

BIRMINGHAM—MUMBAI

50 Kubernetes Concepts Every DevOps
Engineer Should Know
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in critical
articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor Packt Publishing or
its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Rahul Nair

Publishing Product Manager: Niranjan Naikwadi

Senior Editor: Tanya D’cruz

Technical Editor: Rajat Sharma

Copy Editor: Safis Editing

Project Coordinator: Ashwin Kharwa

Proofreader: Safis Editing

Indexer: Rekha Nair

Production Designer: Nilesh Mohite

Senior Marketing Coordinator: Nimisha Dua

First published: February 2023

Production reference: 1130123

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80461-147-0

www.packtpub.com

https://www.packtpub.com/

To my son, Zachary, for one day, once you’re older, understanding why I work so
hard, and to my mother for always being there to help out. To the community –
thank you for enjoying the work that I put out and taking this journey with me.

– Michael Levan

Contributors

About the author
Michael Levan is a seasoned engineer and consultant in the Kubernetes space who
spends his time working with start-ups and enterprises around the globe on Kubernetes
and cloud-native projects. He also performs technical research, creates real-world,
project-focused content, and coaches engineers on how to cognitively embark on their
engineering journey. He is a DevOps pro, a HashiCorp Ambassador, and an AWS
Community Builder, and loves helping the tech community by speaking
internationally, blogging, and authoring technical books.

About the reviewer
Chad Crowell has been in the tech industry for 15 years, working as an Engineer, a
DevOps Consultant, Kubernetes Instructor, and a Microsoft Certified Trainer. Chad
has also authored the book Acing the Certified Kubernetes Administrator Exam. He is
passionate about helping others overcome obstacles in their life and work, and
embraces the community and open-source aspects of working in teams.

Table of Contents

Preface

Part 1: First 20 Kubernetes Concepts – In and Out of
the Cloud

1

Kubernetes in Today’s World

Technical requirements
The shift to the cloud
Why organizations care about the cloud
What the cloud did for engineers
Kubernetes, the new cloud OS and data center
Kubernetes in the cloud
Why Kubernetes?
Kubernetes as a data center
Cloud-native apps and why they’re important
What cloud-native apps do for organizations
The world is cloud-based
Engineering talent is toward the cloud
Abstraction is easier, but with a twist
What abstraction does
What abstraction doesn’t do
Start slow and go fast
Understanding the engineering need for Kubernetes
Understanding the business need for Kubernetes
Planning is the hard part

Summary
Further reading

2

Gett ing the Ball Roll ing with Kubernetes and the Top
Three Cloud Platforms

Technical requirements
Azure Kubernetes Service
Creating an AKS cluster manually
Creating an AKS cluster with automation
Scaling an AKS cluster
AKS and Virtual Kubelet
Managing and maintaining AKS clusters
AWS EKS
Creating an EKS cluster manually
Creating an EKS cluster with Terraform
Scaling an EKS cluster
EKS Fargate profiles
GKE
Creating a GKE cluster with Terraform
GKE Autopilot
A quick note on multi-cloud
Summary
Further reading

3

Running Kubernetes with Other Cloud Pals

Technical requirements
Understanding Linode Kubernetes Engine
Why LKE?
Setting up LKE manually
Automating LKE deployments
Exploring DigitalOcean Managed Kubernetes
Why DigitalOcean Kubernetes Engine?
Setting up DigitalOcean Managed Kubernetes manually
Automating DigitalOcean Managed Kubernetes
What is Kubernetes PaaS and how does it differ?
OpenShift
OpenShift in the enterprise
Getting started with OpenShift Sandbox
OpenShift on AWS
Summary
Further reading

4

The On-Prem Kubernetes Reali ty Check

Technical requirements
Understanding operating systems and infrastructure
Kubeadm Deployment
System size
System location

Operating system
Troubleshooting on-prem Kubernetes clusters
Server logs and infrastructure troubleshooting
Network observability
Kubernetes metrics
crictl
kubectl
Introducing hybrid services
Azure Stack HCI
Google Anthos
A quick note about other infrastructure managers
Exploring networking and system components
kube-proxy
CNI
Kubernetes resource communication
DNS
Service mesh and Ingress
Getting to know virtualized bare metal
Virtualizing your environment
Where to run Kubernetes
Summary
Further reading

Part 2: Next 15 Kubernetes Concepts – Application
Strategy and Deployments

5

Deploying Kubernetes Apps Like a True Cloud
Native

Technical requirements
Understanding cloud-native apps
What’s a cloud-native app?
Cloud-specific cloud native
What are microservices?
Learning about Kubernetes app deployments
Kubernetes manifests
Controllers and operators
Different ways to deploy with higher-level controllers
Scaling
Multi-container Pods
Liveness and readiness probes
Exploring segregation and namespaces
Namespaces
Single tenancy
Multi-tenancy
Investigating stateless and stateful apps
Stateful versus stateless
Container Storage Interface

Volumes
Resource requests and limits
Upgrading Kubernetes apps
Types of upgrades
What happens to an app being upgraded?
Rolling updates
Rollbacks
Summary
Further reading

6

Kubernetes Deployment– Same Game, Next Level

Technical requirements
Getting to know Helm charts and Kustomize
Why think about deployment methods for manifests?
Helm charts
Kustomize
Deploying with CI/CD and GitOps
What is CI/CD?
Using CI/CD for Kubernetes deployments
What is GitOps?
Using GitOps for automated deployments
Production use cases for CI/CD and GitOps
Troubleshooting application deployments
Troubleshooting Pods

Troubleshooting Services
Troubleshooting Deployments
Service meshes and Ingresses
Why Ingress?
Why service meshes?
Summary
Further reading

Part 3: Final 15 Kubernetes Concepts – Security and
Monitoring

7

Kubernetes Monitoring and Observabil i ty

Technical requirements
How is monitoring different than observability?
What’s monitoring?
What’s observability?
Monitoring versus observability examples
Monitoring and observability tools for Kubernetes
The Kubernetes Dashboard
Azure Monitor
AWS Container Insights
Grafana/Prometheus
Observability practices
Logging
Metrics
Traces
Monitoring Kubernetes resources
Monitoring Pods
Summary
Further reading

8

Security Reali ty Check

Technical requirements
Out-of-the-box Kubernetes security
Security breakdown
Kubernetes security
Investigating cluster security
Cluster hardening and benchmarks
System scanning
Cluster network security
Upgrading the Kubernetes API
Audit logging and troubleshooting
Understanding RBAC
What is RBAC?
Roles and ClusterRoles
RoleBindings and ClusterRoleBindings
Kubernetes resource (object) security
Pod security
Policy enforcement
Scanning container images
Kubernetes Secrets
Creating Kubernetes Secrets
Don’t use Kubernetes Secrets
Summary
Further reading

Index

Other Books You May Enjoy

Preface
The idea behind Kubernetes is to make engineers’ lives easier, right? Although true,
there are pros and cons to every technology and platform. At the end of the day,
Kubernetes does make handling containerization more efficient, but that doesn’t mean
that it’s easy. Many organizations and engineers put in a lot of effort to truly get
Kubernetes running the way it should run.

The goal of this book, and the overall 50 concepts, is to help mitigate some of these
headaches. Although one book cannot mitigate every single issue that can occur, or
make every single component work the way that it’s supposed to, the overall goal is to
help you use Kubernetes in an easier fashion in production, with 50 key pieces ranging
from cloud to on-prem to monitoring and security, and everything in between. The
world is currently full of content and ways to teach you Kubernetes. This book is to
help you make it to the next level.

Throughout this book, you’ll see everything from creating environments to deploying
a service mesh and Kubernetes resources. I won’t lie – a lot of the topics in this book
are literally books in themselves. Because of that, the explanations and overall pieces
had to be trimmed down a bit. Because of that, you may not have all of the answers in
this book, but it’ll give you an extremely good place to start your Kubernetes
production journey.

With the 50 concepts in mind, you should be able to take what you learn here and
ultimately expand on it in your production environment. Take what you learn, apply it,
and ultimately, know which direction to go in to learn more about the concepts.

Who this book is for
This book is for the engineer that wants to use Kubernetes in production. Perhaps
you’ve just learned the basics and beginner-level information about Kubernetes, and
you’re now ready to make it to the next level. Maybe you’re getting ready to
implement Kubernetes in production or test out containerized workloads for your
environment. In either case, you can use this book as a source to showcase what you
should be thinking about in production.

Think about this book as almost a “guide.” There’s theory, hands-on sections, and
actual code that works from start to finish to create and deploy Kubernetes resources.
As mentioned in the preface, this book can’t cover every single topic in depth, as many
of the topics are books within themselves, but you can use it as a “guide” to deploy to
production.

What this book covers
Chapter 1, Kubernetes in Today’s World, goes over, from a theoretical perspective,
how you should think about Kubernetes in the current ecosystem – things such as why
it’s important, what the whole idea of “cloud native” means, and what containerization
as a whole is doing for engineers.

Chapter 2, Getting the Ball Rolling with Kubernetes and the Top Three Cloud
Platforms, hits the ground running with cluster deployments. You’ll learn how to
deploy Kubernetes clusters in Azure, AWS, and GCP. You’ll see from a UI/GUI
perspective how to deploy the clusters with code. This chapter uses Terraform for
Infrastructure as Code (IaC), as that’s currently the most popular method in
production.

Chapter 3, Running Kubernetes with Other Cloud Pals, teaches you how to deploy the
top three most popular managed Kubernetes services. However, that doesn’t mean
those are the only methods. In this chapter, you’ll see a few more popular options that
are used in production but are mostly used for testing production workloads, as they’re
a bit cheaper from a cost perspective.

In today’s cloud-centric world, a lot of technical marketing and content that you see on
social media doesn’t talk about on-prem. The reality is that on-prem, especially on-
prem Kubernetes clusters, are still very much a thing. In Chapter 4, The On-Prem
Kubernetes Reality Check, you’ll learn about how to think about on-prem from a
theoretical perspective and a bit hands-on.

Chapter 5, Deploying Kubernetes Apps Like a True Cloud Native, starts your journey
into deploying applications to the cloud. In the first few chapters, you learned about
cluster management, which is drastically important but only one half of the puzzle.
The second piece of the puzzle is actual Kubernetes resource deployment.

Starting off where you left off in the previous chapter, Chapter 6, Kubernetes
Deployment – Same Game, Next Level, takes Kubernetes resource deployments to the
next level. You’ll be introduced to concepts such as CI/CD, GitOps, and service mesh
deployments. This is considered the “advanced” piece of Kubernetes resource
deployments, which you’ll see a lot of in production.

Up until this point in the book, you’ve learned how to deploy and manage clusters and
applications. Once clusters and apps are deployed, you then need to confirm that
they’re running as expected. That’s where observability and monitoring come into
play, which we will look at in Chapter 7, Kubernetes Monitoring and Observability.

To wrap up any Kubernetes production deployment, you need to think about one major
element before any resource reaches production – security. Security is the make or
break between a successful environment and a long weekend of putting out fires. In
Chapter 8, Security Reality Check, you’ll learn the major components to secure a
Kubernetes environment and a few key tools and platforms that you can use to make it
happen.

To get the most out of this book
This book is a healthy combination of theory and hands-on. The reason for this is that
theory is great, but if you don’t know how to implement it, it’s not going to be much
use to you in production. To follow along with this book, you should have access to
the major clouds, a few VMs, and perhaps a few dollars to spend on the environments.

If you are using the digital version of this book, we advise you to type the code
yourself or access the code from the book’s GitHub repository (a link is available in
the next section). Doing so will help you avoid any potential errors related to the
copying and pasting of code.

Download the example code fi les
You can download the example code files for this book from GitHub at
https://github.com/PacktPublishing/50-Kubernetes-Concepts-Every-DevOps-Engineer-
Should-Know. If there’s an update to the code, it will be updated in the GitHub
repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://packt.link/FQMAS.

Conventions used
There are a number of text conventions used throughout this book.

https://github.com/PacktPublishing/50-Kubernetes-Concepts-Every-DevOps-Engineer-Should-Know
https://github.com/PacktPublishing/
https://packt.link/FQMAS

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: “Mount the downloaded WebStorm-10*.dmg disk image file as
another disk in your system.”

A block of code is set as follows:

terraform {

 required_providers {

 azurerm = {

 source = "hashicorp/azurerm"

 }

 }

}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

variable "name" {

 type = string

 default = "aksenvironment01"

}

Any command-line input or output is written as follows:

sudo systemctl daemon-reload

sudo systemctl enable crio --now

Bold: Indicates a new term, an important word, or words that you see on screen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: “Select
System info from the Administration panel.”

TIPS OR IMPORTANT NOTES
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of your
message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if

mailto:customercare@packtpub.com

you would report this to us. Please visit www.packtpub.com/support/errata and fill in
the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read 50 Kubernetes Concepts Every DevOps Engineer Should Know,
we’d love to hear your thoughts! Please click here to go straight to the Amazon review
page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure
we’re delivering excellent quality content.

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that
book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your
favorite technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and
great free content in your inbox daily

Follow these simple steps to get the benefits:
1. Scan the QR code or visit the link below

http://www.packtpub.com/support/errata
mailto:copyright@packt.com
https://authors.packtpub.com/
https://packt.link/r/1804611476

https://packt.link/free-ebook/9781804611470

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

clbr://internal.invalid/book/OEBPS/B19116_Preface_eBook.xhtml

Part 1: First 20 Kubernetes Concepts – In and
Out of the Cloud
When engineers first dive into Kubernetes, it can almost feel like a tool of sorts. You
use it to run and deploy containers. However, that’s not the case. Kubernetes in itself is
a platform. It’s almost like a subset of a methodology to run containers. Kubernetes,
among many other platforms, is why the whole platform engineer title is becoming so
popular. The DevOps space is moving away from thinking about just tools and
focusing on the entire platform and environment.

With different platforms comes the question – where do you run it? The first set of
concepts in the 50 concepts will be explained here with the overall architecture of
Kubernetes.

Kubernetes is something that’s heavily utilized in the cloud, but it’s also heavily
utilized on-premises. An example of this is certain regulatory requirements. I was
recently chatting with a colleague that works in the defense space. Because of the
obvious heavy security requirements that they have, along with the need to stay as
close to certain areas as possible, using Kubernetes at the edge was a crucial part of
success. Some of the edge Kubernetes nodes were running on k3s, which is a popular
method of running Kubernetes for ARM devices. Those ARM devices are on-
premises, so not in the cloud.

On the flip side, a lot of organizations don’t have this regulatory requirement, so
running Kubernetes in the cloud as a managed service is perfectly valid. It’s also an
easier approach to hit the ground running with Kubernetes. For example, utilizing
Azure Kubernetes Service (AKS) is a lot easier from the start than bootstrapping a
five-node cluster with Kubeadm.

By the end of this part, you should fully understand how to get started with
Kubernetes, how to run it in the cloud, and the different popular cloud services that are
available for you to use. Although not every single managed Kubernetes service is
covered in these four chapters, these chapters will get you through the most popular
along with giving you a solid idea of how the other services will look and be utilized.

This part of the book comprises the following chapters:
Chapter 1, Kubernetes in Today’s World

Chapter 2, Getting the Ball Rolling with Kubernetes and the Top Three Cloud Platforms

Chapter 3, Running Kubernetes with Other Cloud Pals

Chapter 4, The On-Prem Kubernetes Reality Check

1

Kubernetes in Today’s World
If you’re reading this book, chances are you’ve been, or still are, in the tech/IT world
in some capacity, whether it’s from the operations side, the development side, or both
– perhaps even technical leadership or product management. In any case, you’ve most
likely heard about a platform/technology called Kubernetes. From how every
company, both small and large, is talking about Kubernetes, a lot of engineers and
leadership personnel think it’s going to solve many problems. Although that’s true,
there’s a twist, and with everything that makes our lives easier, there are caveats.

This chapter is primarily theoretical and will answer a lot of the questions you most
likely have about moving to the cloud, hybrid environments, cloud-native/specific
applications, and how Kubernetes is taking over the microservice ecosystem.

By the end of this chapter, you’ll be able to answer some of the questions about the
pros and cons of implementing Kubernetes. You’ll have a solid understanding of why
engineers and leadership teams alike are moving to Kubernetes. The gears will also
start moving in your head concerning what your current application(s) look like and
whether Kubernetes would be a good fit.

In this chapter, we’re going to cover the following topics:
The shift to the cloud

Kubernetes, the new cloud OS and data center

Cloud-native applications and why they’re important

Abstraction is easier, but with a twist

Start slow and go fast

Technical requirements
This chapter will be more theory than hands-on, so you don’t have to worry about any
coding or labs. To follow along with this chapter, and this book in general, you should
have beginner-level knowledge of Kubernetes, intermediate knowledge of the cloud,
and some experience with applications and architecture.

Moving forward, a lot of the chapters in this book will include labs and hands-on
work. You can find the code for each exercise in this book’s GitHub repository at

https://github.com/PacktPublishing/50-Kubernetes-Concepts-Every-DevOps-Engineer-
Should-Know.

The shift to the cloud
Before diving into Kubernetes, there’s an important question to ask: Why use
Kubernetes? The reality is that organizations have been deploying applications without
Kubernetes for years. There wasn’t Kubernetes in the 1980s when engineers were
writing software to floppy disks. So, why now?

The answer to this question is a complicated one and the best place to start is by
thinking about what the cloud does for us – not necessarily what the cloud is, but
instead what the cloud helps us think about when deploying software and systems
from an architect, engineering, and management perspective. In this section, you’re
going to learn about the following aspects of the cloud:

Why organizations care about the cloud

What the cloud did for engineers

How abstraction can help us learn from our mistakes

How the cloud doesn’t exactly do what people think it does

Let’s take a closer look.

Why organizations care about the cloud

Leadership teams in organizations, whether it’s the CIO, CTO, or someone in a
technical leadership position, tend to tie Kubernetes to the cloud. However, this
couldn’t be any further from the truth. The reason why could be anything from
incredibly good technical marketing to not having enough experience from a hands-on
perspective to truly understand what’s happening underneath the hood in a cloud
environment. However, let’s digress from that and think about why everyone cares
about the cloud. The best way to do this is with a visual, so let’s take a look at the
following diagram:

https://github.com/PacktPublishing/50-Kubernetes-Concepts-Every-DevOps-Engineer-Should-Know

Figure 1.1 – Data center web app architecture

The preceding diagram is of a data center architecture. There are a lot of pieces, some
marked and some not, including the following:

Servers

Network equipment

Connections between servers

Ethernet cables and power cables

With all of that hardware not only comes costs of actually buying it, but also costs
around hiring engineers to manage it, maintain it, and keep the lights on in the data
center. Not to mention it takes about 4 to 6 months for a full data center to be up and
running. With the time that it takes the data center to get up and running, on top of all
of the costs and management of hardware, having cloud-based systems starts to make a

lot of sense to senior leadership teams for any organization ranging from start-ups to
the Fortune 500.

Now, let’s take a look at the architecture in Figure 1.2. This diagram shows a few
things, including the following:

RDS (Amazon’s database service)

Load balancers

CDNs

S3 buckets (cloud storage in AWS)

Route 53 (AWS DNS)

The architecture diagram in Figure 1.2 is similar to Figure 1.1, in that they are both
data centers, but only Figure 1.2 is virtualized as exactly what you would see in a data
center. You have network components, storage, databases, servers, and everything in
between. The biggest difference is what you’re seeing here is virtualized. It’s a virtual
data center with virtual services. Because there are engineers that work at AWS
managing the hardware, networking, and other peripherals for you, you no longer have
to do it. You only have to worry about the services themselves and making sure they’re
working as expected.

No more buying hardware. No more replacing hard drives. No more waiting 4 to 8
months for hardware to arrive at your data center so you can finally build it. Instead,
an entire data center is only a few button clicks or a few lines of automation code
away:

Figure 1.2 – Cloud web app architecture

Going off of the preceding diagram, here’s where Kubernetes comes into play.
Regardless of what option you go with, on-premises or in the cloud, there’s still a ton
of stuff to manage. Even though the cloud makes infrastructure easier, there are still
major staffing needs and a big cost behind creating all of the cloud infrastructures.

The following are a few pieces of the puzzle to manage:
Load balancers

Virtual machines (or bare-metal servers)

Network equipment (virtual or physical)

Subnets, private IPs, public IPs, and gateways

Security for multiple pieces of virtualized hardware and services

And that’s just to name the general categories. Within each category, there are multiple
components (physical and/or virtual) to manage. With Kubernetes, it’s all abstracted
away from you. There aren’t any firewalls or gateways because that’s managed via
kube-proxy. There are no virtual machines that you have to deploy other than the
Kubernetes nodes because the apps are running in Kubernetes Pods.

If you run Kubernetes in a Kubernetes service such as Azure Kubernetes Service
(AKS) or GKE, the management of the Control Plane, sometimes referred to as the
API server or the master nodes (a now deprecated way to describe Control Planes), is
completely abstracted away from you.

What AKS, GKE, or another one of the cloud Kubernetes services does underneath the
hood is the same thing that you would do if you ran a raw Kubernetes cluster in a
bunch of virtual machines. The underlying technology, how it works, and how it’s used
don’t change. The only thing that changes is the abstraction.

That’s why the cloud is important for Kubernetes and that’s why CIOs, CTOs, and
engineers should care.

What the cloud did for engineers

“The cloud is just someone else’s computer,” as some may say in passing or on funny
stickers. As we all know, in every joke is a little truth. The truth is, it’s correct. When
you’re interacting with the cloud, it’s not that you’re interacting with some magical
service that is just there. Instead, you’re interacting with services that are managed by
other engineers.

For example, let’s say you’re working with Azure virtual machines or EC2 instances in
AWS. From your perspective, you log into one of the portals or write some
Infrastructure as Code (IaC) and in a few minutes, your new virtual server/cloud
server is deployed. On the backend, there’s way more that goes into it. There are a ton
of different parts, some of which include the following:

Autoscaling the servers

Doing multiple checks to ensure that there’s enough hard disk, CPU, and RAM space on the
physical/bare-metal server that’s being used

Networking setup

Lots of automation

Remember, because the cloud servers that you’re deploying are running on bare-metal
servers, people have to be there to manage those servers and maintain them. The cloud
is an abstraction layer that you don’t see. With that being said, the cloud has done a lot
for engineers.

Let’s take a start-up company for example. Years ago, if a start-up company wanted to
do anything in the tech space, they needed servers to host applications and websites.
For a small company that’s working out of a tiny office or even from someone’s house,
it’s not possible to have a layer of high availability, redundancy, and scalability. They
simply cannot afford the hardware, the space, and the employees to do it.

With the cloud, they no longer have to worry about having to do all of that. Instead, the
start-up can focus on building applications and deploying them to the cloud.
Deploying applications to the cloud is not easy and it certainly has its own complexity,
but the idea behind it is to abstract away physical needs (servers, infrastructure, and so
on) that your company may not want to/have to worry about.

Kubernetes, the new cloud OS and data center
Kubernetes is a topic that’s on everyone’s mind, but at the same time, a lot of
individuals don’t understand why. Is it the actual platform itself? Or what the platform
does for engineers in today’s world? The answer to those questions is – sort of both.
Kubernetes does several things, but the primary pieces include the following:

Deploying your containerized application

Scaling your application

Ensuring that your application is highly available

Giving you the ability to secure your application and the users accessing the application

These four points sound like what engineers have already been doing with computers
since the inception of the first mainframe. The question now becomes, why is
Kubernetes so popular?

Kubernetes in the cloud

Everywhere you look, it feels like there’s a new way to utilize the Kubernetes platform
or some new tool that’s supposed to make your life easier. Some of these platforms
include the following (you’ll learn more about these in the upcoming chapters):

Cloud Kubernetes services such as AKS, Google Kubernetes Engine (GKE), and Amazon
Elastic Kubernetes Service (EKS)

Platform-as-a-Service (PaaS) offerings such as OpenShift

Serverless Kubernetes platforms such as Azure Container Apps and AWS Fargate profiles on
EKS

Although that’s not an extensive list, you can see that just the sheer number of
platforms that are at your disposal can make it extremely difficult to pick and choose
what you should ultimately go with. The semi-agreed-upon answer to this question is
that it all depends on your current ecosystem. If you’re in AWS, use EKS. If you’re in
Azure, use AKS. If you’re a Red Hat Enterprise customer, check out OpenShift. The
reason why is that, at the end of the day, all of the Kubernetes services are doing the
same thing. They’re all using Kubernetes under the hood and utilizing cloud services
to make your life easier.

For example, if you’re using AKS, chances are you probably want to use Azure
Active Directory (AAD) to manage who has access to what in the AKS cluster. Azure
makes it extremely straightforward to implement this because the goal of a Kubernetes
service in the cloud is to do exactly that. All public clouds in general are trying to
make your life easier, regardless of what cloud you’re using. A great example of this is
how you can use AAD inside of GKE via federation with Cloud Identity to map AAD
tenants, users, and groups.

Why Kubernetes?

The question from the beginning of this chapter around why people want to use
Kubernetes has sort of been answered, but there’s still more to think about. Primarily,
we must think about why everyone is flocking toward Kubernetes, especially
Kubernetes services in the cloud. The answer to why people are using Kubernetes
services in the cloud is typically something similar to one of the following:

You don’t have to worry about the underlying infrastructure

Worker nodes and Control Planes are scaled for you automagically

And although those are great answers, you’re still not any closer to the answer as to
why you should use Kubernetes if all it’s doing is what everyone has been doing in
tech for years. It’s not implementing anything new or out of the ordinary.

Simply put, the reason why people like Kubernetes is that it allows you to interact with
your infrastructure via an API. When you run a Kubernetes command such as
kubectl apply -f deployment.yaml, you’re interacting with the Kubernetes API.
When you run a command such as kubectl get deployments, you’re interacting

with an API. 99% of what you do when interacting with Kubernetes is all API-based.
It’s a bunch of GET and POST requests. The reason why Kubernetes makes engineers’
lives easier is that what you used to have to do to get an application up and running on
multiple servers is now abstracted away and it’s all now at the programmatic level. All
APIs.

Kubernetes as a data center

Remember data centers? Those things that have the loud, big computers running with a
bunch of fans and air conditioners? Perhaps you’re from the era of spending hours in a
data center, racking and stacking servers, and taking a nap on the data center floor
using your backpack as a pillow. If you’ve never done any of that, consider yourself a
lucky person!

When thinking about a data center, there are several components, but let’s think about
the main ones that engineers care about:

Servers

Network equipment (firewalls, load balancers, routers, switches, gateways, and so on)

Outbound and inbound connectivity

Security

The ability to run software and virtualization on the servers

Containerization platforms such as LXC and Docker were able to give us the fifth
point mentioned here – virtualization of OSes and the ability to run software – but
what about the rest? Engineers needed a way to orchestrate and manage the software
and virtualized OSes. That’s where Kubernetes comes into play.

Kubernetes fills every piece of the data center puzzle:
Networking, including Pod-to-Pod communication, services, service meshes, Ingress, load
balancing, and routing.

Security and encryption between Pods and services

High availability for clusters

The ability to deploy, manage, scale, and maintain applications of any kind (must be
containerized)

Authentication and authorization capabilities from third-party tools such as AAD and IAM
users/roles

Kubernetes is a one-stop shop for everything that you would find in a data center. The
biggest difference is that the infrastructure (if you’re running in the cloud and not on-

premises) is completely abstracted away. You don’t have to worry about the day-one
operations; you only have to worry about getting an application deployed,
orchestrated, and working as you and your team see fit.

One important piece of information to think about here is with new technology comes
new problems. Kubernetes isn’t easy. Just because you don’t have to deal with
sleeping on a data center floor doesn’t mean you won’t have an entirely new set of
problems to understand and fix. Does Kubernetes make your life easier as an engineer?
Yes. Does Kubernetes make your life harder? Yes. Although, the goal is to make your
life a little less hard with Kubernetes, please keep in mind that it isn’t a magic box that
you set and forget.

Cloud-native apps and why they’re important
When thinking about creating any type of application, automation code, or piece of
software, there always needs to be some sort of standard. The thing is, there are many
standards and there isn’t a one-size-fits-all solution. Sure, there are (what should be)
mandatory standards for writing code such as storing the code in source control and
running certain types of tests, but the workflows for each organization will be
drastically different.

When it comes to cloud-native applications and applications running on Kubernetes,
the thought process of workflows is the same as any other application, but there are
true, standard processes that are automatically implemented for you. This includes
things such as the following:

Easy autoscaling

Self-healing

Networking out of the box

And a lot more

In the upcoming section, we’ll build on what you learned previously and dive into
what cloud-native apps do for organizations.

What cloud-native apps do for organizations

By definition, a cloud-native application gives you the ability to do the following:
Easily scale

Make highly available almost out of the box

Deploy more efficiently

Continuously make changes in a much easier fashion versus outside of Kubernetes in a bare-
metal/data center environment

When thinking about cloud-native applications and the preceding list, microservices
typically come to mind. The idea behind microservices, which is a big piece of the
idea behind cloud-native, is the ability to make changes faster and more efficiently.
When you’re dealing with a monolithic application, the application has many
dependencies and is essentially tied together. You can’t update one piece of the
application without bringing down the rest of the application. Blue/green and canary
deployments are far more complicated because of the tightly coupled monolithic
application. Self-healing and scalability mean scaling the entire application, not just
the pieces that need to be scaled, which means more resources (RAM, CPU, and so on)
are typically consumed than what’s needed.

Cloud-native and the microservice mindset aim to fix this problem. With microservices
running inside Kubernetes, there are some extreme benefits. You can manage how
many replicas (copies) of the application are running. That way, you can scale them
out or scale them back when needed. Self-healing of Pods is far more efficient since if
a piece of the application that’s running inside of a Pod goes down, it’s not a huge deal
because it’ll come right back up automatically. The applications running inside of
Pods, which have one or more containers running inside of the Pods, are loosely
coupled, so updating/upgrading versions of the application in a blue/green or canary
scenario utilizing a rolling update is far less likely to fail.

When it comes to teams, as in, individual engineers, microservices help a ton. With a
monolithic application, there is a fair amount of coordination that has to happen
between the team when changing anything in the code base. Although teamwork and
communication are crucial, there shouldn’t be a reason to let everyone know about a
code change in the development environment that you’re making to test a piece of
functionality without breaking everyone else’s code. With how fast organizations want
to move in today’s world, this process slows engineering teams down to a grinding
halt. Not to mention, if an engineer wants to test how the functionality will work with
the rest of the application, they shouldn’t have to worry about every piece of the
application breaking. That’s really where microservices shine.

When the Kubernetes architecture was built, it was thought about in the same way as
cloud-native applications – a loosely coupled architecture that is easily scalable and
doesn’t have a ton of dependencies (hence, the microservice movement). Can you run
monolithic applications on Kubernetes? Absolutely. Will they still self-heal and
autoscale? Absolutely. The idea behind a cloud-native application environment and
cloud-native Kubernetes is to use a microservice-style architecture, but you shouldn’t
let that stop you from jumping into Kubernetes. The primary goal is to have

independent services that can be accessed via an Application Programming
Interface (API).

The final piece of the puzzle is containerized applications. Before even running an
application inside Kubernetes, it must be containerized. When the idea of containers
was thought about way before Docker was around, the idea was to have the ability to
split an entire application into tiny micro-sized pieces. When containers are built,
they’re built with the same mindset as the following aspects:

Self-contained execution environments

Virtualized OSes

Microservice architecture with the ability to split up pieces of an entire application and
consolidate it into a single container for the ability to easily scale, update, and swap out

The world is cloud-based

One of the worst things that an organization can do in today’s world, from an
engineering perspective, is to get left behind. The last thing an organization wants is to
realize 10 years later that the systems and dependencies that they have in place are so
old that no organization or software company is even supporting them anymore. The
golden rule before 2015/2016 was to ensure that the architecture and the
people/engineers running the architecture were up to date every 5 to 10 years. Now,
with how fast technology is moving, it’s more like every 2 to 5 years.

When looking at organizations such as Microsoft, Google, and AWS, they’re releasing
huge changes and updates all the time. When attending a conference such as Microsoft
Build or the AWS Summit, the keynotes are filled with game-changing technology
with tons of new services coming to the cloud platforms all the time. The reality is that
if organizations don’t want to be left behind, they can’t wait more than 5 years to start
thinking about the newest technology.

With that being said, many organizations can’t simply upgrade systems every 6 months
or every year because they’re too large and they don’t have enough people to make
those migrations and updates. However, technology leaders need to start thinking
about what this will look like because the future of the company will be on the line.
For example, let’s look at the change in Windows Server over the past few years.
Microsoft used to constantly talk about new Windows Server versions and features at
every conference. Now, it’s all about Azure. The technology world is changing
drastically.

Where Kubernetes fits in here is that it helps you make cloud-native and fast-moving
decisions almost automatically. For example, let’s say (in a crazy world) Kubernetes

goes away in 3 years. You still have your containerized applications and your code
base that’s in source control and loosely coupled, which means you can run it
anywhere else, such as in a serverless service or even a virtual machine if it comes
down to it. With the way that the world is going, it’s not necessarily about always
using Kubernetes to prevent an organization from going down. It’s about what
Kubernetes does for engineers, which is that it allows you to manage infrastructure and
applications at the API level.

Engineering talent is toward the cloud

One last small piece we will talk about is the future of engineers themselves. New
technology professionals are all about learning the latest and greatest. Why? Because
they want the ability to stay competitive and get jobs. They want to stay up to date so
they can have a long and healthy career. What this means is that they aren’t interested
in learning about how to run a data center, because the tech world is telling everyone
to learn about the cloud.

As time goes on, it’s going to become increasingly difficult for organizations to find
individuals that can manage and maintain legacy systems. With that being said, there’s
no end in sight for legacy systems going away. That’s why organizations such as banks
are still looking for COBOL developers. The thing is, no engineer wants to bet their
career in their 20s on learning legacy pieces.

Abstraction is easier, but with a twist
One of the biggest buzzwords in the technology space today is abstraction.
Abstraction, at its highest level, involves removing certain pieces of work from you
that you specifically need to do to get the job done. For example, if a developer needs
to run code, they need to run code. They don’t need to build virtual machines or
deploy networks. They simply need to run an application. Removing the need for a
virtual machine or a network is abstracting away what the developer doesn’t need to
spend time and focus on.

What abstraction does

Let’s take a look at what abstraction does from two sides – Dev and Ops.

From a Dev perspective, the goal of a developer is to plan out pieces of an application,
write the code to make those pieces work, and deploy them to see how the pieces work
together. However, to deploy the code, you used to need a server, an OS, and other

components. With platforms such as Kubernetes, developers don’t need that anymore.
Instead of having to worry about deploying virtual machines, developers simply have
to write a Kubernetes manifest that contains a container image with the application
inside of it. No more having to worry about day-one operations.

From an Ops perspective, infrastructure engineers or cloud engineers no longer have to
worry about having to stop what they’re doing to order servers, deploy virtual
machines, and fight to make an OS work as expected. Instead, they can write out a
Kubernetes manifest and other API-driven techniques (such as IaC) to ensure that a
Kubernetes cluster is up and running, operational, and ready to host developer
code/container images.

What abstraction doesn’t do

One primary thing that abstraction doesn’t do is remove the need to think logically and
from an architectural perspective for engineering-related work. Abstraction removes
what’s now considered the low-hanging fruit of an environment. For example, a virtual
machine with the need to deploy an OS and manage all the components can now be
considered low-hanging fruit when the other option is to deploy a Kubernetes cluster
and manage the infrastructure at the API level.

The important piece to remember is that engineers and developers still need to think.
Abstraction isn’t about having a solution where you press a button or two and poof,
your application is up and running with scaling and plenty of high availability.
Abstraction at this level still requires solid architecture, planning, and repeatable
processes.

Start slow and go fast
The final part of this chapter will involve mapping out how you can start slow but, at
the same time, go fast when implementing Kubernetes. The idea is that you want to
understand what’s happening inside of your organization so that you truly know the
need for Kubernetes. Once you know that, you can start implementing it as fast as
possible without taking on technical debt and management worries. When thinking
about how to start slow and go fast, the premise is to understand the why behind the
conversation around Kubernetes and then once you know that, start iterating.

Understanding the engineering need for Kubernetes

Every good engineer has a lot of goals, but a few of the primary ones are as follows:

Make my life easier

Remove the work that isn’t important

Conduct value-driven work for an organization

When it comes to putting out fires, waking up at 2:00 A.M. and rushing around to try
to get a server up and running for a developer isn’t the most fun part of an engineer’s
day. Instead, they want to focus on providing value to an organization. Abstraction
helps a ton with removing what isn’t needed, as does removing toil.

The same goes for developers. They don’t want to worry about waiting days or weeks
(or longer) to get a server up and running to host an application. They want a quick,
efficient, and scalable way to host applications without having to sit around and wait.

The goal is for an engineer to understand the need for Kubernetes. It’s easy to look at
the latest and greatest technology so that it can be implemented. That’s typically the
fun part for many engineers, both on the Ops and Dev sides. However, the most
important piece is understanding that Kubernetes removes the low-hanging fruit for
setting up environments and instead allows you to focus on value-driven work.

Understanding the business need for Kubernetes

There are always two sides to a tech plan in any organization – the
technical/engineering side and the business side. On the business side, the primary
important pieces are as follows:

Will Kubernetes help us go faster?

Will Kubernetes make us more efficient?

Will Kubernetes help us get to market faster?

Will Kubernetes help us reduce downtime and engineering overhead?

The answers to those questions are yes and no, and as an engineer, you have to be
prepared to answer them. The golden rule is that Kubernetes removes the incredible
complexity of racking and stacking a data center, much like the cloud. When talking
about Kubernetes to the business, it isn’t a conversation around implementing this
Kubernetes thing and all our problems go away. The conversation is more around this
Kubernetes thing will make our lives easier.

Planning is the hard part

As engineers, both on the Dev and Ops sides, playing with new technology is fun.
Learning new tricks, new platforms, and beefing up your resume to stay competitive in
the market is what a lot of individuals think about. Although that’s great, you also
must think about the why behind implementing Kubernetes.

Before moving on to the next chapter, think about these three things:
Why do I feel like Kubernetes is important?

How can Kubernetes help my environment progress?

How can Kubernetes make deploying software easier?

Now, let’s summarize what we’ve learned in this chapter.

Summary
Before you can even think about implementing Kubernetes, you need to learn about
what the cloud is doing for engineers, what cloud-native applications are doing for
engineers, and why organizations need to start thinking about Kubernetes. This is
always the first step in any engineering-related decision since it impacts not only you
but the organization as a whole. Because of the way that the tech world is changing,
understanding the need for implementing cloud-based solutions and how to move fast
but start slow is how organizations have successful Kubernetes deployments and a
smooth on-ramp from traditional monolithic applications to implementing
microservices.

Now that you know the why behind implementing cloud-native technologies such as
Kubernetes and what cloud-native applications do for organizations, it’s time to start
learning about how to get started with Kubernetes. We will start the next chapter by
understanding how to implement a Kubernetes service in the top three clouds.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the
following resources:

Architecting Cloud Computing Solutions, by Kevin L. Jackson and Scott Goessling:
https://www.packtpub.com/cloud-networking/cloud-computing

vSphere Virtual Machine Management, by Rebecca Fitzhugh:
https://www.packtpub.com/product/vsphere-virtual-machine-management/9781782172185

Cloud Native Architectures, by Tom Laszewski, Kamal Arora, Erik Farr, and Piyum Zonooz:
https://www.packtpub.com/product/cloud-native-architectures/9781787280540

https://www.packtpub.com/cloud-networking/cloud-computing
https://www.packtpub.com/product/vsphere-virtual-machine-management/9781782172185
https://www.packtpub.com/product/cloud-native-architectures/9781787280540

2

Getting the Ball Roll ing with Kubernetes and the
Top Three Cloud Platforms
When starting your Kubernetes journey, the typical first step is to create a Kubernetes
cluster to work with. The reason why is that if you, for example, start by creating a
Kubernetes Manifest (more on this in later chapters), you’ll have nowhere to deploy
the Manifest to because you don’t have a Kubernetes cluster. The other reality when it
comes to Kubernetes is there’s a ton of cloud-native operations management – things
such as monitoring a cluster, automating the deployment of a cluster, and scaling a
cluster. Because of that, understanding cluster creation is a crucial step in your
Kubernetes journey.

In the previous chapter, you learned not only about why Kubernetes is important but
also the backstory of why engineers want to use orchestration in today’s world. In this
chapter, you’re going to hit the ground running by creating and managing your very
own Kubernetes clusters in the three major clouds – Azure, Amazon Web Services
(AWS), and Google Cloud Platform (GCP).

By the end of this chapter, you’ll be able to fully create, deploy, manage, and automate
Kubernetes clusters running in the three major clouds. The skills that you will pick up
from this chapter will also translate across other Kubernetes cluster deployments. For
example, you’ll be using Terraform to automate the Kubernetes cluster creation, and
you can use Terraform to deploy Kubernetes clusters in other clouds and on-premises
environments.

In this chapter, we’re going to cover the following topics:
Azure Kubernetes Service

AWS EKS

GKE

With each of the topics, you’ll learn how to properly run them in a production-level
environment. Throughout the rest of the chapter, you’ll be working in depth with
various amounts of hands-on-driven labs, creating resources automatically and
manually.

Technical requirements

For the purpose of this chapter, you should already know how to navigate through each
cloud portal and have a general understanding of how you can automate the creation of
cloud infrastructure. Although it would be great to dive into those topics in this book,
these topics are huge and there are whole books out there dedicated just to them.
Because of that, you should know about automated workflows, Terraform, and the
cloud prior to getting started.

To work inside the cloud, you will need the following, all of which you can sign up for
and get free credit:

An Azure account

An AWS account

A GCP account

An infrastructure automation tool such as Terraform

The code for this chapter is in the GitHub repository or directory found here:
https://github.com/PacktPublishing/50-Kubernetes-Concepts-Every-DevOps-Engineer-
Should-Know/tree/main/Ch2.

Azure Kubernetes Service
When you’re using Microsoft Azure, you have a few options to choose from when
using containers and Kubernetes:

Azure Kubernetes Service (AKS)

Azure Container Instances

Azure Container Apps (ACA)

AKS is the primary way to run Kubernetes workloads inside Azure. You do not have
to worry about managing the Control Plane or API Server and instead, simply handle
deploying your apps, scaling, and managing or maintaining the cloud infrastructure.
However, there is still maintenance and management that you need to do for worker
nodes – for example, if you want to scale Kubernetes clusters, utilize a multi-cloud
model, or implement some sort of hybrid-cloud model, you would be solely
responsible for implementing that setup. AKS abstracts the need to worry about
managing and scaling the Control Plane or API Server, but you’re responsible for
everything else (scaling workloads, monitoring, and observability).

IMPORTANT NOTE
There’s a new service that recently went Generally Available (GA) at Microsoft Build
2022 called ACA. Although we won’t be going into detail about ACA in this book, you
should know that it’s essentially serverless Kubernetes. It’s drastically different in

https://github.com/PacktPublishing/50-Kubernetes-Concepts-Every-DevOps-Engineer-Should-Know/tree/main/Ch2

comparison to AKS, so if you’re planning on using ACA, ensure that you learn about those
tech spaces prior.

In the following section, you’re going to learn how to create an AKS cluster manually
first. After that, you’ll take what you learned from a manual perspective and learn how
to automate it with Terraform. Then, you’ll learn about scaling AKS clusters from a
vertical-autoscaling perspective. Finally, you’ll wrap up with serverless Kubernetes.
Let’s dive right in!

Creating an AKS cluster manually

Before managing an AKS cluster, you have to learn how to create one. In today’s
world, you’ll most likely never do this process manually because of the need for every
organization to strive toward an automated and repeatable mindset. However, because
you cannot automate something without doing it manually first, you’ll learn how to do
that in this section:

1. Log in to the Azure portal.

Figure 2.1 – The Azure portal

2. Search for azure kubernetes services:

Figure 2.2 – Searching for AKS

3. Click on the Create dropdown and choose the Create a Kubernetes cluster option:

Figure 2.3 – Creating an AKS cluster

4. Choose the options for your Kubernetes cluster, including the name of the cluster and your
Azure resource group:

Figure 2.4 – Adding cluster details before its creation

5. Under the Primary node pool section, you can choose what Virtual Machine (VM) size you
want for your Kubernetes worker nodes, how many should be available, and whether or not
you want to autoscale. One of the biggest powers behind cloud Kubernetes services such as
AKS is autoscaling. In production, it’s recommended to autoscale when needed. However, you
also have to understand that it comes with a cost, as extra VMs will be provisioned. Leave
everything as the default for now and scroll down to the Primary node pool section:

Figure 2.5 – Specifying the worker node size, node count, and scale method

6. Once you have chosen your options, which in a dev environment could be one node, but will
vary in production, click the blue Review + create button. Your AKS cluster is now created.

Now that you know how to create an AKS cluster manually, it’s time to learn how to
create it with Terraform so you can ensure repeatable processes throughout your
environment.

Creating an AKS cluster with automation

In many production-level cases, you’ll run the following Terraform code within a
CI/CD pipeline to ensure repeatability. For the purpose of this section, you can run it
locally. You’ll first see the main.tf configuration and then you’ll take a look at
variables.tf.

Let’s break down the code.

First, there’s the Terraform provider itself. The azurerm Terraform provider is used to
make API calls to Azure programmatically:

terraform {

 required_providers {

 azurerm = {

 source = "hashicorp/azurerm"

 }

 }

}

provider "azurerm" {

 features {}

}

Next, there’s the azurerm_kubernetes_cluster Terraform resource block, which is
used to create the AKS cluster. There are a few key parameters, including the name
and Domain Name System (DNS) Fully Qualified Domain Name (FQDN). The
Kubernetes worker nodes are created via the default_node_pool parameter block.
You can specify the VM size, node count, and name of the node pool:

resource "azurerm_kubernetes_cluster" "k8squickstart" {

 name = var.name

 location = var.location

 resource_group_name = var.resource_group_name

 dns_prefix = "${var.name}-dns01"

 default_node_pool {

 name = "default"

 node_count = var.node_count

 vm_size = "Standard_A2_v2"

 }

 identity {

 type = "SystemAssigned"

 }

 tags = {

 Environment = "Production"

 }

}

Putting it all together, you’ll have a Terraform configuration that creates an AKS
cluster in Azure.

Now that you have the Terraform configuration, you’ll need variables to pass in. The
variables allow your code to stay repeatable – in accordance with the Don’t Repeat
Yourself (DRY) principle – so that you don’t have to continuously change hardcoded
values or create new configurations for each environment.

There are four variables:
name: Name of the AKS cluster

resource_group_name: The resource group that AKS will reside in

location: The region that the AKS cluster will reside in

node_count: How many Kubernetes worker nodes will be in the AKS cluster

These variables can be seen in the following code block:

variable "name" {

 type = string

 default = "aksenvironment01"

}

variable "resource_group_name" {

 type = string

 default = "devrelasaservice"

}

variable "location" {

 type = string

 default = "eastus"

}

variable "node_count" {

 type = string

 default = 3

}

Putting both the main.tf and variables.tf configuration files in the same directory
will create a Terraform module for creating an AKS cluster. You can use this for
almost any environment, change configurations (such as the node count) depending on
your needs, and make your process repeatable.

Scaling an AKS cluster

Scaling an AKS cluster is made possible by implementing the Kubernetes Cluster
Autoscaler. Much like autoscaling groups for Azure VMs, AKS decides on how and
why to scale the cluster based on the worker node load, which is the Azure VMs in the
background. The Cluster Autoscaler is typically deployed to the Kubernetes cluster
with the cluster-autoscaler container image.

Log in to the Azure portal and go to the AKS service. Once there, go to Settings |
Node pools:

Figure 2.6 – Node pools settings

Click on the three dots as per the following screenshot and choose the Scale node pool
option:

Figure 2.7 – Scaling node pools

The Scale node pool pane will come up and you’ll see the option to automatically
scale the node pool or manually scale it and choose how many nodes you want to
make available:

Figure 2.8 – Specifying the node count and scale method

From an automation and repeatability standpoint, you can do the same thing. The
following is an example of creating the azurerm_kubernetes_cluster_node_pool
Terraform resource with the enable_auto_scaling parameter set to true:

resource "azurerm_kubernetes_cluster_node_pool" "example" {

 name = "internal"

 kubernetes_cluster_id = azurerm_kubernetes_cluster.example.id

 vm_size = "Standard_DS2_v2"

 node_count = 1

 enable_auto_scaling = true

 tags = {

 Environment = "Production"

 }

}

Node pools are simply Azure VMs that run as Kubernetes worker nodes. When
thinking about autoscaling, remember that horizontal autoscaling comes at a cost.
Although it’s very much needed, you should limit the amount of Kubernetes worker

nodes that are available. That way, you can keep track of costs and how many
resources your containerized apps need.

AKS and Virtual Kubelet

To wrap things up with AKS, there is Virtual Kubelet. Virtual Kubelet isn’t AKS-
specific. Virtual Kubelet allows you to take Kubernetes and connect it to other APIs. A
kubelet is the node agent that runs on each node. It’s responsible for registering the
node with Kubernetes. AKS Virtual Kubelet registers serverless container platforms.

In Azure, it’s Azure Container Instances (ACI). ACI is a way to run containers
without using Kubernetes. If someone using Kubernetes doesn’t want to scale out
worker nodes due to cost or management, they can use ACI bursting, which uses
Virtual Kubelet. It essentially tells Kubernetes to send Deployments, Pods, and other
workloads to ACI instead of keeping them on the local Kubernetes cluster.

Now that ACA is GA, chances are you’ll see less of this type of implementation.
However, it’s still a great use case for teams that want to scale, but don’t want the
overhead of managing large AKS clusters.

Managing and maintaining AKS clusters

Once a Kubernetes cluster is created and running, the mindset shift moves from day-
one Ops to day-two Ops. Day-two Ops will be focused on the following:

Managing the cluster

Monitoring and maintaining the cluster

Deploying applications and getting services running

When managing an AKS cluster, the biggest thing to think about is where the
configuration exists and what tools you’re using to manage it. For example, the
Terraform configuration could be in GitHub and you could be managing the cluster via
Azure Monitor and the rest of the Azure configurations that are available in the AKS
cluster. Day-two Ops is about making sure the cluster and your configurations are
running as you expect. The focus is really on the question “is my environment working
and performing as intended?”

When it comes to monitoring, alerting, and overall observability, there are several
options. Azure Monitor and Azure Insights are built into Azure, but if you have a
multi-cloud or a hybrid-cloud environment, you may want to look at other options.
That’s where a combination of Prometheus and Grafana can come into play.

Whichever tool you choose (because there are several) isn’t important. What’s
important is what you monitor. You’ll need a combination of monitoring the cluster
itself and the Kubernetes resources (for example, Pods, Services, or Ingresses) inside
of the cluster.

Because managing Kubernetes clusters doesn’t differ all that much (other than the
native cloud tools), it’s safe to assume that whether you’re using AKS, EKS, or GKE,
the path forward will be the same.

AWS EKS
When you’re using AWS, you have a few options to choose from when using
containers and Kubernetes:

EKS

EKS with Fargate profiles

Elastic Container Service (ECS)

EKS is the primary way to run Kubernetes workloads inside AWS. If you don’t want
to go the Kubernetes route but still want scalability, you can use ECS, which gives you
the ability to scale and create reliable microservices but without Kubernetes.

As with AKS, you don’t have to worry about managing the Control Plane or API
Server when it comes to EKS. You only have to worry about managing and scaling
worker nodes. If you want to, you can even take it a step further and implement EKS
with Fargate profiles, which abstracts the Control Plane or API Server and the worker
nodes to ensure a fully serverless Kubernetes experience.

As with AKS, in the following few sections, you’re going to learn how to create an
EKS cluster manually first. After that, you’ll take what you learned from a manual
perspective and learn how to automate it with Terraform. Then, you’ll learn about
scaling EKS clusters from a vertical-autoscaling perspective. Finally, you’ll wrap up
with serverless Kubernetes.

Creating an EKS cluster manually

Much like AKS clusters, before creating EKS clusters from an automated perspective,
you must learn how to manually deploy them. In this section, you’ll learn how to
deploy an EKS cluster with a node group in the AWS Console:

1. Log in to the AWS portal and search for the EKS service:

Figure 2.9 – The AWS portal

2. Click the orange Add cluster button and choose the Create option:

Figure 2.10 – Adding a cluster

3. When configuring an EKS cluster, you’ll have to provide a few options to uniquely identify it,
which include the following:

The EKS cluster name

The Kubernetes API version

The IAM role

The IAM role is very important because there are specific policies that must be
attached to the role that you’re assigning to the EKS cluster. Those policies include the
following:

AmazonEC2ContainerRegistryReadOnly

AmazonEKSClusterPolicy

Without the proceeding policies, the EKS cluster will not work as expected:

Figure 2.11 – Configuring a cluster

4. Next, you’ll need to set up networking. The absolute minimum amount of subnets that you
want to use is two public subnets with different CIDRs in different availability zones. For a full
list of recommendations, check out the AWS docs
(https://docs.aws.amazon.com/eks/latest/userguide/network_reqs.html):

https://docs.aws.amazon.com/eks/latest/userguide/network_reqs.html

Figure 2.12 – Specifying the network configuration

5. When configuring the cluster endpoint access, you have three options:

Public means the EKS cluster is essentially open to the world

Public and private means the API Server or Control Plane is open to the outside
world, but worker node traffic will remain internal

Private means the EKS cluster is only available inside the AWS Virtual Private
Cloud (VPC):

Figure 2.13 – Configuring cluster API access

6. The last piece from a networking perspective is choosing the Container Networking
Interface (CNI) and the version of CoreDNS. Choosing the latest typically makes the most
sense:

Figure 2.14 – Network add-ons

7. Click the orange Next button.

8. The final piece when creating the EKS cluster is the API logging. Regardless of where you
plan to keep logs, traces, and metrics from an observability perspective, you must turn this
option on if you want your cluster to record any type of logs:

Figure 2.15 – Configuring observability

9. After you choose your logging options, click the orange Next button and you’ll be at the last
page to review and create your EKS cluster.

Now that you know how to create an EKS cluster manually, it’s time to learn how to
create it with Terraform so you can ensure repeatable processes throughout your
environment.

Creating an EKS cluster with Terraform

In many production-level cases, you’ll run the following Terraform code within a
CI/CD pipeline to ensure repeatability. For the purposes of this section, you can run it
locally.

First, you’ll see the main.tf configuration and then you’ll take a look at
variables.tf.

Because the main.tf configuration for AWS EKS is much longer than EKS, let’s
break it down into chunks for an easier explanation:

1. First, there’s the Terraform provider block. To ensure repeatability throughout your team, you
can use an S3 bucket backend for storing your TFSTATE. The Terraform block also includes
the AWS Terraform provider:

terraform {

 backend "s3" {

 bucket = "terraform-state-k8senv"

 key = "eks-terraform-workernodes.tfstate"

 region = "us-east-1"

 }

 required_providers {

 aws = {

 source = "hashicorp/aws"

 }

 }

}

2. Next, the first resource is created. The resources allow an IAM role to be attached to the EKS
cluster. For EKS to access various components and services from AWS, plus worker nodes,
there are a few policies that need to be attached:

resource "aws_iam_role" "eks-iam-role" {

 name = "k8squickstart-eks-iam-role"

 path = "/"

 assume_role_policy = <<EOF

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Principal": {

 "Service": "eks.amazonaws.com"

 },

 "Action": "sts:AssumeRole"

 }

]

}

EOF

}

3. Following the IAM role are the IAM policies that have to be attached to the role. The two
policies that you’ll need for a successful EKS deployment are the following:

AmazonEKSClusterPolicy: This provides Kubernetes with the permissions it
requires to manage resources on your behalf:

resource "aws_iam_role_policy_attachment"
"AmazonEKSClusterPolicy" {

 policy_arn =
"arn:aws:iam::aws:policy/AmazonEKSClusterPolicy"

 role = aws_iam_role.eks-iam-role.name

}

AmazonEC2ContainerRegistryReadOnly: This provides read-only access
to Elastic Container Registry if you decide to put your container images there:

resource "aws_iam_role_policy_attachment"
"AmazonEC2ContainerRegistryReadOnly-EKS" {

 policy_arn =
"arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryReadO
nly"

 role = aws_iam_role.eks-iam-role.name

}

4. Once the IAM role and policies are defined, it’s time to create the EKS cluster itself. The EKS
cluster resource will create EKS itself, enable logging, and attach the IAM role that you
created earlier:

resource "aws_eks_cluster" "k8squickstart-eks" {

 name = "k8squickstart-cluster"

 role_arn = aws_iam_role.eks-iam-role.arn

 enabled_cluster_log_types = ["api", "audit", "scheduler",
"controllerManager"]

 vpc_config {

 subnet_ids = [var.subnet_id_1, var.subnet_id_2]

 }

 depends_on = [

 aws_iam_role.eks-iam-role,

]

}

5. The next resource is another IAM role, which is for the worker nodes. When creating an EKS
cluster, you’ll have multiple resources that are created because you’re creating two sets of
services:

The EKS cluster itself with all of its permissions and policies that are needed

The Kubernetes worker nodes with all of the permissions and policies needed:

resource "aws_iam_role" "workernodes" {

 name = "eks-node-group-example"

 assume_role_policy = jsonencode({

 Statement = [{

 Action = "sts:AssumeRole"

 Effect = "Allow"

 Principal = {

 Service = "ec2.amazonaws.com"

 }

 }]

 Version = "2012-10-17"

 })

}

6. Once the IAM role for the worker nodes is created, there are a few policies that you’ll need to
attach:

AmazonEKSWorkerNodePolicy: This provides Kubernetes the permissions it
requires to manage resources on your behalf:

resource "aws_iam_role_policy_attachment"

"AmazonEKSWorkerNodePolicy" {

 policy_arn =
"arn:aws:iam::aws:policy/AmazonEKSWorkerNodePolicy"

 role = aws_iam_role.workernodes.name

}

AmazonEKS_CNI_Policy: This attaches the CNI policy for Kubernetes internal
networking (kubeproxy):

resource "aws_iam_role_policy_attachment"
"AmazonEKS_CNI_Policy" {

 policy_arn =
"arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy"

 role = aws_iam_role.workernodes.name

}

EC2InstanceProfileForImageBuilderECRContainerBuilds: EC2
Image Builder uses a service-linked role to grant permissions to other AWS services
on your behalf:

resource "aws_iam_role_policy_attachment"
"EC2InstanceProfileForImageBuilderECRContainerBuilds" {

 policy_arn =
"arn:aws:iam::aws:policy/EC2InstanceProfileForImageBuild
erECRContainerBuilds"

 role = aws_iam_role.workernodes.name

}

AmazonEC2ContainerRegistryReadOnly: This provides read-only access
to Elastic Container Registry if you decide to put your container images there:

resource "aws_iam_role_policy_attachment"
"AmazonEC2ContainerRegistryReadOnly" {

 policy_arn =

"arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryReadO
nly"

 role = aws_iam_role.workernodes.name

}

CloudWatchAgentServerPolicy: This allows the worker nodes to run the
CloudWatch agent for monitoring, logging, tracing, and metrics:

resource "aws_iam_role_policy_attachment"
"CloudWatchAgentServerPolicy-eks" {

 policy_arn =
"arn:aws:iam::aws:policy/CloudWatchAgentServerPolicy"

 role = aws_iam_role.workernodes.name

}

7. The final part once the IAM role and policies have been created is to create the EKS node
group resource, which is the Kubernetes worker nodes. You’ll define the following:

The IAM role and subnet IDs:

resource "aws_eks_node_group" "worker-node-group" {

 cluster_name = aws_eks_cluster.k8squickstart-
eks.name

 node_group_name = "k8squickstart-workernodes"

 node_role_arn = aws_iam_role.workernodes.arn

 subnet_ids = [var.subnet_id_1, var.subnet_id_2]

 instance_types = ["t3.xlarge"]

The desired scale size for autoscaling:

 scaling_config {

 desired_size = 3

 max_size = 4

 min_size = 2

 }

The policies that the resource depends on:

 depends_on = [

 aws_iam_role_policy_attachment.AmazonEKSWorkerNodePo
licy,

 aws_iam_role_policy_attachment.AmazonEKS_CNI_Policy,

]

}

8. Now that you have the Terraform configuration, you’ll need variables to pass in. The variables
allow your code to stay repeatable, so you don’t have to continuously change hardcoded values
or create new configurations for each environment.

The two variables you’ll need are for the subnet IDs in the VPC of your choosing that
will work with EKS. You can pass in two public subnet IDs that are in different
availability zones:

variable "subnet_id_1" {

 type = string

 default = ""

}

variable "subnet_id_2" {

 type = string

 default = ""

}

Putting it all together, you’ll have a Terraform configuration that creates an AKS
cluster.

Scaling an EKS cluster

Scaling an EKS cluster is made possible by implementing the Kubernetes Cluster
Autoscaler. Much like autoscaling EC2 instances, EKS decides on how and why to
scale the cluster based on a load perspective. The Cluster Autoscaler is typically
deployed to the Kubernetes cluster using the cluster-autoscaler container image.

Inside the Kubernetes GitHub repo, under the cluster-autoscaler directory, there’s
a list of cloud providers. One of those cloud providers is AWS. Inside the AWS
directory, there’s an example Kubernetes Manifest called cluster-autoscaler-
autodiscover.yaml, which shows that it’s using the cluster-autoscaler
container image. It runs as a Kubernetes Deployment on your cluster and listens for
certain resource limits. To autoscale the cluster, you’ll need an IAM role with the
AmazonEKSClusterAutoscalerPolicy policy attached to it.

Now that you know about scaling an EKS cluster and how it’s possible with cluster-
autoscaler, let’s talk about serverless Kubernetes with AWS Fargate profiles and
how they can help automate day-one Ops.

EKS Fargate profi les

The content around Fargate profiles is pretty similar to AKS Virtual Kubelet and ACI
bursting. However, you don’t need to deploy Virtual Kubelet manually as you do in
AKS. Instead, you can set up Fargate profiles to act as your Kubernetes worker nodes.
Virtual Kubelet is still running on Fargate to interact with the EKS API Server or
Control Plane, but it’s sort of done automatically.

The biggest difference here is that you don’t have to manage the worker nodes.
Instead, Fargate profiles are like serverless Kubernetes. You deploy the EKS cluster,
which is the API Server or Control Plane. Then, you deploy a Fargate profile, which is
where your Kubernetes resources (for example, Deployments, Pods, and Services) run.
You don’t have to worry about cluster management or maintaining EC2 instances that
would otherwise be running as your Kubernetes worker nodes.

To add a Fargate profile on your EKS cluster, you go into the Compute tab of the EKS
cluster and you’ll see an option for adding or creating a Fargate profile, as seen in the
following screenshot:

Figure 2.16 – Fargate profiles and compute

Now that you know how to create an EKS cluster manually and automatically, and are
also familiar with the day-two Ops considerations with autoscaling and serverless
Kubernetes, it’s time to learn about the final big 3 Kubernetes service – GKE.

GKE
When you’re using GCP, you have a few options to choose from when using
containers and Kubernetes:

GKE

GKE Autopilot

Google Cloud Run

GKE is the primary way to run Kubernetes workloads inside of GCP. If you don’t want
to go the Kubernetes route but still want scalability, you can use Google Cloud Run.
Cloud Run gives you the ability to scale and create reliable microservices, but without
Kubernetes. It supports Node.js, Go, Java, Kotlin, Scala, Python, .NET, and Docker.

As with AKS and EKS, you don’t have to worry about managing the Control Plane or
API Server when it comes to GKE. You only have to worry about managing and
scaling worker nodes. If you want to, you can even take it a step further and implement

GKE Autopilot, which abstracts both the Control Plane or API Server and the worker
nodes to ensure a fully serverless Kubernetes experience.

There have been many debates inside of container and DevOps communities around
which Kubernetes service in the cloud is the superior choice. Although we’re not here
to pick sides, a lot of engineers love GKE and believe it’s a spectacular way to
implement Kubernetes. Since Kubernetes originated at Google, it makes sense that the
GKE service would be incredibly reliable with well-thought-out features and
implementations.

In the following section, you will learn about creating a GKE cluster automatically
using Terraform and how to think about serverless Kubernetes using GKE Autopilot.

IMPORTANT NOTE
We’re skipping a section on scaling the GKE cluster because it’s the same concept as the
other clouds. It uses the Kubernetes Autoscaler in the background. All the autoscalers are
considered horizontal autoscalers, as they create new worker nodes or VMs to run
Kubernetes workloads.

Creating a GKE cluster with Terraform

Throughout this chapter, you’ve learned several manual ways of creating a Kubernetes
cluster in the cloud. Instead of continuing down the manual road, let’s jump right into
automating the repeatable process of creating a GKE cluster with Terraform.

What you’ll find with GKE is that it’s much less code compared to EKS, for example.
You’ll see the main.tf configuration first and then you’ll take a look at
variables.tf. Let’s break down the following code:

1. First, you have the Google Terraform provider, for which you’ll need to specify the GCP
project ID and the region in which you want to deploy the GKE cluster:

provider "google" {

 project = var.project_id

 region = var.region

}

2. Next, you’ll create the google_container_cluster resource, which is the GKE cluster.
It’ll specify the cluster name, region, and worker node count:

resource "google_container_cluster" "primary" {

 name = var.cluster_name

 location = var.region

 remove_default_node_pool = true

 initial_node_count = 1

 network = var.vpc_name

 subnetwork = var.subnet_name

}

3. The final resource to create is the google_container_node_pool resource, which is for
creating the Kubernetes worker nodes. Here is where you can specify:

The worker node count:

resource "google_container_node_pool" "nodes" {

 name =
"${google_container_cluster.primary.name}-node-pool"

 location = var.region

 cluster = google_container_cluster.primary.name

 node_count = var.node_count

The GCP scopes (or services) that you want GKE to have access to:

 node_config {

 oauth_scopes = [

 "https://www.googleapis.com/auth/logging.write",

 "https://www.googleapis.com/auth/monitoring",

]

 labels = {

 env = var.project_id

 }

The VM type or size:

 machine_type = "n1-standard-1"

 tags = ["gke-node", "${var.project_id}-gke"]

 metadata = {

 disable-legacy-endpoints = "true"

 }

 }

}

Putting it all together, you’ll have a main.tf configuration that you can use to set up a
GKE cluster.

4. Next, let’s take a look at variables.tf, which will contain the following:

The GCP project ID:

variable "project_id" {

 type = string

 default = "gold-mode-297211"

}

The GCP region:

variable "region" {

 type = string

 default = "us-east1"

}

The GCP VPC name that GKE will exist in:

variable "vpc_name" {

 type = string

 default = "default"

}

The subnet name inside of the VPC that you want GKE to be attached to:

variable "subnet_name" {

 type = string

 default = "default"

}

The code count (Kubernetes worker nodes):

variable "node_count" {

 type = string

 default = 2

}

The GKE cluster name:

variable "cluster_name" {

 type = string

 default = "gkek8senv"

}

You’re now ready to put the proceeding code into the appropriate main.tf and
variables.tf configuration files to create your GKE environment.

GKE Autopilot

To wrap up the GKE section, let’s quickly talk about GKE Autopilot. Autopilot is the
same concept as EKS Fargate. It’s serverless Kubernetes, which means you don’t have
to worry about managing the worker nodes for your GKE cluster. Instead, you only
have to worry about deploying the application(s) and setting up any monitoring,
logging, traces, alerts, and metrics you’d like to capture from the GKE cluster.

A quick note on mult i-cloud

Many engineers just getting started with Kubernetes may not come across it too much,
but multi-cloud is very much a reality. Just as organizations didn’t want to rely on one
data center for redundancy, some organizations don’t want only one cloud for
redundancy. Instead, they want to think about the multi-cloud approach – for example,
scaling out Kubernetes workloads from AKS to GKE.

This implementation can be rather advanced and require a ton of security-related
permissions, authentication and authorization capabilities between clouds, and heavy
networking knowledge to ensure Kubernetes clusters between clouds can
communicate with each other. Because of that, it’s highly recommended to do
extensive research before implementing this and ensure that all of the proper testing
went as expected.

Summary
Although a multi-cloud approach may not be at the forefront of everyone’s mind, it’s
still super crucial to understand how the three clouds work with Kubernetes. The
reason why is that chances are, throughout your Kubernetes journey, you’ll work in
one cloud, but when the need arises to work in other clouds, you should be prepared.

In this chapter, you learned about setting up, managing, and maintaining Kubernetes
clusters across Azure, AWS, and GCP. One of the biggest takeaways is that at the end
of the day, the setup of Kubernetes across the clouds isn’t really so different. They’re
all sort of doing the same thing with different service names.

Further reading
Building Google Cloud Platform Solutions by Ted Hunter, Steven Porter, and Legorie Rajan
PS:

https://www.packtpub.com/product/building-google-cloud-platform-
solutions/9781838647438

Hands-On Kubernetes on Azure – Second Edition by Nills Franssens, Shivakumar
Gopalakrishnan, and Gunther Lenz:

https://www.packtpub.com/product/hands-on-kubernetes-on-azure-second-
edition/9781800209671

Learning AWS – Second Edition by Aurobindo Sarkar and Amit Shah:

https://www.packtpub.com/product/learning-aws-second-edition/9781787281066

https://www.packtpub.com/product/building-google-cloud-platform-solutions/9781838647438
https://www.packtpub.com/product/hands-on-kubernetes-on-azure-second-edition/9781800209671
https://www.packtpub.com/product/learning-aws-second-edition/9781787281066

3

Running Kubernetes with Other Cloud Pals
Chances are that throughout this book, and perhaps even so far, you’re going to get
whiplash by finding out about the number of places and different ways you can deploy
Kubernetes. The reality is, you’re going to get even more whiplash in the real world.
Whether you’re a full-time Kubernetes engineer or a consultant, every company that
you go to is going to feel a bit different in the ways you’re deploying Kubernetes and
where you’re deploying it.

In the previous chapter, you learned about the three major Kubernetes cloud services –
AKS, EKS, and GKE. However, there are a ton of other great options in the wild that
are on private clouds and Platform-as-a-Service (PaaS) solutions. Although you’ll
see a lot of organizations, ranging from start-ups to Fortune 200 companies and up,
using popular Kubernetes cloud-based services such as AKS, EKS, and GKE, more
and more organizations are starting to use private clouds for secondary Kubernetes
clusters or even to save money because the larger cloud providers are typically far
more expensive. Taking it to another level, some organizations are completely ditching
the idea of having a Kubernetes cluster in the cloud and going PaaS, and you’ll see
why in the upcoming sections.

By the end of this chapter and with the help of the previous chapter, you’ll be able to
identify what solution your organization should go with and why it would be useful.
From an individual perspective, you’ll walk away from this chapter with the know-
how of multiple managed Kubernetes offerings. That way, you’ll be far more
marketable in the job space and use all the different platforms.

In this chapter, we’re going to cover the following topics:
Understanding Linode Kubernetes Engine

Exploring DigitalOcean Managed Kubernetes

What is Kubernetes PaaS and how does it differ?

Technical requirements
For this chapter, you should already know a bit about cloud technologies. The gist is
that all clouds are more or less the same. There are differences in the names of the
services, but they’re all doing the same thing more or less.

If you’re comfortable with the cloud and have worked in a few cloud-based services,
you’ll be successful in navigating this chapter.

To work inside the cloud-based services, you will need the following:
A Linode account

A DigitalOcean account

A Red Hat account

An AWS account (for the final section of this chapter)

You can sign up for all of these services and get free credit. Just ensure that you shut
down the Kubernetes environments when you’ve finished running them to save
money.

The code for this chapter can be found in this book’s GitHub repository at
https://github.com/PacktPublishing/50-Kubernetes-Concepts-Every-DevOps-Engineer-
Should-Know/tree/main/Ch3.

Understanding Linode Kubernetes Engine
Linode, recently acquired by Akami Technologies, is a developer-friendly private
cloud that is very well-known for its easy dashboard and feature-rich platform that
isn’t overly complex. Linode focuses on ease of use with a cloud -for -all mindset.
Some key callouts for Linode include transparent pricing with almost zero guesswork,
easily scalable workloads, a full/public API, and a GUI-based cloud manager. Most of
all, Linode is known for its always human customer support.

When it comes to comparing Linode and other private cloud providers, Linode sticks
out by offering cloud GPUs and high outbound transfer speeds, along with its
customer support.

In this section, you’re going to learn about why you’d want to use Linode Kubernetes
Engine (LKE) and how to set up the LKE portal, create a Kubernetes cluster in LKE
manually, take the same manual process to automate it, and deploy your Kubernetes
workloads.

Why LKE?

When you’re choosing a cloud, the last thing you want is to have to guess how much
your monthly bill is going to be. This is why people are nervous about the cloud and
even more nervous about serverless technologies. The monthly cost can be unknown,
which isn’t the best answer to give to a CFO. With Linode, costs are bundled together,

https://github.com/PacktPublishing/50-Kubernetes-Concepts-Every-DevOps-Engineer-Should-Know/tree/main/Ch3

so you know exactly what you’re going to pay for, and that’s very important for billing
administrators and engineers alike. When it comes to scaling, both horizontally and
vertically, the last thing that any engineer wants to have to sit and figure out manually
is how much the environment is going to cost the company every month.

Another large cost saving is with the Control Plane. Much like any Kubernetes cloud
service, the idea is to abstract the Kubernetes Control Plane/API server away from
you. That way, you don’t have to worry about managing anything other than worker
nodes and the application(s). Linode doesn’t charge for the Control Plane, whereas
other clouds do. For example, EKS and GKE charge a per cluster management fee of
$10 per hour or $73.00 per month. Although this may not seem like a lot, for a start-up
that’s getting by with bootstrap funding and has enough bills, they most likely don’t
want one more.

Sett ing up LKE manually

Now that you know the theory behind why you’d want to choose Linode, along with
some pricing metrics and other aspects that make Linode great, it’s time to get hands-
on and learn about setting up LKE.

For this section, ensure that you are signed into Linode via a web browser of your
choosing. Follow these steps:

1. On the Linode dashboard, choose Kubernetes:

Figure 3.1 – The LKE portal

2. Click the blue Create Cluster button:

Figure 3.2 – The Create Cluster button

3. Choose a name for your cluster, what region/location you want the LKE cluster to reside in,
and the Kubernetes API version:

Figure 3.3 – Adding a Cluster label, region, and Kubernetes version

4. When choosing node pools, you have a few options:

Dedicated CPU: Good for workloads where consistent performance is crucial for
daily workflows

Shared CPU: Good for medium workflows, such as a secret engine (something that
isn’t getting a lot of traffic)

High Memory: Good for RAM-intensive applications, such as older Java
applications, in-memory databases, and cached data

For this section, you can choose Shared CPU as it’s the most cost-effective:

Figure 3.4 – Worker node size

5. To continue to keep things cost-effective, choose the Linode 2 GB option and ensure you scale
it down to 1 node:

Figure 3.5 – The Add Node Pools page

6. In any production-level environment, you always want to think about high availability (HA).
When it comes to Kubernetes, it’s no different. LKE offers the ability to enable HA for the
Kubernetes Control Plane. For production environments, you’ll 100% want to implement this.
For lab/dev environments (which is what you’re building now for learning purposes), you
don’t have to enable HA. Once done, click the blue Create Cluster button:

Figure 3.6 – HA Control Plane

Now that you’re familiar with the manual process of creating an LKE cluster, it’s time
to learn how to automate it and make the process repeatable for production-level
environments.

Automating LKE deployments

Now that you know how to create an LKE cluster manually, it’s time to learn how to
create it with Terraform so you can ensure repeatable processes throughout your
environment. In many production-level cases, you’ll run the following Terraform code
within a CI/CD pipeline to ensure repeatability. For this section, you can run it locally.

First, you’ll see the main.tf configuration and then look at variables.tf.

First, there’s the Terraform provider. The provider will utilize the newest version of the
Linode Terraform provider. For Terraform to interact with the Linode API, you’ll need
to pass in an API key that you can create from your Linode account:

terraform {

 required_providers {

 linode = {

 source = "linode/linode"

 }

 }

}

provider "linode" {

 token = var.token

}

Next, there’s the linode_lke_cluster resource, which will create the LKE cluster.
Within the dynamic block, you’ll see a for_each loop that specifies how many
worker nodes will be created based on the pool amount. The pool amount is the
number of worker nodes you want to deploy (between 3 to 4 is recommended for
production):

resource "linode_lke_cluster" "packtlke" {

 k8s_version = var.apiversion

 region = var.region

 dynamic "pool" {

 for_each = var.pools

 content {

 type = pool.value["type"]

 count = pool.value["count"]

 }

 }

}

The last piece of code is the output of kubeconfig, which contains all of the
authentication and authorization configurations to connect to the Kubernetes cluster:

output "kubeconfig" {

 value = linode_lke_cluster.packtlke.kubeconfig

 sensitive = true

}

Now that you have the main Terraform configuration, you’ll need variables to pass in.
These variables allow your code to stay repeatable so that you don’t have to
continuously change hardcoded values or create new configurations for each
environment. The reason why is that due to formatting, it may look out of the ordinary
on your page while you’re reading this chapter.

For this section, you can take a look at the variables on GitHub at
https://github.com/PacktPublishing/50-Kubernetes-Concepts-Every-DevOps-Engineer-
Should-Know/blob/main/Ch3/LKE/variables.tf.

Although these are all standard Terraform variables and don’t require much
explanation, the one variable to point out is the pools variable. Notice how there’s a
list type specified for the variable, which includes how many worker nodes and the
size of the worker nodes on Linode. The reason why the variable is a list type is that in
the main.tf configuration, the dynamic “pool” block calls for a list when using the
for loop.

One thing to keep in mind when it comes to LKE is understanding Linode. Although
Linode is a great cloud provider, the truth is, it’s not going to have as many services
and features for Kubernetes as, for example, EKS. Taking EKS as an example, there
are IAM roles and RBAC-related permissions you can configure, DNS management
with Route53, Secrets management, a container registry, and Fargate profiles for
serverless Kubernetes. Even Azure and GCP have very similar services. With a
provider such as Linode, however, they don’t. That’s not to discount Linode or say that
they aren’t a good Kubernetes provider because the truth is, they very much are.
However, a situation such as Linode not having IAM/RBAC built-in capabilities may
be a deal breaker for many production engineering and security teams.

Now that you know how to create an LKE cluster both manually and automatically,
it’s time to move on to the next section.

Exploring DigitalOcean Managed Kubernetes

https://github.com/PacktPublishing/50-Kubernetes-Concepts-Every-DevOps-Engineer-Should-Know/blob/main/Ch3/LKE/variables.tf

DigitalOcean, much like Linode, markets toward the notion of an easy cloud to use
compared to other large clouds with (what feels like) millions of services to choose
from. DigitalOcean’s slogan is Simpler cloud. Happier devs. Better results. Over the
years, DigitalOcean wasn’t only known for its cloud platform, but its blogs and how-to
guides. DigitalOcean, for many engineers, became the standard go-to online location
for learning how to do something in a hands-on fashion. Many writers use the
DigitalOcean Technical Writing Guidelines that DigitalOcean created for
writer/blogger best practices.

In this section, you’re going to learn about why you’d want to use DigitalOcean
Managed Kubernetes, the pros of the Kubernetes service, setting up DigitalOcean
Managed Kubernetes manually, and taking the same manual process, but doing it in an
automated fashion with Terraform.

Why DigitalOcean Kubernetes Engine?

Since DigitalOcean was founded in 2011, developers around the globe have been using
it for its ease of use and straightforward deployments. A lot of engineers even use
DigitalOcean for hosting their projects (personal websites, blogs, servers, and so on).
It’s far easier in many cases than having to worry about creating a bunch of services in
a large public cloud.

From an ease-of-use perspective, DigitalOcean Kubernetes Engine does not
disappoint. Much like any other Kubernetes service, the purpose is to abstract away
the need to manage the underlying Control Plane/API server. The whole idea here is to
lower the barrier of entry when it comes to using a Kubernetes service.

Compared to other products such as EKS/GKE/AKS, DigitalOcean Kubernetes Engine
is more focused on the Day Two operations piece of Kubernetes. The complexities of a
lot of the Kubernetes services out in the wild sometimes make engineers run away
because they want something that just works out of the box.

IMPORTANT NOTE
DigitalOcean Managed Kubernetes, although easy to use, appears to be a bit out of date
from a Kubernetes API perspective compared to its counterparts. Whereas many
Kubernetes services offer Kubernetes API version v1.23 and above, DigitalOcean only
offers up to v1.22.8 at the time of writing. Keep this in mind and remember to check as
you may need different API versions.

Sett ing up DigitalOcean Managed Kubernetes
manually

Now that you know the theory behind why you’d want to choose DigitalOcean, along
with some pricing metrics and other aspects that make DigitalOcean great, it’s time to
get hands-on and learn about setting up DigitalOcean Kubernetes Engine.

For this section, ensure that you are signed into DigitalOcean via a web browser of
your choosing. Follow these steps:

1. On the DigitalOcean dashboard, choose Kubernetes:

Figure 3.7 – DigitalOcean Managed Kubernetes

2. Click the blue Create a Kubernetes Cluster button:

Figure 3.8 – The Create a Kubernetes Cluster button

3. Choose your region, VPC name, and Kubernetes API version. The recommended API version,
in general, is to always go with the latest unless you have a specific reason not to (the same
rule applies to any Kubernetes environment):

Figure 3.9 – Adding cluster details

4. Choose the cluster capacity. The two very important sections here are as follows:

Machine type: For this, you’ll have to choose what’s best for you and your
production environment. Although DigitalOcean doesn’t have as many options as
Linode, you can choose from a basic node, Intel-based node, or AMD-based node
from a CPU perspective.

High availability Control Plane: For this, you’ll always want to ensure that the
Control Plane is highly available. The Control Plane holds the scheduler, etcd, and
many other important Kubernetes components. Without them, Kubernetes wouldn’t
work.

Figure 3.10 – Worker node size

5. Confirm your cluster by reviewing the monthly charge and clicking the green Create Cluster
button:

Figure 3.11 – Finalizing the cluster

Now that you’re familiar with the manual process of creating a DigitalOcean
Kubernetes Engine cluster, it’s time to learn how to automate it and make the process
repeatable for production-level environments.

Automating DigitalOcean Managed Kubernetes

From an automation perspective, you have a few options. Two of the most popular are
the DigitalOcean CLI and Infrastructure as Code (IaC). In this section, you’ll learn

how to create a DigitalOcean Managed Kubernetes cluster using Terraform.

In many production-level cases, you’ll run the following Terraform code within a
CI/CD pipeline to ensure repeatability. For this section, you can run it locally.

Like we did for LKE, first, we’ll see the main.tf configuration and then you’ll take a
look at variables.tf.

The Terraform configuration starts as all others do: with the provider. The
DigitalOcean Terraform provider requires you to pass in a DigitalOcean API token,
which you can generate from the DigitalOcean UI:

terraform {

 required_providers {

 digitalocean = {

 source = "digitalocean/digitalocean"

 }

 }

}

provider "digitalocean" {

 token = var.do_token

}

Next, one resource block is needed, which is used to create the entire cluster and the
node pools. These are DigitalOcean Droplets that end up being Kubernetes worker
nodes. It also creates horizontal auto-scaling. For some DigitalOcean accounts, the
maximum Droplet amount is three, so you’ll most likely want to increase that for
production environments:

resource "digitalocean_kubernetes_cluster" "packtdo" {

 name = var.cluster_name

 region = var.region

 version = var.k8s_version

 node_pool {

 name = "autoscale-worker-pool"

 size = "s-2vcpu-2gb"

 auto_scale = true

 min_nodes = 2

 max_nodes = 3

 }

}

Now that you have the Terraform configuration, you’ll need variables to pass in. These
variables allow your code to stay repeatable so that you don’t have to continuously
change hardcoded values or create new configurations for each environment.

There are four variables, as follows:

region: The region that the DigitalOcean Kubernetes Engine cluster will run in.

cluster_name: The name of the Kubernetes cluster.

K8s_version: The Kubernetes API version.

do_token: The DigitalOcean API token. For production-level environments, you’ll want to
store this in some type of secret store and have Terraform retrieve it with a data block. Writing
an API token into a variable and pushing it up to source control is a big no-no:

variable "region" {

 type = string

 default = "nyc1"

}

variable "cluster_name" {

 type = string

 default = "packtdo01"

}

variable "k8s_version" {

 type = string

 default = "1.22.11-do.0"

}

variable "do_token" {

 type = string

 default = ""

 sensitive = true

}

Wrapping up this section on DigitalOcean, one thing to keep in mind is the same piece
that was said in the Understanding Linode Kubernetes Engine section – bigger cloud
providers are going to have more services that can tie into the managed Kubernetes
offerings. This is something you’ll have to keep in mind as you decide what’s going to
work best for your environment.

In the next and final section of this chapter, you’ll learn about PaaS with OpenShift
from a theoretical and hands-on perspective.

What is Kubernetes PaaS and how does it
differ?
Deploying Kubernetes clusters in different ways felt to engineers like it came in
waves. First, there were raw Kubernetes clusters. You’d have to deploy everything
manually, ranging from the Control Plane to the Certificate Authority (CA) and
everything in between. After that, there were Kubernetes services in the cloud, such as

AKS, GKE, and EKS. Now, there are serverless Kubernetes such as GKE AutoPilot
and EKS Fargate, which you learned about in the previous chapter.

Another option that stands out, especially in the enterprise, is PaaS-based Kubernetes
solutions such as Red Hat’s OpenShift.

In this section, you’re going to learn about why you’d want to use OpenShift, how
enterprises are utilizing PaaS-based Kubernetes such as OpenShift, and how to get
started with a Dev environment right on your local computer with OpenShift, develop
and deploy production-ready OpenShift clusters in major cloud providers, and deploy
production-ready applications inside of OpenShift.

OpenShift

OpenShift is an odd paradox between full-blown Kubernetes and its own orchestration
system. Underneath the hood, OpenShift uses Kubernetes. If you write a Kubernetes
manifest for a Deployment, Pod, and so on, you can use it on OpenShift.
Fundamentally, nothing changes when it comes to Kubernetes and OpenShift.
However, there are differences in how you manage OpenShift versus how you manage
Kubernetes. OpenShift is a PaaS, whereas Kubernetes can be managed with a cloud
provider, so it sort of feels like Software as a Service (SaaS) and can be managed
from a bare-metal perspective. Because Kubernetes is such a versatile platform, it
can’t be put into one category.

One thing you must remember when it comes to OpenShift is that it’s enterprise-
specific. There’s no reason that an engineer would run OpenShift for a lab
environment other than to learn (which is what you’re doing in this chapter). With
Kubernetes, you have far more deployment options and options regarding where you
can deploy it. With OpenShift, you’re limited to a certain type of virtual machine and
where/how you can deploy it. This isn’t necessarily a bad thing in the slightest.
OpenShift wasn’t meant for engineers to do labs with like minikube and Docker
Desktop. It was built with enterprise customers in mind. If you’re interested in diving
deeper into this topic, I highly recommend reading this blog post from Tomasz
Cholewa on comparing Kubernetes with OpenShift:
https://blog.cloudowski.com/articles/10-differences-between-openshift-and-
kubernetes/.

The definition of OpenShift, as per Red Hat, is that “Red Hat OpenShift delivers a
complete application platform for both traditional and cloud-native applications,
allowing them to run anywhere. Built on Red Hat Enterprise Linux and compatible
with Red Hat Ansible Automation Platform, Red Hat OpenShift enables automation
inside and outside your Kubernetes clusters.”

https://blog.cloudowski.com/articles/10-differences-between-openshift-and-kubernetes/

Simply put, it allows you to orchestrate and manage containerized applications in a
PaaS environment.

OpenShift in the enterprise

At this point, you may be wondering why anyone would want to use OpenShift over a
standard Kubernetes deployment. Kubernetes has a ton of support, is supported by all
major cloud providers, and is the latest and greatest. When it comes to the enterprise,
Kubernetes is thought of a bit differently.

To leadership teams, Kubernetes is often thought of as a black box of magic and
mystery that’s going to cost them a ton of money to maintain and support. The reality
is that in enterprise environments, leadership teams want the ability to call a support
number or contact an account executive when something breaks. They want the
enterprise software so that if (when) something goes wrong, they know that the
engineering teams have someone to call. Even though engineers will most likely spend
more time waiting to hear back from support than doing it themselves, enterprise
licensing gives leadership teams peace of mind. However, with peace of mind comes
cost. OpenShift licensing is very expensive and remember, you have to run it
somewhere, which will cost you money as well. If you run OpenShift in, for example,
AWS, you’re paying for the cloud infrastructure running in AWS, OpenShift licensing,
and Red Hat support. If you decide to go the OpenShift route, ensure that your
leadership teams understand the cost.

From a technical and engineering perspective, OpenShift isn’t doing anything
differently than what Kubernetes can do. Sure, to have Kubernetes do exactly what
OpenShift does would require some work and engineering efforts to build it, but it’s all
very much doable. Although OpenShift is a great platform, it’s not doing anything
overly extraordinary compared to Kubernetes.

Getting started with OpenShift Sandbox

Before spending money on OpenShift, you can test it out using OpenShift
ReadyContainers in a sandbox environment. Although the sandbox environment is not
production-ready, it’s a great way to test out and familiarize yourself with how
OpenShift works. It’s also great for lab environments! Follow these steps:

IMPORTANT NOTE
If you’re on an M1 Mac, OpenShift ReadyContainers are not currently supported for ARM
devices, so this lab won’t work for you.

1. Log into the Red Hat console: https://console.redhat.com/.

2. Click on OpenShift:

Figure 3.12 – Red Hat console

3. Choose the Clusters option:

https://console.redhat.com/

Figure 3.13 – Clusters

4. Under the Clusters option, you’ll see three options – Cloud, Datacenter, and Local. Choose
Local:

Figure 3.14 – Local cluster

5. Download OpenShift locally by clicking the blue Download OpenShift Local button:

Figure 3.15 – Download OpenShift Local

6. Once OpenShift Local has been installed, you will need to run two commands (the instructions
for installing CRC can be found at https://crc.dev/crc/#minimum-system-requirements-
operating-system_gsg):

1. crc setup: Set up the configuration to authenticate to Red Hat

2. crc start: Start the local OpenShift cluster:

Figure 3.16 – OpenShift Local setup

7. Once you run the crc start command, you’ll see an output on your terminal similar to the
following:

https://crc.dev/crc/#minimum-system-requirements-operating-system_gsg

Figure 3.17 – Starting OpenShift Local

Depending on when you’re reading this and based on version changes, you may need
some configurations, including passing in an OpenShift token to authenticate from
your localhost. To keep these steps brief and since this information is already available
from Red Hat, you can follow the installation instructions here:
https://access.redhat.com/documentation/en-
us/red_hat_openshift_local/2.5/html/getting_started_guide/installation_gsg#installing_
gsg.

Although we didn’t touch on it in this section, there’s a second lab environment option
known as OpenShift Sandbox, which is different than ReadyContainers. You can set
up OpenShift Sandbox here: https://developers.redhat.com/developer-sandbox.

Now that you know how to get an OpenShift sandbox up and running, let’s learn how
to set up a production-ready OpenShift cluster on AWS.

OpenShift on AWS

CodeReady containers are amazing because they allow you to utilize your local
computer to learn OpenShift, much like Minikube allows you to learn Kubernetes and
Docker Desktop allows you to learn Docker for free.

Now that you know about the free version, let’s quickly dive into how to deploy
OpenShift to the cloud. In this example, you’ll learn about AWS, but the other cloud
providers that are supported have the same workflow.

For this section, ensure that you are logged into your AWS console via the AWS CLI
and that you are also logged into your Red Hat account. Follow these steps:

1. Log into the Red Hat console: https://console.redhat.com/.

2. Click on OpenShift:

https://access.redhat.com/documentation/en-us/red_hat_openshift_local/2.5/html/getting_started_guide/installation_gsg#installing_gsg
https://developers.redhat.com/developer-sandbox
https://console.redhat.com/

Figure 3.18 – OpenShift manager

3. Click the Clusters button and then click the blue Create cluster button:

Figure 3.19 – Creating a cluster

4. You’ll see several options to choose from, including Azure and IBM Cloud. Click the blue
Create cluster button under the AWS option:

Figure 3.20 – AWS ROSA

5. The first page you’ll see associates your AWS account with Red Hat if you haven’t done so
already. To do that, click the Select an account button and go through the walk-through of
configuring ROSA, which is the Red Hat OpenShift service on AWS:

Figure 3.21 – The Create a ROSA Cluster page

6. Once you’ve set up the AWS account permissions and roles for ROSA, the next page is all
about configuring the cluster, which includes the cluster name, OpenShift version, region, and
availability options. One of the cool options that OpenShift gives you is the ability to encrypt
etcd and create persistent volumes with customer keys. This added security is typically looked
at closely within the enterprise:

Figure 3.22 – Adding cluster details

7. Choose your machine pool, which includes the AWS EC2 instance size and autoscaling
capabilities:

Figure 3.23 – Worker node size

8. Next are your networking options, which include whether you want the Kubernetes Control
Plane/API server to be public or private, and whether you want to create a new AWS VPC for
OpenShift or install the ROSA cluster into an existing VPC. Once you choose the Virtual
Private Cloud (VPC) option, you’ll have to choose the CIDR ranges for the internal
Kubernetes Pod networking and cluster IP ranges:

Figure 3.24 – Networking configuration

9. For cluster roles and policies, you have the option to manually set up the roles and policies or
have OpenShift automatically do it for you:

Figure 3.25 – Cluster roles and policies

10. For the last step, you can choose how you want to implement updates for the ROSA cluster.
The updates that occur are based on CVE scores from the National Vulnerability Database
(NVD):

Figure 3.26 – Vulnerability scanning

11. Once you’ve filled in all your options, you can officially create your ROSA cluster.

Now that you know how to get up and running with OpenShift on-premises and in the
cloud, let’s summarize this chapter.

Summary

Regardless of what option you decide to go with when deploying Kubernetes, whether
it’s in a big cloud, a smaller cloud, or a PaaS solution, the goal is always the same and
never changes – build an orchestration platform that can manage your containerized
applications.

There are a lot of fancy tools out there, tons of different platforms, and many promises
that each new and fancy platform will make your life easier from a Kubernetes
perspective. The truth is, in one way or another, they all have the same goal.

The goal is to use Kubernetes to orchestrate and manage containerized applications.
Ensure that as you go through each platform and tool, you have this in mind –
orchestrate my containerized applications. If you keep that in mind, it’ll make
choosing and getting through the marketing fluff much easier.

In the next chapter, we’ll be learning about on-premises Kubernetes and how
understanding the underlying components of Kubernetes clusters is important, as well
as why.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the
following resource:

Learning OpenShift, by Denis Zuev, Artemii Kropachev, and Aleksey Usov:
https://www.packtpub.com/product/learn-openshift/9781788992329

https://www.packtpub.com/product/learn-openshift/9781788992329

4

The On-Prem Kubernetes Reality Check
I know what you’re thinking – 0n-prem? Why is this guy teaching us about on-prem
Kubernetes? It’s all in the cloud!

Although it may seem like that from tech marketing and large cloud providers
screaming Kubernetes at the top of their lungs, in the production world, there are a lot
of on-prem Kubernetes clusters and a lot of engineers managing them. Mercedes-
Benz, a popular German car manufacturer, hosts over 900 Kubernetes clusters on
OpenStack, which is a private cloud solution. All those clusters are sitting in a data
center, not in the public cloud. If you peel back the layers of the onion and wonder
how cloud providers are running Kubernetes clusters, they’re doing something similar.
They have several data centers that are running Kubernetes just like you would on-
prem or on a server that you can buy on eBay. The only difference is the cloud
providers are running Kubernetes at a major scale around the world. However, the how
in how Kubernetes is running isn’t any different than how anyone else is running
Kubernetes.

The truth is, this chapter could be an entire book – it could probably be a few books.
Kubernetes, especially when it’s not abstracted away in the cloud, is an extremely
large topic. There’s a reason why people say that Kubernetes is like a data center
within itself. How and where you run on-prem Kubernetes alone is a deep topic. For
example, what size infrastructure to use, how to scale your workloads, vertical and
horizontal scaling, network bandwidth, high availability, and a lot more go into the
conversation of what systems to use and where to run them.

By the end of this chapter, you’re going to understand just how complex running on-
prem Kubernetes can be, but at the same time, how rewarding it can be to an
organization that’s putting a lot of effort into Kubernetes. You’ll have the hands-on
skills and theoretical knowledge to understand how to think about scaling an
organization’s Kubernetes environment. One thing you’ll learn from this chapter is it’s
a lot less about using the cool tech and more about thinking from an architecture
perspective about how a platform team should look.

In this chapter, we’re going to cover the following topics:
Understanding operating systems and infrastructure

Troubleshooting on-prem Kubernetes clusters

Introducing hybrid services

Exploring networking and system components

Getting to know virtualized bare metal

This chapter will be a combination of hands-on and theoretical knowledge. Because
we only have one chapter to cover this topic, it’s safe to say that we can’t show
everything you’ll need to know. However, this should be a good starting point for your
production journey.

Technical requirements
To complete this chapter, you should first go over Chapter 2 and Chapter 3. Although
that might sound obvious, we want to point it out as it’s crucial to understand the
different deployment methods before diving into the on-prem needs of Kubernetes.
Because cloud-based Kubernetes deployments abstract a lot of what you would do
with on-prem, it still shows you the overall workflow of what components need to be
deployed.

To work on this chapter, you should have some type of infrastructure and
troubleshooting background. When it comes to on-prem Kubernetes clusters, they are
extremely infrastructure-heavy, so getting through this chapter without that knowledge
may be difficult. At the very least, you should have the following:

Linux knowledge

Server knowledge

The code for this chapter can be found in this book’s GitHub repository at
https://github.com/PacktPublishing/50-Kubernetes-Concepts-Every-DevOps-Engineer-
Should-Know/tree/main/Ch4.

For the Kubeadm section of this chapter, you can follow along if you have two virtual
machines available for your use. If you don’t, it’s perfectly fine: you can view this
chapter from a theoretical perspective if that’s the case. However, if you have two
extra VMs available, whether they’re on-prem or in the cloud, it would help you
understand the overall explanations of this chapter a bit more..

Understanding operating systems and
infrastructure
Everything starts at a server. It doesn’t matter if you’re running workloads on the
cloud, on serverless platforms, or containers – everything starts at a server. The reason
why engineers don’t always think about servers, or where workloads start in today’s

https://github.com/PacktPublishing/50-Kubernetes-Concepts-Every-DevOps-Engineer-Should-Know/tree/main/Ch4

world, is that the underlying infrastructure is abstracted away from us. In the cloud
world, there aren’t a lot of times when you’ll have to ask, what hardware are you using
to run these VMs? Dell? HP? Instead, you’re worried about what happens after the
servers are deployed, which is sometimes called Day-Two Ops (insert more buzzwords
here). What we mean by that is instead of ordering servers online, racking them, and
configuring some virtualized hypervisor on them (ESXi, KVM, Hyper-V, and so on),
engineers are more concerned now with automation, application deployments,
platforms, and scalability.

In many start-ups and small-to-medium-sized organizations, the typical reality is cloud
computing. For larger organizations, another reality is on-prem workloads that are
either virtualized or purely bare metal. If the combination of the cloud and on-prem
gets brought up in discussion, this is where things such as hybrid solutions come into
play, which you’ll learn about later in this chapter.

Let’s say you’re reading this right now and you’re working 100% in the cloud. You
still need to understand VM sizes, scaling, the location of the VMs (the data center –
regions, availability zones, geographies, and so on), network latency, and a large
number of other pieces that fall into the systems and infrastructure category. For
example, in the previous chapter, you learned about choosing worker node sizes for
high CPU, high memory, and medium CPU/memory workloads within DigitalOcean
and Linode.

In this section, you’re going to learn about the core system and infrastructure needs
that you must think about when architecting an on-prem Kubernetes platform.

Kubeadm Deployment

Before jumping into the theory, I wanted to showcase how you can bootstrap a
Kubernetes cluster with Kubeadm. The primary reason is to show you what the
process of actually deploying Kubernetes looks like while the pieces aren’t abstracted
away from you. Abstraction is a great thing, but it’s only a great thing once you know
the manual method of deployment. Otherwise, abstraction just ends up causing
confusion.

For the Virtual Machines, the installation is based on Ubuntu. However, if you’re using
another Linux distribution, it will work, but you’ll need to change the commands a bit
to reflect the specific distro. For example, Ubuntu uses the Aptitude package manager
and CentOS uses the Yum package manager.
Installing Control Plane and Worker Node
Let’s get started.

1. First, ensure that you update Ubuntu:

sudo apt update -y

2. Install transport layer:

sudo apt-get install -y apt-transport-https curl

3. Install Kubernetes package on Ubuntu:

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg
| sudo apt-key add -

echo "deb https://apt.kubernetes.io/ kubernetes-xenial main" |
sudo tee /etc/apt/sources.list.d/kubernetes.list

4. Update Ubuntu again now that the Kubernetes package exists:

sudo apt update -y

5. Next, change to the root user:

sudo su -

6. Install and configure the CRI-O container runtime:

OS=xUbuntu_20.04

VERSION=1.22

echo "deb
https://download.opensuse.org/repositories/devel:/kubic:/libco
ntainers:/stable/$OS/ /" >
/etc/apt/sources.list.d/devel:kubic:libcontainers:stable.list

echo "deb
http://download.opensuse.org/repositories/devel:/kubic:/libcon
tainers:/stable:/cri-o:/$VERSION/$OS/ /" >
/etc/apt/sources.list.d/devel:kubic:libcontainers:stable:cri-
o:$VERSION.list

curl -L
https://download.opensuse.org/repositories/devel:kubic:libcont
ainers:stable:cri-o:$VERSION/$OS/Release.key | apt-key add -

curl -L

clbr://internal.invalid/book/OEBPS/B19116_04.xhtml
clbr://internal.invalid/book/OEBPS/B19116_04.xhtml
clbr://internal.invalid/book/OEBPS/B19116_04.xhtml
clbr://internal.invalid/book/OEBPS/B19116_04.xhtml
clbr://internal.invalid/book/OEBPS/B19116_04.xhtml
clbr://internal.invalid/book/OEBPS/B19116_04.xhtml

https://download.opensuse.org/repositories/devel:/kubic:/libco
ntainers:/stable/$OS/Release.key | apt-key add -

7. Exit out of root:

exit

8. Update Ubuntu again now that CRI-O is available:

sudo apt update –y

9. Install CRI-O:

sudo apt install cri-o cri-o-runc -y

10. Reload the Daemon and enable CRI-O:

sudo systemctl daemon-reload

sudo systemctl enable crio --now

11. Check to see CRI-O is installed properly:

apt-cache policy cri-o

12. Turn off swap:

swapoff -a

13. Configure sysctl settings and ip tables:

sudo modprobe overlay

sudo modprobe br_netfilter

sudo tee /etc/sysctl.d/kubernetes.conf<<EOF

net.bridge.bridge-nf-call-ip6tables = 1

net.bridge.bridge-nf-call-iptables = 1

net.ipv4.ip_forward = 1

EOF

clbr://internal.invalid/book/OEBPS/B19116_04.xhtml

sudo sysctl --system

14. Install kubeadm:

sudo apt-get install -y kubelet kubeadm kubectl

The next step is configuration.
Configuring the Control Plane
We need to define variables for the kubeadm init command. This will consist of IP
addresses and the Pod CIDR range. Depending on where you are deploying it, you
could either have just a public subnet, or a public and private subnet.

If you have just a public subnet, use the same value for the ip_address and
publicIP, along with the CIDR range. If you have a private and public subnet, use the
public IP for the publicIP, the private IP for the ip_address, and the private IP
range for the CIDR.

ip_address=10.116.0.9

cidr=172.17.0.0/16

publicIP=146.190.219.123

Next, initialize kubeadm on the Control Plane:

sudo kubeadm init --control-plane-endpoint $publicIP --apiserver-
advertise-address $ip_address --pod-network-cidr=$cidr --upload-
certs

If you are deploying in the cloud, you may find yourself in a situation where the init
fails because the Kubelet connect communicate with the API server. This typically
happens in public clouds due to network restrictions. If it happens to you, open up the
following ports: .

After the Kubeadm init is successful, you’ll see a few command outputs that show
how to join more Control Planes and how to join Worker Nodes. Copy the Worker
Node join command and run it on the Ubuntu server that you configured as the Worker
node.

Next, install the CNI.

If you don’t want to use Weave, you can see the network frameworks listed here: .

kubectl apply -f
https://github.com/weaveworks/weave/releases/download/v2.8.1/weav
e-daemonset-k8s.yaml

clbr://internal.invalid/book/OEBPS/B19116_04.xhtml
clbr://internal.invalid/book/OEBPS/B19116_04.xhtml
clbr://internal.invalid/book/OEBPS/B19116_04.xhtml

Next, we will look at system size.

System size

Considerations about the system type, size, and how many nodes will be incredibly
crucial for how you decide to think about on-prem deployments. What it all comes
down to is what you’re planning on running on a Kubernetes cluster. If you’re just
starting with your first Kubernetes cluster and you want to try containerizing an
application to see how it works, how the dependency works, and ultimately starting on
your journey, it’s going to be different than if you’re running 50+ Kubernetes clusters
that are running stock trading/quants applications. At the end of the day, the system
size that you use will be solely based on what workload you’re running.

Before you even think about creating a Kubernetes cluster on-prem, you must think
about two important aspects:

Do I have the hardware available and if not, what hardware do I have to buy?

What type of applications am I planning on running for the next 3 to 6 months?

For example, let’s say that you buy 10 servers that you’re planning on running your
application on. What size do the servers need to be? How will scaling work? Do you
have a combination of memory-intensive apps and standard everyday apps?

Another big consideration here is scaling. If you’re scaling horizontally, that means
more Pods will be created, so more virtualized hardware will be consumed. If you’re
scaling vertically, that means your Pods’ memory and CPU are increasing without you
creating more Pods (which is known as vertical autoscaling). Not only do you have to
plan for what applications you’re going to be running right off the bat, but you also
have to plan for how those applications will be used. If you have 500 users today and
you’re planning on having 2,000 users in 3 months based on company projections, that
means the Pods will have an increased velocity in usage and that you may need more
Pods. More usage means autoscaling, and autoscaling means more resources are
needed.
Sizing considerations
The following is a list of standard sizing considerations for when you’re building out a
Kubernetes cluster:

Standard workers: These are your everyday web server Pods or middleware that still require
virtualized hardware resources, but not at the same level as more intense applications. They are
your more generic apps if you will. The worker nodes running here are mid-to-large in terms
of size. If you’re just starting to get a Kubernetes cluster up and running and you’re maybe

moving one or two containerized apps to Kubernetes as you get going, standard workers will
be just fine to get the ball rolling.

Memory-intensive workers: Applications that you know will require more memory/RAM
than others should be accounted for with worker nodes that contain more RAM than the
standard servers that are running as worker nodes. You want to ensure that if a Pod has to scale
in replicas, or more Pods are added, you have enough memory. Otherwise, Pods won’t start
and will stay pending until memory is allocated to them, and the scheduler can re-try
scheduling the Pod for a node.

CPU-intensive workers: Some applications will require more CPU and available threads to
run the app. The same rules as those for memory-intensive apps apply here – if the scheduler
can’t schedule the Pods because there aren’t enough resources available, the scheduler will
wait until resources free up.

Special-case workers: A special-case Pod would usually be something such as an application
that’s running a graphically intensive workload that needs a specific type of Graphics
Processing Unit (GPU), which means the worker node needs a dedicated GPU or an app that
requires faster bandwidth, so it requires a certain type of Network Interface Card (NIC).

System location

When you run Kubernetes, there are primarily two types of nodes:
Control Plane: The Control Plane is where the API server lives. Without the API server, you
can’t do much inside Kubernetes. It also contains the scheduler (how Pods know what node to
go on), controller manager (controllers for Pods, Deployments, and so on to have the desired
state), and the cluster store/database (etcd).

Worker node: Worker nodes are where the Pods are installed after the Control Plane and on
the worker node(s) run. They run the kubelet (the agent), container runtime (how containers
run), kube-proxy (Kubernetes networking), and any other Pod that’s running.

Keeping these two node types in mind, you’ll have to figure out what automation
techniques you want to use to run them and ultimately where/how you want to run
them. It’s a consideration that you shouldn’t take lightly. The last thing that you want
is to deploy Pods, then realize that the nodes they’re running on can’t handle the type
of containerized app that’s running. As mentioned previously, the Control Plane is
where the Kubernetes API sits. The Kubernetes API is how you do everything in
Kubernetes. Without it, Kubernetes wouldn’t exist. With that being said, choosing
where and how to run the Control Plane is the make or break between properly using
Kubernetes and spending your days constantly troubleshooting.

IMPORTANT NOTE
Explaining the Control Plane and worker nodes could take a chapter in itself. Because this
book already expects you to know Kubernetes, we’re not diving into the types of

Kubernetes nodes all that much. However, if you don’t know about the control plane and
worker nodes, we highly recommend you take the time to learn about them before
continuing. A great place to start is the Kubernetes docs.
Data centers and regional locations
Data centers go down. Regions go down. Internet Service Providers (ISPs) go down.
When you’re architecting where you want Kubernetes to run, there are several things
that you must take into consideration.

The first is where you’re running. For example, if your customers are in the UK, and
you decide to run your data center in New Jersey, there’s going to be a ton of
bandwidth issues and latency. Instead, it would make more sense to have a data center
and a few co-locations throughout the UK.

Speaking of co-locations, you must make sure that you don’t have a single point of
failure. The reality is that data centers do go down. They have internet issues, flooding,
electric issues, and outages. If that occurs, the last thing that you want is to only have a
single location. Instead, you should think about, at the very least, two data center
locations. If one of the data centers fails, high availability needs to be put in place to
turn on the other data center. For example, you could have a hot/hot or hot/cold high
availability scenario. Hot/hot is recommended as all the data is being replicated by
default to the second data center. If the first data center goes down, the second data
center picks up where the first left off. Another consideration is where the data centers
are. If the two data centers are only 5 miles away from each other and a storm comes,
both could be impacted. Because of that, you want to put some distance between data
centers.
Where and how to run Kubernetes
As you saw in the previous sections, the first step to figuring out your on-prem
Kubernetes infrastructure is deciding what hardware and resources you need to run the
applications you’re planning on running. Next, it’s all about figuring out what type of
worker nodes you need. It’ll most likely be a combination of standard worker nodes
and more intensive worker nodes with extra CPU and RAM. The final step (at least for
this section) is figuring out how and where to run it.

There are several other options, but the following are a few of the popular ones:
OpenStack: Although a lot of engineers in today’s world think OpenStack is dead, a lot of
very large organizations are still using it. For example, almost every Telco provider uses
OpenStack. Mercedes-Benz (at the time of writing) is hosting over 900 (yes, 900) Kubernetes
clusters running in OpenStack. OpenStack gives you the feeling of being in the cloud, but it’s
all on-prem and you’re hosting the private cloud yourself. The Open Infrastructure Foundation
has put a lot of emphasis behind running Kubernetes on OpenStack with tools such as
Magnum, which is the standard for running orchestration platforms (Kubernetes, Mesos,

Docker Swarm, and so on), and Loki, which is the Linux/OpenStack/Kubernetes/infrastructure
stack.

Kubeadm: If you don’t want to go the OpenStack route and if you’re using something such as
a hypervisor, kubeadm is arguably the best option. There are a few different automated ways to
get a Kubernetes cluster up and running, but kubeadm is more or less the most sophisticated.
Using kubeadm, you can create a Kubernetes cluster that conforms to best practices. Other
than installing the prerequisites on the Linux server for Kubernetes to run, kubeadm is pretty
much automated. kubeadm has a set of commands that you can run that goes through several
checks on the Linux server to confirm that it has all of the prerequisites and then installs the
Control Plane. After that, there’s an output on the terminal that gives you a command to run
more Control Planes and/or run worker nodes. You copy the command from the output, paste it
into another server that you’re SSH’d into via the terminal, and run it. kubeadm is cool as well
because it introduces you to the fact that running Kubernetes on-prem is straightforward. You
can even run it on your laptop or a Rasberry Pi. There isn’t a high threshold to meet to run it,
especially in a Dev environment.

Rancher: Rancher acts as both a Kubernetes cluster creation tool and a Kubernetes cluster
manager. Within Rancher, you can create a Kubernetes cluster and host it on Rancher, create a
Kubernetes cluster in the cloud, or create a raw Kubernetes cluster by provisioning Linux
virtual machines. You can also manage your Kubernetes clusters from Rancher. For example, if
you have a bare-metal Kubernetes cluster that’s running with kubeadm or in OpenShift, you
can manage it via Rancher. You can also manage cloud Kubernetes clusters.

Kubespray: Kubespray, although (in our opinion) isn’t the best production-level option to go
for, is still an option. Kubespray uses either Ansible or Vagrant to deploy a production-ready
Kubernetes cluster on virtual machines or in the cloud. Because all you need is kubeadm
instead of other middleware, such as Vagrant or Ansible, going straight for kubeadm saves you
those extra hops needed to get a cluster created. Funnily enough, Kubespray uses kubeadm
underneath the hood for cluster creation (https://github.com/kubernetes-
sigs/kubespray/blob/master/docs/comparisons.md), so that solidifies even more that there’s
something to say about not going the extra hops to use Kubespray and instead, just go straight
to kubeadm.

Operating system

To run the Kubernetes platform, you need an operating system to run it on. The two
options that you have are as follows:

Run a bare-metal server and have the operating system run directly on the server

Have a virtualized hypervisor, such as ESXi, that virtualizes the hardware and allows you to
install the operating system on top of it

In today’s world, chances are you’re going to use a hypervisor. Unless there’s a
specific need to run bare-metal servers and run the operating system directly on the

https://github.com/kubernetes-sigs/kubespray/blob/master/docs/comparisons.md

server, engineers typically opt for a hypervisor. It’s much easier to manage, very
scalable, and allows you to get a lot more out of the hardware.

When it comes to the operating system options, more or less, there are typically two
available options. One is certainly used more than the other, but the other is gaining
increased popularity.
Linux
More likely than not, you’ll be running worker nodes as Linux distributions. The most
popular battle-tested distributions are Red Hat, CentOS, and Ubuntu. Linux is usually
the out-of-the-box solution when it comes to Kubernetes worker nodes, and at the time
of writing this book, you can only run Kubernetes Control Planes on Linux servers.
Windows
Although not seen all that much, especially with open-sourced and cross-platform
versions of .NET, you can run Windows Server as a Kubernetes worker node. If you
want to run Windows Server as a worker node, there are a few considerations. First,
you must be running Windows Server LTSC 2019 or above. At the time of writing this
book, the two options available are Windows Server 2019 and Windows Server 2022.

With the Windows Server option, you will have to buy licenses and keep Client
Access License (CAL) considerations in mind.

Now that you have an understanding of the overall operating system and infrastructure
components of an on-prem Kubernetes cluster, in the next section, you’ll learn how to
troubleshoot the environment you’re building.

Troubleshooting on-prem Kubernetes clusters
If you come from a systems administration/infrastructure background, troubleshooting
Kubernetes clusters is going to come to you pretty naturally. At the end of the day, a
Kubernetes cluster consists of servers, networking, infrastructure, and APIs, which are
essentially what infrastructure engineers are working on day to day.

If you’re a developer, some of these concepts may be new to you, such as
troubleshooting networks. However, you’ll be very familiar with a few troubleshooting
techniques as well, such as looking at and analyzing logs.

The whole idea of troubleshooting a Kubernetes cluster is to look at two pieces:
The cluster itself

The Pods running inside the cluster

The cluster itself, including networking, servers, operating systems, and scalability, is
going to be thought of from more of an infrastructure perspective, where something

such as the Certified Kubernetes Administrator (CKA) comes into play nicely. The
Pods, Deployments, container errors, and Pods not starting properly are going to be
thought of more from a developer perspective, so learning the concepts of the
Certified Kubernetes Application Developer (CKAD) would be a great stepping
stone.

In this section, you’re going to learn about the key ways to think about troubleshooting
Kubernetes clusters and how to figure out problems in a digestible way.

Server logs and infrastructure troubleshooting

Although there’s an entire chapter in this book that goes over logging and
observability (Chapter 7) let’s talk about logging in a cluster sense. Typically, when
you’re working with any type of observability metrics, such as logging, in the
Kubernetes world, engineers are primarily thinking about the logs for an application.
Those logs will help them troubleshoot a failing app and figure out what happened in
the first place. However, from a Kubernetes on-prem perspective, server logging is a
crucial piece.

For the most part, unless otherwise specified, all the logs from the Control Plane and
worker nodes typically go into /var/log on the Linux server. For Control Planes, the
logs are at the following paths:

/var/log/kube-apiserver.log

/var/log/kube-scheduler.log

/var/log/kube-controller-manager.log

For worker nodes, the logs are at the following paths:
/var/log/kubelet.log

/var/log/kube-proxy.log

Out of the box, there isn’t a specific logging mechanism that Kubernetes uses. That’s
essentially up to you to decide. The two primary ways that engineers capture logs for
clusters are as follows:

Use a node logging agent that runs on every node across the cluster

Have a log aggregator capture the logs from /var/log and send them to a logging platform

You can find more documentation on troubleshooting clusters at
https://kubernetes.io/docs/tasks/debug/debug-cluster/.

https://kubernetes.io/docs/tasks/debug/debug-cluster/

Network observabil i ty

The networking piece of a Kubernetes cluster, which you’ll learn about shortly, is an
extremely complex piece of Kubernetes within itself. Networking inside of Kubernetes
is just as important as the Kubernetes API and all the other pieces that make up
Kubernetes.

The two things that you want to look out for are cluster latency and Pod latency.
With cluster latency, it’s most likely going to come down to the standard systems
administration troubleshooting around checking bandwidth, QoS on routers, how
many packets are getting pushed through, NICs, and more. From a Pod latency
perspective, it’ll most likely start at the cluster level in terms of the issues that the
cluster may be having, but to troubleshoot, you’ll most likely look into something such
as a service mesh.

Service mesh is a huge topic in itself, which could probably cover an entire
course/book, but you’ll learn how to get started with it in the Exploring networking
and system components section.

Kubernetes metrics

Most resources created in Kubernetes (Deployments, Pods, Services, and so on) have a
metrics endpoint that can be found via the /metrics path when making an API call on
Kubernetes resources.

The metrics server collects logs from kubelets, which are agents that run on each
Kubernetes node, and exposes them to the Kubernetes API server through the metrics
API. However, this is primarily used for autoscaling needs. For example, the metrics
will tell Kubernetes, Hey, Pods are running low on memory utilization; we need a new
Pod to handle application utilization. Then, the vertical or horizontal autoscaler will
kick off and do its job to create a new Pod, or vertically scale the current Pod(s).

If you want to collect metrics for, say, the monitoring platform that you use for
observability, you’d want to collect metrics from the
/metrics/resource/resource_name kubelet directly. Many observability
platforms such as Prometheus will ingest these metrics and use them for
troubleshooting and performance troubleshooting.

crict l

Inside of every Kubernetes cluster, specifically running on the worker nodes, is a
container runtime. Container runtimes such as containerd and CRI-O are mostly used
in Kubernetes environments. Those container runtimes help make containers and Pods
run. Because of that, it’s important to ensure that the container runtime is working as
expected.

crictl helps you troubleshoot the container runtime. You can run a few commands
directed at a Pod that’ll help you understand what’s happening inside of a container.
Keep in mind that crictl is in beta, but it’s still a great troubleshooting tool.

In the following example, crictl is listing a set of Pods:

crictl pods

Then, it can look inside each Pod to see the containers that are running:

crictl pods -name pod_name

You can also list out containers that are running and bypass Pods:

crictl ps -a

You can find more information about crictl at https://github.com/kubernetes-
sigs/cri-tools/blob/master/docs/crictl.md.

kubectl

Wrapping up this section, let’s talk about the kubectl command, which is the typical
way that engineers interact with Kubernetes via the CLI. You’ll see three primary
commands for troubleshooting:

kubectl describe: This command tells you the exact makeup of the Kubernetes
Deployment, such as how it’s running, what containers are running inside of it, ports that are
being used, and more. This is a great first step to understanding what could be going wrong
inside of a Deployment.

For example, if you had a Deployment called nginx-deployment, you’d run the
following command:

kubectl describe deployment nginx-deployment

The following output showcases how describe looks for Deployments.

https://github.com/kubernetes-sigs/cri-tools/blob/master/docs/crictl.md

Figure 4.1 – Kubernetes Deployment output

kubectl cluster-info dump: This command is a literal dump of every single thing
that’s happened on the cluster that was recorded. By default, all of the output is sent STDOUT,
so you should ideally send the output to a file and look through it as it’s extremely verbose
with a lot of data.

The following screenshot has been cut off for simplicity, but it’s an example of the
information shown with the kubectl cluster-info dump command:

Figure 4.2 – Cluster dump output

kubectl logs: This command is the bread and butter to understanding what’s happening
inside of a Pod. For example, let’s say that you have a Pod called nginx-deployment-
588c8d7b4b-wmg9z. You can run the following command to see the log output for the Pod:

kubectl logs nginx-deployment-588c8d7b4b-wmg9z

The following screenshot shows a sample of what logs look like for Pods.

Figure 4.3 – Nginx Pod log output

Regardless of where a Kubernetes cluster is running, you’re always going to have to
troubleshoot certain aspects of it. The tips in this section should help in an on-prem,
and even sometimes a cloud, scenario.

Introducing hybrid services
From 2014 to 2015, what most organizations and engineers alike were reading
sounded something similar to data centers will go away, the cloud is the future, and
everyone that isn’t in the cloud will be left behind. Organizations started to feel
pressured to move to the cloud and engineers started to get nervous because the skills
they had honed for years were becoming obsolete. Coming back to the present, which
is 2022 at the time of writing this book, mainframes still exist… so, yes, many
organizations are still running on-prem workloads. Engineers that have an
infrastructure and systems background are doing quite well for themselves in the new
cloud-native era. The reason why is that 100% of the skills they have learned, other
than racking and stacking servers, are still very relevant for the cloud and Kubernetes.

In the Understanding operating systems and infrastructure section, you may remember
reading about on-prem workloads and how they’re still relevant in today’s world.
Although tech marketing may be making you feel otherwise, the truth is that on-prem
workloads are still very much used today. They’re used so much that organizations
such as AWS, Microsoft, and Google are realizing it, and they’re building services and
platforms to support the need for a true hybrid environment, which means using on-
prem and cloud workloads together, often managed in the same location.

In this section, you’re going to learn about the major cloud provider hybrid services,
along with a few other companies that are helping in this area.

Azure Stack HCI

Azure Stack HCI is the hybrid cloud offering from Microsoft. It gives you the ability
to connect your on-prem environment to Azure. Azure Stack HCI typically comes
running inside of a server from a vendor, though you can install it yourself on a
compatible server with compatible hardware. It installs similar to any other operating
system, but there’s a lot of complexity around the requirements. A few of the
requirements include the following:

At least one server with a maximum of 16 servers

Required to deploy to two different sites

All servers must have the same manufacturer and use the same model

At least 32 GB of RAM

Virtualization support on the hardware (you have to turn this on in the BIOS)

You can dive into the requirements a bit more; you’ll find that it goes pretty in-depth.
From a time perspective, you’re probably better off buying an Azure Stack HCI-ready
server from a vendor.

An interesting part of Azure Stack HCI is underneath the hood – it’s pretty much just
Windows Server 2022 running Windows Admin Center. Because of that, you could
completely bypass Azure Stack HCI and do the following instead:

1. Run a bunch of Windows Server 2022 Datacenter servers.

2. Cluster them up.

3. Install Windows Admin Center.

4. Connect the servers to Azure.

5. Run AKS on the servers.

Google Anthos

Anthos is arguably the most mature hybrid cloud solution that’s available right now.
There are a ton of ways to automate the installation of Anthos with, for example,
Ansible, and the hardware requirements to get it up and running are far more lite (at
the time of writing this book) compared to Azure Stack HCI.

The hardware requirements are as follows:
Four cores for CPU minimum, Eight cores recommended

16 GB of RAM minimum, 32 GB recommended

128 GB storage minimum, 256 GB recommended

Like Azure Stack HCI, Anthos runs on-prem in your data center and connects to GCP
to be managed inside of the GCP UI or with commands/APIs for GCP. The goal here
is to run GCP to manage Kubernetes clusters on-prem and in the cloud.

A quick note about other infrastructure managers

Although perhaps not considered hybrid cloud in itself as a platform, there are a few
platforms that help you manage workloads anywhere. Two of the primary ones at the
time of writing are as follows:

Azure Arc: Azure Arc, as the name suggests, requires an Azure subscription. However, the
cool thing about it is that you can manage Kubernetes clusters anywhere. If you have
Kubernetes clusters in, for example, AWS, you can manage them with Azure Arc. If you have
Kubernetes clusters on-prem, you can manage them with Azure Arc.

Rancher: Rancher is a vendor-agnostic solution that does all the management goodness that
Azure Arc does, with a few other key features such as logging, deployments of Kubernetes
servers, and security features to help you fully manage your Kubernetes clusters that are
running anywhere.

In the next section, you’ll learn about the overall network administration that’s needed
inside of a Kubernetes cluster.

Exploring networking and system components
Networking in a Kubernetes cluster, aside from the Kubernetes API itself, is what
makes Kubernetes truly tick. Networking comes into play in various ways, including
the following:

Pod-to-Pod communication

Service-to-Service communication

How nodes talk to each other inside of the cluster

How users interact with your containerized applications

Without networking, Kubernetes wouldn’t be able to perform any actions. Even from a
control plane/worker node perspective, worker nodes can’t successfully communicate
with control planes unless proper networking is set up.

This section could be, at the very least, two chapters in itself. Because we only have
one section to hammer this knowledge down, let’s talk about the key components.

kube-proxy

When you first start to learn about how networking works inside of Kubernetes and
how all resources communicate with each other, it all starts with kube-proxy. kube-
proxy is almost like your switch/router in a data center. It runs on every node and is
responsible for local cluster networking.

It ensures the following:
That each node gets a unique IP address

It implements local iptables or IPVS rules

It handles the routing and load balancing of traffic

It enables communication for Pods

In short, it’s how every resource in a Kubernetes cluster communicates.

CNI

The first step is kube-proxy, but to get it deployed, it needs to have a backend. That
backend is the Container Network Interface (CNI). Attempting to run kube-proxy
without a CNI is like trying to run a network on Cisco without having Cisco
equipment – it doesn’t work.

The CNI is a network plugin, sometimes called a network framework, that has the
responsibility of inserting a network framework into a Kubernetes cluster to enable
communication, as in, to enable kube-proxy.

There are a ton of popular CNIs, including the following:
Weave

Flannel

Calico

Kubernetes resource communication

When you deploy Pods, especially microservices, which are X number of Pods running
to make up one application, you need to ensure that Pod-to-Pod communication and
Service-to-Service communication work.

Pods communicate with each other via an IP address, which is given by kube-proxy.
The way that services communicate with each other is by hostname and IP address,
which is given by CoreDNS. Services provide a group of Pods associated with that

service with a consistent DNS name and IP address. CoreDNS ensures the translation
from hostnames to IP addresses.

DNS

Under the hood, Kubernetes runs CoreDNS, a popular open source DNS platform for
converting IP addresses into names. When a Pod or a Service has a DNS name, it’s
because the CoreDNS service (which is a running Pod) is running on Kubernetes
properly.

Service mesh and Ingress

Much like a lot of the other topics in this chapter, service meshes could be an entire
chapter – the two topics mentioned here could be an entire book. However, let’s try to
break it down into one section.

An Ingress controller lets you have multiple Kubernetes Services being accessed via
one controller or load balancer. For example, you could have three Kubernetes services
named App1, App2, and App3, all connected to the same Ingress controller and
accessible over the /app1, /app2, and /app3 paths. This is possible via routing rules,
which are created for the Ingress controller.

A service mesh, in short, helps you encrypt east-west traffic or service-to-service
traffic, and troubleshoot network latency issues.

Sometimes, depending on the service mesh that you use, you may not need an Ingress
controller as the service mesh may come built with one.

For Ingress controllers, check out Nginx Ingress, Traefik, and Istio. For service
meshes, check out Istio.

In the next section, you’re going to learn about the ins and outs of how to think about
virtualized bare metal and a few vendors that help on this journey.

Getting to know virtualized bare metal
If/when you’re planning to run Kubernetes on-prem, two questions may pop up:

Where are we going to run Kubernetes?

How are we going to run Kubernetes?

In today’s world, chances are you’re not going to run Kubernetes directly on bare
metal (although you could, and some companies do). You’ll probably run Kubernetes
on a hypervisor such as ESXi or in a private cloud such as OpenStack. You may also
run Kubernetes on virtualized bare metal, which is different than running it on a
hypervisor.

In this section, let’s learn what virtualized bare metal is and a few ways that you can
run it.

Virtual izing your environment

When thinking about virtualized bare metal, a lot of engineers will most likely think
about a hypervisor such as VMware’s ESXi or Microsoft’s Hyper-V. Both are great
solutions and allow you to take a bare-metal server that used to only be able to run one
operating system and run multiple operating systems. There are many other pieces to a
virtualized environment, such as virtualized hardware, networking, and more, all of
which are extensive topics and could be an entire book in itself.

This not only helps you use as many resources out of the server as you can, but it also
allows you to save on cost because servers are expensive.

The other solution is to run as close to bare metal as possible, but you don’t host it.
Instead, you rent bare-metal servers from a hosting provider. When you rent the
servers, they give you SSH or RDP access and you can access them the same way that
you would if the servers were running in your data center. There’s a UI that you can
use to create the servers, maybe some automated ways to do so if the platform allows
it, and you can create Windows and/or Linux servers like you would on any other
platform, such as if you were creating a web service or a server to host applications.

Where to run Kubernetes

When thinking about where you’d want to run ESXi or Hyper-V, that’ll most likely
come down to what servers you currently have, the partnerships with vendors your
business has, and what resources (CPU, RAM, and so on) you need on the servers.

When it comes to the “as close to bare metal as possible” option, although there are
many vendors, two stick out in the Kubernetes space:

Equinix: Equinix allows you to – not only from a UI perspective but also from an automation
perspective – use tools such as Terraform to create virtualized bare-metal servers for both
Linux and Windows distributions. You can also manage networking pieces such as BGP and
other routing mechanisms, as well as use on-demand, reserved, and spot servers:

Figure 4.4 – Equinix metal server creation

In the following screenshot, you can see the general starting point in Equinix to start
deploying servers:

Figure 4.5 – Equinix Metal deployment page

OpenMetal: OpenMetal is a full-blown virtualized bare-metal solution for running OpenStack.
One of the cool parts about OpenMetal is that you get true SSH access to the literal servers that
are running OpenStack, so you have a ton of flexibility and customization options, just like you
would in any OpenStack environment. The only thing you don’t have access to is the actual

hardware itself as that’s managed by OpenMetal, but you most likely don’t want access to it
anyway if you’re looking for a virtualized bare-metal solution:

Figure 4.6 – OpenMetal dashboard

The following screenshot shows the standard UI in OpenStack, which is running on
OpenMetal. This shows that nothing is different from using OpenStack on any other
environment, which is great for engineers that are already used to it:

Figure 4.7 – OpenStack’s Overview dashboard

If you’re interested in running Kubernetes on-prem, but still want the feel of a cloud-
based environment, OpenStack running on OpenMetal is a great place to start.

Summary
There’s a lot that wasn’t talked about in this chapter – storage, different interface types,
hardware types, the ins and outs of Kubernetes clusters, and a lot more. The reason
why is that this chapter could only be so long and a lot of the topics could take up an
entire chapter.

However, the goal of this chapter was to give you a place to start.

As you learned throughout this chapter and may have come to realize, managing
Kubernetes on-prem can almost feel like an entire data center within itself. You have
networking concerns, scalability concerns, storage concerns, network concerns… the
list goes on and on. However, if you want the flexibility of managing Kubernetes
yourself without relying on a cloud provider, then this chapter went over what you
should think about from the beginning.

Running Kubernetes on-prem is no easy task. You will most likely have to have a team
of engineers – or at the very least two to three engineers with a very strong systems
administration and network administration background. If you don’t already have

those skills, or if your team doesn’t, this chapter should have given you a good starting
point on where to look.

In the next chapter, you’ll start looking at the how and why behind deploying
applications on Kubernetes.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the
following resource:

OpenStack Cookbook, by Kevin Jackson, Cody Bunch, and Egle Sigler:
https://www.packtpub.com/product/openstack-cloud-computing-cookbook-fourth-
edition/9781788398763

https://www.packtpub.com/product/openstack-cloud-computing-cookbook-fourth-edition/9781788398763

Part 2: Next 15 Kubernetes Concepts –
Application Strategy and Deployments
Kubernetes cluster management is such a huge part of managing Kubernetes as a
whole. In fact, that’s probably why the Certified Kubernetes Administrator (CKA)
program is so popular and a prerequisite to the Certified Kubernetes Security (CKS)
exam. Although certifications aren’t the be-all-and-end-all, and you definitely don’t
need them to work with Kubernetes, it gives you an idea of what a critical component
is, which is the infrastructure and overall cluster management.

The second huge piece, which is incredibly important and absolutely needed, is the
containerized application deployment piece. The second set of the 50 concepts will go
into overall deployments, which you’ll learn about in these sections.

Typically, when an engineer first gets started with Kubernetes, they’ll deploy a simple
web app such as nginx or Hello World. They’ll grab the container image, put it in a
Kubernetes manifest, run kubectl apply –f, and call it a day. The point is that
popping a container image in a manifest and running a command is the easy part. The
hard part is thinking about the actual strategy that you’re utilizing. Will you implement
GitOps? CI/CD? A service mesh? How are you managing automation and
repeatability? How many apps need to be deployed? There’s a lot that goes into the
thought process from a strategy and architecture standpoint.

By the end of these, you should have an understanding of the various ways to deploy
containerized apps. Although we couldn’t go into every specific use case, you should
be able to take what’s in these two chapters and have a good path forward for what to
use in your production environment.

This part of the book comprises the following chapters:
Chapter 5, Deploying Kubernetes Apps Like a True Cloud Native

Chapter 6, Kubernetes Deployment – Same Game, Next Level

5

Deploying Kubernetes Apps Like a True Cloud
Native
When engineers start hearing about Kubernetes or want to start implementing it, the
typical reason is from a Dev perspective of managing and deploying applications. The
whole premise around Kubernetes making engineering teams’ lives easier, regardless
of whether it’s Dev or Ops, is based on application deployment.

Deploying applications is at the forefront of every business’s mind, whether it’s a
website, some mobile application, or an internal app in any company, from a software
company to an auto-parts company to a beer manufacturer. Regardless of the industry,
almost every company deploys some type of application and some type of software.
As all engineers know, deploying and maintaining an application successfully isn’t an
easy task. Whether you’re running an app on bare metal, on a VM, in the cloud, or
even in a container, that app could be (and most likely is) the make or break between a
successful business and a bankrupt company.

Throughout this chapter, you’re going to notice that a lot of topics covered will remind
you of how other application deployments work. From the actual deployment to
scaling and upgrading, the overall concepts are the same. For example, scaling an
application is scaling an application. There’s no magical new methodology with
Kubernetes. However, what Kubernetes does give you is the ease of scalability. With
that being said, the major thing you’ll notice throughout this chapter is that Kubernetes
isn’t reinventing the wheel. It’s making what we’ve been doing for 30+ years easier.

In this chapter, we’re going to cover the following main topics:
Cloud-native apps

Controllers, controller deployments, and Pods

Segregation and namespaces

Stateless and stateful apps

Upgrading deployments

Technical requirements
To follow along with this chapter, you should have already deployed a Kubernetes app
via a Kubernetes manifest. This chapter is going to break down the process of things

such as deploying apps and what a Kubernetes manifest is, but to fully grasp the
chapter, you should be familiar with the deployment process. Think of it like this – you
should be at a beginner/mid level with the Kubernetes deployment process, and this
chapter will get you to the production level.

The code for this chapter can be found at the following GitHub URL:
https://github.com/PacktPublishing/50-Kubernetes-Concepts-Every-DevOps-Engineer-
Should-Know/tree/main/Ch5

Understanding cloud-native apps
Although the whole cloud-native thing can feel a bit buzzword-ish in today’s world,
there is some merit behind the idea of building cloud-native apps. The way an
application is architected matters as it relates to how it can be deployed, managed, and
maintained later. The way a platform is built matters because that’s the starting point
for how an application can be deployed and how it can be run.

Throughout the years of technology’s existence, there have been multiple different
methodologies around how applications are architected and built. The original
methods were formed around on-premises systems, such as mainframes and servers.
After that, applications started to be architected for virtualized hardware platforms,
such as ESXi, and other virtualization products, with the idea in mind of utilizing more
of the server, but for different workloads instead of just one workload running like in
the bare-metal days. After virtualization, there was architecture and planning for apps
around cloud workloads, which started to introduce the idea of cloud native and how
applications would work if they only ran in the cloud. Considerations such as
bandwidth, size of servers, and overall cost consumed a lot of conversations around
cloud workloads, and still do.

Now, we’re faced with the fourth phase, which is containerized workloads.
Containerized workloads really kicked off the focus around cloud-native applications
and deployments, and for good reason, especially with the idea of microservices
starting to become a real thing for many organizations that would’ve thought it wasn’t
possible just 5 years ago.

In this section, you’re going to learn what cloud-native applications are and a brief
history of application architecture, cloud deployments, and microservices.

What’s a cloud-native app?

Before deploying applications in a cloud-native way, let’s take a step back and think
about a core computer science concept – distributing computing.

https://github.com/PacktPublishing/50-Kubernetes-Concepts-Every-DevOps-Engineer-Should-Know/tree/main/Ch5

Distributed computing is a field that studies distributed systems, and distributed
systems are systems that have components located on different network-connected
computers. Those different network-connected computers then communicate with each
other to send data, or packets, back and forth.

The important part here is this – distributed systems equal multiple software
components that are on multiple systems but run as a single system. Distributed
computing sounds like microservices, right? (More on microservices later.)

Cloud native takes the concept of distributed computing and expands it to a whole
other level. Think about it from an AWS or Azure perspective. AWS and Azure are by
definition distributed systems. When you log in to the AWS portal, there are a ton of
services at your fingertips – EC2, databases, storage, and a lot more. All of those
services that you interact with are from a single system, but the network components
that make up the single system span hundreds of thousands of servers, across multiple
data centers across the entire world. Cloud native doesn’t just mean the public cloud,
however. Remember, the cloud is a distribution of services. Something that’s cloud
native can also be, for example, an entire OpenStack server farm.

Combining the whole idea of cloud native and distributed computing, you have a
major concept – cloud-native applications. Cloud-native apps aim to give you the
ability to design and build apps that are the following:

Easily scalable

Resilient

Elastic

The important thing to remember is that these concepts aren’t any different than what
we’ve already had in the engineering world. We’ve had distributed computing for a
long time. We’ve had distributed applications for a while. What we didn’t always have
is the ability to easily implement distributed computing. Thinking about the AWS or
Azure example from previously, how long would it take us to build the same
infrastructure as Azure or AWS? Then, think about how many people it would take to
manage and maintain it. With distributed computing at the cloud level, all of the day-
one configurations are abstracted away from you, leaving you with only worrying
about the day-two complexities of building a cloud-native/distrusted computing
application.

In the cloud, if you want to scale your application, you click a few buttons, write a few
lines of code, and boom, you have autoscaling groups. If you want to build resilient
applications, you point and click on what data centers you want your apps to run in
instead of having to physically build out those data centers. Again, the concept of
distributed computing is the same thing as cloud native and cloud-native apps. The

difference is that you don’t have to worry about building out the data center. You just
have to worry about scaling the app.

Cloud-specif ic cloud native

One major point to keep in mind, whether it’s with a standard app deployment in the
cloud or an app deployment in Kubernetes, is cloud native doesn’t just mean the cloud.
It’s more or less the overall concept, but again, the whole idea of cloud native is
distributed computing without the need to focus on the day-one implementation and
configuration.

For example, let’s take OpenStack. OpenStack is a private cloud. You can deploy
OpenStack in your data center and interact with it just like you would with any other
cloud service. However, here’s the catch – some teams may see it as cloud native and
others may see it as general distributed computing. The infrastructure teams that are
building out OpenStack will see the behind-the-scenes configurations, such as building
out the hardware and scaling it across multiple data centers. To them, it’s no different
than a standard distributed computing environment. Same for the infrastructure
engineers that are building, managing, and maintaining the infrastructure for AWS or
Azure. Then, there are the teams that interact with OpenStack after it’s already built.
They’re logging into the UI and communicating with OpenStack via the CLI and other
API methods, so they’re getting the full satisfaction of a true cloud-native environment
just like many engineers are getting the full satisfaction of interacting with AWS and
Azure without needing to worry about the infrastructure and services on-premises.

Another example is the hybrid cloud. If you’re running Azure Stack HCI on-premises,
that means you’re utilizing some server that runs the Azure Stack HCI operating
system, which interacts with the Azure cloud. The engineers that are managing Azure
Stack HCI see what’s happening behind the scenes. Other engineers that are simply
interacting with Azure Kubernetes Service (AKS) don’t see the underlying
infrastructure. They just know that they go to a specific location to create a new
Kubernetes cluster.

Regardless of where a platform or app is deployed, it could be considered cloud native
to some and standard distributed computing to others. You could be an engineer that’s
building a cloud-native platform so others can interact with it in a cloud-native
fashion.

What are microservices?

Taking the idea of distributed computing and cloud native to the next level gives us a
microservice. By definition, a microservice is a loosely coupled architecture that has
components that have no dependencies on each other.

Say you have five pieces that make up your application: three backend APIs, some
middleware to connect the backend and frontend, and a frontend that consists of a
website with multiple paths. In a monolithic-style environment, you would take that
entire application, package it up, deploy it to a server, and run the binary. Then, if you
had to update or upgrade any part of that application, such as the one backend API,
you would have to take down the rest of the application. This not only brings down
production but also would slow down the ability to get new updates and features out
because you’d have to specify a specific window to bring down the entire platform.

Microservices allow you to take those five pieces of the application and split them out
into their own individual pieces. Then, you can manage those pieces separately instead
of having to worry about combining them to deploy and have a working platform.

In a Kubernetes environment, you would have the following:
One container image for backend API 1

One container image for backend API 2

One container image for backend API 3

One container image for the middleware

One container image for the frontend

Then, each of those container images can be updated, upgraded, deployed, and
managed separately.

It’s important to note that microservices aren’t just for containers and Kubernetes. The
same concepts talked about previously can work just as well on five different Ubuntu
VMs. It’s just easier to manage a container from a microservice perspective than it is
to manage it from a VM perspective. Way less automation and repeatable practices are
needed to do the same thing you would have to do on a VM inside of Kubernetes. It’s
possible and 100% doable, but it takes more effort.

In the next section, you’re going to take what you learned in this section and start
applying it to Kubernetes-based scenarios.

Learning about Kubernetes app deployments
When engineers are first getting started with deploying an application to a Kubernetes
cluster, it looks something like this:

1. Create a Kubernetes manifest.

2. Run a command such as kubectl apply -f or kubectl create -f against the
manifest.

3. Ensure that the application has Pods running.

4. Access your app to ensure it’s running the way you were expecting it to run.

Although this is a great approach to getting started with deploying applications to
Kubernetes, we must dive a little bit deeper to fully understand how the deployment
process of an app occurs, why it works the way that it does, how manifests interact
with Kubernetes to ensure an application is deployed, and how Kubernetes keeps the
desired state of Pods running.

It seems like how Kubernetes deploys apps is simply magic that occurs on the platform
because that’s how it’s built and that’s the way it’s supposed to be, but there’s a
ridiculous number of pieces built that allow Kubernetes to appear to be the magical
deployment platform that it makes itself out to be.

In this section, you’re going to learn from start to finish how app deployments work
inside of Kubernetes and the internals of everything that’s needed to make a successful
deployment.

Kubernetes manifests

Before actually deploying an application, you’ll need to learn the ins and outs of how
most applications are deployed to Kubernetes – a Kubernetes manifest. The idea is
that you already know what a Kubernetes manifest is, but perhaps you don’t know the
breakdown of the internals of a Kubernetes manifest.

A Kubernetes manifest is a YAML- or JSON-based configuration that interacts
differently with the Kubernetes API. The Kubernetes manifest is where you specify
what API you want to work with and what resource you want to work with from that
API. There are two groups of APIs:

Core group: Consists of the original APIs that Kubernetes came with in /api/v1

Named group: Consists of all new APIs that are being built and are in
/apis/$GROUP_NAME/$VERSION

For example, the following is a code snippet showcasing that the Deployment resource
is in the /api/v1 group:

apiVersion: apps/v1

kind: Deployment

The following is another example of an Ingress controller, which you can see is in
/apis/networking.k8s.io/v1:

apiVersion: networking.k8s.io/v1

kind: Ingress

apiVersion is the Kubernetes API you’re utilizing, and kind is what Kubernetes
resource you’re creating, updating, or deleting.

A Kubernetes manifest consists of four key parts:
apiVersion: Which version of the Kubernetes API you’re using to create the
object/resource

Kind: What kind of object you want to create, update, or delete

Metadata: Data that helps uniquely identify the resource/object

Spec: What you want the resource to look like

The following is a Kubernetes manifest:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

spec:

 selector:

 matchLabels:

 app: nginxdeployment

 replicas: 2

 template:

 metadata:

 labels:

 app: nginxdeployment

 spec:

 containers:

 - name: nginxdeployment

 image: nginx:latest

 ports:

 - containerPort: 80

Let’s break that down.

First, you have the API version. You can see that the API version indicates that it’s
utilizing a resource in the core group. Next, there’s kind, which specifies what
resource you’re creating/updating/deleting. Then there’s metadata, which is
specifying a name for the deployment to uniquely identify it via metadata. Finally,

there’s spec, which indicates how you want your containerized app to look. For
example, the spec shown earlier indicates that the manifest is using the latest version
of the Nginx container image and utilizing port 80.

To wrap up this section, something you should know about Kubernetes manifests, and
the way Kubernetes works in general, is that it’s declarative. Declarative means “tell
me what to do, not how to do it.” Imperative means “tell me what to do and how to do
it.”

For example, let’s say you were teaching someone how to bake a cake. If it was
imperative, you would be telling the person what ingredients to use, the size for each
ingredient, and how to do it step by step, ultimately leading them to the finished
product. Declarative would mean you tell them what ingredients they need and they
figure out how to do it on their own.

Kubernetes manifests are declarative because you tell Kubernetes what resource you
want to create, including the name of the resource, ports, volumes, and so on, but you
don’t tell Kubernetes how to make that resource. You simply define what you want,
but not how to do it.
The common way but not the only way
Nine times out of ten, when you’re deploying a resource to Kubernetes, you’ll most
likely be using a Kubernetes manifest. However, as you’ve learned throughout this
book so far, the core of Kubernetes is an API. Because it’s an API, you can utilize any
programmatic approach to interact with it.

For example, the following is a code snippet using Pulumi, a popular IaaS platform to
create an Nginx deployment inside of Kubernetes. This code requires more to run it, so
don’t try to run it. This is just a pseudo example.

There’s no YAML and no configuration language. It’s raw Go (Golang) code
interacting with the Kubernetes API:

 deployment, err := appsv1.NewDeployment(ctx,
conf.Require("deployment"), &appsv1.DeploymentArgs{

 Spec: appsv1.DeploymentSpecArgs{

 Selector: &metav1.LabelSelectorArgs{

 MatchLabels: appLabels,

 },

 Replicas: pulumi.Int(2),

 Template: &corev1.PodTemplateSpecArgs{

 Metadata: &metav1.ObjectMetaArgs{

 Labels: appLabels,

 },

 Spec: &corev1.PodSpecArgs{

 Containers: corev1.ContainerArray{

 corev1.ContainerArgs{

 Name: pulumi.String(conf.Require(
"containerName")),

 Image:
pulumi.String(conf.Require("imageName")),

 }},

 },

 },

 },

 })

 if err != nil {

 return err

 }

Although you won’t see this too often, you should know that this type of method exists
and you can create any resource you want in Kubernetes, in any programmatic fashion,
as long as you do it via the Kubernetes API.

Control lers and operators

Kubernetes comes out of the box with a way to ensure that the current state of a
deployed application is the desired state. For example, let’s say you deploy a
Kubernetes deployment that is supposed to have two replicas. Then, for whatever
reason, one of the Pods goes away. The deployment controller would see that and do
whatever it needs to do to ensure a second replica/Pod gets created. All resources that
can be created in Kubernetes (Pods, Services, Ingress, Secrets, and so on) have a
controller.

An operator is a special form of a controller. Operators implement the controller
pattern, and their primary job is to move the resources inside of the Kubernetes cluster
to the desired state.

Operators also add the Kubernetes API extendibility to use
CustomResourceDefinitions (CRDs), which are a way that engineers can utilize the
existing Kubernetes API without having to build an entire controller and, instead, just
use the CRD controller. You’ll see a lot of products/platforms that tie into Kubernetes
to create a CRD.

A popular way of building your own operator and controller is with Kubebuilder:
https://book.kubebuilder.io/.

https://book.kubebuilder.io/

Figure 5.1 – Controllers

You’ll hear the terms operator and controller used interchangeably. To give a frame of
reference, just remember that the operator is like the big boss working at a high level,
ensuring that things are going well for the organization, and the operator is like the
engineer doing the hands-on work to make sure that the organization gets what it
needs.

Another form of this that’s gaining increased popularity is GitOps. GitOps looks at the
desired state of a Kubernetes manifest that’s in source control as opposed to what
controllers do, which is look at what’s actively deployed on a Kubernetes cluster.

Different ways to deploy with higher-level control lers

When you deploy a Pod by itself, the manifest can look like the following:

apiVersion: v1

kind: Pod

metadata:

 name: static-web

 labels:

 role: myrole

spec:

 containers:

 - name: web

 image: nginx

 ports:

 - name: web

 containerPort: 80

 protocol: TCP

The problem with this method is you have no high-level controller that manages the
Pod(s) for you. Without the higher-level controller, like a Deployment or DaemonSet,
if the Pod fails, the kubelet watches the static Pod and restarts it if it fails. There’s also
no management of the current state and desired state. From a production perspective,
you never want to deploy a Pod resource by itself. It’s fine if you want to test a
container image, but that’s about it. It should be used for testing/development purposes
only.

Not always, but most of the time, you’ll see the following production-level controllers
that manage Pods:

Deployments: A deployment is one of the highest-level controllers in the Core API group. It
gives you the ability to control one Pod or multiple replicas and scale out across the cluster.
Deployments also give you the ability to self-heal and confirm that the current state of a
deployed containerized application is the desired state. The following code is an example
deployment resource:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

spec:

 selector:

 matchLabels:

 app: nginxdeployment

 replicas: 2

 template:

 metadata:

 labels:

 app: nginxdeployment

 spec:

 containers:

 - name: nginxdeployment

 image: nginx:latest

 ports:

 - containerPort: 80

DaemonSets: This is like a deployment resource but is cluster wide. It ensures that either all
nodes or the nodes you choose run a copy/replica of the Pod. A key difference you’ll see in a
DaemonSet is that there’s no field for replicas. That’s because the Pod can’t run more replicas
than the number of worker nodes, meaning you can’t have five Pod replicas if you only have
three worker nodes. In that case, you’d only be able to have three Pods. The following code is
an example DaemonSet:

apiVersion: apps/v1

kind: DaemonSet

metadata:

 name: nginx-deployment

spec:

 # nodeSelecter: Field that you can specify what worker nodes
you want the Pod to deploy to

 selector:

 matchLabels:

 app: nginxdeployment

 template:

 metadata:

 labels:

 app: nginxdeployment

 spec:

 containers:

 - name: nginxdeployment

 image: nginx:latest

 ports:

 - containerPort: 80

StatefulSets: This is like a Deployment but for applications that aren’t stateless. The
StatefulSet maintains a sticky ID for each Pod. For example, let’s say that you have an app that
needs to communicate with a Pod via a specific network ID or unique ID. With a Deployment,
Pods are ephemeral, so they lose their unique ID. With a StatefulSet, a new Pod can get created
after the old one failed, but it’ll have the same network ID as the old Pod. For a StatefulSet to
work, it requires a service to control the network domain. Because its only job is to control the
network domain, a headless service makes the most sense. The following is how you can create
a standard StatefulSet:

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: nginx-deployment

spec:

 selector:

 matchLabels:

 app: nginxdeployment

 serviceName: nginxservice

 replicas: 2

 template:

 metadata:

 labels:

 app: nginxdeployment

 spec:

 containers:

 - name: nginxdeployment

 image: nginx:latest

 ports:

 - containerPort: 80

apiVersion: v1

kind: Service

metadata:

 name: nginxservice

spec:

 selector:

 app: nginxdeployment

 ports:

 - protocol: TCP

 port: 80

 clusterIP: None

In terms of which controller to use, it’s going to depend on your use case. There’s no
right or wrong answer here unless it’s something straightforward, for example, if you
have a containerized app that needs to hold on to its network ID, in which case you’d
use a StatefulSet.

Scaling

One of the key components out of the box with Kubernetes is its ability to easily scale
both horizontally and vertically. From a production perspective, this takes a ton of load
off of your back. In a standard VM environment, you would have to worry about
deploying a new server, installing the operating system, getting packages up to date,
and deploying the application binary, and finally, the app would be running.

Horizontal Pod autoscaling is the most common, which means more Pods get created
to handle load. Vertical autoscaling means the CPU/memory of a Pod gets raised.
Vertical Pod autoscaling is not all that common, but possible.

When you’re scaling, you can have standard ReplicaSets, but in production, the
number may not be so cut and dry. For example, if you have three replicas, but you
may need four or ten, you need a way to account for that. The best thing that you can
do is start with at least three to four replicas, and if needed, work your way up. If you
have to scale up to five or ten, you can update the Kubernetes manifest and redeploy it
with a GitOps solution or in another repeatable fashion using the kubectl apply -f
name_of_manifest.yaml command.

When you’re scaling a Pod, or for that matter, when you’re doing anything for a Pod
deployment, never use commands such as kubectl patch or any of the other quick
fixes on the command line. If you do, any time the Pod gets redeployed, your
configurations won’t exist because you did them ad hoc/manually on the command

line. Always make changes in a Kubernetes manifest and deploy them properly
(remember, current state versus desired state).
How to horizontally scale Pods
When you’re scaling Pods horizontally, it’s all about replica count. For example, let’s
say you have a Kubernetes manifest like the following, which contains two replicas:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

spec:

 selector:

 matchLabels:

 app: nginxdeployment

 replicas: 2

 template:

 metadata:

 labels:

 app: nginxdeployment

 spec:

 containers:

 - name: nginxdeployment

 image: nginx:latest

 ports:

 - containerPort: 80

You run kubectl apply -f nginx.yaml on the preceding manifest, and then you
come to realize that due to user load on the Nginx frontend, you need to bump the
replicas from two to four. At that point, you can update the Kubernetes manifest to go
from two replicas to four:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

spec:

 selector:

 matchLabels:

 app: nginxdeployment

 replicas: 4

 template:

 metadata:

 labels:

 app: nginxdeployment

 spec:

 containers:

 - name: nginxdeployment

 image: nginx:latest

 ports:

 - containerPort: 80

This method won’t recreate anything as you’re using kubectl apply -f instead of
kubectl create -f. create is for creating net-new resources and apply is for
updating/patching a resource.
How to vertically scale Pods
Vertically scaling Pods, as discussed, is not a common practice. However, it is doable.
The typical method is to use the VerticalPodAutoscaler resource from the
autoscaling.k8s.io API. It gives you the ability to point to an existing deployment
so that deployment is managed by the autoscaler. For example, the following
Kubernetes manifest shows a target reference of a deployment called
nginxdeployment:

apiVersion: autoscaling.k8s.io/v1

kind: VerticalPodAutoscaler

metadata:

 name: nginx-verticalscale

spec:

 targetRef:

 apiVersion: "apps/v1"

 kind: Deployment

 name: nginxdeployment

 updatePolicy:

 updateMode: "Auto"

Please note that with the vertical Pod autoscaler turned to Auto for the update mode,
it’ll have the ability to do the following:

Delete Pods

Adjust the CPU

Adjust the memory

Create a new Pod

It requires a restart of the application running inside the Pod.

Multi-container Pods

Sidecars, sometimes called multi-container Pods, are a way to tightly couple
containers into one Pod. Typically, and especially from an application perspective, one
Pod runs one container. However, there may be use cases where you want to run
sidecars. The biggest use case is when you’re running some type of log
collector/aggregator for your Pods. A lot of engineers will put the container running
the log collector into the same Pod where the application is running. That way, it’s
straightforward to communicate with the application and pull the logs from it as
containers inside of a Pod share the same IP address but are reachable on different
ports.

One thing you should absolutely never do is run multiple applications in a Pod. For
example, you never want to put the frontend app and the backend app inside of the
same Pod. That defeats the whole purpose of containers and microservices. Sidecars
are only for very specific use cases and if it’s absolutely necessary. A personal belief
of mine is that you should never use sidecars unless you absolutely have to. Other
engineers will disagree with me, but I believe a Pod should run one workload. That’s
the purpose of a microservice architecture. The only time that I see it absolutely
necessary is when you’re running a service mesh and you need the service mesh proxy
inside of the Pod.

The following is what a Kubernetes manifest would look like if you have multiple
containers inside of a Pod. Notice how under spec.containers, there’s container1
and container2:

apiVersion: v1

kind: Pod

metadata:

 name: testsidecar

spec:

 containers:

 - name: container1

 image: nginx

 - name: container2

 image: debian

 command: ["/bin/sh", "-c"]

Liveness and readiness probes

Whenever you’re deploying any type of application, whether it’s containerized or not,
you want to ensure that the application is running as expected. Within a containerized
environment, it’s no different. Let’s say you have a Pod that’s running an Nginx
frontend. The Pod could be up and running, have all of the appropriate resources, and

so on. However, that doesn’t mean that the binary running inside the Pod is working as
expected. To ensure that the actual application is running as expected, you can use
liveness probes and readiness probes.

A liveness probe indicates whether a container is running. It helps Kubernetes
understand the overall health of the Pod. The kubelet continuously sends a ping of
sorts to the container to ensure that it’s running as expected. If the liveness probe
deems a container unhealthy, the kubelet restarts the Pod.

A readiness probe indicates whether the container is ready to receive requests.
Readiness probes are a bit more important from an application perspective because
they tell Kubernetes whether or not to route service traffic to Pods. If a service is
trying to route traffic to a Pod and that Pod is down or unhealthy, the application won’t
be reachable. The readiness probe tells the service which Pods are ready to receive
requests and which aren’t.

The following is an example of a readiness probe:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

spec:

 selector:

 matchLabels:

 app: nginxdeployment

 replicas: 2

 template:

 metadata:

 labels:

 app: nginxdeployment

 spec:

 containers:

 - name: nginxdeployment

 image: nginx:latest

 imagePullPolicy: Never

 ports:

 - containerPort: 80

 readinessProbe:

 tcpSocket:

 port: 8080

 initialDelaySeconds: 5

 periodSeconds: 10

The following is an example of a liveness probe:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

spec:

 selector:

 matchLabels:

 app: nginxdeployment

 replicas: 2

 template:

 metadata:

 labels:

 app: nginxdeployment

 spec:

 containers:

 - name: nginxdeployment

 image: nginx:latest

 imagePullPolicy: Never

 ports:

 - containerPort: 80

 livenessProbe:

 httpGet:

 scheme: HTTP

 path: /index.html

 port: 80

 initialDelaySeconds: 5

 periodSeconds: 5

All production-level Kubernetes deployments should use readiness probes.

In the next section, you’re going to dive into an important topic, which is segregating
your containerized apps, and a few different ways of doing it.

Exploring segregation and namespaces
Once applications are deployed, engineers wipe the sweat off their foreheads, give
high fives to their team, and rejoice in their victory. However, what comes after the
deployment? Better yet, what if you have to deploy the applications again? Or other
types of applications? Or to a different location or segregation point? (Segregation will
be discussed later in this chapter.) Getting an application up and running is a mental
workout in itself, but the what-comes-next questions you ask yourself are typically the
most important. These are things such as the following:

Will the next deployment be automated and repeatable?

If you have to deploy the application again, will it be an effective deployment?

Can (or should) the apps run right next to each other?

Which engineers should have access to what apps and why?

Deploying an application is a great victory but designing how and where an
application should run is the difference between a successful and a broken-down
production environment. Questions around application segregation and multi-tenancy
keep engineers up at night because it’s less engineering work and more
planning/architecture work. It’s less hands-on-keyboard and more critical thinking at a
higher level compared to being down in the trenches in the code.

In this section, you’re going to learn about a few of the most popular segregation
techniques. Let’s get started!

Namespaces

The first level of segregation, typically, is a namespace. When you’re deploying Pods,
the last thing that you want to do is deploy everything and anything to the default
namespace. Instead, you want to ensure that applications have their own namespaces.
At a network level, Pods within one namespace can communicate with another
namespace. However, if you have a service account that’s used for Pod deployments in
one namespace and a service account that’s used to deploy Pods in another namespace,
that means the same service account cannot be used to manage all of the Pods. That
gives you a bit more segregation from a Pod management perspective and ensures that
there’s proper authentication and authorization. But from a network perspective, Pods
can still communicate with other Pods in separate namespaces.

Notice in Figure 5.2 that there are three namespaces:
argoCD

kube-system

monitoring

Figure 5.2 – Kubernetes resources

The preceding screenshot shows that everything in the argocd namespace is
segregated/isolated from everything in the kube-system namespace. If an engineer
were to run kubectl get pods, they would only see the Pods in the namespace that
they have access to.

Single tenancy

Taking segregation and isolation a step further, there are tenancy models. First, let’s
start with single tenancy, but before diving in, let’s talk about what tenancy models
mean in Kubernetes.

Isolating via tenancy could be anything from users to engineers to applications and all
different resources. For example, single tenancy could mean running one containerized
application across a cluster, or it could mean ensuring that one engineer has access to a
cluster that no one else has access to it, but they can run as many applications as they
want.

A typical scenario of single tenancy is isolating development environments. Let’s say
you’re a developer and you need a Kubernetes cluster to test an application stack. The

scenario would be that the platform engineering team, or whichever team manages
Kubernetes clusters, gives you your own Kubernetes cluster to test the application
stack. This is a great way to perform single tenancy as it allows all engineers working
on different tech stacks to test their code without it compromising or interfering with
other application stacks.

Multi-tenancy

On the flip side is multi-tenancy. Multi-tenancy is where you have multiple engineers,
users, or applications running on the same Kubernetes cluster. If you take a look again
at Figure 5.2 showing the namespaces, you’ll see that Prometheus, ArgoCD, and
Nginx are running on the same cluster. That would be considered a multi-tenancy
cluster. Single tenancy would be if ArgoCD, Nginx, and Prometheus were all running
on separate clusters.

In the real world, rarely do you see applications running on different clusters, or rather,
an application per cluster. Instead, you usually see the multi-tenancy model for
applications and the single-tenancy model for developers testing application stacks,
and once the application stack is tested, it moves into the Kubernetes cluster with the
rest of the applications.

In the next section, you’re going to learn how to think about stateless apps, stateful
apps, and volumes.

Investigating stateless and stateful apps
At a high level, applications come in two forms – apps that need data stored and apps
that don’t care whether the state of the data is stored. Let’s think about two different
scenarios.

When you log in to your Gmail account, or another email service provider, everything
stays where it’s supposed to be. You can see the emails in your inbox, the sent
messages, the emails in your trash bin, and so on. The application/platform stays how
it’s supposed to be because the data is stateful. Now, on the opposite side of the
spectrum, let’s take www.google.com into consideration. When you go to
www.google.com in a web browser, you always have a fresh start. The entry box to
type in your question is there, but the results to the previous question that you asked
Google isn’t there. It’s always a fresh, clean slate. That’s because www.google.com is
stateless, as in, it doesn’t just hold on to your data (well, it does… but that’s a separate
discussion) and keep it in the web browser after every search.

Of course, stateless versus stateful is a much deeper discussion, but that’s a high-level
definition of how you can think about the two different types of applications.

In the next section, you’re going to learn about the different deployment methods for
stateless and stateful applications inside of Kubernetes, along with resource
considerations including limits, quotas, and requests for Pods to ensure that the
production-level environment you’re running is sustainable.

Stateful versus stateless

In the opening of this section, I shared the Gmail example, which essentially shows
what a stateful app is and what a stateless app is. From a Kubernetes perspective, the
key difference is that a stateless application doesn’t need to store data. Stateful
applications require backend storage, such as volumes. Another key difference is that
stateful applications require keeping unique IDs, so if a Pod goes down, the Pod that
comes up and replaces it must have the same unique ID. A stateless app doesn’t need
to keep unique IDs.

A common misconception is that stateless apps never use volumes, and that’s not the
case. You can have a stateless application that, for example, requires a backend
database or a volume/hard drive to store values.

Volumes and hard drives aren’t what make a stateful application. The unique ID is
what makes a stateful application.

Container Storage Interface

For Kubernetes to interact with outside components that aren’t native, there must be a
plugin of sorts. In the previous chapters, you learned about Container Network
Interface (CNI), which is a plugin to use different network frameworks in
Kubernetes. Container Storage Interface (CSI) is the same thing, but for storage
devices. For example, you can have a CSI for NetApp, AWS S3, Azure Storage, and a
ton of other storage providers.

Before these interfaces, organizations had to put the code to connect the resources that
aren’t native in the core Kubernetes code. Just as an example, let’s say that Azure
wanted to allow Kubernetes engineers to utilize Azure Storage inside of Kubernetes
for storing the output of a Pod. Before CSI, Azure would’ve had to put the code to
make it all possible inside of the core Kubernetes code. That was a major hassle
because not only did Azure have to wait for a new release of the Kubernetes API to

push the feature out, but if there was a bug or a new update that they wanted to push
out, they would’ve had to wait for the next Kubernetes API release.

CSI, and interfaces/plugins across Kubernetes in general, ensures that organizations
can create plugins for Kubernetes separately from the core Kubernetes code.

If you want to see an example of CSI, you can check it out on GitHub:
https://github.com/kubernetes-sigs/azuredisk-csi-driver.

Volumes

Volumes are hard drives, plain and simple.

With a volume, you give a Pod, or multiple Pods, the ability to store data in a location.
That location could be Azure, AWS, NetApp, some other storage provider, or even the
worker node that the Pod is running on (definitely not recommended. Just an
example).

When you’re creating a volume for a Pod, there are typically three steps:
StorageClass: A storage class is a way to ask some storage vendor (dynamically) for a hard
drive. For example, you can create a storage class that connects to EBS. Then, you can call
upon that storage class later with a volume (which you’ll learn about in a minute) and utilize
the connection to the storage. You can do the same thing in Azure, GCP, and all of the other
cloud providers, including most of the storage providers:

kind: StorageClass

apiVersion: storage.k8s.io/v1

metadata:

 name: azurefile-csi

provisioner: file.csi.azure.com

allowVolumeExpansion: true

mountOptions:

 - dir_mode=0777

 - file_mode=0777

https://github.com/kubernetes-sigs/azuredisk-csi-driver

 - uid=0

 - gid=0

 - mfsymlinks

 - cache=strict

 - actimeo=30

parameters:

 skuName: Premium_LRS

PersistentVolume: A persistent volume is created manually by an engineer that uses the
storage class to utilize storage from an available source. For example, the Persistent Volume
would connect to the EBS storage class from the previous example:

apiVersion: v1

kind: PersistentVolume

metadata:

 name: azure-pv

spec:

 storageClassName: " azurefile-csi "

 claimRef:

 name: azurefile

 namespace: default

PersistentVolumeClaim: The last piece is the persistent volume claim, which is a request
made by a user, usually in a Kubernetes manifest that’s creating a Pod, to use some of the
storage that’s available in the storage class. The engineer can say “hey, I want 10 GB of storage
from this storage class for my Pod”:

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: azurefile

spec:

 accessModes:

 - ReadWriteMany

 storageClassName: azurefile-csi

 resources:

 requests:

 storage: 10Gi

At this point, you may be wondering “well, why do I need a persistent volume if I can
just automatically request some storage with a claim?”, and that’s a good question. The
answer is going to depend on your environment. If you’re using NetApp storage, and
you have 1,000 GB of storage, you want an engineer to create a persistent volume and
manage those volumes because you only have 1,000 GB of storage. If you attempt to
go over that 1,000 GB, failures will start to occur, so having someone manage it makes
sense. On the flip side, if you’re using cloud storage, such as in Azure or AWS, that
storage is unlimited to a user (you of course have to pay for it), so going straight to a
persistent volume claim instead of having an engineer create a persistent volume
would make sense.

Resource requests and l imits

In any production environment, you have Kubernetes clusters that are running on
servers, regardless of whether it’s on-premises or a managed Kubernetes service.
Because they are running on servers, those servers have hardware resources, and all
servers have a limit. There’s no unlimited CPU on a server or unlimited memory. There
are limits to a server’s resources and servers can reach 100% capacity.

Because of that, when you’re creating Pods, you should specify limits and requests.
You never want to give anything, whether it’s a virtualized VM or a containerized app,
open reign in an environment to take as much CPU and memory as it wants. If you
don’t control resources, such as memory and CPU, every application could take
whatever resources it wanted to take.

Let’s think about a basic example. Say you have an application that has a memory
leak. If you containerize it, the Pod that it’s running in will continue to take more and
more memory until the worker node eventually fails and/or the application crashes,
and you’ll only know when it’s too late.

Before diving in, let’s define the difference between a limit and a request.

A limit is telling a Pod “you cannot go above this.” For example, if you specify X
amount of CPU or memory on a Pod, that Pod cannot go above that limit. It’s
completely blocked.

The following is an example of a limit. As you can see, the Nginx app is limited to 128
Mi of memory. Anything above that and Kubernetes will say “nope, you can’t have it”:

 spec:

 containers:

 - name: nginxdeployment

 image: nginx:latest

 resources:

 limits:

 memory: "128Mi"

 ports:

 - containerPort: 80

A request is what the Pod is guaranteed to get. If a Pod requests a resource, Kubernetes
will only schedule it on a worker node that can give it that resource.

The following is an example of a request. In this example, Kubernetes will say
“alright, you want 64 Mi of memory and 250m of CPU. Let me schedule you onto a
worker node that can handle this”:

 spec:

 containers:

 - name: nginxdeployment

 image: nginx:latest

 resources:

 requests:

 memory: "64Mi"

 cpu: "250m"

 ports:

 - containerPort: 80

The following is an entire manifest example:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

spec:

 selector:

 matchLabels:

 app: nginxdeployment

 replicas: 2

 template:

 metadata:

 namespace: webapp

 labels:

 app: nginxdeployment

 spec:

 containers:

 - name: nginxdeployment

 image: nginx:latest

 resources:

 requests:

 memory: "64Mi"

 cpu: "250m"

 limits:

 memory: "128Mi"

 ports:

 - containerPort: 80

Which should you choose?
There’s some confusion around how requests and limits work.

When Pods are done using memory, they give that memory back to the worker node
and it goes back into the pool for other Pods to use. With the CPU, it does not. The
Pod will hold on to that CPU. Because of that, it’s not a best practice to let the Pod just
hold on to the CPU until it gets deleted because it may not always need that amount of
CPU. It’s essentially wasting CPU resources.

So, which should you choose?

In every production environment, you should always set up requests, but you should
only limit CPU.
Namespace quotas

When it comes to limits and requests, one of the really awesome things that you can do
is set them up for namespaces. For example, you can have a namespace that has a limit
of 1,000 Mi and a request of 512 Mi. That way, all nodes running in that namespace
automatically get limited to the required resources, which means you don’t have to put
limits and requests into every single Kubernetes Pod manifest. The following code
block showcases the resource quota:

apiVersion: v1

kind: namespace

metadata:

 name: test

apiVersion: v1

kind: ResourceQuota

metadata:

 name: memorylimit

 namespace: test

spec:

 hard:

 requests.memory: 512Mi

 limits.memory: 1000Mi

In the next and final section, you’re going to learn how to upgrade apps and different
types of update methods.

Upgrading Kubernetes apps
Throughout this chapter, you learned some very important lessons:

How to deploy an app

How to deploy different types of apps on Kubernetes

How to ensure apps are properly scaled

How to ensure apps are running as you expected

Once you get an application to where you’d like it to be, it’s a great accomplishment.
Then, before you know it, it’s time to upgrade or update the application and you have
to start on the journey all over again. You must test out the new version of the app, get
it deployed without taking down the entire production environment, and retest all the
components to ensure it’s running as expected.

There may also be times, which is extremely common, when you must roll back an
update or upgrade to a previous application version. Perhaps it wasn’t properly tested
in the staging environment, or something popped up that the QA/regression testing

didn’t catch. In any case, you need a solid plan and methodology on how to do a
rollback.

In this section, you’re going to learn a few different ways to test out application
updates and upgrades, how you can upgrade and update applications running in
Kubernetes, and how you can roll back updates and upgrades when necessary.

Types of upgrades

First, let’s break down the typical types of upgrades in Kubernetes.

A/B testing is a way to have a set of users on one version of the application and a set
of users on another version of the application. For example, let’s say you’re testing out
two versions of an app, v1.1 and v1.2. A set of users would get v1.1 and another set of
users would get v1.2. At that point, you can test things such as performance, how the
users are interacting with the new version of the app, bugs, and issues. This type of test
is a controlled experiment.

Canary deployments are pretty much identical to A/B testing except they’re done with
real users. Taking the previous example, let’s say you had v1.1 and v1.2 of an app. You
would roll out v1.2 in production and put a set of users on v1.2 but keep a set of users
on v1.1. That way, you can see how users interact with the new version in production.

Blue/green testing is when you have two production environments, one on v1.1 and
one on v1.2. All the users are still on v1.1, but you slowly start to migrate all of the
users to v1.2. All users are moved over to v1.2 once it’s confirmed to be working.

In Kubernetes, the most popular upgrade method is a rolling update, which, based on
the preceding explanations, is a blue/green deployment.

What happens to an app being upgraded?

When you’re upgrading a container image in a Pod, what happens is the new Pod
comes up and is tested and the old Pod then gets deleted.

Let’s take the example from the previous section regarding v1.1 and v.1.2 with the help
of the following diagram:

Figure 5.3 – Rolling update

In the preceding architecture diagram, what’s happening is v1.1 is running on a Pod
with an IP address of 10.0.0.5. Then, the new Pod running v1.2 comes up and is
running at the same time as the old Pod. Once the deployment confirms that v1.2 of
the Pod is working properly and as expected, the users will begin to move over to the
new Pod. Once all users are on the new Pod running v1.2, the old Pod running v1.1
gets deleted.

Roll ing updates

What was explained in the previous section was a rolling update. Let’s take a look at it
from a code perspective. The following is a Kubernetes manifest that’s running a
deployment spec with a containerized Nginx image using v1.1:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

spec:

 selector:

 matchLabels:

 app: nginxdeployment

 replicas: 2

 template:

 metadata:

 labels:

 app: nginxdeployment

 spec:

 containers:

 - name: nginxdeployment

 image: nginx:1.1

 ports:

 - containerPort: 80

Then, the time comes to upgrade the containerized app. To upgrade the app with
RollingUpdate (blue/green deployment), you would swap out the nginx:1.1
container image version with nginx:1.2. The RollingUpdate configuration
contains a progressDeadlineSeconds and minReadySeconds configuration to
confirm that the new version of the containerized app comes up appropriately. Within
the strategy map, you specify a RollingUpdate type and ensure that one replica is
always running the old containerized app version as the update occurs. That way, users
aren’t kicked off the app. The following code will perform the proper rolling update
action:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

spec:

 selector:

 matchLabels:

 app: nginxdeployment

 revisionHistoryLimit: 3

 progressDeadlineSeconds: 300

 minReadySeconds: 10

 strategy:

 type: RollingUpdate

 rollingUpdate:

 maxUnavailable: 1

 maxSurge: 1

 replicas: 4

 template:

 metadata:

 labels:

 app: nginxdeployment

 spec:

 containers:

 - name: nginxdeployment

 image: nginx:1.2

 ports:

 - containerPort: 80

You would then run kubectl apply -f against the Kubernetes manifest, and the
rolling update would begin.

Rollbacks

If you’d like to roll back RollingUpdate, you’ll need two commands.

First, get the revision number that you want to roll back to from the following
command:

kubectl rollout history deployment nginxdeployment

Next, undo RollingUpdate:

kubectl rollout undo deployment/nginxdeployment --to-
revision=whichever_revision_number_youd_like

Not only are updates and rollbacks important to understand from an educational
perspective, but you’ll most likely see this a fair amount as your organization moves to
a more microservice-driven approach.

Summary
There are many types of resource deployments when it comes to Kubernetes and often,
there’s no right or wrong answer to which you choose. The only time that there’s a true
right or wrong answer is depending on the deployment. If you have a stateful
application, you want to use a StatefulSet. There’s no mystery as to which controller
you should be using and there’s no good or bad. It simply depends on the type of
application and workload you need to deploy and manage.

In the next chapter, we’ll be diving a little bit deeper into different types of
deployments from a more advanced perspective.

Further reading
Kubernetes – An Enterprise Guide by Marc Boorshtein and Scott Surovich:
https://www.packtpub.com/product/kubernetes-an-enterprise-guide-second-
edition/9781803230030

https://www.packtpub.com/product/kubernetes-an-enterprise-guide-second-edition/9781803230030

6

Kubernetes Deployment– Same Game, Next
Level
In the previous chapter, you dove into different deployment scenarios and how you
should think not only about controllers, but also about upgrading apps, different types
of apps to deploy, and different methods for getting an app up and running. In this
chapter, you’re going to dive a bit deeper into the different styles of deploying and
troubleshooting versus just doing the deployment.

The first step in any type of deployment is figuring out what you’re doing – what type
of application it is, what type of Kubernetes resource you want to use, and the different
plugins that you may want to use, such as a CSI. After you figure out the logistics of
what you want to deploy, the next step is to think about how you want to deploy.

With Kubernetes, there are many different deployment methods – automated
deployments, manual deployments, and something in between automated and manual.
There’s a vast number of different ways to perform deployments, so you won’t learn
about all of them because that could take up more than six chapters of a book in itself,
but you will learn about the primary ways to deploy and package up Kubernetes
Manifests.

After you learn about deployments, thinking about how to troubleshoot once
something inevitably goes wrong is a good, logical next step. Typically, engineers will
learn troubleshooting on the fly, but it’s a good approach to think about
troubleshooting techniques prior to something going wrong.

After learning about troubleshooting and deploying containerized apps, you’re going
to wrap up with how to manage network connectivity between apps running on
Kubernetes and how to migrate existing, more monolithic-style applications.

In this chapter, we’re going to cover the following topics:
Getting to know Helm charts and Kustomize

Deploying with CI/CD and GitOps

Troubleshooting application deployments

Service meshes and Ingresses

Technical requirements
In this section, you’re going to take what you learned about the different types of
deployments and methodologies for thinking about Kubernetes resources from the last
chapter and expand upon that knowledge in this chapter. You should have a brief
understanding of automated deployment methodologies such as CI/CD, and have a
high-level understanding of what a service mesh is, along with some application
architecture knowledge. As usual, you’ll find the code for this chapter on GitHub:
https://github.com/PacktPublishing/50-Kubernetes-Concepts-Every-DevOps-Engineer-
Should-Know/tree/main/Ch6

Getting to know Helm charts and Kustomize
When you’re working with Kubernetes, unless it’s a dev environment for your testing,
there’s an extremely slim chance that you only have one Kubernetes Manifest. You
most likely have multiple for various resources such as Deployments, Services,
DaemonSets, ConfigMaps, Ingresses, and a ton of the other Kubernetes resources out
there. Utilizing almost every single Kubernetes platform or tool that’s deployed to
your cluster uses a Kubernetes Manifest.

With all those Kubernetes Manifests, there are a ton of different values and parameters
that you need to pass at runtime to make it all work. In this section, you’ll learn about
two different methods of managing Kubernetes Manifests – Helm charts and
Kustomize.

Why think about deployment methods for manifests?

Before diving into different deployment methods, it makes sense to understand why
you’d want to consider deployment methods other than using the terminal for the
deploying Manifests first.

There are three primary points, which we discuss in the following subsections.
Scale
When thinking about scale, there’s absolutely no way to scale a deployment if an
engineer is always doing it from their laptop. The engineer could be using different
plugins, different IDEs, different terminal settings, and even a different operating
system. With all of that, the uncertainty alone of the environment can cause a massive
amount of error. If every engineer is relying on their computer to deploy an
environment, what happens if their laptop crashes? Or there’s a random update during
the day? Or someone is out of office? There are so many variables that come into play

https://github.com/PacktPublishing/50-Kubernetes-Concepts-Every-DevOps-Engineer-Should-Know/tree/main/Ch6

that make utilizing a local computer a bad idea when it comes to deployments. Instead,
it makes far more sense to have a central location from which you conduct your
deployments. The environment stays the same, everyone can use it, you can customize
it to your team’s needs, and you don’t have to worry about anyone being out of office.
Anything can go wrong
Going into the second point, which echoes the first point in a sense, anything can go
wrong. The goal of every organization is to have a successful deployment all the time,
zero hiccups, and the ability to deploy at any time. Marketing teams paint this picture
in our heads of “deploy 20 times per day with this tool and it’ll always work,” but as
all engineers know, that’s not reality. Anything as simple as a network hiccup or
making an error when entering a variable name can lead to a failed deployment, and,
in turn, an application being down. Because of that, having a proper deployment
strategy is key not only to repeatability with Kubernetes but also to repeatability in
general. Having a proper process and rules in place of how something is deployed and
when or where it’s deployed is the make or break between a successful update and
everyone on the engineering team sitting in the office fixing an issue until 1:00 A.M.
It ’s manual
The last point, which goes without saying, is that it’s an incredibly manual process to
sit at a terminal and run commands to deploy a configuration. In today’s world,
engineers want to spend their time focusing on value-driven work, not putting out
fires. In fact, that’s a huge reason why automation and repeatability exist in the first
place. Engineers wanted to get their time back and stop working on mundane tasks. If
you’re constantly deploying on your computer to an environment, you’re putting the
“this is awful” back into manual work. Now, there are circumstances where you’d
want to deploy from your localhost. For example, when I’m deploying to a dev
environment or testing a new config for the first time, I’m not going to create a
repeatable solution around it because I’m unsure whether it even works yet. However,
once I know that it works and my initial dev testing is complete, I’ll automate the
workflow.

Going forward in this chapter, keep in mind that the reason why you want to think
about deployment workflows is to mitigate as much of the three aforementioned points
as possible.

Helm charts

The idea behind repeatable deployment strategies is to make your life easier, but with
new strategies comes the need to learn about different methods of implementation. The
first method to learn about is Helm charts.

Helm is an open source project originally created by DeisLabs and donated to the
CNCF; the CNCF now maintains the project. The objective of Helm when it first came
out was to provide engineers with a better way to manage all the Kubernetes Manifests
created. Helm was built with Kubernetes in mind and it’s a tool and platform
specifically for Kubernetes, so it’s the same YAML you’re used to, just packaged
differently – literally just YAML. Kubernetes was meant to give you a way to
declaratively deploy containerized apps. It wasn’t necessarily meant to give you a
meaningful way to package a bunch of Kubernetes Manifests so you could use them
together. That’s where Helm comes into play. In addition, Helm keeps a release history
of all deployed charts. This means you could go back to a previous release if
something went wrong.

In January 2016, the project merged with a GCS tool called Kubernetes Deployment
Manager, and the project was moved under Kubernetes. Helm was promoted from a
Kubernetes subproject to a CNCF project in June 2018.

In short, Helm is a way to take a bunch of Kubernetes Manifests and package them up
to be deployed like an application.
Using Helm charts
Now that you know about Helm, let’s go ahead and dive into it from a hands-on
perspective:

1. The first thing that you’ll need to do is install Helm. Because it varies based on the operating
system, you can find a few different installation methods here:
https://helm.sh/docs/intro/install/.

2. Once Helm is installed, find or create a directory in which you want your first Helm chart to
exist. Preferably, this will be an empty directory:

mkdir myfirsthelmchart

3. Next, go into that directory on your terminal.

4. In the new directory, run the following command to create a Helm chart:

helm create name_of_chart

Once you do that, you should see a directory structure similar to the following
screenshot. In this case, the chart was called newchart.

https://helm.sh/docs/intro/install/

Figure 6.1 – Helm chart

If you open up the templates directory, you’ll see a bunch of examples for
Deployments, Ingresses, and a lot more.

Figure 6.2 – Example Helm

If you open up values.yaml, you’ll see where you can start adding values that you
want to pass into your templates.

Figure 6.3 – Values file

5. To deploy a Helm chart, run the following command:

helm install nginxapp .

6. To install the Helm chart, run the following command. The . symbol indicates the current
directory, which is where the Helm chart exists:

helm install mynewapp .

Of course, this isn’t everything there is to know about Helm. In fact, there are literally
entire books on Helm. The goal of this section was to get you on the right path.
Helm chart best practices
The following is a list of best practices to follow in production when using Helm:

When storing Helm charts, ensure that they’re set to be public or private as required. The last
thing you want is to push a Helm chart to a registry that’s public-facing when it’s not supposed
to be.

Document what your charts do.

Ensure you store charts in source control.

Always test Helm charts after a change is made.

Kustomize

Helm and Kustomize are pretty similar but have some unique differences. One of the
primary use cases of Helm is to have a values.yaml file to store values to pass into a

Kubernetes Manifest. Kustomize has the same type of idea.

With Kustomize, you have a template, typically called a base. The base is the template
that you want to use. It could be for a Kubernetes Deployment, Service, Pod, or
anything else you’d like. The template is the literal base where your values get pushed
into. Along with the template, you have a kustomization.yaml file, which tells
Kustomize which templates to use. For example, let’s say you have a
deployment.yaml and service.yaml file. You would put those two filenames into
the kustomization.yaml file so Kustomize knows it should push values into those
two files.

Values were mentioned a few times already, but not thoroughly explained. A value can
be anything that you want to essentially pass in at runtime. For example, let’s say you
have three environments – dev, staging, and prod. In dev, you have one replica. In
staging, you have two replicas. In prod, you have three to four replicas. You can use
Kustomize to pass those values into one template, so instead of having three Manifests
that have different replica values, you have one template that you pass the values into.

But how do you pass in the values?

Within a Kustomize directory, you typically have two directories – base and overlays.
The base is where the template goes. The overlay directory is where each environment
goes with specific values. For example, let’s say you have a dev, staging, and prod
overlay.

Figure 6.4 – Base configuration

The dev overlay, along with the others, would have a kustomization.yaml file.

Figure 6.5 – Dev overlay configuration

Within the kustomization.yaml file is where you’d find the config for the replica
count.

Figure 6.6 – Kustomization file

Notice how the resources map is pointing to the base directory, and the replicas
map is specifying the deployment along with the replica count.

The primary difference between Helm and Kustomize is that Helm’s primary purpose
is to package up a bunch of Kubernetes Manifests and deploy them like an app,
whereas the primary purpose of Kustomize is to have a template that you push your
values into (such as the replica count). Helm does this as well, but it’s not the primary
purpose of Helm.

Using Kustomize configurations
Now that you know about Kustomize, let’s dive into it from a hands-on perspective:

1. The first thing that you’ll need to do is install Kustomize. Because it varies based on the
operating system, you can find a few different installation methods here:
https://kubectl.docs.kubernetes.io/installation/kustomize/.

2. Once Kustomize is installed, find or create a new directory in which you want your Kustomize
config to live. You can call it kustomize.

3. Create two new directories under the kustomize directory called overlays and base.
Inside the overlays directory, create a new child directory called dev. It should look similar
to the following screenshot.

Figure 6.7 – Dev overlay configuration

4. Inside the base directory, create a new file called deployment.yaml and paste the
following code into it:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

spec:

 selector:

 matchLabels:

 app: nginxdeployment

 replicas: 2

 template:

 metadata:

https://kubectl.docs.kubernetes.io/installation/kustomize/

 labels:

 app: nginxdeployment

 spec:

 containers:

 - name: nginxdeployment

 image: nginx:latest

 ports:

 - containerPort: 80

5. Next, create a new file in the base directory called kustomization.yaml and paste the
following configuration into it, which tells Kustomize which Kubernetes Manifest to utilize:

apiVersion: kustomize.config.k8s.io/v1beta1

kind: Kustomization

resources:

 - deployment.yaml

6. For the last step, inside of overlays | dev, create a new file, call it
kustomization.yaml, and paste the following Manifest into it:

apiVersion: kustomize.config.k8s.io/v1beta1

kind: Kustomization

resources:

- ../../base/

replicas:

- name: nginx-deployment

 count: 1

7. Once the directories and configurations are in place, cd into the base | dev directory and run
the following command:

kubectl kustomize

You’ll see an output similar to the following screenshot, which gives you a config with
one replica, instead of two, which is what the template contains.

Figure 6.8 – Kustomize output

As with Helm charts, the topic of Kustomize could fill a small book itself, which
means this section couldn’t cover it all. It should, however, get you started in the right
direction.
Kustomize best practices
The following is a list of best practices to follow in production when using Kustomize:

Ensure that you put overlays into their own directories. You don’t have to do this, but it makes
for a much cleaner config.

Ensure that all code is stored in source control.

Follow a standard directory structure – base for the directory where the template goes and
overlays for values that you wish to pass into the template.

In the next section, you’ll learn about the two primary deployment methods when it
comes to containerized apps.

Deploying with CI/CD and GitOps
Kubernetes deployments come in three stages:

Deploying Manifests on your local computer

Deploying Manifests with an automated solution such as CI/CD, which ultimately just runs
kubectl apply -f commands, the same as your local computer

A new and completely automated solution that’s (usually) 100% hands-off from a deployment
perspective

With the first stage, it wasn’t scalable at all. A bunch of engineers were running
commands on their localhost to deploy a containerized app, and they were all doing it
in different ways with different code editors and different plugins. It was a mess and
didn’t allow scalability for the deployment process. It also held engineers up from
doing value-driven work and instead, they had to sit on their terminals and run
commands all day.

In this section, you’ll learn about more common, automated, and new approaches to
deploying apps, which will be around CI/CD and GitOps.

What is CI/CD?

When it comes to CI/CD, it’s assumed that if you’re reading this book, you’re already
doing work in CI/CD and know what it is. Because of that, there won’t be an entire
breakdown of CI/CD. Let’s do a brief overview.

By definition, CI/CD is a way to create an artifact of your application and deploy it to
the desired destination in an automated fashion. As CI/CD increased in popularity,
engineers started using it for other purposes – for example, packaging up Terraform
code into an artifact and running it so infrastructure can be created automatically.

In the CI process, engineers are worried about the following:
Testing code

Packaging up code

Ensuring that all prerequisites and dependencies are met

Building container images

In the CD process, engineers are worried about the following:

Deploying workloads

Ensuring that they reached the correct destination

Ensuring that the app or services and infrastructure are up and running as expected

Using CI/CD for Kubernetes deployments

As with everything else in tech, there are what feels like a million ways to do one
thing. Because of that, we cannot specify every CI/CD, automation, and cloud scenario
here. To make things simplistic, Terraform code for GKE and YAML pipelines for
GitHub Actions will be shown. This is considered pseudocode, but it’ll actually work
in the right environments.

First, let’s start with the Terraform code and break it down:
1. You’ll start with the Google provider, specifying the region:

provider "google" {

 project = var.project_id

 region = var.region

}

2. Next, google_container_cluster will be specified so you can implement the VPC you
want to use, subnet, and worker node count:

resource "google_container_cluster" "primary" {

 name = var.cluster_name

 location = var.region

 remove_default_node_pool = true

 initial_node_count = 1

 network = var.vpc_name

 subnetwork = var.subnet_name

}

3. The last resource is for google_container_node_pool, which implements the needed
Google APIs for GKE, the node count, node names, and node size or type:

resource "google_container_node_pool" "nodes" {

 name = "${google_container_cluster.primary.name}-node-
pool"

 location = var.region

 cluster = google_container_cluster.primary.name

 node_count = var.node_count

 node_config {

 oauth_scopes = [

 "https://www.googleapis.com/auth/logging.write",

 "https://www.googleapis.com/auth/monitoring",

]

 labels = {

 env = var.project_id

 }

 machine_type = "n1-standard-1"

 tags = ["gke-node", "${var.project_id}-gke"]

 metadata = {

 disable-legacy-endpoints = "true"

 }

 }

}

With the Terraform code, you’ll want a way to deploy it. The best way in today’s
world is with CI/CD. When it comes to deploying infrastructure and services, CI/CD is
a great and repeatable process.

To deploy the code, you can use any CI/CD platform of your choosing, but the code
here is an example of how you can deploy the Terraform code via GitHub Actions.

The pipeline does the following:
Specifies workflow_dispatch, which means the code will only run if you click the
Deployment button

Uses an Ubuntu container to run the pipeline

Checks out the code (clones it) to the Ubuntu container

Configures Terraform in the Ubuntu container

Configures the GCP SDK in the Ubuntu container

Runs terraform init, and formats, plans, and applies it to the directory where the GKE
code lives:

name: GKE Kubernetes Deployment

on:

 workflow_dispatch:

jobs:

 build:

 runs-on: ubuntu-latest

 steps:

 - uses: actions/checkout@v3

 - name: Setup Terraform

 uses: hashicorp/setup-terraform@v1

 - name: Set up gcloud Cloud SDK environment

 uses: google-github-actions/setup-gcloud@v0.6.0

 with:

 service_account_email:

 service_account_key:

 project_id:

 - name: Terraform Init

 working-directory: where_the_gke_code_lives

 run: terraform init

 - name: Terraform Format

 working-directory: where_the_gke_code_lives

 run: terraform fmt

 - name: Terraform Plan

 working-directory: where_the_gke_code_lives

 run: terraform plan

 - name: Terraform Apply

 working-directory: where_the_gke_code_lives

 run: terraform apply -auto-approve

When using CI/CD, it makes the most sense to use it in this type of way for
Kubernetes. You rarely ever want to use CI/CD to deploy a Kubernetes Manifest and
instead, you’d want to use something such as a GitOps solution, as it’s far more
efficient, manages the state, monitors the workloads, and a lot more.

What is GitOps?

By definition, GitOps is a set of tools that utilizes Git repositories as a source of truth
to deliver Kubernetes resources as code. It’s an operational best practice used for app
development, collaboration, compliance, and CI/CD, and applies the best practices to
infrastructure automation. Now, let’s see a simpler explanation. It’s configuration
management for Kubernetes; that’s it, plain and simple. Configuration management is
all about ensuring that the desired state is the current state, which is what GitOps gives
us.

Now that you know the definition of GitOps, let’s talk about what it actually does for
Kubernetes. First things first, you have a source control repository. The repository
contains your Kubernetes manifests that you wish to deploy to Kubernetes to run your
applications. You also have a Kubernetes cluster, which is running on any environment
you’d like. It could be on-premises, in a raw Kubernetes cluster, or even in a cloud-
based service such as GKE or EKS. Now, you have the Kubernetes Manifests that you
want to run in your production environment and the Kubernetes cluster that you want
to run the Kubernetes manifests on, but how do you deploy them? The typical way is
running something such as kubectl apply -f against the Kubernetes manifests, but
that requires manual effort and leaves a lot to be desired. Instead, you can implement
GitOps. To implement GitOps, there are a few solutions. You decide to implement a
GitOps solution, and that GitOps solution needs access to both the Kubernetes cluster
that you’re running and the source control system, such as GitHub or any other Git
system where your source code is stored. To do that, you install the GitOps solution on
the Kubernetes cluster and while doing that, you give the GitOps solution access to
your source control system with some type of Personal Access Token (PAT) or
another type of authentication or authorization method. After that, you use the GitOps
solution to deploy the Kubernetes Manifests that live in source control. At this stage,
you’re not using kubectl apply -f or kubectl create -f anymore. Instead,
you’re using the CLI or whatever other solution comes with the GitOps platform to
deploy the Kubernetes Manifests – and boom, just like that, you have an application

deployed! Now, of course, we all wish it were that easy. A couple of sentences to
explain and poof, you’re up and running in a production environment. However, it’s
not that simple, which is why GitOps is in such high demand and isn’t the easiest thing
to crack.

At the time of writing this, the most popular GitOps platforms are ArgoCD and Flux.

Using GitOps for automated deployments

Knowing the process to create the Kubernetes infrastructure, you can now deploy and
manage a containerized app using GitOps. To follow this section, you’ll need a
Kubernetes environment up and running, as ArgoCD will be deployed to the cluster.

This section is going to be more of a step-by-step guide because regardless of where
you’re running Kubernetes, these are the steps to get ArgoCD up and running. Unlike
with the CI/CD section, there aren’t tons of different platforms, cloud environments, or
configuration code choices that can come into play, and because of that, the following
solution can work in any environment.
Configuring ArgoCD

1. First, create a namespace for ArgoCD in your Kubernetes cluster:

kubectl create namespace argocd

2. Install ArgoCD using the preconfigured Kubernetes Manifest from ArgoCD that provides a
highly available installation:

kubectl apply -n argocd -f
https://raw.githubusercontent.com/argoproj/argo-
cd/stable/manifests/ha/install.yaml

Figure 6.9 – ArgoCD creation output

3. Get the initial admin password to log in to ArgoCD:

kubectl get secret -n argocd argocd-initial-admin-secret -o
jsonpath="{.data.password}" | base64 -d

4. Open up ArgoCD’s UI via Kubernetes port forwarding. That way, you can access the frontend
of ArgoCD without having to attach a load balancer to the service:

kubectl port-forward -n argocd service/argocd-server :80

5. Now that you know the UI works, log in to the server via the CLI. That way, you can deploy
containerized apps with ArgoCD via the CLI to create a repeatable process instead of doing it
through the UI, which is manual and repetitive.

Figure 6.10 – ArgoCD portal

6. The port is what ArgoCD is hosting from the kubectl port-forward command that you
ran in the previous step. Use the following command to log in to ArgoCD:

argocd login 127.0.0.1:argocd_port_here

Figure 6.11 – Login output

7. In the Argo CD UI, go to User Info | Update Password. Change the password from the initial
admin password to a password of your choosing.

You now have officially deployed ArgoCD and have the ability to work with the
GitOps platform on your terminal and locally on your computer.
Deploying an app
In this section, you’re going to deploy an app. The app that you’ll use is a very popular
demo-related app that a lot of folks use to showcase how an environment will work:

1. Create a namespace for your new app:

kubectl create namespace sock-shop

The Sock Shop is a popular microservice demo that you can find here:
https://microservices-demo.github.io/deployment/kubernetes-start.html.

2. Deploy the Sock Shop in ArgoCD. To deploy the app, you will need to do the following:

1. Create a new ArgoCD app.

2. Point to the repo where the app exists.

3. Point to the destination server, which is the server or service that you’re running
Kubernetes on.

4. Specify the destination namespace:

argocd app create socks --repo
https://github.com/microservices-demo/microservices-demo.git -
-path deploy/kubernetes --dest-server
https://kubernetes.default.svc --dest-namespace sock-shop

3. Now that the app is deployed, you can check the status of the app:

argocd app get socks

Figure 6.12 – Sock Shop resources

You can now check that the app was deployed in the ArgoCD UI.

https://microservices-demo.github.io/deployment/kubernetes-start.html

Figure 6.13 – Sock Shop app connection

You’ll see the health of the app, whether it’s synced, and whether the status of the
application is as expected.

Production use cases for CI/CD and GitOps

Two ways to think about CI/CD and GitOps in production are as follows:
CI/CD should be used to deploy the cluster

GitOps should be used to manage the Kubernetes resources inside the cluster

In other words, CI/CD deploys the infrastructure and clusters and GitOps deploys and
manages the apps. Use the best tool for the job, which is the infrastructure deployment
type of workflow.

Regardless of which GitOps and CI/CD solution you use, you always want to keep in
mind that your goal is to automate and create repeatable workflows that work for you

and your team. Regardless of what hot tool or platform is out right now, you want to
use what’s best for your team, not whatever is the new thing.

In the next section, you’ll dive into multiple methods of troubleshooting containerized
apps running in your Kubernetes cluster.

Troubleshooting application deployments
Troubleshooting environments and applications typically always looks the same and
follows a typical order:

When was the last deployment?

What has changed?

Look at the logs

Who can access the app and who cannot, if anyone at all?

With Kubernetes, it’s pretty similar when it comes to application troubleshooting. The
usual workflow is as follows:

1. Check the app itself running in the container.

2. Check the overall health of the Pod(s).

3. Check the Service or route.

With these three steps, you can usually get to the bottom of what’s happening because,
in reality, there can’t be any other problems. It’s either that the app itself isn’t working,
the Pod itself has an issue, or the service or route isn’t working as expected.

Although there could only be three potential problems at a high level, when you dive
deeper into those problems, there could be various ways to troubleshoot the current
issue you’re facing, which you’ll learn about in this section.

As with all troubleshooting techniques, you should think about it in the following
order:

What’s the problem?

What’s changed?

What could be the problem in the problem? As in, a Pod may be down, but it might not be
because of the app. It could be because of a problem with the replication controller.

Troubleshooting Pods

The two commands that’ll help you debug Pods are as follows:

kubectl describe

kubectl logs

Take the following Kubernetes Manifest and deploy it. Notice how, for the container
tag, it’s spelled as lates. That’s on purpose, as you want the container to fail:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

spec:

 selector:

 matchLabels:

 app: nginxdeployment

 replicas: 2

 template:

 metadata:

 labels:

 app: nginxdeployment

 spec:

 containers:

 - name: nginxdeployment

 image: nginx:lates

 ports:

 - containerPort: 80

Retrieve the name of the Pod with the following command:

kubectl get pods

You’ll see an output similar to the following:

Figure 6.14 – Error container image pull

Notice how, right off the bat, you can start the troubleshooting process. The status
states that there was an error pulling the image. Now you know that there’s an issue
with the image, let’s dive a bit deeper.

Run the following command:

kubectl describe pods pod_name

You’ll see an output similar to the following screenshot:

Figure 6.15 – Pod description

The great thing about the describe command is that it gives you a log output
underneath the Events section. You can now see that the issue is that it couldn’t pull
the container image based on the name and tag that you gave.

The last step would be to run the logs command to see whether there’s any other data
you can use:

kubectl logs pod_name

Figure 6.16 – Pod logs

You can see from the screenshot here that there isn’t much more to go off of other than
what was given in the describe command, so the troubleshooting has been
successfully completed.

Troubleshooting Services

When troubleshooting Services, the first thing that you always want to confirm is
whether the Service exists. If you don’t have a Service running in a Kubernetes cluster,
you can use this example Manifest:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

spec:

 selector:

 matchLabels:

 app: nginxdeployment

 replicas: 2

 template:

 metadata:

 labels:

 app: nginxdeployment

 spec:

 containers:

 - name: nginxdeployment

 image: nginx:latest

 ports:

 - containerPort: 80

apiVersion: v1

kind: Service

metadata:

 name: nginxservice

spec:

 selector:

 app: nginxdeployment

 ports:

 - protocol: TCP

 port: 80

 type: LoadBalancer

Because Pod networks are separate from a host network, you’ll need a Pod to exec or
SSH into so you can do the troubleshooting. The following is a command that you can
use to configure a Pod for troubleshooting purposes based on a busybox container
image, which is a popular image used for troubleshooting purposes:

kubectl run -it --rm --restart=Never busybox --
image=gcr.io/google-containers/busybox sh

First, see whether the service is running. You’ll do this outside of the busybox
container image:

kubectl get service

You should get the following output.

Figure 6.17 – Service configuration

If the service is running, confirm that you can reach the service via DNS:

nslookup service_name

You’ll see an output similar to the following configuration:

Figure 6.18 – nslookup of Pod

If the standard nslookup command doesn’t work, or if you want another type of
confirmation, try an FQDN:

nslookup service_name.namespace_name.svc.cluster.local

You’ll see an output similar to the following screenshot.

Figure 6.19 – FQDN service lookup

Check to confirm that the service is defined correctly:

kubectl get service name_of_service -o json

You’ll see an output similar to the following screenshot.

Figure 6.20 – JSON output of service

Check that the service has endpoints – as in, confirm that there are Pods that the
service is pointing to:

kubectl get pods -l app=name_of_deployment

You’ll see an output similar to the following screenshot:

Figure 6.21 – Retrieving Pods based on label

Finally, which should already be known, but just in case, check to confirm that the
Pods that the service is pointing to are working:

kubectl get pods

The final piece, which you’ll learn about in the next section, is implementing a service
mesh for troubleshooting. A service mesh has several jobs, and one of the jobs is
making it easier to troubleshoot latency issues between Services, along with ensuring
that Services are working as expected.

Troubleshooting Deployments

The primary command that’ll help you debug Deployments is similar to Pod
debugging:

kubectl describe deployment

Unless there’s something wrong with the Deployment controller itself, there usually
isn’t a problem with the actual Deployment. It’s typically a problem with the Pods
running inside of the Deployment. However, you still may want to check the
Deployment itself.

To do that, you would run the following:

kubectl describe deployment deployment_name

You should get an output similar to the following screenshot:

Figure 6.22 – Describing the nginx Deployment

The goal of the describe command isn’t to tell you about logs or events or what’s
happening – it’s to help you fully understand what’s deployed and how it’s deployed.
That way, you can backtrack and see whether what’s deployed is actually supposed to
be there.

In the next section, we’ll wrap up this chapter by talking about what a service mesh is,
what an Ingress is, and how to think about implementing them.

Service meshes and Ingresses
Almost every containerized application needs to be routed in one way or another –
whether it’s so outside users can use the application, applications can talk to each
other, or one application needs to connect to another. Routes and Services are
extremely important in Kubernetes, which is why service meshes and Ingresses play a
huge part.

In many cases, you’ll need better visuals into what’s happening with services, how
traffic is being routed, and what applications are routing to which load balancers and
IP addresses. You’ll also eventually want a way to encrypt traffic between services,
which Kubernetes doesn’t give you out of the box.

Service meshes and Ingresess are typically more advanced-level topics, but in this
book and possibly at this stage in your career, you’ll be ready to dive in and fully
understand the pros and cons of using these two tools, plugins, and platforms.

Why Ingress?

At this point in your Kubernetes journey, it’s almost certain that you’ve seen a
Kubernetes Service. In fact, you’ve seen them throughout this book. A lot of the time,
a Kubernetes Service comes with a frontend app that’s attached to it, in which you
need a way for users to interact with the Kubernetes Service. It’s typically in front of a
load balancer.

The problem with that is if you have a load balancer in front of your service, you have
to do the following:

Pay extra for the cloud load balancer if you’re using a cloud Kubernetes service

Set up a virtual load balancer if you’re using an on-premises Kubernetes cluster

Have a bunch of load balancers to manage

With an Ingress controller, you don’t have to worry about that.

You can have several different Kubernetes Services and have an Ingress controller
point to all of them, and each of the services can be reached by a different path.

Ingress controllers save time, money, management, and effort for engineers.
Using Ingresses

Now that you know about Ingress controllers, let’s see how one can be configured
using (at the time of writing) the most popular option, Nginx Ingress.

First things first – you’ll need a Kubernetes Deployment and Service to deploy. If you
don’t already have them and would like to keep things simple, you can use the
following Kubernetes Manifest, which is a sample Azure app. It doesn’t have to be
running in Azure to work:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: aks-helloworld-one

spec:

 replicas: 1

 selector:

 matchLabels:

 app: aks-helloworld-one

 template:

 metadata:

 labels:

 app: aks-helloworld-one

 spec:

 containers:

 - name: aks-helloworld-one

 image: mcr.microsoft.com/azuredocs/aks-helloworld:v1

 ports:

 - containerPort: 80

 env:

 - name: TITLE

 value: "Welcome to Azure Kubernetes Service (AKS)"

apiVersion: v1

kind: Service

metadata:

 name: aks-helloworld-one

spec:

 type: ClusterIP

 ports:

 - port: 80

 selector:

 app: aks-helloworld-one

Once the app itself is deployed, you can deploy the Ingress controller. The Ingress
controller is part of the native Kubernetes API set from the named group, so you don’t
have to worry about installing other CRDs or controllers:

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: hello-world-ingress-static

 annotations:

 nginx.ingress.kubernetes.io/ssl-redirect: "false"

spec:

 ingressClassName: nginx

 rules:

 - http:

 paths:

 - path: /

 pathType: Prefix

 backend:

 service:

 name: aks-helloworld-one

 port:

 number: 80

The last step is to forward to the port for the app’s service so you can reach the app
locally:

kubectl port-forward service/aks-helloworld-one :80

You should get an output similar to the following screenshot:

Figure 6.23 – Port-forwarding service communication

You should be able to reach out to the app over localhost.

Figure 6.24 – AKS app

Now that you know what an Ingress is from a theoretical and practical perspective,
let’s move on to service meshes and look at how communication can occur more
securely.

Why service meshes?

When you deploy containerized applications into a Kubernetes cluster, there are two
primary ways that those applications communicate:

Services

Pod-to-Pod communication

Pod-to-Pod communication isn’t recommended because Pods are ephemeral, which
means they aren’t permanent. They are designed to go down at any time and only if
they were part of a StatefulSet would they keep any type of unique identifier.
However, Pods still need to be able to communicate with each other. Backends need to
talk to frontends, middleware needs to talk to backends and frontends, and so on.

The next communication method, which is the primary, is service-to-service. Service-
to-service is the preferred method because a Service isn’t ephemeral and only gets
deleted if manually deleted. Pods can connect to Services with Selectors or Tags. If a
Pod goes down, but the Selector in the Kubernetes Manifest that deployed the Pod
doesn’t change, the new Pod will be connected to the Service.

Here’s the primary concern with everything described so far – all this traffic is
unencrypted. Pod-to-Pod communication, or as some people like to call it, East-West

traffic, is unencrypted. That means if for any reason a Pod is compromised or you have
some segregation issues, there’s nothing out of the box that you can do.

That’s where a service mesh comes into play. A service mesh has the ability to do the
following:

Encrypt traffic between microservices

Help with network latency troubleshooting

Securely connect Kubernetes Services

Perform observability for tracing and alerting

Using a service mesh
Now that you know about a service mesh, let’s learn how to set one up. There are a ton
of different service mesh platforms out there, all of which have their own method of
being installed and configured.

Because it’s a complicated topic in itself, there’s no way to get through it all in this
section. In fact, there are literal books for just service meshes. Let’s learn how to set up
an Istio service mesh.

First, download Istio:

curl -L https://istio.io/downloadIstio | sh

Next, export the path to the $PATH variable:

export PATH=$PWD/bin:$PATH

Output the $PATH variable int, bashrc:

echo "export PATH=$PATH:$HOME/istio-1.15.0/bin" >> ~/.bashrc

Install Istio on your Kubernetes cluster. Notice how Ingress is set to false. You can
set it to true if you want to use the Istio Ingress. If you’re using another Ingress
controller, such as Nginx Ingress, you can leave it as false:

istioctl install --set values.gateways.istio-
ingressgateway.enabled=false

Istio is a great service mesh but doesn’t have a UI out of the box. One of the most
popular ways to look at your service mesh graphically is by using Kiali, which is a
simple install:

kubectl apply -f

https://raw.githubusercontent.com/istio/istio/release-
1.15/samples/addons/kiali.yaml

Set up port forwarding to Kiali so you can reach the UI locally:

kubectl port-forward -n istio-system service/kiali :20001

The last step is to take a Kubernetes Manifest, like the one you used in this chapter,
and inject the sidecar (the service mesh container) into your Kubernetes Deployment:

istioctl kube-inject -f nginx.yaml | kubectl apply -f –

At this point, you now have the theoretical grounding and a bit of hands-on knowledge
for how to move forward on your service mesh journey.

Summary
Overall, containerized application deployment, troubleshooting, and third-party tooling
are going to be the core pieces of what your Kubernetes cluster looks like. Without
proper troubleshooting, you won’t have successful deployments. Without third-party
tooling such as Ingress controllers, you won’t be able to properly manage frontend
apps. Out of the box, Kubernetes gives you a ton to use to make things work.
However, there are more steps you need to take. For better or for worse, Kubernetes
isn’t one of those platforms where you can just deploy it and walk away. It takes
management and engineering skills to ensure it’s working as expected.

In the next chapter, you’ll learn about how to monitor the workloads you’ve been
deploying throughout this book.

Further reading
Learn Helm by Andrew Block and Austin Dewey: https://www.packtpub.com/product/learn-
helm/9781839214295

Mastering Service Mesh by Anjali Khatri and Vikram Khatri:
https://www.packtpub.com/product/mastering-service-mesh/9781789615791?
_ga=2.161313023.37784508.1672298745-664251363.1663254593

https://www.packtpub.com/product/learn-helm/9781839214295
https://www.packtpub.com/product/mastering-service-mesh/9781789615791?_ga=2.161313023.37784508.1672298745-664251363.1663254593

Part 3: Final 15 Kubernetes Concepts – Security
and Monitoring
Throughout this book so far, you’ve learned about key critical pieces of Kubernetes.
First, you learned about various cluster methods. You learned about on-premises, how
to deploy various managed Kubernetes services, and the different options that are
available when deploying.

After that, you learned about different deployment methods, both from a basic
perspective and an advanced perspective.

The only things that are missing, which are arguably the most important pieces to a
proper Kubernetes environment, are monitoring, observability, and security. The third
and final piece of the 50 concepts will go over what monitoring and observability look
like in today’s world.

In the last two chapters, you’ll learn all about monitoring, observability, and security.
You’ll dive into the theory behind monitoring and observability, along with the hands-
on portions of each so you can get a true understanding of how to implement different
tools. Next, you’ll dive into security, which is typically overlooked in general but
especially overlooked in Kubernetes.

By the end of these, you’ll have a solid theoretical overview of monitoring,
observability, and security, along with real code examples for implementing the
different tools and platforms available.

This part of the book comprises the following chapters:
Chapter 7, Kubernetes Monitoring and Observability

Chapter 8, Security Reality Check

7

Kubernetes Monitoring and Observabil ity
Monitoring and observability for both Ops and Dev teams have always been crucial.
Ops teams used to be focused on infrastructure health (virtual machines, bare-metal,
networks, storage, and so on) and Devs used to be focused on application health. With
Kubernetes, those lines are blurred. In a standard data center environment, it’s easy to
split who’s conducting monitoring and observability in a very traditional sense.
Kubernetes blends those lines because, for example, Pods are, in a sense, infrastructure
pieces because they have to scale and are sort of virtual machines in the traditional
sense. They are what holds the application. However, the application is running in a
Pod, so if you’re monitoring a Pod, you’re automatically monitoring the containers
that are running inside of the Pod.

Because these lines are blurred, both teams are doing both parts of the monitoring
process. On a platform engineering or DevOps engineering team, those teams would
monitor both application pieces and infrastructure pieces.

There’s no longer a line that’s used to divide which team monitors and creates
observability practices around specific parts of Kubernetes. Instead, the goal is now to
have a more unified front to ensure that the overall environment and applications are
working as expected.

In this chapter, you’re going to dive in from a theoretical and hands-on perspective to
truly get an understanding of monitoring and observability in Kubernetes. The goal is
for you to be able to take what you learn and what you’ve implemented in your lab
from this chapter and truly start to use it in production. First, you’ll learn what
monitoring and observability actually are. Next, you’ll learn what monitoring and
observability mean for the infrastructure layer, which is the virtual machines running
the Kubernetes environment, and the specifics around Control Plane and worker node
monitoring. After that, you’ll dive into monitoring and observability for specific
Kubernetes resources such as Pods and Services. To finish up, you’ll look at specific
tools and platforms that are typically used in today’s world for monitoring and
observability.

Without monitoring, engineers wouldn’t know what’s happening inside a system or
application. It’s the job of a DevOps and platform engineer to have that information
and make good use of that information by fixing whatever is broken.

In this chapter, we’re going to cover the following main topics:

How monitoring is different than observability

Monitoring and observability tools for Kubernetes

Observability practices

Kubernetes resource monitoring

Technical requirements
This chapter isn’t going to be a full-blown explanation of monitoring. Although there
will be some brief explanations as a refresher/starting point, it’s important that you
have some experience in monitoring and observability. For example, maybe you’ve
used the Kubernetes Dashboard before or you’ve looked at pre-populated monitors
inside of Azure or AWS. It could even be experience monitoring from your local
desktop.

You can find the GitHub repo here: https://github.com/PacktPublishing/50-
Kubernetes-Concepts-Every-DevOps-Engineer-Should-
Know/tree/main/Ch7/prometheus/helm

How is monitoring different than observabil ity?
Two of the closest workflows and the two that are most often interchanged from a
verbiage and explanation perspective are monitoring and observability. Although this
chapter isn’t dedicated to observability, to truly understand the differences between
monitoring and observability, you must understand both and ultimately see how they
work. After the explanations in this section, you’ll see that there are key differences
between observability and monitoring, along with differences in how they should be
used, when they should be used, and the best practices for them.

What you might experience in organizations, depending on how mature their
engineering teams are, is that monitoring and observability get thrown into one
category. They are both either looked at the same way, or engineering teams think
they’re doing observability when really all they’re doing is monitoring. One of the
goals of this chapter is to give you the ability to differentiate between the two because
there can be some blurred lines depending on what platforms and tools you’re using.
For example, let’s take two of the most popular platforms – Datadog and New Relic.
Both of these platforms are looked at as monitoring platforms and observability
platforms. They can both do monitoring and observability, and they do them well. This
is not always the case though. A platform such as Prometheus is just for observability
and collecting metrics, but you can pair it with a monitoring platform/tool such as
Grafana to give you a visual of what’s happening inside of an environment.

https://github.com/PacktPublishing/50-Kubernetes-Concepts-Every-DevOps-Engineer-Should-Know/tree/main/Ch7/prometheus/helm

Monitoring and observability are both lengthy topics, especially in Kubernetes. The
way that monitoring and observability are thought of in Kubernetes is similar to other
platforms and systems, but vastly different.

In the next section, you’re going to look at what monitoring and observability are and
how to know which you should use. We’ll also explore a few monitoring versus
observability examples.

What’s monitoring?

Have you ever opened up Task Manager in Windows, gone to the performance
settings, and looked at the memory and/or CPU usage? What about Activity Monitor
on macOS to see what applications and programs were using memory and CPU? If
you’ve done either of these things, which it is safe to assume that most engineers have
done at one point or another, you’ve officially monitored a system! Now, you may be
thinking to yourself that checking out the memory and CPU on a desktop or laptop is
drastically different, but it’s actually not. Regardless of whether it’s a desktop or an
entire server rack, RAM is RAM, CPU is CPU, and storage is storage. It doesn’t
change across systems. The only thing that changes is the amount of CPU, memory,
and storage.

So, what is monitoring?

Monitoring is the ability to view system resources, performance, and usage in real
time. You can monitor anything in a Kubernetes cluster including the following:

Worker nodes

Control Planes

Pods

Deployments

ConfigMaps

As well as these, you can also monitor literally any other Kubernetes resource that’s
running in your cluster. From the application level to the infrastructure level to the
networking level, it can all be monitored.

With monitoring can come the creation of alerts. I remember when I first got into tech
and got my first internship, the coolest thing to me was walking into a network
operations center (NOC) and seeing all the big screens with all the monitors on them.
It was like we were protecting nuclear launch codes. It was amazing to see that every
single system could be watched so engineers could understand what was happening
underneath the hood.

In today’s world, engineers are still using things such as big monitors in a NOC, but
with working from home and the remote world being the new norm, engineers are also
logging in to monitoring platforms to view how systems are working. Engineers can
log in to tools such as Datadog, CloudWatch, or Azure Monitor and see everything
that’s happening with every service.

Let’s take a look at the screenshot in Figure 7.1 from Azure. As you can see, there are
a ton of monitoring options available.

Figure 7.1 – The AKS monitoring options

The monitoring options that you see in the Monitoring section also contain some
observability practices (such as Metrics), which goes back to a point made earlier in
the chapter – there’s some confusion when splitting up monitoring and observability
practices.

From a monitoring perspective, what you should care about are the actual monitors.

Figure 7.2 – AKS Monitoring

The monitoring information that you can pull from AKS, or nearly any other Azure
service, gives you the ability to see what’s happening right now or what’s been
happening for an extended period of time. This gives you the ability to understand how
a system is performing but from an ad hoc perspective.

Figure 7.3 – The hardware metrics

The idea of this type of monitoring is to see and understand how cluster resources such
as CPU, memory, storage, and bandwidth (inbound and outbound) are performing to
ensure that you can make decisions about how a cluster should be managed.

You can also monitor applications that are running to see the uptime, how many
resources they’re consuming, and the overall performance of the apps.
Monitoring specifics on a Kubernetes cluster
The components on a Control Plane that you should monitor are the API server, etcd
(the cluster store), controllers, and schedulers. The components on a worker node that
you should monitor are Kubelet, container runtime, kube-proxy, and DNS. There’s
also the need to monitor Pods, but you’ll be learning more about that at the end of this
chapter.

In any circumstance, whether it’s components on the Control Plane or components on
the worker node, you should ensure that the Metrics Server is running. You can
technically retrieve metrics via the /metrics/resource endpoint (example:
/metrics/pods), but that would mean you have to query each resource. The Metrics
Server goes to each resource, fetches the metrics, and exposes them instead of you
having to retrieve them one by one. You can find the Metrics Server, which you can
use across any Kubernetes cluster, here: https://github.com/kubernetes-sigs/metrics-
server/releases/latest/download/components.yaml.

https://github.com/kubernetes-sigs/metrics-server/releases/latest/download/components.yaml

The Metrics Server endpoint comes from the Kubernetes Specific Interest Group
(SIG) and can be deployed anywhere. Whether it’s a Kubernetes cluster running in
AWS or a Kubeadm cluster running on virtual machines on your Windows 10 laptop,
it doesn’t matter where the cluster exists.
What’s the downside to monitoring?
The downside of monitoring, although it’s powerful, is that there’s not much that you
can do with the data unless it’s happening in real time. Sure, you can get alerts if
there’s an issue with a resource, but this means that an engineer would have to be on-
call to fix the issue. They have to stop what they’re doing to put out a fire. With the
way that the tech world is going, this is not a sustainable model anymore.

Along with that, engineers want to spend more time creating value-driven work. They
don’t want to wake up at 2:00 A.M. due to getting an alert or stop coding a new feature
because of an alert. Instead, they want a way to create automated and repeatable
processes for an alert. For example, if an alert goes off, engineers want a way to create
an automated process that can fix the problem if it happens. Then, they don’t have to
stop what they’re doing to go put out a fire and can continue creating value-driven
work.

This is where observability comes into play.

What’s observabil i ty?

Because monitoring and observability are sometimes used interchangeably when
explaining them, it’s important to understand their differences. This way, as you dive
deeper into monitoring, it’s easier to understand the distinctions.

Observability is mostly what you’ll see in Kubernetes and almost every other cloud-
native system. However, monitoring and observability are starting to blend together in
terms of what they mean. For example, in Figure 7.1, you saw the Monitoring section.
Under the Monitoring section, there was a subsection for Metrics. The thing is,
metrics technically fall under observability.

The reason why monitoring and observability are getting mashed together, or in other
words, the reason why observability is becoming more popular, is that with
observability, you can actually make decisions and automate workloads based on the
data that you receive.

The key data points for observability practices are logs, metrics, and traces.

Again, we don’t want to go too deep in this section because observability has an entire
chapter to itself. Just remember three key things:

Observability gives you the ability to perform an actual action with the data you’re receiving.
That action could be to automatically fix a resource that’s causing problems.

It’s becoming increasingly popular over traditional monitoring.

Observability has three key aspects: logs, metrics, and tracing.

A QUICK NOTE ON METRICS
Metrics for most Kubernetes resources are exposed. They’re exposed via the
/metrics/resource endpoint. For example, /metrics/pods would be for the Pods
Kubernetes resource.

To make things a bit easier, the Metrics Server, which isn’t installed on Kubernetes out of
the box (depending on the cloud provider, but out of the box means a raw Kubernetes
cluster installation), can scrape and consolidate all of the metric endpoints for the
Kubernetes resources. This way, you don’t have to attempt to consume each metric via
the resource one by one.

To kick things up a notch, there’s the kube-state-metrics tool, which you can install on a
Kubernetes server; its job is to focus on the health of the Kubernetes resources/objects on
your cluster. For example, if the Pods are actually available and ready is what kube-state-
metrics will look at and confirm.

If you’re wondering what the difference is between the Metrics Server and kube-state-
metrics, the Metrics Server shows cluster resource usage such as CPU and memory. On
the other hand, kube-state-metrics is concerned with the health of the Kubernetes
resource.

Monitoring versus observabil i ty examples

When thinking about how to implement monitoring, observability, or both, it’s best to
think about the implementation details from a scenario perspective.

Let’s take two scenarios – one for a containerized application from a monitoring
perspective and then taking the same containerized application, but looking at it from
an observability perspective.

The following examples won’t be a complete step-by-step guide. The code works, but
it won’t be explained in terms of how exactly to deploy and run it. Feel free to go
through it on your own system, but the aim in this chapter is to show examples of the
workflow rather than a complete step-by-step tutorial.
Monitoring use case
The first scenario can be thought about as, for example, a frontend application. It could
be an Nginx web app, which is simple and hosts a website. It could be something as
simple as the following Nginx configuration:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

spec:

 selector:

 matchLabels:

 app: nginxdeployment

 replicas: 2

 template:

 metadata:

 labels:

 app: nginxdeployment

 spec:

 containers:

 - name: nginxdeployment

 image: nginx:latest

 ports:

 - containerPort: 80

With the preceding Kubernetes manifest, you can picture an application that’s running
with two replicas on a Kubernetes cluster. To retrieve the memory and CPU
information of the Pod, you can run the kubectl top command:

kubectl top pod pod_name

Figure 7.4 – The top command

An error can sometimes occur if the Metrics API isn’t enabled, as it’s disabled by
default. If you’d like to enable it, check the documentation for where you’re running
the Kubernetes cluster. As an example, here’s how you’d enable the Metrics API on
minikube:

minikube addons enable metrics-server

To stress-test the workload, you can use a stress/performance testing tool such as k6.
The following is an example configuration that you can use:

import http from 'k6/http';

import { sleep } from 'k6';

export default function () {

 http.get('https://test.k6.io');

 sleep(1);

}

You can then save the preceding configuration and use it as a stress test with the
following command, which specifies 100 virtual users and runs for 30 seconds:

k6 run --vus 100 --duration 30s test.js

Figure 7.5 – The benchmark test

Running the kubectl top command again, you can see that the memory increased:

Figure 7.6 – The kubectl top command for a Pod

After logging in to a piece of monitoring software, such as the Kubernetes Dashboard
(which you’ll learn about in the upcoming section), you will be able to see the CPU
and memory utilization for both Pods.

Figure 7.7 – The Pods running

This information gives you the ability to monitor what happens when more and more
users access your application, which is very common for a frontend application.
Observability use case
The second scenario is going to be around checking out the Nginx Pods and Services
that can be created from the Nginx configuration in the previous section. Ultimately,
you’ll be able to see how you can capture and view metrics data in an observability
tool. Although Figure 7.8 shows Prometheus, regardless of which observability tool
you use, you’re still going to see the same data because it’s being retrieved via the
Kubernetes Metrics API.

When the Metrics Server is enabled on a Kubernetes cluster, it exposes several
resource metric endpoints. One of the resource metric endpoints is Pods. You can
confirm that your Pod metrics are getting ingested into Prometheus based on Service
Discovery.

Figure 7.8 – A Pod discovery

You can then confirm how Pods are running based on different queries that
Prometheus allows you to check with. For example, the following screenshot shows
Kubernetes Service resource information, and you can see that the Nginx service is
running.

Figure 7.9 – Kubernetes Service metrics

You can also dive a little deeper and query based on certain hardware resources, such
as memory and CPU. This way, you can understand how many resources (memory,
CPU, and so on) are being taken up by each Pod.

For example, the following snippet is a query to see memory usage:

avg((avg (container_memory_working_set_bytes{pod="nginx-
deployment-588c8d7b4b-6dm7m"}) by (container_name , pod))/ on
(container_name , pod)(avg (container_spec_memory_limit_bytes>0)
by (container_name, pod))*100)

Notice how a Pod name is specified; this will show you the observability metrics
around memory for the specified Pod.

Monitoring and observabil ity tools for
Kubernetes
Typically, in any tech book, the theory/practical knowledge comes first, then the
tooling. However, monitoring and observability are a bit different because you can’t
really talk about the specifics without mentioning or showing a certain tool/platform.
Because of this, prior to jumping into the specifics around how to monitor and
implement observability, you’re going to learn about a few key tools.

The goal of this section is to help you first understand what the tools look like and then
take the theory that you learn and utilize it in the tools. When you combine the
knowledge and visuals (UI) of the tools with the understanding of what true
monitoring and observability are, you can successfully implement them in your
environment.

One of the interesting things about monitoring is that you can fully understand it from
a theoretical perspective, but implementing it can be a challenge. For example, you can
understand what the metrics endpoint in Kubernetes is, how it works, what metrics are
exposed, and what resources you can monitor from those metrics. However, actually
setting up a platform to listen to the metrics and configuring that listener is vastly
different than reading about how metrics work.

Although this section won’t cover all the tools and platforms used to monitor
Kubernetes, this list is a great place to start as they are the most widely used in
organizations. The good news is that even if you come across a monitoring tool that
isn’t covered in this section, monitoring is monitoring. That means once you
understand monitoring and how it works with Kubernetes, you’re pretty much good to
go in terms of learning other monitoring tools. It’s all the same stuff at the end of the
day. The underlying components of what monitoring is doesn’t change. The only thing
that changes is how the dashboards look.

In this section, you’re going to learn about the following:
The built-in Kubernetes Dashboard

Cloud-specific monitoring and observability tools

Grafana/Prometheus

How to use and set monitoring tools

The Kubernetes Dashboard

The Kubernetes Dashboard is as native as it gets in terms of monitoring and
observability. Although it’s not configured out of the box, it’s fairly easy to get
configuration across almost any environment. It’s the quickest way to see what’s
happening inside a Kubernetes cluster.

IMPORTANT NOTE
We’re using minikube for this because it’s straightforward. If you decide to use the
Kubernetes Dashboard on another Kubernetes cluster, the visual of the dashboard itself
isn’t going to be any different. The only difference will be the Kubernetes resources that
you see.

First, start minikube. If you don’t have minikube already installed, you can install it
here: https://minikube.sigs.k8s.io/docs/start/:

minikube start

Figure 7.10 – Starting minikube

Next, run the following command to start the dashboard:

minikube dashboard –url

https://minikube.sigs.k8s.io/docs/start/

Figure 7.11 – The default Kubernetes Dashboard

At this point, you can see several different pieces of information about your minikube
cluster, from Pod info to other Kubernetes resources. You can see Pods that are
running and healthy, and workloads that may need to be fixed.

Figure 7.12 – A Deployment example

Next, you can see the overall deployment status.

Figure 7.13 – The Pod status

After that, you can dive even deeper to see Pods running in the Deployments tab.

Figure 7.14 – The Pods running

One thing to point out here is that the Kubernetes Dashboard is almost never used for a
production-level scenario. It’s typically used to look at some information quickly if
needed. For true observability and alerting in an environment, one of the more
appropriate (production-ready) monitoring and observability tools is typically used,
which you’ll see next.

Azure Monitor

If you strictly have Azure workloads or even workloads outside of Azure and you’re
utilizing Azure Arc (like on-premises), Azure Monitor is a great built-in solution. You
have the ability to capture logs and metrics, create alerts, and see in real time what’s
happening inside your environment. For example, you can view the CPU and memory
usage of a cluster, along with the Pod and other Kubernetes resource data.

In Chapter 2, you learned how to create an AKS cluster with Terraform. You can
utilize that same code for this section. For a quicker reference, here is the link:
https://github.com/PacktPublishing/50-Kubernetes-Concepts-Every-DevOps-Engineer-
Should-Know/tree/main/Ch2/AKS.

https://github.com/PacktPublishing/50-Kubernetes-Concepts-Every-DevOps-Engineer-Should-Know/tree/main/Ch2/AKS

Once your AKS cluster is configured, log in to the Azure portal and go to Kubernetes
services. Then, you should see an Insights tab under Monitoring.

Enable Insights by clicking the blue Configure azure monitor button.

Figure 7.15 – Azure Insights

Azure Insights gives you the ability to monitor everything in your AKS cluster from
the entire environment, to the nodes, all the way down to the Pods and containers.

Figure 7.16 – Insights data

For example, by diving into Containers (Pods), you can see the status, utilization, and
uptime.

Figure 7.17 – The Container data

Within Nodes, you can see the specific Pods running on each worker node, including
the health of the Pod.

Figure 7.18 – The Node data

Azure Monitor and Insights is a great overall solution for Kubernetes workloads. If
you’re in the Azure ecosystem, I wouldn’t recommend looking at another solution.
Stick to what’s native.

AWS Container Insights

Container Insights is part of the AWS CloudWatch family and gives you the ability to
view containerized workloads for performance and monitoring-related actions. You
can create alerts based on Container Insights, along with pull logs and metrics to take
action on anything that may occur from an automated and repeatable perspective.

In Chapter 2, you learned how to create an EKS cluster with Terraform. You can
utilize the same code for this section. For a quicker reference, here is the link:
https://github.com/PacktPublishing/50-Kubernetes-Concepts-Every-DevOps-Engineer-
Should-Know/tree/main/Ch2/AWS.

After you run the EKS Terraform configuration, run the following command to
retrieve the Kubernetes configuration (kubeconfig) from the EKS cluster:

aws eks update-kubeconfig –region region_where_cluster_exists –

https://github.com/PacktPublishing/50-Kubernetes-Concepts-Every-DevOps-Engineer-Should-Know/tree/main/Ch2/AWS

name name_of_your_cluster

To confirm that your current context is set, run the following command and you should
see a similar output:

kubectl get nodes

NAME STATUS ROLES AGE VERSION

ip-192-168-16-238.ec2.internal Ready <none> 18m
 v1.23.9-eks-ba74326

Next, configure AWS Container Insights for your cluster:

ClusterName= name_of_your_cluster

RegionName= region_where_cluster_exists

FluentBitHttpPort='2020'

FluentBitReadFromHead='Off'

[[${FluentBitReadFromHead} = 'On']] &&
FluentBitReadFromTail='Off'|| FluentBitReadFromTail='On'

[[-z ${FluentBitHttpPort}]] && FluentBitHttpServer='Off' ||
FluentBitHttpServer='On'

curl https://raw.githubusercontent.com/aws-samples/amazon-
cloudwatch-container-insights/latest/k8s-deployment-manifest-
templates/deployment-mode/daemonset/container-insights-
monitoring/quickstart/cwagent-fluent-bit-quickstart.yaml | sed
's/{{cluster_name}}/'${ClusterName}'/;s/{{region_name}}/'${RegionN
ame}'/;s/{{http_server_toggle}}/"'${FluentBitHttpServer}'"/;s/{{ht
tp_server_port}}/"'${FluentBitHttpPort}'"/;s/{{read_from_head}}/"'
${FluentBitReadFromHead}'"/;s/{{read_from_tail}}/"'${FluentBitRead
FromTail}'"/' | kubectl apply -f –

After the preceding code runs, you’ll see an output similar to the terminal output
pasted here:

namespace/amazon-cloudwatch created

serviceaccount/cloudwatch-agent created

clusterrole.rbac.authorization.k8s.io/cloudwatch-agent-role
created

clusterrolebinding.rbac.authorization.k8s.io/cloudwatch-agent-
role-binding created

configmap/cwagentconfig created

daemonset.apps/cloudwatch-agent created

configmap/fluent-bit-cluster-info created

serviceaccount/fluent-bit created

clusterrole.rbac.authorization.k8s.io/fluent-bit-role created

clusterrolebinding.rbac.authorization.k8s.io/fluent-bit-role-
binding created

configmap/fluent-bit-config created

daemonset.apps/fluent-bit created

At this point, if you log in to AWS and go to CloudWatch | Container Insights, you
can see that Container Insights is properly configured.

Figure 7.19 – The Container Insights output

Next, we’ll dive into a very popular stack in the Kubernetes space – Grafana and
Prometheus.

Grafana/Prometheus

Arguably, the most popular implementation of a monitoring/observability scenario for
Kubernetes is Grafana and Prometheus. Grafana and Prometheus work outside of
Kubernetes environments as well, but they became extremely popular in the
Kubernetes ecosystem. In fact, there’s even a Prometheus operator for Kubernetes.

Aside from the standard monitoring and observability benefits, engineers really enjoy
the combination because it’s 100% open source. In Grafana for example, you can
create any type of dashboard you want with a little bit of code and it’s all free. Grafana

and Prometheus can also run anywhere. The stack can run inside your Kubernetes
cluster or completely separate on its own servers.

Although you can configure Prometheus and Grafana separately with all the bells and
whistles, we’re going to utilize the power of the Prometheus Community Helm
Chart. The reason why is that it radically simplifies the Prometheus and Grafana
installation from an automated and repeatable standpoint. It installs both Prometheus
and Grafana, along with setting up dashboards for us.

Before jumping in, one thing that you’ll always need to do no matter what monitoring
and observability platform you’re on is to ensure that you are collecting metrics in the
way you’re expecting. For example, the Kubernetes Metrics Server or an adapter of
sorts. For example, Prometheus has an adapter that can be used instead of the Metrics
Server. You can also go straight to the source by utilizing the metrics endpoint from
/metrics/resource (for example, /metrics/pods), but generally, engineers opt to
use the Metrics Server.

Figure 7.20 – The metrics Pods

If you don’t expose the metrics endpoint, Kubernetes won’t allow the system to
consume said metrics. In terms of enabling the Metrics Server, it all depends on where
you’re running Kubernetes. For example, in AKS, it’s automatically exposed for you.
If you don’t see the metrics Pods in the kube-system namespace for your Kubernetes
cluster (depending on what environment you deployed Kubernetes in), check the
documentation for that type of Kubernetes environment to see how you can enable the
metrics endpoint.

First, add helm repo for prometheus-community:

helm repo add prometheus-community https://prometheus-
community.github.io/helm-charts

Next, ensure that the repo is up to date:

helm repo update

For the last step, install the Helm chart in the monitoring namespace:

helm install prometheus prometheus-community/kube-prometheus-
stack –namespace monitoring –create-namespace

Once installed, you should see several Kubernetes resources created in the
monitoring namespace. To access Grafana, you can use port forwarding:

kubectl -namespace monitoring port-forward svc/prometheus-grafana
:80

The default username/password for Grafana is admin/prom-operator.

After logging in to Grafana, check out the Pods in the dashboard for the kube-system
namespace. You can see that metrics are being ingested by Prometheus and pushed to
Grafana from all namespaces.

To see metrics, go to Dashboards | Browse:

Figure 7.21 – Browsing the dashboards

Click the Kubernetes / Compute Resources / Namespace (Pods) option:

Figure 7.22 – The Pods dashboard

Change the namespace to a namespace that has Pods already, such as kube-system,
and you can see the Pod metrics in the following screenshot:

Figure 7.23 – The namespace selection

Prometheus/Grafana is a powerful combination that allows you to stay vendor neutral
and get everything you need as an open source option.

Observabil ity practices
Now, let’s define what observability truly is by looking at logs, traces, and metrics.
When you use tools such as Prometheus, you’re doing a piece of observability. When
you use other tools such as Logz.io or another log aggregator, you’re using another
piece of observability.

Logging

Logging is aggregating and storing logged event messages written by programs and
systems. As you can imagine, depending on how verbose the logs are set in an

application, there will be a lot of events. A sysadmin’s favorite tool is a log because it
literally shows everything and anything that could happen from an event’s perspective.
However, it’s not efficient to simply comb through all of it with your eyes. Instead,
using observability practices, you can send the logs to a log aggregator and ensure that
a specific type of log that occurs can trigger an alert or some type of automation to go
in and fix the issue.

Figure 7.24 – Logging service discovery

There are a few logging practices when it comes to containers:
Application forwarding: Sending logs directly via the app. For example, maybe you have
some code inside of your application using a Prometheus library that collects the logs, metrics,
and traces, and sends it to whatever backend logging platform you’re using.

Sidecar: Using a sidecar container to manage logs for an app. For example, you can
containerize some logging systems to run as a secondary/sidecar container inside of your
Pod(s). The sidecar container’s job is to do one thing; retrieve and send logs about what’s
happening on the Pod.

Node agent forward: Run a Pod on each worker node that forwards all container logs to the
backend.

Metrics

Metrics are about collecting time series data, which is used to predict expected ranges
and forecast values, showing it in dashboards (such as Grafana or another UI-centric
dashboard), and alerting on it. Metric endpoints will give a bunch of information that
you can act upon. From a pure Kubernetes perspective, the metrics endpoint collects
Kubernetes resource data from the kubelet that’s running on each worker node and
exposes it to the API server through the Metrics API.

As mentioned in this chapter, there’s a metrics endpoint that runs as a Pod. Depending
on the type of Kubernetes cluster you’re running, the Pod could either be enabled by
default or it may be something that you have to turn on.

For example, in an AKS cluster, the metrics Pod is running, which means all of the
Kubernetes resources have a metrics endpoint that can be consumed.

Figure 7.25 – The metrics Pod

For another type of Kubernetes cluster, such as something running on Kubeadm, you
would have to enable the metrics endpoint by deploying the Pod. You can do that by
deploying the Kubernetes manifest in the kubernetes-sigs repo on GitHub:

kubectl apply -f https://github.com/kubernetes-sigs/metrics-
server/releases/latest/download/components.yaml

However, that’s not all. Because a cluster configuration such as Kubeadm has node IPs
that aren’t part of the certificate SAN on the cluster, the metrics endpoint will fail due
to a TLS connection error.

To get around this, you have to add the following line to a few configurations:

serverTLSBootstrap: true

There are two places you need to add it to.

First, the Kubeadm config. You can edit it by running kubectl edit cm -n kube-
system kubeadm-config and then add in the serverTLSBootstrap: true line.

Figure 7.26 – The kubeadm config

Next, you’ll have to update the kubelet on each node (all Control Planes and worker
nodes) with the same line. To edit the kubelet on each node, you can run the following
command and add in the configuration:

sudo vim /var/lib/kubelet/config.yaml

Figure 7.27 – The kubelet config

Traces

Traces are all about telling you the health of an application from an end-to-end
perspective.

You can think of a trace as the path or journey of a request as it goes through the
system. For example, when you go to www.google.com, although it happens
extremely fast, there’s a bunch of work that’s happening underneath the hood. At a
high level, the GET request that you’re creating to reach www.google.com is going
through the frontend, then probably some middleware, then to the backend. When you

Google something such as top ten places to go in the summertime, there are
several requests that are occurring to retrieve that information from the backend
database.

The journey from when you perform a Google search request to when the information
is portrayed to you – that journey is what a trace is.

Because it’s a long journey, although only seconds to us humans, it can give us a lot of
information from an engineering perspective on how an application is performing. We
can then take action on that performance concern from a repeatable methodology
instead of fixing the issue manually, or from a troubleshooting perspective. If you’re
looking at a trace and realize that the journey stopped or was held up once it hit the
backend, you now know where to start troubleshooting.

Monitoring Kubernetes resources
In the previous section, you learned all about monitoring from an overall observability
perspective, in particular setting up certain tools and ensuring that they work for you.
Now it’s time to go underneath the Kubernetes hood and begin to think about what can
be monitored from a resource perspective. Remember, a Kubernetes resource
(sometimes called an object) can be anything, from Services, to Ingress controllers, to
Pods. Because of that, there’s a lot to monitor.

Think about it from this perspective. You’re running a Pod that’s running a container
inside of the Pod. The Pod itself is running great. The container image works, with no
CPU or memory issues, and all of the events state that the Pod is up and running
successfully. However, there’s a problem – the binary (the app entry point) running
inside of the container may be down, or not working as expected. Because of this, you
need a way to truly see even underneath the hood of a Pod itself!

As you’ve learned throughout this book, it doesn’t really matter where you’re running
Kubernetes. The core components of how it runs and how you would interact with it
are the same. That’s no different for monitoring. Because of that, this section of the
chapter will show monitoring in AKS. However, as you’ll quickly see, it doesn’t
matter whether these Pods are running in AKS or not. They would be looked at
(monitored) the same way even if you use a different monitoring system.

The code in this section, along with the demo app being deployed, can be used on any
Kubernetes cluster.

Monitoring Pods

Inside a Pod is either one or more containers. Whether it’s one container or multiple
containers, the containers are what’s actually running an application. Perhaps it’s a
core app, a logging software, or even something such as HashiCorp Vault or a service
mesh proxy. These containers that are beside the main app are called sidecar
containers. Because there are multiple containers running inside a Pod, you must
ensure that each container is actually up and running as expected. Otherwise, the Pod
itself may be running properly, and the main app may even be running properly, but
the full workload, such as the sidecar containers, may not be.

First, ensure that the HashiCorp Consul Helm chart exists:

helm repo add hashicorp https://helm.releases.hashicorp.com

Next, create a new namespace called consul:

kubectl create namespace consul

Once the consul namespace exists, deploy Consul to Kubernetes inside of the consul
namespace:

helm upgrade –install -n consul consul hashicorp/consul –wait -f
- <<EOF

global:

 name: consul

server:

 replicas: 1

 bootstrapExpect: 1

connectInject:

 enabled: true

EOF

The last step is to deploy the demo app and ensure that the annotation for injecting
consul as a sidecar exists:

Curl -sL https://run.linkerd.io/emojivoto.yml \

 | sed 's| metadata: | metadata:\n annotations:\n
 consul.hashicorp.com/connect-inject" "tr"e'|' \

 | se' 's|targetPort: 8080|targetPort: 2000'|' \

 | kubectl apply -f -

After deploying the app, you should see an output similar to the following screenshot:

Figure 7.28 – Linkerd deployment

Log in to the Azure portal, go to your AKS cluster, and turn on Azure Insights if it’s
not already on:

Figure 7.29 – Enabling container insights

Once Insights is enabled, you should be able to see several resources available. Click
on the Controllers button.

Figure 7.30 – The Controllers dashboard

Looking at the Controllers dashboard, you can see all the Kubernetes resources
running along with the status, uptime, and how many containers exist in each resource.

Figure 7.31 – The Kubernetes resources running

Drilling in a bit deeper, you can see that for each resource with more than one Pod,
you’re able to see the different containers available.

Figure 7.32 – The resources in Pods

But as always, things may go wrong. You can see in the following screenshot that
there’s a Kubernetes resource running, but some of the containers aren’t running as
expected:

Figure 7.33 – The warning resource

As you dive into it a bit deeper, you can see the status of the container is waiting to be
created.

Figure 7.34 – The warning explanation

So, even though the Pod may be up and running, as in the application running inside of
the container, other sidecar containers may not be. On the outside looking in, the app is
up so it appears that everything is working as expected. However, after giving it a
closer look, you can see that it’s not. This is the big difference between monitoring an
app running on a server and a Pod. Within a Pod, there may be more than one binary to
worry about.

Summary
This chapter covered a lot. It’s roughly 35 pages, and the thing is, these topics can be
two or three books in themselves. Because of that, not everything was covered at the
specific depth that’s most likely needed. However, the good news is that you now have
a solid understanding of how to start thinking about implementing these platforms,
technologies, and methodologies in production.

We went over quite a few topics in this chapter, covering what monitoring is, what
observability is, and the overall differences between the two. You then dove into the
specific tools and platforms available to make monitoring and observability come to
life in your Kubernetes environment.

In the next and final chapter, you’ll learn about security from a Kubernetes
perspective.

Further reading
Hands-On Kubernetes on Azure – Second Edition by Nills Franssens, Shivakumar
Gopalakrishnan, and Gunther Lenz: https://www.packtpub.com/product/hands-on-kubernetes-
on-azure-second-edition/9781800209671

Hands-On Infrastructure Monitoring with Prometheus by Joel Bastos and Pedro Araújo:
https://www.packtpub.com/product/hands-on-infrastructure-monitoring-with-
prometheus/9781789612349

https://www.packtpub.com/product/hands-on-infrastructure-monitoring-with-prometheus/9781789612349

8

Security Reality Check
Security in general, and especially in Kubernetes, is an ironic thing. Everyone knows
it’s important, yet it’s not held to the same necessity as, for example, developers. In
fact, if you look at the ratio, there’s probably 1 security engineer to 100 developers.
Environments aren’t secure out of the box, especially when it comes to access control,
yet security is arguably one of the most overlooked pieces of Kubernetes. Because of
the lack of security awareness around Kubernetes, this chapter is going to focus on a
little bit of everything that you should be thinking about when securing a Kubernetes
environment.

From a theoretical perspective, you’ll be learning how to think about security in
Kubernetes. From a hands-on perspective, you’ll be learning not only how to
implement security practices, but which tools and platforms to use.

When thinking about production, this chapter may very well be the most important one
in this entire book. You must walk before you run, and therefore, you must learn how
to use Kubernetes in production before you can secure it. The focus of Chapters 1-7
was to get you to that point. This chapter, however, is all about taking things to the
next level, and as with most areas of Information Technology (IT), that next level is
security.

By the end of this chapter, you’ll know which practices to utilize when securing a
Kubernetes environment from the cluster itself to the containerized applications
running inside of the cluster. You’ll also know which tools and platforms to use to get
the job done.

In this chapter, we’re going to cover the following main topics:
Out-of-the-box Kubernetes security

Investigating cluster security

Understanding role-based access control (RBAC)

Kubernetes resource (object) security

Kubernetes Secrets

IMPORTANT NOTE
Much as with all other engineering-related books and research analyst analyses, the
figures/percentages used within this chapter are based on various experiences in the field.

In this book, if there are figures that do not have specific associated data sources, the
data is collated from the production experiences of the author, Michael Levan.

Technical requirements
For this chapter, as with most of the chapters in this book, you will need a Kubernetes
cluster running. Although you can run these tests on something such as Minikube, it’s
highly recommended to create a Kubeadm cluster or a Kubernetes managed service
cluster in the cloud with something such as Azure Kubernetes Service (AKS),
Amazon Elastic Kubernetes Service (Amazon EKS), or Google Kubernetes
Engine (GKE). The reason why is that you should see what it’s truly like from a
production perspective to run Kubernetes security tests, which will open your eyes to
see how secure (or insecure) it is out of the box and what you can do to mitigate those
risks.

If you want to deploy a Kubeadm cluster, check out this Git repo for help:

https://github.com/AdminTurnedDevOps/Kubernetes-Quickstart-
Environments/tree/main/Bare-Metal/kubeadm

For the overall code used in this chapter, you can find it here:

https://github.com/PacktPublishing/50-Kubernetes-Concepts-Every-DevOps-Engineer-
Should-Know/tree/main/Ch8

Out-of-the-box Kubernetes security
At this point in time, there are two typical groups of people—those who are so
incredibly new to Kubernetes and those who are as close to an expert as possible.

With the group that’s new to Kubernetes, they’re just trying to understand the
breakdown of the environment. They aren’t even at the stage of thinking about security
yet.

With the group that’s advanced—yes, they’re implementing security practices. The
problem is that the advanced group is extremely small compared to the group that’s
new to Kubernetes.

Then, there are the engineers that are somewhat in between. They aren’t super new, but
they aren’t ridiculously advanced either. This is the group that a lot of engineers fall
into, and quite frankly, the group that’s somewhat in between is just starting to think
about security.

As with most platforms, nothing is 100% secure out of the box. In fact, regardless of
how much time you spend to secure an environment, it will never be 100%. The whole

https://github.com/AdminTurnedDevOps/Kubernetes-Quickstart-Environments/tree/main/Bare-Metal/kubeadm
https://github.com/PacktPublishing/50-Kubernetes-Concepts-Every-DevOps-Engineer-Should-Know/tree/main/Ch8

goal of security is to mitigate as much risk as possible, but you’ll never be able to
mitigate 100% of the risk.

From a theoretical perspective, let’s talk about a few things around overall security and
Kubernetes security.

Security breakdown

Cybersecurity by definition is the protection of systems and networks from system
disclosure. This means the protection of anything from the physical server/computer
itself to the operating system to any data and metadata on the server/computer or
network. If you think about it, that’s a lot of information. How many emails do you
think get sent through Gmail per day? The specific number for Gmail isn’t certain, but
for all email providers, the number is collectively 319.6 billion (with a B). Thinking
about it from a theoretical but most likely accurate perspective, it’s safe to guess that at
least 25% of that is Gmail.

The point?

Emails alone contain a massive amount of information, but what about everything
else? Information getting sent through networks from one country to another; data on
hard drives: there’s a lot that falls into the protection of systems and networks.

Norton states in a recent blog (https://us.norton.com/blog/emerging-
threats/cybersecurity-statistics#) that there are roughly 2,200 cybersecurity attacks per
day. To be honest, that seems a bit low. However, even if that number is accurate,
that’s 800,000 cyberattacks per year. It’s certainly no small number.

With that knowledge, as engineers, we must prepare our systems and networks for
such types of behavior. As the cloud continues to grow and Kubernetes becomes more
mainstream, there will be more attacks directly related to Kubernetes.

As discussed in the opening of this section, the idea of security isn’t to stop all risks.
The truth is, you’ll never be able to stop everything. The security tools, platforms, and
engineers that focus on security implementations have one goal in mind—to stop as
many security threats as possible. If a system is secure, the operating system may not
be. If the operating system is secure, the network may not be. If the network is secure,
the applications may not be… and around and around we go. Security is something
that can never be 100%, but engineers can take precautions to get as close to 100% as
possible.

Thinking about everything in this section, the question comes back to this: What is
security? In short, it’s a method of protecting data.

https://us.norton.com/blog/emerging-threats/cybersecurity-statistics

Kubernetes security

The State Of Kubernetes security report from Red Hat
(https://www.redhat.com/en/resources/state-kubernetes-security-report) highlights
security issues directly related to the Kubernetes security landscape:

93% of respondents experienced at least 1 security incident in their Kubernetes environments
in the last 12 months.

More than half of the respondents (55%) have had to delay an application rollout because of
security concerns.

Around 70% of security issues in Kubernetes are due to misconfigurations (according to
Gartner, it’s 99%).

When you look at these statistics from a security report coming right from Red Hat,
there’s a trend that everyone can easily see—security is a huge issue in the Kubernetes
space.

The truth is, as many engineers and executives will attest, security is an absolute mess
in the Kubernetes space right now. There’s no specific reason why, but there’s an
educated guess as to why. If you look at the preceding statistics from Red Hat stating
that 70% of security issues are due to misconfigurations, that means the primary
reason is that engineers are still trying to figure out Kubernetes.

As you’ve learned about in this book, and as I’m sure you’ve seen online, almost
everyone is still trying to figure out Kubernetes. There’s no expert in Kubernetes
because the landscape changes every day. There’s no end goal to all things Kubernetes
because it constantly changes. It’s not like a math equation where once you solve it,
it’s complete. Once you solve Kubernetes, 10 more things around Kubernetes would
emerge. Because of that, how could a configuration not be misconfigured most of the
time? This goes especially for engineers that aren’t just focused on Kubernetes, but
focused on many areas as well. How can engineers be as close to experts as possible
within Kubernetes if it’s always changing? Misconfigurations are constantly bound to
occur.

Because of that, the landscape of Kubernetes security is a mess. In fact, it most likely
will be for a long time. It’s tough to secure something that’s constantly changing.

There’s some light at the end of the tunnel, though. As with all platforms and
environments, there are best practices that you can follow. Again, thinking about
security, what’s the goal? To not fix all problems, but to mitigate as many as possible.
The purpose of this chapter is to do exactly that: to mitigate as many security risks
inside of your Kubernetes environment as possible.

Let’s jump in!

https://www.redhat.com/en/resources/state-kubernetes-security-report

Investigating cluster security
Taking Kubernetes out of the equation, let’s think about overall infrastructure and/or
cloud security. At a high level, you have the network, the servers, the connections to
the servers, user access, and ensuring that the applications installed on the servers are
secure. In the world of cloud computing, you don’t have to worry about the physical
security aspect. But if your clusters are in a data center, you do have to think about
physical security. Locks on the data center rack cages ensure that no one can plug in
any old USB key and that no one can literally take a server out of the rack and walk
away with it.

Server security is a combination of what’s running inside and on the server—the
applications running, programs that are being executed, and the overall operating
system itself. Let’s say, for example, you’re running an older version of Ubuntu.
Chances are you should absolutely check and confirm that there are no security holes.
That’s still very important for any Kubernetes cluster running on Ubuntu. However,
Kubernetes has its own set of standards.

From a networking perspective, security still holds true in Kubernetes as well as in any
other environment. If you have a frontend or backend Kubernetes service that’s
accepting traffic from anywhere, that essentially means you have a blanket open
firewall. If you’re not encrypting Pod-to-Pod and/or service-to-service communication
with something such as a service mesh or a security-centric Container Network
Interface (CNI), you could open yourself up to more risks.

For example, Kubernetes by definition is an API. As with all APIs, there can be
security risks. That means one of the biggest security focus points is to ensure that the
Kubernetes API version that you’re currently on doesn’t have a major security risk as
that could literally take down your entire environment.

A big portion of Kubernetes security is benchmarks and other automated testing,
which you’ll learn about in this section.

Cluster hardening and benchmarks

The Center for Internet Security (CIS) has been the de facto standard of hardening
systems for years. CIS benchmarks are a set of globally identified standards and best
practices when it comes to helping engineers set up their security defenses. Whether
it’s in the cloud, on-prem, or a specific application/tool, there’s a best practice for it,
and that’s exactly what CIS helps you figure out.

Because CIS is essentially a list of best practices, you have to imagine that there are
thousands of different best practices spread across platforms and environments. If you

think about a Linux distro, such as Ubuntu, there are specific best practices for that
distro alone. If you think about across an entire platform such as Amazon Web
Services (AWS), there are even more best practices.

As you look at CIS in general, you’ll see that there are a ton of prepopulated CIS
environments. For example, in AWS, there are CIS-hardened Amazon Machine
Images (AMIs):

Figure 8.1 – Hardened AMI

In other clouds, such as Google Cloud Platform (GCP) or Azure, there’s the same
thing. Even on phones such as an iPhone, there are CIS benchmarks:

Figure 8.2 – iOS hardening

CIS can literally be an entire book in itself, so here’s the takeaway—CIS benchmarks
are a list of best practices and standards to follow from a security perspective across
systems, platforms, apps, and environments.

Because of the popularity of Kubernetes, in 2017, CIS worked with the community to
create a benchmark specifically for Kubernetes:

Figure 8.3 – Securing Kubernetes

There are even CIS benchmarks for specific Kubernetes environments, such as GKE.

As you go through this chapter, and as you go through your Kubernetes security
journey in general, a lot of tools and platforms you’ll see that do things such as
container image scanning and cluster scanning use CIS benchmarks. Platforms such as
Checkov, kube-bench, Kubescape, and a few of the other popular tools in the security
space all scan against CIS and the National Vulnerability Database (NVD).

You can download the latest Kubernetes CIS benchmark for free. You just need to put
in your name and email at https://www.cisecurity.org/benchmark/kubernetes.
Going over the Kubernetes CIS benchmark
The CIS benchmarks in Kubernetes is a huge PDF that you can download and go
through to ensure that how you’re implementing a Kubernetes environment is up to the
best standards and best practices possible for the Kubernetes API version that you’re
running.

Let’s learn how to download the PDF for the Kubernetes CIS benchmark. Follow these
steps:

1. Go to this link and fill in your information: https://www.cisecurity.org/benchmark/kubernetes.

2. After the information is filled in, you should get an email to download the PDFs. There are
going to be a lot, so search for Kubernetes. You should then see all the Kubernetes
benchmarks.

3. Choose the first one, which at the time of writing this, is for Kubernetes API version 1.23, and
click the orange Download PDF button:

https://www.cisecurity.org/benchmark/kubernetes

Figure 8.4 – Kubernetes CIS information

There are 302 pages, so the reality is you probably don’t want to read through it all,
especially after reading this chapter (or maybe you do!). Skim through it and search
for things that you find interesting. I like the part about Kubernetes Secrets where it
explicitly says that you should think about an external Secrets store.
A note about general server hardening
Server hardening should be an absolute priority across any environment. Whether
you’re running Windows servers, Linux servers, or a mixture of both, hardening your
systems is the key to mitigating as much security vulnerability at the system level as
possible.

Because CIS has been around for such a long time, there’s a benchmark for almost
everything. For example, here is a screenshot that showcases just a few benchmarks
available:

Figure 8.5 – Benchmark options

Even from a desktop perspective, you can run CIS benchmarks against certain
applications and tools such as Google Chrome or Microsoft Office:

Figure 8.6 – Desktop benchmark options

To see a full list, check out https://www.cisecurity.org/cis-benchmarks/.

System scanning

https://www.cisecurity.org/cis-benchmarks/

Although not Kubernetes-specific, or Kubernetes-scanning-specific, the truth is that if
you’re running any type of system that is in your Kubernetes environment as a Control
Plane, worker node, or both, you should run a system scan to ensure that the
environment is properly configured. To do this, follow these steps:

1. Download the CIS-CAT® Lite tool (it’s the free one) from https://learn.cisecurity.org/cis-cat-
lite.

2. Next, extract it and open up the Assessor-GUI binary:

Figure 8.7 – GUI binary

3. Within the GUI tool, choose the Advanced option so that you can specify a remote host:

Figure 8.8 – Advanced option

https://learn.cisecurity.org/cis-cat-lite

4. Choose an option that gives you the ability to add a remote system:

Figure 8.9 – Adding target system

5. Type in the information of the host that you wish to scan, such as the IP address, name, system
type, and username/password (or SSH key):

Figure 8.10 – Target system information

6. As you can see in the next screenshot, there’s no specific scan for Kubernetes. Hopefully, this
will be something that’s added in the future, although you’ll see later in this chapter that there
are tools that specifically scan Kubernetes against CIS. In this case, you can choose the Ubuntu
Linux option:

Figure 8.11 – Available benchmarks

7. Click the Save button:

Figure 8.12 – Adding target system

8. To ensure that you can properly scan the server, test the connection:

Figure 8.13 – Specifying the Control Plane

9. Click Next, and the testing should begin:

Figure 8.14 – Running the installation

10. You’ll then see a screen that asks you to pick a location to save the report. Leave this at its
default settings and then start the assessment:

Figure 8.15 – Assessment results

Once the assessment is complete, you’ll see the report output in the default report
location that you saw in the prior step:

Figure 8.16 – Benchmark report

Cluster network security

In Kubernetes, there are going to be two different types of network security—internal
security and host security. Host security, of course, can be anything from your cloud
VPC and security groups to on-prem firewalls running in your environment. Internal
security is Pod security, service security, and, overall, how Kubernetes resources
communicate with each other.

To keep things Kubernetes-centric, you’ll be learning about internal security and not
host security. If you’d like to learn about host security, it’s highly recommended to
take a look at how networking works as a whole and different security-related topics
such as firewalls, firewall rules, port mappings, and how network routes are
configured.

For the rest of this section, you’ll be learning about:
CNI security methods

extended Berkeley Packet Filter (eBPF)

CNI security
Throughout this book, you’ve learned about service mesh, and in the next section,
you’ll be learning about eBPF. There is, however, one other security approach you can
take from a CNI perspective. As you look through different CNIs, you’ll see multiple
different types of plugins. Some, such as Flannel, are for the beginner-level engineer
that just needs to get something up and running. It doesn’t have any fancy features. It’s
watered down and pretty basic, and that’s the purpose of it.

Then, you see other plugins, such as Calico, which is more of an advanced-level CNI
and has a strong emphasis on security. In fact, you can actually encrypt Pod-to-Pod
communication using Calico and WireGuard without even having to implement a
service mesh, and that’s one of the main reasons that engineers implement a service
mesh.

When you’re starting down your internal network security journey, one of the primary
questions you should ask yourself concerns how you want to implement a CNI and
why you want to implement it. Do you want a CNI that’s simply ready to go out of the
box? Or do you want a CNI that may require a bit more configuration and time, but
has the proper security components in place to make your life easier in the long run?

You can learn more about Calico and WireGuard at
https://projectcalico.docs.tigera.io/security/encrypt-cluster-pod-traffic.
eBPF
eBPF can be an entire book in itself, but in short, it’s a way to remove the need to
update Linux kernel code for certain programs to run. From a Kubernetes perspective,
it can also remove the need for kube-proxy’s responsibilities.

Let’s focus on a few key parts when it comes to Kubernetes and eBPF:
Removal of kube-proxy

Easier scaling

Security

kube-proxy has helped make Kubernetes usable. Without it, Kubernetes wouldn’t
have worked. However, there’s a concern. kube-proxy uses iptables. Although
iptables have been in Linux for a long time, it doesn’t scale very well. iptables rules
are stored in a list, and when Pods establish a new connection to a Kubernetes Service,
they go through every single iptable rule until the specific rule that’s being looked for

https://projectcalico.docs.tigera.io/security/encrypt-cluster-pod-traffic

is reached. Although that may not seem like a lot for a few rules, if you have
thousands (which you most likely will), it’s a performance concern.

From a scalability perspective, as the number of Kubernetes Services (any type of
Kubernetes Service) grows inside your cluster, the connection performance degrades.
One of the reasons is that iptable rules are not incremental when you create them,
which means that kube-proxy writes the whole table for every single update. It’s a
huge performance impact.

Now that you know some theory behind why eBPF matters, which again, can be an
entire book in itself, let’s dive into the hands-on implementation of eBPF:

1. First, it all depends on the cluster you’re using. As with every other Kubernetes environment,
if you’re using a managed Kubernetes Service in the cloud, using eBPF will vary based on the
CNI you specify for the Kubernetes Managed Service deployment.

If you’re planning to run Kubeadm, for example, the following command is what you
should use to remove kube-proxy. Even if you don’t use all the flags, ensure that you
use the --skip-phases=addon/kube-proxy flag as this is needed so that kube-
proxy doesn’t get installed:

sudo kubeadm init --skip-phases=addon/kube-proxy --control-plane-
endpoint $publicIP --apiserver-advertise-address $ip_address --
pod-network-cidr=$cidr --upload-certs

2. Next, install Helm if you don’t already have it:

curl -fsSL -o get_helm.sh
https://raw.githubusercontent.com/helm/helm/main/scripts/get-
helm-3

chmod 700 get_helm.sh

./get_helm.sh

3. Add the Cilium Helm repo:

helm repo add cilium https://helm.cilium.io/

4. Once the repo is added, you can install Cilium with Helm. Notice the flag to set the kube-
proxy replacement:

helm install cilium cilium/cilium \\

--namespace kube-system \\

--set kubeProxyReplacement=strict \\

--set k8sServiceHost=ip_address_of_control_plane \\

--set k8sServicePort=6443

5. After a few minutes, check to see that the Cilium Pods are running successfully by running the
following command:

kube get pods -n kube-system

The output should look similar to the following screenshot:

Figure 8.17 – Cilium Pods

Utilizing eBPF is still an extremely new topic and you may not see it through all
environments. However, I can assure you that you’ll begin to see it more and more as
eBPF becomes more popular and the benefits are seen more.

Upgrading the Kubernetes API

In every Kubernetes environment, you must keep track of the Kubernetes API. The
last thing you want to do is have an insanely out-of-date API for any
software/platform, but definitely for Kubernetes as well. All APIs, even Kubernetes,
can eventually have a security hole that needs to be patched. You must ensure that your
environment is ready for it.

When you keep track of a Kubernetes API, the inevitable will happen: you’ll have to
upgrade the API. This isn’t just for features and to keep the system up to date, but from

a security perspective, you don’t want to be too far behind as every old version of
every piece of software stops getting patched and security holes open.

For the rest of this section, you’ll learn how to do a Kubernetes upgrade on a cluster
running Kubeadm. If you don’t have Kubeadm, that’s fine—still follow along.
Eventually, you’ll have to do an upgrade on a raw Kubernetes cluster, so it’s still good
to know.

IMPORTANT NOTE
For any type of upgrade, especially in production, you should not only vigorously test the
upgrade path, but you should back up your environment components.
Upgrading Control Planes
Let’s begin by upgrading a Kubeadm Control Plane. Follow along with these steps:

1. Run the upgrade command, which will show which upgrade path is available:

kubeadm upgrade plan

Figure 8.18 – Kubernetes upgrade

2. In the following output, you’ll see the target versions for every upgrade available, along with
the command to run. The output will also show what the current Kubernetes API version is and
which Control Plane components will be upgraded:

Figure 8.19 – Upgrade path

3. Before running the upgrade, you’ll want to download the latest version of the API and confirm
that Kubeadm gets put on hold to not upgrade all Control Plane components at once. Note that
running the following command may result in you having to restart the server:

apt-mark unhold kubeadm && apt-get update && apt-get install -
y kubeadm=1.25.x-00 && apt-mark hold kubeadm

4. Once complete, run the upgrade, like so:

kubeadm upgrade apply v1.25.x

You’ll see an output similar to the following screenshot:

Figure 8.20 – Upgrade output

Here is the second part of the output from the preceding screenshot:

Figure 8.21 – Upgrade output continued

Now that you’ve upgraded the Control Plane, let’s learn how to upgrade worker nodes.
Upgrading worker nodes

1. Before running the upgrade, you’ll want to download the latest version and confirm that
Kubeadm gets put on hold to not upgrade all Control Plane components at once. Note that
running the following command may result in you having to restart the server:

apt-mark unhold kubeadm && apt-get update && apt-get install -
y kubeadm=1.25.x-00 && apt-mark hold kubeadm

2. Next, upgrade the worker node, like so:

sudo kubeadm upgrade node

Figure 8.22 – Node upgrade

That’s it! This process is a bit more straightforward compared to the Control Plane.
Upgrading the kubelet
The last step is to upgrade the kubelet on both the Control Planes and worker nodes.
Follow along:

1. Run the following for the kubelet upgrade:

apt-mark unhold kubelet kubectl && apt-get update && apt-get
install -y kubelet=1.25.x-00 kubectl=1.25.x-00 && apt-mark
hold kubelet kubectl

2. Next, reload the kubelet, like so:

sudo systemctl daemon-reload

sudo systemctl restart kubelet

3. Run the following command, and you should now see that the Kubernetes cluster is upgraded:

kubectl get nodes

Although this may not seem like something purely security related, and maybe it’s not,
it’s still extremely important for security. You can’t have old versions of software lying
around, just as you can’t have old versions of APIs lying around. For platform
engineering teams, it’s no different.

Audit logging and troubleshooting

Kubernetes generates several logs. In fact, most Kubernetes resources have the metrics
endpoint enabled. That means, everything and anything that’s generated with that

Kubernetes resource—such as authentication, access, Pods going down, containers
coming up, end users accessing it, and everything in between—is recorded.

The problem is that audit logging—and, sometimes, even the metrics server—isn’t
enabled or even installed by default. You have the ability to install and configure audit
logging in Kubernetes, but it’s not prepared out of the box.

What’s meant by that is the Kubernetes API for audit logging is available and turned
on out of the box. It just won’t start to generate any logs that you can see because you
first need to set up a policy via the audit.k8s.io/v1 API, but policies don’t exist by
default—it’s up to the engineer to create those policies. The policy can be anything
from show me everything to show me particular read actions on these particular
Kubernetes resources. It can be as high-level or as granular as you’d like.

There are a lot of policies, including audit logging, that can be turned on. In fact, it
could most likely be a topic that spans an entire cluster itself. Because of that, we’ll
stick with audit logging in this section. However, the following screenshot showcases
the Open Web Application Security Project (OWASP) Top 10 for Kubernetes, and
one of the top 10 is proper logging:

Figure 8.23 – OWASP Top 10

You can see more information about it here: https://github.com/OWASP/www-project-
kubernetes-top-ten/blob/main/2022/en/src/K05-inadequate-logging.md.

Before jumping into the hands-on part, let’s talk about what audit logging is. Audit
logging is recorded by the Kubernetes API server. With those recordings, which are
just logs, it documents a chronological set in an order that shows the sequence of
actions on a Kubernetes cluster.

It generates:
Actions taken by users

Actions taken by Kubernetes resources

The Control Plane itself

Essentially, audit logs allow you to ask yourself questions such as the following: 1)
What happened? 2) When did it happen? 3) How did it happen? No question should be
left unanswered as you can retrieve everything and anything about a Kubernetes
cluster via the audit logs.

With that, let’s learn how to set them up. Follow these steps:
1. Create a network policy such as the one shown next. For the purposes of this section, you can

store it under /etc/kubernetes/simple-policy.yaml:

apiVersion: audit.k8s.io/v1

kind: Policy

rules:

- level: Metadata

IMPORTANT NOTE
If you’re on a managed Kubernetes Service, such as AKS or EKS, you’ll have to turn on
audit logging in a different way, and it all depends on the server you’re using. However,
you should still read through this section as you’ll end up coming across audit logs on
bare-metal/VM environments (especially during this time when hybrid cloud is becoming
far more popular) at some point on your Kubernetes journey.

2. Next, open up the following location via Vim or an editor of your choosing:
/etc/kubernetes/manifests/kube-apiserver.yaml.

3. Add in the following code, as shown in Figure 8.24. This will give you the ability to set audit
log consumption and set how long the logs are kept, which path the output of the audit logs

https://github.com/OWASP/www-project-kubernetes-top-ten/blob/main/2022/en/src/K05-inadequate-logging.md

should go to, and where your audit policy exists:

- --audit-log-maxage=7

- --audit-log-maxbackup=2

- --audit-log-maxsize=50

- --audit-log-path=/var/log/audit.log

- --audit-policy-file=/etc/kubernetes/simple-policy.yaml

Figure 8.24 – Audit policy path

4. Under volumeMounts, add the following code, as shown in Figure 8.25. For Kubernetes,
the policy and the path for the audit logs need to be mounted in the cluster:

- mountPath: /etc/kubernetes/simple-policy.yaml

 name: audit

 readOnly: true

- mountPath: /var/log/audit.log

 name: audit-log

 readOnly: false

Figure 8.25 – Policy mount

5. Under hostPath, add the following:

- hostPath:

 path: /etc/kubernetes/simple-policy.yaml

 type: File

 name: audit

- hostPath:

 path: /var/log/audit.log

 type: FileOrCreate

 name: audit-log

Figure 8.26 – Policy host path

6. Restart the kubelet by running the following command:

sudo systemctl restart kubelet

7. Confirm that the kubelet is still running, like so:

kubectl get nodes

You can now view the audit logs on the Control Plane at the path/location where you
stored the audit.log file by executing the following command:

tail -f /var/log/audit.log

You should see a bunch of log output. For security purposes, I haven’t included a
screenshot showcasing the output.

As mentioned earlier, this type of configuration would be for a Kubeadm cluster or
something on-prem. For the cloud, it’s going to be a bit different. However, it’s still
important to understand this process. Remember—the cloud abstracts a lot away from
engineers, but engineers must still understand the underlying components of a system
to properly work with it.

Understanding RBAC
When it comes to users, groups, and service accounts, there are two questions you
must ask yourself. The first is: Who can access your cluster? Which users, service
accounts, and groups have the ability to run kubectl commands on the clusters in
development, staging, and production? Which of those users have a Kubeconfig that
gives them access to particular clusters? Which environments can they connect to?

The second question is: What can they do once they’re inside the cluster? Can they list
Pods? Create Pods? See Ingress Controllers? Create Ingress Controllers? What types
of Kubernetes resources can they interact with throughout each environment?

When you’re setting up a Kubernetes environment, you must also think about
authentication and authorization. Who can access your cluster and what can they do?
Further, you must think about what the users can do throughout each environment. For
example, thinking about the single tenancy model that you learned about in a previous
chapter, one engineer may have full admin access on one cluster and read-only access
on another. With that, you must also think about multiple authorization methods in
terms of which permissions you’re giving people.

In this section, you’re going to learn how to manage from a permissions perspective
users, groups, and teams in Kubernetes using RBAC.

Please note that although this section is not huge, it should point you in the right
direction in terms of how to think about RBAC and how to start implementing it.

What is RBAC?

RBAC, as with many other topics in this book (I’m a broken record at this point), can
be an entire book in itself. Because of that, let’s do a brief theoretical explanation and
then dive into the hands-on piece.

RBAC, by definition, is a way to ensure that users, groups, and service accounts only
have the permissions that they need from an authorization perspective. RBAC does not
do authentication—it does authorization. The authentication piece comes before
RBAC. Once there’s a user, group, or service account created, then RBAC can jump
into action and start creating permissions.

Within RBAC for Kubernetes, you have four primary resources that you want to
utilize:

Roles

ClusterRoles

RoleBindings

ClusterRoleBindings

You’ll learn more about them in the upcoming sections.

When you’re thinking about RBAC, think: What am I allowing this person to do inside
Kubernetes?

One thing to keep in mind is that RBAC is typically the bane of every security
engineer’s existence. It’s one of those topics in Kubernetes that makes everyone bang
their head against a wall because it can start to become insanely complex, and there’s
no central way to manage hundreds of RBAC roles and permissions. There are tools

and platforms out there that are trying to mitigate this, such as Kubescape’s RBAC
Visualizer.

To continue along with this chapter, you’ll need a user, group, or service account.
Because Kubernetes doesn’t have an out-of-the-box method for creating users and
groups, let’s use a service account.

Run the following command to create a new service account called miketest:

kubectl create sa miketest

Once the service account is created, it can be used for the following sections.

Roles and ClusterRoles

Roles are permissions that you can give users, groups, and service accounts, and they
are namespace scoped. Meaning, let’s say you create a role called readpods. That role
would be tied to a namespace—for example, a namespace called ingress. That means
the readpods role only works on the ingress namespace, and it’s not tied to any
other namespace.

How about if you want a role/permissions for a user/group/service account that’s used
across all namespaces through the cluster? That’s where ClusterRoles come into
play. A ClusterRole is the same thing as a Role. The only difference is that it’s not
namespace scoped.

Let’s dive in to learn how you can create Roles and ClusterRoles.
Roles
The following code snippet is an example of a Role that you can create. It’s scoped to
the ingress namespace and sets read-only permissions for the Pod Kubernetes
resource. Notice in the verbs that it’s all read permissions—get, watch, and list:

kind: Role

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 namespace: ingress

 name: reader

rules:

- apiGroups: [""]

 resources: ["pods"]

 verbs: ["get", "watch", "list"]

Implementing the preceding Role will ensure that you have a proper role created to
give a user/group/service account read-only permissions for Pods in the ingress

namespace.
ClusterRoles
As with the preceding Role, the following ClusterRole creates a ClusterRole
called reader for read-only permissions on Pods. The key difference is that it’s not
scoped to a particular namespace:

kind: ClusterRole

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: reader-cluster

rules:

- apiGroups: [""]

 resources: ["pods"]

 verbs: ["get", "watch", "list"]

Implementing the preceding ClusterRole will ensure that you have a proper role
created to give a user/group/service account read-only permissions for Pods across all
namespaces in the cluster.

Next, let’s learn how to bind Roles to a particular service account.

RoleBindings and ClusterRoleBindings

A RoleBinding is a way that you tie/attach a Role to a user/group/service account.
For example, let’s say you have a Role called podreaders and you want to tie/attach
that role to the miketest service account. You would use a RoleBinding to perform
that action.

Just as with Roles and ClusterRoles, the only difference is that RoleBindings are
namespace scoped and ClusterRoleBindings are not and can be used throughout
the cluster.

Let’s learn how to implement RoleBindings and ClusterRoleBindings.
RoleBinding
The following RoleBinding takes the Role that you created in the previous section
and attaches it to the miketest service account. See how there’s a kind and the
service account kind is specified? This is where you can specify a group or a user.
It’s also scoped to the ingress namespace as this is not a ClusterRoleBinding:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: reader-pod

 namespace: ingress

subjects:

- kind: ServiceAccount

 name: miketest

 apiGroup: ""

roleRef:

 kind: Role

 name: reader

 apiGroup: rbac.authorization.k8s.io

ClusterRoleBinding
Much as with the preceding RoleBinding, the following ClusterRoleBinding will
attach the miketest service account to the ClusterRole and reference the following
ClusterRole:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: read-pod-global

subjects:

- kind: ServiceAccount

 name: miketest

 apiGroup: ""

roleRef:

 kind: ClusterRole

 name: reader-cluster

 apiGroup: rbac.authorization.k8s.io

Now that you know about overall authentication and authorization permissions, it’s
time to learn about overall Kubernetes resource security and the approaches that you
can take out of the gate to ensure a successful security-centric deployment.

Kubernetes resource (object) security
Throughout this chapter, you learned a little bit about Kubernetes resource security.
Remember, Kubernetes resources can be anything from Pods to Ingress Controllers to
Services. Essentially, anything running inside of the Kubernetes cluster that you’re
reaching via the API is a Kubernetes resource.

In this section, you’re going to learn the top methods of today to secure Kubernetes
resources within Kubernetes and by using third-party tools.

Pod security

When it comes to network security in a Kubernetes environment, there are two parts—
the host network and the internal network. For the purposes of this section, we can’t go
into host networking because every environment is going to be different. Whether it’s
different physical hardware or virtual hardware setups, there’s no one-size-fits-all
network environment.

However, there are a few helpful tips that work across every environment:
1. Ensure that you have proper firewall rules.

2. Ensure that you’re implementing proper routing protocols and not just opening up the entire
network.

3. Ensure that you have the proper port setup in place.

4. Ensure that you’re logging and observing network traffic.

For Kubernetes network security, there are network policies.

Network Policies are built into Kubernetes via the networking.k8s.io/v1 API.
Network Policies act like firewall rules for both Ingress and Egress traffic. However,
network policies aren’t just about whitelisting or blacklisting IP addresses and ports.
You can do much more with a policy. For example, you can block traffic from a
specific network to a specific namespace, from a specific namespace, or to/from a
specific application. Because of the vast number of options that come with Network
Policies, you have plenty of options, but you’ll want to ensure that you’re setting up
the right policies. One wrong accidental 162.x.x.x instead of 172.x.x.x can
completely throw off the entire network workflow in a network policy and completely
halt application workloads.

Let’s dive into what a network policy looks like.

To test this out, run the following Pods in your Kubernetes environment:

kubectl run busybox1 --image=busybox --labels app=busybox1 --
sleep 3600

kubectl run busybox2 --image=busybox --labels app=busybox2 --
sleep 3600

The preceding new Pods will run a container image called busybox, which is a small
form factor that’s usually used for testing.

Next, obtain the IP address of the Pods, like so:

kubectl get pods -o wide

Figure 8.27 – Pod output

Run a ping against the busybox1 Pod:

kubectl exec -ti busybox2 -- ping -c3 ip_of_busybox_one

Figure 8.28 – Ping output

Now that you know there’s proper Internet Control Message Protocol (ICMP)
communication, create a network policy that blocks all Ingress traffic to the busybox1
Pod:

kubectl create -f - <<EOF

kind: NetworkPolicy

apiVersion: networking.k8s.io/v1

metadata:

 name: web-deny-all

spec:

 podSelector:

 matchLabels:

 app: busybox1

 ingress: []

EOF

Run the ping against busybox1 again:

kubectl exec -ti busybox2 -- ping -c3 ip_of_busybox_one

There should now be 100% packet loss.

If you’re in an environment where this didn’t work, such as a standard Minikube
environment, the reason why it’s most likely not working is that you’re using a CNI

that doesn’t have network policies enabled or doesn’t support network policies.

To find out how to enable network policies, you’ll need to do a quick search on how to
implement network policies for your specific CNI.

Policy enforcement

In the previous section, you learned about security at the network layer, which is of
course needed. After (or before) the network layer is the application layer, which is
where policy enforcement around Pods and containers comes into play.

The whole idea behind policy enforcement is to give you the ability to protect your
Pods, ensure best security practices, and set standards for your organization.

For example, one of the biggest best practices in production is to ensure that you’re not
using the latest container image version in production. Instead, you always want to use
a container image version that’s properly versioned and battle-tested for protection.
With policy enforcement in Kubernetes, you can accomplish that.

Right now, the two biggest ways to implement policy enforcement are using Open
Policy Agent (OPA) and Kyverno. They’re both the same from a policy enforcement
perspective, but the biggest difference is that Kyverno only works inside of
Kubernetes. Because of that, a lot of engineers are going toward using OPA so that
they can use it throughout their environment and not just in Kubernetes.

Because of that, the hands-on section will be using OPA.

WHAT ABOUT POD SECURITY POLICIES?
If you’ve heard of Pod Security Policies, they’re essentially the same thing as OPA.
However, they were deprecated in v1.21 of Kubernetes and completely removed in v1.25.
OPA
When you want to configure a specific policy, you can use a policy agent such as OPA.
OPA allows you to write policies in an OPA-specific language called Rego (which
you’ll see later in this section). When you write a policy, any request or event that
comes in from another Kubernetes resource or an outside entity will be queried. OPA’s
decision agent will give it a pass or fail.

But how does OPA know how to implement policies?

That’s where OPA Gatekeeper comes into play. Gatekeeper is a middle ground of sorts
that allows Kubernetes to interact with OPA. Gatekeeper is installed on Kubernetes
and enables the use of OPA policies.

Let’s dive in from a hands-on perspective to set up OPA. The first part will be
deploying OPA Gatekeeper and the second part will be implementing a policy. Proceed
as follows:

1. Add Helm chart for Gatekeeper, like so:

helm repo add gatekeeper https://open-policy-
agent.github.io/gatekeeper/charts

2. Install the Helm chart by running the following command:

helm install gatekeeper/gatekeeper --name-template=gatekeeper
--namespace gatekeeper-system --create-namespace

3. Confirm that all Kubernetes resources for Gatekeeper were deployed:

kubectl get all -n gatekeeper-system

Now that Gatekeeper is installed, let’s start implementing the OPA policies.

The configuration is the definition/output of what OPA Gatekeeper is allowed to create
policies for. In the following config.yaml file, because of the way that it’s written,
Gatekeeper knows that it can only specify policies for Pods and no other Kubernetes
resources. Run the following code:

kubectl create -f - <<EOF

apiVersion: config.gatekeeper.sh/v1alpha1

kind: Config

metadata:

 name: config

 namespace: "gatekeeper-system"

spec:

 sync:

 syncOnly:

 - group: ""

 version: "v1"

 kind: "Pod"

EOF

A constraint template is a policy that you configure for an environment. It’s a template,
so you can use it across multiple places.

The Rego code/policy in the following constraint template ensures no one can utilize
the latest tag of a container image. Run the following code:

kubectl create -f - <<EOF

apiVersion: templates.gatekeeper.sh/v1beta1

kind: ConstraintTemplate

metadata:

 name: blocklatesttag

 annotations:

 description: Blocks container images from using the latest tag

spec:

 crd:

 spec:

 names:

 kind: blocklatesttag # this must be the same name as the
name on metadata.name (line 4)

 targets:

 - target: admission.k8s.gatekeeper.sh

 rego: |

 package blocklatesttag

 violation[{"msg": msg, "details": {}}]{

 input.review.object.kind == "Pod"

 imagename := input.review.object.spec.containers[_].image

 endswith(imagename,"latest")

 msg := "Images with tag the tag \"latest\" is not allowed"

 }

EOF

Next, you have the constraint. The constraint takes the template that you created
earlier and allows you to use the template to create a policy inside of a Kubernetes
cluster:

kubectl create -f - <<EOF

apiVersion: constraints.gatekeeper.sh/v1beta1

kind: blocklatesttag

metadata:

 name: nolatestcontainerimage

spec:

 match:

 kinds:

 - apiGroups: [""]

 kinds: ["Pod"]

 parameters:

 annotation: "no-latest-tag-used"

EOF

The OPA policy is now created.

To confirm that the policy is working as expected, you can test it out with the two
following Kubernetes manifests:

The following manifest with the container image’s latest tag shouldn’t work because of the
policy that you created earlier. The deployment itself will deploy, but the Pods won’t be
scheduled and won’t come online.

Try running the following code:

kubectl create -f - <<EOF

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

spec:

 selector:

 matchLabels:

 app: nginxdeployment

 replicas: 2

 template:

 metadata:

 labels:

 app: nginxdeployment

 spec:

 containers:

 - name: nginxdeployment

 image: nginx:latest

 ports:

 - containerPort: 80

EOF

Wait a few minutes and when you see that it doesn’t come online, delete it, as follows:

kubectl delete deployment nginx-deployment

Next, try the following manifest. It will work, and the Pods will come online because the
container image version is specified:

kubectl create -f - <<EOF

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

spec:

 selector:

 matchLabels:

 app: nginxdeployment

 replicas: 2

 template:

 metadata:

 labels:

 app: nginxdeployment

 spec:

 containers:

 - name: nginxdeployment

 image: nginx:1.23.1

 ports:

 - containerPort: 80

EOF

OPA is a huge topic in itself. I highly recommend diving into it more. We only had a
few pages together in this book to dive into it, but it goes far more in-depth.

Scanning container images

One popular security-style entry point for many engineers to start their security
journey is by scanning container images. Scanning a container image means that

you’re using a tool/platform to look inside the container image and see if there are any
vulnerabilities. The vulnerability list typically comes from the NVD and the CIS
benchmarks for Kubernetes. Both are a curated list of best practices from a security
perspective and also contain known vulnerabilities.

There are a lot of tools in this space. In this section, let’s stick to one that’s as built in
as possible: Snyk.

Snyk is used to scan containers for vulnerabilities from a list that’s pre-defined (as
stated earlier) of best practices. A while back, Docker and Snyk partnered to ensure
that security is embedded natively into any containerized workload. With that
partnership, when you run the docker scan command, it’s actually using Snyk on the
backend.

To use Snyk, ensure that you have the Docker CLI installed and run the following
command:

docker scan containerimage:containerversion

For example, let’s say you want to scan the ubuntu:latest container image, as
shown here:

docker scan ubuntu:latest

Once you run the docker scan command, you can scroll through all of the
vulnerabilities. You’ll see a summary of the vulnerabilities that were found, what was
tested, and which platform was used.

Vulnerabilities can range from being super basic, in that it just ends up being a best
practice to fix, or something that’s incredibly crucial and leaves your environment
open for attack.

Kubernetes Secrets
Wrapping up this chapter, and the overall book, you’ll learn about Kubernetes Secrets.

Secrets, in short, are anything that you don’t want to be in plain text. Typically, they
are things such as passwords and API keys. However, they could even be usernames.
Any type of data that you don’t want to be in plain text, at rest, or in transit can be
considered a Secret.

At this point in your engineering journey, it’s assumed that you don’t need to be taught
about Secrets, so we’re going to skip that part and dive right into the hands-on part.

Creating Kubernetes Secrets

To create a Kubernetes Secret, you’ll use the secret resource from the v1 core API
group.

For example, the following is a Secret called testsecret with a username and
password:

apiVersion: v1

kind: Secret

metadata:

 name: testsecret

type: Opaque

data:

 username: YWRtaW4=

 password: MWYyZDFlMmU2N2Rm

Confirm that the Secret was created by running the following command:

kubectl get secrets

Next, use the secret by putting it inside a Pod, like so:

apiVersion: v1

kind: Pod

metadata:

 name: nginxpod

spec:

 containers:

 - name: mypod

 image: nginx:latest

 volumes:

 - name: foo

 secret:

 secretName: testsecret

Don’t use Kubernetes Secrets

Although you literally just created a new Kubernetes Secrets a few seconds ago, here’s
the thing—it’s not a recommended practice.

The biggest reason is that the default opaque standard for Kubernetes Secrets stores
secrets in plain text. Yes—that’s right. The secrets will be stored in plain text in the
etcd database. Thinking about it from another perspective, think about Kubernetes

Manifests. Even if the secret wasn’t in plain text in Etcd, it would still be in plain text
in the Kubernetes Manifest that’s creating the secret, and if it’s in plain text, where
would you store it? You can’t push the manifest up to GitHub because then your secret
would be compromised. Because of this, many engineers—and, quite frankly, even the
Kubernetes documentation—highly recommend using a third-party secret provider.
The most popular at this time for Kubernetes is HashiCorp Vault.

Summary
As you went through this chapter, there may have been some thoughts in your head of
pure confusion. That’s okay—we’re all trying to get it when it comes to security in
general, especially in Kubernetes.

Kubernetes security is an advanced topic, which is why the goal was to leave this topic
for the last chapter of the book. Without Kubernetes security, environments will
continue to be targets for attackers. However, before understanding Kubernetes
security, you must fully understand how to utilize Kubernetes in production. The goal
of Chapters 1-7 was to help with understanding Kubernetes in production.

The next goal, once you close this book, is to take what you’ve learned in this chapter
along with the various methodologies highlighted and implement them in your
production environment for optimal results.

Further reading
Learn Kubernetes Security by Kaizhe Huang and Pranjal Jumde:
https://www.packtpub.com/product/learn-kubernetes-security/9781839216503

https://www.packtpub.com/product/learn-kubernetes-security/9781839216503

Index

As this ebook edition doesn't have fixed pagination, the page numbers below are
hyperlinked for reference only, based on the printed edition of this book.

A

abstraction 14
disadvantages 15

tasks, in Dev 14

tasks, in Ops 15

AKS cluster
and Virtual Kubelet 29

creating, manually 21-24

creating, with automation 24-26

maintaining 29

managing 29

scaling 26-29

Amazon Machine Images (AMIs) 212

Amazon Web Services (AWS) 211
OpenShift cluster, setting up on 68-74

application deployments
troubleshooting 154, 160, 161

Application Program Interface (API) 13

ArgoCD 149

clbr://internal.invalid/book/OEBPS/B19116_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19116_Index.xhtml

configuring 149-151

audit logging 230-234

AWS Container Insights 189, 190

AWS EKS 30

Azure Active Directory (AAD) 10

Azure Arc 92

Azure Container Apps (ACA) 20

Azure Container Instances (ACI) 29

Azure Kubernetes Service (AKS) 8, 20, 106

Azure Monitor 186-189

Azure Stack HCI 91

C

Center for Internet Security (CIS) 211

Certificate Authority (CA) 63

Certified Kubernetes Administrator (CKA) 85

Certified Kubernetes Application Developer (CKAD) 85

CI/CD 144, 145
deploying with 144

production use cases 154

used, for Kubernetes deployments 145-148

Client Access License (CAL) 85

cloud
managing, by engineers 8

cloud-native apps 104, 105
abilities 12, 13

benefits 12

cloud-specific cloud native 106

future of engineers 14

microservices 106, 107

using 13, 14

cloud web app architecture 6-8

cluster latency 86

cluster network security 223, 224
eBPF 224, 225

ClusterRoleBinding 238, 239

ClusterRoles 237

cluster security
cluster hardening and benchmarks 211

investigating 211

system scanning 217

container images
scanning 246

Container Network Interface (CNI) 93, 211

Container Storage Interface (CSI) 124

controller 111

Control Plane 82

CoreDNS 94

CustomResourceDefinitions (CRDs) 111

D

data center 82

data center web app architecture 5

DigitalOcean 57

DigitalOcean Managed Kubernetes 57
automating 61-63

manual setup 57-61

need for 57

Domain Name System (DNS) 25

Don’t Repeat Yourself (DRY) 25

E

clbr://internal.invalid/book/OEBPS/B19116_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19116_Index.xhtml

Elastic Kubernetes Service (EKS) 30

Elastic Kubernetes Service (EKS) cluster
creating, manually 30-35

creating, with Terraform 35-40

Fargate profiles 41, 42

scaling 41

enterprise licensing 64

enterprise software 64

Equinix 9, 95

extended Berkeley Packet Filter (eBPF) 224, 225

F

Fargate profiles 41, 42

Fully Qualified Domain Name (FQDN) 25

G

Generally Available (GA) 20

GitOps 148, 149
app, deploying 152, 154

ArgoCD, configuring 149-151

deploying with 144

production use cases 154

used, for automated deployments 149

GKE AutoPilot 46

GKE cluster
creating, with Terraform 43-46

Google Anthos 91

Google Cloud Platform (GCP) 212

Google Kubernetes Engine (GKE) 8, 30, 42, 43
AutoPilot 46

multi-cloud 46

Grafana 192-195

Graphics Processing Unit (GPU) 82

H

Helm charts 137
best practices 140

reference link, installation methods 138

using 138-140

high availability (HA) 54

hybrid services 90
Azure Stack HCI 91

Google Anthos 91

infrastructure managers 92

I

Infrastructure as Code (IaC) 8, 61

infrastructure managers
Azure Arc 92

Rancher 92

Ingress 161
advantages 162

using 162-164

Internet Control Message Protocol (ICMP) 240

Internet Service Providers (ISPs) 82

K

Kubeadm 83

Kubebuilder
reference link 111

Kubernetes 9
business need 16

container images, upgrading 130, 131

engineering need 15

implementing 15

monitoring tool 183

need for 4, 10

observability tool 183

planning 16

rollbacks 133

rolling updates 131-133

running 83, 95-98

upgrade types 130

using, as data center 10, 11

using, in cloud 9

Kubernetes API
Control Plane, upgrading 227, 228

kubelet, upgrading 229, 230

upgrading 226

worker nodes, upgrading 229

Kubernetes app deployments 107
controllers and operators 111

liveness and readiness probes 119

multi-container pods 118

scaling 115

with higher-level controllers 112-115

Kubernetes apps
upgrading 129

Kubernetes CIS benchmark 214
download link 214

PDF, downloading 214

Kubernetes cluster
monitoring 175, 176

Kubernetes Dashboard 183-186

Kubernetes deployments
performing, with CI/CD 145-148

Kubernetes Manifests 108, 109
code group 108

deployment methods, considerations 136, 137

Helm charts 136

Kustomize 136

named group 108, 111

ways 110, 111

Kubernetes resource (object) security 239
container images, scanning 246

OPA 242-246

pod security 239-241

policy enforcement 241

Kubernetes resources
metrics 177

monitoring 199

Kubernetes secrets 246
avoiding 247

creating 246

Kubernetes security 208-210
issues 210

splitting 209

Kubernetes Specific Interest Group (SIG) group 176

clbr://internal.invalid/book/OEBPS/B19116_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19116_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19116_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19116_Index.xhtml

Kubespray 84

Kustomize 140
base configuration 140

best practices 144

configurations, using 142, 143

dev overlay configuration 141

Kustomization File 141

reference link, installation methods 142

L

limit
versus request 127

Linode 50

Linode Kubernetes Engine (LKE) 50
deployments, automating 55, 56

manual setup 51-54

need for 50

Linux 84

liveness probes 119, 120

logging practices, containers
application forwarding 196

node agent forward 196

sidecar 196

M

clbr://internal.invalid/book/OEBPS/B19116_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19116_Index.xhtml

minikube
reference link 184

monitoring 173-175
downside 176

for Kubernetes 183

Kubernetes resources 199

on Kubernetes cluster 175, 176

Pods 200-204

use case 178-180

versus observability 172, 173, 177

multi-container pods 118

multi-tenancy 123

N

namespace 121

National Vulnerability Database (NVD) 74, 214

network framework 93

networking and system components
CNI 93

DNS 94

exploring 92

kube-proxy 93

Kubernetes resource communication 93

Service Mesh and Ingress 94

clbr://internal.invalid/book/OEBPS/B19116_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19116_Index.xhtml

Network Interface Card (NIC) 82

network operations center (NOC) 173

O

object 199

observability 176
use case 180-182

versus monitoring 172, 173

versus monitoring examples 177

observability practices
for Kubernetes 183

logging 196

metrics 197, 198

traces 199

on-prem Kubernetes clusters 85
crictl 87

Kubectl 87-90

Kubernetes metrics 86

network observability 86

server logs and infrastructure troubleshooting 85, 86

OpenMetal 97

Open Policy Agent (OPA) 241-246

OpenShift 63
in enterprise 64

clbr://internal.invalid/book/OEBPS/B19116_Index.xhtml

on AWS 68-74

working 65-68

OpenShift ReadyContainers 64, 65

OpenShift Sandbox 64
reference link 68

OpenStack 83

Open Web Application Security Project (OWASP) 230

operating systems and infrastructure 77
operating system 84

system location 82

system size 80, 81

system size, considerations 81

operator 111

P

Personal Access Token (PAT) 149

Platform-as-a-Service (PaaS) 9

Pod latency 86

Pods
horizontal autoscaling 115

horizontal scaling 116

monitoring 200-204

troubleshooting 155-157

vertical scaling 117, 118

Pod Security Policies 241

production-level controllers
DaemonSets 113

deployments 112

StatefulSets 114, 115

Prometheus 192-195

Prometheus Community Helm Chart 192

R

Rancher 84, 92

readiness probes 119, 120

Red Hat OpenShift Local
reference link 68

regional locations 83

request, versus limit 126, 127
namespace quotas 129

selecting 128

role-based access control (RBAC) 235, 236
ClusterRoleBindings 238, 239

ClusterRoles 237

RoleBinding 237, 238

roles 236

RoleBinding 237, 238

roles 236

rolling update 130

S

scaling 81

segregation
exploring 121

segregation techniques
multi-tenancy 123

namespaces 121

single tenancy 122

server hardening 215

service meshes 162
advantages 165

using 165, 166

services
troubleshooting 157-160

sidecar containers 200

sidecars 118

single tenancy 122

Software-as-a-Service (SaaS) 63

standard sizing considerations
CPU-intensive workers 81

memory-intensive workers 81

special case workers 81

standard workers 81

stateful, versus stateless application 123
resource requests and limits 126, 127

volumes 124

system scanning 217-222

T

Terraform
AWS EKS cluster, creating with 35-41

GKE cluster, creating with 43-46

troubleshooting
application deployments 154-161

Pods 155-157

services 157-160

V

value 140

variables, GitHub

reference link 56

vertical autoscaling 81

virtualized bare metal
environment, virtualizing 95

exploring 94

Virtual Kubelet 29

volume, creating for Pod
PersistentVolumeClaim 126

storage class 125

volumes 124

W

Windows 84

worker node 82

www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and
advance your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos from over
4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at packtpub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt
books and eBooks.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

https://packtpub.com/
https://packtpub.com/
mailto:customercare@packtpub.com
https://www.packtpub.com/

Certified Kubernetes Administrator (CKA) Exam Guide

Mélony Qin

ISBN: 978-1-80323-826-5
Understand the fundamentals of Kubernetes and its tools

Get hands-on experience in installing and configuring Kubernetes clusters

Manage Kubernetes clusters and deployed workloads with ease

https://packt.link/9781803238265

Get up and running with Kubernetes networking and storage

Manage the security of applications deployed on Kubernetes

Find out how to monitor, log, and troubleshoot Kubernetes clusters and apps among others

Managing Kubernetes Resources Using Helm - Second Edition

Andrew Block, Austin Dewey

https://packt.link/9781803242897

ISBN: 978-1-80324-289-7
Understand how to deploy applications on Kubernetes with ease

Package dynamic applications for deployment on Kubernetes

Integrate Helm into an existing software release process

Develop an enterprise automation strategy on Kubernetes using Helm

Use Helm within a Helm Kubernetes operator

Leverage Helm in a secure and stable manner that fits the enterprise

Discover the ins and outs of automation with Helm

Packt is searching for authors l ike you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished 50 Kubernetes Concepts Every DevOps Engineer Should Know,
we’d love to hear your thoughts! If you purchased the book from Amazon, please click
here to go straight to the Amazon review page for this book and share your feedback
or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure
we’re delivering excellent quality content.

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that
book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your
favorite technical books directly into your application.

http://authors.packtpub.com/
https://packt.link/r/1804611476

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and
great free content in your inbox daily

Follow these simple steps to get the benefits:
1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804611470

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804611470

	50 Kubernetes Concepts Every DevOps Engineer Should Know
	Contributors
	About the author
	About the reviewer
	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used
	Get in touch
	Share Your Thoughts
	Download a free PDF copy of this book

	Part 1: First 20 Kubernetes Concepts – In and Out of the Cloud
	Chapter 1: Kubernetes in Today’s World
	Technical requirements
	The shift to the cloud
	Why organizations care about the cloud
	What the cloud did for engineers

	Kubernetes, the new cloud OS and data center
	Kubernetes in the cloud
	Why Kubernetes?
	Kubernetes as a data center

	Cloud-native apps and why they’re important
	What cloud-native apps do for organizations
	The world is cloud-based
	Engineering talent is toward the cloud

	Abstraction is easier, but with a twist
	What abstraction does
	What abstraction doesn’t do

	Start slow and go fast
	Understanding the engineering need for Kubernetes
	Understanding the business need for Kubernetes
	Planning is the hard part

	Summary
	Further reading

	Chapter 2: Getting the Ball Rolling with Kubernetes and the Top Three Cloud Platforms
	Technical requirements
	Azure Kubernetes Service
	Creating an AKS cluster manually
	Creating an AKS cluster with automation
	Scaling an AKS cluster
	AKS and Virtual Kubelet
	Managing and maintaining AKS clusters

	AWS EKS
	Creating an EKS cluster manually
	Creating an EKS cluster with Terraform
	Scaling an EKS cluster
	EKS Fargate profiles

	GKE
	Creating a GKE cluster with Terraform
	GKE Autopilot
	A quick note on multi-cloud

	Summary
	Further reading

	Chapter 3: Running Kubernetes with Other Cloud Pals
	Technical requirements
	Understanding Linode Kubernetes Engine
	Why LKE?
	Setting up LKE manually
	Automating LKE deployments

	Exploring DigitalOcean Managed Kubernetes
	Why DigitalOcean Kubernetes Engine?
	Setting up DigitalOcean Managed Kubernetes manually
	Automating DigitalOcean Managed Kubernetes

	What is Kubernetes PaaS and how does it differ?
	OpenShift
	OpenShift in the enterprise
	Getting started with OpenShift Sandbox
	OpenShift on AWS

	Summary
	Further reading

	Chapter 4: The On-Prem Kubernetes Reality Check
	Technical requirements
	Understanding operating systems and infrastructure
	Kubeadm Deployment
	System size
	System location
	Operating system

	Troubleshooting on-prem Kubernetes clusters
	Server logs and infrastructure troubleshooting
	Network observability
	Kubernetes metrics
	crictl
	kubectl

	Introducing hybrid services
	Azure Stack HCI
	Google Anthos
	A quick note about other infrastructure managers

	Exploring networking and system components
	kube-proxy
	CNI
	Kubernetes resource communication
	DNS
	Service mesh and Ingress

	Getting to know virtualized bare metal
	Virtualizing your environment
	Where to run Kubernetes

	Summary
	Further reading

	Part 2: Next 15 Kubernetes Concepts – Application Strategy and Deployments
	Chapter 5: Deploying Kubernetes Apps Like a True Cloud Native
	Technical requirements
	Understanding cloud-native apps
	What’s a cloud-native app?
	Cloud-specific cloud native
	What are microservices?

	Learning about Kubernetes app deployments
	Kubernetes manifests
	Controllers and operators
	Different ways to deploy with higher-level controllers
	Scaling
	Multi-container Pods
	Liveness and readiness probes

	Exploring segregation and namespaces
	Namespaces
	Single tenancy
	Multi-tenancy

	Investigating stateless and stateful apps
	Stateful versus stateless
	Container Storage Interface
	Volumes
	Resource requests and limits

	Upgrading Kubernetes apps
	Types of upgrades
	What happens to an app being upgraded?
	Rolling updates
	Rollbacks

	Summary
	Further reading

	Chapter 6: Kubernetes Deployment– Same Game, Next Level
	Technical requirements
	Getting to know Helm charts and Kustomize
	Why think about deployment methods for manifests?
	Helm charts
	Kustomize

	Deploying with CI/CD and GitOps
	What is CI/CD?
	Using CI/CD for Kubernetes deployments
	What is GitOps?
	Using GitOps for automated deployments
	Production use cases for CI/CD and GitOps

	Troubleshooting application deployments
	Troubleshooting Pods
	Troubleshooting Services
	Troubleshooting Deployments

	Service meshes and Ingresses
	Why Ingress?
	Why service meshes?

	Summary
	Further reading

	Part 3: Final 15 Kubernetes Concepts – Security and Monitoring
	Chapter 7: Kubernetes Monitoring and Observability
	Technical requirements
	How is monitoring different than observability?
	What’s monitoring?
	What’s observability?
	Monitoring versus observability examples

	Monitoring and observability tools for Kubernetes
	The Kubernetes Dashboard
	Azure Monitor
	AWS Container Insights
	Grafana/Prometheus

	Observability practices
	Logging
	Metrics
	Traces

	Monitoring Kubernetes resources
	Monitoring Pods

	Summary
	Further reading

	Chapter 8: Security Reality Check
	Technical requirements
	Out-of-the-box Kubernetes security
	Security breakdown
	Kubernetes security

	Investigating cluster security
	Cluster hardening and benchmarks
	System scanning
	Cluster network security
	Upgrading the Kubernetes API
	Audit logging and troubleshooting

	Understanding RBAC
	What is RBAC?
	Roles and ClusterRoles
	RoleBindings and ClusterRoleBindings

	Kubernetes resource (object) security
	Pod security
	Policy enforcement
	Scanning container images

	Kubernetes Secrets
	Creating Kubernetes Secrets
	Don’t use Kubernetes Secrets

	Summary
	Further reading

	Index
	Why subscribe?

	Other Books You May Enjoy
	Packt is searching for authors like you
	Share Your Thoughts
	Download a free PDF copy of this book

