Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

A Microsoft Azure

Azure DevOps Security
CheckList

17.03.2022

Okan YILDIZ
Secure Debug Limited

Senior Security Engineer / Senior Software Developer
| CASE .NET | CEH | CTIA | ECIH | CCISO |

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

Summary 4
Azure Devops Security Checklist 5
Access Control 5
Manage users and groups using Role-Based Access Control (RBAC) 5
Apply the principle of least privilege for granting permissions 6
Regularly review user accounts and disable unnecessary accounts 7
Authentication and Authorization 8
Implement strong authentication with Multi-Factor Authentication (MFA) 8
Provide centralized identity management using SSO and Azure Active Directory
integration 9
Reduce authentication risks with risk-based policies and Azure AD Identity
Protection. 10
Network Security 11
Restrict access using IP-based network security groups and private networks 11
Establish secure communication with on-premises systems using VPN or
ExpressRoute 12
Protect and route network traffic with Azure DDoS Protection and Azure Firewall 13
Code Security 14
Apply code review processes to detect security vulnerabilities. 14
Use static and dynamic code analysis tools for automatic detection. 15
Establish secure coding standards and ensure dependency security 16
DevOps Security 18
Add security controls and automated tests in Build and Release pipelines 18
Secure agents by using trusted agent pools 19
Ensure code security with Git branch policies and pull request reviews 20
Azure Key Vault 21
Securely store credentials, certificates, and access keys in Azure Key Vault 21
Configure access to Key Vault from Azure DevOps pipelines to protect credentials 22
Regular Auditing and Review 23
Monitor changes using Azure DevOps audit logs 23
Continuously track and improve security posture with Azure Policy and Azure
Security Center 24
Perform internal and external security audits and penetration tests for evaluation 25
Security Configuration 27
Regularly review and update the security configurations of your Azure DevOps
services, resources, and tools 27
Implement secure baselines for your Azure resources and enforce them consistently
across your environment 28
Use Azure Policy to define and enforce security configurations across your Azure
resources 29
Continuously monitor configuration changes and assess their impact on your security
posture 30
Data Recovery 31

Implement a robust backup and recovery strategy for your critical data, including

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

source code, artifacts, and configuration data

31

Use Azure Backup and Azure Site Recovery to protect your data and applications 32

Regularly test your data recovery processes to ensure they are effective and up to

date

Establish a disaster recovery plan to minimize downtime and data loss in case of a

security breach or system failure
Inventory and Asset Management

Maintain an up-to-date inventory of all Azure DevOps resources, including
repositories, pipelines, environments, and tools

33

33
34

34

Use Azure Resource Manager (ARM) templates to manage your Azure resources in

a consistent and automated manner

Implement tagging strategies to categorize your Azure resources based on project,

team, or other relevant attributes

35

36

Continuously monitor your inventory and resources for any unauthorized changes or

access
Conclusion

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

37
38

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

Summary

This Azure DevOps Security Guide, prepared for Secure Debug Limited, provides a
comprehensive framework for ensuring a secure and compliant Azure DevOps environment.
The guide covers various aspects of security, including access control, network security,
code security, and continuous monitoring.

Key points addressed in this guide include:

1.

2.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21

22.

Managing users and groups using Role-Based Access Control (RBAC) to define and
enforce granular permissions.

Applying the principle of least privilege for granting permissions to minimize potential
risks.

Regularly reviewing user accounts and disabling unnecessary accounts to reduce the
attack surface.

Implementing strong authentication with Multi-Factor Authentication (MFA) to protect
against unauthorized access.

Integrating centralized identity management using Single Sign-On (SSO) and Azure
Active Directory.

Reducing authentication risks using risk-based policies and Azure AD Identity
Protection integration.

Restricting access with IP-based network security groups and private networks.
Establishing secure communication with on-premises systems using VPN or
ExpressRoute.

Protecting and routing network traffic with Azure DDoS Protection and Azure Firewall.

. Applying code review processes and utilizing static and dynamic code analysis tools

for vulnerability detection.

Establishing secure coding standards and ensuring dependency security.
Incorporating security controls and automated tests in Build and Release pipelines.
Securing agents with trusted agent pools and implementing Git branch policies and
pull request reviews for code security.

Storing credentials, certificates, and access keys securely in Azure Key Vault and
configuring access for Azure DevOps pipelines.

Monitoring changes using Azure DevOps audit logs for security, compliance, and
operational awareness.

Continuously tracking and improving security posture with Azure Policy and Azure
Security Center.

Conducting internal and external security audits and penetration tests for evaluation
and continuous improvement.

Regularly review and update the security configurations of your Azure DevOps
services, resources, and tools.

Implement secure baselines for your Azure resources and enforce them consistently
across your environment.

Use Azure Policy to define and enforce security configurations across your Azure
resources.

. Continuously monitor configuration changes and assess their impact on your security

posture.
Implement a robust backup and recovery strategy for your critical data, including
source code, artifacts, and configuration data.

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

23. Use Azure Backup and Azure Site Recovery to protect your data and applications.

24. Regularly test your data recovery processes to ensure they are effective and up to
date.

25. Establish a disaster recovery plan to minimize downtime and data loss in case of a
security breach or system failure.

26. Maintain an up-to-date inventory of all Azure DevOps resources, including
repositories, pipelines, environments, and tools.

27. Use Azure Resource Manager (ARM) templates to manage your Azure resources in
a consistent and automated manner.

28. Implement tagging strategies to categorize your Azure resources based on project,
team, or other relevant attributes.

29. Continuously monitor your inventory and resources for any unauthorized changes or
access.

This summary highlights the main topics covered in the guide, providing a holistic approach
to Azure DevOps security, aimed at fostering a culture of continuous improvement and
collaboration between developers, security teams, and other stakeholders. Implementing
these best practices will contribute to the ongoing success of your DevOps projects and help
protect your organization's critical assets.

Azure Devops Security Checklist

Access Control

Manage users and groups using Role-Based Access Control (RBAC)

Role-Based Access Control (RBAC) is a method of managing user access and permissions
based on their roles within an organization. It helps maintain security by ensuring that users
only have access to the resources and operations relevant to their job responsibilities. In

Azure DevOps, you can use RBAC to assign appropriate permissions to users and groups.

Here's how you can manage users and groups using RBAC in Azure DevOps:

1. Define roles: Start by identifying the distinct roles within your organization, such as
developers, testers, project managers, and administrators. Clearly define the
responsibilities and required access levels for each role.

2. Create groups: In Azure DevOps, create groups that correspond to the defined
roles. For example, you might create groups like "Developers," "Testers," or "Project
Managers." Assigning users to these groups will help manage permissions more
efficiently.

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

3. Assign permissions: Assign appropriate permissions to each group based on their
role. Azure DevOps has built-in roles with predefined sets of permissions, such as
"Reader," "Contributor," and "Administrator." You can also create custom roles with
specific permissions tailored to your organization's needs.

4. Add users to groups: Add users to the appropriate groups based on their roles
within the organization. By doing this, users will inherit the permissions assigned to
the group they belong to.

5. Regularly review and update: Periodically review the roles, groups, and
permissions to ensure they still align with your organization's requirements. Update
roles and permissions as needed, and add or remove users from groups when their
roles within the organization change.

By implementing RBAC in Azure DevOps, you can effectively manage user access and
ensure that users only have the necessary permissions for their job responsibilities, thus
improving security and reducing potential risks.

Apply the principle of least privilege for granting permissions

The principle of least privilege (PoLP) is a security best practice that involves granting users
only the minimum permissions they need to perform their job duties. By applying this
principle, you can reduce the risk of unauthorized access, data breaches, and other security
incidents. Here's how you can apply the principle of least privilege for granting permissions
in Azure DevOps:

1. Analyze job requirements: Begin by analyzing the job responsibilities of each role
within your organization. Determine the specific resources and operations each role
requires access to in order to perform their tasks effectively.

2. Grant minimal permissions: Assign permissions to users or groups based on their
roles, ensuring they have access only to the resources and operations necessary for
their job. Avoid granting excessive permissions that go beyond what is required for a
given role.

3. Use built-in roles: Azure DevOps provides built-in roles such as "Reader,"
"Contributor," and "Administrator," which have predefined sets of permissions. Utilize
these built-in roles whenever possible, as they are designed to follow the principle of
least privilege.

4. Create custom roles: If the built-in roles do not meet your organization's specific
requirements, create custom roles with the minimal set of permissions needed for
each role. Be cautious when assigning permissions to custom roles to avoid
inadvertently granting excessive access.

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

5.

Regularly review permissions: Periodically review and update the permissions
assigned to users and groups. Remove any unnecessary permissions or access that
may have been granted over time. Also, adjust permissions when users change roles
within the organization or when their job responsibilities evolve.

Monitor and audit: Monitor user activities and access patterns to detect potential
security issues. Regularly audit permissions to ensure that the principle of least
privilege is maintained and that users do not have excessive permissions.

By applying the principle of least privilege in Azure DevOps, you can minimize potential
security risks and maintain a more secure environment. This approach helps prevent
unauthorized access to sensitive resources and reduces the attack surface for potential
adversaries.

Regularly review user accounts and disable unnecessary accounts

Regularly reviewing user accounts and disabling unnecessary accounts is essential to
maintain a secure environment in Azure DevOps. By keeping user accounts up to date and
removing unused or inactive accounts, you can minimize the risk of unauthorized access
and data breaches. Here's how to regularly review user accounts and disable unnecessary
accounts in Azure DevOps:

1.

Establish a review schedule: Create a schedule for reviewing user accounts in
Azure DevOps. The frequency of these reviews can depend on your organization's
size, the number of users, and your specific security requirements. For example, you
might choose to perform reviews monthly, quarterly, or semi-annually.

Identify inactive accounts: During the review process, look for user accounts that
have been inactive for an extended period or have not been used as expected.
Inactive accounts could include those belonging to former employees, temporary
workers, or users who have changed roles within the organization.

Remove unnecessary accounts: Disable or delete user accounts that are no longer
needed or have not been used as expected. Be sure to follow your organization's
policies and procedures for offboarding users, such as revoking access to resources
and transferring ownership of any relevant work items.

Update user access: If a user has changed roles within the organization, update
their permissions and group memberships to reflect their new responsibilities. Ensure
that users have access only to the resources and operations necessary for their
current role, following the principle of least privilege.

Monitor user activity: Utilize Azure DevOps monitoring and auditing features to
track user activity and detect potential security issues. Regularly review audit logs
and other reports to identify any unusual behavior or access patterns that may
indicate unauthorized access or misuse of accounts.

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

6. Automate account management: Consider using automation tools or scripts to help
streamline the user account review process. For example, you can create scripts to
identify inactive accounts, send notifications to account owners, or automatically
disable accounts that have not been used for a specified period.

By regularly reviewing user accounts and disabling unnecessary ones in Azure DevOps, you
can maintain a secure environment and minimize the risk of unauthorized access to your
projects and resources. This practice helps keep your user base accurate and ensures that
only authorized users have access to your organization's resources.

Authentication and Authorization

Implement strong authentication with Multi-Factor Authentication (MFA)

Implementing strong authentication with Multi-Factor Authentication (MFA) is a critical
security measure that helps protect your Azure DevOps environment from unauthorized
access. MFA requires users to provide at least two forms of verification before granting
access, making it much more difficult for attackers to compromise user accounts. Here's how
to implement strong authentication with MFA in Azure DevOps:

1. Enable MFA in Azure Active Directory: Azure DevOps relies on Azure Active
Directory (Azure AD) for user authentication. To enable MFA, start by configuring it in
Azure AD. Go to the Azure portal, navigate to Azure Active Directory, and then find
the "Security" section. Here, you can enable MFA for your organization.

2. Set MFA policies: Define MFA policies for your organization based on your security
requirements. You can enforce MFA for all users or only specific user groups.
Additionally, you can set up conditional access policies that require MFA under
certain conditions, such as when users access sensitive resources or when they sign
in from unfamiliar locations.

3. Choose authentication factors: MFA supports multiple authentication factors, such
as something the user knows (e.g., a password), something the user has (e.g., a
hardware token or smartphone), and something the user is (e.g., biometric data like a
fingerprint). Choose the authentication factors that best suit your organization's
needs and ensure a secure and user-friendly authentication experience.

4. Educate users: Inform your users about the importance of MFA and provide
guidance on how to set up and use MFA for their accounts. Offer resources and
support to help users understand the MFA process and troubleshoot any issues they
may encounter.

5. Monitor and audit: Continuously monitor and audit user activity to detect any
potential security threats or unauthorized access attempts. Review MFA-related logs

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

and reports to identify any suspicious behavior or trends that may indicate a security
risk.

6. Regularly review and update: Periodically review your MFA policies and settings to
ensure they remain effective and aligned with your organization's security
requirements. Update MFA settings as needed to address any changes in the threat
landscape or to accommodate new authentication factors or technologies.

By implementing strong authentication with MFA in Azure DevOps, you can significantly
reduce the risk of unauthorized access to your projects and resources. This added layer of
security helps protect your organization from potential data breaches, account compromises,
and other security incidents.

Provide centralized identity management using SSO and Azure Active Directory
integration

Providing centralized identity management using Single Sign-On (SSO) and Azure Active
Directory (Azure AD) integration simplifies access control and enhances security in Azure
DevOps. SSO allows users to authenticate once and access multiple applications, while
Azure AD integration enables centralized management of user accounts and permissions.
Here's how to provide centralized identity management using SSO and Azure Active
Directory integration in Azure DevOps:

1. Set up Azure Active Directory: Azure DevOps relies on Azure AD for user
authentication and management. If you haven't already, create and configure an
Azure AD tenant for your organization. Add users, groups, and any required custom
roles in Azure AD.

2. Configure SSO: Enable SSO by configuring your Azure AD tenant as the identity
provider (IdP) for Azure DevOps. In the Azure portal, navigate to the "Enterprise
applications" section under Azure Active Directory and add Azure DevOps as an
application. Follow the guided setup process to configure SSO between Azure AD
and Azure DevOps.

3. Map Azure AD groups to Azure DevOps: After configuring SSO, map Azure AD
groups to Azure DevOps by associating them with specific projects or teams. This
allows you to manage access permissions centrally through Azure AD while
reflecting those permissions in Azure DevOps.

4. Set up conditional access policies: Enhance security by creating conditional
access policies in Azure AD. These policies can require additional authentication
steps, such as Multi-Factor Authentication (MFA), under specific conditions (e.g.,
accessing sensitive resources or signing in from unfamiliar locations).

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

5. Configure third-party identity providers (optional): If your organization uses
third-party identity providers (IdPs) such as Google, Facebook, or others, you can
integrate them with Azure AD using federation. This allows users to authenticate
using their third-party credentials while still benefiting from centralized identity
management in Azure AD.

6. Educate users: Inform users about the SSO process and provide guidance on how
to access Azure DevOps using their Azure AD credentials. Offer resources and
support to help users understand the SSO experience and troubleshoot any issues
they may encounter.

7. Monitor and audit: Regularly monitor user activity and access patterns to detect
potential security issues. Review Azure AD and Azure DevOps logs to identify any
unusual behavior or trends that may indicate security risks.

8. Regularly review and update: Periodically review your SSO and Azure AD
integration settings to ensure they remain effective and aligned with your
organization's security requirements. Update settings as needed to address any
changes in the threat landscape or to accommodate new identity management
features or technologies.

By implementing strong authentication with MFA in Azure DevOps, you can significantly
reduce the risk of unauthorized access to your projects and resources. This added layer of
security helps protect your organization from potential data breaches, account compromises,
and other security incidents.

Reduce authentication risks with risk-based policies and Azure AD ldentity
Protection.

Reducing authentication risks with risk-based policies and Azure AD Identity Protection
helps enhance security in Azure DevOps by detecting and responding to potential threats in
real-time. Risk-based policies evaluate user behavior and other factors to identify potential
security risks, while Azure AD Identity Protection leverages machine learning algorithms to
detect suspicious activities. Here's how to reduce authentication risks with risk-based
policies and Azure AD Identity Protection integration in Azure DevOps:

1. Enable Azure AD Identity Protection: To use Azure AD Identity Protection, you
need an Azure AD Premium P2 subscription. Once you have the appropriate
subscription, enable Identity Protection in the Azure portal by navigating to Azure
Active Directory and then to the "Security" section.

2. Configure risk-based policies: In Azure AD Identity Protection, you can create and
configure risk-based policies that automatically respond to detected risks. These
policies can include sign-in risk policies and user risk policies.

e Sign-in risk policies: These policies evaluate the risk level of each sign-in
attempt based on factors such as unfamiliar locations, anonymous IP
addresses, and unusual sign-in patterns. You can configure these policies to

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

require additional authentication steps, such as Multi-Factor Authentication
(MFA), for sign-ins deemed risky.

e User risk policies: These policies assess the overall risk level of user
accounts based on their behavior and activity patterns. You can configure
these policies to block access or require users to reset their passwords when
a certain risk level is detected.

3. Integrate with Azure DevOps: Azure AD ldentity Protection is integrated with Azure
DevOps through Azure AD, which serves as the authentication provider for Azure
DevOps. As a result, the risk-based policies and protections you configure in Azure
AD Identity Protection will automatically apply to your Azure DevOps users.

4. Educate users: Inform your users about the risk-based policies and Azure AD
Identity Protection measures in place. Provide guidance on how to respond to risk
alerts, such as resetting their password or completing additional authentication steps.

5. Monitor and audit: Regularly review the Azure AD ldentity Protection dashboard
and reports to monitor detected risks and the effectiveness of your risk-based
policies. Adjust policies as needed to address emerging threats or changing security
requirements.

6. Regularly review and update: Periodically review your risk-based policies and
Azure AD Identity Protection settings to ensure they remain effective and aligned with
your organization's security requirements. Update settings as needed to address any
changes in the threat landscape or to accommodate new security features or
technologies.

By reducing authentication risks with risk-based policies and Azure AD ldentity Protection
integration in Azure DevOps, you can enhance security and respond more effectively to
potential threats. This approach helps protect your organization from unauthorized access,
account compromises, and other security incidents related to user authentication.

Network Security

Restrict access using IP-based network security groups and private networks

Restricting access using IP-based network security groups and private networks helps
enhance security in Azure DevOps by limiting access to your resources based on specific IP
addresses or address ranges. This approach can help prevent unauthorized access and
reduce the attack surface of your environment. Here's how to restrict access using IP-based
network security groups and private networks in Azure DevOps:

1. Configure IP-based restrictions for Azure DevOps Services: You can limit access
to your Azure DevOps organization by specifying a list of allowed IP addresses or
address ranges. In the Azure DevOps portal, go to the "Organization settings" page,
then click on "Security" and "IP restrictions." Here, you can add the IP addresses or
ranges that are allowed to access your organization.

2. Configure Azure Private Link (optional): Azure Private Link enables you to access
Azure DevOps Services over a private network connection. By using Private Link,
you can securely access your Azure DevOps resources without exposing them to the
public internet. To set up Azure Private Link, follow the documentation provided by

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

Microsoft to create a Private Link Service and connect it to your Azure DevOps
organization.

3. Set up network security groups (NSGs): NSGs are used to control inbound and
outbound traffic to Azure resources, such as virtual machines (VMs) or App Services.
Configure NSGs with appropriate rules to allow or deny access based on IP
addresses or address ranges. You can create and manage NSGs in the Azure portal
by navigating to the "Networking" section of the desired resource.

4. Use virtual networks (VNets): VNets provide a private, isolated network in Azure
that you can use to host your resources, such as VMs or App Services. Configure
VNets to include the required subnets and IP address ranges, and connect them to
your on-premises network using a VPN gateway or ExpressRoute, if necessary. By
using VNets, you can ensure that your Azure DevOps resources are only accessible
from within your private network.

5. Monitor and audit: Regularly review logs and reports to monitor access to your
Azure DevOps resources and detect any potential security issues. Use Azure
Monitor, Log Analytics, or other monitoring tools to track access patterns and identify
any unusual behavior or trends that may indicate unauthorized access.

6. Regularly review and update: Periodically review your IP-based restrictions,
network security groups, and private network configurations to ensure they remain
effective and aligned with your organization's security requirements. Update settings
as needed to address any changes in the threat landscape or to accommodate new
security features or technologies.

By restricting access using IP-based network security groups and private networks in Azure
DevOps, you can enhance security and prevent unauthorized access to your projects and
resources. This approach helps ensure that only authorized users and devices can access
your Azure DevOps environment, reducing the risk of data breaches and other security
incidents.

Establish secure communication with on-premises systems using VPN or
ExpressRoute

Establishing secure communication with on-premises systems using VPN or ExpressRoute
is essential when you need to integrate Azure DevOps with your existing infrastructure. Both
options allow you to create private connections between your on-premises network and
Azure, ensuring secure data transfer and reducing exposure to the public internet. Here's
how to establish secure communication with on-premises systems using VPN or
ExpressRoute in Azure DevOps:

1. Assess your requirements: Before selecting a connectivity option, evaluate your
organization's needs in terms of bandwidth, latency, and security requirements. While
VPN is typically more straightforward and cost-effective, ExpressRoute provides
higher bandwidth, lower latency, and enhanced security features.

2. Set up a VPN connection: If you choose to use a VPN, you'll need to create a VPN
gateway in your Azure virtual network (VNet) and configure a VPN device on your
on-premises network. Follow the Azure documentation to create and configure the
VPN gateway, and then establish a secure site-to-site VPN connection between your
on-premises network and Azure VNet.

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

3. Set up ExpressRoute: If you opt for ExpressRoute, you'll need to establish a
connection between your on-premises network and an Azure ExpressRoute location.
This process typically involves working with an ExpressRoute connectivity partner or
a network service provider. Follow the Azure documentation to create an
ExpressRoute circuit and configure peering to your Azure VNet.

4. Configure Azure DevOps: Once you've established a secure connection to Azure,
you may need to update the settings in your Azure DevOps projects to enable
integration with your on-premises systems. This could involve configuring build and
release pipelines to interact with on-premises resources, updating service
connections, or modifying other settings to work with your on-premises infrastructure.

5. Monitor and audit: Regularly monitor the health and performance of your VPN or
ExpressRoute connection to ensure optimal performance and security. Use Azure
Monitor, Network Watcher, or other monitoring tools to track usage, latency, and other
metrics. Review logs and reports to detect potential security issues or performance
problems.

6. Regularly review and update: Periodically review your VPN or ExpressRoute
configuration to ensure it remains effective and aligned with your organization's
security and performance requirements. Update settings as needed to address any
changes in the threat landscape, or to accommodate new features or technologies.

By establishing secure communication with on-premises systems using VPN or
ExpressRoute in Azure DevOps, you can securely integrate your cloud-based projects and
resources with your existing infrastructure. This approach helps ensure that your data is
protected during transit and reduces the risk of unauthorized access, data breaches, and
other security incidents.

Protect and route network traffic with Azure DDoS Protection and Azure Firewall

Protecting and routing network traffic with Azure DDoS Protection and Azure Firewall
enhances the security of your Azure DevOps environment by safeguarding against
Distributed Denial of Service (DDoS) attacks and filtering network traffic based on specific
rules. Here's how to protect and route network traffic with Azure DDoS Protection and Azure
Firewall in Azure DevOps:

1. Enable Azure DDoS Protection Standard: Azure DDoS Protection Standard
provides advanced DDoS protection for your virtual networks (VNets). To enable it,
go to the Azure portal, navigate to the "Virtual networks" section, and select the VNet
you want to protect. Under the "DDoS Protection" tab, choose "Standard" and save
your changes. Azure DDoS Protection Standard will then automatically protect all
public IP addresses associated with the VNet.

2. Configure DDoS Protection settings: Customize the settings of your DDoS
Protection, such as traffic thresholds and alert settings, to fit your organization's
requirements. Use Azure Monitor and diagnostic logs to review DDoS attack patterns
and adjust protection settings accordingly.

3. Deploy Azure Firewall: Azure Firewall is a managed, cloud-based network security
service that protects your Azure Virtual Network resources. To deploy Azure Firewall,
follow the Azure documentation to create a new firewall instance, configure the
required subnets, and associate it with your VNet.

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

4. Configure Azure Firewall rules: Define rules for Azure Firewall to filter and route
network traffic based on specific criteria, such as source and destination IP
addresses, protocols, and ports. You can create application rules to control outbound
access to specific domains or fully qualified domain names (FQDNs) and network
rules to control inbound and outbound traffic based on IP addresses, protocols, and
ports.

5. Integrate Azure Firewall with Azure DevOps: Update the network settings in your
Azure DevOps projects and pipelines to route traffic through the Azure Firewall
instance. This might involve modifying service connections, build agents, or other
configurations to work with Azure Firewall.

6. Monitor and audit: Regularly review Azure Firewall logs and metrics to monitor the
effectiveness of your rules and detect potential security issues. Use Azure Monitor,
Log Analytics, or other monitoring tools to track network traffic patterns and identify
any unusual behavior that may indicate unauthorized access or attacks.

7. Regularly review and update: Periodically review your Azure DDoS Protection and
Azure Firewall settings to ensure they remain effective and aligned with your
organization's security requirements. Update settings as needed to address any
changes in the threat landscape or to accommodate new security features or
technologies.

By protecting and routing network traffic with Azure DDoS Protection and Azure Firewall in
Azure DevOps, you can enhance security and minimize the risk of DDoS attacks and
unauthorized access. This approach helps ensure the integrity and availability of your Azure
DevOps environment, reducing the risk of data breaches and other security incidents.

Code Security

Apply code review processes to detect security vulnerabilities.

Applying code review processes to detect security vulnerabilities is essential for ensuring the
security and reliability of your Azure DevOps projects. Code reviews help identify potential
issues early in the development process, reducing the risk of security breaches and
improving overall code quality. Here's how to apply code review processes to detect security
vulnerabilities in Azure DevOps:

1. Establish a code review policy: Create a formal code review policy for your
organization that outlines the goals, scope, and process of code reviews. Ensure that
the policy covers the identification of security vulnerabilities and encourages
collaboration between developers and security teams.

2. Implement branch policies: Configure branch policies in Azure Repos to enforce
code reviews for specific branches, such as the main branch or release branches.
Enable the "Require a minimum number of reviewers" setting and set an appropriate
number of required approvals. This ensures that every pull request must be reviewed
and approved by a specified number of developers before it can be merged.

3. Use pull request reviews: Encourage developers to use pull request reviews in
Azure Repos to collaborate on code changes, identify security vulnerabilities, and

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

provide feedback. Encourage reviewers to focus not only on code quality and
functionality but also on security best practices and potential vulnerabilities.

4. Integrate automated security analysis tools: Leverage automated security
analysis tools, such as static application security testing (SAST) and dynamic
application security testing (DAST) tools, to scan your codebase for vulnerabilities.
Integrate these tools into your build and release pipelines in Azure DevOps to identify
security issues early in the development process. Examples of such tools include
SonarQube, Fortify, and Checkmarx.

5. Educate developers on secure coding practices: Provide training and resources
to developers to help them understand secure coding practices and the importance
of identifying and fixing security vulnerabilities during code reviews. Encourage a
security-focused mindset and foster a culture of continuous learning and
improvement.

6. Track and remediate security vulnerabilities: Use Azure Boards or another issue
tracking system to log and track security vulnerabilities identified during code
reviews. Assign responsibility for addressing these vulnerabilities and ensure they
are resolved in a timely manner.

7. Monitor and audit: Regularly review the effectiveness of your code review
processes and their impact on the security of your Azure DevOps projects. Use
metrics such as the number of vulnerabilities detected, the time taken to remediate
issues, and the overall quality of code changes to evaluate the success of your code
review processes.

8. Regularly review and update: Periodically review your code review processes and
security policies to ensure they remain effective and aligned with your organization's
security requirements. Update processes as needed to address any changes in the
threat landscape or to accommodate new security features or technologies.

By applying code review processes to detect security vulnerabilities in Azure DevOps, you
can enhance the security of your projects and reduce the risk of security breaches. This
approach helps ensure that your code is developed with security best practices in mind,
fostering a culture of continuous improvement and collaboration between developers and
security teams.

Use static and dynamic code analysis tools for automatic detection.

Using static and dynamic code analysis tools for automatic detection of vulnerabilities is a
crucial part of ensuring the security of your Azure DevOps projects. These tools can help
identify potential issues early in the development process, reducing the risk of security
breaches and improving overall code quality. Here's how to use static and dynamic code
analysis tools for automatic detection in Azure DevOps:

1. Choose appropriate tools: Select suitable static application security testing (SAST)
and dynamic application security testing (DAST) tools based on your organization's
requirements, programming languages, and frameworks. Examples of SAST tools
include SonarQube, Fortify, and Checkmarx, while examples of DAST tools include
OWASP ZAP, Burp Suite, and Arachni.

2. Integrate SAST tools: Integrate your chosen SAST tools into your build and release
pipelines in Azure DevOps. Configure the tools to scan your codebase during the

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

build process and generate reports on identified vulnerabilities. This will help
developers address issues early in the development cycle.

3. Integrate DAST tools: Integrate your chosen DAST tools into your release pipelines
in Azure DevOps. Configure the tools to scan your web applications during
deployment or as part of your testing process. This will help identify vulnerabilities
that may only be detected during runtime or when the application is interacting with
external systems.

4. Customize tool settings: Tailor the settings of your static and dynamic code
analysis tools to align with your organization's security requirements and risk
tolerance. This may involve adjusting rules, severity thresholds, or reporting options
to ensure that the tools provide actionable and relevant information.

5. Automate vulnerability detection: Configure your build and release pipelines to
automatically trigger static and dynamic code analysis scans during the development
and deployment process. This ensures that potential vulnerabilities are identified and
addressed consistently and efficiently.

6. Monitor and review results: Regularly review the results of your static and dynamic
code analysis scans to track and prioritize identified vulnerabilities. Use Azure
Boards or another issue tracking system to log and track security issues, and assign
responsibility for addressing them.

7. Remediate vulnerabilities: Ensure that developers and security teams collaborate
to address identified vulnerabilities in a timely manner. Use the reports and insights
provided by the static and dynamic code analysis tools to guide the remediation
process and validate that vulnerabilities have been resolved.

8. Educate developers: Provide training and resources to developers on the use of
static and dynamic code analysis tools, as well as secure coding practices.
Encourage a security-focused mindset and foster a culture of continuous learning
and improvement.

9. Regularly review and update: Periodically review your static and dynamic code
analysis tool configurations and processes to ensure they remain effective and
aligned with your organization's security requirements. Update tools and processes
as needed to address any changes in the threat landscape or to accommodate new
security features or technologies.

By using static and dynamic code analysis tools for automatic detection in Azure DevOps,
you can enhance the security of your projects and reduce the risk of security breaches. This
approach helps ensure that your code is developed with security best practices in mind, and
promotes a culture of continuous improvement and collaboration between developers and
security teams.

Establish secure coding standards and ensure dependency security

Establishing secure coding standards and ensuring dependency security is essential for
maintaining the security and reliability of your Azure DevOps projects. Secure coding
practices help minimize the risk of introducing vulnerabilities in your code, while dependency
security ensures that the third-party libraries and components you rely on are also secure.
Here's how to establish secure coding standards and ensure dependency security in Azure
DevOps:

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

1. Develop secure coding guidelines: Create a set of secure coding guidelines that
outline best practices for writing secure code in your organization. These guidelines
should cover topics such as input validation, error handling, secure data storage, and
secure communication. Ensure that the guidelines are tailored to the programming
languages and frameworks used in your projects.

2. Educate developers: Provide training and resources to developers on secure
coding practices and the importance of following your organization's secure coding
guidelines. Encourage a security-focused mindset and foster a culture of continuous
learning and improvement.

3. Integrate security into the development process: Encourage developers to apply
secure coding practices throughout the development process, from design and
implementation to testing and deployment. Use tools such as static and dynamic
code analysis to help identify and address potential security issues.

4. Monitor open-source dependencies: Use tools like Dependabot, WhiteSource, or
Snyk to automatically monitor your open-source dependencies for known
vulnerabilities and outdated versions. Integrate these tools into your Azure DevOps
pipelines to receive automated alerts and recommendations for updating insecure
dependencies.

5. Implement dependency management policies: Establish policies for managing
dependencies, including guidelines for selecting and approving third-party libraries,
reviewing and updating dependencies, and addressing identified vulnerabilities.
Ensure that these policies are followed consistently across all projects.

6. Regularly audit dependencies: Periodically review your project's dependencies to
ensure they are up-to-date, secure, and compliant with your organization's policies.
Remove any unnecessary or outdated dependencies that may pose security risks.

7. Use private package feeds: When using package managers like NuGet, npm, or
Maven, consider using Azure Artifacts or another private package feed to securely
store and manage your dependencies. This allows you to control access to your
packages and ensure that only approved dependencies are used in your projects.

8. Establish a vulnerability response process: Develop a process for responding to
vulnerabilities in your code or dependencies, including steps for identifying,
prioritizing, and addressing vulnerabilities. Ensure that your team is familiar with this
process and that it is followed consistently.

9. Regularly review and update: Periodically review your secure coding standards
and dependency security policies to ensure they remain effective and aligned with
your organization's security requirements. Update guidelines and policies as needed
to address any changes in the threat landscape or to accommodate new security
features or technologies.

By establishing secure coding standards and ensuring dependency security in Azure
DevOps, you can minimize the risk of security breaches and improve the overall security
posture of your projects. This approach helps ensure that your code and the third-party
components you rely on are developed with security best practices in mind, fostering a
culture of continuous improvement and collaboration between developers and security
teams.

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

DevOps Security

Add security controls and automated tests in Build and Release pipelines

Adding security controls and automated tests in Build and Release pipelines can help
improve the security of your Azure DevOps projects by identifying and addressing
vulnerabilities early in the development process. Integrating security checks into your
pipelines ensures that security is an integral part of your software development lifecycle.
Here's how to add security controls and automated tests in Build and Release pipelines in
Azure DevOps:

1.

Integrate SAST tools: Integrate Static Application Security Testing (SAST) tools like
SonarQube, Fortify, or Checkmarx into your build pipeline. Configure the tools to
automatically scan your code for vulnerabilities during the build process and generate
reports on identified issues.

Integrate DAST tools: Integrate Dynamic Application Security Testing (DAST) tools
like OWASP ZAP, Burp Suite, or Arachni into your release pipeline. Configure these
tools to automatically scan your web applications during deployment or as part of
your testing process, identifying vulnerabilities that may only be detected during
runtime or when the application is interacting with external systems.

Implement automated security tests: Develop custom automated security tests to
validate the security of your application. These tests can include checks for input
validation, secure communication, authentication, and other security requirements.
Integrate these tests into your build or release pipelines to ensure they are executed
during the development process.

Use dependency vulnerability scanning tools: Incorporate tools like Dependabot,
WhiteSource, or Snyk into your build pipeline to automatically check your project's
dependencies for known vulnerabilities and outdated versions. This helps ensure that
third-party libraries and components you rely on are also secure.

Enforce code signing: Configure your build pipeline to sign your code using a
trusted digital certificate. This helps ensure the integrity of your code and protects
against tampering or unauthorized modifications.

Implement security gates: Add security gates in your release pipeline that prevent
the deployment of code with identified vulnerabilities. Configure these gates to
automatically block the release if security issues are detected, requiring the issues to
be resolved before deployment can proceed.

Monitor and review pipeline results: Regularly review the results of your security
scans and tests to identify and prioritize vulnerabilities. Use Azure Boards or another
issue tracking system to log and track security issues, assigning responsibility for
addressing them.

Remediate vulnerabilities: Ensure that developers and security teams collaborate
to address identified vulnerabilities in a timely manner. Use the reports and insights
provided by security tools and tests to guide the remediation process and validate
that vulnerabilities have been resolved.

Regularly review and update: Periodically review your build and release pipeline
configurations, security controls, and automated tests to ensure they remain effective

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

and aligned with your organization's security requirements. Update tools, tests, and
processes as needed to address any changes in the threat landscape or to
accommodate new security features or technologies.

By adding security controls and automated tests in Build and Release pipelines in Azure
DevOps, you can enhance the security of your projects and reduce the risk of security
breaches. This approach helps ensure that security is an integral part of your software
development lifecycle, fostering a culture of continuous improvement and collaboration
between developers and security teams.

Secure agents by using trusted agent pools

Securing agents by using trusted agent pools is essential to ensure the integrity and security
of your build and release processes in Azure DevOps. Trusted agent pools help minimize the
risk of unauthorized access or tampering with your build and release pipelines. Here's how to
secure agents by using trusted agent pools in Azure DevOps:

1. Understand agent pools: An agent pool is a collection of agents that are used to
run build and release tasks in Azure DevOps. Agents can be either Microsoft-hosted
or self-hosted. Microsoft-hosted agents are automatically maintained and secured by
Azure DevOps, while self-hosted agents require manual management and security
configuration.

2. Choose the appropriate agent type: When using Microsoft-hosted agents, you
benefit from the security and maintenance provided by Microsoft. However, if your
organization has specific security requirements or needs to access on-premises
resources, you might need to use self-hosted agents.

3. Create dedicated agent pools: For self-hosted agents, create dedicated agent
pools for different projects or environments (e.g., development, staging, production).
This helps you isolate the resources and control access to specific agent pools,
minimizing the potential impact of security breaches or misconfigurations.

4. Restrict access to agent pools: Use Role-Based Access Control (RBAC) to restrict
access to your agent pools. Assign the appropriate roles to users and groups, such
as "Agent Pool Administrator" or "Agent Pool User," to control who can manage and
use the agents within a specific pool.

5. Secure self-hosted agents: When using self-hosted agents, ensure they are
installed on secure and regularly updated machines. Configure the agents to run as a
dedicated user with the least necessary privileges, and use network security best
practices to protect the machines hosting the agents, such as firewall rules and
network segmentation.

6. Regularly update self-hosted agents: Ensure your self-hosted agents are always
up to date with the latest security patches and updates. Regularly check for updates
and apply them in a timely manner to minimize security risks.

7. Monitor agent activity: Regularly review the logs and activity of your agents to
identify any suspicious activity or potential security issues. Use Azure Monitor or
other monitoring tools to keep track of agent performance and health.

8. Secure agent communication: Ensure the communication between your agents
and Azure DevOps is secure by using HTTPS and secure web sockets (WSS). This

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

helps protect the confidentiality and integrity of the data exchanged between agents
and the Azure DevOps server.

9. Regularly review and update: Periodically review your agent pool configurations
and security settings to ensure they remain effective and aligned with your
organization's security requirements. Update settings and processes as needed to
address any changes in the threat landscape or to accommodate new security
features or technologies.

By securing agents using trusted agent pools in Azure DevOps, you can minimize the risk of
security breaches or unauthorized access to your build and release processes. This
approach helps ensure the integrity and security of your software development lifecycle,
fostering a culture of continuous improvement and collaboration between developers and
security teams.

Ensure code security with Git branch policies and pull request reviews

Ensuring code security with Git branch policies and pull request reviews is an important
aspect of maintaining the security and quality of your codebase in Azure DevOps.
Implementing branch policies and enforcing code reviews helps you catch potential
vulnerabilities before they are merged into your main branches. Here's how to ensure code
security with Git branch policies and pull request reviews in Azure DevOps:

1. Set up branch policies: In your Azure DevOps project, navigate to the Repos
section, and then to the Branches tab. Choose the main branch or any other branch
that requires protection, and click on the "..." icon next to it. Select "Branch policies"
to configure the policies for that branch.

2. Require pull requests: Enable the "Require a minimum number of reviewers" policy
and set the number of required reviewers to ensure that all changes must go through
a pull request process before they can be merged. This ensures that every change is
reviewed and approved by the appropriate team members.

3. Enforce reviewer requirements: Configure the "Automatically include code
reviewers" policy to automatically assign specific reviewers or groups to review
changes to specific parts of your codebase. This ensures that the right experts
review the changes and provides an additional layer of security.

4. Use required approvers: If you have specific individuals or groups responsible for
approving changes, you can enforce their approval using the "Required approvers"
policy. This ensures that only authorized personnel can approve changes before they
are merged.

5. Enforce code review comments: Enable the "Reset code reviewer votes when
there are new changes" policy to require reviewers to re-review and approve
changes if additional commits are added to a pull request. This ensures that all
changes are reviewed and approved, even if they are made after the initial review.

6. Check for linked work items: Enable the "Check for linked work items" policy to
require that each pull request is associated with one or more work items. This helps
maintain traceability between changes and their corresponding tasks or
requirements.

7. Configure build validation: Enable the "Build validation" policy to automatically
trigger a build and run tests whenever a pull request is created or updated. This

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

ensures that your code is tested and validated before it's merged, reducing the risk of
introducing vulnerabilities or breaking existing functionality.

8. Enforce status checks: If you use external services, such as SonarQube or security
scanning tools, configure the "Status checks" policy to require these services to
report a successful status before a pull request can be completed. This ensures that
your code meets the required quality and security standards.

9. Regularly review and update policies: Periodically review your Git branch policies
and pull request review processes to ensure they remain effective and aligned with
your organization's security requirements. Update policies and processes as needed
to address any changes in the threat landscape or to accommodate new security
features or technologies.

By ensuring code security with Git branch policies and pull request reviews in Azure
DevOps, you can minimize the risk of security breaches and maintain a high-quality
codebase. This approach helps ensure that your code is developed with security best
practices in mind and promotes a culture of continuous improvement and collaboration
between developers and security teams.

Azure Key Vault

Securely store credentials, certificates, and access keys in Azure Key Vault

Securely storing credentials, certificates, and access keys in Azure Key Vault is crucial for
protecting sensitive information and maintaining the security of your Azure DevOps projects.
Azure Key Vault helps centralize and manage secrets, making it easier to implement secure
access controls and monitor usage. Here's how to securely store credentials, certificates,
and access keys in Azure Key Vault:

1. Create an Azure Key Vault: In the Azure portal, create a new Key Vault resource.
Choose a unique name for your Key Vault and configure the appropriate subscription,
resource group, and location.

2. Add secrets, keys, and certificates: Store sensitive information, such as
credentials, access keys, and certificates, as secrets or keys in the Key Vault. Use
the Azure portal, Azure CLI, or SDKs to add and manage these items.

3. Use Role-Based Access Control (RBAC): Configure access to your Key Vault
using RBAC. Assign appropriate roles, such as "Key Vault Contributor" or "Key Vault
Reader," to users, groups, or service principals to control who can manage and
access your secrets, keys, and certificates.

4. Enable access policies: In addition to RBAC, configure access policies to grant
fine-grained permissions to specific users, groups, or service principals. Access
policies allow you to control access to individual secrets, keys, or certificates within
the Key Vault.

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

5. Integrate with Azure DevOps: To use secrets stored in Azure Key Vault within your
Azure DevOps pipelines, add the "AzureKeyVault" task to your pipeline definition.
Configure the task with the appropriate Key Vault details and reference the secrets
you want to use. This enables your pipeline to securely access the required secrets
without storing them in plain text.

6. Use managed identities: When using Azure Key Vault with Azure services, such as
VMs, App Services, or Functions, leverage managed identities for authentication.
Managed identities eliminate the need to store and manage service principal
credentials, providing a more secure and streamlined way to access your Key Vault.

7. Monitor and audit access: Regularly review the access logs and audit events for
your Key Vault to identify any suspicious activity or potential security issues. Use
Azure Monitor, Log Analytics, or other monitoring tools to keep track of Key Vault
usage and access patterns.

8. Implement security best practices: Follow Azure Key Vault security best practices,
such as enabling soft delete, using strong key types and sizes, and regularly rotating
secrets, keys, and certificates. These best practices help ensure the security and
resilience of your Key Vault.

9. Regularly review and update: Periodically review your Key Vault configuration,
access controls, and stored items to ensure they remain effective and aligned with
your organization's security requirements. Update settings and processes as needed
to address any changes in the threat landscape or to accommodate new security
features or technologies.

By securely storing credentials, certificates, and access keys in Azure Key Vault, you can
minimize the risk of security breaches and improve the overall security posture of your Azure
DevOps projects. This approach helps ensure that sensitive information is managed
securely and access controls are enforced consistently, fostering a culture of continuous
improvement and collaboration between developers and security teams.

Configure access to Key Vault from Azure DevOps pipelines to protect credentials

Configuring access to Key Vault from Azure DevOps pipelines to protect credentials is
crucial for maintaining the security of your build and release processes. By integrating Azure
Key Vault with your pipelines, you can securely access sensitive information without
exposing it in plain text. Here's how to configure access to Key Vault from Azure DevOps
pipelines to protect credentials:

1. Set up a service connection: In your Azure DevOps project, navigate to "Project
settings" and then to the "Service connections" tab. Click on "New service
connection" and choose "Azure Resource Manager." Configure the connection to use
either a service principal or a managed identity, and grant it the necessary
permissions to access the target Key Vault.

2. Create an Azure Key Vault task: In your pipeline YAML file, add an AzureKeyVault
task. This task will be responsible for fetching secrets from the Key Vault and making
them available to the pipeline. Configure the task with the following properties:
yaml
Copy code- task: AzureKeyVault@1 displayName: 'Fetch secrets from Azure Key
Vault' inputs: azureSubscription: '<Your_Azure_ Service_Connection>"'

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

KeyVaultName: '<Your_Key Vault Name>' SecretsFilter:
'<Comma-separated_list_of secrets>"'

Replace <Your_Azure_Service_Connection> with the name of the service connection
you created in step 1. Replace <Your_Key_Vault_Name> with the name of the target
Key Vault. Replace <Comma-separated_list of secrets> with a comma-separated
list of secret names you want to fetch from the Key Vault.

3. Reference fetched secrets in your pipeline: After the AzureKeyVault task fetches
the secrets, you can reference them as variables in your pipeline using the
$(SecretName) syntax. For example, if you fetched a secret named
DatabasePassword, you can use it in a script task like this:
bash
Copy code- script: | echo "Using secret: $(DatabasePassword)" displayName: 'Use
fetched secret'

4. Use managed identities (optional): If your Azure DevOps pipeline runs on an
Azure VM or another Azure service that supports managed identities, you can use a
managed identity to authenticate to the Key Vault instead of a service principal.
Configure the managed identity to have the necessary permissions to access the
target Key Vault, and update the service connection in your Azure DevOps project to
use the managed identity.

5. Secure your pipeline: To further secure your pipeline, follow best practices such as
limiting access to the pipeline definition, using Role-Based Access Control (RBAC) to
manage permissions, and regularly reviewing pipeline logs and activity for suspicious
behavior.

By configuring access to Key Vault from Azure DevOps pipelines to protect credentials, you
can minimize the risk of security breaches and maintain the confidentiality and integrity of
sensitive information. This approach helps ensure that credentials and other secrets are
managed securely, fostering a culture of continuous improvement and collaboration between
developers and security teams.

Regular Auditing and Review

Monitor changes using Azure DevOps audit logs

Monitoring changes using Azure DevOps audit logs is essential for maintaining security,
compliance, and operational awareness in your DevOps environment. Audit logs provide
visibility into activities and changes within your Azure DevOps projects, enabling you to track
user behavior, identify potential security issues, and troubleshoot problems. Here's how to
monitor changes using Azure DevOps audit logs:

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

1. Enable auditing: In your Azure DevOps organization settings, navigate to the "Audit"
tab. Ensure that auditing is enabled for your organization. If it's not, follow the
on-screen instructions to enable it.

2. Access audit logs: Once auditing is enabled, you can view and download audit logs
directly from the "Audit" tab in your Azure DevOps organization settings. Logs are
available in JSON format and can be downloaded for further analysis or imported into
other tools.

3. Filter and search audit logs: Use the built-in filtering and search capabilities to
narrow down the logs to specific events, users, or time ranges. This can help you
quickly identify and investigate suspicious activities or changes.

4. Configure log retention: By default, Azure DevOps retains audit logs for 90 days.
You can adjust the retention period based on your organization's compliance and
security requirements. Keep in mind that increasing the retention period may result in
additional storage costs.

5. Integrate with Azure Monitor: To gain more advanced monitoring and alerting
capabilities, integrate Azure DevOps audit logs with Azure Monitor. This enables you
to store logs for longer periods, analyze data using Log Analytics, and create custom
alerts based on specific events or trends.

6. Set up alerts and notifications: In Azure Monitor, configure custom alerts and
notifications to notify you when specific events occur or when certain thresholds are
reached. This can help you proactively detect and respond to security incidents or
operational issues.

7. Regularly review audit logs: Make it a habit to periodically review your Azure
DevOps audit logs to identify any unusual patterns or activities. This can help you
uncover potential security issues, maintain compliance, and ensure the overall health
of your DevOps environment.

8. Train your team: Ensure that your team members are familiar with Azure DevOps
audit logs and their importance. Encourage them to regularly review logs and report
any suspicious activities or anomalies.

By monitoring changes using Azure DevOps audit logs, you can improve the security and
compliance of your DevOps environment, identify potential issues early, and maintain a high
level of operational awareness. This approach helps foster a culture of continuous
improvement and collaboration between developers, security teams, and other stakeholders,
ultimately contributing to the success of your DevOps projects.

Continuously track and improve security posture with Azure Policy and Azure
Security Center

Continuously tracking and improving your security posture with Azure Policy and Azure Security
Center is essential for ensuring the ongoing security and compliance of your Azure DevOps
environment. These tools help you define, monitor, and enforce security policies across your Azure
resources, providing a comprehensive view of your security posture and facilitating continuous
improvement. Here's how to continuously track and improve security posture with Azure Policy and
Azure Security Center:

1. Set up Azure Policy: Azure Policy allows you to define and enforce policies across your
Azure resources. To get started, navigate to the Azure Policy service in the Azure portal, and

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

create new policy assignments or initiatives. Choose from built-in policies or create custom
ones to meet your organization's security requirements.

2. Use Azure Security Center: Enable Azure Security Center to gain visibility into your overall
security posture and receive recommendations for addressing potential security issues.
Security Center helps you identify misconfigurations, insecure access controls, and other
vulnerabilities in your Azure resources, including those related to your Azure DevOps
projects.

3. Monitor compliance: Use Azure Policy and Azure Security Center to continuously monitor
your compliance with security policies and standards. Regularly review the compliance
dashboard and detailed reports to identify non-compliant resources and take corrective
actions.

4. Remediate security issues: When Azure Policy or Azure Security Center identifies
non-compliant resources or security vulnerabilities, take appropriate remediation actions.
These may include adjusting configurations, updating access controls, or applying security
patches.

5. Automate policy enforcement: Use Azure Policy's built-in remediation tasks to
automatically enforce compliance with certain policies. This can help you maintain a
consistent security posture with minimal manual intervention.

6. Integrate with Azure DevOps: To further improve your security posture, integrate Azure
Policy and Azure Security Center with your Azure DevOps pipelines. This can help you
ensure that your infrastructure is secure and compliant throughout the development and
deployment process.

7. Define and enforce secure baselines: Use Azure Policy and Azure Security Center to
define secure baselines for your Azure resources, and enforce them consistently across your
environment. Regularly review and update your baselines to address new security threats
and vulnerabilities.

8. Train your team: Ensure that your development, operations, and security teams are familiar
with Azure Policy and Azure Security Center, and understand their roles and responsibilities
in maintaining a secure and compliant environment.

9. Continuously improve: Regularly review your security posture and policies, and update
them as needed to address changes in your organization's security requirements, the threat
landscape, or new features and capabilities in Azure.

By continuously tracking and improving your security posture with Azure Policy and Azure Security
Center, you can maintain a high level of security and compliance in your Azure DevOps environment,
proactively address potential security issues, and foster a culture of continuous improvement and
collaboration between developers, security teams, and other stakeholders. This approach helps
ensure the ongoing success of your DevOps projects and the security of your organization's critical
assets.

Perform internal and external security audits and penetration tests for evaluation

Performing internal and external security audits and penetration tests is essential for
evaluating the security of your Azure DevOps environment and identifying potential
vulnerabilities. Regular audits and tests help you uncover security weaknesses, validate
existing security controls, and prioritize remediation efforts. Here's how to perform internal
and external security audits and penetration tests for evaluation:

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

1. Develop a security audit plan: Outline the scope, objectives, and schedule of your
security audits. Include both internal and external audits, covering a comprehensive
set of security controls, processes, and technologies. Consider relevant compliance
requirements, industry best practices, and your organization's security policies.

2. Engage external auditors: Hire a reputable external auditor or security firm to
perform independent security audits and penetration tests. External auditors can
provide an unbiased assessment of your security posture and help uncover
vulnerabilities that may not be apparent to your internal team.

3. Conduct internal audits: Perform regular internal security audits to evaluate your
Azure DevOps environment and identify potential weaknesses. Internal audits should
cover various aspects of your environment, such as access controls, code review
processes, pipeline security, and network configurations.

4. Perform penetration tests: Conduct regular penetration tests, also known as ethical
hacking, to simulate real-world attacks on your Azure DevOps environment.
Penetration tests help you identify vulnerabilities and weaknesses that may be
exploited by attackers, allowing you to prioritize remediation efforts based on risk.

5. Obtain required permissions: Before performing penetration tests on Azure
resources, ensure you have obtained the necessary permissions from Microsoft.
Follow the Azure Penetration Testing Rules of Engagement and submit a penetration
testing request form if needed.

6. Remediate identified vulnerabilities: After completing security audits and
penetration tests, prioritize and address the identified vulnerabilities. Develop a
remediation plan that outlines the necessary actions, resources, and timelines for
addressing each vulnerability.

7. Update security policies and controls: Based on the findings of your security
audits and penetration tests, review and update your security policies, controls, and
processes. This may involve revising access controls, improving code review
processes, or implementing additional security measures in your Azure DevOps
pipelines.

8. Train your team: Ensure that your development, operations, and security teams are
familiar with the outcomes of security audits and penetration tests, and understand
their roles and responsibilities in addressing identified vulnerabilities. Provide training
and resources to help your team develop the necessary skills for maintaining a
secure environment.

9. Continuously monitor and improve: Regularly review and update your security
posture, policies, and controls based on the results of security audits and penetration
tests. Implement a continuous improvement process to proactively address new
threats, vulnerabilities, and security best practices.

By performing internal and external security audits and penetration tests, you can evaluate
your Azure DevOps environment's security posture and identify potential vulnerabilities. This
approach helps you maintain a secure and compliant environment, prioritize remediation
efforts, and foster a culture of continuous improvement and collaboration between
developers, security teams, and other stakeholders.

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

Security Configuration

Regularly review and update the security configurations of your Azure DevOps
services, resources, and tools

Regularly reviewing and updating the security configurations of your Azure DevOps services,
resources, and tools is an essential practice to maintain a secure environment and address
evolving threats. Here's a more detailed explanation of this topic:

1. Periodic assessments: Schedule regular assessments of your Azure DevOps
services, resources, and tools to identify any outdated or misconfigured security
settings. Regular assessments help ensure that your environment stays compliant
with industry standards, regulatory requirements, and your organization's security
policies.

2. Security configuration baselines: Establish security configuration baselines for
your Azure DevOps resources, such as repositories, pipelines, and environments.
These baselines should align with best practices, industry standards, and your
organization's security requirements. Use tools like Azure Policy and Azure Security
Center to define, enforce, and monitor these baselines consistently across your
environment.

3. Patch management: Keep your Azure DevOps tools and resources up to date with
the latest security patches and updates. This includes any extensions, integrations,
or third-party tools used in your environment. Regularly check for updates, and
establish a patch management process to apply them in a timely manner.

4. Change management: Implement a change management process to track, review,
and approve any changes to your Azure DevOps security configurations. This
process should involve key stakeholders, such as security teams, DevOps engineers,
and project managers. Maintain a record of all changes, including the rationale,
approvals, and any associated risks.

5. Monitoring and alerting: Continuously monitor your Azure DevOps environment for
any unauthorized or suspicious changes to security configurations. Set up alerts to
notify your security and operations teams of potential issues. Investigate any
unexpected changes promptly to mitigate potential risks.

6. Training and awareness: Ensure that your development, operations, and security
teams are aware of the importance of maintaining secure configurations in your
Azure DevOps environment. Provide training and resources to help your team
members understand their roles and responsibilities in managing security
configurations and staying up to date with best practices.

By regularly reviewing and updating the security configurations of your Azure DevOps
services, resources, and tools, you can maintain a secure environment, reduce potential
risks, and ensure compliance with relevant standards and regulations. This proactive
approach helps protect your organization's assets and fosters a culture of continuous
improvement and collaboration across teams.

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

Implement secure baselines for your Azure resources and enforce them consistently
across your environment

Implementing secure baselines for your Azure resources and enforcing them consistently
across your environment is crucial to maintaining a secure and compliant Azure DevOps
setup. Here's an expanded explanation of this topic:

1. ldentify best practices: Start by researching best practices and industry standards
for Azure resource configurations, such as the Center for Internet Security (CIS)
benchmarks, NIST guidelines, and Microsoft's own recommendations. These
guidelines provide a foundation for creating secure baselines tailored to your
organization's needs and regulatory requirements.

2. Customize baselines: Adapt the identified best practices to your organization's
specific context, including your industry, regulatory environment, and unique
business requirements. Collaborate with your security, development, and operations
teams to ensure that your baselines address all relevant security concerns while
maintaining operational efficiency.

3. Document and share baselines: Clearly document your secure baselines and
make them accessible to all relevant stakeholders, such as developers, operations
teams, and security personnel. This documentation should include configuration
settings, recommended values, and explanations for each setting.

4. Automate baseline enforcement: Leverage Azure Policy and Azure Security
Center to automate the enforcement of your secure baselines across your Azure
resources. These tools allow you to define policies that automatically apply the
desired configurations and monitor compliance in real-time.

5. Monitor compliance: Regularly review your environment's compliance with your
secure baselines, utilizing Azure Policy and Azure Security Center's reporting
features. Address any deviations promptly and investigate the root causes to prevent
future occurrences.

6. Integrate with CI/CD pipelines: Integrate your secure baselines into your
Continuous Integration and Continuous Deployment (CI/CD) pipelines to ensure that
new resources and updates adhere to the established security standards. This helps
maintain a consistent security posture throughout your development and deployment
processes.

7. Regularly review and update baselines: As security best practices and industry
standards evolve, it's essential to regularly review and update your secure baselines
to stay current. Engage your security, development, and operations teams in an
ongoing process of evaluating and refining your baselines to address emerging
threats and changes in your organization's requirements.

By implementing secure baselines for your Azure resources and enforcing them consistently
across your environment, you can maintain a strong security posture, reduce potential risks,
and ensure compliance with relevant standards and regulations. This proactive approach
helps protect your organization's assets and fosters a culture of continuous improvement
and collaboration across teams.

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

Use Azure Policy to define and enforce security configurations across your Azure
resources

Using Azure Policy to define and enforce security configurations across your Azure
resources is a crucial part of maintaining a secure and compliant environment. Here's a
more detailed explanation of this topic:

1. Understand Azure Policy: Azure Policy is a service within the Azure ecosystem that
allows you to create, assign, and manage policies that enforce specific configurations
or standards across your Azure resources. These policies can help ensure that your
resources comply with your organization's security requirements, industry best
practices, and regulatory guidelines.

2. Create custom policies: Start by creating custom policies tailored to your
organization's security requirements. Policies are written in JSON format and define
conditions and desired configurations for your resources. You can create policies
from scratch or modify built-in Azure policy templates to suit your needs.

3. Assign policies to appropriate scopes: Assign your custom policies to appropriate
scopes, such as management groups, subscriptions, or resource groups, to enforce
your desired security configurations across your Azure resources. Ensure that the
scope of each policy assignment aligns with your organization's structure and
security requirements.

4. Use policy initiatives: Group related policies into initiatives for easier management
and assignment. Initiatives are collections of policies that share a common goal, such
as maintaining compliance with a specific regulation or implementing a set of security
best practices. Initiatives allow you to manage and assign multiple policies more
efficiently.

5. Monitor policy compliance: Use Azure Policy's built-in compliance reporting to
monitor your resources' adherence to assigned policies. Regularly review these
reports to identify non-compliant resources, and address any deviations or violations
promptly.

6. Remediate non-compliant resources: Use Azure Policy's remediation capabilities
to automatically fix non-compliant resources or to create remediation tasks for
manual intervention. Remediation actions can include modifying configurations,
deploying additional resources, or updating existing resources to meet policy
requirements.

7. Integrate with Azure Security Center: Leverage Azure Security Center's integration
with Azure Policy to gain additional insights into your security posture and
compliance status. Azure Security Center can provide recommendations and alerts
based on your policy assignments and overall resource configurations.

By using Azure Policy to define and enforce security configurations across your Azure
resources, you can maintain a consistent and secure environment, ensure compliance with
relevant standards and regulations, and quickly identify and remediate non-compliant
resources. This approach helps protect your organization's assets and fosters a culture of
continuous improvement and collaboration across teams.

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

Continuously monitor configuration changes and assess their impact on your security
posture

Continuously monitoring configuration changes and assessing their impact on your security
posture is vital for maintaining a secure environment and addressing potential risks in a
timely manner. Here's a more detailed explanation of this topic:

1. Enable auditing and logging: Ensure that auditing and logging are enabled for all
your Azure DevOps resources, including repositories, pipelines, and environments.
Use Azure Monitor, Azure Log Analytics, and other monitoring tools to collect, store,
and analyze log data.

2. Set up monitoring dashboards: Create custom monitoring dashboards that provide
real-time visibility into your Azure DevOps environment. Include key performance and
security indicators, such as configuration changes, user activity, access attempts,
and security alerts. This enables you to quickly identify and address potential issues.

3. Configure alerts and notifications: Set up alerts and notifications to inform your
security, development, and operations teams about significant configuration changes,
security events, or policy violations. Define thresholds and triggers for alerts, and
ensure that relevant stakeholders receive timely notifications.

4. Implement change management processes: Establish a structured change
management process to track, review, and approve configuration changes in your
Azure DevOps environment. This process should involve key stakeholders, such as
security teams, DevOps engineers, and project managers. Maintain a record of all
changes, including the rationale, approvals, and any associated risks.

5. Conduct regular security assessments: Perform periodic security assessments to
evaluate the impact of configuration changes on your security posture. These
assessments should include vulnerability scanning, penetration testing, and security
audits. Use the results of these assessments to identify areas of improvement and
update your security policies, configurations, and processes accordingly.

6. Review and update security baselines: Regularly review and update your security
baselines to ensure they remain aligned with your organization's security
requirements, industry best practices, and regulatory guidelines. Adjust your
baselines based on the results of your security assessments and configuration
change monitoring.

7. Train and educate your teams: Ensure that your development, operations, and
security teams are aware of the importance of monitoring configuration changes and
maintaining a strong security posture. Provide training and resources to help your
team members understand their roles and responsibilities in managing and
assessing the impact of configuration changes.

By continuously monitoring configuration changes and assessing their impact on your
security posture, you can maintain a secure environment, reduce potential risks, and ensure
compliance with relevant standards and regulations. This proactive approach helps protect
your organization's assets and fosters a culture of continuous improvement and collaboration
across teams.

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

Data Recovery

Implement a robust backup and recovery strategy for your critical data, including
source code, artifacts, and configuration data

Implementing a robust backup and recovery strategy for your critical data, including source
code, artifacts, and configuration data, is essential for ensuring business continuity and
reducing the impact of data loss or corruption. Here's a more detailed explanation of this
topic:

1. Identify critical data: Determine which data is critical to your organization's
operations and should be prioritized for backup and recovery. This may include
source code, build artifacts, deployment configurations, and database backups.

2. Define backup frequency and retention policies: Establish how often backups
should be created and how long they should be retained. This will depend on your
organization's requirements, industry best practices, and regulatory guidelines.
Consider factors such as data change frequency, recovery point objectives (RPOs),
and recovery time objectives (RTOs).

3. Choose appropriate backup methods: Select backup methods that best suit your
organization's needs and requirements. This may include full, incremental, or
differential backups. You may also choose to use snapshot-based backups for virtual
machines, databases, or storage accounts.

4. Use Azure-native backup solutions: Leverage Azure-native backup solutions, such
as Azure Backup and Azure Site Recovery, to automate the backup and recovery
process for your Azure DevOps resources. These solutions provide built-in
integration, security, and scalability, making it easier to manage backups and recover
data when needed.

5. Store backups offsite and/or in multiple locations: To minimize the risk of data
loss due to a single point of failure, store backups in offsite locations or across
multiple Azure regions. This ensures that your data is protected even in the event of
a regional outage or disaster.

6. Encrypt backups: Use encryption to protect your backup data, both in transit and at
rest. This helps ensure that your data remains secure and confidential, even if a
backup is compromised.

7. Test backup and recovery processes: Regularly test your backup and recovery
processes to ensure that they are functioning correctly and that you can successfully
recover your critical data in the event of an incident. Identify and address any issues
or bottlenecks in the recovery process.

8. Document and maintain your backup and recovery strategy: Clearly document
your backup and recovery strategy, including procedures, schedules, and responsible
parties. Ensure that this documentation is accessible to relevant stakeholders and is
kept up to date as your environment evolves.

9. Train and educate your teams: Ensure that your development, operations, and
security teams understand the importance of implementing a robust backup and
recovery strategy. Provide training and resources to help them effectively manage
and maintain your organization's backup and recovery processes.

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

By implementing a robust backup and recovery strategy for your critical data, you can
ensure business continuity, reduce the impact of data loss or corruption, and maintain a
strong security posture. This proactive approach helps protect your organization's assets
and fosters a culture of continuous improvement and collaboration across teams.

Use Azure Backup and Azure Site Recovery to protect your data and applications

Using Azure Backup and Azure Site Recovery to protect your data and applications is an
effective way to ensure business continuity and minimize downtime in the event of data loss
or disasters. Here's a more detailed explanation of this topic:

1) Azure Backup: Azure Backup is a cloud-based backup service that allows you to
back up and restore data and applications in Azure. Key features and benefits of
Azure Backup include:

A. Support for various data types: Azure Backup supports backing up data from virtual
machines (VMs), SQL databases, file shares, and more. This provides a
comprehensive backup solution for your Azure resources.

B. Centralized management: Azure Backup enables centralized management and
monitoring of your backups across various Azure resources and subscriptions.

C. Data encryption: Azure Backup provides encryption for your data both in transit and
at rest, ensuring that your backups are secure and confidential.

D. Flexible retention policies: With Azure Backup, you can define custom retention
policies based on your organization's requirements, industry best practices, and
regulatory guidelines.

E. Integration with Azure DevOps: Azure Backup can be integrated with Azure DevOps
pipelines to automate backup and restore processes for your application data.

2) Azure Site Recovery: Azure Site Recovery (ASR) is a disaster recovery service that
enables you to replicate, failover, and recover your applications in Azure. Key
features and benefits of Azure Site Recovery include:

A. Application replication: ASR allows you to replicate your applications and data to a
secondary Azure region or an on-premises data center, ensuring that they remain available in
the event of a disaster or regional outage.

B. Flexible recovery plans: ASR enables you to create customized recovery plans that define the
failover and recovery process for your applications. This allows you to tailor your disaster
recovery strategy to your organization's specific needs and requirements.

C. Testing without disruption: ASR allows you to test your recovery plans without impacting
your production environment, ensuring that your applications can be successfully recovered
in the event of an incident.

D. Integration with Azure DevOps: ASR can be integrated with Azure DevOps pipelines to
automate the replication and failover processes for your applications

By using Azure Backup and Azure Site Recovery to protect your data and applications, you
can ensure business continuity, minimize downtime, and maintain a strong security posture.
This proactive approach helps protect your organization's assets and fosters a culture of
continuous improvement and collaboration across teams.

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

Regularly test your data recovery processes to ensure they are effective and up to
date

Regularly testing your data recovery processes to ensure they are effective and up to date is
crucial for maintaining business continuity and reducing the impact of data loss or corruption.
Here's a more detailed explanation of this topic:

1. Develop a testing schedule: Establish a schedule for testing your data recovery
processes, based on your organization's requirements, industry best practices, and
regulatory guidelines. This schedule should take into account factors such as data
change frequency, recovery point objectives (RPOs), and recovery time objectives
(RTOs).

2. Test various recovery scenarios: During testing, simulate different recovery
scenarios to ensure that your processes can handle various types of incidents,
including data loss, corruption, hardware failures, software failures, and natural
disasters. This will help you identify and address potential issues or weaknesses in
your recovery processes.

3. Document test results: Document the results of your recovery tests, including any
issues encountered, steps taken to resolve them, and lessons learned. This
documentation can serve as a valuable reference for future testing and recovery
efforts.

4. Update recovery plans: Based on the results of your tests, update your recovery
plans to address any identified issues or weaknesses. This may include revising
recovery procedures, adding new recovery tools or resources, or updating your
backup and recovery strategy.

5. Train and educate your teams: Ensure that your development, operations, and
security teams are aware of the importance of regularly testing data recovery
processes and understand their roles and responsibilities in these tests. Provide
training and resources to help them effectively manage and maintain your
organization's data recovery processes.

6. Review and update testing processes: Regularly review and update your testing
processes to ensure they remain effective and aligned with your organization's
evolving needs and requirements. This may include updating testing schedules,
procedures, or tools, as well as incorporating new technologies or industry best
practices.

By regularly testing your data recovery processes, you can ensure they are effective and up
to date, helping to maintain business continuity and minimize the impact of data loss or
corruption. This proactive approach also supports a culture of continuous improvement and
collaboration across teams and helps protect your organization's assets.

Establish a disaster recovery plan to minimize downtime and data loss in case of a
security breach or system failure

Establishing a disaster recovery plan is essential to minimize downtime and data loss in
case of a security breach or system failure. Here's a more detailed explanation of this topic:

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

1. Identify critical systems and assets: Determine which systems, applications, and
data are critical to your organization's operations and prioritize them in your disaster
recovery plan. This will help you focus your efforts on the most important assets and
minimize the impact of a security breach or system failure.

2. Define recovery objectives: Establish recovery point objectives (RPOs) and
recovery time objectives (RTOs) for your critical systems and assets. RPOs define
the maximum acceptable amount of data loss, while RTOs determine the maximum
acceptable downtime for restoring systems and data.

3. Develop recovery strategies: Based on your recovery objectives, create strategies
for recovering critical systems and data in case of a security breach or system failure.
These strategies may include data backups, system replication, failover to alternate
sites, or the use of redundant systems.

4. Document recovery procedures: Clearly document the steps and procedures to be
followed in case of a security breach or system failure. This documentation should be
easily accessible and regularly updated to reflect changes in your systems,
applications, or recovery strategies.

5. Test and validate the plan: Regularly test your disaster recovery plan to ensure its
effectiveness and validate that your recovery objectives can be met. This will help
identify any weaknesses or gaps in your plan and provide valuable feedback for
improvement.

6. Train and educate your teams: Ensure that your development, operations, and
security teams are aware of the disaster recovery plan and understand their roles
and responsibilities in its execution. Provide training and resources to help them
effectively manage and maintain the plan.

7. Review and update the plan: Regularly review and update your disaster recovery
plan to ensure it remains effective and aligned with your organization's evolving
needs and requirements. This may include updating recovery objectives, strategies,
or procedures, as well as incorporating new technologies or industry best practices.

By establishing a disaster recovery plan, you can minimize downtime and data loss in case
of a security breach or system failure, helping to maintain business continuity and protect
your organization's assets. This proactive approach also supports a culture of continuous
improvement and collaboration across teams.

Inventory and Asset Management

Maintain an up-to-date inventory of all Azure DevOps resources, including
repositories, pipelines, environments, and tools

Maintaining an up-to-date inventory of all Azure DevOps resources, including repositories,
pipelines, environments, and tools, is crucial for managing and securing your organization's
assets effectively. Here's a more detailed explanation of this topic:

1. Create a centralized inventory: Develop a centralized inventory system that lists all
Azure DevOps resources, including repositories, pipelines, environments, and tools.
This inventory should be easily accessible, searchable, and updatable, making it a
valuable reference for your development, operations, and security teams.

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

Include relevant metadata: For each resource in your inventory, include relevant
metadata, such as owner, creation date, last modification date, and access
permissions. This information can help you monitor and track changes to your
resources, identify potential security risks, and enforce access control policies.
Implement a tagging strategy: Use a consistent tagging strategy for your Azure
DevOps resources to help you organize and manage them more effectively. Tags can
be used to group resources by project, team, or environment, making it easier to
apply security policies and manage access permissions.

Automate inventory updates: Implement automation to keep your inventory up to
date as resources are added, modified, or removed. This can be done using Azure
DevOps APIls, custom scripts, or third-party tools that integrate with Azure DevOps.
Regularly review and audit your inventory: Periodically review and audit your
inventory to ensure its accuracy and completeness. This can help you identify
resources that are no longer in use, enforce access control policies, and detect
potential security risks.

Integrate with other asset management systems: If your organization uses other
asset management systems, consider integrating your Azure DevOps inventory with
these systems to provide a more comprehensive view of your organization's assets
and resources.

By maintaining an up-to-date inventory of all Azure DevOps resources, you can better
manage and secure your organization's assets, track changes, and enforce access control
policies. This proactive approach helps protect your organization's assets and fosters a
culture of continuous improvement and collaboration across teams.

Use Azure Resource Manager (ARM) templates to manage your Azure resources in
a consistent and automated manner

Using Azure Resource Manager (ARM) templates to manage your Azure resources in a
consistent and automated manner is an important best practice for managing infrastructure
as code. Here's a more detailed explanation of this topic:

1.

3.

Standardize resource configurations: ARM templates enable you to define the
desired configuration of your Azure resources in a JSON format. By using templates,
you can standardize the configurations of your resources, ensuring that they are
deployed and managed consistently across your organization.

Improve collaboration and version control: ARM templates can be stored in a
source control system, such as Git, allowing you to track changes, collaborate with
team members, and manage version history. This can help you maintain a clear
understanding of the evolution of your infrastructure and facilitate collaboration
across development, operations, and security teams.

Automate resource provisioning and updates: ARM templates enable you to
automate the deployment and management of your Azure resources, reducing the
potential for human error and inconsistencies. You can use Azure DevOps pipelines
or other CI/CD tools to automatically deploy and update resources based on your
templates.

Simplify resource management: By using ARM templates, you can manage
multiple resources as a single unit, called a resource group. This simplifies resource

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

management, as you can deploy, update, and delete resources within a group
collectively, and apply consistent policies and access control across the group.
Validate and test templates: ARM templates allow you to validate and test your
configurations before deploying them, helping you identify and resolve potential
issues early in the development process. You can also use tools like the ARM
Template Test Toolkit to perform additional validation and testing of your templates.
Reuse and share templates: ARM templates can be modular and reusable,
enabling you to share common configurations across projects and teams. This
promotes consistency and reduces the effort required to maintain and update your
infrastructure.

By using Azure Resource Manager (ARM) templates to manage your Azure resources in a
consistent and automated manner, you can improve collaboration, simplify resource
management, and reduce the potential for human error and inconsistencies. This approach
also supports a culture of continuous improvement and collaboration across teams, helping
to protect your organization's assets and streamline operations.

Implement tagging strategies to categorize your Azure resources based on project,
team, or other relevant attributes

Implementing tagging strategies to categorize your Azure resources based on project, team,
or other relevant attributes is an essential practice for effective resource management and
organization. Here's a more detailed explanation of this topic:

1.

Define a consistent tagging strategy: Develop a consistent and standardized
tagging strategy that is easy to understand and follow across your organization.
Define which tags should be used and how they should be applied to your Azure
resources.

Use meaningful and descriptive tags: Create meaningful and descriptive tags that
accurately represent the purpose, owner, or other relevant attributes of your
resources. This will make it easier for your team members to understand and
manage your resources effectively.

Enforce tag usage: Ensure that your team members are consistently applying tags
to your Azure resources according to your defined strategy. You can use Azure Policy
to enforce tagging requirements and automatically apply tags based on certain
conditions.

Monitor and audit tag usage: Regularly monitor and audit your tag usage to ensure
that your resources are correctly categorized and that your tagging strategy is being
followed. You can use tools like Azure Monitor and Azure Resource Graph to track
tag usage and generate reports.

Update and maintain your tagging strategy: Continuously review and update your
tagging strategy to ensure that it remains relevant and effective as your organization
and resource landscape evolve. Keep your team members informed of any changes
to the strategy and provide them with guidance on how to apply tags correctly.

Use tags for cost management and reporting: Tags can be used to group
resources for cost management and reporting purposes, making it easier to allocate
costs to projects, teams, or departments. Use Azure Cost Management to generate

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

detailed reports based on your tags and gain insights into your resource
consumption.

By implementing tagging strategies to categorize your Azure resources based on project,
team, or other relevant attributes, you can improve resource management, organization, and
cost allocation. This approach also promotes a culture of collaboration and shared
responsibility across teams, helping to protect your organization's assets and streamline
operations.

Continuously monitor your inventory and resources for any unauthorized changes or
access

Continuously monitoring your inventory and resources for any unauthorized changes or
access is crucial for maintaining the security and integrity of your Azure DevOps
environment. Here's a more detailed explanation of this topic:

1. Use Azure Monitor: Utilize Azure Monitor to track and analyze resource usage,
performance, and the overall health of your Azure resources. Set up alerts and
notifications to be informed of any unusual activity or unauthorized changes.

2. Review Azure DevOps audit logs: Regularly review the audit logs in Azure DevOps
to track changes and access to your resources. These logs provide detailed
information about user activities, such as repository access, pipeline changes, and
environment modifications. You can also set up alerts for specific events or actions
that you deem high risk.

3. Implement Azure Security Center: Use Azure Security Center to monitor the
security posture of your Azure resources and detect potential threats. Security Center
can provide recommendations for improving your security configuration and alert you
to suspicious activities.

4. Configure Azure Active Directory (AD) monitoring: Monitor your Azure AD for
unauthorized access or changes to user accounts and groups. Azure AD provides
audit logs and sign-in logs that can help you track user activities and detect potential
security issues.

5. Set up intrusion detection and prevention systems: Implement intrusion detection
and prevention systems (IDPS) to monitor network traffic for any unauthorized
access or malicious activities. Azure offers several built-in IDPS solutions, such as
Azure Firewall and Azure DDoS Protection.

6. Regularly audit access control and permissions: Periodically review user
accounts, access permissions, and role assignments to ensure that only authorized
users have access to your resources. Revoke access for users who no longer require
it, and ensure that the principle of least privilege is followed when granting
permissions.

7. Use automated tools for monitoring: Leverage automated tools, such as Azure
Policy and Azure Automation, to continuously monitor your resources for
unauthorized changes or access. You can create custom policies to enforce specific
security requirements and automate remediation actions when needed.

By continuously monitoring your inventory and resources for unauthorized changes or
access, you can proactively detect potential security issues and respond quickly to mitigate

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

Secure Debug / info@securedebug.com 17 Green Lanes, London, England, N16 9BS

risks. This approach helps maintain the security and integrity of your Azure DevOps
environment and fosters a culture of shared responsibility and vigilance across your
organization.

Conclusion

In conclusion, adopting a comprehensive security approach when using Azure DevOps is
crucial for protecting your organization's assets and ensuring the integrity of your
development and deployment processes. By following the guidelines outlined in this guide,
you can effectively manage access control, authentication, network security, code security,
Azure Key Vault usage, and regular auditing to maintain a secure environment.

Additionally, it's essential to continuously monitor your inventory and resources, implement
secure baselines, use Azure Policy, maintain a robust backup and recovery strategy, and
establish a disaster recovery plan. Keeping an up-to-date inventory, managing resources
with Azure Resource Manager templates, and implementing tagging strategies further
enhance your security posture.

However, maintaining a secure environment requires ongoing effort and expertise. That's
where Secure Debug comes in. As a leading cybersecurity consultancy company, Secure
Debug provides a range of services, including secure code audits, penetration testing,
software development with a focus on cybersecurity, and cybersecurity training.

Secure Debug specializes in Application Security, Network and Infrastructure security
services. With offerings such as secure code reviews, static/dynamic application analysis, IT
health checks, penetration testing, and security assessments, Secure Debug enables you to
gain a clear understanding of your company's security posture across your network,
systems, and applications.

By partnering with Secure Debug, you can benefit from their extensive knowledge and
experience in the cybersecurity field, ensuring that your Azure DevOps environment remains
secure and compliant. Trust Secure Debug to help safeguard your organization's valuable
assets, minimize potential risks, and maintain a secure development lifecycle.

Okan YILDIZ | CASE .NET | CEH | CTIA | ECIH | CCISO | okan@securedebug.com
Senior Security Engineer / Senior Software Developer

