

Preface
In this book, we'll cover security and hardening techniques
that apply to any Linux-based server or workstation. Our
goal is to make it harder for the bad guys to do nasty things
to your systems.

Who this book is for
We're aiming this book at Linux administrators in general,
whether or not they specialize in Linux security. The
techniques that we present can be used on either Linux
servers or on Linux workstations.

We assume that our target audience has had some hands-on
experience with the Linux command line, and has the basic
knowledge of Linux Essentials.

What this book covers
Chapter 1, Running Linux in a Virtual Environment, gives an
overview of the IT security landscape, and will inform the
reader of why learning Linux security would be a good
career move. We'll also cover how to set up a lab
environment for performing hands-on exercises. We'll also
show how to set up a virtualized lab environment for
performing the hands-on labs.

Chapter 2, Securing User Accounts, covers the dangers of
always using the root user account, and will introduce the
benefits of using sudo, instead. We'll then cover how to lock
down normal user accounts, and ensure that the users use
good-quality passwords.

Chapter 3, Securing Your Server with a Firewall, involves
working with the various types of firewall utilities.

Chapter 4, Encrypting and SSH Hardening, makes sure that
important information—both at rest and in transit—are
safeguarded with proper encryption. For data-in-transit, the
default Secure Shell configuration is anything but secure, and
could lead to a security breach if left as is. This chapter
shows how to fix that.

Chapter 5, Mastering Discretionary Access Control, covers
how to set ownership and permissions on files and
directories. We'll also cover what SUID and SGID can do for
us, and the security implications of using them. We'll wrap
things up by covering Extended File Attributes.

Chapter 6, Access Control Lists and Shared Directory
Management, explains that normal Linux file and directory
permissions settings aren't very granular. With Access
Control Lists, we can allow only a certain person to access a
file, or we can allow multiple people to access a file with
different permissions for each person. We're also going to put
what we've learned together in order to manage a shared
directory for a group.

Chapter 7, Implementing Mandatory Access Control with
SELinux and AppArmor, talks about SELinux, which is a
Mandatory Access Control technology that is included with
Red Hat-type Linux distros. We'll give a brief introduction
here about how to use SELinux to prevent intruders from
compromising a system. AppArmor is another Mandatory
Access Control technology that is included with Ubuntu and
Suse-type Linux distros. We'll give a brief introduction here
about how to use AppArmor to prevent intruders from
compromising a system.

Chapter 8, Scanning, Auditing, and Hardening, discusses that
viruses aren't yet a huge problem for Linux users, but they
are for Windows users. If your organization has Windows
clients that access Linux fileservers, then this chapter is for
you. You can use auditd to audit, which accesses either files,

directories, or system calls. It won't prevent security
breaches, but it will let you know if some unauthorized
person is trying to access a sensitive resource. SCAP, the
Security Content Application Protocol, is a compliance
framework that's promulgated by the National Institute of
Standards and Technology. OpenSCAP, the open source
implementation, can be used to apply a hardening policy to a
Linux computer.

Chapter 9, Vulnerability Scanning and Intrusion Detection,
explains how to scan our systems to see if we've missed
anything since we've already learned how to configure our
systems for best security. We'll also take a quick look at an
intrusion detection system.

Chapter 10, Security Tips and Tricks for the Busy Bee, explains
that since you're dealing with security, we know that you're a
busy bee. So, the chapter introduces you to some quick tips
and tricks to help make the job easier.

To get the most out of
this book
To get the most out of this book, you don't need much.
However, the following things would be quite helpful:

1. A working knowledge of basic Linux commands, and
of how to navigate through the Linux filesystem.

2. A basic knowledge about tools such as less and grep.
3. Familiarity with command-line editing tools, such as

vim or nano.
4. A basic knowledge of how to control systemd

services with systemctl commands.

For hardware, you don't need anything fancy. All you need is
a machine that's capable of running 64-bit virtual machines.
So, you can use any host machine that runs with almost any
modern CPU from either Intel or AMD. (The exception to
this rule is with Intel Core i3 and Core i5 CPUs. Even though
they're 64-bit CPUs, they lack the hardware acceleration
that's needed to run 64-bit virtual machines. Ironically, Intel
Core 2 CPUs and AMD Opteron CPUs that are much older
work just fine.) For memory, I'd recommend at least 8
Gigabytes.

You can run any of the three major operating systems on
your host machine, because the virtualization software that
we'll be using comes in flavors for Windows, MacOS, and
Linux.

Download the color
images
We also provide a PDF file that has color images of the
screenshots/diagrams used in this book. You can download it
here: http://www.packtpub.com/sites/default/files/downloads/Masterin
gLinuxSecurityandHardening_ColorImages.pdf.

http://www.packtpub.com/sites/default/files/downloads/MasteringLinuxSecurityandHardening_ColorImages.pdf

Conventions used
There are a number of text conventions used throughout this
book.

CodeInText: Indicates code words in text, database table names,
folder names, filenames, file extensions, pathnames, dummy
URLs, user input, and Twitter handles. Here is an example:
"let's use getfacl to see if we have any Access Control Lists
already set on the acl_demo.txt file."

A block of code is set as follows:

Any command-line input or output is written as follows:

 [base]

 name=CentOS-$releasever - Base

 mirrorlist=http://mirrorlist.centos.org/?

 release=$releasever&arch=$basearch&repo=os&infra=$infra

 #baseurl=http://mirror.centos.org/centos/

 $releasever/os/$basearch/

 gpgcheck=1

 gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-7

 priority=1

[donnie@localhost ~]$ tar cJvf new_perm_dir_backup.tar.xz new_perm

new_perm_dir/

new_perm_dir/new_file.txt

[donnie@localhost ~]$

Bold: Indicates a new term, an important word, or words that
you see onscreen. For example, words in menus or dialog
boxes appear in the text like this. Here is an example: "Click
the Network menu item, and change the Attached to setting
from NAT to Bridged Adapter."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention
the book title in the subject of your message. If you have
questions about any aspect of this book, please email us at
questions@packtpub.com.

Errata: Although we have taken every care to ensure the
accuracy of our content, mistakes do happen. If you have
found a mistake in this book, we would be grateful if you
would report this to us. Please visit www.packtpub.com/submit-erra
ta, selecting your book, clicking on the Errata Submission
Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in
any form on the Internet, we would be grateful if you would
provide us with the location address or website name. Please
contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a
topic that you have expertise in and you are interested in
either writing or contributing to a book, please visit authors.pa
cktpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please leave a review. Once you have read and used this
book, why not leave a review on the site that you purchased
it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can
understand what you think about our products, and our
authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

Running Linux in a
Virtual Environment
So, you may be asking yourself, "Why do I need to study
Linux security? Isn't Linux already secure? After all, it's not
Windows." But, the fact is, there are many reasons.

It's true that Linux has certain advantages over Windows
when it comes to security. These include:

Unlike Windows, Linux was designed from the
ground up as a multiuser operating system. So, user
security tends to be a bit better on a Linux system.

Linux offers a better separation between
administrative users and unprivileged users. This
makes it a bit harder for intruders, and it also makes
it a bit harder for a user to accidentally infect a Linux
machine with something nasty.

Linux is much more resistant to virus and malware
infections than Windows is.

Certain Linux distributions come with built-in
mechanisms, such as SELinux in Red Hat and

CentOS and AppArmor in Ubuntu, which prevents
intruders from taking control of a system.

Linux is a free and open source software. This allows
anyone who has the skill to audit Linux code to hunt
for bugs or backdoors.

But, even with those advantages, Linux is just like
everything else that's been created by mankind. That is, it
isn't perfect.

Here are the topics that we'll cover in this chapter:

Why every Linux administrator needs to learn about
Linux security

A bit about the threat landscape, with some examples
of how attackers have, at times, been able to breach
Linux systems

Resources for keeping up with IT security news

How to set up Ubuntu Server and CentOS virtual
machines with VirtualBox, and how to install the
EPEL repository in the CentOS virtual machine

How to create virtual machine snapshots

How to install Cygwin on a Windows host so that
Windows users can connect to a virtual machine from

their Windows hosts

The threat landscape
If you've kept up with IT technology news over the past few
years, you'll likely have seen at least a few articles about how
attackers have compromised Linux servers. For example,
while it's true that Linux isn't really susceptible to virus
infections, there have been several cases where attackers
have planted other types of malware on Linux servers. These
cases have included:

Botnet malware: It causes a server to join a botnet
that is controlled by a remote attacker. One of the
more famous cases involved joining Linux servers to
a botnet that launched denial-of-service attacks
against other networks.

Ransomware: It is designed to encrypt user data
until the server owner pays a ransom fee. But, even
after paying the fee, there's no guarantee that the data
can be recovered.

Cryptocoin mining software: It causes the CPUs of
the server on which it's planted to work extra hard
and consume more energy. Cryptocoins that get

mined go to the accounts of the attackers who planted
the software.

And, of course, there have been plenty of breaches that don't
involve malware, such as where attackers have found a way
to steal user credentials, credit card data, or other sensitive
information.

Some security breaches come about because of
plain carelessness. Here's an example of where a
careless Adobe administrator placed the
company's private security key on a public
security blog: https://www.theinquirer.net/inquirer/ne
ws/3018010/adobe-stupidly-posts-private-pgp-key-on-its-

security-blog.

https://www.theinquirer.net/inquirer/news/3018010/adobe-stupidly-posts-private-pgp-key-on-its-security-blog

So, how does this
happen?
Regardless of whether you're running Linux, Windows, or
whatever else, the reasons for security breaches are usually
the same. They could be security bugs in the operating
system, or security bugs in an application that's running on
that operating system. Often, a bug-related security breach
could have been prevented had the administrators applied
security updates in a timely manner.

Another big issue is poorly-configured servers. A standard,
out-of-the-box configuration of a Linux server is actually
quite insecure and can cause a whole ton of problems. One
cause of poorly-configured servers is simply the lack of
properly-trained personnel to securely administer Linux
servers. (Of course, that's great news for the readers of this
book, because, trust me, there's no lack of well-paying, IT
security jobs.)

As we journey through this book, we'll see how to do
business the right way, to make our servers as secure as
possible.

Keeping up with security
news
If you're in the IT business, even if you're not a security
administrator, you want to keep up with the latest security
news. In the age of the internet, that's easy to do.

First, there are quite a few websites that specialize in
network security news. Examples include Packet Storm
Security and The Hacker News. Regular tech news sites and
Linux news websites, such as The INQUIRER, The Register,
ZDNet, and LXer also carry reports about network security
breaches. And, if you'd rather watch videos than read, you'll
find plenty of good YouTube channels, such as BeginLinux
Guru.

Finally, regardless of which Linux distribution you're using,
be sure to keep up with the news and current documentation
for your Linux distribution. Distribution maintainers should
have a way of letting you know if a security problem crops
up in their products.

Links to security news sites are as follows:

Packet Storm Security: https://packetstorms
ecurity.com/

https://packetstormsecurity.com/

The Hacker News: http://thehackernews.co
m/

Links to general tech news sites are as follows:

The INQUIRER: https://www.theinquirer.ne
t/

The Register: http://www.theregister.co.uk/

ZDNet: http://www.zdnet.com/

You can check out some general Linux learning
resources as well. Linux News Site:

LXer: http://lxer.com/

BeginLinux Guru on YouTube: https://ww
w.youtube.com/channel/UC88eard_2sz89an6unmlbeA

(Full disclosure: I am the BeginLinux Guru.)

One thing to always remember as you go through this book is
that the only operating system you'll ever see that's totally,
100% secure will be installed on a computer that never gets
turned on.

http://thehackernews.com/
https://www.theinquirer.net/
http://www.theregister.co.uk/
http://www.zdnet.com/
http://lxer.com/
https://www.youtube.com/channel/UC88eard_2sz89an6unmlbeA

Introduction to VirtualBox
and Cygwin
Whenever I write or teach, I try very hard not to provide
students with a cure for insomnia. Throughout this book,
you'll see a bit of theory whenever it's necessary, but I mainly
like to provide good, practical information. There will also
be plenty of step-by-step hands-on labs.

The best way to do the labs is to use Linux virtual machines.
Most of what we'll do can apply to any Linux distribution,
but we will also do some things that are specific to either
Red Hat Enterprise Linux or Ubuntu Linux. (Red Hat
Enterprise Linux is the most popular for enterprise use, while
Ubuntu is most popular for cloud deployments.)

Red Hat is a billion-dollar company, so there's
no doubt about where they stand in the Linux
market. But, since Ubuntu Server is free-of-
charge, we can't judge its popularity strictly on
the basis of its parent company's worth. The
reality is that Ubuntu Server is the most widely-
used Linux distribution for deploying cloud-
based applications.

See here for details: http://www.zdnet.com/article/ubu

http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/

ntu-linux-continues-to-dominate-openstack-and-other-clo

uds/.

Since Red Hat is a fee-based product, we'll substitute
CentOS 7, which is built from Red Hat source code and is
free-of-charge. There are several different virtualization
platforms that you can use, but my own preferred choice is
VirtualBox.

VirtualBox is available for Windows, Linux, and Mac hosts,
and is free of charge for all of them. It has features that you
have to pay for on other platforms, such as the ability to
create snapshots of virtual machines.

Some of the labs that we'll be doing will require you to
simulate creating a connection from your host machine to a
remote Linux server. If your host machine is either a Linux
or a Mac machine, you'll just be able to open the Terminal
and use the built-in Secure Shell tools. If your host machine
is running Windows, you'll need to install some sort of Bash
shell, which we'll do by installing Cygwin.

http://www.zdnet.com/article/ubuntu-linux-continues-to-dominate-openstack-and-other-clouds/

Installing a virtual
machine in VirtualBox
For those of you who've never used VirtualBox, here's a
quick how-to to get you going:

1. Download and install VirtualBox and the VirtualBox
Extension Pack. You can get them from: https://www.vi
rtualbox.org/.

2. Download the installation .iso files for Ubuntu Server
and CentOS 7. You can get them from: https://www.ubu
ntu.com/ and https://www.centos.org/.

3. Start VirtualBox and click the New icon at the top of
the screen. Fill out the information where requested.
Increase the virtual drive size to 20 GB, but leave
everything else as the default settings:

https://www.virtualbox.org/
https://www.ubuntu.com/
https://www.centos.org/

4. Start the new virtual machine. Click on the folder
icon at the bottom-left corner of the dialog box and
navigate to the directory where you stored the .iso
files that you downloaded. Choose either the Ubuntu
.iso file or the CentOS .iso file as shown in the
following screenshot:

5. Click the Start button on the dialog box to start
installing the operating system. Note that, for Ubuntu
Server, you won't be installing a desktop interface.
For the CentOS virtual machine, choose either the
KDE desktop or the Gnome desktop, as you desire.
(We'll go through at least one exercise that will
require a desktop interface for the CentOS machine.)

6. Repeat the procedure for the other Linux distribution.
7. Update the Ubuntu virtual machine by entering:

 sudo apt update

 sudo apt dist-upgrade

8. Hold off on updating the CentOS virtual machine
because we'll do that in the next exercise.

When installing Ubuntu, you'll be asked to create a
normal user account and password for yourself. It
won't ask you to create a root user password, but will
instead automatically add you to the sudo group so
that you'll have admin privileges.

When you get to the user account creation screen of
the CentOS installer, be sure to check the Make this
user administrator box for your own user account,
since it isn't checked by default. It will offer you the
chance to create a password for the root user, but
that's entirely optional—in fact, I never do.

The user account creation screen of CentOS installer
is shown as follows:

The EPEL repository on
the CentOS virtual
machine
While the Ubuntu package repositories have pretty much
everything that you need for this course, the CentOS package
repositories are—shall we say—lacking. To have the
packages that you'll need for the CentOS hands-on labs,
you'll need to install the EPEL (Extra Packages for
Enterprise Linux) repository. (The EPEL project is run by
the Fedora team.) When you install third-party repositories
on Red Hat and CentOS systems, you'll also need to install a
priorities package, and edit the .repo files to set the proper
priorities for each repository. This will prevent packages
from the third-party repository from overwriting official Red
Hat and CentOS packages if they just happen to have the
same name. The following steps will help you install the
required packages and edit .repo file:

1. The two packages that you'll need to install EPEL are
in the normal CentOS repositories. Run the
command:

 sudo yum install yum-plugin-priorities epel-release

2. When the installation completes, navigate to the
/etc/yum.repos.d directory, and open the CentOS-Base.repo
file in your favorite text editor. After the last line of
the base, updates, and extras sections, add the line,
priority=1. After the last line of the centosplus section,
add the line, priority=2. Save the file and close the
editor. Each of the sections that you've edited should
look something like this (except with the appropriate
name and priority number):

3. Open the epel.repo file for editing. After the last line
of the epel section, add the line, priority=10. After the
last line of each remaining section, add the line,
priority=11.

4. Update the system and then create a list of the
installed and available packages by running:

 [base]

 name=CentOS-$releasever - Base

 mirrorlist=http://mirrorlist.centos.org/?

 release=$releasever&arch=$basearch&repo=os&infra=$infra

 #baseurl=http://mirror.centos.org/centos/

 $releasever/os/$basearch/

 gpgcheck=1

 gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-7

 priority=1

 sudo yum upgrade

 sudo yum list > yum_list.txt

Configuring a network for
VirtualBox virtual
machines
Some of our training scenarios will require you to simulate
creating a connection to a remote server. You would do this
by using your host machine to connect to a virtual machine.
When you first create a virtual machine on VirtualBox, the
networking is set to NAT mode. In order to connect to the
virtual machine from the host, you'll need to set the virtual
machine's network adapter to Bridged Adapter mode. Here's
how you can do this:

1. Shut down any virtual machines that you've already
created.

2. On the VirtualBox manager screen, open the Settings
dialog for a virtual machine.

3. Click the Network menu item, and change the
Attached to setting from NAT to Bridged Adapter:

4. Expand the Advanced item, and change the
Promiscuous Mode setting to Allow All:

5. Restart the virtual machine and set it to use a static IP
address.

If you assign static IP addresses from the high
end of your subnet range, it will be easier to
prevent conflicts with low-number IP addresses
that get handed out from your internet gateway.

Creating a virtual
machine snapshot with
VirtualBox
One of the beautiful things about working with virtual
machines is that you can create a snapshot and roll back to it
if you mess something up. With VirtualBox, that's easy to do.

1. At the top, right-hand corner of the VirtualBox
manager screen, click the Snapshots button:

2. Just left of mid-screen, you'll see a camera icon.
Click on that to bring up the snapshot dialog box.
Either fill in the desired Snapshot Name, or accept
the default name. Optionally, you can create a
description:

3. After you've made changes to the virtual machine,
you can roll back to the snapshot by shutting down
the virtual machine, then right-clicking on the
snapshot name, and selecting the proper menu item:

Using Cygwin to connect
to your virtual machines
If your host machine is either a Linux or Mac machine, you'll
simply open the host's Terminal and use the tools that are
already there to connect to the virtual machine. But, if you're
running a Windows machine, you'll want to install some sort
of Bash shell and use its networking tools. Windows 10 Pro
now comes with a Bash shell that's been provided by the
Ubuntu folk and you can use that if you desire. But, if you
don't have Windows 10 Pro, or if you prefer to use something
else, you might consider Cygwin.

Cygwin, a project of the Red Hat company, is a free open
source Bash shell that's built for Windows. It's free-of-
charge, and easy to install.

Installing Cygwin on your
Windows host
Here's a quick how-to to get you going with Cygwin:

1. In your host machine's browser, download the
appropriate setup*.exe file for your version of
Windows from: http://www.cygwin.com/.

2. Double-click on the setup icon to begin the
installation. For the most part, just accept the defaults
until you get to the package selection screen. (The
one exception will be the screen where you select a
download mirror.)

3. At the top of the package selection screen, select
Category from the View menu:

4. Expand the Net category:

http://www.cygwin.com/

5. Scroll down until you see the openssh package.
Under the New column, click on Skip. (This causes a
version number to appear in place of the Skip.):

6. After you have selected the proper package, your
screen should look like this:

7. In the bottom right-hand corner, click Next. If a
Resolving Dependencies screen pops up, click Next
on it as well.

8. Keep the setup file that you downloaded, because
you'll use it later to either install more software
packages, or to update Cygwin. (When you open
Cygwin, any updated packages will show up on the
Pending view on View menu.)

9. Once you open Cygwin from the Windows Start
menu, you can resize it as you desire, and use either

the Ctrl + + or Ctrl + - key combinations to resize
the font:

Summary
So, we've made a good start to our journey into Linux
security and hardening. In this chapter, we looked at why it's
just as important to know about securing and hardening
Linux systems as it is to know how to secure and harden
Windows systems. We provided a few examples of how a
poorly-configured Linux system can be compromised, and
we mentioned that learning about Linux security could be
good for your career. After that, we looked at how to set up a
virtualized lab environment using VirtualBox and Cygwin.

In the next chapter, we'll look at locking down user accounts,
and ensuring that the wrong people never get administrative
privileges. I'll see you there.

Securing User Accounts
Managing users is one of the more challenging aspects of IT
administration. You need to make sure that users can always
access their stuff and that they can perform the required tasks
to do their jobs. You also need to ensure that users' stuff is
always secure from unauthorized users and that users can't
perform any tasks that don't fit their job description. It's a tall
order, but we aim to show that it's doable.

In this chapter, we'll cover the following topics:

The dangers of logging in as the root user

The advantages of using sudo

How to set up sudo privileges for full administrative
users and for users with only certain delegated
privileges

Advanced tips and tricks to use sudo

Locking down users' home directories

Enforcing strong password criteria

Setting and enforcing password and account
expiration

Preventing brute-force password attacks

Locking user accounts

Setting up security banners

The dangers of logging in
as the root user
A huge advantage that Unix and Linux operating systems
have over Windows is that Unix and Linux do a much better
job of keeping privileged administrative accounts separated
from normal user accounts. Indeed, one reason that older
versions of Windows were so susceptible to security issues,
such as drive-by virus infections, was the common practice
of setting up user accounts with administrative privileges,
without having the protection of the User Access Control
that's in newer versions of Windows. (Even with User Access
Control, Windows systems still do get infected, just not quite
as often.) With Unix and Linux, it's a lot harder to infect a
properly configured system.

You likely already know that the all-powerful administrator
account on a Unix or Linux system is the root account. If
you're logged in as the root user, you can do anything you
want to do to that system. So you may think, "Yeah, that's
handy, so that's what I'll do." However, always logging in as
the root user can present a whole load of security problems.
Consider the following. Logging in as the root user can:

Make it easier for you to accidentally perform an
action that causes damage to the system

Make it easier for someone else to perform an action
that causes damage to the system

So if you always log on as the root user or even if you just
make the root user account readily accessible, you could say
that you're doing a big part of attackers' and intruders' work
for them. Also, imagine if you were the head Linux
administrator at a large corporation, and the only way to
allow users to perform admin tasks was to give them all the
root password. What would happen if one of those users
were to leave the company? You wouldn't want for that
person to still have the ability to log in to the systems, so
you'd have to change the password and distribute the new
one to all of the other users. And, what if you just want for
users to have admin privileges for only certain tasks, instead
of having full root privileges?

What we need is a mechanism that allows users to perform
administrative tasks without incurring the risk of having
them always log on as the root user and that would also
allow users to have only the admin privileges they really
need to perform a certain job. In Linux and Unix, we have
that mechanism in the form of the sudo utility.

The advantages of using
sudo
Used properly, the sudo utility can greatly enhance the
security of your systems, and it can make an administrator's
job much easier. With sudo, you can do the following:

Assign certain users full administrative privileges,
while assigning other users only the privileges they
need to perform tasks that are directly related to their
respective jobs.

Allow users to perform administrative tasks by
entering their own normal user passwords so that you
don't have to distribute the root password to
everybody and his brother.

Make it harder for intruders to break into your
systems. If you implement sudo and disable the root
user account, would-be intruders won't know which
account to attack because they won't know which one
has admin privileges.

Create sudo policies that you can deploy across an
entire enterprise network even if that network has a
mix of Unix, BSD, and Linux machines.

Improve your auditing capabilities because you'll be
able to see what users are doing with their admin
privileges.

In regards to that last bullet point, consider the following
snippet from the secure log of my CentOS 7 virtual machine:

You can see that I used su - to log in to the root command
prompt and that I then logged back out. While I was logged
in, I did several things that require root privileges, but none
of that got recorded. What did get recorded though is
something that I did with sudo. That is, because the root
account is disabled on this machine, I used my sudo privilege
to get su - to work for me. Let's look at another snippet to
show a bit more detail about how this works:

Sep 29 20:44:33 localhost sudo: donnie : TTY=pts/0 ; PWD=/home/don

Sep 29 20:44:34 localhost su: pam_unix(su-l:session): session open

Sep 29 20:50:39 localhost su: pam_unix(su-l:session): session clos

Sep 29 20:50:45 localhost sudo: donnie : TTY=pts/0 ; PWD=/home/don

Sep 29 20:55:30 localhost sudo: donnie : TTY=pts/0 ; PWD=/home/don

Sep 29 20:55:40 localhost sudo: donnie : TTY=pts/0 ; PWD=/home/don

Sep 29 20:59:35 localhost sudo: donnie : TTY=tty1 ; PWD=/home/donn

Sep 29 21:01:11 localhost sudo: donnie : TTY=tty1 ; PWD=/home/donn

This time, I used my sudo privilege to open a log file, to
view my hard drive configuration, to perform a system
update, to check the status of the Secure Shell daemon, and
to once again view a log file. So, if you were the security
administrator at my company, you'd be able to see whether or
not I'm abusing my sudo power.

Now, you're asking, "What's to prevent a person from just
doing a sudo su - to prevent his or her misdeeds from being
detected?" That's easy. Just don't give people the power to go
to the root command prompt.

Setting up sudo
privileges for full
administrative users
Before we look at how to limit what users can do, let's first
look at how to allow a user to do everything, including
logging into the root command prompt. There are a couple of
methods for doing that.

Method 1 – adding users
to a predefined admin
group
The first method, which is the simplest, is to add users to a
predefined administrators group and then, if it hasn't already
been done, to configure the sudo policy to allow that group
to do its job. It's simple enough to do except that different
Linux distro families use different admin groups.

On Unix, BSD, and most Linux systems, you would add
users to the wheel group. (Members of the Red Hat family,
including CentOS, fall into this category.) When I do the
groups command on my CentOS machine, I get this:

[donnie@localhost ~]$ groups

donnie wheel

[donnie@localhost ~]$

This shows that I'm a member of the wheel group. By doing
sudo visudo, I'll open the sudo policy file. Scrolling down,
we'll see the line that gives the wheel group its awesome
power:

Allows people in group wheel to run all commands

%wheel ALL=(ALL) ALL

The percent sign indicates that we're working with a group.
The three ALLs mean that members of that group can
perform any command, as any user, on any machine in the
network on which this policy is deployed. The only slight
catch is that group members will be prompted to enter their
own normal user account passwords in order to perform a
sudo task. Scroll down a bit more, and you'll see the
following:

Same thing without a password

%wheel ALL=(ALL) NOPASSWD: ALL

If we were to comment out the %wheel line in the former
snippet and remove the comment symbol from in front of the
%wheel line in this snippet, then members of the wheel group
would be able to perform all of their sudo tasks without ever
having to enter any password. That's something that I really
don't recommend, even for home use. In a business setting,
allowing people to have passwordless sudo privileges is a
definite no-no.

To add an existing user to the wheel group, use usermod with the
-G option. You might also want to use the -a option as well, in
order to prevent removing the user from other groups to
which he or she belongs. For our example, let's add Maggie:

sudo usermod -a -G wheel maggie

You can also add a user account to the wheel group as you
create it. Let's do that now for Frank:

sudo useradd -G wheel frank

Note that with my usage of useradd, I'm assuming
that we're working with a member of the Red Hat
family, which comes with predefined default
settings to create user accounts. For non-Red
Hat-type distros that use the wheel group, you'd
need to either reconfigure the default settings or
use extra option switches in order to create the
user's home directory and to assign the correct
shell. Your command then would look something
like:

sudo useradd -G wheel -m -d /home/frank -s /bin/bash

frank

For members of the Debian family, including Ubuntu, the
procedure is the same, except that you would use the sudo
group instead of the wheel group. (This kind of figures,
considering that the Debian folk have pretty much always
marched to the beat of a different drummer.)

One way in which this technique would come in
handy is whenever you need to create a virtual
private server on a cloud service, such as
Rackspace, DigitalOcean, or Vultr. When you log

in to one of those services and initially create
your virtual machine, the cloud service will have
you log in to that virtual machine as the root
user. (This even happens with Ubuntu, even
though the root user account is disabled
whenever you do a local installation of Ubuntu.)

The first thing that you'll want to do in this
scenario is to create a normal user account for
yourself and give it full sudo privileges. Then,
log out of the root account and log back in with
your normal user account. You'll then want to
disable the root account with the command:

sudo passwd -l root

You'll also want to do some additional
configuration to lock down Secure Shell access,
but we'll cover that in Chapter 4, Encrypting and
SSH Hardening.

Method 2 – creating an
entry in the sudo policy
file
Okay, adding users to either the wheel group or the sudo group
works great if you're either just working with a single
machine or if you're deploying a sudo policy across a
network that uses just one of these two admin groups. But
what if you want to deploy a sudo policy across a network
with a mixed group of both Red Hat and Ubuntu machines?
Or what if you don't want to go around to each machine to
add users to an admin group? Then, just create an entry in the
sudo policy file. You can either create an entry for an
individual user or create a user alias. If you do sudo visudo on
your CentOS virtual machine, you'll see a commented-out
example of a user alias:

User_Alias ADMINS = jsmith, mikem

You can uncomment this line and add your own set of
usernames, or you can just add a line with your own user
alias. To give members of the user alias full sudo power, add
another line that would look like this:

ADMINS ALL=(ALL) ALL

It's also possible to add a visudo entry for just a single user,
and you might need to do that under very special
circumstances. For example:

frank ALL=(ALL) ALL

But for ease of management, it's best to go with either a user
group or a user alias.

The sudo policy file is the /etc/sudoers file. I
always hesitate to tell students that because
every once in a while I have a student try to edit
it in a regular text editor. That doesn't work
though, so please don't try it. Always edit sudoers
with the command, sudo visudo.

Setting up sudo for users
with only certain
delegated privileges
A basic tenet of IT security philosophy is to give network
users enough privileges so that they can get their jobs done,
but no privileges beyond that. So, you'll want as few people
as possible to have full sudo privileges. (If you have the root
user account enabled, you'll want even fewer people to know
the root password.) You'll also want a way to delegate
privileges to people according to what their specific jobs are.
Backup admins will need to be able to perform backup tasks,
help desk personnel will need to perform user management
tasks, and so on. With sudo, you can delegate these
privileges and disallow users from doing any other
administrative jobs that don't fit their job description.

The best way to explain this is to have you open visudo on
your CentOS virtual machine. So, go ahead and start the
CentOS VM and enter the following command:

sudo visudo

Unlike Ubuntu, CentOS has a fully commented and well-
documented sudoers file. I've already shown you the line that

creates the ADMIN user alias, and you can create other user
aliases for other purposes. You can, for example, create a
BACKUPADMINS user alias for backup administrators, a WEBADMINS
user alias for web server administrators, or whatever else you
desire. So, you could add a line that looks something like
this:

User_Alias SOFTWAREADMINS = vicky, cleopatra

That's good, except that Vicky and Cleopatra still can't do
anything. You'll need to assign some duties to the user alias.

If you look at the example user alias mentioned later, you'll
see a list of example Command Aliases. One of these examples
just happens to be SOFTWARE, which contains the commands
that an admin would need to either install or remove software
or to update the system. It's commented out, as are all of the
other example command aliases, so you'll need to remove the
hash symbol from the beginning of the line before you can
use it:

Now, it's just a simple matter of assigning the SOFTWARE
command alias to the SOFTWAREADMINS user alias:

SOFTWAREADMINS ALL=(ALL) SOFTWARE

Cmnd_Alias SOFTWARE = /bin/rpm, /usr/bin/up2date, /usr/bin/yum

Vicky and Cleopatra, both members of the SOFTWAREADMINS user
alias, can now run the rpm, up2date, and yum commands with
root privileges.

All but one of these predefined command aliases are ready to
use after you uncomment them and assign them to either a
user, group, or user alias. The one exception is the SERVICES
command alias:

The problem with this SERVICES alias is that it also lists the
different subcommands for the systemctl command. The way
sudo works is that if a command is listed by itself, then the
assigned user can use that command with any subcommands,
options, or arguments. So, in the SOFTWARE example, members
of the SOFTWARE user alias can run a command such as:

sudo yum upgrade

But, when a command is listed in the command alias with a
subcommand, option, or argument, that's all anyone who's
assigned to the command alias can run. With the SERVICES
command alias in its current configuration, the systemctl
commands just won't work. To see why, let's set Charlie and
Lionel up in the SERVICESADMINS user alias and then uncomment
the SERVICES command alias, as we've already done earlier:

Cmnd_Alias SERVICES = /sbin/service, /sbin/chkconfig, /usr/bin/sys

User_Alias SERVICESADMINS = charlie, lionel

SERVICESADMINS ALL=(ALL) SERVICES

Now, watch what happens when Lionel tries to check the
status of the Secure Shell service:

Okay, so Lionel can run sudo systemctl status, which is pretty
much useless, but he can't do anything meaningful, like
specifying the service that he wants to check. That's a bit of a
problem. There are two ways to fix this, but there's only one
way that you want to use. You could just eliminate all of the
systemctl subcommands and make the SERVICES alias look like
this:

But, if you do that, Lionel and Charlie will also be able to
shut down or reboot the system, edit the services files, or
change the machine from one systemd target to another.
That's probably not what you want. Because the systemctl
command covers a lot of different functions, you have to be
careful not to allow delegated users to access too many of
those functions. A better solution would be to add a wildcard
to each of the systemctl subcommands:

[lionel@centos-7 ~]$ sudo systemctl status sshd

[sudo] password for lionel:

Sorry, user lionel is not allowed to execute '/bin/systemctl statu

[lionel@centos-7 ~]$

Cmnd_Alias SERVICES = /sbin/service, /sbin/chkconfig, /usr/bin/sys

Now, Lionel and Charlie can perform any of the systemctl
functions that are listed in this command alias, for any
service:

Keep in mind that you're not limited to using user aliases and
command aliases. You can also assign privileges to either a
Linux group or to an individual user. You can also assign
individual commands to a user alias, Linux group, or
individual user. For example:

katelyn ALL=(ALL) STORAGE

gunther ALL=(ALL) /sbin/fdisk -l

%backup_admins ALL=(ALL) BACKUP

Cmnd_Alias SERVICES = /sbin/service, /sbin/chkconfig, /usr/bin/sys

[lionel@centos-7 ~]$ sudo systemctl status sshd

[sudo] password for lionel:

● sshd.service - OpenSSH server daemon

 Loaded: loaded (/usr/lib/systemd/system/sshd.service; enabled;

 Active: active (running) since Sat 2017-09-30 18:11:22 EDT; 23m

 Docs: man:sshd(8)

 man:sshd_config(5)

 Main PID: 13567 (sshd)

 CGroup: /system.slice/sshd.service

 └─13567 /usr/sbin/sshd -D

Sep 30 18:11:22 centos-7.xyzwidgets.com systemd[1]: Starting OpenS

Sep 30 18:11:22 centos-7.xyzwidgets.com sshd[13567]: Server listen

Sep 30 18:11:22 centos-7.xyzwidgets.com sshd[13567]: Server listen

Sep 30 18:11:22 centos-7.xyzwidgets.com systemd[1]: Started OpenSS

[lionel@centos-7 ~]$

Katelyn can now do all of the commands in the STORAGE
command alias, whereas Gunther can only use fdisk to look
at the partition tables. The members of the backup_admins Linux
group can do commands in the BACKUP command alias.

The last thing we'll look at for this topic is the host aliases
examples that you see preceding the user alias example:

Host_Alias FILESERVERS = fs1, fs2

Host_Alias MAILSERVERS = smtp, smtp2

Each host alias consists of a list of server hostnames. This is
what allows you to create one sudoers file on one machine,
and deploy it across the network. For example, you could
create a WEBSERVERS host alias, a WEBADMINS user alias, and a
WEBCOMMANDS command alias with the appropriate commands.

Your configuration would look something like this:

Now, when a user types a command into a server on the
network, sudo will first look at the hostname of that server. If
the user is authorized to perform that command on that
server, then sudo allows it. Otherwise, sudo denies it. In a
small to medium-sized business, it would probably work just
fine to manually copy the master sudoers file to all the servers

Host_Alias WEBSERVERS = webserver1, webserver2

User_Alias WEBADMINS = junior, kayla

Cmnd_Alias WEBCOMMANDS = /usr/bin/systemctl status httpd, /usr/

WEBADMINS WEBSERVERS=(ALL) WEBCOMMANDS

on the network. But, in a large enterprise, you'll want to
streamline and automate the process. For this, you could use
something like Puppet, Chef, or Ansible. (These three
technologies are beyond the scope of this book, but you'll
find plenty of books and video courses about all three of
them at the Packt website.)

All of these techniques will work on your Ubuntu VM as
well as on the CentOS VM. The only catch is, Ubuntu
doesn't come with any predefined command aliases, so you'll
have to type them in yourself.

Anyway, I know that you're tired of reading, so let's do some
work.

Hands-on lab for
assigning limited sudo
privileges
In this lab, you'll create some users and assign them different
levels of privileges. To simplify things, we'll use the CentOS
virtual machine.

1. Log in to the CentOS virtual machine and create user
accounts for Lionel, Katelyn, and Maggie:

 sudo useradd lionel

 sudo ueradd katelyn

 sudo useradd maggie

 sudo passwd lionel

 sudo passwd katelyn

 sudo passwd maggie

2. Open visudo:

 sudo visudo

Find the STORAGE command alias and remove the
comment symbol from in front of it.

3. Add the following lines to the end of the file, using
tabs to separate the columns:

 lionel ALL=(ALL) ALL

 katelyn ALL=(ALL) /usr/bin/systemctl status sshd

 maggie ALL=(ALL) STORAGE

Save the file and exit visudo.

4. To save time, we'll use su to log into the different user
accounts. You won't need to log out of your own
account to perform these steps. First, log in to
Lionel's account and verify that he has full sudo
privileges by running several root-level commands:

 su - lionel

 sudo su -

 exit

 sudo systemctl status sshd

 sudo fdisk -l

 exit

5. This time, log in as Katelyn and try to run some root-
level commands. (Don't be too disappointed if they

don't all work, though.)

 su - katelyn

 sudo su -

 sudo systemctl status sshd

 sudo systemctl restart sshd

 sudo fdisk -l

 exit

6. Finally, log in as Maggie, and run the same set of
commands that you ran for Katelyn.

7. Keep in mind that although we only had three
individual users for this lab, you could just as easily
have handled more users by setting them up in user
aliases or Linux groups.

Since sudo is such a great security tool, you
would think that everyone would use it, right?
Sadly, that's not the case. Pretty much any time
you look at either a Linux tutorial website or a
Linux tutorial YouTube channel, you'll see the
person who's doing the demo logged in at the
root user command prompt. In some cases, I've
seen the person remotely logged in as the root
user on a cloud-based virtual machine. Now, if
logging in as the root user is already a bad idea,
then logging in across the internet as the root
user is an even worse idea. In any case, seeing

everybody do these tutorial demos from the root
user's shell drives me absolutely crazy.

Having said all this, there are some things that
don't work with sudo. Bash shell internal
commands, such as cd don't work with it, and
injecting kernel values into the /proc filesystem
also doesn't work with it. For tasks such as these,
a person would have to go to the root command
prompt. Still though, make sure that only users
who absolutely have to use the root user
command prompt have access to it.

Advanced tips and tricks
for using sudo
Now that we've looked at the basics of setting up a good
sudo configuration, we're confronted with a bit of a paradox.
That is, even though sudo is a security tool, certain things
that you can do with it can make your system even more
insecure than it was. Let's see how to avoid that.

The sudo timer
By default, the sudo timer is set for 5 minutes. This means
that once a user performs one sudo command and enters a
password, he or she can perform another sudo command
within 5 minutes without having to enter the password again.
Although this is obviously handy, it can also be problematic
if users were to walk away from their desks with a command
terminal still open. If the 5 minute timer hasn't yet expired,
someone else could come along and perform some root-level
task. If your security needs require it, you can easily disable
this timer by adding a line to the Defaults section of the sudoers
file. This way, users will have to enter their passwords every
time they run a sudo command. You can make this a global
setting for all users, or you can just set it for certain
individual users.

Hands-on lab for
disabling the sudo timer
For this lab, you'll disable the sudo timer on your CentOS
VM.

1. Log in to the same CentOS virtual machine that you
used for the previous lab. We'll be using the user
accounts that you've already created.

2. At your own user account command-prompt, enter
the following commands:

 sudo fdisk -l

 sudo systemctl status sshd

 sudo iptables -L

You'll see that you only needed to enter the password
once to do all three commands.

3. Open visudo with:

 sudo visudo

In the Defaults specification section of the file, add the
following line:

 Defaults timestamp_timeout = 0

Save the file and exit visudo.

4. Perform the commands that you performed in Step 2.
This time, you should see that you have to enter a
password every time.

5. Open visudo and modify the line that you added so
that it looks like this:

 Defaults:lionel timestamp_timeout = 0

Save the file and exit visudo.

6. From your own account shell, repeat the commands
that you performed in Step 2. Then, log in as Lionel
and perform the commands again.

7. Note that this same procedure also works for Ubuntu.

Preventing users from
having root shell access
Let's say that you want to set up a user with limited sudo
privileges, but you did so by adding a line like this:

maggie ALL=(ALL) /bin/bash, /bin/zsh

I'm sorry to say that you haven't limited Maggie's access at
all. You effectively gave her full sudo privileges with both
the Bash shell and the Zsh shell. So, don't add lines like this
to your sudoers because it will get you into trouble.

Preventing users from
using shell escapes
Certain programs, especially text editors and pagers, have a
handy shell escape feature. This allows a user to run a shell
command without having to exit the program first. For
example, from the command mode of the Vi and Vim editors,
someone could run the ls command by doing :!ls. Executing
the command would look like this:

useradd defaults file

GROUP=100

HOME=/home

INACTIVE=-1

EXPIRE=

SHELL=/bin/bash

SKEL=/etc/skel

CREATE_MAIL_SPOOL=yes

~

~

:!ls

The output would look like this:

[donnie@localhost default]$ sudo vim useradd

[sudo] password for donnie:

grub nss useradd

Press ENTER or type command to continue

grub nss useradd

Press ENTER or type command to continue

Now, imagine that you want Frank to be able to edit the
sshd_config file and only that file. You might be tempted to
add a line to your sudo configuration that would look like
this:

frank ALL=(ALL) /bin/vim /etc/ssh/sshd_config

This looks like it would work, right? Well, it doesn't because
once Frank has opened the sshd_config file with his sudo
privilege, he can then use Vim's shell escape feature to
perform other root-level commands, which would include
being able to edit other configuration files. You can fix this
problem by having Frank use sudoedit instead of vim:

frank ALL=(ALL) sudoedit /etc/ssh/sshd_config

sudoedit has no shell escape feature, so you can safely allow
Frank to use it.

Other programs that have a shell escape feature include the
following:

emacs

less

view

more

Preventing users from
using other dangerous
programs
Some programs that don't have shell escapes can still be
dangerous if you give users unrestricted privileges to use
them. These include the following:

cat

cut

awk

sed

If you must give someone sudo privileges to use one of these
programs, it's best to limit their use to only specific files.
And, that brings us to our next tip.

Limiting the user's
actions with commands
Let's say that you create a sudo rule so that Sylvester can use
the systemctl command:

sylvester ALL=(ALL) /usr/bin/systemctl

This allows Sylvester to have full use of the systemctl
features. He can control daemons, edit service files,
shutdown or reboot, and every other function that systemctl
does. That's probably not what you want. It would be better
to specify what systemctl functions that Sylvester is allowed
to do. Let's say that you want him to be able to control just
the Secure Shell service. You can make the line look like
this:

sylvester ALL=(ALL) /usr/bin/systemctl * sshd

Sylvester can now do everything he needs to do with the
Secure Shell service, but he can't shut down or reboot the
system, edit service files, or change systemd targets. But,
what if you want Sylvester to do only certain specific actions
with the Secure Shell service? Then, you'll have to omit the

wild card and specify all of the actions that you want for
Sylvester to do:

Now, Sylvester can only restart the Secure Shell service or
check its status.

When writing sudo policies, you'll want to be
aware of the differences between the different
Linux and Unix distros on your network. For
example, on Red Hat 7 and CentOS 7 systems,
the systemctl binary file is located in the /usr/bin
directory. On Debian/Ubuntu systems, it's
located in the /bin directory. If you have to roll
out a sudoers file to a large enterprise network
with mixed operating systems, you can use host
aliases to ensure that servers will only allow the
execution of commands that are appropriate for
their operating systems.

Also, be aware that some system services have
different names on different Linux distros. On
Red Hat and CentOS systems, the Secure Shell
service is sshd. On Debian/Ubuntu systems, it's
just plain ssh.

sylvester ALL=(ALL) /usr/bin/systemctl status sshd, /usr/bin/s

Letting users run as
other users
In the following line, (ALL) means that Sylvester can run the
systemctl commands as any user:

This effectively gives Sylvester root privileges for these
commands because the root user is definitely any user. You
could, if desired, change that (ALL) to (root) in order to specify
that Sylvester can only run these commands as the root user:

Okay, there's probably not much point in that because
nothing changes. Sylvester had root privileges for these
systemctl commands before, and he still has them now. But,
there are more practical uses for this feature. Let's say that
Vicky is a database admin, and you want her to run as the
database user:

sylvester ALL=(ALL) /usr/bin/systemctl status sshd, /usr/bin/s

sylvester ALL=(root) /usr/bin/systemctl status sshd, /usr/bin/

vicky ALL=(database) /usr/local/sbin/some_database_script.sh

Vicky could then run the command as the database user by
entering the following code:

sudo -u database some_database_script.sh

This is one of those features that you might not use that
often, but keep it in mind anyway. You never know when it
might come in handy.

Okay, this wraps it up for our discussion of sudo. Let's now
turn our attention to ensuring the security of our regular
users.

Locking down users'
home directories the Red
Hat or CentOS way
This is another area where different Linux distro families do
business differently from each other. As we shall see, each
distro family comes with different default security settings. A
security administrator who oversees a mixed environment of
different Linux distros will need to take this into account.

One beautiful thing about Red Hat Enterprise Linux and all
of its offspring, such as CentOS, is that they have better out-
of-the-box security than any other Linux distro. This makes
it quicker and easier to harden Red Hat-type systems because
much of the work has already been done. One thing that's
already been done for us is locking down users' home
directories:

[donnie@localhost home]$ sudo useradd charlie

[sudo] password for donnie:

[donnie@localhost home]$

[donnie@localhost home]$ ls -l

total 0

drwx------. 2 charlie charlie 59 Oct 1 15:25 charlie

drwx------. 2 donnie donnie 79 Sep 27 00:24 donnie

drwx------. 2 frank frank 59 Oct 1 15:25 frank

[donnie@localhost home]$

By default, the useradd utility on Red Hat-type systems creates
user home directories with a permissions setting of 700. This
means that only the user who owns the home directory can
access it. All other normal users are locked out. We can see
why by looking at the /etc/login.defs file. Scroll down
towards the bottom of the file, and you'll see:

CREATE_HOME yes

UMASK 077

The login.defs file is one of two files where default settings
for useradd are configured. This UMASK line is what determines
the permissions values on home directories as they get
created. Red Hat-type distros have it configured with the 077
value, which removes all permissions from the group and
others. This UMASK line is in the login.defs file for all Linux
distros, but Red Hat-type distros are the only ones that have
UMASK set to such a restrictive value by default. Non-Red Hat
distros usually have a UMASK value of 022, which creates home
directories with a permissions value of 755. This allows
everybody to enter everybody else's home directories and
access each others' files.

Locking down users'
home directories the
Debian/Ubuntu way
Debian and its offspring, such as Ubuntu, have two user
creation utilities:

useradd on Debian/Ubuntu

adduser on Debian/Ubuntu

useradd on
Debian/Ubuntu
The useradd utility is there, but Debian and Ubuntu don't come
with the handy preconfigured defaults as Red Hat and
CentOS do. If you were to just do sudo useradd frank on a
default Debian/Ubuntu machine, Frank would have no home
directory and would be assigned the wrong default shell. So,
to create a user account with useradd on a Debian or Ubuntu
system, the command would look something like:

sudo useradd -m -d /home/frank -s /bin/bash frank

In this command:

-m creates the home directory.

-d specifies the home directory.

-s specifies Frank's default shell. (Without the -s,
Debian/Ubuntu would assign to Frank the /bin/sh
shell.)

When you look at the home directories, you'll see that they're
wide open, with execute and read privileges for everybody:

donnie@packt:/home$ ls -l

total 8

drwxr-xr-x 3 donnie donnie 4096 Oct 2 00:23 donnie

drwxr-xr-x 2 frank frank 4096 Oct 1 23:58 frank

donnie@packt:/home$

As you can see, Frank and I can get into each other's stuff.
(And no, I don't want Frank getting into my stuff.) Each user
could change the permissions on his or her own directory, but
how many of your users would know how to do that? So,
let's fix that ourselves:

cd /home

sudo chmod 700 *

Let's see what we have now:

donnie@packt:/home$ ls -l

total 8

drwx------ 3 donnie donnie 4096 Oct 2 00:23 donnie

drwx------ 2 frank frank 4096 Oct 1 23:58 frank

donnie@packt:/home$

That looks much better.

To change the default permissions setting for home
directories, open /etc/login.defs for editing. Look for the line:

UMASK 022

Change it to:

UMASK 077

Now, new users' home directories will get locked down on
creation, just as they do with Red Hat.

adduser on
Debian/Ubuntu
The adduser utility is an interactive way to create user
accounts and passwords with a single command, which is
unique to the Debian family of Linux distros. Most of the
default settings that are missing from the Debian
implementation of useradd are already set for adduser. The only
thing wrong with the default settings is that it creates user
home directories with the wide-open 755 permissions value.
Fortunately, that's easy to change. (We'll see how in just a
bit.)

Although adduser is handy for just casual creation of user
accounts, it doesn't offer the flexibility of useradd and it isn't
suitable for use in shell scripting. One thing that adduser will
do that useradd won't is to automatically encrypt a user's home
directory as you create the account. To make it work, you'll
first have to install the ecryptfs-utils package. So, to create an
account with an encrypted home directory for Cleopatra, you
do:

sudo apt install ecryptfs-utils

donnie@ubuntu-steemnode:~$ sudo adduser --encrypt-home cleopatra

[sudo] password for donnie:

Adding user `cleopatra' ...

Adding new group `cleopatra' (1004) ...

The first time that Cleopatra logs in, she'll need to run the
ecryptfs-unwrap-passphrase command that's mentioned in the
preceding output. She'll then want to write her passphrase
down and store it in a safe place:

cleopatra@ubuntu-steemnode:~$ ecryptfs-unwrap-passphrase

Passphrase:

d2a6cf0c3e7e46fd856286c74ab7a412

cleopatra@ubuntu-steemnode:~$

Adding new user `cleopatra' (1004) with group `cleopatra' ...

Creating home directory `/home/cleopatra' ...

Setting up encryption ...

**

YOU SHOULD RECORD YOUR MOUNT PASSPHRASE AND STORE IT IN A SAFE LOC

 ecryptfs-unwrap-passphrase ~/.ecryptfs/wrapped-passphrase

THIS WILL BE REQUIRED IF YOU NEED TO RECOVER YOUR DATA AT A LATER

**

Done configuring.

Copying files from `/etc/skel' ...

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully

Changing the user information for cleopatra

Enter the new value, or press ENTER for the default

 Full Name []: Cleopatra Tabby Cat

 Room Number []: 1

 Work Phone []: 555-5556

 Home Phone []: 555-5555

 Other []:

Is the information correct? [Y/n] Y

donnie@ubuntu-steemnode:~$

We'll look at the whole encryption thing more in detail when
we get to the encryption chapter.

Hands-on lab for
configuring adduser
For this lab, we'll be working with the adduser utility, which is
peculiar to Debian/Ubuntu systems:

1. On your Ubuntu virtual machine, open the
/etc/adduser.conf file for editing. Find the line that
says:

 DIR_MODE=0755

Change it to:

 DIR_MODE=0700

Save the file and exit the text editor.

2. Install the ecryptfs-utils package:

 sudo apt install ecryptfs-utils

3. Create a user account with encrypted home directory
for Cleopatra and then view the results:

 sudo adduser --encrypt-home cleopatra

 ls -l /home

4. Log in as Cleopatra and run the ecryptfs-unwrap-
passphrase command:

 su - cleopatra

 ecryptfs-unwrap-passphrase

 exit

Note that some of the information that adduser asks for
is optional, and you can just hit the Enter key for those
items.

Enforcing strong
password criteria
You wouldn't think that a benign-sounding topic such as
strong password criteria would be so controversial, but it is.
The conventional wisdom that you've undoubtedly heard for
your entire computer career says:

Make passwords of a certain minimum length

Make passwords that consist of a combination of
uppercase letters, lowercase letters, numbers, and
special characters

Ensure that passwords don't contain any words that
are found in the dictionary or that are based on the
users' own personal data

Force users to change their passwords on a regular
basis

But, using your favorite search engine, you'll see that
different experts disagree on the details of these criteria. For
example, you'll see disagreements about whether passwords
should be changed every 30, 60, or 90 days, disagreements

about whether all four types of characters need to be in a
password, and even disagreements on what the minimum
length of a password should be.

The most interesting controversy of all comes from—of all
places—the guy who invented the preceding criteria to begin
with. He now says that it's all bunk and regrets having come
up with it. He now says that we should be using passphrases
that are long, yet easy to remember. He also says that they
should be changed only if they've been breached.

Bill Burr, the former National Institutes of
Standards and Technology engineer who created
the strong password criteria that I've outlined
earlier, shares his thoughts about why he now
disavows his own work.

Refer to: https://www.pcmag.com/news/355496/you-might-
not-need-complex-alphanumeric-passwords-after-all.

However, having said all that, there is the reality that most
organizations are still wedded to the idea of using complex
passwords that regularly expire, and you'll have to abide by
their rules if you can't convince them otherwise. And
besides, if you are using traditional passwords, you do want
them to be strong enough to resist any sort of password
attack. So now, we'll take a look at the mechanics of
enforcing strong password criteria on a Linux system.

I have to confess that I had never before thought
to try creating a passphrase to use in place of a
password on a Linux system. So, I just now tried

https://www.pcmag.com/news/355496/you-might-not-need-complex-alphanumeric-passwords-after-all

it on my CentOS virtual machine to see if it
would work.

I created an account for Maggie, my black-and-
white tuxedo kitty. For her password, I entered
the passphrase, I like other kitty cats. You may
think, "Oh, that's terrible. This doesn't meet any
complexity criteria, and it uses dictionary words.
How is that secure?" But, the fact that it's a
phrase with distinct words separated by blank
spaces does make it secure and very difficult to
brute-force.

Now, in real life, I would never create a
passphrase that expresses my love for cats
because it's not hard to find out that I really do
love cats. Rather, I would choose a passphrase
about some more obscure part of my life that
nobody but me knows about.

In any case, there are two advantages of
passphrases over passwords. They're more
difficult to crack than traditional passwords, yet
they're easier for users to remember. For extra
security though, just don't create passphrases
about a fact of your life that everybody knows
about.

Installing and configuring
pwquality
We'll be using the pwquality module for PAM (Pluggable
Authentication Module). This is a newer technology that
has replaced the old cracklib module. On a Red Hat 7 or
CentOS 7 system, pwquality is installed by default, even if you
do a minimal installation. If you cd into the /etc/pam.d
directory, you can do a grep operation to see that the PAM
configuration files are already set up. The retry=3 means that
a user will only have three tries to get the password right
when logging into the system:

For your Ubuntu system, you'll need to install pwquality
yourself. You'll do that with the command:

sudo apt install libpam-pwquality

[donnie@localhost pam.d]$ grep 'pwquality' *

password-auth:password requisite pam_pwquality.so try_first

password-auth-ac:password requisite pam_pwquality.so try_fi

system-auth:password requisite pam_pwquality.so try_first_p

system-auth-ac:password requisite pam_pwquality.so try_firs

[donnie@localhost pam.d]$

We'll now cd into the /etc/pam.d directory and perform the
same grep command that we did before. We'll see that
installing the libpam-pwquality modules automatically updates
the PAM configuration files:

The rest of the procedure is the same for both operating
systems and consists of just editing the
/etc/security/pwquality.conf file. When you open this file in
your text editor, you'll see that everything is commented out,
which means that no password complexity criteria are in
effect. You'll also see that it's very well-documented because
every setting has its own explanatory comment.

You can set password complexity criteria however you want
just by uncommenting the appropriate lines and setting the
proper values. Let's take a look at just one setting:

The minimum length setting works on a credit system. This
means that for every different type of character class in the
password, the minimum required password length will be
reduced by one character. For example, let's set the minlen to a
value of 19 and try to assign Katelyn the password, turkeylips:

donnie@packt:/etc/pam.d$ grep 'pwquality' *

common-password:password requisite pa

donnie@packt:/etc/pam.d$

Minimum acceptable size for the new password (plus one if

credits are not disabled which is the default). (See pam_crackli

Cannot be set to lower value than 6.

minlen = 8

minlen = 19

[donnie@localhost ~]$ sudo passwd katelyn

Changing password for user katelyn.

New password:

BAD PASSWORD: The password is shorter than 18 characters

Retype new password:

[donnie@localhost ~]$

Because the lowercase characters in turkeylips count as credit
for one type of character class, we're only required to have
18 characters instead of 19. If we try this again with
TurkeyLips, we'll get:

[donnie@localhost ~]$ sudo passwd katelyn

Changing password for user katelyn.

New password:

BAD PASSWORD: The password is shorter than 17 characters

Retype new password:

[donnie@localhost ~]$

This time, the uppercase T and uppercase L count as a second
character class, so we only need to have 17 characters in the
password.

Just below the minlen line, you'll see the credit lines. Let's say
that you don't want lowercase letters to count toward your
credits. You would find this line:

lcredit = 1

Also, you would change the 1 to a 0:

lcredit = 0

 Then, try assigning Katelyn turkeylips as a password:

[donnie@localhost ~]$ sudo passwd katelyn

Changing password for user katelyn.

New password:

BAD PASSWORD: The password is shorter than 19 characters

Retype new password:

[donnie@localhost ~]$

This time, the pwquality really does want 19 characters. If we
set a credit value to something higher than one, we would get
credit for multiple characters of the same class type up to that
value.

We can also set the credit values to negative numbers in
order to require a certain number of characters types in a
password. We have the following example:

dcredit = -3

This would require at least three digits in a password.
However, it's a really a bad idea to use this feature because
someone who's doing a password attack would soon find the
patterns that you require, which would help the attacker to
more precisely direct the attack. If you need to require that a
password has multiple character types, it would be better to
use the minclass parameter:

minclass = 3

It's already set to a value of three, which would require
characters from three different classes. To use this value, all
you have to do is to remove the comment symbol.

The rest of the parameters in pwquality.conf work pretty much
the same way, and each one has a well-written comment to
explain what it does.

If you use your sudo privilege to set someone
else's password, the system will complain if you
create a password that doesn't meet complexity
criteria, but it will let you do it. If a normal user
were to try to change his or her own password
without sudo privileges, the system would not
allow a password that doesn't meet complexity
criteria.

Hands-on lab for setting
password complexity
criteria
For this lab, you can use either the CentOS or Ubuntu virtual
machine, as desired. The only difference is that you won't
perform Step 1 for CentOS:

1. For Ubuntu only, install the libpam-pwquality package:

 sudo apt install libpam-pwquality

2. Open the /etc/security/pwquality.conf file in your
preferred text editor. Remove the comment symbol
from in front of the minlen line and change the value
to 19. It should now look like this:

 minlen = 19

Save the file and exit the editor.

3. Create a user account for Goldie and attempt to
assign her the passwords, turkeylips, TurkeyLips, and
Turkey93Lips. Note the change in each warning
message.

4. In the pwquality.conf file, comment out the minlen line.
Uncomment the minclass line and the maxclassrepeat
line. Change the maxclassrepeat value to 5. The lines
should now look like:

 minclass = 3

 maxclassrepeat = 5

Save the file and exit the text editor.

5. Try assigning various passwords that don't meet the
complexity criteria that you've set to Goldie's account
and view the results.

In the /etc/login.defs file on your CentOS
machine, you'll see the line:

PASS_MIN_LEN 5

Supposedly, this is to set the minimum password
length, but in reality, pwquality overrides it. So,
you could set this value to anything at all, and it
would have no effect.

Setting and enforcing
password and account
expiration
Something you never want is to have unused user accounts
remain active. There have been incidents where an
administrator set up user accounts for temporary usage, such
as for a conference, and then just forgot about them after the
accounts were no longer needed. Another example would be
if your company were to hire contract workers whose
contract expires on a specific date. Allowing those accounts
to remain active and accessible after the temporary
employees leave the company would be a huge security
problem. In cases like these, you want a way to ensure that
temporary user accounts aren't forgotten about when they're
no longer needed. If your employer subscribes to the
conventional wisdom that users should change their
passwords on a regular basis, then you'll also want to ensure
that it gets done.

Password expiration data and account expiration data are two
different things. They can be set either separately or together.
When someone's password expires, he or she can change it,
and everything will be all good. If somebody's account
expires, only someone with the proper admin privileges can
unlock it.

To get started, take a look at the expiry data for your own
account. (Note that you won't need sudo privileges to look at
your own data, but you will still need to specify your own
username.)

donnie@packt:~$ chage -l donnie

[sudo] password for donnie:

Last password change : Oct 03, 2017

Password expires : never

Password inactive : never

Account expires : never

Minimum number of days between password change : 0

Maximum number of days between password change : 99999

Number of days of warning before password expires : 7

donnie@packt:~$

You can see here that no expiration data have been set.
Everything here is set according to the out-of-box system
default values. Other than the obvious items, here's a
breakdown of what you see:

Password inactive: If this were set to a positive
number, I would have that many days to change an
expired password before the system would lock out
my account.

Minimum number of days between password
change: Because this is set to 0, I can change my
password as often as I like. If it were set to a positive
number, I would have to wait that number of days

after changing my password before I could change it
again.

Maximum number of days between password
change: This is set to the default value of 99999,
meaning that my password will never expire.

Number of days warning before password expires:
The default value is 7, but that's rather meaningless
when the password is set to never expire.

With the chage utility, you can either set password
and account expiration data for other users or
you use the -l option to view expiration data. Any
unprivileged user can use chage -l without sudo to
view his or her own data. To either set data or
view someone else's data, you need sudo. We'll
take a closer look at chage a bit later.

Before we look at how to change expiration data, let's first
look at where the default settings are stored. We'll first look
at the /etc/login.defs file. The three relevant lines are:

PASS_MAX_DAYS 99999

PASS_MIN_DAYS 0

PASS_WARN_AGE 7

You can edit these values to fit your organization's needs. For
example, changing PASS_MAX_DAYS to a value of 30 would cause
all new user passwords from that point on to have a 30 day

expiration data. (By the way, setting the default password
expiry data in login.defs works for both Red Hat or CentOS
and Debian/Ubuntu.)

Configuring default
expiry data for useradd –
for Red Hat or CentOS
only
The /etc/default/useradd file has the rest of the default settings.
In this case, we'll look at the one from the CentOS machine.

Ubuntu also has this same useradd configuration
file, but it doesn't work. No matter how you
configure it, the Ubuntu version of useradd just
won't read it. So, the write-up about this file only
applies to Red Hat or CentOS.

useradd defaults file

GROUP=100

HOME=/home

INACTIVE=-1

EXPIRE=

SHELL=/bin/bash

SKEL=/etc/skel

CREATE_MAIL_SPOOL=yes

The EXPIRE= line sets the default expiration date for new user
accounts. By default, there is no default expiration
date. INACTIVE=-1 means that user accounts won't be
automatically locked out after the users' passwords expire. If

we set this to a positive number, then any new users will
have that many days to change an expired password before
the account gets locked. To change the defaults in the useradd
file, you can either hand-edit the file or use useradd -D with the
appropriate option switch for the item that you want to
change. For example, to set a default expiration date of
December 31, 2019, the command would be:

sudo useradd -D -e 2019-12-31

To see the new configuration, you can either open the useradd
file or just do sudo useradd -D:

[donnie@localhost ~]$ sudo useradd -D

GROUP=100

HOME=/home

INACTIVE=-1

EXPIRE=2019-12-31

SHELL=/bin/bash

SKEL=/etc/skel

CREATE_MAIL_SPOOL=yes

[donnie@localhost ~]$

You've now set it so that any new user accounts that get
created will have the same expiration date. You can do the
same thing with either the INACTIVE setting or the SHELL setting:

sudo useradd -D -f 5

sudo useradd -D -s /bin/zsh

[donnie@localhost ~]$ sudo useradd -D

GROUP=100

HOME=/home

INACTIVE=5

EXPIRE=2019-12-31

SHELL=/bin/zsh

SKEL=/etc/skel

CREATE_MAIL_SPOOL=yes

[donnie@localhost ~]$

Now, any new user accounts that get created will have the
Zsh shell set as the default shell and will have to have
expired passwords changed within five days to prevent
having the account automatically locked out.

useradd doesn't do any safety checks to ensure that
the default shell that you've assigned is installed
on the system. In our case, Zsh isn't installed, but
useradd will still allow you to create accounts with
Zsh as the default shell.

So, just how useful is this useradd configuration feature in real
life? Probably not that much, unless you need to create a
whole bunch of user accounts at once with the same settings.
Even so, a savvy admin would just automate the process with
a shell script, rather than messing around with this
configuration file.

Setting expiry data on a
per-account basis, with
useradd and usermod
You might find it useful to set the default password expiry
data in login.defs, but you probably won't find it too useful to
configure the useradd configuration file. Really, what are the
chances that you'll want to create all user accounts with the
same account expiration date? Setting password expiry data
in login.defs is more useful because you'll just be saying that
you want new passwords to expire within a certain number
of days, rather than to have them all expire on a specific date.

Most likely, you'll want to set account expiry data on a per-
account basis, depending on whether you know that the
accounts will no longer be needed as of a specific date. There
are three ways that you can do this:

Use useradd with the appropriate option switches to set
expiry data as you create the accounts. (If you need
to create a whole bunch of accounts at once with the
same expiry data, you can automate the process with
a shell script.)

Use usermod to modify expiry data on existing
accounts. (The beautiful thing about usermod is that it
uses the same option switches as useradd.)

Use chage to modify expiry data on existing accounts.
(This one uses a whole different set of option
switches.)

You can use useradd and usermod to set account expiry data, but
not for setting password expiry data. The only two option
switches that affect account expiry data are:

-e: Use this to set an expiration date for the account,
in the form YYYY-MM-DD

-f: Use this to set the number of days after the user's
password expires that you want for his or her account
to get locked out

Let's say that you want to create an account for Charlie that
will expire at the end of 2020. On a Red Hat or CentOS
machine, you could enter the following:

sudo useradd -e 2020-12-31 charlie

On a non-Red Hat or CentOS machine, you'd have to add the
option switches that create the home directory and assign the

correct default shell:

Use chage -l to verify what you've entered:

donnie@ubuntu-steemnode:~$ sudo chage -l charlie

Last password change : Oct 06, 2017

Password expires : never

Password inactive : never

Account expires : Dec 31, 2020

Minimum number of days between password change : 0

Maximum number of days between password change : 99999

Number of days of warning before password expires : 7

donnie@ubuntu-steemnode:~$

Now, let's say that Charlie's contract has been extended, and
you need to change his account expiration to the end of
January, 2021. You'll use usermod the same way on any Linux
distro:

sudo usermod -e 2021-01-31 charlie

Again, verify that everything is correct with chage -l:

donnie@ubuntu-steemnode:~$ sudo chage -l charlie

Last password change : Oct 06, 2017

Password expires : never

Password inactive : never

Account expires : Jan 31, 2021

Minimum number of days between password change : 0

Maximum number of days between password change : 99999

sudo useradd -m -d /home/charlie -s /bin/bash -e 2020-12-31 charli

Number of days of warning before password expires : 7

donnie@ubuntu-steemnode:~$

Optionally, you can set the number of days before an account
with an expired password will get locked out:

sudo usermod -f 5 charlie

But, if you were to do that now, you wouldn't see any
difference in the chage -l output because we still haven't set
an expiration data for Charlie's password.

Setting expiry data on a
per-account basis, with
chage
You would only use chage to modify existing accounts, and
you would use it for setting either an account expiration or a
password expiration. Here are the relevant option switches:

-

d

If you use the -d 0 option on someone's
account, you'll force the user to change his or
her password on their next login.

-

E

This is equivalent to the lower-case -e for
useradd or usermod. It sets the expiration date for
the user account.

-

I

This is equivalent to -f for useradd or usermod. It
sets the number of days before an account
with an expired password will be locked out.

-

m

This sets the minimum number of days
between password changes. In other words, if
Charlie changes his password today, a -m 5

option will force him to wait five days before
he can change his password again.

-

M

This sets the maximum number of days
before a password expires. (Be aware though
that if Charlie last set his password 89 days
ago, using a -M 90 option on his account will
cause his password to expire tomorrow, not
90 days from now.)

-

W

This will set the number of warning days for
passwords that are about to expire.

You can set just one of these data items at a time or you can
set them all at once. In fact, to avoid frustrating you with a
different demo for each individual item, let's set them all at
once, except for the -d 0, and then we'll see what we've got:

sudo chage -E 2021-02-28 -I 4 -m 3 -M 90 -W 4 charlie

donnie@ubuntu-steemnode:~$ sudo chage -l charlie

Last password change : Oct 06, 2017

Password expires : Jan 04, 2018

Password inactive : Jan 08, 2018

Account expires : Feb 28, 2021

Minimum number of days between password change : 3

Maximum number of days between password change : 90

Number of days of warning before password expires : 4

donnie@ubuntu-steemnode:~$

All expiration data have now been set.

For our final example, let's say that you've just created a new
account for Samson, and you want to force him to change his
password the first time he logs in. There are two ways to do
that. Either way, you would do it after you've set his
password initially. We have the following code:

sudo chage -d 0 samson

or

sudo passwd -e samson

donnie@ubuntu-steemnode:~$ sudo chage -l samson

Last password change : password must be changed

Password expires : password must be changed

Password inactive : password must be changed

Account expires : never

Minimum number of days between password change : 0

Maximum number of days between password change : 99999

Number of days of warning before password expires : 7

donnie@ubuntu-steemnode:~$

Hands-on lab for setting
account and password
expiry data
In this lab, you'll create a couple of new user accounts, set
expiration data, and view the results. You can do this lab on
either the CentOS or the Ubuntu virtual machine. (The only
difference will be with the useradd commands.)

1. Create a user account for Samson with the expiration
date of June 30, 2023, and view the results.

For CentOS:

 sudo useradd -e 2023-06-30 samson

 sudo chage -l samson

For Ubuntu:

 sudo useradd -m -d /home/samson -s /bin/bash -e 2023-06-30

 sudo chage -l samson

2. Use usermod to change Samson's account expiration
date to July 31, 2023:

 sudo usermod -e 2023-07-31

 sudo chage -l samson

3. Assign a password to Samson's account, then force
him to change his password on his first login. Log in
as Samson, change his password, then log back out to
your own account:

 sudo passwd samson

 sudo passwd -e samson

 sudo chage -l samson

 su - samson

 exit

4. Use chage to set a 5 day waiting period for changing
passwords, a password expiration period of 90 days,
an inactivity period of 2 days, and a warning period
of 5 days:

 sudo chage -m 5 -M 90 -I 2 -W 5 samson

 sudo chage -l samson

5. Keep this account because you'll be using it for the
lab in the next section.

Preventing brute-force
password attacks
Amazingly enough, this is another topic that engenders a bit
of controversy. I mean, nobody denies the wisdom of
automatically locking out user accounts that are under attack.
The controversial part concerns the number of failed login
attempts that we should allow before locking the account.

Back in the stone age of computing, so long ago that I still
had a full head of hair, the early Unix operating systems only
allowed users to create a password with a maximum of eight
lowercase letters. So in those days, it was possible for early
man to brute-force someone else's password just by sitting
down at the keyboard and typing in random passwords.
That's when the philosophy started of having user accounts
get locked out after only three failed login attempts.
Nowadays, with strong passwords, or better yet, a strong
passphrase, setting a lockout value of three failed login
attempts will do three things:

It will unnecessarily frustrate users

It will cause extra work for help desk personnel

If an account really is under attack, it will lock the
account before you've had a chance to gather
information about the attacker

Setting the lockout value to something more realistic, like
100 failed login attempts, will still provide good security,
while still giving you enough time to gather information
about the attackers. Just as importantly, you won't cause
undue frustration to users and help desk personnel.

Anyway, regardless of how many failed login attempts your
employer allows you to allow, you'll still need to know how
to set it all up. So, let's dig in.

Configuring the
pam_tally2 PAM module
To make this magic work, we'll rely on our good friend, the
PAM module. The pam_tally2 module comes already installed
on both CentOS and Ubuntu, but it isn't configured. For both
of our virtual machines, we'll be editing the /etc/pam.d/login
file. Figuring out how to configure it is easy because there's
an example at the bottom of the pam_tally2 man page:

In the second line of the example, we see that pam_tally2 is set
with:

EXAMPLES

 Add the following line to /etc/pam.d/login to lock the acco

 auth required pam_securetty.so

 auth required pam_tally2.so deny=4 even_deny_root unloc

 auth required pam_env.so

 auth required pam_unix.so

 auth required pam_nologin.so

 account required pam_unix.so

 password required pam_unix.so

 session required pam_limits.so

 session required pam_unix.so

 session required pam_lastlog.so nowtmp

 session optional pam_mail.so standard

deny=4: This means that the user account under attack
will get locked out after only four failed login
attempts

even_deny_root: This means that even the root user
account will get locked if it's under attack

unlock_time=1200: The account will get automatically
unlocked after 1200 seconds or 20 minutes

Now, if you look at the actual login file on either of your
virtual machines, you'll see that they don't look exactly like
this example login file that's in both of their man pages.
That's okay, we'll still make it work.

Once you've configured the login file and have had a failed
login, you'll see a new file created in the /var/log directory.
You'll view information from that file with the
pam_tally2 utility. You can also use pam_tally2 to manually
unlock a locked account if you don't want to wait for the
timeout period:

donnie@ubuntu-steemnode:~$ sudo pam_tally2

Login Failures Latest failure From

charlie 5 10/07/17 16:38:19

donnie@ubuntu-steemnode:~$ sudo pam_tally2 --user=charlie --reset

Login Failures Latest failure From

charlie 5 10/07/17 16:38:19

donnie@ubuntu-steemnode:~$ sudo pam_tally2

donnie@ubuntu-steemnode:~$

Note how after I did the reset on Charlie's account, I received
no output from doing another query.

Hands-on lab for
configuring pam_tally2
Configuring pam_tally2 is super easy because it only requires
adding one line to the /etc/pam.d/login file. To make things
even easier, you can just copy and paste that line from the
example in the pam_tally2 man page. In spite of what I said
earlier about bumping the number of failed logins up to 100,
we'll keep that number at 4 for now. (I know that you don't
want to have to do 100 failed logins in order to demo this.)

1. On either the CentOS or the Ubuntu virtual machine,
open the /etc/pam.d/login file for editing. Look for the
line that invokes the pam_securetty module. (That
should be around line 32 on Ubuntu and around line
2 on CentOS.)

Beneath that line, insert the following line:

 auth required pam_tally2.so deny=4

 even_deny_root unlock_time=1200

Save the file and exit the editor.

2. For this step, you'll need to log out of your own
account because pam_tally2 doesn't work with su. So,
log out, and while purposely using the wrong
password, attempt to log in to the samson account that
you created in the previous lab. Keep doing that until
you see the message that the account is locked. Note
that when the deny value is set to 4, it will actually
take five failed login attempts to lock Samson out.

3. Log back in to your own user account. Run this
command and note the output:

 sudo pam_tally2

4. For this step, you'll simulate that you're a help desk
worker, and Samson has just called to request that
you unlock his account. After verifying that you
really are talking to the real Samson, enter the
following line:

 sudo pam_tally2 --user=samson --reset

 sudo pam_tally2

5. Now that you've seen how this works, open the
/etc/pam.d/login file for editing, and change the deny=
parameter from 4 to 100 and save the file. (This will
make your configuration a bit more realistic in terms
of modern security philosophy.)

Locking user accounts
Okay, you've just seen how to have Linux automatically lock
user accounts that are under attack. There will also be times
when you'll want to be able to manually lock out user
accounts. Let us look at the following example:

When a user goes on vacation and you want to ensure
that nobody monkeys around with that user's account
while he or she is gone

When a user is under investigation for questionable
activities

When a user leaves the company

In regard to the last point, you may be asking yourself, "Why
can't we just delete the accounts of people who are no
working here?" And, you certainly can, easily enough.
However, before you do so, you'll need to check with your
local laws to make sure that you don't get yourself into deep
trouble. Here in the United States, for example, we have the
Sarbanes-Oxley law, which restricts what files that publicly
traded companies can delete from their computers. If you
were to delete a user account, along with that user's home
directory and mail spool, you just might be running afoul of

Sarbanes-Oxley or whatever you may have as the equivalent
law in your own home country.

Anyway, there are two utilities that you can use to
temporarily lock a user account:

Using usermod to lock a user account

Using passwd to lock user accounts

Using usermod to lock a
user account
Let's say that Katelyn has gone on maternity leave and will
be gone for at least several weeks. We can lock her account
with:

sudo usermod -L katelyn

When you look at Katelyn's entry in the /etc/shadow file, you'll
now see an exclamation point in front of her password hash,
as follows:

This exclamation point prevents the system from being able
to read her password, which effectively locks her out of the
system.

To unlock her account, just follow this:

sudo usermod -U katelyn

katelyn:!6uA5ecH1A$MZ6q5U.cyY2SRSJezV000AudP.ckXXndBNsXUdMI1vPO8

You'll see that the exclamation point has been removed so
that she can now log in to her account.

Using passwd to lock
user accounts
You could also lock Katelyn's account with:

sudo passwd -l katelyn

This does the same job as usermod -L, but in a slightly different
manner. For one thing, passwd -l will give you some feedback
about what's going on, where usermod -L gives you no
feedback at all. On Ubuntu, the feedback looks like this:

donnie@ubuntu-steemnode:~$ sudo passwd -l katelyn

[sudo] password for donnie:

passwd: password expiry information changed.

donnie@ubuntu-steemnode:~$

On CentOS, the feedback looks like this:

[donnie@localhost ~]$ sudo passwd -l katelyn

Locking password for user katelyn.

passwd: Success

[donnie@localhost ~]$

Also, on the CentOS machine, you'll see that passwd -l places
two exclamation points in front of the password hash, instead
of just one. Either way, the effect is the same.

To unlock Katelyn's account, just do:

sudo passwd -u katelyn

In versions of Red Hat or CentOS prior to
version 7, usermod -U would remove only one of the
exclamation points that passwd -l places in front
of the shadow file password hash, thus leaving
the account still locked. No big deal, though,
because running usermod -U again would remove
the second exclamation point.

In Red Hat or CentOS 7, it has been fixed. The
passwd -l command still places two exclamation
points in the shadow file, but usermod -U now
removes both of them. (That's a shame, really,
because it ruined a perfectly good demo that I
like to do for my students.)

Locking the root user
account
The cloud is big business nowadays, and it's now quite
common to rent a virtual private server from companies such
as Rackspace, DigitalOcean, or Microsoft Azure. These can
serve a variety of purposes, as follows:

You can run your own website, where you install
your own server software instead of letting a hosting
service do it

You can set up a web-based app for other people to
access

Recently, I saw a YouTube demo on a crypto-mining
channel that showed how to set up a Proof of Stake
master node on a rented virtual private server

One thing that these cloud services have in common is that
when you first set up your account and the provider sets up a
virtual machine for you, they'll have you log in to the root
user account. (It even happens with Ubuntu, even though the
root account is disabled on a local installation of Ubuntu.)

I know that there are some folk who just keep logging in to
the root account of these cloud-based servers and think
nothing of it, but that's really a horrible idea. There are
botnets, such as the Hail Mary botnet, that continuously scan
the internet for servers that have their Secure Shell port
exposed to the internet. When the botnets find one, they'll do
a brute-force password attack against the root user account of
that server. And yes, the botnets sometimes are successful in
breaking in, especially if the root account is set with a weak
password.

So, the first thing that you want to do when you set up a
cloud-based server is to create a normal user account for
yourself and set it up with full sudo privileges. Then, log out
of the root user account, log into your new account, and do
the following:

sudo passwd -l root

I mean, really, why take the chance of getting your root
account compromised?

Setting up security
banners
Something that you really, really don't want is to have a login
banner that says something to the effect, "Welcome to our
network". I say that because quite a few years ago, I attended
a mentored SANS course on incident handling. Our
instructor told us the story about how a company took a
suspected network intruder to court, only to get the case
thrown out. The reason? The alleged intruder said, "Well, I
saw the message that said 'Welcome to the network', so I
thought that I really was welcome there." Yeah, supposedly,
that was enough to get the case thrown out.

A few years later, I related that story to the students in one of
my Linux admin classes. One student said, "That makes no
sense. We all have welcome mats at our front doors, but that
doesn't mean that burglars are welcome to come in." I have
to confess that he had a good point, and I now have to
wonder about the veracity of the story.

At any rate, just to be on the safe side, you do want to set up
login messages that make clear that only authorized users are
allowed to access the system.

Using the motd file
The /etc/motd file will present a message banner to anyone
who logs in to a system through Secure Shell. On your
CentOS machine, an empty motd file is already there. On your
Ubuntu machine, the motd file isn't there, but it's a simple
matter to create one. Either way, open the file in your text
editor and create your message. Save the file and test it by
remotely logging in through Secure Shell. You should see
something like:

maggie@192.168.0.100's password:

Last login: Sat Oct 7 20:51:09 2017

Warning: Authorized Users Only!

All others will be prosecuted.

[maggie@localhost ~]$

motd stands for Message of the Day.

Using the issue file
The issue file, also found in the /etc directory, shows a
message on the local terminal, just above the login prompt. A
default issue file would just contain macro code that would
show information about the machine. Look at the following
example:

Ubuntu 16.04.3 LTS \n \l

Or, on a CentOS machine:

\S

Kernel \r on an \m

On an Ubuntu machine, the banner would look something
like this:

On a CentOS machine, it would look something like this:

You could put a security message in the issue file, and it
would show up after a reboot:

In reality, is there really any point in placing a security
message in the issue file? If your servers are properly locked
away in a server room with controlled access, then probably
not.

Using the issue.net file
Just don't. It's for telnet logins, and anyone who has telnet
enabled on their servers is seriously screwing up. However,
for some strange reason, the issue.net file still hangs around
in the /etc directory.

Summary
We covered a lot of ground in this chapter, and hopefully you
found some suggestions that you can actually use. We started
out with showing you the dangers of always logging in as the
root user and how you should use sudo, instead. In addition
to showing you the basics of sudo usage, we also looked at
some good sudo tips and tricks. We moved on to user
management, by looking at how to lock down users' home
directories, how to enforce strong password policies, and
how to enforce account and password expiration policies.
Then, we talked about a way to prevent brute-force password
attacks, how to manually lockout user accounts, and set up
security banners.

In the next chapter, we'll look at how to work with various
firewall utilities. I'll see you there.

Securing Your Server
with a Firewall
Security is one of those things that's best done in layers.
Security-in-depth, we call it. So, on any given corporate
network, you will find a firewall appliance separating the
internet from the demilitarized zone (DMZ), where your
internet-facing servers are kept. You will also find a firewall
appliance between the DMZ and the internal LAN, and
firewall software installed on each individual server and
client. We want to make it as tough as possible for intruders
to reach their final destinations within our networks.

Interestingly though, of all the major Linux distros, only the
SUSE distros and the Red Hat-type distros come with
firewalls already set up and enabled. When you look at your
Ubuntu virtual machine, you'll see that it's wide open, as if it
were extending a hearty welcome to any would-be intruder.

Since the focus of this book is on hardening our Linux
servers, we'll focus this chapter on that last level of defense,
the firewalls on our servers and clients.

In this chapter, we'll cover:

An overview of iptables

Uncomplicated Firewall for Ubuntu systems

firewalld for Red Hat systems

nftables, a more universal type of firewall system

An overview of iptables
A common misconception is that iptables is the name of the
Linux firewall. In reality, the name of the Linux firewall is
netfilter and every Linux distro has it built-in. What we
know as iptables is just one of several command-line utilities
that we can use to manage netfilter. It was originally
introduced as a feature of Linux kernel, version 2.6, so it's
been around for a long time. With iptables, you do have a
few advantages:

It's been around long enough that most Linux admins
already know how to use it

It's easy to use iptables commands in shell scripts to
create your own custom firewall configuration

It has great flexibility, in that you can use it to set up
a simple port filter, a router, or a virtual private
network

It comes preinstalled on pretty much every Linux
distro, although most distros don't come with it
preconfigured

It's very well documented, with free of charge, book-
length tutorials available on the internet

But, as you might know, there are also a few disadvantages:

IPv4 and IPv6 require their own special
implementation of iptables. So, if your organization
still needs to run IPv4 while in the process of
migrating to IPv6, you'll have to configure two
firewalls on each server, and run a separate daemon
for each (one for IPv4, the other for IPv6).

If you need to do Mac bridging that requires
ebtables, which is the third component of iptables,
with its own unique syntax.

arptables, the fourth component of iptables, also
requires its own daemon and syntax.

Whenever you add a rule to a running iptables
firewall, the entire iptables ruleset has to be reloaded,
which can have a huge impact on performance.

Until recently, iptables was the default firewall manager on
every Linux distro. It still is on most distros, but Red Hat
Enterprise Linux 7 and all of its offspring now use a newer
technology called firewalld. Ubuntu comes with
Uncomplicated Firewall (ufw), an easy-to-use frontend for

iptables. An even newer technology that we'll explore at the
end of the chapter is nftables.

For the purposes of this chapter, we'll only look at the IPv4
component of iptables. (The syntax for the IPv6 component
would be very similar.)

Basic usage of iptables
iptables consists of four tables of rules, each with its own
distinct purpose:

Filter table: For basic protection of our servers and
clients, this is the only table that we would normally
use

NAT table: Network Address Translation (NAT) is
used to connect the public internet to private
networks

Mangle table: This is used to alter network packets
as they go through the firewall

Security table: The security table is only used for
systems that have SELinux installed

Since we're currently only interested in basic host protection,
we'll only look at the filter table. Each table consists of
chains of rules, and the filter table consists of the INPUT,
FORWARD, and OUTPUT chains. Since our CentOS 7 machine uses
Red Hat's firewalld, we'll look at this on our Ubuntu
machine.

While it's true that Red Hat Enterprise Linux 7
and its offspring do come with iptables already
installed, it's disabled by default so that we can
use firewalld. It's not possible to have both
iptables and firewalld running at the same time,
because they're two totally different animals that
are completely incompatible. So, if you need to
run iptables on a Red Hat 7 system, you can do
so, but you must disable firewalld first.

However, if your organization is still running its
network with version 6 of either Red Hat or
CentOS, then your machines are still running
with iptables, since firewalld isn't available for
them.

We'll first look at our current configuration with sudo iptables
-L command:

donnie@ubuntu:~$ sudo iptables -L

[sudo] password for donnie:

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

donnie@ubuntu:~$

And remember, we said that you need a separate component
of iptables to deal with IPv6. Here we will use sudo ip6tables -

L command:

donnie@ubuntu:~$ sudo ip6tables -L

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

donnie@ubuntu:~$

In both cases, you see that there are no rules, and that the
machine is wide open. Unlike the SUSE and Red Hat folk,
the Ubuntu folk expect you to do the work of setting up a
firewall. We'll start by creating a rule that will allow the
passage of incoming packets from servers to which our host
has requested a connection:

Here's the breakdown of this command:

-A INPUT: The -A places a rule at the end of the
specified chain, which in this case is the INPUT chain.
We would have used a -I had we wanted to place the
rule at the beginning of the chain.

sudo iptables -A INPUT -m conntrack --ctstate ESTABLISHED,RELATED

-m: This calls in an iptables module. In this case,
we're calling in the conntrack module for tracking
connection states. This module allows iptables to
determine whether our client has made a connection
to another machine, for example.

--ctstate: The ctstate or connection state, portion of
our rule is looking for two things. First, it's looking
for a connection that the client established with a
server. Then, it looks for the related connection that's
coming back from the server, in order to allow it to
connect to the client. So, if a user were to use a web
browser to connect to a website, this rule would
allow packets from the web server to pass through
the firewall to get to the user's browser.

-j: This stands for jump. Rules jump to a specific
target, which in this case is ACCEPT. (Please don't ask
me who came up with this terminology.) So, this rule
will accept packets that return from the server with
which the client has requested a connection.

Our new ruleset looks like this:

donnie@ubuntu:~$ sudo iptables -L

Chain INPUT (policy ACCEPT)

target prot opt source destination

ACCEPT all -- anywhere anywhere ctstate RELATED,ESTABLISHED

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

donnie@ubuntu:~$

We'll next open up port 22 in order to allow us to connect
through Secure Shell. For now, we don't want to open any
more ports, so we'll finish this with a rule that blocks
everything else:

sudo iptables -A INPUT -p tcp --dport ssh -j ACCEPT

sudo iptables -A INPUT -j DROP

Here's the breakdown:

-A INPUT: As before, we want to place this rule at the
end of the INPUT chain with a -A.

-p tcp: The -p indicates the protocol that this rule
affects. This rule affects the TCP protocol, of which
Secure Shell is a part.

--dport ssh: When an option name consists of more
than one letter, we need to precede it with two
dashes, instead of just one. The --dport option
specifies the destination port on which we want this
rule to operate. (Note that we could also have listed

this portion of the rule as --dport 22, since 22 is the
number of the SSH port.)

-j ACCEPT: Put it all together with -j ACCEPT, and we
have a rule that allows other machines to connect to
this one through Secure Shell.

The DROP rule at the end silently blocks all connections
and packets that aren't specifically allowed in by our
two ACCEPT rules.

There are actually two ways in which we could
have written that final blocking rule:

sudo iptables -A INPUT -j DROP: It causes the
firewall to silently block packets, without
sending any notification back to the
source of those packets.

sudo iptables -A INPUT -j REJECT: It would
also cause the firewall to block packets,
but it would also send a message back to
the source about the fact that the packets
have been blocked. In general, it's better
to use DROP, because we normally want to
make it harder for malicious actors to

figure out what our firewall configuration
is.

Either way, you always want to have this rule at
the end of the chain, because any ALLOW rule that
comes after it will have no effect.

Finally, we have an almost complete, usable ruleset for our
INPUT chain:

It's almost complete, because there's still one little thing that
we forgot. That is, we need to allow traffic for the loopback
interface. That's okay, because it gives us a good chance to
see how to insert a rule where we want it, if we don't want it
at the end. In this case, we'll insert the rule at INPUT 1, which is
the first position of the INPUT chain:

sudo iptables -I INPUT 1 -i lo -j ACCEPT

donnie@ubuntu:~$ sudo iptables -L

Chain INPUT (policy ACCEPT)

target prot opt source destination

ACCEPT all -- anywhere anywhere ctst

ACCEPT tcp -- anywhere anywhere tcp

DROP all -- anywhere anywhere

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

donnie@ubuntu:~$

When we look at our new ruleset, we'll see something that's
rather strange:

donnie@ubuntu:~$ sudo iptables -L

Chain INPUT (policy ACCEPT)

target prot opt source destination

ACCEPT all -- anywhere anywhere

ACCEPT all -- anywhere anywhere ctstate RELATED,ESTABLISHED

ACCEPT tcp -- anywhere anywhere tcp dpt:ssh

DROP all -- anywhere anywhere

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

donnie@ubuntu:~$

Hmmm...

The first rule and the last rule look the same, except that one
is a DROP and the other is an ACCEPT. Let's look at it again with
the -v option:

donnie@ubuntu:~$ sudo iptables -L -v

Chain INPUT (policy ACCEPT 0 packets, 0 bytes)

 pkts bytes target prot opt in out source

 0 0 ACCEPT all -- lo any anywhere

 393 25336 ACCEPT all -- any any anywhere

 0 0 ACCEPT tcp -- any any anywhere

 266 42422 DROP all -- any any anywhere

Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)

 pkts bytes target prot opt in out source

Chain OUTPUT (policy ACCEPT 72 packets, 7924 bytes)

Now, we see that lo, for loopback, shows up under the in
column of the first rule, and any shows up under the in
column of the last rule. This all looks great, except that if we
were to reboot the machine right now, the rules would
disappear. The final thing that we need to do is make them
permanent. There are several ways to do this, but the
simplest way to do this on an Ubuntu machine is to install
the iptables-persistent package:

sudo apt install iptables-persistent

During the installation process, you'll be presented with two
screens that ask whether you want to save the current set of
iptables rules. The first screen will be for IPv4 rules, and the
second will be for IPv6 rules:

 pkts bytes target prot opt in out source

donnie@ubuntu:~$

You'll now see two new rules files in the /etc/iptables
directory:

donnie@ubuntu:~$ ls -l /etc/iptables*

total 8

-rw-r--r-- 1 root root 336 Oct 10 10:29 rules.v4

-rw-r--r-- 1 root root 183 Oct 10 10:29 rules.v6

donnie@ubuntu:~$

If you were to now reboot the machine, you'd see that your
iptables rules are still there and in effect.

Hands-on lab for basic
iptables usage
You'll do this lab on your Ubuntu virtual machine.

1. Shut down your Ubuntu virtual machine, and create a
snapshot.

You'll roll back to this snapshot for the lab in the
next section.

2. Look at your iptables rules, or lack thereof, with:

 sudo iptables -L

3. Create the rules that you need for a basic firewall,
allowing for Secure Shell access but denying
everything else:

 sudo iptables -A INPUT -m conntrack

 --ctstate ESTABLISHED,RELATE

4. View the results with:

 sudo iptables -L

5. Oops, it looks like you forgot about that loopback
interface. Add a rule for it at the top of the list:

 sudo iptables -I INPUT 1 -i lo -j ACCEPT

6. View the results with these two commands. Note the
difference between the output of each:

 sudo iptables -L

 sudo iptables -L -v

7. Install the iptables-persistent package, and choose to
save the IPv4 and IPv6 rules when prompted:

 -j ACCEPT

 sudo iptables -A INPUT -p tcp --dport ssh -j ACCEPT

 sudo iptables -A INPUT -j DROP

 sudo apt install iptables-persistent

8. Reboot the virtual machine and verify that your rules
are still active.

9. End of lab.

Now, I know you're thinking, "Wow, that's a lot of hoops to
jump through just to set up a basic firewall." And yeah,
you're right. So, give me a moment to get rid of what I just
did with iptables, and I'll show you what the Ubuntu folk
came up with to make things simpler.

You can get the whole scoop on how to do
iptables on Ubuntu here: https://help.ubuntu.com/co
mmunity/IptablesHowTo.

https://help.ubuntu.com/community/IptablesHowTo

Uncomplicated Firewall
for Ubuntu systems
The Uncomplicated Firewall is already installed on your
Ubuntu machine. It still uses the iptables service, but it offers
a vastly simplified set of commands. Perform just one simple
command to enable it, and you have a good, preconfigured
firewall. There's a graphical frontend for use on desktop
machines, but since we're learning about server security,
we'll just cover the command-line utility here.

Basic usage of ufw
ufw is disabled by default, so you'll need to enable it:

To do this, I logged in to the virtual machine remotely from a
terminal of my trusty OpenSUSE workstation. It gave me a
warning that my Secure Shell connection could be disrupted,
but that didn't happen. (It could be because of connection
tracking rules, or it could be that I just got lucky.) I'll leave it
up to you to do a sudo iptables -L, because ufw creates a very
large default ruleset that would be impossible to display in
this book.

Next, let's add a rule that will allow us to remotely connect
through Secure Shell in the future:

sudo ufw allow 22/tcp

Do a sudo iptables -L, and you'll see that the new rule shows
up in the ufw-user-input chain:

donnie@ubuntu:~$ sudo ufw enable

Command may disrupt existing ssh connections. Proceed with operati

Firewall is active and enabled on system startup

donnie@ubuntu:~$

In the preceding sudo ufw allow 22/tcp command, we had to
specify the TCP protocol, because TCP is all that we need
for Secure Shell. We can also open a port for both TCP and
UDP just by not specifying a protocol. For example, if you're
setting up a DNS server, you'll want to have port 53 open for
both protocols (you'll see the entries for port 53 listed as domain
ports):

If you do sudo ip6tables -L, you'll see that a rule for IPv6 also
got added for both of the two preceding examples.

Chain ufw-user-input (1 references)

target prot opt source destination

ACCEPT tcp -- anywhere anywhere tcp

sudo ufw allow 53

Chain ufw-user-input (1 references)

target prot opt source destination

ACCEPT tcp -- anywhere anywhere tcp

ACCEPT tcp -- anywhere anywhere tcp

ACCEPT udp -- anywhere anywhere udp

Hands-on lab for basic
ufw usage
You'll do this lab on a clean snapshot of your Ubuntu virtual
machine:

1. Shut down your Ubuntu virtual machine and restore
the snapshot. (You want to do this to get rid of all of
the iptables stuff that you just did.)

2. When you've restarted the virtual machine, verify
that the iptables rules are now gone:

 sudo iptables -L

3. View the status of ufw, enable it, and view the
results:

 sudo ufw status

 sudo ufw enable

 sudo ufw status

 sudo iptables -L

 sudo ip6tables -L

4. Open port 22/tcp to allow Secure Shell access:

 sudo ufw allow 22/tcp

 sudo iptables -L

 sudo ip6tables -L

5. This time, open port 53 for both TCP and UDP:

 sudo ufw allow 53

 sudo iptables -L

 sudo ip6tables -L

6. End of lab.

firewalld for Red Hat
systems
So far, we've looked at iptables, a generic firewall
management system that's available on all Linux distros, and
ufw, which is only available for Ubuntu. For our next act, we
turn our attention to firewalld, which is specific to Red Hat
Enterprise Linux 7 and all of its offspring.

Unlike ufw for Ubuntu, firewalld isn't just an easy-to-use
frontend for iptables. Rather, it's an entirely new way of
doing your firewall business, and it isn't compatible with
iptables. Understand, though, that iptables still comes
installed on the Red Hat 7 family, but it isn't enabled,
because you can't have iptables and firewalld enabled at the
same time. If you have to use older shell scripts that leverage
iptables, you can disable firewalld and enable iptables.

The reason that iptables and firewalld are
incompatible is that iptables stores its rules in
plain text files in the /etc/sysconfig directory, and
firewalld stores its rules files in .xml format files
in the /etc/firewalld directory and in the
/usr/lib/firewalld directory. Also, iptables doesn't
understand the concepts of zones and services
the way that firewalld does, and the rules
themselves are of a completely different format.

So, even if you could have both iptables and
firewalld running at the same time, you'd just end
up confusing the system and breaking the
firewall.

The bottom line is, you can run either iptables or
firewalld on your Red Hat or CentOS machine,
but you can't run both at the same time.

If you're running Red Hat or CentOS on a desktop machine,
you'll see in the applications menu that there is a GUI
frontend for firewalld. On a text-mode server, though, all you
have is the firewalld commands. For some reason, the Red
Hat folk haven't created an ncurses-type program for text-
mode servers, the way they did for iptables configuration on
older versions of Red Hat.

A big advantage of firewalld is the fact that it's dynamically
managed. That means that you can change the firewall
configuration without restarting the firewall service, and
without interrupting any existing connections to your server.

Verifying the status of
firewalld
Let's start by verifying the status of firewalld. There are two
ways to do this. We can use the --state option of firewall-cmd:

[donnie@localhost ~]$ sudo firewall-cmd --state

running

[donnie@localhost ~]$

Or, if we want a more detailed status, we can just check the
daemon, the same as we would any other daemon on a
systemd machine:

[donnie@localhost ~]$ sudo systemctl status firewalld

● firewalld.service - firewalld - dynamic firewall daemon

 Loaded: loaded (/usr/lib/systemd/system/firewalld.service; enab

 Active: active (running) since Fri 2017-10-13 13:42:54 EDT; 1h

 Docs: man:firewalld(1)

 Main PID: 631 (firewalld)

 CGroup: /system.slice/firewalld.service

 └─631 /usr/bin/python -Es /usr/sbin/firewalld --nofork

Oct 13 13:42:55 localhost.localdomain firewalld[631]: WARNING: ICM

Oct 13 13:42:55 localhost.localdomain firewalld[631]: WARNING: rej

Oct 13 15:19:41 localhost.localdomain firewalld[631]: WARNING: ICM

Oct 13 15:19:41 localhost.localdomain firewalld[631]: WARNING: bey

Oct 13 15:19:41 localhost.localdomain firewalld[631]: WARNING: ICM

Oct 13 15:19:41 localhost.localdomain firewalld[631]: WARNING: fai

Oct 13 15:19:41 localhost.localdomain firewalld[631]: WARNING: ICM

Oct 13 15:19:41 localhost.localdomain firewalld[631]: WARNING: rej

[donnie@localhost ~]$

firewalld zones
firewalld is a rather unique animal, in that it comes with
several preconfigured zones and services. If you look in the
/usr/lib/firewalld/zones directory of your CentOS machine,
you'll see the zones files, all in .xml format:

Each zone file specifies which ports are to be open, and
which ones are to be blocked for various given scenarios.
Zones can also contain rules for ICMP messages, forwarded
ports, masquerading information, and rich language rules.

For example, the .xml file for the public zone, which is set as
the default, looks like this:

[donnie@localhost ~]$ cd /usr/lib/firewalld/zones

[donnie@localhost zones]$ ls

block.xml dmz.xml drop.xml external.xml home.xml internal.xml publ

[donnie@localhost zones]$

<?xml version="1.0" encoding="utf-8"?>

<zone>

 <short>Public</short>

 <description>For use in public areas. You do not trust the other

 <service name="ssh"/>

 <service name="dhcpv6-client"/>

</zone>

In the service name lines, you can see that the only open ports
are for Secure Shell access and for DHCPv6 discovery. Look
at the home.xml file, and you'll see that it also opens the ports
for Multicast DNS, and the ports that allow this machine to
access shared directories from either Samba servers or
Windows servers:

The firewall-cmd utility is what you would use to configure
firewalld. You can use it to view the list of zone files on your
system, without having to cd into the zone file directory:

[donnie@localhost ~]$ sudo firewall-cmd --get-zones

[sudo] password for donnie:

block dmz drop external home internal public trusted work

[donnie@localhost ~]$

A quick way to see how each zone is configured is to use the
--list-all-zones option:

[donnie@localhost ~]$ sudo firewall-cmd --list-all-zones

block

 target: %%REJECT%%

 icmp-block-inversion: no

<?xml version="1.0" encoding="utf-8"?>

<zone>

 <short>Home</short>

 <description>For use in home areas. You mostly trust the other c

 <service name="ssh"/>

 <service name="mdns"/>

 <service name="samba-client"/>

 <service name="dhcpv6-client"/>

</zone>

 interfaces:

 sources:

 services:

 ports:

 protocols:

 masquerade: no

 forward-ports:

 source-ports:

 icmp-blocks:

 rich rules:

, , ,

, , ,

Of course, this is only a portion of the output, because the
listing for all zones is more than we can display here. More
likely, you'll just want to see information about one particular
zone:

[donnie@localhost ~]$ sudo firewall-cmd --info-zone=internal

internal

 target: default

 icmp-block-inversion: no

 interfaces:

 sources:

 services: ssh mdns samba-client dhcpv6-client

 ports:

 protocols:

 masquerade: no

 forward-ports:

 source-ports:

 icmp-blocks:

 rich rules:

[donnie@localhost ~]$

So, the internal zone allows the ssh, mdns, samba-client,
and dhcpv6-client services. This would be handy for setting up

client machines on your internal LAN.

Any given server or client will have one or more installed
network interface adapter. Each adapter in a machine can be
assigned one, and only one, firewalld zone. To see the default
zone:

[donnie@localhost ~]$ sudo firewall-cmd --get-default-zone

public

[donnie@localhost ~]$

That's great, except that it doesn't tell you anything about
which network interface is associated with this zone. To see
that information:

[donnie@localhost ~]$ sudo firewall-cmd --get-active-zones

public

 interfaces: enp0s3

[donnie@localhost ~]$

When you first install Red Hat or CentOS, the firewall will
already be active with the public zone as the default. Now,
let's say that you're setting up your server in the DMZ, and
you want to make sure that its firewall is locked down for
that. You can change the default zone to the dmz zone. Let's
take a look at the dmz.xml file to see what that does for us:

<?xml version="1.0" encoding="utf-8"?>

<zone>

 <short>DMZ</short>

 <description>For computers in your demilitarized zone that are p

So, the only thing that the DMZ allows through is the Secure
Shell. Okay, that's good enough for now, so let's set the dmz
zone as the default:

We'll verify:

[donnie@localhost ~]$ sudo firewall-cmd --get-default-zone

dmz

[donnie@localhost ~]$

And we're all good. Except, that is, that an internet-facing
server in the DMZ probably needs to do more than just allow
SSH connections. This is where we'll use the firewalld
services. But, before we look at that, let's consider one more
important point.

You never want to modify the files in the /usr/lib/firewalld
directory. Whenever you modify the firewalld configuration,
you'll see the modified files show up in the /etc/firewalld
directory. So far, all we've modified is the default zone. So,
we'll see this in /etc/firewalld:

 <service name="ssh"/>

</zone>

[donnie@localhost ~]$ sudo firewall-cmd --set-default-zone=dmz

[sudo] password for donnie:

success

[donnie@localhost ~]$

[donnie@localhost ~]$ sudo ls -l /etc/firewalld

total 12

-rw-------. 1 root root 2003 Oct 11 17:37 firewalld.conf

-rw-r--r--. 1 root root 2006 Aug 4 17:14 firewalld.conf.old

. . .

We can do a diff on those two files to see the difference
between them:

So, the newer of the two files shows that the dmz zone is now
the default.

To get more information about firewalld zones,
enter:

man firewalld.zones

[donnie@localhost ~]$ sudo diff /etc/firewalld/firewalld.conf /etc

6c6

< DefaultZone=dmz

> DefaultZone=public

[donnie@localhost ~]$

firewalld services
Each service file contains a list of ports that need to be
opened for a particular service. Optionally, the service files
may contain one or more destination addresses, or call in any
needed modules, such as for connection tracking. For some
services, all you need to do is to open just one port. Other
services, such as the Samba service, require that multiple
ports be opened. Either way, it's sometimes handier to
remember the service name, rather than the port numbers,
that goes with each service.

The services files are in the /usr/lib/firewalld/services
directory. You can look at the list of them with the firewall-
cmd command, just as you could do with the list of zones:

The dropbox-lansync service would be very handy for us
Dropbox users. Let's see which ports this opens:

[donnie@localhost ~]$ sudo firewall-cmd --get-services

[sudo] password for donnie:

RH-Satellite-6 amanda-client amanda-k5-client bacula bacula-client

[donnie@localhost ~]$

[donnie@localhost ~]$ sudo firewall-cmd --info-service=dropbox-lan

[sudo] password for donnie:

dropbox-lansync

 ports: 17500/udp 17500/tcp

It looks like Dropbox uses ports 17500 UDP and TCP.

Now, let's say that we have our web server set up in the
DMZ, with the dmz zone set as its default:

[donnie@localhost ~]$ sudo firewall-cmd --info-zone=dmz

dmz (active)

 target: default

 icmp-block-inversion: no

 interfaces: enp0s3

 sources:

 services: ssh

 ports:

 protocols:

 masquerade: no

 forward-ports:

 source-ports:

 icmp-blocks:

 rich rules:

[donnie@localhost ~]$

As we saw before, the Secure Shell port is the only one that's
open. Let's fix that so that users can actually access our
website:

[donnie@localhost ~]$ sudo firewall-cmd --add-service=http

success

[donnie@localhost ~]$

 protocols:

 source-ports:

 modules:

 destination:

[donnie@localhost ~]$

When we look at the info for the dmz zone again, we'll see:

[donnie@localhost ~]$ sudo firewall-cmd --info-zone=dmz

dmz (active)

 target: default

 icmp-block-inversion: no

 interfaces: enp0s3

 sources:

 services: ssh http

 ports:

 protocols:

 masquerade: no

 forward-ports:

 source-ports:

 icmp-blocks:

 rich rules:

[donnie@localhost ~]$

We see that the http service is now allowed through. But look
what happens when we add the --permanent option to this info
command:

[donnie@localhost ~]$ sudo firewall-cmd --permanent --info-zone=dm

dmz

 target: default

 icmp-block-inversion: no

 interfaces:

 sources:

 services: ssh

 ports:

 protocols:

 masquerade: no

 forward-ports:

 source-ports:

 icmp-blocks:

Oops! The http service isn't here. What's going on?

For pretty much every command-line alteration of either
zones or services, you need to add the --permanent option to
make the change persistent across reboots. But, without that -
-permanent option, the change takes effect immediately. With
the --permanent option, you'll have to reload the firewall
configuration in order for the change to take effect. To demo,
I'm going to reboot the virtual machine to get rid of the http
service.

Okay, I've rebooted, and the http service is now gone:

[donnie@localhost ~]$ sudo firewall-cmd --info-zone=dmz

[sudo] password for donnie:

dmz (active)

 target: default

 icmp-block-inversion: no

 interfaces: enp0s3

 sources:

 services: ssh

 ports:

 protocols:

 masquerade: no

 forward-ports:

 source-ports:

 icmp-blocks:

 rich rules:

[donnie@localhost ~]$

 rich rules:

[donnie@localhost ~]$

This time, I'll add two services with just one command, and
specify for the change to be permanent:

You can add as many services as you need to with a single
command, but you have to separate them with commas and
enclose the whole list within a pair of curly brackets. Let's
look at the results:

[donnie@localhost ~]$ sudo firewall-cmd --info-zone=dmz

dmz (active)

 target: default

 icmp-block-inversion: no

 interfaces: enp0s3

 sources:

 services: ssh

 ports:

 protocols:

 masquerade: no

 forward-ports:

 source-ports:

 icmp-blocks:

 rich rules:

[donnie@localhost ~]$

Since we decided to make this configuration permanent, it
hasn't yet taken effect. But, if we add the --permanent option to
this --info-zone command, we'll see that the configuration files
have indeed been changed:

[donnie@localhost ~]$ sudo firewall-cmd --permanent --add-service=

[sudo] password for donnie:

success

[donnie@localhost ~]$

We now need to make that change take effect by reloading
the configuration:

[donnie@localhost ~]$ sudo firewall-cmd --reload

success

[donnie@localhost ~]$

Run the sudo firewall-cmd --info-zone=dmz command again, and
you'll see that the new configuration is now in effect.

To remove a service from a zone, just replace --add-service
with --remove-service.

Note that we never specified which zone we're
working with in any of these service commands.
That's because if we don't specify a zone,
firewalld just assumes that we're working with

[donnie@localhost ~]$ sudo firewall-cmd --permanent --info-zone=dm

dmz

 target: default

 icmp-block-inversion: no

 interfaces:

 sources:

 services: ssh http https

 ports:

 protocols:

 masquerade: no

 forward-ports:

 source-ports:

 icmp-blocks:

 rich rules:

[donnie@localhost ~]$

the default zone. If you want to add a service to
something other than the default zone, just add a
--zone= option to your commands.

Adding ports to a
firewalld zone
Having the service files is handy, except that not every
service that you'll need to run has its own predefined service
file. Let's say that you've installed Webmin on your server,
which requires port 10000/tcp to be open. A quick grep
operation will show that port 10000 isn't in any of our
predefined services:

donnie@localhost services]$ pwd

/usr/lib/firewalld/services

[donnie@localhost services]$ grep '10000' *

[donnie@localhost services]$

So, let's just add that port to our default zone, which is still
the dmz zone:

donnie@localhost ~]$ sudo firewall-cmd --add-port=10000/tcp

[sudo] password for donnie:

success

[donnie@localhost ~]$

Again, this isn't permanent, because we didn't include the --
permanent option. Let's do it again and then reload:

You can also add multiple ports at once by enclosing the
comma-separated list within a pair of curly brackets, just as
we did with the services (yeah, I purposely left the --permanent
out):

And of course, you can remove ports from a zone by
substituting --remove-port for --add-port.

[donnie@localhost ~]$ sudo firewall-cmd --permanent --add-port=100

success

[donnie@localhost ~]$ sudo firewall-cmd --reload

success

[donnie@localhost ~]$

[donnie@localhost ~]$ sudo firewall-cmd --add-port={636/tcp,637/tc

success

[donnie@localhost ~]$

firewalld rich language
rules
What we've looked at so far might be all you'll ever need for
general use scenarios, but for more granular control, you'll
want to know about rich language rules. (Yes, that really is
what they're called.)

Compared to iptables rules, rich language rules are a bit less
cryptic, and are closer to plain English. So, if you're new to
the business of writing firewall rules, you might find rich
language a bit easier to learn. On the other hand, if you're
already used to writing iptables rules, you might find some
elements of rich language a bit quirky. Let's look at one
example:

So, we're adding a rich rule. Note that the entire rule is
surrounded by a pair of single quotes, and the assigned value
for each parameter is surrounded by a pair of double quotes.
With this rule, we're saying that we're working with IPv4,
and that we want to silently block the http port from
accepting packets from the 200.192.0.0/24 network. We didn't
use the --permanent option, so this rule will disappear when we

sudo firewall-cmd --add-rich-rule='rule family="ipv4" source addre

reboot the machine. Let's see what our zone looks like with
this new rule:

The rich rule shows up at the bottom. After we've tested this
rule to make sure that it does what we need it to do, we'll
make it permanent:

You could just as easily write a rule for IPv6 by replacing
family="ipv4" with family="ipv6", and supplying the appropriate
IPv6 address range.

[donnie@localhost ~]$ sudo firewall-cmd --info-zone=dmz

[sudo] password for donnie:

dmz (active)

 target: default

 icmp-block-inversion: no

 interfaces: enp0s3

 sources:

 services: ssh http https

 ports: 10000/tcp 636/tcp 637/tcp 638/udp

 protocols:

 masquerade: no

 forward-ports:

 source-ports:

 icmp-blocks:

 rich rules:

 rule family="ipv4" source address="200.192.0.0/24" service nam

[donnie@localhost ~]$

sudo firewall-cmd --permanent --add-rich-rule='rule family="ipv4"

sudo firewall-cmd --reload

Some rules are generic, and apply to either IPv4 or IPv6.
Let's say that we want to log messages about Network Time
Protocol (NTP) packets, and you want to log no more than
one message per minute. The command to create that rule
would look like this:

There is, of course, a lot more to firewalld rich language
rules than we can present here. But, you at least now know
the basics. For more information, consult the man page:

man firewalld.richlanguage

sudo firewall-cmd --permanent --add-rich-rule='rule service name=

Hands-on lab for firewalld
commands
With this lab, you'll get some practice with basic firewalld
commands:

1. Log into your CentOS 7 virtual machine and run the
following commands. Observe the output after each
one:

 sudo firewall-cmd --get-zones

 sudo firewall-cmd --get-default-zone

 sudo firewall-cmd --get-active-zones

2. Briefly view the man pages that deal with firewalld
zones:

 man firewalld.zones

 man firewalld.zone

(Yes, there are two of them. One explains the zone
configuration files, and the other explains the zones

themselves.)

3. Look at the configuration information for all of the
available zones:

 sudo firewall-cmd --list-all-zones

4. Look at the list of predefined services. Then, look at
information about the dropbox-lansync service:

 sudo firewall-cmd --get-services

 sudo firewall-cmd --info-service=dropbox-lansync

5. Set the default zone to dmz. Look at information about
the zone, add the http and https services, and then
look at the zone information again:

 sudo firewall-cmd --set-default-zone=dmz

 sudo firewall-cmd --permanent --add-service={http,https}

 sudo firewall-cmd --info-zone=dmz

 sudo firewall-cmd --permanent --info-zone=dmz

6. Reload the firewall configuration, and look at zone
info again. Also, look at the list of services that are
being allowed:

 sudo firewall-cmd --reload

 sudo firewall-cmd --info-zone=dmz

 sudo firewall-cmd --list-services

7. Permanently open port 10000/tcp, and view the results:

 sudo firewall-cmd --permanent --add-port=10000/tcp

 sudo firewall-cmd --list-ports

 sudo firewall-cmd --reload

 sudo firewall-cmd --list-ports

 sudo firewall-cmd --info-zone=dmz

8. Remove the port that you just added:

 sudo firewall-cmd --permanent --remove-port=10000/tcp

 sudo firewall-cmd --reload

 sudo firewall-cmd --list-ports

 sudo firewall-cmd --info-zone=dmz

9. View the list of main pages for firewalld:

 apropos firewall

10. End of lab.

nftables – a more
universal type of firewall
system
Let's now turn our attention to nftables, the new kid on the
block. So, what does nftables bring to the table? (Yes, the
pun was intended.):

You can now forget about needing separate daemons
and utilities for all of the different networking
components. The functionality of iptables, ip6tables,
ebtables, and arptables is now all combined in one
neat package. The nft utility is now the only firewall
utility that you'll need.

With nftables, you can create multidimensional trees
to display your rulesets. This makes troubleshooting
vastly easier, because it's now easier to trace a packet
all the way through all of the rules.

With iptables, you have the filter, NAT, mangle, and
security tables installed by default, whether or not
you use each one. With nftables, you only create the

tables that you intend to use, resulting in enhanced
performance.

Unlike iptables, you can specify multiple actions in
one rule, instead of having to create multiple rules for
each action.

Unlike iptables, new rules get added atomically.
(That's a fancy way of saying that there's no longer a
need to reload the entire ruleset in order to just add
one rule.)

nftables has its own built-in scripting engine,
allowing you to write scripts that are more efficient
and more human-readable.

If you already have lots of iptables scripts that you
still need to use, you can install a set of utilities that
will help you convert them to nftables format.

nftables tables and
chains
If you're used to iptables, you might recognize some of the
nftables terminology. The only problem is, some of the terms
are used in different ways, with different meanings. Here's
some of what I'm talking about:

Tables: Tables in nftables refer to a particular
protocol family. The table types are ip, ip6, inet, arp,
bridge, and netdev.

Chains: Chains in nftables roughly equate to tables
in iptables. For example, in nftables you could have
filter, route, or NAT chains.

Getting started with
nftables
Let's start with a clean snapshot of our Ubuntu virtual
machine, and install the nftables package.

The command-line utility for nftables is nft. You
can either do nft commands from the Bash shell,
or you can do sudo nft -i to run nft in interactive
mode. For our present demos, we'll just run the
commands from the Bash shell.

Now, let's take a look at the list of installed tables:

sudo apt install nftables

sudo nft list tables

Hmmm... You didn't see any tables, did you? So, let's load
some up.

If you look at the nftables.conf file in the /etc directory, you'll
see the beginnings of a basic nft firewall configuration:

#!/usr/sbin/nft -f

flush ruleset

table inet filter {

 chain input {

Here's the breakdown of what all this means:

#!/usr/sbin/nft -f: Although you can create normal
Bash shell scripts with nftables commands, it's better
to use the built-in scripting engine that's included
with nftables. That way, we can make our scripts
more human-readable, and we don't have to type nft
in front of everything we want to do.

flush ruleset: We want to start with a clean slate, so
we'll flush out any rules that may have already been
loaded.

 type filter hook input priority 0;

 # accept any localhost traffic

 iif lo accept

 # accept traffic originated from us

 ct state established,related accept

 # activate the following line to accept

 common local services

 # tcp dport { 22, 80, 443 } ct state new accept

 # accept neighbour discovery otherwise

 IPv6 connectivity breaks.

 ip6 nexthdr icmpv6 icmpv6 type { nd-neighbor-solic

 nd-router-advert, nd-neighbor-advert } accept

 # count and drop any other traffic

 counter drop

 }

}

table inet filter: This creates an inet family filter,
which works for both IPv4 and IPv6. The name of
this table is filter, but it could just as well have been
something a bit more descriptive.

chain input: Within the first pair of curly brackets, we
have a chain with the name of input. (Again, the name
could have been something more descriptive.)

type filter hook input priority 0;: Within the next pair
of curly brackets, we define our chain and then list
the rules. This chain is defined as a filter type. hook
input indicates that this chain is meant to process
incoming packets. Because this chain has both a hook
and a priority, it will accept packets directly from the
network stack.

Finally, we have the standard rules for a very basic
host firewall, starting with the iif rule that allows the
loopback interface to accept packets (iif stands for
input interface.)

Next is the standard connection tracking (ct) rule,
which accepts traffic that's in response to a
connection request from this host.

Then, there's a commented-out rule to accept Secure
Shell and both secure and nonsecure web traffic. The

ct state new indicates that the firewall will allow other
hosts to initiate connections to our server on these
ports.

The ipv6 rule accepts neighbor discovery packets,
allowing for IPv6 functionality.

The counter drop rule at the end silently blocks all
other traffic, and counts both the number of packets
and the number of bytes that it blocks. (This is an
example of how you can have one rule perform two
different actions.)

If all you need on your Ubuntu server is a basic, no-frills
firewall, your best bet is to just edit this /etc/nftables.conf file
to suit your own needs. For starters, let's remove the
comment symbol from in front of the tcp dport line, and get
rid of ports 80 and 443. The line should now look like:

tcp dport 22 ct state new accept

Note that when you're only opening one port, you don't need
to enclose that port number within curly brackets. When
opening multiple ports, just include the comma-separated list
within curly brackets, with a blank space before the first
element and after the last element.

Load the configuration file, and view the results:

Now, let's say that we want to block certain IP addresses
from reaching the Secure Shell port of this machine. We can
edit the file, placing a drop rule above the rule that opens port
22. The relevant section of the file would look like this:

tcp dport 22 ip saddr { 192.168.0.7, 192.168.0.10 } drop

tcp dport 22 ct state new accept

After we reload the file, we'll be blocking SSH access from
two different IPv4 addresses. Note that we've placed the drop
rule ahead of the accept rule, because if the accept rule gets
read first, the drop rule will never have any effect.

Another really cool thing to note is how we've mixed IPv4
(ip) rules with IPv6 (ip6) rules in the same configuration file.
That's the beauty of using an inet-type table. For simplicity
and flexibility, you'll want to use inet tables as much as
possible, rather than separate ip and ip6 tables.

sudo nft -f /etc/nftables.conf

donnie@ubuntu2:~$ sudo nft list table inet filter

table inet filter {

 chain input {

 type filter hook input priority 0; policy accept;

 iif lo accept

 ct state established,related accept

 tcp dport ssh ct state new accept

 ip6 nexthdr ipv6-icmp icmpv6 type { nd-router-advert, nd-neigh

 counter packets 67 bytes 10490 drop

 }

}

donnie@ubuntu2:~$

Most of the time, when all you need is just a simple host
firewall, your best bet would be to just use this nftables.conf
file as your starting point, and edit the file to suit your own
needs. However, there's also a command-line component that
you may at times find useful.

Using nft commands
There are two ways to use the nft utility. You can just do
everything directly from the Bash shell, prefacing every
action you want to perform with nft, followed by the nft
subcommands. You can also use nft in interactive mode. For
our present purposes, we'll just go with the Bash shell.

Let's first delete our previous configuration, and create an
inet table, since we want something that works for both IPv4
and IPv6. We'll want to give it a somewhat descriptive name,
so let's call it ubuntu_filter:

sudo nft delete table inet filter

sudo nft list tables

sudo nft add table inet ubuntu_filter

sudo nft list tables

Next, we'll add an input filter chain to the table that we just
created. (Note that since we're doing this from the Bash shell,
we need to escape the semi-colon with a backslash.)

In this command, the first input after the ubuntu_filter is the
name of the chain. (We could have given it a more

sudo nft add chain inet ubuntu_filter input { type filter hook inp

descriptive name, but for now, input works.) Within the pair
of curly brackets, we're setting the parameters for this chain.

Each nftables protocol family has its own set of hooks, which
define how packets will be processed. For now, we're only
concerned with the ip/ip6/inet families, which have these
hooks:

Prerouting

Input

Forward

Output

Postrouting

Of these, we're presently only concerned with the input and
output hooks, which would apply to filter-type chains. By
specifying a hook and a priority for our input chain, we're
saying that we want this chain to be a base chain, which will
accept packets directly from the network stack. You also see
that certain parameters must be terminated by a semicolon,
which in turn would need to be escaped with a backslash if
you're running the commands from the Bash shell. Finally,
we're specifying a default policy of drop. If we had not
specified drop as the default policy, then the policy would
have been accept by default.

Every nft command that you enter takes effect
immediately. So, if you're doing this remotely,
you'll drop your Secure Shell connection as soon
as you create a filter chain with a default drop
policy.

Some people like to create chains with a default
accept policy, and then add a drop rule as the final
rule. Other people like to create chains with a
default drop policy, and then leave off the drop
rule at the end. The advantage of using a default
accept rule is that you would be able to perform
these firewall commands remotely, without
having to worry about locking yourself out.

Verify that the chain has been added, and you should see
something like this:

donnie@ubuntu2:~$ sudo nft list table inet ubuntu_filter

[sudo] password for donnie:

table inet filter {

 chain input {

 type filter hook input priority 0; policy drop;

 }

}

donnie@ubuntu2:~$

That's great, but we still need some rules. Let's start with a
connection tracking rule and a rule to open the Secure Shell
port. We'll then verify that they got added:

sudo nft add rule inet ubuntu_filter input ct state established ac

sudo nft add rule inet ubuntu_filter input tcp dport 22 ct state n

Okay, that looks good. You now have a basic, working
firewall that allows Secure Shell connections. Well, except
that just as we did in the ufw chapter, we forgot to create a
rule to allow the loopback adapter to accept packets. Since
we want this rule to be at the top of the rules list, we'll use
insert instead of add:

sudo nft insert rule inet ubuntu_filter input iif lo accept

donnie@ubuntu2:~$ sudo nft list table inet ubuntu_filter

table inet ubuntu_filter {

 chain input {

 type filter hook input priority 0; policy drop;

 iif lo accept

 ct state established accept

 tcp dport ssh ct state new accept

 }

}

donnie@ubuntu2:~$

Now, we're all set. But what if we want to insert a rule in a
specific location? For that, you'll need to use list with the -a
option to see the handles rule:

donnie@ubuntu2:~$ sudo nft list table inet ubuntu_filter

table inet ubuntu_filter {

 chain input {

 type filter hook input priority 0; policy drop;

 ct state established accept

 tcp dport ssh ct state new accept

 }

}

donnie@ubuntu2:~

donnie@ubuntu2:~$ sudo nft list table inet ubuntu_filter -a

table inet ubuntu_filter {

 chain input {

 type filter hook input priority 0; policy drop;

 iif lo accept # handle 4

 ct state established accept # handle 2

 tcp dport ssh ct state new accept # handle 3

 }

}

donnie@ubuntu2:~$

As you can see, there's no real rhyme or reason to the way
the handles are numbered. Let's say that we want to insert the
rule about blocking certain IP addresses from accessing the
Secure Shell port. We see that the ssh accept rule is handle 3, so
we'll need to insert our drop rule before it. Our command to
do that would look like this:

So, to place the rule before the rule with the handle 3 label, we
have to insert to position 3. The new rule that we just inserted

sudo nft insert rule inet ubuntu_filter input position 3 tcp dport

donnie@ubuntu2:~$ sudo nft list table inet ubuntu_filter -a

table inet ubuntu_filter {

 chain input {

 type filter hook input priority 0; policy drop;

 iif lo accept # handle 4

 ct state established accept # handle 2

 tcp dport ssh ip saddr { 192.168.0.10, 192.168.0.7} drop #

 tcp dport ssh ct state new accept # handle 3

 }

}

donnie@ubuntu2:~$

has the label handle 6. To delete a rule, we'll specify the rule's
handle number:

sudo nft delete rule inet ubuntu_filter input handle 6

donnie@ubuntu2:~$ sudo nft list table inet ubuntu_filter -a

table inet ubuntu_filter {

 chain input {

 type filter hook input priority 0; policy drop;

 iif lo accept # handle 4

 ct state established accept # handle 2

 tcp dport ssh ct state new accept # handle 3

 }

}

donnie@ubuntu2:~$

As is the case with iptables, everything you do from the
command line will disappear once you reboot the machine.
To make it permanent, let's redirect the output of the list
subcommand into a configuration file (of course, we'll want
to give the file a unique name that's different from the name
of our default file):

Due to a quirk in the Bash shell, we can't just redirect output
to a file in the /etc directory in the normal manner, even
when we use sudo. That's why I had to add the sh -c
command, with the nft list command surrounded by double
quotes. Now, when we look at the file, we'll see that there are
a couple of things that are missing:

sudo sh -c "nft list table inet ubuntu_filter > new_nftables.conf

You sharp-eyed folk will see that we're missing the flush rule,
and the shebang line to specify the shell that we want to
interpret this script. Let's add them in:

Much better. Let's test it by loading the new configuration
and observing the list output:

sudo nft -f /etc/new_nftables.conf

donnie@ubuntu2:~$ sudo nft list table inet ubuntu_filter

table inet ubuntu_filter {

 chain input {

 type filter hook input priority 0; policy drop;

 iif lo accept

table inet ubuntu_filter {

 chain input {

 type filter hook input priority 0; policy drop;

 iif lo accept

 ct state established accept

 tcp dport ssh ct state new accept

 }

}

#!/usr/sbin/nft -f

flush ruleset

table inet ubuntu_filter {

 chain input {

 type filter hook input priority 0; policy drop;

 iif lo accept

 ct state established accept

 tcp dport ssh ct state new accept

 }

}

 ct state established accept

 tcp dport ssh ct state new accept

 }

}

donnie@ubuntu2:~$

That's all there is to creating your own simple host firewall.
Of course, running commands from the command line, rather
than just creating a script file in your text editor, does make
for a lot more typing. But, it does allow you to test your
rules on the fly, as you create them. And, creating your
configuration in this manner and then redirecting the list
output to your new configuration file relieves you of the
burden of having to keep track of all of those curly brackets.

It's also possible to take all of the nft commands that we just
did, and place them into a regular, old-fashioned Bash shell
script. Trust me, though, you really don't want to do that. Just
use the nft-native scripting format as we've done here, and
you'll have a script that performs better, and that is much
more human-readable.

Hands-on lab for nftables
on Ubuntu
For this lab, you need a clean snapshot of your Ubuntu
virtual machine:

1. Restore your Ubuntu virtual machine to a clean
snapshot to clear out any firewall configurations that
you created previously. Verify with the commands:

 sudo ufw status

 sudo iptables -L

You should see no rules listed for iptables, and the ufw
status should be inactive.

2. Install the nftables package:

 sudo apt install nftables

3. List the tables, which should give you no output.
Load the default configuration file, and list both the
tables and the rules:

 sudo nft list tables

 sudo nft -f /etc/nftables.conf

 sudo nft list tables

 sudo nft list table inet filter

4. Make a backup copy of the nftables configuration
file:

 sudo cp /etc/nftables.conf /etc/nftables.conf.bak

5. Open the original /etc/nftables.conf file in your text
editor. Just before the tcp dport . . . accept line, insert
this line:

Save the file and exit the text editor.

6. Reload the configuration and view the results:

 tcp dport ssh ip saddr { 192.168.0.7, 192.168.0.10 } drop

 sudo nft list tables

 sudo nft -f /etc/nftables.conf

 sudo nft list tables

 sudo nft list table inet filter

7. End of lab.

Summary
In this chapter, we've looked at four different frontends for
the netfilter firewall. We first looked at our trusty old friend,
iptables. We saw that even though it's been around forever
and still works, it does have some shortcomings. We then
saw how Ubuntu's Uncomplicated Firewall can vastly
simplify setting up an iptables-based firewall. For you Red
Hatters, we looked at firewalld, which is specific to Red Hat-
type distros. Finally, we wrapped things up by looking at the
latest in Linux firewall technology, nftables.

In the space allotted, I've only been able to present the bare
essentials that you need to set up basic host protection. But, it
is at least enough to get you started.

Encrypting and SSH
Hardening
You may work for a super-secret government agency, or you
may be just a regular Joe or Jane citizen. Either way, you will
still have sensitive data that you need to protect from prying
eyes. Business secrets, government secrets, personal secrets
—it doesn't matter; it all needs protection. Locking down
user's home directories with restrictive permissions settings,
as we saw in Chapter 2, Securing User Accounts, is only part
of the puzzle; we also need encryption.

The two general types of data encryption that we'll look at in
this chapter are meant to protect data at rest and data in
transit. We'll begin with using file, partition, and directory
encryption to protect data at rest. We'll then cover Secure
Shell (SSH) to protect data in transit.

In this chapter, we'll cover:

GNU Privacy Guard (GPG)

Encrypting partitions with Linux Unified Key Setup
(LUKS)

Encrypting directories with eCryptfs

Using VeraCrypt for the cross-platform sharing of
encrypted containers

Ensuring that SSH protocol 1 is disabled

Creating and managing keys for password-less logins

Disabling root user login

Disabling username/password logins

Setting up a chroot environment for SFTP users

GNU Privacy Guard
We'll begin with GNU Privacy Guard (GPG). This is a free
open source implementation of Phil Zimmermann's Pretty
Good Privacy, which he created back in 1991. You can use
either one of them to either encrypt or cryptographically sign
files or messages. In this section, we'll focus strictly on GPG.

There are some advantages of using GPG:

It uses strong, hard-to-crack encryption algorithms.

It uses the private/public key scheme, which
eliminates the need to transfer a password to a
message or file recipient in a secure manner. Instead,
just send along your public key, which is useless to
anyone other than the intended recipient.

You can use GPG to just encrypt your own files for
your own use, the same as you'd use any other
encryption utility.

It can be used to encrypt email messages, allowing
you to have true end-to-end encryption for sensitive
emails.

There are a few GUI-type frontends available to
make it somewhat easier to use.

But, as you might know, there are also some disadvantages:

Using public keys instead of passwords is great when
you work directly only with people who you
implicitly trust. But, for anything beyond that, such
as distributing a public key to the general population
so that everyone can verify your signed messages,
you're dependent upon a web-of-trust model that can
be very hard to set up.

For the end-to-end encryption of email, the recipients
of your email must also have GPG set up on their
systems, and know how to use it. That might work in
a corporate environment, but lots of luck getting your
friends to set that up. (I've never once succeeded in
getting someone else to set up email encryption.)

If you use a standalone email client, such as Mozilla
Thunderbird, you can install a plugin that will
encrypt and decrypt messages automatically. But,
every time a new Thunderbird update is released, the
plugin breaks, and it always takes a while before a
new working version gets released.

Even with its numerous weaknesses, GPG is still one of the
best ways to share encrypted files and emails. GPG comes
preinstalled on both Ubuntu Server and CentOS. So, you can
use either of your virtual machines for these demos.

Creating your GPG keys
Getting started with GPG requires you to first generate your
GPG keys. You'll do that with:

gpg --gen-key

Note that, since you're setting this up for
yourself, you don't need sudo privileges.

The output of this command is too long to show all at once,
so I'll show relevant sections of it, and break down what it
means.

The first thing that this command does is to create a
populated .gnupg directory in your home directory:

You'll then be asked to select which kinds of keys you want.
We'll just go with the default RSA and RSA. (RSA keys are
stronger and harder to crack than the older DSA keys.

gpg: directory `/home/donnie/.gnupg' created

gpg: new configuration file `/home/donnie/.gnupg/gpg.conf' created

gpg: WARNING: options in `/home/donnie/.gnupg/gpg.conf' are not ye

gpg: keyring `/home/donnie/.gnupg/secring.gpg' created

gpg: keyring `/home/donnie/.gnupg/pubring.gpg' created

Elgamal keys are good, but they may not be supported by
older versions of GPG.):

Please select what kind of key you want:

 (1) RSA and RSA (default)

 (2) DSA and Elgamal

 (3) DSA (sign only)

 (4) RSA (sign only)

Your selection?

For decent encryption, you'll want to go with a key of at least
2048 bits, because anything smaller is now considered
vulnerable. Since 2048 just happens to be the default, we'll
go with it:

RSA keys may be between 1024 and 4096 bits long.

What keysize do you want? (2048)

Next, select how long you want for the keys to remain valid
before they automatically expire. For our purposes, we'll go
with the default key does not expire.

Please specify how long the key should be valid.

 0 = key does not expire

 <n> = key expires in n days

 <n>w = key expires in n weeks

 <n>m = key expires in n months

 <n>y = key expires in n years

Key is valid for? (0)

Provide your personal information:

GnuPG needs to construct a user ID to identify your key.

Real name: Donald A. Tevault

Email address: donniet@something.net

Comment: No comment

You selected this USER-ID:

 "Donald A. Tevault (No comment) <donniet@something.net>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit?

Create a passphrase for your private key:

This could take a while, even when you're doing all of the
recommended things to create entropy. Be patient; it will
eventually finish. By running a sudo yum upgrade in another
window, I created enough entropy so that the process didn't
take too long:

You need a Passphrase to protect your secret key.

We need to generate a lot of random bytes. It is a good idea to pe

some other action (type on the keyboard, move the mouse, utilize t

disks) during the prime generation; this gives the random number

generator a better chance to gain enough entropy.

gpg: /home/donnie/.gnupg/trustdb.gpg: trustdb created

gpg: key 19CAEC5B marked as ultimately trusted

public and secret key created and signed.

gpg: checking the trustdb

gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model

gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f

pub 2048R/19CAEC5B 2017-10-26

 Key fingerprint = 8DE5 8894 2E37 08C4 5B26 9164 C77C 6944 1

Verify that the keys did get created:

And, while you're at it, take a look at the files that you
created:

These files are your public and private keyrings, your own
gpg.conf file, a random seed file, and a trusted users database.

uid Donald A. Tevault (No comment) <donniet@somet

sub 2048R/37582F29 2017-10-26

[donnie@localhost ~]$ gpg --list-keys

/home/donnie/.gnupg/pubring.gpg

pub 2048R/19CAEC5B 2017-10-26

uid Donald A. Tevault (No comment) <donniet@somet

sub 2048R/37582F29 2017-10-26

[donnie@localhost ~]$

[donnie@localhost ~]$ ls -l .gnupg

total 28

-rw-------. 1 donnie donnie 7680 Oct 26 13:22 gpg.conf

drwx------. 2 donnie donnie 6 Oct 26 13:40 private-keys-v1.d

-rw-------. 1 donnie donnie 1208 Oct 26 13:45 pubring.gpg

-rw-------. 1 donnie donnie 1208 Oct 26 13:45 pubring.gpg~

-rw-------. 1 donnie donnie 600 Oct 26 13:45 random_seed

-rw-------. 1 donnie donnie 2586 Oct 26 13:45 secring.gpg

srwxrwxr-x. 1 donnie donnie 0 Oct 26 13:40 S.gpg-agent

-rw-------. 1 donnie donnie 1280 Oct 26 13:45 trustdb.gpg

[donnie@localhost ~]$

Symmetrically encrypting
your own files
You may find GPG useful for encrypting your own files,
even when you never plan to share them with anyone else.
For this, you'll use symmetric encryption, which involves
using your own private key for encryption. Before you try
this, you'll need to generate your keys, as I outlined in the
previous section.

Symmetric key encryption is, well, just that,
symmetric. It's symmetric in the sense that the
same key that you would use to encrypt a file is
the same key that you would use to decrypt the
file. That's great for if you're just encrypting files
for your own use. But, if you need to share an
encrypted file with someone else, you'll need to
figure out a secure way to give that person the
password. I mean, it's not like you'd want to just
send the password in a plain-text email.

Let's encrypt a super-secret file that we just can't allow to fall
into the wrong hands:

[donnie@localhost ~]$ gpg -c secret_squirrel_stuff.txt

[donnie@localhost ~]$

Note that the -c option indicates that I chose to use
symmetric encryption with a passphrase for the file. The
passphrase that you enter will be for the file, not for your
private key.

One slight flaw with this is that GPG makes an encrypted
copy of the file, but it also leaves the original, unencrypted
file intact:

Let's get rid of that unencrypted file with shred. We'll use the -
u option to delete the file, and the -z option to overwrite the
deleted file with zeros:

[donnie@localhost ~]$ shred -u -z secret_squirrel_stuff.txt

[donnie@localhost ~]$

It doesn't look like anything happened, because shred doesn't
give you any output. But, an ls -l will prove that the file is
gone. Now, if I were to look at the encrypted file with less
secret_squirrel_stuff.txt.gpg, I would be able to see its
contents, after being asked to enter my private key
passphrase:

Shhh!!!! This file is super-secret.

secret_squirrel_stuff.txt.gpg (END)

[donnie@localhost ~]$ ls -l

total 1748

-rw-rw-r--. 1 donnie donnie 37 Oct 26 14:22 secret_squirrel_s

-rw-rw-r--. 1 donnie donnie 94 Oct 26 14:22 secret_squirrel_s

[donnie@localhost ~]$

As long as my private key remains loaded into my keyring,
I'll be able to view my encrypted file again without having to
reenter the passphrase. Now, just to prove to you that the file
really is encrypted, I'll create a shared directory, and move
the file there for others to access:

sudo mkdir /shared

sudo chown donnie: /shared

sudo chmod 755 /shared

mv secret_squirrel_stuff.txt.gpg /shared

When I go into that directory to view the file with less, I can
still see its contents, without having to reenter my
passphrase. But now, let's see what happens when Maggie
tries to view the file:

And when she hits the Y key to see it anyway:

Poor Maggie really wants to see my file, but all she can see
is encrypted gibberish.

[maggie@localhost shared]$ less secret_squirrel_stuff.txt.gpg

"secret_squirrel_stuff.txt.gpg" may be a binary file. See it anyw

<8C>^M^D^C^C^B<BD>2=<D3>͈u<93><CE><C9>MОOy<B6>^O<A2><AD>}Rg9<94><E

^@y+<FC><F2><BA><U+058C>H'+<D4>v<84>Y<98>G<D7>֊

secret_squirrel_stuff.txt.gpg (END)

What I've just demonstrated is another advantage of GPG.
After entering your private key passphrase once, you can
view any of your encrypted files without having to manually
decrypt them, and without having to reenter your passphrase.
With other symmetric file encryption tools, such as Bcrypt,
you wouldn't be able to view your files without manually
decrypting them first.

But, let's now say that you no longer need to have this file
encrypted, and you want to decrypt it in order to let other
people see it. Just use gpg with the -d option:

The WARNING message about the message not being integrity
protected means that I had encrypted the file, but I never
signed the file. Without a digital signature, someone could
alter the file without me knowing about it, and I wouldn't be
able to prove that I am the originator of the file. (Have no
fear, we'll talk about signing files in just a bit.)

[donnie@localhost shared]$ gpg -d secret_squirrel_stuff.txt.gpg

gpg: CAST5 encrypted data

gpg: encrypted with 1 passphrase

Shhh!!!! This file is super-secret.

gpg: WARNING: message was not integrity protected

[donnie@localhost shared]$

Hands-on lab –
combining gpg and tar
for encrypted backups
For this lab, you'll combine tar and gpg to create an encrypted
backup on a simulated backup device. You can perform this
lab on either one of your virtual machines:

1. Start off by creating your GPG keys. You will do that
with the following command:

 gpg --gen-key

2. Create some dummy files in your home directory, so
that you'll have something to back up:

 touch {file1.txt,file2.txt,file3.txt,file4.txt}

3. Create a backup directory at the root level of the
filesystem. (In real life, you would have the backup

directory on a separate device, but for now, this
works.) Change ownership of the directory to your
own account, and set the permissions so that only
you can access it:

 sudo mkdir /backup

 sudo chown your_username: /backup

 sudo chmod 700 /backup

4. Create an encrypted backup file of your own home
directory. Compression is optional, but we'll go ahead
and use xz for the best compression. (Note that you'll
need to use sudo for this, because the .viminfo directory
in your home directory is owned by the root user.):

 cd /home

 sudo tar cJvf - your_username/ | gpg -c >

 /backup/your_username_backup.tar.xz.gpg

5. Now, let's say that either your home directory got
deleted, or that you accidentally deleted some
important files from your own home directory.
Extract and decrypt the original home directory
within the /backup directory:

 cd /backup

 sudo gpg -d your_username.tar.xz.gpg | tar xvJ

 ls -la your_username/

Note that, by combining tar with gpg, the -C option of
tar to automatically place your home directory back
within the /home directory won't work. So, you'll either
need to manually copy the extracted directory back to
/home, or move the encrypted backup file to /home before
you extract it. Also, be aware that when you extract an
encrypted archive with gpg, the ownership of the files
will change to that of whoever extracted the archive.
So, this probably wouldn't be a good choice for
backing up an entire /home directory with home
directories for multiple users. Finally, since this
creates one huge archive file, any type of corruption in
the archive file could cause you to lose the entire
backup.

6. End of Lab.

Using private and public
keys for asymmetric
encryption and signing
Symmetric encryption is great if you're just using GPG
locally for your own stuff, but what if you want to share an
encrypted file with someone, while ensuring that they can
decrypt it? With symmetric encryption, you'd need to find a
secure way to transmit the passphrase for the file to the file's
recipient. In doing so, there will always be the risk that some
third party could intercept the passphrase, and could then get
into your stuff. Here's where asymmetric encryption comes
to the rescue. To demonstrate, I'm going to create a file,
encrypt it, and send it to my buddy Frank to decrypt.

Asymmetric encryption, is, well, asymmetric.
Being asymmetric means that you would use one
key to encrypt a file, and another key to decrypt
it. You would keep your private key to yourself
and guard it with your life, but you would share
the public key with the whole world. The beauty
of this is that you can share encrypted files with
another person, and only that person would be
able to decrypt them. This is all done without
having to share a password with the recipient.

To begin, both Frank and I have to create a key set, as we've
already shown you. Next, each of us needs to extract our
public keys, and send them to each other. We'll extract the
key into an ASCII text file:

Normally, the participants in this would either send their
keys to each other through an email attachment, or by
placing the keys in a shared directory. In this case, Frank and
I will receive each other's public key files, and place them
into our respective .gnupg directories. Once that's done, we're
ready to import each other's keys:

cd .gnupg

gpg --export -a -o donnie_public-key.txt

donnie@ubuntu:~/.gnupg$ ls -l

total 36

-rw-rw-r-- 1 donnie donnie 1706 Oct 27 18:14 donnie_public-key.txt

. . .

frank@ubuntu:~/.gnupg$ ls -l

total 36

-rw-rw-r-- 1 frank frank 1714 Oct 27 18:18 frank_public-key.txt

donnie@ubuntu:~/.gnupg$ gpg --import frank_public-key.txt

gpg: key 4CFC6990: public key "Frank Siamese (I am a cat.) <frank@

gpg: Total number processed: 1

gpg: imported: 1 (RSA: 1)

donnie@ubuntu:~/.gnupg$

frank@ubuntu:~/.gnupg$ gpg --import donnie_public-key.txt

gpg: key 9FD7014B: public key "Donald A. Tevault <donniet@somethin

gpg: Total number processed: 1

gpg: imported: 1 (RSA: 1)

frank@ubuntu:~/.gnupg$

Now for the good stuff. I've created a super-secret message
for Frank, and will asymmetrically encrypt it (-e) and sign it
(-s). (Signing the message is the verification that the message
really is from me, rather than from an impostor.):

donnie@ubuntu:~$ gpg -s -e secret_stuff_for_frank.txt

You need a passphrase to unlock the secret key for

user: "Donald A. Tevault <donniet@something.net>"

2048-bit RSA key, ID 9FD7014B, created 2017-10-27

gpg: gpg-agent is not available in this session

You did not specify a user ID. (you may use "-r")

Current recipients:

Enter the user ID. End with an empty line: frank

gpg: CD8104F7: There is no assurance this key belongs to the named

pub 2048R/CD8104F7 2017-10-27 Frank Siamese (I am a cat.) <frank@

 Primary key fingerprint: 4806 7483 5442 D62B B9BD 95C1 9564 92D4

 Subkey fingerprint: 9DAB 7C3C 871D 6711 4632 A5E0 6DDD E3E5

It is NOT certain that the key belongs to the person named

in the user ID. If you *really* know what you are doing,

you may answer the next question with yes.

Use this key anyway? (y/N) y

Current recipients:

2048R/CD8104F7 2017-10-27 "Frank Siamese (I am a cat.) <frank@any

Enter the user ID. End with an empty line:

donnie@ubuntu:~$

So, the first thing I had to do was to enter the passphrase for
my private key. Where it says to enter the user ID, I entered
frank, since he's the intended recipient of my message. But,
look at the line after that, where it says, There is no assurance
this key belongs to the named user. That's because I still haven't
trusted Frank's public key. We'll get to that in a bit. The last
line of the output again says to enter a user ID, so that we can
designate multiple recipients. But, Frank is the only one I
care about right now, so I just hit the Enter key to break out
of the routine. This results in a .gpg version of my message to
Frank:

My final step is to send Frank his encrypted message file, by
whatever means available.

When Frank receives his message, he'll use the -d option to
view it:

donnie@ubuntu:~$ ls -l

total 8

. . .

-rw-rw-r-- 1 donnie donnie 143 Oct 27 18:37 secret_stuff_for_frank

-rw-rw-r-- 1 donnie donnie 790 Oct 27 18:39 secret_stuff_for_frank

donnie@ubuntu:~$

frank@ubuntu:~$ gpg -d secret_stuff_for_frank.txt.gpg

You need a passphrase to unlock the secret key for

user: "Frank Siamese (I am a cat.) <frank@any.net>"

2048-bit RSA key, ID CD8104F7, created 2017-10-27 (main key ID 4CF

gpg: gpg-agent is not available in this session

gpg: encrypted with 2048-bit RSA key, ID CD8104F7, created 2017-10

Frank enters the passphrase for his private key, and he sees
the message. At the bottom, he sees the warning about how
my public key isn't trusted, and that there's no indication that
the signature belongs to the owner. Well, since Frank knows me
personally, and he knows for a fact that the public key really
is mine, he can add my public key to the trusted list:

 "Frank Siamese (I am a cat.) <frank@any.net>"

This is TOP SECRET stuff that only Frank can see!!!!!

If anyone else see it, it's the end of the world as we know it.

(With apologies to REM.)

gpg: Signature made Fri 27 Oct 2017 06:39:15 PM EDT using RSA key

gpg: Good signature from "Donald A. Tevault <donniet@something.net

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to

Primary key fingerprint: DB0B 31B8 876D 9B2C 7F12 9FC3 886F 3357

frank@ubuntu:~$

frank@ubuntu:~$ cd .gnupg

frank@ubuntu:~/.gnupg$ gpg --edit-key donnie

gpg (GnuPG) 1.4.20; Copyright (C) 2015 Free Software Foundation, I

This is free software: you are free to change and redistribute it

There is NO WARRANTY, to the extent permitted by law.

gpg: checking the trustdb

gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model

gpg: depth: 0 valid: 2 signed: 0 trust: 0-, 0q, 0n, 0m, 0f

pub 2048R/9FD7014B created: 2017-10-27 expires: never usa

 trust: ultimate validity: ultimate

sub 2048R/9625E7E9 created: 2017-10-27 expires: never usa

[ultimate] (1). Donald A. Tevault <donniet@something.net>

gpg>

The last line of this output is the command prompt for the gpg
shell. Frank is concerned with trust, so he'll enter the
command, trust:

Frank has known me for quite a while, and he knows for a
fact that I'm the one who sent the key. So, he chooses option
5 for ultimate trust. Once Frank logs out and logs back in,
that trust will take effect:

gpg> trust

pub 2048R/9FD7014B created: 2017-10-27 expires: never usa

 trust: unknown validity: unknown

sub 2048R/9625E7E9 created: 2017-10-27 expires: never usa

[unknown] (1). Donald A. Tevault <donniet@something.net>

Please decide how far you trust this user to correctly verify othe

(by looking at passports, checking fingerprints from different sou

 1 = I don't know or won't say

 2 = I do NOT trust

 3 = I trust marginally

 4 = I trust fully

 5 = I trust ultimately

 m = back to the main menu

Your decision? 5

Do you really want to set this key to ultimate trust? (y/N) y

frank@ubuntu:~$ gpg -d secret_stuff_for_frank.txt.gpg

You need a passphrase to unlock the secret key for

user: "Frank Siamese (I am a cat.) <frank@any.net>"

2048-bit RSA key, ID CD8104F7, created 2017-10-27 (main key ID 4CF

gpg: gpg-agent is not available in this session

gpg: encrypted with 2048-bit RSA key, ID CD8104F7, created 2017-10

 "Frank Siamese (I am a cat.) <frank@any.net>"

With no more warning messages, this looks much better. At
my end, I'll do the same thing with Frank's public key.

What's so very cool about this is that even though the whole
world may have my public key, it's useless to anyone who
isn't a designated recipient of my message.

On an Ubuntu machine, to get rid of the gpg-agent
is not available in this session messages, and to be
able to cache your passphrase in the keyring,
install the gnupg-agent package:

sudo apt install gnupg-agent

This is TOP SECRET stuff that only Frank can see!!!!!

If anyone else see it, it's the end of the world as we know it.

(With apologies to REM.)

gpg: Signature made Fri 27 Oct 2017 06:39:15 PM EDT using RSA key

gpg: Good signature from "Donald A. Tevault <donniet@something.net

frank@ubuntu:~$

Signing a file without
encryption
If a file isn't secret, but you still need to ensure authenticity
and integrity, you can just sign it without encrypting it:

Just as before, I create a .gpg version of the file. When Frank
receives the file, he may try to open it with less:

donnie@ubuntu:~$ gpg -s not_secret_for_frank.txt

You need a passphrase to unlock the secret key for

user: "Donald A. Tevault <donniet@something.net>"

2048-bit RSA key, ID 9FD7014B, created 2017-10-27

gpg: gpg-agent is not available in this session

donnie@ubuntu:~$ ls -l

. . .

-rw-rw-r-- 1 donnie donnie 40 Oct 27 19:30 not_secret_for_frank.t

-rw-rw-r-- 1 donnie donnie 381 Oct 27 19:31 not_secret_for_frank.t

frank@ubuntu:~$ less not_secret_for_frank.txt.gpg

"not_secret_for_frank.txt.gpg" may be a binary file. See it anywa

<A3>^A^Av^A<89><FE><90>^M^C^@^B^A<88>o3W<9F><D7>^AK^A<AC>Fb^Xnot_s

<89>^A^\^D^@^A^B^@^F^E^BY<F3><C1><C0>^@

 ^P<88>o3W<9F><D7>^AK6<AF>^G<FF>Bs<9A>^Lc^@<E9><ED><C2>-2<A

<EC>/[:<D1>{<B2><FD>o8<C6><C9>x<FE>*4^D<CD>^G^O^F<F3>@v<87>_1<D0>^

s}`<A4>:<B4>&<F7><F4>\EjȰ!^Q <9C>6^E|H<E2>ESC<D9>9<DC>p_ӞESCB<DE>^

<A0> <CB><C4>+<81><F5><A7>`5<90><BF>Y<DE><FF><<A0>z<BC><BD>5<C

There's a lot of gibberish there because of the signature, but
if you look carefully, you'll see the plain, unencrypted
message. Frank will use gpg with the --verify option to verify
that the signature really does belong to me:

<B7><A2>^L^_^D<DD>Kk<E0><9A>8<C6>S^E<D0>fjz<B2>&G<A4><A8>^Lg$8Q>{<

<A1><93><C3>4<DC><C4>x<86><D9>^]- <8A> F0<87><8A><94>%A<96><DF><CD

<D3>K<E5>^G<8E><90>d<8C><DA>Aɱb<86><89><DA>S<B6><91><D8><D2><E0><B

<ED>^@*<EF>x<E7>jø<FD><D3><FA><9A>^]

not_secret_for_frank.txt.gpg (END)

frank@ubuntu:~$ gpg --verify not_secret_for_frank.txt.gpg

gpg: Signature made Fri 27 Oct 2017 07:31:12 PM EDT using RSA key

gpg: Good signature from "Donald A. Tevault <donniet@something.net

frank@ubuntu:~$

Encrypting partitions
with Linux Unified Key
Setup – LUKS
Being able to encrypt individual files can be handy, but it can
be quite unwieldy for a large number of files. For that, we
need something better, and we have three different methods:

Block encryption: We can use this for either whole-
disk encryption, or to encrypt individual partitions

File-level encryption: We'd use this to encrypt
individual directories, without having to encrypt the
underlying partitions

Containerized Encryption: Using third-party
software that doesn't come with any Linux
distribution, we can create encrypted, cross-platform
containers that can be opened on either Linux, Mac,
or Windows machines

The Linux Unified Key Setup (LUKS), falls into the first
category. It's built into pretty much every Linux distribution,
and directions for use are the same for each. For our demos,

I'll use the CentOS virtual machine, since LUKS is now the
default encryption mechanism for Red Hat Enterprise Linux
7 and CentOS 7.

Disk encryption during
operating system
installation
When you install Red Hat Enterprise Linux 7 or one of its
offspring, you have the option of encrypting the drive. All
you have to do is to click on a checkbox:

Other than that, I just let the installer create the default
partitioning scheme, which means that the / filesystem and
the swap partition will both be logical volumes. (I'll cover that
in a moment.)

Before the installation can continue, I have to create a
passphrase to mount the encrypted disk:

Now, whenever I reboot the system, I need to enter this
passphrase:

Once the machine is up and running, I can look at the list of
logical volumes. I see both the / logical volume and the swap
logical volume:

[donnie@localhost etc]$ sudo lvdisplay

 --- Logical volume ---

 LV Path /dev/centos/swap

 LV Name swap

 VG Name centos

 LV UUID tsme2v-uy87-uech-vpNp-W4E7-fHLf-3bf817

 LV Write Access read/write

 LV Creation host, time localhost, 2017-10-28 13:00:11 -0400

 LV Status available

 # open 2

 LV Size 2.00 GiB

 Current LE 512

 Segments 1

 Allocation inherit

 Read ahead sectors auto

 - currently set to 8192

 Block device 253:2

 --- Logical volume ---

 LV Path /dev/centos/root

 LV Name root

 VG Name centos

 LV UUID MKXVO9-X8fo-w2FC-LnGO-GLnq-k2Xs-xI1gn0

 LV Write Access read/write

 LV Creation host, time localhost, 2017-10-28 13:00:12 -0400

 LV Status available

 # open 1

 LV Size 17.06 GiB

 Current LE 4368

 Segments 1

 Allocation inherit

 Read ahead sectors auto

 - currently set to 8192

 Block device 253:1

[donnie@localhost etc]$

And I can look at the list of physical volumes. (Actually,
there's only one physical volume in the list, and it's listed as a
luks physical volume.):

[donnie@localhost etc]$ sudo pvdisplay

 --- Physical volume ---

 PV Name /dev/mapper/luks-2d7f02c7-864f-42ce-b362-5

 VG Name centos

 PV Size <19.07 GiB / not usable 0

 Allocatable yes

 PE Size 4.00 MiB

 Total PE 4881

 Free PE 1

 Allocated PE 4880

 PV UUID V50E4d-jOCU-kVRn-67w9-5zwR-nbwg-4P725S

[donnie@localhost etc]$

This shows that the underlying physical volume is encrypted,
which means that both the / and the swap logical volumes are
also encrypted. That's a good thing, because leaving the swap
space unencrypted—a common mistake when setting up disk
encryption up manually—can lead to data leakage.

Adding an encrypted
partition with LUKS
There may be times when you'll need to either add another
encrypted drive to an existing machine, or encrypt a portable
device, such as a USB memory stick. This procedure works
for both scenarios.

To demonstrate, I'll shut down my CentOS VM and add
another virtual drive:

I'll bump the drive capacity up to 20 GB, which will give me
plenty of room to play with:

After rebooting the machine, I now have a /dev/sdb drive to
play with. My next step is to create a partition. It doesn't
matter whether I create a new-fangled GPT partition, or an
old-fashioned MBR partition. I'll create a GPT partition, and
my preferred utility for doing that is gdisk, simply because it's
so similar to the old fdisk that I know and love so well. The
only catch is that gdisk isn't installed on CentOS by default:

sudo yum install gdisk

sudo gdisk /dev/sdb

I'll use the entire drive for my partition, and leave the
partition type set at the default 8300. I now have the /dev/sdb1
partition:

[donnie@localhost ~]$ sudo gdisk -l /dev/sdb

[sudo] password for donnie:

GPT fdisk (gdisk) version 0.8.6

Partition table scan:

 MBR: protective

 BSD: not present

 APM: not present

 GPT: present

Found valid GPT with protective MBR; using GPT.

Disk /dev/sdb: 43978112 sectors, 21.0 GiB

Logical sector size: 512 bytes

Disk identifier (GUID): DC057EC6-3BA8-4269-ABE9-2A28B4FDC84F

Partition table holds up to 128 entries

First usable sector is 34, last usable sector is 43978078

Partitions will be aligned on 2048-sector boundaries

Total free space is 2014 sectors (1007.0 KiB)

Number Start (sector) End (sector) Size Code Name

 1 2048 43978078 21.0 GiB 8300 Linux filesystem

[donnie@localhost ~]$

I'll next use cryptsetup to convert the partition to LUKS
format. In this command, the -v signifies verbose mode, and
the -y signifies that I'll have to enter my passphrase twice in
order to properly verify it. Note that when it says to type yes
all in uppercase, it really does mean to type it in uppercase:

[donnie@localhost ~]$ sudo cryptsetup -v -y luksFormat /dev/sdb1

WARNING!

========

This will overwrite data on /dev/sdb1 irrevocably.

Are you sure? (Type uppercase yes): YES

Enter passphrase:

Verify passphrase:

Command successful.

[donnie@localhost ~]$

Although I don't have to, I'd like to look at the information
about my new encrypted partition:

[donnie@localhost ~]$ sudo cryptsetup luksDump /dev/sdb1

LUKS header information for /dev/sdb1

Version: 1

Cipher name: aes

Cipher mode: xts-plain64

Hash spec: sha256

. . .

. . .

There's a lot more to the output than what I can show here,
but you get the idea.

Next, I'll map the partition to a device name. You can name
the device pretty much whatever you want, and I'll just name
mine secrets. (I know, it's a corny name. You probably won't
want to make it so obvious where you're storing your
secrets.):

When I look in the /dev/mapper directory, I see my new secrets
device, listed as a symbolic link to the dm-3 device:

[donnie@localhost mapper]$ pwd

/dev/mapper

[donnie@localhost mapper]$ ls -l se*

[donnie@localhost ~]$ sudo cryptsetup luksOpen /dev/sdb1 secrets

Enter passphrase for /dev/sdb1:

[donnie@localhost ~]$

lrwxrwxrwx. 1 root root 7 Oct 28 17:39 secrets -> ../dm-3

[donnie@localhost mapper]$

I'll use dmsetup to look at the information about my new
device:

[donnie@localhost mapper]$ sudo dmsetup info secrets

[sudo] password for donnie:

Name: secrets

State: ACTIVE

Read Ahead: 8192

Tables present: LIVE

Open count: 0

Event number: 0

Major, minor: 253, 3

Number of targets: 1

UUID: CRYPT-LUKS1-6cbdce1748d441a18f8e793c0fa7c389-secrets

[donnie@localhost mapper]$

The next step is to format the partition in the usual manner. I
could use any filesystem that's supported by Red Hat and
CentOS. But, since everything else on my system is already
formatted with XFS, that's what I'll go with here, as well:

[donnie@localhost ~]$ sudo mkfs.xfs /dev/mapper/secrets

meta-data=/dev/mapper/secrets isize=512 agcount=4, agsize=13

 = sectsz=512 attr=2, projid32bit=

 = crc=1 finobt=0, sparse=0

data = bsize=4096 blocks=5496491, imax

 = sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0 ftype=1

log =internal log bsize=4096 blocks=2683, version

 = sectsz=512 sunit=0 blks, lazy-c

realtime =none extsz=4096 blocks=0, rtextents=

[donnie@localhost ~]$

My final step is to create a mount point and to mount the
encrypted partition:

[donnie@localhost ~]$ sudo mkdir /secrets

[sudo] password for donnie:

[donnie@localhost ~]$ sudo mount /dev/mapper/secrets /secrets

[donnie@localhost ~]$

The mount command will verify that the partition is mounted
properly:

[donnie@localhost ~]$ mount | grep 'secrets'

/dev/mapper/secrets on /secrets type xfs (rw,relatime,seclabel,att

[donnie@localhost ~]$

Configuring the LUKS
partition to mount
automatically
The only missing piece of the puzzle is to configure the
system to automatically mount the LUKS partition upon
boot-up. To do that, I'll configure two different files:

/etc/crypttab

/etc/fstab

Had I not chosen to encrypt the disk when I installed the
operating system, I wouldn't have a crypttab file, and I would
have to create it myself. But, since I did choose to encrypt
the drive, I already have one with information about that
drive:

The first two fields describe the name and location of the
encrypted partition. The third field is for the encryption
passphrase. If it's set to none, as it is here, then the passphrase
will have to be manually entered upon boot-up.

luks-2d7f02c7-864f-42ce-b362-50dd830d9772 UUID=2d7f02c7-864f-42ce

In the fstab file, we have the entry that actually mounts the
partition:

Well, there are actually two entries in this case, because I
have two logical volumes, / and swap, on top of my encrypted
physical volume. The UUID line is the /boot partition, which is
the only part of the drive that isn't encrypted. Now, let's add
our new encrypted partition so that it will mount
automatically, as well.

This is where it would be extremely helpful to
remotely log into your virtual machine from your
desktop host machine. By using a GUI-type
Terminal, whether it be the Terminal from a
Linux or MacOS machine, or Cygwin from a
Windows machine, you'll have the ability to
perform copy-and-paste operations, which you
won't have if you work directly from the virtual
machine terminal. (Trust me, you don't want to
be typing in those long UUIDs.)

The first step is to obtain the UUID of the encrypted
partition:

[donnie@localhost etc]$ sudo cryptsetup luksUUID /dev/sdb1

[sudo] password for donnie:

6cbdce17-48d4-41a1-8f8e-793c0fa7c389

[donnie@localhost etc]$

/dev/mapper/centos-root / xfs defaults,x-syste

UUID=9f9fbf9c-d046-44fc-a73e-ca854d0ca718 /boot

/dev/mapper/centos-swap swap swap defaults,x-syste

I'll copy that UUID, and paste it into the /etc/crypttab file.
(Note that you'll paste it in twice. The first time, you'll
prepend it with luks-, and the second time you'll append it
with UUID=.):

Finally, I'll edit the /etc/fstab file, adding the last line in the
file for my new encrypted partition. (Note that I again used
luks-, followed by the UUID number.):

When editing the fstab file for adding normal,
unencrypted partitions, I always like to do a sudo
mount -a to check the fstab file for typos. That
won't work with LUKS partitions though,
because mount won't recognize the partition until
the system reads in the crypttab file, and that
won't happen until I reboot the machine. So, just
be extra careful with editing fstab when adding
LUKS partitions.

Now for the moment of truth. I'll reboot the machine to see if
everything works.

luks-2d7f02c7-864f-42ce-b362-50dd830d9772 UUID=2d7f02c7-864f-42ce

luks-6cbdce17-48d4-41a1-8f8e-793c0fa7c389 UUID=6cbdce17-48d4-41a1

/dev/mapper/centos-root / xfs defaults,x-systemd.device-timeout=0

UUID=9f9fbf9c-d046-44fc-a73e-ca854d0ca718 /boot xfs defaults 0 0

/dev/mapper/centos-swap swap swap defaults,x-systemd.device-timeou

/dev/mapper/luks-6cbdce17-48d4-41a1-8f8e-793c0fa7c389 /secrets xfs

Okay, the machine has rebooted, and mount shows that my
endeavors have been successful:

[donnie@localhost ~]$ mount | grep 'secrets'

/dev/mapper/luks-6cbdce17-48d4-41a1-8f8e-793c0fa7c389 on /secrets

[donnie@localhost ~]$

Encrypting directories
with eCryptfs
Encrypting entire partitions is cool, but you might, at times,
just need to encrypt an individual directory. For that, we can
use eCryptfs. We'll need to use our Ubuntu machines for this,
because Red Hat and CentOS no longer include eCryptfs in
version 7 of their products. (It was in Red Hat 6 and CentOS
6, but it's no longer even available for installation in version
7.)

Home directory and disk
encryption during Ubuntu
installation
When you install Ubuntu Server, you have two chances to
implement encryption. You'll first be given the chance to
encrypt your home directory:

Later, on the Partition disks screen, you'll be given the
chance to set up encrypted logical volumes for whole disk
encryption:

After choosing this option, you will then be asked to enter a
passphrase:

The disk encryption uses LUKS, just the same as we saw on
the CentOS machine. To prove this, all we have to do is look
for a populated crypttab file in the /etc directory:

donnie@ubuntu3:~$ cd /etc

donnie@ubuntu3:/etc$ cat crypttab

sda5_crypt UUID=56190c2b-e46b-40a9-af3c-4cb26c4fe998 none luks,dis

cryptswap1 UUID=60661042-0dbd-4c2a-9cf9-7f02a73864ae /dev/urandom

donnie@ubuntu3:/etc$

Unlike Red Hat and CentOS, an Ubuntu machine
will always have the /etc/crypttab file, even if
there are no LUKS partitions. Without LUKS
partitions, the file will be empty.

The home directory encryption uses eCryptfs, as evidenced
by the .ecryptfs directory in the /home directory:

donnie@ubuntu3:/home$ ls -la

total 16

drwxr-xr-x 4 root root 4096 Oct 29 15:06 .

drwxr-xr-x 23 root root 4096 Oct 29 15:23 ..

drwx------ 3 donnie donnie 4096 Oct 29 15:29 donnie

drwxr-xr-x 3 root root 4096 Oct 29 15:06 .ecryptfs

donnie@ubuntu3:/home$

So, what we have here is encryption on top of encryption, for
double protection. Is that really necessary? Probably not, but
choosing to encrypt my home directory ensured that the
access permissions for it got set to the more restrictive 700
setting, rather than the default 755 setting. Be aware though,
that any user accounts you create now will have wide open
permissions settings on their home directories. Unless, that
is, we create user accounts with the encryption option.

Encrypting a home
directory for a new user
account
In Chapter 2, Securing User Accounts, I showed you how
Ubuntu allows you to encrypt a user's home directory as you
create his or her user account. To review, let's see the
command for creating Goldie's account:

sudo adduser --encrypt-home goldie

When Goldie logs in, the first thing she'll want to do is to
unwrap her mount passphrase, write it down, and store it in a
secure place. (She'll need this if she ever needs to recover a
corrupted directory.):

ecryptfs-unwrap-passphrase .ecryptfs/wrapped-passphrase

When you use adduser --encrypt-home, home directories for new
users will automatically be set to a restrictive permissions
value that will keep everyone out except for the owner of the
directory. This happens even when you leave the adduser.conf
file set with its default settings.

Creating a private
directory within an
existing home directory
Let's say that you have users who, for whatever strange
reason, don't want to encrypt their entire home directories,
and want to keep the 755 permissions settings on their home
directories so that other people can access their files. But,
they also want a private directory that nobody but them can
access.

Instead of encrypting an entire home directory, any user can
create an encrypted private directory within his or her own
home directory. The first step, if it hasn't already been done,
is for someone with admin privileges to install the ecryptfs-
utils package:

sudo apt install ecryptfs-utils

To create this private directory, we'll use the interactive
ecryptfs-setup-private utility. If you have admin privileges, you
can do this for other users. Users without admin privileges
can do it for themselves. For our demo, let's say that Charlie,
my big Siamese/Gray tabby guy, needs his own encrypted
private space. (Who knew that cats had secrets, right?):

For the login passphrase, Charlie enters his normal password
or passphrase for logging into his user account. He could
have let the system generate its own mount passphrase, but he
decided to enter his own. Since he did enter his own mount
passphrase, he didn't need to do the ecryptfs-unwrap-passphrase
command to find out what the passphrase is. But, just to
show how that command works, let's say that Charlie entered
TurkeyLips as his mount passphrase:

charlie@ubuntu2:~$ ecryptfs-setup-private

Enter your login passphrase [charlie]:

Enter your mount passphrase [leave blank to generate one]:

Enter your mount passphrase (again):

**

YOU SHOULD RECORD YOUR MOUNT PASSPHRASE AND STORE IT IN A SAFE LOC

 ecryptfs-unwrap-passphrase ~/.ecryptfs/wrapped-passphrase

THIS WILL BE REQUIRED IF YOU NEED TO RECOVER YOUR DATA AT A LATER

**

Done configuring.

Testing mount/write/umount/read...

Inserted auth tok with sig [e339e1ebf3d58c36] into the user sessio

Inserted auth tok with sig [7a40a176ac647bf0] into the user sessio

Inserted auth tok with sig [e339e1ebf3d58c36] into the user sessio

Inserted auth tok with sig [7a40a176ac647bf0] into the user sessio

Testing succeeded.

Logout, and log back in to begin using your encrypted directory.

charlie@ubuntu2:~$

charlie@ubuntu2:~$ ecryptfs-unwrap-passphrase .ecryptfs/wrapped-pa

Passphrase:

TurkeyLips

charlie@ubuntu2:~$

Yes, it's a horribly weak passphrase, but for our demo
purposes, it works.

After Charlie logs out and logs back in, he can start using his
new private directory. Also, you can see that he has three
new hidden directories within his home directory. All three
of these new directories are only accessible by Charlie, even
though his top-level home directory is still wide open to
everybody:

charlie@ubuntu2:~$ ls -la

total 40

drwxr-xr-x 6 charlie charlie 4096 Oct 30 17:00 .

drwxr-xr-x 4 root root 4096 Oct 30 16:38 ..

-rw------- 1 charlie charlie 270 Oct 30 17:00 .bash_history

-rw-r--r-- 1 charlie charlie 220 Aug 31 2015 .bash_logout

-rw-r--r-- 1 charlie charlie 3771 Aug 31 2015 .bashrc

drwx------ 2 charlie charlie 4096 Oct 30 16:39 .cache

drwx------ 2 charlie charlie 4096 Oct 30 16:57 .ecryptfs

drwx------ 2 charlie charlie 4096 Oct 30 16:57 Private

drwx------ 2 charlie charlie 4096 Oct 30 16:57 .Private

-rw-r--r-- 1 charlie charlie 655 May 16 08:49 .profile

charlie@ubuntu2:~$

If you do a grep 'ecryptfs' * command in the /etc/pam.d
directory, you'll see that PAM is configured to automatically
mount users' encrypted directories whenever they log into the
system:

donnie@ubuntu2:/etc/pam.d$ grep 'ecryptfs' *

common-auth:auth optional pam_ecryptfs.so unwrap

common-password:password optional pam_ecryptfs.so

common-session:session optional pam_ecryptfs.so unwrap

common-session-noninteractive:session optional pam_ecryptfs

donnie@ubuntu2:/etc/pam.d$

Encrypting other
directories with eCryptfs
Encrypting other directories is a simple matter of mounting
them with the ecryptfs filesystem. For our example, let's
create a secrets directory in the top level of our filesystem,
and encrypt it. Note how you list the directory name twice,
because you also need to specify a mount point. (Essentially,
you're using the directory that you're mounting as its own
mount point.)

sudo mkdir /secrets

sudo mount -t ecryptfs /secrets /secrets

The output from this command is a bit lengthy, so let's break
it down.

First, you'll enter your desired passphrase, and choose the
encryption algorithm and the key length:

donnie@ubuntu2:~$ sudo mount -t ecryptfs /secrets /secrets

[sudo] password for donnie:

Passphrase:

Select cipher:

 1) aes: blocksize = 16; min keysize = 16; max keysize = 32

 2) blowfish: blocksize = 8; min keysize = 16; max keysize = 56

 3) des3_ede: blocksize = 8; min keysize = 24; max keysize = 24

We'll go with the default of aes, and 16 bytes for the key.

I'm going to go with the default of no for plaintext passthrough,
and with yes for filename encryption:

Enable plaintext passthrough (y/n) [n]:

Enable filename encryption (y/n) [n]: y

I'll go with the default Filename Encryption Key, and verify the
mounting options:

Filename Encryption Key (FNEK) Signature [e339e1ebf3d58c36]:

Attempting to mount with the following options:

 ecryptfs_unlink_sigs

 ecryptfs_fnek_sig=e339e1ebf3d58c36

 ecryptfs_key_bytes=16

 ecryptfs_cipher=aes

 ecryptfs_sig=e339e1ebf3d58c36

This warning only comes up when you mount the directory
for the first time. For the final two questions, I'll type yes in
order to prevent that warning from coming up again:

 4) twofish: blocksize = 16; min keysize = 16; max keysize = 32

 5) cast6: blocksize = 16; min keysize = 16; max keysize = 32

 6) cast5: blocksize = 8; min keysize = 5; max keysize = 16

Selection [aes]:

Select key bytes:

 1) 16

 2) 32

 3) 24

Selection [16]:

Just for fun, I'll create a file within my new encrypted secrets
directory, and then unmount the directory:

By choosing to encrypt filenames, nobody can even tell what
files you have when the directory is unmounted. When I'm
ready to access my encrypted files again, I'll just remount the
directory the same as I did before.

WARNING: Based on the contents of [/root/.ecryptfs/sig-cache.txt]

it looks like you have never mounted with this key

before. This could mean that you have typed your

passphrase wrong.

Would you like to proceed with the mount (yes/no)? : yes

Would you like to append sig [e339e1ebf3d58c36] to

[/root/.ecryptfs/sig-cache.txt]

in order to avoid this warning in the future (yes/no)? : yes

Successfully appended new sig to user sig cache file

Mounted eCryptfs

donnie@ubuntu2:~$

cd /secrets

sudo vim secret_stuff.txt

cd

sudo umount /secrets

ls -l /secrets

donnie@ubuntu2:/secrets$ ls -l

total 12

-rw-r--r-- 1 root root 12288 Oct 31 18:24 ECRYPTFS_FNEK_ENCRYPTED

donnie@ubuntu2:/secrets$

Encrypting the swap
partition with eCryptfs
If you're just encrypting individual directories with eCryptfs
instead of using LUKS whole-disk encryption, you'll need to
encrypt your swap partition in order to prevent accidental
data leakage. Fixing that problem requires just one simple
command:

Don't mind the warning about the missing
/dev/mapper/cryptswap1 file. It will get created the next time you
reboot the machine.

donnie@ubuntu:~$ sudo ecryptfs-setup-swap

[sudo] password for donnie:

WARNING:

An encrypted swap is required to help ensure that encrypted files

HOWEVER, THE SWAP ENCRYPTION CONFIGURATION PRODUCED BY THIS PROGRA

NOTE: Your suspend/resume capabilities will not be affected.

Do you want to proceed with encrypting your swap? [y/N]: y

INFO: Setting up swap: [/dev/sda5]

WARNING: Commented out your unencrypted swap from /etc/fstab

swapon: stat of /dev/mapper/cryptswap1 failed: No such file or dir

donnie@ubuntu:~$

Using VeraCrypt for
cross-platform sharing of
encrypted containers
Once upon a time, there was TrueCrypt, a cross-platform
program that allowed the sharing of encrypted containers
across different operating systems. But the project was
always shrouded in mystery, because its developers would
never reveal their identities. And then, right out of the blue,
the developers released a cryptic message about how
TrueCrypt was no longer secure, and shut down the project.

VeraCrypt is the successor to TrueCrypt, and it allows the
sharing of encrypted containers across Linux, Windows,
MacOS, and FreeBSD machines. Although LUKS and
eCryptfs are good, VeraCrypt does offer more flexibility in
certain ways:

As mentioned, VeraCrypt offers cross-platform
sharing, whereas LUKS and eCryptfs don't

VeraCrypt allows you to encrypt either whole
partitions or whole storage devices, or to create
virtual encrypted disks

Not only can you create encrypted volumes with
VeraCrypt, you can also hide them, giving you
plausible deniability

VeraCrypt comes in both command-line and GUI
variants, so it's appropriate for either server use or for
the casual desktop user

Like LUKS and eCryptfs, VeraCrypt is free open
source software, which means that it's free to use,
and that the source code can be audited for either
bugs or backdoors

Getting and installing
VeraCrypt
The Linux version of VeraCrypt comes as a set of universal
installer scripts that should work on any Linux distribution.
Once you extract the .tar.bz2 archive file, you'll see two
scripts for GUI installation, and two for console-mode
installation. One of each of those is for 32-bit Linux, and one
of each is for 64-bit Linux:

For the server demo, I used scp to transfer the 64-bit console-
mode installer to one of my Ubuntu virtual machines. The
executable permission is already set, so all you have to do to
install is:

donnie@ubuntu:~$./veracrypt-1.21-setup-console-x64

donnie@linux-0ro8:~/Downloads> ls -l vera*

-r-xr-xr-x 1 donnie users 2976573 Jul 9 05:10 veracrypt-1.21-set

-r-xr-xr-x 1 donnie users 2967950 Jul 9 05:14 veracrypt-1.21-set

-r-xr-xr-x 1 donnie users 4383555 Jul 9 05:08 veracrypt-1.21-set

-r-xr-xr-x 1 donnie users 4243305 Jul 9 05:13 veracrypt-1.21-set

-rw-r--r-- 1 donnie users 14614830 Oct 31 23:49 veracrypt-1.21-set

donnie@linux-0ro8:~/Downloads>

You'll need sudo privileges, but the installer will prompt you
for your sudo password. After reading and agreeing to a
rather lengthy license agreement, the installation only takes a
few seconds.

Creating and mounting a
VeraCrypt volume in
console mode
I haven't been able to find any documentation for the
console-mode variant of VeraCrypt, but you can see a list of
the available commands just by typing veracrypt. For this
demo, I'm creating a 2 GB encrypted volume in my own
home directory. But you can just as easily do it elsewhere,
such as on a USB memory stick.

To create a new encrypted volume, type:

veracrypt -c

This will take you into an easy-to-use, interactive utility. For
the most part, you'll be fine just accepting the default
options:

donnie@ubuntu:~$ veracrypt -c

Volume type:

 1) Normal

 2) Hidden

Select [1]:

Enter volume path: /home/donnie/good_stuff

Enter volume size (sizeK/size[M]/sizeG): 2G

Encryption Algorithm:

 1) AES

 2) Serpent

 3) Twofish

 4) Camellia

 5) Kuznyechik

 6) AES(Twofish)

 7) AES(Twofish(Serpent))

 8) Serpent(AES)

 9) Serpent(Twofish(AES))

 10) Twofish(Serpent)

Select [1]:

Hash algorithm:

 1) SHA-512

 2) Whirlpool

 3) SHA-256

 4) Streebog

Select [1]:

. . .

. . .

For the filesystem, the default option of FAT will give you
the best cross-platform compatibility between Linux,
MacOS, and Windows:

Filesystem:

 1) None

 2) FAT

 3) Linux Ext2

 4) Linux Ext3

 5) Linux Ext4

 6) NTFS

 7) exFAT

Select [2]:

You'll then select your password and a PIM, which stands for
Personal Iterations Multiplier. (For the PIM, I entered 8891.
High PIM values give better security, but they will also cause
the volume to take longer to mount.) Then, type at least 320
random characters in order to generate the encryption key.
(This is where it would be handy to have my cats walking
across my keyboard.):

After you hit Enter, be patient, because the final generation
of your encrypted volume will take a few moments. Here,
you see that my 2 GB good_stuff container has been
successfully created:

donnie@ubuntu:~$ ls -l good_stuff

-rw------- 1 donnie donnie 2147483648 Nov 1 17:02 good_stuff

donnie@ubuntu:~$

To use this container, I have to mount it. I'll begin by creating
a mount point directory; the same as I would for mounting
normal partitions:

donnie@ubuntu:~$ mkdir good_stuff_dir

donnie@ubuntu:~$

Enter password:

Re-enter password:

Enter PIM: 8891

Enter keyfile path [none]:

Please type at least 320 randomly chosen characters and then press

Use the veracrypt utility to mount your container on this
mount point:

donnie@ubuntu:~$ veracrypt good_stuff good_stuff_dir

Enter password for /home/donnie/good_stuff:

Enter PIM for /home/donnie/good_stuff: 8891

Enter keyfile [none]:

Protect hidden volume (if any)? (y=Yes/n=No) [No]:

Enter your user password or administrator password:

donnie@ubuntu:~$

To see what VeraCrypt volumes you have mounted, use
veracrypt -l:

And, that's all there is to it.

donnie@ubuntu:~$ veracrypt -l

1: /home/donnie/secret_stuff /dev/mapper/veracrypt1 /home/donnie/s

2: /home/donnie/good_stuff /dev/mapper/veracrypt2 /home/donnie/goo

donnie@ubuntu:~$

Using VeraCrypt in GUI
mode
Desktop users of any of the supported operating systems can
install the GUI variant of VeraCrypt. Be aware though, that
you can't install both the console-mode variant and the GUI
variant on the same machine, because one will overwrite the
other. Here, you see the GUI version running on my CentOS
7 virtual machine:

Since the main focus of this book is sever security, I won't go
into the details of the GUI version here. But, it's fairly self-
explanatory, and you can view the full VeraCrypt
documentation on their website.

You can get VeraCrypt from here: https://www.verac
rypt.fr/en/Home.html

For the rest of this chapter, we'll turn our attention to the
subject of protecting data in transit, by locking down Secure
Shell.

https://www.veracrypt.fr/en/Home.html

Ensuring that SSH
protocol 1 is disabled
By this stage in your Linux career, you should already know
how to use Secure Shell, or SSH, to do remote logins and
remote file transfers. What you may not know is that a
default configuration of SSH is actually quite insecure.

SSH protocol version 1, the original SSH protocol, is
severely flawed, and should never be used. It's still in most
Linux distributions, but fortunately, it's always disabled by
default. But, if you ever open your /etc/ssh/sshd_config file and
see this:

Protocol 1

Or this:

Protocol 1, 2

Then you have a problem.

The Ubuntu main page for the sshd_config file says that
protocol version 1 is still available for use with legacy devices.

But, if you're still running devices that are that old, you need
to start seriously thinking about doing some upgrades.

As Linux distributions get updated, you'll see SSH protocol 1
gradually being completely removed, as has happened with
Red Hat and CentOS 7.4.

Creating and managing
keys for password-less
logins
The Secure Shell Suite, or SSH, is a great set of tools that
provides secure, encrypted communications with remote
servers. You can use the SSH component to remotely log into
the command-line of a remote machine, and you can use
either scp or sftp to securely transfer files. The default way to
use any of these SSH components is to use the username and
password of a person's normal Linux user account. So,
logging into a remote machine from the terminal of my
OpenSUSE workstation would look something like:

donnie@linux-0ro8:~> ssh donnie@192.168.0.8

donnie@192.168.0.8's password:

While it's true that the username and password go across the
network in an encrypted format, making it hard for malicious
actors to intercept, it's still not the most secure way of doing
business. The problem is that attackers have access to
automated tools that can perform brute-force password
attacks against an SSH server. Botnets, such as the Hail Mary
Cloud, perform continuous scans across the internet to find
internet-facing servers with SSH enabled. If a botnet finds

that the servers allow SSH access via username and
password, it will then launch a brute-force password attack.
Sadly, such attacks have been successful quite a few times,
especially when the server operators allow the root user to
log in via SSH.

This older article gives more details about the
Hail Mary Cloud botnet: http://futurismic.com/200
9/11/16/the-hail-mary-cloud-slow-but-steady-brute-force

-password-guessing-botnet/

In the next section, we'll look at two ways to help prevent
these types of attacks:

Enable SSH logins through an exchange of public
keys

Disable the root user login through SSH

http://futurismic.com/2009/11/16/the-hail-mary-cloud-slow-but-steady-brute-force-password-guessing-botnet/

Creating a user's SSH
key set
Each user has the ability to create his or her own set of
private and public keys. It doesn't matter whether the user's
client machine is running Linux, MacOS, or Cygwin on
Windows. In all three cases, the procedure is exactly the
same. To demo, I'll create keys on my OpenSUSE
workstation and transfer the public key to one of my virtual
machines. It doesn't matter which virtual machine I use, but
since I haven't shown much love to the CentOS machine
lately, I'll use it.

I'll begin by creating the keys on my OpenSUSE
workstation:

donnie@linux-0ro8:~> ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/donnie/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/donnie/.ssh/id_rsa.

Your public key has been saved in /home/donnie/.ssh/id_rsa.pub.

The key fingerprint is:

SHA256:oqDpCvAptbE8srN6Z4FNXxgkhPhjh1sEKazfMpxhVI8 donnie@linux-0r

The key's randomart image is:

+---[RSA 2048]----+

|...*+.. |

|o.+ .+. |

|.+ oE .o |

There are several different types of keys that you can create,
but the default 2048-bit RSA keys are considered as plenty
strong enough for the foreseeable future. The private and
public SSH keys work the same as we saw with GPG. You'll
keep your private keys to yourself, but you can share the
public key with the world, if you so desire. In this case
though, I'm only going to share my public key with just one
server.

When prompted for the location and name of the keys, I'll
just hit Enter to accept the defaults. You could just leave the
private key with a blank passphrase, but that's not a
recommended practice.

Note that if you choose an alternative name for
your key files, you'll need to type in the entire
path to make things work properly. For example,
in my case, I would specify the path for donnie_rsa
keys as:

/home/donnie/.ssh/donnie_rsa

In the .ssh directory in my home directory, I can see the keys
that I created:

|. B + . . |

|.=+% ...S |

|.*O*+... |

|* Bo.. |

|++..o |

|B= o |

+----[SHA256]-----+

donnie@linux-0ro8:~>

donnie@linux-0ro8:~/.ssh> ls -l

total 12

-rw------- 1 donnie users 1766 Nov 2 17:52 id_rsa

-rw-r--r-- 1 donnie users 399 Nov 2 17:52 id_rsa.pub

-rw-r--r-- 1 donnie users 2612 Oct 31 18:40 known_hosts

donnie@linux-0ro8:~/.ssh>

The id_rsa key is the private key, with read and write
permissions only for me. The id_rsa.pub public key has to be
world-readable.

Transferring the public
key to the remote server
Transferring my public key to a remote server allows the
server to readily identify both me and my client machine.
Before I can transfer the public key to the remote server, I
need to add the private key to my session keyring. This
requires two commands. (One command is to invoke the ssh-
agent, and the other command actually adds the private key to
the keyring.):

Finally, I can transfer my public key to my CentOS server,
which is at address 192.168.0.101:

donnie@linux-0ro8:~> exec /usr/bin/ssh-agent $SHELL

donnie@linux-0ro8:~> ssh-add

Enter passphrase for /home/donnie/.ssh/id_rsa:

Identity added: /home/donnie/.ssh/id_rsa (/home/donnie/.ssh/id_rsa

donnie@linux-0ro8:~>

donnie@linux-0ro8:~> ssh-copy-id donnie@192.168.0.101

/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key

/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if

donnie@192.168.0.101's password:

Number of key(s) added: 1

Now try logging into the machine, with: "ssh 'donnie@192.168.0.1

The next time that I log in, I'll use the key exchange, and I
won't have to enter a password:

donnie@linux-0ro8:~> ssh donnie@192.168.0.101

Last login: Wed Nov 1 20:11:20 2017

[donnie@localhost ~]$

So, now you're wondering, "How is that secure if I can log in
without entering my password?" The answer is that once you
close the client machine's terminal window that you used for
logging in, the private key will be removed from your
session keyring. When you open a new terminal and try to
log in to the remote server, you'll see this:

donnie@linux-0ro8:~> ssh donnie@192.168.0.101

Enter passphrase for key '/home/donnie/.ssh/id_rsa':

Now, every time I log into this server, I'll need to enter the
passphrase for my private key. (That is, unless I add it back
to the session keyring with the two commands that I showed
you in the preceding section.)

and check to make sure that only the key(s) you wanted were added

donnie@linux-0ro8:~>

Disabling root user login
A few years ago, there was a somewhat celebrated case
where malicious actors had managed to plant malware on
quite a few Linux servers somewhere in southeast Asia.
There were three reasons that the bad guys found this so easy
to do:

The internet-facing servers involved were set up to
use username/password authentication for SSH

The root user was allowed to log in through SSH

User passwords, including the root user's password,
were incredibly weak

All this meant that it was easy for Hail Mary to brute-force
its way in.

Different distributions have different default settings for root
user login. In the /etc/ssh/sshd_config file of your CentOS
machine, you'll see this line:

#PermitRootLogin yes

Unlike what you have in most configuration files, the
commented-out lines in sshd_config define the default settings
for the Secure Shell daemon. So, this line indicates that the
root user is indeed allowed to log in through SSH. To change
that, I'll remove the comment symbol and change the setting
to no:

PermitRootLogin no

To make the new setting take effect, I'll restart the SSH
daemon, which is named sshd on CentOS, and is named ssh
on Ubuntu:

sudo systemctl restart sshd

On the Ubuntu machine, the default setting looks a bit
different:

PermitRootLogin prohibit-password

This means that the root user is allowed to log in, but only
via a public key exchange. That's probably secure enough, if
you really need to allow the root user to log in. But in most
cases, you'll want to force admin users to log in with their
normal user accounts, and to use sudo for their admin needs.
So, in most cases, you can still change this setting to no.

Be aware that if you deploy an instance of
Ubuntu Server on a cloud service, such as Azure,
Rackspace, or Vultr, the service owners will have
you log into the virtual machine with the root
user account. The first thing you'll want to do is
to create your own normal user account, log
back in with that account, disable the root user
account, and disable the root user login in
sshd_config.

Disabling
username/password
logins
This is something that you'll only want to do after you've set
up the key exchange with your clients. Otherwise, clients
will be locked out of doing remote logins.

For both Ubuntu and CentOS machines, look for this line in
the sshd_config file:

#PasswordAuthentication yes

Remove the comment symbol, change the parameter value to
no, and restart the SSH daemon. The line should now look
like this:

PasswordAuthentication no

Now, when the botnets scan your system, they'll see that
doing a brute-force password attack would be useless.
They'll then just go away and leave you alone.

Setting up a chroot
environment for SFTP
users
Secure File Transfer Protocol (SFTP) is a great tool for
performing secure file transfers. There is a command-line
client, but users will most likely use a graphical client, such
as Filezilla. A common use-case for SFTP is to allow website
owners to upload web content files to the proper content
directories on a web server. With a default SSH setup,
anyone who has a user account on a Linux machine can log
in through either SSH or SFTP, and can navigate through the
server's entire filesystem. What we really want for SFTP
users is to prevent them from logging into a command-
prompt via SSH, and to confine them to their own designated
directories.

Creating a group and
configuring the
sshd_config file
With the exception of the slight difference in user-creation
commands, this procedure works the same for either CentOS
or Ubuntu. So, you can use either one of your virtual
machines to follow along. We'll begin by creating an sftpusers
group.

sudo groupadd sftpusers

Create the user accounts, and add them to the sftpusers group.
We'll do both operations in one step. On your CentOS
machine, the command for creating Max's account would be:

sudo useradd -G sftpusers max

On your Ubuntu machine, it would be:

sudo useradd -m -d /home/max -s /bin/bash -G sftpusers max

Open the /etc/ssh/sshd_config file in your favorite text editor.
Find the line that says:

Subsystem sftp /usr/lib/openssh/sftp-server

Change it to:

Subsystem sftp internal-sftp

This setting allows you to disable normal SSH login for
certain users.

At the bottom of the sshd_config file, add a Match Group stanza:

Match Group sftpusers

 ChrootDirectory /home

 AllowTCPForwarding no

 AllowAgentForwarding no

 X11Forwarding no

 ForceCommand internal-sftp

An important consideration here is that the ChrootDirectory has
to be owned by the root user, and it can't be writable by
anyone other than the root user. When Max logs in, he'll be
in the /home directory, and will then have to cd into his own
directory. This also means that you want for all users' home
directories to have the restrictive 700 permissions settings, in
order to keep everyone out of everyone else's stuff.

Save the file and restart the SSH daemon. Then, try to log on
as Max through normal SSH, just to see what happens:

donnie@linux-0ro8:~> ssh max@192.168.0.8

max@192.168.0.8's password:

This service allows sftp connections only.

Connection to 192.168.0.8 closed.

donnie@linux-0ro8:~>

Okay, so he can't do that. Let's now have him try to log in
through SFTP, and verify that he is in the /home directory:

Now, let's see him try to cd out of the /home directory:

sftp> cd /etc

Couldn't stat remote file: No such file or directory

sftp>

So, our chroot jail does indeed work.

donnie@linux-0ro8:~> sftp max@192.168.0.8

max@192.168.0.8's password:

Connected to 192.168.0.8.

drwx------ 7 1000 1000 4096 Nov 4 22:53 donnie

drwx------ 5 1001 1001 4096 Oct 27 23:34 frank

drwx------ 3 1003 1004 4096 Nov 4 22:43 katelyn

drwx------ 2 1002 1003 4096 Nov 4 22:37 max

sftp>

Hands-on lab – setting up
a chroot directory for
sftpusers group
For this lab, you can use either the CentOS virtual machine
or the Ubuntu virtual machine. You'll add a group, then
configure the sshd_config file to allow group members to only
be able to log in via SFTP, and to confine them to their own
directories. For the simulated client machine, you can use the
terminal of your MacOS or Linux desktop machine, or
Cygwin from your Windows machine:

1. Create the sftpusers group:

 sudo groupadd sftpusers

2. Create a user account for Max, and add him to the
sftpusers group. On CentOS, do:

 sudo useradd -G sftpusers max

On Ubuntu, do:

3. For Ubuntu, ensure that the users' home directories
are all set with read, write, and execute permissions
for only the directory's user. If that's not the case, do:

 sudo chmod 700 /home/*

4. Open the /etc/ssh/sshd_config file in your preferred text
editor. Find the line that says:

 Subsystem sftp /usr/lib/openssh/sftp-server

Change it to:

 Subsystem sftp internal-sftp

5. At the end of the sshd_config file, add the following
stanza:

 sudo useradd -m -d /home/max -s /bin/bash -G sftpusers max

 Match Group sftpusers

 ChrootDirectory /home

 AllowTCPForwarding no

 AllowAgentForwarding no

 X11Forwarding no

 ForceCommand internal-sftp

6. Restart the SSH daemon. On CentOS, do:

 sudo systemctl sshd restart

On Ubuntu, do:

 sudo systemctl ssh restart

7. Have Max try to log in through normal SSH, to see
what happens:

 ssh max@IP_Address_of_your_vm

8. Now, have Max log in through SFTP. Once he's in,
have him try to cd out of the /home directory:

 sftp max@IP_Address_of_your_vm

9. End of Lab.

Summary
In this chapter, we've seen how to work with various
encryption technologies that can help us safeguard our
secrets. We started with GNU Privacy Guard for encrypting
individual files. We then moved on to the disk, partition, and
directory encryption utilities. LUKS and eCryptfs are
specific to Linux, but we also looked at VeraCrypt, which
can be used on any of the major operating systems.

In the next chapter, we'll take an in-depth look at the subject
of discretionary access control. I'll see you there.

Mastering Discretionary
Access Control
Discretionary Access Control, DAC, really just means that
each user has the ability to control who can get into his or her
stuff. If I wanted to open my home directory so that every
other user on the system can get into it, I could do that.
Having done so, I could then control who can access each
specific file. In the next chapter, we'll use our DAC skills to
manage shared directories, where members of a group might
need different levels of access to the files within.

By this point in your Linux career, you likely know the
basics of controlling access by setting file and directory
permissions. In this chapter, we'll do a review of the basics,
and then we'll look at some more advanced concepts. Topics
that we'll cover include:

Using chown to change the ownership of files and
directories

Using chmod to set permissions on files and directories

What SUID and SGID settings can do for us on
regular files

The security implications of having the SUID and
SGID permissions set on files that don't need them

How to use extended file attributes to protect
sensitive files

Using chown to change
ownership of files and
directories
Controlling access to files and directories really just boils
down to ensuring that the proper users own files and
directories, and that each file and directory has permissions
set in such a way that only authorized users can access them.
The chown utility covers the first part of this equation.

One unique thing about chown is that you must have sudo
privileges to use it, even if you're working with your own
files in your own directory. You can use it to change the user
of a file or directory, the group that's associated with a file or
directory, or both at the same time.

First, let's say that you own the perm_demo.txt file and you want
to change both the user and group association to that of
another user. In this case, I'll change the file ownership from
me to Maggie:

[donnie@localhost ~]$ ls -l perm_demo.txt

-rw-rw-r--. 1 donnie donnie 0 Nov 5 20:02 perm_demo.txt

[donnie@localhost ~]$ sudo chown maggie:maggie perm_demo.txt

[donnie@localhost ~]$ ls -l perm_demo.txt

-rw-rw-r--. 1 maggie maggie 0 Nov 5 20:02 perm_demo.txt

[donnie@localhost ~]$

The first maggie in maggie:maggie is the user to whom you want
to grant ownership. The second maggie, after the colon,
represents the group with which you want the file to be
associated. Since I was changing both the user and group to
maggie, I could have left off the second maggie, with the first
maggie followed by a colon, and I would have achieved the
same result:

sudo chown maggie: perm_demo.txt

To just change the group association without changing the
user, just list the group name, preceded by a colon:

[donnie@localhost ~]$ sudo chown :accounting perm_demo.txt

[donnie@localhost ~]$ ls -l perm_demo.txt

-rw-rw-r--. 1 maggie accounting 0 Nov 5 20:02 perm_demo.txt

[donnie@localhost ~]$

Finally, to just change the user without changing the group,
list the username without the trailing colon:

[donnie@localhost ~]$ sudo chown donnie perm_demo.txt

[donnie@localhost ~]$ ls -l perm_demo.txt

-rw-rw-r--. 1 donnie accounting 0 Nov 5 20:02 perm_demo.txt

[donnie@localhost ~]$

These commands work the same way on a directory as they
do on a file. But, if you want to also change the ownership
and/or the group association of the contents of a directory,
while also making the change on the directory itself, use the -
R option, which stands for recursive. In this case, I just want
to change the group for the perm_demo_dir directory to
accounting:

[donnie@localhost ~]$ ls -ld perm_demo_dir

drwxrwxr-x. 2 donnie donnie 74 Nov 5 20:17 perm_demo_dir

[donnie@localhost ~]$ ls -l perm_demo_dir

total 0

-rw-rw-r--. 1 donnie donnie 0 Nov 5 20:17 file1.txt

-rw-rw-r--. 1 donnie donnie 0 Nov 5 20:17 file2.txt

-rw-rw-r--. 1 donnie donnie 0 Nov 5 20:17 file3.txt

-rw-rw-r--. 1 donnie donnie 0 Nov 5 20:17 file4.txt

[donnie@localhost ~]$ sudo chown -R :accounting perm_demo_dir

[donnie@localhost ~]$ ls -ld perm_demo_dir

drwxrwxr-x. 2 donnie accounting 74 Nov 5 20:17 perm_demo_dir

[donnie@localhost ~]$ ls -l perm_demo_dir

total 0

-rw-rw-r--. 1 donnie accounting 0 Nov 5 20:17 file1.txt

-rw-rw-r--. 1 donnie accounting 0 Nov 5 20:17 file2.txt

-rw-rw-r--. 1 donnie accounting 0 Nov 5 20:17 file3.txt

-rw-rw-r--. 1 donnie accounting 0 Nov 5 20:17 file4.txt

[donnie@localhost ~]$

And, that's all there is to chown.

Using chmod to set
permissions values on
files and directories
On Unix and Linux systems, you would use the chmod utility
to set permissions values on files and directories. You can set
permissions for the user of the file or directory, the group
that's associated with the file or directory, and others. The
three basic permissions are:

r: This indicates a read permission.

w: This is for a write permission.

x: This is the executable permission. You can apply it
to any type of program file, or to directories. If you
apply an executable permission to a directory,
authorized people will be able to cd into it.

Do an ls -l on a file, and you'll see something like this:

-rw-rw-r--. 1 donnie donnie 804692 Oct 28 18:44 yum_list.txt

The first character of this line indicates the type of file. In
this case, we see a dash, which indicates a regular file. (A
regular file is pretty much every type of file that a normal
user would be able to access in his or her daily routine.) The
next three characters, rw-, indicate that the file has read and
write permissions for the user, which is the person who owns
the file. We then see rw- permissions for the group, and r--
permissions for others. A program file would also have the
executable permissions set:

-rwxr-xr-x. 1 root root 62288 Nov 20 2015 xargs

Here, we see that the xargs program file has executable
permissions set for everybody.

There are two ways that you can use chmod to change
permissions settings:

The symbolic method

The numerical method

Setting permissions with
the symbolic method
Whenever you create a file as a normal user, by default, it
will have read and write permissions for the user and the
group, and read permissions for others. If you create a
program file, you have to add the executable permissions
yourself. With the symbolic method, you could use one of
the following commands to do so:

chmod u+x donnie_script.sh

chmod g+x donnie_script.sh

chmod o+x donnie_script.sh

chmod u+x,g+x donnie_script.sh

chmod a+x donnie_script.sh

The first three commands add the executable permission for
the user, the group, and others. The fourth command adds
executable permissions for both the user and the group, and
the last command adds executable permissions for everybody
(a for all). You could also remove the executable permissions
by replacing the + with a -. And, you can also add or remove
the read or write permissions, as appropriate.

While this method can be handy at times, it also has a bit of a
flaw. That is, it can only add permissions to what's already
there, or remove permissions from what's already there. If

you need to ensure that all of the permissions for a particular
file get set to a certain value, the symbolic method can get a
bit unwieldy. And for shell scripting, forget about it. In a
shell script, you'd need to add all kinds of extra code just to
determine which permissions are already set. The numerical
method can vastly simplify things for us.

Setting permissions with
the numerical method
With the numerical method, you'll use an octal value to
represent the permissions settings on a file or directory. To
the r, w, and x permissions, you assign the numerical values 4,
2, and 1, respectively. Do this for the user, group, and others
positions, and add them all up to get the permissions value
for the file or directory:

User Group Others

rwx rwx rwx

421 421 421

7 7 7

So, if you have all the permissions set for everybody, the file
or directory will have a value of 777. If I were to create a shell
script file, by default, it would have the standard 664
permissions, meaning read and write for the user and group,
and read-only for others:

-rw-rw-r--. 1 donnie donnie 0 Nov 6 19:18 donnie_script.sh

If you create a file with root privileges, either
with sudo or from the root user command
prompt, you'll see that the default permissions
setting is the more restrictive 644.

Let's say that I want to make this script executable, but I
want to be the only person in the whole world who can do
anything with it. I could do:

[donnie@localhost ~]$ chmod 700 donnie_script.sh

[donnie@localhost ~]$ ls -l donnie_script.sh

-rwx------. 1 donnie donnie 0 Nov 6 19:18 donnie_script.sh

[donnie@localhost ~]$

With this one simple command, I've removed all permissions
from the group and from others, and set the executable
permission for myself. This is the sort of thing that makes the
numerical method so handy for writing shell scripts.

Once you've been working with the numerical method for a
while, looking at a file and figuring out its numerical
permissions value will become second nature. In the
meantime, you can use stat with the -c %a option to show you
the values. For example:

[donnie@localhost ~]$ stat -c %a yum_list.txt

664

[donnie@localhost ~]$

[donnie@localhost ~]$ stat -c %a donnie_script.sh

700

[donnie@localhost ~]$

[donnie@localhost ~]$ stat -c %a /etc/fstab

644

[donnie@localhost ~]$

Using SUID and SGID on
regular files
When a regular file has its SUID permission set, whoever
accesses the file will have the same privileges as the user of
the file. When the SGID permission is set on a regular file,
whoever accesses the file will have the same privileges as the
group that's associated with the file. This is especially useful
on program files.

To demo this, let's say that Maggie, a regular, unprivileged
user, wants to change her own password. Since it's her own
password, she would just use the one-word command, passwd,
without using sudo:

[maggie@localhost ~]$ passwd

Changing password for user maggie.

Changing password for maggie.

(current) UNIX password:

New password:

Retype new password:

passwd: all authentication tokens updated successfully.

[maggie@localhost ~]$

To change a password, a person has to make changes to the
/etc/shadow file. On my CentOS machine, the shadow file
permissions look like this:

[donnie@localhost etc]$ ls -l shadow

----------. 1 root root 840 Nov 6 19:37 shadow

[donnie@localhost etc]$

On the Ubuntu machine, they look like this:

donnie@ubuntu:/etc$ ls -l shadow

-rw-r----- 1 root shadow 1316 Nov 4 18:38 shadow

donnie@ubuntu:/etc$

Either way, the permissions settings don't allow Maggie to
modify the shadow file. Yet, by changing her password, she
is able to modify the shadow file. So, what's going on? To
answer this, let's go into the /usr/bin directory and look at the
permissions settings for the passwd executable file:

[donnie@localhost etc]$ cd /usr/bin

[donnie@localhost bin]$ ls -l passwd

-rwsr-xr-x. 1 root root 27832 Jun 10 2014 passwd

[donnie@localhost bin]$

For the user permissions, you see rws instead of rwx. The s
indicates that this file has the SUID permission set. Since the
file belongs to the root user, anyone who accesses this file
has the same privileges as the root user. The fact that we see
a lower-case s means that the file also has the executable
permission set for the root user. Since the root user is
allowed to modify the shadow file, whoever uses this passwd
utility to change his or her own password can also modify the
shadow file.

A file with the SGID permission set has an s in the
executable position for the group:

[donnie@localhost bin]$ ls -l write

-rwxr-sr-x. 1 root tty 19536 Aug 4 07:18 write

[donnie@localhost bin]$

The write utility, which is associated with the tty group,
allows users to send messages to other users via their
command-line consoles. Having tty group privileges allows
users to do this.

The security implications
of the SUID and SGID
permissions
As useful as it may be to have SUID or SGID permissions on
your executable files, we should consider it as just a
necessary evil. While having SUID or SGID set on certain
operating system files is essential to the proper operation of
your Linux system, it becomes a security risk when users set
SUID or SGID on other files. The problem is that, if
intruders find an executable file that belongs to the root user
and has the SUID bit set, they can use that to exploit the
system. Before they leave, they might leave behind their own
root-owned file with SUID set, which will allow them to
easily gain entry into the system the next time. If the
intruder's SUID file isn't found, the intruder will still have
access, even if the original problem is fixed.

The numerical value for SUID is 4000, and for SGID it's 2000.
To set SUID on a file, you'd just add 4000 to whichever
permissions value that you would set otherwise. For
example, if you have a file with a permissions value of 755,
you'd set SUID by changing the permissions value to 4755.
(This would give you read/write/execute for the user,
read/execute for the group, and read/execute for others, with
the SUID bit added on.)

Finding spurious SUID or
SGID files
One quick security trick is to run a find command to take
inventory of the SUID and SGID files on your system. You
could save the output to a text file, so that you can verify
whether anything got added the next time you run the
command. Your command would look something like this:

Here's the breakdown:

/: We're searching through the entire filesystem.
Since some directories are only accessible to
someone with root privileges, we need to use sudo.

-type f: This means that we're searching for regular
files, which would include executable program files
and shell scripts.

-perm 4000: We're searching for files with the 4000, or
SUID, permission bit set.

-o: The or operator.

sudo find / -type f \(-perm -4000 -o -perm 2000 \) > suid_sgid_fi

-perm 2000: We're searching for files with the 2000, or
SGID, permission bit set.

>: And, of course, we're redirecting the output into
the suid_sgid_files.txt text file with the > operator.

Note that the two -perm items need to be combined into a term
that's enclosed in a pair of parentheses. In order to prevent
the Bash shell from interpreting the parenthesis characters
incorrectly, we need to escape each one with a backslash. We
also need to place a blank space between the first parenthesis
character and the first -perm, and another between the 2000 and
the last backslash. Also, the and operator between the -type f
and the -perm term is understood to be there, even without
inserting -a. The text file that you create should look
something like this:

/usr/bin/chfn

/usr/bin/chsh

/usr/bin/chage

/usr/bin/gpasswd

/usr/bin/newgrp

/usr/bin/mount

/usr/bin/su

/usr/bin/umount

/usr/bin/sudo

/usr/bin/pkexec

/usr/bin/crontab

/usr/bin/passwd

/usr/sbin/pam_timestamp_check

/usr/sbin/unix_chkpwd

/usr/sbin/usernetctl

/usr/lib/polkit-1/polkit-agent-helper-1

/usr/lib64/dbus-1/dbus-daemon-launch-helper

Optionally, if you want to see details about which files are
SUID and which are SGID, you can add in the -ls option:

Now, let's say that Maggie, for whatever reason, decides to
set the SUID bit on a shell script file in her home directory:

[maggie@localhost ~]$ chmod 4755 bad_script.sh

[maggie@localhost ~]$ ls -l

total 0

-rwsr-xr-x. 1 maggie maggie 0 Nov 7 13:06 bad_script.sh

[maggie@localhost ~]$

Run the find command again, saving the output to a different
text file. Then, do a diff operation on the two files to see
what changed:

The only difference is the addition of Maggie's shell script
file.

sudo find / -type f \(-perm -4000 -o -perm 2000 \) -ls > suid_sgi

[donnie@localhost ~]$ diff suid_sgid_files.txt suid_sgid_files2.tx

17a18

> /home/maggie/bad_script.sh

[donnie@localhost ~]$

Hands-on lab – searching
for SUID and SGID files
You can do this lab on either of your virtual machines. You'll
save the output of the find command to a text file:

1. Search through the entire filesystem for all files that
have either SUID or SGID set, saving the output to a
text file:

2. Log into any other user account that you have on the
system, and create a dummy shell script file. Then,
set the SUID permission on that file, and log back out
into your own user account:

 su - desired_user_account

 touch some_shell_script.sh

 chmod 4755 some_shell_script.sh

 ls -l some_shell_script.sh

 exit

 sudo find / -type f \(-perm -4000 -o -perm 2000 \) -ls >

 suid_sgid_files.txt

3. Run the find command again, saving the output to a
different text file:

4. View the difference between the two files:

 diff suid_sgid_files.txt suid_sgid_files_2.txt

5. End of lab.

 sudo find / -type f \(-perm -4000 -o -perm 2000 \) -ls >

 suid_sgid_files_2.txt

Preventing SUID and
SGID usage on a partition
As we said before, you don't want users to assign SUID and
SGID to files that they create, because of the security risk
that it presents. You can prevent SUID and SGID usage on a
partition by mounting it with the nosuid option. So, the
/etc/fstab file entry for the luks partition that I created in the
previous chapter would look like this:

Different Linux distributions have different ways of setting
up default partition schemes during an operating system
installation. Mostly, the default way of doing business is to
have all directories, except for the /boot directory, under the /
partition. If you were to set up a custom partition scheme
instead, you could have the /home directory on its own
partition, where you could set the nosuid option. Keep in
mind, you don't want to set nosuid for the / partition, or else
you'll have an operating system that doesn't function
properly.

/dev/mapper/luks-6cbdce17-48d4-41a1-8f8e-793c0fa7c389 /secrets

Using extended file
attributes to protect
sensitive files
Extended file attributes are another tool for helping you to
protect sensitive files. They won't keep intruders from
accessing your files, but they can help you prevent sensitive
files from being altered or deleted. There are quite a few
extended attributes, but we only need to look at the ones that
deal with file security.

First, let's do an lsattr command to see which extended
attributes you already have set. On the CentOS machine,
your output would look something like this:

[donnie@localhost ~]$ lsattr

---------------- ./yum_list.txt

---------------- ./perm_demo.txt

---------------- ./perm_demo_dir

---------------- ./donnie_script.sh

---------------- ./suid_sgid_files.txt

---------------- ./suid_sgid_files2.txt

[donnie@localhost ~]$

So, as yet, I don't have any extended attributes set on any of
my files.

On the Ubuntu machine, the output would look more like
this:

donnie@ubuntu:~$ lsattr

-------------e-- ./file2.txt

-------------e-- ./secret_stuff_dir

-------------e-- ./secret_stuff_for_frank.txt.gpg

-------------e-- ./good_stuff

-------------e-- ./secret_stuff

-------------e-- ./not_secret_for_frank.txt.gpg

-------------e-- ./file4.txt

-------------e-- ./good_stuff_dir

donnie@ubuntu:~$

We won't worry about that e attribute, because that only
means that the partition is formatted with the ext4 filesystem.
CentOS doesn't have that attribute set, because its partition is
formatted with the XFS filesystem.

The two attributes that we'll look at are:

a: You can append text to the end of a file that has
this attribute, but you can't overwrite it. Only
someone with proper sudo privileges can set or delete
this attribute.

i: This makes a file immutable, and only someone
with proper sudo privileges can set or delete it. Files
with this attribute can't be deleted or changed in any
way. It's also not possible to create hard links to files
that have this attribute.

To set or delete attributes, you'll use the chattr command. You
can set more than one attribute on a file, but only when it
makes sense. For example, you wouldn't set both the a and
the i attributes on the same file, because the i will override
the a.

Let's start by creating the perm_demo.txt file with this text:

This is Donnie's sensitive file that he doesn't want to have overw

Setting the a attribute
I'll now set the a attribute:

[donnie@localhost ~]$ sudo chattr +a perm_demo.txt

[sudo] password for donnie:

[donnie@localhost ~]$

You'll use a + to add an attribute, and a - to delete it. Also, it
doesn't matter that the file does belong to me, and is in my
own home directory. I still need sudo privileges to add or
delete this attribute.

Now, let's see what happens when I try to overwrite this file:

With or without sudo privileges, I can't overwrite it. So, how
about if I try to append something to it?

[donnie@localhost ~]$ echo "I want to overwrite this file." > perm

-bash: perm_demo.txt: Operation not permitted

[donnie@localhost ~]$ sudo echo "I want to overwrite this file." >

-bash: perm_demo.txt: Operation not permitted

[donnie@localhost ~]$

[donnie@localhost ~]$ echo "I want to append this to the end of th

[donnie@localhost ~]$

There's no error message this time. Let's see what's now in
the file:

In addition to not being able to overwrite the file, I'm also
unable to delete it:

[donnie@localhost ~]$ rm perm_demo.txt

rm: cannot remove ‘perm_demo.txt’: Operation not permitted

[donnie@localhost ~]$ sudo rm perm_demo.txt

[sudo] password for donnie:

rm: cannot remove ‘perm_demo.txt’: Operation not permitted

[donnie@localhost ~]$

So, the a works. But, I've decided that I no longer want this
attribute set, so I'll remove it:

[donnie@localhost ~]$ sudo chattr -a perm_demo.txt

[donnie@localhost ~]$ lsattr perm_demo.txt

---------------- perm_demo.txt

[donnie@localhost ~]$

This is Donnie's sensitive file that he doesn't want to have overw

I want to append this to the end of the file.

Setting the i attribute
When a file has the i attribute set, the only thing you can do
with it is view its contents. You can't change it, move it,
delete it, rename it, or create hard links to it. Let's test this
with the perm_demo.txt file:

[donnie@localhost ~]$ sudo chattr +i perm_demo.txt

[donnie@localhost ~]$ lsattr perm_demo.txt

----i----------- perm_demo.txt

[donnie@localhost ~]$

Now, for the fun part:

There are a few more commands that I could try, but you get
the idea. To remove the i attribute, I'll do:

[donnie@localhost ~]$ sudo echo "I want to overwrite this file." >

-bash: perm_demo.txt: Permission denied

[donnie@localhost ~]$ echo "I want to append this to the end of th

-bash: perm_demo.txt: Permission denied

[donnie@localhost ~]$ sudo echo "I want to append this to the end

-bash: perm_demo.txt: Permission denied

[donnie@localhost ~]$ rm -f perm_demo.txt

rm: cannot remove ‘perm_demo.txt’: Operation not permitted

[donnie@localhost ~]$ sudo rm -f perm_demo.txt

rm: cannot remove ‘perm_demo.txt’: Operation not permitted

[donnie@localhost ~]$ sudo rm -f perm_demo.txt

[donnie@localhost ~]$ sudo chattr -i perm_demo.txt

[donnie@localhost ~]$ lsattr perm_demo.txt

---------------- perm_demo.txt

[donnie@localhost ~]$

Hands-on lab – setting
security-related extended
file attributes
For this lab, you'll create a perm_demo.txt file with the text of
your own choosing. You'll set the i and a attributes, and view
the results:

1. Using your preferred text editor, create the
perm_demo.txt file with a line of text.

2. View the extended attributes of the file:

 lsattr perm_demo.txt

3. Add the a attribute:

 sudo chattr +a perm_demo.txt

 lsattr perm_demo.txt

4. Try to overwrite and delete the file:

5. Now, append something to the file:

6. Remove the a attribute, and add the i attribute:

 sudo chattr -a perm_demo.txt

 lsattr perm_demo.txt

 sudo chattr +i perm_demo.txt

 lsattr perm_demo.txt

7. Repeat Step 4.
8. Additionally, try to change the filename and to create

a hard link to the file:

 mv perm_demo.txt some_file.txt

 sudo mv perm_demo.txt some_file.txt

 ln ~/perm_demo.txt ~/some_file.txt

 sudo ln ~/perm_demo.txt ~/some_file.txt

 echo "I want to overwrite this file." > perm_demo.txt

 sudo echo "I want to overwrite this file." > perm_demo.txt

 rm perm_demo.txt

 sudo rm perm_demo.txt

 echo "I want to append this line to the end of the file."

 perm_demo.txt

9. Now, try to create a symbolic link to the file:

 ln -s ~/perm_demo.txt ~/some_file.txt

Note that the i attribute won't let you create hard links
to a file, but it will let you create symbolic links.

10. End of lab.

Summary
In this chapter, we reviewed the basics of setting ownership
and permissions for files and directories. We then covered
what SUID and SGID can do for us when used properly, and
the risk of setting them on our own executable files. Finally,
we completed this roundup by looking at the two extended
file attributes that deal with file security.

In the next chapter, we'll extend what we've learned here to
more advanced file and directory access techniques. I'll see
you there.

Access Control Lists and
Shared Directory
Management
In the previous chapter, we reviewed the basics of
Discretionary Access Control. In this chapter, we'll take our
discussion of DAC a step further. We'll look at some more
advanced techniques that you can use to make DAC do
exactly what you want it to do.

Topics in this chapter include:

Creating an access control list (ACL) for either a
user or a group

Creating an inherited ACL for a directory

Removing a specific permission by using an ACL
mask

Using the tar --acls option to prevent loss of ACLs
during a backup

Creating a user group and adding members to it

Creating a shared directory for a group, and setting
the proper permissions on it

Setting the SGID bit and the sticky bit on the shared
directory

Using ACLs to allow only certain members of the
group to access a file in the shared directory

Creating an access
control list for either a
user or a group
The normal Linux file and directory permissions settings are
okay, but they're not very granular. With an ACL, we can
allow only a certain person to access a file or directory, or we
can allow multiple people to access a file or directory with
different permissions for each person. If we have a file or a
directory that's wide open for everyone, we can use an ACL
to allow different levels of access for either a group or an
individual. Towards the end of the chapter, we'll put what
we've learned all together in order to manage a shared
directory for a group.

You would use getfacl to view an access control list for a file
or directory. (Note that you can't use it to view all files in a
directory at once.) To begin, let's use getfacl to see if we have
any access control lists already set on the acl_demo.txt file:

[donnie@localhost ~]$ touch acl_demo.txt

[donnie@localhost ~]$ getfacl acl_demo.txt

file: acl_demo.txt

owner: donnie

group: donnie

user::rw-

group::rw-

other::r--

[donnie@localhost ~]$

All we see here are just the normal permissions settings, so
there's no ACL.

The first step for setting an ACL is to remove all permissions
from everyone except for the user of the file. That's because
the default permissions settings allow members of the group
to have read/write access, and others to have read access. So,
setting an ACL without removing those permissions would
be rather senseless:

[donnie@localhost ~]$ chmod 600 acl_demo.txt

[donnie@localhost ~]$ ls -l acl_demo.txt

-rw-------. 1 donnie donnie 0 Nov 9 14:37 acl_demo.txt

[donnie@localhost ~]$

When using setfacl to set an ACL, you can allow a user or a
group to have any combination of read, write, or execute
privileges. In our case, let's say that I want to let Maggie read
the file, and to prevent her from having write or execute
privileges:

[donnie@localhost ~]$ setfacl -m u:maggie:r acl_demo.txt

[donnie@localhost ~]$ getfacl acl_demo.txt

file: acl_demo.txt

owner: donnie

group: donnie

user::rw-

user:maggie:r--

group::---

mask::r--

other::---

[donnie@localhost ~]$ ls -l acl_demo.txt

-rw-r-----+ 1 donnie donnie 0 Nov 9 14:37 acl_demo.txt

[donnie@localhost ~]$

The -m option of setfacl means that we're about to modify the
ACL. (Well, to create one in this case, but that's okay.) The u:
means that we're setting an ACL for a user. We then list the
user's name, followed by another colon, and the list of
permissions that we want to grant to this user. In this case,
we're only allowing Maggie read access. We complete the
command by listing the file to which we want to apply this
ACL. The getfacl output shows that Maggie does indeed have
read access. Finally, we see in the ls -l output that the group
is listed as having read access, even though we've set the 600
permissions setting on this file. But, there's also a + sign,
which tells us that the file has an ACL. When we set an
ACL, the permissions for the ACL show up as group
permissions in ls -l.

To take this a step further, let's say that I want Frank to have
read/write access to this file:

[donnie@localhost ~]$ setfacl -m u:frank:rw acl_demo.txt

[donnie@localhost ~]$ getfacl acl_demo.txt

file: acl_demo.txt

owner: donnie

group: donnie

user::rw-

user:maggie:r--

user:frank:rw-

group::---

mask::rw-

other::---

[donnie@localhost ~]$ ls -l acl_demo.txt

-rw-rw----+ 1 donnie donnie 0 Nov 9 14:37 acl_demo.txt

[donnie@localhost ~]$

So, we can have two or more different ACLs assigned to the
same file. In the ls -l output, we see that we have rw
permissions set for the group, which is really just a summary
of permissions that we've set in the two ACLs.

We can set an ACL for group access by replacing the u: with
a g::

[donnie@localhost ~]$ getfacl new_file.txt

file: new_file.txt

owner: donnie

group: donnie

user::rw-

group::rw-

other::r--

[donnie@localhost ~]$ chmod 600 new_file.txt

[donnie@localhost ~]$ setfacl -m g:accounting:r new_file.txt

[donnie@localhost ~]$ getfacl new_file.txt

file: new_file.txt

owner: donnie

group: donnie

user::rw-

group::---

group:accounting:r--

mask::r--

other::---

[donnie@localhost ~]$ ls -l new_file.txt

-rw-r-----+ 1 donnie donnie 0 Nov 9 15:06 new_file.txt

[donnie@localhost ~]$

Members of the accounting group now have read access to this
file.

Creating an inherited
access control list for a
directory
There may be times when you'll want all files that get created
in a shared directory to have the same access control list. We
can do that by applying an inherited ACL to the directory.
Although, understand that, even though this sounds like a
cool idea, creating files in the normal way will cause files to
have the read/write permissions set for the group, and the
read permission set for others. So, if you're setting this up for
a directory where users just create files normally, the best
that you can hope to do is to create an ACL that adds either
the write or execute permissions for someone. Either that, or
ensure that users set the 600 permissions settings on all files
that they create, assuming that users really do need to restrict
access to their files.

On the other hand, if you're creating a shell script that creates
files in a specific directory, you can include chmod commands
to ensure that the files get created with the restrictive
permissions that are necessary to make your ACL work as
intended.

To demo, let's create the new_perm_dir directory, and set the
inherited ACL on it. I want to have read/write access for files

that my shell script creates in this directory, and for Frank to
have only read access. I don't want anyone else to be able to
read any of these files:

[donnie@localhost ~]$ setfacl -m d:u:frank:r new_perm_dir

[donnie@localhost ~]$ ls -ld new_perm_dir

drwxrwxr-x+ 2 donnie donnie 26 Nov 12 13:16 new_perm_dir

[donnie@localhost ~]$ getfacl new_perm_dir

file: new_perm_dir

owner: donnie

group: donnie

user::rwx

group::rwx

other::r-x

default:user::rwx

default:user:frank:r--

default:group::rwx

default:mask::rwx

default:other::r-x

[donnie@localhost ~]$

All I had to do to make this an inherited ACL was to add the
d: before the u:frank. I left the default permissions settings on
the directory, which allows everyone read access to the
directory. Next, I'll create the donnie_script.sh shell script that
will create a file within that directory, and that will set
read/write permissions for only the user of the new files:

#!/bin/bash

cd new_perm_dir

touch new_file.txt

chmod 600 new_file.txt

exit

After making the script executable, I'll run it and view the
results:

[donnie@localhost ~]$./donnie_script.sh

[donnie@localhost ~]$ cd new_perm_dir

[donnie@localhost new_perm_dir]$ ls -l

total 0

-rw-------+ 1 donnie donnie 0 Nov 12 13:16 new_file.txt

[donnie@localhost new_perm_dir]$ getfacl new_file.txt

file: new_file.txt

owner: donnie

group: donnie

user::rw-

user:frank:r-- #effective:---

group::rwx #effective:---

mask::---

other::---

[donnie@localhost new_perm_dir]$

So, new_file.txt got created with the correct permissions
settings, and with an ACL that allows Frank to read it. (I
know that this is a really simplified example, but you get the
idea.)

Removing a specific
permission by using an
ACL mask
You can remove an ACL from a file or directory with the -x
option. Let's go back to the acl_demo.txt file that I created
earlier, and remove the ACL for Maggie:

[donnie@localhost ~]$ setfacl -x u:maggie acl_demo.txt

[donnie@localhost ~]$ getfacl acl_demo.txt

file: acl_demo.txt

owner: donnie

group: donnie

user::rw-

user:frank:rw-

group::---

mask::rw-

other::---

[donnie@localhost ~]$

So, Maggie's ACL is gone. But, the -x option removes the
entire ACL, even if that's not what you really want. If you
have an ACL with multiple permissions set, you might just
want to remove one permission, while leaving the others.
Here, we see that Frank still has his ACL that grants him
read/write access. Let's now say that we want to remove the

write permission, while still allowing him the read
permission. For that, we'll need to apply a mask:

[donnie@localhost ~]$ setfacl -m m::r acl_demo.txt

[donnie@localhost ~]$ ls -l acl_demo.txt

-rw-r-----+ 1 donnie donnie 0 Nov 9 14:37 acl_demo.txt

[donnie@localhost ~]$ getfacl acl_demo.txt

file: acl_demo.txt

owner: donnie

group: donnie

user::rw-

user:frank:rw- #effective:r--

group::---

mask::r--

other::---

[donnie@localhost ~]$

The m::r sets a read-only mask on the ACL. Running getfacl
shows that Frank still has a read/write ACL, but the comment
to the side shows his effective permissions to be read-only.
So, Frank's write permission for the file is now gone. And, if
we had ACLs set for other users, this mask would affect
them the same way.

Using the tar --acls
option to prevent the loss
of ACLs during a backup
If you ever need to use tar to create a backup of either a file
or a directory that has ACLs assigned to it, you'll need to
include the --acls option switch. Otherwise, the ACLs will be
lost. To show this, I'll create a backup of the perm_demo_dir
directory without the --acls option. First, note that I do have
ACLs on files in this directory, as indicated by the + sign on
the last two files:

[donnie@localhost ~]$ cd perm_demo_dir

[donnie@localhost perm_demo_dir]$ ls -l

total 0

-rw-rw-r--. 1 donnie accounting 0 Nov 5 20:17 file1.txt

-rw-rw-r--. 1 donnie accounting 0 Nov 5 20:17 file2.txt

-rw-rw-r--. 1 donnie accounting 0 Nov 5 20:17 file3.txt

-rw-rw-r--. 1 donnie accounting 0 Nov 5 20:17 file4.txt

-rw-rw----+ 1 donnie donnie 0 Nov 9 15:19 frank_file.txt

-rw-rw----+ 1 donnie donnie 0 Nov 12 12:29 new_file.txt

[donnie@localhost perm_demo_dir]$

Now, I'll do the backup without the --acls:

[donnie@localhost perm_demo_dir]$ cd

[donnie@localhost ~]$ tar cJvf perm_demo_dir_backup.tar.xz perm_de

It looks good, right? Ah, but looks can be deceiving. Watch
what happens when I delete the directory, and then restore it
from the backup:

perm_demo_dir/

perm_demo_dir/file1.txt

perm_demo_dir/file2.txt

perm_demo_dir/file3.txt

perm_demo_dir/file4.txt

perm_demo_dir/frank_file.txt

perm_demo_dir/new_file.txt

[donnie@localhost ~]$

[donnie@localhost ~]$ rm -rf perm_demo_dir/

[donnie@localhost ~]$ tar xJvf perm_demo_dir_backup.tar.xz

perm_demo_dir/

perm_demo_dir/file1.txt

perm_demo_dir/file2.txt

perm_demo_dir/file3.txt

perm_demo_dir/file4.txt

perm_demo_dir/frank_file.txt

perm_demo_dir/new_file.txt

[donnie@localhost ~]$ ls -l

total 812

. . .

drwxrwxr-x+ 2 donnie donnie 26 Nov 12 13:16 new_perm_dir

drwxrwx---. 2 donnie donnie 116 Nov 12 12:29 perm_demo_dir

-rw-rw-r--. 1 donnie donnie 284 Nov 13 13:45 perm_demo_dir_backup

. . .

[donnie@localhost ~]$ cd perm_demo_dir/

[donnie@localhost perm_demo_dir]$ ls -l

total 0

-rw-rw-r--. 1 donnie donnie 0 Nov 5 20:17 file1.txt

-rw-rw-r--. 1 donnie donnie 0 Nov 5 20:17 file2.txt

-rw-rw-r--. 1 donnie donnie 0 Nov 5 20:17 file3.txt

-rw-rw-r--. 1 donnie donnie 0 Nov 5 20:17 file4.txt

-rw-rw----. 1 donnie donnie 0 Nov 9 15:19 frank_file.txt

I don't even have to use getfacl to see that the ACLs are gone
from the perm_demo_dir directory and all of its files, because the
+ signs are now gone from them. Now, let's see what happens
when I include the --acls option. First, I'll show you that an
ACL is set for this directory and its only file:

[donnie@localhost ~]$ ls -ld new_perm_dir

drwxrwxr-x+ 2 donnie donnie 26 Nov 13 14:01 new_perm_dir

[donnie@localhost ~]$ ls -l new_perm_dir

total 0

-rw-------+ 1 donnie donnie 0 Nov 13 14:01 new_file.txt

[donnie@localhost ~]$

Now, I'll use tar with --acls:

I'll now delete the new_perm_dir directory, and restore it from
backup. Again, I'll use the --acls option:

-rw-rw----. 1 donnie donnie 0 Nov 12 12:29 new_file.txt

[donnie@localhost perm_demo_dir]$

[donnie@localhost ~]$ tar cJvf new_perm_dir_backup.tar.xz new_perm

new_perm_dir/

new_perm_dir/new_file.txt

[donnie@localhost ~]$

[donnie@localhost ~]$ rm -rf new_perm_dir/

[donnie@localhost ~]$ tar xJvf new_perm_dir_backup.tar.xz --acls

new_perm_dir/

new_perm_dir/new_file.txt

The presence of the + signs indicates that the ACLs did
survive the backup and restore procedure. The one slightly
tricky part about this is that you must use --acls for both the
backup and the restoration. If you omit the option either
time, you will lose your ACLs.

[donnie@localhost ~]$ ls -ld new_perm_dir

drwxrwxr-x+ 2 donnie donnie 26 Nov 13 14:01 new_perm_dir

[donnie@localhost ~]$ ls -l new_perm_dir

total 0

-rw-------+ 1 donnie donnie 0 Nov 13 14:01 new_file.txt

[donnie@localhost ~]$

Creating a user group
and adding members to it
So far, I've been doing all of the demos inside my own home
directory, just for the sake of showing the basic concepts.
But, the eventual goal is to show you how to use this
knowledge to do something more practical, such as
controlling file access in a shared group directory. The first
step is to create a user group and to add members to it.

Let's say that we want to create a marketing group for members
of—you guessed it—the marketing department:

[donnie@localhost ~]$ sudo groupadd marketing

[sudo] password for donnie:

[donnie@localhost ~]$

Let's now add some members. You can do that in three
different ways:

Add members as we create their user accounts

Use usermod to add members that already have user
accounts

Edit the /etc/group file

Adding members as we
create their user
accounts
First, we can add members to the group as we create their
user accounts, using the -G option of useradd. On Red Hat or
CentOS, the command would look like this:

[donnie@localhost ~]$ sudo useradd -G marketing cleopatra

[sudo] password for donnie:

[donnie@localhost ~]$ groups cleopatra

cleopatra : cleopatra marketing

[donnie@localhost ~]$

On Debian/Ubuntu, the command would look like this:

And, of course, I'll need to assign Cleopatra a password in
the normal manner:

donnie@ubuntu3:~$ sudo useradd -m -d /home/cleopatra -s /bin/bash

donnie@ubuntu3:~$ groups cleopatra

cleopatra : cleopatra marketing

donnie@ubuntu3:~$

[donnie@localhost ~]$ sudo passwd cleopatra

Using usermod to add an
existing user to a group
The good news is that this works the same on either Red Hat
or CentOS or Debian/Ubuntu:

[donnie@localhost ~]$ sudo usermod -a -G marketing maggie

[sudo] password for donnie:

[donnie@localhost ~]$ groups maggie

maggie : maggie marketing

[donnie@localhost ~]$

In this case, the -a wasn't necessary, because Maggie wasn't a
member of any other secondary group. But, if she had
already belonged to another group, the -a would have been
necessary to keep from overwriting any existing group
information, thus removing her from the previous groups.

This method is especially handy for use on Ubuntu systems,
where it was necessary to use adduser in order to create
encrypted home directories. (As we saw in a previous
chapter, adduser doesn't give you the chance to add a user to a
group as you create the account.)

Adding users to a group
by editing the /etc/group
file
This final method is a good way to cheat, to speed up the
process of adding multiple existing users to a group. First,
just open the /etc/group file in your favorite text editor, and
look for the line that defines the group to which you want to
add members:

. . .

marketing:x:1005:cleopatra,maggie

. . .

So, I've already added Cleopatra and Maggie to this group.
Let's edit this to add a couple more members:

. . .

marketing:x:1005:cleopatra,maggie,vicky,charlie

. . .

When you're done, save the file and exit the editor.

A groups command for each of them will show that our wee
bit of cheating works just fine:

[donnie@localhost etc]$ sudo vim group

[donnie@localhost etc]$ groups vicky

vicky : vicky marketing

[donnie@localhost etc]$ groups charlie

charlie : charlie marketing

[donnie@localhost etc]$

This method is extremely handy for whenever you need to
add lots of members to a group at the same time.

Creating a shared
directory
The next act in our scenario involves creating a shared
directory that all the members of our marketing department
can use. Now, this is another one of those areas that
engenders a bit of controversy. Some people like to put
shared directories in the root level of the filesystem, while
others like to put shared directories in the /home directory.
And, some people even have other preferences. But really,
it's a matter of personal preference and/or company policy.
Other than that, it really doesn't much matter where you put
them. For our purposes, to make things simple, I'll just create
the directory in the root level of the filesystem:

[donnie@localhost ~]$ cd /

[donnie@localhost /]$ sudo mkdir marketing

[sudo] password for donnie:

[donnie@localhost /]$ ls -ld marketing

drwxr-xr-x. 2 root root 6 Nov 13 15:32 marketing

[donnie@localhost /]$

The new directory belongs to the root user. It has a
permissions setting of 755, which permits read and execute
access to everybody, and write access only to the root user.

What we really want is to allow only members of the
marketing department to access this directory. We'll first
change ownership and group association, and then we'll set
the proper permissions:

[donnie@localhost /]$ sudo chown nobody:marketing marketing

[donnie@localhost /]$ sudo chmod 770 marketing

[donnie@localhost /]$ ls -ld marketing

drwxrwx---. 2 nobody marketing 6 Nov 13 15:32 marketing

[donnie@localhost /]$

In this case, we don't have any one particular user that we
want to own the directory, and we don't really want for the
root user to own it. So, assigning ownership to the nobody
pseudo user account gives us a way to deal with that. I then
assigned the 770 permissions value to the directory, which
allows read/write/execute access to all marketing group
members, while keeping everyone else out. Now, let's let one
of our group members log in to see if she can create a file in
this directory:

[donnie@localhost /]$ su - vicky

Password:

[vicky@localhost ~]$ cd /marketing

[vicky@localhost marketing]$ touch vicky_file.txt

[vicky@localhost marketing]$ ls -l

total 0

-rw-rw-r--. 1 vicky vicky 0 Nov 13 15:41 vicky_file.txt

[vicky@localhost marketing]$

Okay, it works, except for one minor problem. The file
belongs to Vicky, as it should. But, it's also associated with
Vicky's personal group. For the best access control of these
shared files, we need them to be associated with the marketing
group.

Setting the SGID bit and
the sticky bit on the
shared directory
I've told you before that it's a bit of a security risk to set
either the SUID or SGID permissions on files, especially on
executable files. But, it is both completely safe and very
useful to set SGID on a shared directory.

SGID behavior on a directory is completely different from
SGID behavior on a file. On a directory, SGID will cause any
files that anybody creates to be associated with the same
group with which the directory is associated. So, bearing in
mind that the SGID permission value is 2000, let's set SGID
on our marketing directory:

[donnie@localhost /]$ sudo chmod 2770 marketing

[sudo] password for donnie:

[donnie@localhost /]$ ls -ld marketing

drwxrws---. 2 nobody marketing 28 Nov 13 15:41 marketing

[donnie@localhost /]$

The s in the executable position for the group indicates that
the command was successful. Let's now let Vicky log back in
to create another file:

[donnie@localhost /]$ su - vicky

Password:

Last login: Mon Nov 13 15:41:19 EST 2017 on pts/0

[vicky@localhost ~]$ cd /marketing

[vicky@localhost marketing]$ touch vicky_file_2.txt

[vicky@localhost marketing]$ ls -l

total 0

-rw-rw-r--. 1 vicky marketing 0 Nov 13 15:57 vicky_file_2.txt

-rw-rw-r--. 1 vicky vicky 0 Nov 13 15:41 vicky_file.txt

[vicky@localhost marketing]$

Vicky's second file is associated with the marketing group,
which is just what we want. Just for fun, let's let Charlie do
the same:

Again, Charlie's file is associated with the marketing group.
But, for some strange reason that nobody understands,
Charlie really doesn't like Vicky, and decides to delete her
files, just out of pure spite:

[donnie@localhost /]$ su - charlie

Password:

[charlie@localhost ~]$ cd /marketing

[charlie@localhost marketing]$ touch charlie_file.txt

[charlie@localhost marketing]$ ls -l

total 0

-rw-rw-r--. 1 charlie marketing 0 Nov 13 15:59 charlie_file.txt

-rw-rw-r--. 1 vicky marketing 0 Nov 13 15:57 vicky_file_2.txt

-rw-rw-r--. 1 vicky vicky 0 Nov 13 15:41 vicky_file.txt

[charlie@localhost marketing]$

The system complains that Vicky's original file is write-
protected, since it's still associated with her personal group.
But, the system does still allow Charlie to delete it, even
without sudo privileges. And, since Charlie has write access
to the second file, due to its association with the marketing
group, the system allows him to delete it without question.

Okay. So, Vicky complains about this, and tries to get
Charlie fired. But, our intrepid administrator has a better
idea. He'll just set the sticky bit in order to keep this from
happening again. Since the SGID bit has a value of 2000, and
the sticky bit has a value of 1000, we can just add the two
together to get a value of 3000:

[donnie@localhost /]$ sudo chmod 3770 marketing

[sudo] password for donnie:

[donnie@localhost /]$ ls -ld marketing

drwxrws--T. 2 nobody marketing 30 Nov 13 16:03 marketing

[donnie@localhost /]$

The T in the executable position for others indicates that the
sticky bit has been set. Since the T is uppercase, we know that
the executable permission for others has not been set. Having

[charlie@localhost marketing]$ rm vicky*

rm: remove write-protected regular empty file ‘vicky_file.txt’? y

[charlie@localhost marketing]$ ls -l

total 0

-rw-rw-r--. 1 charlie marketing 0 Nov 13 15:59 charlie_file.txt

[charlie@localhost marketing]$

the sticky bit set will prevent group members from deleting
anybody else's files. Let's let Vicky show us what happens
when she tries to retaliate against Charlie:

Even with the -f option, Vicky still can't delete Charlie's file.
Vicky doesn't have sudo privileges on this system, so it would
be useless for her to try that.

[donnie@localhost /]$ su - vicky

Password:

Last login: Mon Nov 13 15:57:41 EST 2017 on pts/0

[vicky@localhost ~]$ cd /marketing

[vicky@localhost marketing]$ ls -l

total 0

-rw-rw-r--. 1 charlie marketing 0 Nov 13 15:59 charlie_file.txt

[vicky@localhost marketing]$ rm charlie_file.txt

rm: cannot remove ‘charlie_file.txt’: Operation not permitted

[vicky@localhost marketing]$ rm -f charlie_file.txt

rm: cannot remove ‘charlie_file.txt’: Operation not permitted

[vicky@localhost marketing]$ ls -l

total 0

-rw-rw-r--. 1 charlie marketing 0 Nov 13 15:59 charlie_file.txt

[vicky@localhost marketing]$

Using ACLs to access
files in the shared
directory
As things currently stand, all members of the marketing group
have read/write access to all other group members' files.
Restricting access to a file to only specific group members is
the same two-step process that we've already covered.

Setting the permissions
and creating the ACL
First, Vicky sets the normal permissions to allow only her to
access her file. Then, she'll set the ACL:

There's nothing here that you haven't already seen. Vicky just
removed all permissions from the group and from others, and

[vicky@localhost marketing]$ echo "This file is only for my good f

[vicky@localhost marketing]$ chmod 600 vicky_file.txt

[vicky@localhost marketing]$ setfacl -m u:cleopatra:r vicky_file.t

[vicky@localhost marketing]$ ls -l

total 4

-rw-rw-r--. 1 charlie marketing 0 Nov 13 15:59 charlie_file.txt

-rw-r-----+ 1 vicky marketing 49 Nov 13 16:24 vicky_file.txt

[vicky@localhost marketing]$ getfacl vicky_file.txt

file: vicky_file.txt

owner: vicky

group: marketing

user::rw-

user:cleopatra:r--

group::---

mask::r--

other::---

[vicky@localhost marketing]$

set an ACL that only allows Cleopatra to read the file. Let's
see if Cleopatra actually can read it:

So far, so good. But, can Cleopatra write to it?

Okay, Cleopatra can't do that, since Vicky only allowed her
the read privilege in the ACL.

[donnie@localhost /]$ su - cleopatra

Password:

[cleopatra@localhost ~]$ cd /marketing

[cleopatra@localhost marketing]$ ls -l

total 4

-rw-rw-r--. 1 charlie marketing 0 Nov 13 15:59 charlie_file.txt

-rw-r-----+ 1 vicky marketing 49 Nov 13 16:24 vicky_file.txt

[cleopatra@localhost marketing]$ cat vicky_file.txt

This file is only for my good friend, Cleopatra.

[cleopatra@localhost marketing]$

[cleopatra@localhost marketing]$ echo "You are my friend too, Vick

-bash: vicky_file.txt: Permission denied

[cleopatra@localhost marketing]$

Charlie tries to access
Vicky's file with an ACL
set for Cleopatra
Now, though, what about that sneaky Charlie, who wants to
go snooping in other users' files?

[donnie@localhost /]$ su - charlie

Password:

Last login: Mon Nov 13 15:58:56 EST 2017 on pts/0

[charlie@localhost ~]$ cd /marketing

[charlie@localhost marketing]$ cat vicky_file.txt

cat: vicky_file.txt: Permission denied

[charlie@localhost marketing]$

So, yes, it's really true that only Cleopatra can access Vicky's
file, and even then only for reading.

Hands-on lab – creating a
shared group directory
For this lab, you'll just put together everything that you've
learned in this chapter to create a shared directory for a
group. You can do this on either of your virtual machines:

1. On either virtual machine, create the sales group:

 sudo groupadd sales

2. Create the users Mimi, Mr. Gray, and Mommy,
adding them to the sales group as you create the
accounts.

On the CentOS VM, do:

 sudo useradd -G sales mimi

 sudo useradd -G sales mrgray

 sudo useradd -G sales mommy

On the Ubuntu VM, do:

3. Assign each user a password.
4. Create the sales directory in the root level of the

filesystem. Set proper ownership and permissions,
including the SGID and sticky bits:

 sudo mkdir /sales

 sudo chown nobody:sales /sales

 sudo chmod 3770 /sales

 ls -ld /sales

5. Log in as Mimi, and have her create a file:

 su - mimi

 cd /sales

 echo "This file belongs to Mimi." > mimi_file.txt

 ls -l

6. Have Mimi set an ACL on her file, allowing only Mr.
Gray to read it. Then, have Mimi log back out:

 sudo useradd -m -d /home/mimi -s /bin/bash -G sales mimi

 sudo useradd -m -d /home/mrgray -s /bin/bash -G sales mrgr

 sudo useradd -m -d /home/mommy -s /bin/bash -G sales mommy

 chmod 600 mimi_file.txt

 setfacl -m u:mrgray:r mimi_file.txt

 getfacl mimi_file.txt

 ls -l

 exit

7. Have Mr. Gray log in to see what he can do with
Mimi's file. Then, have Mr. Gray create his own file
and log back out:

 su - mrgray

 cd /sales

 cat mimi_file.txt

 echo "I want to add something to this file." >>

 mimi_file.txt

 echo "Mr. Gray will now create his own file." >

 mr_gray_file.txt

 ls -l

 exit

8. Mommy will now log in and try to wreak havoc by
snooping in other users' files, and by trying to delete
them:

 su - mommy

 cat mimi_file.txt

 cat mr_gray_file.txt

 rm -f mimi_file.txt

 rm -f mr_gray_file.txt

 exit

9. End of Lab.

Summary
In this chapter, we saw how to take Discretionary Access
Control to the proverbial next level. We first saw how to
create and manage access control lists to provide more fine-
grained access control over files and directories. We then saw
how to create a user group for a specific purpose, and how to
add members to it. Then, we saw how we can use the SGID
bit, the sticky bit, and access control lists to manage a shared
group directory.

But, sometimes, Discretionary Access Control might not be
enough to do the job. For those times, we also have
mandatory access control, which we'll cover in the next
chapter. I'll see you there.

Implementing Mandatory
Access Control with
SELinux and AppArmor
As we saw in the previous chapters, Discretionary Access
Control allows users to control who can access their own
files and directories. But, what if your company needs to
have more administrative control over who accesses what?
For this, we need some sort of Mandatory Access Control or
MAC.

The best way I know to explain the difference between DAC
and MAC is to hearken back to my Navy days. I was riding
submarines at the time, and I had to have a Top Secret
clearance to do my job. With DAC, I had the physical ability
to take one of my Top Secret books to the mess decks, and
hand it to a cook who didn't have that level of clearance.
With MAC, there were rules that prevented me from doing
so. On operating systems, things work pretty much the same
way.

There are several different MAC systems that are available
for Linux. The two that we'll cover in this chapter are
SELinux and AppArmor.

In this chapter, we'll cover the following topics:

What SELinux is and how it can benefit a system's
administrator

How to set security contexts for files and directories

How to use setroubleshoot to troubleshoot SELinux
problems

Looking at SELinux policies and how to create
custom policies

What AppArmor is and how it can benefit a systems
administrator

Looking at AppArmor policies

Working with AppArmor command-line utilities

Troubleshooting AppArmor problems

How SELinux can benefit
a systems administrator
SELinux is a free open source software project that was
developed by the U.S. National Security Agency. While it
can theoretically be installed on any Linux distro, the Red
Hat-type distros are the only ones that come with it already
set up and enabled. It uses code in Linux kernel modules,
along with filesystem-extended attributes, to help ensure that
only authorized users and processes can access either
sensitive files or system resources. There are three ways in
which SELinux can be used:

It can help prevent intruders from exploiting a system

It can be used to ensure that only users with the
proper security clearance can access files that are
labeled with a security classification

In addition to MAC, SELinux can also be used as a
type of role-based access control

In this chapter, I'll only be covering the first of these three
uses because that is the most common way in which
SELinux is used. There's also the fact that covering all three

of these uses would require writing a whole book, which I
don't have space to do here.

If you go through this introduction to SELinux
and find that you still need more SELinux
information, you'll find whole books and courses
on just this subject at the Packt Publishing
website.

So how can SELinux benefit the busy systems administrator?
Well, you might remember when a few years ago, news
about the Shellshock bug hit the world's headlines.
Essentially, Shellshock was a bug in the Bash shell that
allowed intruders to break into a system and to exploit it by
gaining root privileges. For systems that were running
SELinux, it was still possible for the bad guys to break in,
but SELinux would have prevented them from successfully
running their exploits.

SELinux is also yet another mechanism that can help protect
data in users' home directories. If you have a machine that's
set up as a Network File System server, a Samba server, or a
web server, SELinux will prevent those daemons from
accessing users' home directories, unless you explicitly
configure SELinux to allow that behavior.

On web servers, you can use SELinux to prevent the
execution of malicious CGI scripts or PHP scripts. If you
don't need for your server to run CGI or PHP scripts, you can
disable them in SELinux.

With older versions of Docker and without Mandatory
Access Control, it was trivially easy for a normal user to
break out of a Docker container and gain root-level access to
the host machine. Although Docker security has since
improved, SELinux is still a useful tool for hardening servers
that run Docker containers.

So now, you're likely thinking that everyone would use such
a great tool, right? Sadly, that's not the case. In its beginning,
SELinux got a reputation for being difficult to work with,
and many administrators would just disable it. In fact, a lot of
tutorials you see on the web or on YouTube have disable
SELinux as the first step. In this section, I'd like to show you
that things have improved and that SELinux no longer
deserves its bad reputation.

Setting security contexts
for files and directories
Think of SELinux as a glorified labeling system. It adds
labels, known as security contexts, to files and directories
through extended file attributes. It also adds the same type of
labels, known as domains, to system processes. To see these
contexts and domains on your CentOS machines, use the -Z
option with either ls or ps. For example, files and directories
in my own home directory would look as follows:

Processes on my system would look something like this:

Now, let's break this down. In the outputs of both the ls -Z
and ps -Z commands, we have the following parts:

[donnie@localhost ~]$ ls -Z

drwxrwxr-x. donnie donnie unconfined_u:object_r:user_home_t:s0 acl

-rw-rw-r--. donnie donnie unconfined_u:object_r:user_home_t:s0 yum

[donnie@localhost ~]$

[donnie@localhost ~]$ ps -Z

LABEL PID TTY TIME CMD

unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 1322 pts/0 0

unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 3978 pts/0 0

[donnie@localhost ~]$

The SELinux user: In both cases, the SELinux user
is the generic unconfined_u

The SELinux role: In the ls -Z example, we see that
the role is object_r, and in the ps -Z example it's
unconfined_r

The type: It's user_home_t in the ls -Z output, and
unconfined_t in the ps -Z output

The sensitivity: In the ps -Z output it's s0. In the ps -Z
output it's s0-s0

The category: We don't see a category in the ls -Z
output, but we do see c0.c1023 in the ps -Z output

Out of all of the preceding security context and security
domain components, the only one that interests us now is the
type. For the purposes of this chapter, we're only interested in
covering what a normal Linux administrator would need to
know to keep intruders from exploiting the system, and the
type is the only one of these components that we need to use
for that. All of the other components come into play when
we set up advanced, security classification-based access
control and role-based access control.

Okay, here's the somewhat over-simplified explanation of
how this helps a Linux administrator maintain security. What
we want is for system processes to only access objects that
we allow them to access. (System processes include things

like the web server daemon, the FTP daemon, the Samba
daemon, and the Secure Shell daemon. Objects include
things such as files, directories, and network ports.) To
achieve this, we'll assign a type to all of our processes and all
of our objects. We'll then create policies that define which
process types can access which object types.

Fortunately, whenever you install any Red Hat-type distro,
pretty much all of the hard work has already been done for
you. Red Hat-type distros all come with SELinux already
enabled and set up with the targeted policy. Think of this
targeted policy as a somewhat relaxed policy, which allows a
casual desktop user to sit down at the computer and actually
conduct business without having to tweak any SELinux
settings. But, if you're a server administrator, you may find
yourself having to tweak this policy in order to allow server
daemons to do what you need them to do.

The targeted policy, which comes installed by
default, is what a normal Linux administrator
will use in his or her day-to-day duties. If you
look in the repositories of your CentOS virtual
machine, you'll see that there are also several
others, which we won't cover in this book.

Installing the SELinux
tools
For some bizarre reason that I'll never understand, the tools
that you need to administer SELinux don't get installed by
default, even though SELinux itself does. So, the first thing
you'll need to do on your CentOS virtual machine is to install
them:

In a later portion of this chapter, we'll be looking at how to
use setroubleshoot to help diagnose SELinux problems. In
order to have some cool error messages to look at when we
get there, go ahead and install setroubleshoot now, and
activate it by restarting the auditd daemon. (There's no
setroubleshoot daemon because setroubleshoot is meant to be
controlled by the auditd daemon.) We have the following
code:

sudo yum install setroubleshoot

sudo service auditd restart

One of the little systemd quirks that we have to deal with is
that you can't stop or restart the auditd daemon with the

sudo yum install setools policycoreutils policycoreutils-python

normal systemctl command, as you're supposed to do when
working with systemd daemons. However, the old-fashioned
service command works. (And no, I don't know why that is.)

Depending on the type of installation that you
chose when installing CentOS, you might or
might not already have setroubleshoot installed.
To be sure, go ahead and run the command to
install it. It won't hurt anything if setroubleshoot
is already there.

You now have what you need to get started.

Creating web content
files with SELinux
enabled
Now, let's look at what can happen if you have web content
files that are set with the wrong SELinux type. First, we'll
install, enable, and start the Apache web server on our
CentOS virtual machines. (Note that including the --now
option allows us to enable and start a daemon all in one
single step.) We have the following code:

sudo yum install httpd

sudo systemctl enable --now httpd

If you haven't done so already, you'll want to configure the
firewall to allow access to the web server:

When we look at the SELinux information for the Apache
processes, we'll see this:

[donnie@localhost ~]$ sudo firewall-cmd --permanent --add-service=

success

[donnie@localhost ~]$ sudo firewall-cmd --reload

success

[donnie@localhost ~]$

As I said before, we're not interested in the user or the role.
However, we are interested in the type, which in this case is
httpd_t.

On Red Hat-type systems, we would normally place web
content files in the /var/www/html directory. Let's look at the
SELinux context for that html directory:

The type is httpd_sys_content, so it stands to reason that the
httpd daemon should be able to access this directory. It's
currently empty, so let's cd into it and create a simple index
file:

[donnie@localhost www]$ cd html

[donnie@localhost html]$ pwd

/var/www/html

[donnie@localhost html]$ sudo vim index.html

[donnie@localhost ~]$ ps ax -Z | grep httpd

system_u:system_r:httpd_t:s0 3689 ? Ss 0:00 /usr/sb

system_u:system_r:httpd_t:s0 3690 ? S 0:00 /usr/sb

system_u:system_r:httpd_t:s0 3691 ? S 0:00 /usr/sb

system_u:system_r:httpd_t:s0 3692 ? S 0:00 /usr/sb

system_u:system_r:httpd_t:s0 3693 ? S 0:00 /usr/sb

system_u:system_r:httpd_t:s0 3694 ? S 0:00 /usr/sb

unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 3705 pts/0 R

[donnie@localhost ~]$

[donnie@localhost www]$ pwd

/var/www

[donnie@localhost www]$ ls -Zd html/

drwxr-xr-x. root root system_u:object_r:httpd_sys_content_t:s0 htm

[donnie@localhost www]$

I'll put this into the file, as follows:

<html>

<head>

<title>

Test of SELinux

</title>

</head>

<body>

Let's see if this SELinux stuff really works!

</body>

</html>

Okay, as I said, it's simple, as my HTML hand-coding skills
aren't what they used to be. But still, it serves our present
purposes.

Looking at the SELinux context, we see that the file has the
same type as the html directory:

I can now navigate to this page from the web browser of my
trusty OpenSUSE workstation:

[donnie@localhost html]$ ls -Z

-rw-r--r--. root root unconfined_u:object_r:httpd_sys_content_t:s0

[donnie@localhost html]$

Now though, let's see what happens if I decide to create
content files in my own home directory and then move them
to the html directory. First, let's see what the SELinux context
is for my new file:

The context type is now user_home_t, which is a sure-fire
indicator that I created this in my home directory. I'll now
move the file to the html directory, overwriting the old file:

Even though I moved the file over to the /var/www/html
directory, the SELinux type is still associated with users'

[donnie@localhost ~]$ pwd

/home/donnie

[donnie@localhost ~]$ ls -Z index.html

-rw-rw-r--. donnie donnie unconfined_u:object_r:user_home_t:s0 ind

[donnie@localhost ~]$

[donnie@localhost ~]$ sudo mv index.html /var/www/html/

[sudo] password for donnie:

[donnie@localhost ~]$ cd /var/www/html

[donnie@localhost html]$ ls -Z

-rw-rw-r--. donnie donnie unconfined_u:object_r:user_home_t:s0 ind

[donnie@localhost html]$

home directories. Now, I'll go to the browser of my host
machine to refresh the page:

So, I have a slight bit of a problem. The type that's assigned
to my file doesn't match with the type of the httpd daemon
processes, so SELinux doesn't allow the httpd processes to
access the file.

Had I copied the file to the html directory instead
of moving it, the SELinux context would have
changed to match that of the destination
directory.

Fixing an incorrect
SELinux context
Okay, so I have this web content file that nobody can access,
and I really don't feel up to creating a new one. So, what do I
do? Actually, we have three different utilities for fixing this:

chcon

restorecon

semanage

Using chcon
There are two ways to use chcon to fix an incorrect SELinux
type on a file or directory. The first is to just manually
specify the proper type:

We can use chcon to change any part of the context, but as I
keep saying, we're only interested in the type, which gets
changed with the -t option. You can see in the ls -Z output
that the command was successful.

The other way to use chcon is to reference a file that has the
proper context. For demo purposes, I changed the index.html
file back to the home directory type and have created a new
file within the /var/www/html directory:

[donnie@localhost html]$ sudo chcon -t httpd_sys_content_t index.h

[sudo] password for donnie:

[donnie@localhost html]$ ls -Z

-rw-rw-r--. donnie donnie unconfined_u:object_r:httpd_sys_content_

[donnie@localhost html]$

[donnie@localhost html]$ ls -Z

-rw-rw-r--. donnie donnie unconfined_u:object_r:user_home_t:s0 ind

-rw-r--r--. root root unconfined_u:object_r:httpd_sys_content_

[donnie@localhost html]$

As you can see, any files that I create within this directory
will automatically have the proper SELinux context settings.
Now, let's use that new file as a reference in order to set the
proper context on the index.html file:

So, I used the --reference option and specified the file that I
wanted to use as a reference. The file that I wanted to change
is listed at the end of the command.

Now, that's all good, but I want to find an easier way that
doesn't require quite as much typing. After all, I am an old
man, and I don't want to overexert myself. So, let's take a
look at the restorecon utility.

[donnie@localhost html]$ sudo chcon --reference some_file.html ind

[sudo] password for donnie:

[donnie@localhost html]$ ls -Z

-rw-rw-r--. donnie donnie unconfined_u:object_r:httpd_sys_content_

-rw-r--r--. root root unconfined_u:object_r:httpd_sys_content_

[donnie@localhost html]$

Using restorecon
Using restorecon is easy. Just type restorecon, followed by the
name of the file that you need to change. Once again, I've
changed the context of the index.html file back to the home
directory type. This time though, I'm using restorecon to set
the correct type:

And, that's all there is to it.

You can also use chcon and restorecon to change
the context of an entire directory and its contents.
For either one, just use the -R option. For
example:

sudo chcon -R -t httpd_sys_content_t /var/www/html/

sudo restorecon -R /var/www/html/

(Remember: -R stands for recursive.)

[donnie@localhost html]$ ls -Z

-rw-rw-r--. donnie donnie unconfined_u:object_r:user_home_t:s0 ind

[donnie@localhost html]$ sudo restorecon index.html

[donnie@localhost html]$ ls -Z

-rw-rw-r--. donnie donnie unconfined_u:object_r:httpd_sys_content_

[donnie@localhost html]$

There's still one last thing to take care of, even though it isn't
really affecting our ability to access this file. That is, I need
to change ownership of the file to the Apache user:

[donnie@localhost html]$ sudo chown apache: index.html

[sudo] password for donnie:

[donnie@localhost html]$ ls -l

total 4

-rw-rw-r--. 1 apache apache 125 Nov 22 16:14 index.html

[donnie@localhost html]$

Using semanage
In the scenario I've just presented, either chcon or restorecon
will suit your needs just fine. The active SELinux policy
mandates what the security contexts in certain directories are
supposed to look like. As long as you're using chcon or
restorecon within directories that are defined in the active
SELinux policy, you're good. But let's say that you've created
a directory elsewhere that you want to use for serving out
web content files. You would need to set the
httpd_sys_content_t type on that directory and all of the files
within it. However, if you use chcon or restorecon for that, the
change won't survive a system reboot. To make the change
permanent, you'll need to use semanage.

For some strange reason, let's say that I want to serve web
content out of a directory that I've created in the /home
directory:

[donnie@localhost home]$ pwd

/home

[donnie@localhost home]$ sudo mkdir webdir

[sudo] password for donnie:

[donnie@localhost home]$ ls -Zd webdir

drwxr-xr-x. root root unconfined_u:object_r:home_root_t:s0 webdir

[donnie@localhost home]$

Because I had to use my powers of sudo to create the
directory here, it's associated with the root user's home_root_t
type, instead of the normal user_home_dir_t type. Any files that
I create within this directory will have the same type:

The next step is to use semanage to add a permanent mapping
of this directory and the httpd_sys_content_t type to the active
policy's context list:

Okay, here's the breakdown of the semanage command:

fcontext: Because semanage has many purposes, we
have to specify that we want to work with a file
context.

-a: This specifies that we're adding a new record to
the context list for the active SELinux policy.

-t: This specifies the type that we want to map to the
new directory. In this case, we're creating a new

[donnie@localhost webdir]$ ls -Z

-rw-r--r--. root root unconfined_u:object_r:home_root_t:s0 index.h

[donnie@localhost webdir]$

[donnie@localhost home]$ sudo semanage fcontext -a -t httpd_sys_co

[donnie@localhost home]$ ls -Zd /home/webdir

drwxr-xr-x. root root unconfined_u:object_r:httpd_sys_content_t:s0

[donnie@localhost home]$

mapping with the httpd_sys_content type.

/home/webdir(/.*)?: This bit of gibberish is what's
known as a regular expression. I can't go into the
nitty-gritty details of regular expressions here, so
suffice it to say that regular expressions is a language
that we use to match text patterns. (And yes, I did
mean to say is instead of are, since regular
expressions is the name of the overall language.) In
this case, I had to use this particular regular
expression in order to make this semanage command
recursive because semanage doesn't have a -R option
switch. With this regular expression, I'm saying that I
want for anything that gets created in this directory to
have the same SELinux type as the directory itself.

The final step is to do a restorecon -R on this directory to
ensure that the proper labels have been set:

Yeah, I know. You're looking at this and saying, "But, this 'ls
-Zd' output looks the same as it did after you did the
semanage command." And, you're right. After running the

[donnie@localhost home]$ sudo restorecon -R webdir

[donnie@localhost home]$ ls -Zd /home/webdir

drwxr-xr-x. root root unconfined_u:object_r:httpd_sys_content_t:s0

[donnie@localhost home]$

semanage command, the type seems to be set correctly. But the
semanage-fcontext man page says to run restorecon anyway, so I
did.

For more information on how to use semanage to
manage security contexts, see the man page by
entering man semanage-fcontext.

Hands-on lab – SELinux
type enforcement
In this lab, you'll install the Apache web server and the
appropriate SELinux tools. You'll then view the effects of
having the wrong SELinux type assigned to a web content
file.

1. Install Apache, along with all the required SELinux
tools:

 sudo yum install httpd setroubleshoot setools

 policycoreutils policycoreutils-python

2. Activate setroubleshoot by restarting the auditd
service:

 sudo service auditd restart

3. Enable and start the Apache service and open port 80
on the firewall:

 sudo systemctl enable --now httpd

 sudo firewall-cmd --permanent --add-service=http

 sudo firewall-cmd --reload

4. In the /var/www/html directory, create an index.html file
with the following contents:

 <html>

 <head>

 <title>SELinux Test Page</title>

 </head>

 <body>

 This is a test of SELinux.

 </body>

 </html>

5. View the SELinux information about the index.html
file:

 ls -Z index.html

6. In your host machine's web browser, navigate to the
IP address of the CentOS virtual machine. You
should be able to view the page.

7. Induce an SELinux violation by changing the type of
the index.html file to something that's incorrect:

 sudo chcon -t tmp_t index.html

 ls -Z index.html

8. Go back to your host machine's web browser, and
reload the document. You should now see a
Forbidden message.

9. Use restorecon to change the file back to its correct
type:

 sudo restorecon index.html

10. Reload the page in your host machine's web browser.
You should now be able to view the page.

Troubleshooting with
setroubleshoot
So, you're now scratching your head and saying, "When I
can't access something that I should be able to, how do I
know that it's an SELinux problem?" Ah, I'm glad you asked.

Viewing setroubleshoot
messages
Whenever something happens that violates an SELinux rule,
it gets logged in the /var/log/audit/audit.log file. Tools are
available that can let you directly read that log, but to
diagnose SELinux problems, it's way better to use
setroubleshoot. The beauty of setroubleshoot is that it takes
the cryptic, hard-to-interpret SELinux messages from the
audit.log file and translates them into plain, natural language.
The messages that it sends to the /var/log/messages file even
contain suggestions about how to fix the problem. To show
how this works, let's go back to our problem where a file in
the /var/www/html directory had been assigned the wrong
SELinux type. Of course, we knew right away what the
problem was because there was only one file in that directory
and a simple ls -Z showed the problem with it. However, let's
ignore that for the moment and say that we didn't know what
the problem was. By opening the /var/log/messages file in less
and searching for sealert, we'll find this message:

The first line of this message tells us what the problem is. It's
saying that SELinux is preventing us from accessing the
/var/www/html/index.html file because it's set with the wrong

Nov 26 21:30:21 localhost python: SELinux is preventing httpd from

type. It then gives us several suggestions on how to fix the
problem, with the first one being to run the restorecon
command, as I've already shown you how to do.

A good rule-of-thumb to remember when reading
these setroubleshoot messages is that the first
suggestion in the message is normally the one
that will fix the problem.

Using the graphical
setroubleshoot utility
So far, I've only talked about using setroubleshoot on text-
mode servers. After all, it's very common to see Linux
servers running in text-mode, so all of us Linux folk have to
be text-mode warriors. But on desktop systems or on servers
that have a desktop interface installed, there is a graphical
utility that will automatically alert you when setroubleshoot
detects a problem:

Click on that alert icon, and you'll see this:

Click the Troubleshoot button, and you'll see your list of
suggestions for how to fix the problem:

As it is often the case with GUI thingies, this is mostly self-
explanatory, so you shouldn't have any problem with figuring
it out.

Troubleshooting in
permissive mode
If you're dealing with a simple problem like the one I've just
shown you, then you can probably assume that you're safe in
doing what the first suggestion in the setroubleshoot message
tells you to do. But there will be times when things get a bit
more complex, where you might have more than one
problem. For times like these, you need to use permissive
mode.

When you first install your Red Hat or CentOS system,
SELinux is in enforcing mode, which is the default. This
means that SELinux will actually stop actions that are in
violation of the active SELinux policy. This also means that
if you have multiple SELinux problems when you try to
perform a certain action, SELinux will stop the action from
taking place after the first violation occurs. When it happens,
SELinux won't even see the remaining problems, and they
won't show up in the messages log file. If you try to
troubleshoot these types of problems while in enforcing
mode, you'll be like the proverbial dog who chases its own
tail. You'll go round and round and will accomplish nothing.

In permissive mode, SELinux allows actions that violate
policy to occur, but it will log them. By switching to
permissive mode and doing something to induce the problem

that you were seeing, the prohibited actions will take place,
but setroubleshoot will log all of them in the messages file.
This way, you'll get a better view of what you need to do to
get things working properly.

First, let's use getenforce to verify what our current mode is:

[donnie@localhost ~]$ sudo getenforce

Enforcing

[donnie@localhost ~]$

Now, let's temporarily place the system into permissive
mode:

[donnie@localhost ~]$ sudo setenforce 0

[donnie@localhost ~]$ sudo getenforce

Permissive

[donnie@localhost ~]$

When I say temporarily, I mean that this will only last until
you do a system reboot. After a reboot, you'll be back in
enforcing mode. Also, note that a 0 after the setenforce
denotes that I'm setting permissive mode. To get back to
enforcing mode after you're done with troubleshooting,
replace the 0 with a 1:

[donnie@localhost ~]$ sudo setenforce 1

[donnie@localhost ~]$ sudo getenforce

Enforcing

[donnie@localhost ~]$

We're now back in enforcing mode.

At times, you may need to make permissive mode persist
after a system reboot. An example of this would be if you
ever have to deal with a system that has had SELinux
disabled for a long period of time. In a case like that, you
wouldn't want to just put SELinux into enforcing mode and
reboot. If you try that, it will take forever for the system to
properly create the file and directory labels that make
SELinux work, and the system might lock up before it's
done. By placing the system into permissive mode first,
you'll avoid having the system lock up, although it will still
take a long time for the relabeling process to complete.

To make permissive mode persistent across system reboots,
you'll edit the selinux file in the /etc/sysconfig directory. Here's
what it looks like by default:

This file controls the state of SELinux on the system.

SELINUX= can take one of these three values:

enforcing - SELinux security policy is enforced.

permissive - SELinux prints warnings instead of enforcing.

disabled - No SELinux policy is loaded.

SELINUX=enforcing

SELINUXTYPE= can take one of three two values:

targeted - Targeted processes are protected,

minimum - Modification of targeted policy. Only selected pro

mls - Multi Level Security protection.

SELINUXTYPE=targeted

The two important things you see here are that SELinux is in
enforcing mode, and that it's using the targeted policy. To
switch to permissive mode, just change the SELINUX= line, and
save the file:

The sestatus utility shows us lots of cool information about
what's going on with SELinux:

[donnie@localhost ~]$ sudo sestatus

SELinux status: enabled

SELinuxfs mount: /sys/fs/selinux

SELinux root directory: /etc/selinux

Loaded policy name: targeted

Current mode: enforcing

Mode from config file: permissive

Policy MLS status: enabled

Policy deny_unknown status: allowed

Max kernel policy version: 28

[donnie@localhost ~]$

The two items that interest us here are current mode and
mode from a configuration file. By changing the
configuration file to permissive, we haven't changed the

This file controls the state of SELinux on the system.

SELINUX= can take one of these three values:

enforcing - SELinux security policy is enforced.

permissive - SELinux prints warnings instead of enforcing.

disabled - No SELinux policy is loaded.

SELINUX=permissive

SELINUXTYPE= can take one of three two values:

targeted - Targeted processes are protected,

minimum - Modification of targeted policy. Only selected pro

mls - Multi Level Security protection.

SELINUXTYPE=targeted

current running mode. So, we're still in enforcing mode. The
switch to permissive won't happen until I either reboot this
machine or until I manually switch by issuing a sudo
setenforce 0 command. And of course, you don't want to stay
in permissive mode forever. As soon as you no longer need
permissive mode, change the configuration file back to
enforcing and do a sudo setenforce 1 to change the running
mode.

Working with SELinux
policies
So far, all we've looked at is what happens when we have an
incorrect SELinux type set on a file and what to do to set the
correct type. Another problem we may have would come
about if we need to allow an action that is prohibited by the
active SELinux policy.

Viewing the Booleans
Booleans are part of what makes up an SELinux policy, and
each Boolean represents a binary choice. In SELinux
policies, a Boolean either allows something or it prohibits
something. To see all of the Booleans on your system, run
the getsebool -a command. (It's a long list, so I'll only show
partial output here.):

[donnie@localhost ~]$ getsebool -a

abrt_anon_write --> off

abrt_handle_event --> off

abrt_upload_watch_anon_write --> on

antivirus_can_scan_system --> off

antivirus_use_jit --> off

auditadm_exec_content --> on

. . .

. . .

xserver_object_manager --> off

zabbix_can_network --> off

zarafa_setrlimit --> off

zebra_write_config --> off

zoneminder_anon_write --> off

zoneminder_run_sudo --> off

[donnie@localhost ~]$

To view more than one Boolean, the -a switch is mandatory.
If you just happen to know the name of the Boolean that you
want to see, leave the -a out and list the Boolean. In keeping
with the Apache web server theme that we've had going, let's

see whether we're allowing Apache to access files in users'
home directories:

[donnie@localhost html]$ getsebool httpd_enable_homedirs

httpd_enable_homedirs --> off

[donnie@localhost html]$

The fact that this Boolean is off means that the Apache server
daemon isn't allowed to access any content within the users'
home directories. This is an important protection, and you
really don't want to change it. Instead, just put web content
files elsewhere so that you don't have to change this Boolean.

Most likely, you'll rarely want to look at the entire list, and
you likely won't know the name of the specific Boolean that
you want to see. Rather, you'll probably want to filter the
output through grep in order to look at just certain things. For
example, to see all of the Booleans that affect a web server,
follow this:

[donnie@localhost html]$ getsebool -a | grep 'http'

httpd_anon_write --> off

httpd_builtin_scripting --> on

httpd_can_check_spam --> off

httpd_can_connect_ftp --> off

httpd_can_connect_ldap --> off

httpd_can_connect_mythtv --> off

httpd_can_connect_zabbix --> off

httpd_can_network_connect --> off

. . .

. . .

httpd_use_nfs --> off

httpd_use_openstack --> off

httpd_use_sasl --> off

httpd_verify_dns --> off

named_tcp_bind_http_port --> off

prosody_bind_http_port --> off

[donnie@localhost html]$

It's also a rather long list, but scroll down a ways, and you'll
find the Boolean that you seek.

Configuring the Booleans
Realistically, you'll likely never have reason to allow users to
serve web content out of their home directories. It's much
more probable that you'll set up something like a Samba
server, which would allow users on Windows machines to
use their graphical Windows Explorer to access their home
directories on Linux servers. But if you set up a Samba
server and don't do anything with SELinux, users will be
complaining about how they don't see any of their files in
their home directories of the Samba server. Because you're
the proactive type and you want to avoid the pain of listening
to complaining users, you'll surely just go ahead and
configure SELinux to allow the Samba daemon to access
users' home directories. You might not know the exact name
of the Boolean, but you can find it easily enough, as follows:

[donnie@localhost html]$ getsebool -a | grep 'home'

git_cgi_enable_homedirs --> off

git_system_enable_homedirs --> off

httpd_enable_homedirs --> off

mock_enable_homedirs --> off

mpd_enable_homedirs --> off

openvpn_enable_homedirs --> on

samba_create_home_dirs --> off

samba_enable_home_dirs --> off

sanlock_enable_home_dirs --> off

spamd_enable_home_dirs --> on

ssh_chroot_rw_homedirs --> off

tftp_home_dir --> off

use_ecryptfs_home_dirs --> off

use_fusefs_home_dirs --> off

use_nfs_home_dirs --> off

use_samba_home_dirs --> off

xdm_write_home --> off

[donnie@localhost html]$

Okay, you knew that the Boolean name probably had the
word home in it, so you filtered for that word. About half-way
down the list, you see samba_enable_home_dirs --> off. You'll
need to change this to on to let users access their home
directories from their Windows machines:

Users can now access their home directories as they should
be able to, but only until you do a system reboot. Without the
-P option, any changes you make with setsebool will only be
temporary. So, let's make the change permanent with -P:

Congratulations, you've just made your first change to
SELinux policy.

[donnie@localhost html]$ sudo setsebool samba_enable_home_dirs on

[sudo] password for donnie:

[donnie@localhost html]$ getsebool samba_enable_home_dirs

samba_enable_home_dirs --> on

[donnie@localhost html]$

[donnie@localhost html]$ sudo setsebool -P samba_enable_home_dirs

[donnie@localhost html]$ getsebool samba_enable_home_dirs

samba_enable_home_dirs --> on

[donnie@localhost html]$

Protecting your web
server
Look at the output of the getsebool -a | grep 'http' command
again, and you'll see that most of the httpd-related Booleans
are turned off by default, with only a few turned on. There
are two of them that you'll commonly need to turn on when
setting up a web server.

If you ever need to set up a website with some sort of PHP-
based content management system, such as Joomla or
Wordpress, you may have to turn on the httpd_unified
Boolean. With this Boolean turned off, the Apache web
server won't be able to interact properly with all of the
components of the PHP engine:

[donnie@localhost ~]$ getsebool httpd_unified

httpd_unified --> off

[donnie@localhost ~]$ sudo setsebool -P httpd_unified on

[sudo] password for donnie:

[donnie@localhost ~]$ getsebool httpd_unified

httpd_unified --> on

[donnie@localhost ~]$

The other Boolean that you'll commonly need to turn on is
the httpd_can_sendmail Boolean. If you ever need for a website
to send mail out through a form or if you need to set up a
mail server with a web-based frontend, you'll definitely need
to set this to on:

[donnie@localhost ~]$ getsebool httpd_can_sendmail

httpd_can_sendmail --> off

[donnie@localhost ~]$ sudo setsebool -P httpd_can_sendmail on

[donnie@localhost ~]$ getsebool httpd_can_sendmail

httpd_can_sendmail --> on

[donnie@localhost ~]$

On the other hand, there are some Booleans that are turned
on by default, and you might want to consider whether you
really need them turned on. For example, allowing CGI
scripts to run on a web server does represent a potential
security risk. If an intruder were to somehow upload a
malicious CGI script to the server and run it, much damage
could occur as a result. Yet, for some bizarre reason, the
default SELinux policy allows CGI scripts to run. If you're
absolutely certain that nobody who hosts websites on your
server will ever need to run CGI scripts, you might want to
consider turning this Boolean off:

[donnie@localhost ~]$ getsebool httpd_enable_cgi

httpd_enable_cgi --> on

[donnie@localhost ~]$ sudo setsebool -P httpd_enable_cgi off

[donnie@localhost ~]$ getsebool httpd_enable_cgi

httpd_enable_cgi --> off

[donnie@localhost ~]$

Protecting network ports
Each network daemon that's running on your system has a
specific network port or set of network ports assigned to it,
on which it will listen. The /etc/services file contains the list
of common daemons and their associated network ports, but
it doesn't prevent someone from configuring a daemon to
listen on some non-standard port. So, without some
mechanism to prevent it, some sneaky intruder could
potentially plant some sort of malware that would cause a
daemon to listen on a non-standard port, possibly listening
for commands from its master.

SELinux protects against this sort of malicious activity by
only allowing daemons to listen on certain ports. Use semanage
to look at the list of allowed ports:

[donnie@localhost ~]$ sudo semanage port -l

[sudo] password for donnie:

SELinux Port Type Proto Port Number

afs3_callback_port_t tcp 7001

afs3_callback_port_t udp 7001

afs_bos_port_t udp 7007

afs_fs_port_t tcp 2040

afs_fs_port_t udp 7000, 7005

afs_ka_port_t udp 7004

afs_pt_port_t tcp 7002

afs_pt_port_t udp 7002

afs_vl_port_t udp 7003

. . .

This is yet another of those very long lists, so I'm only
showing partial output. However, let's narrow things down a
bit. Let's say that I only want to look at the list of ports on
which the Apache web server can listen. For this, I'll use my
good friend, grep:

Several http items come up, but I'm only interested in the
http_port_t item because it's the one that affects normal web
server operation. We see here that SELinux will allow
Apache to listen on ports 80, 81, 443, 488, 8008, 8009, 8443, and
9000. As the Apache server is the most likely daemon for
which you'd ever have a legitimate reason for adding a non-
standard port, let's demo with it.

. . .

zebra_port_t tcp 2606, 2608-2609, 2600-2604

zebra_port_t udp 2606, 2608-2609, 2600-2604

zented_port_t tcp 1229

zented_port_t udp 1229

zookeeper_client_port_t tcp 2181

zookeeper_election_port_t tcp 3888

zookeeper_leader_port_t tcp 2888

zope_port_t tcp 8021

[donnie@localhost ~]$

[donnie@localhost ~]$ sudo semanage port -l | grep 'http'

[sudo] password for donnie:

http_cache_port_t tcp 8080, 8118, 8123, 10001-10

http_cache_port_t udp 3130

http_port_t tcp 80, 81, 443, 488, 8008, 80

pegasus_http_port_t tcp 5988

pegasus_https_port_t tcp 5989

[donnie@localhost ~]$

First, let's go into the /etc/httpd/conf/httpd.conf file and look at
the ports on which Apache is currently listening. Search for
Listen, and you'll see the following line:

Listen 80

I don't have the SSL module installed on this machine, but if
I did, I would have an ssl.conf file in the
/etc/httpd/conf.d directory with the following line:

Listen 443

So for normal, non-encrypted website connections, the
default configuration only has Apache listening on port 80.
For secure, encrypted website connections, Apache listens on
port 443. Now, let's go into the httpd.conf file and change Listen
80 to a port number that SELinux doesn't allow. For
example, port 82:

Listen 82

After saving the file, I'll restart Apache to read in the new
configuration:

[donnie@localhost ~]$ sudo systemctl restart httpd

Job for httpd.service failed because the control process exited wi

[donnie@localhost ~]$

Yes, I have a problem. I'll look in the /var/log/messages file to
see if setroubleshoot gives me a clue:

The problem that SELinux is preventing httpd from binding
to port 82 is defined in the first line of the message. The first
suggestion we see for fixing this is to use semanage to add the
port to the list of allowed ports. So, let's do that and look at
the list of Apache ports:

It's not clear in the setroubleshoot message, but you need to
specify the port number that you want to add after the port -
a. The -t http_port_t specifies the type for which you want to
add the port, and the -p tcp specifies that you want to use the
TCP protocol.

Now, for the moment of truth. Will the Apache daemon start
this time? Let's see:

Nov 29 16:39:21 localhost python: SELinux is preventing /usr/sbin/

[donnie@localhost ~]$ sudo semanage port -a 82 -t http_port_t -p t

[donnie@localhost ~]$ sudo semanage port -l | grep 'http_port_t'

http_port_t tcp 82, 80, 81, 443, 488, 8008

pegasus_http_port_t tcp 5988

[donnie@localhost ~]$

[donnie@localhost ~]$ sudo systemctl restart httpd

[sudo] password for donnie:

[donnie@localhost ~]$ sudo systemctl status httpd

● httpd.service - The Apache HTTP Server

It works, and we have achieved coolness. But now, I've
decided that I no longer need this oddball port. Deleting it is
just as easy as adding it:

All I had to do was to replace the port -a with port -d. And of
course, I still need to go into the /etc/httpd/conf/httpd.conf file
to change Listen 82 back to Listen 80.

 Loaded: loaded (/usr/lib/systemd/system/httpd.service; enabled

 Active: active (running) since Wed 2017-11-29 20:09:51 EST; 7s

 Docs: man:httpd(8)

. . .

. . .

[donnie@localhost ~]$ sudo semanage port -d 82 -t http_port_t -p t

[donnie@localhost ~]$ sudo semanage port -l | grep 'http_port_t'

http_port_t tcp 80, 81, 443, 488, 8008, 80

pegasus_http_port_t tcp 5988

[donnie@localhost ~]$

Creating custom policy
modules
Sometimes, you'll run into a problem that you can't fix by
either changing the type or by setting a Boolean. In times
like these, you'll need to create a custom policy module, and
you'll use the audit2allow utility to do that.

Here's a screenshot of a problem I had several years ago,
when I was helping a client set up a Postfix mail server on
CentOS 7:

So, for some strange reason that I never understood, SELinux
wouldn't allow Dovecot, the Mail Delivery Agent component
of the mail server, to read its own dict file. There's no
Boolean to change and there wasn't a type problem, so
setroubleshoot suggested that I create a custom policy
module. It's easy enough to do, but you do need to be aware
that this won't work with sudo on your normal user account.
This is one of those rare times when you'll just have to go to

the root user command prompt, and you'll also need to be in
the root user's home directory:

sudo su -

Before you do it, be sure to put SELinux into the permissive
mode and then do something to induce the SELinux error.
This way, you'll be sure that one problem isn't masking
others.

When you run the command to create the new policy
module, be sure to replace mypol with a custom policy name
of your own choosing. In my case, I named the module
dovecot_dict, and the command looked like this:

What I'm doing here is using grep to search through the
audit.log file for SELinux messages that contain the word
dict. I then piped the output of that into audit2allow and used
the -M option to create a custom module with the name,
dovecot_dict.

After I created the new policy module, I inserted it into the
SELinux policy like so:

semodule -i dovecot_dict.pp

grep dict /var/log/audit/audit.log | audit2allow -M dovecot_dict

There was a also a second problem that required another
custom module, but I just repeated this procedure to produce
another module of a different name. After I got all that done,
I reloaded the SELinux policy, in order to get my new
modules to take effect:

semodule -R

With semodule, the -R switch stands for reload, rather than
recursive, as it does with most Linux commands.

With all that done, I put SELinux back into enforcing mode
and exited back to my own user account. And, I tested the
setup to make sure that I had fixed the problem.

Of course, you also want to bear in mind that you don't want
to just modify SELinux policy or contexts every time you see
an sealert message in the log files. For example, consider this
snippet from the messages file of my Oracle Linux 7 machine,
which I set up mainly to run Docker and Docker containers:

These messages were caused by an early version of Docker
trying to access resources on the host machine. As you can
see, Docker is trying to access some rather sensitive files,
and SELinux is preventing Docker from doing so. With early

Jun 8 19:32:17 docker-1 setroubleshoot: SELinux is preventing /us

Jun 8 19:32:17 docker-1 python: SELinux is preventing /usr/bin/do

Jun 8 19:32:17 docker-1 setroubleshoot: SELinux is preventing /us

Jun 8 19:32:17 docker-1 python: SELinux is preventing /usr/bin/do

versions of Docker and without some sort of Mandatory
Access Control, it would have been a trivial matter for a
normal, unprivileged user to escape from the Docker
container and have root user privileges on the host system.
Naturally, when you see these sorts of messages, you don't
want to automatically tell SELinux to allow the prohibited
actions. It just may be that SELinux is preventing something
truly bad from taking place.

Be sure to get your copy of The SELinux
Coloring Book at: https://opensource.com/business/1
3/11/selinux-policy-guide.

https://opensource.com/business/13/11/selinux-policy-guide

Hands-on lab – SELinux
Booleans and ports
In this lab, you'll view the effects of having Apache try to
listen on an unauthorized port:

1. View the ports that SELinux allows the Apache web
server daemon to use:

 sudo semanage port -l | grep 'http'

2. Open the /etc/httpd/conf/httpd.conf file in your favorite
text editor. Find the line that says Listen 80 and
change it to Listen 82. Restart Apache by entering the
following:

 sudo systemctl restart httpd

3. View the error message you receive by entering:

 sudo tail -20 /var/log/messages

4. Add port 82 to the list of authorized ports and restart
Apache:

 sudo semanage port -a 82 -t http_port_t -p tcp

 sudo semanage port -l

 sudo systemctl restart httpd

5. Delete the port that you just added:

 sudo semanage -d 82 -t http_port_t -p tcp

6. Go back into the /etc/httpd/conf/httpd.conf file, and
change Listen 82 back to Listen 80. Restart the Apache
daemon to return to normal operation.

How AppArmor can
benefit a systems
administrator
AppArmor is the Mandatory Access Control system that
comes installed with the SUSE and the Ubuntu families of
Linux. Although it's designed to do pretty much the same job
as SELinux, its mode of operation is substantially different:

SELinux labels all system processes and all objects
such as files, directories, or network ports. For files
and directories, SELinux stores the labels in their
respective inodes as extended attributes. (An inode is
the basic filesystem component that contains all
information about a file, except for the file name.)

AppArmor uses pathname enforcement, which means
that you specify the path to the executable file that
you want for AppArmor to control. This way, there's
no need to insert labels into the extended attributes of
files or directories.

With SELinux, you have system-wide protection out
of the box.

With AppArmor, you have a profile for each
individual application.

With either SELinux or AppArmor, you might
occasionally find yourself having to create custom
policy modules from scratch, especially if you're
dealing with either third-party applications or home-
grown software. With AppArmor, this is easier,
because the syntax for writing AppArmor profiles is
much easier than the syntax for writing SELinux
policies. And, AppArmor comes with utilities that
can help you automate the process.

Just as SELinux can, AppArmor can help prevent
malicious actors from ruining your day and can help
protect user data.

So, you see that there are advantages and disadvantages to
both SELinux and AppArmor, and a lot of Linux
administrators have strong feelings about which one they
prefer. (To avoid being subjected to a flame-war, I'll refrain
from stating my own preference.) Also, note that even
though we're working with an Ubuntu virtual machine, the
information I present here, other than the Ubuntu-specific
package installation commands, also works with the SUSE
Linux distos.

Looking at AppArmor
profiles
In the /etc/apparmor.d directory, you'll see the AppArmor
profiles for your system. (The SELinux folk say policies, but
the AppArmor folk say profiles.):

The sbin.dhclient file and the usr.* files are all AppArmor
profiles. You'll find a few other profiles in the lxc and lxc-
containers subdirectories. Still, though, there's not a whole lot
there in the way of application profiles.

donnie@ubuntu3:/etc/apparmor.d$ ls -l

total 72

drwxr-xr-x 5 root root 4096 Oct 29 15:21 abstractions

drwxr-xr-x 2 root root 4096 Nov 15 09:34 cache

drwxr-xr-x 2 root root 4096 Oct 29 14:43 disable

drwxr-xr-x 2 root root 4096 Apr 5 2016 force-complain

drwxr-xr-x 2 root root 4096 Oct 29 15:21 local

drwxr-xr-x 2 root root 4096 Oct 29 15:02 lxc

-rw-r--r-- 1 root root 198 Jun 14 16:15 lxc-containers

-rw-r--r-- 1 root root 3310 Apr 12 2016 sbin.dhclient

drwxr-xr-x 5 root root 4096 Oct 29 15:21 tunables

-rw-r--r-- 1 root root 125 Jun 14 16:15 usr.bin.lxc-start

-rw-r--r-- 1 root root 281 May 23 2017 usr.lib.lxd.lxd-bridge-p

-rw-r--r-- 1 root root 17667 Oct 18 05:04 usr.lib.snapd.snap-confi

-rw-r--r-- 1 root root 1527 Jan 5 2016 usr.sbin.rsyslogd

-rw-r--r-- 1 root root 1469 Sep 8 15:27 usr.sbin.tcpdump

donnie@ubuntu3:/etc/apparmor.d$

For some reason, a default installation of
OpenSUSE comes with more installed profiles
than does Ubuntu Server. To install more profiles
on Ubuntu, use the following:

sudo apt install apparmor-profiles apparmor-profiles-

extra

In the abstractions subdirectory, you'll find files that aren't
complete profiles, but that can be included in complete
profiles. Any one of these abstraction files can be included in
any number of profiles. This way, you don't have to write the
same code over and over every time you create a profile. Just
include an abstraction file instead.

If you're familiar with programming concepts,
just think of abstraction files as include files by
another name.

Here's a partial listing of the abstraction files:

donnie@ubuntu3:/etc/apparmor.d/abstractions$ ls -l

total 320

-rw-r--r-- 1 root root 695 Mar 15 2017 apache2-common

drwxr-xr-x 2 root root 4096 Oct 29 15:21 apparmor_api

-rw-r--r-- 1 root root 308 Mar 15 2017 aspell

-rw-r--r-- 1 root root 1582 Mar 15 2017 audio

-rw-r--r-- 1 root root 1544 Mar 15 2017 authentication

-rw-r--r-- 1 root root 6099 Mar 15 2017 base

-rw-r--r-- 1 root root 1512 Mar 15 2017 bash

-rw-r--r-- 1 root root 798 Mar 15 2017 consoles

-rw-r--r-- 1 root root 714 Mar 15 2017 cups-client

-rw-r--r-- 1 root root 593 Mar 15 2017 dbus

. . .

. . .

-rw-r--r-- 1 root root 705 Mar 15 2017 web-data

-rw-r--r-- 1 root root 739 Mar 15 2017 winbind

-rw-r--r-- 1 root root 585 Mar 15 2017 wutmp

-rw-r--r-- 1 root root 1819 Mar 15 2017 X

-rw-r--r-- 1 root root 883 Mar 15 2017 xad

-rw-r--r-- 1 root root 673 Mar 15 2017 xdg-desktop

donnie@ubuntu3:/etc/apparmor.d/abstractions$

To get a feel for how AppArmor rules work, let's peek inside
the web-data abstraction file:

 /srv/www/htdocs/ r,

 /srv/www/htdocs/** r,

 # virtual hosting

 /srv/www/vhosts/ r,

 /srv/www/vhosts/** r,

 # mod_userdir

 @{HOME}/public_html/ r,

 @{HOME}/public_html/** r,

 /srv/www/rails/*/public/ r,

 /srv/www/rails/*/public/** r,

 /var/www/html/ r,

 /var/www/html/** r,

This file is nothing but a list of directories from which the
Apache daemon is allowed to read files. Let's break it down:

Note that each rule ends with r,. This denotes that we
want for Apache to have read access on each listed
directory. Also note that each rule has to end with a
comma.

/srv/www/htdocs/ r, means that the listed directory itself
has read access for Apache.

/srv/www.htdocs/* * r, the * * wildcards make this rule
recursive. In other words, Apache can read all files in
all subdirectories of this specified directory.

mod_userdir if installed, this Apache module allows
Apache to read web content files from a subdirectory
that's within a user's home directory. The next two
lines go along with that.

@{HOME}/public_html/ r, and @{HOME}/public_html/ r, the
@{HOME} variable allows this rule to work with any
user's home directory. (You'll see this variable
defined in the /etc/apparmor.d/tunables/home file.)

Note that there's no specific rule that prohibits
Apache from reading from other locations. It's just
understood that anything that's not listed here is off-
limits to the Apache web server daemon.

The tunables subdirectory contains files that have predefined
variables. You can also use this directory to either define
new variables or make profile tweaks:

donnie@ubuntu3:/etc/apparmor.d/tunables$ ls -l

total 56

-rw-r--r-- 1 root root 624 Mar 15 2017 alias

-rw-r--r-- 1 root root 376 Mar 15 2017 apparmorfs

-rw-r--r-- 1 root root 804 Mar 15 2017 dovecot

-rw-r--r-- 1 root root 694 Mar 15 2017 global

-rw-r--r-- 1 root root 983 Mar 15 2017 home

drwxr-xr-x 2 root root 4096 Oct 29 15:21 home.d

-rw-r--r-- 1 root root 792 Mar 15 2017 kernelvars

-rw-r--r-- 1 root root 631 Mar 15 2017 multiarch

drwxr-xr-x 2 root root 4096 Mar 15 2017 multiarch.d

-rw-r--r-- 1 root root 440 Mar 15 2017 proc

-rw-r--r-- 1 root root 430 Mar 15 2017 securityfs

-rw-r--r-- 1 root root 368 Mar 15 2017 sys

-rw-r--r-- 1 root root 868 Mar 15 2017 xdg-user-dirs

drwxr-xr-x 2 root root 4096 Oct 29 15:02 xdg-user-dirs.d

donnie@ubuntu3:/etc/apparmor.d/tunables$

Space doesn't permit me to show you the details of how to
write your own profiles from scratch, and thanks to the suite
of utilities that we'll look at in the next section, you might
never need to do that. Still, just to give you a better
understanding about how AppArmor does what it does,
here's a chart of some example rules that you might find in
any given profile:

/var/run/some_program.pid

rw,

The process will have read
and write privileges for
this process ID file.

/etc/ld.so.cache r,
The process will have read
privileges for this file.

/tmp/some_program.* l,

The process will be able to
create and delete links
with the some_program name.

/bin/mount ux The process has
executable privileges for
the mount utility, which will
then run unconstrained.
(Unconstrained means,
without an AppArmor
profile.)

Working with AppArmor
command-line utilities
Whether or not you have all the AppArmor utilities you need
will depend on which Linux distro you have. On my
OpenSUSE Leap workstation, the utilities were there out of
the box. On my Ubuntu Server virtual machine, I had to
install them myself:

sudo apt install apparmor-utils

First, let's look at the status of AppArmor on the Ubuntu
machine:

donnie@ubuntu5:~$ sudo aa-status

[sudo] password for donnie:

apparmor module is loaded.

13 profiles are loaded.

13 profiles are in enforce mode.

 /sbin/dhclient

 /usr/bin/lxc-start

 /usr/lib/NetworkManager/nm-dhcp-client.action

 /usr/lib/NetworkManager/nm-dhcp-helper

 /usr/lib/connman/scripts/dhclient-script

 /usr/lib/snapd/snap-confine

 /usr/lib/snapd/snap-confine//mount-namespace-capture-helper

 /usr/sbin/mysqld

 /usr/sbin/tcpdump

The first thing to note here is that AppArmor has an enforce
mode and a complain mode. The enforce mode does the
same job as its enforcing mode counterpart in SELinux. It
prevents system processes from doing things that the active
policy doesn't allow, and it logs any violations. The complain
mode is the same as the permissive mode in SELinux. It
allows processes to perform actions that are prohibited by the
active policy, but it records those actions in either the
/var/log/audit/audit.log file, or the system log file, depending
on whether you have auditd installed. (Unlike the Red Hat-
type distros, auditd doesn't come installed by default on
Ubuntu.) You would use the complain mode to either help
with troubleshooting or to test new profiles.

Most of the enforce mode profiles we see here have to do
with either network management or with lxc container
management. Two exceptions we see are the two profiles for
snapd, which is the daemon that makes the snap packaging
technology work. The third exception is for the mysqld profile.

Snap packages are universal binary files that are
designed to work on multiple distros. Snap

 lxc-container-default

 lxc-container-default-cgns

 lxc-container-default-with-mounting

 lxc-container-default-with-nesting

0 profiles are in complain mode.

1 processes have profiles defined.

1 processes are in enforce mode.

 /usr/sbin/mysqld (679)

0 processes are in complain mode.

0 processes are unconfined but have a profile defined.

donnie@ubuntu5:~$

technology is currently available for Ubuntu and
Fedora.

Curiously, when you install a daemon package on Ubuntu,
you'll sometimes get a predefined profile for that daemon
and sometimes you won't. Even when a profile does come
with the package that you've installed, it's sometimes already
in the enforce mode and sometimes it isn't. For example, if
you're setting up a Domain Name Service (DNS) server and
you install the bind9 package for it, you'll get an AppArmor
profile that's already in enforce mode. If you're setting up a
database server and install the mysql-server package, you'll
also get a working profile that's already in the enforce mode.

But, if you're setting up a database server and you prefer to
install the mariadb-server instead of mysql-server, you'll get an
AppArmor profile that's completely disabled and that can't be
enabled. When you look in the usr.sbin.mysqld profile file that
gets installed with the mariadb-server package, you'll see this:

This file is intensionally empty to disable apparmor by default

versions of MariaDB, while providing seamless upgrade from older

and from mysql, where apparmor is used.

#

By default, we do not want to have any apparmor profile for the

server. It does not provide much useful functionality/security,

several problems for users who often are not even aware that app

exists and runs on their system.

#

Users can modify and maintain their own profile, and in this cas

be used.

#

When upgrading from previous version, users who modified the pro

will be promptet to keep or discard it, while for default instal

we will automatically disable the profile.

Okay, so apparently, AppArmor isn't good for everything.
(And, whoever wrote this needs to take spelling lessons.)

And then, there's Samba, which is a special case in more
ways than one. When you install the samba package to set up a
Samba server, you don't get any AppArmor profiles at all.
For Samba and several other different applications as well,
you'll need to install the AppArmor profiles separately:

sudo apt install apparmor-profiles apparmor-profiles-extras

When you install these two profile packages, the profiles will
all be in the complain mode. That's okay, because we have a
handy utility to put them into enforce mode. Since Samba
has two different daemons that we need to protect, there are
two different profiles that we'll need to place into enforce
mode:

donnie@ubuntu5:/etc/apparmor.d$ ls *mbd

usr.sbin.nmbd usr.sbin.smbd

donnie@ubuntu5:/etc/apparmor.d$

We'll use aa-enforce to activate enforce mode for both of these
profiles:

donnie@ubuntu5:/etc/apparmor.d$ sudo aa-enforce /usr/sbin/nmbd usr

Setting /usr/sbin/nmbd to enforce mode.

Setting /etc/apparmor.d/usr.sbin.nmbd to enforce mode.

donnie@ubuntu5:/etc/apparmor.d$ sudo aa-enforce /usr/sbin/smbd usr

To use aa-enforce, you first need to specify the path to the
executable file of the process that you want to protect.
(Fortunately, you normally won't even have to look that up,
since the path name is normally part of the profile filename.)
The last part of the command is the name of the profile. Note
that you'll need to restart the Samba daemon to get this
AppArmor protection to take effect.

Placing a profile into other modes is just as easy. All you
have to do is to replace the aa-enforce utility with the utility
for the mode that you need to use. Here's a chart of the
utilities for the other modes:

aa-audit

Audit mode is the same as enforce
mode, except that allowed actions get
logged, as well as the actions that have
been blocked. (Enforce mode only logs
actions that have been blocked.)

aa-

disable
This completely disables a profile.

aa-

complain

This places a profile into complain
mode.

Setting /usr/sbin/smbd to enforce mode.

Setting /etc/apparmor.d/usr.sbin.smbd to enforce mode.

donnie@ubuntu5:/etc/apparmor.d$

Troubleshooting
AppArmor problems
So, I've been here racking my brain for the past several days,
trying to come up with a good troubleshooting scenario. It
turns out that I didn't need to. The Ubuntu folk have handed
me a good scenario on a silver platter, in the form of a buggy
Samba profile.

As you've just seen, I used aa-enforce to put the two Samba-
related profiles into enforce mode. But, watch what happens
now when I try to restart Samba in order to get the profiles to
take effect:

Okay, that's not good. Looking at the status for the smbd
service, I see this:

donnie@ubuntu3:/etc/apparmor.d$ sudo systemctl restart smbd

Job for smbd.service failed because the control process exited wit

donnie@ubuntu3:/etc/apparmor.d$

donnie@ubuntu3:/etc/apparmor.d$ sudo systemctl status smbd

● smbd.service - LSB: start Samba SMB/CIFS daemon (smbd)

 Loaded: loaded (/etc/init.d/smbd; bad; vendor preset: enabled)

 Active: failed (Result: exit-code) since Tue 2017-12-05 14:56:3

 Docs: man:systemd-sysv-generator(8)

 Process: 31160 ExecStop=/etc/init.d/smbd stop (code=exited, stat

The important things to see here are all of the places where
some form of the word fail shows up.

The original error message said to use journalctl -xe to view
the log message. But, journalctl has this bad habit of
truncating lines of output at the right edge of the screen. So
instead, I'll just use either less or tail to look in the regular
/var/log/syslog log file:

So, we see apparmor=DENIED. Obviously, Samba is trying to do
something that the profile doesn't allow. Samba needs to
write temporary files to the /run/samba/msg.lock directory, but it
isn't allowed to. I'm guessing that the profile is missing a rule
that allows that to happen.

 Process: 31171 ExecStart=/etc/init.d/smbd start (code=exited, st

Dec 05 14:56:35 ubuntu3 systemd[1]: Starting LSB: start Samba SMB/

Dec 05 14:56:35 ubuntu3 smbd[31171]: * Starting SMB/CIFS daemon s

Dec 05 14:56:35 ubuntu3 smbd[31171]: ...fail!

Dec 05 14:56:35 ubuntu3 systemd[1]: smbd.service: Control process

Dec 05 14:56:35 ubuntu3 systemd[1]: Failed to start LSB: start Sam

Dec 05 14:56:35 ubuntu3 systemd[1]: smbd.service: Unit entered fai

Dec 05 14:56:35 ubuntu3 systemd[1]: smbd.service: Failed with resu

donnie@ubuntu3:/etc/apparmor.d$

Dec 5 20:09:10 ubuntu3 smbd[14599]: * Starting SMB/CIFS daemon s

Dec 5 20:09:10 ubuntu3 kernel: [174226.392671] audit: type=1400 a

lock/14612" pid=14612 comm="smbd" requested_mask="c" denied_mask=

Dec 5 20:09:10 ubuntu3 smbd[14599]: ...fail!

Dec 5 20:09:10 ubuntu3 systemd[1]: smbd.service: Control process

Dec 5 20:09:10 ubuntu3 systemd[1]: Failed to start LSB: start Sam

Dec 5 20:09:10 ubuntu3 systemd[1]: smbd.service: Unit entered fai

Dec 5 20:09:10 ubuntu3 systemd[1]: smbd.service: Failed with resu

But, even if this log file entry were to give me no clue at all,
I could just cheat, using a troubleshooting technique that has
served me well for many years. That is, I could just copy and
paste the error message from the log file into my favorite
search engine. Pretty much every time I've ever done that,
I've found that other people before me have already had the
same problem:

Okay, I didn't paste in the entire error message, but I did
paste in enough for DuckDuckGo to work with. And, lo and
behold, it worked:

Hmmm, it looks like my profile file might be missing an
important line. So, I'll open the usr.sbin.smbd file and place
this line at the end of the rule set:

/run/samba/** rw,

This line will allow read and write access to everything in the
/run/samba directory. After making the edit, I'll need to reload
this profile because it's already been loaded with aa-enforce.
For this, I'll use the apparmor_parser utility:

All you need to do is use the -r option for reloading and list
the name of the profile file. Now, let's try to restart Samba:

donnie@ubuntu3:/etc/apparmor.d$ sudo apparmor_parser -r usr.sbin.s

donnie@ubuntu3:/etc/apparmor.d$

donnie@ubuntu3:/etc/apparmor.d$ sudo systemctl restart smbd

donnie@ubuntu3:/etc/apparmor.d$ sudo systemctl status smbd

● smbd.service - LSB: start Samba SMB/CIFS daemon (smbd)

 Loaded: loaded (/etc/init.d/smbd; bad; vendor preset: enabled)

 Active: active (running) since Wed 2017-12-06 13:31:32 EST; 3mi

 Docs: man:systemd-sysv-generator(8)

 Process: 17317 ExecStop=/etc/init.d/smbd stop (code=exited, stat

 Process: 16474 ExecReload=/etc/init.d/smbd reload (code=exited,

 Process: 17326 ExecStart=/etc/init.d/smbd start (code=exited, st

 Tasks: 3

 Memory: 9.3M

 CPU: 594ms

 CGroup: /system.slice/smbd.service

 ├─17342 /usr/sbin/smbd -D

 ├─17343 /usr/sbin/smbd -D

 └─17345 /usr/sbin/smbd -D

Dec 06 13:31:28 ubuntu3 systemd[1]: Stopped LSB: start Samba SMB/C

Dec 06 13:31:28 ubuntu3 systemd[1]: Starting LSB: start Samba SMB/

Dec 06 13:31:32 ubuntu3 smbd[17326]: * Starting SMB/CIFS daemon s

Dec 06 13:31:32 ubuntu3 smbd[17326]: ...done.

And, it works. The two Samba profiles are in enforce mode,
and Samba finally starts up just fine.

The odd part about this is that I had this same problem with
both Ubuntu 16.04 and Ubuntu 17.10. So, the bug has been
there for a long time, and it would seem that the Ubuntu folk
either don't know about it or don't care to fix it. In a way, I
hope that it never does get fixed because getting it fixed
would ruin a perfectly good training demo for me.

Dec 06 13:31:32 ubuntu3 systemd[1]: Started LSB: start Samba SMB/C

donnie@ubuntu3:/etc/apparmor.d$

Summary
In this chapter, we looked at the basic principles of
Mandatory Access Control and compared two different
Mandatory Access Control systems. We saw what SELinux
and AppArmor are and how they can help safeguard your
systems from malicious actors. We then looked at the basics
of how to use them and the basics of how to troubleshoot
them. We also saw that even though they're both meant to do
the same job, they work in vastly different ways.

Whether you're working with AppArmor or with SELinux,
you'll always want to thoroughly test a new system in either
complain or permissive mode before you put it into
production. Make sure that what you want to protect gets
protected, while at the same time, what you want to allow
gets allowed. After you place the machine into production,
don't just assume that you can automatically change a policy
setting every time you see a policy violation occur. It could
be that nothing is wrong with your Mandatory Access
Control setup and that MAC is just doing its job in protecting
you from the bad guys.

There's a lot more to both of these topics than we can cover
here. Hopefully, though, I've given you enough to whet your
appetite and enough to help you out in your day-to-day
duties.

In the next chapter, we'll look at scanning, auditing, and
hardening. I'll see you there.

Scanning, Auditing, and
Hardening
A common misconception is that Linux users never need to
worry about malware. Yes, it's true that Linux is much more
resistant to viruses than Windows is. But, viruses are only
one type of malware, and other types of malware can be
planted on Linux machines. And, if you're running a server
that will share files with Windows users, you'll want to make
sure that you don't share any virus-infected files with them.

While Linux system log files are nice, they don't always give
a good picture of who does what or who accesses what. It
could be that either intruders or insiders are trying to access
data that they're not authorized to access. What we really
want is a good auditing system to alert us when people do
things that they're not supposed to do.

And then, there's the issue of regulatory compliance. Your
organization may have to deal with one or more regulatory
bodies that dictate how you harden your servers against
attacks. If you're not in compliance, you could be fined or
put out of business.

Fortunately, we have ways to deal with all of these issues,
and they aren't all that complicated.

In this chapter, we'll cover the following topics:

Installing and updating ClamAV and maldet

Scanning with ClamAV and maldet

SELinux considerations

Scanning for rootkits with Rootkit Hunter

Controlling the auditd daemon

Creating audit rules

Using the ausearch and aureport utilities to search the
audit logs for problems

oscap, the command-line utility in order to manage
and apply OpenSCAP policies

OpenSCAP Workbench, the GUI utility to manage
and apply OpenSCAP policies

OpenSCAP policy files and the compliance standards
that each of them is designed to meet

Applying a policy during operating system
installation

Installing and updating
ClamAV and maldet
Although we don't have to worry much about viruses
infecting our Linux machines, we do need to worry about
sharing infected files with Windows users. ClamAV is a Free
Open Source Software (FOSS) antivirus solution that can
either run as a standalone program or can be integrated with
a mail server daemon, such as Postfix. It's a traditional
antivirus scanner that works pretty much the same as the
antivirus program on your typical Windows workstation. The
included freshclam utility allows you to update virus
signatures.

Linux Malware Detect, which you'll often see abbreviated as
either LMD or maldet, is another FOSS antivirus program
that can work alongside ClamAV. (To save typing, I'll just
refer to it as LMD from now on.) As far as I know, it's not
available in the repositories of any Linux distro, but it's still
simple enough to install and configure. One of its features is
that it automatically generates malware detection signatures
when it sees malware on the network's edge intrusion
detection systems. End users can also submit their own
malware samples. When you install it, you'll get a systemd
service that's already enabled and a cron job that will
periodically update both the malware signatures and the
program itself. It works with the Linux kernel's inotify

capability to automatically monitor directories for files that
have changed. The procedure to install it is pretty much the
same for any systemd-based Linux distro.

You can get all the nitty-gritty details about
Linux Malware Detect at:
https://www.rfxn.com/projects/linux-malware-detect/.

The reason that we're installing ClamAV and LMD together
is that, as the LMD folk freely admit, the ClamAV scan
engine gives a much better performance when scanning large
file sets. Also, by having them both together, ClamAV can
use the LMD malware signatures as well as its own malware
signatures.

https://www.rfxn.com/projects/linux-malware-detect/

Installing ClamAV and
maldet
We'll begin by installing ClamAV. (It's in the normal
repository for Ubuntu, but not for CentOS. For CentOS,
you'll need to install the EPEL repository, as I showed you
how to do in Chapter 1, Running Linux in a Virtual
Environment.) We'll also install Wget, which we'll use to
download LMD.

The following command will help you install ClamAV and
Wget on Ubuntu:

donnie@ubuntu3:~$ sudo apt install clamav wget

The following command will help you install ClamAV and
Wget on CentOS:

For Ubuntu, the clamav package contains everything you need.
For CentOS, you'll need to also install clamav-update in order to
obtain virus updates.

[donnie@localhost ~]$ sudo yum install clamav clamav-update wget

The rest of the steps will be the same for either virtual
machine.

Next, you'll download and install LMD. Here, you'll want to
do something that I rarely tell people to do. That is, you'll
want to log in to the root user shell. The reason is that
although the LMD installer works fine with sudo, you'll end
up with the program files being owned by the user who
performed the installation, instead of by the root user.
Performing the installation from the root user's shell saves us
the trouble of tracking down those files and changing
ownership. So, download the file as follows:

sudo su -

wget http://www.rfxn.com/downloads/maldetect-current.tar.gz

You'll now have the file in the root user's home directory.
Now, extract the archive, enter the resultant directory, and
run the installer. Once the installer finishes, copy the README
file to your own home directory so that you can have it for
ready reference. (This README file is the documentation for
LMD.) Then, exit from the root user's shell back to your own
shell:

tar xzvf maldetect-current.tar.gz

cd maldetect-1.6.2/

root@ubuntu3:~/maldetect-1.6.2# ./install.sh

Created symlink from /etc/systemd/system/multi-user.target.wants/m

update-rc.d: error: initscript does not exist: /etc/init.d/maldet

Linux Malware Detect v1.6

 (C) 2002-2017, R-fx Networks <proj@r-fx.org>

As you can see, the installer automatically creates the
symbolic link that enables the maldet service, and it also
automatically downloads and installs the newest malware
signatures.

 (C) 2017, Ryan MacDonald <ryan@r-fx.org>

This program may be freely redistributed under the terms of the GN

installation completed to /usr/local/maldetect

config file: /usr/local/maldetect/conf.maldet

exec file: /usr/local/maldetect/maldet

exec link: /usr/local/sbin/maldet

exec link: /usr/local/sbin/lmd

cron.daily: /etc/cron.daily/maldet

maldet(22138): {sigup} performing signature update check...

maldet(22138): {sigup} local signature set is version 201707071697

maldet(22138): {sigup} new signature set (201708255569) available

maldet(22138): {sigup} downloading https://cdn.rfxn.com/downloads/

maldet(22138): {sigup} downloading https://cdn.rfxn.com/downloads/

maldet(22138): {sigup} verified md5sum of maldet-sigpack.tgz

maldet(22138): {sigup} unpacked and installed maldet-sigpack.tgz

maldet(22138): {sigup} verified md5sum of maldet-clean.tgz

maldet(22138): {sigup} unpacked and installed maldet-clean.tgz

maldet(22138): {sigup} signature set update completed

maldet(22138): {sigup} 15218 signatures (12485 MD5 | 1954 HEX | 77

root@ubuntu3:~/maldetect-1.6.2# cp README /home/donnie

root@ubuntu3:~/maldetect-1.6.2# exit

logout

donnie@ubuntu3:~$

Configuring maldet
If you try to start the maldet service at this point, it will fail.
To make it work, you need to configure the directories that
you want it to automatically monitor and scan. To do this,
you'll add the directories to the
/usr/local/maldetect/monitor_paths file. For now, I just want to
monitor the /home and /root directories, so my monitor_paths file
looks like this:

/home

/root

After you save the file, you'll be able to start the maldet
daemon:

sudo systemctl start maldet

You can add more directories to the monitor_paths file at any
time, but remember to restart the maldet daemon any time
that you do, in order to read in the new additions.

The configuration file for LMD is
/usr/local/maldetect/conf.maldet. It's very well-documented with
well-written comments for every configuration item, so you

shouldn't have any trouble figuring it out. For now, we're
only going to make a few configuration changes.

At the top of the file, enable email alerts and set your
username as the email address. The two lines should now
look something like this:

email_alert="1"

email_addr="donnie"

LMD isn't already configured to move suspicious files to the
quarantine folder, and we want to make it do that. Open the
conf.maldet file in your text editor and look for the line that
says:

quarantine_hits="0"

Change the previous line to the following line:

quarantine_hits="1"

You'll see a few other quarantine actions that you can
configure, but for now, this is all we need. After you save
the file, restart maldet:

sudo systemctl restart maldet

The new changes will now be in effect.

Updating ClamAV and
maldet
The good news for busy admins is that you don't have to do
anything to keep either of these programs updated. Both of
them run with a cron job that gets created automatically and
that does the updates for us. To prove that ClamAV is getting
updated, we can look in the system log file:

Dec 8 20:02:09 localhost freshclam[22326]: ClamAV update process s

Dec 8 20:02:29 localhost freshclam[22326]: Can't query current.cvd

Dec 8 20:02:29 localhost freshclam[22326]: Invalid DNS reply. Fall

Dec 8 20:02:29 localhost freshclam[22326]: Reading CVD header (mai

Dec 8 20:02:35 localhost freshclam[22326]: OK

Dec 8 20:02:47 localhost freshclam[22326]: Downloading main-58.cdi

Dec 8 20:03:19 localhost freshclam[22326]: main.cld updated (versi

. . .

. . .

Dec 8 20:04:45 localhost freshclam[22326]: Downloading daily.cvd

Dec 8 20:04:53 localhost freshclam[22326]: daily.cvd updated (vers

Dec 8 20:04:53 localhost freshclam[22326]: Reading CVD header (byt

Dec 8 20:04:54 localhost freshclam[22326]: OK

Dec 8 20:04:54 localhost freshclam[22326]: Downloading bytecode-27

Dec 8 20:04:55 localhost freshclam[22326]: Downloading bytecode-28

Dec 8 20:04:55 localhost freshclam[22326]: Downloading bytecode-28

Dec 8 20:04:56 localhost freshclam[22326]: Downloading bytecode-28

. . .

. . .

You'll see these same entries in either the Ubuntu logs or the
CentOS logs. However, there is a difference between how the
updates get run automatically.

In the /etc/clamav/freshclam.conf file of your Ubuntu machine,
you'll see the following lines at the end:

Check for new database 24 times a day

Checks 24

DatabaseMirror db.local.clamav.net

DatabaseMirror database.clamav.net

So essentially, this means that on Ubuntu, ClamAV will be
checking for updates every hour.

On your CentOS machine, you'll see a clamav-update cron job
in the /etc/cron.d directory that looks like this:

The */3 in the second column from the left indicates that
ClamAV will check for updates every 3 hours. You can
change that if you like, but you'll also need to change the
setting in the /etc/sysconfig/freshclam file. Let's say that you
want for CentOS to also check for ClamAV updates every
hour. In the cron job file, change the */3 to *. (You don't need

Adjust this line...

MAILTO=root

It is ok to execute it as root; freshclam drops privileges and

user 'clamupdate' as soon as possible

0 */3 * * * root /usr/share/clamav/freshclam-sleep

to do */1 because the asterisk by itself in that position already
indicates that the job will run every hour.) Then, in the
/etc/sysconfig/freshclam file, look for this line:

FRESHCLAM_MOD=

Uncomment that line and add the number of minutes that you
want between updates. To set it to 1 hour, in order to match
the cron job, it will look like this:

FRESHCLAM_MOD=60

To prove that maldet is getting updated, you can look in its
own log files in the /usr/local/maldetect/logs/ directory. In the
event_log file, you'll see the following code:

Dec 06 22:06:14 localhost maldet(3728): {sigup} performing signatu

Dec 06 22:06:14 localhost maldet(3728): {sigup} local signature se

Dec 06 22:07:13 localhost maldet(3728): {sigup} downloaded https:/

Dec 06 22:07:13 localhost maldet(3728): {sigup} new signature set

Dec 06 22:07:13 localhost maldet(3728): {sigup} downloading https

. . .

. . .

Dec 06 22:07:43 localhost maldet(3728): {sigup} unpacked and insta

Dec 06 22:07:43 localhost maldet(3728): {sigup} signature set upda

Dec 06 22:07:43 localhost maldet(3728): {sigup} 15218 signatures

Dec 06 22:14:55 localhost maldet(4070): {scan} signatures loaded:

In the /usr/local/maldetect/conf.maldet file, you'll see these two
lines, but with some comments in between them:

autoupdate_signatures="1"

autoupdate_version="1"

Not only will LMD automatically update its malware
signatures, it will also ensure that you have the latest version
of LMD itself.

Scanning with ClamAV
and maldet
LMD's maldet daemon constantly monitors the directories
that you specify in the /usr/local/maldetect/monitor_paths file.
When it finds a file that it suspects might be malware, it
automatically takes whatever action that you specified in the
conf.maldet file. To see how this works, I'll create a simulated
malware file in my home directory. Fortunately, that's easier
than it sounds, because we have a website that will help us
out.

EICAR, which used to be known by its full name
of European Institute for Computer Antivirus
Research, provides a virus signature that you
can include in a plain text file. You can get it
at: http://www.eicar.org/86-0-Intended-use.html.

To create the simulated virus file, go to the page
that I've listed in the preceding link.

Scroll down toward the bottom of the page until you see this
line of text within a text box:

X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+

http://www.eicar.org/86-0-Intended-use.html

Copy that line of text and insert it into a text file that you'll
save to your home directory of either virtual machine. (You
can name it anything you want, but I'll just name mine
testing.txt.) Wait just a few moments, and you should see the
file disappear. Then, look in the
/usr/local/maldetect/logs/event_log file to verify that the LMD
moved the file to quarantine:

There's still a bit more to LMD than what I can show you
here. However, you can read all about it in the README file that
comes with it.

Dec 09 19:03:43 localhost maldet(7192): {quar} malware quarantined

SELinux considerations
It used to be that doing an antivirus scan on a Red Hat-type
system would trigger an SELinux alert. But, in the course of
proofing this chapter, the scans all worked as they should,
and SELinux never bothered me even once. So, it would
appear that that problem is now fixed.

If you ever do generate any SELinux alerts with your virus
scans, all you need to do to fix it is to change one Boolean:

[donnie@localhost ~]$ getsebool -a | grep 'virus'

antivirus_can_scan_system --> off

antivirus_use_jit --> off

[donnie@localhost ~]$

What interests us here is the antivirus_can_scan_system Boolean,
which is off by default. To turn it on to enable virus scans,
just follow this:

[donnie@localhost ~]$ sudo setsebool -P antivirus_can_scan_system

[sudo] password for donnie:

[donnie@localhost ~]$ getsebool antivirus_can_scan_system

antivirus_can_scan_system --> on

[donnie@localhost ~]$

That should fix any SELinux-related scan problems that you
may have. But, as things stand now, you probably won't need
to worry about it.

Scanning for rootkits
with Rootkit Hunter
Rootkits are exceedingly nasty pieces of malware that can
definitely ruin your day. They can listen for commands from
their masters, steal sensitive data and send it to their masters,
or provide an easy-access back door for their masters.
They're designed to be stealthy, with the ability to hide
themselves from plain view. Sometimes, they'll replace
utilities such as ls or ps with their own trojaned versions that
will show all files or processes on the system except for the
ones that are associated with the rootkit. Rootkits can infect
any operating system, even our beloved Linux.

In order to plant a rootkit, an attacker has to have already
gained administrative privileges on a system. This is one of
the many reasons why I always cringe when I see people
doing all of their work from the root user's shell and why I'm
a firm advocate of using sudo whenever possible. I mean,
really, why should we make it easy for the bad guys?

Several years ago, back in the dark days of
Windows XP, Sony Music got into a bit of trouble
when someone discovered that they had planted a
rootkit on their music CDs. They didn't mean to
do anything malicious, but only wanted to stop
people from using their computers to make

illegal copies. Of course, most people ran
Windows XP with an administrator account,
which made it really easy for the rootkit to infect
their computers. Windows users still mostly run
with administrator accounts, but they at least
now have User Access Control to help mitigate
these types of problems.

There are a couple of different programs that scan for
rootkits, and both are used pretty much the same way. The
one that we'll look at now is named, Rootkit Hunter.

Installing and updating
Rootkit Hunter
For Ubuntu, Rootkit Hunter is in the normal repository. For
CentOS, you'll need to install the EPEL repository, as I
showed you how to do in Chapter 1, Running Linux in a
Virtual Environment. For both Linux distros, the package
name is rkhunter.

For Ubuntu:

sudo apt install rkhunter

For CentOS:

sudo yum install rkhunter

After it's installed, you can look at its options with:

man rkhunter

Easy, right?

The next thing you'll need to do is to update the rootkit
signatures, using the --update option:

[donnie@localhost ~]$ sudo rkhunter --update

[Rootkit Hunter version 1.4.4]

Checking rkhunter data files...

 Checking file mirrors.dat [Updated]

 Checking file programs_bad.dat [Updated]

 Checking file backdoorports.dat [No update]

 Checking file suspscan.dat [Updated]

 Checking file i18n/cn [No update]

 Checking file i18n/de [Updated]

 Checking file i18n/en [Updated]

 Checking file i18n/tr [Updated]

 Checking file i18n/tr.utf8 [Updated]

 Checking file i18n/zh [Updated]

 Checking file i18n/zh.utf8 [Updated]

 Checking file i18n/ja [Updated]

[donnie@localhost ~]$

Now, we're ready to scan.

Scanning for rootkits
To run your scan, use the -c option. (That's -c for check.) Be
patient, because it will take a while:

sudo rkhunter -c

When you run the scan in this manner, Rootkit Hunter will
periodically stop and ask you to hit the Enter key to
continue. When the scan completes, you'll find an rkhunter.log
file in the /var/log directory.

To have Rootkit Hunter automatically run as a cron job,
you'll want to use the --cronjob option, which will cause the
program to run all the way through without prompting you to
keep hitting the Enter key. You might also want to use the --
rwo option, which will cause the program to only report
warnings, instead of also reporting on everything that's
good. From the command line, the command would look
like this:

sudo rkhunter -c --cronjob --rwo

To create a cron job that will automatically run Rootkit
Hunter on a nightly basis, open the crontab editor for the root

user:

sudo crontab -e -u root

Let's say that you want to run Rootkit Hunter every night at
20 minutes past 10. Enter this into the crontab editor:

20 22 * * * /usr/bin/rkhunter -c --cronjob --rwo

Since cron only works with 24 hour clock time, you'll have
to express 10:00 P.M. as 22. (Just add 12 to the normal P.M.
clock times that you're used to using.) The three asterisks
mean, respectively, that the job will run every day of the
month, every month, and every day of the week. You'll need
to list the entire path for the command, or else cron won't be
able to find it.

You'll find more options that might interest you in the rkhunter
man page, but this should be enough to get you going with it.

Controlling the auditd
daemon
So, you have a directory full of super-secret files that only a
very few people need to see, and you want to know when
unauthorized people try to see them. Or, maybe you want to
see when a certain file gets changed. Or, maybe you want to
see when people log into the system and what they're doing
once they do log in. For all this and more, you have the
auditd system. It's a really cool system, and I think that you'll
like it.

One of the beauties of auditd is that it works at
the Linux kernel level, rather than at the user-
mode level. This makes it much harder for
attackers to subvert.

On Red Hat-type systems, auditd comes installed and
enabled by default. So, you'll find it already there on your
CentOS machine. On Ubuntu, it isn't already installed, so
you'll have to do it yourself:

sudo apt install auditd

On Ubuntu, you can control the auditd daemon with the
normal systemctl commands. So, if you need to restart auditd

to read in a new configuration, you can do that with the
following:

sudo systemctl restart auditd

On CentOS 7, for some reason that I don't understand, the
normal systemctl commands don't work with auditd. (For all
other daemons, they do.) So, on your CentOS 7 machine,
you'll restart the auditd daemon with the old-fashioned service
command, like so:

sudo service auditd restart

Other than this minor difference, everything I tell you about
auditd from here on will apply to both Ubuntu and CentOS.

Creating audit rules
Okay, let's start with something simple and work our way up
to something awesome. First, let's check to see whether any
audit rules are in effect:

[donnie@localhost ~]$ sudo auditctl -l

[sudo] password for donnie:

No rules

[donnie@localhost ~]$

As you can see, the auditctl command is what we use to
manage audit rules. The -l option lists the rules.

Auditing a file for
changes
Now, let's say that we want to see when someone changes the
/etc/passwd file. (The command that we'll use will look a bit
daunting, but I promise that it will make sense once we break
it down.) Look at the following code:

Here's the breakdown:

-w: This stands for where, and it points to the object
that we want to monitor. In this case, it's /etc/passwd.

-p: This indicates the object's permissions that we
want to monitor. In this case, we're monitoring to see
when anyone either tries to (w)rite to the file, or tries
to make (a)ttribute changes. (The other two

[donnie@localhost ~]$ sudo auditctl -w /etc/passwd -p wa -k passwd

[sudo] password for donnie:

[donnie@localhost ~]$ sudo auditctl -l

-w /etc/passwd -p wa -k passwd_changes

[donnie@localhost ~]$

permissions that we can audit are (r)ead and
e(x)ecute.)

-k: The k stands for key, which is just auditd's way of
assigning a name to a rule. So, passwd_changes is the
key, or the name, of the rule that we're creating.

The auditctl -l command shows us that the rule is indeed
there.

Now, the slight problem with this is that the rule is only
temporary and will disappear when we reboot the machine.
To make it permanent, we need to create a custom rules file
in the /etc/audit/rules.d/ directory. Then, when you restart the
auditd daemon, the custom rules will get inserted into the
/etc/audit/audit.rules file. Because the /etc/audit/ directory can
only be accessed by someone with root privileges, I'll just
open the file by listing the entire path to the file, rather than
trying to enter the directory:

sudo less /etc/audit/audit.rules

There's not a whole lot in this default file:

This file is automatically generated from /etc/audit/rules.d

-D

-b 8192

-f 1

Here's the breakdown for this file:

-D: This will cause all rules and watches that are
currently in effect to be deleted, so that we can start
from a clean slate. So, if I were to restart the auditd
daemon right now, it would read this audit.rules file,
which would delete the rule that I just now created.

-b 8192: This sets the number of outstanding audit
buffers that we can have going at one time. If all of
the buffers get full, the system can't generate any
more audit messages.

-f 1: This sets the failure mode for critical errors, and
the value can be either 0, 1, or 2. A -f 0 would set
the mode to silent, meaning that auditd wouldn't do
anything about critical errors. A -f 1, as we see here,
tells auditd to only report the critical errors, and a -f 2
would cause the Linux kernel to go into panic mode.
According to the auditctl man page, anyone in a high-
security environment would likely want to change
this to -f 2. For our purposes though, -f1 works.

You could use your text editor to create a new rules file in the
/etc/audit/rules.d/ directory. Or, you could just redirect the
auditctl -l output into a new file, like this:

Since the Bash shell doesn't allow me to directly redirect
information into a file in the /etc directory, even with sudo, I
have to use the sudo sh -c command in order to execute the
auditctl command. After restarting the auditd daemon, our
audit.rules file now looks like this:

Now, the rule will take effect every time the machine gets
rebooted, and every time that you manually restart the auditd
daemon.

[donnie@localhost ~]$ sudo sh -c "auditctl -l > /etc/audit/rules.d

[donnie@localhost ~]$ sudo service auditd restart

This file is automatically generated from /etc/audit/rules.d

-D

-b 8192

-f 1

-w /etc/passwd -p wa -k passwd_changes

Auditing a directory
Vicky and Cleopatra, my solid gray kitty and my gray-and-
white tabby kitty, have some supersensitive secrets that they
need to safeguard. So, I created the secretcats group and
added them to it. I then created the secretcats shared directory
and set the access controls on it as I showed you how to do in
Chapter 6, Access Control Lists and Shared Directory
Management:

Vicky and Cleopatra want to be absolutely sure that nobody
gets into their stuff, so they requested that I set up an
auditing rule for their directory:

[donnie@localhost ~]$ sudo groupadd secretcats

[sudo] password for donnie:

[donnie@localhost ~]$ sudo usermod -a -G secretcats vicky

[donnie@localhost ~]$ sudo usermod -a -G secretcats cleopatra

[donnie@localhost ~]$ sudo mkdir /secretcats

[donnie@localhost ~]$ sudo chown nobody:secretcats /secretcats/

[donnie@localhost ~]$ sudo chmod 3770 /secretcats/

[donnie@localhost ~]$ ls -ld /secretcats/

drwxrws--T. 2 nobody secretcats 6 Dec 11 14:47 /secretcats/

[donnie@localhost ~]$

[donnie@localhost ~]$ sudo auditctl -w /secretcats/ -k secretcats_

[sudo] password for donnie:

As before, the -w denotes what we want to monitor, and the -k
denotes the name of the audit rule. This time, I left out the -p
option because I want to monitor for every type of access. In
other words, I want to monitor for any read, write, attribute
change, or execute actions. (Because this is a directory, the
execute action happens when somebody tries to cd into the
directory.) You can see in the auditctl -l output that by
leaving out the -p, we will now monitor for everything.
However, let's say that I only want to monitor for when
someone tries to cd into this directory. Instead, I could have
made the rule look like this:

sudo auditctl -w /secretcats/ -p x -k secretcats_watch

Easy enough so far, right? Let's now look at something a bit
more complex.

[donnie@localhost ~]$ sudo auditctl -l

-w /etc/passwd -p wa -k passwd_changes

-w /secretcats -p rwxa -k secretcats_watch

[donnie@localhost ~]$

Auditing system calls
Creating rules to monitor when someone performs a certain
action isn't hard, but the command syntax is a bit trickier
than what we've seen so far. With this rule, we're going to be
alerted every time that Charlie either tries to open a file or
tries to create a file:

Here's the breakdown:

-a always,exit: Here, we have the action and the list.
The exit part means that this rule will be added to the
system call exit list. Whenever the operating system
exits from a system call, the exit list will be used to
determine if an audit event needs to be generated.
The always part is the action, which means that an
audit record for this rule will always be created on

[donnie@localhost ~]$ sudo auditctl -a always,exit -F arch=b64 -S

[sudo] password for donnie:

[donnie@localhost ~]$ sudo auditctl -l

-w /etc/passwd -p wa -k passwd_changes

-w /secretcats -p rwxa -k secretcats_watch

-a always,exit -F arch=b64 -S openat -F auid=1006

[donnie@localhost ~]$

exit from the specified system call. Note that the
action and list parameters have to be separated by a
comma.

-F arch=b64: The -F option is used to build a rule field,
and we see two rule fields in this command. This first
rule field specifies the machine's CPU architecture.
The b64 means that the computer is running with an
x86_64 CPU. (Whether it's Intel or AMD doesn't
matter.) Considering that 32-bit machines are dying
off and that Sun SPARC and PowerPC machines
aren't all that common, b64 is what you'll now mostly
see.

-S openat: The -S option specifies the system call that
we want to monitor. openat is the system call that
either opens or creates a file.

-F auid=1006: This second audit field specifies the user
ID number of the user that we want to monitor.
(Charlie's user ID number is 1006.)

A complete explanation about system calls, or
syscalls, is a bit too esoteric for our present
purpose. For now, suffice it to say that a syscall
happens whenever a user issues a command that
requests that the Linux kernel provide a service.
If you're so inclined, you can read more about

syscalls at: https://blog.packagecloud.io/eng/2016/04/0
5/the-definitive-guide-to-linux-system-calls/.

What I've presented here are just a few of the many things
that you can do with auditing rules. To see more examples,
check out the auditctl man page:

man auditctl

So, now you're wondering, "Now that I have these rules, how
do I know when someone tries to violate them?" As always,
I'm glad that you asked.

https://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/

Using ausearch and
aureport
The auditd daemon logs events to the
/var/log/audit/audit.log file. Although you could directly read
the file with something like less, you really don't want to.
The ausearch and aureport utilities will help you translate the
file into a language that makes some sort of sense.

Searching for file change
alerts
Let's start by looking at the rule that we created that will alert
us whenever a change is made to the /etc/passwd file:

sudo auditctl -w /etc/passwd -p wa -k passwd_changes

Now, let's make a change to the file and look for the alert
message. Rather than add another user, since I'm running out
of cats whose names I can use, I'll just use the chfn utility to
add contact information to the comment field for Cleopatra's
entry:

[donnie@localhost etc]$ sudo chfn cleopatra

Changing finger information for cleopatra.

Name []: Cleopatra Tabby Cat

Office []: Donnie's back yard

Office Phone []: 555-5555

Home Phone []: 555-5556

Finger information changed.

[donnie@localhost etc]

I'll now use ausearch to look for any audit messages that this
event may have generated:

Here's the breakdown:

-i: This takes any numeric data and, whenever
possible, converts it into text. In this case, it takes
user ID numbers and converts them to the actual
username, which shows up here as auid=donnie. If I
were to leave the -i out, the user information would
instead show up as auid=1000, which is my user ID
number.

-k passwd_changes: This specifies the key, or the name,
of the audit rule for which we want to see audit
messages.

You can see that there are two parts to this output. The first
part just shows when I created the audit rule, so we're not
interested in that. In the second part, you can see when I
triggered the rule, but it doesn't show how I triggered it. So,
let's use aureport to see if it will give us a bit more of a clue:

[donnie@localhost ~]$ sudo ausearch -i -k passwd_changes

type=CONFIG_CHANGE msg=audit(12/11/2017 13:06:20.665:11393) : auid

st=exit res=yes

type=CONFIG_CHANGE msg=audit(12/11/2017 13:49:15.262:11511) : auid

[donnie@localhost ~]$

What's curious is that with ausearch, you have to specify the
name, or key, of the audit rule that interests you after the -
k option. With aureport, the -k option means that you want to
look at all log entries that have to do with all audit rule keys.
To see log entries for a specific key, just pipe the output into
grep. The -i option does the same thing that it does for
ausearch.

As you can see, aureport parses the cryptic language of the
audit.log file into plain language that's easier to understand. I
wasn't sure about what I had done to generate events 1 and 2,
so I looked in the /var/log/secure file to see if I could find out.
I saw these two entries for those times:

So, event 1 was from when I initially created the audit rule,
and event 2 happened when I did an ausearch operation.

[donnie@localhost ~]$ sudo aureport -i -k | grep 'passwd_changes'

1. 12/11/2017 13:06:20 passwd_changes yes ? donnie 11393

2. 12/11/2017 13:49:15 passwd_changes yes ? donnie 11511

3. 12/11/2017 13:49:15 passwd_changes yes /usr/bin/chfn donnie 115

4. 12/11/2017 14:54:11 passwd_changes yes /usr/sbin/usermod donnie

5. 12/11/2017 14:54:25 passwd_changes yes /usr/sbin/usermod donnie

[donnie@localhost ~]$

Dec 11 13:06:20 localhost sudo: donnie : TTY=pts/1 ; PWD=/home/don

. . .

. . .

Dec 11 13:49:24 localhost sudo: donnie : TTY=pts/1 ; PWD=/home/don

I must confess that the events in lines 4 and 5 are a bit of a
mystery. Both were created when I invoked the
usermod command, and both of them correlate to the secure log
entries where I added Vicky and Cleopatra to the
secretcats group:

The strange part about this is that adding a user to a
secondary group doesn't modify the passwd file. So, I really
don't know why the rule got triggered to create the events in
lines 4 and 5.

This leaves us with the event in line 3, which is where I used
chfn to actually modify the passwd file. Here's the secure log
entry for that:

So, out of all of these events, the one in line 3 is the only one
where the /etc/passwd file actually got modified.

The /var/log/secure file that I keep mentioning
here is on Red Hat-type operating systems, such
as CentOS. On your Ubuntu machine, you'll see
the /var/log/auth.log file, instead.

Dec 11 14:54:11 localhost sudo: donnie : TTY=pts/1 ; PWD=/home/do

Dec 11 14:54:11 localhost usermod[14865]: add 'vicky' to group 'se

Dec 11 14:54:11 localhost usermod[14865]: add 'vicky' to shadow gr

Dec 11 14:54:25 localhost sudo: donnie : TTY=pts/1 ; PWD=/home/do

Dec 11 14:54:25 localhost usermod[14871]: add 'cleopatra' to group

Dec 11 14:54:25 localhost usermod[14871]: add 'cleopatra' to shado

Dec 11 13:48:49 localhost sudo: donnie : TTY=pts/1 ; PWD=/etc ; U

Searching for directory
access rule violations
In our next scenario, we created a shared directory for Vicky
and Cleopatra and created an audit rule for it that looks like
this:

sudo auditctl -w /secretcats/ -k secretcats_watch

So, all accesses or attempted accesses to this directory should
trigger an alert. First, let's have Vicky enter the
/secretcats directory and run an ls -l command:

We see that Cleopatra has already been there and has created
a file. (We'll get back to that in a moment.) When an event
triggers an auditd rule, it often creates multiple records in the
/var/log/audit/audit.log file. If you study through each record
for an event, you'll see that each one covers a different aspect
of that event. When I do an ausearch command, I see a total of

[vicky@localhost ~]$ cd /secretcats

[vicky@localhost secretcats]$ ls -l

total 4

-rw-rw-r--. 1 cleopatra secretcats 31 Dec 12 11:49 cleopatrafile.t

[vicky@localhost secretcats]$

five records just from that one ls -l operation. For the sake of
saving space, I'll just put the first one and the last one here:

In both records, you see the action that was taken (ls -l), and
information about the person—or, cat, in this case—that took
the action. Since this is a CentOS machine, you also see
SELinux context information. In the second record, you also
see the name of the file that Vicky saw when she did the ls
command.

Next, let's say that that sneaky Charlie guy logs in and tries
to get into the /secretcats directory:

[charlie@localhost ~]$ cd /secretcats

-bash: cd: /secretcats: Permission denied

[charlie@localhost ~]$ ls -l /secretcats

ls: cannot open directory /secretcats: Permission denied

[charlie@localhost ~]$

sudo ausearch -i -k secretcats_watch | less

type=PROCTITLE msg=audit(12/12/2017 12:15:35.447:14077) : proctitl

type=PATH msg=audit(12/12/2017 12:15:35.447:14077) : item=0 name=

type=CWD msg=audit(12/12/2017 12:15:35.447:14077) : cwd=/secretca

type=SYSCALL msg=audit(12/12/2017 12:15:35.447:14077) : arch=x86_6

. . .

. . .

type=PROCTITLE msg=audit(12/12/2017 12:15:35.447:14081) : proctitl

type=PATH msg=audit(12/12/2017 12:15:35.447:14081) : item=0 name=c

type=CWD msg=audit(12/12/2017 12:15:35.447:14081) : cwd=/secretca

type=SYSCALL msg=audit(12/12/2017 12:15:35.447:14081) : arch=x86_6

Charlie isn't a member of the secretcats group and doesn't
have permission to go into the secretcats directory. So, he
should trigger an alert message. Well, he actually triggered
one that consists of four records, and I'll again just list the
first and the last:

There are two things to note here. First, just attempting to
cd into the directory doesn't trigger an alert. However, using
ls to try to read the contents of the directory does. Secondly,
note the Permission denied message that shows up in the second
record.

The last set of alerts that we'll look at got created when
Cleopatra created her cleopatrafile.txt file. This event
triggered an alert that consists of 30 records. Here are two of
them:

sudo ausearch -i -k secretcats_watch | less

type=PROCTITLE msg=audit(12/12/2017 12:32:04.341:14152) : proctitl

type=PATH msg=audit(12/12/2017 12:32:04.341:14152) : item=0 name=/

type=CWD msg=audit(12/12/2017 12:32:04.341:14152) : cwd=/home/cha

type=SYSCALL msg=audit(12/12/2017 12:32:04.341:14152) : arch=x86_6

. . .

. . .

type=PROCTITLE msg=audit(12/12/2017 12:32:04.341:14155) : proctitl

type=PATH msg=audit(12/12/2017 12:32:04.341:14155) : item=0 name=/

type=CWD msg=audit(12/12/2017 12:32:04.341:14155) : cwd=/home/cha

type=SYSCALL msg=audit(12/12/2017 12:32:04.341:14155) : arch=x86_6

. . .

. . .

type=PROCTITLE msg=audit(12/12/2017 11:49:37.536:13856) : proctitl

You can tell that the first of these two messages happened
when Cleopatra saved the file and exited vim because the
second message shows objtype=DELETE, where her temporary
vim swap file got deleted.

Okay, this is all good, but what if this is too much
information? What if you just want a quick and sparse list of
all of the security events that got triggered by this rule? For
that, we'll use aureport. We'll use it just like we did before.

First, let's pipe the aureport output into less instead of into
grep so that we can see the column headers:

type=PATH msg=audit(12/12/2017 11:49:37.536:13856) : item=0 name=

bject_r:default_t:s0 objtype=NORMAL

type=CWD msg=audit(12/12/2017 11:49:37.536:13856) : cwd=/secretca

type=SYSCALL msg=audit(12/12/2017 11:49:37.536:13856) : arch=x86_6

opatra uid=cleopatra gid=cleopatra euid=cleopatra suid=cleopatra f

j=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 key=secret

type=PROCTITLE msg=audit(12/12/2017 11:49:56.001:13858) : proctitl

type=PATH msg=audit(12/12/2017 11:49:56.001:13858) : item=1 name=/

=00:00 obj=unconfined_u:object_r:default_t:s0 objtype=DELETE

type=PATH msg=audit(12/12/2017 11:49:56.001:13858) : item=0 name=/

onfined_u:object_r:default_t:s0 objtype=PARENT

type=CWD msg=audit(12/12/2017 11:49:56.001:13858) : cwd=/secretca

type=SYSCALL msg=audit(12/12/2017 11:49:56.001:13858) : arch=x86_6

auid=cleopatra uid=cleopatra gid=cleopatra euid=cleopatra suid=cle

/vim subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 ke

. . .

. . .

[donnie@localhost ~]$ sudo aureport -i -k | less

Key Report

===

The status in the success column will be either yes or no,
depending on if the user was able to successfully perform an
action that violated a rule. Or, it could be a question mark if
the event isn't the result of the rule getting triggered.

For Charlie, we see a yes event in line 48, with the events in
lines 49 through 51 all having a no status. We also see that all
of these entries were triggered by Charlie's use of the
ls command:

date time key success exe auid event

===

1. 12/11/2017 13:06:20 passwd_changes yes ? donnie 11393

2. 12/11/2017 13:49:15 passwd_changes yes ? donnie 11511

3. 12/11/2017 13:49:15 passwd_changes yes /usr/bin/chfn donnie 115

4. 12/11/2017 14:54:11 passwd_changes yes /usr/sbin/usermod donnie

5. 12/11/2017 14:54:25 passwd_changes yes /usr/sbin/usermod donnie

. . .

. . .

sudo aureport -i -k | grep 'secretcats_watch'

[donnie@localhost ~]$ sudo aureport -i -k | grep 'secretcats_watch

6. 12/11/2017 15:01:25 secretcats_watch yes ? donnie 11772

8. 12/12/2017 11:49:29 secretcats_watch yes /usr/bin/ls cleopatra

9. 12/12/2017 11:49:37 secretcats_watch yes /usr/bin/vim cleopatra

10. 12/12/2017 11:49:37 secretcats_watch yes /usr/bin/vim cleopatr

. . .

. . .

48. 12/12/2017 12:32:04 secretcats_watch yes /usr/bin/ls charlie 1

49. 12/12/2017 12:32:04 secretcats_watch no /usr/bin/ls charlie 14

50. 12/12/2017 12:32:04 secretcats_watch no /usr/bin/ls charlie 14

51. 12/12/2017 12:32:04 secretcats_watch no /usr/bin/ls charlie 14

[donnie@localhost ~]$

You'd be tempted to think that the yes event in line 48
indicates that Charlie was successful in reading the contents
of the secretcats directory. To analyze further, look at the
event numbers at the end of each line and correlate them to
the output of our previous ausearch command. You'll see that
event numbers 14152 through 14155 belong to records that
all have the same timestamp. We can see that in the first line
of each record:

As we noted before, the last record of this series shows
Permission denied for Charlie and that's what really counts.

Space doesn't permit me to give a full
explanation of each individual item in an audit
log record. But, you can read about it here in the
official Red Hat documentation: https://access.red
hat.com/documentation/en-us/red_hat_enterprise_linux/7/

html/security_guide/sec-understanding_audit_log_files.

[donnie@localhost ~]$ sudo ausearch -i -k secretcats_watch | less

type=PROCTITLE msg=audit(12/12/2017 12:32:04.341:14152) : proctitl

type=PROCTITLE msg=audit(12/12/2017 12:32:04.341:14153) : proctitl

type=PROCTITLE msg=audit(12/12/2017 12:32:04.341:14154) : proctitl

type=PROCTITLE msg=audit(12/12/2017 12:32:04.341:14155) : proctitl

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files

Searching for system call
rule violations
The third rule that we created was to monitor that sneaky
Charlie. This rule will alert us whenever Charlie tries to open
or create a file. (As we noted before, 1006 is Charlie's user ID
number.):

Even though Charlie hasn't done that much on this system,
this rule gives us a lot more log entries than what we
bargained for. We'll look at just a couple of entries:

This record was generated when Charlie tried to access the
/secretcats/ directory. So, we can expect to see this one. But,
what we didn't expect to see was the exceedingly long list of

sudo auditctl -a always,exit -F arch=b64 -S openat -F auid=1006

time->Tue Dec 12 11:49:29 2017

type=PROCTITLE msg=audit(1513097369.952:13828): proctitle=6C73002D

type=PATH msg=audit(1513097369.952:13828): item=0 name="." inode=3

RMAL

type=CWD msg=audit(1513097369.952:13828): cwd="/secretcats"

type=SYSCALL msg=audit(1513097369.952:13828): arch=c000003e syscal

id=1004 gid=1006 euid=1004 suid=1004 fsuid=1004 egid=1006 sgid=100

:c0.c1023 key="secretcats_watch"

records of files that Charlie indirectly accessed when he
logged in to the system through Secure Shell. Here are just a
couple:

In the first record, we see that Charlie accessed the
/usr/sbin/sshd file. In the second, we see that he accessed the
/usr/bin/bash file. It's not that Charlie chose to access those
files. The operating system accessed those files for him in the
course of just a normal login event. So as you can see, when
you create audit rules, you have to be careful of what you
wish because there's a definite danger that the wish might be
granted. If you really need to monitor someone, you'll want
to create a rule that won't give you quite this much
information.

While we're at it, we might as well see what the
aureport output for this looks like:

time->Tue Dec 12 11:50:28 2017

type=PROCTITLE msg=audit(1513097428.662:13898): proctitle=73736864

type=PATH msg=audit(1513097428.662:13898): item=0 name="/proc/9726

:s0-s0:c0.c1023 objtype=NORMAL

type=CWD msg=audit(1513097428.662:13898): cwd="/home/charlie"

type=SYSCALL msg=audit(1513097428.662:13898): arch=c000003e syscal

006 uid=1006 gid=1008 euid=1006 suid=1006 fsuid=1006 egid=1008 sgi

ed_t:s0-s0:c0.c1023 key=(null)

time->Tue Dec 12 11:50:28 2017

type=PROCTITLE msg=audit(1513097428.713:13900): proctitle=73736864

type=PATH msg=audit(1513097428.713:13900): item=0 name="/etc/profi

NORMAL

type=CWD msg=audit(1513097428.713:13900): cwd="/home/charlie"

type=SYSCALL msg=audit(1513097428.713:13900): arch=c000003e syscal

id=1006 gid=1008 euid=1006 suid=1006 fsuid=1006 egid=1008 sgid=100

0-s0:c0.c1023 key=(null)

[donnie@localhost ~]$ sudo aureport -s -i | grep 'openat'

[sudo] password for donnie:

1068. 12/12/2017 11:49:29 openat 9592 ls cleopatra 13828

1099. 12/12/2017 11:50:28 openat 9665 sshd charlie 13887

1100. 12/12/2017 11:50:28 openat 9665 sshd charlie 13889

1101. 12/12/2017 11:50:28 openat 9665 sshd charlie 13890

1102. 12/12/2017 11:50:28 openat 9726 sshd charlie 13898

1103. 12/12/2017 11:50:28 openat 9726 bash charlie 13900

1104. 12/12/2017 11:50:28 openat 9736 grep charlie 13901

1105. 12/12/2017 11:50:28 openat 9742 grep charlie 13902

1108. 12/12/2017 11:50:51 openat 9766 ls charlie 13906

1110. 12/12/2017 12:15:35 openat 10952 ls vicky 14077

1115. 12/12/2017 12:30:54 openat 11632 sshd charlie 14129

1116. 12/12/2017 12:30:54 openat 11632 sshd charlie 14131

1117. 12/12/2017 12:30:54 openat 11632 sshd charlie 14132

1118. 12/12/2017 12:30:54 openat 11637 sshd charlie 14140

1119. 12/12/2017 12:30:54 openat 11637 bash charlie 14142

1120. 12/12/2017 12:30:54 openat 11647 grep charlie 14143

1121. 12/12/2017 12:30:54 openat 11653 grep charlie 14144

1125. 12/12/2017 12:32:04 openat 11663 ls charlie 14155

[donnie@localhost ~]$

In addition to what Charlie did, we also see what Vicky and
Cleopatra did. That's because the rule that we set for the
/secretcats/ directory generated openat events when Vicky and
Cleopatra accessed, viewed, or created files in that directory.

Generating
authentication reports
You can generate user authentication reports without having
to define any audit rules. Just use aureport with the -au option
switch. (Remember au, the first two letters of
authentication.):

For login events, this tells us whether the user logged in at
the local terminal or remotely through Secure Shell. To see

[donnie@localhost ~]$ sudo aureport -au

[sudo] password for donnie:

Authentication Report

==

date time acct host term exe success event

==

1. 10/28/2017 13:38:52 donnie localhost.localdomain tty1 /usr/bin/

2. 10/28/2017 13:39:03 donnie localhost.localdomain /dev/tty1 /usr

3. 10/28/2017 14:04:51 donnie localhost.localdomain /dev/tty1 /usr

. . .

. . .

239. 12/12/2017 11:50:20 charlie 192.168.0.222 ssh /usr/sbin/sshd

244. 12/12/2017 12:10:06 cleopatra 192.168.0.222 ssh /usr/sbin/ssh

247. 12/12/2017 12:14:28 vicky 192.168.0.222 ssh /usr/sbin/sshd no

250. 12/12/2017 12:30:49 charlie 192.168.0.222 ssh /usr/sbin/sshd

265. 12/12/2017 19:06:20 charlie 192.168.0.222 ssh /usr/sbin/sshd

269. 12/12/2017 19:23:45 donnie ? /dev/pts/0 /usr/bin/sudo no 779

[donnie@localhost ~]$

the details of any event, use ausearch with the -a option,
followed by the event number that you see at the end of a
line. (Strangely, the -a option stands for an event.) Let's look
at event number 14122 for Charlie:

The problem with this is that it really doesn't make any
sense. I'm the one who did the logins for Charlie, and I know
for a fact that Charlie never had any failed logins. In fact, we
can correlate this with the matching entry from the
/var/log/secure file:

The time stamps for these two entries are a few seconds later
than the timestamp for the ausearch output, but that's okay.
There's nothing in this log file to suggest that Charlie ever
had a failed login, and these two entries clearly show that
Charlie's login really was successful. The lesson here is that
when you see something strange in either the ausearch or
aureport output, be sure to correlate it with the matching entry
in the proper authentication log file to get a better idea of
what's going on. (By authentication log file, I mean
/var/log/secure for Red Hat-type systems and

[donnie@localhost ~]$ sudo ausearch -a 14122

time->Tue Dec 12 12:30:49 2017

type=USER_AUTH msg=audit(1513099849.322:14122): pid=11632 uid=0 au

Dec 12 12:30:53 localhost sshd[11632]: Accepted password for charl

Dec 12 12:30:54 localhost sshd[11632]: pam_unix(sshd:session): ses

/var/log/auth.log for Ubuntu systems. The names may vary for
other Linux distros.)

Using predefined rules
sets
In the /usr/share/doc/audit-version_number/ directory of your
CentOS machine, you'll see some premade rule sets for
different scenarios. Once you install auditd on Ubuntu, you'll
have audit rules for it too, but the location is different for
Ubuntu 16.04 and Ubuntu 17.10. On Ubuntu 16.04, the rules
are in the /usr/share/doc/auditd/examples/ directory. On Ubuntu
17.10, they're in the
/usr/share/doc/auditd/examples/rules/ directory. In any case,
some of the rule sets are common among all three of these
distros. Let's look on the CentOS machine to see what we
have there:

[donnie@localhost rules]$ pwd

/usr/share/doc/audit-2.7.6/rules

[donnie@localhost rules]$ ls -l

total 96

-rw-r--r--. 1 root root 163 Aug 4 17:29 10-base-config.rules

-rw-r--r--. 1 root root 284 Apr 19 2017 10-no-audit.rules

-rw-r--r--. 1 root root 93 Apr 19 2017 11-loginuid.rules

-rw-r--r--. 1 root root 329 Apr 19 2017 12-cont-fail.rules

-rw-r--r--. 1 root root 323 Apr 19 2017 12-ignore-error.rules

-rw-r--r--. 1 root root 516 Apr 19 2017 20-dont-audit.rules

-rw-r--r--. 1 root root 273 Apr 19 2017 21-no32bit.rules

-rw-r--r--. 1 root root 252 Apr 19 2017 22-ignore-chrony.rules

-rw-r--r--. 1 root root 4915 Apr 19 2017 30-nispom.rules

-rw-r--r--. 1 root root 5952 Apr 19 2017 30-pci-dss-v31.rules

-rw-r--r--. 1 root root 6663 Apr 19 2017 30-stig.rules

The three files I want to focus on are the nispom, pci-dss, and
stig files. Each of these three rule sets is designed to meet the
auditing standards of a particular certifying agency. In order,
these rules sets are:

nispom: The National Industrial Security Program—
you'll see this rule set used at either the U.S.
Department of Defense or its contractors

pci-dss: Payment Card Industry Data Security
Standard—if you work in the banking or financial
industries, or even if you're just running an online
business that accepts credit cards, you'll likely
become very familiar with this

stig: Security Technical Implementation Guides—if
you work for the U.S. Government or possibly other
governments, you'll be dealing with this one

-rw-r--r--. 1 root root 1498 Apr 19 2017 31-privileged.rules

-rw-r--r--. 1 root root 218 Apr 19 2017 32-power-abuse.rules

-rw-r--r--. 1 root root 156 Apr 19 2017 40-local.rules

-rw-r--r--. 1 root root 439 Apr 19 2017 41-containers.rules

-rw-r--r--. 1 root root 672 Apr 19 2017 42-injection.rules

-rw-r--r--. 1 root root 424 Apr 19 2017 43-module-load.rules

-rw-r--r--. 1 root root 326 Apr 19 2017 70-einval.rules

-rw-r--r--. 1 root root 151 Apr 19 2017 71-networking.rules

-rw-r--r--. 1 root root 86 Apr 19 2017 99-finalize.rules

-rw-r--r--. 1 root root 1202 Apr 19 2017 README-rules

[donnie@localhost rules]$

To use one of these rules sets, copy the appropriate files over
to the /etc/audit/rules.d/ directory:

Then, restart the auditd daemon to read in the new rules.

For Red Hat or CentOS:

sudo service auditd restart

For Ubuntu:

sudo systemctl restart auditd

Of course, there's always the chance that a particular rule in
one of these sets might not work for you or that you might
need to enable a rule that's currently disabled. If so, just open
the rules file in your text editor, and comment out what
doesn't work or uncomment what you need to enable.

Even though auditd is very cool, bear in mind that it only
alerts you about potential security breaches. It doesn't do
anything to harden the system against them.

That pretty much wraps it up for our discussion of the auditd
system. Give it a go and see what you think.

[donnie@localhost rules]$ sudo cp 30-pci-dss-v31.rules /etc/audit/

[donnie@localhost rules]$

Applying OpenSCAP
policies with oscap
SCAP, the Security Content Automation Protocol (SCAP),
was created by the U.S. National Institute of Standards and
Technology. It consists of hardening guides, hardening
templates, and baseline configuration guides for setting up
secure systems. OpenSCAP is a set of free open source
software tools that can be used to implement SCAP. It
consists of the following:

Security profiles that you can apply to a system.
There are different profiles for meeting the
requirements of several different certifying agencies.

Security guides to help with the initial setup of your
system.

The oscap command-line utility to apply security
templates.

On Red Hat-type systems that have a desktop
interface, you have SCAP Workbench, a GUI-type
utility.

You can install OpenSCAP on either the Red Hat or the
Ubuntu distros, but it's much better implemented on the Red
Hat distros. For one thing, the Red Hat world has the very
cool SCAP Workbench, but the Ubuntu world doesn't. When
you install a Red Hat-type operating system, you can choose
to apply a SCAP profile during installation. You can't do that
with Ubuntu. Finally, the Red Hat distros come with a fairly
complete set of ready-to-use profiles. Curiously, Ubuntu only
comes with profiles for older versions of Fedora and Red
Hat, which aren't usable on an Ubuntu system. If you want
usable profiles for Ubuntu, you'll have to download them
from the OpenSCAP website and manually install them
yourself. (We'll cover that in the last section of the chapter.)
Having said this, let's see how to install OpenSCAP and how
to use the command-line utility that's common to both of our
distros. Since CentOS has the more complete
implementation, I'll use it for the demos.

Installing OpenSCAP
On your CentOS machine, assuming that you didn't install
OpenSCAP during operating system installation, follow this:

sudo yum install openscap-scanner scap-security-guide

On the Ubuntu machine, do this:

sudo apt install python-openscap

Viewing the profile files
On the CentOS machine, you'll see the profile files in the
/usr/share/xml/scap/ssg/content/ directory. On the Ubuntu
machine, you'll see what few profiles there are in the
/usr/share/openscap/ directory. The profile files are in the
.xml format, and each one contains one or more profiles that
you can apply to the system:

The command-line utility for working with OpenSCAP is
oscap. We can use this with the info switch to view
information about any of the profile files. Let's look at the
ssg-centos7-xccdf.xml file:

[donnie@localhost content]$ pwd

/usr/share/xml/scap/ssg/content

[donnie@localhost content]$ ls -l

total 50596

-rw-r--r--. 1 root root 6734643 Oct 19 19:40 ssg-centos6-ds.xml

-rw-r--r--. 1 root root 1596043 Oct 19 19:40 ssg-centos6-xccdf.xm

-rw-r--r--. 1 root root 11839886 Oct 19 19:41 ssg-centos7-ds.xml

-rw-r--r--. 1 root root 2636971 Oct 19 19:40 ssg-centos7-xccdf.xm

-rw-r--r--. 1 root root 642 Oct 19 19:40 ssg-firefox-cpe-dict

. . .

. . .

-rw-r--r--. 1 root root 11961196 Oct 19 19:41 ssg-rhel7-ds.xml

-rw-r--r--. 1 root root 851069 Oct 19 19:40 ssg-rhel7-ocil.xml

-rw-r--r--. 1 root root 2096046 Oct 19 19:40 ssg-rhel7-oval.xml

-rw-r--r--. 1 root root 2863621 Oct 19 19:40 ssg-rhel7-xccdf.xml

[donnie@localhost content]$

We can see that this file contains 11 different profiles that we
can apply to the system. Among them, you see profiles for
stig and pci-dss, just as we had for the auditing rules. And, if
you're running Docker containers, the docker-host profile
would be extremely handy.

[donnie@localhost content]$ sudo oscap info ssg-centos7-xccdf.xml

Document type: XCCDF Checklist

Checklist version: 1.1

Imported: 2017-10-19T19:40:43

Status: draft

Generated: 2017-10-19

Resolved: true

Profiles:

 standard

 pci-dss

 C2S

 rht-ccp

 common

 stig-rhel7-disa

 stig-rhevh-upstream

 ospp-rhel7

 cjis-rhel7-server

 docker-host

 nist-800-171-cui

Referenced check files:

 ssg-rhel7-oval.xml

 system: http://oval.mitre.org/XMLSchema/oval-definitions-5

 ssg-rhel7-ocil.xml

 system: http://scap.nist.gov/schema/ocil/2

 https://www.redhat.com/security/data/oval/com.redhat.rhsa-RHEL

 system: http://oval.mitre.org/XMLSchema/oval-definitions-5

[donnie@localhost content]$

Scanning the system
Now, let's say that we need to ensure that our systems are
compliant with Payment Card Industry standards. We'll first
scan the CentOS machine to see what needs remediation.
(Note that the following command is very long and wraps
around on the printed page.)

As we always like to do, let's break this down:

xccdf eval: The Extensible Configuration Checklist
Description is one of the languages with which we
can write security profile rules. We're going to use a
profile that was written in this language to perform
an evaluation of the system.

--profile pci-dss: Here, I specified that I want to use
the Payment Card Industry Data Security Standard
profile to evaluate the system.

--results scan-xccdf-results.xml: I'm going to save the
scan results to this .xml format file. When the scan has
finished, I'll create a report from this file.

sudo oscap xccdf eval --profile pci-dss --results scan-xccdf-resul

/usr/share/xml/scap/ssg/content/ssg-centos7-xccdf.xml: This
is the file that contains the pci-dss profile.

As the scan progresses, the output will get sent to the screen
as well as to the designated output file. It's a long list of
items, so I'll only show you a few of them:

 Ensure Red Hat GPG Key Installed

 ensure_redhat_gpgkey_installed

 pass

 Ensure gpgcheck Enabled In Main Yum Configuration

 ensure_gpgcheck_globally_activated

 pass

 Ensure gpgcheck Enabled For All Yum Package Repositories

 ensure_gpgcheck_never_disabled

 pass

 Ensure Software Patches Installed

 security_patches_up_to_date

 notchecked

 . . .

 . . .

 Install AIDE

 package_aide_installed

 fail

 Build and Test AIDE Database

 aide_build_database

 fail

. . .

. . .

So, we have GPG encryption installed, which is good. But,
it's a bad thing that we don't have the AIDE intrusion
detection system installed.

Now that I've run the scan and created an output file with the
results, I can build my report:

This extracts the information from the .xml format file, which
isn't meant for humans to read, and transfers it to a .html file
that you can open in your web browser. (For the record, the
report says that there are total 20 problems that need to be
fixed.)

sudo oscap xccdf generate report scan-xccdf-results.xml > scan-xcc

Remediating the system
So, we have 20 problems that we need to fix before our
system can be considered as compliant with Payment Card
Industry standards. Let's see how many of them that oscap can
fix for us:

This is the same command that I used to perform the initial
scan, except that I added the --remediate option, and I'm
saving the results to a different file. You'll want to have a bit
of patience when you run this command, because fixing
some problems involves downloading and installing software
packages. In fact, even as I type this, oscap is busy
downloading and installing the missing AIDE intrusion
detection system package.

Okay, the remediation is still running, but I can still show
you some of the things that got fixed:

 Disable Prelinking

 disable_prelink

 error

 Install AIDE

 package_aide_installed

 fixed

sudo oscap xccdf eval --remediate --profile pci-dss --results scan

 Build and Test AIDE Database

 aide_build_database

 fixed

 Configure Periodic Execution of AIDE

 aide_periodic_cron_checking

 fixed

 Verify and Correct File Permissions with RPM

 rpm_verify_permissions

 error

 Prevent Log In to Accounts With Empty Password

 no_empty_passwords

 fixed

. . .

. . .

There are a couple of errors because of things that oscap
couldn't fix, but that's normal. At least you know about them
so that you can try to fix them yourself.

And, check this out. Do you remember how in Chapter
2, Securing User Accounts, I made you jump through hoops
to ensure that users had strong passwords that expire on a
regular basis? Well, by applying this OpenSCAP profile, you
get all that fixed for you automatically:

 Set Password Maximum Age

 accounts_maximum_age_login_defs

 fixed

 Set Account Expiration Following Inactivity

 account_disable_post_pw_expiration

 fixed

 Set Password Strength Minimum Digit Characters

 accounts_password_pam_dcredit

 fixed

 Set Password Minimum Length

 accounts_password_pam_minlen

 fixed

 Set Password Strength Minimum Uppercase Characters

 accounts_password_pam_ucredit

 fixed

 Set Password Strength Minimum Lowercase Characters

 accounts_password_pam_lcredit

 fixed

 Set Deny For Failed Password Attempts

 accounts_passwords_pam_faillock_deny

 fixed

 Set Lockout Time For Failed Password Attempts

 accounts_passwords_pam_faillock_unlock_time

 fixed

 Limit Password Reuse

 accounts_password_pam_unix_remember

 fixed

So yeah, OpenSCAP is pretty cool, and even the command-
line tools aren't hard to use.

Using SCAP Workbench
For Red Hat and CentOS machines with a desktop
environment installed, we have SCAP Workbench. However,
if the last time you ever worked with SCAP Workbench was
on Red Hat/CentOS 7.0 or Red Hat/CentOS 7.1, you were
likely quite disappointed. Indeed, the early versions of the
Workbench were so bad that they weren't even usable.
Thankfully, things greatly improved with the introduction of
Red Hat 7.2 and CentOS 7.2. Now, the Workbench is quite
the nice little tool.

To get it on your CentOS machine, just use the following
code:

sudo yum install scap-workbench

Yeah, the package name is just scap-workbench instead of
openscap-workbench. I don't know why, but I do know that you'll
never find it if you're searching for openscap packages.

Once you get it installed, you'll see its menu item under the
System Tools menu.

When you first open the program, you would think that the
system would ask you for a root or sudo password. But, it
doesn't. We'll see in a moment if that affects us.

The thing you'll see on the opening screen is a drop-down list
for you to select the type of content that you want to load. I'll
select CentOS7 and then click on the Load content button:

Next, you'll see in the top panel where you can select the
desired profile. You can also choose to customize the profile,
and whether you want to run the scan on the local machine or
on a remote machine. In the bottom pane, you'll see a list of
rules for that profile. You can expand each rule item to get a
description of that rule:

Now, let's click that Scan button to see what happens:

Cool. As I had hoped, it prompts you for your sudo
password. Beyond that, I'll leave it to you to play with it. It's
just another one of those GUI-thingies, so the rest of it
should be fairly easy to figure out.

More about OpenSCAP
profiles
So now you're saying, "Okay, this is all good, but how do I
find out what's in these profiles and which one I need?" Well,
there are several ways.

The first way, which I've just shown you, is to install the
SCAP Workbench on a machine with a desktop interface and
read through the descriptions of all the rules for each profile.

The second way, which might be a bit easier, is to go to the
OpenSCAP website and look through the documentation that
they have there.

You'll find information about the available
OpenSCAP profiles at https://www.open-scap.org/sec
urity-policies/choosing-policy/.

As far as knowing which profile to choose, there are a few
things to consider:

If you work in the financial sector or in a business
that does online financial transactions, then go with
the pci-dss profile.

https://www.open-scap.org/security-policies/choosing-policy/

If you work for a government agency, especially if
it's the U.S. government, then go with either the
stig profile or the nispom profile, as dictated by the
particular agency.

If neither of these two considerations applies to your
situation, then you'll just want to do some research
and planning, in order to figure out what really needs
to be locked down. Look through the rules in each
profile and read through the documentation at the
OpenSCAP website to help decide what you need.

The next thing on your mind is, "What about Ubuntu? We've
already seen that the profiles that come with Ubuntu are
useless because they're for RHEL and Fedora." That's true,
but you'll find profiles for various different distros, including
for the Long Term Support versions of Ubuntu, at the
OpenSCAP website:

Applying an OpenSCAP
profile during system
installation
One of the things that I love about the Red Hat folk is that
they totally get this whole security thing. Yeah, we can lock
down other distros and make them more secure, as we've
already seen. But, with Red Hat distros, it's a bit easier. For a
lot of things, the maintainers of the Red Hat-type distros
have set secure default options that aren't securely set on
other distros. (For example, Red Hat distros are the only ones
that come with users' home directories locked down by
default.) For other things, the Red Hat-type distros come
with tools and installation options that help make life easier
for a busy, security-conscious administrator.

When you install a Red Hat 7-type distro, you'll be given the
chance to apply an OpenSCAP profile during the operating
system installation. Here on this CentOS 7 installer screen,
you see the option to choose a security profile at the lower
right-hand corner of the screen:

All you have to do is to click on that and then choose your
profile:

Okay, that pretty much wraps it up for our discussion of
OpenSCAP. The only thing left to add is that, as great as
OpenSCAP is, it won't do everything. For example, some
security standards require that you have certain directories,
such as /home/ or /var/, on their own separate partitions. An
OpenSCAP scan will alert you if that's not the case, but it
can't change your existing partitioning scheme. So for things
like that, you'll need to get a checklist from the governing
body that dictates your security requirements and do a bit of
advanced work before you even touch OpenSCAP.

Summary
We covered a lot of ground in this chapter, and we saw some
really cool stuff. We began by looking at a couple of
antivirus scanners so that we can prevent infecting any
Windows machines that access our Linux servers. In the
Rootkit Hunter section, we saw how to scan for those nasty
rootkits. It's important to know how to audit systems,
especially in high-security environments, and we saw how to
do that. Finally, we wrapped things up with a discussion of
hardening our systems with OpenSCAP.

In the next chapter, we'll look at vulnerability scanning and
intrusion detection. I'll see you there.

Vulnerability Scanning
and Intrusion Detection
There are lots of threats out there, and some of them might
even penetrate into your network. You'll want to know when
that happens, so you'll want to have a good Network
Intrusion Detection System (NIDS) in place. We'll look at
Snort, which is probably the most famous one. I'll then show
you a way to cheat so that you can have a Snort system up
and running in no time at all.

We've already seen how to scan a machine for viruses and
rootkits by installing scanning tools onto the machines that
we want to scan. However, there are a lot more
vulnerabilities for which we can scan, and I'll show you
some cool tools that you can use for that.

The following topics are covered in this chapter:

An introduction to Snort and Security Onion

Scanning and hardening with Lynis

Finding vulnerabilities with OpenVAS

Web server scanning with Nikto

Looking at Snort and
Security Onion
Snort is a NIDS, which is offered as a free open source
software product. The program itself is free of charge, but
you'll need to pay if you want to have a complete, up-to-date
set of threat detection rules. Snort started out as a one-man
project, but it's now owned by Cisco. Understand though,
this isn't something that you install on the machine that you
want to protect. Rather, you'll have at least one dedicated
Snort machine someplace on the network, just monitoring all
network traffic, watching for anomalies. When it sees traffic
that shouldn't be there—something that indicates the
presence of a bot, for example—it can either just send an
alert message to an administrator or it can even block the
anomalous traffic, depending on how the rules are
configured. For a small network, you can have just one Snort
machine that acts as both a control console and a sensor. For
large networks, you could have one Snort machine set up as a
control console and have it receive reports from other Snort
machines that are set up as sensors.

Snort isn't too hard to deal with, but setting up a complete
Snort solution from scratch can be a bit tedious. After we
look at the basics of Snort usage, I'll show you how to vastly
simplify things by setting up a prebuilt Snort appliance.

Space doesn't permit me to present a
comprehensive tutorial about Snort. Instead, I'll
present a high-level overview and then present
you with other resources for learning Snort in
detail.

Obtaining and installing
Snort
Snort isn't in the official repository of any Linux distro, so
you'll need to get it from the Snort website. On their
downloads page, you'll see installer files in the .rpm format
for Fedora and CentOS and a .exe installer file for Windows.
However, you won't see any .deb installer files for Ubuntu.
That's okay because they also provide source code files that
you can compile on a variety of different Linux distros. To
make things simple, let's just talk about installing Snort on
CentOS 7 with the prebuilt .rpm packages.

You can get Snort and Snort training from the
official Snort website: https://www.snort.org.

On the Snort home page, just scroll down a bit, and you'll see
the guide on how to download and install Snort. Click on the
Centos tab and follow the steps. The commands in Step 1
will download and install Snort all in one smooth operation,
as shown in the following screenshot:

https://www.snort.org/

Step 2 and Step 3 involve signing up for your Oinkcode so
that you can download the official Snort detection rules and
then installing PulledPork so that you can keep the rules
updated automatically, as shown in the following screenshot:

Bear in mind though that the free-of-charge detection rules
that the Snort folk provide are about a month behind the ones
that paid subscribers get. For learning purposes though,
they're all that you need. Also, if you choose to not get the
Oinkcode, you can just use the Community rules, which are a
subset of the official Snort rules.

Step 4 is just to read the documentation:

And, that's it. You now have a working copy of Snort. The
only catch is all you have so far is just the command-line
interface, which might not be what you want.

Graphical interfaces for
Snort
Plain, unadorned Snort will do what you need it to do, and it
will save its findings to its own set of log files. However,
reading through log files to discern network traffic trends can
get a bit tedious, so you'll want some tools to help you out.
The best tools are the graphical ones, which can give you a
good visualization of what's going on with your network.

One example is the Basic Analysis and Security Engine
(BASE), as shown in the following screenshot:

There are several more, but I'll show them to you when we
get to the Security Onion section.

You can find out more about BASE from the
author's Professionally Evil website: https://profe
ssionallyevil.com/

https://professionallyevil.com/

Getting Snort in prebuilt
appliances
Snort itself isn't too terribly difficult to set up. However, if
you're doing everything manually, it can be a bit tedious by
the time you've set up the control console, the sensors, and
your choice of graphical frontends. So—and, imagine me
peering at you over my dark glasses as I say this—what if I
told you that you can get your Snort setup as part of a ready-
to-go appliance? What if I told you that setting up such an
appliance is an absolute breeze? I imagine that you'd
probably say, So, show me already!

If you feel bad about cheating by making Snort
deployment so easy, there's really no need to. An
official Snort representative once told me that
most people deploy Snort in this manner.

Since Snort is a Free Open Source Software (FOSS)
project, it's perfectly legal for people to build it into their
own FOSS applications. Also, if you think back to our
discussion of firewalls in Chapter 3, Securing Your Server with
a Firewall, I completely glossed over any discussion of
creating the Network Address Translation (NAT) rules that
you would need for setting up an edge or gateway type of
firewall. That's because there are several Linux distros that
have been created specifically for this purpose. What if I told

you, that some of them also include a full implementation of
Snort?

IPFire is completely free of charge, and it only takes a few
minutes to set up. You install it on a machine with at least
two network interface adapters and configure it to match
your network configuration. It's a proxy-type of a firewall,
which means that in addition to doing normal firewall-type
packet inspection, it also includes caching, content-filtering,
and NAT capabilities. You can set up IPFire in a number of
different configurations:

On a computer with two network interface adapters,
you can have one connected to the internet, and the
other connected to the internal LAN.

With three network adapters, you can have one
connection to the internet, one to the internal LAN,
and one to the Demilitarized Zone (DMZ), where
you have your internet-facing servers.

With a fourth network adapter, you can have all the
above, plus protection for a wireless network.

After you install IPFire, you'll need to use the web browser
of your normal workstation to navigate to the IPFire
dashboard. Under the Services menu, you'll see an entry for
Intrusion Detection. Click on that to get to this screen, where
you can download and enable the Snort detection rules:

There's really only one slight bit of manual tweaking that you
might need to do from the command line. That is, you might
want to go into the rules directory and make sure that the

rules that you want to enable are enabled. On my demo
machine, I installed the community rules and the emerging
threat rules:

When you first install IPFire, the only user
account that it sets up is for the root user.
However, the tools are there to create a normal
user account and give it sudo privileges. I haven't
yet done that on this machine because I wanted
to show you the default configuration. But, I
definitely would do it on a production machine. I
would then disable the root account.

When you open one of these rules files, you'll see that a lot
of them are disabled and relatively few are enabled. The

[root@ipfire rules]# ls -l

total 19336

-rw-r--r-- 1 nobody nobody 1656 Dec 19 06:01 BSD-License.txt

-rw-r--r-- 1 nobody nobody 2638 Dec 19 06:01 classification.con

-rw-r--r-- 1 nobody nobody 1478085 Dec 19 06:01 community.rules

-rw-r--r-- 1 nobody nobody 15700 Dec 19 06:01 compromised-ips.tx

-rw-r--r-- 1 nobody nobody 378690 Dec 19 06:01 emerging-activex.r

-rw-r--r-- 1 nobody nobody 79832 Dec 19 06:01 emerging-attack_re

-rw-r--r-- 1 nobody nobody 82862 Dec 19 06:01 emerging-botcc.por

-rw-r--r-- 1 nobody nobody 249176 Dec 19 06:01 emerging-botcc.rul

-rw-r--r-- 1 nobody nobody 34658 Dec 19 06:01 emerging-chat.rule

. . .

. . .

-rw-r--r-- 1 nobody nobody 1375 Dec 19 06:01 reference.config

-rw-r--r-- 1 nobody nobody 3691529 Dec 19 06:01 sid-msg.map

-rw-r--r-- 1 nobody nobody 0 Dec 19 06:01 snort-2.9.0-enhanc

-rw-r--r-- 1 nobody nobody 53709 Dec 19 06:01 unicode.map

-rw-r--r-- 1 nobody nobody 21078 Dec 19 04:46 VRT-License.txt

[root@ipfire rules]#

disabled rules have a # sign in front of them, as do these two
rules from the community.rules file:

You've probably also noted that each rule begins with the
keyword, alert. You can use grep to do a quick check to see
which rules in a file are enabled:

[root@ipfire rules]# grep ^alert community.rules | less

[root@ipfire rules]#

The ^ character means that I'm searching through the
community.rules file for every line that begins with the word
alert, without the preceding # sign. Piping the output into
less is optional, but it can help you better see all of the output
data. You can also search through all the files at once using a
wildcard:

[root@ipfire rules]# grep ^alert *.rules | less

[root@ipfire rules]#

You'll want to look through the rules to see which you need
and which you don't need. Enable the desired rule by
removing the # sign from in front of it and disable an
undesired rule by placing a # sign in front of it.

#alert tcp $HOME_NET 2589 -> $EXTERNAL_NET any (msg:"MALWARE-BACKD

#alert tcp $EXTERNAL_NET any -> $HOME_NET 7597 (msg:"MALWARE-BACKD

Unfortunately, IPFire doesn't include a graphical frontend for
visualizing Snort data, but it does come with an IDS log
viewer:

IPFire also has a lot of other cool features that I haven't yet
mentioned. These include built-in Virtual Private Network
(VPN) capabilities, a built-in DHCP server, a built-in
dynamic DNS server, and Quality of Service controls. The
best part is that it's totally free of charge unless you want to
buy a subscription to always get the most up-to-date Snort
rules.

You can download IPFire from their website: http
s://www.ipfire.org/.

https://www.ipfire.org/

Using Security Onion
Okay, so maybe the firewall appliance with the built-in Snort
isn't what you need right now. Maybe what you need instead
is a full-blown NIDS. But, you're a busy person who needs
something quick and easy, and your boss has put you on a
rather strict budget. So, what do you do?

Security Onion is a free-of-charge specialty Linux distro
that's built on top of the Xubuntu Long-term Support (LTS)
distro. It includes a full implementation of Snort, complete
with just about every graphical goody you can imagine to
help you visualize what's happening on your network. If you
can install a Linux distro and do some point-and-click
configuration after the installation, then you can install
Security Onion.

Note that the Xubuntu LTS version on which
Security Onion is based is always at least one
version behind the current LTS version of
Xubuntu. At the time of writing, the current
Xubuntu LTS version is version 16.04, whereas
Security Onion is still based on Xubuntu 14.04.
But, that may change by the time you read this
book.

Also, if you want to try out Security Onion, you

can set it up in a VirtualBox virtual machine.
When you create the virtual machine, set it up
with two network adapters, both in Bridged
mode. For best performance, allocate at least 3
GB of memory.

Once you've finished installing the operating system, the
configuration is just a simple matter of double-clicking the
Setup icon and then following through with the dialog boxes:

For setting up a machine with sensor capabilities, you'll need
a machine with two interface cards. One interface, which will
have an IP address assigned to it, will be the management
interface:

You can set the management interface to automatically get an
IP address via DHCP, but it's much better to assign a static IP
address:

You'll use the other network adapter as the sniffing interface.
You won't assign an IP address to it because you want that
interface to be invisible to the bad guys:

After you confirm the network configuration that you've
selected, you'll reboot the machine:

Once the machine has rebooted, double-click on the
Setup icon again, but this time choose to skip the network
configuration. For a first-time user of Security Onion,
Evaluation Mode is quite helpful because it automatically
chooses the most correct options for most stuff.

From here on out, it's just a matter of confirming which
network interface will be the sniffer interface and filling in
login credentials for the different graphical frontends. And
then, after waiting a few moments for the setup utility to
download Snort rules and perform the final configuration
steps, you'll have your very own operational NIDS. Now I
ask, what could be easier?

Security Onion comes with several different graphical
frontends. My favorite is Squert, which is shown here. Even
with just the default set of detection rules, I'm already seeing
some interesting stuff. The following screenshot shows
Squert:

For one thing, I see that somebody on the network is mining
some Monero cryptocoin. Well, actually, I'm the one who's
doing it, so it's okay. But, that is a good thing to be able to
detect because bad guys have been known to plant Monero
mining software on corporate servers for their own benefit.
Monero cryptocoin mining puts a big load on a server's
CPUs, so it's not something that you want on your servers.
Also, some sneaky website operators have placed JavaScript
code on their web pages that cause any computer that visits
them to start mining Monero. So, this rule is also good for
protecting desktop systems.

Another thing I see is Dropbox client broadcasting, which
again is okay because I'm a Dropbox user. But, that's

something else that you may not want to have on a corporate
network.

To see the Snort rule that's associated with a particular item,
just click on it:

It's just a standard Snort rule that's already been set up for us.

Bad guys who want to mine Monero without
paying for it have set up botnets of machines that
have been infected with their mining software. In
some of the attacks, only Windows servers have
been infected. But, here's a case where both
Windows and Linux servers have been infected:
https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-co

nducting-sophisticated-malware-campaign-to-mine-monero

Click on Squert's VIEWS tab, and you'll see a graphical
representation of the connections that your machines have
established:

https://www.v3.co.uk/v3-uk/news/3023348/cyber-crooks-conducting-sophisticated-malware-campaign-to-mine-monero

There's still a lot more than I could show you about both
Security Onion and Snort, but alas, space doesn't permit. I've
given you the gist of it, now go try it for yourself.

I know that I made this Snort/Security Onion
thing look rather easy, but there's a lot more to it
than what I've been able to show you. On a large
network, you might see a lot of traffic that doesn't
make a lot of sense unless you know how to
interpret the information that Snort presents to
you. You might also need to fine-tune your Snort
rules in order to see the anomalies that you want
to see, without generating false positives. Or, you
might even find the need to write your own
custom Snort rules to handle unusual situations.
Fortunately, the Security Onion folk do provide
training, both on-site and online. You can find
out more about it at the following website:
https://securityonionsolutions.com/.

https://securityonionsolutions.com/

Scanning and hardening
with Lynis
Lynis is yet another FOSS tool that you can use to scan your
systems for vulnerabilities and bad security configurations. It
comes as a portable shell script that you can use not only on
Linux, but also on a variety of different Unix systems and
Unix-like systems. It's a multipurpose tool, which you can
use for compliance auditing, vulnerability scanning, or
hardening. Unlike most vulnerability scanners, you install
and run Lynis on the system that you want to scan.
According to the creator of Lynis, this allows for more in-
depth scanning.

The Lynis scanning tool is available as a free-of-charge
version, but its scanning capabilities are somewhat limited. If
you need all that Lynis has to offer, you'll need to purchase
an enterprise license.

Installing Lynis on Red
Hat/CentOS
Red Hat/CentOS users will find an up-to-date version of
Lynis in the EPEL repository. So, if you have EPEL
installed, as I showed you in Chapter 1, Running Linux on a
Virtual Environment, installation is just a simple matter of
doing:

sudo yum install lynis

Installing Lynis on
Ubuntu
Ubuntu has Lynis in its own repository, but which version
you get depends on which version of Ubuntu you have. The
Ubuntu 16.04 LTS repository has a version that's fairly far
behind what's current. The version in the Ubuntu 17.10
repository is newer, but still not completely up to date. In
either case, the command to install Lynis is:

sudo apt install lynis

If you want the newest version for Ubuntu or if you want to
use Lynis on operating systems that don't have it in their
repositories, you can download it from the author's website.

You can download Lynis from https://cisofy.com/do
wnloads/lynis/.

The cool thing about this is that once you
download it, you can use it on any Linux, Unix,
or Unix-like operating system. (This even
includes MacOS, which I just now confirmed by
running it on my old Mac Pro that's running with
macOS High Sierra.)

https://cisofy.com/downloads/lynis/

Since the executable file is nothing but a common shell
script, there's no need to perform an actual installation. All
you need to do is to extract the archive file, cd into the
resultant directory, and run Lynis from there:

tar xzvf lynis-2.5.7.tar.gz

cd lynis

sudo ./lynis -h

The lynis -h command shows you the help screen, with all of
the Lynis commands that you need to know.

Scanning with Lynis
Lynis commands work the same regardless of which
operating system that you want to scan. The only difference
is that if you're running it from the archive file that you
downloaded from the website, you would cd into the
lynis directory and precede the lynis commands with a ./.
(That's because, for security reasons, your own home
directory isn't in the path setting that allows the shell to
automatically find executable files.)

To scan your system that has Lynis installed, follow this:

sudo lynis audit system

To scan a system on which you just downloaded the archive
file, follow this:

cd lynis

sudo ./lynis audit system

Running Lynis from the shell script in your home directory
presents you with this message:

donnie@ubuntu:~/lynis$ sudo ./lynis audit system

[sudo] password for donnie:

That's not hurting anything, so you can just hit Enter to
continue. Or, if seeing this message really bothers you, you
can change ownership of the Lynis files to the root user, as
the message tells you. For now, I'll just press Enter.

Running a Lynis scan in this manner is similar to running an
OpenSCAP scan against a generic security profile. The major
difference is that OpenSCAP has an automatic remediation
feature, but Lynis doesn't. Lynis tells you what it finds and

[!] Change ownership of /home/donnie/lynis/include/functions to 'r

 Command:

 # chown 0:0 /home/donnie/lynis/include/functions

[X] Security check failed

 Why do I see this error?

 This is a protection mechanism to prevent the root user from e

 What can I do?

 Option 1) Check if a trusted user created the files (e.g. due

 If you trust these files, you can decide to continue

 Option 2) Change ownership of the related files (or full direc

 Commands (full directory):

 # cd ..

 # chown -R 0:0 lynis

 # cd lynis

 # ./lynis audit system

[Press ENTER to continue, or CTRL+C to cancel]

suggests how to fix what it perceives to be a problem, but it
doesn't fix anything for you.

Space doesn't permit me to show the entire scan output, but I
can show you a couple of example snippets:

The warning message shows that I don't have password
protection for my GRUB2 bootloader. That may or may not be a
big deal because the only way someone can exploit that is to
gain physical access to the machine. If it's a server that's
locked away in a room that only a few trusted personnel can
access, then I'm not going to worry about it, unless rules
from an applicable regulatory agency dictate that I do. If it's
a desktop machine that's out in an open cubicle, then I would
definitely fix that. (We'll look at GRUB password protection
in Chapter 10, Security Tips and Tricks for the Busy Bee.)

In the File systems section, we see some items with the
SUGGESTION flag:

[+] Boot and services

 - Service Manager [sy

 - Checking UEFI boot [DI

 - Checking presence GRUB [OK

 - Checking presence GRUB2 [FO

 - Checking for password protection [WA

 - Check running services (systemctl) [DO

 Result: found 21 running services

 - Check enabled services at boot (systemctl) [DO

 Result: found 28 enabled services

 - Check startup files (permissions) [OK

Exactly what Lynis suggests comes near the end of the
output:

The last thing we'll look at is the scan details section at the
end of the output:

[+] File systems

 - Checking mount points

 - Checking /home mount point [SU

 - Checking /tmp mount point [SU

 - Checking /var mount point [SU

 - Query swap partitions (fstab) [OK

 - Testing swap partitions [OK

 - Testing /proc mount (hidepid) [SU

 - Checking for old files in /tmp [OK

 - Checking /tmp sticky bit [OK

 - ACL support root file system [EN

 - Mount options of / [NO

 - Checking Locate database [FO

 - Disable kernel support of some filesystems

 - Discovered kernel modules: cramfs freevxfs hfs hfsplus jffs2

. . .

. . .

 * To decrease the impact of a full /home file system, place /hom

 https://cisofy.com/controls/FILE-6310/

 * To decrease the impact of a full /tmp file system, place /tmp

 https://cisofy.com/controls/FILE-6310/

 * To decrease the impact of a full /var file system, place /var

 https://cisofy.com/controls/FILE-6310/

. . .

. . .

For Components, there's a red X by Malware Scanner. That's because
I don't have ClamAV or maldet installed on this machine, so
Lynis couldn't do a virus scan.

For Lynis Modules, we see a question mark by Compliance Status.
That's because this feature is reserved for the Enterprise
version of Lynis, which requires a paid subscription. As we
saw in the previous chapter, you have OpenSCAP profiles to
make a system compliant with several different security
standards, and it doesn't cost you anything. With Lynis, you
have to pay for the compliance profiles, but you have a wider
range from which to choose. In addition to the compliance
profiles that OpenSCAP offers, Lynis also offers profiles for
HIPAA and Sarbanes-Oxley compliance.

 Lynis security scan details:

 Hardening index : 67 [#############]

 Tests performed : 218

 Plugins enabled : 0

 Components:

 - Firewall [V]

 - Malware scanner [X]

 Lynis Modules:

 - Compliance Status [?]

 - Security Audit [V]

 - Vulnerability Scan [V]

 Files:

 - Test and debug information : /var/log/lynis.log

 - Report data : /var/log/lynis-report.dat

If you're based here in the United States, you
most surely know what HIPAA and Sarbanes-
Oxley are and whether they apply to you. If
you're not in the United States, then you probably
don't need to worry about them.

Having said that, if you work in the healthcare
industry, even if you're not in the United States,
the HIPAA profile can give you guidance about
how to protect private data for patients.

The last thing I want to say about Lynis is about the
Enterprise version. In this screenshot from their website, you
can see the current pricing and the differences between the
different subscription plans:

As you can see, you have choices.

You'll find information about pricing at this
website:
https://cisofy.com/pricing/.

https://cisofy.com/pricing/

That pretty much wraps it up for our discussion of Lynis.
Next, let's look at an external vulnerability scanner.

Finding vulnerabilities
with OpenVAS
The Open Vulnerability Assessment Scanner (OpenVAS)
is something that you would use to perform remote
vulnerability scans. You can scan a single machine, a group
of similar machines, or an entire network. It's not included in
the repositories of the major Linux distros, so the best way to
get it is to install one of the specialty security distros.

The big three security distros are Kali Linux, Parrot Linux,
and Black Arch. They're aimed at security researchers and
penetration testers, but they contain tools that would also be
good for just a normal security administrator of either the
Linux or Windows variety. OpenVAS is one such tool. All
three of these three security distros have their unique
advantages and disadvantages, but as Kali is the most
popular, we'll go with it for the demos.

You can download Kali Linux from https://www.kal
i.org/downloads/.

When you go to the Kali download page, you'll see lots of
choices. If you're like me and don't like the default Gnome 3
desktop environment, you can choose something else. I'm
personally an LXDE guy, so I'll go with it:

https://www.kali.org/downloads/

Kali is built from Debian Linux, so installing it is pretty
much the same as installing Debian. The one exception is
that the Kali installer lets you create a password for the root
user, but it doesn't let you create a normal, non-root user
account. That's because pretty much everything you do with
Kali requires you to be logged in as the root user. I know that
flies in the face of what I've been telling you about not
logging in as root and about using sudo from a normal user
account instead. However, most of the stuff you need to do
with Kali doesn't work with sudo. Besides, Kali isn't meant to
be used as a general-purpose distro, and you'll be okay
logging in as a root as long as you only use Kali as it was
intended to be used.

OpenVAS is a rather memory-hungry program,
so if you're installing Kali in a virtual machine,
be sure to allocate at least three GB of memory.

The first thing you'll want to do after installing Kali is to
update it, which is done in the same way that you'd update
any Debian/Ubuntu-type of distro. Then, install OpenVAS,
as follows:

apt update

apt dist-upgrade

apt install openvas

After the OpenVAS installation completes, you'll need to run
a script that will create the security certificates and download

the vulnerability database:

openvas-setup

This will take a long time, so you might as well go grab a
sandwich and a coffee while it's running. When it's finally
done, you'll be presented with the password that you'll use to
log in to OpenVAS. Write it down and keep it in a safe place:

You can control and update OpenVAS from the applications
menu:

On that menu, click on openvas start. Then, open Firefox and
navigate to https://localhost:9392. You'll get a security alert
because OpenVAS uses a self-signed security certificate, but
that's okay. Just click on the Advanced button, then click on
Add Exception:

At the login page, enter admin as the user and then enter the
password that got generated by the openvas-setup script.

Now, there's all kinds of fancy stuff that you can do with
OpenVAS, but for now, we'll just look at how to do a basic

vulnerability scan. To begin, select Tasks from the
Scans menu on the OpenVAS dashboard:

This makes this dialog box pop up, telling you to use the
wizard. (Yes indeed, we're off to see the wizard.):

After you close the dialog box, you'll see the purple wizard
icon show up in the upper left-hand corner. For now, we'll

just select the Task Wizard option, which will choose all of
the default scan settings for us:

The only thing you need to do here is to enter the IP address
of the machine that you want to scan and then start the scan:

The scan will take some time, so you might as well go grab a
sandwich and a coffee.

The type of scan that you're doing is named Full and Fast,
which isn't the most comprehensive type of scan. To select
another type of scan and to configure other scan options, use
the Advanced Task Wizard as shown in the following
screenshot:

Here, you see the drop-down list of the different scan
options:

When I did the first scan with the default Full and
Fast option, I didn't discover many problems. I had one of
medium severity and 18 of low severity, and that was it. I
knew that there had to be more problems than that due to the
age of the machine that I was scanning, so I tried again with
the Full and fast ultimate option. This time, I found more,
including some high severity stuff:

The report shows that my machine is using weak encryption
algorithms for Secure Shell, which is classified as medium
severity. It also has a print server vulnerability that's
classified as a high-severity problem.

You also want to pay attention to the items that aren't flagged
as vulnerabilities. For example, the VNC security types item
shows that port 5900 is open. This means that the Virtual
Network Computing (VNC) daemon is running, which
allows users to remotely log in to this machine's desktop. If
this machine were an internet-facing machine, that would be
a real problem because there's no real security with VNC, the
way there is with Secure Shell.

By clicking on the print server item, I can see an explanation
of this vulnerability.

Keep in mind that the target machine, in this case, is a
desktop machine. If it were a server, there's a good chance
that we'd see even more problems.

And, that pretty much wraps things up for OpenVAS. As I
said before, there's a lot of awesome stuff that you can do
with it. But, what I've shown you here should be enough to

get you started. Play around with it and try out the different
scan options to see the difference in results.

If you want to find out more about Kali Linux,
you'll find a great selection of books about it at
the Packt Publishing website.

Web server scanning with
Nikto
OpenVAS, which we just looked at, is a general-purpose
vulnerability scanner. It can find vulnerabilities for any kind
of operating system or for any server daemon. However, as
we've just seen, an OpenVAS scan can take a while to run,
and it might be more than what you need.

Nikto is a special-purpose tool with only one purpose. That
is, it's meant to scan web servers and only web servers. It's
easy to install, easy to use, and capable of doing a
comprehensive scan of a web server fairly quickly. And,
although it's included in Kali Linux, you don't need Kali
Linux to run it.

Nikto in Kali Linux
If you already have Kali Linux, you'll find that nikto is
already installed under the Vulnerability Analysis menu:

When you click on that menu item, you'll open a command-
line terminal with a display of the Nikto help screen:

Installing and updating
Nikto on Linux
Nikto is in the EPEL repository for Red Hat/CentOS, and it's
in the normal repository for Ubuntu. Along with the Nikto
package itself, you'll also want to install a package that
allows Nikto to scan web servers that are set up with
SSL/TLS encryption.

To install on Red Hat/CentOS:

sudo yum install nikto perl-Net-SSLeay

To install on Ubuntu:

sudo apt install nikto libnet-ssleay-perl

The next thing you'll want to do is to update the database of
vulnerability signatures. But, at the time of writing this,
there's a slight bug in the Red Hat/CentOS implementation.
For some reason, the docs directory is missing, which means
that the update functions won't be able to download the
CHANGES.txt file to show you what changed with the new
database updates. To fix that on your CentOS virtual
machine, use this:

sudo mkdir /usr/share/nikto/docs

Keep in mind though that this could be fixed by the time you
read this.

From here on out, things will work the same on either of
your virtual machines. To update the vulnerability database,
use this:

sudo nikto -update

Nikto itself doesn't require sudo privileges, but updating it
does because it requires writing to a directory where normal
users can't write.

Scanning a web server
with Nikto
From here on out, you no longer need sudo privileges. So,
you get a break from always having to type your password.

To do a simple scan, use the -h option to specify the target
host:

nikto -h 192.168.0.9

nikto -h www.example.com

Let's look at some sample output:

+ Allowed HTTP Methods: POST, OPTIONS, GET, HEAD

+ OSVDB-396: /_vti_bin/shtml.exe: Attackers may be able to crash F

+ /cgi-bin/guestbook.pl: May allow attackers to execute commands a

+ /cgi-bin/wwwadmin.pl: Administration CGI?

+ /cgi-bin/Count.cgi: This may allow attackers to execute arbitrar

+ OSVDB-28260: /_vti_bin/shtml.exe/_vti_rpc?method=server+version%

+ OSVDB-3092: /_vti_bin/_vti_aut/author.exe?method=list+documents%

+ OSVDB-250: /wwwboard/passwd.txt: The wwwboard password file is b

+ OSVDB-3092: /stats/: This might be interesting...

+ OSVDB-3092: /test.html: This might be interesting...

+ OSVDB-3092: /webstats/: This might be interesting...

+ OSVDB-3092: /cgi-bin/wwwboard.pl: This might be interesting...

+ OSVDB-3233: /_vti_bin/shtml.exe/_vti_rpc: FrontPage may be insta

+ 6545 items checked: 0 error(s) and 15 item(s) reported on remote

+ End Time: 2017-12-24 10:54:21 (GMT-5) (678 seconds)

At the top, we see that there's an shtml.exe file present, that's
supposedly for the FrontPage web authoring program. I have
no idea why it's there, considering that this is a Linux server
and that that's a Windows executable. Nikto is telling me that
by having that file there, someone could possibly do a
Denial-of-Service (DOS) attack against me.

Next, we see that there are various scripts in the /cgi-
bin directory. You can see from the explanatory messages that
that's not a good thing because it could allow attackers to
execute commands on my server.

After this, we see that there's an author.exe file in the
vti_bin directory, which could theoretically allow someone to
have authoring privileges.

The final item of interest is the passwd.txt file that's in the
wwwboard directory. Apparently, this password file is
browsable, which is definitely not a good thing.

Now, before you accuse me of making these problems up, I
will reveal that this is a scan of a real production website on
a real hosting service. (And yes, I do have permission to scan
it.) So, these problems are real and need to be fixed.

Here are a couple of other sample messages that I got from
scanning a web server that's running WordPress:

HTTP TRACK method is active, suggesting the host is vulnerable to

Cookie wordpress_test_cookie created without the httponly flag

To make a long story short, both of these two problems could
potentially allow an attacker to steal user credentials. The fix,
in this case, would be to see if the WordPress folk have
issued any updates that would fix the problem.

So, how can we protect a web server against these kinds of
vulnerabilities?

As we saw in the first example, you want to ensure
that you don't have any risky executable files on your
web server. In this case, we found two .exe files that
might not hurt anything on our Linux server, since
Windows executable files don't run on Linux.
However, on the other hand, it could be a Linux
executable that's disguised as a Windows executable.
We also found some perl scripts that definitely would
run on Linux and that could pose a problem.

In the event that someone were to plant some
malicious script on your web server, you would want
to have some form of mandatory access control, such
as SELinux or AppArmor, that would keep the
malicious scripts from running. (See Chapter
7, Implementing Mandatory Access Control with
SELinux and AppArmor, for details about that.)

You might also consider installing a web application
firewall, such as ModSecurity. Space doesn't permit
me to cover the details of ModSecurity, but you'll
find a book that covers it at the Packt Publishing
website.

Keep your systems updated, especially if you're
running a PHP-based content management system
such as WordPress. (If you keep up with the IT
security news, you'll see stories about WordPress
vulnerabilities more often than you'd like to.)

There are other scan options, which you can see by just
typing nikto at the command line. For now though, this is
enough to get you started with basic web server scanning.

Summary
We've reached yet another milestone in our journey, and we
saw some cool stuff. We started with a discussion about the
basics of setting up Snort as a NIDS. I then showed you how
to seriously cheat by deploying specialty Linux distros that
already have Snort set up and ready to go.

Next, I introduced you to Lynis and how you can use it to
scan your system for various vulnerabilities and compliance
issues. Finally, we wrapped things up with working demos of
OpenVAS and Nikto.

In the next chapter, we'll wind up this whole journey with a
look at some quick tips for busy administrators. I'll see you
there.

Security Tips and Tricks
for the Busy Bee
In this, our final chapter, I'd like to do a round-up of quick
tips and tricks that don't necessarily fit in with the previous
chapters. Think of these tips as time savers for the busy
administrator.

We'll cover the following topics:

Quick ways to audit which system services are
running

Password-protecting the GRUB2 configuration

Securely configuring and then password-protecting
UEFI/BIOS

Use a security checklist when setting up your system

Auditing system services
A basic tenet of server administration, regardless of which
operating system we're talking about, is to never have
anything that you don't absolutely need installed on a server.
You especially don't want any unnecessary network services
running because that would give the bad guys extra ways to
get into your system. And, there's always a chance that some
evil hacker might have planted something that acts as a
network service, and you'd definitely want to know about
that. In this chapter, we'll look at a few different ways to
audit your system to ensure that no unnecessary network
services are running on it.

Auditing system services
with systemctl
On Linux systems that come with systemd, the systemctl
command is pretty much a universal command that does
many things for you. In addition to controlling your system's
services, it can also show you the status of those services. We
have the following code:

donnie@linux-0ro8:~> sudo systemctl -t service --state=active

Here's the breakdown of the preceding command:

-t service: We want to view information about the
services—or, what used to be called daemons—on
the system

--state=active: This specifies that we want to view
information about all the system services that are
actually running

A partial output of this command looks something like this:

You generally won't want to see quite this much information,
although you might at times. This command shows the status
of every service that's running on your system. What really
interests us now is just the network services that can allow
someone to connect to your system. So, let's look at how to
narrow things down a bit.

UNIT LOAD ACTIV

accounts-daemon.service loaded activ

after-local.service loaded activ

alsa-restore.service loaded activ

apparmor.service loaded activ

auditd.service loaded activ

avahi-daemon.service loaded activ

cron.service loaded activ

. . .

. . .

systemd-sysctl.service loaded activ

systemd-tmpfiles-setup-dev.service loaded activ

systemd-tmpfiles-setup.service loaded activ

systemd-udev-root-symlink.service loaded activ

systemd-udev-trigger.service loaded activ

systemd-udevd.service loaded activ

systemd-update-utmp.service loaded activ

Auditing network
services with netstat
The following are two reasons why you would want to keep
track of what network services are running on your system:

To ensure that no legitimate network services that
you don't need are running

To ensure that you don't have any malware that's
listening for network connections from its master

The netstat command is both handy and easy to use for these
instances. First, let's say that you want to see a list of
network services that are listening, waiting for someone to
connect to them:

donnie@linux-0ro8:~> netstat -lp -A inet

(Not all processes could be identified, non-owned process info

 will not be shown, you would have to be root to see it all.)

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 *:ideafarm-door *:* LISTEN

tcp 0 0 localhost:40432 *:* LISTEN

tcp 0 0 *:ssh *:* LISTEN

tcp 0 0 localhost:ipp *:* LISTEN

The breakdown is as follows:

-lp: The l means that we want to see which network
ports are listening. In other words, we want to see
which network ports are waiting for someone to
connect to them. The p means that we want to see the
name and process ID number of the program or
service that is listening on each port.

-A inet: This means that we only want to see
information about the network protocols that are
members of the inet family. In other words, we want

tcp 0 0 localhost:smtp *:* LISTEN

tcp 0 0 *:db-lsp *:* LISTEN

tcp 0 0 *:37468 *:* LISTEN

tcp 0 0 localhost:17600 *:* LISTEN

tcp 0 0 localhost:17603 *:* LISTEN

udp 0 0 *:57228 *:*

udp 0 0 192.168.204.1:ntp *:*

udp 0 0 172.16.249.1:ntp *:*

udp 0 0 linux-0ro8:ntp *:*

udp 0 0 localhost:ntp *:*

udp 0 0 *:ntp *:*

udp 0 0 *:58102 *:*

udp 0 0 *:db-lsp-disc *:*

udp 0 0 *:43782 *:*

udp 0 0 *:36764 *:*

udp 0 0 *:21327 *:*

udp 0 0 *:mdns *:*

udp 0 0 *:mdns *:*

udp 0 0 *:mdns *:*

udp 0 0 *:mdns *:*

raw 0 0 *:icmp *:* 7

donnie@linux-0ro8:~>

to see information about the raw, tcp, and udp network
sockets, but we don't want to see anything about the
Unix sockets that only deal with interprocess
communications within the operating system.

Since this output is from the OpenSUSE workstation that I
just happen to be using at the moment, you won't see any of
the usual server-type services here. However, you do see a
few things that you likely won't want to see on your servers.
For example, let's look at the very first item:

The Local Address column specifies the local address and port
of this listening socket. The asterisk means that this socket is
on the local network, and ideafarm-door is the name of the
network port that is listening. (By default, netstat will show
you the names of ports whenever possible, by pulling the
port information out of the /etc/services file.)

Now, because I didn't know what the ideafarm-door service is, I
used my favorite search engine to find out. By plugging the
term ideafarm-door into DuckDuckGo, I found the answer:

Proto Recv-Q Send-Q Local Address Foreign Address Sta

tcp 0 0 *:ideafarm-door *:* LIS

The top search result took me to a site named WhatPortIs.
According to this, the ideafarm-door is in reality port 902, which
belongs to the VMware Server Console. Okay, that makes
sense because I do have VMware Player installed on this
machine. So, that's all good.

You can check out the WhatPortIs site here: htt
p://whatportis.com/.

Next on the list is:

This item shows the local address as localhost and that the
listening port is port 40432. This time, the PID/Program Name
column actually tells us what this is. SpiderOak ONE is a

tcp 0 0 localhost:40432 *:* LISTEN 3296/

http://whatportis.com/

cloud-based backup service that you might or might not want
to see running on your server.

Now, let's look at a few more items:

Here, we see that Dropbox and SpiderOak ONE are both
listed with the asterisk for the local address. So, they're both
using the local network address. The name of the port for
Dropbox is db-lsp, which stands for Dropbox LAN Sync
Protocol. The SpiderOak ONE port doesn't have an official
name, so it's just listed as port 37468. The bottom two lines
show that Dropbox also uses the local machine's address, on
ports 17600 and 17603.

So far we've looked at nothing but TCP network sockets.
Let's see how they differ from UDP sockets:

The first thing to note is that there's nothing under the State
column. That's because with UDP, there are no states. They
actually are listening for data packets to come in, and they're
ready to send data packets out. But since that's about all that

tcp 0 0 *:db-lsp *:* LISTEN 3246/

tcp 0 0 *:37468 *:* LISTEN 3296/

tcp 0 0 localhost:17600 *:* LISTEN 3246/

tcp 0 0 localhost:17603 *:* LISTEN 3246/

udp 0 0 192.168.204.1:ntp *:*

udp 0 0 172.16.249.1:ntp *:*

udp 0 0 linux-0ro8:ntp *:*

UDP sockets can do, there was really no sense in defining
different states for them.

In the first two lines, we see some strange local addresses.
That's because I have both VMware Player and VirtualBox
installed on this workstation. The local addresses of these
two sockets are for the VMware and VirtualBox virtual
network adapters. The last line shows the hostname of my
OpenSUSE workstation as the local address. In all three
cases, the port is the Network Time Protocol port, for time
synchronization.

Let's now look at one last set of UDP items:

Here, we see that my Chromium web browser is ready to
accept network packets on a few different ports. We also see
that Dropbox uses UDP to accept discovery requests from
other local machines that have Dropbox installed. I assume
that port 21327 performs the same function for SpiderOak
ONE.

Of course, since this machine is my workhorse workstation,
Dropbox and SpiderOak ONE are almost indispensable to
me. I installed them myself, so I've always know that they
were there. However, if you see anything like this on a

udp 0 0 *:58102 *:*

udp 0 0 *:db-lsp-disc *:*

udp 0 0 *:43782 *:*

udp 0 0 *:36764 *:*

udp 0 0 *:21327 *:*

udp 0 0 *:mdns *:*

server, you'll want to investigate to see if the server admins
know that these programs are installed, and then find out
why they're installed. It could be that they're performing a
legitimate function, and it could be that they're not.

A difference between Dropbox and SpiderOak
ONE is that with Dropbox, your files don't get
encrypted until they've been uploaded to the
Dropbox servers. So, the Dropbox folk have the
encryption keys to your files. On the other hand,
SpiderOak ONE encrypts your files on your local
machine, and the encryption keys never leave
your possession. So, if you really do need a
cloud-based backup service and you're dealing
with sensitive files, something like SpiderOak
ONE would definitely be better than Dropbox.
(And no, the SpiderOak ONE folk aren't paying
me to say that.)

If you want to see port numbers and IP addresses instead of
network names, add the n option. We have the following
code:

donnie@linux-0ro8:~> netstat -lpn -A inet

(Not all processes could be identified, non-owned process info

 will not be shown, you would have to be root to see it all.)

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 0.0.0.0:902 0.0.0.0:* LISTEN

tcp 0 0 127.0.0.1:40432 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN

tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN

tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN

All you have to do to view the established TCP connections
is to leave out the l option. On my workstation, this makes
for a very long list, so I'll only show a few items:

tcp 0 0 0.0.0.0:17500 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:37468 0.0.0.0:* LISTEN

tcp 0 0 127.0.0.1:17600 0.0.0.0:* LISTEN

tcp 0 0 127.0.0.1:17603 0.0.0.0:* LISTEN

udp 0 0 192.168.204.1:123 0.0.0.0:*

udp 0 0 172.16.249.1:123 0.0.0.0:*

udp 0 0 192.168.0.222:123 0.0.0.0:*

udp 0 0 127.0.0.1:123 0.0.0.0:*

udp 0 0 0.0.0.0:123 0.0.0.0:*

udp 0 0 0.0.0.0:17500 0.0.0.0:*

udp 0 0 0.0.0.0:50857 0.0.0.0:*

udp 0 0 0.0.0.0:43782 0.0.0.0:*

udp 0 0 0.0.0.0:44023 0.0.0.0:*

udp 0 0 0.0.0.0:36764 0.0.0.0:*

udp 0 0 0.0.0.0:21327 0.0.0.0:*

udp 0 0 0.0.0.0:5353 0.0.0.0:*

udp 0 0 0.0.0.0:5353 0.0.0.0:*

udp 0 0 0.0.0.0:5353 0.0.0.0:*

udp 0 0 0.0.0.0:5353 0.0.0.0:*

raw 0 0 0.0.0.0:1 0.0.0.0:* 7

donnie@linux-0ro8:~>

donnie@linux-0ro8:~> netstat -p -A inet

(Not all processes could be identified, non-owned process info

 will not be shown, you would have to be root to see it all.)

Active Internet connections (w/o servers)

Proto Recv-Q Send-Q Local Address Foreign Address Sta

tcp 1 0 linux-0ro8:41670 ec2-54-88-208-223:https CLO

tcp 0 0 linux-0ro8:59810 74-126-144-106.wa:https EST

tcp 0 0 linux-0ro8:58712 74-126-144-105.wa:https EST

tcp 0 0 linux-0ro8:caerpc atl14s78-in-f2.1e:https EST

. . .

. . .

The Foreign Address column shows the address and port
number of the machine at the remote end of the connection.
The first item shows that the connection with a Dropbox
server is in a CLOSE_WAIT state. This means that the Dropbox
server has closed the connection, and we're now waiting on
the local machine to close the socket.

Because the names of those foreign addresses don't make
much sense, let's add the n option to see IP addresses instead:

This time we see something new. The first item shows a
SYN_SENT state for the Firefox connection. This means that the
local machine is trying to establish a connection to the
foreign IP address. Also, under Local Address, we see the static
IP address for my OpenSUSE workstation.

If I had space to display the entire netstat output here, you'd
see nothing but tcp under the Proto column. That's because the
UDP protocol doesn't establish connections in the same way
that the TCP protocol does.

donnie@linux-0ro8:~> netstat -np -A inet

(Not all processes could be identified, non-owned process info

 will not be shown, you would have to be root to see it all.)

Active Internet connections (w/o servers)

Proto Recv-Q Send-Q Local Address Foreign Address Sta

tcp 0 1 192.168.0.222:59594 37.187.24.170:443 SYN

tcp 0 0 192.168.0.222:59810 74.126.144.106:443 EST

tcp 0 0 192.168.0.222:58712 74.126.144.105:443 EST

tcp 0 0 192.168.0.222:38606 34.240.121.144:443 EST

. . .

. . .

Something to keep in mind is that rootkits can
replace legitimate Linux utilities with their own
trojaned versions. For example, a rootkit could
have its own trojaned version of netstat that
would show all network processes except for
those that are associated with the rootkit. That's
why you want something like Rootkit Hunter in
your toolbox.

If you need more information about netstat, see the netstat
man page.

Auditing network
services with Nmap
The netstat tool is very good, and it can give you lots of good
information about what's going on with your network
services. The slight downside is that you have to log in to
every individual host on your network in order to use it.

If you'd like to remotely audit your network to see what
services are running on each computer, without having to log
in to each and every one, then you need a tool like Nmap. It's
available for all the major operating systems, so even if
you're stuck having to use Windows on your workstation,
you're in luck. An up-to-date version is built into Kali Linux,
if that's what you're using. It's also in the repositories of
every major Linux distro, but the version that's in the Linux
repositories is usually quite old. So if you're using something
other than Kali, your best bet is just to download Nmap from
its creator's website.

You can download Nmap for all of the major
operating systems from https://nmap.org/download.ht
ml.

In all cases, you'll also find instructions for
installation.

https://nmap.org/download.html

You'll use Nmap the same way on all operating systems, with
only one exception. On Linux and Mac machines, you'll
preface certain Nmap commands with sudo, and on Windows
machines, you won't. Since I just happen to be working on
my trusty OpenSUSE workstation, I'll show you how it
works on Linux. Let's start by doing a SYN packet scan:

Here's the breakdown:

-sS: The lower-case s denotes the type of scan that we
want to perform. The uppercase S denotes that we're
doing an SYN packet scan. (More on that in a
moment.)

192.168.0.37: In this case, I'm only scanning a single
machine. But, I could also scan either a group of
machines, or an entire network.

donnie@linux-0ro8:~> sudo nmap -sS 192.168.0.37

Starting Nmap 6.47 (http://nmap.org) at 2017-12-24 19:32 EST

Nmap scan report for 192.168.0.37

Host is up (0.00016s latency).

Not shown: 996 closed ports

PORT STATE SERVICE

22/tcp open ssh

515/tcp open printer

631/tcp open ipp

5900/tcp open vnc

MAC Address: 00:0A:95:8B:E0:C0 (Apple)

Nmap done: 1 IP address (1 host up) scanned in 57.41 seconds

donnie@linux-0ro8:~>

Not shown: 996 closed ports: The fact that it's showing
all of these closed ports instead of filtered ports tells
me that there's no firewall on this machine. (Again,
more on that in a moment.)

Next, we see a list of ports that are open. (And, more
on that in a moment.)

The MAC address of this machine indicates that it's an
Apple product of some sort. In a moment, I'll show
you how to get more details about what kind of Apple
product that it might be.

Let's now look at this more in detail.

Port states
An Nmap scan will show the target machine's ports in one of
three states:

filtered: This means that the port is blocked by a
firewall

open: This means that the port is not blocked by a
firewall and that the service that's associated with
that port is running

closed: This means that the port is not blocked by a
firewall, and that the service that's associated with
that port is not running

So, in our scan of the Apple machine, we see that the Secure
Shell service is ready to accept connections on port 22, that
the print service is ready to accept connections on ports 515
and 631, and that the Virtual Network Computing (VNC)
service is ready to accept connections on port 5900. All of
these ports would be of interest to a security-minded
administrator. If Secure Shell is running, it would be
interesting to know if it's configured securely. The fact that
the print service is running means that this machine is set up
to use the Internet Printing Protocol (IPP). It would be

interesting to know why we're using IPP instead of just
regular network printing, and it would also be interesting to
know if there are any security concerns with this version of
IPP. And of course, we already know that VNC isn't a secure
protocol, so we would want to know why it's even running at
all. We also saw that no ports are listed as filtered, so we
would also want to know why there's no firewall on this
machine.

One little secret that I'll finally reveal, is that this machine is
the same one that I used for the OpenVAS scan demos. So,
we already have some of the needed information. The
OpenVAS scan told us that Secure Shell on this machine uses
weak encryption algorithms and that there's a security
vulnerability with the print service. In just a bit, I'll show you
how to get some of that information with Nmap.

Scan types
There are lots of different scanning options, each with its
own purpose. The SYN packet scan that we're using here is
considered a stealthy type of scan because it generates less
network traffic and fewer system log entries than certain
other types of scans. With this type of scan, Nmap sends a
SYN packet to a port on the target machine, as if it were
trying to create a TCP connection to that machine. If the
target machine responds with a SYN/ACK packet, it means
that the port is in an open state and ready to create the TCP
connection. If the target machine responds with an RST
packet, it means that the port is in a closed state. If there's no
response at all, it means that the port is filtered, blocked by a
firewall. As a normal Linux administrator, this is one of the
types of scans that you would do most of the time.

The -sS scan shows you the state of TCP ports, but it doesn't
show you the state of UDP ports. To see the UDP ports, use
the -sU option:

donnie@linux-0ro8:~> sudo nmap -sU 192.168.0.37

Starting Nmap 6.47 (http://nmap.org) at 2017-12-28 12:41 EST

Nmap scan report for 192.168.0.37

Host is up (0.00018s latency).

Not shown: 996 closed ports

PORT STATE SERVICE

123/udp open ntp

Here, you see something a bit different. You see two ports
listed as open|filtered. That's because, due to the way that
UDP ports respond to Nmap scans, Nmap can't always tell
whether a UDP port is open or filtered. In this case, we know
that these two ports are probably open because we've already
seen that their corresponding TCP ports are open.

ACK packet scans can also be useful, but not to see the state
of the target machine's network services. Rather, it's a good
option for when you need to see if there might be a firewall
blocking the way between you and the target machine. An
ACK scan command looks like this:

sudo nmap -sA 192.168.0.37

You're not limited to scanning just a single machine at a time.
You can scan either a group of machines or an entire subnet
at once:

sudo nmap -sS 192.168.0.1-128

sudo nmap -sS 192.168.0.0/24

631/udp open|filtered ipp

3283/udp open|filtered netassistant

5353/udp open zeroconf

MAC Address: 00:0A:95:8B:E0:C0 (Apple)

Nmap done: 1 IP address (1 host up) scanned in 119.91 seconds

donnie@linux-0ro8:~>

The first command scans only the first 128 hosts on this
network segment. The second command scans all 254 hosts
on a subnet that's using a 24 bit netmask.

A discovery scan is useful for when you need to just see
what devices are on the network:

sudo nmap -sn 192.168.0.0/24

With the -sn option, Nmap will first detect whether you're
scanning the local subnet or a remote subnet. If the subnet is
local, Nmap will send out an Address Resolution Protocol
(ARP) broadcast that requests the IPv4 addresses of every
device on the subnet. That's a reliable way of discovering
devices because ARP isn't something that will ever be
blocked by a device's firewall. (I mean, without ARP, the
network would cease to function.) However, ARP broadcasts
can't go across a router, which means that you can't use ARP
to discover hosts on a remote subnet. So, if Nmap detects
that you're doing a discovery scan on a remote subnet, it will
send out ping packets instead of ARP broadcasts. Using ping
packets for discovery isn't as reliable as using ARP because
some network devices can be configured to ignore ping
packets. Anyway, here's an example from my own home
network:

donnie@linux-0ro8:~> sudo nmap -sn 192.168.0.0/24

Starting Nmap 6.47 (http://nmap.org) at 2017-12-25 14:48 EST

Nmap scan report for 192.168.0.1

Host is up (0.00043s latency).

We see four hosts in this snippet, and there are three lines of
output for each host. The first line shows the IP address, the
second shows whether the host is up, and the third shows the
MAC address of the host's network adapter. The first three
pairs of characters in each MAC address denote the
manufacturer of that network adapter. (For the record, that
unknown network adapter is on a recent model Gigabyte
motherboard. I have no idea why it's not in the Nmap
database.)

The final scan that we'll look at does four things for us:

It identifies open, closed, and filtered TCP ports

It identifies the versions of the running services

It runs a set of vulnerability-scanning scripts that
come with Nmap

It attempts to identify the operating system of the
target host

MAC Address: 00:18:01:02:3A:57 (Actiontec Electronics)

Nmap scan report for 192.168.0.3

Host is up (0.0044s latency).

MAC Address: 44:E4:D9:34:34:80 (Cisco Systems)

Nmap scan report for 192.168.0.5

Host is up (0.00026s latency).

MAC Address: 1C:1B:0D:0A:2A:76 (Unknown)

Nmap scan report for 192.168.0.6

Host is up (0.00013s latency).

MAC Address: 90:B1:1C:A3:DF:5D (Dell)

. . .

. . .

The scan command that does all of these things looks like
this:

sudo nmap -A 192.168.0.37

I guess that you could think of the -A option as the all option,
since it really does do it all. (Well, almost all, since it doesn't
scan UDP ports.) Here are the results of the scan that I did
against my target:

donnie@linux-0ro8:~> sudo nmap -A 192.168.0.37

Starting Nmap 6.47 (http://nmap.org) at 2017-12-24 19:33 EST

Nmap scan report for 192.168.0.37

Host is up (0.00016s latency).

Not shown: 996 closed ports

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 5.1 (protocol 1.99)

|_ssh-hostkey: ERROR: Script execution failed (use -d to debug)

|_sshv1: Server supports SSHv1

515/tcp open printer?

631/tcp open ipp CUPS 1.1

| http-methods: Potentially risky methods: PUT

|_See http://nmap.org/nsedoc/scripts/http-methods.html

| http-robots.txt: 1 disallowed entry

|_/

|_http-title: Common UNIX Printing System

5900/tcp open vnc Apple remote desktop vnc

| vnc-info:

| Protocol version: 3.889

| Security types:

|_ Mac OS X security type (30)

1 service unrecognized despite returning data. If you know the ser

SF-Port515-TCP:V=6.47%I=7%D=12/24%Time=5A40479E%P=x86_64-suse-linu

SF:GetRequest,1,"\x01");

MAC Address: 00:0A:95:8B:E0:C0 (Apple)

Device type: general purpose

There are several interesting things here. First, there's the
Secure Shell information:

Version 5.1 is a really old version of OpenSSH. (At the time
of writing, the current version is version 7.6.) What's worse
is that this OpenSSH server supports version 1 of the Secure
Shell protocol. Version 1 is seriously flawed and is easily
exploitable, so you never want to see this on your network.

Next, we have amplifying information on the print service
vulnerability that we found with the OpenVAS scan:

515/tcp open printer?

631/tcp open ipp CUPS 1.1

| http-methods: Potentially risky methods: PUT

|_See http://nmap.org/nsedoc/scripts/http-methods.html

Running: Apple Mac OS X 10.4.X

OS CPE: cpe:/o:apple:mac_os_x:10.4.10

OS details: Apple Mac OS X 10.4.10 - 10.4.11 (Tiger) (Darwin 8.10

Network Distance: 1 hop

Service Info: OS: Mac OS X; CPE: cpe:/o:apple:mac_os_x

TRACEROUTE

HOP RTT ADDRESS

1 0.16 ms 192.168.0.37

OS and Service detection performed. Please report any incorrect re

Nmap done: 1 IP address (1 host up) scanned in 213.92 seconds

donnie@linux-0ro8:~>

22/tcp open ssh OpenSSH 5.1 (protocol 1.99)

|_ssh-hostkey: ERROR: Script execution failed (use -d to debug)

|_sshv1: Server supports SSHv1

| http-robots.txt: 1 disallowed entry

|_/

|_http-title: Common UNIX Printing System

In the 631/tcp line, we see that the associated service is ipp,
which stands for Internet Printing Protocol. This protocol
is based on the same Hypertext Transfer Protocol (HTTP)
that we use to look at web pages. The two methods that
HTTP uses to send data from a client to a server are POST
and PUT. What we really want is for every HTTP server to
use the POST method because the PUT method makes it
very easy for someone to compromise a server by
manipulating a URL. So, if you scan a server and find that it
allows using the PUT method for any kind of HTTP
communications, you have a potential problem. In this case,
the solution would be to update the operating system and
hope that the updates fix the problem. If this were a web
server, you'd want to have a chat with the web server
administrators to let them know what you found.

Finally, let's see what Nmap found out about the operating
system of our target machine:

Wait, what? Mac OS X 10.4? Isn't that really, really
ancient? Well yeah, it is. The secret that I've been guarding
for the past couple of chapters is that the target machine for

Running: Apple Mac OS X 10.4.X

OS CPE: cpe:/o:apple:mac_os_x:10.4.10

OS details: Apple Mac OS X 10.4.10 - 10.4.11 (Tiger) (Darwin 8.10

Network Distance: 1 hop

Service Info: OS: Mac OS X; CPE: cpe:/o:apple:mac_os_x

my OpenVAS and Nmap scan demos has been my ancient,
collectible Apple eMac from the year 2003. I figured that
scanning it would give us some interesting results to look at,
and it would appear that I was right. (And yes, that is eMac,
not iMac.)

Password-protecting the
GRUB 2 bootloader
People sometimes forget passwords, even if they're
administrators. And sometimes, people buy used computers
but forget to ask the seller what the password is. (Yes, I've
done that.) That's okay, though, because all of the major
operating systems have ways to let you either reset or
recover a lost administrator password. That's handy, except
that it does kind of make the whole idea of having login
passwords a rather moot point when someone has physical
access to the machine. Let's say that your laptop has just
been stolen. If you haven't encrypted the hard drive, it would
only take a few minutes for the thief to reset the password
and to steal your data. If you have encrypted the drive, the
level of protection would depend on which operating system
you're running. With standard Windows folder encryption,
the thief would be able to access the encrypted folders just by
resetting the password. With LUKS whole-disk encryption
on a Linux machine, the thief wouldn't be able to get past the
point of having to enter the encryption passphrase.

With Linux, we have a way to safeguard against
unauthorized password resets, even if we're not using whole-
disk encryption. All we have to do is to password-protect the
Grand Unified Bootloader (GRUB), which would prevent

a thief from booting into emergency mode to do the
password reset.

Whether or not you need the advice in this
section depends on your organization's physical
security setup. That's because booting a Linux
machine into emergency mode requires physical
access to the machine. It's not something that you
can do remotely. In an organization with proper
physical security, servers—especially ones that
hold sensitive data—are locked away in a room
that's locked within another room. Only a very
few trusted personnel are allowed to enter, and
they have to present their credentials at both
access points. So, setting a password on the
bootloader of those servers would be rather
pointless, unless you're dealing with a regulatory
agency that dictates otherwise.

On the other hand, password-protecting the
bootloaders of workstations and laptops that are
out in the open could be quite useful. But, that
alone won't protect your data. Someone could
still boot the machine from a live disk or a USB
memory stick, mount the machine's hard drive,
and obtain the sensitive data. That's why you
also want to encrypt your sensitive data, as I
showed you in Chapter 4, Encrypting and SSH
Hardening.

To reset a password, all you have to do is to interrupt the
boot process when the boot menu comes up and change a

couple of kernel parameters. However, resetting passwords
isn't the only thing you can do from the boot menu. If your
machine has multiple operating systems installed—for
example, Windows on one partition and Linux on another
partition—the boot menu allows you to choose which
operating system to boot up. With the old-style legacy
GRUB, you could prevent people from editing kernel
parameters, but you couldn't prevent them from choosing an
alternate operating system on multiboot machines. With the
new GRUB 2 that's in newer versions of Linux, you can
choose which users you want to be able to boot from any
particular operating system.

Now, just so you'll know what I'm talking about when I say
that you can edit kernel parameters from the GRUB 2 boot
menu, let me show you how to perform a password reset.

Resetting the password
for Red Hat/CentOS
When the boot menu comes up, interrupt the boot process by
hitting the down-arrow key once. Then, hit the up-arrow key
once to select the default boot option:

Hit the E key to edit the kernel parameters. When the GRUB
2 configuration comes up, cursor down until you see this
line:

Delete the words rhgb quiet from this line and then add
rd.break enforcing=0 to the end of the line. Here's what these
two new options do for you:

rd.break: This will cause the machine to boot into
emergency mode, which gives you root user
privileges without you having to enter a root user
password. Even if the root user password hasn't been
set, this still works.

enforcing=0: When you do a password reset on an
SELinux-enabled system, the security context for the
/etc/shadow file will change to the wrong type. If the
system is in enforcing mode when you do this,
SELinux will prevent you from logging in until the
shadow file gets relabeled. But, relabeling during the
boot process can take a very long time, especially
with a large drive. By setting SELinux to permissive
mode, you can wait until after you've rebooted to
restore the proper security context on just the shadow
file.

When you've finished editing the kernel parameters, hit Ctrl
+ X to continue the boot process. This will take you to the
emergency mode with the switch_root command prompt:

In emergency mode, the filesystem is mounted as read-only.
You'll need to remount it as read-write and enter a chroot

mode before you reset the password:

mount -o remount,rw /sysroot

chroot /sysroot

After you enter these two commands, the command prompt
will change to that of a normal bash shell:

Now that you've reached this stage, you're finally ready to
reset the password.

If you want to reset the root user password, or even if you
want to create a root password where none previously
existed, just enter:

passwd

Then, enter the new desired password.

If the system has never had a root user password and you still
don't want it to have one, you can reset the password for an
account that has full sudo privileges. For example, on my
system, the command would look like this:

passwd donnie

Next, remount the filesystem as read-only. Then, enter
exit twice to resume rebooting:

mount -o remount,ro /

exit

exit

The first thing you need to do after rebooting is to restore the
proper SELinux security context on the /etc/shadow file. Then,
put SELinux back into enforcing mode:

sudo restorecon /etc/shadow

sudo setenforce 1

Here's a before and after screenshot of the context settings
for my shadow file:

You can see that resetting the password changed the type of
the file to unlabeled_t. Running the restorecon command
changed the type back to shadow_t.

Resetting the password
for Ubuntu
The procedure for resetting a password on an Ubuntu system
is quite a bit different and quite a bit simpler. Start out the
same as you did with the CentOS machine, by pressing the
down-arrow key once to interrupt the boot process. Then,
press the up-arrow key once to select the default boot option.
Hit the E key to edit the kernel parameters:

When the GRUB 2 configuration comes up, cursor down
until you see the linux line:

Change the ro to rw and add init=/bin/bash:

Press Ctrl + X to continue booting. This will take you to a
root shell:

Since Ubuntu doesn't normally have a password assigned to
the root user, you would most likely just reset the password
of whoever had full sudo privileges. See the following
example:

passwd donnie

When you're in this mode, the normal reboot commands
won't work. So, once you've finished with the password reset
operation, reboot by entering:

exec /sbin/init

The machine will now boot up for normal operation.

Preventing kernel
parameter edits on Red
Hat/CentOS
Ever since the introduction of Red Hat/CentOS 7.2, setting a
GRUB 2 password to prevent kernel parameter edits is easy.
All you have to do is to run one command and choose a
password:

[donnie@localhost ~]$ sudo grub2-setpassword

[sudo] password for donnie:

Enter password:

Confirm password:

[donnie@localhost ~]$

That's all there is to it. The password hash will be stored in
the /boot/grub2/user.cfg file.

Now, when you reboot the machine and try to do a kernel
parameter edit, you'll be prompted to enter a username and
password:

Note that you'll enter root as the username, even if the root
user's password hasn't been set on the system. The root user,
in this case, is just the superuser for GRUB 2.

Preventing kernel
parameter edits on
Ubuntu
Ubuntu doesn't have that cool utility that Red Hat and
CentOS have, so you'll have to set a GRUB 2 password by
hand-editing a configuration file.

In the /etc/grub.d/ directory, you'll see the files that make up
the GRUB 2 configuration:

donnie@ubuntu3:/etc/grub.d$ ls -l

total 76

-rwxr-xr-x 1 root root 9791 Oct 12 16:48 00_header

-rwxr-xr-x 1 root root 6258 Mar 15 2016 05_debian_theme

-rwxr-xr-x 1 root root 12512 Oct 12 16:48 10_linux

-rwxr-xr-x 1 root root 11082 Oct 12 16:48 20_linux_xen

-rwxr-xr-x 1 root root 11692 Oct 12 16:48 30_os-prober

-rwxr-xr-x 1 root root 1418 Oct 12 16:48 30_uefi-firmware

-rwxr-xr-x 1 root root 214 Oct 12 16:48 40_custom

-rwxr-xr-x 1 root root 216 Oct 12 16:48 41_custom

-rw-r--r-- 1 root root 483 Oct 12 16:48 README

donnie@ubuntu3:/etc/grub.d$

The file you want to edit is the 40_custom file. However, before
you edit the file, you'll need to create the password hash. Do
that with the grub-mkpasswd-pbkdf2 utility:

Open the file 40_custom file in your favorite editor and add a
line that defines who the superuser(s) will be. Add another
line for the password hash. In my case, the file now looks
like this:

The string of text that begins with
password_pbkdf2 is all one line that wraps around
on the printed page.

After you save the file, the last step is to generate a new
grub.cfg file:

donnie@ubuntu3:/etc/grub.d$ sudo update-grub

Generating grub configuration file ...

Found linux image: /boot/vmlinuz-4.4.0-104-generic

donnie@ubuntu3:/etc/grub.d$ grub-mkpasswd-pbkdf2

Enter password:

Reenter password:

PBKDF2 hash of your password is grub.pbkdf2.sha512.10000.F1BA16B27

donnie@ubuntu3:/etc/grub.d$

#!/bin/sh

exec tail -n +3 $0

This file provides an easy way to add custom menu entries. Simpl

menu entries you want to add after this comment. Be careful not

the 'exec tail' line above.

set superusers="donnie"

password_pbkdf2 donnie grub.pbkdf2.sha512.10000.F1BA16B2799CBF6A6D

Found initrd image: /boot/initrd.img-4.4.0-104-generic

Found linux image: /boot/vmlinuz-4.4.0-101-generic

Found initrd image: /boot/initrd.img-4.4.0-101-generic

Found linux image: /boot/vmlinuz-4.4.0-98-generic

Found initrd image: /boot/initrd.img-4.4.0-98-generic

done

donnie@ubuntu3:/etc/grub.d$

Now when I reboot this machine, I have to enter my
password before editing the kernel parameters:

There's only one problem with this. Not only does this
prevent anyone except the superuser from editing the kernel
parameters, it also prevents anyone except for the superuser
from booting normally. Yes, that's right. Even for normal
booting, Ubuntu will now require you to enter the username
and password of the authorized superuser. The fix is easy,
although not at all elegant.

The fix requires inserting a single word into the
/boot/grub/grub.cfg file. Easy enough, right? But, it's not an
elegant solution because you're not really supposed to hand-
edit the grub.cfg file. At the top of the file, we see this:

DO NOT EDIT THIS FILE

#

It is automatically generated by grub-mkconfig using templates

from /etc/grub.d and settings from /etc/default/grub

#

This means that every time we do something that will update
the grub.cfg file, any hand-edits that we've made to the file
will be lost. This includes when we do a system update that
installs a new kernel, or when we do a sudo apt autoremove that
removes any old kernels that we no longer need. The
supreme irony though is that the official GRUB 2
documentation tells us to hand-edit the grub.cfg file to deal
with these sorts of problems.

Anyway, to fix things so that you no longer need to enter the
password to boot normally, open the /boot/grub/grub.cfg file in
your favorite text editor. Look for the first line that begins
with menuentry, which should look something like this:

Before the opening curly brace at the end of the line, add the
text string, --unrestricted. The menuentry should now look like
this:

Save the file and test it by rebooting the machine. You should
see that the machine now boots up normally on the default
boot option. But, you'll also see that a password will still be
required to access the Advanced options for
Ubuntu submenu. We'll fix that in just a bit.

menuentry 'Ubuntu' --class ubuntu --class gnu-linux --class gnu -

menuentry 'Ubuntu' --class ubuntu --class gnu-linux --class gnu -

Password-protecting
boot options
For any given Linux system, you'll have at least two boot
options. You'll have the option to boot normally and the
option to boot into recovery mode. Red Hat-type and
Ubuntu-type operating systems are unique, in that they don't
overwrite the old kernel when you do an operating system
update. Instead, they install the new kernel along with the old
one, and all the installed kernels have their own boot menu
entries. On Red Hat-type systems, you'll never have more
than five installed kernels because once you have five
kernels installed, the oldest kernel will automatically get
deleted the next time a new kernel is available in a system
update. With Ubuntu-type systems, you'll need to manually
delete the old kernels by running sudo apt autoremove.

You might also have a dual-boot or a multiboot
configuration, and you might want for only certain users to
use certain boot options. Let's say that you have a system
with both Windows and Linux installed, and you want to
prevent certain users from booting into either one or the
other. You can do that by configuring GRUB 2, but you
probably won't. I mean, a password and user account are
required for logging in to an operating system anyway, so
why bother?

The most realistic scenario I can think of where this would
be useful would be if you have a computer set up in a
publicly accessible kiosk. You would surely not want for the
general public to boot the machine into recovery mode, and
this technique would help prevent that.

This technique works mostly the same on both Red Hat-type
and Ubuntu-type distros, with only a few exceptions. The
major one is that we need to disable the submenu on the
Ubuntu machine.

Disabling the submenu
for Ubuntu
Theoretically, you can disable the Ubuntu submenu by
placing GRUB_DISABLE_SUBMENU=true into the /etc/default/grub file
and then by running sudo update-grub. However, I couldn't get
that to work, and according to the results of my
DuckDuckGo searches, neither can anyone else. So, we'll
manually edit the /boot/grub/grub.cfg file to fix that.

Look for the submenu line that appears just after the first
menuentry item. It should look like this:

Comment out that line to make it look like this:

Scroll down until you see this line:

END /etc/grub.d/10_linux

submenu 'Advanced options for Ubuntu' $menuentry_id_option 'gnulin

submenu 'Advanced options for Ubuntu' $menuentry_id_option 'gnul

Just above this line, you'll see the closing curly brace for the
submenu stanza. Comment out that curly brace so that it
looks like this:

}

Now when you reboot the machine, you'll see the whole list
of boot options instead of the just the default boot option and
a submenu. However, as things now stand, only the
designated superuser can boot into anything except the
default option.

Password-protecting
boot option steps for
both Ubuntu and Red Hat
From here on out, the steps are the same for both the CentOS
and the Ubuntu virtual machines, except for the following:

On your Ubuntu machine, the grub.cfg file is in the
/boot/grub/ directory. On your CentOS machine, it's in
the /boot/grub2/ directory.

On Ubuntu, the /boot/grub/ and /etc/grub.d/ directories
are world-readable. So, you can cd into them as a
normal user.

On CentOS, the /boot/grub2/ and
/etc/grub.d/ directories are restricted to the root user.
So, to cd into them, you'll need to log in to the root
user's shell. Alternatively, you can list the contents
from your normal user shell with sudo ls -l, and you
can edit the files you need to edit with sudo vim
/boot/grub2/grub.cfg or sudo vim /etc/grub.d/40_custom.
(Substitute your favorite editor for vim.)

On Ubuntu, the command to create a password hash
is grub-mkpasswd-pbkdf2. On CentOS, the command is
grub2-mkpasswd-pbkdf2.

With these slight differences in mind, let's get started.

If you're working with a server that's just running
with a text-mode interface, you'll definitely want
to log in remotely from a workstation that has a
GUI-type interface. If your workstation is
running Windows, you can use Cygwin, as I
showed you in Chapter 1, Running Linux in a
Virtual Environment.

The reason for this is that you'll want a way to
copy and paste the password hashes into the two
files that you need to edit.

The first thing you'll do is to create a password hash for your
new users:

On Ubuntu:

 grub-mkpasswd-pbkdf2

On CentOS:

 grub2-mkpasswd-pbkdf2

Next, open the /etc/grub.d/40_custom file in your text editor and
add a line for your new user, along with the password hash
that you just created. The line should look something like
this:

Note that this is all one line that wraps around on the printed
page.

What you're supposed to do next is to run a utility that will
read all of the files in the /etc/grub.d/ directory along with the
/etc/default/grub file and that will then rebuild the grub.cfg file.
But, on CentOS, that utility doesn't work correctly. On
Ubuntu, it does work correctly, but it will overwrite any
changes that you might have already made to the grub.cfg file.
So, we're going to cheat.

Open the grub.cfg file in your text editor:

On Ubuntu:

 sudo vim /boot/grub/grub.cfg

password_pbkdf2 goldie grub.pbkdf2.sha512.10000.225205CBA258424062

On CentOS:

 sudo vim /boot/grub2/grub.cfg

Scroll down until you see the ### BEGIN /etc/grub.d/40_custom
section. In this section, copy and paste the line that you
just added to the 40_custom file. This section should now look
something like this:

Finally, you're ready to password-protect the individual menu
entries. And here, I've discovered yet another difference
between Ubuntu and CentOS.

In all of the menu entries for CentOS, you'll see that the --
unrestricted option is already there for all menu entries. This
means that by default, all users are allowed to boot every
menu option, even if you've set a superuser password:

So on CentOS, you don't have to do anything if you want all
users to be able to use all available boot options.

BEGIN /etc/grub.d/40_custom

This file provides an easy way to add custom menu entries. Simp

menu entries you want to add after this comment. Be careful not

the 'exec tail' line above.

password_pbkdf2 "goldie" grub.pbkdf2.sha512.10000.225205CBA2584240

END /etc/grub.d/40_custom

menuentry 'CentOS Linux (3.10.0-693.11.1.el7.x86_64) 7 (Core)' --c

Now, let's say that you have a menuentry that you want to be
accessible to everybody. On CentOS, as I just pointed out,
you don't have to do anything. On Ubuntu, add --
unrestricted to the menuentry, as you did previously:

If you want for nobody but the superuser to boot from a
particular option, add --users "". (On CentOS, be sure to
remove the --unrestricted option first.)

If you want for only the superuser and some other particular
user to boot from a certain option, add --users, followed by
the username. (Again, on CentOS, remove the --
unrestricted option first.):

If you have more than one user that you want to access a
boot option, add an entry for the new user in the ### BEGIN
/etc/grub.d/40_custom ### section. Then, add the new user to the
menuentry that you want for him or her to access. Separate the
usernames with a comma:

menuentry 'Ubuntu' --class ubuntu --class gnu-linux --class gnu -

menuentry 'Ubuntu, with Linux 4.4.0-98-generic (recovery mode)' -

menuentry 'Ubuntu, with Linux 4.4.0-97-generic' --class ubuntu --c

menuentry 'Ubuntu, with Linux 4.4.0-97-generic' --class ubuntu --c

Save the file and reboot to try out the different options.

Now that we've gone through all this work, I need to remind
you again that any manual edits that you've made to the
grub.cfg file will be lost any time that a new grub.cfg gets
generated. So, any time you do a system update that includes
either installing or removing a kernel, you'll need to
manually edit this file again to add back the password
protection. (In fact, the only real reason I had you add the
users and their passwords to the /etc/grub.d/40_custom file is so
that you'll always have that information available to copy
and paste into grub.cfg.) I wish that there were a more elegant
way of doing this, but according to the official GRUB 2
documentation, there isn't.

You'll find the security section of the official
GRUB 2 documentation at http://www.gnu.org/softw
are/grub/manual/grub/grub.html#Security.

Before we leave this topic, I'd like to share my personal
thoughts about GRUB 2.

It was necessary to create a new version of GRUB because
the old legacy version doesn't work with the new UEFI-
based motherboards. However, there are things about GRUB
2 that are very disappointing.

In the first place, unlike legacy GRUB, GRUB 2 isn't
implemented consistently across all Linux distros. In fact,
we've just seen in our demos how we have to do things
differently when we go from CentOS to Ubuntu.

http://www.gnu.org/software/grub/manual/grub/grub.html#Security

Next is the fact that the GRUB 2 developers gave us some
good security options, but they haven't given us an elegant
way of implementing them. I mean, really. The whole idea of
telling us to implement security features by hand-editing a
file that will get overwritten every time we do an operating
system update just doesn't seem right.

And finally, there's the sad state of GRUB 2 documentation. I
don't mean to sound like I'm tooting my own horn because I
know that that's unbecoming. However, I think it's safe to say
that this is the only comprehensive write-up you'll find
anywhere for using the password-protection features of
GRUB 2.

Securely configuring
BIOS/UEFI
This topic is different from anything we've looked at thus far
because it has nothing to do with the operating system.
Rather, we're now going to talk about the computer
hardware.

Every computer motherboard has either a BIOS or a UEFI
chip, which stores both the hardware configuration for the
computer, and the bootstrap instructions that are needed to
start the boot process after the power is turned on. UEFI has
replaced the old-style BIOS on newer motherboards, and it
has more security features than what the old BIOS had.

I can't give you any specific information about BIOS/UEFI
setup because every model of the motherboard has a different
way of doing things. What I can give you is some more
generalized information.

When you think about BIOS/UEFI security, you might be
thinking about disabling the ability to boot from anything
other than the normal system drive. In the following
screenshot, you can see that I've disabled all SATA drive
ports except for the one to which the system drive is
connected:

When computers are out in the open where the general public
can have easy physical access to them, this might be a
consideration. For servers that are locked away in their own
secure room with limited access, there's no real reason to
worry about it, unless the security requirements of some
regulatory body dictate otherwise. For machines that are out
in the open, having whole disk encryption would prevent
someone from stealing data after booting from either an
optical disk or a USB device. However, you might still have
other reasons to prevent anyone from booting the machine
from these alternate boot devices.

Another consideration might be if you work in a secure
environment where supersensitive data are handled. If you're
worried about unauthorized exfiltration of sensitive data, you
might consider disabling the ability to write to USB devices.
This will also prevent people from booting the machine from
USB devices:

However, there's more than just this to BIOS/UEFI security.
Today's modern server CPUs come with a variety of security
features to help prevent data breaches. For example, let's
look at a list of security features that are implemented in Intel
Xeon CPUs:

Identity-protection technology

Advanced Encryption Standard New Instructions

Trusted Execution Technology

Hardware-assisted virtualization technology

AMD, that plucky underdog in the CPU market, have their
own new security features in their new line of EPYC server
CPUs. These features are:

Secure Memory Encryption

Secure Encrypted Virtualization

In any case, you would configure these CPU security options
in your server's UEFI setup utility.

You can read about Intel Xeon security features
at: https://www.intel.com/content/www/us/en/data-securi
ty/security-overview-general-technology.html.

And, you can read about AMD EPYC security
features at https://semiaccurate.com/2017/06/22/amds-e
pyc-major-advance-security/.

And of course, for any machines that are out in the open, it's
a good idea to password-protect the BIOS or UEFI:

If for no other reason, do it to keep people from monkeying
around with your settings.

https://www.intel.com/content/www/us/en/data-security/security-overview-general-technology.html
https://semiaccurate.com/2017/06/22/amds-epyc-major-advance-security/

Using a security checklist
for system setup
I've previously told you about OpenSCAP, which is a really
useful tool to lock down your system with just a minimum
amount of effort. OpenSCAP comes with various profiles
that you can apply to help bring your systems into
compliance with the standards of different regulatory
agencies. However, there are certain things that OpenSCAP
can't do for you. For example, certain regulatory agencies
require that your server's hard drive be partitioned in a
certain way, with certain directories separated out into their
own partitions. If you've already set up your server with
everything under one big partition, you can't fix that just by
doing a remediation procedure with OpenSCAP. The process
of locking down your server to ensure that it's compliant with
any applicable security regulations has to begin before you
even install the operating system. For this, you need the
appropriate checklist.

There are a few different places where you can obtain a
generic security checklist if that's all you need. The
University of Texas at Austin publishes a generic checklist
for Red Hat Enterprise 7, which you can adjust if you need to
use it with CentOS 7, Oracle Linux 7, or Scientific Linux 7.
You might find that some checklist items don't apply to your
situation, and you can adjust them as required:

For specific business fields, you'll need to get a checklist
from the applicable regulatory body. If you work in the
financial sector or with a business that accepts credit card
payments, you'll need a checklist from the Payment Card
Industry Security Standards Council:

And, for healthcare organizations here in the U.S., there's
HIPAA with its requirements. For publicly-traded companies
here in the U.S., there's Sarbanes-Oxley with its
requirements:

You can get the University of Texas checklist
from at: https://wikis.utexas.edu/display/ISO/Operatin
g+System+Hardening+Checklists.

You can get a PCI-DSS checklist at: https://www.pc
isecuritystandards.org/.

You can get a HIPAA checklist at: https://www.hipaa
institute.com/security-checklist.

https://wikis.utexas.edu/display/ISO/Operating+System+Hardening+Checklists
https://www.pcisecuritystandards.org/
https://www.hipaainstitute.com/security-checklist

And, you can get a Sarbanes-Oxley checklist at: h
ttp://www.sarbanes-oxley-101.com/sarbanes-oxley-checkli

st.htm.

Other regulatory bodies may also have their own checklists.
If you know that you have to deal with any of them, be sure
to get the appropriate checklist.

http://www.sarbanes-oxley-101.com/sarbanes-oxley-checklist.htm

Summary
Once again, we've come to the conclusion of another chapter,
and we covered a lot of cool topics. We started by looking at
various ways to audit which services are running on your
systems, and we saw some examples of what you probably
don't want to see. We then saw how to use the password-
protection features of GRUB 2, and we saw the little quirks
that we have to deal with when using those features. Next,
we had a change of pace by looking at how to further lock
down a system by properly setting up a system's BIOS/UEFI.
Finally, we looked at why we need to properly begin
preparations to set up a hardened system by obtaining and
following the proper checklist.

Not only does this conclude another chapter, it also
concludes the book. But, it doesn't conclude your journey
into the land of Mastering Linux Security and Hardening.
Oh, no. As you continue this journey, you'll find that there's
still more to learn, and still more that won't fit into the
confines of a 300-page book. Where you go from here
mainly depends on the particular area of IT administration in
which you work. Different types of Linux servers, whether
they be web servers, DNS servers, or whatever else, have
their own special security requirements, and you'll want to
follow the learning path that best fits your needs.

I've enjoyed the part of the journey on which I've been able
to accompany you. I hope that you've enjoyed it as much as I
have.

Other Books You May
Enjoy
If you enjoyed this book, you may be interested in these
other books by Packt:

Linux Device Drivers Development
John Madieu

ISBN: 978-1-78528-000-9

Use kernel facilities to develop powerful drivers

Develop drivers for widely used I2C and SPI devices
and use the regmap API

Write and support devicetree from within your
drivers

https://www.packtpub.com/networking-and-servers/linux-device-drivers-development

Program advanced drivers for network and frame
buffer devices

Delve into the Linux irqdomain API and write
interrupt controller drivers

Enhance your skills with regulator and PWM
frameworks

Develop measurement system drivers with IIO
framework

Get the best from memory management and the
DMA subsystem

Access and manage GPIO subsystems and develop
GPIO controller drivers

Mastering Linux Kernel Development
Raghu Bharadwaj

ISBN: 978-1-78588-305-7

https://www.packtpub.com/application-development/mastering-linux-kernel-development

Comprehend processes and files—the core
abstraction mechanisms of the Linux kernel that
promote effective simplification and dynamism

Decipher process scheduling and understand
effective capacity utilization under general and real-
time dispositions

Simplify and learn more about process
communication techniques through signals and IPC
mechanisms

Capture the rudiments of memory by grasping the
key concepts and principles of physical and virtual
memory management

Take a sharp and precise look at all the key aspects of
interrupt management and the clock subsystem

Understand concurrent execution on SMP platforms
through kernel synchronization and locking
techniques

Leave a review – let other
readers know what you
think
Please share your thoughts on this book with others by
leaving a review on the site that you bought it from. If you
purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that
other potential readers can see and use your unbiased opinion
to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see
your feedback on the title that they have worked with Packt
to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt.
Thank you!

	Mastering Linux Security and Hardening
	Title Page
	Copyright and Credits
	Mastering Linux Security and Hardening
	Packt Upsell
	Why subscribe?
	PacktPub.com
	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you
	Table of Contents
	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the color images
	Conventions used
	Get in touch
	Reviews
	Running Linux in a Virtual Environment
	The threat landscape
	So, how does this happen?
	Keeping up with security news
	Introduction to VirtualBox and Cygwin
	Installing a virtual machine in VirtualBox
	The EPEL repository on the CentOS virtual machine
	Configuring a network for VirtualBox virtual machines
	Creating a virtual machine snapshot with VirtualBox
	Using Cygwin to connect to your virtual machines
	Installing Cygwin on your Windows host
	Summary
	Securing User Accounts
	The dangers of logging in as the root user
	The advantages of using sudo
	Setting up sudo privileges for full administrative users
	Method 1 – adding users to a predefined admin group
	Method 2 – creating an entry in the sudo policy file
	Setting up sudo for users with only certain delegated privileges
	Hands-on lab for assigning limited sudo privileges
	Advanced tips and tricks for using sudo
	The sudo timer
	Hands-on lab for disabling the sudo timer
	Preventing users from having root shell access
	Preventing users from using shell escapes
	Preventing users from using other dangerous programs
	Limiting the user's actions with commands
	Letting users run as other users
	Locking down users' home directories the Red Hat or CentOS way
	Locking down users' home directories the Debian/Ubuntu way
	useradd on Debian/Ubuntu
	adduser on Debian/Ubuntu
	Hands-on lab for configuring adduser
	Enforcing strong password criteria
	Installing and configuring pwquality
	Hands-on lab for setting password complexity criteria
	Setting and enforcing password and account expiration
	Configuring default expiry data for useradd – for Red Hat or CentOS only
	Setting expiry data on a per-account basis, with useradd and usermod
	Setting expiry data on a per-account basis, with chage
	Hands-on lab for setting account and password expiry data
	Preventing brute-force password attacks
	Configuring the pam_tally2 PAM module
	Hands-on lab for configuring pam_tally2
	Locking user accounts
	Using usermod to lock a user account
	Using passwd to lock user accounts
	Locking the root user account
	Setting up security banners
	Using the motd file
	Using the issue file
	Using the issue.net file
	Summary
	Securing Your Server with a Firewall
	An overview of iptables
	Basic usage of iptables
	Hands-on lab for basic iptables usage
	Uncomplicated Firewall for Ubuntu systems
	Basic usage of ufw
	Hands-on lab for basic ufw usage
	firewalld for Red Hat systems
	Verifying the status of firewalld
	firewalld zones
	firewalld services
	Adding ports to a firewalld zone
	firewalld rich language rules
	Hands-on lab for firewalld commands
	nftables – a more universal type of firewall system
	nftables tables and chains
	Getting started with nftables
	Using nft commands
	Hands-on lab for nftables on Ubuntu
	Summary
	Encrypting and SSH Hardening
	GNU Privacy Guard
	Creating your GPG keys
	Symmetrically encrypting your own files
	Hands-on lab – combining gpg and tar for encrypted backups
	Using private and public keys for asymmetric encryption and signing
	Signing a file without encryption
	Encrypting partitions with Linux Unified Key Setup – LUKS
	Disk encryption during operating system installation
	Adding an encrypted partition with LUKS
	Configuring the LUKS partition to mount automatically
	Encrypting directories with eCryptfs
	Home directory and disk encryption during Ubuntu installation
	Encrypting a home directory for a new user account
	Creating a private directory within an existing home directory
	Encrypting other directories with eCryptfs
	Encrypting the swap partition with eCryptfs
	Using VeraCrypt for cross-platform sharing of encrypted containers
	Getting and installing VeraCrypt
	Creating and mounting a VeraCrypt volume in console mode
	Using VeraCrypt in GUI mode
	Ensuring that SSH protocol 1 is disabled
	Creating and managing keys for password-less logins
	Creating a user's SSH key set
	Transferring the public key to the remote server
	Disabling root user login
	Disabling username/password logins
	Setting up a chroot environment for SFTP users
	Creating a group and configuring the sshd_config file
	Hands-on lab – setting up a chroot directory for sftpusers group
	Summary
	Mastering Discretionary Access Control
	Using chown to change ownership of files and directories
	Using chmod to set permissions values on files and directories
	Setting permissions with the symbolic method
	Setting permissions with the numerical method
	Using SUID and SGID on regular files
	The security implications of the SUID and SGID permissions
	Finding spurious SUID or SGID files
	Hands-on lab – searching for SUID and SGID files
	Preventing SUID and SGID usage on a partition
	Using extended file attributes to protect sensitive files
	Setting the a attribute
	Setting the i attribute
	Hands-on lab – setting security-related extended file attributes
	Summary
	Access Control Lists and Shared Directory Management
	Creating an access control list for either a user or a group
	Creating an inherited access control list for a directory
	Removing a specific permission by using an ACL mask
	Using the tar --acls option to prevent the loss of ACLs during a backup
	Creating a user group and adding members to it
	Adding members as we create their user accounts
	Using usermod to add an existing user to a group
	Adding users to a group by editing the /etc/group file
	Creating a shared directory
	Setting the SGID bit and the sticky bit on the shared directory
	Using ACLs to access files in the shared directory
	Setting the permissions and creating the ACL
	Charlie tries to access Vicky's file with an ACL set for Cleopatra
	Hands-on lab – creating a shared group directory
	Summary
	Implementing Mandatory Access Control with SELinux and AppArmor
	How SELinux can benefit a systems administrator
	Setting security contexts for files and directories
	Installing the SELinux tools
	Creating web content files with SELinux enabled
	Fixing an incorrect SELinux context
	Using chcon
	Using restorecon
	Using semanage
	Hands-on lab – SELinux type enforcement
	Troubleshooting with setroubleshoot
	Viewing setroubleshoot messages
	Using the graphical setroubleshoot utility
	Troubleshooting in permissive mode
	Working with SELinux policies
	Viewing the Booleans
	Configuring the Booleans
	Protecting your web server
	Protecting network ports
	Creating custom policy modules
	Hands-on lab – SELinux Booleans and ports
	How AppArmor can benefit a systems administrator
	Looking at AppArmor profiles
	Working with AppArmor command-line utilities
	Troubleshooting AppArmor problems
	Summary
	Scanning, Auditing, and Hardening
	Installing and updating ClamAV and maldet
	Installing ClamAV and maldet
	Configuring maldet
	Updating ClamAV and maldet
	Scanning with ClamAV and maldet
	SELinux considerations
	Scanning for rootkits with Rootkit Hunter
	Installing and updating Rootkit Hunter
	Scanning for rootkits
	Controlling the auditd daemon
	Creating audit rules
	Auditing a file for changes
	Auditing a directory
	Auditing system calls
	Using ausearch and aureport
	Searching for file change alerts
	Searching for directory access rule violations
	Searching for system call rule violations
	Generating authentication reports
	Using predefined rules sets
	Applying OpenSCAP policies with oscap
	Installing OpenSCAP
	Viewing the profile files
	Scanning the system
	Remediating the system
	Using SCAP Workbench
	More about OpenSCAP profiles
	Applying an OpenSCAP profile during system installation
	Summary
	Vulnerability Scanning and Intrusion Detection
	Looking at Snort and Security Onion
	Obtaining and installing Snort
	Graphical interfaces for Snort
	Getting Snort in prebuilt appliances
	Using Security Onion
	Scanning and hardening with Lynis
	Installing Lynis on Red Hat/CentOS
	Installing Lynis on Ubuntu
	Scanning with Lynis
	Finding vulnerabilities with OpenVAS
	Web server scanning with Nikto
	Nikto in Kali Linux
	Installing and updating Nikto on Linux
	Scanning a web server with Nikto
	Summary
	Security Tips and Tricks for the Busy Bee
	Auditing system services
	Auditing system services with systemctl
	Auditing network services with netstat
	Auditing network services with Nmap
	Port states
	Scan types
	Password-protecting the GRUB 2 bootloader
	Resetting the password for Red Hat/CentOS
	Resetting the password for Ubuntu
	Preventing kernel parameter edits on Red Hat/CentOS
	Preventing kernel parameter edits on Ubuntu
	Password-protecting boot options
	Disabling the submenu for Ubuntu
	Password-protecting boot option steps for both Ubuntu and Red Hat
	Securely configuring BIOS/UEFI
	Using a security checklist for system setup
	Summary
	Other Books You May Enjoy
	Leave a review – let other readers know what you think

