

 Page 2 of 15

Contents
Introduction ...3

Python Script Creation ...3

Method 1 ...4

Vulnerability Creation .. 4

Exploitation ... 5

Method 2 ...8

Vulnerability Creation .. 8

Exploitation ... 10

Method 3 ... 12

Vulnerability Creation .. 12

Exploitation ... 13

Conclusion ... 15

 Page 3 of 15

Introduction
In general, whenever an attacker is introduced inside an environment that has Python files, The options
that the attacker can use to increase its access are limited. There are three methods that we will discover
in the article. Some misconfigurations include write permissions, sudo privileges, and editing the path
variable.

Python Script Creation
To demonstrate the action of elevating privileges using Python scripts, we created a sample script that
imports some libraries. In a real-life scenario, this can be general Python scripts or projects that a group
of developers are working on. In a Capture the Flag scenario, these are easy to find and might contain a
script that would be similar to this one. The script imports the webbrowser module and then proceeds to
use the open function to run the default web browser on the device to open the hackingarticles web page.

To see how the scripts work, we run the script and find that a web browser is opened with the
hackingarticles web page as depicted below.

nano hack.py

import webbrowser

webbrowser.open("https://hackingarticles.in")

cat hack.py

python3 hack.py

 Page 4 of 15

Method 1

The permissions applied to the module file that our script imports are the source of this vulnerability. It

becomes a vulnerability when the module file being imported has rights that allow any user to alter it. The

webbrowser.py module file is called in the python script that we wrote. It is not an issue in an untouched

system with all default permissions, but in a development environment, there tends to be some security

tradeoffs over small conveniences. To have a better understanding of what happens in the background

and what permissions can lead to privilege escalation, we will first construct the vulnerability in our

Ubuntu environment and then attack it with Kali Linux.

Vulnerability Creation
As discussed, in this method, the vulnerability is based on the permissions on the module file. To create
this vulnerability, we need to locate the module file first. We used the locate command to find it. We see
that it is located inside of /usr/lib/python3.8/. This could vary from installation to installation. So, try and
locate it in your environment. Then we can see that the permissions that are by default on the module
file are read, write, and execute permissions for the owner; execute and read for the group; and only
execute permissions for others. This means that unless the user is the root, they cannot edit the file. To
create the vulnerability, we changed the permissions so that they could be read, written, and executed
by every user. This can be verified from the image below.

The next order of business is to make our machine vulnerable by providing a way to run the Python script.
The easiest way to do this is to make an entry inside the sudoers file so that the attacker (who will have
access to user pavan) will be able to execute the python script that we created (hack.py).

locate webbrowser.py

ls -la /usr/lib/python3.8/webbrowser.py

sudo chmod 777 /usr/lib/python3.8/webbrowser.py

ls -la /usr/lib/python3.8/webbrowser.py

nano /etc/sudoers

pavan ALL=(root) NOPASSWD: /usr/bin/python3.8 /home/pentest/hack.py

 Page 5 of 15

This is a complete process that makes the machine vulnerable to Python Library Hijacking. All the
configurations that are not mentioned are set to be the defaults that Linux has. No other changes have
been made.

Exploitation
The exploitations will not contain a method to gain the initial foothold on the target machine. It will
contain the method to elevate the privilege after the attacker gains the initial foothold. To stimulate this,
we connect to the target machine as the user pavan. Like any attacker who requires elevated privileges,
we ran the sudo -l command to see which scripts or binaries we could run with elevated access. We see
that we can use Python 3.8 to run hack.py. As an attacker, we investigate the script using the cat command
to see that it is importing a module named webbrowser. We use the locate command to find the location
of the module and find that it is located inside /usr/lib/python3.8. Next, we check for permissions for the
module and find that it is writable by a pavan user to whom we have access.

 Page 6 of 15

We used the nano editor to open the module file and add the Python reverse shell script inside the
function that is called by the hack.py file. We saw earlier that it opens up a webpage in the browser. So,
it will be using an open function. Hence, we will add the reverse shellcode as depicted below.

ssh pavan@192.168.1.46

sudo -l

cat /home/pentest/hack.py

locate webbrowser.py

ls -la /usr/lib/python3.8/webbrowser.py

nano /usr/lib/python3.8/webbrowser.py

 Page 7 of 15

After editing the module file, we save and close the editor. Back on the Kali Linux console, we open a
Netcat listener on the port mentioned in the reverse shell script and then come back to the shell as the
pavan user and execute the hack.py script with sudo as shown in the image.

As soon as the script is running, we see that a session is connected to our Netcat listener. The whoami
command clarifies that the session we have is for the root user on the target machine. We have
successfully elevated privilege from the pavan user to the root user.

sudo /usr/bin/python3.8 /home/pentest/hack.py

nc -lvp 1234

whoami

 Page 8 of 15

Method 2
This vulnerability is based on the priority order of the Python library path that is applied to the module

file that our script is importing. When a module is imported into a script, Python will look for the particular

module file inside the default directories in a particular priority order. In the python script that we created,

we have the webbrowser.py module file that is called. The module that is being searched for will be

located on one of the default paths. However, if there is a Python module file in the same directory as the

original script, it will get priority over the default paths. To get a better understanding of what goes on in

the background and how it can lead to a privilege escalation, we will first create the vulnerability in our

Ubuntu environment and then use Kali Linux to exploit this vulnerability.

Vulnerability Creation
As discussed, in this method, the vulnerability is based on the priority order of the module file execution.
To create this vulnerability, first we need to revert the vulnerable permissions that we created earlier so
that this machine doesn’t become vulnerable in multiple ways. We change the permissions of the
webbrowser.py.

Next, we get back to the Python script that we created earlier. We can see that it is located in the home
of the Pavan user and it still contains the same code that we began with. It still imports the webbrowser
module.

ls -la /usr/lib/python3.8/webbrowser.py

ls

cat hack.py

 Page 9 of 15

Since we moved the script from the pentest user’s home directory to the home directory of the pavan
user, we need to make the change inside the sudoers file as well, so that it contains the correct path for
the script hack.py.

nano /etc/sudoers

pavan ALL=(root) NOPASSWD: /usr/bin/python3.8 /home/pavan/hack.py

 Page 10 of 15

This is a complete process that makes the machine vulnerable to Python Library Hijacking. All the
configurations that are not mentioned are to be set to the default that Linux has. No other changes have
been made.

Exploitation
Again, the exploitation will not contain a method to gain an initial foothold on the target machine. It will
include a method for increasing privilege after the attacker gains a foothold. To stimulate this, we connect
to the target machine as the user pavan. Like any attacker who requires elevated privileges, we ran the
sudo -l command to see which scripts or binaries we could run with elevated access. We see that we can
use Python 3.8 to run hack.py. As an attacker, we investigate the script using the cat command to see that
it is importing a module named webbrowser.

ssh pavan@192.168.1.46

sudo -l

ls

cat hack.py

 Page 11 of 15

Since the hack.py is located inside the home directory of the pavan user, and since we have access as the
pavan user, we can create a file inside the home directory. In this scenario, it should be noted that we
can’t edit the hack.py file. If that were the case, we would edit the file directly and add a reverse shellcode
inside, but in this case, we will create a webbrowser.py file. We, will add the Python reverse shellcode
inside the webbrowser.py file that we just created.

Next, we need to run a Netcat listener on the port that we mentioned inside the reverse shellcode. Then
we will proceed to execute the hack.py script using sudo.

nano webbrowser.py

cat webbrowser.py

sudo /usr/bin/python3.8 /home/pavan/hack.py

 Page 12 of 15

As soon as the script is running, we see that a session is connected to our Netcat listener. The id command
clarifies that the session we have is for the root user on the target machine. We have successfully elevated
privilege from the pavan user to the root user.

Method 3
This vulnerability is based on the Python library that searches through the Python PATH Environment

Variable. This variable holds a list of directories where Python searches for the different directories for

the imported modules. If an attacker can change or modify that variable, then they can use it to elevate

privileges on the target machine. To get a better understanding of what goes on in the background and

how it can lead to a privilege escalation, we will first create the vulnerability in our Ubuntu environment

and then use Kali Linux to exploit this vulnerability.

 Vulnerability Creation
As discussed, this method of vulnerability is based on the environment's path variable. To create this
vulnerability, first we need to revert the vulnerable permissions that we created earlier. so that this
machine doesn’t become vulnerable in multiple ways. We create the hack.py script inside the tmp
directory. We can verify that the contents of the script are the same as before.

nc -lvp 1234

id

cd /tmp

ls

cat hack.py

 Page 13 of 15

Next, we need to make some changes inside the sudoers file. First, we change the location of the file to
the /tmp directory, and then we add the SETENV tag to the file. This means that the pavan user can use
the SETENV command with sudo permissions without entering the root password. The SETENV is the tool
that can change the value for the PYTHONPATH environment variable to include any location into the
order of execution that we learned in the previous method.

This is the complete process that made the machine vulnerable to Python Library Hijacking. All the
configurations that are not mentioned are to set to the default that Linux has. No other changes have
been made whatsoever. Time to pose as an attacker.

Exploitation
Again, the exploitation will not contain a method to gain an initial foothold on the target machine. It will
contain the method to elevate the privilege after the attacker gains the initial foothold. To stimulate this,

nano /etc/sudoers

pavan ALL=(root) NOPASSWD:SETENV /usr/bin/python3.8 /tmp/hack.py

cat /etc/sudoers

 Page 14 of 15

we connect to the target machine as the user pavan. Like any attacker who requires elevated privileges,
we ran the sudo -l command to see which scripts or binaries we could run with elevated access. We see
that we can use the SETENV with elevated access. This means that we can use it to alter the priority order
of the imported module. Since the hack.py is located inside the /tmp directory, we move into it and check
the hack.py script.

Since it is importing the webbrowser module, we first create a malicious module file with the name
webbrowser.py, and then, using the ability to change the environment variable PythonPATH, we will make
an entry to include our malicious module file. The malicious module file contains the reverse shellcode.
We start a Netcat listener on the same port as mentioned in the script, proceed to add the /tmp directory
into the Python Path, and then execute the hack.py file to elevate our access.

ssh pavan@192.168.1.46

sudo -l

cd /tmp

ls

cat hack.py

nano webbrowser.py

cat webbrowser.py

sudo PYTHONPATH=/tmp/ /usr/bin/python3.8 /tmp/hack.py

 Page 15 of 15

As soon as the script is running, we see that a session is connected to our Netcat listener. The whoami
command clarifies that the session we have is for the root user on the target machine. We have
successfully elevated privilege from the pavan user to the root user.

Conclusion
 We were able to set up three real-life scenarios for the environment of the Python Libraries and then

introduced some misconfigurations that could lead to an attacker elevating their access to the root level.

The development environment is one of the most targeted environments because, in those, the ease of

performing tasks is given priority over the security of the environment.

nc -lvp 1234

id

JOIN OUR
TRAINING PROGRAMS

www.ignitetechnologies.in

BEGINNER

Network Pentest

Bug Bounty

Wireless Pentest

Network Security
EssentialsEthical Hacking

ADVANCED

EXPERT

Burp Suite Pro

CTF

Windows

Linux

Pro
Infrastructure VAPT

APT’s - MITRE Attack Tactics

MSSQL Security Assessment

Active Directory Attack

Red Team Operation

Privilege Escalation

Web
Services-API

Android Pentest

Computer
Forensics

Advanced
Metasploit

CLICK HERE

