

Table of Contents
Learning PowerCLI Second Edition
Credits
About the Author
About the Reviewer
www.PacktPub.com

Why subscribe?
Customer Feedback
Preface

What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support

Downloading the example code
Errata
Piracy
Questions

1. Introduction to PowerCLI
Downloading and installing PowerCLI

Requirements for using PowerCLI 6.5 Release 1
Downloading PowerCLI 6.5 Release 1
Installing PowerCLI

Participating in the VMware Customer Improvement Program
Modifying the PowerShell execution policy
Creating a PowerShell profile
Connecting and disconnecting servers

Connecting to a server
Connecting to multiple servers
Suppressing certificate warnings
Disconnecting from a server
Retrieving the PowerCLI configuration

Using the credential store
Retrieving a list of all of your virtual machines

Suppressing deprecated warnings
Using wildcard characters
Filtering objects
Using comparison operators
Using aliases

Retrieving a list of all of your hosts
Displaying the output in a grid view

Summary
2. Learning Basic PowerCLI Concepts

Using the Get-Command, Get-Help, and Get-Member cmdlets
Using Get-Command
Using Get-VICommand
Using Get-Help
Using Get-PowerCLIHelp
Using Get-PowerCLICommunity
Using Get-Member

Using providers and PSDrives
Using providers
Using PSDrives
Using the PowerCLI Inventory Provider
Using the PowerCLI Datastore Provider
Copying files between a datastore and your PC

Using arrays and hash tables
Creating calculated properties
Using raw API objects with ExtensionData or Get-View

Using the ExtensionData property
Using the Get-View cmdlet
Using managed object references
Using the Get-VIObjectByVIView cmdlet

Extending PowerCLI objects with the New-VIProperty cmdlet
Working with vSphere folders
Summary

3. Working with Objects in PowerShell
Using objects, properties, and methods

Using methods
Expanding variables and subexpressions in strings

When will a string be expanded?
Expanding a string when it is used

Using here-strings
Using the pipeline

Using the ByValue parameter binding
Using the ByPropertyName parameter binding

Using the PowerShell object cmdlets
Using the Select-Object cmdlet
Using the Where-Object cmdlet
Using the ForEach-Object cmdlet
Using the Sort-Object cmdlet
Using the Measure-Object cmdlet

Rounding a value
Using the Group-Object cmdlet
Using the Compare-Object cmdlet
Using the Tee-Object cmdlet

Creating your own objects
Using the New-Object cmdlet
Using a hash table to create an object
Creating objects using the Select-Object cmdlet
Creating objects using [pscustomobject]
Adding properties to an object with Add-Member

Using COM objects
Summary

4. Managing vSphere Hosts with PowerCLI
Adding hosts to a VMware vCenter Server

Creating a data center
Creating a cluster
Adding a host

Enabling and disabling maintenance mode
Working with host profiles

Creating a host profile
Attaching the host profile to a cluster or a host
Testing the host profile for compliance
Applying a host profile to a host or cluster
Using host profile answer files
Exporting a host profile
Importing a host profile

Working with host services
Retrieving information about host services
Starting a host service
Stopping a host service
Restarting a host service
Modifying the startup policy of a host service

Configuring the host firewall
Getting the host firewall default policy
Modifying the host firewall default policy
Getting the host firewall exceptions
Modifying a host firewall exception

Using vSphere Image Builder and Auto Deploy
Using Image Builder

Adding ESXi software depots to your PowerCLI session
Retrieving the ESXi software depots added to your PowerCLI session
Retrieving the image profiles in your PowerCLI session
Creating image profiles

Retrieving VIB objects from all of the connected depots
Adding VIBs to an image profile or updating existing VIBs
Exporting an image profile to an ISO or ZIP file

Configuring Auto Deploy
Creating deploy rules
Adding deploy rules to a ruleset
Retrieving deploy rulesets
Adding host profiles to a deploy ruleset

Using esxcli from PowerCLI
Removing hosts from a VMware vCenter Server
Summary

5. Managing Virtual Machines with PowerCLI
Creating virtual machines

Creating virtual machines from scratch
Creating virtual machines from templates
Cloning virtual machines

Registering virtual machines
Using OS customization specifications
Importing OVF or OVA packages

Retrieving the required properties
Assigning values to the required properties
Importing the vMA OVF file

Starting and stopping virtual machines
Starting virtual machines
Suspending virtual machines
Shutting down the virtual machine's guest operating systems
Stopping virtual machines

Modifying the settings of virtual machines
Using the VMware vSphere API to modify virtual machine settings
Adding devices to a virtual machine

Adding a hard disk
Adding a SCSI controller
Adding a network adapter
Adding a floppy drive
Adding a CD drive

Modifying devices added to a virtual machine
Modifying a hard disk

Moving a hard disk to another datastore
Modifying a SCSI controller
Modifying a network adapter
Modifying a floppy drive
Modifying a CD drive

Removing devices from a virtual machine

Removing a hard disk
Removing a network adapter
Removing a floppy drive
Removing a CD drive

Converting virtual machines into templates
Converting templates into virtual machines
Modifying the name of a template
Removing templates

Moving virtual machines to another folder, host, cluster, resource pool, or datastore
Updating VMware Tools

Using the Update-Tools cmdlet
Enabling the Check and upgrade VMware Tools before each power on checkbox

Upgrading virtual machine compatibility
Using snapshots

Creating snapshots
Retrieving snapshots
Reverting to a snapshot
Modifying snapshots
Removing snapshots

Running commands in the guest OS
Configuring Fault Tolerance

Turning Fault Tolerance on
Turning Fault Tolerance off

Opening the console of virtual machines
Removing virtual machines
Using tags

Managing tag categories
Creating tag categories
Retrieving tag categories
Modifying tag categories
Removing tag categories

Managing tags
Creating tags
Retrieving tags
Modifying tags
Removing tags

Managing tag assignments
Creating tag assignments
Retrieving tag assignments
Retrieving virtual machines by tag
Removing tag assignments

Converting custom attributes and annotations to tags
Creating tag categories from custom attributes

Creating tags from annotations
Summary

6. Managing Virtual Networks with PowerCLI
Using vSphere Standard Switches

Creating vSphere Standard Switches
Configuring vSphere Standard Switches
Adding network adapters to a switch
Removing vSphere Standard Switches

Using host network adapters
Creating host network adapters
Retrieving host network adapters
Configuring host network adapters

Configuring network speed and duplex setting
Configuring the management network
Configuring vMotion

Removing host network adapters
Configuring NIC teaming

Using standard port groups
Creating standard port groups
Configuring standard port groups
Removing standard port groups

Using vSphere Distributed Switches
Creating vSphere Distributed Switches

Creating a new vSphere Distributed Switch from scratch
Cloning a vSphere Distributed Switch
Creating a vSphere Distributed Switch from an export

Retrieving vSphere Distributed Switches
Configuring vSphere Distributed Switches

Rolling back the configuration of a vSphere Distributed Switch
Importing the configuration of a vSphere Distributed Switch from a backup
Upgrading a vSphere Distributed Switch

Adding hosts to vSphere Distributed Switches
Retrieving hosts connected to vSphere Distributed Switches
Adding host physical network adapters to a vSphere Distributed Switch
Removing host physical network adapters from a vSphere Distributed Switch
Removing hosts from a vSphere Distributed Switch
Exporting the configuration of vSphere Distributed Switches
Removing vSphere Distributed Switches

Using distributed virtual port groups
Creating distributed virtual port groups

Creating distributed virtual port groups from a reference group
Creating distributed virtual port groups from an export

Retrieving distributed virtual port groups

Modifying distributed virtual port groups
Renaming a distributed virtual port group
Rolling back the configuration of a distributed virtual port group
Restoring the configuration of a distributed virtual port group

Configuring network I/O control
Enabling network I/O control
Retrieving the network I/O control enabled status
Disabling network I/O control

Exporting the configuration of distributed virtual port groups
Migrating a host network adapter from a standard port group to a distributed port

group
Removing distributed virtual port groups

Configuring host networking
Configuring the network of virtual machines

Setting the IP address
Setting the DNS server addresses
Retrieving the network configurations

Summary
7. Managing Storage

Rescanning for new storage devices
Creating datastores

Creating NFS datastores
Getting SCSI LUNs
Creating VMFS datastores

Creating software iSCSI VMFS datastores
Retrieving datastores
Setting the multipathing policy
Configuring vmhba paths to an SCSI device

Retrieving vmhba paths to an SCSI device
Modifying vmhba paths to an SCSI device

Working with Raw Device Mappings
Configuring storage I/O control

Retrieving Storage I/O Control settings
Configuring Storage DRS

Creating a datastore cluster
Retrieving datastore clusters
Modifying datastore clusters
Adding datastores to a datastore cluster
Retrieving the datastores in a datastore cluster
Removing datastores from a datastore cluster
Removing datastore clusters

Upgrading datastores to VMFS-5
Removing datastores

Using VMware vSAN
Configuring VMware vSAN networking
Enabling VMware vSAN on vSphere clusters
Retrieving the devices available for VMware vSAN
Creating VMware vSAN disk groups
Retrieving VMware vSAN disk groups
Adding a host SCSI disk to a VMware vSAN disk group
Retrieving the host disks that belong to a VMware vSAN disk group
Removing disks from a VMware vSAN disk group
Removing VMware vSAN disk groups

Using vSphere storage policy-based management
Retrieving storage capabilities
Using tags to define storage capabilities
Creating SPBM rules
Creating SPBM rule sets
Creating SPBM storage policies
Retrieving SPBM storage policies
Modifying SPBM storage policies
Retrieving SPBM compatible storage
Using SPBM to create virtual machines
Retrieving SPBM-related configuration data of clusters, virtual machines, and hard

disks
Associating storage policies with virtual machines and hard disks and enabling SPBM

on clusters
Exporting SPBM storage policies
Importing SPBM storage policies
Removing SPBM storage policies

Summary
8. Managing High Availability and Clustering

Creating vSphere HA and DRS clusters
Retrieving clusters

Retrieving the HA master or primary hosts
Retrieving cluster configuration issues

Modifying the cluster settings
Configuring enhanced vMotion compatibility (EVC) mode
Disabling HA
Disabling or enabling host monitoring
Enabling VM and application monitoring
Configuring the heartbeat datastore selection policy

Moving hosts to clusters
Moving clusters
Using DRS rules

Creating VM-VM DRS rules

Creating VM-host DRS rules
Creating virtual machines DRS groups
Creating hosts DRS groups
Retrieving DRS groups
Modifying DRS groups

Adding virtual machines to a DRS group
Removing virtual machines from a DRS group

Removing DRS groups
Creating Virtual Machines to Hosts DRS rules

Retrieving DRS Rules
Modifying DRS rules
Removing DRS rules

Using DRS recommendations
Using resource pools

Creating resource pools
Retrieving resource pools
Modifying resource pools
Moving resource pools
Configuring resource allocation between virtual machines
Removing resource pools

Using Distributed Power Management
Enabling DPM
Configuring hosts for DPM
Testing hosts for DPM

Putting hosts into standby mode
Starting hosts

Retrieving the DPM configuration of a cluster
Disabling DPM

Removing clusters
Summary

9. Managing vCenter Server
Working with roles and permissions

Retrieving privileges
Using roles

Creating roles
Retrieving roles
Modifying roles
Removing roles

Using permissions
Creating permissions
Retrieving permissions
Modifying permissions
Removing permissions

Managing licenses
Adding license keys to the license inventory
Retrieving license keys from the license inventory
Removing license keys from the license inventory
Assigning licenses to hosts
Retrieving assigned licenses
Using the LicenseDataManager

Associating license keys with host containers
Applying the associated license key to all hosts
Retrieving license key associations

Retrieving all of the license key associations to the host containers in your
environment

Retrieving the license keys associated with a specific host container
Retrieving the effective license key of a host container

Modifying license key associations
Removing license key associations

Configuring alarms
Retrieving alarm definitions
Modifying alarm definitions
Creating alarm actions

Configuring the vCenter Server mail server and sender settings
Retrieving alarm actions
Removing alarm actions
Creating alarm action triggers
Retrieving alarm action triggers
Removing alarm action triggers

Retrieving events
Summary

10. Patching ESXi Hosts and Upgrading Virtual Machines
Downloading new patches into the Update Manager repository
Retrieving patches in the Update Manager repository
Using baselines and baseline groups

Retrieving baselines
Retrieving patch baselines
Creating patch baselines
Modifying patch baselines
Attaching baselines to inventory objects
Detaching baselines from inventory objects
Removing baselines

Testing inventory objects for compliance with baselines
Retrieving baseline compliance data
Initializing staging of patches
Remediating inventory objects

Upgrading or patching ESXi hosts
Upgrading virtual machine hardware

Summary
11. Managing VMware vCloud Director and vCloud Air

Connecting to vCloud Air servers and vCloud Director servers
Retrieving organizations
Retrieving organization virtual datacenters
Retrieving organization networks
Retrieving vCloud users
Using vCloud virtual appliances

Retrieving vApp templates
Creating vCloud vApps
Retrieving vCloud vApps
Starting vCloud vApps
Stopping vCloud vApps

Managing vCloud virtual machines
Creating vCloud virtual machines
Retrieving vCloud virtual machines
Starting vCloud virtual machines
Stopping vCloud virtual machines

Using the vCloud Director API with Get-CIView
Removing vCloud virtual machines
Removing vCloud virtual appliances
Creating snapshots
Retrieving snapshots
Reverting to snapshots
Removing snapshots

Disconnecting from vCloud Director servers
Summary

12. Using Site Recovery Manager
Installing SRM
Connecting to SRM servers
Downloading and installing the Meadowcroft.SRM module
Pairing SRM sites

Retrieving the name of the local vCenter Server
Retrieving the remote vCenter Server

Retrieving the SRM user info
Managing protection groups

Creating protection groups
Retrieving protection groups

Protecting virtual machines
Retrieving protected virtual machines
Unprotecting virtual machines

Managing recovery plans
Retrieving recovery plans
Running recovery plans
Retrieving the historical results of recovery plans

Disconnecting from SRM servers
Summary

13. Using vRealize Operations Manager
Connecting to vRealize Operations Manager servers
Retrieving vRealize Operations Manager resource objects
Using alerts

Retrieving alert definitions
Retrieving alert types
Retrieving alert subtypes
Modifying alerts

Retrieving recommendations
Retrieving statistic keys
Retrieving statistical data
Retrieving local user accounts
Using the vRealize Operations Manager API

Getting the user roles
Creating users
Removing users
Retrieving solutions
Retrieving traversalSpecs
Creating reports
Retrieving reports

Disconnecting from vRealize Operations Manager servers
Summary

14. Using REST API to manage NSX and vRealize Automation
Connecting to REST API servers
Managing NSX logical switches

Creating NSX logical switches
Retrieving NSX logical switches
Removing NSX logical switches

Managing NSX logical (distributed) routers
Creating NSX logical (distributed) routers
Retrieving NSX logical (distributed) routers
Removing NSX logical (distributed) routers

Managing NSX Edge services gateways
Retrieving NSX Edge services gateways
Removing NSX Edge services gateways

Connecting to vRA servers
Managing vRA tenants

Creating vRA tenants
Retrieving vRA tenants
Removing vRA tenants

Retrieving vRA business groups
Managing vRA reservations

Creating vRA reservations
Retrieving vRA reservations

Managing vRA machines and applications
Retrieving entitled catalog items
Retrieving a template request for an entitled catalog item
Creating vRA machines
Viewing details of a machine request
Retrieving provisioned resources

Summary
15. Reporting with PowerCLI

Retrieving log files
Creating log bundles
Performance reporting

Retrieving the statistical intervals
Retrieving performance statistics
Retrieving metric IDs

Exporting reports to CSV files
Generating HTML reports
Sending reports by e-mail
Reporting the health of your vSphere environment with vCheck
Summary

Learning PowerCLI Second Edition

Learning PowerCLI Second Edition
Copyright © 2017 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.
First published: February 2014
Second edition: February 2017
Production reference: 1200217
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78646-801-7
www.packtpub.com

Credits
Author
Robert van den Nieuwendijk

Copy Editors
Safis Editing
Dipti Mankame

Reviewer
Kim Bottu

Project Coordinator
Shweta H. Birwatkar

Commissioning Editor
Vijin Boricha

Proofreader
Safis Editing

Acquisition Editor
Prachi Bisht

Indexer
Pratik Shirodkar

Content Development Editor
Abhishek Jadhav

Graphics
Kirk D'Penha

Technical Editor
Gaurav Suri

Production Coordinator
Shantanu N. Zagade

About the Author
Robert van den Nieuwendijk is an IT veteran from the Netherlands with over thirty years
of experience in Information Technology. He holds a bachelor degree in software
engineering. After working a few years as a programmer of air traffic control and vessel
traffic management systems, he started his own company Van den Nieuwendijk Informatica
in 1988. Since then he has worked as a freelance systems administrator of OpenVMS,
Windows Server, Linux, and VMware vSphere systems, for Dutch governmental
organizations and cloud providers. During winter he is also a ski and snowboard instructor
at an indoor ski school.
With his background as a programmer, he always tries to make his job easier by writing
programs or scripts to perform repeating tasks. In the past, he used the C programming
language, OpenVMS DCL, Visual Basic Script and KiXtart to do this. Now, he uses
Microsoft PowerShell and VMware PowerCLI for all of his scripting work.
Robert is a frequent contributor and moderator at the VMware VMTN Communities. Since
2012 VMware awarded him the vExpert title for his significant contributions to the
community and a willingness to share his expertise with others.
He has a blog at http://rvdnieuwendijk.com where he writes mainly about VMware
PowerCLI, Microsoft PowerShell, and VMware vSphere.
If you want to get in touch with Robert, then you can find him on Twitter. His username is
@rvdnieuwendijk.
Robert is also the author of Learning PowerCLI, Packt Publishing.

I would like to thank my wife Ali for supporting me writing this second book.
I also want to thank the people at Packt Publishing for giving me the opportunity to update

the Learning PowerCLI book and write this second edition.

About the Reviewer
Kim Bottu is the virtualization engineer in the EMEA region for an international Biglaw firm,
where he focuses on virtual datacenter operations, optimization, and design.
In his current role, he takes care of the consolidated virtual datacenters in Asia and Europe,
and he is the SME for the EMEA Litigation virtual datacenters.
He holds the following certifications and honors: VCA-NV, VCP5-DCV, VCP6-DCV, VCAP5-
DCD, VCAP6-DCV Design, and TOGAF 9 certified. He has also been named vExpert 2016
and vExpert 2017.
Kim currently lives in Belgium and is a proud dad of a daughter named Zoey. In his spare
time you might find him playing with his daughter, reading books, or riding his mountain bike.
Kim can be reached at www.vMusketeers.com .

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at service@packtpub.com for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https://www.packtpub.com/mapt
Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1786468018.
If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

Preface
VMware PowerCLI is a command-line automation and scripting tool that provides a
Microsoft PowerShell interface to the VMware vSphere and vCloud products. Learning
PowerCLI shows you how to install and use PowerCLI to automate the management of
your VMware vSphere environment. With lots of examples, this book will teach you how to
manage vSphere from the command line and how to create advanced PowerCLI scripts.

What this book covers
Chapter 1 , Introduction to PowerCLI, gets you started using PowerCLI. First, you will see
how to download and install PowerCLI. Then, you will learn to connect to and disconnect
from the vCenter and ESXi servers and retrieve a list of all of your hosts and virtual
machines.
Chapter 2 , Learning Basic PowerCLI Concepts, introduces the Get-Help, Get-Command,
and Get-Member cmdlets. It explains the difference between PowerShell Providers and
PSdrives. You will see how you can use the raw vSphere API objects from PowerCLI and
how to use the New-VIProperty cmdlet to extend a PowerCLI object.
Chapter 3 , Working with Objects in PowerShell, concentrates on objects, properties, and
methods. This chapter shows how you can use the pipeline to use the output of one
command as the input of another command. You will learn how to use the PowerShell
object cmdlets and how to create PowerShell objects.
Chapter 4 , Managing vSphere Hosts with PowerCLI, covers the management of the
vSphere ESXi servers. You will see how to add hosts to the vCenter server and how to
remove them. You will work with host profiles, host services, Image Builder, and Auto
Deploy, as well as with the esxcli command and the vSphere CLI commands from
PowerCLI.
Chapter 5 , Managing Virtual Machines with PowerCLI, examines the lifecycle of virtual
machines-from creating to removing them. Creating templates, updating VMware Tools and
upgrading virtual hardware, running commands in the guest OS, and configuring fault
tolerance are some of the topics discussed in this chapter.
Chapter 6 , Managing Virtual Networks with PowerCLI, walks you through vSphere
Standard Switches and vSphere Distributed Switches, port groups, and network adapters.
It shows you how to configure host networking and how to configure the network of a virtual
machine.
Chapter 7 , Managing Storage, explores creating and removing datastores and datastore
clusters, working with Raw Device Mapping, configuring software iSCSI initiators, Storage
I/O Control, and Storage DRS.
Chapter 8 , Managing High Availability and Clustering, covers HA and DRS clusters, DRS
rules and DRS groups, resource pools, and Distributed Power Management.
Chapter 9 , Managing vCenter Server, shows you how to work with privileges, work with
roles and permissions, manage licenses, configure alarm definitions, alarm action triggers,
and retrieve events.
Chapter 10 , Patching ESXi Hosts and Upgrading Virtual Machines, focusses on using
VMware vSphere Update Manager to download patches, creating baselines and baseline
groups, testing virtual machines and hosts for compliance, staging patches, and remediating
inventory objects.
Chapter 11 , Managing VMware vCloud Director and vCloud Air, covers connecting to
vCloud servers, retrieving organizations, virtual datacenters, organization networks, and
users, using vCloud virtual machines and appliances, and using snapshots.
Chapter 12 , Using Site Recovery Manager, explores the Meadowcroft.SRM module to

manage SRM protection groups, protecting virtual machines and running recovery plans to
migrate or fail-over virtual machines from the protected site to the recovery site.
Chapter 13 , Using vRealize Operations Manager, shows you to use alerts, retrieve
recommendations, statistical data, solutions, and traversalSpecs, manage local user
accounts and user roles and create and retrieve reports.
Chapter 14 , Using REST API to Manage NSX and vRealize Automation, walks you through
REST APIs with examples from VMware NSX and vRealize Automation using basic
authentication and bearer tokens, XML, and JSON.
Chapter 15 , Reporting with PowerCLI, concentrates on retrieving log files and log bundles,
performance reporting, exporting reports to CSV files, generating HTML reports, sending
reports by e-mail, and reporting the health of your vSphere environment with the vCheck
script.

What you need for this book
To run the example PowerCLI scripts given in this book, you need the following software:

VMware PowerCLI
Microsoft PowerShell
VMware vCenter Server
VMware ESXi
VMware vSphere Update Manager
VMware vCloud Director
VMware Site Recovery Manager
VMware vSphere Replication
VMware vRealize Operations Manager
VMware NSX
VMware vRealize Automation

If you don't have specific software installed, you can use the VMware Hands-on Labs at
https://labs.hol.vmware.com/ to test the scripts.
The scripts in this book are tested using VMware PowerCLI 6.5 Release 1, VMware
vCenter Server 6.5, and VMware ESXi 6.5. Microsoft PowerShell and VMware PowerCLI
are free. You can download a free 60-day evaluation of VMware vCenter Server and
VMware ESXi from the VMware website. It is not possible to modify the settings on the
free VMware vSphere Hypervisor using PowerCLI.

Who this book is for
This book is written for VMware vSphere administrators who want to automate their
vSphere environment using PowerCLI. It is assumed that you have at least a basic
knowledge of VMware vSphere. If you are not a vSphere administrator, but you are
interested in learning more about PowerCLI, then this book will also give you some basic
knowledge of vSphere.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The script
uses the Get-Cluster cmdlet to retrieve all the clusters."
A block of code is set as follows:

$HostName = '192.168.0.133'
$iSCSITarget = '192.168.0.157'
$VirtualSwitchName = 'vSwitch2'
$NicName = 'vmnic3'
$PortGroupName = 'iSCSI Port group 1'
$ChapType = 'Preferred'
$ChapUser = 'Cluster01User'
$ChapPassword = ' Cluster01Pwd'
$DatastoreName = 'Cluster01_iSCSI01'

Any command-line input or output is written as follows:
PowerCLI C:\> New-VM -Name VM1 -ResourcePool (Get-Cluster
 -Name Cluster01)

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "If your cluster is
incorrectly configured, the vSphere Web Client will show you the issues in the Summary
tab."

Note
Warnings or important notes appear in a box like this.
Tip
Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important to us as it helps us develop
titles that you will really get the most out of.
To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors .

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.
You can download the code files by following these steps:
1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Learning-PowerCLI-Second-Edition. We also have other
code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted, and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section
of that title.
To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come

across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.
Please contact us at copyright@packtpub.com with a link to the suspected pirated material.
We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Chapter 1. Introduction to PowerCLI
Have you ever had to create 200 virtual machines in a short period of time, change a setting
on all of your hosts, or make an advanced report for your boss to show how full the hard
disks of your virtual machines are? If you have, you know that performing these tasks using
the vSphere web client will take a lot of time. This is where automation can make your job
easier. VMware PowerCLI is a powerful tool that can perform these tasks and much more.
And the best thing is that it is free!
VMware PowerCLI is a command-line interface (CLI) distributed as a collection of
Microsoft PowerShell modules and snap-ins. Microsoft PowerShell is Microsoft's
command shell and scripting language, designed with the systems administrator in mind.
Microsoft PowerShell is available on every Microsoft Windows server or workstation since
Windows Server 2008 R2 and Windows 7. VMware PowerCLI is an extension to Microsoft
PowerShell. This means that all of the features of PowerShell can be used in PowerCLI.
You can use PowerCLI to automate your vSphere hosts, virtual machines, virtual networks,
storage, clusters, vCenter Servers, and more.
In this chapter, you will learn:

Downloading and installing PowerCLI
Participating in the VMware Customer Improvement Program
Modifying the PowerShell execution policy
Creating a PowerShell profile
Connecting and disconnecting servers
Using the credential store
Retrieving a list of all of your virtual machines
Retrieving a list of all of your hosts

Downloading and installing PowerCLI
In this section, you will learn how to download and install PowerCLI 6.5 Release 1. First,
we will list the requirements for PowerCLI 6.5 Release 1. After downloading PowerCLI
from the VMware website, we will install PowerCLI on your system.

Requirements for using PowerCLI 6.5 Release 1
You can install VMware PowerCLI 6.5 Release 1, the version used for writing this book, on
the following 64-bit operating systems:

Windows Server 2012 R2
Windows Server 2008 R2 Service Pack 1
Windows 10
Windows 8.1
Windows 7 Service Pack 1

VMware PowerCLI 6.5 Release 1 is compatible with the following PowerShell versions:
Microsoft PowerShell 3.0
Microsoft PowerShell 4.0
Microsoft PowerShell 5.0

Microsoft PowerShell 5.1
If you want to work with VMware PowerCLI 6.5 Release 1, make sure that the following
software is present on your system:

Microsoft PowerShell 3.0, 4.0, 5.0, or 5.1
NET Framework 4.5, 4.5.x, 4.6, or 4.6.x

Downloading PowerCLI 6.5 Release 1
Before you can install PowerCLI, you have to download the PowerCLI installer from the
VMware website. You will need a My VMware account to do this.
Perform the following steps to download PowerCLI:
1. Visit http://www.vmware.com/go/powercli . On this page, you will find a Resources

section.

2. Click on the Download button to download PowerCLI.
3. You have to log in with a My VMware account. If you don't have a My VMware

account, you can register for free.

4. After you log in, you will be taken to the VMware PowerCLI download page. Click on
the Download Now button to start downloading PowerCLI.

Installing PowerCLI
Perform the following steps to install PowerCLI:
1. Run the PowerCLI installer that you just downloaded.
2. Click Yes in the User Account Control window to accept the Do you want to allow

this app to make changes to your device? option.
3. If the PowerShell execution policy on your computer is not set to RemoteSigned,

you will get a warning that tells you It is recommended that you set the execution
policy to "RemoteSigned" in order to be able to execute scripts. After the
installation of PowerCLI, I will show you how to set the execution policy. Click on
Continue to continue to the installation of PowerCLI.

4. Click on Next > in the Welcome to the InstallShield Wizard for VMware PowerCLI
window.

5. Select I accept the terms in the license agreement and click on Next >.

6. If you are not using vCloud Air, VMware vCloud Director, vSphere Update
Manager, vRealize Operations Manager, or Horizon View, you can click on the little
arrow to the left of a feature and select This feature will not be available. I
recommend installing all of the features, to be able to run the scripts in all of the
chapters in this book. If you want, you can change the installation directory by clicking
on Change.... Click on Next >.

7. Click on Install to begin the installation.

8. Click on Finish to exit the installation wizard.

After installing PowerCLI, you will have a VMware PowerCLI icon on your desktop. If you
installed PowerCLI on a 64-bit computer, you will also have a VMware PowerCLI (32-Bit)
icon. Some PowerCLI commands only work in the 32-bit version of PowerCLI. So keep
both versions.

Participating in the VMware Customer
Improvement Program
When you start PowerCLI for the first time, you will get the following screen:

You are asked to participate in the VMware Customer Improvement Program (CEIP).
Type J to participate in the CEIP or type L to leave.
If you didn't get the text from the preceding screenshot, you may get the following error
message:
. : File C:\Program Files (x86)\VMware\Infrastructure\vSphere
PowerCLI\Scripts\Initialize-PowerCLIEnvironment.ps1 cannot be loaded because
running scripts is disabled on this system. For more information, see
about_Execution_Policies at http://go.microsoft.com/fwlink/?LinkID=135170.
Then, read the following section, Modifying the PowerShell execution policy, to solve this
problem.

Modifying the PowerShell execution policy
If this is the first time that you are using Microsoft PowerShell on the computer on which
you installed PowerCLI, you have to change the execution policy to be able to start
PowerCLI.
The Microsoft PowerShell execution policies define when you can run scripts or load
configuration files. The possible values for the execution policy are Restricted, AllSigned,
RemoteSigned, Unrestricted, Bypass, and Undefined.
Policy Description

Restricted
This is the default execution policy. It allows you to run commands at the
Command Prompt, but disables the execution of scripts. It will also disable
the start of PowerCLI.

AllSigned

With the AllSigned execution policy, scripts can run, but they must be
signed by a trusted publisher. If you run a script by a publisher that is not
trusted yet, you will see a prompt asking whether you trust the publisher of
the script.

RemoteSigned
The RemoteSigned execution policy allows you to run scripts that you have
written on the local computer. Any script downloaded from the Internet must
be signed by a trusted publisher or must be unblocked.

Unrestricted

When the execution policy is set to Unrestricted, unsigned scripts can run.
If you run a script that has been downloaded from the Internet, you will get
a security warning saying that this script can potentially harm your computer
and asking whether you want to run this script.

Bypass

The Bypass execution policy blocks nothing and displays no warnings or
prompts. This execution policy is designed for configurations in which a
Microsoft PowerShell script is built into a larger application that has its own
security model.

Undefined

The Undefined execution policy removes the execution policy from the
current scope. If the execution policy in all scopes is Undefined, the
effective execution policy is Restricted, which is the default execution
policy. The Undefined execution policy will not remove an execution policy
that is set in a Group Policy scope.

You can check the current execution policy setting with the following command:
PowerCLI C:\> Get-ExecutionPolicy

Get-ExecutionPolicy is a Microsoft PowerShell commandlet (cmdlet). Cmdlets are
commands built into PowerShell or PowerCLI. They follow a verb-noun naming convention.
The get cmdlets retrieve information about the item that is specified as the noun part of the
cmdlet.
Set the execution policy to RemoteSigned to be able to start PowerCLI and run scripts
written on the local computer with the Set-ExecutionPolicy -ExecutionPolicy

RemoteSigned command.
Note
You have to run the Set-ExecutionPolicy -ExecutionPolicy RemoteSigned command
from a PowerShell or PowerCLI session that you started using the Run as
Administrator option, or you will get the following error message:
Set-ExecutionPolicy : Access to the registry key
'HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\PowerShell\1\ShellIds\Microsoft.
PowerShell' is denied.
If you are using both the 32-bit and the 64-bit versions of PowerCLI, you have to run
this command in both versions.

In the following screenshot of the PowerCLI console, you will see the output of the Set-
ExecutionPolicy -ExecutionPolicy RemoteSigned command if you run this command in a
PowerCLI session started with Run as Administrator.

You can get more information about execution policies by typing the following command:
PowerCLI C:\> Get-Help about_Execution_Policies

To get more information about signing your scripts, type the following command:
PowerCLI C:\> Get-Help about_signing

Note
If you get an error message saying Get-Help could not find
about_Execution_Policies in a help file, you have to run the Update-Help cmdlet in a
PowerShell, or PowerCLI session started with Run as Administrator first. The Update-
Help cmdlet downloads the newest help files for Microsoft PowerShell modules and
installs them on your computer. Because Microsoft updates the Microsoft PowerShell
help files on a regular basis, it is recommended to run the Update-Help cmdlet on a
regular basis also.

Creating a PowerShell profile
If you want certain PowerCLI commands to be executed every time you start a PowerCLI
session, you can put these commands in a PowerShell profile. The commands in a
PowerShell profile will be executed every time you start a new PowerCLI session. There
are six PowerShell profiles, two specific for the PowerShell console, two specific for the
PowerShell Integrated Scripting Environment (ISE), and two used by both the
PowerShell console and the PowerShell ISE. The PowerShell console and the PowerShell
ISE have their own profiles for:

All users, current host
Current user, current host

The two profiles used by both the PowerShell console and the PowerShell ISE are:
All users, all hosts
Current user, all hosts

You can retrieve the locations for the different profiles of the PowerShell console by
executing the following command in the PowerShell console. In this command, the $PROFILE
variable is a standard PowerShell variable that returns an object containing the locations of
the PowerShell profiles. This object is piped to the Format-List -Force command to
display all of the properties of the $PROFILE object in a list:

PowerCLI C:\> $PROFILE | Format-List -Force

 AllUsersAllHosts :
C:\Windows\System32\WindowsPowerShell\v1.0\p
 rofile.ps1
AllUsersCurrentHost :
C:\Windows\System32\WindowsPowerShell\v1.0\M
 icrosoft.PowerShell_profile.ps1
CurrentUserAllHosts :
C:\Users\robert\Documents\WindowsPowerShell\
 profile.ps1
CurrentUserCurrentHost :
C:\Users\robert\Documents\WindowsPowerShell\
 Microsoft.PowerShell_profile.ps1
Length : 76

Note
Downloading the example code
Detailed steps to download the code bundle are mentioned in the Preface of this book.
Please have a look.
The code bundle for the book is also hosted on GitHub at:
https://github.com/rosbook/effective_robotics_programming_with_ros . We also have
other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/ . Check them out!

As you can see in the output of the preceding command, the $PROFILE object has four
properties AllUsersAllHosts, AllUsersCurrentHost, CurrentUserAllHosts, and

CurrentUserCurrentHost that contain the locations of the different profiles.
To list the locations of the PowerShell profiles of the PowerShell ISE, you have to execute
the preceding command in the PowerShell ISE. This gives the following output:

PS C:\> $PROFILE | Format-List -Force

 AllUsersAllHosts :
C:\Windows\System32\WindowsPowerShell\v1.0\p
 rofile.ps1
AllUsersCurrentHost :
C:\Windows\System32\WindowsPowerShell\v1.0\M
 icrosoft.PowerShellISE_profile.ps1
CurrentUserAllHosts :
C:\Users\robert\Documents\WindowsPowerShell\
 profile.ps1
CurrentUserCurrentHost :
C:\Users\robert\Documents\WindowsPowerShell\
 Microsoft.PowerShellISE_profile.ps1
Length : 79

Note
You can start the PowerShell ISE from a Command Prompt by running
powershell_ise.exe. You can start the PowerShell ISE from within a PowerShell
console with the alias ise.

The default value for the $PROFILE variable is the value of the
$PROFILE.CurrentUserCurrentHost property. So you can use $PROFILE instead of
$PROFILE.CurrentUserCurrentHost.
You can determine if a specific profile exists by using the Test-Path cmdlet. The following
command will test if the profile specified by $PROFILE exists:

PowerCLI C:\> Test-Path -Path $PROFILE
False

If a profile does not exist, as in the preceding example, you can create the profile using the
New-Item cmdlet. If the directories in the path do not exist, by using the -Force parameter
the New-Item cmdlet will create the directories. The following command will create the
current user/current host profile and will also create the missing directories in the path:

PowerCLI C:\> New-Item -Path $PROFILE -ItemType file -Force

 Directory: C:\Users\robert\Documents\WindowsPowerShell

 Mode LastWriteTime Length Name
---- ------------------ ------ ----
-a-- 1/7/2017 2:01 PM 0
Microsoft.PowerShell_pro
 file.ps1

After creating the PowerShell profile, you can edit the profile using the PowerShell ISE with
the following command:

PowerCLI C:\> ise $PROFILE

If you put the commands from the preceding section, Modifying the PowerShell execution
policy, the new colors of the messages will be used in all of your PowerCLI sessions.

Connecting and disconnecting servers
Before you can do useful things with PowerCLI, you have to connect to a vCenter Server or
an ESXi server. And if you are finished, it is a good practice to disconnect your session. We
will discuss how to do this in the following sections Connecting to a server, Connecting to
multiple servers, Suppressing certificate warnings , and Disconnecting from a server.

Connecting to a server
If you are not connected to a vCenter or an ESXi server, you will get an error message if
you try to run a PowerCLI cmdlet. Let's try to retrieve a list of all of your data centers using
the following command:

PowerCLI C:\> Get-Datacenter

The output of the preceding command is as follows:
Get-Datacenter : 1/7/2017 1:37:17 PM Get-Datacenter You
are
 not currently connected to any servers. Please connect first
using a
 Connect cmdlet.
At line:1 char:1
+ Get-Datacenter
+ ~~~~~~~~~~~~~~
 + CategoryInfo : ResourceUnavailable: (:) [Get-
 Datacenter],
ViServerConnectionException
 + FullyQualifiedErrorId : Core_BaseCmdlet_NotConnectedError,

VMware.VimAutomation.ViCore.Cmdlets.
 Commands.GetDatacenter

You can see that this gives an error message. You first have to connect to a vCenter
Server or an ESXi server using the Connect-VIServer cmdlet. If you have a vCenter Server,
you only need to connect to the vCenter Server and not to the individual ESXi servers. It is
possible to connect to multiple vCenter Servers or ESXi servers at once. The Connect-
VIServer cmdlet has the following syntax. The syntax contains two parameter sets. The
first parameter set is the default:

Connect-VIServer [-Server] <String[]> [-Port <Int32>] [-Protocol
 <String>] [-Credential <PSCredential>] [-User <String>] [-
Password
 <String>] [-Session <String>] [-NotDefault] [-SaveCredentials]
 [-AllLinked] [-Force] [<CommonParameters>]

In the Default parameter set, the -Server parameter is required. The second parameter
set can be used to select a server from a list of recently connected servers:

Connect-VIServer -Menu [<CommonParameters>]

In the Menu parameter set, the -Menu parameter is required. You cannot combine
parameters from the Default parameter set with the Menu parameter set.
Let's first try to connect to a vCenter Server with the following command:

PowerCLI C:\> Connect-VIServer -Server 192.168.0.132

192.168.0.132 is the IP address of the vCenter Server in my home lab. Replace this IP
address with the IP address or DNS name of your vCenter or ESXi server.
The preceding command will pop up a window in which you have to specify server
credentials to connect to your server if your Windows session credentials don't have rights
on your server. Enter values for User name and Password and click on OK.
If you specified valid credentials, you would get output similar to the following:

Name Port User
---- ---- ----
192.168.0.132 443 root

You can also specify a username and password on the command line as follows:
PowerCLI C:\> Connect-VIServer -Server 192.168.0.132 -User admin
 -Password pass

You can also save the credentials in a variable with the following command:
PowerCLI C:\> $Credential = Get-Credential

The preceding command will pop up a window in which you can type the username and
password.

You can now use the $Credential variable to connect to a server using the -Credential
parameter, as follows:

PowerCLI C:\> Connect-VIServer -Server 192.168.0.132 -Credential
 $Credential

You can also use the PowerCLI credential store. This will be discussed in the Using the
credential store section, later in this chapter.
The default protocol that the Connect-VIServer cmdlet uses is HTTPS. If you want to make
a connection with the HTTP protocol, you can do that with the following command:

PowerCLI C:\> Connect-VIServer -Server 192.168.0.132 -Protocol HTTP

If you have multiple vCenter Servers in Linked Mode, you can use the Connect-VIServer -
AllLinked parameter to connect all of these vCenter Servers at once, as follows:

PowerCLI C:\> Connect-VIserver -Server 192.168.0.132 -Credential
 $Credential -AllLinked

The Connect-VIServer -Menu command gives you a list of previously connected servers
from which you can pick one, as shown in the following command line:

PowerCLI C:\> Connect-VIServer -Menu
Select a server from the list (by typing its number and pressing
 Enter):
[1] 192.168.0.132
[2] 192.168.0.133

Type the number of the server you want to connect to.

Connecting to multiple servers
It is possible in PowerCLI to connect to multiple servers at once. You can do this by
specifying more than one server, as follows:

PowerCLI C:\> Connect-VIServer -Server vCenter1,vCenter2

The first time you try to do this, you will get the following message:
Working with multiple default servers?

 Select [Y] if you want to work with more than one default
servers. In this case, every time when you connect to a different
server using Connect-VIServer, the new server connection is stored
in
 an array variable together with the previously connected servers.
When you run a cmdlet and the target servers cannot be determined
from the specified parameters, the cmdlet runs against all servers
stored in the array variable.
 Select [N] if you want to work with a single default server. In
this case, when you run a cmdlet and the target servers cannot be
determined from the specified parameters, the cmdlet runs against
the
 last connected server.

 WARNING: WORKING WITH MULTIPLE DEFAULT SERVERS WILL BE
ENABLED BY
 DEFAULT IN A FUTURE RELEASE. You can explicitly set your own
preference at any time by using the DefaultServerMode parameter of
Set-PowerCLIConfiguration.

 [Y] Yes [N] No [S] Suspend [?] Help (default is "Y"):

Press Enter or type Y to work with multiple default servers.
As the message says, you can always connect to multiple servers, but your commands will
only work against the last server you connected to unless you have enabled working with
multiple servers.
You can see the current value of DefaultVIServerMode with the Get-
PowerCLIConfiguration cmdlet:

PowerCLI C:\> Get-PowerCLIConfiguration

 Scope ProxyPolicy DefaultVIServerMode
InvalidCertificateAction
----- ----------- ------------------- ----------------------
--
Session UseSystemProxy Multiple Unset
User Multiple
AllUsers

If you want to change DefaultVIServerMode from single to multiple, you can do that with the
Set-PowerCLIConfiguration cmdlet. This cmdlet has the following syntax:

Set-PowerCLIConfiguration [-ProxyPolicy <ProxyPolicy>]
 [-DefaultVIServerMode <DefaultVIServerMode>] [-
InvalidCertificateAction
 <BadCertificateAction>] [-ParticipateInCeip <Boolean>]
 [-CEIPDataTransferProxyPolicy <ProxyPolicy>] [-
 DisplayDeprecationWarnings <Boolean>] [-
WebOperationTimeoutSeconds
 <Int32>] [-VMConsoleWindowBrowser <String>] [-Scope
 <ConfigurationScope>] [-WhatIf] [-Confirm] [<CommonParameters>]

You can change DefaultVIServerMode from single to multiple with the following command:
PowerCLI C:\> Set-PowerCLIConfiguration -DefaultVIServerMode
Multiple
 -Scope User

All of the servers that you are currently connected to are stored in the variable
$global:DefaultVIServers. If DefaultVIServerMode is set to multiple, your PowerCLI
cmdlets will run against all servers stored in the $global:DefaultVIServers variable.
The last server you are connected to is stored in the variable $global:DefaultVIServer. If
DefaultVIServerMode is set to single, your PowerCLI cmdlets will only run against the
server stored in the $global:DefaultVIServer variable.

Suppressing certificate warnings
If your vCenter Server does not have valid server certificates, the Connect-VIserver cmdlet
will display some warning messages, as shown in the following screenshot:

It is a good practice to supply your vCenter Server and ESXi servers with certificates
signed by a certificate authority (CA). You can find information on how to do this in the
VMware Knowledge Base article, Replacing default certificates with CA signed SSL
certificates in vSphere 6.x (2111219) at http://kb.vmware.com/kb/2111219.
If you don't have valid certificates, you can suppress the warning messages using the Set-
PowerCLIConfiguration cmdlet with the following command:

PowerCLI C:\ > Set-PowerCLIConfiguration -InvalidCertificateAction
 Ignore

The preceding command will modify InvalidCertificationAction in the AllUsers scope.
You have to run this command using the Run as Administrator PowerCLI session.
Otherwise, you will get the following error message:

Set-PowerCLIConfiguration : Only administrators can change settings
for
 all users.
At line:1 char:1
+ Set-PowerCLIConfiguration -InvalidCertificateAction Ignore
+ ~~
 + CategoryInfo : NotSpecified: (:)
 [Set-PowerCLIConfiguration],
 InvalidArgument
 + FullyQualifiedErrorId : VMware.VimAutomation.ViCore.Types.V1.
 ErrorHandling.InvalidArgument,
VMware.

VimAutomation.ViCore.Cmdlets.Commands.
 SetVIToolkitConfiguration

Disconnecting from a server
To disconnect from a vSphere server, you have to use the Disconnect-VIServer cmdlet.
The Disconnect-VIServer cmdlet has the following syntax:

Disconnect-VIServer [[-Server] <VIServer[]>] [-Force]
 [-WhatIf] [-Confirm] [<CommonParameters>]

To disconnect all of your server connections, type the following command:
PowerCLI C:\> Disconnect-VIServer -Server * -Force

The output of the preceding command is as follows:
Confirm
Are you sure you want to perform this action?
Performing operation "Disconnect VIServer" on Target "User:
 VSPHERE.LOCAL\Administrator, Server: 192.168.0.132, Port: 443".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend
 [?] Help (default is "Y"):

Type Y or Enter to disconnect from the server.
If you don't want to be prompted with Are you sure you want to perform this action?,
you can use the -Confirm:$false option as follows:

PowerCLI C:\> Disconnect-VIServer -Server * -Force
 -Confirm:$false

It may be that you want to disconnect only one session and not all. In that case, specify the
server name or IP address of the server you want to disconnect. The following command
only disconnects the latest session from server 192.168.0.132:

PowerCLI C:\> Disconnect-VIServer -Server 192.168.0.132

Disconnecting one or more sessions will also change the value of the
$global:DefaultVIServers and $global:DefaultVIServer variables.

Retrieving the PowerCLI configuration
To see the current setting of InvalidCertificationAction, you can use the Get-
PowerCLIConfiguration cmdlet. The syntax of this cmdlet is as follows:

Get-PowerCLIConfiguration [-Scope <ConfigurationScope>]
 [<CommonParameters>]

The following example will retrieve the PowerCLI configuration and shows the
InvalidCertificateAction value for all scopes:

PowerCLI C:\> Get-PowerCLIConfiguration |
>> Select-Object -Property Scope, InvalidCertificateAction,
 DisplayDeprecationWarnings |
>> Format-Table -AutoSize
>>

 Scope InvalidCertificateAction DisplayDeprecationWarnings
 ----- ------------------------ --------------------------
 Session Unset True
 User
AllUsers

As you can see in the output, there are three different scopes for which you can modify the
PowerCLI configuration: Session, User, and AllUsers. The Set-PowerCLIConfiguration
cmdlet will modify the AllUser scope if you don't specify a scope.
The DisplayDeprecationWarnings property shown in the preceding output will be discussed
in the section, Suppressing deprecated warnings , later in this chapter.

Using the credential store
If you are logged in to your computer with a domain account, you can use your Windows
session credentials to connect to a vCenter or ESXi server. If you are not logged in to your
computer with a domain account or your domain account has no rights in vSphere, you have
to supply account information every time you connect to a vCenter or ESXi server.
To prevent yourself from having to do this, you can store credentials in the credential store.
These stored credentials will be used as default if you connect to a server that is stored in
the credential store. You can use the -SaveCredentials parameter of the Connect-
VIServer cmdlet to indicate that you want to save the specified credentials in the local
credential store, as follows:

PowerCLI C:\> Connect-VIServer -Server 192.168.0.132 -User admin
 -Password pass -SaveCredentials

You can also create a new entry in the credential store with the New-
VICredentialStoreItem cmdlet:

PowerCLI C:\> New-VICredentialStoreItem -Host 192.168.0.132
 -User Admin -Password pass

You can not only store credentials for vCenter Servers but also for ESXi servers, using the
following command:

PowerCLI C:\> New-VICredentialStoreItem -Host ESX1 -User root
 -Password VMware1!

To get a listing of all of your stored credentials, type the following command:
PowerCLI C:\> Get-VICredentialStoreItem

And to remove a stored credential you can use the following command:
PowerCLI C:\> Remove-VICredentialStoreItem -Host ESX1 -User root

The stored credentials are stored in a file on your computer. The default credential store file
location is: %APPDATA%\VMware\credstore\vicredentials.xml. But it is also possible to
create other credential store files. You can see the contents of the default credential store
file with the following command:

PowerCLI C:\> Get-Content -Path $env:APPDATA\VMware\credstore
 \vicredentials.xml

The passwords stored in a credential store file are encrypted. But you can easily retrieve
the stored passwords with the following command:

PowerCLI C:\> Get-VICredentialStoreItem |
>> Select-Object -Property Host,User,Password

Note
The passwords in the stored credentials are encrypted. Only the user who created the
item can decrypt the password.

Retrieving a list of all of your virtual
machines
Now that we know how to connect to a server, let's do something useful with PowerCLI.
Most of the people who begin using PowerCLI create reports, so create a list of all of your
virtual machines as your first report. You have to use the Get-VM cmdlet to retrieve a list of
your virtual machines. The syntax of the Get-VM cmdlet is as follows. The first parameter
set is the default:

Get-VM [[-Name] <String[]>] [-Server <VIServer[]>]
 [-Datastore <StorageResource[]>] [-Location <VIContainer[]>]
 [-Tag <Tag[]>] [-NoRecursion] [<CommonParameters>]

The second parameter set is for retrieving virtual machines connected to specific virtual
switches:

Get-VM [[-Name] <String[]>] [-Server <VIServer[]>] [-VirtualSwitch
 <VirtualSwitchBase[]>] [-Tag <Tag[]>] [<CommonParameters>]

The third parameter set is for retrieving virtual machines by ID:
Get-VM [-Server <VIServer[]>] -Id <String[]> [<CommonParameters>]

The -Id parameter is required. The fourth parameter set is for retrieving virtual machines by
related object:

Get-VM -RelatedObject <VmRelatedObjectBase[]> [<CommonParameters>]

The -RelatedObject parameter is required. You can use these four parameter sets to filter
the virtual machines based on name, server, datastore, location, distributed switch, ID, or
related object.
Create your first report with the following command:

PowerCLI C:\> Get-VM

This will create a list of all of your virtual machines. You will see the name, power state, the
number of CPU's, and the amount of memory in GB for each virtual machine, as shown in
the following command-line output:

Name PowerState NumCPUs MemoryGB
---- ---------- -------- --------
Dc1 PoweredOn 2 4.000
VM1 PoweredOn 1 0.250
DNS1 PoweredOn 2 8.000

The Name, PowerState, NumCPU, and MemoryGB properties are the properties that you will see
by default if you use the Get-VM cmdlet. However, the virtual machine object in PowerCLI
has a lot of other properties that are not shown by default. You can see them all by piping
the output of the Get-VM cmdlet to the Format-List cmdlet using the pipe character |. The
Format-List cmdlet displays object properties and their values in a list format, as shown in
the following command-line output:

PowerCLI C:\> Get-VM -Name DC1 | Format-List -Property *

 Name : DC1
PowerState : PoweredOff
Notes :
Guest : DC1:
NumCPU : 1
CoresPerSocket : 1
MemoryMB : 4096
MemoryGB : 4
VMHostId : HostSystem-host-10
VMHost : 192.168.0.133
VApp :
FolderId : Folder-group-v9
Folder : Discovered virtual machine
ResourcePoolId : ResourcePool-resgroup-8
ResourcePool : Resources
HARestartPriority : ClusterRestartPriority
HAIsolationResponse : AsSpecifiedByCluster
DrsAutomationLevel : AsSpecifiedByCluster
VMSwapfilePolicy : Inherit
VMResourceConfiguration : CpuShares:Normal/1000
 MemShares:Normal/40960
Version : v13
PersistentId : 50399fa1-6d65-a26f-1fd2-b635d0e8610f
GuestId : windows9Server64Guest
UsedSpaceGB : 30.000001807697117328643798828
ProvisionedSpaceGB : 34.175447797402739524841308594
DatastoreIdList : {Datastore-datastore-11}
ExtensionData : VMware.Vim.VirtualMachine
CustomFields : {}
Id : VirtualMachine-vm-46
Uid :
/VIServer=vsphere.local\administrator@192.

168.0.132:443/VirtualMachine=VirtualMachin
 e-vm-46/
Client :
VMware.VimAutomation.ViCore.Impl.V1.VimCli
 Ent

You can select specific properties with the Select-Object cmdlet. Say you want to make a
report that shows the Name, Notes, VMHost, and Guest properties for all your virtual
machines. You can do that with the following command:

PowerCLI C:\> Get-VM | Select-Object -Property
Name,Notes,VMHost,Guest

The output of the preceding command is as follows:

Name Notes VMHost Guest
---- ----- ------ -----
DC1 192.168.0.133 DC1:
VM1 192.168.0.134 VM1:
DNS1 DNS Server 192.168.0.134 DNS1:

In PowerShell, parameters can be positional. This means that you can omit the parameter
name if you put the parameter values in the right order. In the preceding example, the -
Property parameter of the Select-Object cmdlet can be omitted. So the preceding
command can also be written as:

PowerCLI C:\> Get-VM | Select-Object Name,Notes,VMHost,Guest

In the examples in this book, I will always use the parameter names.

Suppressing deprecated warnings
You will probably have also seen the following warning messages:

WARNING: The 'Description' property of VirtualMachine type is
 deprecated. Use the 'Notes' property instead.
WARNING: The 'HardDisks' property of VirtualMachine type is
 deprecated. Use 'Get-HardDisk' cmdlet instead.
WARNING: The 'NetworkAdapters' property of VirtualMachine type is
 deprecated. Use 'Get-NetworkAdapter' cmdlet instead.
WARNING: The 'UsbDevices' property of VirtualMachine type is
 deprecated. Use 'Get-UsbDevice' cmdlet instead.
WARNING: The 'CDDrives' property of VirtualMachine type is
 deprecated. Use 'Get-CDDrive' cmdlet instead.
WARNING: The 'FloppyDrives' property of VirtualMachine type is
 deprecated. Use 'Get-FloppyDrive' cmdlet instead.
WARNING: The 'Host' property of VirtualMachine type is deprecated.
 Use the 'VMHost' property instead.
WARNING: The 'HostId' property of VirtualMachine type is
deprecated.
 Use the 'VMHostId' property instead.
WARNING: PowerCLI scripts should not use the 'Client' property. The
 property will be removed in a future release.

These warning messages show the properties that should not be used in your scripts
because they are deprecated and might be removed in a future PowerCLI release.
Personally, I like these warnings because they remind me of the properties that I should not
use anymore. But if you don't like these warnings, you can stop them from appearing with
the following command:

PowerCLI C:\> Set-PowerCLIConfiguration -DisplayDeprecationWarnings
 $false -Scope User

Using wildcard characters
You can also use wildcard characters to select specific virtual machines. To display only
the virtual machines that have names that start with an A or a, type the following command:

PowerCLI C:\> Get-VM -Name A*

Parameter values are not case sensitive. The asterisk (*) is a wildcard character that
matches zero or more characters, starting at the specified position. Another wildcard

character is the question mark (?), which matches any character at the specified position.
To get all virtual machines with a three-letter name that ends with e, use the following
command:

PowerCLI C:\> Get-VM -Name ??e

You can also specify some specific characters, as shown in the following command:
PowerCLI C:\> Get-VM -Name [bc]*

The preceding command displays all of the virtual machines that have names starting with b
or c. You can also specify a range of characters, as shown in the following command:

PowerCLI C:\> Get-VM -Name *[0-4]

The preceding command lists all of the virtual machines that have names ending with 0, 1, 2,
3, or 4.

Filtering objects
If you want to filter properties that don't have their own Get-VM parameter, you can pipe the
output of the Get-VM cmdlet to the Where-Object cmdlet. Using the Where-Object cmdlet,
you can set the filter on any property. Let's display a list of all of your virtual machines that
have more than one virtual CPU using the following command:

PowerCLI C:\> Get-VM | Where-Object {$_.NumCPU -gt 1}

In this example, the Where-Object cmdlet has a PowerShell scriptblock as a parameter. A
scriptblock is a PowerShell script surrounded by braces. In this scriptblock, you see $_.
When using commands in the pipeline, $_ represents the current object. In the preceding
example, $_ represents the virtual machine object that is passed through the pipeline.
$_.NumCPU is the NumCPU property of the current virtual machine in the pipeline. -gt means
greater than, so the preceding command shows all virtual machines' objects where the
NumCPU property has a value greater than 1.
PowerShell V3 introduced a new, easier syntax for the Where-Object cmdlet. You don't
have to use a scriptblock anymore. You can now use the following command:

PowerCLI C:\> Get-VM | Where-Object NumCPU -gt 1

Isn't the preceding command much more like simple English?
Note
In the rest of this book, the PowerShell V2 syntax will be used by default because the
V2 syntax will also work in PowerShell V3 and higher versions of PowerShell. If
PowerShell V3 syntax is used anywhere, it will be specifically mentioned.

Using comparison operators
In the preceding section, Filtering objects, you saw an example of the -gt comparison
operator. In the following table, we will show you all of the PowerShell comparison
operators:
Operator Description
-eq, -ceq, and -
ieq

Equal to.

-ne, -cne, and -
ine

Not equal to.

-gt, -cgt, and -
igt

Greater than.

-ge, -cge, and -
ige

Greater than or equal to.

-lt, -clt, and -
ilt

Less than.

-le, -cle, and -
ile

Less than or equal to.

-Like Match using the wildcard character (*).
-NotLike Does not match using the wildcard character (*).
-Match Matches a string using regular expressions.
-NotMatch Does not match a string. Uses regular expressions.

-Contains
Tells whether a collection of reference values includes a single test
value.

-NotContains
Tells whether a collection of reference values does not include a single
test value.

-In Tells whether a test value appears in a collection of reference values.

-NotIn
Tells whether a test value does not appear in a collection of reference
values.

In the preceding table, you see three different operators for some functions. So what is the
difference? The c variant is case sensitive. The two-letter variant and the i variant are
case-insensitive. The i variant is made to make it clear that you want to use the case
insensitive operator.

Using aliases
The Where-Object cmdlet has two aliases: ? and where. Therefore, both the following
commands will display a list of all your virtual machines that have more than one virtual
CPU:

PowerCLI C:\> Get-VM | ? {$_.NumCPU -gt 1}

PowerCLI C:\> Get-VM | Where NumCPU -gt 1

Note
Using aliases will save you from the trouble of typing in the PowerCLI console.
However, it is good practice to use the full cmdlet names when you write a script. This
will make the script much more readable and easier to understand.

To see a list of all of the aliases that are defined for cmdlets, type the following command:
PowerCLI C:\> Get-Alias

You can create aliases using the New-Alias cmdlet. For example, to create an alias childs
for the Get-ChildItem cmdlet, you can use the following command:

PowerCLI C:\> New-Alias -Name childs -Value Get-ChildItem

Retrieving a list of all of your hosts
Similar to the Get-VM cmdlet, which retrieves your virtual machines, is the Get-VMHost
cmdlet, which displays your hosts. The Get-VMHost cmdlet has the following syntax. The
first parameter set is the default:

Get-VMHost [[-Name] <String[]>] [-NoRecursion] [-Datastore
 <StorageResource[]>] [-State <VMHostState[]>] [-Location
 <VIContainer[]>]
 [-Tag <Tag[]>] [-Server <VIServer[]>][<CommonParameters>]

The second parameter set is for retrieving hosts connected to specific distributed virtual
switches:

Get-VMHost [[-Name] <String[]>] [-DistributedSwitch
 <DistributedSwitch[]>] [-Tag <Tag[]>] [-Server <VIServer[]>]
 [<CommonParameters>]

The third parameter set is for retrieving hosts by virtual machine or resource pool:
Get-VMHost [[-Name] <String[]>] [-NoRecursion] [-VM
<VirtualMachine[]>]
 [-ResourcePool <ResourcePool[]>] [-Datastore
<StorageResource[]>]
 [-Location <VIContainer[]>] [-Tag<Tag[]>] [-Server
<VIServer[]>]
 [<CommonParameters>]

The fourth parameter set is for retrieving hosts by ID:
Get-VMHost [-Server <VIServer[]>] -Id <String[]>
[<CommonParameters>]

The -Id parameter is required. The fifth parameter set is for retrieving hosts by related
object:

Get-VMHost [-RelatedObject] <VMHostRelatedObjectBase[]>
 [<CommonParameters>]

The -RelatedObject parameter is required.
Don't mix parameters from different sets or you will get an error as follows:

PowerCLI C:\> Get-VMHost -Id HostSystem-host-22 -Name 192.168.0.133
Get-VMHost : Parameter set cannot be resolved using the specified
named
 parameters.
At line:1 char:1
+ Get-VMHost -Id HostSystem-host-22 -Name 192.168.0.133
+ ~~~
 + CategoryInfo : InvalidArgument: (:) [Get-VMHost],
 ParameterBindingException
 + FullyQualifiedErrorId : AmbiguousParameterSet,
 VMware.VimAutomation

.ViCore.Cmdlets.Commands.GetVMHost

To get a list of all of your hosts, type the following command:
PowerCLI C:\> Get-VMHost

By default, only the Name, ConnectionState, PowerState, NumCPU, CpuUsageMhz,
CpuTotalMhz, MemoryUsageGB, MemoryTotalGB, and Version properties are shown. To get a
list of all of the properties, type the following command:

PowerCLI C:\> Get-VMHost | Format-List -Property *

The output of this command can be seen in the following screenshot:

You can use the Get-VMHost parameters or the Where-Object cmdlet to filter the hosts you
want to display, as we did with the Get-VM cmdlet.

Displaying the output in a grid view
Instead of displaying the output of your PowerCLI commands in the PowerCLI console, you
can also display the output in a grid view. A grid view is a popup that looks like a
spreadsheet with rows and columns. To display the output of the Get-VMHost cmdlet in a
grid view, type the following command:

PowerCLI C:\> Get-VMHost | Out-GridView

The preceding command opens the window of the following screenshot:

You can create filters to display only certain rows, and you can sort columns by clicking on
the column header. You can also reorder columns by dragging and dropping them. In the
following screenshot, we created a filter to show only the hosts with a CpuUsageMhz value
greater than or equal to 22. We also changed the order of the ConnectionState and
PowerState columns.

Isn't that cool?

Summary
In this chapter, we looked at downloading and installing PowerCLI, participating in the
VMware CEIP, and modifying the PowerShell execution policy to be able to start
PowerCLI. You learned to create a PowerShell profile containing commands that run every
time you start PowerShell or PowerCLI. We showed you how to connect to and disconnect
from a server and introduced the credential store to save you from having to specify
credentials when you connect to a server. You also learned how to get a list of your virtual
machines or hosts and how to stop deprecated warnings. You learned to filter objects by
using the PowerShell comparison operators and found out about aliases for cmdlets.
Finally, we concluded the chapter with grid views.
In the next chapter, we will introduce some basic PowerCLI concepts.

Chapter 2. Learning Basic PowerCLI
Concepts
While learning something new, you always have to learn the basics first. In this chapter, you
will learn some basic PowerShell and PowerCLI concepts. Knowing these concepts will
make it easier for you to learn the advanced topics. We will cover the following topics in this
chapter:

Using the Get-Command, Get-Help, and Get-Member cmdlets
Using providers and PSdrives
Using arrays and hash tables
Creating calculated properties
Using raw API objects with ExtensionData or Get-View
Extending PowerCLI objects with the New-VIProperty cmdlet
Working with vSphere folders

Using the Get-Command, Get-Help, and
Get-Member cmdlets
There are some PowerShell cmdlets that everyone should know. Knowing these cmdlets
will help you discover other cmdlets, their functions, parameters, and returned objects.

Using Get-Command
The first cmdlet that you should know is Get-Command. This cmdlet returns all the commands
that are installed on your computer. The Get-Command cmdlet has the following syntax. The
first parameter set is named CmdletSet:

Get-Command [[-Name] <String[]>] [[-ArgumentList] <Object[]>] [-
All] [-CommandType {Alias | Function | Filter | Cmdlet |
ExternalScript | Application | Script | Workflow | Configuration |
All}] [-FullyQualifiedModule <ModuleSpecification[]>] [-
ListImported] [-Module <String[]>] [-ParameterName <String[]>] [-
ParameterType <PSTypeName[]>] [-ShowCommandInfo] [-Syntax] [-
TotalCount <Int32>] [<CommonParameters>]

The second parameter set is named AllCommandSet:
Get-Command [[-ArgumentList] <Object[]>] [-All] [-
FullyQualifiedModule <ModuleSpecification[]>] [-ListImported] [-
Module <String[]>] [-Noun <String[]>] [-ParameterName <String[]>]
[-ParameterType <PSTypeName[]>] [-ShowCommandInfo] [-Syntax] [-
TotalCount <Int32>] [-Verb <String[]>] [<CommonParameters>]

If you type the following command, you will get a list of commands installed on your
computer, including cmdlets, aliases, functions, workflows, filters, scripts, and applications:

PowerCLI C:\> Get-Command

You can also specify the name of a specific cmdlet to get information about that cmdlet, as
shown in the following command:

PowerCLI C:\> Get-Command -Name Get-VM | Format-Table -AutoSize

The preceding command returns the following information about the Get-VM cmdlet:
CommandType Name Version Source
----------- ---- ------- ------
Cmdlet Get-VM 6.5.0.2604913 VMware.VimAutomation.Core

You see that the command returns the command type and the name of the module that
contains the Get-VM cmdlet. CommandType, Name, Version, and Source are the properties that
the Get-Command cmdlet returns by default. You will get more properties if you pipe the
output to the Format-List cmdlet. The following screenshot will show you the output of the
Get-Command -Name Get-VM | Format-List * command:

You can use the Get-Command cmdlet to search for cmdlets. For example, if necessary,
search for the cmdlets that are used for vSphere hosts. Type the following command:

PowerCLI C:\> Get-Command -Name *VMHost*

If you are searching for the cmdlets to work with networks, use the following command:
PowerCLI C:\> Get-Command -Name *network*

Using Get-VICommand
PowerCLI has a Get-VICommand cmdlet that is similar to the Get-Command cmdlet. The Get-
VICommand cmdlet is a function that creates a filter on the Get-Command output, and it returns
only PowerCLI commands. Type the following command to list all the PowerCLI
commands:

PowerCLI C:\> Get-VICommand

The Get-VICommand cmdlet has only one parameter -Name. So, you can also type, for
example, the following command to get information only about the Get-VM cmdlet:

PowerCLI C:\> Get-VICommand -Name Get-VM

Using Get-Help
To discover more information about cmdlets, you can use the Get-Help cmdlet. For
example:

PowerCLI C:\> Get-Help Get-VM

This will display the following information about the Get-VM cmdlet:

The Get-Help cmdlet has some parameters that you can use to get more information. The -
Examples parameter shows examples of the cmdlet. The -Detailed parameter adds
parameter descriptions and examples to the basic help display. The -Full parameter
displays all the information available about the cmdlet. And the -Online parameter retrieves
online help information available about the cmdlet and displays it in a web browser. Since
PowerShell V3, there is a new Get-Help parameter -ShowWindow. This displays the output
of Get-Help in a new window. The Get-Help -ShowWindow command opens the window in
the following screenshot:

Using Get-PowerCLIHelp
The PowerCLI Get-PowerCLIHelp cmdlet opens the VMware PowerCLI Documentation
website in a browser. You can find the PowerCLI documentation at the following URL:
https://www.vmware.com/support/developer/PowerCLI/. You will have access to the
Release Notes, User's Guide, and the Cmdlet Reference | Previous HTML interface.
The following screenshot shows the window opened by the Get-PowerCLIHelp cmdlet:

Using Get-PowerCLICommunity
If you have a question about PowerCLI and you cannot find the answer in this book, use the

Get-PowerCLICommunity cmdlet to open the VMware PowerCLI section of the VMware
VMTN Communities. You can log in to the VMware VMTN Communities using the same My
VMware account that you used to download PowerCLI. First, search the community for an
answer to your question. If you still cannot find the answer, go to the Discussions tab and
ask your question by clicking on the Start a Discussion button, as shown later. You might
receive an answer to your question in a few minutes.

Using Get-Member
In PowerCLI, you work with objects. Even a string is an object. An object contains
properties and methods, which are called members in PowerShell. To see which members
an object contains, you can use the Get-Member cmdlet. To see the members of a string,
type the following command:

PowerCLI C:\> "Learning PowerCLI" | Get-Member

Pipe an instance of a PowerCLI object to Get-Member to retrieve the members of that
PowerCLI object. For example, to see the members of a virtual machine object, you can
use the following command:

PowerCLI C:\> Get-VM | Get-Member

The preceding command returns the following output:
TypeName:
VMware.VimAutomation.ViCore.Impl.V1.VM.UniversalVirtualMachineImpl

 Name MemberType Definition
---- ---------- ----------
ConvertToVersion Method T
VersionedObjectInterop.Conve...
Equals Method bool Equals(System.Object obj)
GetConnectionParameters Method
VMware.VimAutomation.ViCore.In...
GetHashCode Method int GetHashCode()
GetType Method type GetType()
IsConvertableTo Method bool
VersionedObjectInterop.Is...
LockUpdates Method void ExtensionData.LockUpdates()
ObtainExportLease Method
VMware.Vim.ManagedObjectRefere...
ToString Method string ToString()
UnlockUpdates Method void
ExtensionData.UnlockUpdat...
Client Property
VMware.VimAutomation.ViCore.In...
CoresPerSocket Property int CoresPerSocket {get;}
CustomFields Property
System.Collections.Generic.IDi...
DatastoreIdList Property string[] DatastoreIdList {get;}
DrsAutomationLevel Property
System.Nullable[VMware.VimAuto...

System.Nullable[VMware.VimAuto...
ExtensionData Property System.Object ExtensionData
{g...
Folder Property
VMware.VimAutomation.ViCore.Ty...
FolderId Property string FolderId {get;}
Guest Property
VMware.VimAutomation.ViCore.Ty...
GuestId Property string GuestId {get;}
HAIsolationResponse Property
System.Nullable[VMware.VimAuto...
HARestartPriority Property
System.Nullable[VMware.VimAuto...
Id Property string Id {get;}
MemoryGB Property decimal MemoryGB {get;}
MemoryMB Property decimal MemoryMB {get;}
Name Property string Name {get;}
Notes Property string Notes {get;}
NumCpu Property int NumCpu {get;}
PersistentId Property string PersistentId {get;}
PowerState Property
VMware.VimAutomation.ViCore.Ty...
ProvisionedSpaceGB Property decimal ProvisionedSpaceGB
{get;}
ResourcePool Property
VMware.VimAutomation.ViCore.Ty...
ResourcePoolId Property string ResourcePoolId {get;}
Uid Property string Uid {get;}
UsedSpaceGB Property decimal UsedSpaceGB {get;}
VApp Property
VMware.VimAutomation.ViCore.Ty...
Version Property
VMware.VimAutomation.ViCore.Ty...
VMHost Property
VMware.VimAutomation.ViCore.Ty...
VMHostId Property string VMHostId {get;}
VMResourceConfiguration Property
VMware.VimAutomation.ViCore.Ty...
VMSwapfilePolicy Property
System.Nullable[VMware.VimAuto...

The command returns the full type name of the VirtualMachineImpl object and all its
methods and properties.

Tip
Remember that the properties are objects themselves. You can also use Get-Member to
get the members of the properties. For example, the following command line will give
you the members of the VMGuestImpl object:

PowerCLI C:\> $VM = Get-VM -Name vCenter
PowerCLI C:\> $VM.Guest | Get-Member

Using providers and PSDrives
Until now, you have only seen cmdlets. Cmdlets are PowerShell commands. PowerShell
has another import concept named providers. Providers are accessed through named
drives or PSDrives. In the following sections, Using providers and Using PSDrives,
providers and PSDrives will be explained.

Using providers
A PowerShell provider is a piece of software that makes datastores look like filesystems.
PowerShell providers are usually part of a snap-in or a module-like PowerCLI. The
advantage of providers is that you can use the same cmdlets for all the providers. These
cmdlets have the following nouns: Item, ChildItem, Content, and ItemProperty. You can
use the Get-Command cmdlet to get a list of all the cmdlets with these nouns:

PowerCLI C:> Get-Command -Noun Item,ChildItem,Content,ItemProperty
|
Format-Table -AutoSize

The preceding command gives the following output:

CommandType Name Version Source
----------- ---- ------- ------
Cmdlet Add-Content 3.1.0.0
Microsoft.PowerShell.Mana...
Cmdlet Clear-Content 3.1.0.0
Microsoft.PowerShell.Mana...
Cmdlet Clear-Item 3.1.0.0
Microsoft.PowerShell.Mana...
Cmdlet Clear-ItemProperty 3.1.0.0
Microsoft.PowerShell.Mana...
Cmdlet Copy-Item 3.1.0.0
Microsoft.PowerShell.Mana...
Cmdlet Copy-ItemProperty 3.1.0.0
Microsoft.PowerShell.Mana...
Cmdlet Get-ChildItem 3.1.0.0
Microsoft.PowerShell.Mana...
Cmdlet Get-Content 3.1.0.0
Microsoft.PowerShell.Mana...
Cmdlet Get-Item 3.1.0.0
Microsoft.PowerShell.Mana...
Cmdlet Get-ItemProperty 3.1.0.0
Microsoft.PowerShell.Mana...
Cmdlet Invoke-Item 3.1.0.0
Microsoft.PowerShell.Mana...
Cmdlet Move-Item 3.1.0.0
Microsoft.PowerShell.Mana...
Cmdlet Move-ItemProperty 3.1.0.0
Microsoft.PowerShell.Mana...
Cmdlet New-Item 3.1.0.0
Microsoft.PowerShell.Mana...
Cmdlet New-ItemProperty 3.1.0.0
Microsoft.PowerShell.Mana...
Cmdlet Remove-Item 3.1.0.0
Microsoft.PowerShell.Mana...
Cmdlet Remove-ItemProperty 3.1.0.0
Microsoft.PowerShell.Mana...
Cmdlet Rename-Item 3.1.0.0
Microsoft.PowerShell.Mana...
Cmdlet Rename-ItemProperty 3.1.0.0
Microsoft.PowerShell.Mana...
Cmdlet Set-Content 3.1.0.0
Microsoft.PowerShell.Mana...
Cmdlet Set-Item 3.1.0.0
Microsoft.PowerShell.Mana...
Cmdlet Set-ItemProperty 3.1.0.0
Microsoft.PowerShell.Mana...

To display a list of all the providers in your PowerCLI session, you can use the Get-
PSProvider cmdlet:

PowerCLI C:\> Get-PSProvider
Name Capabilities Drives
---- ------------ ------
Alias ShouldProcess {Alias}
Environment ShouldProcess {Env}
FileSystem Filter, ShouldProcess, Credentials {C, A, D, Z}
Function ShouldProcess {Function}
Registry ShouldProcess, Transactions {HKLM, HKCU}
Variable ShouldProcess {Variable}
VimDatastore Filter, ShouldProcess {vmstores, vmstore}
VimInventory None {vis, vi}

The VimDatastore and VimInventory providers are part of PowerCLI. You will soon learn
more about the VimDatastore and VimInventory providers.

Using PSDrives
Each provider has one or more drives. For example, the FileSystem provider has drives
named C, A, D, and Z, which are hard disks on my PC. You can use the drives to access the
providers. Microsoft calls these drives PSDrives to prevent confusing the drives with
physical drives in your computer. For instance, to get a listing of all the files and folders in
the root of C: on your PC, type the following command:

PowerCLI C:\> Get-ChildItem C:\

The Get-ChildItem cmdlet has aliases dir, gci and ls that give you the same result:
PowerCLI C:\> dir C:\
PowerCLI C:\> ls C:\

You can use the same Get-ChildItem cmdlet to get a list of all your cmdlet aliases by
typing the following command:

PowerCLI C:\> Get-ChildItem alias:

The Registry PSDrive can be used to browse through the registry on your PC. The
following command will list all the keys and values in the HKEY_LOCAL_MACHINE\SOFTWARE
registry hive:

PowerCLI C:\> Get-ChildItem HKLM:\SOFTWARE

Using the PowerCLI Inventory Provider
The Inventory Provider gives you a filesystem-like view of the inventory items from a
vCenter Server or an ESXi server. You can use this provider to view, move, rename, or
delete objects by running PowerCLI commands.
When you connect to a server with the Connect-VIServer cmdlet, two PSDrives are
created: vi and vis. The vi PSDrive contains the inventory of the last connected server.
The vis PSDrive contains the inventory of all currently connected servers in your PowerCLI
session.
You can set the location to the vis PSDrive using the Set-Location cmdlet:

PowerCLI C:\> Set-Location vis:
PowerCLI vis:\>

Use the Get-ChildItem cmdlet to display the items in the current location of the vis

PSDrive:
PowerCLI vis:\> Get-ChildItem
Name Type Id
---- ---- --
192.168.0.132@443 VIServer
/VIServer=vsphere.local\administrator@...

Use the Get-ChildItem -Recurse parameter to display all the items in the Inventory
Provider:

PowerCLI vis:\> Get-ChildItem -Recurse

Using the PowerCLI Datastore Provider
The Datastore Provider gives you access to the content of your vSphere datastores.
When you connect to a server with the Connect-VIServer cmdlet, two PSDrives are
created: vmstore and vmstores. The vmstore PSDrive contains the datastores of the last
connected server. The vmstores PSDrive contains the datastores of all the currently
connected servers in your PowerCLI session. You can use these two default PSDrives or
you can create custom PSDrives using the New-PSDrive cmdlet.
Set the location to the vmstore PSDrive with the following command:

PowerCLI C:\> Set-Location vmstore:
PowerCLI vmstore:\>

Display the content of the root directory of the vmstore PSDrive with the following
command:

PowerCLI vmstore:\> Get-ChildItem
Name Type Id
---- ---- --
New York Datacenter Datacenter-datacenter-2

You can also create a custom PSDrive for a datastore using the New-PSDrive cmdlet. Start
with getting a datastore object and save it in the $Datastore variable:

PowerCLI C:\> $Datastore = Get-Datastore -Name Datastore1

Create a new PowerShell PSDrive named ds, which maps to the $Datastore variable:
PowerCLI C:\> New-PSDrive -Location $Datastore -Name ds -PSProvider
 VimDatastore -Root ""

Now, you can change your location into the PowerShell PSDrive using the Set-Location
cmdlet:

PowerCLI C:\> Set-Location ds:

You can get a listing of the files and directories on the datastore using the Get-ChildItem
cmdlet:

PowerCLI ds:\> Get-ChildItem

You will see an output similar to the following:

Name Type Id
---- ---- --
DC1 DatastoreFolder
.sdd.sf DatastoreFolder

Copying files between a datastore and your PC
You can use the vSphere Datastore Provider to copy files between a datastore and your
PC using the Copy-DatastoreItem cmdlet.
Change the location to a subfolder using the Set-Location cmdlet with the help of the
following command line:

PowerCLI ds:\> Set-Location "virtualmachine1"

Copy a file or directory to the destination using the Copy-DatastoreItem cmdlet, as follows:
PowerCLI ds:\virtualmachine1> Copy-DatastoreItem -Item
 ds:\virtualmachine1\virtualmachine1.vmx -Destination
$env:USERPROFILE

Now, you can view the content of the virtualmachine1.vmx file with the following command:
PowerCLI C:\> Get-Content $env:USERPROFILE\virtualmachine1.vmx

$env:USERPROFILE is the path to your user profile, for example, C:\users\username.
Tip
Files cannot be copied directly between vSphere datastores in different vCenter Servers
using Copy-DatastoreItem. Copy the files to the PowerCLI host's local filesystem
temporarily and then copy them to the destination.

Using arrays and hash tables
In PowerCLI, you can create a list of objects. For example, red, white, and blue is a list of
strings. In PowerShell, a list of terms is named an array. An array can have zero or more
objects. You can create an empty array and assign it to a variable:

PowerCLI C:\> $Array = @()

You can fill the array during creation using the following command line:
PowerCLI C:\> $Array = @("red","white")

You can use the += operator to add an element to an array:
PowerCLI C:\> $Array += "blue"
PowerCLI C:\> $Array
red
white
blue

If you want to retrieve a specific element of an array, you can use an index starting with 0
for the first element, 1 for the second element, and so on. If you want to retrieve an
element from the tail of the array, you have to use -1 for the last element, -2 for the second
to last, and so on. You have to use square brackets around the index number. In the next
example, the first element of the array is retrieved using the following command line:

PowerCLI C:\> $Array[0]
Red

If you want to test if an object is an array, you can use the following command:
PowerCLI C:\> $Array -is [array]
True

There is a different kind of an array called a hash table. In a hash table, you map a set of
keys to a set of values. You can create an empty hash table using the following command
line:

PowerCLI C:\> $HashTable = @{}

You can fill the hash table during creation using the following command line:
PowerCLI C:\> $HashTable = @{LastName='Doe';FirstName='John'}

To add a key-value pair to a hash table, you can use the following command line:
PowerCLI C:\> $HashTable["Company"]='VMware'

To show the contents of the hash table, just display the variable:
PowerCLI C:\> $HashTable
Name Value
---- -----
Company VMware
FirstName John
LastName Doe

If you want to retrieve a specific key-value pair, you can use the following command:

PowerCLI C:\> $HashTable["FirstName"]
John

To retrieve all of the hash table's keys, you can use the Keys property:
PowerCLI C:\> $HashTable.Keys
Company
FirstName
LastName

To retrieve all the values in the hash table, you can use the Values property:
PowerCLI C:\> $HashTable.Values
VMware
John
Doe

If you want to test whether an object is a hash table, you can use the following command:
PowerCLI C:\> $HashTable -is [hashtable]
True

In the next section, hash tables will be used to create calculated properties.

Creating calculated properties
You can use the Select-Object cmdlet to select certain properties of the objects that you
want to return. For example, you can use the following code to return the name and the
used space, in GB, of your virtual machines:

PowerCLI C:\> Get-VM | Select-Object -Property Name,UsedSpaceGB

But what if you want to return the used space in MB? The PowerCLI VirtualMachineImpl
object has no UsedSpaceMB property. This is where you can use a calculated property. A
calculated property is a PowerShell hash table with two elements: Name and Expression.
The Name element contains the name that you want to give the calculated property. The
Expression element contains a scriptblock with PowerCLI code to calculate the value of the
property. To return the name and the used space in MB for all your virtual machines, run the
following command:

PowerCLI C:\> Get-VM |
>> Select-Object -Property Name,
>> @{Name="UsedSpaceMB";Expression={1KB*$_.UsedSpaceGB}}
>>

The hash table contains two key-value pairs:
In the first element, the key is Name and the value is UsedSpaceMB
In the other element, the key is Expression, and the value is {1KB*$_.UsedSpaceGB}

The special variable $_ is used to represent the current object in the pipeline. 1KB is a
PowerShell constant that has the value 1024. In calculated properties, you can abbreviate
the Name and Expression names to N and E.
Another example of a calculated property shows you how to return the aliases of all the
cmdlets that are the same for all the providers:

PowerCLI C:\> Get-Command -Noun Item,ChildItem,Content,ItemProperty
|
>> Select-Object -Property Name,
>> @{Name="Aliases";Expression={Get-Alias -Definition $_.Name}}
>>

 Name Aliases
---- -------
Add-Content ac
Clear-Content clc
Clear-Item cli
Clear-ItemProperty clp
Copy-Item {copy, cp, cpi}
Copy-ItemProperty cpp
Get-ChildItem {dir, gci, ls}
Get-Content {cat, gc, type}
Get-Item gi
Get-ItemProperty gp
Invoke-Item ii
Move-Item {mi, move, mv}
Move-ItemProperty mp
New-Item ni
New-ItemProperty
Remove-Item {del, erase, rd, ri...}
Remove-ItemProperty rp
Rename-Item {ren, rni}
Rename-ItemProperty rnp
Set-Content sc
Set-Item si
Set-ItemProperty sp

The first command is the Get-Command statement that you have seen before; this returns the
cmdlets that are the same for all the providers. In the calculated property, the Get-Alias
cmdlet is used to get the aliases of these commands.

Using raw API objects with ExtensionData
or Get-View
PowerCLI makes it easy to use the VMware vSphere application programming interface
(API). There are two ways to do this. The first one is by using the ExtensionData property
that most of the PowerCLI objects have. The ExtensionData property is a direct link to the
vSphere API object related to the PowerCLI object. The second way is by using the Get-
View cmdlet to retrieve the vSphere API object related to a PowerCLI object. Both these
ways will be discussed in the following sections.

Using the ExtensionData property
Most PowerCLI objects, such as VirtualMachineImpl and VMHostImpl, have a property
named ExtensionData. This property is a reference to a view of a VMware vSphere object
as described in the VMware vSphere API Reference documentation. For example, the
ExtensionData property of the PowerCLI's VirtualMachineImpl object links to a vSphere
VirtualMachine object view. ExtensionData is a very powerful property because it allows
you to use all the properties and methods of the VMware vSphere API. For example, to
check whether the VMware Tools are running in your virtual machines, you can run the
following command:

PowerCLI C:\> Get-VM |
>> Select-Object -Property Name,
>> @{Name = "ToolsRunningStatus";
>> Expression = {$_.ExtensionData.Guest.ToolsRunningStatus}
>> }
>>

If VMware Tools are not installed in a virtual machine, the
ExtensionData.Guest.ToolsStatus property will have the value toolsNotInstalled. You
can check the tool's status with the following command:

PowerCLI C:\> Get-VM |
>> Select-Object -Property Name,
>> @{Name = "ToolsStatus"
>> Expression = {$_.ExtensionData.Guest.ToolsStatus}
>> }
>>
Name ToolsStatus
---- -----------
VM1 toolsNotInstalled
DNS1 toolsOk
DC1 toolsNotRunning
WindowsServer2012 toolsOld

Using the Get-View cmdlet
Another way to get the vSphere API objects is by using the Get-View cmdlet. This cmdlet
returns a vSphere object view, which is the same object you can retrieve via the
ExtensionData property. For example, the following two PowerCLI commands will give you

the same result:
PowerCLI C:\> (Get-VM -Name vCenter).ExtensionData
PowerCLI C:\> Get-VIew -VIObject (Get-VM -Name vCenter)

The Get-View cmdlet has the following syntax:
Get-View [-VIObject] <VIObject[]> [-Property <String[]>]
 [<CommonParameters>]
Get-View [-Server <VIServer[]>] [-Id] <ManagedObjectReference[]>
 [-Property <String[]>] [<CommonParameters>]
Get-View [-Server <VIServer[]>] [-SearchRoot
<ManagedObjectReference>]
 -ViewType <Type> [-Filter <Hashtable>] [-Property <String[]>]
 [<CommonParameters>]
Get-View [-Property <String[]>] -RelatedObject
 <ViewBaseMirroredObject[]> [<CommonParameters>]

The names of the parameter sets are GetViewByVIObject, GetView, GetEntity, and
GetViewByRelatedObject. The third parameter set, GetEntity, is very powerful and will
allow you to create PowerCLI commands or scripts that are optimized for speed. For
example, the following command will give you the vSphere object views of all virtual
machines and templates:

PowerCLI C:\> Get-View -ViewType VirtualMachine

Possible argument values for the -ViewType parameter are ClusterComputeResource,
ComputeResource, Datacenter, Datastore, DistributedVirtualPortgroup,
DistributedVirtualSwitch, Folder, HostSystem, Network, OpaqueNetwork, ResourcePool,
StoragePod, VirtualApp, VirtualMachine, and VmwareDistributedVirtualSwitch.
If you require only the virtual machines and not the templates, you need to specify a filter:

PowerCLI C:\> Get-View -ViewType VirtualMachine -Filter
 @{" Config.Template" = "false"}

The filter is in the form of a hash table in which you specify that the value of the
Config.Template property needs to be false to get only the virtual machines.
To make your command run faster, you need to specify the properties that you want to
return. Otherwise, all the properties are returned, and it will make your command run
slower.
Let's retrieve only the name and the overall status of your virtual machines:

PowerCLI C:\> Get-View -ViewType VirtualMachine -Filter
 @{"Config.Template" = "false"} -Property Name,OverallStatus |
>> Select-Object -Property Name,OverAllStatus
>>

This command runs in my test environment about 23 times faster than the equivalent:
PowerCLI C:\> Get-VM | Select-Object -Property Name,
@{Name="OverallStatus";Expression={$_.ExtensionData.OverallStatus}}

The conclusion is if you need your script to run faster, try to find a solution using the Get-
View cmdlet.

Tip

You should always make a trade-off between the time it takes you to write a script and
the time it takes you to run the script. If you spend 10 minutes to create a script that
takes 1 hour to run, you will have your work done in 70 minutes. If you spend 2 hours to
create a faster script that runs in 10 minutes, you will have your work done in 130
minutes. I would prefer the first solution. Of course, if you intend to run the script more
than once, the time you spend to improve the speed of your script is spent better.

Using managed object references
If you look at a vSphere object view using the Get-Member cmdlet, you will see that a lot of
properties are from the type VMware.Vim.ManagedObjectReference:

PowerCLI C:\> Get-VM -Name vCenter | Get-View | Get-Member |
>> Where-Object {$_.Name -eq 'Parent'}
>>

 TypeName: VMware.Vim.VirtualMachine

 Name MemberType Definition
---- ---------- ----------
Parent Property VMware.Vim.ManagedObjectReference Parent {get;}

A Managed Object Reference (MoRef) is a unique value that is generated by the vCenter
Server and is guaranteed to be unique for a given entity in a single vCenter instance.

Tip
The vSphere object views returned by the ExtensionData property or the Get-View
cmdlet are not the actual vSphere objects. The objects returned are copies or views of
the actual objects that represent the actual objects at the time the view was made.

Using the Get-VIObjectByVIView cmdlet
The Get-View cmdlet gives you a way to go from a PowerCLI object to a vSphere object
view. If you want to go back from a vSphere object view to a PowerCLI object, you can use
the Get-VIObjectByVIView cmdlet. Take a look at the following example:

PowerCLI C:\> $VMView = Get-VM -Name vCenter | Get-View
PowerCLI C:\> $VM = $VMView | Get-VIObjectByVIView

In the preceding example, the first line will give you a vSphere object view from a PowerCLI
VirtualMachineImpl object. The second line will convert the vSphere object view back to a
PowerCLI VirtualMachineImpl object.
The Get-VIObjectByVIView cmdlet has the following syntax:

Get-VIObjectByVIView [-VIView] <ViewBase[]> [<CommonParameters>]
Get-VIObjectByVIView [-Server <VIServer[]>] [-MORef]
 <ManagedObjectReference[]> [<CommonParameters>]

You can see that the Get-VIObjectByVIView cmdlet has two parameter sets. The first
parameter set contains the -VIView parameter. The second parameter set contains the -
Server and -MORef parameters.

Note
Remember that parameters from different parameter sets cannot be mixed in one
command.

If you are connected to multiple vCenter Servers, the Get-VIObjectByVIView cmdlet might
return objects from multiple vCenter Servers because MoRefs are only unique on a single
vCenter Server instance. You can use the -Server parameter of the Get-VIObjectByVIView
cmdlet to solve this problem by specifying the vCenter Server for which you want to return
objects. Because the -Server parameter is in another parameter set and not in the -VIView
parameter, you cannot use the -VIView parameter that is used in the pipeline. You have to
use the ForEach-Object cmdlet and the-MORef parameter of the Get-VIObjectByVIView
cmdlet:

PowerCLI C:\> $VMView |
>> ForEach-Object {
>> Get-VIObjectByVIView -Server vCenter1 -MoRef $_.MoRef
>> }
>>

Note
In the name of the Get-VIObjectByVIView cmdlet, you can see a piece of the history of
PowerCLI. VMware vSphere was named VMware Infrastructure before VMware
vSphere 4. The earlier VMware PowerCLI versions were named VI Toolkit. In the name
of this cmdlet, you see that a PowerCLI object is still named a VIObject and a vSphere
object view is named a VIView.

Extending PowerCLI objects with the New-
VIProperty cmdlet
Sometimes, you can have the feeling that a PowerCLI object is missing a property.
Although the VMware PowerCLI team tried to include the most useful properties in the
objects, you can have the need for an extra property. Luckily, PowerCLI has a way to
extend a PowerCLI object using the New-VIProperty cmdlet. This cmdlet has the following
syntax:

New-VIProperty [-Name] <String> [-ObjectType] <String[]> [-Value]
 <ScriptBlock> [-Force] [-BasedOnExtensionProperty <String[]>]
[-WhatIf]
 [-Confirm] [<CommonParameters>]
New-VIProperty [-Name] <String> [-ObjectType] <String[]> [-Force]
 [-ValueFromExtensionProperty] <String> [-WhatIf] [-Confirm]
 [<CommonParameters>]

Let's start with an example. You will add the VMware Tools' running statuses used in a
previous example to the VirtualMachineImpl object using the New-VIProperty cmdlet:

PowerCLI C:\> New-VIProperty -ObjectType VirtualMachine -Name
 ToolsRunningStatus -ValueFromExtensionProperty
 'Guest.ToolsRunningStatus'

 Name RetrievingType DeclaringType Value
---- -------------- ------------- -----
ToolsRunning... VirtualMachine VirtualMachine
Guest.ToolsRunningStatus

Now you can get the tools' running statuses of all of your virtual machines with the following
command:

PowerCLI C:\> Get-VM | Select-Object -Property Name,
ToolsRunningStatus

Isn't this much easier?
In the next example, you will add the vCenterServer property to the VirtualMachineImpl
object. The name of the vCenter Server is part of the VirtualMachineImpl Uid property.
The Uid property is a string that looks like
/VIServer=domain\account@vCenter:443/VirtualMachine=VirtualMachine-vm-239/.
You can use the Split() method to split the string. For example, the following command
splits the string 192.168.0.1 at the dots into an array with four elements:

PowerCLI C:\> "192.168.0.1".Split('.')
192
168
0
1

The first element is 192, the second element is 168, the third element is 0, and the fourth
and last element is 1. If you assign the array to a variable, then you can use an index to
specify a certain element of the array:

PowerCLI C:\> $Array = "192.168.0.1".Split('.')

The index is 0 for the first element, 1 for the second element, and so on. If you want to
specify the last element of the array, you can use the index -1. Take a look at the following
example:

PowerCLI C:\> $Array[0]
192

In the Uid property, the name of the vCenter Server is between the @ sign and the colon.
So, you can use those two characters to split the string. First, you split the string at the
colon and take the part before the colon. That is the first element of the resulting array:

PowerCLI C:\> $Uid =
 '/VIServer=domain\account@vCenter:443/VirtualMachine=
 VirtualMachine-vm-239/'
PowerCLI C:\> $Uid.Split(':')[0]
/VIServer=domain\account@vCenter

Split the resulting part at the @ sign and take the second element of the resulting array to
get the name of the vCenter Server:

PowerCLI C:\> $String = '/VIServer=domain\account@vCenter'
PowerCLI C:\> $String.Split('@')[1]
vCenter

You can do this splitting with one line of code:
PowerCLI C:\> $Uid =
 '/VIServer=domain\account@vCenter:443/VirtualMachine=
 VirtualMachine-vm-239/'
PowerCLI C:\> $Uid.Split(':')[0].Split('@')[1]
vCenter

Use the -Value parameter of the New-VIProperty cmdlet to specify a scriptblock. In this
scriptblock, $Args[0] is the object with which you want to retrieve the name of the vCenter
Server:

PowerCLI C:\> New-VIProperty -Name vCenterServer -ObjectType
 VirtualMachine -Value {$Args[0].Uid.Split(":")[0].Split("@")
[1]} -Force

The New-VIProperty -Force parameter indicates that you want to create the new property
even if another property with the same name already exists for the specified object type.
Now you can get a list of all of your virtual machines and their vCenter Servers with the
following command:

PowerCLI C:\> Get-VM | Select-Object -Property Name,vCenterServer

Working with vSphere folders
In a VMware vSphere environment, you can use folders to organize your infrastructure. In
the vSphere web client, you can create folders in the Hosts and Clusters, VMs and
Templates, Storage, and Networking inventories. The following screenshot shows an
example of folders in the VMs and Templates inventory:

You can browse through these folders using the PowerCLI Inventory Provider. PowerCLI
also has a set of cmdlets to work with these folders: Get-Folder, Move-Folder, New-
Folder, Remove-Folder, and Set-Folder.
You can use the Get-Folder cmdlet to get a list of all of your folders:

PowerCLI C:\> Get-Folder

Otherwise, you can select specific folders by their name using the following command line:
PowerCLI C:\> Get-Folder -Name "Accounting"

All folders are organized in a tree structure under the root folder. You can retrieve the root
folder with the following command:

PowerCLI C:\> Get-Folder -NoRecursion

 Name Type
---- ----
Datacenters Datacenter

The root folder is always named Datacenters. In this folder, you can only create subfolders
or data centers.
Folders in vSphere are of a certain type. Valid folder types are VM, HostAndCluster,
Datastore, Network, and Datacenter. You can use this to specify the type of folders you
want to retrieve. For example, to retrieve only folders of type VM, use the following
command:

PowerCLI C:\> Get-Folder -Type VM

A problem with folders is that you don't get the full path from the root if you retrieve a
folder. Using the New-VIProperty cmdlet, you can easily add a Path property to a
PowerCLI Folder object:

PowerCLI C:\> New-VIProperty -Name Path -ObjectType Folder -Value {
 # $FolderView contains the view of the current folder object
 $FolderView = $Args[0].Extensiondata

 # $Server is the name of the vCenter Server
 $Server = $Args[0].Uid.Split(":")[0].Split("@")[1]

 # We build the path from the right to the left
 # Start with the folder name
 $Path = $FolderView.Name

 # While we are not in the root folder
 while ($FolderView.Parent){
 # Get the parent folder
 $FolderView = Get-View -Id $FolderView.Parent -Server $Server

 # Extend the path with the name of the parent folder
 $Path = $FolderView.Name + "" + $Path
 }

 # Return the path
 $Path
} -Force # Create the property even if a property with this name
exists

In this example, you see that the # character in PowerShell is used to comment.
Using the new Path property, you can now get the path for all the folders with the following
command:

PowerCLI C:\> Get-Folder | Select-Object -Property Name,Path

You can use the Path property to find a folder by its complete path. Take a look at the
following example:

PowerCLI C:\> Get-Folder |
>> Where-Object {$_.Path -eq 'Datacenters\Dallas\vm\Templates'}
>>

Summary
In this chapter, you looked at the Get-Help, Get-Command, and Get-Member cmdlets. You
learned how to use providers and PSDrives. You also saw how to create a calculated
property. Using the raw API objects with the ExtensionData property or the Get-View
cmdlet was discussed, and you looked at extending PowerCLI objects with the New-
VIProperty cmdlet. At the end, you learned to work with folders, and you saw how you can
use the New-VIProperty cmdlet to extend the Folder object of PowerCLI with a Path
property.
In the next chapter, you will learn more about working with objects in PowerCLI.

Chapter 3. Working with Objects in
PowerShell
PowerShell is an object-oriented shell. Don't let this scare you because if you know how to
work with PowerShell objects, it will make your life much easier. Objects in PowerShell
have properties and methods, just like objects in real life. For example, let's take a
computer and try to see it as an object. It has properties such as the manufacturer, the
number of CPUs, the amount of memory, and the type of computer (for example, server,
workstation, desktop, or laptop). The computer also has methods, for example, you can
switch the computer on and off. Properties and methods together are called members in
PowerShell. In Chapter 2 , Learning Basic PowerCLI Concepts, you already saw the Get-
Member cmdlet that lists the properties and methods of a PowerShell object. In this chapter,
you will learn all of the ins and outs of PowerShell objects. We will focus on the following
topics:

Using objects, properties, and methods
Expanding variables and subexpressions in strings
Using here-strings
Using the pipeline
Using the PowerShell object cmdlets
Creating your own objects
Using COM objects

Using objects, properties, and methods
In PowerCLI, even a string is an object. You can list the members of a string object using
the Get-Member cmdlet that you have seen before. Let's go back to our example from
Chapter 2 , Learning Basic PowerCLI Concepts. First, we create a string Learning
PowerCLI and put it in a variable named $String. Then, we take the $String variable and
execute the Get-Member cmdlet using the $String variable as the input:

PowerCLI C:\> $String = "Learning PowerCLI"
PowerCLI C:\> Get-Member -Inputobject $String

You can also use the pipeline and do it in a one-liner:
PowerCLI C:\> "Learning PowerCLI" | Get-Member

The output will be as follows:
 TypeName: System.String
Name MemberType Definition
---- ---------- ----------
Clone Method System.Object Clone(),
Syst...
CompareTo Method int
CompareTo(System.Object...
Contains Method bool Contains(string value)
CopyTo Method void CopyTo(int
sourceIndex...
EndsWith Method bool EndsWith(string

EndsWith Method bool EndsWith(string
value)...
Equals Method bool Equals(System.Object
o...
GetEnumerator Method System.CharEnumerator
GetEn...
GetHashCode Method int GetHashCode()
GetType Method type GetType()
GetTypeCode Method System.TypeCode
GetTypeCode...
IndexOf Method int IndexOf(char value),
in...
IndexOfAny Method int IndexOfAny(char[]
anyOf...
Insert Method string Insert(int
startInde...
IsNormalized Method bool IsNormalized(), bool
I...
LastIndexOf Method int LastIndexOf(char
value)...
LastIndexOfAny Method int LastIndexOfAny(char[]
a...
Normalize Method string Normalize(), string
...
PadLeft Method string PadLeft(int
totalWid...
PadRight Method string PadRight(int
totalWi...
Remove Method string Remove(int
startInde...
Replace Method string Replace(char
oldChar...
Split Method string[] Split(Params
char[...
StartsWith Method bool StartsWith(string
valu...
Substring Method string Substring(int
startI...
ToBoolean Method bool
IConvertible.ToBoolean...
ToByte Method byte
IConvertible.ToByte(Sy...
ToChar Method char
IConvertible.ToChar(Sy...
ToCharArray Method char[] ToCharArray(),
char[...
ToDateTime Method datetime
IConvertible.ToDat...
ToDecimal Method decimal
IConvertible.ToDeci...
ToDouble Method double
IConvertible.ToDoubl...
ToInt16 Method int16
IConvertible.ToInt16(...
ToInt32 Method int
IConvertible.ToInt32(Sy...
ToInt64 Method long
IConvertible.ToInt64(S...

IConvertible.ToInt64(S...
ToLower Method string ToLower(), string
To...
ToLowerInvariant Method string ToLowerInvariant()
ToSByte Method sbyte
IConvertible.ToSByte(...
ToSingle Method float
IConvertible.ToSingle...
ToString Method string ToString(), string
T...
ToType Method System.Object
IConvertible....
ToUInt16 Method uint16
IConvertible.ToUInt1...
ToUInt32 Method uint32
IConvertible.ToUInt3...
ToUInt64 Method uint64
IConvertible.ToUInt6...
ToUpper Method string ToUpper(), string
To...
ToUpperInvariant Method string ToUpperInvariant()
Trim Method string Trim(Params char[]
t...
TrimEnd Method string TrimEnd(Params
char[...
TrimStart Method string TrimStart(Params
cha...
Chars ParameterizedProperty char Chars(int index) {get;}
Length Property int Length {get;}

You may see that a string has a lot of methods, one property, and a special type of
property named ParameterizedProperty. Let's first use the Length property. To use a
property, type the object name or the name of the variable containing the object, then type
a dot, and finally type the property name. So, for the string, you could use any of the
following command lines:

PowerCLI C:\> "Learning PowerCLI".Length
17

Or:
PowerCLI C:\> $String.Length
17

You may see that the Length property contains the number of characters of the string
Learning PowerCLI; 17 in this case.
Property names in PowerShell are not case-sensitive. So, you could type the following
command as well:

PowerCLI C:\> $String.length
17

ParameterizedProperty is a property that accepts a parameter value. The
ParameterizedProperty char Chars property can be used to return the character at a
specific position in the string. You have to specify the position, also named the index, as a
parameter to Chars. Indexes in PowerShell start with 0. So, to get the first character of the

string, type the following command:
PowerCLI C:\> $String.Chars(0)
L

To get the second character of the string, type the following command:
PowerCLI C:\> $String.Chars(1)
e

You cannot use -1 to get the last character of the string, as you can do with indexing in a
PowerShell array. You have to calculate the last index yourself, and it is calculated by
subtracting 1 from the length of the string. So, to get the last character of the string, you
can type the following command:

PowerCLI C:\> $String.Chars($String.Length - 1)
I

PowerShell has more types of properties, such as AliasProperty, CodeProperty,
NoteProperty, and ScriptProperty:

AliasProperty is an alias name for an existing property
CodeProperty is a property that maps to a static method on a .NET class
NoteProperty is a property that contains data
ScriptProperty is a property whose value is returned from executing a PowerShell
scriptblock

Using methods
Using methods is as easy as using properties. You can type the name of a variable
containing the object, then you type a dot, and after the dot, you type the name of the
method. For methods, you always have to use parentheses after the method name. For
example, to modify a string to all uppercase letters type in the following command:

PowerCLI C:\> $String.ToUpper()
LEARNING POWERCLI

Some methods require parameters. For example, to find the index of the P character in the
string, you can use the following command:

PowerCLI C:\> $String.IndexOf('P')
9

The character P is the tenth character in the Learning PowerCLI string. But because
indexes in PowerShell start with 0 and not 1, the index of the P character in the string is 9
and not 10.
A very useful method is Replace that you can use to replace a character or a substring with
another character, string, or nothing. For example, let's replace all e characters in the string
with a u character:

PowerCLI C:\> $String.Replace('e','u')
Luarning PowurCLI

The characters in the method are case-sensitive. If you use an uppercase E, it won't find
the letter and will replace nothing. See the following command:

PowerCLI C:\> $String.Replace('E','U')
Learning PowerCLI

You can also replace a substring with another string. Let's replace the word PowerCLI with
VMware PowerCLI:

PowerCLI C:\> $String.Replace('PowerCLI','VMware PowerCLI')
Learning VMware PowerCLI

There is also a -Replace operator in PowerShell. You can use the -Replace operator to do
a regular expression-based text substitution on a string or a collection of strings:

PowerCLI C:\> $string -Replace 'e','u'
Luarning PowurCLI

Although both have the same name, the string Replace method and the -Replace operator
are two different things. There is no -ToUpper operator, as you can see in the following
screenshot that gives an error message:

You can use more than one method in the same command. Say, you want to replace the
word Learning with Gaining, and that you want to remove the characters C, L, and I from
the end of the string using the TrimEnd method. Then, you can use the following command:

PowerCLI C:\> $String.Replace('Learning','Gaining').TrimEnd('CLI')
Gaining Power

Expanding variables and subexpressions
in strings
In PowerShell, you can define a string with single or double quotes. There is a difference
between these two methods. In a single-quoted string, variables and subexpressions are
not expanded, whereas, in a double-quoted string, they are expanded.
Let's look at an example of variable expansion in a double-quoted string:

PowerCLI C:\> $Number = 3
PowerCLI C:\> "The number is: $Number"
The number is: 3

In the preceding example, the string is defined with double quotes, and the $Number variable
is expanded. Let's see what happens if you use single quotes:

PowerCLI C:\> $Number = 3
PowerCLI C:\> 'The number is: $Number'
The number is: $Number

Using a single-quoted string, PowerShell doesn't expand the $Number variable. Let's try to
put the number of virtual CPUs of a virtual machine in a double-quoted string:

PowerCLI C:\> $vm = Get-VM -Name dc1
PowerCLI C:\> "The number of vCPU's of the vm is: $vm.NumCpu"
The number of vCPU's of the vm is: dc1.NumCpu

The output is not what you intended. What happened? The $ sign in front of a variable name
tells PowerShell to evaluate the variable. In the string that is used in the preceding example,
$vm evaluates the variable vm. But it does not evaluate $vm.NumCpu. To evaluate $vm.NumCpu,
you have to use another $ sign before and parentheses around the code that you want to
evaluate: $($vm.NumCpu). This is called a subexpression notation.
In the corrected example, you will get the number of virtual CPUs:

PowerCLI C:\> $vm = Get-VM -Name dc1
PowerCLI C:\> "The number of vCPU's of the vm is: $($vm.NumCpu)"
The number of vCPU's of the vm is: 2

You can use subexpression evaluation to evaluate any PowerShell code. In the following
example, you will use PowerShell to calculate the sum of 3 and 4:

PowerCLI C:\> "3 + 4 = $(3+4)"
3 + 4 = 7

When will a string be expanded?
A string will be expanded when it is assigned to a variable. It will not be re-evaluated when
the variable is used later. The following example shows this behavior:

PowerCLI C:\> $Number = 3
PowerCLI C:\> $String = "The number is: $Number"
PowerCLI C:\> $String
The number is: 3
PowerCLI C:\> $Number = 4
PowerCLI C:\> $String
The number is: 3

As you can see, $String is assigned before $Number gets the value 4. The $String variable
says The number is: 3.

Expanding a string when it is used
How can you delay the expansion of the string until you use it? PowerShell has a predefined
variable named $ExecutionContext. You can use the InvokeCommand.ExpandString()
method of this variable to expand the string:

PowerCLI C:\> $Number = 3
PowerCLI C:\> $String = 'The number is: $Number'
PowerCLI C:\> $ExecutionContext.InvokeCommand.ExpandString($String)
The number is: 3
PowerCLI C:\> $Number = 4
PowerCLI C:\> $ExecutionContext.InvokeCommand.ExpandString($String)
The number is: 4

The preceding example defines $String as a single-quoted string, so $Number is not
expanded at the assignment of $String. The
$ExecutionContext.InvokeCommand.ExpandString($String) command expands the string
every time the command is executed.

Using here-strings
Until now, you have only seen single-line strings in this book. PowerShell has a so-called
here-string that spans multiple lines. You use @" or @' to start the here-string and "@ or '@
to finish the here-string. The @" or @' must be at the end of a line and the "@ or '@ must be
at the beginning of the line that terminates the here-string. As in single-line strings, variables
and subexpressions are expanded in double-quoted here-strings and are not expanded in
single-quoted here-strings.
The following command creates a here-string that spans two lines and puts the here-string
in the $s variable:

PowerCLI C:\> $s = @"
>> Learning PowerCLI
>> is a lot of fun!
>> "@
>> $s
>>
Learning PowerCLI
is a lot of fun!

Using the pipeline
In PowerShell, you can use the output of one command as input for another command by
using the vertical bar (|) character. This is called using the pipeline. The vertical bar
character, in PowerShell, is called the pipe character. In PowerShell, complete objects
pass through the pipeline. This is different from cmd.exe or a Linux shell where only strings
pass through the pipeline. The advantage of passing complete objects through the pipeline
is that you don't have to perform string manipulations to retrieve property values.

Using the ByValue parameter binding
You have already seen some examples of using the pipeline in preceding sections of this
book. For example:

PowerCLI C:\> Get-VM | Get-Member

In this example, the output of the Get-VM cmdlet is used as the input for the Get-Member
cmdlet. This is much simpler than the following command, which gives you the same result:

PowerCLI C:\> Get-Member -InputObject (Get-VM)

You can see that the Get-Member cmdlet accepts inputs from the pipeline if you look at the
help for the Get-Member -Parameter InputObject using the following command:

PowerCLI C:\> Get-Help Get-Member -Parameter InputObject

The output will be the following:
-InputObject <PSObject>
Specifies the object whose members are retrieved.
Using the InputObject parameter is not the same as piping an object
 to Get-Member. The differences are as follows:
-- When you pipe a collection of objects to Get-Member, Get-Member
 gets the members of the individual objects in the collection,
such as
 the properties of each string in an array of strings.
-- When you use InputObject to submit a collection of objects,
 Get-Member gets the members of the collection, such as the
 properties of the array in an array of strings.

 Required? false
 Position? named
 Default value
 Accept pipeline input? true (ByValue)
 Accept wildcard characters? false

You can see that in the description it says Accept pipeline input? true (ByValue). This
means that the Get-Member -InputObject parameter accepts inputs from the pipeline.
The ByValue parameter binding means that PowerShell binds the entire input object to the
parameter.
In the following figure, you will see that the pipeline binds the output of the Get-Member
cmdlet to the -InputObject parameter of the Get-Member cmdlet:

Using the ByPropertyName parameter binding
If PowerShell can't find a parameter that accepts pipeline inputs using ByValue, it tries to
find parameters that accept pipeline inputs using ByPropertyName. When a parameter
accepts pipeline inputs using ByPropertyName, it means that the value of a property of the
input object is bound to a cmdlet parameter with the same name as the property.
An example of a PowerShell cmdlet that accepts inputs from the pipeline using the
ByPropertyName parameter binding is the Get-Date cmdlet that returns a System.DateTime
object. The -Date parameter of this cmdlet accepts pipeline inputs using both ByValue and
ByPropertyName. The PowerCLI Get-VIEvent cmdlet retrieves information about the events
on a vCenter Server system. Take a look at the following example:

PowerCLI C:\> Get-VIEvent | Select-Object -First 1

The preceding command has the following output:
ScheduledTask : VMware.Vim.ScheduledTaskEventArgument
Entity : VMware.Vim.ManagedEntityEventArgument
Key : 64835
ChainId : 64835

 CreatedTime : 1/7/2017 9:04:01 PM
UserName :
Datacenter :
ComputeResource :
Host :
Vm :
Ds :
Net :
Dvs :
FullFormattedMessage : Running task VMware vCenter Update Manager
 Check Notification on Datacenters in
 datacenter
ChangeTag :

The output has a property CreatedTime. The value of the CreatedTime property has a
DateTime object type.
Let's try to pipe the output of the preceding command into the Get-Date cmdlet:

This gives an error message because the output of the Get-VIEvent cmdlet does not have
a Date property that matches the -Date parameter of the Get-Date cmdlet. We will now use
a calculated property to rename the CreatedTime property into Date:

PowerCLI C:\> Get-VIEvent | Select-Object -First 1 |
>> Select-Object @{Name="Date";Expression={$_.CreatedTime}} |
>> Get-Date
>>
Saturday, January 7, 2017 9:14:51 PM

Because the output of the Select-Object cmdlet has a Date property and this property
matches the Get-Date parameter -Date using the ByPropertyName parameter binding, the
pipeline now works.
The following figure shows that the pipeline binds the value of the Date property in the
output of the Select-Object cmdlet to the -Date property of the Get-Date cmdlet:

Most PowerCLI cmdlets will accept input from the pipeline using the ByValue parameter
binding. However, only a few PowerCLI cmdlets will accept input from the pipeline using the
ByPropertyName parameter binding. You can find these cmdlets with the following
PowerShell code:

PowerCLI C:\> Get-VICommand |
>> Where-Object {$_.ParameterSets.Parameters |
>> Where-Object {
>> $_.ValueFromPipeline -and $_.ValueFromPipelineByPropertyName}}
>>

The preceding command has the following output:

CommandType Name Version Source
----------- ---- ------- ------
Cmdlet Add-EsxSoftwareDepot 6.0.0.0 VMware.ImageBuilder
Cmdlet Add-EsxSoftwarePackage 6.0.0.0 VMware.ImageBuilder
Cmdlet Compare-EsxImageProfile 6.0.0.0 VMware.ImageBuilder
Cmdlet Export-EsxImageProfile 6.0.0.0 VMware.ImageBuilder
Cmdlet New-EsxImageProfile 6.0.0.0 VMware.ImageBuilder
Cmdlet Remove-EsxImageProfile 6.0.0.0 VMware.ImageBuilder
Cmdlet Remove-EsxSoftwareDepot 6.0.0.0 VMware.ImageBuilder
Cmdlet Remove-EsxSoftwarePackage 6.0.0.0 VMware.ImageBuilder
Cmdlet Set-EsxImageProfile 6.0.0.0 VMware.ImageBuilder

The script uses the Get-VICommand cmdlet to get all of the PowerCLI cmdlets. It then filters
only those cmdlets that have parameters that accept pipeline inputs using ByPropertyName.
As you see, when writing this book, only cmdlets from the PowerCLI VMware.ImageBuilder
module accept pipeline inputs using ByPropertyName.

Using the PowerShell object cmdlets
PowerShell has some cmdlets that are designed to work with all kinds of objects. You can
easily recognize them because they all have the noun Object. You can use the Get-Command
cmdlet -Noun parameter to find them:

PowerCLI C:\> Get-Command -Noun Object

The preceding command has the following output:
CommandType Name Version Source
----------- ---- ------- ------
Cmdlet Compare-Object 3.1.0.0 Microsoft.PowerShell.Utility
Cmdlet ForEach-Object 3.0.0.0 Microsoft.PowerShell.Core
Cmdlet Group-Object 3.1.0.0 Microsoft.PowerShell.Utility
Cmdlet Measure-Object 3.1.0.0 Microsoft.PowerShell.Utility
Cmdlet New-Object 3.1.0.0 Microsoft.PowerShell.Utility
Cmdlet Select-Object 3.1.0.0 Microsoft.PowerShell.Utility
Cmdlet Sort-Object 3.1.0.0 Microsoft.PowerShell.Utility
Cmdlet Tee-Object 3.1.0.0 Microsoft.PowerShell.Utility
Cmdlet Where-Object 3.0.0.0 Microsoft.PowerShell.Core

In the following section, we will discuss the Object cmdlets.

Using the Select-Object cmdlet
If you want to retrieve a subset of the properties of an object, select unique objects or a
specific number of objects or specific objects from an array, you can use the Select-
Object cmdlet. You can also use the Select-Object cmdlet to add properties to an object
using calculated properties, as you have seen in Chapter 2 , Learning Basic PowerCLI
Concepts.
The Select-Object cmdlet has the following syntax. The first parameter set is the default:

Select-Object [[-Property] <Object[]>] [-ExcludeProperty
<String[]>] [-ExpandProperty <String>] [-First <Int32>] [-
InputObject <PSObject>] [-Last <Int32>] [-Skip <Int32>] [-Unique]
[-Wait] [<CommonParameters>]

The second parameter set can be used to skip the last part of the output:
Select-Object [[-Property] <Object[]>] [-ExcludeProperty
<String[]>] [-ExpandProperty <String>] [-InputObject <PSObject>] [-
SkipLast <Int32>] [-Unique] [<CommonParameters>]

The third parameter set can be used to specify an array of objects to return based on their
index values:

Select-Object [-Index <Int32[]>] [-InputObject <PSObject>] [-
Unique] [-Wait] [<CommonParameters>]

You can use Select as an alias for the Select-Object cmdlet.
The Get-VM cmdlet returns the Name, PowerState, NumCpu, and MemoryGB properties of the
virtual machines by default. But what if you want to return the Name, VMHost, and Cluster
properties instead? If you look at the properties of a virtual machine object, you will see the
VMhost property. But you will not see a Cluster property. However, if you look at a
VMHostImpl object, you will find a Parent property. The Parent property of a VMhostImpl

 object contains the cluster that the host is a member of. Technet24.ir
Note
You can use this information to create a PowerCLI one-liner to get the host and cluster
of all of the virtual machines:

PowerCLI C:\> Get-VM | Select-Object -Property
 Name,VMHost,
 @{Name="Cluster";Expression={$_.VMHost.Parent}}
Name VMHost Cluster
---- ------ -------
DC1 192.168.0.133 Cluster01

The preceding command uses the Select-Object cmdlet to select the Name and VMHost
properties of the virtual machine objects, and it creates a calculated property named
Cluster that retrieves the cluster via the VMHost.Parent property.

Note
You can create a one-liner from all of your PowerShell scripts by using the semicolon as
a separator between the commands. Use this only on the command line. It makes your
scripts hard to read.

You can use the Select-Object -First parameter to specify the number of objects to
select from the beginning of an array of input objects. For example, to retrieve the first
three host types, use the following command:

PowerCLI C:\> Get-VMHost | Select-Object -First 3

If you are typing commands at the pipeline, you can also use their aliases. For Select-
Object, the alias is Select. So, the next example will give the same result as the preceding
one:

PowerCLI C:\> Get-VMHost | Select -First 3

To select a number of objects starting from the end of an array of objects, use the Select-
Object -Last parameter. The following command retrieves the last cluster:

PowerCLI C:\> Get-Cluster | Select-Object -Last 1

You can also skip objects from the beginning or the end of an array using the Select-
Object -Skip parameter. The following command returns all of the folder objects except
the first two:

PowerCLI C:\> Get-Folder | Select-Object -Skip 2

Tip
A very interesting parameter of the Select-Object cmdlet is the -ExpandProperty
parameter. You can use this parameter to expand the object if the property contains an
object. For example, if you want to get the VMHostImpl object of the virtual machine
named dc1, you can execute the following command:

PowerCLI C:\> Get-VM -Name dc1 | Select-Object
 -ExpandProperty VMHost

Using the Where-Object cmdlet

If you only want a subset of all of the objects that a command returns, you can use the
Where-Object cmdlet to filter the output of a command and only return the objects that
match the criteria of the filter.
The Where-Object cmdlet syntax definition is so long that it'll take too much space in this
book. You can easily get the Where-Object cmdlet syntax with the following command:

PowerCLI C:\> Get-Help Where-Object

PowerShell V3 introduced a new, easier syntax for the Where-Object cmdlet. I will show
you both the V2 and V3 syntaxes. First, let's see the new PowerShell V3 syntax.
Let's try to find all virtual machines that have only one virtual CPU. You can do this by
searching for virtual machines that have a NumCPU property with a value of 1:

PowerCLI C:\> Get-VM | Where-Object NumCpu -eq 1
Name PowerState Num CPUs MemoryGB
---- ---------- -------- --------
DC1 PoweredOff 1 0.250

If you use the alias Where, the command looks more like a natural language:
PowerCLI C:\> Get-VM | Where NumCpu -eq 1

You can also use the alias ? if you want to type less on the command line:
PowerCLI C:\> Get-VM | ? NumCpu -eq 1

The PowerShell V2 syntax is a bit more obscure. You have to use a script block as the
value of the Where-Object -FilterScript parameter:

PowerCLI C:\> Get-VM | Where-Object -FilterScript {$_.NumCpu -eq 1}

Because the -FilterScript parameter is the first positional parameter of the Where-Object
cmdlet, nobody uses the parameter name, and you will always see one of the following
command lines being used:

PowerCLI C:\> Get-VM | Where-Object {$_.NumCpu -eq 1}
PowerCLI C:\> Get-VM | where {$_.NumCpu -eq 1}

The advantage of the PowerShell V2 syntax over the V3 syntax is that you can create
complex filtering scripts. For example:

PowerCLI C:\> Get-VM |
>> Where-Object {$_.NumCpu -gt 2 -and $_.MemoryGB -lt 16}
>>

The preceding command will show you all of the virtual machines with more than two virtual
CPUs and less than 16 GB of memory. If you want to create the same filter using the
PowerShell V3 syntax, you have to use two filters: one for the number of CPUs and one for
the memory:

PowerCLI C:\> Get-VM | Where NumCpu -gt 2 | Where MemoryGB -lt 16

Using the ForEach-Object cmdlet
Some cmdlets don't accept properties from the pipeline. On the other hand, you would like
to use a cmdlet in the pipeline, but the property you want to use in the pipeline doesn't
accept pipeline input. This is where the PowerShell ForEach-Object cmdlet will help you.

