

Preface
Microsoft Active Directory is the most widely used identity management solution. It can centrally

manage identities across its infrastructure. It is equipped with different role services, features, and

components that help us handle identities securely and effectively according to business requirements.

For the last 20 years, Microsoft has continued improving Active Directory, and Active Directory 2022

further consolidates its approach in terms of rectifying industry requirements and protecting identity

infrastructures from emerging security threats. However, a technology-rich product is not simply going

to make a productive, reliable, scalable, and secure identity infrastructure. It requires knowledge of

Active Directory roles services, components, and features. It also requires knowledge of how to use

those effectively to match different operational requirements. Only then can we plan, design, manage,

and maintain a robust identity infrastructure. Over the past few years, more and more organizations

have adopted cloud technologies for a variety of reasons. With the growth of the cloud footprint,

organizations' identity requirements have also changed. We can no longer limit corporate identities to

on-prem infrastructures. By using Microsoft Azure Active Directory, we can extend our on-prem

identities to the cloud. The hybrid AD approach provides lots of benefits for modern authentication

requirements. However, security-wise, it also opens up a whole new level of challenges. Therefore, the

majority of new content in the third edition is related to designing the Azure AD hybrid cloud, securing a

hybrid AD environment, and protecting sensitive data.

Who this audiobook is for

If you are an Active Directory administrator, system administrator, or network professional who has

basic knowledge of Active Directory and is looking to become an expert in this topic, this book is for you.

What this audiobook covers

• Chapter 1, Active Directory Fundamentals, explains what Active Directory is and its capabilities.

This chapter also explains the main components (physical and logical structure), object types,

and role services of Active Directory. Last but not least, this chapter also covers why we need an

advanced identity management solution such as Azure Active Directory.

• Chapter 2, Active Directory Domain Services 2022, explains what we can expect with Active

Directory Domain Services (AD DS) 2022 and how we can use the features introduced in AD DS

2016 (as there is no new Domain Functional Level (DFL) or Forest Functional Level (FFL)) to

improve your existing Active Directory environment.

• Chapter 3, Designing an Active Directory Infrastructure, talks about what needs to be considered

in Active Directory infrastructure design. This chapter discusses how to place the AD DS logical

and physical components in the AD DS environment according to best practices. It also covers

the design concepts for hybrid identity.

• Chapter 4, Active Directory Domain Name System, explains how DNS works with AD DS. This

chapter also includes information about the DNS server component, different types of DNS

records, zones, DNS delegation, and DNS policies.

• Chapter 5, Placing Operations Master Roles, talks about the Flexible Single Master Operations

(FSMO) roles and their responsibilities. This chapter also describes things we need to consider

when placing FSMO roles in an Active Directory environment.

• Chapter 6, Migrating to Active Directory 2022, covers the different AD DS deployment models.

This chapter also provides a step-by-step guide to migrating from an older version of AD DS to

AD DS 2022.

• Chapter 7, Managing Active Directory Objects, discusses how to create objects, find objects,

modify objects, and remove objects (small-scale and large-scale) by using built-in Active

Directory management tools and PowerShell commands.

• Chapter 8, Managing Users, Groups, and Devices, further explores the Active Directory objects

by deep diving into attributes, managed service accounts, and management of different object

types. Last but not least, you will also learn how to sync custom attributes to Azure Active

Directory.

• Chapter 9, Designing the OU Structure, teaches you how to design the organizational unit (OU)

structure properly, using different models to suit business requirements. This chapter also

describes how to create, update, and remove OUs. Furthermore, this chapter also discusses how

we can delegate AD administration by using OUs.

• Chapter 10, Managing Group Policies, mainly discusses Group Policy objects and their

capabilities. Group Policy processing in an AD environment depends on many different things. In

this chapter, we will deep dive into group policy processing to understand the technology

behind it. We are also going to look into the different methods we can use for group policy

filtering. Last but not least, we will learn about most commonly use group policies.

• Chapter 11, Active Directory Services – Part 01, walks us through the more advanced Active

Directory topics, such as AD Lightweight Directory Services (LDS), Active Directory replication,

and Active Directory sites.

• Chapter 12, Active Directory Services – Part 02, sees you learn about Active Directory trusts in

detail. This chapter also covers topics such as Active Directory database maintenance, Read-

Only Domain Controller (RODC), AD DS backup, and recovery.

• Chapter 13, Active Directory Certificate Services, discusses the planning, deployment, and

maintenance of Active Directory Certificate Services. Furthermore, we will also learn how

signing, encryption, and decryption work in a public key infrastructure (PKI).

• Chapter 14, Active Directory Federation Services, focuses on Active Directory Federation

Services (AD FS) such as planning, designing, deployment, and maintenance. This chapter also

covers new features of AD FS, such as built-in Azure MFA support. At the end you will also learn

how to establish a federated connection with Azure AD.

• Chapter 15, Active Directory Rights Management Services, covers the Active Directory Rights

Management Service (AD RMS) role, which we can use to protect sensitive data in a business.

Data is the new oil, and the value of data keeps increasing. Therefore, protection of data is

important for every business. In this chapter, we will learn how AD RMS works and how to

configure it.

• Chapter 16, Active Directory Security Best Practices, covers the protection of the Active Directory

environment. Recent attacks and studies prove that adversaries are increasingly targeting

identities. So, we need to be mindful of protecting our Active Directory infrastructure at any

cost. In this chapter, we will learn about different tools, services, and methods we can use to

protect the Active Directory environment such as Secure LDAP, Microsoft LAPS, delegated

permissions, restricted RDP, and Azure AD password protection.

• Chapter 17, Advanced AD Management with PowerShell, is full of PowerShell scripts that can be

used to manage, secure, and audit an Active Directory environment. We will also learn about

the Azure Active Directory PowerShell for Graph module, which we can use to manage, query,

and update AD objects in a hybrid AD environment.

• Chapter 18, Hybrid Identity, discusses how we can extend our on-prem AD DS infrastructure to

Azure Active Directory. Before we work on the implementation, we will deep dive into the

planning process of the Azure AD hybrid setup. In this chapter, we will also learn about different

Azure AD connects deployment models, Azure AD cloud sync, Secure LDAP, and replica sets.

• Chapter 19, Active Directory Audit and Monitoring, teaches you how to monitor your on-

prem/hybrid AD DS infrastructure using different tools and methods (cloud based and on-prem).

This chapter also demonstrates how to audit the health of an Active Directory environment.

• Chapter 20, Active Directory Troubleshooting, discusses how to troubleshoot the most common

Active Directory infrastructure issues using different tools and methods. Furthermore, we will

also look into the most common Azure AD Connect errors, which can have a direct impact on

the health of the Azure AD hybrid environment. You can find this chapter available online at:

static.packt-cdn.com/downloads/9781801070393_Chapter_20.pdf

• Appendix A, References, covers the Further reading section chapter wise. It's freely available

online for our readers and here is the link: static.packt-

cdn.com/downloads/Mastering_Active_Directory_References.pdf.

https://static.packt-cdn.com/downloads/9781801070393_Chapter_20.pdf
https://static.packt-cdn.com/downloads/Mastering_Active_Directory_References.pdf
https://static.packt-cdn.com/downloads/Mastering_Active_Directory_References.pdf

To get the most out of this audiobook

This book is ideal for IT professionals, system engineers, and administrators who have a basic knowledge

of Active Directory Domain Services. A basic knowledge of PowerShell is also required, since most of the

role deployment, configuration, and management is done by using PowerShell commands and scripts.

Download the example code files

The code bundle for the book is hosted on GitHub at github.com/PacktPublishing/Mastering-Active-

Directory-Third-Edition. We also have other code bundles from our rich catalog of books and videos

available at github.com/PacktPublishing/. Check them out!

Download the supplementary materials

Packt audiobooks have been selected for a seamless audio experience. Some topics, however, do come

with elements like images that aren't natural for this medium. We've adapted the content of the

audiobooks so that you can listen to the audio without needing to refer to these visual elements unless

necessary. To give you the choice between listening to just the audio and listening to the audio while

referring to the visual elements, we've created a PDF that contains all the elements that cannot

translate to the audio. All references to images in the audiobook can be found within this PDF. You can

download the PDF from https://github.com/PacktPublishing/Mastering-Active-Directory-Third-Edition-

Audiobook.

https://github.com/PacktPublishing/Mastering-Active-Directory-Third-Edition
https://github.com/PacktPublishing/Mastering-Active-Directory-Third-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/Mastering-Active-Directory-Third-Edition-Audiobook
https://github.com/PacktPublishing/Mastering-Active-Directory-Third-Edition-Audiobook

Chapter 1

Links

• https://bit.ly/3CSjC08

• https://bit.ly/2ZSnTlK

• https://bit.ly/3mNckFB

• https://bit.ly/3whpgGV

• https://bit.ly/3mMxjbu

• https://bit.ly/3BNw0gS

• https://bit.ly/3nZBpfQ

• https://bit.ly/3o3uguL

• https://vz.to/3CQvPCL

• https://bit.ly/3q6wSec

• https://bit.ly/3ER8Isq

• https://ibm.co/3wwOSjf

• https://bit.ly/3HUQWXc

• (https://bit.ly/3mLiJkq

• More information about the Nobelium attack is available in the following articles, which are

published by Microsoft:

o https://bit.ly/3wl8fvx

o https://bit.ly/3BJfbDv

o https://bit.ly/3bI09Dx

• More information about WebAuthn is available at the following links:

o https://bit.ly/3wkLW93

o https://bit.ly/3bQfamF

• Step-by-step guide: Azure AD password-less sign-in using FIDO2 security keys:

https://bit.ly/3GTjHmG

• Step-by-step guide: Enable Windows 10 password-less authentication with FIDO2 security keys

(Azure AD + Microsoft Intune): https://bit.ly/3wl8wyz.

https://bit.ly/3CSjC08
https://bit.ly/2ZSnTlK
https://bit.ly/3mNckFB
https://bit.ly/3whpgGV
https://bit.ly/3mMxjbu
https://bit.ly/3BNw0gS
https://bit.ly/3nZBpfQ
https://bit.ly/3o3uguL
https://vz.to/3CQvPCL
https://bit.ly/3q6wSec
https://bit.ly/3ER8Isq
https://ibm.co/3wwOSjf
https://bit.ly/3HUQWXc
https://bit.ly/3mLiJkq
https://bit.ly/3wl8fvx
https://bit.ly/3BJfbDv
https://bit.ly/3bI09Dx
https://bit.ly/3wkLW93
https://bit.ly/3bQfamF
https://bit.ly/3GTjHmG
https://bit.ly/3wl8wyz

• https://mck.co/3bJK14p

• https://bit.ly/3ENOtvz

• https://bit.ly/3BQImER

• https://bit.ly/3BQb5cK

• https://bit.ly/3nYg7z3

• https://bit.ly/3BUNAj6

Figures

Figure 1.1: Speed of responses to pandemic challenges. Source: https://mck.co/2Ykj9Fd

https://mck.co/3bJK14p
https://bit.ly/3ENOtvz
https://bit.ly/3BQImER
https://bit.ly/3BQb5cK
https://bit.ly/3nYg7z3
https://bit.ly/3BUNAj6
https://mck.co/2Ykj9Fd

Figure 1.2: Process of entering physical headquarters

Figure 1.3: Domains in the rebeladmin.com forest

Figure 1.4: Subdomains in a contiguous namespace

Figure 1.5: Organizational unit hierarchy

Figure 1.6: Active Directory connection

Figure 1.7: Creating new objects

Figure 1.8: ObjectGUID and sid as they appear in PowerShell

Tables

Functional Level Domain Controller Operating System

Windows Server 2016 Windows Server 2022

Windows Server 2019

Windows Server 2016

Windows Server 2012R2 Windows Server 2022

Windows Server 2019

Windows Server 2016

Windows Server 2012 R2

Windows Server 2012 Windows Server 2022

Windows Server 2019

Windows Server 2016

Windows Server 2012 R2

Windows Server 2012

Windows Server 2008R2 Windows Server 2022

Windows Server 2019

Windows Server 2016

Windows Server 2012 R2

Windows Server 2012

Windows Server 2008 R2

Windows Server 2008 Windows Server 2022

Windows Server 2019

Windows Server 2016

Windows Server 2012 R2

Windows Server 2012

Windows Server 2008 R2

Windows Server 2008

Table 1.1: Domain Controller operating systems for each functional level

PowerShell cmdlets Description

Install-WindowsFeature AD-Domain-Services This cmdlet will install the AD DS role. Please note this

will only install the AD DS role on the server. This is

further explained in Chapter 6, Migrating to Active

Directory 2022

Install-WindowsFeature AD FS-Federation This cmdlet will install the AD FS role.

Install-WindowsFeature ADLDS This cmdlet will install AD LDS.

Install-WindowsFeature ADRMS This cmdlet will install AD RMS. This role has two

subfeatures, which are AD Rights Management Server

and Identity Federation Support. If required, these

individual roles can be installed using Install-

WindowsFeature ADRMS, ADRMS-Server, ADRMS-

Identity, or Install-WindowsFeature ADRMS -

IncludeAllSubFeature. It will install all the subfeatures.

Install-WindowsFeature AD-Certificate This cmdlet will install AD CS. This role has six

subroles, which are certification authority (ADCS-Cert-

Authority), Certificate Enrollment Policy Web Service

(ADCS-Enroll-Web-Pol), Certificate Enrollment Web

Service (ADCS-Enroll-Web-Svc), Certification Authority

Web Enrollment (ADCS-Web-Enrollment), Network

Device Enrollment Service (ADCS-Device-Enrollment),

and Online Responder (ADCS-Online-Cert). These

subfeatures can be added individually or together.

Table 1.2: PowerShell cmdlets to install Active Directory server roles

Chapter 2

Links

• https://bit.ly/3q4Re7E

• https://bit.ly/3BOPJMX

• https://bit.ly/3whrR3D

• https://bit.ly/3bMk6sO

• https://bit.ly/3whR6Tc

Figures

Figure 2.1: Forest functional levels for Windows Server 2019

https://bit.ly/3q4Re7E
https://bit.ly/3BOPJMX
https://bit.ly/3whrR3D
https://bit.ly/3bMk6sO
https://bit.ly/3whR6Tc

Figure 2.2: Web attacks blocked per month

Figure 2.3: Attack complexity

Figure 2.4: AD attack – initial breach

Figure 2.5: AD attack – lateral movement

Figure 2.6: AD Attack – access to privileged accounts

Figure 2.7: The PAM lifecycle

Figure 2.8: PAM in action

Figure 2.9: Domain admin group membership

Figure 2.10: TTL for group membership

Figure 2.11: Kerberos ticket renewal time

Chapter 3

Figures

Figure 3.1: Organizational forest model example

Figure 3.2: Resource forest model example 1

Figure 3.3: Resource forest model example 2

Figure 3.4: Restricted access forest model example

Figure 3.5: Regional domain model example

Figure 3.6: Unified access experience

Chapter 4Figures

Figure 4.1: The hosts file

Figure 4.2: Domain naming hierarchy

Figure 4.3: Domain name example

Figure 4.4: DNS query example

Figure 4.5: DNS forwarders

Figure 4.6: Root DNS servers

Figure 4.7: Sample SRV record

Figure 4.8: Zone transfer settings

Figure 4.9: DNS forwarders

Figure 4.10: DNS query

Figure 4.11: Failed DNS query

Figure 4.12: Delegated zone

Figure 4.13: Resolve names from the delegated zone

Chapter 5

Figures

Figure 5.1: Time sources

Figure 5.2: Configuring the external time source

Figure 5.3: FSMO role placement example 1

Figure 5.4: FSMO role placement example 2

Figure 5.5: Inter-site connectivity

Figure 5.6: Migrating the selected number of FSMO roles

Figure 5.7: Migrating FSMO roles

Figure 5.8: Domain controller ping test

Figure 5.9: Seizing FSMO roles

Commands

Command 5.1

In the Active Directory domain, the PDC role owner can be found using the following command:

Get-ADDomain | select PDCEmulator

Command 5.2

In the Active Directory domain, the infrastructure operations master role owner can be found using the

following command:

Get-ADDomain | select InfrastructureMaster

Chapter 6

Links

• The port requirements are available in the following document: https://bit.ly/3HIU60i.

Figures

Figure 6.1: Azure Virtual Network DNS servers settings

https://bit.ly/3HIU60i

Figure 6.2: AD DS server role

Figure 6.3: New AD forest root domain name

Figure 6.4: Design topology – fresh AD DS installation

Figure 6.5: Status of AD-related services

Figure 6.6: AD domain controller details

Figure 6.7: Design topology – additional domain controller

Figure 6.8: AD migration life cycle

Figure 6.9: List of software installed in a domain controller

Figure 6.10: Design topology – AD DS 2008 R2 migration

Figure 6.11: DFSR status

Figure 6.12: Current FSMO role holder

Figure 6.13: Migrate FSMO roles

Figure 6.14: New FSMO role holder

Figure 6.15: DCPromo wizard

Figure 6.16: Upgrading the domain functional level

Figure 6.17: Upgrading the forest functional level

Figure 6.18: Verifying the forest and domain functional levels

Figure 6.19: Verifying the forest and domain functional levels – event log

Commands

Command 6.1

Install-WindowsFeature -Name AD-Domain-Services

 -IncludeManagementTools

Command 6.2

Install-ADDSForest

 -DomainName "rebeladmin.com"

 -CreateDnsDelegation:$false

 -DatabasePath "C:\Windows\NTDS"

 -DomainMode "7"

 -DomainNetbiosName "REBELADMIN"

 -ForestMode "7"

 -InstallDns:$true

 -LogPath "C:\Windows\NTDS"

 -NoRebootOnCompletion:$True

 -SysvolPath "C:\Windows\SYSVOL"

 -Force:$true

Explanations

The following table explains the PowerShell commands and what they do:

 Cmdlet Description
 Install-

WindowsFeature

 This cmdlet allows us to install Windows roles, role
services, or Windows features in a local server or remote
server. It is similar to using Windows Server Manager to
install them.

 Install-

ADDSForest

 This cmdlet allows us to set up a new AD forest.

The following table explains the arguments for the commands and what they do:

 Argument Description
 -

IncludeManagementTools

 This installs the management tools for the

selected role service.
 -DomainName This parameter defines the FQDN for the AD

domain.
 -CreateDnsDelegation Using this parameter, we can define whether we

will create a DNS delegation that references AD's

integrated DNS.
 -DatabasePath This parameter defines the folder path for storing

the AD database file (ntds.dit).
 -DomainMode This parameter will specify the AD domain's

functional level. In the previous example, I used

mode 7, which is Windows Server 2016.
 -DomainNetbiosName This defines the NetBIOS name for the forest root

domain.
 -ForestMode This parameter will specify the AD forest's

functional level. In the previous example, I used

mode 7, which is Windows Server 2016.
 -InstallDns Using this, you can specify whether a DNS role

needs to be installed with the AD domain

controller. For a new forest, it is required that you

set it to $true.

 -LogPath A log path can be used to specify the location that

you save domain log files to.
 -SysvolPath This is used to define the SYSVOL folder path. The

default location for it will be C:\Windows.
 -NoRebootOnCompletion By default, the system restarts the server after

domain controller configuration. Using this

command can prevent an automatic system

restart.
 -Force This parameter will force a command to execute

by ignoring the given warning. It is typical for the

system to pass warnings about best practices and

recommendations.

Command 6.3

Get-Service adws,kdc,netlogon,dns

Command 6.4

Get-ADDomainController

Command 6.5

Get-ADDomain rebeladmin.com

Command 6.6

Get-smbshare SYSVOL

Command 6.7

Install-WindowsFeature -Name AD-Domain-Services

 -IncludeManagementTools

Command 6.8

Install-ADDSDomainController

 -CreateDnsDelegation:$false

 -NoGlobalCatalog:$true

 -InstallDns:$true

 -DomainName "rebeladmin.com"

 -SiteName "Default-First-Site-Name"

 -ReplicationSourceDC "REBEL-SDC01.rebeladmin.com"

 -DatabasePath "C:\Windows\NTDS"

 -LogPath "C:\Windows\NTDS"

 -NoRebootOnCompletion:$true

 -SysvolPath "C:\Windows\SYSVOL"

 -Force:$true

There are no line breaks for the preceding command. The following table contains the parameters that

were used here:

 Argument Description
 Install-

ADDSDomainController

 This cmdlet will install the domain controller in the

AD infrastructure.
 -NoGlobalCatalog If you don't want to create the domain controller

as a global catalog server, this parameter can be

used. By default, the system will enable the global

catalog feature.
 -SiteName This parameter can be used to define the AD site

name. The default value is Default-First-Site-Name.
 -DomainName This parameter defines the FQDN for the AD

domain.
 -ReplicationSourceDC You can use this parameter to define the AD

replication source. By default, it uses any available

domain controller, though you can specify one if

you wish.

Command 6.9

Get-Service adws,kdc,netlogon,dns

Command 6.10

Get-ADDomainController -Filter * | Format-Table Name,

 IPv4Address, Site

Command 6.11

Get-ADDomainController -Discover -Service "GlobalCatalog"

Command 6.12

Move-ADDirectoryServerOperationMasterRole

 -Identity REBEL-SDC-02

 -OperationMasterRole InfrastructureMaster

Command 6.13

Get-ADDomain | Select-Object InfrastructureMaster

Command 6.14

Repadmin /showrepl

Command 6.15

Repadmin /showrepl REBEL-SDC-03

The /replicate parameter can be used to trigger a replication between the domain controllers so

that you can see the results in real time:

Command 6.16

Repadmin /replicate REBEL-SDC-03.rebeladmin.com

 REBEL-PDC-01.rebeladmin.com DC=rebeladmin,DC=com

The preceding command will initiate replication of the rebeladmin naming context from REBEL-PDC-01

to REBEL-SDC-03.

Command 6.17

The following commands will initiate the full replication of all the changes from REBEL-PDC-01 to REBEL-

SDC-03:

Repadmin /replicate REBEL-SDC-03.rebeladmin.com

 REBEL-PDC-01.rebeladmin.com DC=rebeladmin,DC=com /full

Command 6.18

The /replsummary parameter can be used so that you can view the summary of the replication

status of all the domain controllers:

Repadmin /replsummary

The preceding command will provide a summary of all the domain controllers in the infrastructure.

Command 6.19

The following command will only list the domain controllers that have replication issues with other

domain controllers:

Repadmin /replsummary /errorsonly

Command 6.20

We can check if SYSVOL replication uses DFSR by using:

dfsrmig /getmigrationstate

If the above command returns the state as eliminated, it means DFSR is already in place.

Command 6.21

Get-WindowsFeature -ComputerName DC01 | Where Installed

In the above command, the -ComputerName value should be replaced by the domain controller

hostname.

Command 6.22

We should also avoid installing additional software in domain controllers (unless it is for backup or

security). We can find additional software installed in a domain controller by using:

Get-ItemProperty

HKLM:\Software\Microsoft\Windows\CurrentVersion\Uninstall* | select

DisplayName

Command 6.23

The Dcdiag.exe tool can be used to run predefined tests to evaluate the health of the domain

controllers:

Dcdiag /e

The preceding command will test the domain controllers in the forest.

Command 6.24

Dcdiag /s:REBEL-SDC-03

The preceding command will run the test on the REBEL-SDC-03 domain controller.

Command 6.25

Instead of running all the tests, the following command will only run a replication test on REBEL-SDC-03:

Dcdiag /test:replications /s:REBEL-SDC-03

Command 6.26

The following command can be used to check AD services on the local domain controller:

Dcdiag /test:Services

Command 6.27

The Dcdiag utility can also be used to test DNS health:

Dcdiag /test:DNS /DNSBasic

Command 6.28

The following command will test whether the DNS forwarders are functioning properly:

Dcdiag /test:DNS /DnsForwarders

Command 6.29

The following command will test the registration of DC locator records:

Dcdiag /test:DNS /DnsRecordRegistration

Command 6.30

We also can run a complete health report by using:

dcdiag /v /c /e /s:DC01 | Out-File C:\healthreport.txt

In the preceding command, /v means verbose, and it will print extended information. The /c argument

means the system will run all tests except DCPromo and RegisterInDNS. With the /e argument

tests will run on all servers in the enterprise. The /s argument is used to define the name of the domain

controller to run the commands against. The output of the complete command will be written to the

C:\healthreport.txt file. This report includes rich information about the health of the AD

infrastructure.

Command 6.31

Before the configuration process, we need to install the AD DS role in the given server. In order to do

that, we can use the following command:

Install-WindowsFeature -Name AD-Domain-Services

 -IncludeManagementTools

Command 6.32

Then launch the PowerShell (7.1) console and run the following commands to verify the current FSMO

role holder:

Get-ADDomain | Select-Object InfrastructureMaster, RIDMaster,

PDCEmulator

Get-ADForest | Select-Object DomainNamingMaster, SchemaMaster

Command 6.33

Migrate all five FSMO roles to the new domain controller by running the following command in the

DC22 server:

Move-ADDirectoryServerOperationMasterRole -Identity

 DC22 -OperationMasterRole SchemaMaster,

 DomainNamingMaster, PDCEmulator, RIDMaster,

 InfrastructureMaster

In the preceding command, DC22 is the domain controller running Windows Server 2022.

Command 6.34

Once we're done, we can verify the new FSMO role holder using the following commands:

Get-ADDomain | Select-Object InfrastructureMaster, RIDMaster,

PDCEmulator

Get-ADForest | Select-Object DomainNamingMaster, SchemaMaster

Command 6.35

Uninstall ADDSDomainController -DemoteOperationMasterRole -

RemoveApplicationPartition to uninstall AD DS.

Command 6.36

To change the domain functional level to Windows Server 2016, use the following command:

Set-ADDomainMode -identity rebeladmin.net

 -DomainMode Windows2016Domain

Command 6.37

To upgrade the forest functional level, use the following command:

Set-ADForestMode -Identity rebeladmin.net

 -ForestMode Windows2016Forest

Command 6.38

The following command will show the current functional level of the domain after the migration:

Get-ADDomain | fl Name,DomainMode

Command 6.39

The following command will show the current forest functional level of the domain after migration:

Get-ADForest | fl Name,ForestMode

Command 6.40

You can also use the following command to verify the forest and domain functional level updates:

Get-EventLog -LogName 'Directory Service' | where {$_.eventID -eq 2039

-or $_.eventID -eq 2040} | Format-List

Command 6.41

Event ID 1458 verifies the transfer of the FSMO roles:

Get-EventLog -LogName 'Directory Service' | where {$_.eventID -eq

1458} | Format-List

Command 6.42

You can use the following command to verify the list of domain controllers and make sure that the old

domain controller is gone:

Get-ADDomainController -Filter * | Format-Table Name, IPv4Address

Tables

Here, I have listed some key event IDs that will show replication problems:

 Event

ID

 Cause

 1925 The attempt to establish a replication link for a writable directory partition

failed. This can be caused by network issues, domain controller failures, or

DNS issues.

 1988 The local domain controller has attempted to replicate an object from a

source domain controller that isn't present on the local domain controller

because it may have been deleted and already garbage-collected. Replication

will not proceed for this directory partition with this partner until the

situation is resolved. This happens when a domain controller is down for a

long time (more than the tombstone's lifetime) before being brought back

online. After this, however, it could have non-existing objects (lingering

objects). They need to be cleaned to initiate replication again.

 2087 AD DS could not resolve the DNS hostname of the source domain controller

to an IP address, and replication failed. This will show up in the destination

domain controller when it cannot resolve the DNS name for its source

domain controller. If DNS lookup fails in the first place, it will also try FQDN

and NetBIOS to resolve the name. It will prevent replication until it's been

resolved.

 2088 AD DS could not resolve the DNS hostname of the source domain controller

to an IP address, but replication succeeded. In this situation, the destination

domain controller failed to resolve the source name using DNS lookup, but it

was able to connect to it using the FQDN or NetBIOS name.

 1311 The replication configuration information in AD DS doesn't accurately reflect

the physical topology of the network. This usually occurs due to the

misconfiguration of AD site links. It may have the wrong subnets assigned to

it.

Table 7.1

The following information needs to be covered in the plan:

Data Description

Overview of the

existing AD DS

infrastructure

Based on the data that was collected from the audit, you need to provide an

overview of the existing infrastructure. This should include information

about the logical and physical topology of AD.

Overview of the

proposed solution

Based on the data that was collected from the audit and business

requirements, we can provide a detailed design of the proposed solution.

This should include data about the topology changes, new domain

controller placements, FSMO role placements, new site links, IP addresses,

hostnames, required hardware or VM resources, required firewall rule

changes, and more.

Risks One main objective of the audit exercise is to identify the potential risks

that can impact the AD DS migration. These can be due to wrong design, the

bad health of the AD services, or other infrastructure or application issues.

The recognized risks can be categorized based on impact (for example, high,

medium, and low).

Risk mitigation plan Once the risks have been identified, we need to provide a plan to describe

what action can be taken to address them. If possible, include a task list,

estimated time frame, and budget in the plan.

Service interruptions During the implementation process, there can be service interruptions. This

can be due to events such as application migrations or server IP changes. In

this section, make a list of these service interruptions, along with the

expected time range, so that the relevant parties can be informed prior to

the migration process.

Recommendations During the audit process, you may have found things that you could do to

improve AD DS performance, security, or manageability. What wasn't

covered in the initial business requirements can be listed as

recommendations. Note that these shouldn't have any direct impact on the

AD DS migration process. If this is done, it should be listed in the proposed

solution section.

Task list and schedule The plan should have a detailed task list and schedule for the AD DS

migration implementation process. It should also include roles and

responsibilities for completing each task.

Test plan It is also required that you have a detailed test plan in order to test the AD

functions after the AD DS migration process so that you can verify its health

and integrity. This must be used during the implementation process and

should include evidence to prove the successful completion of each test

(such as screenshots, events, reports, and more).

Recovery plan After a successful audit and planning process, there is a very low possibility

of project failure. However, the plan still needs to provide a recovery plan

that will be used in the event of a failure. It also should include a process for

testing the existing DR or backup solution that will be used in the recovery,

prior to starting the project.

Table 7.2

Chapter 7

Figures

Figure 7.1: Windows Admin Center architecture

Figure 7.2: Windows Admin Center extensions

Figure 7.3: Windows Admin Center AD role management

Figure 7.4: Searching AD users using Windows Admin Center

Figure 7.5: Modifying a user object using Windows Admin Center

Figure 7.6: Disabling, deleting, or resetting the password for an object using Windows Admin Center

Figure 7.7: Creating an object using Windows Admin Center

Figure 7.8: ADAC

Figure 7.9: Breadcrumb bar in ADAC

Figure 7.10: Navigation node in ADAC

Figure 7.11: Adding objects in ADAC

Figure 7.12: ADAC global search

Figure 7.13: ADAC PowerShell history

Figure 7.14: Connect to other nodes

Figure 7.15: Administrative tasks

Figure 7.16: ADUC

Figure 7.17: Working with queries

Figure 7.18: Accessing different domains

Figure 7.19: CSV file with user attribute values

Figure 7.20: Creating a new user by using ADAC

Figure 7.21: Creating a computer object

Figure 7.22: Searching for AD objects

Figure 7.23: Global Search in ADAC

Figure 7.24: LDAP query-based search

Figure 7.25: Finding objects using ADUC

Figure 7.26: Search results

Figure 7.27: Protect object from accidental deletion

Figure 7.28: Protect object from accidental deletion – error message

Figure 7.29: Deleted AD object

Commands

Command 7.1

In order to create a user object in AD, we can use the New-ADUser PowerShell cmdlet. You can view

the full syntax of the command along with the accepted data types using the following command:

Get-Command New-ADUser -Syntax

Command 7.2

Here is an example that can be used to create a user account:

New-ADUser -Name "Talib Idris" -GivenName "Talib" -Surname "Idris" -

SamAccountName "tidris" -UserPrincipalName "tidris@rebeladmin.com" -

Path "OU=Users,OU=Europe,DC=rebeladmin,DC=com" -AccountPassword(Read-

Host -AsSecureString "Type Password for User") -Enabled $true

This command has the following parameters:

• -Name: This parameter defines the full name.

• -GivenName: This parameter defines the first name.

• -Surname: This parameter defines the surname.

• -SamAccountName: This parameter defines the username.

• -UserPrincipalName: This parameter defines the User Principal Name (UPN) for the user

account.

• -Path: This defines the OU path. The default location is CN=Users,DC=rebeladmin,DC=com. If

you do not define the -Path value, it will create the object under the default container.

• -AccountPassword: This will allow the user to input a password for the user, and the

system will convert it into the relevant data type.

• -Enabled: This defines whether the user account status is enabled or disabled.

Command 7.3

I have used data for some of the attributes via the CSV file, and some common values will be passed

through the following script:

Import-Csv "C:\ADUsers.csv" | ForEach-Object {

$upn = $_.SamAccountName + "@rebeladmin.com"

New-ADUser -Name $_.Name `

 -GivenName $_."GivenName" `

 -Surname $_."Surname" `

 -SamAccountName $_."samAccountName" `

 -UserPrincipalName $upn `

 -Path $_."Path" `

 -AccountPassword (ConvertTo-SecureString "Pa$$w0rd" -AsPlainText -

force) -Enabled $true

}

In this script, the Import-Csv cmdlet is used to import the CSV file that I created in the previous step.

I also defined the UPN value, -UserPrincipalName, using $upn = $_.SamAccountName +

"@rebeladmin.com". At the end, I defined a common password for all of the accounts using -
AccountPassword (ConvertTo-SecureString "Toronto@1234" -AsPlainText -

force).

Command 7.4

In order to create a computer object, we can use the New-ADComputer cmdlet. To view the complete

syntax of the command, use this:

Get-Command New-ADComputer -Syntax

Command 7.5

The attribute you need to create a computer object is -Name:

New-ADComputer -Name "REBEL-PC-01" -SamAccountName "REBEL-PC-01" -Path

"OU=Computers,OU=Europe,DC=rebeladmin,DC=com"

In the preceding example, the command will create the REBEL-PC01 computer object in the

OU=Computers,OU=Europe,DC=rebeladmin,DC=com OU. If you do not define the path, it will create the

object under the default computer container, CN=Computers, DC=rebeladmin, DC=com.

Command 7.6

We can use the Set-ADUser cmdlet to change and add attribute values to existing AD user objects:

Set-ADUser tidris -OfficePhone "0912291120" -City "London"

In the preceding sample command, we're adding values for the -OfficePhone and -City

attributes for the tidris user.

Command 7.7

There are occasions where you may need to change the existing value of an attribute:

Set-ADUser tidris -OfficePhone "0112291120"

In the preceding command, I'm replacing an existing value with a new one.

Command 7.8

This will allow us to search for objects first and then push the changes:

Get-ADUser -Filter * -SearchBase

'OU=Users,OU=Europe,DC=rebeladmin,DC=com' | Set-ADUser -City "London"

In the preceding command, we search for all of the user objects located in

OU=Users,OU=Europe,DC=rebeladmin,DC=com and set the City value to London:

Get-ADUser -Filter {City -like "London"} | Set-ADUser -City "Kingston"

In the preceding example, I searched for all of the users in the directory who have the City value defined

as London and changed it to Kingston.

Command 7.9

Computer object values can also be added/changed using a similar method. In order to do so, we need

to use the Set-ADComputer cmdlet:

Set-ADComputer REBEL-PC-01 -Description "Sales Computer"

The preceding command sets the Description object value of the computer named REBEL-PC-01.

Command 7.10

This cmdlet can also be combined with a search query using the Get-ADComputer cmdlet:

Get-ADComputer -Filter {Name -like "REBEL-PC-*"} | Set-ADComputer -

Location "M35 Building"

Command 7.11

In order to remove AD user objects, we can use the Remove-ADUser cmdlet. We can find the

complete syntax information using the following command:

Get-Command Remove-ADUser -Syntax

Command 7.12

If it is an LDS environment, we need to define the object partition parameter too:

Remove-ADUser -Identity "dzhang"

The preceding command will remove the AD user object called dzhang from the directory. It will ask

for confirmation before it removes the object.

Command 7.13

This cmdlet can also be combined with the search query to find objects before removing them:

Get-ADUser -Filter {Name -like "Test1*"} | Remove-ADUser

In the preceding command, we search the entire directory for the user whose name starts with Test1

and then remove that user.

Command 7.14

The Remove-ADComputer cmdlet can be used to remove computer objects from the directory:

Remove-ADComputer -Identity "REBEL-PC-01"

The preceding command will remove the REBEL-PC-01 computer object from the directory. We can also

combine it with a search query:

Get-ADComputer -Filter * -SearchBase

'OU=Computers,OU=Europe,DC=rebeladmin,DC=com' | Remove-ADComputer

In the preceding command, we search for the computer objects in the given OU and then remove the

findings from the directory.

Command 7.15

The Get-ADUser and Get-ADComputer cmdlets can also be used to retrieve specific attribute

values from filtered objects:

Get-ADUser -Identity user1 -Properties *

The preceding command will list all of the attributes and values associated with user1. This helps us to

find the exact attribute names and common values, which can be used for further filtering.

Command 7.16

The following command will create a table with relevant attributes and their values:

Get-ADUser -Filter * -Properties Name,UserPrincipalName,Modified | ft

Name,UserPrincipalName,Modified

Command 7.17

I can see some accounts in the list that are service and administrator accounts. I only want to see the

accounts in the Kingston office:

Get-ADUser -Filter {City -like "Kingston"} -Properties

Name,UserPrincipalName,Modified | ft Name,UserPrincipalName,Modified

The preceding command filters users further based on the City value.

Command 7.18

Now I have the list of data I need, and I'd like to export it to a CSV file for future use, like so:

Get-ADUser -Filter {City -like "Kingston"} -Properties

Name,UserPrincipalName,Modified | select-object

Name,UserPrincipalName,Modified | Export-csv -path C:\ADUSerList.csv

This example demonstrates how a search query can be built up to gather the required information.

The Search-ADAccount cmdlet can also be used to search for AD objects based on the account and

password status. The full syntax of the cmdlet can be retrieved using the following command:

Get-Command Search-ADAccount -Syntax

Command 7.19

As an example, it can be used to filter accounts that are locked out:

Search-ADAccount -LockedOut | FT Name,UserPrincipalName

This command will list all of the locked-out accounts with a name and UPN.

Command 7.20

When this option is enabled, it will not allow you to delete an object unless you disable the option. In

PowerShell, this can be done using the -ProtectedFromAccidentalDeletion $true

parameter. As an example, let's look at how we can enable this feature for a specific user account:

Set-ADObject -Identity 'CN=Dishan Francis,DC=rebeladmin,DC=com' -

ProtectedFromAccidentalDeletion $true

In the preceding command, I am enabling the Protect object from accidental deletion feature for user

account Dishan Francis.

Command 7.21

The AD Recycle Bin feature requires a minimum of a Windows Server 2008 R2 domain and a forest

functional level. Once this feature is enabled, it cannot be disabled. This feature can be enabled using

the following command:

Enable-ADOptionalFeature 'Recycle Bin Feature' -Scope

ForestOrConfigurationSet -Target rebeladmin.com

In the preceding command, -Target can be replaced with your domain name.

Command 7.22

Once Recycle Bin Feature is enabled, we can restore objects, which are deleted using the following

command:

Get-ADObject -filter 'isdeleted -eq $true' -includeDeletedObjects

The preceding command searches for objects where the isdeleted attribute is set to true.

Command 7.23

Once we have found a deleted object, it can be restored using the following command:

Get-ADObject -Filter 'samaccountname -eq "dfrancis"' -

IncludeDeletedObjects | Restore-ADObject

The preceding command restores the user object dfrancis.

Chapter 8

Figures

Figure 8.1: Attribute Editor

Figure 8.2: AD schema snap-in

Figure 8.3: Attributes for user and group classes

Figure 8.4: Attributes details

Figure 8.5: Create New Attribute

Figure 8.6: Custom attribute properties

Figure 8.7: Custom attribute under Classes

Figure 8.8: Custom attribute for user

Figure 8.9: Azure AD Connect – modify synchronization options

Figure 8.10: Azure AD Connect – Directory extension attribute sync

Figure 8.11: Azure AD Connect – select custom attribute

Figure 8.12: Application ID

Figure 8.13: Custom attribute value in Azure AD

Figure 8.14: Custom attribute value in Active Directory

Figure 8.15: Copying a user account

Figure 8.16: Protect object from accidental deletion

Figure 8.17: DN and Members values

Figure 8.18: Group scope

Figure 8.19: Printer object

Links

• More information about AD schema changes for Microsoft Exchange Server can be found at

https://bit.ly/3nJ0nRL.

• The complete list of attributes that will sync with Azure AD Connect is available at

https://bit.ly/32lpFNn.

Tables

In the following table, I have listed a few commonly used syntaxes:

Syntax Description

Boolean True or false

Unicode String A large string

Numeric String String of digits

Integer 32-bit numeric value

Large Integer 64-bit numeric value

SID Security identifier value

Distinguished Name String value to uniquely identify an object in AD

Table 8.1

The following table explains supported paths:

Group

scope

Domain

Local

Global Universal

Domain

Local

N/A X Yes (only if there are no other

Domain Local groups as members)

Global X N/A Yes (only if it's not a member of

other Global groups)

Universal Yes Yes (only if there are no other

Universal groups as members)

N/A

Table 8.2

Commands

Command 8.1

There is a script developed by Microsoft to generate these unique OID values:

#---

$Prefix="1.2.840.113556.1.8000.2554"

$GUID=[System.Guid]::NewGuid().ToString()

$Parts=@()

$Parts+=[UInt64]::Parse($guid.SubString(0,4),

https://bit.ly/3nJ0nRL
https://bit.ly/32lpFNn

"AllowHexSpecifier")

$Parts+=[UInt64]::Parse($guid.SubString(4,4),

"AllowHexSpecifier")

$Parts+=[UInt64]::Parse($guid.SubString(9,4),

"AllowHexSpecifier")

$Parts+=[UInt64]::Parse($guid.SubString(14,4),

"AllowHexSpecifier")

$Parts+=[UInt64]::Parse($guid.SubString(19,4),

"AllowHexSpecifier")

$Parts+=[UInt64]::Parse($guid.SubString(24,6),

"AllowHexSpecifier")

$Parts+=[UInt64]::Parse($guid.SubString(30,6),

"AllowHexSpecifier")

$OID=[String]::Format("{0}.{1}.{2}.{3}.{4}.{5}.{6}.{7}",

$prefix,$Parts[0],$Parts[1],$Parts[2],$Parts[3],$Parts[4],

$Parts[5],$Parts[6])

$oid

#---

Command 8.2

Once the data has been added, we can filter out the information as required:

Get-ADuser "tuser4" -Properties nINumber | ft nINumber

Command 8.3

To demonstrate, I am going to create a user template for Technical Department users. The command I

will use is as follows:

New-ADUser -Name "_TechSupport_Template" -GivenName "_TechSupport" -

Surname "_Template" -SamAccountName "techtemplate" -UserPrincipalName

"techtemplate@rebeladmin.com" -Path "OU=Users,OU=Europe

Office,DC=rebeladmin,DC=com" -AccountPassword(Read-Host -

AsSecureString "Type Password for User") -Enabled $false

The preceding command creates a user account called _TechSupport_Template. It also sets the

new user account as a disabled account.

Command 8.4

I'm also going to add the account to the Technical Department security group:

Add-ADGroupMember "Technical Department" "techtemplate"

Command 8.5

In order to create an MSA, we can use the following command. I am running this from the domain

controller:

New-ADServiceAccount -Name "MyAcc1" -RestrictToSingleComputer

In the preceding command, I have created a service account called MyAcc1 and I have restricted it to

one computer.

Command 8.6

The next step is to associate the service account with the host REBEL-SRV01 server:

Add-ADComputerServiceAccount -Identity REBEL-SRV01 -ServiceAccount

"MyAcc1"

Command 8.7

We can install it using Remote Server Administration Tools (RSAT). This can be done by running the

Install-WindowsFeature RSAT-AD-Tools command. Once it's ready, run the following

command:

Install-ADServiceAccount -Identity "MyAcc1"

We can test the service account using the following command:

Test-ADServiceAccount "MyAcc1"

It returns True, which means the test was successful.

Command 8.8

From the Active Directory server, we can verify the service account by running the following command:

Get-ADServiceAccount "MyAcc1"

Command 8.9

In order to start the configuration process, we need to create a KDS root key. This needs to be run from

the domain controller with Domain Admin or Enterprise Admin privileges:

Add-KdsRootKey –EffectiveImmediately

Command 8.10

We can remove the 10-hour replication time limit by using the following command:

Add-KdsRootKey –EffectiveTime ((get-date).addhours(-10))

Command 8.11

I have created an Active Directory group, IISFARM, and have added all my IIS servers to it. This farm will

be using the new gMSA:

New-ADServiceAccount "Mygmsa1" -DNSHostName "web.rebeladmin.com" –

PrincipalsAllowedToRetrieveManagedPassword "IISFARM"

In the preceding command, Mygmsa1 is the service account and web.rebeladmin.com is the fully

qualified domain name (FQDN) of the service.

Command 8.12

Once it's processed, we can verify the new account using the following command:

Get-ADServiceAccount "Mygmsa1"

Command 8.13

The next step is to install Mygmsa1 on the server in the IIS farm. Mygmsa1 needs the AD PowerShell

module to run. Mygmsa1 can be installed using RSAT:

Install-ADServiceAccount -Identity "Mygmsa1"

Command 8.14

Once that's executed, we can test the service account by running the following command:

Test-ADServiceAccount " Mygmsa1"

Command 8.15

You'll sometimes need to remove MSAs. This can be done by executing the following command:

Remove-ADServiceAccount –identity "Mygmsa1"

The preceding command will remove Mygmsa1. This applies to both types of MSAs.

Command 8.16

The New-ADGroup cmdlet can be used to add a new group to an AD environment. We can review the

full syntax for the command using this:

Get-Command New-ADGroup -Syntax

Command 8.17

As an example, I am going to create a new security group called Sales Team:

New-ADGroup -Name "Sales Team" -GroupCategory Security -GroupScope

Global -Path "OU=Users,OU=Europe,DC=rebeladmin,DC=com"

In the preceding command, the following is true:

• -GroupCategory: This defines the type of the group (security or distribution).

• -GroupScope: This defines the scope of the group.

• -Path: This defines the path for the group object. If the -Path option is not used, the default

container will be used, Users.

Command 8.18

Due to the importance of the group, I want to protect this group object from accidental deletion:

Get-ADGroup "Sales Team" | Set-ADObject -

ProtectedFromAccidentalDeletion:$true

Command 8.19

Now the group is ready for new members. To add new members, we can use the following:

Add-ADGroupMember "Sales Team" tuser3,tuser4,tuser5

The previous command will add the tuser3, tuser4, and tuser5 users to the group.

Command 8.20

If we need to remove a user from the group, we can use the following command:

Remove-ADGroupMember "Sales Team" tuser4

Command 8.21

We can review the group properties using the Get-ADGroup cmdlet:

Get-ADGroup "Sales Team"

Command 8.22

By using the following command, we can retrieve specific values from the group:

Get-ADGroup "Sales Team" -Properties DistinguishedName,Members | fl

DistinguishedName,Members

The preceding command will list the DistinguishedName and Members values of the Sales Team

security group.

Command 8.23

If we need to change the scope of the group, that can be done using the following command:

Set-ADGroup "Sales Team" -GroupScope Universal

Command 8.24

A group can be removed using the Remove-ADGroup cmdlet:

Remove-ADGroup "Sales Team"

The preceding command will remove the Sales Team group.

Command 8.25

To remove the accidental deletion option, we can use the Get-ADGroup "Sales Team" | Set-

ADObject -ProtectedFromAccidentalDeletion:$false command.

Command 8.26

In order to add this object, we can use ADAC, ADUC, or PowerShell. In PowerShell, you would use the

same New-ADUser cmdlet:

New-ADUser -Name "Inet User1" -GivenName "Inet"

 -Surname "User1" -SamAccountName "inetuser1"

 -UserPrincipalName "isuer1@rebeladmin.com"

 -AccountPassword (Read-Host -AsSecureString

 "Type Password for User")

 -Enabled $true -Path "OU=Users,OU=Europe,DC=rebeladmin,DC=com"

 –Type iNetOrgPerson

The preceding command will add an iNetOrgPerson object called Inet User1. The only

difference in the command from that of a regular Active Directory user is –Type iNetOrgPerson,

which defines the account type as iNetOrgPerson.

Command 8.27

We can convert the inetOrgPerson object to a regular Active Directory user object using the following

command:

Set-ADUser "inetuser1" -Remove @{objectClass='inetOrgPerson'}

URLs

URL 8.1

In my demo environment, I am using the following to verify the nINumber attribute value:

https://graph.microsoft.com/v1.0/users/testuser2@M365x581675.onmicroso

ft.com?$select=displayName,givenName,extension_7c51781fcb5b481a98ba6ef

a5c7578d6_nINumber

In the above, testuser2@M365x581675.onmicrosoft.com is the user account.

displayName and givenName are the attributes synced from the on-prem Active Directory via the

default Azure AD Connect configuration.

As you can see, I have used extension_7c51781fcb5b481a98ba6efa5c7578d6_nINumber to

define the nINumber attribute. In this string, 7c51781fcb5b481a98ba6efa5c7578d6 is the

application ID value for the application called "Tenant Schema Extension App."

Chapter 9

Figures

Figure 9.1: Hierarchical structure sample

Figure 9.2: OUs with group policies

Figure 9.3: Containers and OUs

Figure 9.4: The container model

Figure 9.5: The object type model

Figure 9.6: The functions model

Figure 9.7: The geographical model

Figure 9.8: The department model

Figure 9.9: The hybrid model

Figure 9.10: Delegate Control

Figure 9.11: Delegate control – user/group selection

Figure 9.12: Delegate control – task selection

Figure 9.13: Advanced Security Settings

Managing the OU structure

Similar to any other Active Directory object, the OU structure can be managed using Active Directory

Administrative Center (ADAC), ADUC MMC, and PowerShell. In this section, I am going to demonstrate

how to manage the OU structure using PowerShell.

Let's start this with a new OU. We can use the New-ADOrganizationalUnit cmdlet to create a

new OU. The complete syntax can be reviewed using the following command:

Get-Command New-ADOrganizationalUnit -Syntax

As the first step, I am going to create a new OU called Asia to represent the Asia branch:

New-ADOrganizationalUnit -Name "Asia" -Description "Asia Branch"

In the preceding command, -Description defines the description for the new OU. When there is no

path defined, it will create the OU under the root. We can review the details of the new OU using the

following command:

Get-ADOrganizationalUnit -Identity "OU=Asia,DC=rebeladmin,DC=com"

We can add/change the values of OU attributes using the following command:

Get-ADOrganizationalUnit -Identity "OU=Asia,DC=rebeladmin,DC=com" |

Set-ADOrganizationalUnit -ManagedBy "Asia IT Team"

The preceding command will set the ManagedBy attribute to Asia IT Team.

When you use the ManagedBy attribute, make sure that you use an existing Active Directory object for

the value. It can be an individual user object or a group object. If you don't use an existing object, the

command will fail.

ProtectedFromAccidentalDeletion for the OU object is a nice safeguard we can apply. It will

prevent accidental OU object deletion. This will be applied by default if you create an OU using ADAC,

ADUC, or PowerShell:

Get-ADOrganizationalUnit -Identity "OU=Asia,DC=rebeladmin,DC=com" |

Set-ADOrganizationalUnit -ProtectedFromAccidentalDeletion $true

As the next step, I am going to create a sub-OU under the Asia OU called Users:

New-ADOrganizationalUnit -Name "Users" -Path

"OU=Asia,DC=rebeladmin,DC=com" -Description "Users in Asia Branch"

The preceding command will create an OU called Users under the OU=Asia,DC=rebeladmin,DC=com

path. It is also protected from accidental deletion.

Now, we have the OU structure. The next step is to move objects to it. For that, we can use the Move-

ADObject cmdlet:

Get-ADUser "tuser3" | Move-ADObject -TargetPath

"OU=Users,OU=Asia,DC=rebeladmin,DC=com"

The preceding command will find the tuser3 user and move the object to

OU=Users,OU=Asia,DC=rebeladmin,DC=com.

We can also move multiple objects to the new OU:

Get-ADUser -Filter 'Name -like "Test*"' -SearchBase

"OU=Users,OU=Europe,DC=rebeladmin,DC=com" | Move-ADObject -TargetPath

"OU=Users,OU=Asia,DC=rebeladmin,DC=com"

The preceding command will first search all of the user accounts that start with Test in

OU=Users,OU=Europe,DC=rebeladmin,DC=com and then move all of the objects it finds to the new OU

path.

If you have ProtectedFromAccidentalDeletion enabled on the objects, it will not allow you to

move the objects to a different OU. It needs to be disabled before the object is moved, because the

move operation is actually a copy and a delete operation of the original object.

If we need to remove the OU object, it can be done using the Remove-ADOrganizationalUnit cmdlet:

Remove-ADOrganizationalUnit

"OU=Laptops,OU=Europe,DC=rebeladmin,DC=com"

The preceding command will remove the OU=Laptops,OU=Europe,DC=rebeladmin,DC=com OU.

Chapter 10

Figures

Figure 10.1: GUID value of GPO

Figure 10.2: GPC information for policy

Figure 10.3: GPC information for policy – computer and user configurations

Figure 10.4: GPT.ini file

Figure 10.5: GPO folder structure

Figure 10.6: Group Policy processing order

Figure 10.7: Group Policy Inheritance

Figure 10.8: Group Policy precedence

Figure 10.9: Block Group Policy Inheritance

Figure 10.10: Group Policy conflicts example

Figure 10.11: Enforced Group Policy

Figure 10.12: Group Policy processing at the same level

Figure 10.13: Group Policy Link Order

Figure 10.14: Group Policy status

Figure 10.15: Security Filtering – default settings

Figure 10.16: Group Policy delegation

Figure 10.17: Group Policy Security Filtering with security groups

Figure 10.18: Group Policy permissions

Figure 10.19: Creating WMI filters

Figure 10.20: WMI filter

Figure 10.21: Selecting the WMI Filter

Figure 10.22: gpresult /r output

Figure 10.23: Drive Maps

Figure 10.24: Internet Explorer settings

Figure 10.25: Applying Internet Explorer settings

Figure 10.26: Item-level targeting

Figure 10.27: Targeting Editor

Figure 10.28: Loopback policy settings

Figure 10.29: Changing the GPO status

Paths

• The default path for the Group Policy template (GPT) data is

\\rebeladmin.com\SYSVOL\rebeladmin.com\Policies

• The policy setting is located at Computer Configuration\Administrative

Templates\System\Group Policy\Turn off Local Group Policy Objects

Processing.

• Asynchronous mode for slow links can be enabled via Computer

Configuration\Administrative Templates\System\Group Policy\Change

Group Policy Processing to run asynchronously when a slow link is detected.

• Asynchronous mode for remote desktop services can be enabled via Computer

Configuration\Administrative Templates\System\Group Policy\Allow

asynchronous user Group Policy processing when logging on through Remote

Desktop Services.

Links

We can use Microsoft WMI Code Creator to create WMI code: https://bit.ly/3HR1sz1.

file://///rebeladmin.com/SYSVOL/rebeladmin.com/Policies
https://bit.ly/3HR1sz1

Tables

In the following table, I have listed a sample policy that we can use:

 Setting Value

 Enforce Password History 24

 Maximum Password Age 30

 Minimum Password Age 1

 Minimum Password Length 8

 Password must meet complexity requirements Enabled

Table 10.1

Commands

Command 10.1

Before we look into datasets, we need to find the GUID value for the GPO. This can be done using the

following command:

Get-GPO -name "Test Users"

The preceding PowerShell command will list the default properties of the Test Users GPO:

Command 10.2

The Group Policy inheritance details can also be viewed by using the Get-GPInheritance

PowerShell cmdlet.

Get-GPInheritance -Target "OU=Users,OU=Europe,DC=rebeladmin,DC=com"

Command 10.3

In a similar scenario, Group Policy inheritance can be blocked at the OU level. This can be done by using

the Group Policy Management MMC or the Set-GPinheritance PowerShell cmdlet:

Set-GPInheritance -Target "OU=Users,OU=Europe,DC=rebeladmin,DC=com" -

IsBlocked Yes

The preceding command will block the Group Policy inheritance in

OU=Users,OU=Europe,DC=rebeladmin,DC=com

Command 10.4

A new GPO object can be created using the New-GPO PowerShell cmdlet:

New-GPO -Name GPO-Test-A

The preceding command will create a GPO called GPO-Test-A. By default, it will not link to any OU,

domain, or site.

Command 10.5

Once an object is created, it can be linked to an OU, domain, or site by using the New-GPLink cmdlet:

New-GPLink -Name GPO-Test-A -Target

"OU=Users,OU=Europe,DC=rebeladmin,DC=com"

The preceding command links a GPO called GPO-Test-A to

OU=Users,OU=Europe,DC=rebeladmin,DC=com.

Command 10.6

Both cmdlets can be combined to create and link a GPO at the same time:

New-GPO -Name GPO-Test-B | New-GPLink -Target

"OU=Users,OU=Europe,DC=rebeladmin,DC=com"

The preceding command will create a new GPO called GPO-Test-B and link it to

OU=Users,OU=Europe,DC=rebeladmin,DC=com at the same time.

Command 10.7

To remove Group Policy from the Link Order list or from its location use the Set-GPLink

PowerShell cmdlet:

Set-GPLink -Name GPO-Test-B -Target

"OU=Users,OU=Europe,DC=rebeladmin,DC=com" -LinkEnabled No

The preceding command will disable the link between the GPO-Test-B GPO and

OU=Users,OU=Europe,DC=rebeladmin,DC=com. This is usually used to temporarily disable a policy. It

can be enabled at any time by using the -LinkEnabled Yes option.

Command 10.8

However, if this requirement is permanent, this GPO link can be completely removed by using the

Remove-GPLink cmdlet. This will remove the link, but it will not delete the GPO. It will also not affect

any other existing links in the GPO:

Remove-GPLink -Name GPO-Test-B -Target

"OU=Users,OU=Europe,DC=rebeladmin,DC=com"

This command will remove the GPO-Test-B policy from OU=Users,OU=Europe,DC=rebeladmin,DC=com.

It will remove the GPO from the Precedence list, as well as the Link Order list.

Command 10.9

If the GPO needs to be deleted completely, we can use the Remove-GPO cmdlet for that:

Remove-GPO -Name GPO-Test-A

The preceding command will delete the aforementioned GPO completely from the system. If the GPO

was linked, it will forcefully remove it at the same time.

Command 10.10

Create a folder called PolicyDefinitions under

\\rebeladmin.com\SYSVOL\rebeladmin.com\Policies. The rebeladmin.com domain can

be replaced by your own domain FQDN:

mkdir \\rebeladmin.com\SYSVOL\rebeladmin.com\Policies

\PolicyDefinitions

After that, copy the policy definition data into this new folder:

Copy-Item C:\Windows\PolicyDefinitions*

\\rebeladmin.com\SYSVOL\rebeladmin.com\Policies

\PolicyDefinitions -Recurse -Force

This will also move ADML files into

\\rebeladmin.com\SYSVOL\rebeladmin.com\Policies\PolicyDefinitions with

their language name. As an example, US English will be in

\rebeladmin.com\SYSVOL\rebeladmin.com\Policies\PolicyDefinitions\en-US.

Command 10.11

By clicking on the Add button, we can define Namespace and WMI Query. As an example, I have

created a WMI query to filter the Windows 10 OS that is running the 32-bit version:

select * from Win32_OperatingSystem WHERE Version like "10.%" AND

ProductType="1" AND NOT OSArchitecture = "64-bit"

In the following commands, you can find a few examples of commonly used WMI queries:

• To filter a Windows 8 64-bit OS, use the following command:

select * from Win32_OperatingSystem WHERE Version like "6.2%" AND

ProductType="1" AND OSArchitecture = "64-bit"

• To filter a Windows 8 32-bit OS, use the following command:

select * from Win32_OperatingSystem WHERE Version like "6.2%" AND

ProductType="1" AND NOT OSArchitecture = "64-bit"

• To filter any Windows Server 64-bit OS, use the following command:

select * from Win32_OperatingSystem where (ProductType = "2") OR

(ProductType = "3") AND OSArchitecture = "64-bit"

• To apply a policy to a selected day of the week, use the following command:

select DayOfWeek from Win32_LocalTime where DayOfWeek = 1

In the preceding command, day 1 is Monday.

Chapter 11

Figures

Figure 11.1: AD LDS role

Figure 11.2: AD LDS instance type

Figure 11.3: AD LDS Instance Name

Figure 11.4: AD LDS application directory partition

Figure 11.5: AD LDS service account

Figure 11.6: AD LDS – Importing LDIF Files

Figure 11.7: AD LDS Connection Settings

Figure 11.8: AD LDS Windows Features

Figure 11.9: Site-link bridges example

Figure 11.10: Site link cost example

Figure 11.11: Site link

Figure 11.12: Site link replication schedule

Figure 11.13: Bridgehead server selection

Figure 11.14: Intra-site replication

Figure 11.15: Inter-site replication

Figure 11.16: UPN value

Commands

The other method is by using PowerShell cmdlets. These are the same commands that we use for AD DS

user object management, with the only difference being the need to define the DN and server:

New-ADUser -name "tidris" -Displayname "Talib Idris" -server

'localhost:389' -path "CN=webapp01,DC=rebeladmin,DC=com"

The preceding command creates a user account called tidris on the local LDS instance that runs on 389.

Its DNS path is CN=webapp01,DC=rebeladmin,DC=com:

Get-ADUser -Filter * -SearchBase "CN=webapp01,DC=rebeladmin,DC=com" -

server 'localhost:389'

The preceding command lists all the user accounts in the LDS instance,

CN=webapp01,DC=rebeladmin,DC=com. If you'd like to learn about more commands, please refer to

Chapter 7, Managing Active Directory Objects.

Links

• Windows Server version 1709: https://bit.ly/30WjqPl.

• A step-by-step guide for FRS to DFSR migration is available on https://bit.ly/2Zj1huT.

Tables

As an example, the logarithm of 512 is 2.709. When we divide 1,024 by 2.709, we get 377.999. So, the

link cost of a 512 Kbps line is 378:

Available bandwidth Cost

9.6 Kbps 1,042

19.2 Kbps 798

38.4 Kbps 644

56 Kbps 586

64 Kbps 567

128 Kbps 486

256 Kbps 425

512 Kbps 378

1,024 Kbps 340

2,048 Kbps 309

4,096 Kbps 283

10 Mbps 257

100 Mbps 205

1,000 Mbps 171

Table 11.1

https://bit.ly/30WjqPl
https://bit.ly/2Zj1huT

Managing sites

When the first domain controller is introduced into the infrastructure, the system creates its first site as

Default-First-Site-Name. This can be changed based on the requirements. We can review the existing

site's configuration using the following PowerShell cmdlet:

Get-ADReplicationSite -Filter *

It will list the site's information for the AD environment.

Our example only has the default AD site. As this is the first step, we need to change it to a meaningful

name so we can assign objects and configurations accordingly. To do that, we can use the Rename-

ADObject cmdlet:

Rename-ADObject -Identity "CN=Default-First-Site-

Name,CN=Sites,CN=Configuration,DC=rebeladmin,DC=com" -NewName

"LondonSite"

The preceding command renames the Default-First-Site-Name site to LondonSite. We also can change

the site configuration values using the Set-ADReplicationSite cmdlet:

Get-ADReplicationSite -Identity LondonSite | Set-ADReplicationSite -

Description "UK AD Site"

The preceding command changed the site description to UK AD Site.

We can create a new AD site using the New-ADReplicationSite cmdlet. The full description of the

command can be viewed using Get-Command New-ADReplicationSite -Syntax:

New-ADReplicationSite -Name "CanadaSite" -Description "Canada AD Site"

The preceding command creates a new AD site called CanadaSite.

Once the sites are created, we need to move the domain controllers to the relevant sites. By default, all

the domain controllers are placed under the default site, Default-First-Site-Name.

In the following command, we are listing all the domain controllers in the AD environment with filtered

data to show the Name,ComputerObjectDN,Site attribute values:

Get-ADDomainController -Filter * | select Name,ComputerObjectDN,Site |

fl

Now we have the list of domain controllers; in the next step, we can move the domain controller to the

relevant site:

Move-ADDirectoryServer -Identity "REBEL-SDC-02" -Site "CanadaSite"

The preceding command will move the REBEL-SDC-02 domain controller to CanadaSite.

During the additional domain controller setup, we can define which site it will be assigned to. If the site

already has domain controllers, it will do the initial replication from the site local domain controller. If it

doesn't, it will replicate from any selected domain controller or, if not, from any available domain

controller. If the link bandwidth is an issue, it's recommended to promote the domain controller from a

site that has fast links, and then move the domain controller to the relevant site.

The site link bridge

We can create the site link bridge using the New-ADReplicationSiteLinkBridge cmdlet:

New-ADReplicationSiteLinkBridge -Name "London-Canada-Bridge" -

SiteLinksIncluded "London-Canada","London-CanadaDRLink"

The preceding command creates a new site link bridge called London-Canada-Bridge using two site links:

London-Canada and London-CanadaDRLink.

Using the Set-ADReplicationSiteLinkBridge cmdlet, the existing site link bridge value can

change:

Set-ADReplicationSiteLinkBridge -Identity "London-Canada-Bridge" -

SiteLinksIncluded @{Remove='London-CanadaDRLink'}

The preceding command removes the London-CanadaDRLink site link from the existing site link

bridge, London-Canada-Bridge:

Set-ADReplicationSiteLinkBridge -Identity "London-Canada-Bridge" -

SiteLinksIncluded @{Add='London-CanadaDRLink'}

The preceding command adds the given site link to the existing site link bridge.

Chapter 12

Figures

Figure 12.1: Direction of Trust vs Direction of Access

Figure 12.2: Ping test to check DNS

Figure 12.3: Ping result after conditional forwarder setup – contoso.com

Figure 12.4: Ping result after conditional forwarder setup – rebeladmin.com

Figure 12.5: Domain Properties

Figure 12.6: New Trust Wizard

Figure 12.7: Remote Domain Name

Figure 12.8: Create a trust on both sides

Figure 12.9: Verify Trust configuration

Figure 12.10: Confirm outgoing trust

Figure 12.11: Trust details – rebeladmin.com

Figure 12.12: Trust details – contoso.com

Figure 12.13: Active Directory User Query – contoso.com

Figure 12.14: Active Directory User Query – rebeladmin.com

Figure 12.15: Active Directory Domain Query – contoso.com

Figure 12.16: RODC Settings

Figure 12.17: NTDS Folder

Figure 12.18: Protect objects from accidental deletion

Figure 12.19: Error Message – Protected Object

Figure 12.20: Deleted Active Directory Object

Figure 12.21: Connecting to Snapshot

Tables

Service Ports

LDAP TCP 389

LDAPS (SSL) TCP 636

DNS TCP/UDP 53

RPC TCP 135 TCP 1024-65535

SMB TCP 445

Kerberos TCP/UDP 88

Global Catalog TCP 3268

Global Catalog (SSL) TCP 3269

Table 12.1 – Firewall ports

Domain Domain Controller IP Address

rebeladmin.com DC01.rebeladmin.com 10.1.0.4/24

contoso.com CON-DC01.contoso.com 10.1.5.4/24

Table 12.2 – IP address configuration of forests in domain environment

Commands

Command 12.1

Add-DnsServerConditionalForwarderZone -Name "contoso.com" -

ReplicationScope "Forest" -MasterServers 10.1.5.4

Command 12.2

Add-DnsServerConditionalForwarderZone -Name "rebeladmin.com" -

ReplicationScope "Forest" -MasterServers 10.1.0.4

Command 12.3

Get-ADUser -Server CON-DC01.contoso.com -Filter * -SearchBase

"OU=Test,DC=CONTOSO,DC=COM"

Command 12.4

Get-ADDomain contoso.com

Command 12.5

Install-WindowsFeature –Name AD-Domain-Services -

IncludeManagementTools

Command 12.6

Import-Module ADDSDeployment

Install-ADDSDomainController `

-Credential (Get-Credential) `

-CriticalReplicationOnly:$false `

-DatabasePath "C:\Windows\NTDS" `

-DomainName "rebeladmin.com" `

-LogPath "C:\Windows\NTDS" `

-ReplicationSourceDC "REBEL-PDC-01.rebeladmin.com" `

-SYSVOLPath "C:\Windows\SYSVOL" `

-UseExistingAccount:$true `

-Norebootoncompletion:$false

-Force:$true

Command 12.7

Get-ADDomainControllerPasswordReplicationPolicy -Identity REBEL-RODC-

01 -Allowed

Command 12.8

Get-ADDomainControllerPasswordReplicationPolicy -Identity REBEL-RODC-

01 -Denied

Command 12.9

Add-ADDomainControllerPasswordReplicationPolicy -Identity REBEL-RODC-

01 -AllowedList "user1"

Command 12.10

The following command will add the user object named user2 to the Denied list:

Add-ADDomainControllerPasswordReplicationPolicy -Identity REBEL-RODC-

01 -DeniedList "user2"

Command 12.11

The database and log files cannot be moved while AD DS is running. Therefore, the first step of the

action is to stop the service:

net stop ntds

Command 12.12

In my demonstration, I will move it to a folder called ADDB in a different partition:

ntdsutil

activate instance ntds

files

move db to E:\ADDB

move logs to E:\ADDB

integrityquit

quit

Command 12.13

Once it's completed, we need to start AD DS using the following command:

net start ntds

Command 12.14

Once the service stops (net stop ntds), we can run the defragmentation using the following commands:

Ntdsutil

activate instance ntds

files

compact to E:\CompactDB

quit

quit

Command 12.15

Once this is completed, the compact database should be copied to the original ntds.dit location. This can

be done by using the following command:

copy "E:\CompactDB\ntds.dit" "E:\ADDB\ntds.dit"

After that, we also need to delete the old log file:

del E:\ADDB*.log

Command 12.16

The AD Recycle Bin feature requires a minimum of a Windows Server 2008 R2 domain and a forest

functional level. Once this feature is enabled, it cannot be disabled. This feature can be enabled using

the following command:

Enable-ADOptionalFeature 'Recycle Bin Feature' -Scope

ForestOrConfigurationSet -Target rebeladmin.com

In the preceding command, -Target can be changed with your domain name.

Command 12.17

Once Recycle Bin Feature is enabled, we can revive the objects that have been deleted using the

following command:

Get-ADObject -filter 'isdeleted -eq $true' -includeDeletedObjects

The preceding command searches for the objects where the isdeleted attributes are set to true.

Command 12.18

Now, we know the deleted object and it can be restored using the following command:

Get-ADObject -Filter 'samaccountname -eq "dfrancis"' -

IncludeDeletedObjects | Restore-ADObject

The preceding command restores the user object, dfrancis.

Command 12.19

We can create the AD DS snapshot using ntdsutil. In order to run this, we need to have domain

administrator privileges:

Ntdsutil

Snapshot

activate instance ntds

create

quit

quit

Command 12.20

Now, we have a snapshot, and at a later time, it can be mounted. To mount it, we need to use the

following command:

Ntdsutil

Snapshot

activate instance ntds

list all

mount 1

quit

quit

The preceding command mounts a snapshot called 1 from the list, which is listed under the given mount

points.

Command 12.21

The next step is to mount the snapshot, which can be done using the following command:

dsamain –dbpath C:$SNAP_201703152333_VOLUMEE$ADDBntds.dit –ldapport

10000

In the preceding command, -dbpath defines the AD DS database path, and -ldapport defines the

port used for the snapshot. It can be any available TCP port.

Command 12.22

Once the snapshot is mounted, we can connect to it using the server's name and the LDAP port, 10000.

Once the work is finished, it needs to be unmounted as well. To do that, we can use the following

command:

Ntdsutil

Snapshot

activate instance ntds

list all

unmount 1

quit

quit

Command 12.23

The first step to proceed with configuration is to install the Windows backup feature in the Active

Directory server:

Install-WindowsFeature -Name Windows-Server-Backup –

IncludeAllSubFeature

Command 12.24

Next, let's create a backup policy using the following command:

$BKPolicy = New-WBPolicy

Command 12.25

Then, let's go ahead and add a system state to the policy:

Add-WBSystemState -Policy $BKPolicy

Command 12.26

It also needs the backup volume path:

$Bkpath = New-WBBackupTarget -VolumePath "F:"

Command 12.27

Now, we need to map the policy with the path:

Add-WBBackupTarget -Policy $BKPolicy -Target $Bkpath

Command 12.28

Finally, we can run the backup using the following command:

Start-WBBackup -Policy $BKPolicy

Command 12.29

Once it's loaded in safe mode, we can use the following commands:

$ADBackup = Get-WBBackupSet | select -Last 1 Start-

WBSystemStateRecovery -BackupSet $ADBackup

This will restore the most recent backup the system has taken.

Chapter 13

Figures

Figure 13.1: A user's key pair

Figure 13.2: Digital encryption example

Figure 13.3: Digital signature example

Figure 13.4: An example of key usage

Figure 13.5: Data signing

Figure 13.6: Data encryption

Figure 13.7: Data decryption

Figure 13.8: Verifying a signature

Figure 13.9: Sample certificate

Figure 13.10: CA hierarchy

Figure 13.11: Single-tier model

Figure 13.12: Two-tier model

Figure 13.13: Three-tier model

Figure 13.14: Planned PKI setup

Figure 13.15: Configuring an AD CS role

Figure 13.18: Root certificate and CRL

Figure 13.19: Publishing the root CA data

Figure 13.20: Issuing CA role configuration

Figure 13.21: PKIView

Figure 13.22: Duplicate certificate template

Figure 13.23: Properties of the new template

Figure 13.24: Publishing a new template

Figure 13.25: Requesting a new template

Figure 13.26: Additional information for the certificate request

Figure 13.27: Certification path

Figure 13.28: Demo environment

Figure 13.29: Backup CA configuration

Figure 13.30: CA backup content

Figure 13.31: Configuring an AD CS role with the existing CA certificate

Figure 13.32: Existing certificate

Figure 13.33: Requesting a new certificate

Figure 13.34: New certificate from the Windows Server 2022 CA

Figure 13.35: Backup CA configuration

Figure 13.36: File in the CABackup location

Tables

Feature Standalone CA Enterprise CA

AD DS dependency Does not depend on AD DS; can be installed on

a member server or standalone server in a

workgroup

Can only be installed

on a member server

Operate offline Can stay offline Cannot be offline

Customized certificate

templates

Only supports standard templates Supported

Supported enrollment

methods
Manual or web enrollment

Auto, manual, or web

enrollment

Certificate approval

process

Manual Manual or automatic

based on the policy

User input for certificate

fields

Manual Retrieved from AD DS

Certificate issuing and

managing using AD DS

N/A Supported

Table 13.1 – the types of CA

Option Details

0 No changes.

1 Publish a CA certificate to a given location.

2 Attach the AIA extensions of issued certificates.

32 Attach the Online Certificate Status Protocol (OCSP) extensions.

Table 13.2 – AIA locations

Host

Name

Operating System Role

REBEL-

PDC01

Windows Server

2022

Primary Domain Controller in rebeladmin.com Active Directory

Domain.

W08CS Windows Server

2008 R2

Existing CA.

W22CS Windows Server

2022

After AD CS configuration is migrated, this server will become the

CA in the rebeladmin.com domain.

PC01 Windows 10 Test PC.

Table 13.3 – Role of server and PC

Commands

Command 13.1

The first task is to install the AD CS role service. This can be done using the following command:

Add-WindowsFeature ADCS-Cert-Authority -IncludeManagementTools

Command 13.2

Once the role service is installed, the next step is to configure the role and get the CA up and running:

Install-ADcsCertificationAuthority -CACommonName "REBELAdmin Root CA"

-CAType StandaloneRootCA -CryptoProviderName "RSA#Microsoft Software

Key Storage Provider" -HashAlgorithmName SHA256 -KeyLength 2048 -

ValidityPeriod Years -ValidityPeriodUnits 20

Command 13.3

certutil.exe –setreg ca\DSConfigDN

CN=Configuration,DC=rebeladmin,DC=com

The preceding command needs to run using Command Prompt.

Command 13.4

The AIA location can be set using the certutil command.

certutil -setreg CA\CACertPublicationURLs

"1:C:\Windows\system32\CertSrv\CertEnroll\%1_%3%4.crt\n2:ldap:///CN=%7

,CN=AIA,CN=Public Key

Services,CN=Services,%6%11\n2:http://crt.rebeladmin.com/CertEnroll/%1_

%3%4.crt"

Command 13.5

Setting CA time limits - For this demo, I will set the certificate validity period to 10 years:

certutil -setreg ca\ValidityPeriod "Years"

certutil -setreg ca\ValidityPeriodUnits 10

Command 13.6

Now we have all the settings submitted. To apply the changes, run the following command:

restart-service certsvc

Command 13.7

The next step is to create a new CRL, which can be generated using the following command:

certutil -crl

Command 13.8

Then, log in to the domain controller as Domain Admin or Enterprise Admin and run the following

command:

certutil –f –dspublish "REBEL-CRTROOT_REBELAdmin Root CA.crt" RootCA

Command 13.9

This also needs to be published to Active Directory so that everyone in the domain is aware of it. To do

that, copy the file from the root CA to the domain controller and run the following command:

certutil –f –dspublish "REBELAdmin Root CA.crl"

Command 13.10

The file needs to be copied from the issuing CA to the root CA, and then you need to execute the

following command:

certreq -submit "REBEL-CA1.rebeladmin.com_REBELAdmin IssuingCA.req"

Command 13.11

Once it has been issued, it needs to be exported and imported into the issuing CA:

certreq -retrieve 2 "C:\REBEL-

CA1.rebeladmin.com_REBELAdmin_IssuingCA.crt"

The preceding command will export the certificate. The number 2 is the request ID in the CA Microsoft

Management Console (MMC).

Command 13.12

Once the export is complete, move the file to the issuing CA, and from there, run the cert util install cert

command.

Certutil –installcert "C:\REBEL-

CA1.rebeladmin.com_REBELAdmin_IssuingCA.crtstart-service certsvc

Command 13.13

certutil -setreg CA\CACertPublicationURLs "1:

C:\Windows\system32\CertSrv\CertEnroll\%1_%3%4.crt\n2:http://crt.rebel

admin.com/CertEnroll/%1_%3%4.crt\n3:ldap:///CN=%7,CN=AIA,CN=Public Key

Services,CN=Services,%6%11"

Command 13.14

certutil -setreg CA\CRLPeriodUnits 7

certutil -setreg CA\CRLPeriod "Days"

certutil -setreg CA\CRLOverlapPeriodUnits 3

certutil -setreg CA\CRLOverlapPeriod "Days"

certutil -setreg CA\CRLDeltaPeriodUnits 0

certutil -setreg ca\ValidityPeriodUnits 3

certutil -setreg ca\ValidityPeriod "Years"

Command 13.15

Once all this is done, in order to complete the configuration, restart the certificate service using the

following command:

restart-service certsvc

Command 13.16

Last but not least, run the following command to generate the CRLs:

certutil -crl

Command 13.17

We also need to export the CA configuration settings saved under the
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\CertSvc\Configura

tion registry key. To export the key, run the following PowerShell command:

reg.exe export

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\CertSvc\Configura

tion C:\CABackup\careg.reg

The preceding command will back up the registry key to the C:\CABackup folder and save it as careg.reg.

Command 13.18

Run the following command to install the AD CS role:

Add-WindowsFeature ADCS-Cert-Authority -IncludeManagementTools

Command 13.19

Run the following command to configure AD CS role with the existing CA certificate:

Install-AdcsCertificationAuthority -CAType EnterpriseRootCa -CertFile

"C:\CABackup\REBELADMIN CA.p12" -CertFilePassword (read-host "Cert

Password" -assecurestring):

The preceding command configures the AD CS role with the existing CA certificate, which is saved as

C:\CABackup\REBELADMIN CA.p12 from the previous CA backup.

CDP locations

CDPs define the location from where the CRL can be retrieved. This is a web-based location and should

be accessible via HTTP. This list will be used by the certificate validator to verify the given certificate

against the revocation list.

Before we do this, we need to prepare the web server. It should be a domain member, similar to the

issuing CA.

In my demonstration, I am going to use the same issuing CA as the CDP location.

The web server can be installed using the following command:

Install-WindowsFeature Web-WebServer -IncludeManagementTools

Next, create a folder and create a share so that it can be used as the virtual directory:

mkdir C:\CertEnroll

New-smbshare -name CertEnroll C:\CertEnroll -FullAccess

SYSTEM,"rebeladmin\Domain Admins" -ChangeAccess "rebeladmin\Cert

Publishers"

As part of the exercise, I am setting the share permissions to rebeladmin\Domain Admins (full access)

and rebeladmin\Cert Publishers (change access).

After the folder has been created with the relevant permissions, we also need to copy the root CA

certificate and the CRL file to it:

Figure 13.16: Configuring an AD CS role

After that, load the Internet Information Services (IIS) manager and add a virtual directory, CertEnroll,

with the aforementioned path:

CRL time limits

The CRL also has some associated time limits:

Certutil -setreg CA\CRLPeriodUnits 13

Certutil -setreg CA\CRLPeriod "Weeks"

Certutil -setreg CA\CRLDeltaPeriodUnits 0

Certutil -setreg CA\CRLOverlapPeriodUnits 6

Certutil -setreg CA\CRLOverlapPeriod "Hours"

In the preceding commands, the following is true:

• CRLPeriodUnits: This specifies the number of days, weeks, months, or years for which the

CRL will be valid.

• CRLPeriod: This specifies whether the CRL validity period is measured by days, weeks,

months, or years.

• CRLDeltaPeriodUnits: This specifies the number of days, weeks, months, or years that the

delta CRL is valid for. Offline CAs should disable this.

• CRLOverlapPeriodUnits: This specifies the number of days, weeks, months, or years that

the CRL can overlap.

• CRLOverlapPeriod: This specifies whether the CRL overlapping validity period is measured

by days, weeks, months, or years.

Now we have all the settings submitted. To apply the changes, run the following command:

restart-service certsvc

Figure 13.17: Setting up the CertEnroll virtual directory

Last but not least, we need to create a DNS record for the service URL. In this demo, I am using

crt.rebeladmin.com as the domain name. This will allow us to access the new distribution point

using http://crt.rebeladmin.com/CertEnroll.

Now everything is ready, and we can publish the CDP settings using the following command:

certutil -setreg CA\CRLPublicationURLs

"1:C:\Windows\system32\CertSrv\CertEnroll\%3%8%9.crl

\n10:ldap:///CN=%7%8,CN=%2,CN=CDP,CN=Public Key

Services,CN=Services,%6%10\n2:http://crt.rebeladmin.com/CertEnroll/%3%

8%9.crl"

The preceding command needs to run on the root CA server.

The single numbers in the command refer to the options, and numbers with % refer to the variables:

Option Details

0 No changes.

1 Publish the CRL to the given location.

2 Attach the CDP extensions of issued certificates.

4 Include in the CRL to find the delta CRL locations.

8 Specify whether there is a need to publish all CRL information to AD when publishing

manually.

64 Delta CRL location.

128 Include the Issuing Distribution Point (IDP) extension of the issued CRL.

All these settings can be specified using the GUI. To access it, go to Server Manager | Tools |

Certification Authority, right-click and select Properties of the server, and then go to the Extension tab.

There, you can add the following variables using the GUI:

Variable GUI reference Details

%1 <ServerDNSName> The DNS name of the CA server

%2 <ServerShortName> The NetBIOS name of the CA server

%3 <CAName> The given name for the CA

%4 <CertificateName> The renewal extension of the CA

%6 <ConfigurationContainer> DN of the configuration container in AD

%7 <CATruncatedName> Truncated name of the CA (32 characters)

%8 <CRLNameSuffix> Inserts a name suffix at the end of the filename

before publishing a CRL

%9 <DeltaCRLAllowed> Replaces CRLNameSuffix with a separate suffix to use

the delta CRL

%10 <CDPObjectClass> The object class identifier for the CDP

%11 <CAObjectClass> The object class identifier for a CA

Once the CDP settings are in place, the next step is to go ahead and set up the AIA locations.

Setting up the issuing CA

Now that we're done with the root CA setup, the next step is to set up the issuing CA. Issuing CAs will be

run from a domain member server and will be AD-integrated. To begin the installation, log in to the

server as the Domain Admin or Enterprise Admin.

1. The first task will be to install the AD CS role:

Add-WindowsFeature ADCS-Cert-Authority -IncludeManagementTools

2. I will use the same server for the Web Enrollment Role Service. This can be added using the

following command:

Add-WindowsFeature ADCS-web-enrollment

3. After that, we can configure the role service using the following command:

Install-ADcsCertificationAuthority -CACommonName "REBELAdmin

IssuingCA" -CAType EnterpriseSubordinateCA -CryptoProviderName

"RSA#Microsoft Software Key Storage Provider" -HashAlgorithmName

SHA256 -KeyLength 2048

4. To configure the Web Enrollment Role Service, use the following command:

Install-ADCSwebenrollment

5. This completes the initial role configuration process of the issuing CA. The next step is to create

a certificate for the issuing CA.

Chapter 14

Figures

Figure 14.2: Federation trust in action

Figure 14.3: Single federation server deployment

Figure 14.4: Single federation server and WAP deployment

Figure 14.5: A multiple federation server and multiple WAP server deployment

Figure 14.8: AD FS login page

Figure 14.9: Add Relying Party Trust

Figure 14.10: Configure the relying party trust

Figure 14.11: Relying party trust access control policies

Figure 14.12: Completing the relaying party trust wizard

Figure 14.13: Application access

Figure 14.14: Azure TenantId

Figure 14.15: New certificate

Figure 14.20: How AD FS federation works with Azure AD

Figure 14.21: Planned demo setup

Figure 14.22: Azure AD custom domain status

Figure 14.23: Existing AD FS configuration

Figure 14.24: Initiated sign-in page

Figure 14.25: Azure AD Connect Express Settings page

Figure 14.26: User sign-in method selection

Figure 14.27: AD FS farm configuration

Figure 14.28: Select the domain to federate

Figure 14.29: Rebeladmin.com recognized as the federated domain

Figure 14.30: Azure AD user login page

Figure 14.31: User redirected to the AD FS login form

Figure 14.32: User access to the Office 365 portal

Tables

Claim type Description

UPN UPN of the user

Email RFC 5322-type email address

Given name Given name of the user

CN CN value of the user account

Name Name of the user

Surname Surname of the user

Windows account name Domain account in domain/user format

Group Group the user belongs to

Role Role of the user

AD FS 1.x UPN UPN of the user when interacting with AD FS 1.x

AD FS 1.x email address RFC 5322-type email address of the user when interacting with AD FS 1.x

Table 14.1 – AD FS claim types

Commands

Command 14.1

In order to do that, log in to the Web Application Proxy server as an administrator and execute the

following command:

Add-WebApplicationProxyApplication

-BackendServerUrl 'https://myapp.rebeladmin.com/myapp/'

-ExternalCertificateThumbprint

'3E0ED21E43BEB1E44AD9C252A92AD5AFB8E5722E'

-ExternalUrl 'https://myapp.rebeladmin.com/myapp/'

-Name 'MyApp'

-ExternalPreAuthentication AD FS

-ADFSRelyingPartyName 'myapp.rebeladmin.com'

Command 14.2

First, we need to create a certificate, which will be used by the AD FS farm. This needs to run from the

AD FS server:

$certbase64 = New-AdfsAzureMfaTenantCertificate -TenantID 05c6f80c-

61d9-44df-bd2d-4414a983c1d4

The preceding command generates the new certificate. TenantID is the subscription ID you have from

Azure. This can be found by running this:

Login-AzureRmAccount

The preceding command will ask for the credentials for Azure and once we provide them, it will list

TenantId.

Command 14.3

Before that, we need to connect to Azure AD by using Azure PowerShell. We can do that by using the

following command:

Connect-MsolService

Command 14.4

After that, we can pass the credentials by using the following command:

New-MsolServicePrincipalCredential -AppPrincipalId 981f26a1-7f43-403b-

a875-f8b09b8cd720 -Type asymmetric -Usage verify -Value $certbase64

In the preceding command, AppPrincipalId defines the Globally Unique Identifier (GUID) for the Azure

MFA client.

Links

• More information about WS-Federation can be found at https://ibm.co/3CGyRbO.

• Risk assessment model: https://bit.ly/3l2Qe0m

• ESL: https://bit.ly/3FLLy6T

https://ibm.co/3CGyRbO
https://bit.ly/3l2Qe0m
https://bit.ly/3FLLy6T

Creating a certificate in an AD FS farm to connect to Azure

MFA

First, we need to create a certificate, which will be used by the AD FS farm. This needs to run from the

AD FS server:

$certbase64 = New-AdfsAzureMfaTenantCertificate -TenantID 05c6f80c-

61d9-44df-bd2d-4414a983c1d4

The preceding command generates the new certificate. TenantID is the subscription ID you have from

Azure. This can be found by running this:

Login-AzureRmAccount

The preceding command will ask for the credentials for Azure and once we provide them, it will list

TenantId:

Figure 14.14: Azure TenantId

This will create a certificate under Certificates (Local Computer):

Figure 14.15: New certificate

Enabling AD FS servers to connect with the Azure MFA client

Now, we have the certificate, but we need to tell the Azure MFA client to use it as a credential to

connect with AD FS.

Before that, we need to connect to Azure AD by using Azure PowerShell. We can do that by using the

following command:

Connect-MsolService

Then, it will prompt you for your login and use your Azure Global Administrator account to connect.

After that, we can pass the credentials by using the following command:

New-MsolServicePrincipalCredential -AppPrincipalId 981f26a1-7f43-403b-

a875-f8b09b8cd720 -Type asymmetric -Usage verify -Value $certbase64

In the preceding command, AppPrincipalId defines the Globally Unique Identifier (GUID) for the

Azure MFA client.

Enabling the AD FS farm to use Azure MFA

The next step of the configuration is to enable the AD FS farm to use Azure MFA. This can be done by

using the following command:

Set-AdfsAzureMfaTenant -TenantId 05c6f80c-61d9-44df-bd2d-4414a983c1d4

-ClientId 981f26a1-7f43-403b-a875-f8b09b8cd720

In the preceding command, TenantId refers to the Azure tenant ID and ClientId represents the

Azure MFA client's GUID.

Once the command successfully runs, we need to restart the AD FS service on each server in the farm:

Figure 14.16: Enabling Azure MFA for AD FS

Enabling Azure MFA for authentication

The last step of the configuration is to enable Azure MFA globally for the AD FS server.

In order to do that, log in to the AD FS server as the Enterprise Admin. Then, go to Server Manager |

Tools | AD FS Management.

Then, in the console, navigate to Service | Authentication Methods. Then, in the Actions panel, click on

Edit Primary Authentication Method:

Figure 14.17: AD FS Authentication Methods

This opens up the window to configure global authentication methods. It has two tabs, and we can see

Azure MFA on both. If Azure MFA is used as a primary method by removing other options, then AD FS

will not ask for logins and will use MFA as the only authentication method.

Its operation boundaries can be set to intranet or extranet:

Figure 14.18: AD FS Primary authentication methods

Another option is to select MFA as the secondary authentication method:

Figure 14.19: AD FS Additional authentication methods

This finishes the Azure MFA integration, and users can use MFA based on the options selected in the

preceding wizards.

Installing the AD FS role

Before installation, the SSL certificate for adfs.rebeladmin.com needs to be installed in the computer

account as it is required during the AD FS installation. This can be checked using the following command:

dir Cert:\LocalMachine\My

The AD FS server should be a member server of the domain and should log in as the domain

administrator or the Enterprise Admin to do the installation.

The next step is to install the AD FS role service, which can be done by using the following PowerShell

command:

Install-WindowsFeature ADFS-Federation -IncludeManagementTools

The following screenshot displays the output of the preceding command:

Figure 14.6: Install the AD FS role

Once this is completed, we need to configure the AD FS server. Let's use the following configuration for

the demo setup:

Import-Module ADFS

$credentials = Get-Credential

Install-AdfsFarm `

-CertificateThumbprint:"938E369FA88B2F884A5BBC495F2338BE9FA0E0BB" `

-FederationServiceDisplayName:"REBELADMIN INC" `

-FederationServiceName:"adfs.rebeladmin.com" `

-ServiceAccountCredential $credentials

In this setup, we are using WID for AD FS, so there is no need for SQL configuration. In the preceding

command, CertificateThumbprint specifies the SSL certificate (adfs.rebeladmin.com), and

FederationServiceDisplayName specifies the display name of the federation service.

FederationServiceName is the service name, and it should match the SSL we used.

ServiceAccountCredential is used to define the service account details for the AD FS setup. In the end,

the system needs to be restarted to apply the configuration:

Figure 14.7: Configure the AD FS role

The error about the alternative SSL name, certauth.adfs.rebeladmin.com, regards the certificate

authentication. Before Windows Server 2016, this was an issue as the system didn't support different

bindings for certificate authentication and device authentication on the same host. The default port 443

was used by the device authentication and couldn't have multiple bindings on the same channel.

In Windows Server 2016/2016/2019/2022, this is possible and now, it supports two methods. The first

option is to use the same host (adfs.rebeladmin.com) with different ports (443 and 49443). The

second option is to use different hosts (adfs.rebeladmin.com and

certauth.adfs.rebeladmin.com) with the same port (443). This requires an SSL certificate to

support certauth.adfs.rebeladmin.com as an alternate subject name.

Once the reboot completes, we can check whether the installation was successful by using the following

command:

Get-WinEvent "AD FS/Admin" | Where-Object {$_.ID -eq "100"} | fl

This will print the content of event 100, which confirms the successful AD FS installation.

Installing WAP

The next step of the configuration is to install WAP. This doesn't need to be a domain-joined server and

should be placed on the perimeter network. Before the installation process, install the required SSL

certificates. In my demo, it is for *.rebeladmin.com. We can verify this by using this:

dir Cert:\LocalMachine\My

Before proceeding, we also need to check whether a server can resolve to adfs.rebeladmin.com as WAP

needs to connect to AD FS.

Once everything is confirmed, we can install the WAP role:

Install-WindowsFeature Web-Application-Proxy -IncludeManagementTools

Once it's completed, we can proceed with the configuration by using the following:

$credentials = Get-Credential

Install-WebApplicationProxy

-FederationServiceName "adfs.rebeladmin.com"

-FederationServiceTrustCredential $credentials

-CertificateThumbprint "3E0ED21E43BEB1E44AD9C252A92AD5AFB8E5722E"

In the preceding commands, FederationServiceName is used to define the AD FS service name, and it

needs to match the name provided on the AD FS setup. FederationServiceTrustCredential is used to

provide an account, which is authorized to register a new proxy server with AD FS. The account that is

used here should have permissions to manage AD FS.

The CertificateThumbprint parameter is used to define the certificate for WAP. In our demo, it's the

*.rebeladmin.com certificate. At the end of the configuration, we need to restart the system to

apply the changes.

Once the reboot is completed, we can confirm the health of the configuration using the following event

log in the AD FS server:

Get-WinEvent "AD FS/Admin" | Where-Object {$_.ID -eq "396"} | fl

Chapter 15

Links

AIP implementation is a vast topic that is beyond the scope of this chapter. I have written a series of

blog posts covering the implementation of AIP:

• Step-by-Step Guide: Protect confidential data using Azure Information Protection:

https://bit.ly/30NxJG1

• Step-by-Step Guide: Automatic Data Classification via Azure Information Protection:

https://bit.ly/30ZZGe5

• Step-by-Step Guide: On-premise Data Protection via Azure Information Protection Scanner:

https://bit.ly/3nKfiei

• Step-by-Step Guide: How to protect confidential emails using Azure Information Protection?:

https://bit.ly/3l4LU0x

• Step-by-Step Guide: How to track shared documents using Azure Information Protection?:

https://bit.ly/3FYNGZt

Figures/Tables

Table 15.1

Requirements Application Protected file types

Protect confidential

files

Microsoft Outlook Windows

(version 2003 onward)

Office for macOS 2016:

Word

Excel

PowerPoint

PDF

Image processing

XPS Viewer

Gaaiho Doc

GigaTrust Desktop PDF Client

for Adobe

Foxit PDF Reader

Nitro PDF Reader

Siemens JT2Go

.doc, .docm, .docx, .dot, .dotm,

.dotx, .potm, .potx, .pps, .ppsm,

.ppsx, .ppt, .pptm, .txt, .xml, .jpg, .jpeg, .pdf,

.png, .tif, .tiff, .bmp, .gif, .jpe, .jfif, .jt, .xps

Protect confidential

emails

Microsoft Outlook Windows

(version 2003 and newer)

Office for macOS 2016

.msg

https://bit.ly/30NxJG1
https://bit.ly/30ZZGe5
https://bit.ly/3nKfiei
https://bit.ly/3l4LU0x
https://bit.ly/3FYNGZt

Microsoft Exchange 2007 SP1

Protect content on

the intranet

Microsoft SharePoint 2007

and newer

.doc, .docm, .docx, .dot, .dotm,

.dotx, .potm, .potx, .pps, .ppsm,

.ppsx, .ppt, .pptm, .txt, .xml, .jpg, .jpeg, .pdf,

.png, .tif, .tiff, .bmp, .gif, .jpe, .jfif, .jt, .xps

Protect mobile data Microsoft Word

Microsoft Word app

Microsoft Excel app

Microsoft Outlook app

Microsoft PowerPoint app

WordPad

Office for macOS 2016

Word Online

TITUS Docs

Foxit Reader

.doc, .docm, .docx, .dot, .dotm,

.dotx, .potm, .potx, .pps, .ppsm,

.ppsx, .ppt, .pptm, .txt, .xml, .jpg, .jpeg, .pdf,

.png, .tif, .tiff, .bmp, .gif, .jpe, .jfif, .jt, .msg,

.xps

Figure 15.1: AD RMS in action

Figure 15.2: AD RMS configuration wizard

Figure 15.3: Creating WID for AD RMS

Figure 15.4: Defining the AD RMS service account

Figure 15.5: Defining the AD RMS cryptographic mode

Figure 15.6: AD RMS cluster website settings

Figure 15.7: AD RMS cluster address

Figure 15.8: Selecting the server authentication certificate

Figure 15.9: Registering an AD RMS SCP

Figure 15.10: AD RMS server cluster

Figure 15.11: Service error due to trusted sites

Figure 15.12: Connecting to the AD RMS server to get templates

Figure 15.13: Protecting a Word document with AD RMS

Figure 15.14: Document permissions

Figure 15.15: Viewing permissions

Figure 15.16: Error message

Figure 15.17: Oxford reading levels

Figure 15.18: Example of labels

Figure 15.19: Automated classification

Figure 15.20: AIP scanner

Figure 15.21: Initial communication with Azure RMS

Figure 15.22: Preparing for document protection

Figure 15.23: Data protection with Azure RMS

Commands

Command 15.1

Install-WindowsFeature ADRMS -IncludeManagementTools

Chapter 16

Figures

Figure 16.1: Authentication by using a secret

Figure 16.2: Man-in-the-middle attack

Figure 16.3: KDC in action

Figure 16.4: Authentication process in AD

Figure 16.5: Open advanced permission settings for a group

Figure 16.6: Advanced permission settings for a group

Figure 16.7: ACL permissions are preventing the provision of a new user account

Figure 16.8: ACL permissions are preventing the provision of a new user account

Figure 16.9: Delegating control for a group

Figure 16.10: Delegate tasks

Figure 16.11: Can't remove user as no delegated permissions

Figure 16.12: Password policy settings

Figure 16.13: Properties of the password policy

Figure 16.14: Properties of the Protected Users group

Figure 16.15: Viewing a hash value using Mimikatz

Figure 16.16: Viewing a hash value using Mimikatz of a user in the Protected Users group

Figure 16.17: Registry key value

Figure 16.18: User's group memberships

Figure 16.19: Login error

Figure 16.20: Server Manager access denied error

Figure 16.21: Enabling KDC support for claims, compound authentication, and Kerberos armoring policy setting

Figure 16.22: Creating a new authentication policy

Figure 16.23: Creating new authentication policy silos

Figure 16.24: Edit Access Control Conditions

Figure 16.25: Testing a secure LDAP connection

Figure 16.26: Secure LDAP connection fails

Figure 16.27: Installing a certificate in the domain controller

Figure 16.28: Successful connection with secure LDAP

Figure 16.29: Microsoft LAPS installation wizard

Figure 16.30: Installing Management Tools

Figure 16.31: Updating the AD schema

Figure 16.32: New attributes under the computer object

Figure 16.33: Changing computer object permissions

Figure 16.34: Verifying extended rights

Figure 16.35: Updated extended rights

Figure 16.36: Installing an agent using a GPO

Figure 16.37: Microsoft LAPS GPO settings

Figure 16.38: Microsoft LAPS GPO settings (password)

Figure 16.39: Microsoft LAPS GPO settings (Name of administrator account to manage)

Figure 16.40: Checking the local administrator password using LAPS UI

Figure 16.41: Checking the local administrator password using PowerShell

Figure 16.42: Enabling password protection on Windows AD

Figure 16.43: Test user password change

Commands

Command 16.1

New-ADUser -Name "Dale"

-Path "OU=Users,OU=Europe,DC=rebeladmin,DC=com"

Command 16.2

New-ADUser -Name "Simon"

-Path "OU=Users,OU=Asia,DC=rebeladmin,DC=com"

Command 16.3

Remove-ADUser -Identity "CN=Dishan Francis,

OU=Users,OU=Europe,DC=rebeladmin,DC=com"

Command 16.4

Set-ADAccountPassword -Identity difrancis

Command 16.5

Remove-ADUser -Identity "CN=Dishan Francis,

OU=Users,OU=Europe,DC=rebeladmin,DC=com"16.6

New-ADFineGrainedPasswordPolicy -Name "Domain Admin Password Policy" -

Precedence 1 `

-MinPasswordLength 12 -MaxPasswordAge "30" -MinPasswordAge "7" `

-PasswordHistoryCount 50 -ComplexityEnabled:$true `

-LockoutDuration "8:00" `

-LockoutObservationWindow "8:00" -LockoutThreshold 3 `

-ReversibleEncryptionEnabled:$false

Command 16.7

Get-ADFineGrainedPasswordPolicy –Identity "Domain Admin Password

Policy"

Command 16.8

Add-ADFineGrainedPasswordPolicySubject -Identity "Domain Admin

Password Policy" -Subjects "Domain Admins"16.9

Get-ADFineGrainedPasswordPolicy -Identity "Domain Admin Password

Policy" | Format-Table AppliesTo –AutoSize

Command 16.10

Get-ADFineGrainedPasswordPolicy -Filter * | Format-Table

Name,Precedence,AppliesTo –AutoSize

Command 16.11

Get-ADGroup -Identity "Protected Users"

Command 16.12

Get-ADGroup -Identity "Protected Users" | Add-ADGroupMember –Members

"CN=Adam,CN=Users,DC=rebeladmin,DC=com"

Command 16.13

Get-ADGroupMember -Identity "Protected Users"

Command 16.14

New-ADAuthenticationPolicy -Name "AP_1hr_TGT" -UserTGTLifetimeMins 60

-Enforce

Command 16.15

New-ADAuthenticationPolicySilo -Name Restricted_REBEL_PC01 -

UserAuthenticationPolicy AP_1hr_TGT -ComputerAuthenticationPolicy

AP_1hr_TGT -ServiceAuthenticationPolicy AP_1hr_TGT -Enforce

Command 16.16

Grant-ADAuthenticationPolicySiloAccess -Identity Restricted_REBEL_PC01

-Account Peter

Command 16.17

Get-ADComputer -Filter 'Name -like "REBEL-PC01"' | Grant-

ADAuthenticationPolicySiloAccess -Identity Restricted_REBEL_PC01

Command 16.18

Set-ADAccountAuthenticationPolicySilo -Identity Peter -

AuthenticationPolicySilo Restricted_REBEL_PC01 -AuthenticationPolicy

AP_1hr_TGT

Command 16.19

Get-ADComputer -Filter 'Name -like "REBEL-PC01"' | Set-

ADAccountAuthenticationPolicySilo -AuthenticationPolicySilo

Restricted_REBEL_PC01 -AuthenticationPolicy AP_1hr_TGT

Command 16.20

Set-ADAuthenticationPolicy -Identity AP_1hr_TGT -

UserAllowedToAuthenticateFrom

"O:SYG:SYD:(XA;OICI;CR;;;WD;(@USER.ad://ext/AuthenticationSilo ==

`"Restricted_REBEL_PC01`"))"

Command 16.21

Import-module AdmPwd.PS

Command 16.22

Set-AdmPwdComputerSelfPermission -OrgUnit RAServers

Command 16.23

Import-module AdmPwd.PS

Command 16.24

Find-AdmPwdExtendedRights -Identity "RAServers"

Command 16.25

Set-AdmPwdReadPasswordPermission -Identity "RAServers" -

AllowedPrincipals "ITAdmins"

Command 16.26

Find-AdmPwdExtendedRights -Identity "RAServers" | fl

Command 16.27

Get-AdmPwdPassword -ComputerName SRV01

Command 16.28

Import-Module AzureADPasswordProtection

Register-AzureADPasswordProtectionProxy -AccountUpn

'admin@rebeladm.onmicrosoft.com'

Command 16.29

Import-Module AzureADPasswordProtection

Register-AzureADPasswordProtectionForest -AccountUpn

'admin@rebeladm.onmicrosoft.com'

Command 16.30

Set-ADAccountPassword -Identity testuser -Reset -NewPassword

(ConvertTo-SecureString -AsPlainText "rebeladmin@A123" -Force)

Chapter 17
Advanced AD Management with

PowerShell
The very first Active Directory (AD) instance I set up was based on Windows Server 2003. It was a

completely different approach from today's Active Directory installations. In Windows Server 2003,

there were a lot of prerequisite tasks, such as installing a DNS role, setting up DNS zones, and adding the

domain prefix. Even those tasks were directly related to Active Directory Domain Services (AD DS), and I

had to configure them separately prior to running the DCPORMO.exe command. But today, the Active

Directory role installation process is very straightforward. With basic knowledge and resources, anyone

can get a domain controller up and running with a few clicks.

Microsoft has made server role installations and configurations easy over the years, not just AD DS. The

main reason behind all these enhancements was to save time for engineers. Installations,

configurations, and repetitive infrastructure tasks take up the majority of an engineer's time. Also with

the pandemic, an engineer has to wear many hats as businesses shrink IT budgets. To save time on

repetitive administrative tasks, we should be looking at automation technologies. In the early days, we

used DOS commands, VBScript, and batch files to automate administrative tasks. But there were

problems with that. Applications, server roles, and services had limitations on working with these

automation technologies. Not every function available in the GUI supported the use of commands or

scripts. This lack of support and lack of flexibility was holding engineers back from automating tasks.

To bring automation to the next level, Microsoft released a more flexible, more powerful, more

integrated scripting language.

PowerShell 1.0 was the starting point and it was available to the public from November 2006. During the

last decade, there have been a few versions released and it's now at version 5.1 (mainstream). Microsoft

also released a separate version of PowerShell called PowerShell Core 6.0 (January 10, 2018). It was

compatible with Linux and macOS as well. Now it has been replaced by PowerShell 7.0. In Chapter 2,

Active Directory Domain Services 2022, I mentioned PowerShell 7 and throughout this book, I have used

PowerShell 7 for configurations and the administration of Active Directory roles. In this chapter, I will

explain how we can use PowerShell to further improve AD DS environment management.

We are also going to look at managing identities in a hybrid environment using Azure AD PowerShell and

Microsoft Graph.

The cmdlets and scripts used in this chapter were written and tested in an environment that has the

following:

• Windows Server 2022

• An AD domain and forest functional level set to Windows Server 2016

• PowerShell 7.1

• Azure AD Premium P2

In this chapter, we will cover the following topics:

• PowerShell scripts and commands that can be used to manage AD objects

• PowerShell scripts and commands that can be used to manage and troubleshoot AD replication

• PowerShell scripts and commands that can be used to manage identities in a hybrid

environment using the Azure AD PowerShell module

• Microsoft Graph for Hybrid Identity management

Before we start using PowerShell for Active Directory management, we need to make sure relevant tools

are installed and configured.

AD management with PowerShell – preparation

A PowerShell module includes assemblies, scripts, and functionalities. In order to use the functionalities,

we need to import the module. After that, we can call for the contents of the module to manage

relevant server roles, services, or features.

Before we start Active Directory management with PowerShell, first we need to import the

ActiveDirectory module.

There are a few ways to do this. These include installing the AD DS server role or by installing Remote

Server Administration Tools (RSAT):

• AD DS server role:

a. If we install the AD DS server role using Server Manager, the Active Directory module for

Windows PowerShell is installed as a feature:

Figure 17.1: Active Directory module for Windows PowerShell feature

b. If the AD DS role is installed using PowerShell, we need to include the management

tools by using -IncludeManagementTools. Otherwise, by default, it will not install the

module:

Install-WindowsFeature –Name AD-Domain-Services -

IncludeManagementTools

• Remote Server Administration Tools:

c. Even if the server doesn't have the AD DS role installed, the existing domain

environment can be managed using the AD DS PowerShell module. The AD PowerShell

module is included with RSAT and can be installed using Server Manager or PowerShell.

d. On Server Manager, it can be found by navigating to Features | Remote Server

Administration Tools | Role Administration Tools | AD DS and AD LDS Tools | Active

Directory module for PowerShell, as shown in the following screenshot:

Figure 17.2: Active Directory module for Windows PowerShell feature under RSAT

e. It can also be installed using PowerShell:

Add-WindowsFeature RSAT-AD-PowerShell

It is also possible to install RSAT on the Windows desktop OS. As an example, RSAT for Windows 10 can

be downloaded from https://bit.ly/3HZ5k0W.

PowerShell 7

In the preceding section, I explained how we can prepare native Windows PowerShell for Active

Directory administration. Most of the scripts and commands used in this book also work with native

Windows PowerShell. But PowerShell 7works in a different way. It doesn't come as part of Windows and

needs to be installed separately as an application. To install PowerShell 7, please follow the following

guide: https://bit.ly/30Pu4HM

https://bit.ly/3HZ5k0W
https://bit.ly/30Pu4HM

After prerequisites are in place, we can list all the commands available under the module using the

following command:

Get-Command -Module ActiveDirectory

There are about 147 commands under the module. The complete syntax for any command can be

viewed using this command:

Get-Command commandname -Syntax

As an example, the following command will list the syntax for the New-ADUser command:

Get-Command New-ADUser -Syntax

The Get-Help command provides help for any command. As an example, the following command

provides help for the New-ADUser command:

Get-Help New-ADUser

We also can view an example for the New-ADUser command using this:

Get-Help New-ADUser -Example

More information on the command can be viewed using this:

Get-Help New-ADUser -Detailed

Technical information on the command can be viewed using the following:

Get-Help New-ADUser -Full

Online information about the command can be viewed using this:

Get-Help New-ADUser -Online

In this section, we learned how to install the Active Directory module for PowerShell. We also learned

about the basic functions of the module. Now, let's move on and further explore the Active Directory

management capabilities of the module.

AD management commands and scripts

The module has 147 commands, and they can be used in countless different ways to manage the Active

Directory environment. In this section, we will look at the capabilities of these commands and see how

we can use them to improve Active Directory management.

I'd like to start this section by explaining how we can review the existing configuration of an Active

Directory environment. The quick way to review the directory server configuration and capabilities is to

use the following command:

Get-ADRootDSE

This command provides important information, such as forest and domain functional levels, the default

naming context, the current time, and the currently logged-in domain controller.

The next step is to find the domain controllers in the domain. We can use the following to list the

domain controller name, the IP address, the status of the global catalog server, and the Flexible Single

Master Operation (FSMO) roles:

Get-ADDomainController -Filter * | Select-Object

Name,IPv4Address,IsGlobalCatalog,OperationMasterRoles

It is also important to know about the Active Directory site as it explains the physical topology of Active

Directory:

Get-ADDomainController -Filter * | Select-Object Name,IPv4Address,Site

An Active Directory forest can have multiple domains. The following commands will list the forest

names, the domain name, the domain controller, the IP address, and the Active Directory site:

$Forestwide = (Get-ADForest).Domains | %{ Get-ADDomainController -

Filter * -Server $_ }

write-output $Forestwide -Filter * | Select-Object

Name,Forest,Domain,IPv4Address,Site

If we know the domain name, we can list the domain controllers and the read-only domain controller

(RODC) using the following command:

$Domain = Read-Host 'What is your Domain Name ?'

Get-ADDomain -Identity $Domain | select

ReplicaDirectoryServers,ReadOnlyReplicaDirectoryServer

With this command, the system will ask the user to input the domain name. Once the user replies, it lists

the domain controllers.

In the preceding command, ReplicaDirectoryServers represents the read and write domain controllers,

and ReadOnlyReplicaDirectoryServer represents the RODCs.

Replication

Data replication is crucial for a healthy Active Directory environment. For a given domain controller, we

can find its inbound replication partners using this:

Get-ADReplicationPartnerMetadata -Target REBEL-SRV01.rebeladmin.com

The preceding command provides a detailed description of the replication health of the given domain

controller, including the last successful replication, replication partition, server, and so on.

We can list all the inbound replication partners for the given domain using the following command:

Get-ADReplicationPartnerMetadata -Target "rebeladmin.com" -Scope

Domain

In the preceding command, the scope is defined as the domain. This can be changed to the forest to get

a list of the inbound partners in the forest. The output is based on the default partition. If needed, the

partition can be changed using –Partition to a configuration or schema partition. It will list the

relevant inbound partners for the selected partition.

The associated replication failures for a site, forest, domain, and domain controller can be found using

the Get-ADReplicationFailure cmdlet:

Get-ADReplicationFailure -Target REBEL-SRV01.rebeladmin.com

The preceding command will list the replication failures for the given domain controller.

Replication failures for the domain can be found using this:

Get-ADReplicationFailure -Target rebeladmin.com -Scope Domain

Replication failures for the forest can be found using the following command:

Get-ADReplicationFailure -Target rebeladmin.com -Scope Forest

Replication failures for the site can be found using the following command:

Get-ADReplicationFailure -Target LondonSite -Scope Site

In the preceding command, LondonSite can be replaced with a relevant site name.

Using both Get-ADReplicationPartnerMetadata and Get-ADReplicationFailure, I

have created the following PowerShell script to generate a replication health report against a specific

domain controller.

The first part of the script is used to define the objects that we'll use throughout the script:

Active Directory Domain Controller Replication Status##

 $domaincontroller = Read-Host 'What is your Domain Controller?'

 ## Define Objects ##

 $report = New-Object PSObject -Property @{

 ReplicationPartners = $null

 LastReplication = $null

 FailureCount = $null

 FailureType = $null

 FirstFailure = $null

 }

In the preceding script, I have given an option for the engineer to specify the name of the domain

controller:

$domaincontroller = Read-Host 'What is your Domain Controller?'

In the next part of the script, I am collecting the following data, which describes the replication

connection status with the other domain controllers:

• Replication partner (ReplicationPartners)

• Last successful replication (LastReplication)

Replication Partners ##

 $report.ReplicationPartners = (Get-ADReplicationPartnerMetadata -

Target $domaincontroller).Partner

 $report.LastReplication = (Get-ADReplicationPartnerMetadata -Target

$domaincontroller).LastReplicationSuccess

Then, I also gather the following data, which helps engineers to troubleshoot replication issues, if any

exist:

• Active Directory replication failure count (FailureCount)

• Active Directory replication failure type (FailureType)

• Active Directory replication failure first recorded time (FirstFailure)

Replication Failures ~##

 $report.FailureCount = (Get-ADReplicationFailure -Target

$domaincontroller).FailureCount

 $report.FailureType = (Get-ADReplicationFailure -Target

$domaincontroller).FailureType

 $report.FirstFailure = (Get-ADReplicationFailure -Target

$domaincontroller).FirstFailureTime

The last part of the script formats the output of the collected data:

Format Output ##

 $report | select

ReplicationPartners,LastReplication,FirstFailure,FailureCount,FailureT

ype | Out-GridView

The aforementioned script is displayed in an easy way for readers to understand. When it is used in

PowerShell, make sure to prevent extra line spaces.

Further to Active Directory replication topologies, there are two types of replication:

• Intra-site: Replication between domain controllers in the same Active Directory site

• Inter-site: Replication between domain controllers in different Active Directory sites

We can review AD replication site objects using the Get-ADReplicationSite cmdlet. The following

command returns all the Active Directory replication sites in the Active Directory forest:

Get-ADReplicationSite -Filter *

We can review Active Directory replication site links on the Active Directory forest using the following

command:

Get-ADReplicationSiteLink -Filter *

In site links, the most important information is to know the site cost and the replication schedule. This

allows us to understand the replication topology and expected delays in replication.

The following command lists all the replication site links, which includes the CanadaSite along with the

site link name, link cost, and replication frequency:

Get-ADReplicationSiteLink -Filter {SitesIncluded -eq "CanadaSite"} |

Format-Table Name,Cost,ReplicationFrequencyInMinutes -AutoSize

A site link bridge can be used to bundle two or more site links and enable transitivity between site links.

Site link bridge information can be retrieved using the following command:

Get-ADReplicationSiteLinkBridge -Filter *

An AD site uses multiple IP subnets that are assigned to sites for its operations. It is important to

associate these subnets with AD sites so that domain controllers know which computer is located at

which site.

The following command will list all the subnets in the forest in a table with the subnet name and Active

Directory site:

Get-ADReplicationSubnet -Filter * | Format-Table Name,Site -AutoSize

Bridgehead servers operate as the primary communication point to handle the replication data that

comes in and goes out of the Active Directory site.

We can list all the preferred bridgehead servers in a domain:

$BHservers = ([adsi]"LDAP://CN=IP,CN=Inter-Site

Transports,CN=Sites,CN=Configuration,DC=rebeladmin,DC=com").bridgehead

ServerListBL

$BHservers | Out-GridView

In the preceding command, the bridgeheadServerListBL attribute value is retrieved via the ADSI

connection.

Information about the replication topology helps engineers in many ways, especially if engineers are

troubleshooting Active Directory replication issues or performing an Active Directory audit. By using the

preceding commands, I have created the following script to gather Active Directory replication topology

data in one go.

As usual, the first part of the script is dedicated to defining objects:

Script to gather information about Replication Topology ##

 ## Define Objects ##

 $replreport = New-Object PSObject -Property @{

 Domain = $null

 }

Before we move on to the replication, it is good to collect the Active Directory domain information. This

is important if an organization is using multiple domains as we can easily separate the reports:

Find Domain Information ##

 $replreport.Domain = (Get-ADDomain).DNSroot

I have used the next section of the script to list the Active Directory sites:

List down the AD sites in the Domain ##

 $a = (Get-ADReplicationSite -Filter *)

 Write-Host "########" $replreport.Domain "Domain AD Sites" "########"

 $a | Format-Table Description,Name -AutoSize

Then, I am going to collect data about the Active Directory replication site link and the Active Directory

replication site link bridge by using the following:

List down Replication Site link Information ##

 $b = (Get-ADReplicationSiteLink -Filter *)

 Write-Host "########" $replreport.Domain "Domain AD Replication

SiteLink Information" "########"

 $b | Format-Table Name,Cost,ReplicationFrequencyInMinutes -AutoSize

 ## List down SiteLink Bridge Information ##

 $c = (Get-ADReplicationSiteLinkBridge -Filter *)

 Write-Host "########" $replreport.Domain "Domain AD SiteLink Bridge

Information" "########"

 $c | select Name,SiteLinksIncluded | Format-List

In a computer network, there can be multiple IP subnets. These subnets need to be assigned correctly to

Active Directory sites. This way, Active Directory Domain Controller computers know which site they

belong to. This also has a direct impact on Active Directory replication. In the next section, we are going

to collect Active Directory subnet information and the preferred bridgehead servers for the domain:

List down Subnet Information ##

 $d = (Get-ADReplicationSubnet -Filter * | select Name,Site)

 Write-Host "########" $replreport.Domain "Domain Subnet Information"

"########"

 $d | Format-Table Name,Site -AutoSize

 ## List down Prefered BridgeHead Servers ##

 $e = ([adsi]"LDAP://CN=IP,CN=Inter-Site

Transports,CN=Sites,CN=Configuration,DC=rebeladmin,DC=com").bridgehead

ServerListBL

 Write-Host "########" $replreport.Domain "Domain Prefered BridgeHead

Servers" "########"

 $e

 ## End of the Script ##

The aforementioned script is displayed in a way that's easy for readers to understand. When it is used in

PowerShell, make sure to prevent extra line spaces.

In the preceding script, we need to replace the ADSI connection with the relevant domain name:

$e = ([adsi]"LDAP://CN=IP,CN=Inter-Site

Transports,CN=Sites,CN=Configuration,DC=rebeladmin,DC=com")

Healthy replication is critical for Active Directory Domain controllers. The time it takes to replicate a

change to all the domain controllers depends on the number of domain controllers in place,

geographical locations, replication schedules, etc. In some situations, we have to force the replication of

objects and in the next section, we are going to look into it in detail.

Replicating a specific object

Once an object is added to a domain controller, it needs to be replicated to all other domain controllers.

Otherwise, users will face issues during login using AD-integrated applications and services. The

replication is dependent on many different factors, such as the replication schedule and intra-site

connectivity. Sometimes, we need to force the replication between domain controllers:

Replicate Object to From Domain Controller to Another ##

$myobject = Read-Host 'What is your AD Object Includes ?'

$sourcedc = Read-Host 'What is the Source DC ?'

$destinationdc = Read-Host 'What is the Destination DC ?'

$passobject = (Get-ADObject -Filter {Name -Like $myobject})

Sync-ADObject -object $passobject -source $sourcedc -destination

$destinationdc

Write-Host "Given Object Replicated to" $destinationdc

The preceding script will ask a few questions:

• Name of object: This need not be a distinguished name (DN). All that is needed is that text be

included in the object name field.

• Source DC: The hostname of the source DC.

• Destination DC: The hostname of the destination DC.

Once the relevant information is provided, the object will be forcibly replicated:

Figure 17.3: Replicating a specific object

In this section of the chapter, we learned how the Active Directory module for PowerShell can be used

to review the topology of an Active Directory environment. We also learned how we can audit,

troubleshoot, and manage Active Directory replication using PowerShell. In the next section, we are

going to look into Active Directory object management.

Users and groups

In this section, let's look at PowerShell commands and scripts that we can use to manage AD users and

groups.

Last logon time

On certain occasions, we are required to find when a user successfully logs on to a domain. This can be

for audit purposes or for troubleshooting purposes:

$username = Read-Host 'What is the User account you looking for ?'

 $dcs = Get-ADDomainController -Filter {Name -like "*"}

 foreach($dc in $dcs)

 {

 $hostname = $dc.HostName

 $user = Get-ADUser $userName -Server $hostname -Properties

lastLogon

 $lngexpires = $user.lastLogon

 if (-not ($lngexpires)) {$lngexpires = 0 }

 If (($lngexpires -eq 0) -or ($lngexpires -gt

[DateTime]::MaxValue.Ticks))

 {

 $LastLogon = "User Never Logged In"

 }

 Else

 {

 $Date = [DateTime]$lngexpires

 $LastLogon = $Date.AddYears(1600).ToLocalTime()

 }

 }

 Write-Host $username "last logged on at:" $LastLogon

The preceding script will ask for the username of the account and, once it is provided, the system will

search for the lastLogon attribute value on all available domain controllers. If it cannot be found, it will

return User Never Logged In or, if found, it will return the last logon timestamp.

Last login date report

Periodic housekeeping in AD is required for integrity. There may be user objects that have not been used

for years. If we can create a report along with the last login dates, we can use it as a reference to clean

up objects:

Script For Filter user with Last logon Time ##

$htmlformat = "<style>BODY{background-color:LightBlue;}</style>"

Get-ADUser -Filter * -Properties "LastLogonDate" | sort-object -

property lastlogondate -descending | Select-Object Name,LastLogonDate

| ConvertTo-HTML -head $htmlformat -body "<H2>AD Accounts Last Login

Date</H2>"| Out-File C:\lastlogon.html

Invoke-Expression C:\lastlogon.html

This script creates an HTML report that includes all the user accounts with their last login date

timestamps:

Figure 17.4: Last login date HTML report

Some of the accounts in the above reports don't show the last login date value. It means no one has

logged into those accounts yet.

Login failures report

It is important to know about failed attempts to log in to the DC, not just the successful attempts. These

can be a result of potentially malicious activity.

The following script will create a report to indicate the login failures on a given domain controller:

Report for DC login Failures ##

$failedevent = $null

$Date= Get-date

$dc = Read-Host 'What is the Domain Controller ?'

$Report= "C:\auditreport.html"

$HTML=@"

<title>Failed Login Report for $dc</title>

<style>

BODY{background-color :LightBlue}

</style>

"@

 $failedevent = Get-Eventlog security -Computer $dc -InstanceId 4625 -

After (Get-Date).AddDays(-7) |

 Select TimeGenerated,ReplacementStrings |

 % {

 New-Object PSObject -Property @{

 SourceComputer = $_.ReplacementStrings[13]

 UserName = $_.ReplacementStrings[5]

 SourceIPAddress = $_.ReplacementStrings[19]

 Date = $_.TimeGenerated

 }

 }

 $failedevent | ConvertTo-Html -Property

SourceComputer,UserName,SourceIPAddress,Date -head $HTML -body

"<H2>Failed Login Report for $dc</H2>"|

 Out-File $Report

 Invoke-Expression C:\auditreport.html

The aforementioned script is displayed in a way that's easy for readers to understand. When it is used in

PowerShell, make sure to prevent extra line spaces.

When you run the preceding script, it will ask for the name of the domain controller that you wish to run

this report against.

Then, in the background, it will search for event 4625 in the event viewer and then list the following

data in a report:

• The source computer

• The username

• The source IP address

• The event time

The following screenshot shows the failed login report for REBEL-PDC-01:

Figure 17.5: Login failures report

The login failures records are different from one server to another. So when it comes to

troubleshooting, make sure you select the correct domain controller.

Finding the locked-out account

If password policies are defined, accounts with a large number of login failures will be locked out.

Locked-out accounts in an AD environment can be found using the following command:

Search-ADAccount -Lockedout | Select name,samAccountName,Lockedout

If any of those in the list need to be unlocked, we can use the Unlock-ADAccount cmdlet to unlock

an account.

For an individual account, perform the following command:

Unlock-ADAccount tuser4

For all the accounts on the list, perform the following command:

Search-ADAccount -Lockedout | Unlock-ADAccount

It is not a good practice to unlock all the accounts unless there is a specific reason.

Password expire report

Issues due to expired passwords are a common support call type for helpdesks. The following script can

generate a report about expiring passwords:

Password Expire Report ##

$passwordreport = $null

$dc = (Get-ADDomain | Select DNSRoot).DNSRoot

$Report= "C:\passwordreport.html"

$HTML=@"

<title>Password Expire Report For $dc</title>

<style>

BODY{background-color :LightBlue}

</style>

"@

$passwordreport = Get-ADUser -filter * –Properties

"SamAccountName","pwdLastSet","msDS-UserPasswordExpiryTimeComputed" |

Select-Object -Property "SamAccountName",@{Name="Last Password

Change";Expression={[datetime]::FromFileTime($_."pwdLastSet")}},@{Name

="Next Password Change";Expression={[datetime]::FromFileTime($_."msDS-

UserPasswordExpiryTimeComputed")}}

$passwordreport | ConvertTo-Html -Property "SamAccountName","Last

Password Change","Next Password Change"-head $HTML -body "<H2>Password

Expire Report For $dc</H2>"|

Out-File $Report

Invoke-Expression C:\passwordreport.html

The aforementioned script is displayed in a way that's easy for readers to understand. When it is used in

PowerShell, make sure to prevent extra line spaces.

This script will search for the attribute values for SamAccountName, pwdLastSet, and msDS-

UserPasswordExpiryTimeComputed in every user object.

Then, they will be presented in an HTML report:

Figure 17.6: Password expire report

All these reports can run as scheduled jobs and were developed to be sent over as an email every week

or month. This saves administrators time and also prevents mistakes that can occur with manual tasks.

Review the membership of the high-level administrative

groups

As a security best practice, it is important to limit the number of privileged accounts used in an Active

Directory environment. Sometimes we add users to privileged groups temporarily to do certain tasks

and then forget to remove the permissions later on. Therefore, it is important to review members of the

sensitive groups periodically and update those as required. In Active Directory, the following security

groups are identified as sensitive groups:

• Enterprise Admins

• Schema Admins

• Domain Admins

• Account Operators (if present)

• Server Operators (if present)

• Print Operators (if present)

• DHCP Administrators

• DNSAdmins

To review the membership of a sensitive group we can use the following command:

Get-ADGroupMember -Identity "Domain Admins"

In the preceding command, Domain Admins is the group name and it can be replaced with any other

sensitive group name. Once we have the list of members, the next step is to find out if those accounts

are actively used. To do that we can use the value of the LastLogonDate user attribute. By considering all

of the above requirements, I created the following scripts to list down all the sensitive groups with their

members and LastLogonDate values:

Sensitive Group Report ##

$HTML=@"

<title>Sensitive Groups Membership Report</title>

<style>

BODY{background-color :LightBlue}

</style>

"@

$enterpiseadmins = Get-ADGroupMember -Identity "Enterprise Admins" |

where {$_.objectclass -eq 'user'} | Get-ADUser -Properties

LastLogonDate | select Name,LastLogonDate | ConvertTo-Html -Property

"Name","LastLogonDate" -Fragment -PreContent "<h2>Enterprise

Admins</h2>"

$schemaadmins = Get-ADGroupMember -Identity "Schema Admins" | where

{$_.objectclass -eq 'user'} | Get-ADUser -Properties LastLogonDate |

select Name,LastLogonDate | ConvertTo-Html -Property

"Name","LastLogonDate" -Fragment -PreContent "<h2>Schema Admins</h2>"

$domainadmins = Get-ADGroupMember -Identity "Domain Admins" | where

{$_.objectclass -eq 'user'} | Get-ADUser -Properties LastLogonDate |

select Name,LastLogonDate | ConvertTo-Html -Property

"Name","LastLogonDate" -Fragment -PreContent "<h2>Domain Admins</h2>"

$accountoperators = Get-ADGroupMember -Identity "Account Operators" |

where {$_.objectclass -eq 'user'} | Get-ADUser -Properties

LastLogonDate | select Name,LastLogonDate | ConvertTo-Html -Property

"Name","LastLogonDate" -Fragment -PreContent "<h2>Account

Operators</h2>"

$serveroperators = Get-ADGroupMember -Identity "Server Operators" |

where {$_.objectclass -eq 'user'} | Get-ADUser -Properties

LastLogonDate | select

Name,LastLogonDate | ConvertTo-Html -Property "Name","LastLogonDate" -

Fragment -PreContent "<h2>Server Operators</h2>"

$printoperators = Get-ADGroupMember -Identity "Print Operators" |

where {$_.objectclass -eq 'user'} | Get-ADUser -Properties

LastLogonDate | select Name,LastLogonDate | ConvertTo-Html -Property

"Name","LastLogonDate" -Fragment -PreContent "<h2>Print

Operators</h2>"

$dnsadmins = Get-ADGroupMember -Identity "DnsAdmins" | where

{$_.objectclass -eq 'user'} | Get-ADUser -Properties LastLogonDate |

select Name,LastLogonDate | ConvertTo-Html -Property

"Name","LastLogonDate" -Fragment -PreContent "<h2>DNS Admins</h2>"

$Reportvalues = ConvertTo-HTML -Body "$enterpiseadmins $schemaadmins

$domainadmins $accountoperators $serveroperators $printoperators

$dnsadmins" -Head $HTML

$Reportvalues | Out-File "C:\sensativegroupreport.html"

The preceding script will produce an HTML report similar to below.

Figure 17.7: Sensitive group memberships

In this report, the LastLogonDate value can be used as a reference and if the account is not used often,

we can go ahead and remove it from the sensitive groups.

In the script, I didn't mention DHCP Administrators as it is a local group.

In the above report, we are listing all the users in sensitive groups. Then it is up to engineers to tidy up

the group membership. However, we can further develop this script and list down users who haven't

logged in for a certain number of days. Then engineers can use it as a starting point to update the group

memberships.

Sensitive Group Members Inactive for 30 days ##

$30Days = (get-date).adddays(-30)

$HTML=@"

<title>Sensitive Groups Memebrship Report : USers Inactive for 30

days</title>

<style>

BODY{background-color :LightBlue}

</style>

"@

$enterpiseadmins = Get-ADGroupMember -Identity "Enterprise Admins" |

where {$_.objectclass -eq 'user'} | Get-ADUser -Properties

LastLogonDate |Where {$_.LastLogonDate -le $30Days}| select

Name,LastLogonDate | ConvertTo-Html -Property "Name","LastLogonDate" -

Fragment -PreContent "<h2>Enterprise Admins</h2>"

$schemaadmins = Get-ADGroupMember -Identity "Schema Admins" | where

{$_.objectclass -eq 'user'} | Get-ADUser -Properties LastLogonDate |

Where {$_.LastLogonDate -le $30Days}| select Name,LastLogonDate |

ConvertTo-Html -Property "Name","LastLogonDate" -Fragment -PreContent

"<h2>Schema Admins</h2>"

$domainadmins = Get-ADGroupMember -Identity "Domain Admins" | where

{$_.objectclass -eq 'user'} | Get-ADUser -Properties LastLogonDate |

Where {$_.LastLogonDate -le $30Days}| select Name,LastLogonDate |

ConvertTo-Html -Property "Name","LastLogonDate" -Fragment -PreContent

"<h2>Domain Admins</h2>"

$accountoperators = Get-ADGroupMember -Identity "Account Operators" |

where {$_.objectclass -eq 'user'} | Get-ADUser -Properties

LastLogonDate | Where {$_.LastLogonDate -le $30Days}| select

Name,LastLogonDate | ConvertTo-Html -Property "Name","LastLogonDate" -

Fragment -PreContent "<h2>Account Operators</h2>"

$serveroperators = Get-ADGroupMember -Identity "Server Operators" |

where {$_.objectclass -eq 'user'} | Get-ADUser -Properties

LastLogonDate | Where {$_.LastLogonDate -le $30Days}| select

Name,LastLogonDate | ConvertTo-Html -Property "Name","LastLogonDate" -

Fragment -PreContent "<h2>Server Operators</h2>"

$printoperators = Get-ADGroupMember -Identity "Print Operators" |

where {$_.objectclass -eq 'user'} | Get-ADUser -Properties

LastLogonDate | Where {$_.LastLogonDate -le $30Days}| select

Name,LastLogonDate | ConvertTo-Html -Property "Name","LastLogonDate" -

Fragment -PreContent "<h2>Print Operators</h2>"

$dnsadmins = Get-ADGroupMember -Identity "DnsAdmins" | where

{$_.objectclass -eq 'user'} | Get-ADUser -Properties LastLogonDate |

Where {$_.LastLogonDate -le $30Days}| select Name,LastLogonDate |

ConvertTo-Html -Property "Name","LastLogonDate" -Fragment -PreContent

"<h2>DNS Admins</h2>"

$Reportvalues = ConvertTo-HTML -Body "$enterpiseadmins $schemaadmins

$domainadmins $accountoperators $serveroperators $printoperators

$dnsadmins" -Head $HTML

$Reportvalues | Out-File "C:\inactiveusers.html"

In the above, I am creating an HTML report that lists down the members of sensitive groups who haven't

logged in for the last 30 days.

Dormant accounts

In Active Directory, at least 10% of user accounts are dormant (inactive) accounts. These accounts can

represent:

• Test accounts

• Contractors

• Former employees

• Disabled accounts

It is important to review these dormant accounts periodically and remove all unnecessary accounts from

Active Directory as they are a possible security threat. If it is not possible to remove some of these

accounts, at least remove them from sensitive groups and disable the accounts.

We can find these accounts in Active Directory by looking at the LastLogonDate attribute value and

the account status. By considering these requirements, I created the following script to find dormant

accounts:

Dormant Accounts ##

$InactiveDate = (Get-Date).Adddays(-30)

$HTML=@"

<title>Dormant Accounts Report</title>

<style>

BODY{background-color :LightBlue}

</style>

"@

$disabledaccounts = Get-ADUser -Filter {Enabled -eq $false} | select

samAccountName,GivenName,Surname | ConvertTo-Html -Property

"samAccountName","GivenName","Surname" -Fragment -PreContent

"<h2>Disabled Account</h2>"

$inactiveaccounts = Get-ADUser -Filter {LastLogonDate -lt

$InactiveDate -and Enabled -eq $true} -Properties LastLogonDate |

select samAccountName,GivenName,Surname,LastLogonDate | ConvertTo-Html

-Property "samAccountName","GivenName","Surname","LastLogonDate" -

Fragment -PreContent "<h2>Inactive Accounts</h2>"

$Reportvalues = ConvertTo-HTML -Body "$disabledaccounts

$inactiveaccounts" -Head $HTML

$Reportvalues | Out-File "C:\dormantusers.html"

In the above, I am looking for disabled accounts by using Get-ADUser -Filter {Enabled -eq

$false} | select samAccountName,GivenName,Surname. Then, after that, I am searching for

users who have been inactive for the last 30 days by using Get-ADUser -Filter {LastLogonDate -lt
$InactiveDate -and Enabled -eq $true} -Properties LastLogonDate |

select samAccountName,GivenName,Surname,LastLogonDate. Here, I am ignoring

disabled accounts as they are already recorded as separate entities. At the end, I am passing the findings

to an HTML report called dormantusers.html.

Figure 17.8: Dormant accounts

If required, this data can also be exported into a CSV file. But in these examples, I used the HTML format

to show the results in a user-friendly way.

Users with the Password Never Expires setting

In an Active Directory environment, we use password policies to enforce users to follow complexity

standards and other best practices related to passwords. Users should use complex passwords and

should update their passwords at regular intervals. This is one of the basic requirements of identity

protection. However, if the user account has the Password Never Expires setting enabled, the user will

not be forced to update the passwords according to the password policy.

We can find Active Directory user accounts that have the Password Never Expires setting enabled by

using the following PowerShell commands:

Get-ADUser -Filter {passwordNeverExpires -eq $true -and Enabled -eq

$true } -Properties * | Select samAccountName,GivenName,Surname

In the preceding command, I am looking for the passwordNeverExpires attribute value and if it's

set to true, it means the setting is enabled. At the same time, I also checked if the user account is active.

Figure 17.9: Users with the Password Never Expires setting

In the next section of this chapter, we are going to look into managing Active Directory objects in a

hybrid environment.

Azure Active Directory PowerShell

Similar to on-prem Active Directory, we also can use PowerShell to manage Azure Active Directory.

Let's see why we should use PowerShell to manage Azure Active Directory:

• Early bird access to features: Microsoft keeps releasing new features, bug fixes, updates, and

feature enhancements more frequently to Azure AD services than on-prem Active Directory.

 Microsoft releases new features to the public in two stages. In the first stage, they are released

as a preview version. This is not recommended for use in production, but IT professionals can

use them for testing and provide feedback to Microsoft. At this stage, the features can have

many updates and, most of the time, it will take some time to update the GUI accordingly. Some

of these changes will not be available on the GUI until general release. But if we are using

PowerShell, we do not have to wait. We can have early access to features as soon as they are

released.

• Faster response: The Azure Active Directory portal has many different windows, wizards, and

forms to configure and manage users, groups, roles, and associated features. The GUI makes it

easy to do things, but it takes time. As an example, if you add a user account using the Azure AD

portal, you have to go to four sub-windows at least. But PowerShell allows us to do it using one

window and a few lines of commands.

• Granular control: The Azure AD portal visualizes the data and configuration of the service using

different windows. However, it may not always show what we want. As an example, let's

assume we are looking for a specific value in two user accounts. If we use the GUI, we need to

go to a few different windows to gather this information. But using a PowerShell command or

script, we will be able to gather the same information in one window. This is really helpful when

troubleshooting.

• Microsoft Graph integration: Microsoft Graph provides a unified programmability model to

access a vast amount of data in Microsoft 365, Azure Active Directory, Enterprise Mobility Suite,

Windows 10, and so on. As part of it, the Azure AD PowerShell for Graph module allows you to

retrieve data, update directory configurations, add/update/remove objects, and configure

features via Microsoft Graph.

In this chapter, I will be using the Azure Active Directory PowerShell for Graph module to manage an

Azure AD hybrid environment.

Installation

The Azure Active Directory PowerShell for Graph module comes in two versions. The public preview

version is the most recent, but it is not recommended for use in production.

The installation steps for this version can be found at https://bit.ly/3HR3EpU.

The general availability version is the stable, recommended version for production environments. It can

be installed on any computer that runs Windows Server 2008 R2 or above with the latest updates.

Microsoft .NET Framework 4.5 or above is also required.

Once the prerequisites are in place, perform the following steps:

1. Log in to the computer you have selected for the Azure Active Directory PowerShell for Graph

module.

2. Launch the PowerShell console as an administrator.

3. Run the Install-Module -Name AzureAD command. Answer Yes if it is a required repository

update:

Figure 17.10: Install AzureAD PowerShell module

4. After installation, we can verify the module installation using Get-Module AzureAD.

5. After successfully installing the module, run Connect-AzureAD to initiate a connection to the

Azure AD tenant.

6. Then, it will prompt you with a login window. Use Azure AD global administrator account details

to connect.

Now we have the Azure Active Directory PowerShell for Graph module installed. Let's see how we can

manage an Azure AD hybrid environment using this module.

https://bit.ly/3HR3EpU

Azure AD and MSOL modules are not supported in PowerShell 7.x. Therefore, here, I am using default

Windows PowerShell running on Windows 10.

General commands

We can start by listing all the available commands under the Azure AD module, which can be done by

using the following:

Get-Command -module AzureAD

We can view the full syntax for a command by using the Get-Help command. As an example, we can

view the full syntax for the Get-AzureADUser command using the following:

Get-Help Get-AzureADUser

We can verify the status of Azure AD domains using the following command:

Get-AzureADDomain | fl

The preceding command helps to identify the domain verification status by referring to the value of the

IsVerified attribute.

If you are using a custom domain in Azure AD, we need to verify ownership of the domain using DNS

records. If it is not verified, we can retrieve the required DNS records by using the following command:

Get-AzureADDomainVerificationDnsRecord -Name

M365x562652.onmicrosoft.com | fl

In the preceding example, M365x562652.onmicrosoft.com represents the domain name:

Figure 17.11: Required DNS records for domain verifications

We can view the details of the Azure AD tenant by using the following:

Get-AzureADTenantDetail | fl

In a hybrid environment, the health of the on-prem AD sync is crucial. We can view the time of the last

directory sync by using the following command:

Get-AzureADTenantDetail | select CompanyLastDirSyncTime

Managing users

We can view the user account details for a known account using the following:

Get-AzureADUser -ObjectId AdeleV@M365x562652.OnMicrosoft.com | fl

In the preceding command, AdeleV@M365x562652.OnMicrosoft.com represents the UPN of

the user.

We also can use user attributes to find user account details:

Get-AzureADUser -Filter "startswith(GivenName,'Adele')"

The preceding command will filter Azure AD users with GivenName as Adele.

We can also filter users based on a specific attribute value:

Get-AzureADUser -Filter "GivenName eq 'Adele'"

The preceding command will search for the exact user with the given name value Adele.

In my demo environment, I'd like to see a list of disabled accounts. I can do this using the following

command:

Get-AzureADUser -All $true -Filter 'accountEnabled eq false'

We can modify the output of the filtered data further:

Get-AzureADUser -All $true -Filter 'accountEnabled eq false' | select

DisplayName,UserPrincipalName,Department

The preceding command will display the value of the DisplayName, UserPrincipalName, and

Department attributes of the filtered accounts.

In a hybrid environment, we can filter accounts that are synced from on-prem AD by using the following:

Get-AzureADUser -All $true -Filter 'DirSyncEnabled eq true'

In the preceding command, the value of the DirSyncEnabled attribute defines whether it's a cloud-

only account or a synced account.

We also can check the last sync value for the synced accounts:

Get-AzureADUser -All $true -Filter 'DirSyncEnabled eq true' | select

DisplayName,UserPrincipalName,LastDirSyncTime

In the preceding command, the LastDirSyncTime value defines the last sync time of the object.

We can also export the output to a CSV file using the Export-CSV command:

Get-AzureADUser -All $true -Filter 'DirSyncEnabled eq true' | select

DisplayName,UserPrincipalName,LastDirSyncTime | Export-CSV -Path

.\syncaccount.csv

The ImmutableID value of a user account is used to map an Azure AD user object to an on-prem user

object. ImmutableID does have a relationship with on-prem user accounts' ObjectGUID. We can use this

to identify cloud-only users. If it is a cloud-only user, the ImmutableID value should be null:

Get-AzureADUser -All $true | where-Object {$_.ImmutableId -eq $null}

The preceding command returns a list of all the cloud-only accounts. We can export the required

attribute values to CSV by using the following:

Get-AzureADUser -All $true | where-Object {$_.ImmutableId -eq $null} |

select DisplayName,UserPrincipalName | Export-CSV -Path

.\cloudaccount.csv

Another important thing related to accounts is licences. If we are going to use Azure AD's premium

features, we need to have relevant licenses assigned. By default, a user only has Azure AD free version

features.

To view licenses associated with a user account, we can use the following command:

Get-AzureADUserLicenseDetail -ObjectId

MeganB@M365x562652.OnMicrosoft.com | fl

The preceding command will return the licenses associated with the user

MeganB@M365x562652.OnMicrosoft.com.

We also can view the subscribed SKUs using the following command:

Get-AzureADSubscribedSku | fl

The preceding command lists all the details about licenses that are associated with the tenant. However,

we only need to know how many licenses have been used and how many licenses are available. We can

do this using the following command:

Get-AzureADSubscribedSku | select SkuPartNumber,ConsumedUnits -

ExpandProperty PrepaidUnits

In the preceding example, the SkuPartNumber value represents the license part number. The value

of the enabled field represents the number of purchased licenses. ConsumedUnits represents the

number of consumed licenses.

Let's move on and see how we can assign a new license to a user.

In my environment, I have a user who synced from on-prem Azure AD who doesn't have a license

assigned:

Get-AzureADUserLicenseDetail -ObjectId

ADJellison@M365x562652.onmicrosoft.com | fl

The following screenshot displays the output of the preceding command:

Figure 17.12: Check Azure AD license assignment

As a first step, let's create objects to use in the license assignment process:

$newlicence = New-Object -TypeName

Microsoft.Open.AzureAD.Model.AssignedLicense

$newlicenceadd = New-Object -TypeName

Microsoft.Open.AzureAD.Model.AssignedLicenses

Then, we need to find the SkuId of the licenses.

I am going to assign the ENTERPRISEPREMIUM license to the user:

$newlicence.SkuId = (Get-AzureADSubscribedSku | Where-Object -Property

SkuPartNumber -Value "ENTERPRISEPREMIUM" -EQ).SkuId

Then, we need to assign the licenses to the object:

$newlicenceadd.AddLicenses = $newlicence

Now, we can go ahead and assign the license to the user:

Set-AzureADUserLicense -ObjectId

"ADJellison@M365x562652.onmicrosoft.com" -AssignedLicenses

$newlicenceadd

The preceding command assigns ENTERPRISEPREMIUM licenses to the user

ADJellison@M365x562652.onmicrosoft.com:

Figure 17.13: Assign license to user

It is a must to set the UsageLocation value for users who sync from on-prem AD before assigning

licenses. We can do this using Set-AzureADUser -ObjectId

ADJellison@M365x562652.onmicrosoft.com -UsageLocation "US".

We can remove the licenses assigned using the following command:

$licenseB = New-Object -TypeName

Microsoft.Open.AzureAD.Model.AssignedLicenses

$licenseB.RemoveLicenses = (Get-AzureADSubscribedSku | Where-Object

{$_.SkuPartNumber -eq 'ENTERPRISEPREMIUM'}).SkuId

Set-AzureADUserLicense -ObjectId

"ADJellison@M365x562652.onmicrosoft.com" -AssignedLicenses $licenseB

Using the preceding commands, I have created a script to do the following:

• Search for users who synced from on-prem AD

• Of those users, select the users who don't have Azure AD licenses assigned

• Set the UsageLocation value for selected users

• Assign Azure AD licenses to selected users

#######Script to Assign Licences to Synced Users from On-Permises

AD#############

Import-Module AzureAD

Connect-AzureAD

###Filter Synced Users who doesn't have licence assigned#######

$ADusers = Get-AzureADUser -All $true -Filter 'DirSyncEnabled eq true'

$notlicenced = Get-AzureADUser -All $true | Where-Object

{$ADusers.AssignedLicenses -ne $null} | select ObjectId | Out-File -

FilePath C:\users.txt

#####Set UsageLocation value to sync users#########

(Get-Content "C:\users.txt" | select-object -skip 3) | ForEach { Set-

AzureADUser -ObjectId $_ -UsageLocation "US" }

#####Set User Licecnes############

$newlicence = New-Object -TypeName

Microsoft.Open.AzureAD.Model.AssignedLicense

$newlicenceadd = New-Object -TypeName

Microsoft.Open.AzureAD.Model.AssignedLicenses

$newlicence.SkuId = (Get-

AzureADSubscribedSku | Where-Object -Property SkuPartNumber -Value

"ENTERPRISEPREMIUM" -EQ).SkuId

$newlicenceadd.AddLicenses = $newlicence

(Get-Content "C:\users.txt" | select-object -skip 3) | ForEach { Set-

AzureADUserLicense -ObjectId $_ -AssignedLicenses $newlicenceadd }

In a hybrid environment, users are mainly created through on-prem Active Directory, but there are

occasions when we need to add cloud-only accounts. This is mainly for cloud management tasks.

We can create a new user by using the following command:

$Userpassword = New-Object -TypeName

Microsoft.Open.AzureAD.Model.PasswordProfile

$Userpassword.Password = "London@1234"

New-AzureADUser -DisplayName "Andrew Xavier" -PasswordProfile

$Userpassword -UserPrincipalName

"Andrew.Xavier@M365x562652.onmicrosoft.com" -AccountEnabled $true -

MailNickName "AndrewXavier"

In the preceding command, -PasswordProfile is used to define the password profile for the new

user account. -MailNickName defines the value for the user's mail nickname. In the preceding

example, add a new user account, Andrew.Xavier@M365x562652.onmicrosoft.com, with the

password London@1234.

We also can create multiple user accounts using CSV files. In the following example, I am using a CSV file

to create users. The CSV file contains the following:

UserPrincipalName, DisplayName,MailNickName

DishanM@M365x562652.onmicrosoft.com, Dishan Melroy,DishanMel

JackM@M365x562652.onmicrosoft.com,Jack May,JackMay

RicahrdP@M365x562652.onmicrosoft.com,Richard Parker,RichardPar

Then, I can create these new users using the following:

$Userpassword = New-Object -TypeName

Microsoft.Open.AzureAD.Model.PasswordProfile

$Userpassword.Password = "London@1234"

Import-Csv -Path C:\newuser.csv | foreach {New-AzureADUser -

UserPrincipalName $_.UserPrincipalName -DisplayName $_.DisplayName -

MailNickName $_.MailNickName -PasswordProfile $Userpassword -

AccountEnabled $true}

By using the preceding commands, I have created a script to do the following:

• Create new user accounts using a CSV file

• Set UsageLocation for new user accounts

• Assign ENTERPRISEPREMIUM licenses to users

########A Script to create new users and assign Azure AD

licences#######

Import-Module AzureAD

Connect-AzureAD

###########Create New Users using CSV ###################

$Userpassword = New-Object -TypeName

Microsoft.Open.AzureAD.Model.PasswordProfile

$Userpassword.Password = "London@1234"

Import-Csv -Path C:\newuser.csv | foreach {New-AzureADUser -

UserPrincipalName $_.UserPrincipalName -DisplayName $_.DisplayName -

MailNickName $_.MailNickName -PasswordProfile $Userpassword -

UsageLocation "US" -AccountEnabled $true} | select ObjectId | Out-File

-FilePath C:\users.txt

###########Assign Licences#################

$newlicence = New-Object -TypeName

Microsoft.Open.AzureAD.Model.AssignedLicense

$newlicenceadd = New-Object -TypeName

Microsoft.Open.AzureAD.Model.AssignedLicenses

$newlicence.SkuId = (Get-AzureADSubscribedSku | Where-Object -Property

SkuPartNumber -Value "ENTERPRISEPREMIUM" -EQ).SkuId

$newlicenceadd.AddLicenses = $newlicence

(Get-Content "C:\users.txt" | select-object -skip 3) | ForEach { Set-

AzureADUserLicense -ObjectId $_ -AssignedLicenses $newlicenceadd }

To remove an Azure AD user, we can use the following:

Remove-AzureADUser -ObjectId "JDAllen@M365x562652.onmicrosoft.com"

We can combine it with a user search using the following command:

Get-AzureADUser -Filter "startswith(DisplayName,'Dishan')" | Remove-

AzureADUser

The preceding command will search for user accounts that have a DisplayName that starts with

Dishan. If there are any, the second part of the command will remove them.

Managing groups

Azure AD groups also work similarly to on-prem AD groups. They can be used to manage permissions in

an effective manner. In a hybrid environment, there will be cloud-only groups as well as synced groups

from the on-prem AD environment. In this section, we are going to look into group management using

the Azure Active Directory PowerShell for Graph module.

Let's start with listing groups. We can search for a group using the following command:

Get-AzureADGroup -SearchString "sg"

In the preceding command, SearchString is used to define the search criteria. The preceding

example will list any groups containing sg in the DisplayName field:

Figure 17.14: Search for groups

In the search result, we can see the ObjectId for the group. Once we know the ObjectId, we can

see the details of the group using the following command:

Get-AzureADGroup -ObjectId 93291438-be19-472e-a1d6-9b178b7ac619 | fl

In a hybrid environment, there will be security groups that have synced from the on-premises Active

Directory. We can filter these groups using the following:

Get-AzureADGroup -Filter 'DirSyncEnabled eq true' | select

ObjectId,DisplayName,LastDirSyncTime

In the preceding example, the LastDirSyncTime column displays the last successful sync time of the

group.

We can filter cloud-only groups using the following command:

Get-AzureADGroup -All $true | where-Object

{$_.OnPremisesSecurityIdentifier -eq $null}

In the preceding command, we are using the OnPremisesSecurityIdentifier attribute to filter

the groups. This attribute only has value if it is synced from on-premises AD.

We can view group memberships by using the following:

Get-AzureADGroupMember -ObjectId 2a11d5ee-8383-44d1-9fbd-85cb4dcc2d5a

In the preceding command, we are using ObjectId to uniquely identify the group.

We can add members to the group using the Add-AzureADGroupMember cmdlet:

Add-AzureADGroupMember -ObjectId 2a11d5ee-8383-44d1-9fbd-85cb4dcc2d5a

-RefObjectId a6aeced9-909e-4684-8712-d0f242451338

In the preceding command, the ObjectId value represents the group, and the RefObjectId value

represents the user.

We can remove a member from the group by using the following command:

Remove-AzureADGroupMember -ObjectId 2a11d5ee-8383-44d1-9fbd-

85cb4dcc2d5a -MemberId a6aeced9-909e-4684-8712-d0f242451338

In the preceding command, the ObjectId value represents the group, and the MemberId value

represents the user's ObjectId.

We can also combine the Add-AzureADGroupMember cmdlet with the Get-AzureADUser

cmdlet to add bulk users to a group.

In the following script, I used the Get-AzureADUser cmdlet to search for users in Marketing

Department, and then used Add-AzureADGroupMember to add those users to Sales Group as

members:

#######Script to Add Multiple users to Security Group#############

Import-Module AzureAD

Connect-AzureAD

Search for users in Marketing Department ##########

Get-AzureADUser -All $true -Filter "Department eq 'Marketing'" |

select ObjectId | Out-File -FilePath C:\salesusers.txt

#####Add Users to Sales Group#########

(Get-Content "C:\salesusers.txt" | select-object -skip 3) | ForEach {

Add-AzureADGroupMember -ObjectId f9f51d29-e093-4e57-ad79-2fc5ae3517db

-RefObjectId $_ }

In a hybrid environment, security groups are mainly synced from on-prem AD. But there can be

requirements for cloud-only groups as well. We can create a cloud-only group by using the following:

New-AzureADGroup -DisplayName "REBELADMIN Sales Team" -MailEnabled

$false -MailNickName "salesteam" -SecurityEnabled $true

The following screenshot displays the output of the preceding command:

Figure 17.15: Create a cloud-only group

The preceding command creates a security group called REBELADMIN Sales Team. This group is not a

mail-enabled group.

We can remove an Azure AD group using the following command:

Remove-AzureADGroup -ObjectId 7592b555-343d-4f73-a6f1-2270d7cf014f

In the preceding command, the ObjectId value defines the group.

Apart from security groups, Azure AD also has predefined administrative roles, which can be used to

assign access permissions to Azure AD and other cloud services. There are more than 35 predefined

administrative roles. Each role has its own set of permissions. More details about these roles can be

found at https://bit.ly/3r5FMcs.

We can list all the administrative roles using the following:

Get-AzureADDirectoryRoleTemplate

By default, only a few administrative roles are enabled. We can list these roles using the following:

Get-AzureADDirectoryRole

Here, the company administrator directory role represents the Azure AD global administrators.

We can enable the administrative role using the following:

Enable-AzureADDirectoryRole -RoleTemplateId e6d1a23a-da11-4be4-9570-

befc86d067a7

In the preceding command, the RoleTemplateId value represents the administrative role.

We can assign the administrative role to a user by using the following command:

Add-AzureADDirectoryRoleMember -ObjectId b63c1671-625a-4a80-8bae-

6487423909ca -RefObjectId 581c7265-c8cc-493b-9686-771b2f10a77e

https://bit.ly/3r5FMcs

In the preceding command, the ObjectId value represents the administrative role. RefObjectId is

the object ID value of the user.

We can list members of the administrative role using the following:

Get-AzureADDirectoryRoleMember -ObjectId 36b9ac02-9dfc-402a-8d44-

ba2d8995dc06

In the preceding command, ObjectId represents the administrative role.

We can remove a member from the role using the following command:

Remove-AzureADDirectoryRoleMember -ObjectId 36b9ac02-9dfc-402a-8d44-

ba2d8995dc06 -MemberId 165ebcb7-f07d-42d2-a52e-90f44e71e4a1

In the preceding command, MemberId is equal to the user's object ID value.

This marks the end of this section. There are lots of cmdlets that can still be used to manage Azure AD,

but here I explained the cmdlets that will be required for day-to-day operations.

Microsoft Graph

Microsoft Graph is like a gateway that allows users to access enormous amounts of data and collect

information from:

1. Microsoft 365 core services (for example, Office 365, Microsoft Search, OneDrive, SharePoint)

2. Identity and Security Services (for example, Azure AD, Defender 365, Endpoint Manager)

3. Windows 10 services

Microsoft Graph connects to the above services by using REST APIs and client libraries to retrieve

required data.

We can use three methods to interact with Microsoft Graph data:

1. The Microsoft Graph API endpoint (https://bit.ly/3DSbZHF) can be used to access data and

information collected from various Microsoft services. This data can be processed and present in

the way an organization/individual requires. Also, this data can be used to develop rich

applications/services.

2. Microsoft Graph connectors help to bring third-party application/service data to Microsoft

Search so all company data can be searched from one location. Some of these connectors are

built by Microsoft and others are built by partners. You can access the connectors gallery by

using https://bit.ly/3FMBaft.

3. Microsoft Graph Data Connect allows us to access Microsoft Graph data at scale. This gives

engineers a granular level of control over Microsoft Graph data. Microsoft Graph Data Connect

also provides a unique set of tools that can be used to build intelligent applications.

https://bit.ly/3DSbZHF
https://bit.ly/3FMBaft

Based on the requirements, we can use one or more of the above methods to access Microsoft Graph

data.

In this section, I am going to demonstrate how we can use Microsoft Graph to access Azure AD data.

Microsoft Graph Explorer

Graph Explorer is a Microsoft-developed tool that allows you to make Microsoft Graph REST API

requests. This tool can be accessed using https://bit.ly/3l6EF8m.

The first thing we need to do on the page is to log in. Then we need to grant permissions to Microsoft

Graph to access data. To do that, go to the Modify permissions (Preview) tab and give consent to grant

relevant permissions.

Figure 17.16: Grant permissions to user

After relevant permissions are in place, we can go ahead and query data using Microsoft Graph Explorer.

Let's go ahead and start with a user query.

In this example, I would like to view the account details of the

IsaiahL@MSDx927799.OnMicrosoft.com user. To do that, I am going to use the GET HTTP

method and the
https://graph.microsoft.com/v1.0/users/IsaiahL@rebeladmin.OnMicrosoft.

com query.

Figure 17.17: User query

Then Microsoft Graph responds to the query with the following data:

https://bit.ly/3l6EF8m

Figure 17.18: Output of user query

According to the above data, the user has the jobTitle attribute value as Sales Rep. This user has been

promoted recently and I need to change the title to Sales Manager. To do that, we need to use the

PATCH HTTP method:

PATCH

https://graph.microsoft.com/v1.0/users/IsaiahL@rebeladmin.OnMicrosoft.

com

Before I run the query under the request body, I define the new values I need to apply:

{

 "jobTitle": "Sales Manager"

}

Figure 17.19: Update attribute value

After I run the query successfully, I can see the relevant attribute has a new value.

Figure 17.20: Confirm new attribute value

As the next step, I would like to list my domains under Azure AD. To do that, I can use:

GET https://graph.microsoft.com/v1.0/domains

It returns the details about all the domains under the current subscription. If we need to view data

related to a particular domain, we can do it by using:

GET

https://graph.microsoft.com/v1.0/domains/rebeladmin.OnMicrosoft.com

In the preceding command, rebeladmin.OnMicrosoft.com is the FQDN.

Figure 17.21: Domain information

As we can see, it provides rich data about the domain. Microsoft Graph Explorer can also be used to

create, modify, and delete data by using the HTTP methods POST and DELETE. As an example, if the

domain name is not verified, I can force the verification of the domain by using:

POST

https://graph.microsoft.com/v1.0/domains/rebeladmin.onmicrosoft.com/ve

rify

Next, I would like to list all the groups in Azure AD. For that, I can use:

GET https://graph.microsoft.com/v1.0/groups

The above command lists down all the groups in the directory with attribute values, but I am more

interested in finding out the id and displayName values of the groups.

So, I am going to modify the query and only select id and displayName values:

GET https://graph.microsoft.com/v1.0/groups?$select=id,displayName

Figure 17.22: List groups

But this is still a long list. I want to search for groups that start with the letters sg. To do that, we can

use:

GET

https://graph.microsoft.com/v1.0/groups?$filter=startswith(displayName

, 'sg')&$select=id,displayName

From the group list, I am more interested in the sg-Sales and Marketing. Let's take note of the group id

value for future use.

Figure 17.23: List of groups contain "sg"

As the next step, I would like to get a list of members of sg-Sales and Marketing. We can do this by

using:

GET https://graph.microsoft.com/v1.0/groups/{eb2f21de-fae1-43cb-8594-

8a39cb33de9d}/members?$count=true

In the above command, eb2f21de-fae1-43cb-8594-8a39cb33de9d is the group ID of the sg-

Sales and Marketing group.

Figure 17.24: List members of a group

As we can see above, the query has a response with a list of all the users. In response, the

@odata.count value represents the number of members in the group.

I have a new user called Megan with the object ID 086ba971-ecc2-49a5-a063-6e2d4fba9e9b.

I would like to add this user to the sg-Sales and Marketing group. This task includes two steps.

As the first step, we need to paste the following command in the query window:

POST https://graph.microsoft.com/v1.0/groups/{eb2f21de-fae1-43cb-8594-

8a39cb33de9d}/members/$ref

In the above, eb2f21de-fae1-43cb-8594-8a39cb33de9d is the group ID value.

Then, under the Request body section, I use the following command:

{

 "@odata.id":

"https://graph.microsoft.com/v1.0/directoryObjects/{086ba971-ecc2-

49a5-a063-6e2d4fba9e9b}"

}

This is the reference for the new member object ID. In the above, 086ba971-ecc2-49a5-a063-

6e2d4fba9e9b is the object ID of the user Megan.

After that, we can run the query. If it is successful, we should get a No Content - 204 response.

After that, I rerun the command to list down members of sg-Sales and Marketing and now I can see the

new user as a member.

Figure 17.25: Add user to a group

We also can delete a member from a group by using the DELETE HTTP method. If we need to remove

Megan from the group, we can use:

DELETE https://graph.microsoft.com/v1.0/groups/{eb2f21de-fae1-43cb-

8594-8a39cb33de9d}/members/{086ba971-ecc2-49a5-a063-6e2d4fba9e9b}/$ref

In the preceding command, eb2f21de-fae1-43cb-8594-8a39cb33de9d is the object ID of the

group and 086ba971-ecc2-49a5-a063-6e2d4fba9e9b is the object ID of the user Megan.

In this section of the chapter, I have used several examples to show how we can use Microsoft Graph

with Azure AD. This is a vast topic but I believe, now, you have an idea of how Microsoft Graph works.

For more information, please visit https://bit.ly/3HS0MJq.

Summary

PowerShell has become the most powerful script language for Windows systems. PowerShell is very

useful for systems management but is also an incredibly powerful tool for managing Active Directory

infrastructures. Throughout the book, I have used PowerShell for Active Directory configuration and

management.

Furthermore, I have shared different commands and scripts that can be used to manage an Active

Directory environment efficiently.

Toward the end of the chapter, you learned how to manage Azure AD using the Azure Active Directory

PowerShell for Graph module. We also looked into Microsoft Graph and learned how to use it to

manage Azure AD. In the next chapter, we will look at Azure AD closely and learn how to manage

identities in a hybrid environment.

https://bit.ly/3HS0MJq

Chapter 18
Links

Over the years, I have written many articles about Azure AD-related security features. I have listed some

of those for reference:

• Step-by-Step Guide to Azure AD Privileged Identity Management – Part 1: https://bit.ly/3rkJ1Np

• Step-by-Step Guide to Azure AD Privileged Identity Management – Part 2:

https://bit.ly/3oY6QHW

• Step-by-Step guide to setup temporally privilege access using Azure AD Privileged Identity

Management: https://bit.ly/3nKZgkm

• Step-by-Step guide: Privileged access management in office 365: https://bit.ly/2ZjMBf1

• Step-by-Step Guide: Protect confidential data using Azure information protection:

https://bit.ly/30UIwy2

• Step-by-Step Guide: Automatic Data Classification via Azure Information Protection:

https://bit.ly/3cHejVY

• Step-by-Step Guide: On-premise Data Protection via Azure Information Protection Scanner:

https://bit.ly/3DNPO5f

• Step-by-Step Guide: How to protect confidential emails using Azure information protection?:

https://bit.ly/3FH7sID

• Step-by-Step Guide: How to track shared documents using Azure information Protection?:

https://bit.ly/3xq3MYP

• Step-by-Step Guide to Azure AD Password-less Authentication (public-preview):

https://bit.ly/3l7qiAV

• Step-by-Step Guide: Using Microsoft Authenticator app (Public preview) to reset Azure AD user

password: https://bit.ly/3cO16KU

• Azure AD Self-Service password reset for Windows 7/8.1 Devices: https://bit.ly/32ukbjE

• Conditional Access Policies with Azure Active Directory: https://bit.ly/3l4Tb0v

• Conditional Access with Azure AD B2B: https://bit.ly/3l4AtpX

• Step-by-Step guide to control data access using Azure cloud app security (based on content

type): https://bit.ly/3FItlqX

https://bit.ly/3rkJ1Np
https://bit.ly/3oY6QHW
https://bit.ly/3nKZgkm
https://bit.ly/2ZjMBf1
https://bit.ly/30UIwy2
https://bit.ly/3cHejVY
https://bit.ly/3DNPO5f
https://bit.ly/3FH7sID
https://bit.ly/3xq3MYP
https://bit.ly/3l7qiAV
https://bit.ly/3cO16KU
https://bit.ly/32ukbjE
https://bit.ly/3l4Tb0v
https://bit.ly/3l4AtpX
https://bit.ly/3FItlqX

• Step-by-Step guide to manage Impossible travel activity alert using Azure cloud app security:

https://bit.ly/3r4p792

• Step-by-Step guide to block data download using Azure Cloud App security:

https://bit.ly/3r2PCeX

• More info about Microsoft's Cloud Adoption Framework (CAF) is available on bit.ly/3nLQW3W.

• For more details on cost of different Azure AD versions, visit bit.ly/3cGtNtm.

• Azure AD password-less authentication: bit.ly/3HJ6g9z

• Hashes stored in AD are in the Message Digest 4 (MD4) algorithm format (bit.ly/3l4TvfJ).

• Password-Based Key Derivation Function 2 (PBKDF2) (bit.ly/3cJ5JpW).

• Valid Azure subscription: bit.ly/3oV95Ma

• More information about ports can be found at bit.ly/3r5zJo5. The service URL and IP range

information can be found at https://bit.ly/3nMancK.

• Azure portal as Global Administrator (https://bit.ly/30XzSig).

• There are three levels of subscription for the service and you can find more details about these

on https://bit.ly/3nLCc4Y.

• Download the latest version of Azure AD Connect from https://bit.ly/3l6JZZr.

Figures

Figure 18.1: Password hash synchronization process

https://bit.ly/3r4p792
https://bit.ly/3r2PCeX
https://bit.ly/3nLQW3W
https://bit.ly/3cGtNtm
https://bit.ly/3HJ6g9z
https://bit.ly/3l4TvfJ
https://bit.ly/3cJ5JpW
https://bit.ly/3oV95Ma
https://bit.ly/3r5zJo5
https://bit.ly/3nMancK
https://bit.ly/30XzSig
https://bit.ly/3nLCc4Y
https://bit.ly/3l6JZZr

Figure 18.2: Pass-through authentication flow

Figure 18.3: Seamless-SSO flow

Figure 18.4: Azure AD hybrid topology with Azure AD managed domain

Figure 18.5: Manage Azure AD cloud sync

Figure 18.6: Download Azure AD cloud sync agent

Figure 18.7: Create a gMSA account

Figure 18.8: Connect to local AD

Figure 18.9: Review all agents option

Figure 18.10: Health status of provisioning agents

Figure 18.11: Set up new Azure AD cloud sync configuration

Figure 18.12: Azure AD cloud sync configuration – domain settings

Figure 18.13: Save Azure AD cloud sync configuration settings

Figure 18.14: Sync status of user accounts

Figure 18.15: Create a new virtual network

Figure 18.16: Virtual network subnet settings

Figure 18.17: Initiating Azure AD DS setup

Figure 18.18: Azure AD DS configuration

Figure 18.19: Azure AD DS – virtual network settings

Figure 18.20: Azure AD DS – Domain Admin settings

Figure 18.21: Azure AD DS – synchronization scope

Figure 18.22: Azure AD DS instance

Figure 18.23: Update DNS records

Figure 18.24: Custom DNS servers

Figure 18.25: Create new user

Figure 18.26: Pass-through authentication settings

Figure 18.27: Start Azure AD Connect authentication agent installation

Figure 18.28: Azure AD authentication

Figure 18.29: Pass-through authentication agent status

Figure 18.30: Azure AD Connect express setup

Figure 18.31: Azure AD Connect pass-through authentication setting

Figure 18.32: Azure AD Connect Optional features selection

Figure 18.33: Azure AD Connect synchronization status

Figure 18.34: Azure AD user sync status

Figure 18.35: Connectors

Figure 18.36: SSL certificate

Figure 18.37: Export SSL certificate

Figure 18.38: Export private key

Figure 18.39: Export as PFX

Figure 18.40: PFX file path

Figure 18.41: Certificate status

Figure 18.42: Secure LDAP feature

Figure 18.43: Configure secure LDAP

Figure 18.44: Public IP details

Figure 18.45: NSG details

Figure 18.46: Create a new inbound security rule

Figure 18.47: Host entry

Figure 18.48: ldp.exe connection settings

Figure 18.49: Secure LDAP connection status

Figure 18.50: Bind with credentials

Figure 18.51 : Bind status

Figure 18.52: Browse data

Figure 18.53: Virtual network details

Figure 18.54: Current configuration of the virtual network

Figure 18.55: Create a resource group

Figure 18.56: Set up a new virtual network for a replica set

Figure 18.57: Global VNet peering

Figure 18.58: Global VNet peering

Figure 18.59: Add replica set

Figure 18.60: Configure a replica set

Figure 18.61: Replica set provisioning

Figure 18.62: Status of the provisioning task

Figure 18.63: Status of the replica set

Code blocks

Command 18.1

New-Item

'HKLM:\SOFTWARE\WOW6432Node\Microsoft\.NETFramework\v4.0.30319' -Force

| Out-Null

New-ItemProperty -path

'HKLM:\SOFTWARE\WOW6432Node\Microsoft\.NETFramework\v4.0.30319' -name

'SystemDefaultTlsVersions' -value '1'

PropertyType 'DWord' -Force | Out-Null

New-ItemProperty -path

'HKLM:\SOFTWARE\WOW6432Node\Microsoft\.NETFramework\v4.0.30319' -name

'SchUseStrongCrypto' -value '1' -PropertyType 'DWord' -Force | Out-

Null

New-Item 'HKLM:\SOFTWARE\Microsoft\.NETFramework\v4.0.30319' -Force |

Out-Null

New-ItemProperty -path

'HKLM:\SOFTWARE\Microsoft\.NETFramework\v4.0.30319' -name

'SystemDefaultTlsVersions' -value '1' -PropertyType 'DWord' -Force |

Out-Null

New-ItemProperty -path

'HKLM:\SOFTWARE\Microsoft\.NETFramework\v4.0.30319' -name

'SchUseStrongCrypto' -value '1' -PropertyType 'DWord' -Force | Out-

Null

New-Item

'HKLM:\SYSTEM\CurrentControlSet\Control\SecurityProviders\SCHANNEL\Pro

tocols\TLS 1.2\Server' -Force | Out-Null

New-ItemProperty -path

'HKLM:\SYSTEM\CurrentControlSet\Control\SecurityProviders\SCHANNEL\Pro

tocols\TLS 1.2\Server' -name 'Enabled' -value '1' -PropertyType

'DWord' -Force | Out-Null

New-ItemProperty -path

'HKLM:\SYSTEM\CurrentControlSet\Control\SecurityProviders\SCHANNEL\Pro

tocols\TLS 1.2\Server' -name 'DisabledByDefault' -value 0 -

PropertyType 'DWord' -Force | Out-Null

New-Item

'HKLM:\SYSTEM\CurrentControlSet\Control\SecurityProviders\SCHANNEL\Pro

tocols\TLS 1.2\Client' -Force | Out-Null

New-ItemProperty -path

'HKLM:\SYSTEM\CurrentControlSet\Control\SecurityProviders\SCHANNEL\Pro

tocols\TLS 1.2\Client' -name 'Enabled' -value '1' -PropertyType

'DWord' -Force | Out-Null

New-ItemProperty -path

'HKLM:\SYSTEM\CurrentControlSet\Control\SecurityProviders\SCHANNEL\Pro

tocols\TLS 1.2\Client' -name 'DisabledByDefault' -value 0 -

PropertyType 'DWord' -Force | Out-Null

Write-Host 'TLS 1.2 has been enabled.'

Powershell script 18.2

$adConnector = "<CASE SENSITIVE AD CONNECTOR NAME>"

$azureadConnector = "<CASE SENSITIVE AZURE AD CONNECTOR NAME>"

Import-Module adsync

$c = Get-ADSyncConnector -Name $adConnector

$p = New-Object

Microsoft.IdentityManagement.PowerShell.ObjectModel.ConfigurationParam

ter "Microsoft.Synchronize.ForceFullPasswordSync", String,

ConnectorGlobal, $null, $null, $null

$p.Value = 1

$c.GlobalParameters.Remove($p.Name)

$c.GlobalParameters.Add($p)

$c = Add-ADSyncConnector -Connector $c

Set-ADSyncAADPasswordSyncConfiguration -SourceConnector $adConnector -

TargetConnector $azureadConnector -Enable $false

Set-ADSyncAADPasswordSyncConfiguration -SourceConnector $adConnector -

TargetConnector $azureadConnector -Enable $true

Command 18.3

Login-AzAccount

$DomainServicesResource = Get-AzResource -ResourceType

"Microsoft.AAD/DomainServices"

$securitySettings =

@{"DomainSecuritySettings"=@{"NtlmV1"="Disabled";"SyncNtlmPasswords"="

Enabled";"TlsV1"="Disabled"}}

Set-AzResource -Id $DomainServicesResource.ResourceId -Properties

$securitySettings -Verbose -Force

Command 18.4

$vnet1 = Get-AzVirtualNetwork -Name REBELVN1 -ResourceGroupName

REBELRG1

$vnet2 = Get-AzVirtualNetwork -Name REBELDRVN1 -ResourceGroupName

REBELDRRG1

Add-AzVirtualNetworkPeering -Name REBELVN1toEBELDRVN1 -VirtualNetwork

$vnet1 -RemoteVirtualNetworkId $vnet2.Id

Command 18.5

$vnet1 = Get-AzVirtualNetwork -Name REBELVN1 -ResourceGroupName

REBELRG1

$vnet2 = Get-AzVirtualNetwork -Name REBELDRVN1 -ResourceGroupName

REBELDRRG1

Add-AzVirtualNetworkPeering -Name REBELDRVN1toREBELVN1 -VirtualNetwork

$vnet2 -RemoteVirtualNetworkId $vnet1.Id

Command 18.6

$domainname="rebeladmlive.onmicrosoft.com"

$certlife=Get-Date

New-SelfSignedCertificate -Subject *.$domainname -NotAfter

$certlife.AddDays(365) -KeyUsage DigitalSignature, KeyEncipherment -

Type SSLServerAuthentication -DnsName *.$domainname, $domainname

In the above, replace rebeladmlive.onmicrosoft.com with your Azure AD DS instance name.

Chapter 19

Figures

Figure 19.1: Windows Event Viewer

Figure 19.2: Windows Event Viewer Role logs

Figure 19.3: Advanced audit logs

Figure 19.4: Review events on another computer

Figure 19.5: Create a server group

Figure 19.6: Add servers

Figure 19.7: Events from the remote server

Figure 19.8: Configure Event Data option

Figure 19.9: Configure Event Data window

Figure 19.10: Save a query

Figure 19.11: Access a saved query

Figure 19.12: Event subscription

Figure 19.13: Select source computer

Figure 19.14: Query events

Figure 19.15: Advanced Subscription Settings

Figure 19.16: SACL entry

Figure 19.17: Audit Directory Service Access events

Figure 19.18: Audit categories

Figure 19.19: MDI architecture

Figure 19.20: Azure AD Connect health services

Figure 19.21: Azure AD Connect Health access

Figure 19.22: Download Azure AD Connect Health Agent for AD DS

Figure 19.23: Azure AD login

Figure 19.24: Azure AD Connect Health service registration

Figure 19.25: Sync errors and Sync services

Figure 19.26: Overview of Azure AD Connect Health

Figure 19.27: Sync errors

Figure 19.28: AD DS services

Figure 19.29: health

Code blocks

Command 19.1

Add-ADGroupMember –identity 'Event Log Readers'

–members REBELNET-PDC01$

Code 19.1

wevtutil sl security

/ca:'O:BAG:SYD:(A;;0xf0005;;;SY)(A;;0x5;;;BA)(A;;0x1;;;S-1-5-32-

573)(A;;0x1;;;S-1-5-20)'

O:BAG:SYD:(A;;0xf0005;;;SY)(A;;0x5;;;BA)(A;;0x1;;;S-1-5-32-

573)(A;;0x1;;;S-1-5-20) contains READ permission settings for network service account

(A;;0x1;;;). In the preceding code, the SID value for the network service account is (S-1-5-20), and

the channel access value is

(O:BAG:SYD:(A;;0xf0005;;;SY)(A;;0x5;;;BA)(A;;0x1;;;S-1-5-32-573)).

Command 19.2

Get-EventLog -List

Command 19.3

Get-EventLog -LogName 'Directory Service' | fl

Command 19.4

Get-EventLog -Newest 5 -LogName 'Directory Service' -EntryType Error

Command 19.5

Get-EventLog -Newest 5 -LogName 'Directory Service' -EntryType Error –

After (Get-Date).AddDays(-1)

Command 19.6

Get-EventLog -Newest 5 -LogName 'Directory Service' -ComputerName

'REBEL-SRV01' | fl -Property *

Command 19.7

Get-EventLog -Newest 5 -LogName 'Directory Service' -ComputerName

"localhost","REBEL-SRV01"

Command 19.8

Get-EventLog -LogName 'Directory Service' -Source "NTDS KCC"

Command 19.9

Get-EventLog -LogName 'Directory Service' | where {$_.eventID -eq

1000}

Tables

Event ID Event message

4662 An operation was performed on an object

Table 19.1

Event ID Event message

5136 A directory service object was modified.

5137 A directory service object was created.

5138 A directory service object was undeleted.

5139 A directory service object was moved.

5141 A directory service object was deleted.

Table 19.2

Event ID Event message

4932 Synchronization of a replica of an AD naming context has begun.

4933 Synchronization of a replica of an AD naming context has ended.

Table 19.3

Event ID Event message

4928 An AD replica source naming context was established.

4929 An AD replica source naming context was removed.

4930 An AD replica source naming context was modified.

4931 An AD replica destination naming context was modified.

4934 Attributes of an AD object were replicated.

4935 Replication failure start.

4936 Replication failure end.

4937 A lingering object was removed from a replica.

Table 19.4

Protocol TCP/UDP Port To/From Direction

SSL TCP 443 Defender for Identity cloud services Outbound

SSL TCP 444 Sensor service Both

DNS TCP and UDP 53 Sensors to DNS Servers Outbound

Netlogon TCP/UDP 445 Sensors to all devices Outbound

RADIUS UDP 1813 RADIUS to sensors Inbound

NTLM over RPC TCP 135 Sensors to all devices Outbound

NetBIOS UDP 137 Sensors to all devices Outbound

TLS to RDP TCP 3389 Sensors to all devices Outbound

Table 19.5

