

Kubernetes Cookbook

SECOND EDITION

Building Cloud Native Applications

Sameer Naik, Sébastien Goasguen, and Jonathan
Michaux

Kubernetes Cookbook

by Sameer Naik, Sébastien Goasguen, and Jonathan Michaux

Copyright © 2024 CloudTank SARL, Sameer Naik, and Jonathan Michaux.
All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: John Devins

Development Editor: Jeff Bleiel

Production Editor: Elizabeth Faerm

Copyeditor: Kim Wimpsett

Proofreader: Rachel Head

Indexer: Ellen Troutman-Zaig

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

March 2018: First Edition

November 2023: Second Edition

http://oreilly.com/

Revision History for the Second Edition

2023-11-13: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098142247 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Kubernetes Cookbook, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not
represent the publisher’s views. While the publisher and the authors have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the authors disclaim
all responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and DoiT
International. See our statement of editorial independence.

978-1-098-14224-7

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781098142247
https://oreil.ly/editorial-independence

Dedication

For my wife, Navita, and our cherished son, Niall.

—Sameer

For my boys, whose smiles, hugs, and spirits make me a better person.

—Sébastien

For Mathilde, and for our wonderful children, Mélie and Anouk.

—Jonathan

Preface

Welcome to Kubernetes Cookbook, and thanks for choosing it! With this
book, we want to help you solve concrete problems around Kubernetes.
We’ve compiled more than 100 recipes covering topics such as setting up a
cluster, managing containerized workloads using Kubernetes API objects,
using storage primitives, configuring security, and plenty more. Whether
you are new to Kubernetes or have been using it for a while, we hope you’ll
find something useful here to improve your experience and use of
Kubernetes.

Who Should Read This Book
This book was written for anyone who belongs somewhere in the DevOps
spectrum. You might be an application developer who is required to
occasionally interact with Kubernetes, or a platform engineer creating
reusable solutions for other engineers in your organization, or anywhere in
between. This book will help you navigate your way successfully through
the Kubernetes jungle, from development to production. It covers core
Kubernetes concepts as well as solutions from the broader ecosystem that
have almost become de facto standards in the industry.

Why We Wrote This Book
Collectively, we have been part of the Kubernetes community for many
years and have seen the many issues beginners and even more advanced
users run into. We wanted to share the knowledge we’ve gathered running
Kubernetes in production, as well as developing on and in Kubernetes— i.e.,
contributing to the core codebase or the ecosystem and writing applications
that run on Kubernetes. It made perfect sense to work on the second edition

of this book, considering that Kubernetes adoption has continued to grow in
the years since the first edition of the book was published.

Navigating This Book
This cookbook contains 15 chapters. Each chapter is composed of recipes
written in the standard O’Reilly recipe format (Problem, Solution,
Discussion). You can read this book from front to back or skip to a specific
chapter or recipe. Each recipe is independent of the others, and when an
understanding of concepts from other recipes is needed, appropriate
references are provided. The index is also an extremely powerful resource
because sometimes a recipe is also showcasing a specific command, and the
index highlights these connections.

A Note on Kubernetes Releases
At the time of writing, Kubernetes 1.27 was the latest stable version,
released at the end of April 2023, and this is the version we’re using
throughout the book as the baseline. However, the solutions presented here
should, in general, work for older releases; we will call it out explicitly if
this is not the case, mentioning the minimum required version.

Kubernetes follows a three-releases-per-year cadence. A release cycle has a
length of approximately 15 weeks; for example, 1.26 was released in
December 2022, 1.27 in April 2023, and 1.28 in August 2023, as this book
was entering production. The Kubernetes release versioning guidelines
indicate that you can expect support for a feature for the most recent three
minor releases. Kubernetes Community supports active patch release series
for a period of roughly 14 months. This means the stable API objects in the
1.27 release will be supported until at least June 2024. However, because
the recipes in this book most often use only stable APIs, if you use a newer
Kubernetes release, the recipes should still work.

https://oreil.ly/3b2Ta
https://oreil.ly/9eFLs

Technology You Need to Understand
This intermediate-level book requires a minimal understanding of a few
development and system administration concepts. Before diving into the
book, you might want to review the following:

bash (Unix shell)

This is the default Unix shell on Linux and macOS. Familiarity with the
Unix shell, such as for editing files, setting file permissions and user
privileges, moving files around the filesystem, and doing some basic
shell programming, will be beneficial. For a general introduction,
consult books such as Cameron Newham’s Learning the bash Shell,
Third Edition, or Carl Albing and JP Vossen’s bash Cookbook, Second
Edition, both from O’Reilly.

Package management

The tools in this book often have multiple dependencies that need to be
met by installing some packages. Knowledge of the package
management system on your machine is therefore required. It could be
apt on Ubuntu/Debian systems, yum on CentOS/RHEL systems, or
Homebrew on macOS. Whatever it is, make sure that you know how to
install, upgrade, and remove packages.

Git

Git has established itself as the standard for distributed version control.
If you are not already familiar with Git, we recommend Version Control
with Git, Third Edition, by Prem Kumar Ponuthorai and Jon Loeliger
(O’Reilly) as a good place to start. Together with Git, the GitHub
website is a great resource to get started with a hosted repository of your
own. To learn about GitHub, check out the GitHub Training Kit site.

Go

Kubernetes is written in Go. Go has established itself as a popular
programming language more broadly in the Kubernetes community and

http://shop.oreilly.com/product/9780596009656.do
http://shop.oreilly.com/product/0636920058304.do
https://www.oreilly.com/library/view/version-control-with/9781492091189/
http://github.com/
http://training.github.com/

beyond. This cookbook is not about Go programming, but it shows how
to compile a few Go projects. Some minimal understanding of how to
set up a Go workspace will be handy. If you want to know more, a good
place to start is the O’Reilly video training course Introduction to Go
Programming.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords. Also used for
commands and command-line output.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

TIP
This element signifies a tip or suggestion.

https://learning.oreilly.com/videos/introduction-to-go/9781491913871

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

Using Code Examples
Supplemental material (Kubernetes manifests, code examples, exercises,
etc.) is available for download at https://github.com/k8s-cookbook/recipes.
You can clone this repository, go to the relevant chapter and recipe, and use
the code as is:

$ git clone https://github.com/k8s-cookbook/recipes

NOTE
The examples in this repo are not meant to represent optimized setups to be used in production.
They give you the basic minimum required to run the examples in the recipes.

If you have a technical question or a problem using the code examples,
please send email to support@oreilly.com.

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a

https://github.com/k8s-cookbook/recipes
mailto:support@oreilly.com

significant amount of example code from this book into your product’s
documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Kubernetes
Cookbook, by Sameer Naik, Sébastien Goasguen, and Jonathan Michaux
(O’Reilly). Copyright 2024 CloudTank SARL, Sameer Naik, and Jonathan
Michaux, 978-1-098-14224-7.”

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

mailto:permissions@oreilly.com
https://oreilly.com/
https://oreilly.com/

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)

707-829-7019 (international or local)

707-829-0104 (fax)

support@oreilly.com

https://www.oreilly.com/about/contact.html

We have a web page for this book where we list errata, examples, and any
additional information. You can access this page at
https://oreil.ly/kubernetes-cookbook-2e.

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments
Thank you to the entire Kubernetes community for developing such
amazing software and for being a great bunch of people—open, kind, and
always ready to help.

Sameer and Jonathan were honored to work with Sébastien on the second
edition of this book. We are all thankful for the reviews provided by Roland
Huß, Jonathan Johnson, and Benjamin Muschko, who were invaluable in
improving the finished product. We are also grateful to John Devins, Jeff
Bleiel, and Ashley Stussy, our editors at O’Reilly, who were a pleasure to
work with.

mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/kubernetes-cookbook-2e
https://oreilly.com/
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

Chapter 1. Getting Started with
Kubernetes

In this first chapter we present recipes that will help you get started with
Kubernetes. We show you how to use Kubernetes without installing it and
introduce components such as the command-line interface (CLI) and the
dashboard, which allow you to interact with a cluster, as well as Minikube,
an all-in-one solution you can run on your laptop.

1.1 Installing the Kubernetes CLI, kubectl

Problem
You want to install the Kubernetes command-line interface so you can
interact with your Kubernetes cluster.

Solution
The easiest option is to download the latest official release. For example, on
a Linux system, to get the latest stable version, enter the following:

$ wget https://dl.k8s.io/release/$(wget -qO - https://dl.k8s.io/release/

stable.txt)/bin/linux/amd64/kubectl

$ sudo install -m 755 kubectl /usr/local/bin/kubectl

Using the Homebrew package manager, Linux and macOS users can also
install kubectl:

$ brew install kubectl

https://brew.sh/

After installation, make sure you have a working kubectl by listing its
version:

$ kubectl version --client

Client Version: v1.28.0

Kustomize Version: v5.0.4-0.20230...

Discussion
kubectl is the official Kubernetes CLI and is available as open source
software, which means you could build the kubectl binary yourself if you
needed. See Recipe 15.1 to learn about compiling the Kubernetes source
code locally.

It’s useful to note that Google Kubernetes Engine users (see Recipe 2.11)
can install kubectl using gcloud:

$ gcloud components install kubectl

Also note that in the latest versions of Minikube (see Recipe 1.2), you can
invoke kubectl as a subcommand of minikube to run a kubectl binary
that matches the cluster version:

$ minikube kubectl -- version --client

Client Version: version.Info{Major:"1", Minor:"27", GitVersion:"v1.27.4", ...}

Kustomize Version: v5.0.1

See Also

Documentation on installing kubectl

1.2 Installing Minikube to Run a Local
Kubernetes Instance

Problem

https://oreil.ly/DgK8a

You want to use Kubernetes for testing or development or for training
purposes on your local machine.

Solution
Minikube is a tool that lets you easily use Kubernetes on your local
machine.

To install the Minikube CLI locally, you can get the latest prebuilt release or
build from source. To install the latest release of minikube on a Linux-
based machine, do this:

$ wget https://storage.googleapis.com/minikube/releases/latest/

minikube-linux-amd64 -O minikube

$ sudo install -m 755 minikube /usr/local/bin/minikube

This will put the minikube binary in your path and make it accessible from
everywhere.

Once it’s installed, you can verify the Minikube version with the following
command:

$ minikube version

minikube version: v1.31.2

commit: fd7ecd...

Discussion
Minikube can be deployed as a virtual machine, a container, or bare metal.
This is configured using the --driver flag while creating a cluster on
Minikube. When this flag is not specified, Minikube will automatically
select the best available runtime environment.

A hypervisor is a software or hardware component that creates and manages
virtual machines. It is responsible for allocating and managing the physical
resources (CPU, memory, storage, network) of a host system and allowing
multiple virtual machines (VMs) to run concurrently on the same physical

https://oreil.ly/97IFg

hardware. Minikube supports a range of hypervisors, such as VirtualBox,
Hyperkit, Docker Desktop, Hyper-V, and so on. The drivers page gives an
overview of the supported runtimes.

Minikube can also use a container runtime to create a cluster on a host
machine. This driver is available only on a Linux-based host, where it’s
possible to run Linux containers natively without having to use a VM.
While a container-based runtime does not offer the same level of isolation
as a virtual machine, it does offer the best performance and resource
utilization. At the time of writing, Minikube has support for Docker Engine
and Podman (experimental).

Other tools that can be used for running local Kubernetes clusters using
Linux containers are as follows:

Kubernetes in Docker Desktop (see Recipe 1.6)

kind (see Recipe 1.5)

k3d

See Also

Minikube Get Started! guide

Minikube drivers

minikube source on GitHub

1.3 Using Minikube Locally for Development

Problem
You want to use Minikube locally for testing and development of your
Kubernetes application. You have installed and started minikube (see
Recipe 1.2) and want to know a few extra commands to simplify your
development experience.

https://oreil.ly/-tbK7
https://oreil.ly/djLvh
https://oreil.ly/xQ-mj
https://oreil.ly/5EAe0
https://oreil.ly/Y1jpt
https://oreil.ly/7gZPf
https://oreil.ly/y6N3t
https://k3d.io/
https://oreil.ly/2b1fA
https://oreil.ly/HAZgT
https://oreil.ly/HmCEJ

Solution
Use the minikube start command to create a Kubernetes cluster locally:

$ minikube start

By default the cluster will be allocated 2 GB of RAM. If you don’t like the
defaults, you can override parameters such as the memory and number of
CPUs, as well as picking a certain Kubernetes version for the Minikube VM
— for example:

$ minikube start --cpus=4 --memory=4096 --kubernetes-version=v1.27.0

Additionally, you can specify the number of cluster nodes by overriding the
default value of one node:

$ minikube start --cpus=2 --memory=4096 --nodes=2

To inspect the status of the Minikube cluster, do this:

$ minikube status

minikube

type: Control Plane

host: Running

kubelet: Running

apiserver: Running

kubeconfig: Configured

minikube-m02

type: Worker

host: Running

kubelet: Running

Similarly, to inspect the status of the Kubernetes cluster running inside
Minikube, do this:

$ kubectl cluster-info

Kubernetes control plane is running at https://192.168.64.72:8443

CoreDNS is running at https://192.168.64.72:8443/api/v1/namespaces/

kube-system/services/kube-dns:dns/proxy

To further debug and diagnose cluster problems, use 'kubectl cluster-info

dump'.

The Kubernetes cluster created with Minikube utilizes resources of the host
machine, so you need to make sure your host has the resources available.
More importantly, when you are done, do not forget to stop it with
minikube stop to release the system resources.

Discussion
The Minikube CLI offers commands that make your life easier. The CLI
has built-in help that you can use to discover the subcommands on your
own— here’s a snippet:

$ minikube

...

Basic Commands:

 start Starts a local Kubernetes cluster

 status Gets the status of a local Kubernetes cluster

 stop Stops a running local Kubernetes cluster

 delete Deletes a local Kubernetes cluster

...

Configuration and Management Commands:

 addons Enable or disable a minikube addon

...

Aside from start, stop, and delete, you should become familiar with the
ip, ssh, tunnel, dashboard, and docker-env commands.

TIP
If for any reason your Minikube becomes unstable or you want to start fresh, you can remove it
with minikube stop and minikube delete. Then minikube start will give you a fresh
installation.

1.4 Starting Your First Application on
Minikube

Problem
You’ve started Minikube (see Recipe 1.3), and now you want to launch
your first application on Kubernetes.

Solution
As an example, you can start the Ghost microblogging platform on
Minikube using two kubectl commands:

$ kubectl run ghost --image=ghost:5.59.4 --env="NODE_ENV=development"

$ kubectl expose pod ghost --port=2368 --type=NodePort

Monitor the pod manually to see when it starts running:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

ghost-8449997474-kn86m 1/1 Running 0 24s

Now you can use the minikube service command to automatically load
the application service URL in the web browser:

$ minikube service ghost

Discussion
The kubectl run command is called a generator; it is a convenience
command to create a Pod object (see Recipe 4.4). The kubectl expose
command is also a generator, a convenience command to create a Service
object (see Recipe 5.1) that routes network traffic to the containers started
by your deployment.

https://ghost.org/

When you do not need the application anymore, you can remove the Pod to
release the cluster resources:

$ kubectl delete pod ghost

Additionally, you should delete the ghost service that was created by the
kubectl expose command:

$ kubectl delete svc ghost

1.5 Using kind to Run Kubernetes Locally

Problem
kind is an alternative way to run Kubernetes locally. It was originally
designed for testing Kubernetes but is now also often used as a way to try
Kubernetes-native solutions on a laptop with minimal fuss. You want to use
kind locally for testing and developing your Kubernetes application.

Solution
The minimum requirements for using kind are Go and a Docker runtime.
kind is easy to install on any platform, for example using brew:

$ brew install kind

Then, creating a cluster is as simple as doing this:

$ kind create cluster

Deleting it is just as easy:

$ kind delete cluster

Discussion

https://kind.sigs.k8s.io/
https://oreil.ly/1MxZo

Because kind was originally developed for testing Kubernetes, one of its
core design principles is that it should lend itself well to automation. You
might want to consider using kind if you plan on automatically deploying
Kubernetes clusters for testing purposes.

See Also

The official kind Quick Start guide

1.6 Using Kubernetes in Docker Desktop

Problem
Docker Desktop is an offering built on top of Docker Engine that provides a
number of useful developer tools, including a built-in version of Kubernetes
and an associated load balancer to route traffic into the cluster. This means
you can install a single tool and have access to pretty much everything you
need to get started locally. You want to use Docker Desktop locally for
testing and developing your Kubernetes application.

Solution
Install Docker Desktop and make sure to enable Kubernetes during the
installation process.

You can activate and deactivate Kubernetes from Docker Desktop’s settings
panel, as shown in Figure 1-1. You might want to do this if you’re using
Docker Desktop for its Docker Engine but aren’t using Kubernetes, as this
will save resources on your computer. As shown here, the settings panel
also shows you which version of Kubernetes is provided by Docker
Desktop, which can be useful when debugging as certain solutions might
have requirements on the minimum or maximum version of Kubernetes that
they can run on.

https://oreil.ly/jNTNx
https://oreil.ly/aXjcY
https://oreil.ly/HKVaR

Figure 1-1. Snapshot of the Docker Desktop Kubernetes settings panel

It is worth noting that the version of Kubernetes embedded into Docker
Desktop lags behind the latest Kubernetes release by a few versions,
whereas Minikube tends to be more up to date.

As shown in Figure 1-2, the Docker Desktop toolbar menu lets you easily
switch kubectl contexts between different local clusters, which means you
can have Minikube and Docker Desktop’s Kubernetes running at the same
time but switch between them (not that we recommend doing this). For
information on how to do this directly from kubectl, see Recipe 1.7.

Figure 1-2. Snapshot of the Docker Desktop context switcher for kubectl

Discussion
Although it is a quick and easy way to get started with Kubernetes, be
aware that Docker Desktop is not open source, and that the free version is

restricted for use by individuals, small businesses, students and educators,
and non-commercial open source developers.

Docker Engine, on the other hand, which can be used to run Minikube, has
an Apache 2.0 license, as does Minikube itself.

1.7 Switching kubectl Contexts

Problem
kubectl is always configured to speak to a given Kubernetes cluster by
default, and this configuration is part of something called the context. If
you’ve forgotten which cluster kubectl is set to, want to switch between
clusters, or want to change other context-related parameters, then this recipe
is for you.

Solution
To view the contexts available to kubectl, use the kubectl config get-
contexts command:

$ kubectl config get-contexts

CURRENT NAME CLUSTER AUTHINFO NAMESPACE

 docker-desktop docker-desktop docker-desktop

 kind-kind kind-kind kind-kind

* minikube minikube minikube default

As you can see from the output, in this case there are three Kubernetes
clusters available to kubectl, and the current context is set to speak to the
minikube cluster.

To switch to the kind-kind cluster, execute the following command:

$ kubectl config use-context kind-kind

Switched to context "kind-kind".

Discussion
If you want to use your local kubectl to access a remote cluster, you can
do so by editing the kubeconfig file. Learn more about the kubeconfig file
in the official documentation.

1.8 Switching Contexts and Namespaces
Using kubectx and kubens

Problem
You want to find an easier way to switch contexts (i.e., clusters) and
namespaces with kubectl, as the commands for switching contexts are
long and quite hard to remember.

Solution
kubectx and kubens are a couple of popular open source scripts that make
it much easier to switch contexts for kubectl and to switch namespaces so
that you don’t have to explicitly set the namespace name for every
command.

There are plenty of available installation options. If you’re able to use brew,
then you can try this:

$ brew install kubectx

You can then easily list the available kubectl contexts like so:

$ kubectx

docker-desktop

kind-kind

minikube

and switch contexts just as easily:

https://oreil.ly/jMZ3h

$ kubectx minikube

Switched to context "minikube".

Similarly, kubens lets you easily list and switch namespaces:

$ kubens

default

kube-node-lease

kube-public

kube-system

test

$ kubens test

default

Context "minikube" modified.

Active namespace is "test".

All commands from then onward will be performed in the context of the
chosen namespace:

$ kubectl get pods

default

No resources found in test namespace.

See Also

The repository for the kubectl and kubens tools

https://oreil.ly/QBH3N

Chapter 2. Creating a
Kubernetes Cluster

In this chapter we discuss multiple ways to set up a full-blown Kubernetes
cluster. We cover low-level, standardized tooling (kubeadm) that also serves
as the basis for other installers and show you where to find the relevant
binaries for the control plane, as well as for worker nodes. We demonstrate
how to write systemd unit files to supervise Kubernetes components and
finally show how to set up clusters on Google Cloud Platform and Azure.

2.1 Preparing a New Node for a Kubernetes
Cluster

Problem
You want to prepare a new node with all the required tooling to create a
new Kubernetes cluster or add to an existing cluster.

Solution
To prepare an Ubuntu-based host for a Kubernetes cluster, you first need to
turn on IPv4 forwarding and enable iptables to see bridged traffic:

$ cat <<EOF | sudo tee /etc/modules-load.d/k8s.conf

overlay

br_netfilter

EOF

$ sudo modprobe overlay

$ sudo modprobe br_netfilter

$ cat <<EOF | sudo tee /etc/sysctl.d/k8s.conf

net.bridge.bridge-nf-call-iptables = 1

net.bridge.bridge-nf-call-ip6tables = 1

net.ipv4.ip_forward = 1

EOF

$ sudo sysctl --system

For compatibility with the kubeadm tool, the swap needs to be turned off on
the node:

$ sudo apt install cron -y

$ sudo swapoff -a

$ (sudo crontab -l 2>/dev/null; echo "@reboot /sbin/swapoff -a") | sudo

crontab -

|| true

Cluster nodes require an implementation of the Kubernetes Container
Runtime Interface (CRI). cri-o is one such implementation. The cri-o
version should match the Kubernetes version. For example, if you are
bootstrapping a Kubernetes 1.27 cluster, configure the VERSION variable
accordingly:

$ VERSION="1.27"

$ OS="xUbuntu_22.04"

$ cat <<EOF | sudo tee /etc/apt/sources.list.d/devel:kubic:libcontainers:

stable.list

deb https://download.opensuse.org/repositories/devel:/kubic:/libcontainers:

/stable/$OS/ /

EOF

$ cat <<EOF | sudo tee /etc/apt/sources.list.d/devel:kubic:libcontainers:

stable:cri-o:$VERSION.list

deb http://download.opensuse.org/repositories/devel:/kubic:/libcontainers:

/stable:/cri-o:/$VERSION/$OS/ /

EOF

$ curl -L

https://download.opensuse.org/repositories/devel:/kubic:/libcontainers:

/stable:/cri-o:/$VERSION/$OS/Release.key | \

 sudo apt-key add -

$ curl -L

https://download.opensuse.org/repositories/devel:/kubic:/libcontainers:

/stable/$OS/Release.key | \

https://cri-o.io/

 sudo apt-key add -

$ sudo apt-get update

$ sudo apt-get install cri-o cri-o-runc cri-tools -y

Then reload the systemd configurations and enable cri-o:

$ sudo systemctl daemon-reload

$ sudo systemctl enable crio --now

The kubeadm tool is required to bootstrap a Kubernetes cluster from scratch
as well as to join an existing cluster. Enable its software repository with
this:

$ cat <<EOF | sudo tee /etc/apt/sources.list.d/kubernetes.list

deb [signed-by=/etc/apt/keyrings/k8s-archive-keyring.gpg]

https://apt.kubernetes.io/

kubernetes-xenial main

EOF

$ sudo apt-get install -y apt-transport-https ca-certificates curl

$ sudo curl -fsSLo /etc/apt/keyrings/k8s-archive-keyring.gpg \

 https://dl.k8s.io/apt/doc/apt-key.gpg

$ sudo apt-get update

Now you can install all the tools required to bootstrap a Kubernetes cluster
node. You will need the following:

The kubelet binary

The kubeadm CLI

The kubectl client

Run this command to install them:

$ sudo apt-get install -y kubelet kubeadm kubectl

Then mark these packages as held back, which will prevent them from
being automatically upgraded:

$ sudo apt-mark hold kubelet kubeadm kubectl

Your Ubuntu host is now ready to be part of a Kubernetes cluster.

Discussion
kubeadm is a setup tool that provides kubeadm init and kubeadm join.
kubeadm init is used to bootstrap a Kubernetes control-plane node, while
kubeadm join is used to bootstrap a worker node and join it to the cluster.
In essence, kubeadm provides the actions necessary to get a minimum
viable cluster up and running. kubelet is the node agent that runs on each
node.

In addition to cri-o, other container runtimes worth investigating are
containerd, Docker Engine, and Mirantis Container Runtime.

2.2 Bootstrapping a Kubernetes Control-
Plane Node

Problem
You have initialized an Ubuntu host for Kubernetes (see Recipe 2.1) and
now need to bootstrap a new Kubernetes control-plane node.

Solution
With the kubeadm binary installed, you are ready to start bootstrapping your
Kubernetes cluster. Initialize the control plane on the node with the
following:

$ NODENAME=$(hostname -s)

$ IPADDR=$(ip route get 8.8.8.8 | sed -n 's/.*src \([^\]*\).*/\1/p')

https://oreil.ly/M1kDx
https://oreil.ly/P5_l_
https://oreil.ly/BEWaG

$ POD_CIDR=192.168.0.0/16

WARNING
The control-plane node should have a minimum of two vCPUs and 2 GB RAM.

Now initialize the control-plane node using kubeadm:

$ sudo kubeadm init --apiserver-advertise-address=$IPADDR \

 --apiserver-cert-extra-sans=$IPADDR \

 --pod-network-cidr=$POD_CIDR \

 --node-name $NODENAME \

 --ignore-preflight-errors Swap

[init] Using Kubernetes version: v1.27.2

[preflight] Running pre-flight checks

[preflight] Pulling images required for setting up a Kubernetes cluster

...

The output of the init command contains the configuration for setting up
kubectl to talk to your cluster. Once kubectl has been configured, you
can verify the cluster component health status using the following
command:

$ kubectl get --raw='/readyz?verbose'

To get the cluster information, use:

$ kubectl cluster-info

Discussion
User workloads are not scheduled to execute on the control-plane node. If
you are creating an experimental single-node cluster, then you would need
to taint the control-plane node to schedule user workloads on the control-
plane node:

$ kubectl taint nodes --all node-role.kubernetes.io/control-plane-

See Also

Creating a cluster with kubeadm

2.3 Installing a Container Network Add-on for
Cluster Networking

Problem
You have bootstrapped a Kubernetes control-plane node (see Recipe 2.2)
and now need to install a pod network add-on so that pods can
communicate with each other.

Solution
You can install the Calico network add-on with the following command on
the control-plane node:

$ kubectl apply -f https://raw.githubusercontent.com/projectcalico/calico/

v3.26.1/manifests/calico.yaml

Discussion
You must use a Container Network Interface (CNI) add-on that is
compatible with your cluster and that suits your needs. There are a number
of add-ons that implement the CNI. Take a look at the nonexhaustive list of
available add-ons in the Kubernetes documentation.

2.4 Adding Worker Nodes to a Kubernetes
Cluster

Problem

https://oreil.ly/q9nwI
https://oreil.ly/HosU6

You have initialized your Kubernetes control-plane node (see Recipe 2.2)
and installed a CNI add-on (see Recipe 2.3), and now you want to add
worker nodes to your cluster.

Solution
With the Ubuntu host initialized for Kubernetes, as shown in Recipe 2.1,
execute the following command on the control-plane node to display the
cluster join command:

$ kubeadm token create --print-join-command

Now, execute the join command on the worker node:

$ sudo kubeadm join --token <token>

WARNING
The worker node should have a minimum of one vCPU and 2 GB RAM.

Head back to your control-plane node terminal session and you will see
your nodes join:

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

master Ready control-plane 28m v1.27.2

worker Ready <none> 10s v1.27.2

You can repeat these steps to add more worker nodes to the Kubernetes
cluster.

Discussion
Worker nodes are where your workloads run. When your cluster starts
running out of resources, you will begin noticing the Pending status of new

pods. At this point you should consider adding more resources to the cluster
by adding more worker nodes.

2.5 Deploying the Kubernetes Dashboard

Problem
You have created a Kubernetes cluster, and now you want to create, view,
and manage containerized workloads on the cluster using a user interface.

Solution
Use the Kubernetes dashboard, which is a web-based user interface to
deploy containerized applications to a Kubernetes cluster and to manage the
cluster resources.

TIP
If you’re using Minikube, you can install the Kubernetes dashboard simply by enabling the
dashboard add-on:

$ minikube addons enable dashboard

To deploy the v2.7.0 Kubernetes dashboard, do this:

$ kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/

v2.7.0/aio/deploy/recommended.yaml

Then verify that the deployment is ready:

$ kubectl get deployment kubernetes-dashboard -n kubernetes-dashboard

NAME READY UP-TO-DATE AVAILABLE AGE

kubernetes-dashboard 1/1 1 1 44s

https://oreil.ly/n7WQw

2.6 Accessing the Kubernetes Dashboard

Problem
You have installed the Kubernetes dashboard (see Recipe 2.5) on your
cluster, and you want to access the dashboard from a web browser.

Solution
You need to create a ServiceAccount with privileges to administer the
cluster. Create a file named sa.yaml with the following contents:

apiVersion: v1

kind: ServiceAccount

metadata:

 name: admin-user

 namespace: kubernetes-dashboard

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: admin-user

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: cluster-admin

subjects:

- kind: ServiceAccount

 name: admin-user

 namespace: kubernetes-dashboard

Create the ServiceAccount with this:

$ kubectl apply -f sa.yaml

To access the Kubernetes dashboard, you need to create an authentication
token associated with this account. Save the token printed in the output of
the following command:

https://oreil.ly/pXErB

$ kubectl -n kubernetes-dashboard create token admin-user

eyJhbGciOiJSUzI1NiIsImtpZCI6...

Since the Kubernetes dashboard is a cluster-local service, you need to set up
a proxy connection to the cluster:

$ kubectl proxy

By visiting the site http://localhost:8001/api/v1/namespaces/kubernetes-
dashboard/services/https:kubernetes-dashboard:/proxy/#/workloads?
namespace=_all you are now able to open the Kubernetes dashboard and
authenticate yourself using the authentication token created earlier.

In the UI that opens in your browser, you will see the page depicted in
Figure 2-1.

Figure 2-1. Snapshot of the dashboard application create view

http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/proxy/#/workloads?namespace=_all

TIP
If you are using Minikube, all you need to do is:

$ minikube dashboard

Discussion
To create an application, click the plus sign (+) at the top-right corner, select
the “Create from form” tab, give the application a name, and specify the
container image you want to use. Then click the Deploy button and you will
be presented with a new view that shows deployments, pods, and replica
sets. In Kubernetes there are dozens of important resource types, such as
deployments, pods, replica sets, services, and so on, that we will explore in
greater detail in the rest of the book.

The snapshot in Figure 2-2 presents a typical dashboard view after having
created a single application using the Redis container.

Figure 2-2. A dashboard overview with a Redis application

If you go back to a terminal session and use the command-line client, you
will see the same thing:

$ kubectl get all

NAME READY STATUS RESTARTS AGE

pod/redis-584fd7c758-vwl52 1/1 Running 0 5m9s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 19m

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/redis 1/1 1 1 5m9s

NAME DESIRED CURRENT READY AGE

replicaset.apps/redis-584fd7c758 1 1 1 5m9s

Your Redis pod will be running the Redis server, as the following logs
show:

$ kubectl logs redis-3215927958-4x88v

...

1:C 25 Aug 2023 06:17:23.934 * oO0OoO0OoO0Oo Redis is starting oO0OoO0OoO0Oo

1:C 25 Aug 2023 06:17:23.934 * Redis version=7.2.0, bits=64, commit=00000000,

modified=0, pid=1, just started

1:C 25 Aug 2023 06:17:23.934 # Warning: no config file specified, using the

default config. In order to specify a config file use redis-server

/path/to/redis.conf

1:M 25 Aug 2023 06:17:23.934 * monotonic clock: POSIX clock_gettime

1:M 25 Aug 2023 06:17:23.934 * Running mode=standalone, port=6379.

1:M 25 Aug 2023 06:17:23.935 * Server initialized

1:M 25 Aug 2023 06:17:23.935 * Ready to accept connections tcp

2.7 Deploying the Kubernetes Metrics Server

Problem
You have deployed the Kubernetes dashboard (see Recipe 2.5) but don’t see
the CPU and memory usage information in the dashboard.

Solution
The Kubernetes dashboard requires the Kubernetes Metrics Server to
visualize the CPU and memory usage.

https://oreil.ly/BEHwR

TIP
If you are using Minikube, you can install the Kubernetes Metrics Server simply by enabling the
metrics-server add-on:

$ minikube addons enable metrics-server

To deploy the latest release of the Kubernetes Metrics Server, do this:

$ kubectl apply -f https://github.com/kubernetes-sigs/metrics-server/releases/

latest/download/components.yaml

Then verify that the deployment is ready:

$ kubectl get deployment metrics-server -n kube-system

NAME READY UP-TO-DATE AVAILABLE AGE

metrics-server 1/1 1 1 7m27s

If you see that the deployment is not entering the ready state, check the pod
logs:

$ kubectl logs -f deployment/metrics-server -n kube-system

I0707 05:06:19.537981 1 server.go:187] "Failed probe"

probe="metric-storage-ready" err="no metrics to serve"

E0707 05:06:26.395852 1 scraper.go:140] "Failed to scrape node" err="Get

\"https://192.168.64.50:10250/metrics/resource\": x509: cannot validate

certificate for 192.168.64.50 because it doesn't contain any IP SANs"

node="minikube"

If you see the error message “cannot validate certificate,” you need to
append the flag --kubelet-insecure-tls to the Metrics Server
deployment:

$ kubectl patch deployment metrics-server -n kube-system --type='json'

-p='[{"op": "add", "path": "/spec/template/spec/containers/0/args/-", "value":

"--kubelet-insecure-tls"}]'

TIP
It can take several minutes for the Metrics Server to become available after having started it. If it
is not yet in the ready state, then requests for metrics might produce errors.

Once the Metrics Server has started, the Kubernetes dashboard will display
the CPU and memory usage statistics, as shown in Figure 2-3.

Figure 2-3. Dashboard cluster nodes view

Discussion
The node and pod metrics can also be viewed in the command line using
the kubectl top command:

$ kubectl top pods -A

NAMESPACE NAME CPU(cores) MEMORY(bytes)

kube-system coredns-5d78c9869d-5fh78 9m 9Mi

kube-system etcd-minikube 164m 36Mi

kube-system kube-apiserver-minikube 322m 254Mi

kube-system kube-controller-manager-minikube 123m 35Mi

kube-system kube-proxy-rvl8v 13m 12Mi

kube-system kube-scheduler-minikube 62m 15Mi

kube-system storage-provisioner 22m 7Mi

Similarly, to view the node metrics, do this:

$ kubectl top nodes

NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%

minikube 415m 10% 1457Mi 18%

See Also

Kubernetes Metrics Server GitHub repository

Resource metrics pipeline documentation

2.8 Downloading a Kubernetes Release from
GitHub

Problem
You want to download an official Kubernetes release instead of compiling
from source.

Solution
The Kubernetes project publishes an archive for every release. The link to
the archive can be found in the CHANGELOG file of the particular release.
Go to the CHANGELOG folder of the project page and open the
CHANGELOG file for the release of your choice. Within the file you will
find a link to download the kubernetes.tar.gz file of that release.

For example, if you want to download the v1.28.0 release, go ahead and
open CHANGELOG-1.28.md, and in the section titled “Downloads for
v1.28.0” you will find the link to kubernetes.tar.gz
(https://dl.k8s.io/v1.28.0/kubernetes.tar.gz).

https://oreil.ly/C_O6W
https://oreil.ly/ODZCr
https://oreil.ly/MMwRs
https://dl.k8s.io/v1.28.0/kubernetes.tar.gz

$ wget https://dl.k8s.io/v1.28.0/kubernetes.tar.gz

If you want to compile Kubernetes from source, see Recipe 15.1.

Discussion
The CHANGELOG file also lists the sha512 hash of the kubernetes.tar.gz
archive. It is recommended that you verify the integrity of the
kubernetes.tar.gz archive to ensure that it has not been tampered with in any
way. To do this, generate the sha512 hash of the downloaded archive
locally and compare it with that of the one listed in the CHANGELOG:

$ sha512sum kubernetes.tar.gz

9aaf7cc004d09297dc7bbc1f0149.... kubernetes.tar.gz

2.9 Downloading Client and Server Binaries

Problem
You have downloaded a release archive (see Recipe 2.8), but it does not
contain the actual binaries.

Solution
The release archive does not contain the release binaries (for the purpose of
keeping the release archive small). Thus, you need to download the binaries
separately. To do so, run the get-kube-binaries.sh script, as shown here:

$ tar -xvf kubernetes.tar.gz

$ cd kubernetes/cluster

$./get-kube-binaries.sh

Once complete, you will have the client binaries in client/bin:

$ ls ../client/bin

kubectl kubectl-convert

and an archive containing the server binaries in server/kubernetes:

$ ls ../server/kubernetes

kubernetes-server-linux-amd64.tar.gz kubernetes-manifests.tar.gz

README

...

Discussion
If you want to skip downloading the entire release archive and quickly
download the client and server binaries, you can get them directly from
Download Kubernetes. On this page you will find direct links to binaries for
various operating system and architecture combinations, as shown in
Figure 2-4.

Figure 2-4. downloadkubernetes.com, listing binaries of the Kubernetes v1.28.0 release for the
Darwin operating system

2.10 Using systemd Unit Files for Running
Kubernetes Components

Problem

https://oreil.ly/tdN0P

You have used Minikube (see Recipe 1.2) for learning and know how to
bootstrap a Kubernetes cluster using kubeadm (see Recipe 2.2), but you
want to install a cluster from scratch.

Solution
To do so, you need to run the Kubernetes components using systemd unit
files. You are looking only for basic examples to run the kubelet via
systemd.

Inspecting how kubeadm configures the Kubernetes daemons to launch
using systemd unit files helps you understand how to do it on your own. If
you look closely at the kubeadm configuration, you will see that the
kubelet is running on every node in your cluster, including the control-
plane node.

Here is an example, which you can reproduce by logging in to any node of
a cluster built with kubeadm (see Recipe 2.2):

$ systemctl status kubelet

● kubelet.service - kubelet: The Kubernetes Node Agent
 Loaded: loaded (/lib/systemd/system/kubelet.service; enabled;

 vendor preset: enabled)

 Drop-In: /etc/systemd/system/kubelet.service.d

 └─10-kubeadm.conf

 Active: active (running) since Tue 2023-05-30 04:21:29 UTC; 2h 49min ago

 Docs: https://kubernetes.io/docs/home/

 Main PID: 797 (kubelet)

 Tasks: 11 (limit: 2234)

 Memory: 40.2M

 CPU: 5min 14.792s

 CGroup: /system.slice/kubelet.service

 └─797 /usr/bin/kubelet \

 --bootstrap-kubeconfig=/etc/kubernetes/bootstrap-kubelet.conf

\

 --kubeconfig=/etc/kubernetes/kubelet.conf \

 --config=/var/lib/kubelet/config.yaml \

 --container-runtime-endpoint=unix:///var/run/crio/crio.sock \

 --pod-infra-container-image=registry.k8s.io/pause:3.9

This gives you a link to the systemd unit file in
/lib/systemd/system/kubelet.service and its configuration in
/etc/systemd/system/kubelet.service.d/10-kubeadm.conf.

The unit file is straightforward— it points to the kubelet binary installed in
/usr/bin:

[Unit]

Description=kubelet: The Kubernetes Node Agent

Documentation=https://kubernetes.io/docs/home/

Wants=network-online.target

After=network-online.target

[Service]

ExecStart=/usr/bin/kubelet

Restart=always

StartLimitInterval=0

RestartSec=10

[Install]

WantedBy=multi-user.target

The configuration file tells you how the kubelet binary is started:

[Service]

Environment="KUBELET_KUBECONFIG_ARGS=--bootstrap-kubeconfig=/etc/kubernetes/

bootstrap-kubelet.conf --kubeconfig=/etc/kubernetes/kubelet.conf"

Environment="KUBELET_CONFIG_ARGS=--config=/var/lib/kubelet/config.yaml"

EnvironmentFile=-/var/lib/kubelet/kubeadm-flags.env

EnvironmentFile=-/etc/default/kubelet

ExecStart=

ExecStart=/usr/bin/kubelet $KUBELET_KUBECONFIG_ARGS $KUBELET_CONFIG_ARGS

$KUBELET_KUBEADM_ARGS $KUBELET_EXTRA_ARGS

All the options specified, such as --kubeconfig, defined by the
environment variable $KUBELET_CONFIG_ARGS, are start-up options of the
kubelet binary.

Discussion

https://oreil.ly/quccc

systemd is a system and services manager, sometimes referred to as an init
system. It is now the default services manager on Ubuntu and CentOS.

The unit file just shown deals only with the kubelet. You can write your
own unit files for all the other components of a Kubernetes cluster (i.e., API
server, controller manager, scheduler, proxy). Kubernetes the Hard Way has
examples of unit files for each component.

However, you only need to run the kubelet. Indeed, note that the
configuration option --pod-manifest-path allows you to pass a directory
where the kubelet will look for manifests that it will automatically start.
With kubeadm, this directory is used to pass the manifests of the API server,
scheduler, etcd, and controller manager. Hence, Kubernetes manages itself,
and the only thing managed by systemd is the kubelet process.

To illustrate this, you can list the contents of the /etc/kubernetes/manifests
directory in your kubeadm-based cluster:

$ ls -l /etc/kubernetes/manifests

total 16

-rw------- 1 root root 2393 May 29 11:04 etcd.yaml

-rw------- 1 root root 3882 May 29 11:04 kube-apiserver.yaml

-rw------- 1 root root 3394 May 29 11:04 kube-controller-manager.yaml

-rw------- 1 root root 1463 May 29 11:04 kube-scheduler.yaml

Looking at the details of the etcd.yaml manifest, you can see that it is a Pod
with a single container that runs etcd:

$ cat /etc/kubernetes/manifests/etcd.yaml

apiVersion: v1

kind: Pod

metadata:

 annotations:

 kubeadm.kubernetes.io/etcd.advertise-client-urls:

https://10.10.100.30:2379

 creationTimestamp: null

 labels:

 component: etcd

 tier: control-plane

 name: etcd

 namespace: kube-system

https://oreil.ly/RmuZp
https://oreil.ly/AWnxD

spec:

 containers:

 - command:

 - etcd

 - --advertise-client-urls=https://10.10.100.30:2379

 - --cert-file=/etc/kubernetes/pki/etcd/server.crt

 - --client-cert-auth=true

 - --data-dir=/var/lib/etcd

 - --experimental-initial-corrupt-check=true

 - --experimental-watch-progress-notify-interval=5s

 - --initial-advertise-peer-urls=https://10.10.100.30:2380

 - --initial-cluster=master=https://10.10.100.30:2380

 - --key-file=/etc/kubernetes/pki/etcd/server.key

 - --listen-client-urls=https://127.0.0.1:2379,https://10.10.100.30:2379

 - --listen-metrics-urls=http://127.0.0.1:2381

 - --listen-peer-urls=https://10.10.100.30:2380

 - --name=master

 - --peer-cert-file=/etc/kubernetes/pki/etcd/peer.crt

 - --peer-client-cert-auth=true

 - --peer-key-file=/etc/kubernetes/pki/etcd/peer.key

 - --peer-trusted-ca-file=/etc/kubernetes/pki/etcd/ca.crt

 - --snapshot-count=10000

 - --trusted-ca-file=/etc/kubernetes/pki/etcd/ca.crt

 image: registry.k8s.io/etcd:3.5.7-0

 ...

See Also

kubelet configuration options

2.11 Creating a Kubernetes Cluster on
Google Kubernetes Engine

Problem
You want to create a Kubernetes cluster on Google Kubernetes Engine
(GKE).

Solution
To use GKE, you first need a few things:

https://oreil.ly/E95yp

A Google Cloud Platform (GCP) account with billing enabled

A GCP project with GKE enabled

Google Cloud SDK installed

The Google Cloud SDK contains the gcloud CLI tool for interacting with
GCP services from the command line. After the SDK has been installed,
authenticate gcloud to access your GCP project:

$ gcloud auth login

Using the gcloud command-line interface, create a Kubernetes cluster with
the container clusters create command, like so:

$ gcloud container clusters create oreilly --zone us-east1-b

By default this will create a Kubernetes cluster with three worker nodes in
the zone or region specified. The master node is being managed by the
GKE service and cannot be accessed.

TIP
If you’re unsure what zone or region to use for the --zone or --region argument, execute
gcloud compute zones list or gcloud compute regions list and pick one near you. Zones
are typically less resource hungry than regions.

Once you are done using your cluster, do not forget to delete it to avoid
being charged:

$ gcloud container clusters delete oreilly --zone us-east1-b

Discussion
You can skip the gcloud CLI installation by using the Google Cloud Shell,
a pure online browser-based solution.

https://oreil.ly/CAiDf
https://oreil.ly/eGX2n
https://oreil.ly/Y00rC
https://oreil.ly/4Bvua
https://oreil.ly/E-Qcr

You can list your existing GKE clusters using this command:

$ gcloud container clusters list --zone us-east1-b

NAME ZONE MASTER_VERSION MASTER_IP ... STATUS

oreilly us-east1-b 1.24.9-gke.2000 35.187.80.94 ... RUNNING

NOTE
The gcloud CLI allows you to resize your cluster, update it, and upgrade it:

...

COMMANDS

...

 resize

 Resizes an existing cluster for running

 containers.

 update

 Update cluster settings for an existing container

 cluster.

 upgrade

 Upgrade the Kubernetes version of an existing

 container cluster.

See Also

GKE quickstart

Google Cloud Shell quickstart

2.12 Creating a Kubernetes Cluster on Azure
Kubernetes Service

Problem
You want to create a Kubernetes cluster on Azure Kubernetes Service
(AKS).

https://oreil.ly/WMDSx
https://oreil.ly/_w0va

Solution
To create an AKS cluster, you will need the following:

A Microsoft Azure portal account

Azure CLI installed

First, make sure that you have Azure CLI version 2.0 or higher installed and
then log in to Azure:

$ az --version | grep "^azure-cli"

azure-cli 2.50.0 *

$ az login

To sign in, use a web browser to open the page https://aka.ms/devicelogin and

enter the code XXXXXXXXX to authenticate.

[

 {

 "cloudName": "AzureCloud",

 "id": "****************************",

 "isDefault": true,

 "name": "Free Trial",

 "state": "Enabled",

 "tenantId": "*****************************",

 "user": {

 "name": "******@hotmail.com",

 "type": "user"

 }

 }

]

Create an Azure resource group named k8s to hold all your AKS resources,
such as VMs and networking components, and to make it easy to clean up
and tear down later:

$ az group create --name k8s --location northeurope

{

 "id": "/subscriptions/************************/resourceGroups/k8s",

 "location": "northeurope",

 "managedBy": null,

 "name": "k8s",

 "properties": {

 "provisioningState": "Succeeded"

https://oreil.ly/PyUA0
https://oreil.ly/An7xM

 },

 "tags": null,

 "type": "Microsoft.Resources/resourceGroups"

}

TIP
If you’re unsure what region to use for the --location argument, execute az account list-
locations and pick one near you.

Now that you have the resource group k8s set up, you can create the cluster
with one worker node (agent in Azure terminology), like so:

$ az aks create -g k8s -n myAKSCluster --node-count 1 --generate-ssh-keys

{

 "aadProfile": null,

 "addonProfiles": null,

 "agentPoolProfiles": [

 {

 "availabilityZones": null,

 "count": 1,

 "creationData": null,

 "currentOrchestratorVersion": "1.26.6",

Note that the az aks create command might take several minutes to
complete. Once completed, the command returns a JSON object with
information about the created cluster.

As a result, in the Azure portal you should see something like Figure 2-5.
Start by finding the k8s resource group and then navigate your way to the
Deployments tab.

https://oreil.ly/fdGdc

Figure 2-5. Azure portal, showing an AKS cluster in the k8s resource group

You’re now in a position to connect to the cluster:

$ az aks get-credentials --resource-group k8s --name myAKSCluster

You can now poke around in the environment and verify the setup:

$ kubectl cluster-info

Kubernetes master is running at https://k8scb-k8s-

143f1emgmt.northeurope.cloudapp

 .azure.com

Heapster is running at https://k8scb-k8s-143f1emgmt.northeurope.cloudapp.azure

 .com/api/v1/namespaces/kube-system/services/heapster/proxy

KubeDNS is running at https://k8scb-k8s-143f1emgmt.northeurope.cloudapp.azure

 .com/api/v1/namespaces/kube-system/services/kube-dns/proxy

kubernetes-dashboard is running at https://k8scb-k8s-143f1emgmt.northeurope

 .cloudapp.azure.com/api/v1/namespaces/kube-system/services/kubernetes-

dashboard

 /proxy

tiller-deploy is running at https://k8scb-k8s-143f1emgmt.northeurope.cloudapp

 .azure.com/api/v1/namespaces/kube-system/services/tiller-deploy/proxy

To further debug and diagnose cluster problems, use 'kubectl cluster-info

dump'.

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

aks-nodepool1-78916010-vmss000000 Ready agent 26m v1.24.9

Indeed, as you can see from the output, we have created a single-node
cluster.

TIP
If you don’t want to or cannot install the Azure CLI, an alternative is to use the Azure Cloud Shell
from your browser.

When you’re done discovering AKS, don’t forget to shut down the cluster
and remove all the resources by deleting the resource group k8s:

$ az group delete --name k8s --yes --no-wait

Although the az group delete command returns immediately, due to the
presence of the --no-wait flag, it can take up to 10 minutes for all the
resources to be removed and the resource group to actually be destroyed.
You might want to check in the Azure portal to make sure everything went
according to plan.

See Also

“Quickstart: Deploy an Azure Kubernetes Service cluster using Azure
CLI” in the Microsoft Azure documentation

2.13 Creating a Kubernetes Cluster on
Amazon Elastic Kubernetes Service

https://oreil.ly/IUFJQ
https://oreil.ly/YXv3B

Problem
You want to create a Kubernetes cluster on Amazon Elastic Kubernetes
Service (EKS).

Solution
To create a cluster in Amazon EKS, you need the following:

An Amazon Web Services account

AWS CLI installed

eksctl CLI tool installed

After you’ve installed the AWS CLI, authenticate the client to access your
AWS account:

$ aws configure

AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE

AWS Secret Access Key [None]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Default region name [None]: eu-central-1

Default output format [None]:

The eksctl tool is the official CLI for Amazon EKS. It uses the AWS
credentials you’ve configured to authenticate with AWS. Using eksctl,
create the cluster:

$ eksctl create cluster --name oreilly --region eu-central-1

2023-08-29 13:21:12 [i] eksctl version 0.153.0-dev+a79b3826a.2023-08-18T...

2023-08-29 13:21:12 [i] using region eu-central-1

...

2023-08-29 13:36:52 [✔] EKS cluster "oreilly" in "eu-central-1" region is

ready

By default, eksctl creates a cluster with two worker nodes in the specified
region. You can adjust this paramater by specifying the --nodes flag.

https://aws.amazon.com/
https://aws.amazon.com/cli
https://eksctl.io/
https://oreil.ly/_6VMv

TIP
For the lowest latency, choose the AWS region that’s nearest to you.

When you no longer need the EKS cluster, delete it to avoid being charged
for unused resources:

$ eksctl delete cluster oreilly --region eu-central-1

See Also

eksctl Introduction

Amazon Elastic Kubernetes Service

https://oreil.ly/Kc9GZ
https://eksctl.io/getting-started
https://aws.amazon.com/eks

Chapter 3. Learning to Use the
Kubernetes Client

This chapter gathers recipes around the basic usage of the Kubernetes CLI,
kubectl. See Chapter 1 for how to install the CLI tool; for advanced use
cases, see Chapter 7, where we show how to use the Kubernetes API.

3.1 Listing Resources

Problem
You want to list Kubernetes resources of a certain kind.

Solution
Use the get verb of kubectl along with the resource type. To list all pods,
do this:

$ kubectl get pods

To list all services and deployments (note that there is no space after the
comma), do this:

$ kubectl get services,deployments

To list a specific deployment, do this:

$ kubectl get deployment <deployment-name>

To list all resources, do this:

$ kubectl get all

Note that kubectl get is a very basic but extremely useful command to
get a quick overview what is going on in the cluster— it’s essentially the
equivalent to ps on Unix.

SHORT NAMES FOR KUBERNETES RESOURCES

Many resources have short names you can use with kubectl, saving
your time and sanity. Here are some examples:

configmaps (aka cm)

daemonsets (aka ds)

deployments (aka deploy)

endpoints (aka ep)

events (aka ev)

horizontalpodautoscalers (aka hpa)

ingresses (aka ing)

namespaces (aka ns)

nodes (aka no)

persistentvolumeclaims (aka pvc)

persistentvolumes (aka pv)

pods (aka po)

replicasets (aka rs)

replicationcontrollers (aka rc)

resourcequotas (aka quota)

serviceaccounts (aka sa)

services (aka svc)

Discussion
We strongly recommend enabling autocompletion to avoid having to
remember all the Kubernetes resource names. Head to Recipe 12.1 for
details on how to do this.

3.2 Deleting Resources

Problem
You no longer need resources and want to get rid of them.

Solution
Use the delete verb of kubectl along with the type and name of the
resource you want to delete.

To delete all resources in the namespace my-app, as well as the namespace
itself, do this:

$ kubectl get ns

NAME STATUS AGE

default Active 2d

kube-public Active 2d

kube-system Active 2d

my-app Active 20m

$ kubectl delete ns my-app

namespace "my-app" deleted

Note that you cannot delete the default namespace in Kubernetes. This is
another reason why it is worth creating your own namespaces, as it can be
much easier to clean up the environment. Having said that, you can still
delete all objects in a namespace, such as the default namespace, with the
following command:

$ kubectl delete all --all -n <namespace>

If you’re wondering how to create a namespace, see Recipe 7.3.

You can also delete specific resources and/or influence the process by
which they are destroyed. To delete services and deployments labeled with
app=niceone, do this:

$ kubectl delete svc,deploy -l app=niceone

To force deletion of a pod named hangingpod, do this:

$ kubectl delete pod hangingpod --grace-period=0 --force

To delete all pods in the namespace test, do this:

$ kubectl delete pods --all --namespace test

Discussion
Do not delete supervised objects such as pods or replica sets that are
directly controlled by a deployment. Rather, kill their supervisors or use
dedicated operations to get rid of the managed resources. For example, if
you scale a deployment to zero replicas (see Recipe 9.1), then you
effectively delete all the pods it looks after.

Another aspect to take into account is cascading versus direct deletion— for
example, when you delete a custom resource definition (CRD), as shown in
Recipe 15.4, all its dependent objects are deleted too. To learn more about
how to influence the cascading deletion policy, read Garbage Collection in
the Kubernetes documentation.

3.3 Watching Resource Changes with kubectl

Problem
You want to watch the changes to Kubernetes objects in an interactive
manner in the terminal.

https://oreil.ly/8AcpW

Solution
The kubectl command has a --watch option that gives you this behavior.
For example, to watch pods, do this:

$ kubectl get pods --watch

Note that this is a blocking and auto-updating command, akin to top.

Discussion
The --watch option is useful, but some prefer the formatting of the output
from the watch command, as in:

$ watch kubectl get pods

3.4 Editing Objects with kubectl

Problem
You want to update the properties of a Kubernetes object.

Solution
Use the edit verb of kubectl along with the object type:

$ kubectl run nginx --image=nginx

$ kubectl edit pod/nginx

Now edit the nginx pod in your editor— for example, add a new label
called mylabel with the value true. Once you save, you’ll see something
like this:

pod/nginx edited

https://oreil.ly/WPueN

Discussion
If your editor isn’t opening or you want to specify which editor should be
used, set the EDITOR or KUBE_EDITOR environment variable to the name of
the editor you’d like to use. For example:

$ export EDITOR=vi

Also be aware that not all changes trigger an object update.

Some triggers have shortcuts; for example, if you want to change the image
version a deployment uses, simply use kubectl set image, which updates
the existing container images of resources (valid for deployments, replica
sets/replication controllers, daemon sets, jobs, and simple pods).

3.5 Asking kubectl to Explain Resources and
Fields

Problem
You want to gain a deeper understanding of a certain resource—for
example, a Service—and/or understand what exactly a certain field in a
Kubernetes manifest means, including default values and if it’s required or
optional.

Solution
Use the explain verb of kubectl:

$ kubectl explain svc

KIND: Service

VERSION: v1

DESCRIPTION:

Service is a named abstraction of software service (for example, mysql)

consisting of local port (for example 3306) that the proxy listens on, and the

selector that determines which pods will answer requests sent through the

proxy.

FIELDS:

 status <Object>

 Most recently observed status of the service. Populated by the system.

 Read-only. More info: https://git.k8s.io/community/contributors/devel/

 api-conventions.md#spec-and-status/

 apiVersion <string>

 APIVersion defines the versioned schema of this representation of an

 object. Servers should convert recognized schemas to the latest internal

 value, and may reject unrecognized values. More info:

 https://git.k8s.io/community/contributors/devel/api-

conventions.md#resources

 kind <string>

 Kind is a string value representing the REST resource this object

 represents. Servers may infer this from the endpoint the client submits

 requests to. Cannot be updated. In CamelCase. More info:

 https://git.k8s.io/community/contributors/devel/api-conventions

 .md#types-kinds

 metadata <Object>

 Standard object's metadata. More info:

 https://git.k8s.io/community/contributors/devel/api-

conventions.md#metadata

 spec <Object>

 Spec defines the behavior of a service. https://git.k8s.io/community/

 contributors/devel/api-conventions.md#spec-and-status/

$ kubectl explain svc.spec.externalIPs

KIND: Service

VERSION: v1

FIELD: externalIPs <[]string>

DESCRIPTION:

 externalIPs is a list of IP addresses for which nodes in the cluster will

 also accept traffic for this service. These IPs are not managed by

 Kubernetes. The user is responsible for ensuring that traffic arrives at

a

 node with this IP. A common example is external load-balancers that are

not

 part of the Kubernetes system.

Discussion
The kubectl explain command pulls the descriptions of resources and
fields from the Swagger/OpenAPI definitions, exposed by the API server.

You can think of kubectl explain as a way to describe the structure of
Kubernetes resources, whereas kubectl describe is a way to describe the
values of objects, which are instances of those structured resources.

See Also

Ross Kukulinski’s blog post, “kubectl explain — #HeptioProTip”

https://oreil.ly/chI_-
https://oreil.ly/19vi3
https://oreil.ly/LulwG

Chapter 4. Creating and
Modifying
Fundamental Workloads

In this chapter, we present recipes that show you how to manage
fundamental Kubernetes workload types: pods and deployments. We show
how to create deployments and pods via CLI commands and from a YAML
manifest and explain how to scale and update a deployment.

4.1 Creating a Pod Using kubectl run

Problem
You want to quickly launch a long-running application such as a web server.

Solution
Use the kubectl run command, a generator that creates a pod on the fly.
For example, to create a pod that runs the NGINX reverse proxy, do the
following:

$ kubectl run nginx --image=nginx

$ kubectl get pod/nginx

NAME READY STATUS RESTARTS AGE

nginx 1/1 Running 0 3m55s

Discussion
The kubectl run command can take a number of arguments to configure
additional parameters of the pods. For example, you can do the following:

Set environment variables with --env.

Define container ports with --port.

Define a command to run using --command.

Automatically create an associated service with --expose.

Test a run without actually running anything with --dry-run=client.

Typical usages are as follows. To launch NGINX serving on port 2368 and
create a service along with it, enter the following:

$ kubectl run nginx --image=nginx --port=2368 --expose

To launch MySQL with the root password set, enter this:

$ kubectl run mysql --image=mysql --env=MYSQL_ROOT_PASSWORD=root

To launch a busybox container and execute the command sleep 3600 on
start, enter this:

$ kubectl run myshell --image=busybox:1.36 --command -- sh -c "sleep 3600"

See also kubectl run --help for more details about the available
arguments.

4.2 Creating a Deployment Using kubectl
create

Problem
You want to quickly launch a long-running application such as a content
management system.

Solution
Use kubectl create deployment to create a deployment manifest on the
fly. For example, to create a deployment that runs the WordPress content
management system, do the following:

$ kubectl create deployment wordpress --image wordpress:6.3.1

$ kubectl get deployments.apps/wordpress

NAME READY UP-TO-DATE AVAILABLE AGE

wordpress 1/1 1 1 90s

Discussion
The kubectl create deployment command can take a number of
arguments to configure additional parameters of the deployments. For
example, you can do the following:

Define container ports with --port.

Define the number of replicas using --replicas.

Test a run without actually running anything with --dry-run=client.

Provide the created manifest using --output yaml.

See also kubectl create deployment --help for more details about the
available arguments.

4.3 Creating Objects from File Manifests

Problem
Rather than creating an object via a generator such as kubectl run, you
want to explicitly state its properties and then create it.

Solution

Use kubectl apply like so:

$ kubectl apply -f <manifest>

In Recipe 7.3 you’ll see how to create a namespace using a YAML
manifest. This is one of the simplest examples as the manifest is very short.
It can be written in YAML or JSON— for example, with a YAML manifest
file myns.yaml like so:

apiVersion: v1

kind: Namespace

metadata:

 name: myns

You can create this object with this:

$ kubectl apply -f myns.yaml

Check that the namespace was created with this:

$ kubectl get namespaces

Discussion
You can point kubectl apply to a URL instead of a filename in your local
filesystem. For example, to create the frontend for the canonical Guestbook
application, get the URL of the raw YAML that defines the application in a
single manifest and enter this:

$ kubectl apply -f https://raw.githubusercontent.com/kubernetes/examples/

 master/guestbook/all-in-one/guestbook-all-in-one.yaml

Check to see the resources that were created by this operation, for example
with this:

$ kubectl get all

4.4 Writing a Pod Manifest from Scratch

Problem
You want to write a pod manifest from scratch and apply it declaratively, as
opposed to using a command like kubectl run, which is imperative and
does not require manually editing a manifest.

Solution
A pod is an /api/v1 object, and like any other Kubernetes object, its
manifest file contains the following fields:

apiVersion, which specifies the API version

kind, which indicates the type of the object

metadata, which provides some metadata about the object

spec, which provides the object specification

The pod manifest contains an array of containers and an optional array of
volumes (see Chapter 8). In its simplest form, with a single container and
no volume, it looks something like this:

apiVersion: v1

kind: Pod

metadata:

 name: oreilly

spec:

 containers:

 - name: oreilly

 image: nginx:1.25.2

Save this YAML manifest in a file called oreilly.yaml and then use kubectl
to create it:

$ kubectl apply -f oreilly.yaml

Check to see the resources that were created by this operation, for example
with this:

$ kubectl get all

Discussion
The API specification of a pod is much richer than what is shown in the
Solution, which is the most basic functioning pod. For example, a pod can
contain multiple containers, as shown here:

apiVersion: v1

kind: Pod

metadata:

 name: oreilly

spec:

 containers:

 - name: oreilly

 image: nginx:1.25.2

 - name: safari

 image: redis:7.2.0

A pod can also contain volume definitions to load data in the containers
(see Recipe 8.1), as well as probes to check the health of the containerized
application (see Recipes 11.2 and 11.3).

A description of the thinking behind many of the specification fields and a
link to the full API object specification are detailed in the documentation.

NOTE
Unless for very specific reasons, never create a pod on its own. Use a Deployment object (see
Recipe 4.5) to supervise pods— it will watch over the pods through another object called a
ReplicaSet.

4.5 Launching a Deployment Using a
Manifest

https://oreil.ly/pSCBL

Problem
You want to have full control over how a (long-running) app is launched
and supervised.

Solution
Write a deployment manifest. For the basics, see also Recipe 4.4.

Let’s say you have manifest file called fancyapp.yaml with the following
contents:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: fancyapp

spec:

 replicas: 5

 selector:

 matchLabels:

 app: fancy

 template:

 metadata:

 labels:

 app: fancy

 env: development

 spec:

 containers:

 - name: sise

 image: gcr.io/google-samples/hello-app:2.0

 ports:

 - containerPort: 8080

 env:

 - name: SIMPLE_SERVICE_VERSION

 value: "2.0"

As you can see, there are a couple of things you might want to do explicitly
when launching the app:

Set the number of pods (replicas), or identical copies, that should be
launched and supervised.

Label it, such as with env=development (see also Recipes 7.5 and
7.6).

Set environment variables, such as SIMPLE_SERVICE_VERSION.

Now let’s look at what the deployment entails:

$ kubectl apply -f fancyapp.yaml

deployment.apps/fancyapp created

$ kubectl get deployments

NAME READY UP-TO-DATE AVAILABLE AGE

fancyapp 5/5 5 5 57s

$ kubectl get replicasets

NAME DESIRED CURRENT READY AGE

fancyapp-1223770997 5 5 0 59s

$ kubectl get pods -l app=fancy

NAME READY STATUS RESTARTS AGE

fancyapp-74c6f7cfd7-98d97 1/1 Running 0 115s

fancyapp-74c6f7cfd7-9gm2l 1/1 Running 0 115s

fancyapp-74c6f7cfd7-kggsx 1/1 Running 0 115s

fancyapp-74c6f7cfd7-xfs6v 1/1 Running 0 115s

fancyapp-74c6f7cfd7-xntk2 1/1 Running 0 115s

WARNING
When you want to get rid of a deployment, and with it the replica sets and pods it supervises,
execute a command like kubectl delete deploy/fancyapp. Do not try to delete individual
pods, as they will be re-created by the deployment. This is something that often confuses
beginners.

Deployments allow you to scale the app (see Recipe 9.1) as well as roll out
a new version or roll back a ReplicaSet to a previous version. They are, in
general, good for stateless apps that require pods with identical
characteristics.

Discussion

A deployment is a supervisor for pods and replica sets (RSs), giving you
fine-grained control over how and when a new pod version is rolled out or
rolled back to a previous state. The RSs and pods that a deployment
supervises are generally of no interest to you unless, for example, you need
to debug a pod (see Recipe 12.5). Figure 4-1 illustrates how you can move
back and forth between deployment revisions.

Figure 4-1. Deployment revisions

To generate the manifest for a deployment, you can use the kubectl
create command and the --dry-run=client option. This will allow you
to generate the manifest in YAML or JSON format and save the manifest
for later use. For example, to create the manifest of a deployment called
fancy-app using the container image nginx, issue the following command:

$ kubectl create deployment fancyapp --image nginx:1.25.2 -o yaml \

 --dry-run=client

kind: Deployment

apiVersion: apps/v1

metadata:

 name: fancyapp

 creationTimestamp:

 labels:

 app: fancyapp

...

See Also

Kubernetes Deployment documentation

4.6 Updating a Deployment

Problem
You have a deployment and want to roll out a new version of your app.

Solution
Update your deployment and let the default update strategy,
RollingUpdate, automatically handle the rollout.

For example, if you create a new container image and want to update the
deployment based on it, you can do this:

$ kubectl create deployment myapp --image=gcr.io/google-samples/hello-app:1.0

deployment.apps/myapp created

$ kubectl set image deployment/myapp \

 hello-app=gcr.io/google-samples/hello-app:2.0

deployment.apps/myapp image updated

$ kubectl rollout status deployment myapp

deployment "myapp" successfully rolled out

$ kubectl rollout history deployment myapp

deployment.apps/myapp

REVISION CHANGE-CAUSE

1 <none>

2 <none>

https://oreil.ly/IAghn

You’ve now successfully rolled out a new revision of your deployment
where only the container image used has changed. All other properties of
the deployment, such as the number of replicas, stay unchanged. But what if
you want to update other aspects of the deployment, such as changing
environment variables? You can use a number of kubectl commands to
update the deployment. For example, to add a port definition to the current
deployment, you can use kubectl edit:

$ kubectl edit deploy myapp

This command will open the current deployment in your default editor or,
when set and exported, in the editor specified by the environment variable
KUBE_EDITOR.

Say you want to add the following port definition (see Figure 4-2 for the
full file):

...

 ports:

 - containerPort: 9876

...

The result of the editing process (in this case, with KUBE_EDITOR set to vi)
is shown in Figure 4-2.

Once you save and exit the editor, Kubernetes kicks off a new deployment,
now with the port defined. Let’s verify that:

$ kubectl rollout history deployment myapp

deployments "sise"

REVISION CHANGE-CAUSE

1 <none>

2 <none>

3 <none>

Indeed, we see that revision 3 has been rolled out with the changes we
introduced with kubectl edit. However, the CHANGE-CAUSE column is
empty. You can specify a change cause for a revision by using a special

annotation. The following is an example of setting a change cause for the
most recent revision:

$ kubectl annotate deployment/myapp \

 kubernetes.io/change-cause="Added port definition."

deployment.apps/myapp annotate

Figure 4-2. Editing a deployment

As mentioned earlier, there are more kubectl commands that you can use
to update your deployment:

Use kubectl apply to update a deployment (or create it if it doesn’t
exist) from a manifest file— for example, kubectl apply -f
simpleservice.yaml.

Use kubectl replace to replace a deployment from a manifest file—
for example, kubectl replace -f simpleservice.yaml. Note that
unlike with apply, to use replace, the deployment must already exist.

Use kubectl patch to update a specific key— for example:

kubectl patch deployment myapp -p '{"spec": {"template":

{"spec": {"containers":

[{"name": "sise", "image": "gcr.io/google-samples/hello-app:2.0"}]}}}}'

What if you make a mistake or experience issues with the new version of
the deployment? Luckily, Kubernetes makes it really easy to roll back to a
known good state using the kubectl rollout undo command. For
example, suppose the last edit was a mistake and you want to roll back to
revision 2. You can do this with the following command:

$ kubectl rollout undo deployment myapp ‐‐to‐revision 2

You can then verify that the port definition has been removed with kubectl
get deploy/myapp -o yaml.

NOTE
The rollout of a deployment is triggered only if parts of the pod template (that is, keys below
.spec.template) are changed, such as environment variables, ports, or the container image.
Changes to aspects of the deployments, such as the replica count, do not trigger a new
deployment.

4.7 Running a Batch Job

Problem
You want to run a process that runs for a certain time to completion, such as
a batch conversion, backup operation, or database schema upgrade.

Solution
Use a Kubernetes Job to launch and supervise the pod(s) that will carry out
the batch process.

First, define the Kubernetes manifest for the job in a file called counter-
batch-job.yaml:

apiVersion: batch/v1

kind: Job

metadata:

 name: counter

spec:

 template:

 metadata:

 name: counter

 spec:

 containers:

 - name: counter

 image: busybox:1.36

 command:

 - "sh"

 - "-c"

 - "for i in 1 2 3 ; do echo $i ; done"

 restartPolicy: Never

Then launch the job and take a look at its status:

$ kubectl apply -f counter-batch-job.yaml

job.batch/counter created

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

counter 1/1 7s 12s

$ kubectl describe jobs/counter

Name: counter

Namespace: default

https://oreil.ly/1whb2

Selector: controller-uid=2d21031e-7263-4ff1-becd-48406393edd5

Labels: controller-uid=2d21031e-7263-4ff1-becd-48406393edd5

 job-name=counter

Annotations: batch.kubernetes.io/job-tracking:

Parallelism: 1

Completions: 1

Completion Mode: NonIndexed

Start Time: Mon, 03 Apr 2023 18:19:13 +0530

Completed At: Mon, 03 Apr 2023 18:19:20 +0530

Duration: 7s

Pods Statuses: 0 Active (0 Ready) / 1 Succeeded / 0 Failed

Pod Template:

 Labels: controller-uid=2d21031e-7263-4ff1-becd-48406393edd5

 job-name=counter

 Containers:

 counter:

 Image: busybox:1.36

 Port: <none>

 Host Port: <none>

 Command:

 sh

 -c

 for i in 1 2 3 ; do echo $i ; done

 Environment: <none>

 Mounts: <none>

 Volumes: <none>

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Normal SuccessfulCreate 30s job-controller Created pod: counter-5c8s5

 Normal Completed 23s job-controller Job completed

Finally, you want to verify that it actually carried out the task (counting
from 1 to 3):

$ kubectl logs jobs/counter

1

2

3

Indeed, as you can see, the counter job counted as expected.

Discussion

After a job has executed successfully, the pod that was created by the job
will be in the Completed state. You can delete the job if you don’t need it
anymore, which will clean up the pods it created:

$ kubectl delete jobs/counter

You can also temporarily suspend a job’s execution and resume it later.
Suspending a job will also clean up the pods it created:

$ kubectl patch jobs/counter --type=strategic --patch '{"spec":

{"suspend":true}}'

To resume the job, simply flip the suspend flag:

$ kubectl patch jobs/counter --type=strategic \

 --patch '{"spec":{"suspend":false}}'

4.8 Running a Task on a Schedule Within a
Pod

Problem
You want to run a task on a specific schedule within a pod managed by
Kubernetes.

Solution
Use Kubernetes CronJob objects. The CronJob object is a derivative of the
more generic Job object (see Recipe 4.7).

You can periodically schedule a job by writing a manifest similar to the one
shown here. In the spec, you see a schedule section that follows the
crontab format. You can also use some macros, such as @hourly, @daily,
@weekly, @monthly, and @yearly. The template section describes the pod

that will run and the command that will get executed (this one prints the
current date and time every hour to stdout):

apiVersion: batch/v1

kind: CronJob

metadata:

 name: hourly-date

spec:

 schedule: "0 * * * *"

 jobTemplate:

 spec:

 template:

 spec:

 containers:

 - name: date

 image: busybox:1.36

 command:

 - "sh"

 - "-c"

 - "date"

 restartPolicy: OnFailure

Discussion
Just like a job, a cron job can be also be suspended and resumed by flipping
the suspend flag. For example:

$ kubectl patch cronjob.batch/hourly-date --type=strategic \

 --patch '{"spec":{"suspend":true}}'

If you don’t need the cron job anymore, delete it to clean up the pods that it
created:

$ kubectl delete cronjob.batch/hourly-date

See Also

Kubernetes CronJob documentation

https://oreil.ly/nrxxh

4.9 Running Infrastructure Daemons per
Node

Problem
You want to launch an infrastructure daemon— for example, a log collector
or monitoring agent— making sure that exactly one pod runs per node.

Solution
Use a DaemonSet to launch and supervise the daemon process. For
example, to launch a Fluentd agent on each node in your cluster, create a
file named fluentd-daemonset.yaml with the following contents:

kind: DaemonSet

apiVersion: apps/v1

metadata:

 name: fluentd

spec:

 selector:

 matchLabels:

 app: fluentd

 template:

 metadata:

 labels:

 app: fluentd

 name: fluentd

 spec:

 containers:

 - name: fluentd

 image: gcr.io/google_containers/fluentd-elasticsearch:1.3

 env:

 - name: FLUENTD_ARGS

 value: -qq

 volumeMounts:

 - name: varlog

 mountPath: /varlog

 - name: containers

 mountPath: /var/lib/docker/containers

 volumes:

 - hostPath:

 path: /var/log

 name: varlog

 - hostPath:

 path: /var/lib/docker/containers

 name: containers

Now launch the DaemonSet, like so:

$ kubectl apply -f fluentd-daemonset.yaml

daemonset.apps/fluentd created

$ kubectl get ds

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR

AGE

fluentd 1 1 1 1 1 <none>

60s

$ kubectl describe ds/fluentd

Name: fluentd

Selector: app=fluentd

Node-Selector: <none>

Labels: <none>

Annotations: deprecated.daemonset.template.generation: 1

Desired Number of Nodes Scheduled: 1

Current Number of Nodes Scheduled: 1

Number of Nodes Scheduled with Up-to-date Pods: 1

Number of Nodes Scheduled with Available Pods: 1

Number of Nodes Misscheduled: 0

Pods Status: 1 Running / 0 Waiting / 0 Succeeded / 0 Failed

...

Discussion
Note that in the preceding output, because the command is executed on
Minikube, you see only one pod running as there’s only one node in this
setup. If you had 15 nodes in your cluster, you’d have 15 pods overall with
1 pod per node running. You can also restrict the daemon to certain nodes
using the nodeSelector section in the spec of the DaemonSet manifest.

Chapter 5. Working with
Services

In this chapter, we discuss how pods communicate within the cluster, how
applications discover each other, and how to expose pods so that they can
be accessed from outside of the cluster.

The resource we will be using here is called a Kubernetes service, as
depicted in Figure 5-1.

https://oreil.ly/BGn9e

Figure 5-1. The Kubernetes service concept

A service provides a stable virtual IP (VIP) address for a set of pods.
Though pods may come and go, services allow clients to reliably discover
and connect to the containers running in the pods by using the VIP. The
“virtual” in VIP means it’s not an actual IP address connected to a network
interface; its purpose is purely to forward traffic to one or more pods.

Keeping the mapping between the VIPs and the pods up to date is the job of
kube-proxy, a process that runs on every node on the cluster. This kube-
proxy process queries the API server to learn about new services in the
cluster and updates the node’s iptables rules (iptables) accordingly to
provide the necessary routing information.

5.1 Creating a Service to Expose Your
Application

Problem
You want to provide a stable and reliable way to discover and access your
application within the cluster.

Solution
Create a Kubernetes service for the pods that make up your application.

Assuming you created an nginx deployment with kubectl create
deployment nginx --image nginx:1.25.2, you can automatically create
a Service object using the kubectl expose command, like so:

$ kubectl expose deploy/nginx --port 80

service "nginx" exposed

$ kubectl describe svc/nginx

Name: nginx

Namespace: default

Labels: app=nginx

Annotations: <none>

Selector: app=nginx

Type: ClusterIP

IP Family Policy: SingleStack

IP Families: IPv4

IP: 10.97.137.240

IPs: 10.97.137.240

Port: <unset> 80/TCP

TargetPort: 80/TCP

Endpoints: 172.17.0.3:80

Session Affinity: None

Events: <none>

You will then see the object appear when you list the Service:

$ kubectl get svc nginx

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

nginx ClusterIP 10.97.137.240 <none> 80/TCP 2s

Discussion
To access this service via your browser, run a proxy in a separate terminal,
like so:

$ kubectl proxy

Starting to serve on 127.0.0.1:8001

Then open your browser with this:

$ open http://localhost:8001/api/v1/namespaces/default/services/nginx/proxy/

You should see the NGINX default page.

TIP
If your service does not seem to be working properly, check the labels used in the selector and
verify that a set of endpoints is being populated with kubectl get endpoints <service-name>.
If not, this most likely means that your selector is not finding any matching pods.

If you wanted to create a Service object by hand for the same nginx
deployment, you would write the following YAML file:

apiVersion: v1

kind: Service

metadata:

 name: nginx

spec:

 selector:

 app: nginx

 ports:

 - port: 80

The one thing to pay attention to in this YAML file is the selector, which is
used to select all the pods that make up this microservice abstraction.
Kubernetes uses the Service object to dynamically configure the iptables
on all the nodes to be able to send the network traffic to the containers that
make up the microservice. The selection is done as a label query (see
Recipe 7.6) and results in a list of endpoints.

NOTE
Pod supervisors, such as Deployments or ReplicationSets, operate orthogonally to Services.
Both supervisors and Services find the pods they’re looking after by using labels, but they have
different jobs to do: supervisors monitor the health of and restart pods, and Services make them
accessible in a reliable way.

See Also

Kubernetes Service documentation

Kubernetes tutorial “Using a Service to Expose Your App”

5.2 Verifying the DNS Entry of a Service

Problem
You have created a service (see Recipe 5.1) and want to verify that your
Domain Name System (DNS) registration is working properly.

Solution

https://oreil.ly/BGn9e
https://oreil.ly/NVOhU

By default Kubernetes uses ClusterIP as the service type, and that exposes
the service on a cluster-internal IP. If the DNS cluster add-on is available
and working properly, you can access the service via a fully qualified
domain name (FQDN) in the form of
$SERVICENAME.$NAMESPACE.svc.cluster.local.

To verify that this is working as expected, get an interactive shell within a
container in your cluster. The easiest way to do this is to use kubectl run
with the busybox image, like so:

$ kubectl run busybox --rm -it --image busybox:1.36 -- /bin/sh

If you don't see a command prompt, try pressing enter.

/ # nslookup nginx

Server: 10.96.0.10

Address: 10.96.0.10:53

Name: nginx.default.svc.cluster.local

Address: 10.100.34.223

The IP address returned for the service should correspond to its cluster IP.

Type exit and hit Enter to leave the container.

Discussion
By default, a DNS query will be scoped to the same namespace as the pod
making the request. If, in the previous example, you run the busybox pod in
a different namespace from the one running nginx, by default the lookup
won’t return any results. To specify the correct namespace, use the syntax
<service-name>.<namespace>; for example, nginx.staging.

5.3 Changing the Type of a Service

Problem

You have an existing service, say of type ClusterIP, as discussed in
Recipe 5.2, and you want to change its type so that you can expose your
application as a NodePort or via a cloud provider load balancer using the
LoadBalancer service type.

Solution
Use the kubectl edit command along with your preferred editor to
change the service type. Suppose you have a manifest file called simple-
nginx-svc.yaml with this content:

kind: Service

apiVersion: v1

metadata:

 name: webserver

spec:

 ports:

 - port: 80

 selector:

 app: nginx

Create the webserver service and query for it:

$ kubectl apply -f simple-nginx-svc.yaml

$ kubectl get svc/webserver

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

webserver ClusterIP 10.98.223.206 <none> 80/TCP 11s

Next, change the service type to, say, NodePort, like so:

$ kubectl edit svc/webserver

This command will download the current spec the API server has of the
service and open it in your default editor. Notice the area in bold toward the
end, where we’ve changed the type from ClusterIP to NodePort:

Please edit the object below. Lines beginning with a '#' will be ignored,

and an empty file will abort the edit. If an error occurs while saving

this...

reopened with the relevant failures.

apiVersion: v1

kind: Service

metadata:

 annotations:

 kubectl.kubernetes.io/last-applied-configuration: |

 {"apiVersion":"v1","kind":"Service","metadata":{"annotations":

{},"name"...

 creationTimestamp: "2023-03-01T14:07:55Z"

 name: webserver

 namespace: default

 resourceVersion: "1128"

 uid: 48daed0e-a16f-4923-bd7e-1d879dc2221f

spec:

 clusterIP: 10.98.223.206

 clusterIPs:

 - 10.98.223.206

 externalTrafficPolicy: Cluster

 internalTrafficPolicy: Cluster

 ipFamilies:

 - IPv4

 ipFamilyPolicy: SingleStack

 ports:

 - nodePort: 31275

 port: 80

 protocol: TCP

 targetPort: 80

 selector:

 app: nginx

 sessionAffinity: None

 type: NodePort

status:

 loadBalancer: {}

Once you’ve saved the edits (changing type to NodePort), you can verify
the updated service, like so:

$ kubectl get svc/webserver

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

webserver NodePort 10.98.223.206 <none> 80:31275/TCP 4m

$ kubectl get svc/webserver -o yaml

apiVersion: v1

kind: Service

metadata:

 annotations:

 kubectl.kubernetes.io/last-applied-configuration: |

 {"apiVersion":"v1","kind":"Service","metadata":{"annotations":

{},"name"...

 creationTimestamp: "2023-03-01T14:07:55Z"

 name: webserver

 namespace: default

 resourceVersion: "1128"

 uid: 48daed0e-a16f-4923-bd7e-1d879dc2221f

spec:

 clusterIP: 10.98.223.206

 clusterIPs:

 - 10.98.223.206

 externalTrafficPolicy: Cluster

 internalTrafficPolicy: Cluster

 ipFamilies:

 - IPv4

 ipFamilyPolicy: SingleStack

 ports:

 - nodePort: 31275

 port: 80

 protocol: TCP

 targetPort: 80

 selector:

 app: nginx

 sessionAffinity: None

 type: NodePort

status:

 loadBalancer: {}

Discussion
Note that you can change the service type to whatever suits your use case;
however, be aware of the implications of certain types, like LoadBalancer,
which may trigger the provisioning of public cloud infrastructure
components that can be costly if used without awareness and/or monitoring.

See Also

Details on the different types of Kubernetes services

https://oreil.ly/r63eA

5.4 Deploying an Ingress Controller

Problem
You want to deploy an ingress controller to learn about Ingress objects.
Ingress objects are of interest to you because you want to provide access
to your applications running in Kubernetes from outside your Kubernetes
cluster; however, you do not want to create a NodePort- or LoadBalancer-
type service.

Solution
An ingress controller acts as a reverse proxy and load balancer. It routes
traffic from outside the cluster and load-balances it to the pods running
inside the platform, allowing you deploy multiple applications on the
cluster, each addressable by hostname and/or URI path.

For Ingress objects (discussed in Recipe 5.5) to take effect and provide a
route from outside the cluster to your pods, you need to deploy an ingress
controller:

$ kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-nginx/

controller-v1.8.1/deploy/static/provider/cloud/deploy.yaml

TIP
On Minikube, you can simply enable the ingress add-on like so:

$ minikube addons enable ingress

After a minute or less, a new pod will start in the newly created ingress-
nginx namespace:

$ kubectl get pods -n ingress-nginx

NAME READY STATUS RESTARTS AGE

ingress-nginx-admission-create-xpqbt 0/1 Completed 0

3m39s

ingress-nginx-admission-patch-r7cnf 0/1 Completed 1

3m39s

ingress-nginx-controller-6cc5ccb977-l9hvz 1/1 Running 0

3m39s

You are now ready to create Ingress objects.

Discussion
NGINX is one of the ingress controllers officially supported by the
Kubernetes project, but there are many other open source and commercial
solutions that support the ingress specification, many of which provide
broader API management capabilities.

At the time of writing, the new Kubernetes Gateway API specification is
emerging as a future replacement for the ingress specification and is already
supported by many third-party gateway providers. If you are just starting
out with ingress, it is worth considering the Gateway API as a more future-
proof starting point.

See Also

Kubernetes Ingress documentation

NGINX-based ingress controller

Minikube’s ingress-dns add-on

5.5 Making Services Accessible from Outside
the Cluster

Problem

https://oreil.ly/eukmq
https://oreil.ly/Y27m-
https://oreil.ly/9xoks
https://oreil.ly/691Lx
https://oreil.ly/To14r

You want to access a Kubernetes service by URI path from outside of the
cluster.

Solution
Use an ingress controller (see Recipe 5.4), configured by creating Ingress
objects.

Suppose you want to deploy a simple service that can be invoked and
returns “Hello, world!” Start by creating the deployment:

$ kubectl create deployment web --image=gcr.io/google-samples/hello-app:2.0

Then expose the service:

$ kubectl expose deployment web --port=8080

Verify that all these resources were correctly created with the following:

$ kubectl get all -l app=web

NAME READY STATUS RESTARTS AGE

pod/web-79b7b8f988-95tjv 1/1 Running 0 47s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

service/web ClusterIP 10.100.87.233 <none> 8080/TCP 8s

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/web 1/1 1 1 47s

NAME DESIRED CURRENT READY AGE

replicaset.apps/web-79b7b8f988 1 1 1 47s

The following is the manifest of an Ingress object that configures the URI
path /web to the hello-app service:

$ cat nginx-ingress.yaml

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: nginx-public

 annotations:

 nginx.ingress.kubernetes.io/rewrite-target: /

spec:

 ingressClassName: nginx

 rules:

 - host:

 http:

 paths:

 - path: /web

 pathType: Prefix

 backend:

 service:

 name: web

 port:

 number: 8080

$ kubectl apply -f nginx-ingress.yaml

Now you can see the Ingress object created for NGINX in your
Kubernetes dashboard (Figure 5-2).

Figure 5-2. NGINX Ingress object

From the Kubernetes dashboard, you can see that NGINX will be available
via the IP address 192.168.49.2 (yours may differ). Based on this
information, you can access NGINX from outside the cluster at the /web
URI path as follows:

$ curl https://192.168.49.2/web

Hello, world!

Version: 1.0.0

Hostname: web-68487bc957-v9fj8

KNOWN ISSUE WITH MINIKUBE

Because of known networking limitations when using Minikube with
the Docker driver (for example with Docker Desktop), you might not be
able to access your service externally using the IP address provided by
the Ingress object, as shown earlier. In this case, the recommended
work-around is to create a tunnel to the cluster using the minikube
service command. For instance, to expose the service web that we
created in this recipe, use the following command:

$ minikube service web

By default this command will open the service in your default browser.
Append the --url option, and the tunnel URL will be printed out in the
terminal. Note that the minikube service command will block your
terminal while it runs, so we recommend that you run it in a dedicated
terminal window.

In the Minikube documentation you can read more about this limitation.

Discussion
An alternative to using the dashboard to see your service IPs is to use the
following command:

$ kubectl describe ingress

In general, ingress works as depicted in Figure 5-3: the ingress controller
listens to the /ingresses endpoint of the API server, learning about new
rules. It then configures the routes so that external traffic lands at a specific
(cluster-internal) service—service1 on port 9876 in the depicted example.

https://oreil.ly/2V4Ln

Figure 5-3. Ingress concept

See Also

The kubernetes/ingress-nginx repo on GitHub

https://oreil.ly/guulG

Chapter 6. Managing
Application Manifests

In this chapter, we take a look at ways to simplify the management of
applications on Kubernetes with the use of tools such as Helm, kompose,
and kapp. These tools primarily focus on managing your YAML manifests.
Helm is a YAML templating, packaging, and deployment tool, whereas
Kompose is a tool that assists you with migrating your Docker Compose
files to Kubernetes resource manifests. kapp is a relatively new tool that
allows you to manage a group of YAML files as an application and thereby
manage their deployment as a single application.

6.1 Installing Helm, the Kubernetes Package
Manager

Problem
You do not want to write all your Kubernetes manifests by hand. Instead,
you want to be able to search for a package in a repository and download
and install it with a command-line interface.

Solution
Use Helm. Helm consists of a client-side CLI called helm and is used to
search for and deploy charts on a Kubernetes cluster.

You can download Helm from the GitHub release page and move the helm
binary into your $PATH. For example, on macOS (Intel), for the v3.12.3
release, do this:

https://helm.sh/
https://oreil.ly/0A7Ty

$ wget https://get.helm.sh/helm-v3.12.3-darwin-amd64.tar.gz

$ tar -xvf helm-v3.12.3-darwin-amd64.tar.gz

$ sudo mv darwin-amd64/helm /usr/local/bin

Alternatively, you can use the handy installer script to install the latest
version of Helm:

$ wget -O get_helm.sh https://raw.githubusercontent.com/helm/helm/main/

scripts/get-helm-3

$ chmod +x get_helm.sh

$./get_helm.sh

Discussion
Helm is the Kubernetes package manager; it defines a Kubernetes package
as a set of manifests and some metadata. The manifests are actually
templates. The values in the templates are filled when the package is
instantiated by Helm. A Helm package is called a chart, and packaged
charts are made available to users in chart repositories.

Another method of installing Helm on Linux or macOS is to use the
Homebrew package manager:

$ brew install helm

6.2 Adding Chart Repositories to Helm

Problem
You’ve installed the helm client (see Recipe 6.1), and now you want to find
and add chart repositories to Helm.

Solution
A chart repository consists of packaged charts and some metadata that
enables Helm to search for charts in the repository. Before you can begin

https://oreil.ly/V6_bt
https://brew.sh/

installing an application with Helm, you need to find and add the chart
repository that provides the chart.

As illustrated in Figure 6-1, Artifact Hub is a web-based service that allows
you to search more than 10,000 charts from various publishers and add
chart repositories to Helm.

Figure 6-1. Artifact Hub, searching for a Helm chart for Redis

Discussion
The helm command also integrates with Artifact Hub, which allows you to
search Artifact Hub directly from the helm command line.

Let’s assume you would like to search for a publisher that provides a Redis
chart. You can use the helm search hub command to find one:

$ helm search hub --list-repo-url redis

URL CHART VER... APP VER... DESCRIPTION REPO URL

https://art...s/redis 0.1.1 6.0.8.9 A Helm cha...

https://spy8...

https://art...s-arm/... 17.8.0 7.0.8 Redis(R) i...

https://libr...

https://art...ontain... 0.15.2 0.15.0 Provides e... https://ot-

https://artifacthub.io/
https://oreil.ly/0olJi

c...

...

If you want to deploy the chart published by Bitnami, a well-known
publisher of more than 100 production-quality charts, add the chart
repository using the following:

$ helm repo add bitnami https://charts.bitnami.com/bitnami

You’re all set now to install charts from the repository.

6.3 Using Helm to Install Applications

Problem
You’ve added a chart repository to Helm (see Recipe 6.2), and now you
want to search for charts and deploy them.

Solution
Let’s assume you want to deploy the Redis chart from the Bitnami chart
repository.

Before you search a chart repository, it’s a good practice to update the
locally cached index of the chart repositories:

$ helm repo update

Hang tight while we grab the latest from your chart repositories...

...Successfully got an update from the "bitnami" chart repository

Update Complete. ⎈Happy Helming!⎈

Search for redis in the Bitnami chart repository:

$ helm search repo bitnami/redis

NAME CHART VERSION APP VERSION DESCRIPTION

bitnami/redis 18.0.1 7.2.0 Redis(R) is an...

bitnami/redis-cluster 9.0.1 7.2.0 Redis(R) is an...

https://oreil.ly/jL7Xz
https://oreil.ly/TAPRO

And use helm install to deploy the chart:

$ helm install redis bitnami/redis

Helm will use the default chart configuration and create a Helm release
named redis. A Helm release is the collection of all Kubernetes objects
defined in a chart that you can manage as a single unit.

After a while you should see the redis pods running:

$ kubectl get all -l app.kubernetes.io/name=redis

NAME READY STATUS RESTARTS AGE

pod/redis-master-0 1/1 Running 0 114s

pod/redis-replicas-0 1/1 Running 0 114s

pod/redis-replicas-1 1/1 Running 0 66s

pod/redis-replicas-2 1/1 Running 0 38s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

AGE

service/redis-headless ClusterIP None <none> 6379/TCP

114s

service/redis-master ClusterIP 10.105.20.184 <none> 6379/TCP

114s

service/redis-replicas ClusterIP 10.105.27.109 <none> 6379/TCP

114s

NAME READY AGE

statefulset.apps/redis-master 1/1 114s

statefulset.apps/redis-replicas 3/3 114s

Discussion
The output of the helm install command could contain important
information about the deployment, such as passwords retrieved from
secrets, deployed services, etc. You can use the helm list command to list
existing helm installations, and then helm status <name> to view the
details of that installation:

% helm status redis

NAME: redis

LAST DEPLOYED: Fri Nov 10 09:42:17 2023

NAMESPACE: default

STATUS: deployed

...

To learn more about Helm charts and how to create your own charts, see
Recipe 6.8.

6.4 Inspecting the Customizable Parameters
of a Chart

Problem
You want to know the customizable parameters of a chart and their default
values.

Solution
Chart publishers expose various parameters of a chart that can be
configured while installing the chart. The default values of these parameters
are configured in a Values file whose contents can be viewed using the helm
show values command—for example:

$ helm show values bitnami/redis

...

...

@param architecture Redis® architecture. Allowed values: `standalone` or

`replication`

architecture: replication

...

...

Discussion
It’s a common practice for publishers to document chart parameters in the
Values file. However, a chart’s Readme file can provide more extensive
documentation of the various parameters, along with specific usage

instructions. To view a chart’s Readme file, use the helm show readme
command. For example:

$ helm show readme bitnami/redis

...

...

Redis® common configuration parameters

| Name | Description | Value

|

| -------------------------- | --------------------------------| -------------

|

| `architecture` | Redis® architecture... | `replication`

|

| `auth.enabled` | Enable password authentication | `true`

|

...

...

It’s worth noting that this Readme is the same as the one rendered for the
chart on Artifact Hub.

6.5 Overriding Chart Parameters

Problem
You’ve learned about the various customizable parameters of a chart (see
Recipe 6.4), and now you want to customize the chart deployment.

Solution
The default parameters of a Helm chart can be overridden by passing the --
set key=value flag while installing the chart. The flag can be specified
multiple times, or you can separate key/value pairs with commas like so:
key1=value1,key2=value2.

For example, you can override the deployment configuration of the
bitnami/redis chart to use the standalone architecture as follows:

https://oreil.ly/dIYpI

$ helm install redis bitnami/redis --set architecture=standalone

Discussion
When overriding many chart parameters, you can provide the --values
flag to input a YAML-formatted file with all the parameters you want to
override. For the previous example, create a file named values.yaml
containing this line:

architecture: standalone

Then input the file to helm install:

$ helm install redis bitnami/redis --values values.yaml

The standalone configuration of the bitnami/redis chart spawns fewer
pod resources and is suitable for development purposes. Let’s take a look:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

redis-master-0 1/1 Running 0 3m14s

6.6 Getting the User-Supplied Parameters of
a Helm Release

Problem
Your Kubernetes cluster has a Helm release, and you want to know the
user-supplied chart parameters that were specified when the chart was
installed.

Solution
The helm list command gets the list of Helm release objects present in
the cluster:

$ helm list

NAME NAMESPACE REVISION UPDATED STATUS CHART APP

VERSION

redis default 1 2022-12-30 14:02... deployed redis-17.4.0 7.0.7

You can get extended information about a Helm release, such as the user-
supplied values, using the helm get command:

$ helm get values redis

USER-SUPPLIED VALUES:

architecture: standalone

Discussion
In addition to the values, you can also retrieve the YAML manifests, post-
deployment notes, and the hooks configured in the chart using the helm
get command.

6.7 Uninstalling Applications with Helm

Problem
You no longer want an application that was installed using Helm (see
Recipe 6.3) and want to remove it.

Solution
When you install an application using a chart, it creates a Helm release that
can be managed as a single unit. To remove an application that was installed
using Helm, all you need to do is remove the release using the helm
uninstall command.

Let’s assume you want to remove a Helm release named redis:

$ helm uninstall redis

release "redis" uninstalled

Helm will remove all the Kubernetes objects associated with the release and
free up the cluster resources associated with their objects.

6.8 Creating Your Own Chart to Package
Your Application with Helm

Problem
You have written an application with multiple Kubernetes manifests and
want to package it as a Helm chart.

Solution
Use the helm create and helm package commands.

With helm create, generate the skeleton of your chart. Issue the command
in your terminal, specifying the name of your chart. For example, to create
an oreilly chart:

$ helm create oreilly

Creating oreilly

$ tree oreilly/

oreilly/

├── Chart.yaml
├── charts
├── templates
│ ├── NOTES.txt
│ ├── _helpers.tpl
│ ├── deployment.yaml
│ ├── hpa.yaml
│ ├── ingress.yaml
│ ├── service.yaml
│ ├── serviceaccount.yaml
│ └── tests
│ └── test-connection.yaml
└── values.yaml

3 directories, 10 files

Discussion
The helm create command generates a scaffolding for a typical web
application. You can edit the generated scaffolding and adapt it for your
application, or if you have your manifests already written, you can delete
the contents of the templates/ directory and copy your existing templates
into it. If you want to templatize your manifests, then write the values that
need to be substituted in the manifests in the values.yaml file. Edit the
metadata file Chart.yaml, and if you have any dependent charts, put them in
the /charts directory.

You can test your chart locally by running this:

$ helm install oreilly-app ./oreilly

Finally, you can package it with helm package oreilly/ to generate a re-
distributable tarball of your chart. If you want to publish the chart to a chart
repository, copy it to the repository and generate a new index.yaml using the
command helm repo index .. After the updates to the chart registry are
completed, and provided that you have added the chart repository to Helm
(see Recipe 6.2), helm search repo oreilly should return your chart:

$ helm search repo oreilly

NAME VERSION DESCRIPTION

oreilly/oreilly 0.1.0 A Helm chart for Kubernetes

See Also

“Create Your First Helm Chart” in the VMware Application Catalog
docs

“The Chart Best Practices Guide” in the Helm docs

6.9 Installing Kompose

https://oreil.ly/fGfgF
https://oreil.ly/kcznF

Problem
You’ve started using containers with Docker and written some Docker
compose files to define your multicontainer application. Now you want to
start using Kubernetes and wonder if and how you can reuse your Docker
compose files.

Solution
Use Kompose. Kompose is a tool that converts Docker compose files into
Kubernetes (or OpenShift) manifests.

To start, download kompose from the GitHub release page and move it to
your $PATH, for convenience.

For example, on macOS, do the following:

$ wget https://github.com/kubernetes/kompose/releases/download/v1.27.0/

kompose-darwin-amd64 -O kompose

$ sudo install -m 755 kompose /usr/local/bin/kompose

$ kompose version

Alternatively, Linux and macOS users can install the kompose CLI using
the Homebrew package manager:

$ brew install kompose

6.10 Converting Your Docker Compose Files
to Kubernetes Manifests

Problem
You’ve installed the kompose command (see Recipe 6.9), and now you want
to convert your Docker compose file into Kubernetes manifests.

https://kompose.io/
https://oreil.ly/lmiCJ
https://brew.sh/

Solution
Suppose you have the following Docker compose file that starts a redis
container:

version: '2'

services:

 redis:

 image: redis:7.2.0

 ports:

 - "6379:6379"

Using Kompose, you can automatically convert this into Kubernetes
manifests with the following command:

$ kompose convert

Kompose will read the contents of the Docker compose file and generate
the Kubernetes manifests in the current directory. Then you can use
kubectl apply to create these resources in your cluster.

Discussion
Adding the --stdout argument to the kompose convert command will
generate the YAML, which can be directly piped to kubectl apply like so:

$ kompose convert --stdout | kubectl apply -f -

Some Docker compose directives are not converted to Kubernetes. In this
case, kompose prints out a warning informing you that the conversion did
not happen.

While in general it doesn’t cause problems, it is possible that the conversion
may not result in a working manifest in Kubernetes. This is expected, as
this type of transformation cannot be perfect. However, it will get you close
to a working Kubernetes manifest. Most notably, handling volumes and

network isolation will typically require manual, custom work from your
side.

6.11 Converting Your Docker Compose File
to a Helm Chart

Problem
You’ve installed the kompose command (see Recipe 6.9), and now you want
to create a Helm chart from your Docker compose file.

Solution
As well as using Kompose to convert your Docker compose files to
Kubernetes manifests (see Recipe 6.10), you can also use it to generate a
Helm chart for the converted objects.

Generate a Helm chart from your Docker compose file using Kompose like
so:

$ kompose convert --chart

A new Helm chart will be generated in the current directory. This chart can
be packaged, deployed, and managed using the helm CLI (see Recipe 6.3).

6.12 Installing kapp

Problem
You have written the YAML files to deploy your application to the cluster
and want to deploy and manage the lifecycle of the deployment, but you
don’t want to package it as a Helm chart.

Solution
Use kapp, which is a CLI tool that enables you to manage resources in bulk.
Unlike Helm, kapp considers YAML templating outside of its scope and
focuses on managing application deployments.

To install kapp, use the download script to download the latest version for
your platform from the GitHub release page:

$ mkdir local-bin/

$ wget https://carvel.dev/install.sh -qO - | \

 K14SIO_INSTALL_BIN_DIR=local-bin bash

$ sudo install -m 755 local-bin/kapp /usr/local/bin/kapp

$ kapp version

Discussion
Linux and macOS users can also install kapp using the Homebrew package
manager:

$ brew tap vmware-tanzu/carvel

$ brew install kapp

$ kapp version

6.13 Deploying YAML Manifests Using kapp

Problem
You have installed kapp (see Recipe 6.12), and now you want to deploy and
manage your YAML manifests using kapp.

Solution
kapp considers a set of resources with the same label as an application.
Suppose you have a folder named manifests/ that contains the YAML file to
deploy an NGINX server. kapp will treat all these manifests as a single
application:

https://carvel.dev/kapp
https://oreil.ly/iAQPd
https://oreil.ly/9g2f3
https://brew.sh/

$ cat manifests/deploy.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx

 labels:

 app: nginx

spec:

 replicas: 1

 selector:

 matchLabels:

 app: nginx

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

 - name: nginx

 image: nginx:1.25.2

 ports:

 - containerPort: 80

$ cat manifests/svc.yaml

apiVersion: v1

kind: Service

metadata:

 name: nginx

spec:

 selector:

 app: nginx

 ports:

 - port: 80

To deploy these manifests as an application with the label nginx, use the
following:

$ kapp deploy -a nginx -f manifests/

...

Namespace Name Kind Age Op Op st. Wait to Rs Ri

default nginx Deployment - create - reconcile - -

^ nginx Service - create - reconcile - -

...

Continue? [yN]:

kapp will provide an overview of the resources that will be created on the
cluster and ask for confirmation from the user. To update the application, all
you need to do is update the YAML files in the manifests/ folder and rerun
the deploy command. You can add the --diff-changes option to view a
diff of the updated YAML.

Discussion
After deploying applications using kapp, you can manage their lifecycle as
well. For example, to inspect the resources created for an app deployment,
do this:

$ kapp inspect -a nginx

...

Name Namespaces Lcs Lca

nginx default true 4s

...

To list all the deployed applications, do this:

$ kapp ls

...

Name Namespaces Lcs Lca

nginx default true 4s

...

And to delete an application deployed using kapp, do this:

$ kapp delete -a nginx

Chapter 7. Exploring the
Kubernetes API
and Key Metadata

In this chapter, we present recipes that address basic interactions with
Kubernetes objects as well as the API. Every object in Kubernetes, no
matter if namespaced like a deployment or cluster-wide like a node, has
certain fields available— for example, metadata, spec, and status. The
spec describes the desired state for an object (the specification), and the
status captures the actual state of the object, managed by the Kubernetes
API server.

7.1 Discovering the Kubernetes API Server’s
Endpoints

Problem
You want to discover the various API endpoints available on the Kubernetes
API server.

Solution
Here we assume you’ve spun up a development cluster like kind or
Minikube locally. You can run kubectl proxy in a separate terminal. The
proxy lets you easily access the Kubernetes server API with an HTTP client
such as curl, without needing to worry about authentication and
certificates. After running kubectl proxy, you should be able to reach the
API server on port 8001, as shown here:

https://oreil.ly/kMcj7

$ curl http://localhost:8001/api/v1/

{

 "kind": "APIResourceList",

 "groupVersion": "v1",

 "resources": [

 {

 "name": "bindings",

 "singularName": "",

 "namespaced": true,

 "kind": "Binding",

 "verbs": [

 "create"

]

 },

 {

 "name": "componentstatuses",

 "singularName": "",

 "namespaced": false,

 ...

This lists all the objects exposed by the Kubernetes API. At the top of the
list you can see an example of an object with kind set to Binding as well as
the allowed operations on this object (here, create).

Note that another convenient way to discover the API endpoints is to use
the kubectl api-resources command.

Discussion
You can discover all the API groups by calling the following endpoint:

$ curl http://localhost:8001/apis/

{

 "kind": "APIGroupList",

 "apiVersion": "v1",

 "groups": [

 {

 "name": "apiregistration.k8s.io",

 "versions": [

 {

 "groupVersion": "apiregistration.k8s.io/v1",

 "version": "v1"

 }

],

 "preferredVersion": {

 "groupVersion": "apiregistration.k8s.io/v1",

 "version": "v1"

 }

 },

 {

 "name": "apps",

 "versions": [

 ...

Pick some API groups to explore from this list, such as the following:

/apis/apps

/apis/storage.k8s.io

/apis/flowcontrol.apiserver.k8s.io

/apis/autoscaling

Each of these endpoints corresponds to an API group. The core API objects
are available in the v1 group at /api/v1, whereas other newer API objects
are available in named groups under the /apis/ endpoint, such as
storage.k8s.io/v1 and apps/v1. Within a group, API objects are
versioned (e.g., v1, v2, v1alpha, v1beta1) to indicate the maturity of the
objects. Pods, services, config maps, and secrets, for example, are all part of
the /api/v1 API group, whereas the /apis/autoscaling group has v1 and
v2 versions.

The group an object is part of is what is referred to as the apiVersion in
the object specification, available via the API reference.

See Also

Kubernetes API overview

Kubernetes API conventions

https://oreil.ly/fvO82
https://oreil.ly/sANzL
https://oreil.ly/ScJvH

7.2 Understanding the Structure of a
Kubernetes Manifest

Problem
Although Kubernetes does have convenient generators like kubectl run
and kubectl create, you must to learn how to write Kubernetes manifests
to embrace the declarative nature of Kubernetes object specifications. To do
this, you need to understand the general structure of manifests.

Solution
In Recipe 7.1, you learned about the various API groups and how to
discover which group a particular object is in.

All API resources are either objects or lists. All resources have a kind and
an ap i Ve rs ion. In addition, every object kind must have metadata. The
metadata contains the name of the object, the namespace it is in (see
Recipe 7.3), and optionally some labels (see Recipe 7.6) and annotations
(see Recipe 7.7).

A pod, for example, will be of kind Pod and apiVersion v1, and the
beginning of a simple manifest written in YAML will look like this:

apiVersion: v1

kind: Pod

metadata:

 name: mypod

...

To complete a manifest, most objects will have a spec and, once created,
will also return a status that describes the current state of the object:

apiVersion: v1

kind: Pod

metadata:

 name: mypod

spec:

 ...

status:

 ...

Discussion
Kubernetes manifests can be used to define the desired state of your cluster.
Because manifests are files, they can be stored in a version control system
like Git. This allows for distributed and asynchronous collaboration among
developers and operators and also enables the creation of automation
pipelines for continuous integration and deployment. This is the basic idea
behind GitOps, in which any changes to a system are made by changing a
source of truth in a version control system. Because all changes are logged
in the system, it is possible to revert to previous states or reproduce a given
state multiple times. Infrastructure as code (IaC) is a term often used when
the declarative source of truth is describing the state of infrastructure (as
opposed to applications).

See Also

Objects in Kubernetes

7.3 Creating Namespaces to Avoid Name
Collisions

Problem
You want to create two objects with the same name but want to avoid
naming collisions.

Solution
Create two namespaces and create one object in each.

https://oreil.ly/EONxU

If you don’t specify anything, objects are created in the default
namespace. Try creating a second namespace called my-app, as shown here,
and list the existing namespaces. You will see the default namespace,
other namespaces that were created on start-up (kube-system, kube-
public, and kube-node-lease), and the my-app namespace you just
created:

$ kubectl create namespace my-app

namespace/my-app created

$ kubectl get ns

NAME STATUS AGE

default Active 5d20h

kube-node-lease Active 5d20h

kube-public Active 5d20h

kube-system Active 5d20h

my-app Active 13s

NOTE
Alternatively, you can write a manifest to create your namespace. If you save the following
manifest as app.yaml, you can then create the namespace with the kubectl apply -f app.yaml
command:

apiVersion: v1

kind: Namespace

metadata:

 name: my-app

Discussion
Attempting to start two objects with the same name in the same namespace
(e.g., default) leads to a collision, and an error is returned by the
Kubernetes API server. However, if you start the second object in a
different namespace, the API server will create it:

$ kubectl run foobar --image=nginx:latest

pod/foobar created

$ kubectl run foobar --image=nginx:latest

Error from server (AlreadyExists): pods "foobar" already exists

$ kubectl run foobar --image=nginx:latest --namespace my-app

pod/foobar created

NOTE
The kube-system namespace is reserved for administrators, whereas the kube-public
namespace is meant to store public objects available to any users of the cluster.

7.4 Setting Quotas Within a Namespace

Problem
You want to limit the resources available in a namespace— for example, the
overall number of pods that can run in the namespace.

Solution
Use a ResourceQuota object to specify the limitations on a namespace
basis.

Start by creating a manifest for a resource quota and saving it in a file called
resource-quota-pods.yaml:

apiVersion: v1

kind: ResourceQuota

metadata:

 name: podquota

spec:

 hard:

 pods: "10"

Then create a new namespace and apply the quota to it:

https://oreil.ly/kQFsq

$ kubectl create namespace my-app

namespace/my-app created

$ kubectl apply -f resource-quota-pods.yaml --namespace=my-app

resourcequota/podquota created

$ kubectl describe resourcequota podquota --namespace=my-app

Name: podquota

Namespace: my-app

Resource Used Hard

-------- ---- ----

pods 1 10

Discussion
You can set a number of quotas on a per-namespace basis, including but not
limited to pods, secrets, and config maps.

See Also

Configure Quotas for API Objects

7.5 Labeling an Object

Problem
You want to label an object so that you can easily find it later. The label can
be used for further end-user queries (see Recipe 7.6) or in the context of
system automation.

Solution
Use the kubectl label command. For example, to label a pod named
foobar with the key/value pair tier=frontend, do this:

$ kubectl label pods foobar tier=frontend

pod/foobar labeled

https://oreil.ly/jneBT

TIP
Check the complete help for the command (kubectl label --help). You can use it to find out
how to remove labels, overwrite existing ones, and even label all resources in a namespace.

Discussion
In Kubernetes, you use labels to organize objects in a flexible,
nonhierarchical manner. A label is a key/value pair without any predefined
meaning for Kubernetes. In other words, the content of the key/value pair is
not interpreted by the system. You can use labels to express membership
(e.g., object X belongs to department ABC), environments (e.g., this service
runs in production), or really anything you need to organize your objects.
There are some common useful labels that you can read about in the
Kubernetes documentation. Note that labels do have restrictions concerning
their length and allowed values. However, there is a community guideline
for naming keys.

7.6 Using Labels for Queries

Problem
You want to query objects efficiently.

Solution
Use the kubectl get --selector command. For example, given the
following pods:

$ kubectl get pods --show-labels

NAME READY STATUS RESTARTS AGE LABELS

foobar 1/1 Running 0 18m

run=foobar,tier=frontend

nginx1 1/1 Running 0 72s app=nginx,run=nginx1

nginx2 1/1 Running 0 68s app=nginx,run=nginx2

https://oreil.ly/SMl_N
https://oreil.ly/AzeM8
https://oreil.ly/lTkhW

nginx3 1/1 Running 0 65s app=nginx,run=nginx3

you can select the pods that belong to the NGINX app (app=nginx):

$ kubectl get pods --selector app=nginx

NAME READY STATUS RESTARTS AGE

nginx1 1/1 Running 0 3m45s

nginx2 1/1 Running 0 3m41s

nginx3 1/1 Running 0 3m38s

Discussion
Labels are part of an object’s metadata. Any object in Kubernetes can be
labeled. Labels are also used by Kubernetes itself for pod selection by
deployments (see Recipe 4.1) and services (see Chapter 5).

Labels can be added manually with the kubectl label command (see
Recipe 7.5), or you can define labels in an object manifest, like so:

apiVersion: v1

kind: Pod

metadata:

 name: foobar

 labels:

 tier: frontend

...

Once labels are present, you can list them with kubectl get, noting the
following:

-l is the short form of --selector and will query objects with a
specified key=value pair.

--show-labels will show all the labels of each object returned.

-L will add a column to the results returned with the value of the
specified label.

Many object kinds support set-based querying, meaning you can state
a query in a form like “must be labeled with X and/or Y.” For example,
kubectl get pods -l 'env in (production, development)'

would give you pods that are in either the production or development
environment.

With two pods running, one with label run=barfoo and the other with label
ru n= fo oba r, you would get outputs similar to the following:

$ kubectl get pods --show-labels

NAME READY ... LABELS

barfoo-76081199-h3gwx 1/1 ... pod-template-hash=76081199,run=barfoo

foobar-1123019601-6x9w1 1/1 ... pod-template-

hash=1123019601,run=foobar

$ kubectl get pods -L run

NAME READY ... RUN

barfoo-76081199-h3gwx 1/1 ... barfoo

foobar-1123019601-6x9w1 1/1 ... foobar

$ kubectl get pods -l run=foobar

NAME READY ...

foobar-1123019601-6x9w1 1/1 ...

See Also

Kubernetes documentation on labels and selectors

7.7 Annotating a Resource with One
Command

Problem
You want to annotate a resource with a generic, nonidentifying key/value
pair, possibly using non-human-readable data.

Solution

https://oreil.ly/ku1Sc

Use the kubectl annotate command:

$ kubectl annotate pods foobar \

 description='something that you can use for automation'

pod/foobar annotated

Discussion
Annotations tend to be used for added automation of Kubernetes. For
example, when you create a deployment with the kubectl create
deployment command, you will notice that the change-cause column in
your rollout history (see Recipe 4.6) is empty. As of Kubernetes v1.6.0, to
start recording the commands that cause changes to the deployment, you
can annotate it with the kubernetes.io/change-cause key. Given a
deployment foobar, you might annotate it with the following:

$ kubectl annotate deployment foobar \

 kubernetes.io/change-cause="Reason for creating a new revision"

Subsequent changes to the deployment will be recorded.

One of the major differences between annotations and labels is that labels
can be used as filtering criteria, whereas annotations cannot. Unless you
plan to use your metadata for filtering, then it is generally preferable to use
annotations.

Chapter 8. Volumes and
Configuration Data

A volume in Kubernetes is a directory accessible to all containers running in
a pod, with the additional guarantee that the data is preserved across restarts
of individual containers.

We can distinguish between a few types of volumes:

Node-local ephemeral volumes, such as emptyDir

Generic networked volumes, such as nfs or cephfs

Cloud provider–specific volumes, such as AWS EBS or AWS EFS

Special-purpose volumes, such as secret or configMap

Which volume type you choose depends entirely on your use case. For
example, for a temporary scratch space, an emptyDir would be fine, but
when you need to make sure your data survives node failures, you’ll want
to look into more resilient alternatives or cloud provider–specific solutions.

8.1 Exchanging Data Between Containers via
a Local Volume

Problem
You have two or more containers running in a pod and want to be able to
exchange data via filesystem operations.

Solution
Use a local volume of type emptyDir.

The starting point is the following pod manifest, exchangedata.yaml, which
has two containers (c1 and c2) that each mount the local volume xchange
into their filesystem, using different mount points:

apiVersion: v1

kind: Pod

metadata:

 name: sharevol

spec:

 containers:

 - name: c1

 image: ubuntu:20.04

 command:

 - "bin/bash"

 - "-c"

 - "sleep 10000"

 volumeMounts:

 - name: xchange

 mountPath: "/tmp/xchange"

 - name: c2

 image: ubuntu:20.04

 command:

 - "bin/bash"

 - "-c"

 - "sleep 10000"

 volumeMounts:

 - name: xchange

 mountPath: "/tmp/data"

 volumes:

 - name: xchange

 emptyDir: {}

Now you can launch the pod, exec into it, create data from one container,
and read it out from the other one:

$ kubectl apply -f exchangedata.yaml

pod/sharevol created

$ kubectl exec sharevol -c c1 -i -t -- bash

[root@sharevol /]# mount | grep xchange

/dev/vda1 on /tmp/xchange type ext4 (rw,relatime)

[root@sharevol /]# echo 'some data' > /tmp/xchange/data

[root@sharevol /]# exit

$ kubectl exec sharevol -c c2 -i -t -- bash

[root@sharevol /]# mount | grep /tmp/data

/dev/vda1 on /tmp/data type ext4 (rw,relatime)

[root@sharevol /]# cat /tmp/data/data

some data

[root@sharevol /]# exit

Discussion
A local volume is backed by the node on which the pod and its containers
are running. If the node goes down or you have to carry out maintenance on
it (see Recipe 12.9), then the local volume is gone and all the data is lost.

There are some use cases where local volumes are fine— for example, for
some scratch space or when the canonical state is obtained from somewhere
else, such as an S3 bucket— but in general you’ll want to use a persistent
volume or one backed by networked storage (see Recipe 8.4).

See Also

Kubernetes documentation on volumes

8.2 Passing an API Access Key to a Pod
Using a Secret

Problem
As an admin, you want to provide your developers with an API access key
in a secure way; that is, without sharing it in clear text in your Kubernetes
manifests.

Solution
Use a local volume of type secret.

Let’s say you want to give your developers access to an external service that
is accessible via the passphrase open sesame.

https://oreil.ly/82P1u
https://oreil.ly/bX6ER

First, create a text file called passphrase that holds the passphrase:

$ echo -n "open sesame" > ./passphrase

Next, create the secret, using the passphrase file:

$ kubectl create secret generic pp --from-file=./passphrase

secret/pp created

$ kubectl describe secrets/pp

Name: pp

Namespace: default

Labels: <none>

Annotations: <none>

Type: Opaque

Data

====

passphrase: 11 bytes

From an admin point of view, you’re all set now, and it’s time for your
developers to consume the secret. So let’s switch hats and assume you’re a
developer and want to use the passphrase from within a pod.

You would consume the secret, for example, by mounting it as a volume
into your pod and then reading it out as a normal file. Create and save the
following manifest, called ppconsumer.yaml:

apiVersion: v1

kind: Pod

metadata:

 name: ppconsumer

spec:

 containers:

 - name: shell

 image: busybox:1.36

 command:

 - "sh"

 - "-c"

 - "mount | grep access && sleep 3600"

 volumeMounts:

 - name: passphrase

https://oreil.ly/cCddB

 mountPath: "/tmp/access"

 readOnly: true

 volumes:

 - name: passphrase

 secret:

 secretName: pp

Now launch the pod and take a look at its logs, where you would expect to
see the ppconsumer secret file mounted as /tmp/access/passphrase:

$ kubectl apply -f ppconsumer.yaml

pod/ppconsumer created

$ kubectl logs ppconsumer

tmpfs on /tmp/access type tmpfs (ro,relatime,size=7937656k)

To access the passphrase from within the running container, simply read out
the passphrase file in /tmp/access, like so:

$ kubectl exec ppconsumer -i -t -- sh

/ # cat /tmp/access/passphrase

open sesame

/ # exit

Discussion
Secrets exist in the context of a namespace, so you need to take that into
account when setting them up and/or consuming them.

You can access a secret from a container running in a pod via one of the
following:

A volume (as shown in the Solution, where the content is stored in a
tmpfs volume)

Using the secret as an environment variable

Also, note that the size of a secret is limited to 1 MiB.

https://oreil.ly/Edsr5

TIP
kubectl create secret deals with three types of secrets, and depending on your use case, you
might want to choose different ones:

The docker-registry type is for use with a Docker registry.

The generic type is what we used in the Solution; it creates a secret from a local file,
directory, or literal value (you need to base64-encode it yourself).

With tls you can create, for example, a secure SSL certificate for ingress.

kubectl describe doesn’t show the content of the secret in plain text.
This avoids “over-the-shoulder” password grabs. You can, however, easily
decode it manually since it’s not encrypted, only base64-encoded:

$ kubectl get secret pp -o yaml | \

 grep passphrase | \

 cut -d":" -f 2 | \

 awk '{$1=$1};1' | \

 base64 --decode

open sesame

In this command, the first line retrieves a YAML representation of the
secret, and the second line with the grep pulls out the line passphrase:
b3BlbiBzZXNhbWU= (note the leading whitespace here). Then, the cut
extracts the content of the passphrase, and the awk command gets rid of the
leading whitespace. Finally, the base64 command turns it into the original
data again.

TIP
You have the option to encrypt secrets at rest by using the --encryption-provider-config
option when launching the kube-apiserver.

See Also

Kubernetes documentation on secrets

Kubernetes documentation on encrypting confidential data at rest

8.3 Providing Configuration Data to an
Application

Problem
You want to provide configuration data to an application without storing it
in the container image or hardcoding it into the pod specification.

Solution
Use a config map. These are first-class Kubernetes resources with which
you can provide configuration data to a pod via environment variables or a
file.

Let’s say you want to create a configuration with the key siseversion and
the value 0.9. It’s as simple as this:

$ kubectl create configmap nginxconfig \

 --from-literal=nginxgreeting="hello from nginx"

configmap/nginxconfig created

Now you can use the config map in a deployment— say, in a manifest file
with the following contents:

apiVersion: v1

kind: Pod

metadata:

 name: nginx

spec:

 containers:

 - name: nginx

 image: nginx:1.25.2

 env:

 - name: NGINX_GREETING

https://oreil.ly/cCddB
https://oreil.ly/kAmrN

 valueFrom:

 configMapKeyRef:

 name: nginxconfig

 key: nginxgreeting

Save this YAML manifest as nginxpod.yaml and then use kubectl to create
the pod:

$ kubectl apply -f nginxpod.yaml

pod/nginx created

You can then list the pod’s container environment variables with the
following command:

$ kubectl exec nginx -- printenv

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

HOSTNAME=nginx

NGINX_GREETING=hello from nginx

KUBERNETES_PORT_443_TCP=tcp://10.96.0.1:443

...

Discussion
We’ve just shown how to pass in the configuration as an environment
variable. However, you can also mount it into the pod as a file, using a
volume.

Suppose you have the following config file, example.cfg:

debug: true

home: ~/abc

You can create a config map that holds the config file, as follows:

$ kubectl create configmap configfile --from-file=example.cfg

configmap/configfile created

Now you can use the config map just as you would any other volume. The
following is the manifest file for a pod named oreilly; it uses the busybox

image and just sleeps for 3,600 seconds. In the volumes section, there is a
volume named oreilly that uses the config map configfile we just
created. This volume is then mounted at the path /oreilly inside the
container. Hence, the file will be accessible within the pod:

apiVersion: v1

kind: Pod

metadata:

 name: oreilly

spec:

 containers:

 - image: busybox:1.36

 command:

 - sleep

 - "3600"

 volumeMounts:

 - mountPath: /oreilly

 name: oreilly

 name: busybox

 volumes:

 - name: oreilly

 configMap:

 name: configfile

After creating the pod, you can verify that the example.cfg file is indeed
inside it:

$ kubectl exec -ti oreilly -- ls -l oreilly

total 0

lrwxrwxrwx 1 root root 18 Mar 31 09:39 example.cfg -> ..data/example.cfg

$ kubectl exec -ti oreilly -- cat oreilly/example.cfg

debug: true

home: ~/abc

For a complete example of how to create a config map from a file, see
Recipe 11.7.

See Also

“Configure a Pod to Use a ConfigMap” in the Kubernetes
documentation

8.4 Using a Persistent Volume with Minikube

Problem
You don’t want to lose data on a disk your container uses— that is, you want
to make sure it survives a restart of the hosting pod.

Solution
Use a persistent volume (PV). In the case of Minikube, you can create a PV
of type hostPath and mount it just like a normal volume into the
container’s filesystem.

First, define the PV hostpathpv in a manifest called hostpath-pv.yaml:

apiVersion: v1

kind: PersistentVolume

metadata:

 name: hostpathpv

 labels:

 type: local

spec:

 storageClassName: manual

 capacity:

 storage: 1Gi

 accessModes:

 - ReadWriteOnce

 hostPath:

 path: "/tmp/pvdata"

Before you can create the PV, however, you need to prepare the directory
/tmp/pvdata on the node— that is, the Minikube instance itself. You can get
into the node where the Kubernetes cluster is running using minikube ssh:

$ minikube ssh

https://oreil.ly/R1FgU

$ mkdir /tmp/pvdata && \

 echo 'I am content served from a delicious persistent volume' > \

 /tmp/pvdata/index.html

$ cat /tmp/pvdata/index.html

I am content served from a delicious persistent volume

$ exit

Now that you’ve prepared the directory on the node, you can create the PV
from the manifest file hostpath-pv.yaml:

$ kubectl apply -f hostpath-pv.yaml

persistentvolume/hostpathpv created

$ kubectl get pv

NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS

...

hostpathpv 1Gi RWO Retain Available

...

$ kubectl describe pv/hostpathpv

Name: hostpathpv

Labels: type=local

Annotations: <none>

Finalizers: [kubernetes.io/pv-protection]

StorageClass: manual

Status: Available

Claim:

Reclaim Policy: Retain

Access Modes: RWO

VolumeMode: Filesystem

Capacity: 1Gi

Node Affinity: <none>

Message:

Source:

 Type: HostPath (bare host directory volume)

 Path: /tmp/pvdata

 HostPathType:

Events: <none>

Up to this point, you would carry out these steps in an admin role. You
would define PVs and make them available to developers on the Kubernetes
cluster.

Now you’re in a position to use the PV in a pod, from a developer’s
perspective. This is done via a persistent volume claim (PVC), so called
because, well, you literally claim a PV that fulfills certain characteristics,
such as size or storage class.

Create a manifest file called pvc.yaml that defines a PVC, asking for 200
MB of space:

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: mypvc

spec:

 storageClassName: manual

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 200Mi

Next, launch the PVC and verify its state:

$ kubectl apply -f pvc.yaml

persistentvolumeclaim/mypvc created

$ kubectl get pv

NAME CAPACITY ACCESSMODES ... STATUS CLAIM STORAGECLASS

hostpathpv 1Gi RWO ... Bound default/mypvc manual

Note that the status of the PV hostpathpv has changed from Available to
Bound.

Finally, it’s time to consume the data from the PV in a container, this time
via a deployment that mounts it in the filesystem. So, create a file called
nginx-using-pv.yaml with the following contents:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-with-pv

spec:

 replicas: 1

 selector:

 matchLabels:

 app: nginx

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

 - name: webserver

 image: nginx:1.25.2

 ports:

 - containerPort: 80

 volumeMounts:

 - mountPath: "/usr/share/nginx/html"

 name: webservercontent

 volumes:

 - name: webservercontent

 persistentVolumeClaim:

 claimName: mypvc

And launch the deployment, like so:

$ kubectl apply -f nginx-using-pv.yaml

deployment.apps/nginx-with-pv created

$ kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESSMODES STORAGECLASS AGE

mypvc Bound hostpathpv 1Gi RWO manual 12m

As you can see, the PV is in use via the PVC you created earlier.

To verify that the data actually has arrived, you could now create a service
(see Recipe 5.1) along with an Ingress object (see Recipe 5.5) and then
access it like so:

$ curl -k -s https://192.168.99.100/web

I am content served from a delicious persistent volume

Well done! You’ve (as an admin) provisioned a persistent volume and (as a
developer) claimed it via a persistent volume claim and used it from a
deployment in a pod by mounting it into the container filesystem.

Discussion
In the Solution, we used a persistent volume of type hostPath. In a
production setting, you would not want to use this but rather ask your
cluster administrator nicely to provision a networked volume backed by
NFS or an Amazon Elastic Block Store (EBS) volume to make sure your
data sticks around and survives single-node failures.

NOTE
Remember that PVs are cluster-wide resources; that is, they are not namespaced. However, PVCs
are namespaced. You can claim PVs from specific namespaces using namespaced PVCs.

See Also

Kubernetes persistent volumes documentation

“Configure a Pod to Use a PersistentVolume for Storage” in the
Kubernetes documentation

8.5 Understanding Data Persistency on
Minikube

Problem
You want to use Minikube to deploy a stateful application in Kubernetes.
Specifically, you would like to deploy a MySQL database.

Solution
Use a PersistentVolumeClaim object (see Recipe 8.4) in your pod
definition and/or the template for your database.

First you need to make a request for a specific amount of storage. The
following data.yaml manifest makes a request for 1 GB of storage:

https://oreil.ly/IMCId
https://oreil.ly/sNDkp

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: data

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

On Minikube, create this PVC and immediately see how a persistent
volume is created to match this claim:

$ kubectl apply -f data.yaml

persistentvolumeclaim/data created

$ kubectl get pvc

NAME STATUS VOLUME CAPACITY

data Bound pvc-da58c85c-e29a-11e7-ac0b-080027fcc0e7 1Gi

$ kubectl get pv

NAME CAPACITY

pvc-da58c85c-e29a-11e7-ac0b-080027fcc0e7 1Gi

You are now ready to use this claim in your pod. In the volumes section of
the pod manifest, define a volume by name with a PVC type and a reference
to the PVC you just created.

In the volumeMounts field, you’ll mount this volume at a specific path
inside your container. For MySQL, you mount it at /var/lib/mysql:

apiVersion: v1

kind: Pod

metadata:

 name: db

spec:

 containers:

 - image: mysql:8.1.0

 name: db

 volumeMounts:

 - mountPath: /var/lib/mysql

 name: data

 env:

 - name: MYSQL_ROOT_PASSWORD

 value: root

 volumes:

 - name: data

 persistentVolumeClaim:

 claimName: data

Discussion
Minikube is configured out of the box with a default storage class that
defines a default persistent volume provisioner. This means that when a
persistent volume claim is created, Kubernetes will dynamically create a
matching persistent volume to fill that claim.

This is what happened in the Solution. When you created the persistent
volume claim called data, Kubernetes automatically created a persistent
volume to match that claim. If you look a bit deeper at the default storage
class on Minikube, you will see the provisioner type:

$ kubectl get storageclass

NAME PROVISIONER ...

standard (default) k8s.io/minikube-hostpath ...

$ kubectl get storageclass standard -o yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

...

provisioner: k8s.io/minikube-hostpath

reclaimPolicy: Delete

This specific storage class is using a storage provisioner that creates
persistent volumes of type hostPath. You can see this by looking at the
manifest of the PV that got created to match the claim you created
previously:

$ kubectl get pv

NAME CAPACITY ... CLAIM ...

pvc-da58c85c-e29a-11e7-ac0b-080027fcc0e7 1Gi ... default/data ...

$ kubectl get pv pvc-da58c85c-e29a-11e7-ac0b-080027fcc0e7 -o yaml

apiVersion: v1

kind: PersistentVolume

...

 hostPath:

 path: /tmp/hostpath-provisioner/default/data

 type: ""

...

To verify that the host volume created holds the database data, you can
connect to Minikube and list the files in the directory:

$ minikube ssh

$ ls -l /tmp/hostpath-provisioner/default/data

total 99688

...

drwxr-x--- 2 999 docker 4096 Mar 31 11:11 mysql

-rw-r----- 1 999 docker 31457280 Mar 31 11:11 mysql.ibd

lrwxrwxrwx 1 999 docker 27 Mar 31 11:11 mysql.sock ->

/var/run/mysqld/...

drwxr-x--- 2 999 docker 4096 Mar 31 11:11 performance_schema

-rw------- 1 999 docker 1680 Mar 31 11:11 private_key.pem

-rw-r--r-- 1 999 docker 452 Mar 31 11:11 public_key.pem

...

Indeed, you now have data persistence. If the pod dies (or you delete it),
your data will still be available.

In general, storage classes allow the cluster administrator to define the
various types of storage they might provide. For the developers, this
abstracts the type of storage and lets them use PVCs without having to
worry about the storage provider itself.

See Also

Kubernetes persistent volume claim documentation

Kubernetes storage class documentation

https://oreil.ly/8CRZI
https://oreil.ly/32-fw

8.6 Storing Encrypted Secrets in Version
Control

Problem
You want to store all your Kubernetes manifests in version control and
safely share them (even publicly), including secrets.

Solution
Use sealed-secrets. Sealed-secrets is a Kubernetes controller that decrypts
one-way encrypted secrets and creates in-cluster Secret objects (see
Recipe 8.2).

To get started, install the v0.23.1 release of the sealed-secrets controller
from the release page:

$ kubectl apply -f https://github.com/bitnami-labs/sealed-secrets/

releases/download/v0.23.1/controller.yaml

The result will be that you have a new custom resource and a new pod
running in the kube-system namespace:

$ kubectl get customresourcedefinitions

NAME CREATED AT

sealedsecrets.bitnami.com 2023-01-18T09:23:33Z

$ kubectl get pods -n kube-system -l name=sealed-secrets-controller

NAME READY STATUS RESTARTS AGE

sealed-secrets-controller-7ff6f47d47-dd76s 1/1 Running 0

2m22s

Next, download the corresponding release of the kubeseal binary from the
release page. This tool will allow you to encrypt your secrets.

For example, on macOS (amd64), do the following:

https://oreil.ly/r-83j
https://oreil.ly/UgMpf
https://oreil.ly/UgMpf

$ wget https://github.com/bitnami-labs/sealed-secrets/releases/download/

v0.23.1/kubeseal-0.23.1-darwin-amd64.tar.gz

$ tar xf kubeseal-0.23.1-darwin-amd64.tar.gz

$ sudo install -m 755 kubeseal /usr/local/bin/kubeseal

$ kubeseal --version

kubeseal version: 0.23.1

You are now ready to start using sealed-secrets. First, generate a generic
secret manifest:

$ kubectl create secret generic oreilly --from-literal=password=root -o json \

 --dry-run=client > secret.json

$ cat secret.json

{

 "kind": "Secret",

 "apiVersion": "v1",

 "metadata": {

 "name": "oreilly",

 "creationTimestamp": null

 },

 "data": {

 "password": "cm9vdA=="

 }

}

Then use the kubeseal command to generate the new custom
SealedSecret object:

$ kubeseal < secret.json > sealedsecret.json

$ cat sealedsecret.json

{

 "kind": "SealedSecret",

 "apiVersion": "bitnami.com/v1alpha1",

 "metadata": {

 "name": "oreilly",

 "namespace": "default",

 "creationTimestamp": null

 },

 "spec": {

 "template": {

 "metadata": {

 "name": "oreilly",

 "namespace": "default",

 "creationTimestamp": null

 }

 },

 "encryptedData": {

 "password": "AgCyN4kBwl/eLt7aaaCDDNlFDp5s93QaQZZ/mm5BJ6SK1WoKyZ45hz..."

 }

 }

}

Create the SealedSecret object using the following:

$ kubectl apply -f sealedsecret.json

sealedsecret.bitnami.com/oreilly created

You can now store sealedsecret.json safely in version control.

Discussion
Once you create the SealedSecret object, the controller will detect it,
decrypt it, and generate the corresponding secret.

Your sensitive information is encrypted into a SealedSecret object, which
is a custom resource (see Recipe 15.4). The SealedSecret is safe to store
under version control and share, even publicly. Once a SealedSecret is
created on the Kubernetes API server, only the private key stored in the
sealed-secret controller can decrypt it and create the corresponding Secret
object (which is only base64-encoded). Nobody else, including the original
author, can decrypt the original Secret from the Se al ed Se cr et.

While users cannot decrypt the original Secret from the SealedSecret,
they may be able to access the unsealed Secret from the cluster. You
should configure RBAC to forbid low-privilege users from reading Secret
objects from namespaces that they have restricted access to.

You can list the SealedSecret objects in the current namespace using the
following:

$ kubectl get sealedsecret

NAME AGE

oreilly 14s

See Also

The sealed-secrets project on GitHub

Angus Lees’s article “Sealed Secrets: Protecting Your Passwords
Before They Reach Kubernetes”

https://oreil.ly/SKVWq
https://oreil.ly/Ie3nB

Chapter 9. Scaling

In Kubernetes, scaling can mean different things to different users. We
distinguish between two cases:

Cluster scaling

Sometimes called cluster elasticity, this refers to the (automated)
process of adding or removing worker nodes based on cluster
utilization.

Application-level scaling

Sometimes called pod scaling, this refers to the (automated) process of
manipulating pod characteristics based on a variety of metrics, from
low-level signals such as CPU utilization to higher-level ones, such as
HTTP requests served per second, for a given pod.

Two kinds of pod-level scalers exist:

Horizontal pod autoscalers (HPAs)

HPAs automatically increase or decrease the number of pod replicas
depending on certain metrics.

Vertical pod autoscalers (VPAs)

VPAs automatically increase or decrease the resource requirements of
containers running in a pod.

In this chapter, we first examine cluster elasticity for GKE, AKS, and EKS
and then discuss pod scaling with HPAs.

9.1 Scaling a Deployment

Problem
You have a deployment and want to scale it horizontally.

Solution
Use the kubectl scale command to scale out a deployment.

Let’s reuse the fancyapp deployment from Recipe 4.5, with five replicas. If
it’s not running yet, create it with kubectl apply -f fancyapp.yaml.

Now suppose that the load has decreased and you don’t need five replicas
anymore; three is enough. To scale the deployment down to three replicas,
do this:

$ kubectl get deploy fancyapp

NAME READY UP-TO-DATE AVAILABLE AGE

fancyapp 5/5 5 5 59s

$ kubectl scale deployment fancyapp --replicas=3

deployment "fancyapp" scaled

$ kubectl get deploy fancyapp

NAME READY UP-TO-DATE AVAILABLE AGE

fancyapp 3/3 3 3 81s

Rather than manually scaling a deployment, you can automate this process;
see Recipe 9.2 for an example.

9.2 Using Horizontal Pod Autoscaling

Problem
You want to automatically increase or decrease the number of pods in a
deployment, depending on the load present.

Solution

Use an HPA, as described here.

To use HPAs, the Kubernetes Metrics API must be available. To install the
Kubernetes Metrics Server, see Recipe 2.7.

First, create an app—a PHP environment and server—that you can use as
the target of the HPA:

$ kubectl create deployment appserver --image=registry.k8s.io/hpa-example \

 --port 80

deployment.apps/appserver created

$ kubectl expose deployment appserver --port=80 --target-port=80

$ kubectl set resources deployment appserver -c=hpa-example --

requests=cpu=200m

Next, create an HPA and define the trigger parameter --cpu-percent=40,
which means that the CPU utilization should not exceed 40%:

$ kubectl autoscale deployment appserver --cpu-percent=40 --min=1 --max=5

horizontalpodautoscaler.autoscaling/appserver autoscaled

$ kubectl get hpa --watch

NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE

appserver Deployment/appserver 1%/40% 1 5 1

2m29s

In a second terminal session, keep an eye on the deployment:

$ kubectl get deploy appserver --watch

Finally, in a third terminal session, launch the load generator:

$ kubectl run -i -t loadgen --rm --image=busybox:1.36 --restart=Never -- \

 /bin/sh -c "while sleep 0.01; do wget -q -O- http://appserver; done"

Since there are three terminal sessions involved in parallel, an overview of
the whole situation is provided in Figure 9-1.

Figure 9-1. Terminal sessions for setting up an HPA

In Figure 9-2 showing the Kubernetes dashboard, you can see the effect of
the HPA on the appserver deployment.

Figure 9-2. Kubernetes dashboard, showing the effect of an HPA

See Also

Kubernetes Event-driven Autoscaling

The HPA walkthrough in the Kubernetes documentation

9.3 Automatically Resizing a Cluster in GKE

Problem
You want the number of nodes in your GKE cluster to automatically grow
or shrink, depending on the utilization.

Solution
Use the GKE Cluster Autoscaler. This recipe assumes you’ve got the
gcloud command installed and the environment set up (i.e., you’ve created
a project and enabled billing).

https://keda.sh/
https://oreil.ly/b6Pwx

Create a cluster with one worker node and cluster autoscaling enabled:

$ gcloud container clusters create supersizeme --zone=us-west1-a \

 --machine-type=e2-small --num-nodes=1 \

 --min-nodes=1 --max-nodes=3 --enable-autoscaling

Creating cluster supersizeme in us-west1-a... Cluster is being health-checked

(master is healthy)...done.

Created [https://container.googleapis.com/v1/projects/k8s-cookbook/zones/

us-west1-a/clusters/supersizeme].

To inspect the contents of your cluster, go to:

https://console.cloud.google.com/

kubernetes/workload_/gcloud/us-west1-a/supersizeme?project=k8s-cookbook

kubeconfig entry generated for supersizeme.

NAME LOCATION ... MACHINE_TYPE NODE_VERSION NUM_NODES STATUS

supersizeme us-west1-a ... e2-small 1.26.5-gke.1200 1

RUNNING

At this point in time, when looking at the Google Cloud console, you
should see something like what is shown in Figure 9-3.

Figure 9-3. Google Cloud console, showing the initial cluster size of one node

Now, launch three pods using a deployment and request cluster resources to
trigger the cluster autoscaling:

$ kubectl create deployment gogs --image=gogs/gogs:0.13 --replicas=3

$ kubectl set resources deployment gogs -c=gogs --

requests=cpu=200m,memory=256Mi

After a while, the deployment will be updated:

$ kubectl get deployment gogs

NAME READY UP-TO-DATE AVAILABLE AGE

gogs 3/3 3 3 2m27s

You should now have a cluster of two nodes, as depicted in Figure 9-4.

Figure 9-4. Google Cloud console, showing the resulting cluster scaled to two nodes

Discussion
Cluster autoscaling can be enabled or updated on a GKE cluster after it has
been created:

$ gcloud container clusters update supersizeme --zone=us-west1-a \

 --min-nodes=1 --max-nodes=3 --enable-autoscaling

The choice of machine type used in the cluster nodes is an important factor
to consider and depends on the resources required to run your workloads. If
your workloads demand more resources, then you should consider using a
larger machine type.

https://oreil.ly/lz7wQ

Unlike pod scaling, cluster scaling dynamically adds resources to your
cluster, which could significantly increase your cloud bill. Ensure that you
configure the maximum node count of your GKE cluster appropriately to
avoid exceeding your spending limit.

When you don’t need the cluster anymore, you should delete it to avoid
being charged for unused compute resources:

$ gcloud container clusters delete supersizeme

See Also

Cluster Autoscaler in the kubernetes/autoscaler repo

Cluster Autoscaler in the GKE docs

9.4 Automatically Resizing an Amazon EKS
Cluster

Problem
You want the number of nodes in your AWS EKS cluster to automatically
grow or shrink, depending on the utilization.

Solution
Use the Cluster Autoscaler, a Helm package leveraging AWS autoscaling
groups. Follow Recipe 6.1 to install the Helm client that’s required to install
the package.

First, create a cluster with one worker node and make sure you can access it
with kubectl:

$ eksctl create cluster --name supersizeme \

 --region eu-central-1 --instance-types t3.small \

 --nodes 1 --nodes-min 1 --nodes-max 3

2023-04-11 12:00:50 [i] eksctl version 0.136.0-dev+3f5a7c5e0.2023-03-31T10...

https://oreil.ly/QHik5
https://oreil.ly/g8lfr
https://oreil.ly/6opBo

2023-04-11 12:00:50 [i] using region eu-central-1

...

2023-04-11 12:17:31 [i] kubectl command should work with "/Users/sameersbn/

.kube/config", try 'kubectl get nodes'

2023-04-11 12:17:31 [✔] EKS cluster "supersizeme" in "eu-central-1" region

is ready

$ aws eks update-kubeconfig --name supersizeme --region eu-central-1

Next, deploy the Cluster Autoscaler Helm chart:

$ helm repo add autoscaler https://kubernetes.github.io/autoscaler

$ helm install autoscaler autoscaler/cluster-autoscaler \

 --set autoDiscovery.clusterName=supersizeme \

 --set awsRegion=eu-central-1 \

 --set awsAccessKeyID=<YOUR AWS KEY ID> \

 --set awsSecretAccessKey=<YOUR AWS SECRET KEY>

At this point, the cluster has only one node:

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

ip...eu-central-1.compute.internal Ready <none> 31m v1.25.9-eks-

0a21954

Now, launch five pods using a deployment and request cluster resources to
trigger the cluster autoscaling:

$ kubectl create deployment gogs --image=gogs/gogs:0.13 --replicas=5

$ kubectl set resources deployment gogs -c=gogs --

requests=cpu=200m,memory=512Mi

After a while, the deployment will be updated:

$ kubectl get deployment gogs

NAME READY UP-TO-DATE AVAILABLE AGE

gogs 5/5 5 5 2m7s

Now your cluster should have scaled up to accommodate the requested
resources:

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

ip...eu-central-1.compute.internal Ready <none> 92s v1.25.9-eks-

0a21954

ip...eu-central-1.compute.internal Ready <none> 93s v1.25.9-eks-

0a21954

ip...eu-central-1.compute.internal Ready <none> 36m v1.25.9-eks-

0a21954

To avoid being charged for unused resources, delete the cluster if you don’t
need it anymore:

$ eksctl delete cluster --name supersizeme --region eu-central-1

Chapter 10. Security

Running applications in Kubernetes comes with a shared responsibility
between developers and ops folks to ensure that attack vectors are
minimized, least-privileges principles are followed, and access to resources
is clearly defined. In this chapter, we will present recipes that you can, and
should, use to make sure your cluster and apps run securely. The recipes in
this chapter cover the following:

The role and usage of service accounts

Role-based access control (RBAC)

Defining a pod’s security context

10.1 Providing a Unique Identity for an
Application

Problem
You want to grant an application access to restricted resources at a fine-
grained level.

Solution
Create a service account with specific secret access and reference it within a
pod specification.

To begin, create a dedicated namespace for this and the following recipe
called sec:

$ kubectl create namespace sec

namespace/sec created

Then, create a new service account called myappsa in that namespace and
take a closer look at it:

$ kubectl create serviceaccount myappsa -n sec

serviceaccount/myappsa created

$ kubectl describe sa myappsa -n sec

Name: myappsa

Namespace: sec

Labels: <none>

Annotations: <none>

Image pull secrets: <none>

Mountable secrets: <none>

Tokens: <none>

Events: <none>

You can reference this service account in a pod manifest, which we’re
calling serviceaccountpod.yaml, as shown next. Notice that we are also
placing this pod in the sec namespace:

apiVersion: v1

kind: Pod

metadata:

 name: myapp

 namespace: sec

spec:

 serviceAccountName: myappsa

 containers:

 - name: main

 image: busybox:1.36

 command:

 - "bin/sh"

 - "-c"

 - "sleep 10000"

Create the pod:

$ kubectl apply -f serviceaccountpod.yaml

pod/myapp created

The service account’s API credentials will be automounted at
/var/run/secrets/kubernetes.io/serviceaccount/token:

$ kubectl exec myapp -n sec -- \

 cat /var/run/secrets/kubernetes.io/serviceaccount/token

eyJhbGciOiJSUzI1NiIsImtpZCI6IkdHeTRHOUUwNl ...

Indeed, the myappsa service account token has been mounted in the
expected place in the pod and can be used going forward.

While a service account on its own is not super useful, it forms the basis for
fine-grained access control; see Recipe 10.2 for more on this.

Discussion
Being able to identify an entity is the prerequisite for authentication and
authorization. From the API server’s point of view, there are two sorts of
entities: human users and applications. While user identity (management) is
outside of the scope of Kubernetes, there is a first-class resource
representing the identity of an app: the service account.

Technically, the authentication of an app is captured by the token available
in a file at the location /var/run/secrets/kubernetes.io/serviceaccount/token,
which is mounted automatically through a secret. The service accounts are
namespaced resources and are represented as follows:

system:serviceaccount:$NAMESPACE:$SERVICEACCOUNT

Listing the service accounts in a certain namespace gives you something
like the following:

$ kubectl get sa -n sec

NAME SECRETS AGE

default 0 3m45s

myappsa 0 3m2s

Notice the service account called default here. This is created
automatically; if you don’t set the service account for a pod explicitly, as
was done in the solution, it will be assigned the default service account in
its namespace.

See Also

“Managing Service Accounts” in the Kubernetes documentation

“Configure Service Accounts for Pods” in the Kubernetes
documentation

“Pull an Image from a Private Registry” in the Kubernetes
documentation

10.2 Listing and Viewing Access Control
Information

Problem
You want to learn what actions you’re allowed to do— for example,
updating a deployment or listing secrets.

Solution
The following solution assumes you’re using RBAC as the authorization
mode. RBAC is the default mode for access control on Kubernetes.

To check if a certain action on a resource is allowed for a specific user, use
kubectl auth can-i. For example, you can execute this command to
check if the service account called system:serviceaccount:sec:myappsa
that you created in the previous recipe is allowed to list pods in the
namespace sec:

$ kubectl auth can-i list pods --as=system:serviceaccount:sec:myappsa -n=sec

no

You can assign roles to a service account using Kubernetes’s built-in RBAC
system. For example, you can give the service account permission to view
all resources in a given namespace by assigning it the predefined view
cluster role for that namespace:

https://oreil.ly/FsNK7
https://oreil.ly/mNP_M
https://oreil.ly/Fg06V
https://oreil.ly/K7y65

$ kubectl create rolebinding my-sa-view \

 --clusterrole=view \

 --serviceaccount=sec:myappsa \

 --namespace=sec

rolebinding.rbac.authorization.k8s.io/my-sa-view created

Now if you run the same can-i command, you’ll see that the service
account now has permission to read pods in the sec namespace:

$ kubectl auth can-i list pods --as=system:serviceaccount:sec:myappsa -n=sec

yes

NOTE
For this recipe to work on Minikube, depending on the version you are running, you may need to
add the parameter --extra-config=apiserver.authorization-mode=Node,RBAC when
starting your Minikube cluster.

To list the roles available in a namespace, do this:

$ kubectl get roles -n=kube-system

extension-apiserver-authentication-reader 2023-04-14T15:06:36Z

kube-proxy 2023-04-14T15:06:38Z

kubeadm:kubelet-config 2023-04-14T15:06:36Z

kubeadm:nodes-kubeadm-config 2023-04-14T15:06:36Z

system::leader-locking-kube-controller-manager 2023-04-14T15:06:36Z

system::leader-locking-kube-scheduler 2023-04-14T15:06:36Z

system:controller:bootstrap-signer 2023-04-14T15:06:36Z

system:controller:cloud-provider 2023-04-14T15:06:36Z

system:controller:token-cleaner 2023-04-14T15:06:36Z

system:persistent-volume-provisioner 2023-04-14T15:06:39Z

$ kubectl get clusterroles

NAME CREATED AT

admin 2023-04-14T15:06:36Z

cluster-admin 2023-04-14T15:06:36Z

edit 2023-04-14T15:06:36Z

kubeadm:get-nodes 2023-04-14T15:06:37Z

system:aggregate-to-admin 2023-04-14T15:06:36Z

system:aggregate-to-edit 2023-04-14T15:06:36Z

system:aggregate-to-view 2023-04-14T15:06:36Z

system:auth-delegator 2023-04-14T15:06:36Z

...

The output shows the predefined roles, which you can use directly for users
and service accounts.

To further explore a certain role and understand what actions are allowed,
use the following:

$ kubectl describe clusterroles/view

Name: view

Labels: kubernetes.io/bootstrapping=rbac-defaults

 rbac.authorization.k8s.io/aggregate-to-edit=true

Annotations: rbac.authorization.kubernetes.io/autoupdate=true

PolicyRule:

 Resources Non-Resource URLs

 --------- ----------------- --- ---

 bindings []

 configmaps []

 cronjobs.batch []

 daemonsets.extensions []

 deployments.apps []

 deployments.extensions []

 deployments.apps/scale []

 deployments.extensions/scale []

 endpoints []

 events []

 horizontalpodautoscalers.autoscaling []

 ingresses.extensions []

 jobs.batch []

 limitranges []

 namespaces []

 namespaces/status []

 persistentvolumeclaims []

 pods []

 pods/log []

 pods/status []

 replicasets.extensions []

 replicasets.extensions/scale []

 ...

In addition to the default roles defined in the kube-system namespace, you
can define your own; see Recipe 10.3.

Discussion
As you can see in Figure 10-1, there are a couple of moving parts when
dealing with RBAC authorization:

An entity— that is, a group, user, or service account

A resource, such as a pod, service, or secret

A role, which defines rules for actions on a resource

A role binding, which applies a role to an entity

Figure 10-1. The RBAC concept

The actions on a resource that a role uses in its rules are the so-called verbs:

get, list, watch

create

update/patch

delete

Concerning the roles, we differentiate between two types:

Cluster-wide

Cluster roles and their respective cluster role bindings. Note that you
can also attach cluster roles to regular role bindings.

Namespace-wide

Roles and role bindings.

In Recipe 10.3, we will further discuss how you can create your own rules
and apply them to users and resources.

See Also

“Authorization Overview” in the Kubernetes documentation

“Using RBAC Authorization” in the Kubernetes documentation

10.3 Controlling Access to Resources

Problem
For a given user or application, you want to allow or deny a certain action,
such as viewing secrets or updating a deployment.

Solution
Let’s assume you want to restrict an app to be able to view only pods—that
is, list pods and get details about pods.

We’ll work in a namespace called sec, so start by creating that namespace
with kubectl create namespace sec.

Then create a pod definition in a YAML manifest, pod-with-sa.yaml, using
a dedicated service account, myappsa (see Recipe 10.1):

https://oreil.ly/57NdL
https://oreil.ly/n0i0c

apiVersion: v1

kind: Pod

metadata:

 name: myapp

 namespace: sec

spec:

 serviceAccountName: myappsa

 containers:

 - name: main

 image: busybox:1.36

 command:

 - "sh"

 - "-c"

 - "sleep 10000"

Next, define a role—let’s call it podreader in the manifest pod-reader.yaml
—that defines the allowed actions on resources:

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: podreader

 namespace: sec

rules:

- apiGroups: [""]

 resources: ["pods"]

 verbs: ["get", "list"]

Last but not least, you need to apply the role podreader to the service
account myappsa, using a role binding in pod-reader-binding.yaml:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: podreaderbinding

 namespace: sec

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: podreader

subjects:

- kind: ServiceAccount

 name: myappsa

 namespace: sec

When creating the respective resources, you can use the YAML manifests
directly (assuming the service account has already been created):

$ kubectl create -f pod-reader.yaml

$ kubectl create -f pod-reader-binding.yaml

$ kubectl create -f pod-with-sa.yaml

Rather than creating manifests for the role and the role binding, you can use
the following commands:

$ kubectl create role podreader \

 --verb=get --verb=list \

 --resource=pods -n=sec

$ kubectl create rolebinding podreaderbinding \

 --role=sec:podreader \

 --serviceaccount=sec:myappsa \

 --namespace=sec

Note that this is a case of namespaced access control setup, since you’re
using roles and role bindings. For cluster-wide access control, you would
use the corresponding create clusterrole and create
clusterrolebinding commands.

Discussion
Sometimes it’s not obvious whether you should use a role or a cluster role
and/or role binding, so here are a few rules of thumb you might find useful:

If you want to restrict access to a namespaced resource (like a service
or pod) in a certain namespace, use a role and a role binding (as we did
in this recipe).

If you want to reuse a role in a couple of namespaces, use a cluster role
with a role binding.

If you want to restrict access to cluster-wide resources such as nodes or
to namespaced resources across all namespaces, use a cluster role with
a cluster role binding.

See Also

Kubernetes documentation on using RBAC authorization

10.4 Securing Pods

Problem
You want to define the security context for an app on the pod level. For
example, you want to run the app as a nonprivileged process.

Solution
To enforce policies on the pod level in Kubernetes, use the
securityContext field in a pod specification.

Let’s assume you want an app running as a non-root user. For this, you
would use the security context on the container level as shown in the
following manifest, securedpod.yaml:

kind: Pod

apiVersion: v1

metadata:

 name: secpod

spec:

 containers:

 - name: shell

 image: ubuntu:20.04

 command:

 - "bin/bash"

 - "-c"

 - "sleep 10000"

 securityContext:

 runAsUser: 5000

Now create the pod and check the user under which the container runs:

$ kubectl apply -f securedpod.yaml

pod/secpod created

https://oreil.ly/n0i0c

$ kubectl exec secpod -- ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

5000 1 0.0 0.0 2204 784 ? Ss 15:56 0:00 sleep 10000

5000 13 0.0 0.0 6408 1652 ? Rs 15:56 0:00 ps aux

As expected, it’s running as the user with ID 5000. Note that you can also
use the securityContext field on the pod level rather than on specific
containers.

Discussion
A more powerful method to enforce policies on the pod level is to use pod
security admission. See “Pod Security Admission” in the Kubernetes
documentation.

See Also

“Configure a Security Context for a Pod or Container” in the
Kubernetes documentation

https://oreil.ly/ujeV4
https://oreil.ly/ENH8N

Chapter 11. Monitoring and
Logging

In this chapter we focus on recipes around monitoring and logging, both on
the infrastructure and on the application level. In the context of Kubernetes,
different roles typically have different scopes:

Administrator roles

Administrators, such as cluster admins, networking operations folks, or
namespace-level admins, focus on the cluster control plane. Example
questions they might ask themselves are: Are nodes healthy? Shall we
add a worker node? What is the cluster-wide utilization? Are users close
to their usage quotas?

Developer roles

Developers mainly think and act in the context of the application or data
plane, which may well be—in the age of microservices—a handful to a
dozen pods. For example, a person in a developer role might ask: Do I
have enough resources allocated to run my app? How many replicas
should I scale my app to? Do I have access to the right volumes, and
how full are they? Is one of my apps failing and, if so, why?

We will first cover recipes focused on cluster-internal monitoring by
leveraging Kubernetes liveness and readiness probes, then focus on
monitoring with the Metrics Server and Prometheus, and finally cover
logging-related recipes.

11.1 Accessing the Logs of a Container

https://oreil.ly/agm34
https://prometheus.io/

Problem
You want to access the logs of the application running inside a container
that is running in a specific pod.

Solution
Use the kubectl logs command. To see the various options, check the
usage, like so:

$ kubectl logs --help | more

Print the logs for a container in a pod or specified resource. If the pod has

only one container, the container name is optional.

Examples:

 # Return snapshot logs from pod nginx with only one container

 kubectl logs nginx

...

For example, given a pod started by a deployment (see Recipe 4.1), you can
check the logs like so:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-with-pv-7d6877b8cf-mjx5m 1/1 Running 0 140m

$ kubectl logs nginx-with-pv-7d6877b8cf-mjx5m

...

2023/03/31 11:03:24 [notice] 1#1: using the "epoll" event method

2023/03/31 11:03:24 [notice] 1#1: nginx/1.23.4

2023/03/31 11:03:24 [notice] 1#1: built by gcc 10.2.1 20210110 (Debian 10.2.1-

6)

2023/03/31 11:03:24 [notice] 1#1: OS: Linux 5.15.49-linuxkit

2023/03/31 11:03:24 [notice] 1#1: getrlimit(RLIMIT_NOFILE): 1048576:1048576

2023/03/31 11:03:24 [notice] 1#1: start worker processes

...

TIP
If a pod has multiple containers, you can get the logs of any of them by specifying the name of the
container using the -c option of kubectl logs.

Discussion
Stern is a useful alternative for viewing pod logs on Kubernetes. It makes it
easy to get logs from across namespaces and requires only that you provide
a partial pod name in the query (as opposed to using selectors, which can be
more cumbersome at times).

11.2 Recovering from a Broken State with a
Liveness Probe

Problem
You want to make sure that if the applications running inside some of your
pods get into a broken state, Kubernetes restarts the pods automatically.

Solution
Use a liveness probe. If the probe fails, the kubelet will restart the pod
automatically. The probe is part of the pod specification and is added to the
containers section. Each container in a pod can have a liveness probe.

A probe can be of three different types: it can be a command that is
executed inside the container, an HTTP or gRPC request to a specific route
served by an HTTP server inside the container, or a more generic TCP
probe.

In the following example, we show a basic HTTP probe:

apiVersion: v1

kind: Pod

metadata:

 name: liveness-nginx

spec:

 containers:

 - name: nginx

 image: nginx:1.25.2

 livenessProbe:

 httpGet:

https://oreil.ly/o4dxI

 path: /

 port: 80

See Recipe 11.5 for a complete example.

See Also

Kubernetes container probes documentation

11.3 Controlling Traffic Flow to a Pod Using a
Readiness Probe

Problem
Your pods are up and running according to the liveness probes (see Recipe
11.2), but you want to send traffic to them only if the application is ready to
serve the requests.

Solution
Add readiness probes to your pod specifications. The following is a
straightforward example of running a single pod with the nginx container
image. The readiness probe makes an HTTP request to port 80:

apiVersion: v1

kind: Pod

metadata:

 name: readiness-nginx

spec:

 containers:

 - name: readiness

 image: nginx:1.25.2

 readinessProbe:

 httpGet:

 path: /

 port: 80

https://oreil.ly/nrqEP
https://oreil.ly/oU3wa

Discussion
While the readiness probe shown in this recipe is the same as the liveness
probe in Recipe 11.2, they typically should be different as the two probes
aim to give information about different aspects of the application. The
liveness probe checks that the application process is alive, but it may not be
ready to accept requests. The readiness probe checks that the application is
serving requests properly. As such, only when a readiness probe passes does
the pod become part of a service (see Recipe 5.1).

See Also

Kubernetes container probes documentation

11.4 Protecting Slow-Starting Containers
Using a Start-up Probe

Problem
Your pod contains a container that needs additional start-up time on first
initialization, but you don’t want to use liveness probes (see Recipe 11.2)
since this is a requirement only for the first time the pod is launched.

Solution
Add a start-up probe to your pod specification with failureThreshold and
periodSeconds set high enough to cover the start-up time for the pod.
Similar to liveness probes, start-up probes can be of three types. The
following is a straightforward example of running a single pod with the
nginx container image. The start-up probe makes an HTTP request to port
80:

apiVersion: v1

kind: Pod

metadata:

https://oreil.ly/nrqEP

 name: startup-nginx

spec:

 containers:

 - name: startup

 image: nginx:1.25.2

 startupProbe:

 httpGet:

 path: /

 port: 80

 failureThreshold: 30

 periodSeconds: 10

Discussion
Sometimes you have to deal with applications that need a long time to start
up. For example, an application may need to perform some database
migrations that take a long time to complete. In such cases setting up a
liveness probe, without compromising the fast response to deadlocks that
motivates such a probe, can be tricky. To work around this, in addition to
your liveness probe you can set up a start-up probe with the same
command, HTTP check, or TCP check, but with a failureThreshold *
periodSeconds long enough to cover the worse-case start-up time.

If a start-up probe is configured, liveness and readiness probes do not start
until it succeeds, making sure those probes don’t interfere with the
application start-up. This technique can be used to safely implement
liveness checks on slow-starting containers, avoiding them getting killed by
the kubelet before they are up and running.

See Also

Kubernetes container probes documentation

“Configure Liveness, Readiness and Startup Probes” in the Kubernetes
documentation

https://oreil.ly/nrqEP
https://oreil.ly/CoMlg

11.5 Adding Liveness and Readiness Probes
to Your Deployments

Problem
You want to be able to automatically check if your app is healthy and let
Kubernetes take action if this is not the case.

Solution
To signal to Kubernetes how your app is doing, add liveness and readiness
probes as described here.

The starting point is a deployment manifest, webserver.yaml:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: webserver

spec:

 replicas: 1

 selector:

 matchLabels:

 app: nginx

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

 - name: nginx

 image: nginx:1.25.2

 ports:

 - containerPort: 80

Liveness and readiness probes are defined in the containers section of the
pod specification. See the introductory examples (Recipes 11.2 and 11.3)
and add the following to the container spec in your deployment’s pod
template:

...

 livenessProbe:

 httpGet:

 path: /

 port: 80

 initialDelaySeconds: 2

 periodSeconds: 10

 readinessProbe:

 httpGet:

 path: /

 port: 80

 initialDelaySeconds: 2

 periodSeconds: 10

...

Now you can launch it and check the probes:

$ kubectl apply -f webserver.yaml

deployment.apps/webserver created

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

webserver-4288715076-dk9c7 1/1 Running 0 2m

$ kubectl describe pod/webserver-4288715076-dk9c7

Name: webserver-4288715076-dk9c7

Namespace: default

Priority: 0

...

Status: Running

IP: 10.32.0.2

...

Containers:

 nginx:

 ...

 Ready: True

 Restart Count: 0

 Liveness: http-get http://:80/ delay=2s timeout=1s period=10s

#succe...

 Readiness: http-get http://:80/ delay=2s timeout=1s period=10s

#succe...

 ...

...

Note that the output of the kubectl describe command has been edited
down to the important bits; there’s much more information available, but
it’s not pertinent to our problem here.

Discussion
To verify whether a container in a pod is healthy and ready to serve traffic,
Kubernetes provides a range of health-checking mechanisms. Health
checks, or probes as they are called in Kubernetes, are defined on the
container level, not on the pod level, and are carried out by two different
components:

The kubelet on each worker node uses the livenessProbe directive
in the spec to determine when to restart a container. These liveness
probes can help overcome ramp-up issues or deadlocks.

A service load balancing a set of pods uses the readinessProbe
directive to determine if a pod is ready and hence should receive
traffic. If this is not the case, it is excluded from the service’s pool of
endpoints. Note that a pod is considered ready when all of its
containers are ready.

When should you use which probe? That depends on the behavior of the
container, really. Use a liveness probe and a restartPolicy of either
Always or OnFailure if your container can and should be killed and
restarted if the probe fails. If you want to send traffic to a pod only when
it’s ready, use a readiness probe. Note that in this latter case, the readiness
probe can be configured to use the same probing declaration endpoint (e.g.,
URL) as the liveness probe.

Start-up probes are used to determine if the application in a pod is up and
running correctly. They can be used to delay the initialization of liveness
and readiness probes, which are likely to fail if the application hasn’t
correctly started yet.

See Also

“Configure Liveness, Readiness and Startup Probes” in the Kubernetes
documentation

Kubernetes pod lifecycle documentation

Kubernetes init containers documentation (stable in v1.6 and above)

11.6 Accessing Kubernetes Metrics in the
CLI

Problem
You have installed the Kubernetes Metrics Server (see Recipe 2.7), and you
want to access the metrics using the Kubernetes CLI.

Solution
The Kubernetes CLI has the top command that displays the resource usage
of nodes and pods:

$ kubectl top node

NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%

minikube 338m 8% 1410Mi 17%

$ kubectl top pods --all-namespaces

NAMESPACE NAME CPU(cores) MEMORY(bytes)

default db 15m 440Mi

default liveness-nginx 1m 5Mi

default nginx-with-pv-7d6877b8cf-mjx5m 0m 3Mi

default readiness-nginx 1m 3Mi

default webserver-f4f7cb455-rhxwt 1m 4Mi

kube-system coredns-787d4945fb-jrp8j 4m 12Mi

kube-system etcd-minikube 48m 52Mi

kube-system kube-apiserver-minikube 78m 266Mi

...

These metrics can also be viewed in a graphical user interface, the
Kubernetes dashboard (see Recipe 2.5).

https://oreil.ly/CoMlg
https://oreil.ly/vEOdP
https://oreil.ly/NWpRM

TIP
I can take several minutes for the Metrics Server to become available after having started it. If it is
not yet in the ready state, then the top command might produce errors.

11.7 Using Prometheus and Grafana on
Minikube

Problem
You want to view and query the system and application metrics of your
cluster from a central place.

Solution
Deploy Prometheus and Grafana on Minikube. We’ll leverage the kube-
prometheus project, an independent project that makes it easy to install
Prometheus and Grafana on any Kubernetes cluster.

Run the following command to start a new Minikube instance that is
correctly configured to run kube-prometheus:

$ minikube delete && minikube start --kubernetes-version=v1.27.0 \

 --memory=6g --bootstrapper=kubeadm \

 --extra-config=kubelet.authentication-token-webhook=true \

 --extra-config=kubelet.authorization-mode=Webhook \

 --extra-config=scheduler.bind-address=0.0.0.0 \

 --extra-config=controller-manager.bind-address=0.0.0.0

Ensure the metrics-server add-on is disabled on Minikube:

$ minikube addons disable metrics-server

Clone the kube-prometheus project:

$ git clone https://github.com/prometheus-operator/kube-prometheus.git

https://oreil.ly/3oyNd

Change into the cloned repository, and then run the following command
that will create a dedicated namespace called monitoring and create the
necessary custom resource definitions:

$ kubectl apply --server-side -f manifests/setup

$ kubectl wait \

 --for condition=Established \

 --all CustomResourceDefinition \

 --namespace=monitoring

$ kubectl apply -f manifests/

To open the Prometheus dashboard, you can use a port forward as shown
here, or you can use ingress as defined in Recipe 5.5:

$ kubectl --namespace monitoring port-forward svc/prometheus-k8s 9090

You can then open Prometheus on localhost:9090 in your browser.

You can do something similar to access the Grafana dashboard:

$ kubectl --namespace monitoring port-forward svc/grafana 3000

Then open the Grafana dashboard at localhost:3000 in your browser.

Use the default credentials to log in: username admin and password admin.
You can skip changing the password if you’re just running this recipe on
your local Minikube instance.

There is a built-in dashboard for the Kubernetes API server. To find it, open
the URL http://localhost:3000/dashboards or navigate to the Dashboards
using the left menu bar. Find the dashboard called “Kubernetes / API
server”; open it, and you should see a page like the one shown in Figure 11-
1.

http://localhost:3000/dashboards

Figure 11-1. The Kubernetes/API server dashboard in Grafana

Discussion
This recipe provides a great way to start experimenting with Grafana and
Prometheus and shows how to use an example built-in dashboard to get up
and running quickly. Once you start deploying your own custom workloads
and applications, you can create your own custom queries and dashboards
that will provide metrics that are more specific to your workloads. You can
learn more about Prometheus queries in the Prometheus querying reference
documentation, and more about Grafana dashboards in the Grafana
documentation.

See Also

kube-prometheus on GitHub

Prometheus Operator on GitHub

https://oreil.ly/23dQ9
https://oreil.ly/nf6jI
https://oreil.ly/3oyNd
https://oreil.ly/q6pdv

Prometheus Operator

Prometheus

Grafana

https://prometheus-operator.dev/
https://prometheus.io/
https://grafana.com/

Chapter 12. Maintenance and
Troubleshooting

In this chapter, you will find recipes that deal with both app-level and
cluster-level maintenance. We cover various aspects of troubleshooting,
from debugging pods and containers to testing service connectivity,
interpreting a resource’s status, and maintaining nodes. Last but not least,
we look at how to deal with etcd, the Kubernetes control-plane storage
component. This chapter is relevant for both cluster admins and app
developers.

12.1 Enabling Autocomplete for kubectl

Problem
It is cumbersome to type full commands and arguments for the kubectl
CLI, so you want an autocomplete function for it.

Solution
Enable autocompletion for kubectl.

For the bash shell, you can enable kubectl autocompletion in your current
shell with the following command:

$ source <(kubectl completion bash)

Add this to your ~/.bashrc file so that autocomplete loads in all of your
shell sessions:

$ echo 'source <(kubectl completion bash)' >>~/.bashrc

Note that autocompletion for bash depends on bash-completion being
installed.

For the zsh shell, you can enable kubectl autocompletion with the
following command:

$ source <(kubectl completion zsh)

And you can add this same command to your ~/.zshrc file for autocomplete
to load in all your shell sessions.

For autocompletion to work in zsh, you may need to have these commands
at the start of your ~/.zshrc file:

autoload -Uz compinit

compinit

For other operating systems and shells, please check the documentation.

Discussion
Another popular improvement to the kubectl developer experience is to
define an alias to shorten kubectl to just the letter k. This can be achieved
by executing the following commands or adding them to your shell start-up
script:

alias k=kubectl

complete -o default -F __start_kubectl k

Then, you can simply type commands like k apply -f myobject.yaml.
This combined with autocompletion makes life a lot easier.

See Also

Overview of kubectl

kubectl Cheat Sheet

https://oreil.ly/AdlLN
https://oreil.ly/G3das
https://oreil.ly/mu6PZ
https://oreil.ly/Yrk3C

12.2 Removing a Pod from a Service

Problem
You have a well-defined service (see Recipe 5.1) backed by several pods.
But one of the pods is causing problems (e.g., crashing or not responding),
and you want to take it out of the list of endpoints to examine it at a later
time.

Solution
Relabel the pod using the --overwrite option— this will allow you to
change the value of the run label on the pod. By overwriting this label, you
can ensure that it will not be selected by the service selector (Recipe 5.1)
and will be removed from the list of endpoints. At the same time, the
replica set watching over your pods will see that a pod has disappeared and
will start a new replica.

To see this in action, start with a straightforward deployment generated with
kubectl run (see Recipe 4.5):

$ kubectl create deployment nginx --image nginx:1.25.2 --replicas 4

When you list the pods and show the label with key app, you’ll see four
pods with the value nginx (app=nginx is the label that is automatically
generated by the kubectl create deployment command):

$ kubectl get pods -Lapp

NAME READY STATUS RESTARTS AGE APP

nginx-748c667d99-85zxr 1/1 Running 0 14m nginx

nginx-748c667d99-jrhpc 1/1 Running 0 14m nginx

nginx-748c667d99-rddww 1/1 Running 0 14m nginx

nginx-748c667d99-x6h6h 1/1 Running 0 14m nginx

You can then expose this deployment with a service and check the
endpoints, which correspond to the IP addresses of each pod:

$ kubectl expose deployments nginx --port 80

$ kubectl get endpoints

NAME ENDPOINTS AGE

kubernetes 192.168.49.2:8443

3h36m

nginx 10.244.0.10:80,10.244.0.11:80,10.244.0.13:80 + 1 more... 13m

Let’s imagine that the first pod in the list is causing problems, even though
its status is Running.

Moving the first pod out of the service pool via relabeling is done with a
single command:

$ kubectl label pod nginx-748c667d99-85zxr app=notworking --overwrite

TIP
To find the IP address of a pod, you can use a Go template to format the pod information and
show only its IP address:

$ kubectl get pod nginx-748c667d99-jrhpc \

 --template '{{.status.podIP}}'

10.244.0.11

You will see a new pod appear with the label app=nginx, and you will see
that your nonworking pod still exists but no longer appears in the list of
service endpoints:

$ kubectl get pods -Lapp

NAME READY STATUS RESTARTS AGE APP

nginx-748c667d99-85zxr 1/1 Running 0 14m notworking

nginx-748c667d99-jrhpc 1/1 Running 0 14m nginx

nginx-748c667d99-rddww 1/1 Running 0 14m nginx

nginx-748c667d99-x6h6h 1/1 Running 0 14m nginx

nginx-748c667d99-xfgqp 1/1 Running 0 2m17s nginx

$ kubectl describe endpoints nginx

Name: nginx

Namespace: default

Labels: app=nginx

Annotations: endpoints.kubernetes.io/last-change-trigger-time: 2023-04-

13T13...

Subsets:

 Addresses: 10.244.0.10,10.244.0.11,10.244.0.13,10.244.0.9

 NotReadyAddresses: <none>

 Ports:

 Name Port Protocol

 ---- ---- --------

 <unset> 80 TCP

Events: <none>

12.3 Accessing a ClusterIP Service Outside
the Cluster

Problem
You have an internal service that is causing you trouble, and you want to
test that it is working well locally without exposing the service externally.

Solution
Use a local proxy to the Kubernetes API server with kubectl proxy.

Let’s assume that you have created a deployment and a service as described
in Recipe 12.2. You should see an nginx service when you list the services:

$ kubectl get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

nginx ClusterIP 10.108.44.174 <none> 80/TCP 37m

This service is not reachable outside the Kubernetes cluster. However, you
can run a proxy in a separate terminal and then reach it on localhost.

Start by running the proxy in a separate terminal:

$ kubectl proxy

Starting to serve on 127.0.0.1:8001

TIP
You can specify the port that you want the proxy to run on with the --port option.

In your original terminal, you can then use your browser or curl to access
the application exposed by your service:

$ curl http://localhost:8001/api/v1/namespaces/default/services/nginx/proxy/

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

...

Note the specific path to the service; it contains a /proxy part. Without this,
you get the JSON object representing the service.

NOTE
Note that you can now also access the entire Kubernetes API over localhost using curl.

Discussion
This recipe demonstrates an approach that is suitable for debugging and
should not be used for regular access to services in production. Rather, use
the secure Recipe 5.5 for production scenarios.

12.4 Understanding and Parsing Resource
Statuses

Problem

You want to watch an object, such as a pod, and react to changes in the
object’s status. Sometimes these state changes trigger events in CI/CD
pipelines.

Solution
Use kubectl get $KIND/$NAME -o json and parse the JSON output
using one of the two methods described here.

If you have the JSON query utility jq installed, you can use it to parse the
resource status. Let’s assume you have a pod called jump. You can do this
to find out what Quality of Service (QoS) class the pod is in:

$ kubectl run jump --image=nginx

pod/jump created

$ kubectl get po/jump -o json | jq --raw-output .status.qosClass

BestEffort

Note that the --raw-output argument for jq will show the raw value and
that .status.qosClass is the expression that matches the respective
subfield.

Another status query could be around events or state transitions. For
example:

$ kubectl get po/jump -o json | jq .status.conditions

[

 {

 "lastProbeTime": null,

 "lastTransitionTime": "2023-04-13T14:00:13Z",

 "status": "True",

 "type": "Initialized"

 },

 {

 "lastProbeTime": null,

 "lastTransitionTime": "2023-04-13T14:00:18Z",

 "status": "True",

 "type": "Ready"

 },

 {

https://oreil.ly/qopuJ
https://oreil.ly/3CcxH

 "lastProbeTime": null,

 "lastTransitionTime": "2023-04-13T14:00:18Z",

 "status": "True",

 "type": "ContainersReady"

 },

 {

 "lastProbeTime": null,

 "lastTransitionTime": "2023-04-13T14:00:13Z",

 "status": "True",

 "type": "PodScheduled"

 }

]

Of course, these queries are not limited to pods— you can apply this
technique to any resource. For example, you can query the revisions of a
deployment:

$ kubectl create deployment wordpress --image wordpress:6.3.1

deployment.apps/wordpress created

$ kubectl get deploy/wordpress -o json | jq .metadata.annotations

{

 "deployment.kubernetes.io/revision": "1"

}

Or you can list all the endpoints that make up a service:

$ kubectl get ep/nginx -o json | jq '.subsets'

[

 {

 "addresses": [

 {

 "ip": "10.244.0.10",

 "nodeName": "minikube",

 "targetRef": {

 "kind": "Pod",

 "name": "nginx-748c667d99-x6h6h",

 "namespace": "default",

 "uid": "a0f3118f-32f5-4a65-8094-8e43979f7cec"

 }

 },

 ...

],

 "ports": [

 {

 "port": 80,

 "protocol": "TCP"

 }

]

 }

]

Now that you’ve seen jq in action, let’s move on to a method that doesn’t
require external tooling— that is, the built-in feature of using Go templates.

The Go programming language defines templates in a package called
text/template that can be used for any kind of text or data transformation,
and kubectl has built-in support for it. For example, to list all the container
images used in the current namespace, do this:

$ kubectl get pods -o go-template \

 --template="{{range .items}}{{range .spec.containers}}{{.image}} \

 {{end}}{{end}}"

fluent/fluentd:v1.16-1 nginx

Discussion
You may also want to take a look at JSONPath as an alternative way to
parse the JSON produced by kubectl. It provides a syntax that can be
considered more readable and easier to reason about. Examples can be
found in the Kubernetes documentation.

See Also

The jq manual

jqplay to try out queries without installing jq

The Go template package

12.5 Debugging Pods

https://oreil.ly/muOnq
https://oreil.ly/Z7rul
https://jqplay.org/
https://oreil.ly/qfQAO

Problem
You have a situation where a pod is either not getting to or remaining in the
running state as expected or fails altogether after some time.

Solution
To systematically discover and fix the cause of the problem, enter an
OODA loop:

1. Observe. What do you see in the container logs? What events have
occurred? How is the network connectivity?

2. Orient. Formulate a set of plausible hypotheses— stay as open-minded
as possible and don’t jump to conclusions.

3. Decide. Pick one of the hypotheses.

4. Act. Test the hypothesis. If it’s confirmed, you’re done; otherwise, go
back to step 1 and continue.

Let’s take a look at a concrete example where a pod fails. Create a manifest
called unhappy-pod.yaml with this content:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: unhappy

spec:

 replicas: 1

 selector:

 matchLabels:

 app: nevermind

 template:

 metadata:

 labels:

 app: nevermind

 spec:

 containers:

 - name: shell

 image: busybox:1.36

 command:

https://oreil.ly/alw1o

 - "sh"

 - "-c"

 - "echo I will just print something here and then exit"

Now when you launch that deployment and look at the pod it creates, you’ll
see it’s unhappy:

$ kubectl apply -f unhappy-pod.yaml

deployment.apps/unhappy created

$ kubectl get pod -l app=nevermind

NAME READY STATUS RESTARTS AGE

unhappy-576954b454-xtb2g 0/1 CrashLoopBackOff 2 (21s ago) 42s

$ kubectl describe pod -l app=nevermind

Name: unhappy-576954b454-xtb2g

Namespace: default

Priority: 0

Service Account: default

Node: minikube/192.168.49.2

Start Time: Thu, 13 Apr 2023 22:31:28 +0200

Labels: app=nevermind

 pod-template-hash=576954b454

Annotations: <none>

Status: Running

IP: 10.244.0.16

IPs:

 IP: 10.244.0.16

Controlled By: ReplicaSet/unhappy-576954b454

...

Conditions:

 Type Status

 Initialized True

 Ready False

 ContainersReady False

 PodScheduled True

Volumes:

 kube-api-access-bff5c:

 Type: Projected (a volume that contains injected

data...)

 TokenExpirationSeconds: 3607

 ConfigMapName: kube-root-ca.crt

 ConfigMapOptional: <nil>

 DownwardAPI: true

QoS Class: BestEffort

Node-Selectors: <none>

Tolerations: node.kubernetes.io/not-ready:NoExecute

op=Exist...

 node.kubernetes.io/unreachable:NoExecute

op=Exist...

Events:

 Type Reason ... Message

 ---- ------ --- -------

 Normal Scheduled ... Successfully assigned default/unhappy-576954b454-

x...

 Normal Pulled ... Successfully pulled image "busybox" in

2.945704376...

 Normal Pulled ... Successfully pulled image "busybox" in

1.075044917...

 Normal Pulled ... Successfully pulled image "busybox" in

1.119703875...

 Normal Pulling ... Pulling image "busybox"

 Normal Created ... Created container shell

 Normal Started ... Started container shell

 Normal Pulled ... Successfully pulled image "busybox" in

1.055005126...

 Warning BackOff ... Back-off restarting failed container shell in

pod...

As you can see at the bottom of the description, in the Events section,
Kubernetes considers this pod as not ready to serve traffic because “Back-
off restarting failed… .”

Another way to observe this is by using the Kubernetes dashboard to view
the deployment (Figure 12-1), as well as the supervised replica set and the
pod (Figure 12-2). With Minikube you can easily open the dashboard by
running the command minikube dashboard.

Figure 12-1. Deployment in error state

Figure 12-2. Pod in error state

Discussion
An issue, be it a pod failing or a node behaving strangely, can have many
different causes. Here are some things you’ll want to check before
suspecting software bugs:

Is the manifest correct? Check with a tool such as Kubeconform.

https://oreil.ly/q_e39

Are you able to run the container locally outside of Kubernetes?

Can Kubernetes reach the container registry and actually pull the
container image?

Can the nodes talk to each other?

Can the nodes reach the control plane?

Is DNS available in the cluster?

Are there sufficient resources available on the nodes, such as CPU,
memory, and disk space?

Did you restrict the container or the namespace’s resource usage?

What are the events in the object description saying?

See Also

“Debug Pods” in the Kubernetes documentation

“Debug Running Pods” in the Kubernetes documentation

“Debug Services” in the Kubernetes documentation

“Troubleshooting Clusters” in the Kubernetes documentation

12.6 Influencing a Pod’s Start-up Behavior

Problem
For your pod to function properly, it depends on some other service being
available. You want to influence the pod’s start-up behavior so that it starts
only once the pods it depends on are available.

Solution
Use init containers to influence the start-up behavior of a pod.

https://oreil.ly/nuThZ
https://oreil.ly/61xce
https://oreil.ly/XrF29
https://oreil.ly/LD9oN
https://oreil.ly/NWpRM

Imagine you want to launch an NGINX web server that depends on a
backend service to serve content. You therefore want to make sure that the
NGINX pod starts up only once the backend service is up and running.

First, create the backend service the web server depends on:

$ kubectl create deployment backend --image=gcr.io/google-samples/hello-

app:2.0

deployment.apps/backend created

$ kubectl expose deployment backend --port=80 --target-port=8080

Then you can use the following manifest, nginx-init-container.yaml, to
launch the NGINX instance and make sure it starts up only when the
backend deployment is ready to accept connections:

kind: Deployment

apiVersion: apps/v1

metadata:

 name: nginx

spec:

 replicas: 1

 selector:

 matchLabels:

 app: nginx

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

 - name: webserver

 image: nginx:1.25.2

 ports:

 - containerPort: 80

 initContainers:

 - name: checkbackend

 image: busybox:1.36

 command: ['sh', '-c', 'until nc -w 5 backend.default.svc.cluster.local

 80; do echo

 "Waiting for backend to accept connections"; sleep 3; done;

echo

 "Backend is up, ready to launch web server"']

Now you can launch the nginx deployment and verify whether the init
container has done its job by looking at the logs of the pod it is supervising:

$ kubectl apply -f nginx-init-container.yaml

deployment.apps/nginx created

$ kubectl get po

NAME READY STATUS RESTARTS AGE

backend-8485c64ccb-99jdh 1/1 Running 0 4m33s

nginx-779d9fcdf6-2ntpn 1/1 Running 0 32s

$ kubectl logs nginx-779d9fcdf6-2ntpn -c checkbackend

Server: 10.96.0.10

Address: 10.96.0.10:53

Name: backend.default.svc.cluster.local

Address: 10.101.119.67

Backend is up, ready to launch web server

As you can see, the command in the init container indeed worked as
planned.

Discussion
Init containers are useful to prevent your application from crash looping
while it is waiting for a service to become available. For example, if you are
deploying an application that needs to connect to a database server, you can
configure an init container that checks and waits for the database server to
become ready before your application attempts a connection with it.

However, it is important to keep in mind that Kubernetes can technically
kill a pod at any time, even after it was started successfully. Therefore, it is
also important that you build resiliency into your application such that it
can survive failures in other dependent services.

12.7 Getting a Detailed Snapshot of the
Cluster State

Problem
You want to get a detailed snapshot of the overall cluster state for
orientation, auditing, or troubleshooting purposes.

Solution
Use the kubectl cluster-info dump command. For example, to create a
dump of the cluster state in a subdirectory cluster-state-2023-04-13, do this:

$ mkdir cluster-state-2023-04-13

$ kubectl cluster-info dump --all-namespaces \

 --output-directory=cluster-state-2023-04-13

Cluster info dumped to cluster-state-2023-04-13

$ tree ./cluster-state-2023-04-13

./cluster-state-2023-04-13

├── default
│ ├── daemonsets.json
│ ├── deployments.json
│ ├── es-598664765b-tpw59
│ │ └── logs.txt
│ ├── events.json
│ ├── fluentd-vw7d9
│ │ └── logs.txt
│ ├── jump
│ │ └── logs.txt
│ ├── kibana-5847789b45-bm6tn
│ │ └── logs.txt
 ...

├── ingress-nginx
│ ├── daemonsets.json
│ ├── deployments.json
│ ├── events.json
│ ├── ingress-nginx-admission-create-7qdjp
│ │ └── logs.txt
│ ├── ingress-nginx-admission-patch-cv6c6
│ │ └── logs.txt

│ ├── ingress-nginx-controller-77669ff58-rqdlq
│ │ └── logs.txt
│ ├── pods.json
│ ├── replicasets.json
│ ├── replication-controllers.json
│ └── services.json
├── kube-node-lease
│ ├── daemonsets.json
│ ├── deployments.json
│ ├── events.json
│ ├── pods.json
│ ├── replicasets.json
│ ├── replication-controllers.json
│ └── services.json
├── kube-public
│ ├── daemonsets.json
│ ├── deployments.json
│ ├── events.json
│ ├── pods.json
│ ├── replicasets.json
│ ├── replication-controllers.json
│ └── services.json
├── kube-system
│ ├── coredns-787d4945fb-9k8pn
│ │ └── logs.txt
│ ├── daemonsets.json
│ ├── deployments.json
│ ├── etcd-minikube
│ │ └── logs.txt
│ ├── events.json
│ ├── kube-apiserver-minikube
│ │ └── logs.txt
│ ├── kube-controller-manager-minikube
│ │ └── logs.txt
│ ├── kube-proxy-x6zdw
│ │ └── logs.txt
│ ├── kube-scheduler-minikube
│ │ └── logs.txt
│ ├── pods.json
│ ├── replicasets.json
│ ├── replication-controllers.json
│ ├── services.json
│ └── storage-provisioner
│ └── logs.txt
├── kubernetes-dashboard
│ ├── daemonsets.json
│ ├── dashboard-metrics-scraper-5c6664855-sztn5
│ │ └── logs.txt

│ │ g

│ ├── deployments.json
│ ├── events.json
│ ├── kubernetes-dashboard-55c4cbbc7c-ntjwk
│ │ └── logs.txt
│ ├── pods.json
│ ├── replicasets.json
│ ├── replication-controllers.json
│ └── services.json
└── nodes.json

30 directories, 66 files

12.8 Adding Kubernetes Worker Nodes

Problem
You need to add a worker node to your Kubernetes cluster, for instance
because you want to increase the capacity of your cluster.

Solution
Provision a new machine in whatever way your environment requires (for
example, in a bare-metal environment you might need to physically install a
new server in a rack, in a public cloud setting you need to create a new VM,
etc.), and then install, as daemons, the three components that make up a
Kubernetes worker node:

kubelet

This is the node manager and supervisor for all pods, no matter if
they’re controlled by the API server or running locally, such as static
pods. Note that the kubelet is the final arbiter of what pods can or
cannot run on a given node, and it takes care of the following:

Reporting node and pod statuses to the API server

Periodically executing liveness probes

Mounting the pod volumes and downloading secrets

Controlling the container runtime (see the following)

Container runtime

This is responsible for downloading container images and running
containers. Kubernetes requires the use of a runtime that conforms to
the Container Runtime Interface (CRI), like cri-o, Docker Engine, or
containerd.

kube-proxy

This process dynamically configures iptables rules on the node to
enable the Kubernetes service abstraction (redirecting the VIP to the
endpoints, one or more pods representing the service).

The actual installation of the components depends heavily on your
environment and the installation method used (cloud, kubeadm, etc.). For a
list of available options, see the kubelet reference and kube-proxy
reference.

Discussion
Worker nodes, unlike other Kubernetes resources such as deployments or
services, are not directly created by the Kubernetes control plane but only
managed by it. That means when Kubernetes creates a node, it actually only
creates an object that represents the worker node. It validates the node by
health checks based on the node’s metadata.name field, and if the node is
valid— that is, all necessary components are running— it is considered part
of the cluster; otherwise, it will be ignored for any cluster activity until it
becomes valid.

See Also

“Nodes” in the Kubernetes cluster architecture concepts

https://oreil.ly/6hmkR
http://cri-o.io/
https://docs.docker.com/engine
https://containerd.io/
https://oreil.ly/8XBRS
https://oreil.ly/mED8e
https://oreil.ly/MQ4ZV

“Communication Between Nodes and the Control Plane” in the
Kubernetes documentation

“Create Static Pods” in the Kubernetes documentation

12.9 Draining Kubernetes Nodes for
Maintenance

Problem
You need to carry out maintenance on a node— for example, to apply a
security patch or upgrade the operating system.

Solution
Use the kubectl drain command. For example, list nodes with kubectl
get nodes, and then to do maintenance on node 123-worker, do this:

$ kubectl drain 123-worker

When you are ready to put the node back into service, use kubectl
uncordon 123-worker, which will make the node schedulable again.

Discussion
The kubectl drain command first marks the specified node as
unschedulable to prevent new pods from arriving (essentially a kubectl
cordon). Then it evicts the pods if the API server supports eviction.
Otherwise, it will use kubectl delete to delete the pods. The Kubernetes
docs have a concise sequence diagram of the steps, reproduced in
Figure 12-3.

https://oreil.ly/ePukq
https://oreil.ly/_OKBq
https://oreil.ly/xXLII

Figure 12-3. Node drain sequence diagram

The kubectl drain command evicts or deletes all pods except mirror pods
(which cannot be deleted through the API server). For pods supervised by a
DaemonSet, drain will not proceed without using --ignore-daemonsets,
and regardless it will not delete any DaemonSet-managed pods— those pods
would be immediately replaced by the DaemonSet controller, which ignores
unschedulable markings.

WARNING
drain waits for graceful termination, so you should not operate on this node until the kubectl
drain command has completed. Note that kubectl drain $NODE --force will also evict pods
not managed by a ReplicationController, ReplicaSet, Job, DaemonSet, or StatefulSet.

See Also

“Safely Drain a Node” in the Kubernetes documentation

kubectl drain reference docs

https://oreil.ly/upbMl
https://oreil.ly/YP6zg

Chapter 13. Service Meshes

This chapter focuses on one of the building blocks that make it easier to
develop distributed, microservices-based applications on Kubernetes: the
service mesh. Service meshes like Istio and Linkerd can perform duties
such as monitoring, service discovery, traffic control, and security, to name
a few. By offloading these responsibilities to the mesh, application
developers can focus on delivering added value rather than reinventing the
wheel by solving transversal infrastructure concerns.

One of the major benefits of service meshes is that they can apply policies
to services transparently, without the services (client and server) needing to
know they are part of a service mesh.

In this chapter, we’ll run through basic examples using both Istio and
Linkerd. For each service mesh, we’ll show how you can quickly get up and
running using Minikube and implement service-to-service communication
inside the mesh while using simple but illustrative service mesh policies. In
both examples, we’ll deploy a service based on NGINX, and our client
invoking the service will be a curl pod. Both will be added to the mesh and
the interactions between the services will be governed by the mesh.

13.1 Installing the Istio Service Mesh

Problem
Your organization is using or plans to use a microservices architecture, and
you want to lighten the load on developers by offloading the need to build
security, service discovery, telemetry, deployment strategies, and other
nonfunctional concerns.

Solution

Install Istio on Minikube. Istio is the most widely adopted service mesh and
can offload many responsibilities from microservice developers, while also
providing operators with centralized governance over security and
operations.

First, you’ll need to start Minikube with enough resources to run Istio. The
exact resource requirements depend on your platform, and you may need to
adjust the resource allocations. We have gotten it to work with just under 8
GB of memory and four CPUs:

$ minikube start --memory=7851 --cpus=4

You can use a Minikube tunnel as a load balancer for Istio. To start it, run
this command in a new terminal (it will lock the terminal to show output
information):

$ minikube tunnel

Download and extract the latest version of Istio with the following
command (Linux and macOS):

$ curl -L https://istio.io/downloadIstio | sh -

For Windows, you can install with choco or just extract the .exe from the
downloadable archive. For more info on downloading Istio, head to Istio’s
Getting Started guide.

Change to the Istio directory. You may need to adapt the directory name
depending on the version of Istio that you installed:

$ cd istio-1.18.0

The istioctl command-line tool is designed to help debug and diagnose
your service mesh, and you’ll use it to check your Istio configuration in
other recipes. It lives in the bin directory, so add it to your path like so:

$ export PATH=$PWD/bin:$PATH

https://oreil.ly/5uFlk

p /

Now you can install Istio. The following YAML file contains an example
demo configuration. It intentionally deactivates the use of Istio as an ingress
or egress gateway, as we won’t be using Istio for ingress here. Store this
config in a file called istio-demo-config.yaml:

apiVersion: install.istio.io/v1alpha1

kind: IstioOperator

spec:

 profile: demo

 components:

 ingressGateways:

 - name: istio-ingressgateway

 enabled: false

 egressGateways:

 - name: istio-egressgateway

 enabled: false

Now use istioctl to apply this configuration to Minikube:

$ istioctl install -f istio-demo-config.yaml -y

✔ Istio core installed

✔ Istiod installed

✔ Installation complete

Finally, make sure Istio is configured to automatically inject Envoy sidecar
proxies to services that you deploy. You can enable this for the default
namespace with the following command:

$ kubectl label namespace default istio-injection=enabled

namespace/default labeled

Discussion
This guide makes use of default (which sometimes implies latest) versions
of underlying projects like Kubernetes and Istio.

You can customize these versions to match the versions of your current
production environment, for instance. To set the version of Istio you want to
use, use the ISTIO_VERSION and TARGET_ARCH parameters when
downloading Istio. For example:

$ curl -L https://istio.io/downloadIstio | ISTIO_VERSION=1.18.0 \

 TARGET_ARCH=x86_64 sh -

See Also

The official Istio Getting Started guide

13.2 Deploying a Microservice with an Istio
Sidecar

Problem
You want to deploy a new service into the service mesh, implying that a
sidecar should be automatically injected into the service’s pod. The sidecar
will intercept all of the service’s incoming and outgoing traffic and allow
the implementation of routing, security, and monitoring policies (among
others) without modifying the implementation of the service itself.

Solution
We’ll use NGINX as a simple service to work with. Start by creating a
deployment for NGINX:

$ kubectl create deployment nginx --image nginx:1.25.2

deployment.apps/nginx created

Then expose this as a Kubernetes service:

$ kubectl expose deploy/nginx --port 80

service/nginx exposed

https://oreil.ly/AKCYs

NOTE
Istio does not create new DNS entries on Kubernetes but instead relies on existing services
registered by Kubernetes or any other service registry you might be using. Later in the chapter,
you’ll deploy a curl pod that invokes the nginx service and set the curl host to nginx for DNS
resolution, but then Istio will work its magic by intercepting the request and allowing you to
define additional traffic control policies.

Now list the pods in the default namespace. You should have two containers
in the service’s pod:

$ kubectl get po

NAME READY STATUS RESTARTS AGE

nginx-77b4fdf86c-kzqvt 2/2 Running 0 27s

If you investigate the details of this pod, you’ll find that the Istio sidecar
container (based on the Envoy proxy) was injected into the pod:

$ kubectl get pods -l app=nginx -o yaml

apiVersion: v1

items:

- apiVersion: v1

 kind: Pod

 metadata:

 labels:

 app: nginx

 ...

 spec:

 containers:

 - image: nginx:1.25.2

 imagePullPolicy: IfNotPresent

 name: nginx

 resources: {}

 ...

kind: List

metadata:

 resourceVersion: ""

Discussion

This recipe assumes you have enabled automatic sidecar injection in the
namespace using the namespace labeling technique, as shown in Recipe
13.1. However, you might not necessarily want to inject sidecars into every
single pod in the namespace. In that case, you can manually choose which
pods should include the sidecar and thereby be added to the mesh. You can
learn more about manual sidecar injection in the official Istio
documentation.

See Also

More information about how to install and configure the sidecar

More information about the role of sidecars in Istio

13.3 Routing Traffic Using an Istio Virtual
Service

Problem
You want to deploy another service onto the cluster that will invoke the
nginx service you deployed earlier, but you don’t want to write any routing
or security logic into the services themselves. You also want to decouple the
client and server as much as possible.

Solution
We’ll simulate interservice communication within the service mesh by
deploying a curl pod that will be added to the mesh and invoke the nginx
service.

To decouple the curl pod from the specific pod running nginx, you’ll
create an Istio virtual service. The curl pod only needs to know about the
virtual service. Istio and its sidecars will intercept and route the traffic from
the client to the service.

https://oreil.ly/VbHz_
https://oreil.ly/E-omC
https://oreil.ly/TperP

Create the following virtual service specification in a file called
virtualservice.yaml:

apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name: nginx-vs

spec:

 hosts:

 - nginx

 http:

 - route:

 - destination:

 host: nginx

Create the virtual service:

$ kubectl apply -f virtualservice.yaml

Then run a curl pod that you’ll use to invoke the service. Because you’ve
deployed the curl pod in the default namespace and you’ve activated
automatic sidecar injection in this namespace (Recipe 13.1), the curl pod
will automatically get a sidecar and be added to the mesh:

$ kubectl run mycurlpod --image=curlimages/curl -i --tty -- sh

NOTE
If you accidentally exit the curl pod’s shell, you can always enter the pod again with the kubectl
exec command:

$ kubectl exec -i --tty mycurlpod -- sh

Now you can invoke the nginx virtual service from the curl pod:

$ curl -v nginx

* Trying 10.152.183.90:80...

* Connected to nginx (10.152.183.90) port 80 (#0)

> GET / HTTP/1.1

> Host: nginx

> User-Agent: curl/8.1.2

> Accept: */*

>

> HTTP/1.1 200 OK

> server: envoy

...

You’ll see the response from the nginx service, but notice how the HTTP
header server: envoy indicates that the response is actually coming from
the Istio sidecar running in the nginx pod.

NOTE
To reference virtual services from curl, we’re using short names that reference the names of the
Kubernetes services (nginx in this example). Under the hood, these names are translated into fully
qualified domain names, like nginx.default.svc.cluster.local. As you can see, the fully
qualified name includes a namespace name (default in this case). To be safe, for production use
cases it is recommend you explicitly use fully qualified names to avoid misconfigurations.

Discussion
This recipe focused on interservice communication within a service mesh
(also known as east–west communication), which is the sweet spot for this
technology. However, Istio and other services meshes are also able to
perform gateway duties (also known as ingress and north–south
communication), such as interactions between clients running outside the
mesh (or the Kubernetes cluster) and services running in the mesh.

At the time of writing, Istio’s gateway resource is being gradually phased
out in favor of the new Kubernetes Gateway API.

See Also

https://gateway-api.sigs.k8s.io/

Official reference documentation for Istio virtual services.

Read more about how the Kubernetes Gateway API is expected to
replace Istio’s Gateway.

13.4 Rewriting a URL Using an Istio Virtual
Service

Problem
A legacy client is using a URL and path for a service that is no longer valid.
You want to rewrite the path dynamically so that the service is correctly
invoked, without having to make changes to the client.

You can simulate this problem from your curl pod by invoking the path
/legacypath like so, which produces a 404 Not Found response:

$ curl -v nginx/legacypath

* Trying 10.152.183.90:80...

* Connected to nginx (10.152.183.90) port 80 (#0)

> GET /legacypath HTTP/1.1

> Host: nginx

> User-Agent: curl/8.1.2

> Accept: */*

>

< HTTP/1.1 404 Not Found

< server: envoy

< date: Mon, 26 Jun 2023 09:37:43 GMT

< content-type: text/html

< content-length: 153

< x-envoy-upstream-service-time: 20

<

<html>

<head><title>404 Not Found</title></head>

<body>

<center><h1>404 Not Found</h1></center>

<hr><center>nginx/1.25.1</center>

</body>

</html>

https://oreil.ly/Lth6l
https://oreil.ly/6vHQv

Solution
Use Istio to rewrite the legacy path so that it reaches a valid endpoint on the
service, which in our example will be the root of the nginx service.

Update the virtual service to include an HTTP rewrite:

apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name: nginx-vs

spec:

 hosts:

 - nginx

 http:

 - match:

 - uri:

 prefix: /legacypath

 rewrite:

 uri: /

 route:

 - destination:

 host: nginx

 - route:

 - destination:

 host: nginx

And then apply the change:

$ kubectl apply -f virtualservice.yaml

The updated virtual service includes a match attribute, which will look for
the legacy path and rewrite it to simply target the root endpoint.

Now, calls to the legacy path from the curl pod will no longer produce a
404, but a 200 OK instead:

$ curl -v nginx/legacypath

* Trying 10.152.183.90:80...

* Connected to nginx (10.152.183.90) port 80 (#0)

> GET /legacypath HTTP/1.1

> Host: nginx

> User-Agent: curl/8.1.2

> Accept: */*

>

< HTTP/1.1 200 OK

Discussion
The role of virtual services is mainly to define the routing from clients to
upstream services. For additional control over the requests to the upstream
service, refer to the Istio documentation on destination rules.

See Also

Istio HTTPRewrite documentation

13.5 Installing the Linkerd Service Mesh

Problem
Your project requires a small footprint and/or doesn’t need all the features
provided by Istio, such as support for non-Kubernetes workloads or native
support for egress.

Solution
You might be interested in trying Linkerd, which positions itself as a more
lightweight alternative to Istio.

First, if you’re directly following on from the Istio recipes, you can reset
your environment by using a command like kubectl delete all --all
(beware, this will remove everything from your cluster!).

You can then manually install Linkerd by executing the following command
and following the instructions in the terminal:

$ curl --proto '=https' --tlsv1.2 -sSfL https://run.linkerd.io/install | sh

https://oreil.ly/Yu4xW
https://oreil.ly/EGAFs

The output of the previous command will include additional steps,
including updating your PATH as well as other checks and installation
commands that are essential to completing the installation of Linkerd. The
following snippet shows these instructions at time of writing:

...

Add the linkerd CLI to your path with:

 export PATH=$PATH:/Users/jonathanmichaux/.linkerd2/bin

Now run:

 linkerd check --pre # validate that Linkerd can be

inst...

 linkerd install --crds | kubectl apply -f - # install the Linkerd CRDs

 linkerd install | kubectl apply -f - # install the control plane into

the...

 linkerd check # validate everything worked!

...

When you run the second of these install commands, you may get an
error message recommending that you rerun that command with an
additional parameter, as shown here:

linkerd install --set proxyInit.runAsRoot=true | kubectl apply -f -

At the end of the installation, you’ll be asked to run a command that checks
that everything is up and running correctly:

$ linkerd check

...

linkerd-control-plane-proxy

√ control plane proxies are healthy

√ control plane proxies are up-to-date

√ control plane proxies and cli versions match

Status check results are √

You should also be able to see the Linkerd pods running in the linkerd
namespace:

$ kubectl get pods -n linkerd

NAME READY STATUS RESTARTS AGE

linkerd-destination-6b8c559b89-rx8f7 4/4 Running 0 9m23s

linkerd-identity-6dd765fb74-52plg 2/2 Running 0 9m23s

linkerd-proxy-injector-f54b7f688-lhjg6 2/2 Running 0 9m22s

Make sure Linkerd is configured to automatically inject the Linkerd proxy
to services that you deploy. You can enable this for the default namespace
with the following command:

$ kubectl annotate namespace default linkerd.io/inject=enabled

namespace/default annotate

Discussion
William Morgan, the cofounder and CEO of Buoyant Inc., was the first to
coin the term service mesh in 2016. Since then, the community behind
Bouyant’s Linkerd has maintained its focus on providing a well-scoped,
performant product.

As mentioned in the problem statement, one of the main limitations of
Linkerd to be aware of, at time of writing, is that it can only mesh services
that are running on Kubernetes.

See Also

The Linkerd official Getting Started guide

13.6 Deploying a Service into the Linkerd
Mesh

Problem
You want to deploy a service into the Linkerd mesh and inject a sidecar into
its pod.

https://oreil.ly/zx-Wx

Solution
Let’s deploy the same nginx service as we did with Istio, which responds to
HTTP GET requests on its root endpoint, returns a 404 response on others.

Start by creating a deployment for NGINX:

$ kubectl create deployment nginx --image nginx:1.25.2

deployment.apps/nginx created

Then expose this as a Kubernetes service:

$ kubectl expose deploy/nginx --port 80

service/nginx exposed

Now list the pods in the default namespace. You should have two containers
in the nginx service’s pod:

$ kubectl get po

NAME READY STATUS RESTARTS AGE

nginx-748c667d99-fjjm4 2/2 Running 0 13s

If you investigate the details of this pod, you’ll find that two Linkerd
containers were injected into the pod. One is the init container, which plays
a role in routing TCP traffic to and from the pod and which terminates
before the other pods are started. The other container is the Linkerd proxy
itself:

$ kubectl describe pod -l app=nginx | grep Image:

 Image: cr.l5d.io/linkerd/proxy-init:v2.2.1

 Image: cr.l5d.io/linkerd/proxy:stable-2.13.5

 Image: nginx

Discussion
Like Istio, Linkerd relies on a sidecar proxy, also known as an ambassador
container, that is injected into pods and provides additional functionality to
the service running alongside it.

https://oreil.ly/ooN52

The Linkerd CLI provides the linkerd inject command as a useful
alternative way to decide where and when to inject the Linkerd proxy
container into the application pod, without manipulating labels yourself.
You can read about it in the Linkerd documentation.

See Also

More information on how to configure automatic sidecar injection

More information on the architecture of Linkerd

13.7 Routing Traffic to a Service in Linkerd

Problem
You want to deploy a service into the mesh that will invoke the nginx
service you deployed in the previous recipe, and verify that Linkerd and its
sidecars are intercepting and routing the traffic.

Solution
We’ll simulate interservice communication within the service mesh by
deploying a curl pod that will be added to the mesh and invoke the nginx
service. As you’ll see in this recipe, routing policies are defined differently
in Linkerd.

First, run a curl pod that you’ll use to invoke the service. Because you’re
starting the curl pod in the default namespace and you’ve activated
automatic sidecar injection in this namespace (Recipe 13.5), the curl pod
will automatically get a sidecar and be added to the mesh:

$ kubectl run mycurlpod --image=curlimages/curl -i --tty -- sh

Defaulted container "linkerd-proxy" out of: linkerd-proxy, mycurlpod,

linkerd-init (init)

error: Unable to use a TTY - container linkerd-proxy did not allocate one

If you don't see a command prompt, try pressing enter.

https://oreil.ly/KJfxJ
https://oreil.ly/TexFs
https://oreil.ly/nTiTn

NOTE
Because Linkerd modifies the default container ordering in a meshed pod, the previous run
command will fail because it tries to tty into the Linkerd proxy, rather than our curl container.

To bypass this issue, you can unblock the terminal with CTRL-C and then run a command to
connect into the correct container by using the -c flag:

$ kubectl attach mycurlpod -c mycurlpod -i -t

Now you can invoke the nginx service from the curl pod:

$ curl -v nginx

* Trying 10.111.17.127:80...

* Connected to nginx (10.111.17.127) port 80 (#0)

> GET / HTTP/1.1

> Host: nginx

> User-Agent: curl/8.1.2

> Accept: */*

>

< HTTP/1.1 200 OK

< server: nginx/1.25.1

...

<

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

...

NOTE
You’ll see the response from the nginx service, but unlike with Istio, there aren’t yet any clear
indicators that Linkerd has successfully intercepted this request.

To start adding a Linkerd routing policy to the nginx service, define a
Linkerd Server resource in a file called linkerd-server.yaml, shown here:

apiVersion: policy.linkerd.io/v1beta1

kind: Server

metadata:

 name: nginx

 labels:

 app: nginx

spec:

 podSelector:

 matchLabels:

 app: nginx

 port: 80

Then create the server:

$ kubectl apply -f linkerd-server.yaml

server.policy.linkerd.io/nginx created

Now if you invoke the service again from the curl pod, you’ll get
confirmation that Linkerd is intercepting this request, because by default it
will reject requests to servers that don’t have an associated authorization
policy:

$ curl -v nginx

* Trying 10.111.17.127:80...

* Connected to nginx (10.111.17.127) port 80 (#0)

> GET / HTTP/1.1

> Host: nginx

> User-Agent: curl/8.1.2

> Accept: */*

>

< HTTP/1.1 403 Forbidden

< l5d-proxy-error: client 10.244.0.24:53274: server: 10.244.0.23:80:

unauthorized request on route

< date: Wed, 05 Jul 2023 20:33:24 GMT

< content-length: 0

<

Discussion
As you can see, Linkerd uses pod selector labels to determine which pods
are governed by the policies of the mesh. In comparison, Istio’s
VirtualService resource references a service by name directly.

13.8 Authorizing Traffic to the Server in
Linkerd

Problem
You’ve added a service like nginx to the mesh and declared it as a Linkerd
server, but now you’re getting 403 Forbidden responses because the mesh
requires authorization by default on all declared servers.

Solution
Linkerd provides different policies to define which clients are allowed to
contact which servers. In this example, we’ll use a Linkerd
AuthorizationPolicy to specify which service accounts can call the
nginx service.

In your development environment, the curl pod is using the default
service account, unless otherwise specified. In production, your services
would have their own dedicated service accounts.

Start by creating a file called linkerd-auth-policy.yaml, as shown here:

apiVersion: policy.linkerd.io/v1alpha1

kind: AuthorizationPolicy

metadata:

 name: nginx-policy

spec:

 targetRef:

 group: policy.linkerd.io

 kind: Server

 name: nginx

 requiredAuthenticationRefs:

 - name: default

 kind: ServiceAccount

This policy declares that any client using the default service account will
be able to access the Linkerd server called nginx that you created in the
previous recipe.

Apply the policy:

$ kubectl apply -f linkerd-auth-policy.yaml

authorizationpolicy.policy.linkerd.io/nginx-policy created

Now you can invoke the nginx service from the curl pod and get a 200
OK:

$ curl -v nginx

* Trying 10.111.17.127:80...

* Connected to nginx (10.111.17.127) port 80 (#0)

> GET / HTTP/1.1

> Host: nginx

> User-Agent: curl/8.1.2

> Accept: */*

>

< HTTP/1.1 200 OK

...

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

Discussion
Alternative ways to control access to servers include TLS identity-based
policies, IP-based policies, specifically referencing clients by using pod
selectors, and any combination of these.

Furthermore, default policies can be applied that restrict access to services
that aren’t formally referenced by a Linkerd Server resource.

See Also

Linkerd authorization policy documentation

https://oreil.ly/LwiQ_
https://oreil.ly/FOtW1

Chapter 14. Serverless and
Event-Driven Applications

Serverless represents a cloud native paradigm for development,
empowering developers to create and deploy applications without the
burden of server management. While servers are still part of the equation,
the platform abstracts them away from the intricacies of application
development.

In this chapter, you will find recipes that show you how to deploy serverless
workloads on Kubernetes using the Knative stack.

14.1 Installing the Knative Operator

Problem
You want to deploy the Knative platform to your cluster.

Solution
Using the Knative Operator, you can easily deploy the Knative stack
components to your cluster. The operator defines custom resources (CRs),
enabling you to easily configure, install, upgrade, and manage the lifecycle
of the Knative stack.

To install version 1.11.4 of the Knative Operator from the release page, do
this:

$ kubectl apply -f https://github.com/knative/operator/releases/download/

knative-v1.11.4/operator.yaml

Verify that the operator is running:

https://knative.dev/
https://oreil.ly/y_7fy
https://oreil.ly/6CRLJ

$ kubectl get deployment knative-operator

NAME READY UP-TO-DATE AVAILABLE AGE

knative-operator 1/1 1 1 13s

Discussion
Knative is an open source project that develops components for deploying,
running, and managing serverless, cloud native applications on Kubernetes.
The platform consists of two main components, namely Serving and
Eventing.

While the Knative Operator is the preferred method for deploying and
configuring the Knative components, alternatively these components can be
deployed using YAML files made available on their respective release
pages.

14.2 Installing the Knative Serving
Component

Problem
You’ve installed the Knative Operator (see Recipe 14.1), and now you want
to deploy the Knative Serving component to run serverless applications.

Solution
Use the KnativeServing custom resource provided by the Knative
Operator to install the Serving component of Knative.

Knative Serving should be installed in a namespace named knative-
serving:

$ kubectl create ns knative-serving

namespace/knative-serving created

https://oreil.ly/dpMyf
https://oreil.ly/kYtPu
https://oreil.ly/dpMyf
https://oreil.ly/v-LsX

You must create a KnativeServing CR, add a networking layer, and
configure the DNS. For the networking layer, we will use Kourier, which is
a lightweight Ingress object for Knative Serving. For the DNS, we will
use the sslip.io DNS service.

Create a file named serving.yaml with the following contents:

apiVersion: operator.knative.dev/v1beta1

kind: KnativeServing

metadata:

 name: knative-serving

 namespace: knative-serving

spec:

 ingress:

 kourier:

 enabled: true

 config:

 network:

 ingress-class: "kourier.ingress.networking.knative.dev"

Now use kubectl to apply this configuration:

$ kubectl apply -f serving.yaml

knativeserving.operator.knative.dev/knative-serving created

It will take a few minutes for the Knative Serving component to be
successfully deployed. You can watch its deployment status using this:

$ kubectl -n knative-serving get KnativeServing knative-serving -w

NAME VERSION READY REASON

knative-serving 1.11.0 False NotReady

knative-serving 1.11.0 False NotReady

knative-serving 1.11.0 True

Alternatively, you can install Knative Serving using YAML files:

$ kubectl apply -f https://github.com/knative/serving/releases/download/

knative-v1.11.0/serving-crds.yaml

$ kubectl apply -f https://github.com/knative/serving/releases/download/

knative-v1.11.0/serving-core.yaml

https://oreil.ly/5DRRi
https://sslip.io/

Check if the kourier service has been assigned an external IP address or
CNAME:

$ kubectl -n knative-serving get service kourier

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kourier LoadBalancer 10.99.62.226 10.99.62.226 80:30227/T... 118s

TIP
On a Minikube cluster, run the command minikube tunnel in a terminal so that the kourier
service is assigned an external IP address.

Finally, configure Knative Serving to use sslip.io as the DNS suffix:

$ kubectl apply -f https://github.com/knative/serving/releases/download/

knative-v1.11.0/serving-default-domain.yaml

job.batch/default-domain created

service/default-domain-service created

Discussion
The Knative Serving component enables the Serving API. It provides a
high-level abstraction for deploying, managing, and autoscaling serverless
workloads, primarily focusing on stateless, request-driven applications. It
aims to simplify the process of deploying and managing containerized
applications in a serverless manner, allowing developers to focus on writing
code without the need to manage infrastructure concerns.

sslip.io is a DNS service that allows you to easily access your applications
deployed on Knative using domain names, without having to manage DNS
records. The service URLs will have the sslip.io suffix and when queried
with a hostname with an embedded IP address, the service will rturn that IP
address.

In production environments, it is highly recommended that you configure a
real DNS for workloads deployed on Knative.

https://oreil.ly/Shtsq

See Also

Installing Knative

Configuring DNS

14.3 Installing the Knative CLI

Problem
You’ve installed the Knative Operator (Recipe 14.1), and now you want an
easy way for managing Knative resources instead of dealing with YAML
files.

Solution
Use kn, the Knative CLI.

Install the kn binary from the GitHub release page and move it into your
$PATH. For example, to install kn v1.8.2 on macOS (Intel), do this:

$ wget https://github.com/knative/client/releases/download/knative-v1.11.0/

kn-darwin-amd64

$ sudo install -m 755 kn-darwin-amd64 /usr/local/bin/kn

Alternatively, Linux and macOS users can install the Knative CLI using the
Homebrew package manager:

$ brew install knative/client/kn

Installation of kn is extensively documented at the project page.

Discussion
kn provides a quick and easy way of creating Knative resources such as
services and event sources, without having to deal with YAML files

https://knative.dev/docs/install
https://oreil.ly/Shtsq
https://knative.dev/docs/client/install-kn
https://oreil.ly/wZXg6
https://brew.sh/
https://oreil.ly/Ks0Oh

directly. The kn tool provides a number of commands to manage Knative
resources.

For an overview of the available commands, do this:

$ kn help

kn is the command line interface for managing Knative Serving and Eventing

Find more information about Knative at: https://knative.dev

Serving Commands:

 service Manage Knative services

 revision Manage service revisions

 ...

Eventing Commands:

 source Manage event sources

 broker Manage message brokers

 ...

Other Commands:

 plugin Manage kn plugins

 completion Output shell completion code

 version Show the version of this client

You will find example usage scenarios of kn in the remainder of this
chapter.

14.4 Creating a Knative Service

Problem
You’ve installed Knative Serving (see Recipe 14.2) and now want to deploy
an application on Kubernetes that will release the cluster resources when
not in use.

Solution

Use the Knative Serving API to create a Knative Service that
automatically scales down to zero when not in use.

As an example, let’s deploy the application functions/nodeinfo, which
provides information about the Kubernetes node it’s running on. Create a
file named nodeinfo.yaml to deploy the application as a Knative Service:

apiVersion: serving.knative.dev/v1

kind: Service

metadata:

 name: nodeinfo

spec:

 template:

 spec:

 containers:

 - image: functions/nodeinfo:latest

It’s important to note that this type of service is not the same as the Service
object described in Figure 5-1; rather, this Service object is instantiated
from the Knative Serving API.

Deploy the application with this:

$ kubectl apply -f nodeinfo.yaml

service.serving.knative.dev/nodeinfo created

Check the status of the service with this:

$ kubectl get ksvc nodeinfo

NAME URL LATESTCREATED LATESTREADY

READY

nodeinfo http://nodeinfo...sslip.io nodeinfo-00001 nodeinfo-00001 True

After the service has started successfully, open the URL in your browser to
see the node information.

Now, take a look at the pods that were created for the service:

$ kubectl get po -l serving.knative.dev/service=nodeinfo -w

NAME READY STATUS RESTARTS AGE

nodeinfo-00001-deploy... 0/2 Pending 0 0s

https://oreil.ly/G3_jU

p y / g

nodeinfo-00001-deploy... 0/2 Pending 0 0s

nodeinfo-00001-deploy... 0/2 ContainerCreating 0 0s

nodeinfo-00001-deploy... 1/2 Running 0 2s

nodeinfo-00001-deploy... 2/2 Running 0 2s

Close the browser window, and after about two minutes you should notice
that the nodeinfo pods are automatically scaled down to zero:

$ kubectl get po -l serving.knative.dev/service=nodeinfo

No resources found in default namespace.

Now, if you open the URL in the browser, a new Pod object will
automatically be started to handle the incoming request. You should notice
a delay in rendering the page since a new Pod is created to handle this
request.

Discussion
Using the kn client (see Recipe 14.3), you can create the service without
having to write YAML files:

$ kn service create nodeinfo --image functions/nodeinfo:latest --port 8080

Creating service 'nodeinfo' in namespace 'default':

 0.054s The Route is still working to reflect the latest desired

specification.

 0.068s Configuration "nodeinfo" is waiting for a Revision to become ready.

 3.345s ...

 3.399s Ingress has not yet been reconciled.

 3.481s Waiting for load balancer to be ready

 3.668s Ready to serve.

Service 'nodeinfo' created to latest revision 'nodeinfo-00001' is available at

URL: http://nodeinfo.default.10.96.170.166.sslip.io

14.5 Installing the Knative Eventing
Component

Problem
You’ve installed the Knative Operator (see Recipe 14.1), and now you want
to deploy the Knative Eventing component to build event-driven
applications.

Solution
Use the KnativeEventing custom resource provided by the Knative
Operator to install the Eventing component of Knative.

Knative Eventing should be installed in a namespace named knative-
eventing:

$ kubectl create ns knative-eventing

namespace/knative-eventing created

Create a file named eventing.yaml with the following contents:

apiVersion: operator.knative.dev/v1beta1

kind: KnativeEventing

metadata:

 name: knative-eventing

 namespace: knative-eventing

Now use kubectl to apply this configuration:

$ kubectl apply -f eventing.yaml

knativeeventing.operator.knative.dev/knative-eventing created

It will take a few minutes for the Knative Eventing component to be
successfully deployed. You can watch its deployment status using this:

$ kubectl --namespace knative-eventing get KnativeEventing knative-eventing -w

NAME VERSION READY REASON

knative-eventing 1.11.1 False NotReady

knative-eventing 1.11.1 False NotReady

knative-eventing 1.11.1 False NotReady

knative-eventing 1.11.1 True

https://oreil.ly/kYtPu
https://oreil.ly/1u62U

Alternatively, to install Knative Eventing using YAML files, do this:

$ kubectl apply -f https://github.com/knative/eventing/releases/download/

knative-v1.11.1/eventing-crds.yaml

$ kubectl apply -f https://github.com/knative/eventing/releases/download/

knative-v1.11.1/eventing-core.yaml

And then install the in-memory channel and MTChannelBasedBroker:

$ kubectl apply -f https://github.com/knative/eventing/releases/download/

knative-v1.11.1/in-memory-channel.yaml

$ kubectl apply -f https://github.com/knative/eventing/releases/download/

knative-v1.11.1/mt-channel-broker.yaml

Discussion
The Knative Eventing component enables the Eventing API. It provides a
framework for managing and handing events within a cloud native
environment. Events in this context refer to occurrences or changes within a
system, such as the creation of a new resource, updates to existing
resources, or external triggers. This component enables developers to build
reactive and flexible applications that respond to real-time changes and
triggers across the cloud native ecosystem.

14.6 Deploying a Knative Eventing Source

Problem
You’ve installed Knative Eventing (see Recipe 14.5), and now you want to
deploy a source that produces events so that you can use those events to
trigger workflows in Knative.

Solution
An event source is a Kubernetes custom resource that acts as a link between
an event producer and an event sink. To inspect the event sources currently

available, do this:

$ kubectl api-resources --api-group='sources.knative.dev'

NAME SHORTNAMES APIVERSION NAMESPACED KIND

apiserversources sources.kn...dev/v1 true

ApiServerSource

containersources sources.kn...dev/v1 true

ContainerSource

pingsources sources.kn...dev/v1 true PingSource

sinkbindings sources.kn...dev/v1 true SinkBinding

PingSource is an event source that generates events containing a fixed
payload at regular intervals defined by a cron schedule. Let’s deploy a
PingSource and hook it on to a Sink named sockeye.

Begin by creating the sockeye service:

$ kubectl apply -f https://github.com/n3wscott/sockeye/releases/download/

v0.7.0/release.yaml

service.serving.knative.dev/sockeye created

Verify that the sockeye service was created successfully:

$ kubectl get ksvc sockeye

NAME URL LATESTCREATED LATESTREADY READY

sockeye http://sockeye...sslip.io sockeye-00001 sockeye-00001 True

Create a file named pingsource.yaml to create the PingSource and hook it
up with the sockeye application:

apiVersion: sources.knative.dev/v1

kind: PingSource

metadata:

 name: ping-source

spec:

 schedule: "* * * * *"

 contentType: "application/json"

 data: '{ "message": "Hello, world!" }'

 sink:

 ref:

 apiVersion: serving.knative.dev/v1

https://oreil.ly/KlpSU
https://oreil.ly/RWa85

 kind: Service

 name: sockeye

Apply the manifest with this:

$ kubectl apply -f pingsource.yaml

pingsource.sources.knative.dev/ping-source created

Verify that the PingSource was created successfully:

$ kubectl get pingsource ping-source -w

NAME ... AGE READY REASON

ping-source ... 52s False MinimumReplicasUnavailable

ping-source ... 59s True

Get the URL of the sockeye service using this:

$ kubectl get ksvc sockeye -o jsonpath={.status.url}

http://sockeye.default.10.99.62.226.sslip.io

Upon opening the URL in your web browser, you should see new events
appear every minute, as shown in Figure 14-1.

Figure 14-1. Events appearing in Sockeye

Discussion
If you do not want to write YAML files, you can use the kn client (see
Recipe 14.3) instead.

Create the sockeye service with this:

$ kn service create sockeye --image docker.io/n3wscott/sockeye:v0.7.0

Next, create the PingSource:

$ kn source ping create ping-source --data '{ "message": "Hello, world!" }' \

 --schedule '* * * * *' --sink sockeye

14.7 Enabling Knative Eventing Sources

Problem
You’ve installed the Knative Eventing component (see Recipe 14.5), and
you want to enable Knative event sources that are not enabled by default.

Solution
Additional event sources developed by the Knative community, such as
ones for GitHub, GitLab, Apache Kafka, and so on, can be configured in
the Knative Eventing custom resource. For instance, to install the GitHub
event source, update the eventing.yaml file from Recipe 14.5 like so:

apiVersion: operator.knative.dev/v1beta1

kind: KnativeEventing

metadata:

 name: knative-eventing

 namespace: knative-eventing

spec:

 source:

 github:

 enabled: true

Apply the changes with this:

$ kubectl apply -f eventing.yaml

knativeeventing.operator.knative.dev/knative-eventing configured

Watch the status of the update:

$ kubectl -n knative-eventing get KnativeEventing knative-eventing -w

NAME VERSION READY REASON

knative-eventing 1.11.1 False NotReady

knative-eventing 1.11.1 True

Now, if you inspect the available sources, you should see the
GitHubSource event source:

https://oreil.ly/ZP2Wa
https://oreil.ly/8HavC

$ kubectl api-resources --api-group='sources.knative.dev'

NAME APIVERSION NAMESPACED KIND

apiserversources sources.kn..dev/v1 true ApiServerSource

containersources sources.kn..dev/v1 true ContainerSource

githubsources sources.kn..dev/v1alpha1 true GitHubSource

pingsources sources.kn..dev/v1 true PingSource

sinkbindings sources.kn..dev/v1 true SinkBinding

Discussion
The GitHubSource event source registers for events on a specified GitHub
organization or repository and triggers a new event for selected GitHub
event types.

Open source event sources for GitLab, Apache Kafka, RabbitMQ, and more
are also available.

14.8 Installing Event Sources from
TriggerMesh

Problem
You’ve installed Knative Eventing (see Recipe 14.5), and now you want to
install event sources from TriggerMesh so that you have access to event
sources for a wide range of platforms and services.

Solution
To install v1.26.0 of TriggerMesh, do this:

$ kubectl apply -f https://github.com/triggermesh/triggermesh/releases/

download/v1.26.0/triggermesh-crds.yaml

...k8s.io/awscloudwatchlogssources.sources.triggermesh.io created

...k8s.io/awscloudwatchsources.sources.triggermesh.io created

...k8s.io/awscodecommitsources.sources.triggermesh.io create

...

$ kubectl apply -f https://github.com/triggermesh/triggermesh/releases/

download/v1.26.0/triggermesh.yaml

namespace/triggermesh created

clusterrole.rbac.authorization.k8s.io/triggermesh-namespaced-admin created

clusterrole.rbac.authorization.k8s.io/triggermesh-namespaced-edit created

clusterrole.rbac.authorization.k8s.io/triggermesh-namespaced-view created

...

You can inspect the sources provided by the TriggerMesh API using this:

$ kubectl api-resources --api-group='sources.triggermesh.io'

NAME APIVERSION NAMESPACED KIND

awscloudwatchlog... sources.tri... true AWSCloudWatchLogsSource

awscloudwatchsou... sources.tri... true AWSCloudWatchSource

awscodecommitsou... sources.tri... true AWSCodeCommitSource

...

Similarly, you can list all the sinks provided by the TriggerMesh API using
this:

$ kubectl api-resources --api-group='targets.triggermesh.io'

NAME SHORT... APIVERSION NAMESPACED KIND

awscomprehendtar... targets.tri... true

AWSComprehendTarget

awsdynamodbtarge... targets.tri... true AWSDynamoDBTarget

awseventbridgeta... targets.tri... true

AWSEventBridgeTarget

...

Discussion
TriggerMesh is free open source software that lets you easily build event-
driven applications. TriggerMesh provides event sources for a wide range
of platforms and services, such as AWS, Google Cloud, Azure, Salesforce,
Zendesk, and so on. In addition to event sources, TriggerMesh provides
components that enable you to transform the cloud events.

Head over to the TriggerMesh documentation to learn more.

See Also

TriggerMesh sources

https://triggermesh.com/
https://oreil.ly/0lDap
https://oreil.ly/-bqVQ

TriggerMesh targets

TriggerMesh transformations

https://oreil.ly/7tlVP
https://oreil.ly/O2Et4

Chapter 15. Extending
Kubernetes

Now that you’ve seen how to install, interact with, and use Kubernetes to
deploy and manage applications, we focus in this chapter on adapting
Kubernetes to your needs. For the recipes in this chapter, you will need Go
installed and access to the Kubernetes source code hosted on GitHub. We
show how to compile Kubernetes as a whole, and how to compile specific
components like the client kubectl. We also demonstrate how to use
Python to talk to the Kubernetes API server and show how to extend
Kubernetes with a custom resource definition.

15.1 Compiling from Source

Problem
You want to build your own Kubernetes binaries from source instead of
downloading the official release binaries (see Recipe 2.9) or third-party
artifacts.

Solution
Clone the Kubernetes Git repository and build from source.

If your development machine has Docker Engine installed, you can use the
quick-release target of the root Makefile, as shown here:

$ git clone https://github.com/kubernetes/kubernetes.git

$ cd kubernetes

$ make quick-release

https://go.dev/
https://github.com/kubernetes/kubernetes

TIP
This Docker-based build requires at least 8 GB of RAM to complete. Ensure that your Docker
daemon has access to that much memory. On macOS, access the Docker for Mac preferences and
increase the allocated RAM.

The binaries will be located in the _output/release-stage directory, and a
complete bundle will be in the _output/release-tars directory.

Alternatively, if you have a Golang environment properly set up, use the
release target of the root Makefile:

$ git clone https://github.com/kubernetes/kubernetes.git

$ cd kubernetes

$ make

The binaries will be located in the _output/bin directory.

See Also

The Kubernetes developer guides

15.2 Compiling a Specific Component

Problem
You want to build one specific component of Kubernetes from source. For
example, you only want to build the client kubectl.

Solution
Instead of using make quick-release or simply make, as shown in Recipe
15.1, use make kubectl.

https://go.dev/doc/install
https://oreil.ly/6CSWo

There are targets in the root Makefile to build individual components. For
example, to compile kubectl, kubeadm, and kubelet, do this:

$ make kubectl kubeadm kubelet

The binaries will be located in the _output/bin directory.

TIP
To get the complete list of Makefile build targets, run make help.

15.3 Using a Python Client to Interact with
the Kubernetes API

Problem
As a developer, you want to use Python to write scripts that use the
Kubernetes API.

Solution
Install the Python kubernetes module. This module is the official Python
client library for Kubernetes. You can install the module from source or
from the Python Package Index (PyPi) site:

$ pip install kubernetes

With a Kubernetes cluster reachable using your default kubectl context,
you are now ready to use this Python module to talk to the Kubernetes API.
For example, the following Python script lists all the pods and prints their
names:

from kubernetes import client, config

https://oreil.ly/OolLt
https://pypi.org/

config.load_kube_config()

v1 = client.CoreV1Api()

res = v1.list_pod_for_all_namespaces(watch=False)

for pod in res.items:

 print(pod.metadata.name)

The config.load_kube_config() call in this script will load your
Kubernetes credentials and endpoint from your kubectl config file. By
default, it will load the cluster endpoint and credentials for your current
context.

Discussion
The Python client is built using the OpenAPI specification of the
Kubernetes API. It is up to date and autogenerated. All APIs are available
through this client.

Each API group corresponds to a specific class, so to call a method on an
API object that is part of the /api/v1 API group, you need to instantiate the
CoreV1Api class. To use deployments, you will need to instantiate the
extensionsV1beta1Api class. All methods and corresponding API group
instances can be found in the autogenerated README.

See Also

Examples in the project’s repository

15.4 Extending the API Using Custom
Resource Definitions

Problem
You have a custom workload and none of the existing resources, such as
Deployment, Job, or StatefulSet, is a good fit. So, you want to extend the

https://oreil.ly/ITREP
https://oreil.ly/6rw3l

Kubernetes API with a new resource that represents your workload while
continuing to use kubectl in the usual way.

Solution
Use a custom resource definition (CRD).

Let’s say you want to define a custom resource of kind Function. This
represents a short-running Job-like kind of resource, akin to what AWS
Lambda offers, that is a function as a service (FaaS, or sometimes
misleadingly called a “serverless function”).

NOTE
For a production-ready FaaS solution running on Kubernetes, see Chapter 14.

First, define the CRD in a manifest file called functions-crd.yaml:

apiVersion: apiextensions.k8s.io/v1

kind: CustomResourceDefinition

metadata:

 name: functions.example.com

spec:

 group: example.com

 versions:

 - name: v1

 served: true

 storage: true

 schema:

 openAPIV3Schema:

 type: object

 properties:

 spec:

 type: object

 properties:

 code:

 type: string

 ram:

 type: string

 scope: Namespaced

https://oreil.ly/d2MmH

 names:

 plural: functions

 singular: function

 kind: Function

Then let the API server know about your new CRD (it can take several
minutes to register):

$ kubectl apply -f functions-crd.yaml

customresourcedefinition.apiextensions.k8s.io/functions.example.com created

Now that you have the custom resource Function defined and the API
server knows about it, you can instantiate it using a manifest called
myfaas.yaml with the following contents:

apiVersion: example.com/v1

kind: Function

metadata:

 name: myfaas

spec:

 code: "http://src.example.com/myfaas.js"

 ram: 100Mi

And create the myfaas resource of kind Function as per usual:

$ kubectl apply -f myfaas.yaml

function.example.com/myfaas created

$ kubectl get crd functions.example.com -o yaml

apiVersion: apiextensions.k8s.io/v1

kind: CustomResourceDefinition

metadata:

 creationTimestamp: "2023-05-02T12:12:03Z"

 generation: 1

 name: functions.example.com

 resourceVersion: "2494492251"

 uid: 5e0128b3-95d9-412b-b84d-b3fac030be75

spec:

 conversion:

 strategy: None

 group: example.com

 names:

 kind: Function

 listKind: FunctionList

 plural: functions

 shortNames:

 - fn

 singular: function

 scope: Namespaced

 versions:

 - name: v1

 schema:

 openAPIV3Schema:

 properties:

 spec:

 properties:

 code:

 type: string

 ram:

 type: string

 type: object

 type: object

 served: true

 storage: true

status:

 acceptedNames:

 kind: Function

 listKind: FunctionList

 plural: functions

 shortNames:

 - fn

 singular: function

 conditions:

 - lastTransitionTime: "2023-05-02T12:12:03Z"

 message: no conflicts found

 reason: NoConflicts

 status: "True"

 type: NamesAccepted

 - lastTransitionTime: "2023-05-02T12:12:03Z"

 message: the initial names have been accepted

 reason: InitialNamesAccepted

 status: "True"

 type: Established

 storedVersions:

 - v1

$ kubectl describe functions.example.com/myfaas

Name: myfaas

Namespace: triggermesh

Labels: <none>

Annotations: <none>

API Version: example.com/v1

Kind: Function

Metadata:

 Creation Timestamp: 2023-05-02T12:13:07Z

 Generation: 1

 Resource Version: 2494494012

 UID: bed83736-6c40-4039-97fb-2730c7a4447a

Spec:

 Code: http://src.example.com/myfaas.js

 Ram: 100Mi

Events: <none>

To discover CRDs, simply access the API server. For example, using
kubectl proxy, you can access the API server locally and query the key
space (example.com/v1 in our case):

$ curl 127.0.0.1:8001/apis/example.com/v1/ | jq .

{

 "kind": "APIResourceList",

 "apiVersion": "v1",

 "groupVersion": "example.com/v1",

 "resources": [

 {

 "name": "functions",

 "singularName": "function",

 "namespaced": true,

 "kind": "Function",

 "verbs": [

 "delete",

 "deletecollection",

 "get",

 "list",

 "patch",

 "create",

 "update",

 "watch"

],

 "shortNames": [

 "fn"

],

 "storageVersionHash": "FLWxvcx1j74="

 }

]

}

Here you can see the resource along with the allowed verbs.

When you want to get rid of your custom resource instance, simply delete
it:

$ kubectl delete functions.example.com/myfaas

function.example.com "myfaas" deleted

Discussion
As you’ve seen, it is straightforward to create a CRD. From an end user’s
point of view, CRDs present a consistent API and are more or less
indistinguishable from native resources such as pods or jobs. All the usual
commands, such as kubectl get and kubectl delete, work as expected.

Creating a CRD is, however, really less than half of the work necessary to
fully extend the Kubernetes API. On their own, CRDs only let you store
and retrieve custom data via the API server in etcd. You need to also write a
custom controller that interprets the custom data expressing the user’s
intent, establishes a control loop comparing the current state with the
declared state, and tries to reconcile both.

See Also

“Extend the Kubernetes API with CustomResourceDefinitions" in
the Kubernetes documentation

“Custom Resources” in the Kubernetes documentation

https://oreil.ly/kYmqw
https://oreil.ly/mz2bH
https://oreil.ly/gp0xn

Appendix. Resources

General
Kubernetes documentation

Kubernetes GitHub repository

Kubernetes GitHub community

Kubernetes Slack community

Tutorials and Examples
Kube by Example

Play with Kubernetes

Kubernetes: Up and Running, Second Edition, by Brendan Burns, Joe
Beda, and Kelsey Hightower (O’Reilly)

https://kubernetes.io/docs/home
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/community
https://slack.k8s.io/
https://kubebyexample.com/
https://labs.play-with-k8s.com/
https://learning.oreilly.com/library/view/kubernetes-up-and/9781492046523

Index

A

access control

listing and viewing information about, Problem-Problem

for servers, Discussion

add-ons implementing CNI, Discussion

addons command (Minikube CLI), Discussion

administrator roles, Monitoring and Logging

agents (Azure), Solution

Amazon Web Services (see AWS)

ambassador containers, Discussion

annotations

annotating a resource with kubectl annotate, Problem

labels versus, Discussion

Linkerd configured to automatically inject proxy to services, Solution

API groups, Discussion, Discussion, Discussion

api-resources command (kubectl), Solution

APIs

API Gateway as future replacement for ingress, Discussion

discovering Kubernetes API server endpoints, Problem-Problem

extending Kubernetes API using custom resource definitions,
Problem-Discussion

Kubernetes API, Exploring the Kubernetes API and Key Metadata

passing API access key to a pod using a secret, Problem-Problem

Python client interacting with Kubernetes API, Discussion

apiVersion field, Solution, Discussion

application manifests (see manifests)

application-level scaling, Scaling

applications, providing unique identity for, Problem-Problem

apply command (kubectl)

creating objects from file manifests, Problem

pointing to URL or filename in local filesystem, Discussion

using to update a deployment, Solution

Artifact Hub, Solution

searching for Helm chart for Redis, Solution

authentication

of an app, Discussion

creating authentication token for dashboard ServiceAccount, Solution

authorization

ability to identify an entity as prerequisite, Discussion

authorizing traffic to server in Linkerd, Problem-Discussion

autocompletion for kubectl, Discussion, Problem

awk command, Discussion

AWS (Amazon Web Services), Solution

automatically resizing AWS EKS cluster, Problem-Solution

Elastic Block Store (EBS) volumes, Discussion

Elastic Kubernetes Service (EKS), creating cluster on, Problem-
Solution

AWS CLI, Solution

az CLI, Solution

Azure Cloud Shell, Solution

Azure Kubernetes Service (AKS), creating a cluster on, Problem-Problem

Azure portal, Solution

B

base64 command, Discussion

bash shell, enabling kubectl autocompletion, Solution

bash-completion, Solution

batch jobs, running, Problem

binaries, client and server, downloading, Solution

bindings, Solution

Bitnami (chart publisher), Discussion

deploying Redis chart from, Solution

busybox container, launching and executing command on, Discussion

C

Calico network add-on, Solution

cascading versus direct deletion, Discussion

change cause for revisions, Solution

change-cause key, Discussion

CHANGELOG file, Solution

charts, Discussion

adding chart repositories to Helm, Problem

conversion of Docker compose file to Helm chart, Problem

creating your own to package application with Helm, Problem

deploying Cluster Autoscaler Helm chart, Solution

inspecting customizable parameters of, Problem

overriding parameters of, Problem

CLI (command-line interface)

AWS CLI, Solution

Azure CLI, Solution

helm, Solution

installing kn (Knative) CLI, Solution

installing Kubernetes CLI, Problem

(see also kubectl)

installing Minikube CLI locally, Solution

kubeadm CLI, installing, Solution

useful commands of Minikube CLI, Discussion

clients, Learning to Use the Kubernetes Client

(see also kubectl)

downloading client binaries for Kubernetes release, Problem

Python client interacting with Kubernetes API, Problem

cloud provider-specific volumes, Volumes and Configuration Data

cluster elasticity, Scaling

(see also cluster scaling)

cluster scaling, Scaling

automatically resizing cluster in GKE, Problem-Problem

cluster-info dump command (kubectl), Solution

ClusterIP type, Solution

accessing ClusterIP service outside the cluster, Problem

changing service to another type, Problem

clusters

access control, Solution

adding worker nodes to a cluster, Problem

creating

accessing Kubernetes dashboard, Problem-Problem

adding worker nodes, Problem

on Amazon Elastic Kubernetes Service, Problem-Solution

on Azure Kubernetes Service, Problem-Problem

bootstrapping new control-plane node, Problem-Problem

deploying Kubernetes dashboard, Problem

deploying Kubernetes Metrics Server, Problem-Problem

downloading client and server binaries, Solution

downloading Kubernetes release from GitHub, Problem

on Google Kubernetes Engine, Problem-Problem

installing container network add-on plugin, Problem

preparing new node for a cluster, Problem-Discussion

using systemd unit files to run Kubernetes components, Problem-
Problem

getting detailed snapshot of cluster state, Problem-Problem

persistent volumes as cluster-wide resources, Discussion

CNI (Container Network Interface), Discussion

compiling from source, Problem

building a specific Kubernetes component, Problem

compose files (Docker)

converting to Helm charts, Problem

converting to Kubernetes manifests, Problem

config maps

creating from a file and mounting on volume, Discussion

using to provide configuration data to application, Problem-Problem

container images

creating new image and updating deployment, Solution

listing all in current namespace, Solution

specifying for application creation, Discussion

updating for resources with kubectl set image, Discussion

updating with kubectl, Discussion

Container Network Interface (CNI), Discussion

Container Runtime Interface (CRI), Solution, Solution

container runtimes, Discussion, Solution

containers

accessing a secret from container running in a pod, Discussion

accessing logs of, Problem

array of in pod manifests, Solution

consuming data from persistent volume in, Solution

exchanging data between, using volumes, Problem-Problem

Linkerd modifying default ordering of in meshed pod, Solution

liveness probes, Solution

Minikube deployed as container, Discussion

security context on container level, Solution

slow-starting, protecting with start-up probe, Problem

contexts

Docker Desktop context switcher for kubectl, Solution

switching kubectl contexts, Problem

switching using kubectx and kubens, Problem

control plane

admin roles focus on cluster control plane, Monitoring and Logging

bootstrapping new control-plane node, Problem-Problem

management of worker nodes, Discussion

core API objects, Discussion

CRDs (see custom resource definitions)

create command (kubectl)

create deployment, Problem

arguments configuring deployment parameters, Discussion

generating manifest for deployment using --dry-run=client option,
Discussion

CRI (Container Runtime Interface), Solution, Solution

CronJob object, Solution

curl utility, Solution, Service Meshes

ability to access entire Kubernetes API over localhost, Solution

accessing application exposed by service, Solution

curl pod in Linkerd service mesh, Solution

running curl pod to invoke Istio virtual service, Solution

custom resource definitions, Solution

using to extend Kubernetes API, Problem-Discussion

cut command, Discussion

D

daemons (infrastructure), running per node, Problem-Discussion

DaemonSet object, Solution

pods supervised by, drain command and, Discussion

dashboard

accessing Kubernetes dashboard, Problem-Problem

deploying Kubernetes dashboard on cluster, Problem

nodes view, Solution

showing effect of HPA, Solution

default namespace, Solution

resource deletions and, Solution

default service account, Discussion

delete command (kubectl), Solution, Discussion, Discussion

delete command (Minikube CLI), Discussion

deployments, Discussion

adding liveness and readiness probes to, Problem-Problem

creating using kubectl create, Problem

deleting with kubectl, Solution

deploying a service into Linkerd service mesh, Problem-Problem

deploying Kubernetes dashboard, Problem

deploying Kubernetes Metrics Server, Problem-Problem

deploying microservice with Istio sidecar, Problem-Problem

Deployment object to supervise pods, Discussion

launching using a manifest, Problem-Problem

listing with kubectl, Solution

querying revisions of, Solution

recording commands that cause changes to, Discussion

scaling, Problem

updating, Problem-Problem

using config map in, Solution

using kubectl run, Solution

describe command (kubectl), Discussion

developer roles, Monitoring and Logging

DNS

configuring Knative Serving to use sslip.io as prefix, Solution

sslip.io DNS service, Solution

verifying registration for service, Problem

Docker

compose files, conversion to Kubernetes manifests, Problem

converting compose file to Helm chart, Problem

limitations using Minikube with Docker driver, Solution

Docker Desktop

running local clusters using Linux containers, Discussion

using Kubernetes in, Problem-Discussion

Docker Engine, Discussion, Solution

Minikube support for, Discussion

docker-registry type (secrets), Discussion

Domain Name System (see DNS)

drain command (kubectl), Solution

--ignore-daemonsets option, Discussion

drain $NODE --force, Discussion

--driver flag, installing Minikube with, Discussion

E

edit command (kubectl), Problem, Solution, Solution

EDITOR environment variable, Discussion

EKS (Elastic Kubernetes Service) (see AWS)

eksctl CLI, Solution

encryption

encrypting secrets at rest, Discussion

secrets and, Discussion

storing encrypted secrets in version control, Problem-Discussion

endpoints for service, getting, Discussion, Solution, Solution

entities, Discussion

environment variables

changing in a deployment, Solution

passing configuration data via, Solution

setting with kubectl run --env, Discussion

using secrets as, Discussion

Envoy sidecar proxies

Istio configured to automatically inject to services, Solution

Istio sidecar based on, Solution

etcd, Discussion, Maintenance and Troubleshooting

event-driven applications

deploying Knative Eventing source, Problem-Problem

enabling Knative Eventing sources, Problem

installing event sources from TriggerMesh, Problem-Discussion

installing Knative Eventing, Problem

eventing.yaml file, Solution

eviction, Discussion

exec command (kubectl), Solution, Solution

explain command (kubectl)

asking kubectl to explain resources and fields, Problem

describe command versus, Discussion

expose command (kubectl), Discussion, Solution

extending Kubernetes, Extending Kubernetes-Discussion

compiling from source, Problem

using custom resource definitions to extend Kubernetes API, Problem-
Discussion

using Python client to interact with Kubernetes API, Problem

F

FaaS (function as a service), Solution-Discussion

failureThreshold field, Solution

fields, explaining using kubectl, Problem

Fluentd agent, launching on nodes in cluster, Solution-Discussion

fully qualified domain name (FQDN), Solution, Solution

function as a service (FaaS), Solution-Discussion

Function custom resource, Solution

instantiating, Solution

G

gcloud CLI, Solution

creating Kubernetes cluster, Solution

installing kubectl with, Discussion

resizing, updating, and upgrading clusters, Discussion

generators, Discussion

generic type (secrets), Discussion

get command (kubectl), Solution

get-kube-binaries.sh, Solution

Ghost microblogging platform

removing from Minikube cluster, Discussion

starting using kubectl, Problem

Git Kubernetes repository, cloning, Solution

GitHub

downloading kompose from, Solution

downloading Kubernetes release from, Problem

installing GitHub event source, Solution

Go language

requirement for using kind, Solution

templates for text or data transformation, Solution

Golang environment property, Solution

Google Cloud SDK, Solution

Google Cloud Shell, Discussion

Google Kubernetes Engine (GKE)

creating a cluster on, Problem-Problem

GKE Cluster Autoscaler, Problem-Problem

installing kubectl using gcloud, Discussion

Grafana, deploying and using on Minikube, Solution-Discussion

grep command, Discussion

H

health checks, Discussion

(see also probes)

node, using metadata.name field, Discussion

Helm

adding chart repositories to, Problem

conversion of Docker compose file to Helm chart, Problem

creating your own chart to package application with Helm, Problem

deploying Cluster Autoscaler chart, Solution

getting user-defined parameters of Helm release, Problem

installing, Managing Application Manifests

overriding default chart parameters, Problem

uninstalling applications with, Problem

using to install applications, Problem

horizontal pod autoscalers (HPAs), Scaling

creating and defining trigger parameter, Solution

horizontal pod autoscaling, using, Problem-Problem

hostPath type, Solution, Discussion

HTTP probes, Solution, Solution

hypervisors, Discussion

I

in-memory channel, Solution

infrastructure as code (IaC), Discussion

ingress

deploying ingress controller, Problem

gateway duties performed by Istio and other service meshes,
Discussion

Ingress object, Solution

using ingress controller to make services available from outside the
cluster, Solution

init containers, Solution

init system, Discussion

interservice communication (in service mesh), Solution

IP addresses

external IP address for kourier service, Solution

finding IP address for a pod, Solution

iptables, Working with Services

dynamic configuration by Service object, Discussion

Istio, Service Meshes

deploying microservice with Istio sidecar, Problem-Problem

installing Istio service mesh, Problem-Problem

rewriting URL using Istio virtual service, Problem-Problem

routing traffic using Istio virtual service, Problem-Problem

istioctl command-line tool, Solution

applying istio-demo-config.yaml to Minikube, Solution

J

jobs

CronJob, running in a pod, Solution

running a batch job, Problem

deleting finished job, Discussion

suspending and resuming execution, Discussion

jq utility, Solution

JSON

file manifests written in, Solution

parsing using jq query utility, Solution

parsing with JSONPath, Discussion

K

kapp

deploying YAML manifests with, Problem-Discussion

installing, Problem

key/value pairs

in annotations, Problem

in labels, Solution

kind

switching kubectl context to, Solution

using to run Kubernetes locally, Problem

kind field, Solution

Binding, Solution

metadata, Solution

kn (Knative) CLI

creating a service, Discussion

creating sockeye service, Discussion

installing, Solution

overview of available commands, Discussion

Knative platform

creating a Knative Service, Problem-Problem

deploying Knative Eventing source, Problem-Problem

enabling Knative Eventing sources, Problem

installing Knative CLI, Solution

installing Knative Eventing, Problem

installing Knative Operator, Solution

installing Knative Serving component, Problem-See Also

KnativeEventing custom resource, Solution

KnativeServing custom resource, Solution

Kompose

converting Docker compose files to Helm chart, Problem

converting Docker compose files to Kubernetes manifests, Problem

installing, Solution

kourier, Solution

checking if service is assigned external IP address or CNAME,
Solution

Kube-Prometheus project, Solution

kube-proxy, Working with Services, Solution

kube-public namespace, Discussion

kube-system namespace, Discussion, Solution

kubeadm, Solution

initializing new control-plane node, Solution

kubeadm init command, Discussion

kubeadm join command, Discussion, Solution

kubectl

alias shortening kubectl to k, Discussion

annotate command, Solution, Problem, Solution

api-resources command, Solution

apply command, Solution

asking to explain resources and fields, Problem

building from source, Problem

cluster-info dump command, Solution

command to use in updating deployments, Solution

commands to start Ghost on Minikube, Problem

configuration and health check of new cluster component, Solution

create secret command, Discussion

creating a pod using kubectl run, Problem

creating deployments with kubectl create, Problem

creating new container image and updating deployment based on it,
Solution

creating objects from file manifests using kubectl apply, Problem

default kubectl context, Solution

delete command, Discussion

delete all --all, Solution

deleting resources, Problem-Problem

describe ingress command, Discussion

drain command, Solution

edit command, Solution

editing a deployment with kubectl edit, Solution

editing objects with, Problem

enabling autocompletion for, Problem

exec command, Solution, Solution

expose command, Solution

exposing nginx deployment as Kubernetes service, Solution

generating manifest for deployment with kubectl create and --dry-
run=client option, Discussion

get command

get --selector, Solution

get endpoints, Discussion

listing labels with, Discussion

installing, Problem, Solution

using gcloud, Discussion

invoking as subcommand of minikube, Discussion

label command, Solution

--overwrite option, Solution

launching batch job and watching its status, Solution

listing its version, Solution

listing resources, Problem

logs command, Solution, Solution

proxy command, Discussion, Solution, Solution

rollout history deployment command, Solution

rollout undo command, Solution

scale command, Solution

set image command, Discussion

support for Go templates to transform text or data, Solution

switching contexts directly from, Problem

switching contexts using Docker Desktop toolbar menu, Solution

top command, Discussion, Problem

watching resource changes with, Problem

kubectx, Solution

kubelet

component of worker nodes, Solution

installing, Solution

livenessProbe directive, Discussion

restarting pod automatically after failing liveness probe, Solution

running via systemd unit files, Problem-Problem

kubens, Solution

Kubernetes

running locally using kind, Problem

running locally using Minikube, Problem

using in Docker Desktop, Problem-Discussion

Kubernetes Container Runtime Interface (CRI), Solution

Kubernetes Metrics Server (see Metrics Server)

kubernetes.tar.gz file, Solution

kubeseal, Solution

KUBE_EDITOR environment variable, Discussion, Solution

L

labels, Discussion

annotations versus, Discussion

common useful labels, documentation, Discussion

labeling an object, Problem

relabeling a pod to take it out of service, Solution

restrictions on length and allowed values, Discussion

using to query objects, Problem

Linkerd, Service Meshes

authorizing traffic to server in, Problem-Discussion

configuration to automatically inject Linkerd proxy to services,
Solution

deploying a service into Linkerd mesh, Problem-Problem

installing Linkerd service mesh, Problem-Problem

routing traffic to service in, Problem-Discussion

Linux

downloading and extracting Istio, Solution

installing kn (Knative) CLI, Solution

installing Kubernetes CLI or kubectl, Solution

installing Minikube locally, Solution

Minikube using containers to run cluster locally, Discussion

watch command, Discussion

liveness probes, Problem

adding to your deployments, Problem-Problem

following successful start-up probe, Discussion

readiness probes versus, Discussion

load generator, Solution

LoadBalancer object, Discussion

logging, Monitoring and Logging

(see also monitoring and logging)

logs command (kubectl), Solution

M

macOS

downloading and extracting Istio, Solution

installing kn (Knative) CLI, Solution

installing kubectl, Solution

maintenance, Maintenance and Troubleshooting

adding worker nodes to a cluster, Problem

draining Kubernetes nodes for, Problem-See Also

enabling autocompletion for kubectl, Solution

getting detailed snapshot of cluster state, Problem-Problem

removing a pod from a service, Problem-Problem

Makefiles

quick-release target of root Makefile, Solution

targets in root Makefile to build individual Kubernetes components,
Solution

manifests

creating for resource quota, Solution

creating KnativeEventing manifest, Solution

creating objects from file manifests, Problem

defining for batch job, Solution

defining Function custom resource, Solution

defining labels in, Discussion

defining persistent volume claim, Solution

exchangedata.yaml example, Solution

explaining fields in with kubectl, Problem

launching a deployment with, Problem-Problem

managing application manifests, Managing Application Manifests-
Discussion

adding chart repositories to Helm, Problem

converting Docker compose file to Helm chart, Problem

creating your own chart to package application with Helm,
Problem

deploying YAML manifests using kapp, Problem-Discussion

getting user-supplied parameters of Helm release, Problem

inspecting customizable parameters of a chart, Problem

installing Helm, Problem

installing kapp, Problem

installing Kompose, Solution

overriding chart parameters, Problem

uninstalling applications with Helm, Problem

using Helm to install applications, Problem

for services, Discussion

understanding structure of, Problem-Problem

writing pod manifest from scratch, Problem

writing to create a namespace, Solution

metadata

labels as part of object metadata, Discussion

metadata field, Solution, Solution

metadata.name field (nodes), Discussion

metrics

accessing Kubernetes metrics in CLI, Problem

viewing and querying system and application metrics of your cluster,
Problem-Discussion

viewing for nodes and pods with top command, Discussion

Metrics Server

deploying, Problem-Problem

installing, Solution

microservices, Discussion, Monitoring and Logging

deploying with Istio sidecar, Problem-Problem

Minikube

accessing Kubernetes dashboard, Solution

CLI commands, Discussion

dashboard command, Solution

data persistency on, Problem-Problem

enabling dashboard add-on, Solution

enabling ingress add-on, Solution

enabling metrics-server add-on, Solution

installing Istio on, Solution

installing to run local instance of Kubernetes, Problem

invoking kubectl as subcommand of minikube, Discussion

service command, Solution

starting your first application on, Problem

using a persistent volume with, Problem-Problem

using locally for development, Problem

using minikube tunnel as load balancer for Istio, Solution

using minikube tunnel so kourier service is assigned external IP
address, Solution

using Prometheus and Grafana on, Problem-Discussion

monitoring and logging, Monitoring and Logging-Discussion

accessing Kubernetes metrics in CLI, Problem

accessing logs of a container, Problem

adding liveness and readiness probes to deployments, Problem-
Problem

controlling traffic flow to a pod using readiness probe, Problem

recovering from broken state with liveness probe, Problem

using Prometheus and Grafana on Minikube, Problem-Discussion

MTChannelBasedBroker, Solution

MySQL

launching using kubectl run, Discussion

mounting persistent volume for in container, Solution

N

namespaces

creating to avoid name collisions, Problem

deleting resources in, Solution

Istio sidecar injection in, Discussion

knative-eventing, Solution

in Kubernetes service names, Solution

listing all container images in, Solution

namespaced access control setup, Solution

objects created from file manifests with kubectl apply, Solution

persistent volumes and persistent volume claims, Discussion

secrets in, Discussion

setting quotas in, Problem

specifying for services, Discussion

switching for kubectl using kubens, Solution

networked volumes, Volumes and Configuration Data

networking layer for Knative Serving, Solution

networking, cluster, installing network add-on for, Problem

NFS, networked volume backed by, Discussion

NGINX

accessing from outside the cluster, Solution

creating pod to run NGINX reverse proxy, Solution

deployments created with kubectl create, exposing service on, Solution

editing nginx pod with kubectl, Solution

influencing start-up behavior of nginx pod, Solution

ingress controller, Solution

Ingress object created for, Solution

node agent, Discussion

nodes

adding worker nodes to a cluster, Problem

behaving strangely, causes of, Discussion

bootstrapping new control-plane node, Problem-Problem

draining Kubernetes nodes for maintenance, Problem-See Also

node-local ephemeral volumes, Volumes and Configuration Data

preparing new node for cluster, Problem-Discussion

running infrastructure daemons per node, Problem-Discussion

viewing metrics for, Discussion

volumes and, Discussion

north-south communication, Discussion

O

objects (Kubernetes), Exploring the Kubernetes API and Key Metadata

core API objects, Discussion

creating from file manifests, Problem

editing with kubectl, Problem

labeling, Problem

manifests for, Solution

querying, using labels, Solution

OODA loops, Solution

OpenAPI specification, Discussion

operating systems

listing of Kubernetes release binaries for, Discussion

P

package manager (Kubernetes) (see Helm)

packages (Kubernetes), Helm definition of, Discussion

patch command (kubectl)

suspending a job, Discussion

updating a deployment with, Solution

periodSeconds field, Solution

persistence, data persistence on Minikube, Problem-Problem

persistent volume claim (PVC), Solution

PersistentVolumeClaim object, using in pod definition or database
template, Solution

persistent volumes, Discussion

created on Minikube to match persistent volume claim, Solution

using with Minikube, Problem-Problem

PHP app (PHP environment and server), Solution

PingSource, Solution

Pod object, fields in manifest file, Solution

pod scaling, Scaling

using horizontal pod autoscaling, Problem-Problem

pod security admission, Discussion

podreader role example, Solution

pods, Discussion

controlling traffic flow to using readiness probe, Problem

creating and referencing service account in manifest, Solution

creating using kubectl run, Problem

debugging, Problem-Problem

defining security context for app at pod level, Problem-Discussion

deleting with kubectl, Solution

Deployment object as supervisor, Discussion

getting pods running in linkerd namespace, Solution

influencing start-up behavior, Problem-Discussion

Istio sidecar container injected into, Solution

manifest for, example, Solution

mounting secret as volume in, Solution

Pending status of new pods, Discussion

querying status of, Solution

removing a pod from a service, Problem-Problem

removing Ghost pod from Minikube, Discussion

restarting automatically after app fails liveness probe, Problem

restricting an app to getting information on, Solution

running a task on schedule in, Problem

start-up probe in pod specification, Solution

supervisors, services and, Discussion

viewing metrics for, Discussion

virtual IP (VIP) address, Working with Services

watching changes in with kubectl, Solution

writing manifest from scratch, Problem

probes

liveness and readiness probes, adding to deployments, Problem-
Problem

liveness probe, Problem

readiness probe, Problem

start-up probe, Problem

types of, Solution

Prometheus, deploying and using on Minikube, Solution-Discussion

proxy command (kubectl), Discussion

using local proxy to Kubernetes API server with, Solution

using to reach Kubernetes API server, Solution

PVC (see persistent volume claim)

PVs (see persistent volumes)

Python client, using to interact with Kubernetes API, Problem

Python Package Index (PyPi) site, Solution

Q

Quality of Service (QoS), checking for a pod, Solution

quick-release target of root Makefile, Solution

quotas (resource), Solution

R

RBAC (role-based access control), Solution-Problem

configuring to forbid low-privilege users from reading Secret objects,
Discussion

restricting app to reading information about pods, Solution

readiness probes, Problem

adding to your deployments, Problem-Problem

following successful start-up probe, Discussion

liveness probes versus, Discussion

Readme file, viewing for charts, Discussion

Redis

dashboard overview with Redis application, Discussion

deploying Redis chart from Bitnami repository, Solution

Docker compose file, converting to Kubernetes manifest, Solution

Helm chart for, finding on Artifact Hub, Solution

regions, Solution, Solution, Solution

releases (Helm), Solution

getting user-supplied parameters of, Problem

replace command (kubectl)

using to replace a deployment, Solution

replica sets, Discussion

controlled by a deployment, deletions and, Discussion

Deployment object as supervisor, Discussion

replicas, scaling for a deployment, Solution

ReplicaSet object, Discussion

resource groups

creating Azure resource group, Solution

deleting Azure resource group, Solution

ResourceQuota object, Solution

resources

annotating with kubectl annotate, Problem

API, Solution

changes in, watching with kubectl, Problem

cluster scaling adding or removing resources, Discussion

config maps, Solution

custom, defined by Knative Operator, Solution

deleting with kubectl, Problem-Problem

explaining using kubectl, Problem

listing with kubectl, Problem

resource types in Kubernetes, Discussion

short names for, Solution

triggering cluster autoscaling, Solution, Solution

understanding and parsing statuses, Problem-Problem

updating existing container images with kubectl, Discussion

restartPolicy, Discussion

role bindings, Solution

role-based access control (see RBAC)

roles and role bindings, Discussion

RollingUpdate, Solution

rollout of deployments, triggering, Solution

rollout undo command (kubectl), Solution

routing

routing traffic to service in Linkerd, Problem-Discussion

using Istio virtual service, Problem-Problem

run command (kubectl), Discussion, Problem

(see also kubectl)

arguments to configure pod parameters, Discussion

--help option, Discussion

run label, Solution

S

scaling

automatically resizing AWS EKS cluster, Problem-Solution

automatically resizing cluster in GKE, Problem-Problem

cluster scaling and pod scaling, Scaling

horizontally scaling a deployment, Problem

using horizontal pod autoscaling, Problem-Problem

scheduling jobs, Solution

sealed-secrets, Solution-Discussion

creating SealedSecret object, Solution

secrets

encrypted, storing in version control, Problem-Discussion

passing API access key to a pod using a secret, Problem-Problem

RBAC access control to forbid low-privilege users reading Secret
objects, Discussion

Secret object corresponding to SealedSecret, Discussion

security, Security-Discussion

listing and viewing access control information, Problem-Problem

providing unique identity for an application, Problem-Problem

securing pods, Problem-Discussion

securityContext field, Solution

selector, Discussion

serverless, Serverless and Event-Driven Applications-Discussion

creating a Knative Service, Problem-Problem

deploying Knative Eventing source, Problem-Problem

enabling Knative Eventing sources, Problem

installing event sources from TriggerMesh, Problem-Discussion

installing Knative Eventing, Problem

installing Knative Operator, Solution

installing Knative Serving component, Problem-See Also

installing the Knative CLI, Solution

servers, Serverless and Event-Driven Applications

(see also serverless)

downloading server binaries for Kubernetes release, Problem

service accounts, Solution

creating ServiceAccount object for Kubernetes dashboard, Solution

referencing in pod manifest, Solution

representing identity of apps, Discussion

service command (Minikube), Solution, Solution

service meshes, Service Meshes-Discussion

authorizing traffic to server in Linkerd, Problem-Discussion

deploying a service into Linkerd mesh, Problem-Problem

deploying microservice with Istio sidecar, Problem-Problem

installing Istio service mesh, Problem-Problem

installing Linkerd service mesh, Problem-Problem

rewriting URL using Istio virtual service, Problem-Problem

routing traffic to service in Linkerd, Problem-Discussion

routing traffic using Istio virtual service, Problem-Problem

Service object

dynamic configuration of iptables on nodes, Discussion

writing by hand, Discussion

services, Discussion, Working with Services-Discussion

accessing ClusterIP service outside the cluster, Problem

changing type of, Problem-Discussion

creating a Knative Service, Problem-Problem

creating service to expose your application, Problem-Problem

creating service to verify arrival of persistent volume data, Solution

deleting with kubectl, Solution

deploying ingress controller, Problem

listing with kubectl, Solution

load balancing pods using readinessProbe directive, Discussion

making available from outside the cluster, Problem-Discussion

removing a pod from, Problem-Problem

short names referencing Kubernetes services, Solution

systemd manager, Discussion

verifying DNS entry for, Problem

sha512 hash of kubernetes.tar.gz archive, Discussion

shells, enabling kubectl autocompletion, Solution

sidecar proxies

curl pod in Istio, Solution

Envoy, Istio configured to automatically inject into services, Solution

Istio sidecar, deploying microservice with, Problem-Problem

Linkerd, Discussion

sinks (eventing), Solution

spec field, Solution, Solution

special-purpose volumes, Volumes and Configuration Data

sslip.io DNS service, Solution, Solution

start command (Minikube CLI), Discussion

start-up probes, Problem, Discussion

status command (Minikube CLI), Discussion

status field, Solution

status of resources, understanding and parsing, Problem-Problem

stern tool, Discussion

stop command (Minikube CLI), Discussion

storage classes, Discussion

uses by administrators and developers, Discussion

swap, turning off, Solution

systemd, Solution

using unit files to run Kubernetes components, Problem-Problem

T

tainting control-plane node, Discussion

terminal sessions for setting up HPA, Solution

tls type secrets, Discussion

top command (kubectl), Discussion, Problem

TriggerMesh event sources, installing, Problem-Discussion

troubleshooting

accessing ClusterIP service outside the cluster, Problem

debugging pods, Problem-Problem

getting detailed snapshot of cluster state, Problem-Problem

influencing start-up behavior of pods, Problem, Discussion

understanding and parsing resource statuses, Problem-Problem

U

Ubuntu-based host for Kubernetes cluster, preparing, Solution

user workloads on control-plane node, Discussion

V

Values file, chart parameters in, Discussion

version control systems, Discussion

version control, storing encrypted secrets in, Problem-Discussion

versions

Istio and Kubernetes, customizing to match production environment,
Discussion

Kubernetes version embedded in Docker Desktop, Solution

vertical pod autoscalers (VPAs), Scaling

vi editor, Solution

virtual IP (VIP) address, Working with Services

virtual machine (VM), Minikube deployed as, Discussion

virtual services (Istio)

determining pods governed by routing policies of the mesh, Discussion

rewriting URL with, Problem-Problem

routing traffic with, Problem-Problem

volumeMounts field, Solution

volumes

about, Volumes and Configuration Data

array of in pod manifests, Solution

exchanging data between containers via, Problem-Problem

mounting config file on, Discussion

using persistent volume with Minikube, Problem-Problem

VPAs (vertical pod autoscalers), Scaling

W

--watch option (kubectl), Solution

watch command (Linux), Discussion

Windows

Hyper-V on, Discussion

installing Istio on, Solution

worker nodes

adding to a cluster, Problem, Problem

agents in Azure, Solution

Y

YAML

deploying YAML manifests using kapp, Problem-Discussion

installing Knative Eventing using YAML files, Solution

manifests written in, Solution

templating outside of kapp scope, Solution

using YAML files to install Knative Serving, Solution

Z

zones, Solution

zsh shell, enabling kubectl autocompletion, Solution

About the Authors

Sameer Naik is a cloud native engineer with a background in embedded
systems. He has been involved with various open source projects and was
an early adopter of the Docker project. He is the author of several popular
open source Docker application images. Sameer has been involved with the
Kubernetes project from an early stage and is a founding member of the
Helm Charts project. Sameer previously worked at VMware and Bitnami
and is cofounder of NextBit Computing, an embedded systems start-up.

Sébastien Goasguen is a cofounder of TriggerMesh and a 20-year open
source veteran. A member of the Apache Software Foundation, he worked
on Apache CloudStack and Libcloud for several years before diving into the
container world. Sébastien is also the founder of Skippbox, a Kubernetes
start-up acquired by Bitnami. An avid blogger, he enjoys spreading the
word about new cutting-edge technologies. Sébastien is the author of the
O’Reilly Docker Cookbook and 60 Recipes for Apache CloudStack.

Jonathan Michaux is a product manager, software engineer, and computer
scientist, with a career spanning multiple start-ups and publicly traded
companies. His mission has consistently revolved around delivering
transformative tools for developers, including in the realms of API
management, data and application integration, microservices, and most
recently event-driven applications on Kubernetes. He holds a PhD in
computer science, specializing in formal methods for concurrent systems.

https://learning.oreilly.com/library/view/docker-cookbook/9781491919705/
https://learning.oreilly.com/library/view/60-recipes-for/9781491914489/

Colophon

The animal on the cover of Kubernetes Cookbook is a Bengal eagle owl
(Bubo bengalensis). These large horned owls are usually seen in pairs and
can be found in hilly and rocky scrub forests throughout South Asia.

The Bengal eagle owl measures 19–22 inches tall and weighs between 39–
70 ounces. Its feathers are brownish-gray or beige, and its ears have brown
tufts. In contrast to the neutral color of its body, its eye color is strikingly
orange. Owls with orange eyes hunt during the day. It prefers a meaty diet
and mostly feasts on rodents such as mice or rats but will also resort to
eating other birds during the winter. This owl produces a deep, resonant,
booming, two-note “whooo” call that can be heard at dusk and dawn.

Females build nests in shallow recesses in the ground, rock ledges, and
riverbanks, and lay two to five cream-colored eggs. The eggs hatch after 33
days. By the time the chicks are around 10 weeks of age, they are adult-
sized, though not mature yet, and they depend on their parents for nearly six
months. To distract predators from their offspring, the parents will pretend
to have a wing injury or fly in a zigzag manner. Many of the animals on
O’Reilly covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black-and-white
engraving from Meyers Kleines Lexicon. The cover fonts are Gilroy
Semibold and Guardian Sans. The text font is Adobe Minion Pro; the
heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

	Preface
	Who Should Read This Book
	Why We Wrote This Book
	Navigating This Book
	A Note on Kubernetes Releases
	Technology You Need to Understand
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Getting Started with Kubernetes
	1.1. Installing the Kubernetes CLI, kubectl
	1.2. Installing Minikube to Run a Local Kubernetes Instance
	1.3. Using Minikube Locally for Development
	1.4. Starting Your First Application on Minikube
	1.5. Using kind to Run Kubernetes Locally
	1.6. Using Kubernetes in Docker Desktop
	1.7. Switching kubectl Contexts
	1.8. Switching Contexts and Namespaces Using kubectx and kubens

	2. Creating a Kubernetes Cluster
	2.1. Preparing a New Node for a Kubernetes Cluster
	2.2. Bootstrapping a Kubernetes Control-Plane Node
	2.3. Installing a Container Network Add-on for Cluster Networking
	2.4. Adding Worker Nodes to a Kubernetes Cluster
	2.5. Deploying the Kubernetes Dashboard
	2.6. Accessing the Kubernetes Dashboard
	2.7. Deploying the Kubernetes Metrics Server
	2.8. Downloading a Kubernetes Release from GitHub
	2.9. Downloading Client and Server Binaries
	2.10. Using systemd Unit Files for Running Kubernetes Components
	2.11. Creating a Kubernetes Cluster on Google Kubernetes Engine
	2.12. Creating a Kubernetes Cluster on Azure Kubernetes Service
	2.13. Creating a Kubernetes Cluster on Amazon Elastic Kubernetes Service

	3. Learning to Use the Kubernetes Client
	3.1. Listing Resources
	3.2. Deleting Resources
	3.3. Watching Resource Changes with kubectl
	3.4. Editing Objects with kubectl
	3.5. Asking kubectl to Explain Resources and Fields

	4. Creating and Modifying Fundamental Workloads
	4.1. Creating a Pod Using kubectl run
	4.2. Creating a Deployment Using kubectl create
	4.3. Creating Objects from File Manifests
	4.4. Writing a Pod Manifest from Scratch
	4.5. Launching a Deployment Using a Manifest
	4.6. Updating a Deployment
	4.7. Running a Batch Job
	4.8. Running a Task on a Schedule Within a Pod
	4.9. Running Infrastructure Daemons per Node

	5. Working with Services
	5.1. Creating a Service to Expose Your Application
	5.2. Verifying the DNS Entry of a Service
	5.3. Changing the Type of a Service
	5.4. Deploying an Ingress Controller
	5.5. Making Services Accessible from Outside the Cluster

	6. Managing Application Manifests
	6.1. Installing Helm, the Kubernetes Package Manager
	6.2. Adding Chart Repositories to Helm
	6.3. Using Helm to Install Applications
	6.4. Inspecting the Customizable Parameters of a Chart
	6.5. Overriding Chart Parameters
	6.6. Getting the User-Supplied Parameters of a Helm Release
	6.7. Uninstalling Applications with Helm
	6.8. Creating Your Own Chart to Package Your Application with Helm
	6.9. Installing Kompose
	6.10. Converting Your Docker Compose Files to Kubernetes Manifests
	6.11. Converting Your Docker Compose File to a Helm Chart
	6.12. Installing kapp
	6.13. Deploying YAML Manifests Using kapp

	7. Exploring the Kubernetes API and Key Metadata
	7.1. Discovering the Kubernetes API Server’s Endpoints
	7.2. Understanding the Structure of a Kubernetes Manifest
	7.3. Creating Namespaces to Avoid Name Collisions
	7.4. Setting Quotas Within a Namespace
	7.5. Labeling an Object
	7.6. Using Labels for Queries
	7.7. Annotating a Resource with One Command

	8. Volumes and Configuration Data
	8.1. Exchanging Data Between Containers via a Local Volume
	8.2. Passing an API Access Key to a Pod Using a Secret
	8.3. Providing Configuration Data to an Application
	8.4. Using a Persistent Volume with Minikube
	8.5. Understanding Data Persistency on Minikube
	8.6. Storing Encrypted Secrets in Version Control

	9. Scaling
	9.1. Scaling a Deployment
	9.2. Using Horizontal Pod Autoscaling
	9.3. Automatically Resizing a Cluster in GKE
	9.4. Automatically Resizing an Amazon EKS Cluster

	10. Security
	10.1. Providing a Unique Identity for an Application
	10.2. Listing and Viewing Access Control Information
	10.3. Controlling Access to Resources
	10.4. Securing Pods

	11. Monitoring and Logging
	11.1. Accessing the Logs of a Container
	11.2. Recovering from a Broken State with a Liveness Probe
	11.3. Controlling Traffic Flow to a Pod Using a Readiness Probe
	11.4. Protecting Slow-Starting Containers Using a Start-up Probe
	11.5. Adding Liveness and Readiness Probes to Your Deployments
	11.6. Accessing Kubernetes Metrics in the CLI
	11.7. Using Prometheus and Grafana on Minikube

	12. Maintenance and Troubleshooting
	12.1. Enabling Autocomplete for kubectl
	12.2. Removing a Pod from a Service
	12.3. Accessing a ClusterIP Service Outside the Cluster
	12.4. Understanding and Parsing Resource Statuses
	12.5. Debugging Pods
	12.6. Influencing a Pod’s Start-up Behavior
	12.7. Getting a Detailed Snapshot of the Cluster State
	12.8. Adding Kubernetes Worker Nodes
	12.9. Draining Kubernetes Nodes for Maintenance

	13. Service Meshes
	13.1. Installing the Istio Service Mesh
	13.2. Deploying a Microservice with an Istio Sidecar
	13.3. Routing Traffic Using an Istio Virtual Service
	13.4. Rewriting a URL Using an Istio Virtual Service
	13.5. Installing the Linkerd Service Mesh
	13.6. Deploying a Service into the Linkerd Mesh
	13.7. Routing Traffic to a Service in Linkerd
	13.8. Authorizing Traffic to the Server in Linkerd

	14. Serverless and Event-Driven Applications
	14.1. Installing the Knative Operator
	14.2. Installing the Knative Serving Component
	14.3. Installing the Knative CLI
	14.4. Creating a Knative Service
	14.5. Installing the Knative Eventing Component
	14.6. Deploying a Knative Eventing Source
	14.7. Enabling Knative Eventing Sources
	14.8. Installing Event Sources from TriggerMesh

	15. Extending Kubernetes
	15.1. Compiling from Source
	15.2. Compiling a Specific Component
	15.3. Using a Python Client to Interact with the Kubernetes API
	15.4. Extending the API Using Custom Resource Definitions

	Appendix. Resources
	General
	Tutorials and Examples

	Index
	About the Authors

