
    'Slim-fitting style, contrast raglan long sleeve, three-button
henley placket, light weight & soft fabric for breathable and
comfortable wearing. And Solid stitched shirts with round neck made
for durability and a great fit for casual fashion wear and diehard
baseball fans. The Henley style round neckline includes a three-button
placket.',
  id: 2,
  image:
    'https://fakestoreapi.com/img/
       71-3HjGNDUL._AC_SY879._SX._UX._SY._UY_.jpg',
  price: 22.3,
  rating: {
    count: 259,
    rate: 4.1,
  },
  title: 'Mens Casual Premium Slim Fit T-Shirts ',
});
assert.deepEqual(cartDataFromPromiseThen.products[2], {
  category: "men's clothing",

Asynchronous Programming Performance Patterns194

  description:
    'great outerwear jackets for Spring/Autumn/Winter, suitable for
many occasions, such as working, hiking, camping, mountain/rock
climbing, cycling, traveling or other outdoors. Good gift choice for
you or your family member. A warm hearted love to Father, husband or
son in this thanksgiving or Christmas Day.',
  id: 3,
  image: 'https://fakestoreapi.com/img/
    71li-ujtlUL._AC_UX679_.jpg',
  price: 55.99,
  rating: {
    count: 500,
    rate: 4.7,
  },
  title: 'Mens Cotton Jacket',
});

We’ve now seen how to leverage Promise.all to run multiple promises in parallel and handle
their output with one handler.

You’ll have noticed the “trick” we did by passing the { cart } object in Promise.all and
then extracting the first item of the resolved array as the previous response. This is a limitation of
Promise().then() chaining, as mentioned in the Controlling sequential asynchronous operations
with async/await and Promises section. Each function argument to .then() gets its own scope:

Promise.resolve({ id: 1 })
  .then((cart) => {
    const productUrls = [];
    return Promise.all([{ cart }, ...productUrls.map(()
      => {})]);
  })
  .then(([prev, ...products]) => {});

An alternative way to write this is to store the cart in the function scope:

function fetchCartFunctionVariable() {
  let loadedCart = null;
  return Promise.resolve({ id: 1 })
    .then((cart) => {
      loadedCart = cart;
      const productUrls = [];
      return Promise.all(productUrls.map(() => {}));
    })
    .then((products) => ({
      cart: loadedCart,

Parallel asynchronous operation patterns 195

      products,
    }));
}

This works as expected. We’ve obviously removed the actual cart and product fetching logic from the
API, but the cart that { id: 1 } relates to, which we resolved in the initial Promise.resolve()
function call, is cached through the .then() calls:

assert.deepEqual(await fetchCartFunctionVariable(), {
  cart: { id: 1 },
  products: [],
});

Another way to improve our implementation without resorting to function-scoped variables, which
can be hard to keep track of, is to convert it to use async/await.

Our logic would be as follows. We start by loading the cart and converting the JSON response body:

async function fetchCartAsyncAwait(cartId = '1') {
  const cart = await fetch(`https://fakestoreapi.com/
carts/${cartId}`).then(
    (res) => res.json()
  );
}

Once the cart is loaded, we proceed to fetch the relevant products by generating URLs based on the cart.
products contents (mainly the productId field). We also fetch these URLs using Promise.all:

async function fetchCartAsyncAwait(cartId = '1') {
  // no change to cart fetching
  const productUrls = cart.products.map(
    (p) => `https://fakestoreapi.com/products/${p.productId}`
  );
  const products = await Promise.all(
    productUrls.map((url) => fetch(url).then((res)
      => res.json()))
  );
}

Finally, we can return the cart and the loaded products:

async function fetchCartAsyncAwait(cartId = '1') {
  // no changes to cart or products fetching
  return {
    cart,
    products,

Asynchronous Programming Performance Patterns196

  };
}

The implementation is equivalent to our previous, strict Promise().then()-based one, as the
following checks attest:

const cartDataFromAsyncAwait = await fetchCartAsyncAwait
  ('1');

assert.deepEqual(cartDataFromPromiseThen.cart,
  cartDataFromAsyncAwait.cart);
assert.deepEqual(
  cartDataFromPromiseThen.products,
  cartDataFromAsyncAwait.products
);

The benefit of using async/await in this case was, again, an increase in readability. The syntax gets
less in the way than chained .then() calls and we don’t have to resort to either returning the first
response as an item in Promise.all([{ cart }]) or adding a function-scoped variable that
we store the cart in.

We’ve now seen how to leverage Promise.all to complete asynchronous operations in parallel
both with a Promise().then()-exclusive approach and with judicious refactors to async/
await to simplify the code.

Next, we’ll see how we can cancel and time out requests with AbortController in JavaScript.

Asynchronous cancellation and timeouts with
AbortController
Another source of bad performance in applications in general is doing work that’s not necessary. In
the context of a JavaScript web application, one of the types of “work” that can be unnecessary (and
therefore a drain on performance) is having HTTP requests that aren’t required any more. For example,
in a photo gallery system or any paginated system, when moving across photos, the request for the
previous photo might not have completed before the next one is started. In this case, the previous
request data is not necessary any more, as we’re essentially on a completely different page.

In these instances, cancelling the request might be useful.

AbortController is a Web/DOM API that allows us to abort web requests. It’s created using its
constructor, new AbortController, and controlling a request (to potentially cancel it) is done
with the AbortController().signal value, which is an AbortSignal object.

Asynchronous cancellation and timeouts with AbortController 197

We instantiate the controller using the new AbortController() constructor call. If we want
to make a fetch call cancellable, we pass abortController.signal as the signal option:

function fetchWithCancel(url) {
  const abortController = new AbortController();

  const response = fetch(url, { signal:
    abortController.signal }).then((res) =>
    res.json()
  );
  return {
    response,
  };
}

If we want to cancel the fetch request, we can then call abortController.cancel. We’ll add
this as a cancel function on the fetchWithCancel returned output:

function fetchWithCancel(url) {
  // no changes to contents
  return {
    // no changes to other keys in the object
    cancel: () => abortController.abort(),
  };
}

Finally, we need to ensure that when we see AbortError, we handle it. In this case, we’ll handle it
with a Promise().catch handler, which, on seeing an AbortError, will return ‘Aborted',
and re-throw the error otherwise.

An AbortError error instance has a name property equal to 'AbortError', but also a message
such as DOMException [AbortError]: This operation was aborted, along with
its stack trace:

function fetchWithCancel(url) {
  // no change to abortController initiationisalition
  const response = fetch(url, { signal: abortController.signal })
    .then((res) => res.json())
    .catch((err) => {
      if (err.name === 'AbortError') return 'Aborted';
      throw err;
    });
  // no change to return value
}

Asynchronous Programming Performance Patterns198

Given two API calls to fakestoreapi, /products/1, and /products/2, we can cancel one of them
without affecting the other request as follows, by calling fetchWithCancel with both URLs and
storing the output in two variables. Note that we’re not using await yet.

We can then cancel the fetch for /products/1 by using the .cancel() function we built earlier:

const fetchProduct1 = fetchWithCancel
  ('https://fakestoreapi.com/products/1');
const fetchProduct2 = fetchWithCancel('https://fakestoreapi.com/
products/2');

fetchProduct1.cancel();

The outcome of this is that when we await fetchProduct1.response and fetchProduct2.
response, the output for fetchProduct1.response is 'Aborted', which means an
AbortError instance was handled in fetchWithCancel (i.e., our cancellation succeeded).

The output for fetchProduct2.response is the product object:

assert.deepEqual(await fetchProduct1.response, 'Aborted');
assert.deepEqual(await fetchProduct2.response, {
  category: "men's clothing",
  description:
    'Slim-fitting style, contrast raglan long sleeve, three-button
henley placket, light weight & soft fabric for breathable and
comfortable wearing. And Solid stitched shirts with round neck made
for durability and a great fit for casual fashion wear and diehard
baseball fans. The Henley style round neckline includes a three-button
placket.',
  id: 2,
  image:
    'https://fakestoreapi.com/img
      /71-3HjGNDUL._AC_SY879._SX._UX._SY._UY_.jpg',
  price: 22.3,
  rating: {
    count: 259,
    rate: 4.1,
  },
  title: 'Mens Casual Premium Slim Fit T-Shirts ',
});

Manually cancelling a request is useful, but a more widespread use case is to time a request out when
it takes more than a certain amount of time. This is useful to ensure a responsive user experience for
customers. Different situations call for longer or shorter timeout delays.

We can implement a fetchWithTimeout function using fetch, AbortController,
and setTimeout.

Asynchronous cancellation and timeouts with AbortController 199

Our function takes a URL and an optional timeout, which we’ll default to 500 (for 500 ms). Similar to
our manual cancellation scenario (see fetchWithCancel), we’ll create an abortController
object and pass its signal property as an option to fetch:

async function fetchWithTimeout(url, timeout = 500) {
  const abortController = new AbortController();
  return fetch(url, { signal: abortController.signal });
}

In order to cancel the fetch after a certain amount of time, we’ll use setTimeout. The setTimeout
handler will simply call abortController.abort() and we’ll set the timeout delay to our
timeout variable:

async function fetchWithTimeout(url, timeout = 500) {
  // no change to abortController
  setTimeout(() => {
    abortController.abort();
  }, timeout);
  // no change to fetch call or return
}

When the request takes less time than the fetch request takes to complete, we receive the response data:

const timedoutFetchShouldSucceedData = await fetchWithTimeout(
  'https://fakestoreapi.com/products/1',500
)
  .then((res) => res.json())
  .catch((error) => {
    if (error.name === 'AbortError') {
      return 'Aborted';
    }
    throw error;
  });

console.assert(
  timedoutFetchShouldSucceedData.id === 1,
  'fetchWithTimeout with 500ms timeout should have
    succeeded'
);

When a fetch request takes longer than the configured timeout, we receive an AbortError instance:

const timedoutFetchShouldAbort = await fetchWithTimeout(
  'https://fakestoreapi.com/products/1',10
)

Asynchronous Programming Performance Patterns200

  .then((res) => res.json())
  .catch((error) => {
    if (error.name === 'AbortError') {
      return 'Aborted';
    }
    throw error;
  });

console.assert(
  timedoutFetchShouldAbort === 'Aborted',
  'fetchWithTimeout with 10ms timeout should have
    aborted but did not'
);

We’ve now seen how to use AbortController to control fetch cancellation manually and how
to use it to create a “fetch with timeout” utility. We can use AbortController to cancel operations
that aren’t required any more, thereby reducing network usage.

Next, we’ll look at further patterns that can help optimize situations with high volumes of requests.

Throttling, debouncing, and batching asynchronous
operations
Throttling is an operation in which requests are dropped until a certain time is reached. For example,
for a 10 ms throttle timeout, once a request is made, no request in the next 10 ms will be sent. If
multiple requests are made between 0 ms and 10 ms, only the last request will be sent after the 10 ms
timeout expires.

In JavaScript, such a throttle function can be implemented as follows.

A higher-order function, throttle takes in an fn parameter and returns an executable function
with the same input signature as the fn parameter.

When the “throttled” fn function is called, we set isThrottled = true in order to be able to
discard calls between the first call and a configured timeout:

function throttle(fn, timeout) {
  let isThrottled = false;
  return (...args) => {
    isThrottled = true;
    return fn(...args);
  };
}

Throttling, debouncing, and batching asynchronous operations 201

We now need to ensure fn is not called while isThrottled is true. We achieve this by returning
early from our returned “throttled” fn function.

We save the arguments with which the “throttled” fn function was called so that they can be used
when the timeout expires:

function throttle(fn, timeout) {
  // no change to existing variable definitions
  let lastCallArgs = null;
  return (...args) => {
    if (isThrottled) {
      lastCallArgs = args;
      return;
    }

    // no change to "initial call" case
  };
}

Finally, we configure setTimeout to trigger a reset of the throttled state and execute the last
function call:

function throttle(fn, timeout) {
  // no change to existing variable definitions
  return (...args) => {
    // no change to short-circuit logic
    setTimeout(() => {
      isThrottled = false;
      return fn(...lastCallArgs);
    }, timeout);
    // no change to "initial call" case
  };
}

A simple example of this in use is the following scenario, where many messages could be sent in a
given time. Instead, we want to throttle to 1 message every 1 ms interval.

Our storeMessage function is as follows:

let messages = [];
const storeMessage = (message) => {
  messages.push(message);
};

We can generate a throttledStoreMessage function with a 1 ms timeout as follows.

Asynchronous Programming Performance Patterns202

When called ten times synchronously and subsequently waiting for timers to complete, only the first
('throttle-1') and last ('throttle-10') calls are recorded:

const throttledStoreMessage = throttle(storeMessage, 1);
throttledStoreMessage('throttle-1');
throttledStoreMessage('throttle-2');
throttledStoreMessage('throttle-3');
throttledStoreMessage('throttle-4');
throttledStoreMessage('throttle-5');
throttledStoreMessage('throttle-6');
throttledStoreMessage('throttle-7');
throttledStoreMessage('throttle-8');
throttledStoreMessage('throttle-9');
throttledStoreMessage('throttle-10');

await timeout();
assert.deepEqual(messages, ['throttle-1', 'throttle-10']);

function timeout(ms = 0) {
  return new Promise((r) => setTimeout(r, ms));
}

If we reset the messages and wait for the timers to complete after our call with 'throttle-5', we
finish with ['throttle-1', 'throttle-5', 'throttle-6'], that is, the first call, and
the calls before and after the timers are cleared.

If we clear the timers one more time after completing all our calls, 'throttle-10' is also present
in our messages list, meaning that call completed:

messages = [];
throttledStoreMessage('throttle-1');
throttledStoreMessage('throttle-2');
throttledStoreMessage('throttle-3');
throttledStoreMessage('throttle-4');
throttledStoreMessage('throttle-5');
await timeout();
throttledStoreMessage('throttle-6');
throttledStoreMessage('throttle-7');
throttledStoreMessage('throttle-8');
throttledStoreMessage('throttle-9');
throttledStoreMessage('throttle-10');

assert.deepEqual(messages, ['throttle-1', 'throttle-5',
'throttle-6']);
await timeout();

Throttling, debouncing, and batching asynchronous operations 203

assert.deepEqual(messages, [
  'throttle-1',
  'throttle-5',
  'throttle-6',
  'throttle-10',
]);

We’ve now seen how to throttle a function. We can now look at debouncing.

A debounce function in JavaScript takes an fn parameter, which is a function. The goal is that
the debounced fn function should discard all calls except the last call before it’s not called for a
timeout period.

In order to do this, we should “delay” the function call until after a timeout completes. We save the
timeoutId reference in order to cancel the call if the debounced fn function is called again. We
use setTimeout and forward the arguments with which the debounced fn function was called:

function debounce(fn, timeout) {
  let timeoutId;
  return (...args) => {
    timeoutId = setTimeout(() => {
      fn(...args);
    }, timeout);
  };
}

With the current state of the debounce function, there would still be as many calls to fn as there are
to the debounced fn function; they would just be queued for delayed execution based on the timeout.
To avoid this, we can cancel the previous call timeout by using clearTimeout(timeoutId):

function debounce(fn, timeout) {
  // no change to variable declarations
  return (...args) => {
    clearTimeout(timeoutId);
    // no change to setTimeout logic
  };
}

With these changes in place, if we create a debouncedStoredMessage function with a 1 ms
timeout and call it 10 times, it will not execute until we wait for the timer to complete:

messages = [];
const debouncedStoredMessage = debounce(storeMessage, 1);
debouncedStoredMessage('debounce-1');
debouncedStoredMessage('debounce-2');

Asynchronous Programming Performance Patterns204

debouncedStoredMessage('debounce-3');
debouncedStoredMessage('debounce-4');
debouncedStoredMessage('debounce-5');
debouncedStoredMessage('debounce-6');
debouncedStoredMessage('debounce-7');
debouncedStoredMessage('debounce-8');
debouncedStoredMessage('debounce-9');
debouncedStoredMessage('debounce-10');

assert.deepEqual(messages, []);
await timeout();
assert.deepEqual(messages, ['debounce-10']);

We can further showcase this by waiting for timers to complete after the fifth call. In that case, the fifth
call will trigger and, given another timeout window clears, the tenth call will also trigger:

messages = [];
debouncedStoredMessage('debounce-1');
debouncedStoredMessage('debounce-2');
debouncedStoredMessage('debounce-3');
debouncedStoredMessage('debounce-4');
debouncedStoredMessage('debounce-5');
await timeout();
debouncedStoredMessage('debounce-6');
debouncedStoredMessage('debounce-7');
debouncedStoredMessage('debounce-8');
debouncedStoredMessage('debounce-9');
debouncedStoredMessage('debounce-10');

assert.deepEqual(messages, ['debounce-5']);
await timeout();
assert.deepEqual(messages, ['debounce-5', 'debounce-10']);

We’ve now seen how to throttle and debounce functions, which allows us to ensure operations don’t
trigger more than necessary.

In a scenario where we have a “search as you type” or “suggest as you type” input (sometimes referred
to as a “typeahead”), which needs to make API requests to get search results or suggestions, it usually
makes sense to use either debounce, to wait for the user to stop typing before making a request,
or to throttle the requests so that an API request is made every window instead of every keystroke.

This can also be coupled with other heuristics to avoid overwhelming the API server with unnecessary
requests. For example, it’s usual to avoid sending requests until a few characters have been typed since
the search request is too broad with only 1 or 2 characters.

Throttling, debouncing, and batching asynchronous operations 205

We’ve seen how to protect an API by reducing the number of requests using throttling or debouncing.
In the Parallel asynchronous operation patterns section, we used Promise.all to send requests
in parallel. This can be another scenario where the target of our asynchronous operations can get
overwhelmed. To avoid an overload scenario, it can be useful to batch our requests.

“Batching” is a way to limit concurrency, for example, instead of sending 20 requests at the same time
(in parallel), we want to send 5 at a time.

A batch function takes an array and a batch size and returns an array of arrays. The nested arrays
have a maximum length of “batch size.”

We start by calculating how many batchItem list items we’ll need in our batches array. In order to
do this, we divide the input array length by the batch size and apply the ceil function to the value. In
other words, we round up inputLength divided by batchSize to the next largest integer value.

We can then generate our batches array with the right size (batchCount, as computed):

function batch(inputArray, batchSize) {
  const batchCount = Math.ceil(inputArray.length /
    batchSize);
  const batches = Array.from({ length: batchCount });
}

We then go through each of the batches using Array.prototype.map(). The items in batches
are initially undefined, but we use the index of the item (which we’ll call batchNumber). For each
item in batches, we take the items from batchNumber * batchSize to (batchNumber +
1) * batchSize and they constitute the contents of our batches[batchNumber] array item:

function batch(inputArray, batchSize) {
  // no change to existing size computations
  return batches.map((_, batchNumber) => {
    return inputArray.slice(
      batchNumber * batchSize,
      (batchNumber + 1) * batchSize
    );
  });
}

You’ll note that we’re generating the array with Array.from and then populating it using Array.
prototype.map(), however, Array.from() supports a second parameter, which is a mapping
function. Our code could therefore be as follows:

function batch(inputArray, batchSize) {
  const batchCount = Math.ceil(inputArray.length /
    batchSize);
  return Array.from({ length: batchCount }, (_,

Asynchronous Programming Performance Patterns206

    batchNumber) => {
    return inputArray.slice(
      batchNumber * batchSize,
      (batchNumber + 1) * batchSize
    );
  });
}

In any case, our batch function work for any array, for example, a 10-element array can be batched
into chunks of 4 or 3 correctly by our function:

assert.deepEqual(batch([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], 4), [
  [1, 2, 3, 4],
  [5, 6, 7, 8],
  [9, 10, 11],
]);
assert.deepEqual(batch([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], 3), [
  [1, 2, 3],
  [4, 5, 6],
  [7, 8, 9],
  [10, 11],
]);

The preceding example showcased a synchronous example. For our use case – improving the performance
of asynchronous operations, we need to handle Promises. The good news is that Promises can be
stored in an array just as well:

const numberResolverBatches = batch(
  [Promise.resolve(1), Promise.resolve(2), Promise.resolve(3)],
  2
);

console.assert(numberResolverBatches.length === 2);
console.assert(numberResolverBatches[0].length === 2);
console.assert(numberResolverBatches[1].length === 1);

To get the batched output of the Promises, however, we need to write a function that awaits all the
Promises in each batch to resolve them sequentially.

This can be achieved by using a for ... of loop and Promise.all, as follows. We flatten out
the resolved values:

async function resolveBatches(batchedPromises) {
  const flattenedBatchOutput = [];
  for (const batch of batchedPromises) {

Summary 207

    const resolved = await Promise.all(batch);
    flattenedBatchOutput.push(...resolved);
  }
  return flattenedBatchOutput;
}

const batchOutput = await resolveBatches(numberResolverBatches);
assert.deepEqual(batchOutput, [1, 2, 3]);

In our example, the Promise.resolve() calls with 1, 2, and 3 can indeed be batched and resolved.

We’ve now seen how to build and use throttling, debouncing, and batching to improve the performance
of our asynchronous operations in JavaScript.

Summary
In this chapter, we’ve covered asynchronous operation orchestration patterns with Promises and
async/await to manage sequential and parallel operations. We also covered advanced patterns such
as request cancellation, implementing timeouts, the difference between throttling and debouncing,
and finally, how to use batching in an asynchronous operation context.

In order to manage sequential asynchronous operations, we can use a Promise-based approach with
Promise().then(), async/await, or mix both approaches. This helps keep our code simple to reason
about. For parallel execution, we can leverage Promise.all() with Promise.then() or async/
await. We also have multiple approaches to maintaining response data across asynchronous operations.

We can leverage AbortController to cancel requests. We implemented a timeout for the fetch
response time using AbortController and setTimeout. Stopping in-flight requests is a useful
cleanup step that can improve performance by reducing unnecessary load on our API origin.

Finally, the advanced asynchronous programming patterns allow fewer requests to happen via throttling
and debouncing. We can also control the concurrency of our parallel requests using batching and
resolving the batches. Again, these approaches can reduce unnecessary network traffic and load on
the API servers.

Now that we’ve covered asynchronous programming performance patterns, with Promise, async/
await, and advanced patterns, we can look at patterns for event-driven programming in JavaScript.

8
Event-Driven Programming

Patterns

Event-driven programming in JavaScript is very widespread and is the only way to handle certain
scenarios. Maintaining performance and security around event listeners is of paramount importance.
Mismanaged event listeners have been a historical source of bugs and critical performance issues;
we’ll address this via the event delegation pattern. Secure messaging between frames and contexts
has always been crucial in the context of payments. More recently, new primitives are being added to
the web platform and JavaScript that exposes an event/messaging interface for maintaining isolation
between contexts.

In this chapter, we’ll cover the following topics:

•	 Implementing event delegation

•	 Using the postMessage interface to communicate across contexts with an example of a
payment iframe

•	 Common event listener antipatterns and how to remediate them

At the end of this chapter, you’ll have learned how to use advanced event-driven programming concepts
in JavaScript to keep your code performant and secure.

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/
Javascript-Design-Patterns

https://github.com/PacktPublishing/Javascript-Design-Patterns
https://github.com/PacktPublishing/Javascript-Design-Patterns

Event-Driven Programming Patterns210

Optimizing event listeners through event delegation
Event delegation is a common event listener pattern used to go from “many elements, many event
listeners” to a “many elements, single event listener.” At its core, event delegation attaches one event
listener to the page’s Document, and inside that listener, it checks what the target of the event is
in order to figure out how the event should be handled.

Event delegation means fewer listeners are attached. There’s only one per root node; if we’re doing
event delegation at the document level, that means one listener. Another benefit is that DOM nodes
can be attached and removed without worrying about adding or removing the relevant event listeners.

The following sequence diagram details an implementation of listening to clicks on two buttons.

Figure 8.1: Event handling without event delegation

Optimizing event listeners through event delegation 211

Event handling without event delegation can be contrasted with the event delegation sequence, which
instead of attaching one handler per event/element, attaches one and computes the relevant action
in the single listener.

Figure 8.2: Event handling with event delegation

We’ll implement simple event delegation for an email subscription form that is submitted via client-
side JavaScript with fetch. To begin with, we’ll start laying out a form. We have a form with the
data-newsletter-form attribute, which we’ll pick up in JavaScript, a heading, a label, an email
input, and a submit button:

<form data-newsletter-form>
  <h3>Subscribe to the newsletter!</h3>
  <div>
    <label for="email">Email</label>
    <input

Event-Driven Programming Patterns212

      id="email"
      type="email"
      name="email"
      placeholder="test@example.com"
    />
  </div>
  <button type="submit">Submit</button>
</form>

To start on the event part of event delegation, we add a click listener to the document. This listener
switches based on event.target.tagName; tagName takes uppercase values such as P, BUTTON,
and DIV. In order to make the code easier to follow, we’ll switch on the lowercase version of tagName:

<script>
  document.addEventListener('click', (event) => {
    switch (event.target.tagName?.toLowerCase()) {
    }
  });
</script>

When we detect a click on a button element, we then check whether the event.target is inside
a form, whether event.target is of the submit type, and whether the form that contains the
event target element includes newsletterForm in its dataset, in other words whether it has
data-newsletter-form. In this case, we call event.preventDefault. We’ll be handling
the form submission using JavaScript.

We provide some feedback to the user that the form is submitting by changing the contents of the
event target button (to Submitting) and we set the disabled attribute so that the form can’t be
submitted again until our handler execution completes:

<script>
  document.addEventListener('click', (event) => {
    switch (event.target.tagName?.toLowerCase()) {
      case 'button': {
        const form = event.target.closest('form');
        if (
          form &&
          event.target.type === 'submit' &&
          'newsletterForm' in form.dataset
        ) {
          event.preventDefault();

          const formValues = new FormData(form);

Optimizing event listeners through event delegation 213

          event.target.innerText = 'Submitting';
          event.target.setAttribute('disabled',
            'disabled');

          const email = formValues.get('email');
          return;
        }
      }
    }
  });
</script>

When we click the Submit button, it now gets disabled, and its content is set to Submitting.

Figure 8.3: When the Submit button is clicked, it is disabled and the text changes to Submitting

We’ll now work on submitting the newsletter form. In order to do this, we need a fetch-based
function that will POST the given email parameter to jsonplaceholder.typicode.com/
users. We then await the fetch promise and extract the JSON response using res.json():

<script>
  async function submitNewsletterSubscription(email) {
    const res = await fetch
      ('https://jsonplaceholder.typicode.com/users', {
      method: 'POST',
      body: JSON.stringify({
        email,
      }),
      headers: {
        'Content-type': 'application/json; charset=UTF-8',
      },
    });
    return res.json();
  }
  // no change to the document "click" event listener
</script>

Event-Driven Programming Patterns214

We’ll now extend the button type=submit handler to call submitNewsletterSubscription.
The email value comes from formValues.get('email') (the email field of the form). when
submitNewsletterSubscription completes successfully (i.e.. the Promise resolves), we reset
the submit button to have the text Submit and to be enabled (by removing the disabled attribute):

<script>
  document.addEventListener('click', (event) => {
    switch (event.target.tagName?.toLowerCase()) {
      case 'button': {
        const form = event.target.closest('form');
        if (
          form &&
          event.target.type === 'submit' &&
          'newsletterForm' in form.dataset
        ) {
          // no change to existing logic
          const email = formValues.get('email');

          submitNewsletterSubscription(email).then((result) => {
            event.target.innerText = 'Submit';
            event.target.removeAttribute('disabled');
          });
        }
        return;
      }
    }
  });
</script>

To highlight the requests/responses, we’ll add a storeLogEvent function and an API request/
response log to our page:

<div style="height: 300px; overflow: scroll">
  <h3>API Request/Response Log</h3>
  <pre><code></code></pre>
</div>
<script>
  // no change to other functionality
  function storeLogEvent(value) {
    $requestLog = document.querySelector('pre code');
    $requestLog.innerText += value;
    $logParent = $requestLog.closest('div');
    $logParent.scrollTo({ top: $logParent.scrollTopMax,
      behavior: 'smooth' });

Optimizing event listeners through event delegation 215

  }
</script>

We can then use storeLogEvent before and after calling submitNewsletterSubscription:

// -> inside the listener
// -> switch
// -> case 'button'
// -> if (form in ancestors && button type === submit &&
   form has data-newsletter-form)
const email = formValues.get('email');
storeLogEvent(`Request: ${email}`);
submitNewsletterSubscription(email).then((result) => {
  storeLogEvent(`\nResponse: ${JSON.stringify(result,
    null, 2)}\n\n`);

  event.target.innerText = 'Submit';
  event.target.removeAttribute('disabled');
});

Now, when we click Submit with an email address in the input, it gets POST-ed to jsonplaceholder
and we get a response back, as we can see in the following screenshot:

Figure 8.4: When we enter an email and click Submit, we the API response is displayed

Event-Driven Programming Patterns216

To showcase the benefit of event delegation in a situation where DOM elements can get dynamically
added, we’ll create an Add a form button that will append an additional newsletter form to the document.

First, we add a button with data-add-form, we’ll use the data attribute to detect and handle
clicks on the button.

<button data-add-form>Add a form!</button>

Next, we’ll handle clicks on elements with our data-add-form attribute by adding if ('addForm'
in event.target.dataset). For now, we’ll return early to prevent any further handling code
from executing:

<script>
  document.addEventListener('click', (event) => {
    switch (event.target.tagName?.toLowerCase()) {
      case 'button': {
        if ('addForm' in event.target.dataset) {
          return;
        }
        // no change to newsletter form handling
      }
    }
  });
</script>

We want to implement the add form functionality, and we want to find a data-newsletter-form
element and clone it using .cloneNode(true).

We’ll append a random number inside the heading so we can identify when new forms are added
and reset the email input. Finally, we append the new node to the document.body element
using .appendChild:

<script>
  document.addEventListener('click', (event) => {
    switch (event.target.tagName?.toLowerCase()) {
      case 'button': {
        if ('addForm' in event.target.dataset) {
          const $newsletterFormTemplate = document.
            querySelector(
            '[data-newsletter-form]',
          );
          const newForm = $newsletterFormTemplate.
            cloneNode(true);
          newForm.querySelector('h3').innerText += `
            (${Math.floor(

Optimizing event listeners through event delegation 217

            Math.random() * 100,
          )})`;
          newForm.querySelector('[name=email]').value = '';
          document.body.appendChild(newForm);
          return;
        }
        // no change to newsletter form handling
      }
    }
  });
</script>

With no changes to the handling of the newsletter form submission, the cloned form functions just
as the initial one does.

Figure 8.5: The effect of submit on multiple forms, one of which was added with an Add a form! button

Event-Driven Programming Patterns218

We’ve now seen how to implement event delegation to prevent having to add event listeners manually
to dynamically added DOM nodes. Next, we’ll look at patterns that use the postMessage interface
between iframes.

Patterns for secure frame/native WebView bridge
messaging
Gaining a deep understanding of messaging patterns with postMessage in JavaScript is crucial
for working in a variety of contexts. postMessage is defined on the following Web API objects:
Window, MessagePort, Worker, Client, ServiceWorker, and BroadcastChannel.

In other words, postMessage-based messaging is useful for document-to-iframe, iframe-to-iframe,
document-to-worker, and service worker-to-document communication and that’s only the Web APIs.
Due to how widespread the postMessage API is, it’s also adopted in non-standard APIs for handling
multiple JavaScript contexts. For example, web extensions for Chrome and Firefox contain multiple
JavaScript contexts: the devtools panel, proxy, backend, and background script. The postMessage
API is also used for Android and iOS communication between the native code and WebViews.

The scenario that we’ll go through is about iframes and how they communicate. A common e-commerce
use-case is integrating a third-party payment service provider’s hosted card capture form into their
e-commerce website. By using a payment service provider and not knowing the customer’s card
payment details, the e-commerce vendor can meet Payment Card Industry Data Security Standard
(PCI DSS) compliance more easily.

The container or parent document will be a checkout form, inside of which we’ll iframe a hosted
card capture document. The two documents will communicate with postMessage. The container
document will not read the card details in cleartext. Instead, it will receive a public-key encrypted
payload (which can only be decrypted via the paired private key).

Without being careful, it’s possible for iframe initialization to cause race conditions. To work around
this, we’ll implement the following initialization scheme.

Initially, we’ll load a container document with an iframe that has no src. Only after we’ve added
important event listeners to the iframe element, will we add src. This means that the iframe
can’t load before our listeners are attached.

Patterns for secure frame/native WebView bridge messaging 219

Figure 8.6: Sequence diagram of initialization messaging

We need two files, one at frame-parent.html (which will be our application shell) and one at
frame-content.html (which will represent our iframe’s contents).

Some payment service provider integrations won’t require a fully custom iframe (sometimes, a
JavaScript SDK is provided that helps manage the iframe part of it), but the important thing is that
the iframe is loaded from an origin (server) that is owned by the payment service provider. We
won’t be able to represent this since we’re working locally.

Our frame-parent.html HTML looks as follows: a few headings, a form, an input type=email,
an iframe, and a submit button. Note that the iframe element doesn’t have a src attribute. We’ll
add that via JavaScript to prevent race conditions:

<form>
  <h2>Checkout form</h2>
  <div>
    Price: 200€

Event-Driven Programming Patterns220

  </div>
  <div>
    <h3>Customer Details</h3>
    <div>
      <label for="email">Email</label>
      <input id="email" type="email" name="email"
        required="required" />
    </div>
  </div>
  <div>
    <iframe id="payment-capture" width="100%"
      height="300px"></iframe>
  </div>
  <div>
    <button type="submit">Pay</button>
  </div>
</form>

To prevent race conditions when loading the iframe, we haven’t set the src in the HTML. We want
to prevent situations where the iframe could load before we’ve attached a load event handler to it.

We start by adding a message event listener to the container window:

<script>
  window.addEventListener('message', (event) => {
    if (event?.data) {
      const { type, data } = JSON.parse(event?.data);
      switch (type) {
        case 'init': {
          console.log('Parent received init message');
          return;
        }
      }
    }
  });
</script>

Next, we’ll select the payment capture iframe and add a load event listener to the iframe element.
Our handler will send an init message with some data to the iframe element’s contentWindow:

<script>
  // no change to the message listener
  const $paymentCaptureIframe = document.querySelector
   ('#payment-capture');

Patterns for secure frame/native WebView bridge messaging 221

  // on iframe load, we'll send a message
  $paymentCaptureIframe.addEventListener('load', () => {
    $paymentCaptureIframe.contentWindow.postMessage(
      JSON.stringify({ type: 'init', data: { price: 20000,
        currency: 'EUR' } }),
    );
  });
</script>

Finally, we can set the iframe element’s src attribute so that it loads:

<script>
  // no change to message and iframe load listeners
  $paymentCaptureIframe.setAttribute(
    'src',
    new URL('/frame-content.html', window.location.origin),
  );
</script>

We now need to implement the frame-content.html file to receive the message we sent. Our
iframe, again is mostly a heading and a form with multiple fields. We have type=hidden inputs
for the price and currency, as well as text inputs for the card number, expiry date, and card verification
value (CVV) code. We also include a Messages section to illustrate which messages are being sent
and received by the iframe:

<h2>Payment iframe</h2>
<form>
  <input type="hidden" name="price" />
  <input type="hidden" name="currency" />
  <div>
    <label for="cardnumber">Card Number</label>
    <input required="required" name="cardnumber"
      id="cardnumber" type="text" />
  </div>
  <div>
    <label for="cardexpiry">Expiry Date</label>
    <input required="required" name="cardexpiry"
      id="cardexpiry" type="text" />
  </div>
  <div>
    <label for="cardcvv">CVV</label>
    <input name="cardcvv" id="cardcvv" type="text" />
  </div>
</form>

Event-Driven Programming Patterns222

<div>
  <h3>Messages</h3>
  <pre><code></code></pre>
</div>

In order to handle messages from the parent frame, we’ll add a message event listener. It stores all
received messages in the pre code element we defined earlier.

If the event.data.type is init, we set the value of our price and currency inputs:

<script>
  window.addEventListener('message', async (event) => {
    document.querySelector('pre code').innerText +=
      `Received: ${event.data}\n`;
    const { type, data } = JSON.parse(event.data);
    switch (type) {
      case 'init': {
        document.querySelector('[name=price]').value =
          data.price;
        document.querySelector('[name=currency]').value =
          data.currency;
        return;
      }
    }
  });
</script>

Finally, we send an init message when our script finished running. We use window.parent.
postMessage to achieve this:

<script>
  // no change to the message event listener
  const initMessage = JSON.stringify({ type: 'init' });
  document.querySelector('pre code').innerText += `Sent:
    ${initMessage}\n`;

  window.parent.postMessage(initMessage);
</script>

Patterns for secure frame/native WebView bridge messaging 223

With this code in place, when we load the frame-parent.html file in a browser, we see the
following. The iframe has sent an init message and received one as well.

Figure 8.7: Container and iframe contents in their initial state

When we submit the container, we’ll want to ensure the card details are retrieved by the iframe
and passed back to the container. These details will be encrypted by the iframe (which, in our
scenario, will be served from a domain from the payment service provider) before being sent to the
parent document.

Event-Driven Programming Patterns224

The following diagram details the expected interactions.

Figure 8.8: Container and iframe communication sequence diagram during user interaction

The key change we have to make to the container is to listen for a submit event on the form element.
We then send a message with type="submit" to the iframe:

<script>
  // no message to iframe initialization code
  document.querySelector('form').addEventListener('submit',

Patterns for secure frame/native WebView bridge messaging 225

    (event) => {
    event.preventDefault();
    $paymentCaptureIframe.contentWindow.postMessage(
      JSON.stringify({
        type: 'submit',
      }),
    );
  });
</script>

The iframe receives the message and we’ll need to extend our message event handler to react to
the submit message:

<script>
  window.addEventListener('message', async (event) => {
    // no change outside of the switch
    switch (type) {
      case 'submit': {
        $form = document.querySelector('form');

        const isFormValid = $form.reportValidity();
        if (!isFormValid) {
          const fields = [...$form];
          const invalidFields = fields
            .filter((f) => f.type !== 'hidden' &&
              !f.validity?.valid)
            .map((f) => f.name);
          const message = JSON.stringify({
            type: 'validation-error',
            data: invalidFields,
          });
          window.parent.postMessage(message);
          document.querySelector('pre code').innerText +=
            `Sent: ${message}\n`;
          return;
        }
      }
      // no change to other "case" statements
    }
  });
</script>

Event-Driven Programming Patterns226

Now that we’ve implemented a new iframe to container “validation error” message, we need to
handle that message type in frame-parent.html. In this case, we’ve already done everything
that’s necessary in the submit form event handler (which calls preventDefault()), so we’ll
simply log out the message contents:

<script>
  window.addEventListener('message', (event) => {
    if (event?.data) {
      const { type, data } = JSON.parse(event?.data);
      switch (type) {
        // no change to other "case" statements
        case 'validation-error': {
          console.log('Received message', type, data);
          return;
        }
      }
    }
  });

We can now attempt to click Pay with the card number and card expiry empty, which yields the following
state, where both fields are in the validation-error message as received by the frame parent.

Figure 8.9: If you click Pay with the card number and expiry date missing, a

validation-error message between the iframe and the container occurs. Also,

note the HTML validation error message for the card number field

Patterns for secure frame/native WebView bridge messaging 227

If we then enter the card number but still don’t enter the expiry date, then the second validation-
error message only contains the cardexpiry field:

Figure 8.10: If you click Pay with the card number entered and the expiry date

missing, a validation-error message between the iframe and the container occurs.

Also, note the HTML validation error message for the card expiry field

We need a function to take a string (in our case containing a JSON-encoded JavaScript object) and turn
it into a base64-encoded ciphertext (encrypted string in base64 format). The payment service provider
usually would manage this encryption, so we wouldn’t need this function or to fetch public-key.
json to enable RSA-OAEP (asymmetric) encryption in the browser.

The code will convert the string to a Uint8Array, fetch a public key, and import it in order to use it with
crypto.subtle.encrypt. We encrypt the message string (that was converted to a Uint8Array).
This yields an ArrayBuffer that we encode to base64 by creating a Uint8Array object with our
data, converting it back to an array and for each character, looking up the relevant character code.
Once we have a string containing the character codes, we base64-encode it:

<script>
  async function encryptToBase64(message) {
    const msgUint8 = new TextEncoder().encode(message);
    const publicKeyExport = await fetch
      ('./public-key.json').then((res) =>
      res.json(),
    );
    const publicKey = await crypto.subtle.importKey(
      'jwk',

Event-Driven Programming Patterns228

      publicKeyExport,
      {
        name: 'RSA-OAEP',
        hash: 'SHA-256',
      },
      true,
      ['encrypt'],
    );
    const encryptedBuffer = await crypto.subtle.encrypt(
      {
        name: 'RSA-OAEP',
      },
      publicKey,
      msgUint8,
    );
    return btoa(
      return [...new Uint8Array(encryptedBuffer)]
        .map((el) => String.fromCharCode(el))
        .join(''),
    );
  }
</script>

We can now use the encryptToBase64 function in our type=submit message-handling code.
Once the validation passes, we’ll serialize the data using FormData, FormData().entries(),
and Object.fromEntries. We stringify it before encrypting it to a base64 ciphertext.

Finally, we send a type=submit-reponse message to the container document with the encrypted
string as the payload:

<script>
  window.addEventListener('message', async (event) => {
    // no change outside of the switch
    switch (type) {
      case 'submit': {
        $form = document.querySelector('form');
        // no change to form validity validation
        const data = new FormData($form);
        const serializableData = Object.fromEntries
          (data.entries());
        const message = JSON.stringify({
          type: 'submit-response',
          data: await encryptToBase64
            (JSON.stringify(serializableData)),

Patterns for secure frame/native WebView bridge messaging 229

        });
        window.parent.postMessage(message);
        document.querySelector('pre code').innerText +=
          `Sent: ${message}\n`;
        return;
      }
      // no change to other "case" statements
    }
  });
</script>

We now need to handle the type=submit-response message in iframe-parent.html.
Again, we’re just extending our switch(type) statement with an additional case for submit-
response. We’ll log some messages, including the event.data and extract the values from the
container form element using FormData().entries() and Object.fromEntries(). At
this point, we could send the event.data and the container form data to a backend endpoint to
complete the transaction:

<script>
  window.addEventListener('message', (event) => {
    if (event?.data) {
      const { type, data } = JSON.parse(event?.data);
      switch (type) {
        // no change to other "case" statements
        case 'submit-response': {
          console.log('received submit-response');
          console.log(event.data);
          const formData = new FormData
            (document.querySelector('form'));
          Const pageData = Object.fromEntries
            (formData.entries());
          return;
        }
      }
    }
  });

Event-Driven Programming Patterns230

We can see this in action when we fill out the customer email and the payment details form and click Pay:

Figure 8.11: When the form is complete and Pay has been clicked, the iframe

receives the submit message and sends back a submit-response message with

an encrypted base64 string, which the container page receives

In order to avoid untrusted frames from sending arbitrary messages, we should check event.
origin against an allowlist.

We’ll add this as a guard clause in the window.addEventListener in both frame-parent.
html and frame-content.html. We’ll check the message origins against our allowlist. If the
event.origin is not in the allowlist, we log a warning and discard the message by doing an
early return.

In the case of local development, the origin will be 'http://127.0.0.1:8000' for both
interactions. As throughout this section, in a production use case, the allowed origin for receiving
messages in the container window (frame-parent.html) would be a domain managed by the
payment service provider. The frame-content.html equivalent would be what the payment
service provider hosts, so the allowed domain would be the URL of the container application:

<script>
  // handle receiving messages from iframe -> parent
  const allowedMessageOrigins = ['http://127.0.0.1:8000'];
  window.addEventListener('message', (event) => {
    if (!allowedMessageOrigins.includes(event.origin)) {
      console.warn(
        `Dropping message due to non-allowlisted origin

Event listener performance antipatterns 231

          ${event.origin}`,
        event,
      );
      return;
    }
    // no change to the rest of the message handler
  });
</script>

We’ve now seen how to implement secure messaging between an iframe and the page that contains
it. Next, we’ll recap on event listener performance anti-patterns.

Event listener performance antipatterns
Event listener performance antipatterns change over time. For example, when Internet Explorer support
was broadly required due to its market share, adding event listeners to DOM nodes and subsequently
deleting the nodes would not clean up the event listeners, causing memory leaks. This doesn’t occur
anymore in modern browsers.

An event listener antipattern that is often caught by the Lighthouse page performance auditing tool
is scroll event listeners that aren’t set to be passive. Passive event listeners are more performant
because event.preventDefault() doesn’t intercept and stop the event’s default behavior. This
allows browsers to set the event listener to be non-blocking since the listener can’t act on the event.

Making an event listener passive simply involves passing { passive: true } as the third
parameter to addEventListener():

document.addEventListener(
  'scroll',
  (event) => {},
  { passive: true }
);

Another antipattern is to forgo using debounce or throttle on the event listener handler for high-
volume events (scroll is a good example). We covered how to implement debounce and throttle in
Chapter 7, Asynchronous Programming Performance Patterns, in the Throttling, debouncing and batching
asynchronous operations section.

The final antipattern is solved by event delegation. At some amount of DOM nodes and event listeners,
adding one event listener per potential target starts causing performance implications. Luckily, event
delegation solves this problem. It allows us to attach one event listener per event type while maintaining
the ability to handle each target differently.

Event-Driven Programming Patterns232

We’ve now covered event listener performance antipatterns to keep an eye out for and how to
remediate them.

Summary
In this chapter, we’ve covered advanced event-driven programming patterns to keep a JavaScript code
base performant and secure when handling large numbers of events and event listeners.

Event delegation is useful to ensure that the number of event listeners doesn’t grow with the number
of DOM nodes in a client-side application where elements are inserted and removed dynamically.

Patterns for secure frame messaging mean we’re able to orchestrate iframe initialization and
bidirectional communication between an iframe and its parent document.

Finally, we covered common event listener performance antipatterns to avoid the common pitfalls of
event listener-heavy code bases.

Now that we’re familiar with advanced event-driven programming patterns in JavaScript, in the next
chapter, we’ll cover lazy-loading and code-splitting to maximize the performance of JavaScript applications.

9
Maximizing Performance – Lazy

Loading and Code Splitting

In order to maximize the performance of a JavaScript application, reducing the amount of unused
JavaScript being loaded and interpreted is key. The techniques that can be brought to bear on this
problem are called lazy loading and code splitting. Lazy loading and code splitting allows parts of
the JavaScript to be loaded on demand as required. This is in contrast to being downloaded on page
load and can greatly reduce the amount of unused JavaScript being loaded and interpreted.

We’ll cover the following topics in this chapter:

•	 The dynamic import syntax and how Vite can automatically code-split based on the syntax

•	 Route-based code splitting with Next.js and how to read the Bundle Analyzer reports

•	 How to use next/dynamic and react-intersection-observer to load JavaScript
and React components on different user interactions

By the end of this chapter, you’ll be able to identify and leverage lazy loading and code splitting in a
variety of scenarios and applications.

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/
Javascript-Design-Patterns

Dynamic imports and code splitting with Vite
Dynamic imports in JavaScript refer to the usage of the import() syntax to import a module.
Unlike the import Something from './my-module.js' declarative syntax, import()
is more akin to a function that returns a promise. For example, we could rewrite the original import
as const Something = await import('./my-module.js').

https://github.com/PacktPublishing/Javascript-Design-Patterns
https://github.com/PacktPublishing/Javascript-Design-Patterns

Maximizing Performance – Lazy Loading and Code Splitting234

The “dynamic” part of the import is that it doesn’t have to be done at module evaluation time; it’s done
as part of the execution of the code. This is useful when paired with code splitting – which we’ll define
now – since it means that we can avoid loading and evaluating some JavaScript code until it’s needed.

Code splitting is a technique whereby code is built into multiple files (also known as “chunks” or
“bundles”) instead of a single file. Code splitting is useful to avoid loading all the code up front.
Instead, when paired with dynamic imports, code is split into multiple files such that different parts
of it are loaded only when necessary. This means that there’s a lower up-front cost to the JavaScript
load, parse, and compile cycle.

The Vite build tool supports code splitting at dynamic import boundaries.

Given a simple document as follows, which has an id="app" div and references a main.js file,
Vite can run a build as long as main.js exists:

<div id="app"></div>
<script src="./main.js" type="module"></script>

We’ll have two modules now: main.js, which is the entry point that Vite will reference, and our
code will import the dynamic.js module.

main.js will inject 'Hello from main.js'into our app div. It will then proceed to dynamically
load the dynamic.js module and set the contents of the app div to the output of the hello
function as exported by dynamic.js:

document.querySelector('#app').textContent = 'Hello from main.
js';
const { hello } = await import('./dynamic.js');
document.querySelector('#app').textContent = hello();

Here is a simpler dynamic.js implementation of the hello function:

export function hello() {
  return 'Hello from dynamic.js';
}

When running the Vite dev server using npx vite, we can see that the dynamically imported hello
function contents are displayed on the page. Notice that dynamic.js is loaded as a separate request
to main.js; that is code splitting at play.

Dynamic imports and code splitting with Vite 235

Figure 9.1: “Hello from dynamic.js” on the page with network requests,

including a request specifically for dynamic.js

This pattern can be useful to defer loading JavaScript until it’s required – for example, if we want to
add client-side tracking of button clicks using fetch requests.

We have the following HTML, with two buttons that have a data-track property:

<!-- no change to app div -->
<div>
  <button data-track="button-click">With tracked click
  </button>
  <button data-track="alt-button-click">Other tracked click
  </button>
</div>
<!-- to change to script -->

We’ll add a trackInteraction.js module with a trackInteraction function, which will
use fetch and the POST HTTP method to send interaction data to jsonplaceholder. If this
were a live implementation, we could realistically replace jsonplaceholder with Google Analytics
or another equivalent service that exposes a client-side JavaScript accessible endpoint:

export function trackInteraction(page, type = 'click') {
  return fetch
    ('https://jsonplaceholder.typicode.com/posts', {
    method: 'POST',
    body: JSON.stringify({
      type,
      page,
    }),
    headers: {
      'Content-type': 'application/json; charset=UTF-8',
    },

Maximizing Performance – Lazy Loading and Code Splitting236

  }).then((response) => response.json());
}

Now, the trackInteraction module has nothing to do with the page functionality so we want
to avoid loading it until it’s needed.

In this case, we’ll attach a click event listener to each element that has a data-track attribute. Only
when the listener is triggered does the import('./trackInteraction.js') statement run:

// no change to rest of main.js

document.querySelectorAll('[data-track]').forEach((el) => {
  el.addEventListener('click', async (event) => {
    const page = window.location.pathname;
    const type = event.target.dataset?.track;
    const { trackInteraction } = await import
      ('./trackInteraction.js');
    const interactionResponse = await trackInteraction
      (page, type);
    console.assert(
      interactionResponse.type === type &&
        interactionResponse.page === page,
      'interaction response does not match sent data',
    );
  });
});

If we load the Vite dev server and click the With tracked click button and the Other tracked click
button once and then the With tracked click button once again, we’ll get the following network requests:

Figure 9.2: Network requests after clicking the “With tracked click,” “Other

tracked click,” and “With tracked click” buttons in sequence

Route-based code splitting and bundling 237

On the first click of either button, the trackInteraction.js file is loaded and then a fetch
request is triggered. On subsequent clicks, trackInteraction.js is already loaded so the fetch
requests to jsonplaceholder are the only network requests we see.

Note that each POST request to jsonplaceholder is preceded by an OPTIONS request due
to browser cross-origin resource sharing (CORS). The OPTIONS response includes Access-
Control-Allow-… headers that allow our origin and method.

We’ve now seen what dynamic imports in JavaScript look like and how Vite automatically code splits
dynamic imports, which allows us to only load modules that are required “just in time,” thereby
allowing us to reduce the upfront JavaScript load/parse/evaluation cost.

Next, we’ll cover route-based code splitting in Next.js and how to inspect generated chunks with the
Next.js Bundle Analyzer plugin.

Route-based code splitting and bundling
Let’s begin by defining a route in a general web application context and then in a Next.js context.

In a web application, a route comes from the router concept; in simple terms, it’s an entry in the router.
An entry in the router mechanism can take multiple shapes – for example, in an nginx/Apache/Caddy
web server setup, we can have a path to file forwarding or a wildcard forwarding approach. In backend
MVC frameworks such as Ruby on Rails, Laravel (PHP), and Django (Python), a route associates a
request path to the specific code to be run. The request path to code to be run concept also applies to
Node.js backend applications using libraries such as Express, Koa, Fastify, and Adonis.js.

Let’s now see how the route concept is used in the Next.js filesystem router.

A minimal Next.js project as initialized with create-next-app is laid out as follows. Each file in
the pages directory corresponds to a route. For example, index.js is used to render the / path
of the application. If we had an about.js or about/index.js file, that would be used to render
the /about path of the application:

.
├── components
├── next.config.js
├── package.json
├── pages
│   └── index.js
└── public

We defined code splitting in the previous section, Dynamic imports and code splitting with Vite. Since a
core Next.js feature is the router, it can do what’s called route-based code splitting, which is automatic
code splitting based on a route or page contents.

Maximizing Performance – Lazy Loading and Code Splitting238

A naive route-based code-splitting approach would be to create completely separate sets of bundles
for each route. In the context of a React or Next.js application, this is inefficient since we would end
up with shared libraries (for example, React and Next.js) in each of the per-page bundles.

What Next.js can do in this case is identify shared code and classify it as First Load JS shared
by all.

This is the sample build output:

+ First Load JS shared by all              79.9 kB
  ├ chunks/framework-cc1b0d6c55d15cb9.js   45.3 kB
  ├ chunks/main-7c6ad51e94ec3ff5.js        32.8 kB
  ├ chunks/pages/_app-db3a4be757903450.js  205 B
  └ chunks/webpack-8850afd7843acaaa.js     1.55 kB

We can add the Next.js Bundle Analyzer to check the contents of each chunk:

npm install --save @next/bundle-analyzer

Then, we can configure next.config.js to use it. In our case, it looks as follows:

const nextConfig = {
  // no changes to this config
};
const withBundleAnalyzer = require('@next/bundle-analyzer')({
  enabled: process.env.ANALYZE === 'true',
});

module.exports = withBundleAnalyzer(nextConfig);

To use the bundle analyzer, we can add an analyze script to our package.json file:

{
  "//": "// no change to other properties",
  "scripts": {
    "//": "// no change to other scripts",
    "analyze": "cross-env ANALYZE=true next build"
  }
}

Route-based code splitting and bundling 239

This can be run with npm run analyze. Its shell output is the same as npm run build but it
opens a browser window with the bundle analysis file – for example, .next/analyze/client.
html:

npm run analyze

> next-route-based-splitting@0.1.0 analyze
> cross-env ANALYZE=true next build

 ✓ Linting and checking validity of types
Webpack Bundle Analyzer saved report to /next-route-based-splitting/.
next/analyze/nodejs.html

No bundles were parsed. Analyzer will show only original module sizes
from stats file.

Webpack Bundle Analyzer saved report to /next-route-based-splitting/.
next/analyze/edge.html
Webpack Bundle Analyzer saved report to /next-route-based-splitting/.
next/analyze/client.html

 ✓ Creating an optimized production build
 ✓ Compiled successfully
 ✓ Collecting page data
 ✓ Generating static pages (3/3)
 ✓ Collecting build traces
 ✓ Finalizing page optimization

Maximizing Performance – Lazy Loading and Code Splitting240

We can use this to inspect the contents of the shared JavaScript in the framework, main,
pages/_app, and webpack chunks as well as page-specific chunks:

Figure 9.3: The client.html Bundle Analyzer output in the browser

The framework bundle includes the following packages from node_modules: react, react-
dom, and scheduler. Meanwhile, the main bundle includes next and its submodules such as
shared/lib, which includes a large router chunk, or next/client, which is the client-side
section of Next.js. Also, it is harder to see in the preceding screenshot, but main includes @swc/
helpers/esm, which is probably an artifact of the Next.js build using the SWC compiler.

We’ve now seen how Next.js supports route-based code splitting and how to inspect the contents of the
Next.js-generated bundles using the Next.js Bundle Analyzer report. Next, we’ll see dynamic import
patterns to load additional JavaScript under different element visibility and interaction conditions.

Loading JavaScript on element visibility and interaction 241

Loading JavaScript on element visibility and interaction
In this section, we’ll look at four different scenarios where dynamic or lazy loading of React components
and JavaScript modules can be applied in the context of a Next.js application.

The first instance will be whether the component is in the component tree or not – in other words,
whether it’s considered to be rendered or not. Next, we’ll look at dynamic imports based on user
interaction. We’ll also cover how to handle an interaction that potentially requires a dynamic import
of a JavaScript resource. Finally, we’ll show how to dynamically load a React component when an
element is visible in the viewport.

Next.js provides a dynamic utility (see the documentation at https://nextjs.org/docs/
pages/building-your-application/optimizing/lazy-loading) that allows us to
lazily and dynamically load a React component.

In our case, we have a components/Hello.jsx component with a Hello component that is
a named export:

import React from 'react';

export function Hello() {
  return <>Hello</>;
}

We can dynamically load it using dynamic() and import(). Due to Hello being a named
export, we need to extract the Hello property of the import() promise using .then(). We set
ssr: false to showcase how next/dynamic allows us to control whether a dynamically loaded
component is included in the server-rendered output or not:

import React from 'react';
import dynamic from 'next/dynamic';
const DynamicClientSideHello = dynamic(
  () => import('../components/Hello.jsx').then(({ Hello })
    => Hello),
  { ssr: false },
);
export default function Index() {
  return (
    <>
      <h1>Next.js route-based splitting and component lazy
        loading</h1>
      <DynamicClientSideHello />
    </>
  );
}

https://nextjs.org/docs/pages/building-your-application/optimizing/lazy-loading
https://nextjs.org/docs/pages/building-your-application/optimizing/lazy-loading

Maximizing Performance – Lazy Loading and Code Splitting242

By using npm run analyze as configured in the Route-based code splitting and bundling section
(using the @next/bundle-analyzer module), we can inspect the contents of the chunks/
pages/index chunk; you’ll note that Hello.jsx is in a different chunk.

Figure 9.4: Bundle analyzer filtered to “chunks/pages/index” and the chunk containing Hello.jsx

When we run the Next.js dev server using next dev and load up the / path, we see the following
page and network requests. _next/static/chunks/components_Hello_jsx.js is loaded
last and separately to _next/static/chunks/pages/index.js, which means that we are
in fact doing a dynamic load of the Hello.jsx component.

Loading JavaScript on element visibility and interaction 243

Figure 9.5: Dynamic loading of the Hello.jsx page contents and Network tab

We’ll now showcase using next/dynamic inside of the Index component based on the component state.

Our example is a Terms and Conditions selector that allows the user to select between three options:
None, Short, and Long. None will be handled by a NoRender component (which simply returns
null), and Short and Long will dynamically load a component to display.

We’ll start by adding a components/TermsAndConditionsShort.jsx component, which
contains an h3 element and a single paragraph of content:

import React from 'react';

export function TermsAndConditions() {
  return (
    <>
      <h3>Terms and Conditions Short</h3>

      <p>{/* Terms and Conditions Content */}</p>
    </>
  );
}

Maximizing Performance – Lazy Loading and Code Splitting244

We’ll also add a components/TermsAndConditionsLong.jsx component, which contains
the same h3 and content but has five paragraphs of content instead of one:

import React from 'react';
export function TermsAndConditions() {
  return (
    <>
      <h3>Terms and Conditions Long</h3>
      <p>{/* Terms and Conditions Content */}</p>
      <p>{/* Terms and Conditions Content */}</p>
      <p>{/* Terms and Conditions Content */}</p>
      <p>{/* Terms and Conditions Content */}</p>
      <p>{/* Terms and Conditions Content */}</p>
    </>
  );
}

Finally, we’ll add a select field with relevant option values (None, Short, and Long) to pages/
index.js. We’ll use useState to keep track of the currently selected option:

import React, { useState } from 'react';
export default function Index() {
  const [selectedTermsAndConditions,
    setSelectedTermsAndConditions] =
    useState('None');

  return (
    <>
      {/* no changes to rest of the returned JSX */}
      <div>
        <label htmlFor="termsAndConditionsType">
          Terms and Conditions selector:
        </label>
        <select
          id="termsAndConditionsType"
          onChange={(e) => setSelectedTermsAndConditions
            (e.target.value)}
        >
          <option value="None">None</option>
          <option value="Short">Short</option>
          <option value="Long">Long</option>
        </select>
      </div>

Loading JavaScript on element visibility and interaction 245

    </>
  );
}

Finally, we’ll add a NoRender component and, based on selectedTermsAndConditions,
either render NoRender or the dynamically loaded TermsAndConditions component:

import React, { useState } from 'react';
const NoRender = () => null;
export default function Index() {
  // no change to useState
  const TermsAndConditions = ['Short', 'Long'].includes(
    selectedTermsAndConditions,
  )
    ? dynamic(() =>
        import(
          `../components/TermsAndConditions$
            {selectedTermsAndConditions}.jsx`
        ).then(({ TermsAndConditions }) =>
          TermsAndConditions),
      )
    : NoRender;
  return (
    <>
      {/* no changes to rest of the returned JSX */}
      <div>
        {/* no change to label or select */}
        <hr />
        <TermsAndConditions />
      </div>
    </>
  );
}

Maximizing Performance – Lazy Loading and Code Splitting246

When we run the next dev server and load the index page, we initially see the None state selected and
no dynamic imports, apart from the existing Hello.jsx one from the previous example.

Figure 9.6: Terms and conditions selector initial state with None selected;

therefore, no dynamic imports apart from the existing Hello.jsx one

Loading JavaScript on element visibility and interaction 247

On selection of Short, we note that the relevant heading and paragraph are displayed and we
have an additional request that loaded _next/static/chunks/components_
TermsAndConditionsShort_jsx.js.

Figure 9.7: Terms and conditions selector when Short is selected;

TermsAndConditionsShort.jsx has been dynamically loaded and is displayed

Maximizing Performance – Lazy Loading and Code Splitting248

When we select Long, we note that the relevant heading and paragraph are displayed and we
have an additional request that loaded /_next/static/chunks/components_
TermsAndConditionsLong_jsx.js.

Figure 9.8: Terms and conditions selector when Long is selected;

TermsAndConditionsLong.jsx has been dynamically loaded and is displayed

We can also look at the Bundle Analyzer’s client.html output using npm run analyze; the
following has been filtered to the relevant chunks to illustrate how TermsAndConditionsShort
and TermsAndConditionsLong are not included in chunks/pages/index.js. There are three
“dynamic” chunks (which correlates with our findings from the network requests we observe in the browser):
one for components/Hello.jsx, one for components/TermsAndConditionsShort.
jsx, and one for components/TermsAndConditionsLong.jsx.

Loading JavaScript on element visibility and interaction 249

Figure 9.9: Bundle Analyzer output for the page chunk as well as the dynamic chunks (which

include the TermsAndConditionsShort and TermsAndConditionsLong components)

We’ve now seen how dynamic can be used in response to a user action to dynamically load content
based on user-provided data. Next, we’ll revisit dynamic imports of a JavaScript resource (as opposed
to React components) while handling a user action in the context of a Next.js application.

We’ll start with a new component, TermsAndConditionsLongScroll.jsx, which is functionally
the same as TermsAndCondtionsShort.jsx or TermsAndCondtionsLong.jsx but with
10 paragraphs:

import React from 'react';

export function TermsAndConditions() {
  return (
    <>
      <h3>Terms and Conditions Long Scroll</h3>
      <p>{/* Terms and Conditions Content */}</p>
      <p>{/* Terms and Conditions Content */}</p>
      <p>{/* Terms and Conditions Content */}</p>

Maximizing Performance – Lazy Loading and Code Splitting250

      <p>{/* Terms and Conditions Content */}</p>
      <p>{/* Terms and Conditions Content */}</p>
      <p>{/* Terms and Conditions Content */}</p>
      <p>{/* Terms and Conditions Content */}</p>
      <p>{/* Terms and Conditions Content */}</p>
      <p>{/* Terms and Conditions Content */}</p>
      <p>{/* Terms and Conditions Content */}</p>
    </>
  );
}

We’ll now add a form at the bottom of the page to accept the terms and conditions. We have a long
form so it’s nice to be able to go directly to the bottom. To this end, we add a button that, on click,
scrolls us to the input checkbox element using a ref.

In our scroll-to-bottom handler, we ensure that smooth scrolling is available (some older Safari versions
don’t natively support it) by conditionally importing the scroll-behavior-polyfill package
if scrollBehavior is not detected.

Finally, we scroll using the scrollTargetRef.current.scrollIntoView() function.
scrollTargetRef is attached to the checkbox input using the ref property:

import React, { useRef } from 'react';

export function TermsAndConditions() {
  const scrollTargetRef = useRef();

  async function handleScroll() {
    if (!('scrollBehavior' in document.
      documentElement.style)) {
      await import('scroll-behavior-polyfill');
    }
    if (scrollTargetRef.current) {
      scrollTargetRef.current.scrollIntoView({
        behavior: 'smooth',
        block: 'end',
      });
    }
  }

  return (
    <>
      {/* no change to heading */}
      <button onClick={handleScroll}>Scroll to button

Loading JavaScript on element visibility and interaction 251

        </button>
      {/* no changes to paragraphs */}
      <hr />
      <label htmlFor="accept">
        <input
          id="accept"
          name="acceptTerms"
          type="checkbox"
          ref={scrollTargetRef}
        />
        Accept Terms and Conditions
      </label>
    </>
  );
}

Back in pages/index.js, we’ll allow LongScroll to be selected (as a new option) and to be
dynamically imported:

// no changes to imports and definitions outside of Index
export default function Index() {
  // no changes to useState to maintain select state

  const TermsAndConditions = ['Short', 'Long',
    'LongScroll'].includes(
    selectedTermsAndConditions,
  )
    ? dynamic(() =>
        import(
          `../components/TermsAndConditions$
            {selectedTermsAndConditions}.jsx`
        ).then(({ TermsAndConditions }) =>
          TermsAndConditions),
      )
    : NoRender;
  return (
    <>
      {/* no change to content outside of select */}

      <div>
        {/* no change to label */}
        <select
          id="termsAndConditionsType"
          onChange={(e) => setSelectedTermsAndConditions

Maximizing Performance – Lazy Loading and Code Splitting252

            (e.target.value)}
        >
          {/* no change to existing options */}
          <option value="LongScroll">LongScroll</option>
        </select>
        <hr />
        <TermsAndConditions />
      </div>
    </>
  );
}

When we run the next dev server, load the index page, and select LongScroll, we see the following
with a Scroll to bottom button and a large amount of paragraph content. Note that there is only one
network request for TermsAndConditionsLongScroll.jsx.

Figure 9.10: TermsAndConditionsLongScroll.jsx selection with dynamic import

Loading JavaScript on element visibility and interaction 253

In browsers where behavior: 'smooth' is supported, when the Scroll to bottom button is
clicked, no additional JavaScript chunks are loaded and we’re scrolled to the checkbox input after the
multiple paragraphs.

Figure 9.11: TermsAndConditionsLongScroll.jsx selection with dynamic import

Maximizing Performance – Lazy Loading and Code Splitting254

On browsers that don’t support behavior: 'smooth' for scrolling, scroll-behavior-
polyfill will be loaded allowing for smooth scrolling to the checkbox.

Figure 9.12: TermsAndConditionsLongScroll.jsx selection with dynamic import

of the component and of the scroll-behavior-polyfill module

Based on the Bundle Analyzer output (using npm run analyze and the @next/bundle-
analyzer plugin), we can see that there is a chunk that contains scroll-behavior-polyfill,
along with chunks for pages/index.js and one each for TermsAndConditionsShort.
jsx, TermsAndConditionsLong.jsx, and TermsAndConditionsLongScroll.jsx.

Loading JavaScript on element visibility and interaction 255

Figure 9.13: Bundle Analyzer output for the pages/index.js chunk as well as

relevant dynamic chunks (TermsAndConditionsShort, TermsAndConditionsLong,

TermsAndConditionsLongScroll, and scroll-behavior-polyfill)

We’ve now seen that Next.js code splits effectively on native import() as well as the provided
dynamic() utility.

Finally, we’ll see how to use dynamic() and the react-intersection-observer package
to dynamically load content when it is visible.

One other variant of a Terms and Conditions form or similar would be to include additional fields
that should be captured when the customer accepts the terms.

In this example, we’ll add a components/TermsForm.jsx component with an input for the
user’s name and a label for it:

import React from 'react';

export default function TermsForm() {
  return (
    <form>
      <label htmlFor="name">Type your name as signature

Maximizing Performance – Lazy Loading and Code Splitting256

      </label>
      <input id="name" type="text" />
    </form>
  );
}

Next, we’ll want to include it in components/TermsAndConditionsLongScrollAcceptForm.
jsx. We’ll use dynamic() to load the TermsForm component.

The rest of our code is similar to the end state of the TermsAndConditionsLongScroll
components, with a heading, 10 paragraphs, and an accept input.

The key exception is the import and usage of the InView component from react-intersection-
observer.

The InView component has a children render property that receives, among other properties, the
ref property, which we can attach to elements whose visibility we’re interested in. Another property
of interest to us is the inView Boolean, which tells us whether the element on which we put the
ref prop is in the viewport.

As the rendered output of the InView children function, we return a div element to which we
attach the ref property. Inside of the div, we render TermsForm but only if inView is true:

import React from 'react';
import dynamic from 'next/dynamic';
import { InView } from 'react-intersection-observer';

const TermsForm = dynamic(() => import('./TermsForm.jsx'));

export function TermsAndConditions() {
  return (
    <>
      <h3>Terms and Conditions Long Scroll Accept Form</h3>
      {/* 10 paragraphs of content */}
      <hr />
      <InView>
        {({ inView, ref }) => <div ref={ref}>{inView &&
          <TermsForm />}</div>}
      </InView>
      <label htmlFor="accept">
        <input id="accept" name="acceptTerms"
          type="checkbox" />
        Accept Terms and Conditions
      </label>

Loading JavaScript on element visibility and interaction 257

    </>
  );
}

Finally, we need to add TermsAndConditionsLongScrollAcceptForm as a selectable option
and a dynamically loaded component:

// no changes to imports and definitions outside of Index
export default function Index() {
  // no changes to useState to maintain select state

  const TermsAndConditions = [
    'Short',
    'Long',
    'LongScroll',
    'LongScrollAcceptForm',
  ].includes(selectedTermsAndConditions)
    ? dynamic(() =>
        import(
          `../components/TermsAndConditions$
             {selectedTermsAndConditions}.jsx`
        ).then(({ TermsAndConditions }) =>
          TermsAndConditions),
      )
    : NoRender;
  return (
    <>
      {/* no change to content outside of select */}

      <div>
        {/* no change to label */}
        <select
          id="termsAndConditionsType"
          onChange={(e) => setSelectedTermsAndConditions
            (e.target.value)}
        >
          {/* no change to existing options */}
          <option value="LongScrollAcceptForm">
             LongScrollAcceptForm</option>
        </select>
        <hr />
        <TermsAndConditions />
      </div>

Maximizing Performance – Lazy Loading and Code Splitting258

    </>
  );
}

Now, when we run the next dev server and load the index page, LongScrollAcceptForm is
available. When we select it, the TermsAndConditionsLongScrollAcceptForm.jsx
component is loaded.

Figure 9.14: LongScrollAcceptForm selected and

TermsAndConditionsLongScrollAcceptForm.jsx dynamically loaded

When TermsAndConditionsLongScrollAcceptForm is scrolled to the bottom (to the
point where the checkbox is visible), the TermsForm.jsx component is dynamically loaded and
is shown on the page.

Summary 259

Figure 9.15: TermsAndConditionsLongScrollAcceptForm scrolled to

the bottom and TermsForm.jsx dynamically loaded

We’ve now seen how to load JavaScript and React components on component visibility and interaction
with Next.js.

Summary
In this chapter, we’ve covered various approaches for maximizing the performance of your JavaScript,
React, and Next.js applications with lazy loading approaches and code splitting.

First, we showcased how to use the dynamic import syntax in a Vite-powered setup to cause code splitting
and illustrated it by importing additional code only when it’s required (during an interaction handler).

Next, we saw how Next.js provides out-of-the-box route-based code splitting while also ensuring
modules shared across pages don’t get loaded or output more than once. We also delved into how to
validate this using the Next.js Bundle Analyzer plugin.

Maximizing Performance – Lazy Loading and Code Splitting260

Finally, we covered how to implement different lazy loading scenarios in Next.js: on presence in the
component tree, on change caused by user interaction, importing a JavaScript module during an event
handler, and lazy loading on an element entering the viewport.

We now know how to leverage lazy loading and code splitting to maximize application load performance.
In the next chapter, we’ll cover asset-loading strategies and how to execute code off the main thread.

10
Asset Loading Strategies

and Executing Code off the
Main Thread

There are situations in the life cycle of an application where loading more JavaScript is inevitable. This
chapter details techniques to mitigate the impact of such situations. You’ll learn about asset loading
optimizations such as a script element’s async, the defer attribute, the impact of type="module",
and the link element’s rel (relationship) attribute’s preconnect, preload, and prefetch values.
Next, you will further optimize script loading using Next.js’ Script component and its different
options. The chapter wraps up with an exploration of reasons to execute JavaScript code off the main
thread and an approach to do so.

In this chapter, we’ll cover the following topics:

•	 How to control asset loading more granularly with a script’s async and defer attributes,
and links with preconnect, preload, and prefetch

•	 Further optimization opportunities in Next.js using the Script component and its
strategy prop

•	 When and how to run code off the main thread via Next.js and Partytown

By the end of this chapter, you’ll have the skills to exert more control over asset loading and JavaScript
loading and execution in a web context.

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/
Javascript-Design-Patterns

https://github.com/PacktPublishing/Javascript-Design-Patterns
https://github.com/PacktPublishing/Javascript-Design-Patterns

Asset Loading Strategies and Executing Code off the Main Thread262

Asset loading optimization – async, defer, preconnect,
preload, and prefetch
When using script to load and execute JavaScript, there are HTML attributes of script we can
use to control the loading and execution.

We can rely on the difference between external scripts and inline scripts; we can also use the async,
defer, and type="module" attributes.

We’ll start by defining external and inline scripts, then the async and defer attributes. Finally,
we’ll look at classic and module scripts via the type="module" attribute.

External scripts use the src attribute to point to a separate JavaScript file; for example, what follows
is an external script that will load and evaluate ./script.js when it’s encountered:
<script src="./script.js"></script>

Contrast this with inline scripts, where there is no src attribute; instead, the JavaScript code is in
the script tag contents:

<script>
  console.log('inline script');
</script>

The default load/execution cycle of scripts is what we call blocking. The evaluation of the HTML
document will wait for the script tag’s JavaScript to complete execution.

The async and defer attributes on the script HTML tag can change the behavior of loading
and executing scripts.

Adding async to a script will mean it’s fetched while the rest of the HTML document is parsed. An
async script will be evaluated as soon as it’s loaded. This is a large change to the default document
parsing behavior of script.

Say we have an async.js file that inserts a paragraph with the text async.js: async script
executed:

(() => {
  const node = document.createElement('p');
  node.innerText = 'async.js: async script executed';
  document.body.appendChild(node);
})();

Asset loading optimization – async, defer, preconnect, preload, and prefetch 263

Say we also have a script.js file that also inserts a paragraph with script.js: blocking
script executed:

(() => {
  const node = document.createElement('p');
  node.innerText = 'script.js: blocking script executed';
  document.body.appendChild(node);
})();

Finally, say we have a document that has inline script snippets that also add paragraphs to track
their execution before and after two additional script tags. One script loads async.js with an
async attribute on the script, and the second script loads the script.js element using the default
render-blocking load:

<script>
  (() => {
    const node = document.createElement('p');
    node.innerText = 'inline: script 1 executed';
    document.body.appendChild(node);
  })();
</script>
<script src="./async.js" async></script>
<script src="./script.js"></script>
<script>
  (() => {
    const node = document.createElement('p');
    node.innerText = 'inline: script 2 executed';
    document.body.appendChild(node);
  })();
</script>

This is displayed as follows in a browser when loaded with an empty cache: the inline script 1 executes
first, then script.js, then inline script 2, and finally async.js. Note how async.js was in
the document before script.js but executed after; that’s the effect of the async attribute:

Figure 10.1: Inline scripts, external script, and external script with async execution order

Asset Loading Strategies and Executing Code off the Main Thread264

Next, we’ll see how defer affects the loading of a script.

defer indicates to the browser that the script should only be loaded after the document has been
parsed. However, the DOMContentLoaded event will not fire until all scripts with the defer
attribute are loaded and executed.

Say we add a defer.js file that will insert a paragraph with defer.js: defer script
executed, as shown in the following code block:

(() => {
  const node = document.createElement('p');
  node.innerText = 'defer.js: defer script executed';
  document.body.appendChild(node);
})();

Next, we extend the HTML document from the previous async example by adding <script
src="./defer.js" defer></script> before <script src="./async.js" async></
script>. This will look as follows:

<!-- no change to inline script 1 -->
<script src="./defer.js" defer></script>
<script src="./async.js" async></script>
<script src="./script.js"></script>
<!-- no change to inline script 2 -->

When we load this document in a browser, we see the following output where the deferred script adds
its paragraph after all the other ones despite being before the async.js, script.js, and inline
script 2 in the parse order of the document.

Figure 10.2: Inline scripts, external script, external script with async,

and external script with the defer execution order

Next, we’ll see how “module” and “classic” scripts are affected differently by async and defer.

Asset loading optimization – async, defer, preconnect, preload, and prefetch 265

When a script receives the type of attribute with the module value, that script will get interpreted
as a JavaScript module. We’ll call these “module” scripts, as opposed to “classic” scripts, which don’t
have a type of attribute.

type="module" defers the execution of the script. This means that “module” scripts aren’t affected
by the defer attribute (since that behavior is applied to their execution by default).

The async attribute overall has a similar effect on “module” scripts as it does on “classic” scripts, in that
the script will be loaded in parallel to document parsing and executed once loading has been completed.

One additional effect of the async attribute on “module” scripts is that since JavaScript modules have
syntax to denote dependency loading, the module script itself, and once loaded, all the dependencies
it loads via the import syntax, will be loaded in parallel to the document parsing.

Say we have the following module.js, which inserts module.js: type="module" executed
when it runs:

const node = document.createElement('p');
node.innerText = 'module.js: type="module" executed';
document.body.appendChild(node);

Say we also have the following module-async.js, which inserts module-async.js:
type="module" async executed when it runs:

const node = document.createElement('p');
node.innerText = 'module-async.js: type="module"
  async executed';
document.body.appendChild(node);

We add script tags with type="module" with an inline module that inserts inline:
type="module" executed, and module scripts referencing module.js and module-
async.js:

<!-- no change to inline scripts -->
<script type="module">
  const node = document.createElement('p');
  node.innerText = 'inline: type="module" executed';
  document.body.appendChild(node);
</script>
<script src="./module-async.js" type="module" async>
  </script>
<script src="./module.js" type="module"></script>
<!-- no change to existing external scripts -->

Asset Loading Strategies and Executing Code off the Main Thread266

When we load this document in the browser, we see the following. This illustrates that the default
load/execution of type="module" is deferred since even the inline module script executes after
async scripts. One point of interest is that async on module scripts can make it execute earlier than
scripts without async. This makes sense since async means there’s parallel loading and execution
is “as soon as available,” as opposed to the module script’s default execution method, which is defer:

Figure 10.3: Inline scripts, external script, external script with async, external script with the defer

execution order, inline module script, and external module scripts with async and without

We’ve now contrasted different characteristics of script load/execution: inline versus external, the
impact of async and defer attributes, and classic versus module. The following diagram recapitulates
the execution order:

Figure 10.4: Script load/execute order versus browser document parsing

Asset loading optimization – async, defer, preconnect, preload, and prefetch 267

We’ve now seen how to improve page performance by adapting how JavaScript is loaded and executed.
Next, we’ll learn how to use resource hints to improve page performance.

Resource hints, per the HTML specification, allow consumers to preemptively complete an operation.
They’re used as rel values on link elements. The values relevant to our use case are preconnect,
prefetch, and preload.

preconnect’s definition per the HTML standard is as follows:

“preconnect: Specifies that the user agent should preemptively connect to the target resource’s
origin”, HTML standard – 4.6.7 link types: https://html.spec.whatwg.org/#linkTypes

In summary, preconnect allows developers to “tell” browsers to create a connection to an origin,
enabling subsequent requests to the origin to occur faster, especially in an HTTP/2 context where
more requests can be done in parallel (via multiplexing) and connections are efficiently reused.

For example, we can preconnect to https://example.com using the following snippet of code
which contains link element:

<head>
  <link rel="preconnect" href="https://example.com" />
</head>

Next, preload’s definition per the HTML specification is as follows:

“preload: Specifies that the user agent must preemptively fetch and cache the target resource for
current navigation according to the potential destination given by the as attribute (and the priority
associated with the corresponding destination).” HTML standard – 4.6.7 link types: https://
html.spec.whatwg.org/#linkTypes

preload can be used to load resources before they’re detected on the page. This can be especially
useful in single-page applications or other highly dynamic JavaScript-driven contexts where resources
might not be in the initial returned HTML payload, but we know which resources might be necessary.

Note that preload requires a fully qualified resource path (e.g., https://example.com/
assets/resource-1.js), as opposed to preconnect, which uses the origin only. Also, note
that preload is not designed for use on module scripts; for that, we need rel="modulepreload",
which is defined as follows in the HTML standard specification:

“modulepreload: Specifies that the user agent must preemptively fetch the module script and
store it in the document’s module map for later evaluation. Optionally, the module’s dependencies
can be fetched as well.” HTML standard – 4.6.7 link types: https://html.spec.whatwg.
org/#linkTypes

https://html.spec.whatwg.org/#linkTypes
https://example.com
https://html.spec.whatwg.org/#linkTypes
https://html.spec.whatwg.org/#linkTypes
https://example.com/assets/resource-1.js
https://example.com/assets/resource-1.js
https://html.spec.whatwg.org/#linkTypes
https://html.spec.whatwg.org/#linkTypes

Asset Loading Strategies and Executing Code off the Main Thread268

In our current example, we could request pre-loading of some of our async resources ahead of time
(before they’re “seen” by the browser in the HTML), where our resource loading looks as follows by
default. The load order is defined by the order of the script tags in the HTML element and the priority
for all resources is Normal:

Figure 10.5: Page load including the Network tab without any preload

To illustrate preload, we can add a preload link for async.js and a modulepreload link for
module-async.js inside the HTML head element like in the following snippet:

<head>
  <link rel="preload" href="async.js" as="script" />
  <link rel="modulepreload" href="module-async.js"
    as="script" />
</head>

If we reload our example page, we’ll see that async.js and module-async.js are now loaded
with Highest priority, and before the rest of the scripts on the page. Also note that due to the async
attribute being loaded earlier, the scripts are executed earlier.

Asset loading optimization – async, defer, preconnect, preload, and prefetch 269

Figure 10.6: Page load including Network tab with async.js having

preload and module-async.js having modulepreload

Finally, prefetch is defined as follows in the HTML specification:

“prefetch: Specifies that the user agent should preemptively fetch and cache the target resource as
it is likely to be required for a follow-up navigation” HTML standard – 4.6.7 link types: https://
html.spec.whatwg.org/#linkTypes

This means that prefetch will not only connect (like preconnect does), but do a full load and
cache cycle. prefetch is useful for when resources will be necessary on the next load as opposed
to for the current page (which is where preload and modulepreload should be used).

We’ve now seen how to optimize asset loading via the async and defer attributes on script
elements and via preconnect, preload, and prefetch on link elements. Next, we’ll look
at how the Next.js Script component’s strategy can be used to achieve similar results in a
Next.js application.

https://html.spec.whatwg.org/#linkTypes
https://html.spec.whatwg.org/#linkTypes

Asset Loading Strategies and Executing Code off the Main Thread270

Using Next.js Script’s strategy option to optimize asset
loading
The Next.js Script component gives us more control over script loading behavior, allowing us to
improve page load performance.

The strategy prop allows us to control the loading strategy; it defaults to afterInteractive,
which will begin loading after some of the Next.js code has run. It can be set to beforeInteractive,
in which case the script is loaded and executed before all Next.js code. lazyOnLoad can be used
for lower-priority scripts to delay loading until there’s browser idle time.

The final option is experimental; it’s the worker strategy, which will load and run the script in a
web worker.

Per the Next.js docs for the Script#strategy option, the following list contains the loading
strategies of the script (see the docs: https://nextjs.org/docs/pages/api-reference/
components/script#strategy).

There are four different strategies that can be used:

•	 beforeInteractive: Load before any Next.js code and before any page hydration occurs

•	 afterInteractive (default): Load early but after some hydration on the page occurs

•	 lazyOnload: Load during browser idle time

•	 worker (experimental): Load in a web worker

One of the benefits of the Script component over the script native element is that the loading
strategy can be used even on inline scripts. For example, say we have a pages/index.js page in a
Next.js application; we add some Script components with two approaches to adding inline scripts.
We set the latter Script to use beforeInteractive, remembering that the default strategy
is afterInteractive:

import React from 'react';
import Script from 'next/script';
export default function Index() {
  return (
    <>
      <h1>Next.js Script Strategy</h1>
      <Script>{`console.log('inline script 1');`}</Script>
      <Script
        strategy="beforeInteractive"
        dangerouslySetInnerHTML={{
          __html: `console.log('inline script 2');`,
        }}

https://nextjs.org/docs/pages/api-reference/components/script#strategy
https://nextjs.org/docs/pages/api-reference/components/script#strategy

Using Next.js Script’s strategy option to optimize asset loading 271

      ></Script>
    </>
  );
}

When we run the Next.js server with npx next dev or npx next build && npx next
start, we see that inline script 2 is printed in the console before inline script 1 is;
this is the Script strategies being applied:

Figure 10.7: Second inline Script logging to the console before the first due to the strategy of each Script

We’ll now showcase how we can use the loading strategy with external scripts.

Say we have public/afterInteractive.js, which contains the following:
console.log('afterInteractive.js: loaded');

Similarly, public/beforeInteractive.js and public/lazyOnload.js contain a
console.log function call with the relevant content, beforeInteractive.js: loaded
and lazyOnload.js: loaded respectively.

We can load them using the following changes to pages/index.js; note that we’ve put them in
a rough “reverse” order of loading to showcase the effect of strategy:

import React from 'react';
import Script from 'next/script';
export default function Index() {
  return (
    <>
      {/* no change to h1 or inline script 1 */}
      <Script src="/lazyOnload.js" strategy="lazyOnload" />
      <Script src="/afterInteractive.js" strategy=\

Asset Loading Strategies and Executing Code off the Main Thread272

        "afterInteractive" />
      <Script src="/beforeInteractive.js" strategy=
        "beforeInteractive" />
      {/* no change to inline script 2 */}
    </>
  );
}

When we run the Next.js server with npx next dev or npx next build && npx next
start, we see that beforeInteractive is printed on the console before afterInteractive,
which is printed before lazyOnLoad:

Figure 10.8: Script’s logging in order based on strategy

We’ve now seen how Next.js Script and its strategy prop allow us to control script asset loading
in a Next.js context to achieve additional page load performance. Next, we’ll cover how to run scripts
in a worker thread.

Loading and running scripts in a worker thread
One of the Next.js Script strategy options is worker, which loads and runs the script in a web
worker. In current Next.js versions, this is achieved via a library called Partytown (https://
partytown.builder.io/). The following is from the Partytown documentation:

“Partytown is a lazy-loaded library to help relocate resource-intensive scripts into a web worker, and
off of the main thread. Its goal is to help speed up sites by dedicating the main thread to your code, and
offloading third-party scripts to a web worker.” Partytown home page – https://partytown.
builder.io/

https://partytown.builder.io/
https://partytown.builder.io/
https://partytown.builder.io/
https://partytown.builder.io/

Loading and running scripts in a worker thread 273

To expand on that definition, JavaScript runs in a single-threaded environment in the browser. “Single-
threaded” means we only have one entity able to execute compute operations; non-asynchronous
work cannot be done in parallel. The main thread in this context is the browser’s JavaScript execution
thread. When loading and executing compute-heavy scripts, they can starve other scripts of the
execution environment. By running said compute-heavy scripts in a web worker, it gets a different
JavaScript environment or execution thread, meaning the main thread is freed up to service the rest
of the JavaScript execution.

Since strategy="worker" for Next.js Script is experimental, in order to use it, we need to
enable it in next.config.js like so:

const nextConfig = {
  // no change necessary to other config fields
  experimental: {
    nextScriptWorkers: true,
  },
};
module.exports = nextConfig;

When running npx run dev, you’ll see a warning about the nextScriptWorkers experimental
feature in the terminal in which you’re running the command:

▲ Next.js 13.5.4
- Local:        http://localhost:3000
- Experiments (use at your own risk):
    · nextScriptWorkers

✓ Ready in 2.4s

To illustrate how we can use strategy="worker" powered by Partytown, we can write an
analytics.js script that will log on, load, and make an API call to jsonplaceholder with
some information about the page. We store analytics.js in public/analytics.js to
simulate a third-party script being loaded (or more generally, a dependency that cannot be bundled,
i.e., one we can’t import into our application code):

console.log('analytics.js: loaded');
async function trackPageLoad() {
  const responseJson = await fetch(
    'https://jsonplaceholder.typicode.com/posts',
    {
      method: 'POST',
      body: JSON.stringify({
        page: window.location.pathname,
        origin: window.location.origin,
      }),

Asset Loading Strategies and Executing Code off the Main Thread274

      headers: {
        'Content-type': 'application/json; charset=UTF-8',
      },
    },
  ).then((response) => response.json());
  console.log('analytics.js: page load fetch response',
    responseJson);
}
trackPageLoad();

We can then create a new pages/worker.js file in our Next.js application, which renders a
heading and a few Next.js scripts, including /analytics.js. The other scripts are to illustrate the
load order of the worker strategy versus alternative strategy values:

import React from 'react';
import Script from 'next/script';
export default function Worker() {
  return (
    <>
      <h1>Next.js Script "worker" experimental
         Strategy</h1>
      <Script src="/analytics.js" strategy="worker" />
      <Script src="/lazyOnload.js" strategy="lazyOnload" />
      <Script src="/afterInteractive.js" strategy=
        "afterInteractive" />
      <Script src="/beforeInteractive.js" strategy=
        "beforeInteractive" />
    </>
  );
}

When we load npx next build && npx next start, the production server starts, and
with the Console tab of DevTools open, we can see that strategy="worker" loads after all the
other strategies. We also see that the fetch() call to jsonplaceholder completed successfully:

Loading and running scripts in a worker thread 275

Figure 10.9: worker strategy loading after other strategies and fetch call response logging

Another aspect of loading via the worker strategy is that analytics.js is not loaded as a script;
it’s loaded via fetch. This can be seen by inspecting the Network tab in DevTools, filtering by XHR
(XMLHttpRequest, the precursor to fetch) and inspecting the Initiator field. Note that the
jsonplaceholder request appears here (as two requests, an OPTIONS request to ensure we can
make the cross-origin request followed by the POST request).

Figure 10.10: analytics.js is loaded via fetch, as are requests to jsonplaceholder

Asset Loading Strategies and Executing Code off the Main Thread276

If we dig into the analytics.js request further, we’ll see that the Referer header value (which
helps us keep track of the source of the request) is _next/static/~partytown/partytown-
sandbox-sw.html, which is a Partytown-generated document.

Figure 10.11: analytics.js Referer is the Partytown service worker-generated HTML file

In short, using strategy="worker" loads and executes our script in a different JavaScript context
to the main window, although Partytown is designed so that it should have a high level of similarity
with the origin window.

We’ve now seen how to use strategy="worker" and Partytown to execute scripts off the main
thread in a web worker context.

Summary
In this chapter, we’ve covered techniques to control asset and JavaScript loading more granularly.

In order to control script loading using browser built-in functionality, we can use async and defer
attributes; we covered their effect on module scripts versus classic scripts. We also looked at using the
rel attribute on a link element for resource hints, and what impact preconnect, preload,
modulepreload, and prefetch have on resource loading.

We can leverage the Next.js Script component’s strategy prop to control script loading and
execution beyond async and defer in the context of a Next.js application.

Summary 277

Finally, we looked at the possibility of running certain scripts off the main JavaScript thread using the
Next.js Script worker strategy, powered by the Partytown library.

In this final chapter, we covered asset loading strategies and optimizations such as executing code
off the main thread.

This brings us to the end of this book. Hopefully, you’ve achieved a better understanding of design patterns
in JavaScript and how to implement them. You will be able to discuss and contrast implementations
and the usefulness of language-agnostic patterns that fall into the creational, structural, and behavioral
design pattern categories. In addition, you should be confident with JavaScript-specific patterns
that will help you scale your applications, reactive view library patterns, rendering strategies, and
asynchronous and event-driven programming patterns in JavaScript. Furthermore, you are now
familiar with performance and architecture patterns relevant to JavaScript such as micro frontends,
lazy-loading, code-splitting, and further asset loading optimizations.

Of course, all these patterns are meant to be used and you will discover new ways to compose them and
even notice them in places you didn’t expect. The JavaScript and web platform space is ever-evolving,
and I hope this book stands you in good stead for using more of its great features.

Index

A
AbortController

using, in asynchronous cancellation
and timeouts 196-200

Adapter pattern 44
implementation 44-47
improvements/limitations 49-52
use cases 48

Angular 84
applications, composing with

Next.js zones 150, 151
/checkout app, adding 157-162
/search app, adding 154-157
root app 151-154
team scaling, benefits 162, 163

asset loading optimization
async, using 262-267
defer, using 262-267
preload, using 267, 268
preconnect, using 267
prefetch, using 269

async/await syntax
used, for controlling sequential

asynchronous operations 184-189
automatic static generation 119, 120

Automatic Static Optimization
reference link 119

AWS Simple Storage Service (S3) 112

B
backend for frontend (BFF) 150
batch function 205, 206
behavioral design patterns 54

C
card verification value (CVV) code 221
classic micro frontend patterns 147-149
class singleton pattern

improvements with 16-18
client and server rendering

trade-offs between 117, 118
client-side rendering

in React 112-114
code splitting 233, 234

with Vite 234-237
component 84
creational design patterns 3, 4
cross-origin resource sharing (CORS) 237
cumulative layout shift (CLS) 117

Index280

D
debounce function 203, 204
Decorator pattern 33

implementation 34
improvements/limitations 35, 36
use cases 35

dynamic imports 233
with Vite 234-237

dynamic paths
static generation with 125-132

E
eager initialization

used, for singleton pattern 11, 14, 15
ES module behavior

used, for singleton without class fields 18-20
event delegation 210
event-driven programming 209
event listener performance antipatterns 231
event listeners

organizing, through event
delegation 210-218

F
factory pattern 20

implementation 20-22
improvements, with modern

JavaScript 22, 23
use cases 22

Flyweight pattern 37
implementation 37-41
improvements/limitations 41-43
use cases 41

Formik 85

H
higher-order component pattern 96

implementation/example 96, 97
limitations 97, 98
use cases 97

hooks pattern 98
implementation/example 99-102
limitations 103
use cases 103

I
islands architecture

bundling 179
cart island, building 168-172
drawbacks 179
product island, implementing 165-167
related products island, building 172-178
setting up, with is-land 164, 165
used, for scaling performance-

sensitive pages 163, 164

J
JavaScript

Decorator pattern 33
loading, on element visibility 241-259
loading, on interaction 241-259
prototype pattern, implementing 4

JSON Web Token (JWT) 185

L
largest Contentful paint (LCP) 117
lazy initialization

used, for singleton pattern 11
lazy loading 233
listeners 54

Index 281

M
micro frontends

benefits 146
challenges 149, 150
classic approaches 147-149
overview 146

N
Next.js

static rendering with 118
Next.js Script

strategy option, using to optimize
asset loading 270-276

Next.js zones
drawbacks 163

O
Object.assign()

reference link 8
observer pattern 54

implementation 54-58
improvements 58-61
limitations 58-61
use cases 58

P
page hydration strategies 132-137
parallel asynchronous operation

patterns 189-196
Partytown

URL 272
Payment Card Industry Data Security

Standard (PCI DSS) 218
performance-sensitive pages

scaling, with islands architecture 163, 164

Promises
used, for controlling sequential

asynchronous operations 184-189
prop drilling problem 103, 104
prototype pattern

implementing 4-6
prototype pattern, use case 7, 8

prototype pattern, without classes
in JavaScript 9-11

robustness, increasing to modify in
prototype’s instance variables 8, 9

provider pattern 103
implementation/example 104-108
limitations 109
use case 103, 104

Proxy pattern
implementing, with Proxy and Reflect 26
improving, with Proxy and Reflect

global objects 28-33
Redaction Proxy implementation 26, 27
use cases 27, 28

R
React 84

client-side rendering 112-114
server rendering 112-117

React Context primitive 103
reactive view library patterns 83, 84

hooks pattern 98
provider pattern 103
render prop pattern 84, 85

React rehydration issues 137-140
React streaming server-side

rendering 140-143
Redaction Proxy

implementation 26, 27
Reflect

Proxy pattern, implementing with 26

Index282

render prop pattern 84, 85
components, with flexible

presentation 92-95
implementation/example 89
limitations 95
presentation, decoupling from

data logic 89-91
use cases 85-89

route 237
route-based code bundling 237-240
route-based code splitting 237-240

S
secure frame/native WebView

bridge messaging
patterns 218-230

sequential asynchronous operations
controlling, with async/await syntax 183-189
controlling, with Promises 183-189

server rendering
in React 112-117

singleton pattern
implementation 11-13
improvements, with class

singleton pattern 16-18
single instance, ensuring 13, 14
use cases 15
with eager initialization 11, 14, 15
with lazy initialization 11

singleton, without class fields
ES module behavior, used for 18-20

state and strategy patterns
implementing 61-69
improvements 69-74
limitations 69-74
use cases 69

static generation
with dynamic paths 125-132
with third-party data source 121-124

static hosting 112
static rendering

with Next.js 118
static site generation (SSG) 118
strategy option, Next.js Script

using, to optimize asset loading 270-272
structural design patterns 26
suspense usage

reference link 141

T
third-party data source

static generation with 121-124
throttle function 200-202

U
useEffect hook

reference link 98
useState hook

reference link 98

V
visitor pattern 75, 76

implementation 76-78
use cases 78, 79

Vite
using, in code splitting 234-237
using, in dynamic imports 234-237

Vue 84

W
worker thread

scripts, loading and running 272-276

	Cover
	Title Page
	Copyright and Credits
	Dedications
	Contributors
	Table of Contents
	Part 1:
 Design Patterns
	Chapter 1: Working with Creational Design Patterns
	What are creational design patterns?
	Implementing the prototype pattern in JavaScript
	Implementation
	A use case

	The singleton pattern with eager and lazy initialization in JavaScript
	Implementation
	Use cases
	Improvements with the “class singleton” pattern
	A singleton without class fields using ES module behavior

	The factory pattern in JavaScript
	Implementation
	Use cases
	Improvements with modern JavaScript

	Summary

	Chapter 2: Implementing Structural Design Patterns
	Technical requirements
	What are structural design patterns?
	Implementing the Proxy pattern with Proxy and Reflect
	A redaction proxy implementation
	Use cases
	Improving the proxy pattern in JavaScript with the Proxy and Reflect global objects

	Decorator in JavaScript
	Implementation
	Use cases
	Improvements/limitations

	Flyweight in JavaScript
	Implementation
	Use cases
	Improvements/limitations

	Adapter in JavaScript
	Use cases
	Improvements/limitations

	Summary

	Chapter 3: Leveraging Behavioral
Design Patterns
	Technical requirements
	What are behavioral design patterns?
	The observer pattern in JavaScript
	Implementation
	Use cases of the observer pattern
	Limitations and improvements

	State and strategy in JavaScript and a simplified approach
	Implementation
	Use cases of the state and strategy patterns
	Limitations and improvements

	Visitor in JavaScript
	Implementation
	Use cases of the visitor pattern

	Summary

	Part 2:
 Architecture and
UI Patterns
	Chapter 4: Exploring Reactive View
Library Patterns
	Technical requirements
	What are reactive view library patterns?
	The render prop pattern
	Use cases
	Implementation/example
	Limitations

	The higher-order component pattern
	Implementation/example
	Use cases
	Limitations

	The hooks pattern
	An implementation/example
	Use cases
	Limitations

	The provider pattern
	Use case – the prop drilling problem
	An implementation/example
	Limitations

	Summary

	Chapter 5: Rendering Strategies and Page Hydration
	Technical requirements
	Client and server rendering with React
	Client-side rendering in React
	Server rendering in React
	Trade-offs between client and server rendering

	Static rendering with Next.js
	Automatic static generation
	Static generation with a third-party data source
	Static generation with dynamic paths
	Page hydration strategies
	Common React rehydration issues
	React streaming server-side rendering

	Summary

	Chapter 6: Micro Frontends, Zones, and Islands Architectures
	Technical requirements
	An overview of micro frontends
	Key benefits
	“Classic” micro frontend patterns
	Other concerns in a micro frontend world

	Composing applications with Next.js “zones”
	Root app
	Adding a /search app
	Adding /checkout app
	The benefits/supporting team scaling
	The drawbacks of Next.js zones

	Scaling performance-sensitive pages with the “islands” architecture
	Islands setup with is-land
	Product island
	Cart island
	A related products island
	Scaling with a team – bundling islands
	Drawbacks

	Summary

	Part 3:
Performance and
Security Patterns
	Chapter 7: Asynchronous Programming Performance Patterns
	Technical requirements
	Controlling sequential asynchronous operations with async/await and Promises
	Parallel asynchronous operation patterns
	Asynchronous cancellation and timeouts with AbortController
	Throttling, debouncing, and batching asynchronous operations
	Summary

	Chapter 8: Event-Driven Programming Patterns
	Technical requirements
	Optimizing event listeners through event delegation
	Patterns for secure frame/native WebView bridge messaging
	Event listener performance antipatterns
	Summary

	Chapter 9: Maximizing Performance – Lazy Loading and Code Splitting
	Technical requirements
	Dynamic imports and code splitting with Vite
	Route-based code splitting and bundling
	Loading JavaScript on element visibility and interaction
	Summary

	Chapter 10: Asset Loading Strategies
and Executing Code off the Main Thread
	Technical requirements
	Asset loading optimization – async, defer, preconnect, preload, and prefetch
	Using Next.js Script’s strategy option to optimize asset loading
	Loading and running scripts in a worker thread
	Summary

	Index
	Other Books You May Enjoy

