
PowerShell 7 for IT Pros

PowerShell 7 for IT Pros

A Guide to Using PowerShell 7 to Manage
Windows® Systems

Thomas Lee

PowerShell 7 for IT Pros

Copyright © 2021 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-119-64472-9
ISBN: 978-1-119-64473-6 (ebk)
ISBN: 978-1-119-64470-5 (ebk)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as per-
mitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior writ-
ten permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at www.wiley
.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all
warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses
the information the organization or website may provide or recommendations it may make. Further, readers
should be aware that Internet websites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included
with standard print versions of this book may not be included in e-books or in print-on-demand. If this
book refers to media such as a CD or DVD that is not included in the version you purchased, you may
download this material at booksupport.wiley.com. For more information about Wiley products, visit
www.wiley.com.

Library of Congress Control Number: 2020939021

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates, in the United States and other countries, and may not be used without written permis-
sion. PowerShell and Windows are registered trademarks of Microsoft Corporation. All other trademarks are
the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor
mentioned in this book.

To my wife, Susan, who has been my loving companion and a constant source of
strength, affection, and humour, especially during the COVID-19 crisis.

To my daughter, Rebecca. Your smiles keep me going.

To my grandmother, Louise Runk Robinson, who worked in the US Library of
Congress and lit a spark in me that would ultimately lead me to write books.

To my friend, Jeffrey Snover, who has been an inspiring role model.

Thank you all for your support. You mean the world to me.

vii

About the Author

Thomas Lee is a technical trainer, consultant, and author
who specializes in the Microsoft Windows platform. Thomas
began in the IT industry in 1968 as a computer operator
operating an IBM 360/67 running IBM’s Time-Sharing
System. His career spans five decades and has included the
mainframe, mini-computers, time sharing (aka very early
cloud computing), AI, and other emerging technologies.

Thomas has worked in the consulting field, first with
Arthur Andersen (today known as Accenture), where he witnessed the birth of
the PC as a tool for clients across the board. He continues to provide consulting
services to many long-standing clients.

He has also written extensively, both for the technical trade in the United
Kingdom and for the worldwide publishing industry. This book marks his fourth
on PowerShell. He has written hundreds of articles about Microsoft and other
technologies and maintains a technical blog at tfl09.blogspot.com.

Thomas was a Microsoft-certified trainer for more than 25 years and was
awarded the Microsoft MVP award 17 times. He was a fellow in the British
Computer Society and a chartered engineer. He serves as a global board member
for the MVP Reconnect program.

He lives today in an old cottage in the English countryside. He enjoys his
garden, a well-stocked wine cellar, an extensive collection of Grateful Dead live
recordings, and the love of his family. He loves working with PowerShell too!

ix

About the Technical Editor

Jim Topp is a Windows Server systems administrator with more than 16 years
of experience. He has been scripting and automating with PowerShell for more
than 12 years. He is a community member of PowerShell.org and has edited
several books written by Don Jones. Jim lives in Bloomington, Indiana.

xi

Acknowledgments

Every book requires a great team of talented people to ensure a great product.
While an author can write text and code, the developmental and technical
editors focus the writing and ensure that the scripts are accurate and work as
shown. Publishing a book is an honour as well as an incredible learning expe-
rience for me. I have always believed that you truly have to know your subject
to write a book, and I certainly have learned a lot in the process.

First, my deepest gratitude to Wiley, and the fantastic team at Wiley, for
bringing this book to life: Kenyon Brown, Pete Gaughan, and others. Thank
you for recognizing that I had a story to tell.

A huge thank-you to my developmental editor, Jim Compton, for your wisdom,
kindness, and patience during through my writing “process.” You have been a
great inspiration to me, and I am indebted for your contributions.

Writing hundreds of lines of PowerShell 7 code and transcribing it accurately
into both the book’s text and the screenshots is an amazingly difficult job. Jim
Topp did an outstanding job of checking every line of code and every screenshot
as well as making great suggestions to improve what we have here.

In writing this book, I have been impressed on a daily basis with the entire
PowerShell development team. You folks have delivered high-quality code
consistently, been able to listen to and accept the views of the community, and
deliver a world-class product. Joey Aiello, Steve Lee, and Jim Truher, among
others, have been an inspiration.

Another significant inspiration is Jeffrey Snover. From that day in L.A. when
he first introduced Monad, he has been an awesome role model. He is smart,
focused, and one of the best presenters I have ever had the good fortune to watch.
When I noted, on Twitter, that PowerShell Core 6.1 was kind of like Windows
PowerShell 2.0 all over again, Jeffrey noted in his understated way that, while
it was true, PowerShell had better velocity. An understatement at the very least.

xii	 Acknowledgments

The PowerShell 7 code in this book was developed and tested on a variety
of Hyper-V virtual machines running Windows Server 2019. Because I am a
member of the MVP Reconnect program, the Visual Studio team at Microsoft
generously provided me with a subscription to Visual Studio Online, from
which I obtained the necessary ISO images with which you (and I) can build
the VMs. I could not have written this book without their generous assistance.

Thanks too to the PowerShell community. The community has created a
massive number of PowerShell resources, code, and documentation. Deep dives,
new modules, tips, and tricks—so much awesome content. Thanks to Jeff Hick,
Don Jones, Richard Siddaway, and many more.

Lastly, a shout-out to the PowerShell community at Spiceworks—a friendly
bunch of helpful PowerShell addicts (community.spiceworks.com/programming/
powershell). If you are keen on PowerShell, consider visiting and joining in.

xiii

Foreword

Ten years after the release of Windows PowerShell 1.0, the PowerShell team
announced PowerShell Core 6. The work toward PowerShell Core 6 started a
few years earlier, and that was when I became the engineering manager for
PowerShell. It was not easy early on, particularly in terms of compatibility
with Windows PowerShell, but with the PowerShell 7 release we are officially
starting a new chapter for PowerShell in which PowerShell 7 can be used as a
replacement for (or side by side with) Windows PowerShell 5.1.

PowerShell 7 represents the future of PowerShell based on three big changes:

■■ A single automation language for Windows, Linux, and macOS: Windows
PowerShell has been heavily adopted by the Windows community. With
IT moving toward the cloud, this presented an opportunity for PowerShell
to be the glue language for the cloud. Improvements to the web cmdlets
make it simple to call REST APIs. Early partnerships with Azure, Amazon
Web Services, Google Compute Cloud, and VMware ensured PowerShell
cmdlet coverage for any cloud you would want to use on any platform.
Along the way, we also made PowerShell a great shell to use whether you
are using Windows, Linux, or macOS.

■■ Moving to open source: This was a huge change in how we write soft-
ware and also how we engage with the community. We could now be
much more transparent with our plans and also accept contributions from
the community to address issues or add features that would not have
necessarily been a priority for the team. With about 50 percent of the pull
requests coming from the community, PowerShell’s future really is a
community-driven project!

xiv	 Foreword

■■ Early adopter of .NET Core: It was not without challenges that we moved
from .NET Framework to .NET Core (and now just .NET). Compatibility
with Windows PowerShell modules was the biggest issue initially. .NET
has come a long way in addressing the compatibility gap, adding back
many APIs to enable PowerShell to be compatible with existing modules.
In addition, .NET Core has substantial performance improvements that
make existing PowerShell scripts and modules simply work faster without
any modifications!

The mission statement of PowerShell is to make it easier for users to use
compute resources. With PowerShell 7, this includes different platforms such as
Windows, Linux, and macOS, but also new architectures such as ARM32 and
ARM64. With PowerShell modules available for the major public and private
clouds, you can leverage PowerShell to be more productive in cross-cloud or
hybrid scenarios. We still maintain PowerShell’s “sacred vow”— that learning
a new language is hard, but with time invested learning PowerShell, we will
continue to enable PowerShell users to expand their impact and productivity,
such as serverless functions as a service and Jupyter Notebooks. I’m excited
about the next phase of PowerShell that we started with PowerShell 7, but for
me, this is really just a beginning, with many more great things to come! This
book from Thomas is a great way to get started on PowerShell 7, leveraging
existing experience from Windows PowerShell.

Thomas Lee has been part of the PowerShell community far longer than I have
been the engineering manager for PowerShell. Some of the things I’ve learned
about PowerShell have come from reading his articles and blog posts. As the
PowerShell team was making progress toward our substantial PowerShell 7
release, Thomas was there the whole way, promoting, teaching, and inform-
ing the community of all the great things to come with PowerShell 7. The most
important aspect of what makes PowerShell successful has been the community,
and Thomas has been a significant part of that.

Steve Lee

Principal Software Engineering Manager

PowerShell Team

xv

Contents at a Glance

Foreword� xiii

Introduction� xxxiii

Chapter 1	 Setting Up a PowerShell 7 Environment� 1

Chapter 2	 PowerShell 7 Compatibility with Windows PowerShell� 37

Chapter 3	 Managing Active Directory� 55

Chapter 4	 Managing Networking� 111

Chapter 5	 Managing Storage� 145

Chapter 6	 Managing Shared Data� 191

Chapter 7	 Managing Printing� 231

Chapter 8	 Managing Hyper-V� 251

Chapter 9	 Using WMI with CIM Cmdlets� 315

Chapter 10	 Reporting� 357

Index� 403

xvii

Contents

Foreword� xiii

Introduction� xxxiii

Chapter 1	 Setting Up a PowerShell 7 Environment� 1
What Is New in PowerShell 7� 2
Systems Used in This Book and Chapter� 3

Server VM Build Scripts� 4
VM Internet Access� 4
Systems in Use for This Chapter� 4

Installing PowerShell 7� 5
Before You Start� 6
Enabling the Execution Policy� 6
Installing the Latest Version of NuGet and PowerShellGet� 6
Creating the Foo Folder� 7
Downloading the PowerShell 7 Installation Script� 7
Viewing Installation File Help Information� 8
Installing PowerShell 7� 8
Examining the Installation Folder� 9
Viewing Module Folder Locations� 10
Viewing Profile File Locations� 11
Starting PowerShell 7� 12
Viewing New Locations for Module Folders� 13
Viewing New Locations for Profile Files� 13
Creating a Current User/Current Host Profile� 14

Installing and Configuring VS Code� 14
Before You Start� 15
Downloading the VS Code Installation Script� 15
Installing VS Code and Extensions� 16
Creating a Sample Personal Profile File� 17

xviii	 Contents

Downloading the Cascadia Code Font� 17
Installing the Cascadia Code Font in Windows� 18
Updating VS Code User Settings� 18
Creating a Shortcut to VS Code� 19
Creating a Shortcut to the PowerShell 7 Console� 19
Building Layout.XML� 20
Importing the New Layout.XML File� 20

Using the PowerShell Gallery� 21
Before You Start� 22
Discovering PowerShell Gallery Modules� 22
Determining the Modules That Support .NET Core� 23
Finding NTFS Modules� 23
Installing the NTFSSecurity Module� 24
Viewing Available Commands� 24

Creating a Local PowerShellGet Repository� 24
Before You Start� 24
Creating the Repository Folder� 25
Sharing the Repository Folder� 26
Creating a Module Working Folder� 26
Creating a Simple Module� 26
Loading and Testing the Module� 27
Creating a Module Manifest� 27
Trusting the Repository� 28
Viewing Configured Repositories� 28
Publishing a Module� 29
Viewing the Repository Folder� 29
Finding a Module� 30

Creating a Code-Signing Environment� 30
Before You Start� 31
Creating a Self-Signed Certificate� 31
Viewing the Certificate� 31
Creating a Simple Script� 32
Setting Execution Policy� 32
Attempting to Run the Script� 32
Signing the Script� 33
Copying a Certificate to the Trusted Publisher Certificate

and Trusted Root Stores� 33
Signing the Script Again� 34
Running the Script� 34
Testing the Script’s Digital Signature� 35

Summary� 35

Chapter 2	 PowerShell 7 Compatibility with Windows PowerShell� 37
System Used in This Chapter� 38

Examining PowerShell Modules� 38
Understanding Module Types� 39
Importing PowerShell Modules� 40
Using PowerShell Module Manifests� 41

	 Contents	 xix

Module Naming� 42
Creating a Module with Multiple Versions� 43
Using Module Versions� 44
Using Module Autoload� 46
Viewing the Module Analysis Cache� 47

Introducing the Compatibility Solution� 48
Using the Module Load Deny List� 50

Things That Do Not Work with PowerShell 7� 51
Windows PowerShell Incompatibilities� 51
Compatibility Issue Work-Arounds� 54

Summary� 54

Chapter 3	 Managing Active Directory� 55
Systems Used in This Chapter� 58
Establishing a Forest Root Domain� 60

Before You Start� 60
Importing the Server Manager Module� 60
Installing the AD Domain Services Feature� 61
Loading the AD DS Deployment Module Explicitly� 61
Creating a Forest Root Domain Controller� 62
Restarting the Computer� 63
Viewing the Directory Server Entry (DSE)� 63
Viewing Details of the New AD DS Forest� 64
Getting Details of the Domain� 65
Viewing DNS Settings� 65

Installing a Replica DC� 66
Before You Start� 67
Importing the Server Manager Module� 67
Checking Network Connectivity� 67
Adding the AD DS Features on DC2� 68
Promoting DC2� 69
Rebooting DC2� 69
Reviewing DCs in Reskit.Org Domain� 69
Viewing the Reskit.Org Domain� 70

Installing a Child Domain� 70
Before You Start� 71
Importing the Server Manager Module� 71
Verifying That DC1 Can Be Resolved� 71
Adding the AD DS Features to UKDC1� 72
Creating the Child Domain� 73
Viewing the Updated AD Forest� 73
Viewing the Child Domain� 74

Configuring a Cross-Forest Trust� 75
Before You Start� 76
Importing the Server Manager Module� 76
Installing the AD Domain Services Feature

and Management Tools� 76

xx	 Contents

Testing Network Connectivity with DC1� 77
Importing the AD DS Deployment Module� 77
Promoting KAPDC1� 78
View Kapoho.Com Forest Details� 78
Adjusting the DNS to Resolve Reskit.Org from KAPDC1� 79
Testing Conditional DNS Forwarding� 80
Setting Up a Conditional Forwarder on Reskit.Org� 80
Create Credentials to Run a Command on DC1� 81
Setting WinRM� 81
Invoking the Script Block on DC1� 81
Getting the Domain Detail Objects� 82
Viewing the Reskit Forest Details� 83
Viewing the Kapoho Forest Details� 83
Establishing a Cross-Forest Trust� 84
Creating a Script Block to Adjust the ACL of a File on DC1� 84
Running the Script Block on DC1 to Demonstrate the

Cross-Forest Trust� 85
Managing AD Users, Computers, and OUs� 86

Before You Start� 87
Creating a Hash Table for General User Attributes� 87
Creating Two Users� 87
Creating an OU for IT� 88
Moving Users into an OU� 88
Creating a User in an OU� 89
Adding Two Additional Users� 89
Viewing Existing Users� 90
Removing a User with a Get | Remove Pattern� 90
Removing a User Directly� 91
Updating and Displaying a User Object� 91
Creating an AD Group� 92
Creating and Viewing Group Membership� 93
Make a New Group for the IT Team� 93
Make All Users in IT Members of the IT Team Group� 94
Displaying Group Membership� 94
Adding a Computer to the AD� 95
Displaying Computers in an AD Domain� 95

Adding Users to AD via a CSV� 96
Before You Start� 96
Creating a CSV File� 97
Importing and Viewing the CSV� 97
Adding Users to AD� 98
Viewing All Users in Reskit.Org� 98

Configuring Just Enough Administration (JEA)� 100
Before You Start� 101
Creating a Transcript Folder� 101
Creating a Role Capabilities Folder� 101

	 Contents	 xxi

Creating a Role Capabilities File� 101
Creating a JEA Session Configuration File� 102
Testing the Session Configuration File� 103
Enabling Remoting and Creating the JEA Session Endpoint� 103
Checking What the User Can Do� 104
Creating Credentials for JerryG� 105
Creating Three Script Blocks to Test JEA� 105
How Many Commands Exist in a JEA Session?� 106
Invoking a JEA-Defined Function� 107
Get the DNSServer Command Available in JEA Session� 107
Viewing the Transcripts Folder� 107
Examining a JEA Transcript� 108

Summary� 109

Chapter 4	 Managing Networking� 111
Systems Used in This Chapter� 112
Configuring IP Addressing� 113

Before You Start� 114
Checking Adapter Details� 114
Configuring an IP Address� 115
Verifying the New IP Address� 115
Setting DNS Server Details� 116
Validating the New IP Configuration� 116

Testing Network Connectivity� 117
Before You Start� 117
Verifying That SRV2 and Loopback Are Working� 117
Testing Connectivity to the DC� 118
Checking Connectivity to the SMB and LDAP Ports� 119
Examining the Path to a Remote Server� 119

Installing the DHCP Service� 121
Before You Start� 121
Installing the DHCP Feature� 121
Authorizing the DHCP Server in the AD� 122
Completing the DHCP Configuration� 123
Restarting the DHCP Service� 123
Checking the DHCP Service� 123

Configuring DHCP Scopes� 124
Before You Start� 125
Creating a DHCP Scope� 125
Getting Scopes from the DHCP Server� 125
Configuring Server-wide Options� 126
Configuring Scope-Specific Options� 126
Testing the DHCP Service in Operation� 127

Configuring DHCP Failover� 128
Before You Start� 128
Installing the DHCP Server Feature on DC2� 128
Letting DHCP Know It Is Fully Configured on DC2� 129
Authorizing the Second DHCP Server in AD� 129

xxii	 Contents

Viewing Authorized DHCP Servers� 129
Configuring DHCP Failover and Load Balancing� 130
Viewing Active Leases from Both DHCP Servers� 131
Viewing DHCP Server Statistics� 132

Configuring the DNS Service� 133
Before You Start� 134
Installing the DNS Feature on DC2� 134
Configuring the DNS Service� 135
Viewing Key DNS Server Options� 136

Configuring DNS Zones and Resource Records� 138
Before You Start� 139
Creating a DNS Forward Lookup Zone� 139
Creating a Reverse Lookup Zone� 139
Registering DNS Records for DC1, DC2� 140
Checking the DNS Zones on DC1� 140
Adding DNS RR to the Cookham.Net Zone� 141
Restarting the DNS Service� 142
Checking the DNS RRs in the Cookham.Net Zone� 142
Testing DNS Server Resolution� 143

Summary� 144

Chapter 5	 Managing Storage� 145
Systems Used in This Chapter� 146
Managing Disks and Volumes� 147

Before You Start� 147
Getting Information about Physical Disks in SRV1� 148
Initializing the New Disks� 149
Viewing the Initialized Disks� 149
Creating an F: Volume in Disk 1� 150
Creating a Partition in Disk 2� 150
Creating a Second Partition� 151
Viewing Volumes on SRV1� 151
Formatting G: and H:� 152
Getting Partitions on SRV1� 153
Getting Volumes on SRV1� 154

Managing NTFS Permissions� 154
Before You Start� 155
Downloading and Installing the NTFSSecurity Module� 155
Finding Commands in the NTFS Security Module� 156
Creating a New Folder and File� 157
Viewing the Default Folder ACL� 157
Viewing the Default ACL on File� 158
Creating the Sales Group� 159
Displaying the Sales Group� 159
Adding Full Control for Domain Admins� 160
Removing the Default File ACE� 160
Removing a Folder’s Inherited Rights� 161
Adding Sales Group Access to the Folder� 161

	 Contents	 xxiii

Viewing Permissions on the Folder� 162
Viewing Permissions on the File� 162

Managing Storage Replica� 163
Before You Start� 163
Creating Content on F:� 165
Measuring the New Content� 165
Checking Content on the Target� 166
Adding the Storage Replica Feature to the Source� 166
Restarting the Source� 167
Adding Storage Replica to the Target� 167
Restarting the Target� 168
Testing the Configuration of SR� 168
Viewing the Topology Test Report� 169
Creating a Storage Replica Partnership� 170
Viewing the Partnership� 171
Examining Volumes on the Target� 172
Reversing the Replication� 173
Viewing Updated Replication Group Status� 173
Examining SRV2 Volumes� 174

Managing Filestore Quotas� 175
Before You Start� 175
Installing the FS Resource Manager Feature� 175
Setting Up SMTP Settings for FSRM� 176
Sending a Test Email� 176
Creating an FSRM Quota Template� 178
Viewing Available FSRM Quota Templates� 178
Creating a New Folder� 179
Building an FSRM Action� 179
Create an FSRM Threshold� 180
Building an FSRM Quota� 180
Test the 85% Quota Threshold� 181
Examining the FSRM Email� 181
Testing the Hard Quota Limit� 181
Viewing the Folder Contents� 183

Managing File Screening� 183
Before You Start� 184
Examining Existing FSRM File Groups� 184
Examining the Existing File Screen Templates� 184
Creating a New File Folder� 186
Creating a New File Screen� 186
Testing File Screening� 187
Setting Up an Active File Screen� 187
Viewing Notification Limits� 188
Changing Notification Limits� 189
Testing the Active File Screen� 189

xxiv	 Contents

Viewing Active File Screen Email� 189
Summary� 190

Chapter 6	 Managing Shared Data� 191
Systems Used in This Chapter� 193
Setting Up and Securing an SMB File Server� 194

Before You Start� 194
Adding File Server Features to FS1� 194
Getting SMB Server Settings� 195
Ensuring That SMB1 Is Disabled� 195
Enabling SMB Signing and SMB Encryption� 197
Disabling Default Shares� 197
Turning Off Server Announcements� 198
Restarting the SMB Server Service� 198
Reviewing the Updated SMB Server Configuration� 198

Creating and Securing SMB Shares� 198
Before You Start� 199
Setting Up FS1� 200
Discovering Existing SMB Shares� 200
Creating an SMB Share� 200
Setting a Share Description� 201
Setting the Folder Enumeration Mode� 201
Requiring Encryption for a Share� 201
Removing All Access to Sales1 Share� 202
Adding Reskit\Domain Admins to the Share� 202
Adding System Full Access� 203
Giving the Creator/Owner Full Access� 203
Granting the Sales Group Access� 203
Reviewing Share Access� 204
Reviewing the NTFS Permissions� 204
Setting the NTFS ACL to Match the Share� 205
Removing NTFS Inheritance� 205
Viewing the Folder ACL� 206

Creating and Using an iSCSI Target� 207
Before You Start� 208
Installing the iSCSI Target Feature on SRV2� 209
Exploring iSCSI Target Server Settings� 210
Creating a Folder on SRV2� 210
Creating an iSCSI Virtual Disk� 211
Creating the iSCSI Target on SRV2� 212
Creating iSCSI Disk Target Mapping on SRV2� 213
Configuring the iSCSI Service on SRV2� 213
Setting Up the iSCSI Portal� 213
Viewing the SalesTarget iSCSI Disk� 214
Connecting to the Target on SRV2� 215
Viewing the iSCSI Virtual Disk� 216
Setting the Disk Online and Making It Read/Write� 216

	 Contents	 xxv

Creating a Volume on FS1� 216
Using the iSCSI Drive on FS1� 217

Setting Up a Clustered Scale-Out File Server� 218
Before You Start� 218
Setting Up the iSCSI Portal for FS2� 219
Configuring the iSCSI Portal for FS2� 219
Adding the File Server Role to FS2� 221
Adding Clustering Features to FS1/FS2� 221
Restarting FS1 and FS2� 222
Testing the Cluster Nodes� 222
Viewing Cluster Validation Test Results� 222
Creating the Cluster� 224
Configuring a Quorum Share on DC1� 224
Setting the Cluster Witness� 225
Ensuring that iSCSI Disks Are Connected� 225
Adding the iSCSI Disk to the Cluster� 225
Moving the iSCSI Disk into the CSV� 226
Adding the SOFS Role to the Cluster� 226
Creating a Folder� 227
Adding a Continuously Available Share� 227
Viewing Shares from FS1� 228

Summary� 229

Chapter 7	 Managing Printing� 231
Systems Used in This Chapter� 232
Installing and Sharing Printers� 233

Before You Start� 234
Installing the Print Server Feature on PSRV� 234
Creating a Folder for the Print Drivers� 235
Downloading Printer Drivers� 235
Expanding the ZIP File� 235
Installing the Drivers� 236
Adding a New Printer Port� 236
Adding a New Printer� 237
Sharing the Printer� 237
Reviewing the Printer Configuration� 237

Publishing a Printer in AD� 238
Before You Start� 238
Getting the Printer Object� 239
Checking the Initial Publication Status� 239
Publishing the Printer to AD� 239
Viewing the Printer Publication Status� 240

Changing the Spool Folder� 240
Before You Start� 241
Loading the System.Printing Namespace� 241
Displaying the Initial Spool Folder� 241
Defining Required Permissions� 242

xxvi	 Contents

Creating a Print Server Object� 242
Creating a New Spool Folder� 242
Changing the Spool Folder Path� 242
Committing the Change� 243
Restarting the Spooler Service� 243
Reviewing the Spooler Folder� 243
Creating Another Spool Folder� 244
Stopping the Spooler Service� 244
Configuring the New Spool Folder� 244
Restarting the Spooler� 244
Viewing the Results� 245

Printing a Test Page� 245
Before You Start� 245
Getting Printer Objects from WMI� 246
Displaying the Number of Printers Defined� 246
Getting the Sales Group Printer WMI Object� 246
Display the Printer’s Details� 247
Printing a Test Page� 247

Creating a Printer Pool� 248
Before You Start� 248
Adding a Printer Port� 248
Creating the Printer Pool for SalesPrinter1� 248
Viewing Resulting Details� 249

Summary� 249

Chapter 8	 Managing Hyper-V� 251
Systems Used in This Chapter� 253
Installing and Configuring Hyper-V� 254

Before You Start� 254
Installing the Hyper-V Feature on HV1� 255
Rebooting HV1� 255
Creating Folders to Hold VM Disks and VM Details� 255
Building a Configuration Hash Table� 256
Reviewing Key VM Host Settings� 256

Creating a Hyper-V VM� 257
Before You Start� 257
Creating Variables� 257
Verifying That the ISO Image Exists� 258
Importing the DISM Module� 258
Mounting the ISO Image� 259
Viewing ISO Image Contents� 259
Creating a New VM in HV1� 260
Creating a VHDX File for the VM� 260
Adding the VHD to the VM� 261
Adding the ISO Image to the VM� 261
Starting the VM� 261
Installing Windows Server 2019� 261

	 Contents	 xxvii

Viewing the Results� 262
Using PowerShell Direct� 262

Before You Start� 262
Creating Variables for Use in This Section� 262
Displaying Details of HVDirect VM� 263
Invoking a Command using VMName� 263
Invoking a Command Based on VM ID� 264

Configuring VM Networking� 265
Before You Start� 265
Getting Virtual NIC Details from HVDirect� 265
Creating a Credential for the VM� 266
Getting NIC Details� 266
Creating a Virtual Switch� 267
Connecting the VM to the Switch� 267
Enabling MAC Spoofing� 268
Viewing VM Network Information� 268
Viewing IP Address Inside HVDirect� 268
Joining the Reskit Domain� 269
Rebooting the VM� 270
Getting the Host Name of the HVDirect VM� 271

Configuring VM Hardware� 271
Before You Start� 272
Turning Off the HVDirect VM� 272
Setting the Hardware Startup Order� 273
Setting Socket Count� 273
Setting VM Memory� 274
Adding an SCSI Controller� 275
Restarting the VM� 275
Creating a New Virtual Disk� 275
Adding a Disk to a VM� 276
Viewing SCSI Disks inside HVDirect� 277

Implementing Nested Virtualization� 277
Before You Start� 277
Stopping HVDirect VM� 277
Configuring Virtual Processor� 278
Enabling MAC Address Spoofing� 278
Restarting the VM� 279
Creating Credentials� 279
Installing Hyper-V in HVDirect VM� 280
Restarting the VM� 280
Checking Hyper-V in HVDirect� 281

Using VM Checkpoints� 282
Before You Start� 282
Creating Credentials� 283
Examining C: in the HVDirect VM� 283
Creating a Checkpoint� 284

xxviii	 Contents

Examining the Checkpoint Files� 284
Creating Content in HVDirect� 285
Taking a Second Checkpoint� 286
Viewing Checkpoint Details for HVDirect� 286
Examining Files Supporting Checkpoints� 286
Creating Another File in HVDirect� 287
Reverting to Checkpoint1� 287
Viewing VM Files� 288
Rolling Forward to Checkpoint2� 289
Viewing VM Files After Rolling Forward� 289
Viewing Checkpoints in the VM� 290
Removing Checkpoints� 291
Checking VM Data Files after Removing Checkpoints� 291

Using VM Replication� 291
Before You Start� 292
Configuring HV1 and HV2 for Delegation� 293
Rebooting HV1 and HV2� 294
Setting VMReplication� 294
Enabling Replication from the Source VM� 294
Viewing VM Replication Status� 295
Viewing VM Status� 296
Initiating Replication� 296
Examining Initial Replication State� 296
Viewing Replication� 297
Testing Replica Failover� 297
Viewing VM Status on HV2 after Failover� 298
Getting VM Details from HV1� 298
Getting VM Details from HV2� 299
Stopping the Failover Test� 300
Viewing VM Status� 301
Setting Failover IP Address for VM Failover� 301
Stopping HVDirect on HV1� 302
Starting Failover from HV1 to HV2� 302
Completing the Failover of HVDirect� 303
Starting the Failover VM� 303
Checking VM Status After Failover� 303
Testing Failover VM Networking� 304

Managing VM Movement� 305
Before You Start� 305
Viewing the HVDirect VM� 305
Getting VM Configuration Location� 306
Getting VM Hard Drive Locations� 306
Migrating VM Storage� 307
Viewing Configuration Details� 307
Viewing VMs on HV2� 308
Enabling VM Migration� 308

	 Contents	 xxix

Configuring VM Migration� 308
Migrating a VM Between Hosts� 309
Displaying Migration Time� 309
Checking VMs on HV1� 310
Checking VMs on HV2� 310
Examining Virtual Disk Details� 310

Measuring VM Resource Usage� 311
Before You Start� 311
Getting VM Details� 312
Enabling VM Resource Monitoring� 312
Starting the HVDirect VM� 312
Creating Credentials for HVDirect� 313
Getting Initial Resource Measurements� 313
Performing Compute Work� 313
Measuring VM Resource Usage Again� 314

Summary� 314

Chapter 9	 Using WMI with CIM Cmdlets� 315
Reviewing WMI Architecture in Windows� 317
Obtaining WMI Data� 318
Using the CIM Cmdlets� 319
Systems Used in This Chapter� 320

Exploring WMI Namespaces� 320
Viewing Classes in the Root Namespace� 320
Viewing Namespaces Below the Root� 321
Enumerating Classes in root\CIMV2� 321
Discovering All Namespaces in WMI� 323
Viewing Some WMI Namespaces� 324
Counting WMI Classes� 324
Viewing Namespaces on a Remote Server� 325
Counting Namespaces/Classes on SRV2� 326
Counting Namespaces/Classes on DC2� 327

Exploring WMI Classes� 328
Examining the Win32_Share Class� 328
Viewing Class Properties� 329
Viewing Class Methods� 329
Viewing Class Details in a Specified Namespace� 330

Getting Local and Remote Objects� 330
Using Get-CimInstance� 331
Getting Objects from a Non-default Namespace� 331
Using a WMI Filter� 332
Using a WMI Query� 333
Getting Remote WMI Objects� 334

Invoking WMI Methods� 334
Reviewing Static Methods of a Class� 335
Reviewing Properties of a Class� 335
Creating a New Share� 336

xxx	 Contents

Viewing the SMB Share Using Get-SMBShare� 337
Viewing the SMB Share Using Get-CimInstance� 338
Removing an SMB Share� 338

Managing WMI Events� 339
Registering for an Event� 340
Running a Windows Process� 340
Getting the WMI Event� 341
Displaying Event Details� 341
Unregistering for a WMI Event� 341
Creating an Extrinsic Event Registration� 342
Modifying the Registry� 343
Unregister the Registry Event� 344
Examining Result Details� 344
Defining a WQL Event Query� 344
Creating a Temporary WMI Event Subscription� 345
Adding to the Enterprise Admins Group� 345
Viewing the Event� 346
Unregistering the WMI Event� 346

Implementing Permanent WMI Event Handling� 347
Specifying Valid Users� 349
Defining Helper Functions� 349
Creating an Event Query� 350
Creating an Event Filter� 350
Creating a Script for the Event Handler to Run: Monitor.ps1� 351
Creating an Event Consumer� 351
Binding Event Filter and Event Consumer� 352
Displaying Event Filter Details� 353
Testing Event Filtering� 353
Viewing Results� 354
Removing Event Filter Details from WMI� 354

Summary� 355

Chapter 10	 Reporting� 357
Systems Used in This Chapter� 358
Reporting on AD Users and Computers� 359

Before You Start� 360
Defining a Function to Retrieve User Accounts� 360
Getting Reskit Users� 361
Building the Report Header� 361
Reporting on Disabled Users� 361
Reporting on Unused Accounts� 362
Reporting on Invalid Password Attempts� 362
Determining Privileged Users� 362
Adding Privileged Users to the Report� 363
Displaying the Report� 364

Managing Filesystem Reporting� 365
Before You Start� 366

	 Contents	 xxxi

Creating a Storage Report� 366
Viewing FSRM Reports� 367
Viewing FSRM Report Output Files� 368
Viewing the Large Files Report� 368
Using FSRM XML Output� 369
Creating a Scheduled FSRM Report Task� 370
Creating the Scheduled Report� 371
Viewing the Report Scheduled Task� 371
Running the Report Interactively� 372
Viewing the Report� 372
Removing the Reports and Scheduled Task� 374

Collecting Performance Information Using PLA� 374
Before You Start� 375
Creating a Data Collector� 375
Defining Counters� 375
Adding the Performance Counters to the Collector Set� 376
Creating a Schedule� 376
Creating and Starting the Data Collector Set� 376
Creating a Second Data Collector Set� 377
Viewing the Collector Sets� 378

Reporting on PLA Performance Data� 379
Before You Start� 379
Importing the Performance Counters� 379
Importing Performance Counter Data� 379
Fixing the Data Collection Problem� 380
Obtaining CPU Statistics� 380
Determining the 95th Percentile� 380
Combining CPU Measurements� 381
Displaying CPU Statistics� 381

Creating a Performance Monitoring Graph� 382
Before You Start� 382
Loading the Forms Assembly� 382
Importing Performance Data� 382
Creating a Chart Object� 383
Defining Chart Dimensions� 383
Defining the Chart Area� 383
Identifying the Date/Time Column� 383
Adding Performance Data to the Chart� 384
Saving a Chart Image� 384
Viewing the Chart Image� 384

Creating a System Diagnostics Report� 385
Before You Start� 385
Starting the Built-in Data Collector� 385
Waiting for Data Collector to Finish� 386
Saving the Report as HTML� 386
Viewing the System Diagnostics Report� 386

xxxii	 Contents

Reporting on Printer Usage� 387
Before You Start� 388
Turning on Print Job Logging� 388
Defining a Get-PrinterUsage Function� 388
Creating Print Output� 389
Viewing PDF Output Files� 389
Viewing Printer Usage� 390

Creating a Hyper-V Status Report� 390
Before You Start� 391
Creating a Basic Report Object Hash Table� 391
Adding Host Details to the Report� 391
Adding PowerShell and OS Version� 391
Adding Processor Count� 392
Adding Current CPU Usage� 392
Adding Total Hyper-V Host Physical Memory� 393
Adding Memory Assigned to VMs� 393
Creating the Host Report Object� 393
Creating the Report Header� 393
Adding the Report Object to the Report� 393
Creating an Array for the VM Details� 394
Getting VM Details� 394
Completing the Report� 394
Viewing the Report� 395

Reviewing Event Logs� 395
Before You Start� 397
Counting Event Logs� 397
Getting the Total Number of Event Records� 397
Getting Event Counts in Key Logs� 398
Getting All Windows Security Log Events� 399
Getting Logon Events� 399
Creating a Logon Type Summary� 400
Displaying Logon Events by Logon Type� 401
Examining RDP Logons� 401

Summary� 402

Index� 403

xxxiii

Introduction

Hello, and thank you for buying this book. I sat in the audience at the Professional
Developers Conference in Los Angeles in 2003, where Jeffrey Snover introduced
Monad, which was later to become Windows PowerShell. I was excited about
what I saw and heard; it was a seminal moment in my career.

Today we have a new version of PowerShell, PowerShell 7, to get excited about
all over again. The PowerShell development team, combined with a fantastic
community, has taken PowerShell to a new level. I continue to be excited, and
I hope you are.

Before you dive into the body of this book, I hope you might take a few
moments to read this short introduction where I explain my motivation for
writing the book, its structure, and how you can use the PowerShell scripts in
this book using Hyper-V VMs.

This book contains 10 chapters. The first chapter looks at setting up Power-
Shell 7 in your environment. Chapter 2 examines the issue of Windows Power-
Shell compatibility and shows how PowerShell 7 addresses this challenge. The
remaining eight chapters cover various Windows Server features and how you
manage them with PowerShell 7. Here’s a short overview of what is in this book:

Chapter 1: Setting Up a PowerShell 7 Environment: In this chapter, you look
at how to install PowerShell 7 and VS Code. VS Code is your replacement
for the older Windows PowerShell ISE. The screenshots in this book show
PowerShell code running in VS Code. In production, you could consider
not using VS Code, or any GUI tool for that matter, on your server and
instead rely on the PowerShell 7 console and remote text editing.

Chapter 2: PowerShell 7 Compatibility with Windows PowerShell: Com-
patibility with Windows PowerShell is both an important objective and a

xxxiv	 Introduction

significant engineering task. This chapter describes the compatibility issue
as well as providing some additional background on modules. The chapter
then looks at how backward compatibility works and discusses the small
number of Windows PowerShell that you cannot use in PowerShell 7.

Chapter 3: Managing Active Directory: AD is at the heart of almost every
organization’s network. This chapter shows how you can deploy and man-
age AD, including creating forests and domains as well as linking forests
with cross-forest trusts. The chapter also looks at how you manage AD
users, computers, groups, and more.

Chapter 4: Managing Networking: In this chapter, you look at managing
your network with PowerShell 7. You examine NIC configuration, as well
as installing and managing both DNS and DHCP.

Chapter 5: Managing Storage: Storage is a crucial aspect of any computer
system. You need somewhere to store your files and other data. This chapter
looks at managing disks and volumes/partitions as well as using a third-
party module to manage NTFS permissions. The chapter also examines
Storage Replica to replicate storage, possibly for disaster recovery. Finally,
the chapter looks at using File Server Resource Manager to manage file
quotas and file screening.

Chapter 6: Managing Shared Data: Once you have disks configured as vol-
umes and partitions and you have set up permissions appropriately, you
need to share that data across the network. This chapter looks at how you
set up and configure an SMB file server and how to create and secure SMB
file shares. The chapter also looks at setting up an iSCSI target and then
using that target to deploy a highly resilient clustered scale-out file server.

Chapter 7: Managing Printing: Printing has been a core feature of Windows
since the beginning of Windows itself. This chapter shows how to set up
and manage a print server. The chapter shows how to add a printer, how to
add print drivers, how to print a test page, and how to set up a printer pool.

Chapter 8: Managing Hyper-V: Hyper-V is Microsoft’s core virtualization
product. This chapter shows you how to set up and manage Hyper V
and how to create and manage Hyper-V VMs. The chapter also looks at
VM and VM storage movement and replication, vital topics for today’s
VM-focused world.

Chapter 9: Using WMI with CIM Cmdlets: Windows Management Instru-
mentation has been a feature within Windows since NT 4. WMI provides
you with access to information about your system and allows you to manage
aspects of the system. WMI is useful to provide you with access to Windows
functionality you cannot get via PowerShell cmdlets. This chapter explores

	 Introduction	 xxxv

the WMI components and shows you how to discover more. The chapter also
looks at managing WMI events and shows how you can set up a permanent
event handler to manage critical security events.

Chapter 10: Reporting: Knowing the status of your IT infrastructure is vital
to being able to manage your computing estate. This chapter demonstrates
how you can use PowerShell 7 to learn more about your infrastructure.
The chapter looks at reporting on AD users and computers, the filesystem
via FSRM, printer usage, and Hyper-V host and VM usage. This chapter
also looks at using performance logging and alerting to capture detailed
performance information and create rich performance reports and graphs
that show the performance of your infrastructure.

I wrote this book to show you, the IT pro, that moving to PowerShell 7 is easy
and worth your while. Just like when moving your home, things are a bit differ-
ent in PowerShell 7. But once you get settled in, you are unlikely to look back.
Along with VS Code, PowerShell 7 is just better. And I hope that each chapter
of this book demonstrates that.

This book assumes you are an IT professional wanting to learn how to make
the most of PowerShell 7. You might be an active administrator, a consultant, or
a manager. You should have a background in both Windows Server features and
broadly what they do, along with an understanding of Windows PowerShell itself.

The book looks at a variety of core Windows features including Active
Directory, File Services Resource Manager, WMI, printing, and more. Each
chapter describes a feature area and the components with which you interact.
Then the chapter shows you how you can use PowerShell 7 to deploy, manage,
and leverage that feature.

In this book (and indeed any book on PowerShell), it’s not possible to cover
every aspect of every feature set of Windows. As Jeffrey Snover says, “To ship
is to choose,” and I hope I have chosen wisely. I have also provided pointers to
where you can find more information. You are welcome to email me and give
me feedback (DoctorDNS@Gmail.Com).

This book contains a variety of scripts that you can use to manage some
aspects of Windows using PowerShell 7. You can download these scripts either
from the Wiley site or from my GitHub repository at github.com/doctordns/
Wiley20. In the unlikely event you discover an issue with any of the scripts or
find issues with the documentation, please file an issue report on the GitHub
repository (github.com/doctordns/Wiley20/issues).

A key goal in developing this book is to demonstrate how easily you can use
PowerShell 7 to manage a Windows Server infrastructure. There is a difference
in how you install it, and you have to get used to VS Code as a replacement to
the ISE. Along the way, I discovered a few issues around compatibility with

xxxvi	 Introduction

Windows PowerShell, and I discuss these in Chapter 2. It is time to move for-
ward to PowerShell 7.

I built the scripts and the book content based on a set of Windows Server
2019 Datacenter edition Hyper-V VMs. To get the most value from this book
and the scripts it contains, you should build the VMs yourself and use them
to test the scripts. Of course, you can use physical hosts as an alternative to
virtual machines, but VMs are simpler to use. For readers who may not have
the necessary hardware at hand, I include screenshots showing the output of
each step of each script. To assist in creating the VMs, I have created a set of
scripts. You can find these on GitHub; see Chapter 1 for more information on
these scripts and how to obtain them.

One impressive aspect of PowerShell, from the beginning, is the rich and
vibrant PowerShell community. There are hundreds of people around the world
who love PowerShell and have delivered all kinds of goodness: tweets, forum
posts, blog articles, scripts, modules, web sites, and more. A fair number of fea-
tures in PowerShell 7 come from the community.

Should you have any problem with any aspect of any component of this
book—or any aspect of Windows—there is no shortage of help and guidance
you can find on the Internet.

Pretty much any social media site where techies can congregate is going to
have PowerShell content, help, and assistance. Feel free to visit the PowerShell
forum on Spiceworks where I am a moderator (community.spiceworks.com/
programming/powershell).

With that said, enjoy the book and enjoy PowerShell 7.

Fare thee well now,
Let your life proceed by its own design.

Nothing to tell now,
Let the words be yours; I’m done with mine.

“Cassidy,” John Barlow/Robert Weir

Thomas Lee
June 2020

Cookham, England

C H A P T E R

1

1

The first versions of Windows PowerShell were provided via a user-installed
download, initially for Windows XP and Windows Server 2008. Today, both
Windows Server and Windows 10 come with Windows PowerShell version 5.1—
which in this book I’ll call simply Windows PowerShell to distinguish it from
PowerShell 7 (and the Windows PowerShell Integrated Scripting Environment)
installed and available by default. Windows PowerShell comes with a range of
commands available for basic administration of Windows.

PowerShell 7 itself does not ship as part of Windows at the time of writing.
At some point, the PowerShell team may ship PowerShell 7 as a Windows com-
ponent, but until that time, you need to download and install it yourself.

The Windows PowerShell Integrated Scripting Environment (ISE) does not
support PowerShell 7. IT pros who want a good interactive development envi-
ronment for PowerShell can use Visual Studio Code (VS Code), a free tool you
can also easily download and install. VS Code comes with an array of extensions
that provide a much-improved development experience for IT pros (and others).

With earlier versions of PowerShell, the vast majority of commands came bun-
dled into Windows or were added as part of installing an application (such as
Exchange Server) or adding a Windows feature to your system. With PowerShell
7, the PowerShell Gallery has become a core source of modules/commands that
you can use to perform various administrative tasks. To ensure that you can
take advantage of the PowerShell Gallery, you need to be sure that the Power-
ShellGet module is up to date.

Setting Up a PowerShell 7
Environment

PowerShell 7 for IT Pros: A Guide to Using PowerShell 7 to Manage Windows® Systems, First Edition. Thomas Lee.
© 2021 John Wiley & Sons, Inc., Published 2021 by John Wiley & Sons, Inc.

2	 Chapter 1 ■ Setting Up a PowerShell 7 Environment

What Is New in PowerShell 7

PowerShell 7 is the latest version of PowerShell. The PowerShell development
team released PowerShell 7.0 in March 2020. By the time you read this, the
development team is certain to have released newer minor updates. PowerShell
7 has a number of key new features that IT pros can leverage.

If you are familiar with and can use Windows PowerShell to manage your
Windows systems, almost all your knowledge is directly transferable to the new
environment. Need to get help on a command? Just type Get-Help at the Power-
Shell command line. The basic architecture of PowerShell remains the same, with
many internal changes, significant improvements, and a few breaking issues.

From the perspective of an IT professional with a working knowledge of
managing Windows using Windows PowerShell, here are the key changes you
can find:

■■ Redeveloped cmdlets, based on .NET Core and open sourced via GitHub:
You can now read and even help to extend any cmdlet in PowerShell 7.
This also means that the cmdlets were written to use .NET Core—which
has created a few small compatibility issues.

■■ A robust compatibility layer: You use this to access Windows PowerShell
modules that do not directly work on PowerShell 7. This means that all but
a small number of Windows PowerShell 5.1 modules are available with
and work under PowerShell 7. Chapter 2, ”PowerShell 7 Compatibility with
Windows PowerShell,” describes this compatibility layer in more detail and
notes how it works and its limitations as well as providing work-around
solutions.

■■ Significant performance enhancements: In porting the Windows
PowerShell modules to PowerShell 7, the development team was able to
review the code and deliver performance enhancements. Processing large
collections, for example using Foreach, is now a lot faster. The Foreach-
Object cmdlet now has a -Parallel switch that allows you to run script
blocks in parallel, which can provide substantially shorter run times,
especially on larger multiprocessor and multicore servers.

■■ New PowerShell language operators: There are three new operator sets
in PowerShell: the Ternary operator (a ? b : c), the Pipeline chain oper-
ators (|| and &&), and the Null coalescing operators (?? and ??=). These
operators were implemented in other shells such as Bash or Zsh, and you
can now use them in PowerShell 7.

■■ Simplified error views: Windows PowerShell error messages were excel-
lent and contained a lot of information. But in most cases the rich output
was more than you normally need. Error messages in PowerShell 7 are
now much more succinct. And when you do need that additional information,

	 Chapter 1 ■ Setting Up a PowerShell 7 Environment	 3

you can use Get-Error to retrieve the full details of any error. You can set
the $ErrorView variable to NormalView to view the older Windows
PowerShell–style error messages or CategoryView to see just the error
category.

■■ Experimental features: The PowerShell team has implemented a raft of
new features that are at an experimental stage. You can opt in (or not) to
these features. This gives you the opportunity to try new things and pro-
vide feedback.

■■ Automatic new version notification: At the time of writing, there is no
support for PowerShell 7 within the Windows Store or via Windows
Update. That means you need to manage the updates yourself, and these
messages provide timely notification that a newer version of PowerShell
exists for you to download.

■■ Set-Location now supports a path of - and +: When you use Set-Location
to reset your current working directory, you can use -Path “-“ to instruct
Set-Location to move to the last folder. Having moved back, you can set
location using + to move forward.

■■ Ability to invoke a DSC resource directly: PowerShell 7 does not support
desired state configuration, so no pull/report servers, local configuration
manager, and so on. You can, however, manually invoke DSC resources
on a given host, which provides a partial solution.

The PowerShell 7 snippets in this book use and demonstrate most of these
new features. For more information on any of these features, including use cases
and examples, use your favorite search engine as the PowerShell community has
produced a significant amount of content that describes the features. You can find
numerous higher-level posts, such as the article at https://www.thomasmaurer.
ch/2020/03/whats-new-in-powershell-7-check-it-out. There are also more detailed
articles that cover specific new features such as tfl09.blogspot.com/2020/03/
introduction-and-background-welcome-to.html, for example, which provides
details on the new Pipeline Chain and Ternary operators.

Systems Used in This Book and Chapter

This book examines how you can use PowerShell 7 to carry out a wide range
of tasks, including setting permissions on a file share, collecting and report-
ing on performance data, and installing and configuring Active Directory. To
demonstrate these and many other tasks, this book uses a set of hosts and two
domains: Reskit.Org and Kapoho.Com. You have options as to how you provi-
sion these systems.

4	 Chapter 1 ■ Setting Up a PowerShell 7 Environment

Server VM Build Scripts
The scripts in this book assume you have a set of servers ready to configure.
You could, if you choose, build each computer used in this book based on
physical hardware. A simpler alternative is to build the necessary server VMs
using Hyper-V using the build scripts you can find at github.com/doctordns/
ReskitBuildScripts. This GitHub repository contains a README.MD file (github
.com/doctordns/ReskitBuildScripts/blob/master/README.md) that explains
how you can use these scripts to build your VM farm.

By way of background, these scripts are used to create VMs for a variety
of training courses and other books. You do not need to create all the VMs.
In the introduction to each chapter, you discover the specific VMs that the
chapter uses.

These build scripts build VMs, but you need to take some care in terms of
the order in which you build the VMs, where you store VMs and virtual hard
disks, and so on.

The build scripts build VMs with basic networking (one NIC) although you
can always add more should you wish. The scripts build the VMs you need
for this book using a specific set of network addresses. The document github.
com/doctordns/ReskitBuildScripts/blob/master/ReskitNetwork.md shows the
details of the network hosts and IP addresses.

VM Internet Access
The VMs (or hosts if you choose to use physical computers) require Internet
access. The VMs are all on the 10.10.10.0/24 IPv4 network implemented as an
internal Hyper-V network, using an internal Hyper-V virtual switch. There are
two broad mechanisms you can use to provide this.

First, you can configure each VM to have a second virtual NIC. You configure
this NIC to use an external switch that you bind to your VM host’s external
NIC. This is a simple solution and can be set up quickly.

Another alternative is to set up a Windows Server VM running Routing and
Remote Access. You configure the VM with two NICs (one internal, the other
external) and configure routing between the 10.10.10.0/24 subnet used by the
VMs in this book and the internet.

Systems in Use for This Chapter
In this chapter, you use PowerShell 7 to manage various networking aspects.
The scripts in this chapter make use of one.

DC1: For the purposes of this chapter, DC1 is just a Windows Server 2019 host.
Figure 1.1 shows the systems in use in this chapter.

	 Chapter 1 ■ Setting Up a PowerShell 7 Environment	 5

For the purposes of this chapter, DC1 is a VM running Windows Server 2019 Data-
center. You can create this server using the build scripts noted earlier. In Chapter 3,
”Managing Active Directory,” you promote this server to be a domain controller.

Installing PowerShell 7

By default, Microsoft does not include PowerShell 7 within any version of
Windows, including Window 10, Windows Server 2019, or any earlier sup-
ported versions of Windows client and server. To install and use PowerShell 7,
you need to install it for your operating system.

The PowerShell team supports PowerShell 7, at the time of writing, on the
following operating systems:

■■ Windows 7, 8.1, and 10

■■ Windows Server 2008 R2, 2012, 2012 R2, 2016, and 2019

■■ macOS 10.13+

■■ Red Hat Enterprise Linux (RHEL) / CentOS 7+

■■ Fedora 29+

■■ Debian 9+

■■ Ubuntu 16.04+

■■ openSUSE 15+

■■ Alpine Linux 3.8+

This list is constantly being reviewed and updated. The PowerShell product
team will add distributions of Linux to the list and provide support for later
versions of all platforms.

This book describes installing and using PowerShell 7 on the Windows
platform. The chapters in this book leverage Windows Server features such as
Active Directory, which have no counterpart on other platforms. Nevertheless,
you can use PowerShell 7 on a non-Windows platform to manage Windows
servers and clients.

DC1
(Windows Server 2019)

Figure 1.1: Systems used in this chapter

6	 Chapter 1 ■ Setting Up a PowerShell 7 Environment

In this book, you need to install PowerShell 7 on each host you use, since all
the scripts shown in this book require PowerShell 7.

Before You Start
You run the code in this section on a Windows 2-++++-+--+-019 Server, DC1.
You can also use the snippets on other hosts that you use to install VS Code
on those hosts.

You begin by running the code snippets using the Windows PowerShell 5.1
(or the ISE), run in an elevated console. You can download the relevant script
files, open them locally, and run them inside each VM in the ISE (initially). Once
you have installed PowerShell 7, you use the PowerShell 7 console. (You use VS
Code later in this chapter.)

Enabling the Execution Policy
By default, PowerShell does not allow you to run scripts. To do so, you must
first set the execution policy.

1. Enable scripts to be run
Set-ExecutionPolicy -ExecutionPolicy Unrestricted -Force

Here you set the execution policy to Unrestricted. On production systems
you may want to set a more restrictive execution policy.

Installing the Latest Version of NuGet and PowerShellGet
PowerShell 7 comes with a large number of modules containing a useful set
of commands, but it does not provide commands and modules to cover every
situation. The PowerShell community has stepped up and created some out-
standing added modules you can download and use, some of which are dis-
cussed in this book.

You use the PowerShell Gallery to download the PowerShell modules used
in this book. For example, you use the NTFS Security module in later chapters
to manage NTFS file and folder security.

You download and install a module from the PowerShell Gallery, or other
module repositories, using Import-Module. To work with the PowerShell Gal-
lery, you need to ensure you have the latest versions of the underlying tools that
Install-Module uses to work against the PowerShell Gallery.

To ensure that you download the most up-to-date versions of the key modules
from the PowerShell Gallery, use the following commands:

2. Install latest versions of Nuget and PowerShellGet
Install-PackageProvider Nuget -MinimumVersion 2.8.5.201 -Force |

	 Chapter 1 ■ Setting Up a PowerShell 7 Environment	 7

 Out-Null
Install-Module -Name PowerShellGet -Force -AllowClobber

You use the commands in the PowerShellGet module to download content
from the PowerShell Gallery. That, in turn, requires at least version 2.8.5.201
of NuGet.

For more details on the PowerShell Gallery, see docs.microsoft.com/power-
shell/scripting/gallery/overview. To view the commands in the PowerShellGet
module, see docs.microsoft.com/powershell/module/powershellget/.

Creating the Foo Folder
Throughout this book, sample code snippets use the C:\Foo folder to hold various
files that you use in the code snippets. You create it using the New-Item command.

3. Create local folder C:\Foo
$LFHT = @{
 ItemType = 'Directory'
 ErrorAction = 'SilentlyContinue' # should it already exist
}
New-Item -Path C:\Foo @LFHT | Out-Null

These commands use a PowerShell technique known as splatting. First, you
create a hash table containing parameter names and values. Then, you pass the
hash table to a cmdlet, in this case New-Item. You pass the hash table instead of
the parameters and their values. This book makes extensive use of this feature
for a few reasons. First, it enables all the commands to fit within the width of the
page, avoiding a single command that spans multiple lines. But for production
code, this approach also makes it a bit easier to see and, as needed, to update
scripts that contain commands with a larger number of parameters. For more
information, you can type Get-Help about _ splatting inside PowerShell or
view the help file online at docs.microsoft.com/powershell/module/microsoft.
powershell.core/about/about _ splatting. Note that you need to run Update-
Help within PowerShell 7 before you can view the splatting help file.

Downloading the PowerShell 7 Installation Script
There are a variety of ways you can install PowerShell 7. One simple way is to
download and use an installation script created by the PowerShell team. The
script is available via the Internet (from GitHub), and you download it as follows:

4. Download PowerShell 7 installation script
Set-Location C:\Foo
$URI = "https://aka.ms/install-powershell.ps1"
Invoke-RestMethod -Uri $URI |
 Out-File -FilePath C:\Foo\Install-PowerShell.ps1

8	 Chapter 1 ■ Setting Up a PowerShell 7 Environment

These commands download the installation script from GitHub and store it
in C:\Foo.

Viewing Installation File Help Information
It is always a good idea to examine any script you download to see how the
developer intended it to be used. To that end, the installation script contains
some basic help information, which you can view with Get-Help.

5. View Installation Script Help
Get-Help -Name C:\Foo\Install-PowerShell.ps1

You can see the output from this command in Figure 1.2.

The installation script allows you to install PowerShell 7 by using an MSI
file or by installing it by downloading a ZIP file and expanding it into a folder
of your choice. You can install the current version of PowerShell 7, the latest
Preview of the next version of PowerShell 7, or you can install PowerShell’s daily
build. You can install each version alongside the latest fully released version
of PowerShell 7.

For most IT pros, using the MSI and installing silently is quick and easy.
Evaluating future versions and bug fixes rolled into the daily build is for the
brave. Obviously, you should proceed with all necessary caution when using
an unsupported version of any product. With that being said, the advanced
versions have been very stable and allow you early access to new functionality
and bug fixes.

Installing PowerShell 7
To install PowerShell 7 on DC1, you run the installation script with this code
snippet:

6. Install PowerShell 7

$EXTHT = @{

 UseMSI = $true
 Quiet = $true
 AddExplorerContextMenu = $true
 EnablePSRemoting = $true
}

C:\Foo\Install-PowerShell.ps1 @EXTHT

Figure 1.2: Viewing help information

	 Chapter 1 ■ Setting Up a PowerShell 7 Environment	 9

The installation script that downloads the PowerShell 7 MSI Installation
package then runs this code silently. You should see no meaningful output.
Because you are using the MSI, it installed PowerShell into a well-known loca-
tion and updated the registry to indicate which versions of PowerShell are
installed on this system.

Without using the MSI, for example when installing the build of the day, the
installation script downloads the appropriate version as a ZIP file and expands
it into a folder you specify.

When the Install-PowerShell script completes, you have installed Power-
Shell 7 on your system.

Examining the Installation Folder
Now that you have installed PowerShell 7, you can take a look at the installation
folder with the following syntax:

7. Examine the installation folder
Get-Childitem -Path $env:ProgramFiles\PowerShell\7 -Recurse |
 Measure-Object -Property Length -Sum

You can see the output from these commands in Figure 1.3.

As you can see in the figure, PowerShell 7’s installation folder is different from
that of Windows PowerShell (where, as a component of Windows, it is within
the C:\Windows\System32\WindowsPowerShell folder).

If you examine the files in that folder carefully, you can see some differences in
PowerShell 7. With PowerShell 7, there are significantly more files in the $PSHome
folder (which can be confusing), and the name of the executable program you run
to bring up the PowerShell 7 console is pwsh.exe. Another noticeable difference
is that with PowerShell 7, there are no .PS1XML files. In Windows PowerShell,
these XML files defined the default formatting for a wide range of objects and
provided for IT pro–focused extensions to .NET Framework objects. PowerShell
7 brings the formatting XML inside PowerShell itself for improved performance.

Figure 1.3: Examining the installation folder

10	 Chapter 1 ■ Setting Up a PowerShell 7 Environment

The type extensions files were highly useful for ensuring consistency of prop-
erty names across .NET classes, and PowerShell now has this functionality as
well. You can still create your own type or format XML and extend PowerShell
with updated types or default formatting that better meets your needs.

Viewing Module Folder Locations
In Windows PowerShell, commands you use are contained in modules. You can
implicitly import a module before use to ensure it’s available. Or you can make
use of Windows PowerShell’s module autoload feature. With module autoload, if
you use a command that is not contained in modules already loaded, PowerShell
searches all available modules to see if that command exists in some other module.
If so, PowerShell loads the module and executes the command. PowerShell uses
a built-in Windows environment variable to hold a semicolon-delimited list of
paths. PowerShell searches each path in turn to discover any needed module.
You can view the set of module folders in Windows PowerShell with this code:

8. View Module folders
View module folders for autoload
$I = 0
$env:PSModulePath -split ';' |
 Foreach-Object {
 "[{0:N0}] {1}" -f $I++, $_}

You can see the output from these commands in Figure 1.4.

As you can see, with Windows PowerShell there are just three module paths
by default. If you add features or other applications/tools to your system(s),
you may find installation programs add additional paths to the module file
path variable.

To optimize performance, each time Windows PowerShell starts up, it spawns
a low-priority thread that looks at the modules available and stores the details
in a local cache. The module autoload makes use of this cache to discover the

Figure 1.4: Viewing module paths

	 Chapter 1 ■ Setting Up a PowerShell 7 Environment	 11

modules that need to be imported before a command can be used. One side effect
is that if different modules implement a given command name, the module in
the higher-placed path is imported. This means you can create your own ver-
sions of Get-Command.

Viewing Profile File Locations
PowerShell defines four profile files.

■■ AllUsersAllHosts

■■ AllUsersCurrentHost

■■ CurrentUserAllHosts

■■ CurrentUserCurrentHost

Each profile file is associated with a well-known profile filename. PowerShell
has a built-in variable, $Profile. At startup, PowerShell adds four properties to
this variable that hold the well-known paths to each of the profile files. To see
these properties, you need to use the -Force parameter explicitly.

These profile files allow you considerable flexibility with respect to startup
profiles. Each profile file (which PowerShell runs as part of its startup) can cre-
ate objects/variables, set environment options, send email, create a transcript,
create PowerShell drives, and so on. In effect, profile files are a way of persisting
a customized environment. You add commands to the profile that you want to
have executed before you begin to work in a PowerShell session.

You can use PowerShell profile files for all users, perhaps to define some cor-
porate or departmental aliases, create some “well-known” file locations for all
users, or do more customized actions for just the current user. You have profiles
for all PowerShell hosts (programs that host and use the PowerShell runtime)
or separate profile files for different hosts. The ISE, for example, has the $PSISE
variable, which allows you to control the ISE environment. This variable does
not exist in either the PowerShell console or VS Code. Having different profiles
for different PowerShell hosts allows you to customize each host using differ-
ent techniques.

You can address a variety of deployment scenarios using different combi-
nations of these four profile files as needed. Most IT pros just use the Current
User Current Host profile, which is the value of $Profile.

You view the four profiles and their associated well-known filenames as follows:

9. View Profile File locations
Inside the ISE
$PROFILE |
 Format-List -Property *Host* -Force
from Windows PowerShell Console
powershell -Command '$Profile| Format-List -Property *Host*' -Force

12	 Chapter 1 ■ Setting Up a PowerShell 7 Environment

The output, which you can see in Figure 1.5, shows the profile file locations
for both the ISE and the Windows PowerShell console.

Starting PowerShell 7
Now that you have installed PowerShell 7, you can click the Windows Start button,
enter pwsh, and hit Enter to open a PowerShell 7 console. After you open the
PowerShell 7 console, verify the version by viewing the $PSVersionTable variable.

10. Run PowerShell 7 console and then...
$PSVersionTable

As you can see in Figure 1.6, I was running PowerShell 7 when I captured
the output. There are almost certainly going to be newer versions released by
the time you read this (such as 7.0.1 or 7.0.2), so you may well see a slightly later
version for PowerShell 7.

Figure 1.5: Viewing profile file locations

Figure 1.6: Viewing help information

	 Chapter 1 ■ Setting Up a PowerShell 7 Environment	 13

Viewing New Locations for Module Folders
In the previous section “Viewing Module Folder Locations” you viewed the
folders where Windows PowerShell looked to find modules. With PowerShell
7, you repeat this as follows:

11. View Modules folders
$ModFolders = $Env:PSModulePath -split ';'
$I = 0
$ModFolders |
 ForEach-Object {"[{0:N0}] {1}" -f $I++, $_}

You can see the output from these commands in Figure 1.7.

In the output, notice that you now have five module file paths.

Viewing New Locations for Profile Files
As in Windows PowerShell, you have multiple profile files with PowerShell 7,
although these are now in a slightly different place on the disk. You can view
the locations for the four PowerShell 7 profile files like this:

12. View Profile Locations
$PROFILE | Format-List -Property *Host* -Force

As you can see in Figure 1.8, there are four profiles files, each at a location
separate from Windows PowerShell.

Figure 1.7: Viewing PowerShell 7 module paths

Figure 1.8: Viewing PowerShell profile file locations

14	 Chapter 1 ■ Setting Up a PowerShell 7 Environment

Creating a Current User/Current Host Profile
To demonstrate how PowerShell profile files work with PowerShell 7, you can
download a sample profile from the Internet and create the Current User Current
Host Profile using the following commands:

13. Create Current user/Current host profile
$URI = 'https://raw.githubusercontent.com/doctordns/Wiley20/master/' +
 'Goodies/Microsoft.PowerShell_Profile.ps1'
$ProfileFile = $Profile.CurrentUserCurrentHost
New-Item $ProfileFile -Force -WarningAction SilentlyContinue |
 Out-Null
(Invoke-WebRequest -Uri $uri -UseBasicParsing).Content |
 Out-File -FilePath $ProfileFile

You can obtain the scripts for this book both from Wiley and from the author’s
GitHub repository. The author’s repository contains a Goodies folder that has a
sample profile file to illustrate the use of profiles with the PowerShell 7 console.

This sample sets some useful defaults and aliases, creates some variables,
configures the console heading, and sets the current working folder to the
eponymous C:\Foo folder. Feel free to adjust this profile to suit your working
style. Once you run these commands, you need to restart PowerShell to have
the new profiles take effect.

Installing and Configuring VS Code

The PowerShell ISE is an interactive development environment for Windows
PowerShell. The ISE allows you to edit, manage, and run scripts within a single
program. While there have been other IDEs available for PowerShell, the ISE
is free and built in and has good functionality for the IT pro. The screenshots
taken for this book that show PowerShell 7 code are shown running in VS Code.

Microsoft has indicated it has no plans to update the ISE to support PowerShell
7. A recommended alternative is VS Code. VS Code is a free, Microsoft-created,
open source, cross-platform source code editor. VS Code runs as a desktop
application on Windows, macOS, and Linux and provides great support for
PowerShell. VS Code is an excellent tool for managing not only PowerShell
source code but also documents containing Perl, Python, Markdown, and a
host of other formats.

Although VS Code is cross-platform, this chapter deals with VS Code on
Windows. For more information on VS Code, see code.visualstudio.com/.

VS Code supports a rich set of extensions that further enhance the development
experience. You can install a spell checker, for example. If you work with Mark-
down (en.wikipedia.org/wiki/Markdown), the community has built VS Code

	 Chapter 1 ■ Setting Up a PowerShell 7 Environment	 15

extensions to help you. You can use VS Code itself to add new extensions to your
environment, and you can install specific extensions when you install VS Code.

To install VS Code on your computer, you download and run an installation
script from Microsoft’s Visual Studio site that enables you to install VS Code
and any required extensions in a single operation.

If you work with more than just PowerShell, visit the Visual Studio market-
place at marketplace.visualstudio.com, where you can find a large selection
of extensions. Some extensions are free, while others are commercial (usually
with a free trial).

Once you have installed VS Code, you can easily alter the font it uses. VS Code
can use any of the fonts installed on your system, and you can change the font
via the VS Code GUI or via a JSON user settings file.

Microsoft recently published a new font, Cascadia Code. This font looks
good when you are using VS Code. All the screenshots in this book containing
PowerShell code use this font.

Finally, if you plan to use VS Code and PowerShell 7, you might like to add
shortcuts to your taskbar.

	 N OT E     The screenshots in this book were taken using VS. You can use VS Code in
all your VMs to test the scripts contained in this book, although in some environments
this may not be allowed or may not be considered best practice.

Before You Start
The code in this section runs on a VM running Windows Server 2019 Datacenter,
DC1. You can also use the snippets on other hosts that you use to install VS Code
and test the scripts in this book.

You run the scripts in this section using PowerShell 7, which you installed in
the previous section “Installing PowerShell 7.”

Downloading the VS Code Installation Script
The VS Code team has created an installation script to enable you to install VS
Code and uploaded this script to the PowerShell Gallery. You download the
script as follows:

1. Download the VS Code Installation Script
$VSCPATH = 'C:\Foo'
Save-Script -Name Install-VSCode -Path $VSCPATH
Set-Location -Path $VSCPATH

This snippet retrieves the Install-VSCode script and saves it to the C:\Foo folder.

16	 Chapter 1 ■ Setting Up a PowerShell 7 Environment

Installing VS Code and Extensions
You install VS Code using the Install-VSCode.ps1 file you just downloaded. You
can specify certain VS Code extensions that the installer should install along
with VS Code itself, as follows:

2. Now run it and add in some popular VSCode Extensions
$Extensions = "Streetsidesoftware.code-spell-checker",
 "yzhang.markdown-all-in-one"
$InstallHT = @{
 BuildEdition = 'Stable-System'
 AdditionalExtensions = $Extensions
 LaunchWhenDone = $true
}
.\Install-VSCode.ps1 @InstallHT

You can see the output generated by the VS Code installation script in Figure 1.9.

This snippet retrieves and installs the latest stable version of VS Code from
the Internet. As part of the installation two extensions are added. The first is a
good spellchecker, and the second is helpful if you are editing Markdown files.

Figure 1.9: Installing VS Code on DC1

	 Chapter 1 ■ Setting Up a PowerShell 7 Environment	 17

Depending on what your workload consists of, there are other extensions
you might find useful. The community is active in developing, extending, and
maintaining a wide variety of extensions.

These commands also start VS Code, so as additional output you see a VS
Code window. You can use this window to run code snippets in the rest of this
chapter.

Creating a Sample Personal Profile File
PowerShell profile files are quite powerful as a way of persisting customiza-
tions to PowerShell sessions. You can create new PowerShell drives, create
and populate custom variables, define useful functions, and much more. By
default, PowerShell 7 ships without profile files. As with Windows PowerShell,
you create an (empty) profile file by running the following commands in the
VS Code window:

3. Create a Sample Profile File
$SAMPLE = 'https://raw.githubusercontent.com/doctordns/Wiley20/master/' +
 'Goodies/Microsoft.VSCode_profile.ps1'
(Invoke-WebRequest -Uri $Sample).Content |
 Out-File $Profile

This snippet downloads a sample VS Code profile and saves it as the Current
Host/Current User profile. Depending on your organization, this sample may
be all you need. If you use both the PowerShell 7 console and VS Code, you
need to maintain two separate versions of that profile—one for each host. You
should review the two sample profiles and amend them as needed.

Downloading the Cascadia Code Font
Along with VS Code, Microsoft has also developed a new fixed-width font,
named Cascadia Code, for use with VS Code (and any other Windows appli-
cations that use fixed-width fonts, including the PowerShell and Windows
PowerShell console, Microsoft Office Word, and more). The Cascadia Code
font’s developers ship released versions of this font via GitHub (as well as via
the Microsoft Store). There are several versions of the font, including the basic
font (Cascadia.ttf). You can also download a variant that supports Powerline
symbols (CascadiaPL.ttf). To download the latest version of the basic font,
use the following code:

4. Download Cascadia Code font from GitHub
Get File Locations
$CascadiaFont = 'Cascadia.ttf' # font file name

Continues

18	 Chapter 1 ■ Setting Up a PowerShell 7 Environment

$CascadiaRelURL = 'https://github.com/microsoft/cascadia-code/releases'
$CascadiaRelease = Invoke-WebRequest -Uri $CascadiaRelURL # Get&all of them
$CascadiaPath = "https://github.com" + ($CascadiaRelease.Links.href |
 Where-Object { $_ -match "($CascadiaFont)" } |
 Select-Object -First 1)
$CascadiaFile = "C:\Foo\$CascadiaFont"
Download Cascadia Code font file
Invoke-WebRequest -Uri $CascadiaPath -OutFile $CascadiaFile

Installing the Cascadia Code Font in Windows
There is no direct support in PowerShell to install fonts. To install the font you
have just downloaded, you make use of the Shell.Application COM object, as
shown here:

5. Install Cascadia Code font
$FontShellApp = New-Object -Com Shell.Application
$FontShellNamespace = $FontShellApp.Namespace(0x14)
$FontShellNamespace.CopyHere($CascadiaFile, 0x10)

Although you downloaded the font file previously, you only now install it.
As long as you have not previously loaded this font, these commands produce
no output.

Updating VS Code User Settings
VS Code is highly configurable. Many of the individual configuration prefer-
ences are stored in a JSON file that you can modify as you choose. Here is how
you can update your user settings for VS Code:

6. Update Local User Settings for VS Code
This step in particular needs to be run in PowerShell 7!
$JSON = @'
{
 "workbench.colorTheme": "PowerShell ISE",
 "powershell.codeFormatting.useCorrectCasing": true,
 "files.autoSave": "onWindowChange",
 "files.defaultLanguage": "powershell",
 "editor.fontFamily": "'Cascadia Code',Consolas,'Courier New'",
 "workbench.editor.highlightModifiedTabs": true,
 "window.zoomLevel": 1
}
'@
$JHT = ConvertFrom-Json -InputObject $JSON -AsHashtable
$PWSH = "C:\\Program Files\\PowerShell\\7\\pwsh.exe"

continued

	 Chapter 1 ■ Setting Up a PowerShell 7 Environment	 19

$JHT += @{
 "terminal.integrated.shell.windows" = "$PWSH"
}
$Path = $Env:APPDATA
$CP = '\Code\User\Settings.json'
$Settings = Join-Path $Path -ChildPath $CP
$JHT |
 ConvertTo-Json |
 Out-File -FilePath $Settings

This code snippet sets several VS Code settings for the current user, including
using the newly added Cascadia Code font, setting the VS Code color theme
to the PowerShell ISE, and more. Note that this snippet overwrites any user
settings you may have. As you continue using VS Code and updating settings,
the contents of the JSON file are likely to change.

The snippet also shows how you can manage JSON documents by using a
new feature in PowerShell 7 that converts a JSON document to a PowerShell
hash table. In the snippet, you import the JSON document and convert it to a
PowerShell hash table. You can add a new value—in this case the name of the
PowerShell 7 executable file. Once you have finished adding the user settings,
you convert the hash table back to JSON and write it away.

Note that if you run this snippet in VS Code, you see the color theme and
font change once these commands complete execution.

Creating a Shortcut to VS Code
You next create a shortcut to VS Code (which you use later in this section), as
follows:

7. Create a short cut to VS Code
$SourceFileLocation = "$env:ProgramFiles\Microsoft VS Code\Code.exe"
$ShortcutLocation = "C:\foo\vscode.lnk"
Create a new wscript.shell object
$WScriptShell = New-Object -ComObject WScript.Shell
$Shortcut = $WScriptShell.CreateShortcut($ShortcutLocation)
$Shortcut.TargetPath = $SourceFileLocation
#Save the Shortcut to the TargetPath
$Shortcut.Save()

These steps create a shortcut in the C:\Foo folder to VS Code.

Creating a Shortcut to the PowerShell 7 Console
You can also create a shortcut to the PowerShell 7 console in a similar manner.

8. Create a shortcut to PowerShell 7
$SourceFileLocation = "$env:ProgramFiles\PowerShell\7\pwsh.exe"

Continues

20	 Chapter 1 ■ Setting Up a PowerShell 7 Environment

$ShortcutLocation = 'C:\Foo\pwsh.lnk'
Create a new wscript.shell object
$WScriptShell = New-Object -ComObject WScript.Shell
$Shortcut = $WScriptShell.CreateShortcut($ShortcutLocation)
$Shortcut.TargetPath = $SourceFileLocation
#Save the Shortcut to the TargetPath
$Shortcut.Save()

These steps create a shortcut in the C:\Foo folder to the PowerShell 7 console.

Building Layout.XML
If you are going to use VS Code and PowerShell a lot, it’s useful to add a shortcut to
these two tools in the Windows taskbar. To do that, you first create an XML file that
tells Windows to add the two recently created shortcuts to the taskbar, as follows:

9. Build Updated Layout XML
$XML = @'
<?xml version="1.0" encoding="utf-8"?>
<LayoutModificationTemplate
 xmlns="http://schemas.microsoft.com/Start/2014/LayoutModification"
 xmlns:defaultlayout=
 "http://schemas.microsoft.com/Start/2014/FullDefaultLayout"
 xmlns:start="http://schemas.microsoft.com/Start/2014/StartLayout"
 xmlns:taskbar="http://schemas.microsoft.com/Start/2014/TaskbarLayout"
 Version="1">
<CustomTaskbarLayoutCollection>
<defaultlayout:TaskbarLayout>
<taskbar:TaskbarPinList>
 <taskbar:DesktopApp DesktopApplicationLinkPath="C:\Foo\vscode.lnk"/>
 <taskbar:DesktopApp DesktopApplicationLinkPath="C:\Foo\pwsh.lnk"/>
</taskbar:TaskbarPinList>
</defaultlayout:TaskbarLayout>
</CustomTaskbarLayoutCollection>
</LayoutModificationTemplate>
'@
$XML | Out-File -FilePath C:\Foo\Layout.Xml

This snippet creates a new Layout.XML file and stores it in the C:\Foo folder.

Importing the New Layout.XML File
To add these shortcuts to the taskbar, you need to import the start layout XML
file you just created, as follows:

10. Import the start layout XML file
You get an error if this is not run in an elevated session
Import-StartLayout -LayoutPath C:\Foo\Layout.Xml -MountPath C:\

continued

	 Chapter 1 ■ Setting Up a PowerShell 7 Environment	 21

As noted in the snippet, you must run this final command in an elevated
console or run VS Code elevated. Elevated mode allows you to run commands
with administrative privileges. You do this by clicking Start, typing Code, right-
clicking the VS Code icon, and then clicking Run As Administrator.

To see the two new shortcuts on the taskbar, you sign out of Windows and then
sign back in. After you sign in again, your desktop should resemble Figure 1.10.

You may see a slightly different desktop depending on the media you used to
install Windows 10 (for example, evaluation or fully licensed versions).

For the more adventurous, you might install both the daily build and the
latest Preview build with taskbar shortcuts to all of the versions of PowerShell
(and Windows PowerShell) on your computer.

Using the PowerShell Gallery

Almost since the beginning of the PC, IT pros have had to find and deploy
additional software and tools. For PowerShell users, Microsoft’s PowerShell

New Shortcuts to
VS Code and
PowerShell 7

Figure 1.10: Updated taskbar

22	 Chapter 1 ■ Setting Up a PowerShell 7 Environment

Gallery (www.powershellgallery.com/) is a repository of PowerShell add-ins
including additional modules, scripts, and more. You used the PowerShell
Gallery in “Installing and Configuring VS Code” to download the script to
install VS Code, for example.

To discover, download, install, and update these add-ins, you use the com-
mands in the PowerShellGet module. This module is installed by default. Given
the pace of change in the PowerShell world and the importance of security, you
need to ensure that you have the latest versions of this module (which is true
of any module you download from the Gallery). You did that in the section
“Installing PowerShell 7.”

The PowerShell Gallery is run by Microsoft, and a number of the items in the
PowerShell Gallery were created by Microsoft employees and Microsoft product
teams. There are also a variety of excellent tools created by the community. This
book shows how to use a number of these modules. The snippets in this section
show how you can leverage and use the PowerShell Gallery.

Before You Start
You run the snippets in this section on a Windows Server host, DC1. You must
have installed PowerShell 7, and optionally VS Code, on this host using the
scripts earlier in this chapter.

Discovering PowerShell Gallery Modules
To discover modules available from the PowerShell Gallery, you can use the
Find-Module command.

1. Get Details of all PS Gallery Modules
$PGSM = Find-Module -Name *
"There are {0:N0} Modules in the PS Gallery" -f $PGSM.count

This snippet downloads details of all modules available from the Power-
Shell Gallery and displays a count of how many are available, as you can see
in Figure 1.11.

The number of available modules changes constantly but was more than
5,000 at the time of writing. While many of these modules are useful, some may

Figure 1.11: Count of modules available in the PowerShell Gallery

	 Chapter 1 ■ Setting Up a PowerShell 7 Environment	 23

be less than helpful, incomplete, or not working. Care is needed when using
third-party modules.

Determining the Modules That Support .NET Core
Some, but not all, of the modules support .NET Core and thus should work
natively within PowerShell 7. To report on how many modules support .NET
Core, you can run these commands:

2. Get Details of packages tagged with 'PSEdition_Core'
$PGSMC = Find-Module -Name * -Tag 'PSEdition_Core'
"There are {0:N0} modules supporting PowerShell Core" -f $PGSMC.Count

As you can see in Figure 1.12, there are about 800 modules that support .NET
core, although this number, too, is increasing.

Finding NTFS Modules
As an example of how to search for modules in the PowerShell Gallery, you might
want to search for a module that works with the Windows NTFS filesystem.
You can search for possible modules with this code:

3. Find NTFS Modules
$PGSM | Where-Object Name -match 'NTFS'

This command searches the set of modules you previously obtained and dis-
plays those that have “NTFS” in the module name. Figure 1.13 shows the output.

As you can see in the figure, three modules are available. One of those is the
NTFSSecurity module, which you can use to manage NTFS access control lists

Figure 1.12: Count of available modules that support .NET core

Figure 1.13: NTFS-related modules

24	 Chapter 1 ■ Setting Up a PowerShell 7 Environment

(ACLs) and inheritance (you use this module in several chapters in this book
to adjust file ACLs).

Installing the NTFSSecurity Module
You install the NTFSSecurity module by using the Install-Module command.

4. Install the NTFSSecurity module
Install-Module -Name NTFSSecurity

Viewing Available Commands
Now that you have downloaded the module, you can use Get-Command to view
the commands available within the NTFSSecurity module.

5. View Commands in the NTFSSecurity module
Get-Command -Module NTFSSecurity

You can see the output of this command in Figure 1.14.

Creating a Local PowerShellGet Repository

Public repositories such as the PowerShell Gallery are great resources for IT
professionals. They provide you with a wide range of useful modules, scripts,
and other resources. Modules such as NTFSSecurity make it easier to admin-
ister NTFS permissions and inheritance, for example. This book makes use of
a number of modules you download from the PowerShell Gallery.

At the same time as you can leverage external modules, you can also develop
modules for your own use and create your own internal module repository. You
can create a module to manage users in your Active Directory, for example, that
takes into account your specific business requirements. Once it is created, you
can store this module on an internal repository for use by other IT professionals,
or even end users, within your organization.

You have several alternative methods of creating an internal PowerShell repos-
itory. A simple implementation of a PowerShell repository would be an SMB
share within your organization where you publish packages for others to use.

Before You Start
You run the code in this section on a Windows Server 2019 host, DC1. This is
a Windows Server 2019 host on which you have installed PowerShell 7 and,
optionally, VS Code.

	 Chapter 1 ■ Setting Up a PowerShell 7 Environment	 25

In Chapter 3, you convert the DC1 host to be a domain controller. However,
for the purposes of this section, DC1 is just a Windows Server 2019 host.

Creating the Repository Folder
The repository you create in this section is based on a simple SMB file share.
You start by creating the underlying folder.

1. Create Repository Folder
$LPATH = 'C:\RKRepo'
New-Item -Path $LPATH -ItemType Directory | Out-Null

Figure 1.14: Commands in the NTFSSecurity module

26	 Chapter 1 ■ Setting Up a PowerShell 7 Environment

In production, you would most likely protect this folder from being updated
with ACLs. You can use the techniques covered in Chapter 4 , “Managing
Networking,” for this.

Sharing the Repository Folder
You create the repository share by using the New-SMBShare command.

2. Share the Repository Folder
$SMBHT = @{
 Name = 'RKRepo'
 Path = $LPATH
 Description = 'Reskit Repository'
 FullAccess = 'Everyone'
}
New-SmbShare @SMBHT

These commands create a new SMB share named RKREPO on the DC1 host.
This share is the basis for the repository.

Creating a Module Working Folder
While you’re developing any module, prior to publishing it and using it in pro-
duction, you can store it in any folder. In this case, you create a new folder, C:\
HW, that is to hold the module as you develop it.

3. Create a Working Folder for a Module
New-Item C:\HW -ItemType Directory | Out-Null

In production, you might want to create the working module in a separate
volume. You would also want to put your module under source code control,
for example using Git for this purpose.

Creating a Simple Module
The simplest module is a .PSM1 file with just a function definition (and in this
case an alias).

4. Create a simple module
$HS = @'
Function Get-HelloWorld {'Hello World'}
Set-Alias GHW Get-HelloWorld
'@
$HS | Out-File C:\HW\HW.psm1

These commands create a PowerShell module with one function and an alias.
You save this “module” in your module working folder (C:\HW).

	 Chapter 1 ■ Setting Up a PowerShell 7 Environment	 27

Loading and Testing the Module
Before you upload the module to a repository, you should test it. A simple way
to do this is to load the module from the module’s working folder and then use
the GHW alias you added to the .PSM1 file.

5. Load and Test the Module
Import-Module -Name C:\HW -Verbose
GHW

You can see the output from these two commands in Figure 1.15.

In the figure, you first see the verbose output from Import-Module. You can
see in that output that PowerShell loads the module, adds a function to your
PowerShell session, and then adds an alias to the function. Once imported, you
can use the module’s GHW alias.

Creating a Module Manifest
PowerShell repository and commands such as Install-Module are based on
NuGet. Each item in your repository is a NuGet package. For more information
on NuGet, see docs.microsoft.com/en-us/nuget/what-is-nuget.

NuGet requires all packages to have a module manifest (a .PSD1 file that you add
to the folder holding the module). You can create one using New-ModuleManifest.

6. Create a Module Manifest for this module
$NMHT = @{
 Path = 'C:\HW\HW.psd1'
 RootModule = 'HW.psm1'
 Description = 'Hello World module'
 Author = 'DoctorDNS@Gmail.com'
 FunctionsToExport = 'Get-HelloWorld'
 ModuleVersion = '1.0.0'
}
New-ModuleManifest @NMHT

Figure 1.15: Testing the Hello World module

28	 Chapter 1 ■ Setting Up a PowerShell 7 Environment

These commands create a module manifest, HW.psd1, in the module folder.
You could re-import the module, using the -Verbose switch parameter, to see
that PowerShell now loads the module via the manifest.

Trusting the Repository
If you use a repository that is not trusted, attempting to use commands such
as Install-Module results in a prompt asking whether to use an untrusted
repository. You can trust a repository to avoid this warning. Note that a trusted
repository is just a NuGet repository that a given system trusts. To trust any
repository, you use the Register-PSRepository command.

7. Create the repository as trusted
Repeat on every host that uses this repository
$Path = '\\DC1 \RKRepo'
$REPOHT = @{
 Name = 'RKRepo'
 SourceLocation = $Path
 PublishLocation = $Path
 InstallationPolicy = 'Trusted'
}
Register-PSRepository @REPOHT

These commands make the new RKRepo repository trusted from DC1. Note that
if you want other hosts to trust this repository, you need to run this command
on those hosts.

Viewing Configured Repositories
You use the Get-PSRepository command to view the currently configured
repositories.

8. View configured repositories
Get-PSRepository

You can see the output from this command in Figure 1.16.

Figure 1.16: Viewing configured repositories

	 Chapter 1 ■ Setting Up a PowerShell 7 Environment	 29

As shown in the figure, DC1 currently has two repositories you can use. The
PowerShell 7 installation process created the first, the PowerShell Gallery, although
the installation process creates it as untrusted. You can configure PowerShell
to trust the PowerShell Gallery should you wish.

Publishing a Module
To publish a module to your repository, you use the Publish-Module command.

9. Publish the module to the repository
Publish-Module -Path C:\HW -Repository RKRepo -Force

Publish-Module requires an up-to-date version of the NuGet provider. You
added this explicitly to DC1 in the section “Installing PowerShell 7.” By using the
parameter -Force, you instruct PowerShell to download an appropriate version
or the NuGet provider, if needed, before completing the publishing process.

If you plan to make use of repositories, whether public or private, as part of
your deployment of PowerShell 7, you should install the latest versions of all
modules (and have a process in place to ensure that you keep the downloaded
modules up to date on each host in your infrastructure).

Viewing the Repository Folder
You can view the NuGet packages in your RKRepo repository using Get-ChildItem.

10. View the repository folder
Get-ChildItem -Path C:\RKRepo

Figure 1.17 shows the output from this command. You can see that there is
just one package in the repository.

Figure 1.17: Viewing the repository folder

30	 Chapter 1 ■ Setting Up a PowerShell 7 Environment

Finding a Module
With the module published to your private repository, you can use Find-Module
to view the module.

11. Find the module in the RKRepo repository
Find-Module -Repository RKRepo

You can see basic module detail in Figure 1.18.

In this section, you created, trusted, and used a PowerShell repository. In
production, you would need policies and procedures to govern who can upload
packages to the repository and how to set them up.

Creating a Code-Signing Environment

PowerShell has the ability to control the execution of digitally signed scripts,
via settings of the PowerShell execution policy. If you set the execution policy
to All Signed, for example, PowerShell does not run any script that is not signed
or whose signature is untrusted. If you are developing PowerShell code for
customers, you may find it useful to sign your code to ensure that the code
you ship is the code the customer has received and to flag any unauthorized
changes.

For script signing, PowerShell requires two X.509 digital certificates. The
first, the signing certificate, is the certificate you use to sign a script using Set-
AuthenticodeSignature. The second, the CA certificate, tells Windows and
PowerShell to trust the actual signing certificate.

In most organizations that use digitally signed PowerShell scripts, there would
be at least one certificate authority (CA) deployed along with the necessary
procedures to issue signing keys and to ensure that other systems trust those
keys. The instructions for setting up a CA and issuing certificates are outside
the scope of this book.

As an alternative to a full-blown CA, you can use self-signed certificates to
test a code-signing environment. A self-signed certificate is one that is signed
by itself. You can create one with New‑SelfSignedCertifcate. You can copy this

Figure 1.18: Viewing the RKRepo modules

	 Chapter 1 ■ Setting Up a PowerShell 7 Environment	 31

certificate to the trusted root certificate store on the computer to enable Windows
to trust the signing certificate.

The script fragments in this section show you how to create and use a self-
signed certificate. Although using self-signed certificates works, in production
you should use certificates issued by your organization or from public CAs.

Before You Start
This section uses the Windows Server 2019 host, DC1, that you used previously
in this chapter. For this section, DC1 is a Windows 2019 Server (prior to being
promoted to be a domain controller in Chapter 3).

Creating a Self-Signed Certificate
You use the New-SelfSignedCertificate cmdlet to create a new self-signed
code-signing certificate.

1. Create a self-signed certificate
Import-Module PKI -WarningAction SilentlyContinue
$CERTHT = @{
 Subject = 'Sign.Reskit.Org'
 Type = "CodeSigningCert"
 CertStoreLocation = "Cert:\CurrentUser\my"
}
$SignCert = New-SelfSignedCertificate @CERTHT

The New-SelfSignedCertificate cmdlet adds a new code-signing certificate
in the current user’s personal certificate store.

Viewing the Certificate
You can view the new certificate.

2. View Certificate
$SignCert

You see the output of this command in Figure 1.19.

Figure 1.19: Viewing the certificate

32	 Chapter 1 ■ Setting Up a PowerShell 7 Environment

Each certificate has a unique thumbprint. When you create a new certificate,
the cmdlet creates a new thumbprint for you.

Creating a Simple Script
To demonstrate signing PowerShell scripts, create a simple script and store it
in the C:\Foo folder.

3. Create a simple .PS1 File
$File = @"
A script to be signed
"Hello World"
"@
$SignedFile = "C:\Foo\HelloWorld.ps1"
$File |
 Out-File -FilePath $SignedFile -Force

Setting Execution Policy
To test the requirement to use a signed script, you set the execution policy to
All Signed as follows:

4. Set Execution Policy to ALL Signed
Set-ExecutionPolicy -ExecutionPolicy AllSigned

Attempting to Run the Script
You can try to run the script as follows:

5. Attempt to Run the script (pre-signing)
& $SignedFile

You can see the output from this command in Figure 1.20.

As expected, PowerShell does not run the script file, since it is unsigned and
you previously set the execution policy to All Signed.

Figure 1.20: Attempting to run the script

	 Chapter 1 ■ Setting Up a PowerShell 7 Environment	 33

Signing the Script
You next attempt to sign the script using Set-AuthenticodeSignature, as follows:

6. Sign the script with the $SignCert certificate
Set-AuthenticodeSignature -FilePath $SignedFile -Certificate $SignCert

You can see the output from this command in Figure 1.21.

As you can see, PowerShell declined to sign the script. This is because the
signing certificate is not trusted.

Copying a Certificate to the Trusted Publisher Certificate
and Trusted Root Stores
One way to trust the self-signed certificate is to copy the certificate into the local
machine’s Trusted Root certificate store. You also need to ensure that PowerShell
trusts code that you sign with a code-signing certificate, which you do by also
copying the certificate into the local machine’s Trusted Publisher certificate
store, as follows:

7. Copy the cert to the Trusted Root Cert store of Local Machine
And to the Trusted Publisher cert store
local Machine Trusted Root store
$CertStore = 'System.Security.Cryptography.X509Certificates.X509Store'
$CertArgs = 'Root','LocalMachine'
$Store = New-Object -TypeName $CertStore -ArgumentList $CertArgs
$Store.Open('ReadWrite')
$Store.Add($SignCert)
$Store.Close()
Local Machine Trusted Publisher store
$CertStore = 'System.Security.Cryptography.X509Certificates.X509Store'
$CertArgs = 'TrustedPublisher','LocalMachine'
$Store = New-Object -TypeName $CertStore -ArgumentList $CertArgs
$Store.Open('ReadWrite')
$Store.Add($SignCert)
$Store.Close()

Figure 1.21: Signing a PowerShell script

34	 Chapter 1 ■ Setting Up a PowerShell 7 Environment

The PKI module you use to create a self-signed certificate has no commands
to copy a certificate into either the Local Machine Trusted Publisher store or
the Local Machine Trusted Root certificate store. You use the .NET Framework
directly to perform the copy.

Signing the Script Again
Now that your signing certificate is trusted, you can attempt to sign the script
again, like this:

8. Re-Sign the script
$SignCert = Get-ChildItem -Path Cert:\CurrentUser\my -CodeSigningCert
Set-AuthenticodeSignature -FilePath $SignedFile -Certificate $SignCert |
 Format-Table -AutoSize -Wrap

These commands first retrieve the signing certificate from the current user’s
personal certificate store. You retrieve a signing cert by using Get‑ChildItem
with the -CodeSigningCert parameter. If you had more than one code signing
certificate, you would need to amend the snippet to select the correct one.

You can see the output from these commands in Figure 1.22.

Running the Script
Now that the script is signed, you can run it.

9. Run the script
& $SignedFile

You can see the output from running the signed script in Figure 1.23.
As you can see in the output, this script runs successfully.

Figure 1.22: Signing a PowerShell script with a trusted certificate

	 Chapter 1 ■ Setting Up a PowerShell 7 Environment	 35

Testing the Script’s Digital Signature
After you sign a script, you can test the digital signature by using the Get-
AuthenticodeSignature cmdlet, like this:

10. Test the script's digital signature
Get-AuthenticodeSignature -FilePath $SignedFile |
 Format-Table -AutoSize&

You can see the output from this command in Figure 1.24, which shows that
the signature is trusted.

In a production environment using signed scripts, certificates may be revoked
or expire over time. If you rely on signed PowerShell scripts, a best practice
would be to test all script signatures regularly or after any changes to the sign-
ing certificates. Of course, if you are using signed scripts, ensure that you have
a certificate authority set up within your organization or use third-party cer-
tificates from firms such as Digicert.

Now that you have tested script signing, you should use Set-ExecutionPolicy
to reset the execution policy on DC1 back to Unrestricted. If you want to retain
an All Signed execution policy, you must also digitally sign your profile files.

Summary

In this chapter, you learned how you can set up a PowerShell 7 environment.
You installed PowerShell 7 and VS, and then you configured PowerShell (and

Figure 1.23: Running a signed PowerShell script

Figure 1.24: Testing a script’s digital signature

36	 Chapter 1 ■ Setting Up a PowerShell 7 Environment

VS Code) with a profile file. You then used the PowerShell gallery and saw how
you can create your own trusted code repository. You finished by looking at
signing PowerShell scripts by using self-signed certificates.

With the introduction of PowerShell 7, you should consider how best to deploy
PowerShell and associated tools such as VS Code and the new Cascadia Code
font. You also need to consider whether you need to use digitally signed scripts,
and if so, you need to plan to deploy a code-signing environment.

C H A P T E R

37

2

PowerShell 7, like Windows PowerShell, is a .NET application—an application
built on top of and leveraging the .NET Framework, particularly the base class
libraries.

Microsoft built Windows PowerShell using the full .NET Framework employ-
ing a design in which cmdlets are a thin and intelligent layer above the .NET
Framework. Cmdlets rely on the .NET Framework to do all the heavy lifting.
Windows PowerShell 5.1 leverages the Microsoft .NET Framework version 4.5.2.

PowerShell 7 is a complete and open source reimplementation of Windows
PowerShell based on the open source .NET Core Framework using .NET Core
3.1. This has been a huge reengineering job and one that has thrown up a few
challenges.

In PowerShell, commands are contained within modules. To run any command,
PowerShell must first load a module that contains that command. PowerShell
can only load modules that contain cmdlets and other binary artifacts if their
developer has enabled this.

The PowerShell team reimplemented most of the commands contained in
the core PowerShell convert to modules and ensured that the Active Directory
module works with PowerShell 7.

Some Microsoft product teams and other external teams have not yet ported
their modules for you to use natively in PowerShell 7. To get around this issue,
the PowerShell team developed a compatibility solution that enables most com-
mands previously developed for Windows PowerShell to work in PowerShell 7.

PowerShell 7 Compatibility
with Windows PowerShell

PowerShell 7 for IT Pros: A Guide to Using PowerShell 7 to Manage Windows® Systems, First Edition. Thomas Lee.
© 2021 John Wiley & Sons, Inc., Published 2021 by John Wiley & Sons, Inc.

38	 Chapter 2 ■ PowerShell 7 Compatibility with Windows PowerShell

The compatibility solution enables you to use PowerShell 7 to manage a wide
range of features in Windows Server, as demonstrated throughout this book.
That does leave, however, a small set of features, modules, and commands that
you are not able to use with PowerShell 7. For those, there are work-arounds.

This chapter looks at the following topics:

■■ In “Examining PowerShell Modules,” you’ll learn what the various
modules contain and how they work.

■■ In “Introducing the Compatibility Solution,” you’ll see what the solution
is and how you use it.

■■ In “Things That Do Not Work with PowerShell 7,” you’ll examine the
Windows PowerShell features that do not work within PowerShell 7, with
or without the compatibility solution. You’ll also discover work-arounds
to issues caused by incompatibility.

System Used in This Chapter
In this chapter, you use one host, DC1. This is a Windows Server 2019 Datacenter
Edition host.

Figure 2.1 shows the system you use in this chapter.

Examining PowerShell Modules

Before looking at compatibility with Windows PowerShell, you should under-
stand PowerShell modules. Modules are fundamental to PowerShell, and under-
standing how they work is important when dealing with compatibility.

A PowerShell module is a package of commands. A module contains members,
which can include cmdlets, providers, functions, variables, and aliases. Modules
are the means that developers use to package and distribute PowerShell com-
mands. You import a module into PowerShell to use the members of the module.

DC1
(Windows Server 2019)

Figure 2.1: System used in this chapter

	 Chapter 2 ■ PowerShell 7 Compatibility with Windows PowerShell	 39

Understanding Module Types
There are four main module types in PowerShell. Each one is used differently
and solves different problems.

Script modules: These modules are contained in a file with a .PSM1 extension
and contain function definitions. When you import a script module, the
functions defined in the .PSM1 files are imported into the current Power-
Shell session.

Manifest modules: These are modules that have a module manifest. A module
manifest is a file with a .PSD1 extension that contains details about a module.
This information includes metadata (author, copyright) and instructions
on what the module contains and how PowerShell should load it.

Binary modules: At its simplest, a binary module is a .NET assembly con-
taining commands stored in a DLL file. A cmdlet developer writes the
cmdlet code in C# and compiles it into a DLL; at this point, you can load
the assembly by using Import-Module and specifying the DLL. To simplify
loading of a binary module, you use a module manifest to help PowerShell
load the needed members such as related help files.

Dynamic modules: These are dynamically created modules that PowerShell
creates in memory from a script block you supply. Dynamic modules enable
you to use a script to create a module on demand that does not need to be
loaded or saved to persistent storage.

Any module can have additional members, although PowerShell needs to have
a manifest to enable it to load those members. For example, you could include
some XML for formatting or include a help file for the module.

Script modules were an easy way to distribute functions and replaced the
practice of dot sourcing of .PS1 files, which was a common approach many users
took with PowerShell version 1.

A manifest module is one that has a PowerShell module manifest file. This is
a text file that contains the module details in the form of a hash table. With a
module manifest, a developer can repackage a snap-in into a binary module.
You can create a module manifest using New-ModuleManifest, as described at
docs.microsoft.com/powershell/module/microsoft.powershell.core/new-

modulemanifest.
You use dynamic modules to create a module on the fly based on the script

block. As such, these are intended to be short-lived, and you cannot look at them
using Get-Module. Dynamic modules do not require manifests.

To demonstrate the use of modules, you can create a simple module on DC1,
as follows:

1. Create a simple script module—MyModule1

40	 Chapter 2 ■ PowerShell 7 Compatibility with Windows PowerShell

$MyModulePath = "C:\Users\$env:USERNAME\Documents\PowerShell\Modules\
MyModule1"
$MyModule = @"
MyModule1.PSM1
Function Get-HelloWorld {
 "Hello World from My Module"
}
"@
New-Item -Path $MyModulePath -ItemType Directory -Force | Out-Null
$MyModule | Out-File -FilePath $MyModulePath\MyModule1.PSM1
Get-Module—Name MyModule1 -ListAvailable

You can see the output from these commands in Figure 2.2.

These commands create a new module, MyModule1, which is a simple script
module created as a .PSM1 file. You can see in the output that this module exports
a single command, the Get-HelloWorld function.

Importing PowerShell Modules
There are three ways PowerShell imports a module into the current PowerShell
session. First, you can use the Import-Module cmdlet to import a module explicitly.
Second, you can use the module autoload feature, introduced with PowerShell
version 2. Finally, if you use Get-Command to discover the commands within
a module, PowerShell ensures the module is imported and then returns the
requested commands.

Using Import-Module allows you to load any module from any location. You
can load just a single .PSM1 file, a single .NET assembly, or a rich multimember
module with the help of a module manifest.

Figure 2.2: Creating a new module

	 Chapter 2 ■ PowerShell 7 Compatibility with Windows PowerShell	 41

With module autoload, when you use any command that is in a module
you have not yet imported, PowerShell loads the module and then runs the
command. This also loads any members of the module, such as a help file. You
can turn this off by setting the PowerShell environment variable $PSModuleAu
toloadingPreference to none.

You can use Import-Module to import the MyModule1 module you just created.

2. Import the MyModule1 module

Import-Module -Name MyModule1 -Verbose

You can see the output from these commands in Figure 2.3.

You could also use module autoload by just specifying the Get-HelloWorld
function.

Using PowerShell Module Manifests
A module manifest in PowerShell is a file with a .PSD1 extension that contains
a hash table of values. These values, which are held in a PowerShell hash table,
include module metadata, such as the author, plus other information to enable
PowerShell to load the module.

The article at docs.microsoft.com/powershell/scripting/developer/module/
how-to-write-a-powershell-module-manifest provides more information about
manifests and describes how to write one.

You can add a manifest to the MyModule1 module as follows:

3. Create and Test a new module manifest
$NMMFHT = @{
 Path = "$MyModulePath\MyModule1.PSD1"
 Author = "Thomas Lee"
 CompanyName = 'PS Partnership'
 Rootmodule = 'MyModule1.psm1'
}
New-ModuleManifest @NMMFHT
Get-Module -Name MyModule1 -List
remove and re-import
Get-Module -Name MyModule1 | Remove-Module
Import-Module -Name MyModule1 -Verbose
Get-HelloWorld

Figure 2.3: Importing the MyModule1 module

42	 Chapter 2 ■ PowerShell 7 Compatibility with Windows PowerShell

These commands first create a new module manifest and review the module
after you create the manifest. Then you import the module explicitly and finally
run the Get-HelloWorld function, as you can see in Figure 2.4.

You can view the hash table by viewing MyModule1.PSD1, or you can use your
favorite code editor to update it as necessary.

Module Naming
In general, a module is a folder that contains one or more members. The sim-
plest module is a .PSM1 file with function definitions. In this case, you have a
folder, perhaps called MyModule. Below this folder you have a file, MyModule
.PSM1. PowerShell requires the folder name and the .PSM1 filename to be the
same; otherwise, Import-Module does not import the module.

You can convert a script module into a manifest module by adding a .PSD1 file
to the module folder. In this case, the .PSD1 file must have the same name as the
module folder. In such a case, the manifest contains the filename of the .PSM1
file. The filenames can be different but should be the same to avoid confusion.

After you have created MyModule1, you can view the files contained in the
module using Windows Explorer. In Figure 2.5, you can see the module, with
both the .PSM1 and .PSD1 files.

Figure 2.4: Creating and using a manifest

	 Chapter 2 ■ PowerShell 7 Compatibility with Windows PowerShell	 43

PowerShell supports module versioning, which allows you to have multiple
versions of a module on a host. You use Import-Module to load a specific version
or let it take the default of loading the latest version. For example, you could
have both versions 1.0.0 and 1.1.0 of MyModule. By default, Import-Module (and
module autoload) would load the latest version, which is 1.1.0. You can specify
the earlier module as needed.

Creating a Module with Multiple Versions
You can create and use a module with multiple versions with the following code:

4. Create MyModule2 with 2 versions
Create Module folders
$MyModule2Path =
 "$env:USERPROFILE\Documents\PowerShell\Modules\MyModule2"

Figure 2.5: Viewing files in MyModule1

44	 Chapter 2 ■ PowerShell 7 Compatibility with Windows PowerShell

$MyModule2V1Path = "$MyModule2Path\1.0.0"
$MyModule2V2Path = "$MyModule2Path\2.0.0"
New-Item -Path $MyModule2Path -ItemType Directory -Force | Out-Null
New-Item -Path $MyModule2Path -Name '1.0.0' -ItemType Directory -Force |
 Out-Null
New-Item -Path $MyModule2Path -Name '2.0.0' -ItemType Directory -Force |
 Out-Null
Create MyModule2V1.PSM1
$MyModule2V1 = @"
Function Get-HelloWorld2 {
 "Hello World from MyModule2 (V1)"
}
"@
$MyModule2V1 | Out-File -Path "$MyModule2V1Path\MyModule2.PSM1"
Create MyModule2V2.PSM1
$MyModule2V2 = @"
Function Get-HelloWorld2 {
 "Hello World from MyModule2 (V2)"
}
"@
$MyModule2V2 | Out-File -Path "$MyModule2V2Path\MyModule2.PSM1"
Create manifests for both versions of this module
$NMMFHV1HT = @{
 Path = "$MyModule2V1Path\MyModule2.PSD1"
 Author = "Thomas Lee"
 CompanyName = 'PS Partnership'
 Rootmodule = 'MyModule2.psm1'
}
New-ModuleManifest @NMMFHV1HT -ModuleVersion '1.0.0'
$NMMFHV2HT = @{
 Path = "$MyModule2V2Path\MyModule2.PSD1"
 Author = "Thomas Lee"
 CompanyName = 'PS Partnership'
 Rootmodule = 'MyModule2.psm1'
}
New-ModuleManifest @NMMFHV2HT -ModuleVersion '2.0.0'

These commands create the module folders and create the module itself.

Using Module Versions
In the previous section, you created a new module (MyModule2) with two versions.
You can use the functions within the different versions of a module as follows:

5. Use MyModule2
Discover, import and use MyModule2
Get-Module MyModule2 -ListAvailable
Import-Module -Name MyModule2 -Verbose -RequiredVersion '1.0.0'

	 Chapter 2 ■ PowerShell 7 Compatibility with Windows PowerShell	 45

Get-HelloWorld2
Re-import MyModule2—by default the highest version
Import-Module -Name MyModule2 -Force -Verbose
Use V2 Function
Get-HelloWorld2

You can see the results of these commands in Figure 2.6.

In this code snippet, you use Get-Module to discover MyModule2. You then load
version 1.0.0 of MyModule2. If you use the -Verbose switch, PowerShell displays
the process of importing your module. Verbose output like this can be useful
in debugging more complex modules. With version 1 of MyModule2 loaded, you
run the first version of the Get-HelloWorld2 function, showing the expected
version 1 output. You then remove the old module explicitly and reimport the
MyModule2 module and use the function. You can see that because you did not
specify a version, PowerShell loads the highest version of the function, which
then returns the expected version 2 output.

You can have a simple module with just a .PSM1 file. However, you must use a
module manifest if you want to support multiple versions of the same module.
In that case, the folder containing a given version must match the corresponding
version number contained in the manifest. You can see the structure of MyModule2
in the filestore in Figure 2.7.

Figure 2.6: Using MyModule2

46	 Chapter 2 ■ PowerShell 7 Compatibility with Windows PowerShell

Using Module Autoload
With module autoload, PowerShell loads the module that contains the command
you are using before running the command. PowerShell uses the environment
variable PSModulePath to hold a comma-separated value list of paths in the
Windows filesystem. PowerShell can discover the commands in any module.
You can view this variable by typing $Env:PSModulePath.

In “Module Naming,” you created MyModule2, with two versions of the module.
To demonstrate autoload, you can do the following:

6. Demonstrate autoload of MyModule2
Get-Module MyModule* | Remove-Module -Verbose
Get-HelloWorld2

In these commands you first remove all the MyModule modules and then,
with no modules loaded, use a command in the module MyModule2, namely,
Get-HelloWorld2, provided for test purposes like this. You can see the output
in Figure 2.8.

You can modify the module path environment variable(s) externally to Pow-
erShell by using the sysdm.cpl applet. If you do so, the next time you enter
PowerShell, you should see the updated environment variable value.

Windows supports two environment variables (of the same name)—one for the
user and one for the system. PowerShell adds the values contained in the user
and system Windows environment variables into the value $Env:PSModulePath.
You can define both the system- and user-level PSModulePath variables using
sysdm.cpl. In most cases, the module autoload path is sufficient.

Figure 2.7: Viewing MyModule2

	 Chapter 2 ■ PowerShell 7 Compatibility with Windows PowerShell	 47

Third-party publishers ship installers that install their module(s) into a module-
specific location by extending the PSModulePath variable.

PowerShell does not persist any changes you make to the value of
$Env:PSModulePath inside a PowerShell session. You can make any changes to
your profile scripts if necessary.

Viewing the Module Analysis Cache
When PowerShell uses autoloading, it has a large number of modules to search
to discover which module has the requested command. To improve performance,
PowerShell maintains an internal module analysis cache of all the modules on your
system and the commands they contain. By default, PowerShell stores this cache
at $Env:LOCALAPPDATA\Microsoft\Windows\PowerShell\ModuleAnalysisCache.
You can view the cache file using Get-ChildItem.

7. View Module Analysis Cache
$CF = "$Env:LOCALAPPDATA\Microsoft\Windows\PowerShell\"+
 'ModuleAnalysisCache'
Get-ChildItem -Path $CF

Figure 2.9 shows the output and the file containing the cache.

At the start of each session, PowerShell spawns a low-priority background
thread that discovers the modules and the commands and updates the cache
file accordingly. To learn more about the module analysis cache, see:

docs.microsoft.com/powershell/module/microsoft.powershell.core/about/

about_windows_powershell_5.1?view=powershell-5.1#module-analysis-cache.

Figure 2.8: Using module autoload

Figure 2.9: Viewing the module analysis cache

48	 Chapter 2 ■ PowerShell 7 Compatibility with Windows PowerShell

In most cases, your module analysis cache remains constant, since in most
cases, you rarely change the modules on your system. Should you want, you
can change the location of the cache file. There is really little reason to do so,
however, and it could just introduce more troubleshooting challenges.

Introducing the Compatibility Solution

Windows PowerShell was first launched in 2006 and has been a built-in compo-
nent in Windows for more than a decade. The first two releases of what is now
PowerShell 7 were known as PowerShell Core, with the emphasis on Core as in
.NET Core. The development team released two versions (6.0 and 6.1). As part
of the planning for the third major version of PowerShell, Microsoft decided
to rename the product PowerShell 7, dropping the Core moniker. This book
focuses on PowerShell 7.

With the first version PowerShell Core, it became clear that some Windows
PowerShell modules did not work in the version of PowerShell based on .NET
Core. An early solution to this issue was to use explicit remoting. You could cre-
ate a PowerShell remoting session to your host using a PowerShell 5.1 remoting
endpoint and then run your commands in that remoting session. That method
works, but it means you have to manage the process and so is not ideal.

Implicit remoting is a feature of PowerShell that lets you use commands that
are not available in locally installed modules. Exchange Server uses implicit
remoting, and this is a handy solution cross-platform. It could be used, for
example, if you want to run AD commands from a Mac or Linux computer.

In PowerShell 7, whenever Import-Module attempts to import any module, it
looks to see whether that module is compatible with PowerShell 7. If the module
is compatible, then Import-Module loads it into PowerShell 7, but if not, then
PowerShell loads the module in compatibility mode.

When Import-Module imports a module in compatibility mode, it creates a
PowerShell remoting session to the local host using a Windows PowerShell
remoting endpoint, named WinPSCompatSession. PowerShell then imports
the module into the remote session running Windows PowerShell and finally
uses Import-PSSession to import the commands into the current PowerShell
7 session. This creates functions that duplicate the names of the commands
imported from the remote session. Those functions use implicit remoting to
run the actual cmdlet logic in the remote session.

You can view the use of the compatibility solution as follows:

8. Import Server Manager Module on DC1 and use it
Get-Module ServerManager -ListAvailable
Import-Module ServerManager
Get-Module ServerManager | Format-Table -AutoSize -Wrap
Get-WindowsFeature -Name Hyper-V | Format-Table -AutoSize

	 Chapter 2 ■ PowerShell 7 Compatibility with Windows PowerShell	 49

$CS = Get-PSSession -Name WinPSCompatSession
Invoke-Command -Session $CS -ScriptBlock {
 Get-WindowsFeature -Name Hyper-V | Format-Table -AutoSize
}

You can see the output from these commands in Figure 2.10.

In the output, you can see that when you first use Get-Module to find the
ServerManager module, you see no output, which is expected because you have
not yet loaded the module. You can then manually import the ServerManager
module and review it. As you can see, this is a script module. Finally, you use
a command to view a windows feature. The first time you attempt to view the
Hyper-V feature, you can see that the normal DisplayName field is missing from
the output. This is because Import-Module has not also imported the module’s
display XML into the PowerShell 7 session. As you can see, you can get the
output by using the compatibility remoting session and having PowerShell do
the formatting in that remote session.

Figure 2.10: Loading the ServerManager module

50	 Chapter 2 ■ PowerShell 7 Compatibility with Windows PowerShell

If your script uses Import-Module to enable you to access commands from
multiple modules, Import-Module checks to see whether WinPSCompatSession
exists. If so, PowerShell uses the existing session to autoload additional mod-
ules. This means you only ever have one compatibility remoting session. You
can read more about implicit remoting and Import-PSSession at docs.microsoft
.com/powershell/module/microsoft.powershell.utility/import-pssession.

Using the Module Load Deny List
During the development of PowerShell 7, it became clear that a small number of
modules would never work either natively or via the compatibility solution. If
you did attempt to use them in the compatibility session, commands in the mod-
ules failed. The failure usually resulted in error messages that were unclear and
not actionable. This was not a good user experience, particularly to new users.

To avoid that bad experience, PowerShell 7 has a list of modules that Import-
Module does not load (natively or via the compatibility solution), by default. You
can override this logic by using Import-Module with the -SkipEditionCheck
parameter, although that is unlikely to be successful.

In the PowerShell installation folder, you can find PowerShell’s configuration
file $PSHOME\PowerShell.config.json. You can view the contents of this file, as
follows:

8. View JSON Configuration File on DC1
Get-Content -Path $PSHOME\powershell.config.json

You can see the output of this command in Figure 2.11.

This configuration file, which you can change as needed, contains a list of
modules that Import-Module does not load. These are based on module names,
so if the product team updates these modules so that they become usable, you
can change the file. Also, if and when those denied modules do change and you
can use them in PowerShell 7, PowerShell may update the configuration file at
the next PowerShell update.

Figure 2.11: Viewing the module deny list

	 Chapter 2 ■ PowerShell 7 Compatibility with Windows PowerShell	 51

Things That Do Not Work with PowerShell 7

Thanks to the great work by a combination of the PowerShell 7 product team
and the PowerShell community, the majority of Windows PowerShell commands
function properly in PowerShell 7. This means your Windows PowerShell scripts
should run just fine in PowerShell 7, as this book amply demonstrates.

The compatibility solution does impose minor limitations caused by the serial-
ization of data between the PowerShell 7 session and the compatibility remoting
session. When you transfer data via remoting, PowerShell serializes the data
into XML, transports the data, and then deserializes it at the other end. When a
command receives commands from the remote session, that data is deserialized.
This means that there are no object methods (aside from a few default ones that
all objects have) returned. This is why, for example, the UpdateServices module
does not work—it relies on object methods instead of cmdlets. Also, PowerShell
changes the object type name to reflect the serialization.

Despite those limitations, almost all the modules supported by the compat-
ibility solution work. (That is, the commands function and do their jobs.) That
means you should be able to run Windows PowerShell scripts in PowerShell 7
successfully—as this book more than adequately demonstrates. But there are
some features, modules, and commands PowerShell 7 does not support either
natively or via the compatibility solution.

Windows PowerShell Incompatibilities
Despite a lot of hard work by the PowerShell team and others, there remains
a small set of PowerShell 5.1 and earlier features, modules, and cmdlets that
simply do not work with PowerShell 7, with or without the compatibility solu-
tion. These include the following:

■■ PowerShell workflows

■■ PowerShell snap-ins

■■ WMI cmdlets

■■ The -ComputerName parameter on some cmdlets

■■ Desired State Configuration (DSC)

■■ Windows Server Update Services (WSUS)

■■ The Best Practices module

■■ The WebAdministration module IIS provider

■■ The Add-Computer, Checkpoint-Computer, Remove-Computer, and Restore-
Computer commands from the Microsoft.PowerShell.Management module

52	 Chapter 2 ■ PowerShell 7 Compatibility with Windows PowerShell

PowerShell workflows were based on the Windows Workflow Framework
component of the full NET Framework. The .NET Core team did not choose to
implement the necessary components to support workflows in .NET Core. The
workflow feature was not heavily used, and the PowerShell team decided not
to carry it forward. If you are using workflows, you can either continue to use
them by using Windows PowerShell or look into alternatives.

One use of workflows was to improve performance using the Workflow
component’s built-in parallelism. With the implementation of Foreach-Object-
Parallel, you can get the needed parallelism (and improve script run times)
without using Windows PowerShell workflows.

It is not likely that workflows are going to be implemented with PowerShell
7. See the release notes at docs.microsoft.com/en-us/powershell/scripting/
whats-new/breaking-changes-ps6?view=powershell-6.

PowerShell 7 does not support Windows PowerShell snap-ins. In Windows
PowerShell V1, you used snap-ins to hold commands, but this approach lacked
flexibility. With snap-ins, you had to use a compiled language such as C# to
write your command—you could not write your commands using PowerShell.
The developer also needed to create an installer program (although there is a
default installation program included with .NET). Also, the installer stored
details of the module in a protected area of the registry, meaning you needed
administrative permissions to install a module.

The module feature, which was added in Windows PowerShell 2, in effect
replaced the snap-in. Snap-ins continue to be supported in Windows PowerShell.
In some cases, you may be able to convert a snap-in into a module by using
a manifest. For other snap-ins, you may need to ask your internal developer
or external vendor to update their product (or seek alternative solutions that
support PowerShell 7).

The WMI cmdlets are not supported in PowerShell 7. You can, and should,
use the CIM cmdlets. The CIM cmdlets are lighter weight and provide improved
usability and reduced network bandwidth. Although the article is old, you can
read more about the CIM cmdlets at devblogs.microsoft.com/powershell/
introduction-to-cim-cmdlets/.

Some Windows PowerShell commands contain the -ComputerName parameter.
For example, you can specify a value of that parameter to Get-Service to have
the cmdlet get services on the specified machine. In PowerShell 7, the following
commands do not support the -ComputerName parameter:

Clear-EventLog

Get-Process

Get-Service

Limit-EventLog

	 Chapter 2 ■ PowerShell 7 Compatibility with Windows PowerShell	 53

New-EventLog

Remove-Computer

Remove-EventLog

Set-Service

Test-EventLog

Show-EventLog

The -ComputerName parameter is still used in PowerShell 7, just not to indicate
that the cmdlet does remote processing internally, and it does not leverage
PowerShell remoting.

PowerShell 7 does not implement the full Windows DSC feature. PowerShell
7 does implement Invoke-DSCResource to invoke a DSC resource, but there is no
local configuration manager, no push servers, or any of the other great features
you used with DSC in Windows PowerShell.

The WSUS feature includes a module that is not compatible natively with
PowerShell 7 and does not function acceptably in a compatibility session. The
design of the UpdateServices module makes use of object methods, instead
of the more usual approach of using cmdlets. Since methods are removed via
serialization, you cannot use this module within the compatibility solution. If
you want to manage WSUS, you must use Windows PowerShell.

Also, it is unlikely that there is an easy fix for the overall architecture of this
module, since it relies on Simple Object Access Protocol (SOAP) for communi-
cations with the WSUS server. The .NET Core team has not implemented SOAP
and appears to have no plans to do so. The long-term solution is for the WSUS
team to redesign their client-server implementations to use Representational
State Transfer (REST) or other supported protocols. At the time of writing, no
plans have been announced.

The Best Practices module also does not work either natively or via the com-
patibility solution. The Best Practices team needs to redevelop the module, and
feature, to make use of .NET Core.

The WebAdministration module, part of the IIS Management tools, includes
a PowerShell provider. When you load this module in Windows PowerShell,
Windows PowerShell loads the provider and creates an IIS: drive you use when
you administer IIS. While the commands in both the IISAdministration and
WebAdministration modules more or less work, any command that uses the
provider would fail.

The Microsoft.PowerShell.Management module in PowerShell does not contain
the Add-Computer, Checkpoint-Computer, Remove-Computer, or Restore-Computer
cmdlets. You can use these commands by creating a Windows PowerShell remote
session and invoking the commands in that remoting session.

54	 Chapter 2 ■ PowerShell 7 Compatibility with Windows PowerShell

Compatibility Issue Work-Arounds
The default work-around for any Windows PowerShell compatibility issue is
simply to not use PowerShell 7 until there is a solution to your specific issues.
Microsoft offers full support for Windows PowerShell 5.1 for the foreseeable
future, so there is little risk in continuing to use Windows PowerShell.

What might be more effective is a hybrid strategy that combines running
PowerShell 7 natively where you can or via the compatibility solution. Then
use Windows PowerShell as needed until you can migrate fully to PowerShell 7.

For the few Windows PowerShell features not in PowerShell 7, there is no easy
work-around aside from continuing to use Windows PowerShell.

That is made more complex by the cross-platform nature of PowerShell. It is
harder to add features to PowerShell where .NET and the OS itself do not pro-
vide the necessary supporting features.

The modules and providers that do not work natively in PowerShell or via
the compatibility list also have no easy solution. The code that would need to
be updated to support PowerShell 7 natively is proprietary. The Microsoft prod-
uct teams currently would need to make those changes, and for some teams,
particularly the WSUS team, that could be a lot of otherwise unplanned work.

Some Microsoft product teams, for example the Active Directory team, were
able to ensure the Active Directory module works with PowerShell 7, although
you do need the latest version of that module. As Chapter 3, ”Managing Active
Directory,” demonstrates, this means you can manage your AD database within
PowerShell 7. But at the same time, the AD Deployment module, which you need
to deploy AD in your environment, works only via the compatibility mechanism.
So, you can install new forests, new domains, and new domain controllers via
the compatibility solution.

For commands that formerly used the -ComputerName parameter, you can use
Invoke-Command to run the command remotely and return the results. This book
makes extensive use of this feature to run commands on different computers.

Summary

In summary, PowerShell 7 has done a good job implementing backward com-
patibility with Windows PowerShell. Almost all of the features of Windows
PowerShell are available to you in PowerShell.7. The compatibility solution,
which uses implicit remoting, extends the set of commands available to you,
although there are some minor issues in some cases. Finally, there are a few
things that do not work in PowerShell 7, and for those you have other options.

C H A P T E R

55

3

Active Directory (AD) is at the heart of just about all modern organizations,
both small and large. Microsoft first introduced AD with Windows 2000, where
it replaced the domain structures previously implemented with Windows NT.

This chapter looks at how you can use PowerShell 7 to install, configure, and
manage AD, as follows:

■■ In “Establishing a Forest Root Domain,” you create the first domain in a
new forest.

■■ In “Installing a Replica DC,” you create a second domain controller in a
domain.

■■ In “Installing a Child Domain,” you create a child domain in the forest.

■■ In “Creating a Cross-Forest Trust,” you create another forest and
implement and use a cross-forest trust.

■■ In “Managing AD Users, Computers, and OUs,” you add, remove,
and manage AD users and AD computers and organize objects using
organizational units.

■■ In “Adding Users to AD via a CSV File,” you add users to the AD via a
CSV file.

■■ In “Configuring Just Enough Administration (JEA),” you set up delegated
administration.

Managing Active Directory

PowerShell 7 for IT Pros: A Guide to Using PowerShell 7 to Manage Windows® Systems, First Edition. Thomas Lee.
© 2021 John Wiley & Sons, Inc., Published 2021 by John Wiley & Sons, Inc.

56	 Chapter 3 ■ Managing Active Directory

Since introducing Active Directory, Microsoft has expanded it to include a
number of separate features you can install, as follows:

Active Directory Domain Service (AD DS): Provides a central net-
work directory that is the basis for user and computer authentication as
well as environment management via Group Policy. AD DS is used
in almost every organization, where it’s usually just referred to as
AD. You can find more information about AD DS at docs.microsoft
.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/

active-directory-domain-services-overview.

Active Directory Certificate Services (AD CS): Enables you to create an
X.509 certificate authority that you can use to issue and manage digital
certificates for your organization. AD CS is used by many organizations
to provide certificates for internal web sites and for smart cards. You
can find more information about AD CS at docs.microsoft.com/en-us/
previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/

hh831740(v%3Dws.11. This URL links to older content but should be accu-
rate for Windows Server 2019.

Active Directory Federation Services (AD FS): Provides a simple and secure
mechanism for Single Sign-On (SSO) and federated identity. AD FS is in
use in larger organizations but less so in smaller firms. You can find more
information on AD FS at docs.microsoft.com/en-us/windows-server/
identity/ad-fs/ad-fs-overview.

Active Directory Lightweight Directory Services (AD LDS): Enables you
to create directory-based applications that have their own directory data-
base unrelated to AD DS. This is used in a few larger enterprises. See the
following for an introduction to AD LDS: docs.microsoft.com/en-us/
previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/

hh831593(v%3Dws.11). Like Microsoft’s online material about AD CS, this
introduction was written for an earlier version of Windows Server, but it
should be accurate for Server 2019.

Active Directory Rights Management Services (AD RMS): Enables you
to protect documents from unauthorized use. RMS is complex to set up
and is not widely used. You can find an introduction to an earlier version
of AD RMS at docs.microsoft.com/en-us/previous-versions/windows/
desktop/adrms_sdk/ad-rms-overview.

A full study of all these aspects could take up an entire book. This chapter
covers the AD DS component and refers to it simply as “AD.”

Active Directory consists of a logical structure of forests and domains (which
contain users and computers and other objects). AD also has a physical structure
including AD sites, subnets, and replication partners. The physical architecture

	 Chapter 3 ■ Managing Active Directory	 57

is transparent to end users; AD clients “just work,” via the magic of DNS name
resolution and AD replication.

To enable administrators to deploy and manage AD, the Microsoft AD team
has created two modules. You use commands in the AD Deployment module to
build your forests and domains. You use the commands in the Active Directory
module to manage the contents of the AD database (that is, managing users,
computers, and so on).

In AD, a forest contains one or more domains in a hierarchy with a contiguous
namespace (each child domain has a unique name plus the name of its parent).
This contiguous namespace is known as a tree. A forest usually consists of a
single tree but can contain multiple trees. The forest is a fundamental compo-
nent of AD and is a key security boundary.

A domain is effectively a collection of objects including users, computers,
groups, and so on. Domains enable you to support different sized organizations
from small to large and globally distributed organizations. Best practice calls
for a simple hierarchy with one or at most two levels of domains. This chapter
demonstrates how to create and configure parent and child domains.

Each forest has a single forest root domain. That domain can have one or more
subdomains, which in turn can contain subdomains. This allows you to have
a forest with a forest root name; for example, Reskit.Org with a child domain
such as UK.Reskit.Org.

Note that best AD naming practice suggests you name your AD forest root as
a delegation of your registered Internet name. For example, if your organization
has a registered name of Reskit.Org, then the AD should be named something
like AD.Reskit.Org or Corp.Reskit.Org. That being said, the example code in
this book uses shorter AD names, to produce shorter and simpler code. And
although longer forest/domain names make scripts a bit easier to read and code,
they also impose a small performance hit: every DNS/LDAP query is that little
bit longer and the Distinguished Name of every object in the AD database is
that little bit larger.

Best practice calls for each forest to be a single tree. But AD does allow you to
add domain trees to a forest. This feature, first introduced with Windows Server
2000, was intended to assist large decentralized organizations. For example,
you could add a separate domain tree, say Kapoho.Com, to the Reskit.Org forest.
This would mean having two domain trees in a single AD Forest. You might
consider this to support a subsidiary that needs a brand and email identity
separate from the parent organization.

Placing noncontiguous namespace trees in a single forest is not a best-practice
solution, however, because AD has no prune-and-graft feature to enable you
to prune a domain or domain tree from one forest and graft it into another,
unrelated forest. Best practice, and a far simpler method, is to just deploy two
independent forests and then connect them with a cross-forest trust. These trusts

58	 Chapter 3 ■ Managing Active Directory

are easy to remove as part of a company sale and allow the buyer to establish
and utilize a new cross-forest trust. This chapter also demonstrates how to
create a cross-forest trust.

Every domain in your forest has at least one domain controller (DC) and pref-
erably more. A domain controller is a Windows Server system with the AD DS
feature installed and configured that authenticates computers and users. DCs
also provide user and computer Group Policy to domain client computers. DCs in
each domain replicate with others so that any DC in a domain can authenticate a
user or a computer. This chapter shows how to install a replica DC in a domain.

Within each domain you can define users and computers to represent individual
computer users and the systems they access. AD enables an AD user to log on
securely to any AD computer within the AD domain, subject to permissions. You
can create AD groups, which can contain computers, users, and other groups. AD
groups are invaluable for assigning permissions to resources in your domain as
well as for delegating permissions in larger organizations. You can use organi-
zational units to group users, computers, and group objects. This chapter shows
how you can manage the user, group, and organizational unit objects.

AD is a complex subject. There are important aspects to AD that this book
does not have space to cover, such as sites and subnets, AD replication, Global
Catalog, and more. A great book on the wider subject is Brian Desmond’s Active
Directory: Designing, Deploying, and Running Active Directory (O’Reilly, 5th ed.,
2013). Also, take a look at docs.microsoft.com/en-us/windows-server/identity/
ad-ds/active-directory-domain-services for more information on AD.

Group Policy is an AD feature that enables you to define and deploy rich pol-
icies to configure a user or computer automatically. This book does not really
cover Group Policy. An excellent book on the subject is Jeremy Moskowitz’s
Group Policy: Fundamentals, Security, and the Managed Desktop (Sybex, 3rd ed., 2015).

In this chapter, you use PowerShell 7 to build a forest with two domains (one
of which has two DCs) and a second forest with one domain. You then create
a cross-forest trust between these two forests. Finally, you manage user, com-
puter, and group objects and see how to add AD users to the domain with a
comma-separated value (CSV) file.

Systems Used in This Chapter

In this chapter, you use PowerShell 7 to install and manage Active Directory.
This chapter makes use of the following host systems and forests/domains:

DC1.Reskit.Org and DC2.Reskit.Org: These are, initially, stand-alone
Windows Server 2019 hosts without any added features. You then install
Active Directory on these two servers in a parent domain, Reskit.Org.

	 Chapter 3 ■ Managing Active Directory	 59

UKDC1.Reskit.Org: This is a single domain–joined host on which you install
a child domain, UK.Reskit.Org. Once you complete the promotion of this
server, the host name becomes UKDC1.UK.Reskit.Org.

KAPDC1.Kapoho.Com: This is a server you use to create the Kapoho.Com
forest/domain to demonstrate establishing a cross-forest trust.

Figure 3.1 shows the systems you use in this chapter and the two forests and
their respective domains.

If you are using the Reskit build scripts (from github.com/doctordns/
ReskitBuildScripts) to deploy your VMs, ensure you wait until DC1 is fully
deployed as a DC before building DC2. The build scripts use setup XML for deploy-
ing DC2, UKDC1, and KAPDC1 that require the existence of the Reskit.Org forest.

Note that each host should have PowerShell 7, VS Code, and the Cascadia
Code font installed. You can do that manually, using the scripts from Chapter 1,
“Setting Up a PowerShell 7 Environment.”

DC1.Reskit.Org DC2.Reskit.Org KAPDC1.Kapoho.Com

Kapoho.Com Domain

UKDC1.UK.Reskit.Org

UK.Reskit.Org Domain

Reskit.Org Domain

Reskit.Org Forest Kapoho.Com Forest

Cross-Forest Trust

Figure 3.1: Forests, domains, and hosts used in this chapter

60	 Chapter 3 ■ Managing Active Directory

Establishing a Forest Root Domain

To establish your first AD forest, you need to create a first domain controller in
the forest. This DC is known as the forest root domain controller. Upon creation, this
DC holds all the forest and domain Flexible Single Master Operation (FSMO) roles.

FSMO roles designate one specific domain controller to be the master for certain
forest-wide or domain-wide operations. For example, the Schema Master FSMO
role holder, initially the forest root DC, is where any AD Schema changes are
first made. If you update your AD Schema, the tools you use make the updates
on this DC. If a given FSMO role holder is offline, certain operations cannot
take place until you either bring the role holder back online or move the FSMO
role to another online DC. For more details on FSMO roles, see techgenix.com/
fsmo-roles-in-active-directory/.

To promote DC1 to a domain controller in a new domain, you log on to the
DC1 server as a local administrator. Then you run the PowerShell code shown
in this section. Once you have installed AD, you need to reboot the server and
log back in using the username RESKIT\Administrator along with the password
you used when you installed DC1 (such as Pa$$w0rd or whatever password you
chose to use for DC1’s local administrator).

Before You Start
In this section you create the forest root domain controller in a new domain/
forest. You perform this on DC1.Reskit.Org, a Windows Server 2019 Data Center
workgroup host with the Desktop Experience option installed and a working
Internet connection.

You also need to have installed PowerShell 7 on this host (and possibly more
tools) using the scripts in Chapter 1.

Importing the Server Manager Module
The Server Manager module does not work natively in PowerShell 7, but you
can use it using the Windows PowerShell compatibility solution discussed in
Chapter 2, “PowerShell 7 Compatibility with Windows PowerShell.” To access
the commands in the module, you first import it manually using the Import-
Module command.

1. Explicitly Load the Server Manager Module
Import-Module ServerManager -WarningAction SilentlyContinue

With this command, you import the Server Manager module and avoid
generating the warning message that Import-Module generates. Once imported,
the commands in the module are available for use.

	 Chapter 3 ■ Managing Active Directory	 61

Installing the AD Domain Services Feature
With the Server Manager module imported, you can now add the AD Domain
Services feature to DC1. Note that doing so does not configure DC1 as a domain
controller. Rather, it installs the components that enable you to install a DC in
whatever role is appropriate (as the first DC in a forest, the first DC in a child
domain, or a DC in an existing domain).

Use the Install-WindowsFeature command to add the necessary components
to the server.

2. Install the AD Domain Services feature and management tools
$FEATUREHT = @{
 Name = 'AD-Domain-Services'
 IncludeManagementTools = $True
 WarningAction = 'SilentlyContinue'
}
Install-WindowsFeature @FEATUREHT

This code produces the output shown in Figure 3.2.

As you can see in the figure, you do not need to reboot the server before
continuing.

Loading the AD DS Deployment Module Explicitly
In the previous step, you installed the ADDSDeployment module as part of installing
the AD-Domain-Services feature. This module is not supported by PowerShell 7
natively but does work using the compatibility mechanism described in Chapter 2.
You load the module with the Import-Module command.

3. Import the AD DS Deployment Module
Import-Module -Name ADDSDeployment -WarningAction SilentlyContinue

Figure 3.2: Installing AD DS Domain Services

62	 Chapter 3 ■ Managing Active Directory

Because this module is supported only via the Windows PowerShell com-
patibility mechanism, importing the module generates by default a warning
message explaining that the module has been loaded using the compatibility
mechanism. But this is a message you can safely ignore. To avoid this message,
you set the value of WarningAction to SilentlyContinue.

Creating a Forest Root Domain Controller
With the AD DS feature installed, you create a new AD forest by promoting
your server, DC1, to be a DC in a new forest/domain, Reskit.Org. Since this is
the first DC in the domain, the DC becomes the forest root DC. You initiate the
promotion process by performing the following:

4. Install Forest Root Domain and DC
$ADINSTALLHT = @{
 String = 'Pa$$w0rd'
 AsPlainText = $True
 Force = $True
}
$SECUREPW = ConvertTo-SecureString @ADINSTALLHT
$ADHT = @{
 DomainName = 'Reskit.Org' # Forest Root
 SafeModeAdministratorPassword = $SECUREPW
 InstallDNS = $True
 DomainMode = 'WinThreshold' # latest
 ForestMode = 'WinThreshold' # Latest
 Force = $True
 NoRebootOnCompletion = $True
 WarningAction = 'SilentlyContinue'
}
Install-ADDSForest @ADHT

By setting the WarningAction parameter to SilentlyContinue, the Install-
ADDSForest command generates no warning messages. The command normally
generates a number of warning messages, but they are benign. If you are using
this snippet in production, you may want to view the error messages if only to
satisfy yourself that they are indeed benign in your environment.

You can see the output from this code in Figure 3.3. These commands promote
DC1 to be a DC, but you need to reboot to complete the installation. This would
enable you to carry out any other necessary configuration on the DC before the
required reboot. Depending on your environment, you could instead not set the
NoRebootOnCompletion parameter and the reboot would occur automatically.

This example shows a great use of hash tables with PowerShell commands.
A hash table is a set of key/value pairs that PowerShell treats as a single object.
You add parameter names (keys) and their values to the hash table and then call
the cmdlet passing only the hash table object. This makes the source code a lot

	 Chapter 3 ■ Managing Active Directory	 63

easier to read (and is a common feature this book uses for code snippets). For
more details on hash tables, see docs.microsoft.com/en-us/powershell/module/
microsoft.powershell.core/about/about_hash_tables?view=powershell-7.

Restarting the Computer
To complete the installation of the new forest, you need to reboot the server.
You do this using Restart-Computer as follows:

5. Restart computer
Restart-Computer -Force

Viewing the Directory Server Entry (DSE)
After the server, DC1.Reskit.Org, has rebooted, log in to the server (as the domain
administrator Reskit\Administrator) and examine details of the forest by
viewing the Root Directory Services Entry, or Root DSE. The Root DSE is the
root of your directory tree, and Get-ADRootDSE provides information about a
directory server.

6. After reboot, log back into DC1 as Reskit\Administrator
Get-ADRootDSE |
 Format-Table -Property DNS*, *Functionality

Figure 3.3: Promoting DC1

64	 Chapter 3 ■ Managing Active Directory

You can get the Root DSE for any standards-based LDAP server, including
Windows Active Directory. You can think of the DSE as a road map of what’s
inside this DC and the features it supports.

An important security point is that the Root DSE is provided without requiring
any authentication. If you have DCs exposed to the Internet, they provide their
information anonymously. This could enable an attacker to learn more about
your domain structure, and for that reason exposing DCs on the Internet is to
be avoided.

As you can see in Figure 3.4, our host now has a fully qualified host name of
DC1.Reskit.Org, is a DC in a Windows domain and forest, and has both domain
and forest functionality set at the Windows 2016 level. There were no additional
AD features in Windows Server 2019, so this setting means that all existing
features are available.

Viewing Details of the New AD DS Forest
You can use the Get-ADForest command to view details of the new Reskit.Org
forest, including forest-level FSMOs, the servers presently acting as a Global
Catalog (GC), and the set of domains in the forest by using the following:

7. Examine ADDS forest
Get-ADForest |
 Format-Table -Property *master*, global*, Domains

Figure 3.5 shows the output of this code.

A GC provides access to a partial replica of all objects in a given forest and is
used for lookups. Exchange Server, for example, makes heavy use of GC servers.

Figure 3.4: Viewing the DSE

Figure 3.5: Viewing the Reskit.Org forest

	 Chapter 3 ■ Managing Active Directory	 65

This page provides some additional detail on the role of a GC: docs.microsoft
.com/en-us/windows/win32/ad/global-catalog.

In this figure, you can see that all forest-level FSMO roles are held by DC1
.Reskit.Org. As you deploy more DCs, you can move the forest-level FSMOs
as needed. In general, forest-level FSMOs should be held by DCs at your
network core.

Getting Details of the Domain
You can view details of the Reskit.Org domain using the Get‑ADDomain command.
You may find that some of the default output provided by Get‑ADDomain is not
very useful, so you can refine the information displayed as follows:

8. View details of the domain
Get-ADDomain |
 Format-Table -Property DNS*, PDC*, *master, Replica*

You can view the output from this step in Figure 3.6. This shows that, so far,
there is only one domain in the forest and one DC in that domain.

In this figure, you can see that all domain-level FSMO roles are held by DC1
.Reskit.Org. As you deploy more DCs, you can move FSMO roles as needed. As
with forest-level FSMOs, you probably want the domain FSMOs to be held cen-
trally. If you have multiple levels of domains, you may want to move domain-level
FSMOs “nearer” to the center of each domain. Ultimately, you need to ensure
that DCs can locate and connect to all FSMO role holders.

Viewing DNS Settings
When you promoted DC1.Reskit.Org as a DC, in “Creating a Forest Root Domain
Controller,” the promotion process added a DNS server on DC1, created a zone
for your domain, and populated a number of DNS resource records (RRs). You
can view the DNS details by using the following steps:

9. View DNS Settings
Get-Service -Name DNS
Get-DnsServerZone
Get-DnsServerResourceRecord -ZoneName 'Reskit.Org'

Figure 3.6: Viewing the Reskit.Org domain

66	 Chapter 3 ■ Managing Active Directory

As you can see in Figure 3.7, the DNS Server service is up and running on
DC1. You can see the zones created in this DNS server, including the Reskit
.Org DNS domain. Finally, you can see the various DNS RRs that the AD service
creates and uses. If you are using multiple virtual NICs in your VM, you will
see more resource records.

In AD, the Netlogon service writes the AD-related DNS RRs to DNS each time
the service starts and every 24 hours thereafter. You can test this self-healing fea-
ture by stopping the Netlogon service, removing the AD-related RRs, and then
restarting the service. You should see that the necessary RRs are now restored.
Of course, be careful when testing this on a production domain controller.

Installing a Replica DC

In “Establishing a Forest Root Domain,” you created an AD domain with a single
DC. In test environments, this might be more than adequate. For production,

Figure 3.7: Viewing DNS settings and configuration

	 Chapter 3 ■ Managing Active Directory	 67

best practice suggests having more than one DC. If you are using virtualization
to host domain controller VMs, you should ensure that AD VMs are hosted on
independent virtualization hosts (irrespective of the virtualization platform).
This avoids a single point of failure.

Before You Start
In this section you add a domain-joined server, DC2.Reskit.Org (built using
Windows Server 2019), to the Reskit.Org domain. If you are using the Reskit
build scripts to deploy this DC, make sure you do not build the DC2 VM until
after you have finished promoting DC1 to be a domain controller.

As with other servers you use in this chapter, you should have installed
PowerShell 7 on DC2. To install PowerShell 7 and optionally VS Code, you can
use the scripts in Chapter 1.

Importing the Server Manager Module
You start the process of promoting DC2 by loading the Server Manager module.
This module is not supported natively by PowerShell 7. The command, however,
works using the Windows PowerShell compatibility mechanism mentioned in
Chapter 2.

You install it using the Import-Module command.

1. Import the Server Manager module
Import-Module -Name ServerManager -WarningAction SilentlyContinue

By specifying the -WarningAction parameter, you avoid seeing the warning
message that would be generated to warn you that this module is being used
in a compatibility session.

Checking Network Connectivity
Before promoting the server DC2.Reskit.Org to be a DC, you need to ensure
that another DC is online and can be reached. If this fails, it means that pro-
motion is not going to succeed. Tests you can run prior to promoting the server
include these:

2. Check DC1 can be resolved and can be reached from DC2
Resolve-DnsName -Name DC1.Reskit.Org -Type A
Test-NetConnection -ComputerName DC1.Reskit.Org -Port 445
Test-NetConnection -ComputerName DC1.Reskit.Org -Port 389

You can see the output of these commands in Figure 3.8.

68	 Chapter 3 ■ Managing Active Directory

In the figure, you can see that DC2 is able to connect to resolve DC1’s IP address
and then connect over ports 445 and 389. Typical issues are related to IP address-
ing/configuration and DNS. And if you are using virtualization, the virtualiza-
tion network configuration can also be an issue.

Adding the AD DS Features on DC2
Another prerequisite step is getting the relevant features onto your host, using
Install-WindowsFeature as follows:

4. Add the AD DS features on DC2
Install-WindowsFeature -Name AD-Domain-Services
-IncludeManagementTools

Running the Install-WindowsFeature cmdlet generates the output you see
in Figure 3.9.

Figure 3.8: Testing connectivity with DC1

Figure 3.9: Installing Windows features

	 Chapter 3 ■ Managing Active Directory	 69

Promoting DC2
To promote DC2, you run the following commands:

4. Promote DC2
Import-Module -Name ADDSDeployment -WarningAction SilentlyContinue
$URK = "Administrator@Reskit.Org"
$PW = 'Pa$$w0rd'
$PSS = ConvertTo-SecureString -String $PW -AsPlainText -Force
$CredRK = [PSCredential]::New($URK,$PSS)
$INSTALLHT = @{
 DomainName = 'Reskit.Org'
 SafeModeAdministratorPassword = $PSS
 SiteName = 'Default-First-Site-Name'
 NoRebootOnCompletion = $true
 InstallDNS = $false
 Credential = $CredRK
 Force = $true
 }
Install-ADDSDomainController @INSTALLHT | Out-Null

These commands promote DC2 to be a domain controller. Once the command
has completed its work, you must reboot the system to complete the promo-
tion process. The installation command you use to promote DC2 can generate
warning messages that refer to Knowledge Base article 942564. In general, these
are benign errors, and you can ignore them.

Rebooting DC2
To finalize the promotion process, restart DC2, like this:

5. Reboot manually
Restart-Computer -Force

This command restarts the system. If you had unsaved work, possibly in
another window, you may have lost it.

Reviewing DCs in Reskit.Org Domain
After the reboot process has completed, you can log in to DC2 as the domain
administrator. One of the first things you can do is to check to see which computers
are now in the Domain Controllers organizational unit, with these commands:

6. Check DCs in Reskit.Org
$SB = 'OU=Domain Controllers,DC=Reskit,DC=Org'
Get-ADComputer -Filter * -SearchBase $SB |
 Format-Table -Property DNSHostname, Enabled

70	 Chapter 3 ■ Managing Active Directory

The output, which you can see in Figure 3.10, shows that you now have two
DCs in the Domain Controllers OU and by implication in the domain.

Viewing the Reskit.Org Domain
In addition to verifying that you have a second DC, another useful test is to
view the AD’s domain details using Get-ADDomain, like this:

7. View Reskit.Org Forest
Get-ADDomain |
 Format-Table -Property Forest, Name, Replica*

These commands return the name of the forest, the name of the domain, and
the DCs in the domain, as shown in Figure 3.11.

As you can see in the figure, you now have a second working domain controller
in the Reskit.Org domain. There are a variety of other tests you might want to
do before proceeding, including checking the various network ports on DC2,
validating DNS entries, and ensuring that replication is happening between
the two DCs.

Installing a Child Domain

For many organizations, a single domain forest with multiple DCs is adequate
and has the benefit of being simple to manage. But in some cases, having one
or more child domains can be advantageous. For example, you might have

Figure 3.10: Viewing DCs in the Reskit.Org domain

Figure 3.11: Viewing DNS settings and configuration

	 Chapter 3 ■ Managing Active Directory	 71

two parts of your organization that are geographically distant. An advantage
of using a child domain is that some parts of AD are not replicated between
domains, which can reduce WAN usage. For geographically dispersed orga-
nizations, you also have the option of using a single domain and placing DCs
in separate AD sites.

In this section, you create a new child domain, UK.Reskit.Org, as a child of
the Reskit.Org domain you set up earlier in this chapter.

Before You Start
In this section you extend the Reskit.Org forest (set up in “Establishing a Forest
Root Domain”) by adding a child domain named UK.Reskit.Org with a single
DC, named UKDC1.UK.Reskit.Org. This host is built using Windows Server 2019.
You also need to install and configure PowerShell 7 on the host and optionally
install VS Code using the scripts in Chapter 1.

Importing the Server Manager Module
To add the AD DS tools onto the host, you need to use the Server Manager module.
This module is one that Import-Module detects as not supported natively in
PowerShell 7 and makes use of the compatibility solution described in Chapter 2.
You load the module as follows:

1. Import the ServerManager module
Import-Module ServerManager -WarningAction SilentlyContinue

This command loads the Server Manager module using the Windows Power-
Shell compatibility mechanism discussed in Chapter 2. It creates a PowerShell
remoting session, loads the module in that remote session, and creates local
proxy functions for the commands in the Server Manager module. You can view
the remoting session details using the Get‑PSSession command.

Verifying That DC1 Can Be Resolved
To create the new subdomain, your server (UKDC1) needs to have connectivity to
the parent domain. In particular, this host needs access to the Domain Naming
Master FSMO forest role holder in the parent domain. If you are following
the steps so far in this chapter, that server would be DC1.Reskit.Org. Before
promoting the server, it is useful to test that you can connect to that server,
using Test-NetConnection as follows:

2. Check DC1 can be resolved and can be reached over 445 and 389
from UKDC1
Resolve-DnsName -Name DC1.Reskit.Org -Type A
Test-NetConnection -ComputerName DC1.Reskit.Org -Port 445
Test-NetConnection -ComputerName DC1.Reskit.Org -Port 389

72	 Chapter 3 ■ Managing Active Directory

You can see the output from these commands in Figure 3.12. It shows that you
can resolve the parent DC and can connect to it via both port 445 and port 389.

If for any reason you cannot connect to the parent domain, you need to
troubleshoot and resolve that issue. Without connectivity to the parent, the
new domain cannot be created. Typical issues with connection failure include
network configuration and DNS. And in production, ensure that you have and
use the correct credentials.

Adding the AD DS Features to UKDC1
Before you can make UKDC1 a domain controller, you must add the AD Domain
Services features to the server, as follows:

3. Add the AD DS features on UKDC1
$Features = 'AD-Domain-Services'
Install-WindowsFeature -Name AD-Domain-Services
-IncludeManagementTools

You can view the output from installing this feature in Figure 3.13.
In production, the output from the Install-WindowsFeature command is

probably not very helpful. If anything, it’s more useful when it fails. When it
succeeds, you can largely ignore the output and proceed to the next step. If it
fails, you need to discover why and resolve the issue. Once the issue is resolved,
you can retry this step.

Figure 3.12: Verifying connectivity to DC1

	 Chapter 3 ■ Managing Active Directory	 73

Creating the Child Domain
You create the new domain as follows using the Install‑ADDSDomain command,
like this:

4. Create New Domain
Import-Module -Name ADDSDeployment -WarningAction SilentlyContinue
$URK = "Administrator@Reskit.Org"
$PW = 'Pa$$w0rd'
$PSS = ConvertTo-SecureString -String $PW -AsPlainText -Force
$CredRK = [PSCredential]::New($URK,$PSS)
$INSTALLHT = @{
 NewDomainName = 'UK'
 ParentDomainName = 'Reskit.Org'
 DomainType = 'ChildDomain'
 SafeModeAdministratorPassword = $PSS
 ReplicationSourceDC = 'DC1.Reskit.Org'
 Credential = $CredRK
 SiteName = 'Default-First-Site-Name'
 InstallDNS = $false
 Force = $true
}
Install-ADDSDomain @INSTALLHT

These commands promote UKDC1 to be a new DC in a child domain. Once
the installation is complete, the machine reboots to complete the configuration
of UKDC1.

Viewing the Updated AD Forest
After the server reboots, you can log in. You have the option of logging in as
either Reskit\Administrator or UK\Administrator. That demonstrates the ability
to log into a child domain with credentials from another domain in the forest.

If you log in as UK\Administrator, you can view the details of the UK.Reskit.
Org domain as follows:

5. Look at AD forest
Get-ADForest -Server UKDC1.UK.Reskit.Org

Figure 3.13: Adding features to UKDC1

74	 Chapter 3 ■ Managing Active Directory

It’s worth taking a moment to study the output from this step, which you
can see in Figure 3.14.

In this figure, you see that the forest now has two domains (Reskit.Org and
UK.Reskit.Org). Additionally, both forest-wide FSMO roles are held by DC1
.Reskit.Org (in the parent domain).

Viewing the Child Domain
You can also view the details of the newly created UK.Reskit.Org domain using
the Get-ADDomain command, as follows:

6. Look at the UK domain
Get-ADDomain -Server UKDC1.UK.Reskit.Org

Figure 3.15 shows the details for the UK.Reskit.Org domain.
This output provides more details about the newly created child domain. You

can see that the domain-wide FSMO role holders all point to this newly created
DC. In production you would want a second DC (or more as appropriate) and
may need to move the FSMO roles. This output also shows further domain-wide
configuration information.

Once you have completed these steps, you have a working child domain (UK
.Reskit.Org) in addition to the parent domain (Reskit.Org).

Figure 3.14: Viewing the Reskit forest

	 Chapter 3 ■ Managing Active Directory	 75

Configuring a Cross-Forest Trust

In this chapter thus far, you have installed a forest with two domains, namely,
Reskit.Org and the child domain UK.Reskit.Org. In most organizations a one- or
two-level domain structure is best practice. That means either a single-domain
forest or a forest with a single root domain and one or more child domains.

Having a two-level domain structure with multiple child domains has some
advantages for large distributed organizations. In particular, separate child
domains can help to avoid replication between domains (which typically means
additional WAN traffic).

While you can have multiple domain trees within a single forest, that is usually
not a good idea. In most cases, the desire for multiple noncontiguous domain
trees arises from the need of different parts of the organization to have their
own domains (and therefore email and FQDN server names). For example, if
a large conglomerate bought a company with a strong brand identity, it might
make commercial sense to keep that separate with a separate domain tree.

However, because you cannot prune and graft parts of your AD forest between
other external forests, when you buy or sell that strongly named subsidiary, a

Figure 3.15: Viewing the child domain information

76	 Chapter 3 ■ Managing Active Directory

buyer might face challenges integrating the old attached domain/forest into
the new environment. A much better approach is to create two separate and
independent forests and then implement a cross-forest trust. A cross-forest trust
means that you can use accounts in one domain in the access control list (ACL)
of a resource in a different domain to support resource access between differ-
ent forests.

In this section, you create a new forest (Kapoho.Com) on a newly installed
server (KAPDC1). You create this server initially as a workgroup server and then
promote it to be a DC in a new forest. Once this new forest is created, you can
create and leverage the cross-forest trust.

Before You Start
In this section, you create a cross-forest trust between the Kapoho.Com and
Reskit.Org forests and then use this trust to update ACLs to facilitate cross-
forest resource access. To achieve this, you need to have created the domain
controllers in the two forests (DC1.Reskit.Org and KAPDC1.Kapoho.Org). You run
the steps in this section on KAPDC1. As with other servers, you need to install
PowerShell 7 and optionally VS Code on this server. You can use the scripts in
Chapter 1 to do so.

Importing the Server Manager Module
To add the AD DS tools onto the host, you need to use the Server Manager module.
This module is one that Import-Module detects as not supported natively in
PowerShell 7 and makes use of the compatibility solution described in Chapter 2.
You load the module using Import-Module as follows:

1. Import the ServerManager module on KAPDC1
Import-Module ServerManager -WarningAction SilentlyContinue

This command loads the module using the Windows PowerShell compatibility
mechanism described in Chapter 2. In doing so, it creates a PowerShell remoting
session to the local host, loads the module in that remote session, and creates
local proxy functions for the commands in the Server Manager module. You
can view the remoting session details by using the Get-PSSession command.

Installing the AD Domain Services Feature
and Management Tools
You can now install the AD Domain Services feature, including the necessary
management tools, as follows:

2. Install the AD Domain Services feature and Management Tools
$Features = 'AD-Domain-Services'
Install-WindowsFeature -Name $Features -IncludeManagementTools

	 Chapter 3 ■ Managing Active Directory	 77

This step produces the output you can see in Figure 3.16.

This command adds the AD Domain Services to the host but does not pro-
mote the host to be a DC. You promote KAPDC1 to be a new DC in a separate
step (“Promoting KAPDC1”).

Testing Network Connectivity with DC1
To create the cross-forest trust, KAPDC1.Kapoho.Com needs to be able to connect
with DC1.Reskit.Org. So, before trying to create the trust, you test this connec-
tivity between the two DCs, as follows:

3. Test Network Connectivity with DC1
Test-NetConnection -ComputerName DC1

Assuming DC1 and KAPDC1 are both online and working, the output you see
should look like Figure 3.17.

You can extend these tests to verify full network connectivity using relevant
ports such as 389 and 445.

Importing the AD DS Deployment Module
To promote KAPDC1 to be a DC in the Kapoho.Com domain, you need to import
the AD DS Deployment module as follows:

4. Import the AD DS Deployment Module
Import-Module -Name ADDSDeployment -WarningAction SilentlyContinue

Figure 3.16: Installing the AD DS feature

Figure 3.17: Testing network connectivity

78	 Chapter 3 ■ Managing Active Directory

This command imports the module using the Windows Compatibility mech-
anism described in Chapter 2. Once you load the module, you can use Get-
Command to view the proxy commands created.

Promoting KAPDC1
Next, you promote KAPDC1 to be a forest root DC in the Kapoho.Com forest/
domain, as follows:

5. Promote KAPDC1 to be DC in its own forest
$ADINSTALLHT = @{
 String = 'Pa$$w0rd'
 AsPlainText = $True
 Force = $True
}
$SECUREPW = ConvertTo-SecureString @ADINSTALLHT
$ADINSTALLHT = @{
 DomainName = 'Kapoho.Com' # Forest Root
 SafeModeAdministratorPassword = $SecurePW
 InstallDNS = $True
 DomainMode = 'WinThreshold' # latest
 ForestMode = 'WinThreshold' # Latest
 Force = $True
 WarningAction = 'SilentlyContinue'
}
Install-ADDSForest @ADINSTALLHT | Out-Null

This step produces no output. Because you did not use the ‑NoRebootOn-
Completion parameter, once the promotion process has completed, the cmdlet
reboots to finalize the server to be a DC. Specifying this parameter means
that no reboot happens automatically; thus, you can control when the reboot
happens. In production, you might be doing other operations in parallel with
promoting the server, such as copying some files or configuring applications
on the server. This parameter allows you to reboot when appropriate. Note that
until you reboot, the new domain is not available.

View Kapoho.Com Forest Details
After rebooting, you can log in as the administrator in the new domain using
either Administrator@Kapoho.Com or Kapoho\Administrator. Once logged
in, it is useful to review and verify details of the new forest. You can view the
forest details as follows:

6. View Kapoho.Com Forest Details
Get-ADForest

	 Chapter 3 ■ Managing Active Directory	 79

The output from this command, which you see in Figure 3.18, shows key
details about the new forest. It is useful to validate that the DC has been created
and promoted as you expect and that the relevant FSMO roles are set.

With the steps so far in this section, you have created another forest and
domain. At present, there is no relationship between the two forests; thus, there
is no cross-forest resource access yet. There are a number of further steps you
need to take to implement a cross-forest trust.

Adjusting the DNS to Resolve Reskit.Org from KAPDC1
With two independent forests, you need to ensure that DNS clients in both
forests are able to resolve hosts in the other forest. A simple way to do that is
to create a conditional DNS forwarder on each forest’s DNS server(s). That way, a
DHCP client in Reskit.Org can resolve details of hosts in the Kapoho.Com zone
by way of the forwarder. To do this locally on KAPDC1, you run the following:

7. Adjust DNS on KAPDC1 to resolve Reskit.Org from DC1
$CFHT = @{
 Name = 'Reskit.Org'
 MasterServers = '10.10.10.10'
 Passthru = $True
}
Add-DnsServerConditionalForwarderZone @CFHT

You can see the output of this command in Figure 3.19.
By performing this step, you configure the DNS server on KAPDC1 to resolve

Reskit.Org-related addresses by forwarding requests to the DNS server at
10.10.10.10, which is DC1.Reskit.Org.

Figure 3.18: Viewing details of the Kapoho.Com forest

80	 Chapter 3 ■ Managing Active Directory

This step demonstrates one of two methods you can deploy to implement cross-
forest DNS lookups. The other method is to use stub zones. Each method has
some advantages and disadvantages; for more information, see this article: win-
admin.org/questions-answers/2-windows/2-windows/5-what-is-the-difference-

between-stub-zone-and-conditional-forwarders-when-are-they-used-2.

Testing Conditional DNS Forwarding
With conditional DNS forwarding set up on KAPDC1, you test it using Resolve-
DNSName. To attempt to resolve the IP address of the DC1.Reskit.Org server,
enter the following:

8. Test Conditional Forwarding
Resolve-DNSName -Name DC1.Reskit.Org -Type A

As you can see in the output in Figure 3.20, DC1 has an A resource record for
the IPv4 address of DC1.

Setting Up a Conditional Forwarder on Reskit.Org
With the conditional forwarder set up on KAPDC1.Kapoho.Com, you can now set
up and validate a forwarder on DC1.Reskit.Org to forward queries for Kapoho
.Com to KAPDC1.Kapoho.Com, as follows:

9. Create a Script Block to Add Conditional Forwarder on DC1
$SB = {

Figure 3.20: Testing conditional DNS forwarding

Figure 3.19: Adding a DNS conditional forwarder

	 Chapter 3 ■ Managing Active Directory	 81

 # Add CF zone
 $CFHT = @{
 Name = 'Kapoho.Com'
 MasterServers = '10.10.10.131'
 }
 Add-DnsServerConditionalForwarderZone @CFHT
 # Test it
 Resolve-DNSName -Name KAPDC1.Kapoho.Com | Format-Table
}

These instructions create a script block that you use to add a conditional
forwarder on DC1 to the DNS service on KAPDC1.

Create Credentials to Run a Command on DC1
Because DC1 is in a separate AD forest, you have to create a credentials object
you can use to run the script block on DC1, as follows:

10. Create Credentials to Run A Command on DC1
$URK = 'Reskit\Administrator'
$PRK = ConvertTo-SecureString 'Pa$$w0rd' -AsPlainText -Force
$CREDRK = [PSCredential]::New($URK,$PRK)

Setting WinRM
To run the script block remotely, on a system in another Kerberos realm, you
need to adjust the WinRM service. To enable WinRM to run the script block,
you need to update the Trusted Hosts list. This list defines which hosts you can
connect to (without using Kerberos). You do this as follows:

11. Set WinRM
$PATH = 'WSMan:\localhost\Client\TrustedHosts'
Set-Item -Path $PATH -Value '*.Reskit.Org' -Force

After running this snippet, your system trusts any server in the Reskit.Org
domain as being who it says it is. This is a potential security risk, and you should
consider whether wildcard values like this are acceptable. Once you’ve demon-
strated the capability for yourself, you may want to disable it on your system.

Invoking the Script Block on DC1
Now that you have created a script block and configured the environment, you
can run the script block on the remote server as follows:

12. Run the Script Block on DC1
$NZHT = @{

Continues

82	 Chapter 3 ■ Managing Active Directory

 Computername = 'DC1.Reskit.Org'
 Script = $SB
 Credential = $CREDRK
}
Invoke-Command @NZHT

In the output, shown in Figure 3.21, you can see that after setting up conditional
forwarding, a DNS client on DC1 is able to resolve a RR for a host in the Kapoho
.Com domain. Depending on how you have configured Internet access and
whether you have IPv6 enabled, you may see additional RRs resolved.

Getting the Domain Detail Objects
The AD modules do not support creating a cross-forest trust. To set up a cross-
forest trust, you must make use of .NET objects and their methods.

To set up the cross-forest trust, first get the NET objects representing each of
the two forests, as follows:

13. Get Reskit.Org and Kapoho.Com details
$Reskit = 'Reskit.Org'
$User = 'Administrator'
$UserPW = 'Pa$$w0rd'
$Type = 'System.DirectoryServices.' +
 'ActiveDirectory.DirectoryContext'
$RKFHT = @{
 TypeName = $Type
 ArgumentList = 'Forest',$Reskit,$User,$UserPW
}
$RKF = New-Object @RKFHT
$ReskitForest =
 [System.DirectoryServices.ActiveDirectory.Forest]::GetForest($RKF)
$KapohoForest =
 [System.DirectoryServices.ActiveDirectory.
Forest]::GetCurrentForest()

Figure 3.21: Setting up a conditional forwarder on DC1

continued

	 Chapter 3 ■ Managing Active Directory	 83

This snippet creates variables that contain details of the two forests you are
working with. These forest objects also have useful methods that are not avail-
able via PowerShell commands.

Since you store the output from these last two method calls in variables, you
see no output.

The .NET namespace System.DirectoryServices.ActiveDirectory contains
objects that represent the key AD components, including forest, domain, site,
subnet, partition, and schemas. These classes have properties and methods
that perform a variety of AD tasks. In many cases, these classes and methods
overlap with commands in the Active Directory module. The classes do, however,
provide properties and methods not available in the AD modules.

Viewing the Reskit Forest Details
Now that you have obtained the forest details for the Reskit.Org forest, you can
display the information as follows:

14. View Reskit.Org Forest Details
$ReskitForest

This produces the output shown in Figure 3.22.

Viewing the Kapoho Forest Details
You can also view the details of the Kapoho.Com forest, using similar syntax:

15. View Kapoho Forest Details$KapohoForest

The output, which you can see in Figure 3.23, is similar to that of the Reskit
forest.

Figure 3.22: Viewing the Reskit.Org forest

84	 Chapter 3 ■ Managing Active Directory

Establishing a Cross-Forest Trust
Now that you have the objects representing the two forests, you can establish
a trust between the forests, using the CreateTrustRelationship() method as
follows:

16. Establish a trust
$KapohoForest.CreateTrustRelationship($ReskitForest,"Bidirectional")

In this case, you are establishing a bidirectional trust, meaning that both
domains now trust each other; you can now specify that security principals in
either domain can access resources in the other domain.

Creating a Script Block to Adjust the ACL of a File on DC1
With the cross-forest trust set up, you can now make use of the trust. In particular,
the trust means you can create a file (on DC1) and adjust the ACL to allow access
both from members of the Reskit.Org forest and from users in the Kapoho.Com
forest.

The simplest way to set ACLs on NFTS files and folders is to use the external
NTFSSecurity module. You download this module from the PowerShell Gallery
using the Install-Module command. After installing the module, you can create
a file (on DC1) and configure the ACL to enable cross-forest access.

You do this by first creating a script block, as follows:

17. Create SB to Adjust ACL on DC1
$SB2 = {
 # Ensure NTFSSecurity module is loaded on DC1
 Install-Module -Name NTFSSecurity -Force -ErrorAction
SilentlyContinue
 # Create a file in C:\Foo
 'XFT Test' | Out-File -FilePath 'C:\Foo\XFTTEST.Txt'
 # Test ACL
 Get-NTFSaccess -Path C:\Foo\XFTTEST.Txt | Format-Table

Figure 3.23: Viewing the Kahopo.Com forest

	 Chapter 3 ■ Managing Active Directory	 85

 # Add Kapoho\Administrators into ACL for this file
 $NTHT = @{
 Path = 'C:\Foo\XFTTEST.TXT'
 Account = 'Administrator@Kapoho.Com'
 AccessRights = 'FullControl'
 }
 Add-NTFSAccess @NTHT
 # Retest ACL
 Get-NTFSaccess -Path C:\Foo\XFTTEST.Txt | Format-Table
}

This code snippet creates a script block (on KAPDC1), which creates a new
file (on the remote system) and then looks at the initial ACL. After adding the
Kapoho\Administrator to the ACL of this file, the script block retrieves and
displays the updated ACL.

Running the Script Block on DC1 to Demonstrate the
Cross-Forest Trust
To view the cross-forest trust in action, you can run the script block as follows:

18. Run the ScriptBlock on DC1 To Demonstrate X-Forest Trust
$PHT = @{
 ComputerName = 'DC1.Reskit.Org'
 Credential = $CREDRK
 ScriptBlock = $SB2
}
Invoke-Command @PHT

Note that you need to ensure that connectivity between KAPDC1 and DC1.
Figure 3.24 shows the output of this step. The NTFS Security cmdlets produce
an extra white space in the output. You can avoid that by piping the output of,
for example, Get-NTFSAccess to Format-Table and specifying -AutoSize.

In practice, you should be using the AGDLP (account, global, domain, local
permissions) approach to setting permissions (see en.wikipedia.org/wiki/
AGDLP for more information on this approach). The mechanism shown in this
section works well but may not be as scalable. For larger enterprises, the AGDLP
approach is easier to deploy and manage.

With AGDLP, you place user and group accounts that need to access resources
into global groups in each forest/domain. Then you add those global groups
into Domain Local groups on each domain. Once these Domain Local groups
are created, you can assign permissions to a resource in either forest based on
the Domain Global groups in each forest. In this book’s scenario, you create a
Domain Local group in the Reskit domain and then add a global group from
the Kapoho domain to it.

86	 Chapter 3 ■ Managing Active Directory

Managing AD Users, Computers, and OUs

Once you have your Active Directory infrastructure built, the next step in
deployment is to add objects to the directory and subsequently manage them.

There are four sets of AD objects you are most likely to use.

■■ Users

■■ Computers

■■ Groups

■■ Organizational units

An AD user object represents a user account that can be used to log on and
can be used in resource ACLs. An AD computer object represents a computer
that can log in to the domain and onto which a user can log. AD computers can
also be used in ACLs. An AD group is an account that contains other user, com-
puter, or group objects. To simplify ACL management, you use a group in an
ACL instead of individual users/computers. An organizational unit (OU) is an AD
object that contains other AD objects, including other OUs. You also use OUs for
two main purposes: to delegate administration and to support group policies.

You use the commands in the Active Directory module to manage the objects
in your AD. This module is supported natively in PowerShell 7.

Figure 3.24: Updating the ACL and viewing its details

	 Chapter 3 ■ Managing Active Directory	 87

Before You Start
You run the code snippets in this section on the Windows Server domain controller,
DC1.Reskit.Org. You created this server in “Establishing a Forest Root Domain”
and have used it throughout this chapter.

Creating a Hash Table for General User Attributes
Creating a user object requires specifying a number of parameters, which can
lead to long lines of code (that can be harder to troubleshoot). To simplify the
creation of AD user (and other) objects, you can use a hash table to hold the
properties you want to set when creating the object.

You create this hash table by assigning values to the $NewUserHT variable as
follows:

1. Create a hash table for general user attributes
$PW = 'Pa$$w0rd'
$PSS = ConvertTo-SecureString -String $PW -AsPlainText -Force
$NewUserHT = @{
 AccountPassword = $PSS
 Enabled = $true
 PasswordNeverExpires = $true
 ChangePasswordAtLogon = $false
}

This hash table contains values for all the users to be added to AD in this
section.

Creating Two Users
Now that you have the basic user properties hash table set up, you extend it to
include user-specific details and then add the user to the AD as follows:

2. Create two users - adding to basic hash table
First user
$NewUserHT.SamAccountName = 'ThomasL'
$NewUserHT.UserPrincipalName = 'ThomasL@reskit.Org'
$NewUserHT.Name = 'ThomasL'
$NewUserHT.DisplayName = 'Thomas Lee (IT)'
New-ADUser @NewUserHT # add first user
Second user
$NewUserHT.SamAccountName = 'RLT'
$NewUserHT.UserPrincipalName = 'RLT@Reskit.org'
$NewUserHT.Name = 'Rebecca Lee-Tanner'
$NewUserHT.DisplayName = 'Rebecca Lee-Tanner (IT)'
New-ADUser @NewUserHT # Add second user

88	 Chapter 3 ■ Managing Active Directory

This snippet creates two new users in the AD. By default, these users are
added to the Users container in AD. This container is not an OU.

This snippet shows some basic user settings. As noted earlier, you may want
to extend the hash table to set additional properties on the user object being
created.

Creating an OU for IT
An OU is a container object inside AD. When you added the two users to AD, it
added them into the Users container. This is not helpful, as you can only apply
group policies to an OU. Most organizations therefore use OUs to hold user,
computer, and group objects.

It is important to note that both an OU and the Users container are container-
type objects (AD objects that can contain other objects). The difference is that
you can only apply group policies to an OU. It is best practice to have your AD
computers, groups, and users in OUs.

To create an OU, in this case for the Reskit IT team, you can do the following:

3. Create an Organizational Unit for IT
$OUHT = @{
 Name = 'IT'
 DisplayName = 'Reskit IT Team'
 Path = 'DC=Reskit,DC=Org'
}
New-ADOrganizationalUnit @OUHT

This code creates a new OU at the top level of the Reskit.Org domain.
Initially, it contains no objects.

Moving Users into an OU
With the IT OU created, you can now move each of the two users created earlier
in this section into this OU, as follows:

4. Move the two users into the OU
$MHT1 = @{
 Identity = 'CN=ThomasL,CN=Users,DC=Reskit,DC=ORG'
 TargetPath = 'OU=IT,DC=Reskit,DC=Org'
}
Move-ADObject @MHT1
$MHT2 = @{
 Identity = 'CN=Rebecca Lee-Tanner,CN=Users,DC=Reskit,DC=ORG'
 TargetPath = 'OU=IT,DC=Reskit,DC=Org'
}
Move-ADObject @MHT2

	 Chapter 3 ■ Managing Active Directory	 89

This snippet illustrates how to move an AD object. In this case, you move
two specific users contained in the Users container into the IT OU. Once you
have moved these user objects, the next time either user logs in, any OU-specific
GPOs are applied.

Creating a User in an OU
As an alternative to creating an AD user in the Users container (and then moving
the user to an appropriate OU), you can specify an OU path to the OU in which
to create the new user, like this:

5. Create a third user directly in the IT OU
$NewUserHT.SamAccountName = 'JerryG'
$NewUserHT.UserPrincipalName = 'jerryg@reskit.org'
$NewUserHT.Description = 'Virtualization Team'
$NewUserHT.Name = 'Jerry Garcia'
$NewUserHT.DisplayName = 'Jerry Garcia (IT)'
$NewUserHT.Path = 'OU=IT,DC=Reskit,DC=Org'
$NewUserHT.PasswordNeverExpires = $true
$NewUserHT.ChangePasswordAtLogon = $false
New-ADUser @NewUserHT

You use this user in “Configuring Just Enough Administration (JEA).” In this
example, you explicitly set the account password to never expire and to enable
the user to log in a first time without changing passwords. That might be a
security risk in a larger organization but is useful for this book.

Adding Two Additional Users
To demonstrate removing AD objects, begin by creating two users that you will
later delete, as follows:

6. Add two users who are then removed
First user to be removed
$NewUserHT.SamAccountName = 'TBR1'
$NewUserHT.UserPrincipalName = 'tbr1@reskit.org'
$NewUserHT.Name = 'TBR1'
$NewUserHT.DisplayName = 'User to be removed'
$NewUserHT.Path = 'OU=IT,DC=Reskit,DC=Org'
New-ADUser @NewUserHT
Second user to be removed
$NewUserHT.SamAccountName = 'TBR2'
$NewUserHT.UserPrincipalName = 'tbr2@reskit.org'
$NewUserHT.Name = 'TBR2'
New-ADUser @NewUserHT

This snippet creates two new users (TBR1 and TBR2) in the IT OU.

90	 Chapter 3 ■ Managing Active Directory

Viewing Existing Users
With an OU and several users created, you can use Get-ADUser to view the
existing AD users, as follows:

7. See the users that exist so far
Get-ADUser -Filter * -Properties DisplayName |
 Format-Table -Property Name, DisplayName, SamAccountName

You can see the output of this command in Figure 3.25. Depending on your
needs, you may want to add more parameters to this display.

As you can see in the figure, there are not many users in this domain. Also,
note that the users added by default lack a DisplayName property, whereas the
users you added did have a value set for that property.

Removing a User with a Get | Remove Pattern
There are at least two ways you can remove AD objects, including AD users.
The first uses a Get | Remove pattern. In this pattern you first get objects (using,
for example, Get‑ADUser) and then pipe them to a command (for example,
Remove-ADUser) to remove the objects (in this case, users). This pattern is
particularly useful interactively. You use the Get portion to get the specific
objects you need, verify that you are getting the right objects, and only then
remove them. You can do this as follows:

8. Remove via a Get | Remove Pattern
Get-ADUser -Identity 'CN=TBR1,OU=IT,DC=Reskit,DC=Org' |
 Remove-ADUser -Confirm:$false

Figure 3.25: Viewing users in Reskit.Org

	 Chapter 3 ■ Managing Active Directory	 91

Removing a User Directly
A second way to remove a user is to use Remove-ADUser and specify the identity
for the user to be removed. There are several ways to specify the identity of the
object; in this case, you use the full distinguished name, as follows:

9. Remove user directly
$RUHT = @{
 Identity = 'CN=TBR2,OU=IT,DC=Reskit,DC=Org'
 Confirm = $false}
Remove-ADUser @RUHT

This demonstrates how you can remove a specific user directly. This approach
is possibly quicker than using the Get | Remove pattern, but arguably less safe
in the case of typos.

Updating and Displaying a User Object
Once you create an object, whether a user, a group, or whatever, you may need
to update it. You may need to update a user object with a revised phone number
or office name. You can update and view a user object with the Set-ADUser and
Get-ADUser commands, as follows:

10. Update and display a user
$TLHT =@{
 Identity = 'ThomasL'
 OfficePhone = '4416835420'
 Office = 'Marin Office'
 EmailAddress = 'ThomasL@Reskit.Org'
 GivenName = 'Thomas'
 Surname = 'Lee'
 HomePage = 'Https://tfl09.blogspot.com'
}
Set-ADUser @TLHT
Get-ADUser -Identity ThomasL -Properties DisplayName, Office,
 OfficePhone, EmailAddress |
 Format-Table -Property DisplayName, Name, Office,
 OfficePhone, EmailAddress

You can see the output of this step in Figure 3.26.
As in any script that outputs user details, you are likely to want to manage,

retrieve, and view many different object properties; thus, you may want to
extend the properties displayed by Format-Table. Also, remember that if you
want to display a property, you may need to extend the value of the ‑Properties

92	 Chapter 3 ■ Managing Active Directory

parameter in Get-ADUser as well so as to ensure you retrieve the property in
the first place before displaying it. Note that retrieving additional properties
adds performance overhead. Retrieving all properties can take two to three
times as long as retrieving only the default set. Best practice is to retrieve only
the properties you need.

Creating an AD Group
You create an AD group similarly to creating an AD user, with the New-ADGroup
command as follows:

11. Create a new group for RK DNS Admins
$NGHT1 = @{
 Name = 'RKDnsAdmins'
 Path = 'OU=IT,DC=Reskit,DC=org'
 Description = 'Reskit DNS Universal admins'
 GroupScope = 'Universal'
}
New-ADGroup @NGHT1

This creates a new group, RKDnsAdmins, which is stored in the IT OU. An AD
group object is similar to an AD user object in that you can move it, remove it,
or update it.

AD supports two types of groups: distribution groups and security groups.
A security group can be used when adjusting ACLs. A distribution group, on
the other hand, cannot be used for that. Even though the distribution group
object actually contains a value for the SID attribute (a little-known fact), the
AD UI prevents you from using distribution groups in ACLs.

Figure 3.26: Viewing updated user details

	 Chapter 3 ■ Managing Active Directory	 93

For more details on how security groups are used in access control, see
this document: docs.microsoft.com/en-us/windows/win32/ad/how-security-
groups-are-used-in-access-control.

Creating and Viewing Group Membership
Once you create the group, you need to populate it (and view the results). To
do that, you use the Add-ADGroupMember and Get-ADGroupMember commands,
as follows:

12. Add a user to the DNS Admins group and view group members
Add-ADGroupMember -Identity 'RKDnsAdmins' -Members 'JerryG' | Out-Null
Get-ADGroupMember -Identity 'RKDnsAdmins'

The output, shown in Figure 3.27, shows the new user, JerryG, is the only
member of the RKDnsAdmins group.

Note that you use this group (and the JerryG user) in “Configuring Just
Enough Administration (JEA).”

Make a New Group for the IT Team
You next make a further Universal group that is to contain all members of the
IT team.

13. Make a group for the IT Team
$NGHT2 = @{
 Name = 'IT Team'
 Path = 'OU=IT,DC=Reskit,DC=org'
 Description = 'All members of the IT Team'
 GroupScope = 'Universal'
 }
 New-ADGroup @NGHT2

Figure 3.27: Viewing updated user details

94	 Chapter 3 ■ Managing Active Directory

Make All Users in IT Members of the IT Team Group
Having created the group, you now add all members of the IT OU into this new
group, with this code:

14. Make all Users in IT a Member Of This Group
$SB = 'OU=IT,DC=Reskit,DC=Org'
$ItUsers = Get-ADUser -Filter * -SearchBase $SB
Add-ADGroupMember -Identity 'IT Team' -Members $ItUsers

Displaying Group Membership
It is often useful to view the membership of a group after you update the mem-
bers. The output of the following code, using Get‑ADGroupMember, could be
useful in documenting membership of key groups:

15. Display Group Members of the IT Team Group
Get-ADGroupMember -Identity 'IT Team' |
 Format-Table -Property SamAccountName, DistinguishedName

The output, which you can see in Figure 3.28, shows the SamAccountName and
the DistinguishedName of the members of the IT Team group.

As you run the scripts in this section, it can also be handy to have the Active
Directory Users and Computers MMC console open and available. This makes it
easy to view the results of your scripts. It also allows you to quickly undo anything
done incorrectly due, for example, to a typo in your code. As an alternative,
you could also use the Active Directory Administrative Center (ADAC) for
this purpose. See docs.microsoft.com/en-us/windows-server/identity/ad-ds/
ad-ds-getting-started for details on the ADAC.

Figure 3.28: Viewing group membership

	 Chapter 3 ■ Managing Active Directory	 95

Adding a Computer to the AD
Adding a computer to an AD is simple and similar to adding a new user or
group, as follows:

16. Add a computer to the AD
$NCHT = @{
 Name = 'Wolf'
 DNSHostName = 'Wolf.Reskit.Org'
 Description = 'One for Jerry'
 Path = 'OU=IT,DC=Reskit,DC=Org'
 OperatingSystemVersion = 'Windows Server 2019 Data Center'
}
New-ADComputer @NCHT

This code adds a single computer, called Wolf.Reskit.Org, into the IT OU.
For the computer to utilize the AD domain, you also need to update the

computer to be a member of the domain. Adding the computer first, known
as pre-staging, requires administrative privilege, but once a computer has been
added to AD, you can then join that computer to the AD without needing
elevated credentials. You can find more details in this article: websistent.com/
how-to-prestage-a-computer-in-active-directory/. The article is several years
old, but the principles it covers remain valid.

Displaying Computers in an AD Domain
The final step in this demonstration of managing AD users, computers, and
OUs is to get and output the names of the computers in your AD domain and
the last time they were logged on, as follows:

17. See the computer accounts
Get-ADComputer -Filter * -Properties DNSHostName,LastLogonDate |
 Format-Table -Property Name, DNSHostName,LastLogonDate

The output from this step, in Figure 3.29, shows the computers currently
contained in the Reskit.Org domain. Depending on your needs, you may want
to adjust the properties you display.

Figure 3.29: Viewing computers in the AD

96	 Chapter 3 ■ Managing Active Directory

Note that the Wolf computer you added in the previous step shows no last logon
date, since no one has yet logged on to this host. Also remember that the value for
the LastLogonDate property can be off by up to 14 days. For more information,
see blogs.technet.microsoft.com/askds/2009/04/15/the-lastlogontimestamp-
attribute-what-it-was-designed-for-and-how-it-works/.

The code snippets in this section have demonstrated how you can use the
PowerShell cmdlets to add/remove/update objects in the AD including com-
puters, OUs, and users.

Adding Users to AD via a CSV

In “Managing AD Users, Computers, and OUs,” you saw how you can use
PowerShell 7 to add/remove/update objects in the AD. In production, you may
need to automate the regular changes to AD. In almost all organizations, users
and computers come, change, and go. Most organizations try to automate those
regular changes.

How to automate the regular changes is a popular question in many support
forums, such as the PowerShell forum on Spiceworks (community.spiceworks
.com/programming/powershell). A common question is how to add users to
AD using a CSV file.

In many organizations, an enterprise resource planning (ERP) tool, such as
SAP, might hold the master copy of user details. Any changes to that information
are made within the ERP system, which can then create a CSV file containing
the information to be updated in other systems (such as AD). In a smaller orga-
nization, those details might be contained in a CSV file originating from the
HR department using an Excel spreadsheet.

The basic concept is that the CSV file contains a collection of users to be added
(or changed/removed). When you import the CSV file into PowerShell, you cre-
ate objects that represent user properties, including name, password, and so on.

There are some user properties that are always required to add a user into the
AD; the password, for example. Others, such as office name or phone number, are
optional. Some organizations make use of a large number of AD User attributes;
others use only the bare minimum. You can easily tailor your CSV files and the
scripts that process them to meet the needs of your organization.

Before You Start
In this example you build a simple CSV file and then use it to create users in the
Reskit.Org domain. You run the script on the DC1.Reskit.Org host. This host
is a domain controller you created in “Establishing a Forest Root Domain” and
have used throughout this chapter.

	 Chapter 3 ■ Managing Active Directory	 97

Creating a CSV File
The first step in this process is to create a CSV file. This file contains the basic
information about each user to be added to the AD. It looks like this:

1 Create CSV
$CSVDATA = @'
Firstname, Initials, Lastname, UserPrincipalName, Alias, Description,
Password
S,K,Masterly, SKM, Sylvester, Data Team, Christmas42
C,B, Smith, CBS, Claire, Receptionist, Christmas42
Billy, Bob, JoeBob, BBJB, BillyBob, A Bob, Christmas42
Malcolm, Dudley, Duelittle, Malcolm, Malcolm, Mr Danger, Christmas42
'@
$CSVDATA | Out-File -FilePath C:\Foo\Users.Csv

This CSV file contains seven properties, including a plain-text password to
be assigned to the user. If you want to include more information about each
user in the AD, such as office phone number, you can add additional columns
to the CSV file.

Importing and Viewing the CSV
With the CSV file created, the next step is to import it and, optionally, display
the input data, as follows:

2. Import a CSV file containing the details of the users you
want to add to AD:
$Users = Import-CSV -Path C:\Foo\Users.Csv |
 Sort-Object -Property Alias
$Users | Format-Table

This creates the $Users array that contains the values for properties of the
users to be added. You can see the output generated by this step in Figure 3.30.

Figure 3.30: Viewing users to be added to AD

98	 Chapter 3 ■ Managing Active Directory

When you import a CSV file, PowerShell converts the file into an array of the
type System.Management.Automation.PSCustomObject. Each object is created
with a NoteProperty representing each column in the CSV file. These properties
are defined as being strings set to the appropriate values from the CSV file. You
can view these details by piping the variable $Users to Get-Member.

Adding Users to AD
To add the users to AD, you just iterate over the array of users, and for each
user you create a hash table of user properties and then call New‑ADuser to add
the user, as follows:

3. Add the users using the CSV
$Users |
 ForEach-Object -Parallel {
 $User = $_
 # Create a hash table of properties to set on created user
 $Prop = @{}
 # Fill in values
 $Prop.GivenName = $User.Firstname
 $Prop.Initials = $User.Initials
 $Prop.Surname = $User.Lastname
 $Prop.UserPrincipalName = $User.UserPrincipalName + "@Reskit.Org"
 $Prop.Displayname = $User.FirstName.Trim() + " " +
 $User.LastName.Trim()
 $Prop.Description = $User.Description
 $Prop.Name = $User.Alias
 $PW = ConvertTo-SecureString -AsPlainText $User.Password -Force
 $Prop.AccountPassword = $PW
 $Prop.ChangePasswordAtLogon = $true
 $Prop.Path = 'OU=IT,DC=Reskit,DC=ORG'
 $Prop.Enabled = $true
 # Now Create the User
 New-ADUser @Prop
 # Finally, Display User Created
 "Created $($Prop.Name)"
}

You can see the results of this step in Figure 3.31. The New-ADUser command
does not produce output, so the output is generated by this snippet explicitly.

Viewing All Users in Reskit.Org
Having created some additional users, you can view all the users in the Reskit
.Org domain, as follows:

4. Show All Users in AD (Reskit.Org)
Get-Aduser -Filter * |
 Format-Table -Property Name, UserPrincipalName

	 Chapter 3 ■ Managing Active Directory	 99

You can view the output from this snippet in Figure 3.32.

CSV files are flexible as input to scripts that manage AD objects. You can adopt
the approach shown in this section when removing users such as a user who
has left the organization. Create a file of users to be removed, and your script
can remove them or move them to an “Ex-Employee” group as dictated by your
policies. You can also use this technique for adding groups to the AD. Just cre-
ate a CSV file of groups and then adjust this script to add the new AD groups.

Figure 3.31: Creating new users

Figure 3.32: Viewing all users

100	 Chapter 3 ■ Managing Active Directory

This snippet uses an important new PowerShell 7 feature, which is the -Parallel
parameter to Foreach-Object. This snippet runs user creation in parallel. In this
case, where you are adding just four users to AD on the DC, using this construct
is actually just a bit slower than not using ‑Parallel. However, this construct
can be more useful were you to run this script on a client system where there
were network latencies to consider, or where each iteration did more than just
add a new user (such as adding the user to a group, creating files, and so on).

Configuring Just Enough Administration (JEA)

Managing rights and permissions can be complex even in smaller organizations. In
all too many organizations, administrators of all sorts are just dropped into high-
privilege groups such as Domain Administrators or Enterprise Administrators.
That can make jobs easier, but it also opens up all sorts of potential security holes.

Just Enough Administration (JEA) is a tool to enable you to implement fine-
grained administrative delegation, ensuring that a user has just enough privilege
to do their job and not a bit more. JEA uses PowerShell remoting to define which
users are in a specific role and what that role can do within a remoting session.

With JEA, for example, you can allow your DNS administrators to enter a
remoting session on a domain controller and manage the DNS service (and very
little more). Even though a user is in a remoting session on a DC, with JEA they
would be unaware that other commands exist and would not be able to use them.

There are three distinct objects involved with JEA. To deploy JEA you need
to develop each of these:

JEA role capabilities file: This file, essentially a PowerShell hash table stored
with the extension .PSRC, defines a role in terms of the aliases, commands,
functions, providers, and external programs an administrator can use
within a JEA session. A PSRC files resembles a PowerShell module manifest.

JEA session configuration file: This file, stored with the extension .PSSC,
defines how a JEA endpoint is configured. It states the users (groups) that
can use the endpoint, a JEA session, and the roles to which they have access.

JEA-based remoting endpoint: This is a remoting endpoint that your restricted
user accesses. The endpoint enables role users to access a constrained
remoting endpoint based on the session configuration file.

Once you have the two files in place, you register the JEA-based endpoint to
the server based on the session configuration.

A JEA user can enter a PowerShell remoting session or invoke commands in
a remoting session specifying the constrained endpoint. PowerShell uses the
user’s group membership to determine the role involved and configures the
PowerShell session based on the role capabilities file for that role.

	 Chapter 3 ■ Managing Active Directory	 101

Before You Start
In this example, you implement JEA on a domain controller, DC1, which you
have used throughout this chapter. You created this host as a domain controller
in “Establishing a Forest Root Domain.”

You also need to create or use the AD user JerryG. You also need to make
this user a member of the RKDnsAdmins group. You created the user and added
the account to the group in “Managing AD Users, Groups, and Computers.”

Creating a Transcript Folder
A useful feature of JEA is the use of PowerShell transcripts. With JEA, PowerShell
can create a session transcript for any JEA session automatically. You first create
a new folder to hold the transcripts, as follows:

1. Create transcripts folder
New-Item -Path C:\JEATranscripts -ItemType Directory | Out-Null

Creating a Role Capabilities Folder
The role capabilities file defines the capabilities of a role. While you can store
that file anywhere, it’s good security to store it in a specific folder, as follows:

2. Create capabilities folder
$JEACF = "C:\JEACapabilities"
New-Item -Path $JEACF -ItemType Directory | Out-Null

You might also want to restrict access to files in this folder.

Creating a Role Capabilities File
Next, you create a role capabilities file. The role capabilities file defines what a
user in a role is allowed to do within a remoting session. You create a new JEA
role capabilities file as follows:

3. Create Role Capabilities File
$RCF = Join-Path -Path $JEACF -ChildPath "RKDnsAsmins.psrc"
$RCHT = @{
 Path = $RCF
 Author = 'Reskit Administration'
 CompanyName = 'Reskit.Org'
 Description = 'Defines RKDnsAdmins role capabilities'
 AliasDefinition = @{Name='gh';Value='Get-Help'}
 ModulesToImport = 'Microsoft.PowerShell.Core','DnsServer'
 VisibleCmdlets = ("Restart-Service",

Continues

102	 Chapter 3 ■ Managing Active Directory

 @{ Name = "Restart-Computer";
 Parameters = @{Name = "ComputerName"}
 ValidateSet = 'DC1, DC2'},
 'DNSSERVER*')
 VisibleExternalCommands = ('C:\Windows\System32\whoami.exe')
 VisibleFunctions = 'Get-HW'
 FunctionDefinitions = @{
 Name = 'Get-HW'
 Scriptblock = {'Hello JEA World'}}
}
New-PSRoleCapabilityFile @RCHT

The role capabilities defined in this file enable a DNS admin to do all of the
following:

■■ Use gh as an alias to Get-Help.

■■ Automatically have the remoting session started with the DNSServer
module imported.

■■ Use the Restart-Service command (but not Get-Service).

■■ Use the Restart-Computer, but only to restart DC1 or DC1.

■■ Use any command in the DNSServer module.

■■ Use the console application whoami.exe.

■■ Use a new function called Get-HW (whose definition you can see in the
role capabilities file).

Creating a JEA Session Configuration File
The JEA session configuration file is used by PowerShell to associate groups
(such as the RKDnsAdmins group) whose members use a specific role (such as
the RKDNSAdmins role). You can also configure some additional aspects of a JEA
remoting session, as follows:

4. Create a JEA Session Configuration file
$SCF = 'C:\JEASessionConfiguration'
New-Item -Path $SCF -ItemType Directory | Out-Null
$P = Join-Path -Path $SCF -ChildPath 'RKDnsAdmins.pssc'
$RDHT = @{
 'Reskit\RKDnsAdmins' = @{'RoleCapabilityFiles' =
 'C:\JEACapabilities\RKDnsAsmins.psrc'}
}
$PSCHT= @{
 Author = 'DoctorDNS@Gmail.Com'
 Description = 'Session Definition for RKDnsAdmins'
 SessionType = 'RestrictedRemoteServer' # ie JEA!
 Path = $P # the output file
 RunAsVirtualAccount = $true

continued

	 Chapter 3 ■ Managing Active Directory	 103

 TranscriptDirectory = 'C:\ JeaTranscripts'
 RoleDefinitions = $RDHT # RKDnsAdmins role mapping
}
New-PSSessionConfigurationFile @PSCHT

The session configuration file’s session type indicates that the remoting session
is based on JEA. The configuration also tells PowerShell that the user identity
in the session is based on a temporary account unique to a specific user and
valid for only the duration of a JEA session.

For more details on the session configuration file, see docs.microsoft.com/
powershell/scripting/learn/remoting/jea/session-configurations.

This session configuration file also sets up a Transcripts folder. This enables
PowerShell to create a transcript of all commands within a JEA session and
store that in the specified folder. These transcripts are of the same type as cre-
ated by the Start-Transcript command (see docs.microsoft.com/powershell/
module/microsoft.powershell.host/Start-Transcript?view=powershell-7 for
more details on Start-Transcript). With JEA, PowerShell creates a transcript
covering the entire JEA session.

Testing the Session Configuration File
It is useful to use Test-PSSessionConfiguration to test the session configura-
tion file to ensure that it is properly formatted. This command ensures that you
have valid keys in the session configuration file and that values are the correct
type. You can do this as follows:

5. Test the session configuration file
Test-PSSessionConfigurationFile -Path $P

You can see the output of this command in Figure 3.33.

As you can see, Test-PSSessionConfigurationFile does not return a lot of
information about what has been checked. However, if there are issues in the
session configuration file, these are noted when you test the file.

Enabling Remoting and Creating the JEA Session Endpoint
Now that you have your JEA role and session configuration specified, you
can create the JEA session endpoint. Before doing that, you enable PowerShell

Figure 3.33: Testing the session configuration file

104	 Chapter 3 ■ Managing Active Directory

remoting explicitly using Enable-PSRemoting. Then you create the JEA endpoint
using Register-PSSessionConfiguration, like this:

6. Enable Remoting and register the JEA Session Definition
Enable-PSRemoting -Force | Out-Null
$SCHT = @{
 Path = $P
 Name = 'RKDnsAdmins'
 Force = $true
}
Register-PSSessionConfiguration @SCHT

Figure 3.34 shows the output from running this snippet.

This command creates a new remoting endpoint that provides a JEA envi-
ronment for DNS administration.

Checking What the User Can Do
You can use the command Get-PSSessionCapability to determine what a user
(in the RKdnsAdmins group) can do within a JEA remoting session, like this:

7. Check What the User Can Do
Get-PSSessionCapability -ConfigurationName RKDnsAdmins -Username
'Reskit\JerryG' |
 Sort-Object -Property Module

You can see the output from these commands in Figure 3.35.

Figure 3.34: Registering the session configuration file

	 Chapter 3 ■ Managing Active Directory	 105

To save space in this book, the output shows only some of the commands
available in the JEA session.

Creating Credentials for JerryG
With JEA set up, you can test it by running script blocks in a JEA session; but
to do that, you need a credential object. You create credentials for a user who
is in the RKDNSAdmins group using the following commands:

8. Create Credentials for user JerryG
$U = 'JerryG@Reskit.Org'
$P = ConvertTo-SecureString 'Pa$$w0rd' -AsPlainText -Force
$Cred = [PSCredential]::New($U,$P)

Creating Three Script Blocks to Test JEA
To test that JEA is delivering what you expected, you can try to run some simple
scripts inside a JEA session, as follows:

9. Define Three Script Blocks and an Invocation Splatting Hash Table
$SB1 = {Get-Command}
$SB2 = {Get-HW}
$SB3 = {Get-Command -Module 'DNSSERVER'}
$ICMHT = @{

Figure 3.35: Determining session capabilities

Continues

106	 Chapter 3 ■ Managing Active Directory

 ComputerName = 'DC1.Reskit.Org'
 Credential = $Cred
 ConfigurationName = 'RKDnsAdmins' }

This snippet creates three script blocks:

$SB1 This script block gets all the commands (that is, all the commands the JEA
session provides to the user).

$SB2 This script block runs the Get-HW function.

$SB3 This block shows the commands that are in the DNSServer module and
that are available to the JEA user.

These three script blocks test the capabilities that are provided to a DNS
admin within the JEA session on DC1.

How Many Commands Exist in a JEA Session?
A test of JEA is to show the commands that are available within a JEA session.
To achieve that, you execute the $SB1 script block within a remoting session
using the newly created JEA endpoint. You can do that as follows:

10. Get commands available within the JEA session
Invoke-Command -ScriptBlock $SB1 @ICMHT |
 Sort-Object -Property Module |
 Select-Object -First 15

This snippet gets details of all the commands available within the JEA session,
sorts them by module name, and then selects the first 15 commands. You can
view the output in Figure 3.36.

Figure 3.36: Checking on commands in the JEA session

continued

	 Chapter 3 ■ Managing Active Directory	 107

You can see all the non-DNS commands available plus the first few from the
DNSServer module. You can see in this list the Get-HW function defined only for
this endpoint.

Invoking a JEA-Defined Function
In the role capabilities file, you defined a function, Get-HW, which is to be avail-
able within the JEA session. You can do this by invoking $SB2 in a JEA session,
as follows:

11. Invoke a JEA Defined Function in a JEA Session as JerryG
Invoke-Command -ScriptBlock $SB2 @ICMHT

You can see the output in Figure 3.37.

Get the DNSServer Command Available in JEA Session
As a final test of JEA, you can obtain a count of how many commands are avail-
able in the JEA session and provided by the DNSServer module. You do that by
invoking the $SB3 script block, as follows:

12. Get DNSServer commands available to JerryG
$C = Invoke-Command -ScriptBlock $SB3 @ICMHT
"$($C.Count) DNS commands available"

You can see the output of this command in Figure 3.38.

Viewing the Transcripts Folder
In the session configuration file, you instructed PowerShell to create PowerShell
transcripts for each JEA session. You can view the contents of the transcript
folder as follows:

13. Examine the Contents of the Transcripts Folder:
Get-ChildItem -Path $PSCHT.TranscriptDirectory

Figure 3.37: Invoking a JEA-defined function

Figure 3.38: Counting DNS server commands available

108	 Chapter 3 ■ Managing Active Directory

You can view the output of this snippet in Figure 3.39.

As you can see, there are three transcript files in the folder, one for each of
the three script blocks you just ran. Because each session was short, these tran-
scripts are also quite short. If users run long sessions, these transcript files can
grow. If you are going to generate transcripts, you should ensure that older
transcript files are removed.

Examining a JEA Transcript
Each transcript in the transcript folder holds details of everything that happens
within the JEA session. You can examine the transcript generated when you
ran the first script block, as follows:

14. Examine a transcript
Get-ChildItem -Path $PSCHT.TranscriptDirectory |
 Select-Object -First 1 |
 Get-Content

You can see the output of this snippet in Figure 3.40.
Depending on how many transcripts you have, you may need to adjust this

snippet to ensure you are looking at the correct transcript.
In the figure, you see the results of running $SB2 in the JEA session. That

script block called the Get-HW function, which in turn displayed the text Hello
JEA World. In the transcript, you can see the start and end times for the session,
the user who ran the script, and details about the environment and about every
command run in the session.

If the JEA endpoint is used heavily, then the size of the transcript directory
can grow. As with all logging, you should have a strategy for managing the
JEA transcripts.

Figure 3.39: Viewing the JEA Transcripts folder

	 Chapter 3 ■ Managing Active Directory	 109

Summary

In this chapter, you examined some of the key AD-related actions you might
need to perform using PowerShell 7. Two modules, Server Manager and the
AD Deployment, both do not natively load PowerShell 7. Instead, you need to
use the Windows PowerShell compatibility mechanism discussed in Chapter 2.
You use Import-Module to load these two modules, allowing access to the
commands they contain. The Active Directory module, on the other hand, works
natively in PowerShell 7.

Figure 3.40: Viewing a JEA transcript

C H A P T E R

111

4

Networking is fundamental to all organizations. Your servers and client systems
communicate with each other via your network. Your users access a myriad of
devices via your internal networks. Your internal networks connect to the Inter-
net to help your users and customers interact. It is no surprise that PowerShell
supports you in configuring and managing your network.

Networking has been built into Windows more or less since its beginning.
Windows for Workgroups 3.11 contained built-in networking, as did Windows
NT 3.1. But the later versions of NT (including Windows 10 and Windows Server
2019) come with a TCP/IP stack that supports both IPv4 and IPv6.

This chapter looks at how to use PowerShell to configure a network, how to
test for network connectivity, and how to set up, configure, and manage both
Dynamic Host Configuration Protocol (DHCP) and Domain Name Service (DNS).

■■ When you first install Windows on a computer, the setup program does
a good job of detecting your network cards and setting default settings.
By default, each NIC is configured to get its IP address via DHCP. This
means you install Windows, plug the system into the network, and the
DHCP clients configure IP addressing and DNS details automatically. But
sometimes you need to set an IP address explicitly, as shown in the
“Configuring IP Addressing” section.

■■ An important setup step for troubleshooting is to ensure that each host
has full network connectivity to other systems either inside your network

Managing Networking

PowerShell 7 for IT Pros: A Guide to Using PowerShell 7 to Manage Windows® Systems, First Edition. Thomas Lee.
© 2021 John Wiley & Sons, Inc., Published 2021 by John Wiley & Sons, Inc.

112	 Chapter 4 ■ Managing Networking

or externally. You should do this before adding applications and services
to a server. In “Testing Network Connectivity,” you see how to detect
issues with connection to remote systems and services.

■■ To simplify the connection of client computers and devices to the organi-
zation’s network, you install a DHCP server. As you see in “Installing the
DHCP Service,” setting up DHCP is simple and straightforward.

■■ Once your DHCP server is installed, you need to configure scopes, as
described in “Configuring DHCP Scopes.” A scope is a set of addresses
your DHCP server can provide to the DHCP client along with a set of
options and option values that you use to configure your DHCP clients.
Options include a default gateway IP address and the address(es) of your
DNS servers. You can configure options at the scope level (giving these
option values to addresses provided within the scope) or at the server
level (using the DHCP server to provide server options to any address the
server provides), or a combination of both.

■■ Because your clients rely on DHCP for obtaining IP network configuration
details, any outage could stop those clients from networking. For larger
organizations it might also be useful to have some performance load
balancing to handle peak DHCP load. To support the load balancing and
resiliency requirements, you use the DHCP server’s failover and load
balancing features, as described in “Configuring DHCP Failover.”

■■ After your systems get their IP configuration (either statically or via DHCP),
to communicate with other hosts, you must provide a DNS service to do
your name resolution, turning host names such as DC1.Reskit.Org into
an IP address. Once the host resolves the IP address, the TCP/IP stack can
connect to the remote system and interoperate with the remote host. As
you see in “Implement a Standalone DNS Server,” adding DNS to Windows
Server 2019 is simple.

■■ Likewise, configuring DNS zones and resource records is simple, as shown
in “Configuring DNS Server Zones and Resource Records.”

Systems Used in This Chapter

In this chapter, you use PowerShell 7 to manage various networking aspects.
The scripts in this chapter make use of the following servers:

SRV2.Reskit.Org: You configure the IP address of this server with a static
IP address. You also use this host to test DHCP IP address configuration.

DC1.Reskit.Org and DC2.Reskit.Org: You set up DHCP on these servers.
In Chapter 3, DC1 provided DNS services for the Reskit.Org domain. This
chapter extends the DNS service.

	 Chapter 4 ■ Managing Networking	 113

For the purposes of this chapter, you should ensure that DNS is set up and
working on this server (Chapter 3, “Managing Active Directory,” shows how
to set up DNS Servers while installing Active Directory).

Figure 4.1 shows the systems in use in this chapter.

You also need to have PowerShell 7 and, optionally, Visual Studio Code (VS
Code) installed on each host. You can use the scripts shown in Chapter 1 for
this purpose.

Configuring IP Addressing

The setup process you use when you install Windows on any host does a great
job of detecting the network adapters built into your system’s “hardware.” That
includes both the physical hardware components in your computer and any
virtual hardware you provision inside a virtual machine. In both cases, after
the setup process has completed, your NICs are detected and set to get their IP
address and other configuration details via DHCP.

If you are installing client computers, this is a great default—install Win-
dows, and networking just works. Server systems, however, generally need to
be configured manually, as we do in this chapter’s first example. Some organi-
zations use DHCP to assign IP configuration to server systems but make use of
a DHCP reservation. Each server gets its correct address with the configured
DHCP options. This chapter does not show that approach.

SRV2.Reskit.Org

DC1.Reskit.Org DC2.Reskit.Org

Figure 4.1: Systems used in this chapter

114	 Chapter 4 ■ Managing Networking

Before You Start
You run the code in this section on SRV2.Reskit.Org, which you build using
Windows Server 2019 installed with the Desktop Experience feature. As noted
earlier, the default Windows Server Installation sets the server’s single NIC to
get IP address information from DHCP. If you created the SRV2 server using the
Reskit build scripts on GitHub (github.com/doctordns/ReskitBuildScripts),
then you would have set up SRV2 to have a static IP address. In this case, before
running the following code, you can use ncpa.cpl to change the IPv4 settings
to get an address from DHCP.

You also need to have PowerShell 7 and, optionally, VS Code installed on all
systems.

Checking Adapter Details
Before updating your server’s IP address, it is useful to check the current state
of the network adapter. You can do this as follows:

1. Get the adapter, adapter Interface and Adapter Interface Index
for later use
$IPType = 'IPv4'
$Adapter = Get-NetAdapter |
 Where-Object Status -eq 'Up'
$Interface = $Adapter |
 Get-NetIPInterface -AddressFamily $IPType
$Index = $Interface.IfIndex
Get-NetIPAddress -InterfaceIndex $Index -AddressFamily $IPType |
 Format-Table -Property Interface*, IPAddress, PrefixLength

This code returns the IP address details shown in Figure 4.2. Note that with no
DHCP server on the network and the VM configured to use any virtual switch
but the default, the IP address for SRV2 is in the 169.254.0.0/16 network range
(also known as automatic private IP addressing, or APIPA, range).

Figure 4.2: IP address details returned after checking the current state

	 Chapter 4 ■ Managing Networking	 115

As mentioned earlier, by default the Windows setup process detects each
NIC in the host and configures it to get IPv4 configuration via DHCP. And by
default, when creating a new VM, Hyper-V adds a single NIC to the VM, which
it sets to get an IPv4 address via DHCP. If you used the Reskit build scripts in
GitHub (github.com/doctordns/ReskitBuildScripts), the scripts assign a static
IPv4 address to this host. Consider using ncpa.cpl to reset the NIC to the default
of getting IPv4 configuration details from DHCP.

Configuring an IP Address
Once you confirm that the server’s NIC is set to DHCP, use the following code to
configure the NIC to have a specific IPv4 address, subnet, and default gateway:

2. Set a new IP address for the NIC, and then check it
$IPHT = @{
 InterfaceIndex = $Index
 PrefixLength = 24
 IPAddress = '10.10.10.51'
 DefaultGateway = '10.10.10.254'
 AddressFamily = $IPType # IPv4
}
New-NetIPAddress @IPHT | Out-Null

This sets the NIC’s IP address and subnet mask. It can take a few seconds to
create this new address.

Verifying the New IP Address
You can use the Get‑NetIPAddress command to verify the new IP address, as
follows:

3. Verify the new IP address
Get-NetIPAddress -InterfaceIndex $Index -AddressFamily $IPType |
 Format-Table IPAddress, InterfaceIndex, PrefixLength

Figure 4.3 shows the output from this snippet.

You should now see the specified IPv4 address of 10.10.10.51 and no longer
an IP address in the APIPA range.

Figure 4.3: Verifying the NIC IP address

116	 Chapter 4 ■ Managing Networking

Setting DNS Server Details
Using the New-NetIPAddress cmdlet only sets the NIC’s IP address, subnet mask,
and default gateway. You also need to configure the NIC to use a specific IP
address for the DNS server as follows:

4. Set DNS Server IP address
$CAHT = @{
 InterfaceIndex = $Index
 ServerAddresses = '10.10.10.10'
}
Set-DnsClientServerAddress @CAHT

Validating the New IP Configuration
Once you complete these steps, you can validate your IP address settings as well
as do some basic connectivity testing, with the following code:

5. Verify the New IP configuration
Verify the IPv4 address is set as required
Get-NetIPAddress -InterfaceIndex $Index -AddressFamily IPv4
Test that SRV2 can see the domain controller
Test-NetConnection -ComputerName DC1.Reskit.Org
Test the DNS server on DC1.Reskit.Org correctly resolves
the A record for SRV2.
Resolve-DnsName -Name SRV2.Reskit.Org -Server DC1.Reskit.Org -Type A

The output of these three steps looks like Figure 4.4.

Figure 4.4: Verifying the new IP configuration

	 Chapter 4 ■ Managing Networking	 117

Testing Network Connectivity

Once you have configured networking and an IP address on a system, it is use-
ful to test the connectivity to other servers and services on the network and
indeed to the Internet.

Before PowerShell was available, we used tools such as ipconfig.exe, tracert.
exe, ping.exe, and pathping.exe to test and verify network connectivity. Today, we
can use two PowerShell commands: Test-Connection and Test-NetConnection.
These newer commands return objects, which makes automation easier.

Test-Connection sends Internet Control Message Protocol (ICMP) Echo Request
packets to a remote machine and looks for an ICMP Echo Reply response. The
command-line tool ping.exe also uses ICMP Echo Request/Reply. This works
well on most intranet LANs, but across the Internet or on more secure networks, it
may not help because many routers, and hosts, simply drop ICMP Echo requests.

Test-NetConnection allows you to test an actual connection to a specific port
on the remote server. While a web server or a router might drop ICMP packets,
you should be able to connect to that server over specific service-related TCP
ports. You can test the connection either with a “well-known” port name (such
as SMB for testing SMB connectivity to the remote machine) or with a specific
port number.

Before You Start
For this section, you need two systems up and running: DC1.Reskit.Org and
SRV2.Reskit.Org. Note that SRV2.Reskit.Org is the system you are testing con-
nectivity from. DC1.Reskit.Org is the system you are attempting to connect
with. You configured SRV2.Reskit.Org with an IP address in “Configuring IP
Addressing.”

Note also that SRV2.Reskit.Org is a domain-joined server in the Reskit.Org
domain and that DC1.Reskit.Org is both a DNS server and a domain controller.

Verifying That SRV2 and Loopback Are Working
One of the first things to verify is whether TCP/IP connectivity to the local loop-
back address is up and working, using Test-Connection and Test-NetConnection.

1. Verify SRV2 itself is up and that loopback is working
Test-Connection -ComputerName SRV2 -Count 1 -IPv4
Test-NetConnection -ComputerName SRV2 -CommonTCPPort WinRM

These commands check that the TCP/IP client is working and can connect
via the loopback. The output of this step looks like Figure 4.5.

118	 Chapter 4 ■ Managing Networking

Note that both commands can, by default, use either IPv4 or IPv6 to test the
connection. Test-Connection enables you to specify explicitly to use IPv4 (or IPV6).

Testing Connectivity to the DC
Because SRV2.Reskit.Org is joined to a domain, the next thing to check is that
basic connectivity to the domain controller (DC1.Reskit.Org) exists, as follows:

2. Test Basic Connectivity to the DC
Test-Connection -ComputerName DC1.Reskit.Org -Count 1

Assuming the domain controller is up and running, the expected output
from this command should resemble Figure 4.6.

	 N OT E     You could configure the host firewall on the DC1.Reskit.Org server to
drop ICMP Echo Request packets. Doing so would cause this step to fail (that is, no
Echo Reply packets would be returned), even though the DC functions are unaffected.

Figure 4.5: Testing the TCP/IP stack

Figure 4.6: Verifying connectivity to DC1

	 Chapter 4 ■ Managing Networking	 119

Checking Connectivity to the SMB and LDAP Ports
For reliable domain operations, SRV2.Reskit.Org needs to be able to connect to
the LDAP and SMB ports on the DC. A Windows host also needs SMB access
to the domain controller to obtain Group Policy objects, including login scripts.
LDAP access is also necessary to enable logon and other domain activities. You
can test SMB and LDAP using Test-NetConnection.

3. Check Connectivity to SMB port and to LDAP port
Test-NetConnection -ComputerName DC1.Reskit.Org -CommonTCPPort SMB
Test-NetConnection -ComputerName DC1.Reskit.Org -Port 389

In Figure 4.7, you can see the expected output of these tests.

Examining the Path to a Remote Server
A final test of network connectivity is to verify that the server can see the Internet.
Whether or not a given server should be able to access systems on the Internet
is a matter of your local policy. For many organizations, however, connectivity
might be vital, and you can test using Test-NetConnection and specifying an
address somewhere on the Internet. Assuming you have Internet access (an
external network adapter) configured, you can test a path as follows:

4. Examine path to a remote server on the Internet
$NCHT = @{
 ComputerName = 'WWW.Wiley.Com'
 TraceRoute = $true
 InformationLevel = 'Detailed'
}
Test-NetConnection @ncht # Check our wonderful publisher

Figure 4.7: Verifying SMB/LDAP connectivity to DC1

120	 Chapter 4 ■ Managing Networking

The results of this command may vary significantly (particularly the traceroute
section) depending on where you execute it from, but the output should look
like Figure 4.8.

In this figure, you can see that the site, www.wiley.com, resolves to four servers.
The starting point and the path to www.wiley.com will vary depending where
you are in the world. And given how often things change, it is entirely possible
that the target IP addresses have changed.

The path taken from SRV2 through the Internet shows several hops where the
ICMP Echo Request was dropped, but you can see that the final hop is to one
of the four servers answering to WWW.Wiley.Com. This is not uncommon with
some of the Internet’s core routers that routinely drop ICMP Echo Requests. It

Figure 4.8: Verifying access to an Internet server

	 Chapter 4 ■ Managing Networking	 121

is not relevant if an intermediate router, like those shown in Figure 4.8, fails to
respond, so long as it is routing other packets properly, as is the case here. This
is another reason PowerShell’s Test-NetConnection cmdlet is an improvement
over ping.exe.

It is worth noting that the Test-NetConnection cmdlet has been re-engineered
in PowerShell 7. This command is now considerably quicker than in Windows
PowerShell.

Installing the DHCP Service

The Dynamic Host Configuration Protocol (DHCP) allows hosts to discover IP
address details at run time. Addresses and IP configuration options are spec-
ified on a DHCP server. Setting up a DHCP service is straightforward. DHCP
is a Windows Server feature that you install with the Install-WindowsFeature
cmdlet.

Once you install the DHCP Server service in Windows Server, you must
authorize it explicitly within Active Directory. Authorization enables protec-
tion against rogue DHCP servers. The Windows DHCP Server service inside
Windows Server 2019 checks to see whether it is authorized before starting up.

At the time of writing, the DHCP Server module is not supported natively in
PowerShell 7. To get around this limitation, you use the Windows Compatibility
feature described in Chapter 2.

Before You Start
You should have a Windows Server 2019 host, DC1.Reskit.Org, that you are
going to set up to be a DHCP server. This host is also a domain controller
in the Reskit.Org domain. You should have a second Windows 2019 host,
DC2.Reskit.Org, that you use as part of a DHCP failover/load balancing imple-
mentation in “Configuring DHCP Failover.”

You also need to ensure PowerShell 7 and, optionally, VS Code are up and
running on these hosts as in previous sections.

Also, if you have added NICs to the VM, for example to enable Internet access,
to test this section consider temporarily disabling those extra NICs to enable
the server to get a DHCP address.

Installing the DHCP Feature
Installing the DHCP Server service is straightforward since it is a Windows
feature. You install the DHCP service on the domain controller, DC1, by using
the Install-WindowsFeature cmdlet.

122	 Chapter 4 ■ Managing Networking

1. Install the DHCP Feature on DC1 and add the Management tools
Import-Module -Name ServerManager -WarningAction SilentlyContinue
Install-WindowsFeature -Name DHCP -IncludeManagementTools

Once the Server Manager module is loaded, you can invoke the cmdlets, to
produce the output shown in Figure 4.9.

In this case, you are installing the DHCP Server service on a domain controller
that is also a DNS server. This is a best-practice configuration that minimizes
network traffic between DNS, AD, and DHCP.

Authorizing the DHCP Server in the AD
Before your DHCP server can start the DHCP service, you must authorize the
DHCP server explicitly in Active Directory. This prevents against the risk of a
rogue DHCP server—one that curious users might decide to explore. A rogue
DHCP could issue conflicting IP addresses or issue addresses to rogue gateways
and/or DNS servers, thus compromising your network. If the DHCP service
starts up (for example after you install it), the service checks whether it’s been
authorized in the AD and if not shuts down.

You also use the Add-DHCPSecurityGroup cmdlet to add a set of security groups.
This cmdlet adds two domain groups: DHCP Users and DHCP Administrators as
well as the DHCP Users local security groups on the DHCP server. You do this
as follows:

2. Add DC1 to Trusted DHCP Servers and add the DHCP Security Group
Import-Module -Name DHCPServer -WarningAction SilentlyContinue
Add-DhcpServerInDC
Add-DHCPServerSecurityGroup

This snippet produces no output. Once you run this snippet, you can use
the cmdlet Get-DHCPServerInDC to view the authorized DHCP server and the
Get-LocalGroup cmdlet to view the local groups on the DHCP server.

Figure 4.9: Installing the DHCP service

	 Chapter 4 ■ Managing Networking	 123

Completing the DHCP Configuration
You complete the configuration of the DHCP service by updating the registry
to indicate to Windows that the DHCP server is installed and ready to be used.
The code to do this is as follows:

3. Let DHCP know it's all configured
$DHCPHT = @{
 Path = 'HKLM:\SOFTWARE\Microsoft\ServerManager\Roles\12'
 Name = 'ConfigurationState'
 Value = 2
}
Set-ItemProperty @DHCPHT

Setting registry values in this way produces no output.

Restarting the DHCP Service
With the DHCP service now configured, you can restart the service as follows:

4. Restart DHCP Server
Restart-Service -Name DHCPServer -Force

Restarting the server does not produce any output, although you may see
warning messages as Windows stops and then restarts the DHCP service. When
you restart the service, because the DHCP server has been authorized in the
DHCP, it is ready to issue IP addresses once your DHCP scopes are created.

Checking the DHCP Service
Now that the DHCP Server service is authorized, restarting the service should
show it up and running. Because you have not yet configured a DHCP scope,
the service is not going to hand out addresses, so at this stage you simply check
that the DHCP service is up and running and is set to start automatically. You
can use the Get-Service command to return this information, as follows:

5. Test service availability
Get-Service -Name DHCPServer |
 Format-List -Property *

The output of this step looks like Figure 4.10.
You have installed DHCP and performed basic configuration. Your next step

in deploying DHCP is to create one or more scopes.

124	 Chapter 4 ■ Managing Networking

Configuring DHCP Scopes

After you have the DHCP service authorized in AD and running, you need to
configure your DHCP server with the IP address ranges and options to provide
to DHCP clients.

To do this, you set up one or more scopes, configure the scopes with the appro-
priate option and options values, and then test to ensure that client computers
can obtain IP addresses from this system.

A DHCP scope is a range of IP addresses within an IP network that the DHCP
server can offer to DHCP clients. Its various configuration options are values
that a DHCP client can request, such as the default gateway or DNS server IP
address. Once configured, your DHCP server can issue these option values to
any client that requests them.

You can define scope-specific options that apply only to IP addresses handed
out with a specific DHCP scope. Alternatively, you can configure options at the
server level, enabling the options to be supplied to all scopes defined on the server.

For more information about the deployment of DHCP, see docs.microsoft.
com/en-us/windows-server/networking/technologies/dhcp/dhcp-deploy-wps.

Figure 4.10: Checking the DHCP service

	 Chapter 4 ■ Managing Networking	 125

Before You Start
This section assumes you have already installed and authorized the DHCP ser-
vice on DC1.Reskit.Org, which is also the domain controller in the Reskit.Org
domain.

Creating a DHCP Scope
You create an IPv4 DHCP scope by using the Add-DhcpServerV4Scope command.
You specify the IP block in which the DHCP server is to provide IP addresses,
as well as the subnet mask for the IP addresses in the scope, as follows:

1. Create an IPv4 Scope
Import-Module DHCPServer -WarningAction SilentlyContinue
$SCOPEHT = @{
 Name = 'ReskitOrg'
 StartRange = '10.10.10.150'
 EndRange = '10.10.10.199'
 SubnetMask = '255.255.255.0'
 ComputerName = 'DC1.Reskit.Org'
}
Add-DhcpServerV4Scope @SCOPEHT

The DHCP Server module is not supported natively in PowerShell 7. You
access the commands using the Windows PowerShell compatibility mechanism
described in Chapter 2.

In most cases, you configure your DHCP servers to hand out IPv4 addresses.
With IPv6’s autoconfiguration, if you have an IPv6-capable router serving a
subnet, Windows hosts configure themselves with global (and local) addresses,
including the router’s address. Should you need more control over IPV6 addresses,
you can create IPv6 scopes as needed.

Getting Scopes from the DHCP Server
Once you have a scope (or scopes) defined, you can view the scope information
by using the Get-DHCPServerv4Scope command.

2. Get IPv4 Scopes from the server
Get-DhcpServerv4Scope -ComputerName DC1.Reskit.Org

In the output shown in Figure 4.11, you can see the scope you just created
along with its IP address range (10.10.10.150 to 10.10.10.199) and the scope’s subnet
mask (255.255.255.0).

126	 Chapter 4 ■ Managing Networking

Configuring Server-wide Options
Options are specific configuration items whose value can be requested by a
DHCP client and provided by the DHCP Server. There is a large set of poten-
tial options—and almost all of them are only infrequently used. See www.iana.
org/assignments/bootp-dhcp-parameters/bootp-dhcp-parameters.txt for the
definitive list of options that can be set.

You can set DHCP options at the server level or the scope level. This allows
you to have, for example, a single set of DNS servers provided to all DHCP
clients in all scopes served by the server while you might have a scope-specific
setting for the default gateway.

Two options you should specify are the IP addresses of your DNS servers
and the DNS domain name for any DHCP clients. You can do this as follows:

3. Set Server Wide Option Values
$OPTION1HT = @{
 ComputerName = 'DC1.Reskit.Org' # DHCP Server to Configure
 DnsDomain = 'Reskit.Org' # Client DNS Domain
 DnsServer = '10.10.10.10' # Client DNS Server
}
Set-DhcpServerV4OptionValue @OPTION1HT

Configuring Scope-Specific Options
You can also set options at the scope level. A good example of a scope-specific
option you might want to specify is the IP address of the default gateway (Router).

To set a scope-specific option value, you use the same Set-DHCPServerV4Op-
tionsValue and specify the scope name (using the -ScopeId parameter).

 # 4. Set a scope specific option
$OPTION2HT = @{
 ComputerName = 'DC1.Reskit.Org' # DHCP Server to Configure
 Router = '10.10.10.254'
 ScopeID = '10.10.10.0'
}
Set-DhcpServerV4OptionValue @OPTION2HT

Figure 4.11: Reviewing IPv4 scopes

	 Chapter 4 ■ Managing Networking	 127

Testing the DHCP Service in Operation
Now that you have the DHCP service installed, configured, and with a scope and
options defined, you can begin to use it. You can test the DHCP service using the
server SRV2.Reskit.Org. You used this server in “Configuring IP Addressing.”

To do this you must first set the TCP/IP client on SRV2 to get IP address
information from DHCP, as you see in the following code. In production, you
should also test that your Windows 10 clients and other devices are getting the
correct IP configuration. Once DHCP is seen to be providing an IP address, you
can use the Resolve-DNSName command to ensure the new DHCP-provided IPv4
address is being resolved by DNS. These tests look like this:

5. Test the DHCP Service
Run on SRV2
$NICHT = @{
 InterfaceAlias = 'Ethernet'
 AddressFamily = 'IPv4'
}
$NIC = Get-NetIPInterface @NICHT
Set-NetIPInterface -InterfaceAlias $NIC.ifALias -DHCP Enabled
Get-NetIPConfiguration
Resolve-DnsName -Name SRV2.Reskit.Org -Type A

This snippet sets the NIC in SRV2 to be DHCP-enabled. Running these com-
mands produces the output shown in Figure 4.12, which shows that the server
has a new IP address and related values. It can take a second or two to set this
new address.

Figure 4.12: Checking DHCP operation

128	 Chapter 4 ■ Managing Networking

Configuring DHCP Failover

In early deployments of the Windows DHCP service, individual DHCP servers
were standalone and did not communicate with other DHCP servers. If you
wanted a measure of DHCP server failover, you would have had to create two
DHCP servers and configure them to each offer IP addresses in the appropriate
range (making sure the two servers did not issue the same address). A typical
approach would be to configure the same DHCP scope on each DHCP server
and then configure each server to issue only some of the addresses in the sub-
net block. With this approach, even if one server was down, clients could still
get an IP address. This approach worked but was all too easy to misconfigure.

Later versions of Windows Server DHCP provided a better solution: built-in
failover and load balancing. This involves installing two Windows Servers with
the DHCP service running on both. Then after creating a scope on one server,
you create a failover/load balancing relationship for that scope between the
two servers. Once configured, the two servers share the scope and the respon-
sibility of issuing an IP address and related configuration. You can configure
the two DHCP servers to do load balancing of DHCP requests or just to provide
failover support.

If you set up DHCP with just DHCP hot standby, you would need to configure
how long the standby server should wait before servicing DHCP requests.

Before You Start
To implement DHCP failover, you first need two DHCP servers. The first
one, DC1.Reskit.Org, was set up in “Configuring the DHCP Service.” You
also should have a second server, in this case DC2.Reskit.Org. This server is
another domain controller in the Reskit.Org domain but without the DHCP
feature loaded or configured. You can see how to do this in “Installing a
Replica DC” in Chapter 3.

In this section, you run the PowerShell commands on the DC2.Reskit.Org server.

Installing the DHCP Server Feature on DC2
To implement a DHCP load balancing relationship you need to have installed
DHCP on both the first server (which you did in “Installing the DHCP Service”)
and on the second server (DC2.Reskit.Org), which you do here. To install the
DHCP feature on DC2.Reskit.Org, run the following code:

1. Install the DHCP Server feature on DC2
Import-Module -Name ServerManager -WarningAction SilentlyContinue
$FEATUREHT = @{
 Name = 'DHCP'

	 Chapter 4 ■ Managing Networking	 129

 IncludeManagementTools = $True
}
Install-WindowsFeature @FEATUREHT

This command produces the output you see in Figure 4.13.

Letting DHCP Know It Is Fully Configured on DC2
As with the DHCP service on DC1.Reskit.Org, you need to tell Windows Server
that DHCP is fully configured on DC2, which you do as follows:

2. Let DHCP Know It Is Fully Configured
$IPHT = @{
 Path = 'HKLM:\SOFTWARE\Microsoft\ServerManager\Roles\12'
 Name = 'ConfigurationState'
 Value = 2
}
Set-ItemProperty @IPHT

Authorizing the Second DHCP Server in AD
You also need to ensure that the DC2 DHCP server is authorized in AD, with
the following code:

3. Authorize the DHCP Server in AD
Import-Module -Name DHCPServer -WarningAction 'SilentlyContinue'
Add-DhcpServerInDC -DnsName DC2.Reskit.Org

Viewing Authorized DHCP Servers
Once these steps are complete, you can use Get-DhcpServerInDC to test and view
the DHCP servers you have authorized for the Reskit.Org domain:

4. View Authorized DHCP Servers
Get-DhcpServerInDC

Figure 4.13: Installing the DHCP feature

130	 Chapter 4 ■ Managing Networking

In the output, shown in Figure 4.14, you can see the two authorized DHCP
servers. The first, DC1.Reskit.Org, was created in “Installing the DHCP Service”
earlier and the other here.

Configuring DHCP Failover and Load Balancing
If you have two DHCP servers, you can configure a load-balancing relationship.
The idea is to have the first DHCP server (in this case DC1.Reskit.Org) configured
with one or more scopes defined and both server and scope options set as needed.
Then, on a new DHCP server (DC2.Reskit.Org) to which you have just added the
DHCP service, you create the relationship using the Add-DhcpServerV4Failover
command.

With DC2.Reskit.Org now installed and configured as a DHCP server, you
can configure DHCP failover/load balancing as follows:

5. Configure failover and load balancing:
$FAILOVERHT = @{
 ComputerName = 'DC1.Reskit.Org'
 PartnerServer = 'DC2.Reskit.Org'
 Name = 'DC1-DC2'
 ScopeID = '10.10.10.0'
 LoadBalancePercent = 60
 SharedSecret = 'j3RryIsTheB3est
 Force = $true
}
Add-DhcpServerv4Failover @FAILOVERHT

After you run this command, the two DHCP servers are now in an active-
active state. Both servers listen for and respond to DHCP client requests. If
either DHCP server provides a lease for any configured scope, the DHCP service
synchronizes the scopes automatically.

In this example, you created an active-active relationship, which is great for
performance. To reduce the overall resource usage, you might want to set up an
active standby. That allows one server to do all the work of managing leases and
to synchronize with the second server. Should the first server become nonrespon-
sive, the second can take over until the first server comes back online. You would
use the MaxClientLeadTime, AutoStateTransition, and StateSwitchInterval

Figure 4.14: Viewing authorized DHCP servers

	 Chapter 4 ■ Managing Networking	 131

parameters to configure the hot standby relationship. For more information
on configuring hot standby, see docs.microsoft.com/en-gb/archive/blogs/
teamdhcp/dhcp-failover-using-powershell. And as with other references to
Windows Server documentation, this content is old but still accurate for the
purposes of this chapter.

While all PowerShell cmdlets support the -Verbose parameter, some (many?)
produce little or no useful output. Others, however, do produce a lot of valuable
output that can be used for troubleshooting or debugging. If you use the -Verbose
parameter with the Add-DhcpServerv4Failover command when creating a load-
balancing relationship between the two servers, you see the verbose output as
shown in Figure 4.15. This is informative and can be useful for troubleshooting.

Viewing Active Leases from Both DHCP Servers
With the DHCP installed and your DHCP scope (10.10.10.0) replicated, you can
now view the DHCP server statistics, as follows:

6. Get active leases in the scope (from both servers!)
$DHCPServers = 'DC1.Reskit.Org', 'DC2.Reskit.Org'
$DHCPServers |
 ForEach-Object {
 "Server $_" | Format-Table
 Get-DhcpServerv4Scope -ComputerName $_ | Format-Table
 }

Figure 4.15: Verbose output when creating DHCP failover

132	 Chapter 4 ■ Managing Networking

Once your DHCP clients are set up, they can use the DHCP service to obtain
leases. The output, which you can see in Figure 4.16, shows the state of DHCP
leases (after failover) on both servers.

As you can see, both servers have a copy of the scope, and both scopes have
already had at least one DHCP client obtain an IP address lease from one or
other of the DHCP servers. In this configuration, both servers are able to issue
new IP address leases; and when one server does so, it coordinates the lease
with the partner DHCP server.

Viewing DHCP Server Statistics
Finally, you can also view the scope statistics from each server, using the
Get-DhcpServerv4ScopeStatistics command:

7. View DHCP Server Statistics from both DHCP Servers
$DHCPServers |
 ForEach-Object {
 "Server $_" | Format-Table
 Get-DhcpServerv4ScopeStatistics -ComputerName $_ | Format-Table
 }

As in the previous step, if you have a few DHCP clients using the DHCP
server and zone, the output would resemble Figure 4.17.

Note that in this figure, you see just the IP address lease provided to SRV2.
In your testing you may find different numbers of leases in use depending on
what systems you have configured to have DHCP-based IP addressing. Note
that both DHCP servers return this information, so it appears twice.

Figure 4.16: Viewing active DHCP leases

	 Chapter 4 ■ Managing Networking	 133

Configuring the DNS Service

The DNS is a globally distributed name resolution service that converts DNS
domain names into IP addresses. Once a DNS client resolves an IP address, the
client can then initiate IP-related access to the remote server. An analogy is a
telephone book: you look up someone’s name to get a phone number and then
dial that number.

DNS enables you to look up the IP address for a domain name, for example
converting www.wiley.com into an IP address of 13.32.123.207. DNS also does
reverse lookup, which involves resolving the IP address of 13.32.123.207 back
to the server that hosts the www.wiley.com web site.

Windows included a DNS service with Windows NT and has included and
improved the server with later releases of Windows Server. Microsoft also makes
use of DNS to provide a domain locator service that enables clients and servers
to discover domain controllers. Previously, that was done using NetBIOS.

With Windows, DNS is used for both name resolution and service location. A
DNS client enables applications to communicate with remote hosts by name. The
DNS client is also able to search for services such as LDAP (Active Directory),
by way of SRV records.

This section assumes you have a good understanding of what DNS is and
broadly how it works. For more information on the basics of DNS, see the
DNS Technical Reference at docs.microsoft.com/en-us/previous-versions/
windows/it-pro/windows-server-2003/cc779926(v=ws.10). For more information,
see bookauthority.org/books/best-dns-books.

In Chapter 3, you installed several domain controllers to form three domains
within two forests. There, all the domain controllers used a single DNS ser-
vice on DC1, which you created in “Establishing a Forest Root Domain.” After

Figure 4.17: Viewing DHCP server statistics

134	 Chapter 4 ■ Managing Networking

configuring AD, you can provide better resiliency for DNS by adding the DNS
service to other DCs. Best practice is to have the DNS service on each domain
controller and have the zones AD-integrated.

Like any DNS Service, Microsoft’s DNS provides a number of configuration
settings that allow you to deploy DNS as needed. PowerShell 7 provides the
necessary cmdlets that configure DNS to meet your requirements.

In this section, you add the DNS service to a second DC, DC2, to ensure that
zones are replicated between DCs and configure key DNS service settings.

Before You Start
This section adds and configures the DNS service on DC2, adds the DC2 DNS
server to the DHCP Options you set in “Configuring DHCP Scopes,” and sets
other key DNS configuration options. You also need DC1 online. You run the
snippets in this section from DC2.

Installing the DNS Feature on DC2
To set up a Windows Server host to be a DNS server, you install the DNS feature
using the Install-WindowsFeature command.

1. Install the DNS Feature
Import-Module -Name ServerManager -WarningAction SilentlyContinue
Install-WindowsFeature -Name DNS -IncludeManagementTools

You can see the results of this command in Figure 4.18.

Since PowerShell supports Server Manager via the compatibility mechanism
described in Chapter 2, importing the module generates a warning message by
default advising that the module is running in compatibility mode. You use the
-WarningAction parameter to suppress this warning message.

Figure 4.18: Installing the DNS feature

	 Chapter 4 ■ Managing Networking	 135

Configuring the DNS Service
Once the DNS Server service is installed and active, you can configure some
basic options. Depending on how and where you plan to deploy DNS, the DNS
Server service’s options you might need to configure include the following:

Disabling recursion: You may want to disable recursion to avoid clients
forcing recursive queries (a potential denial-of-service attack vector for
Internet-facing servers). For use within your organization, you would
enable recursion.

Configuring the DNS Server local cache: You can set the maximum amount
of memory that the DNS Server service can use for its local cache. For most
Internet- or DMZ-based DNS servers, you can probably set this to 25MB
and be OK. But monitor it carefully.

Configuring EDNS: Extended DNS (EDNS) is an extension mechanism that
allows suitably configured DNS client systems to extend the DNS protocol
while allowing older clients to work as previously. One example is to enable
a larger DNS reply. This could be useful if you have larger numbers of
resource records that can fit in a simple UDP datagram. EDNS is turned
off by default, but there is no real downside to leaving this off.

Enabling the global name zone: The global name zone enables you to enable
single-label DNS queries (for HRWEB, for example). This can be useful
as a way of removing any lingering dependency on NetBIOS (or WINS)
in an organization.

There are other options that you may need to configure less commonly,
including these:

Configuring round robin: Round robin, which is enabled by default, returns
resource records requested by a DNS query but in a random order. For
situations where several servers all have the same domain name, this
provides a degree of load balancing.

Configuring DNSSEC: DNS Security (DNSSEC) provides cryptographic
assurance that DNS replies are valid. DNSSEC is complex but automatic
in operation. Where possible, Internet-facing DNS servers, and the replies
they generate, should be protected with DNSSEC. For more information
about DNSSEC, see docs.microsoft.com/en-us/previous-versions/windows/
it-pro/windows-server-2012-r2-and-2012/jj200221(v%3Dws.11).

136	 Chapter 4 ■ Managing Networking

Configuring a DNS forwarder: In some cases, you might want to have your
DNS server conditionally forward requests for certain domains to a specific
server. You might, for example, want to route queries received at SRV2.
Reskit.Org to DC1.Reskit.Org, but only for queries for the Reskit.Org zone.
You set up forwarders in “Configuring a Cross-Forest Trust” in Chapter 3.

Specifying a zone data loading: For a standalone DNS server, you may want
to save zone information in the registry or in a file. You can save it in AD,
and have it automatically replicated within the forest or domain.

Configuring DNS debugging and event log logging: When you install the
DNS server, by default the service does not perform diagnostic logging
(logging either DNS requests or replies). You can turn this logging on. See
docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-

server-2012-r2-and-2012/dn800669(v%3Dws.11) for more information on
DNS logging and diagnostics.

You can set key DNS server options as follows:

2. Set Key DNS Server Options
Enable recursion on this server
Set-DnsServerRecursion -Enable $true
Configure DNS Server cache maximum size
Set-DnsServerCache -MaxKBSize 20480 # 20 MB
Enable EDNS
$EDNSHT = @{
 EnableProbes = $true
 EnableReception = $true
}
Set-DnsServerEDns @EDNSHT
Enable Global Name Zone
Set-DnsServerGlobalNameZone -Enable $true

You would run this snippet on each DNS server in your organization, amended
as appropriate for each server.

Viewing Key DNS Server Options
After configuring your server, it is prudent to check the server option settings.
You can do this by using the Get-DNSServer command. This command on
its own produces a lot of output, which would fill many pages of this book.
However, the object that is returned from the Get‑DNSServer command contains
a number of expandable properties that contain details of your DNS server’s
overall configuration.

	 Chapter 4 ■ Managing Networking	 137

You use Select-Object to filter out the settings you want to view; the code
looks like this:

3. View DNS Service and note the module
Get DNS Server Settings
$WAHT = @{WarningAction='SilentlyContinue'}
$DNSRV = Get-DNSServer -ComputerName DC2.Reskit.Org @WAHT
View Recursion settinngs
$DNSRV |
 Select-Object -ExpandProperty ServerRecursion
View Server Cache settings
$DNSRV |
 Select-Object -ExpandProperty ServerCache
View ENDS Settings
$DNSRV |
 Select-Object -ExpandProperty ServerEdns

You can see the output of this code in Figure 4.19.

Figure 4.19: Examining key DNS configuration settings

138	 Chapter 4 ■ Managing Networking

In the output produced by these commands, you can see that the maximum
TTL is set to one day and the cache timeout is set to 15 minutes. For an internal
DNS server, you might consider raising the maximum TTL and cache timeouts
to higher values as appropriate in your environment. Increasing these values
decreases DNS traffic but risks out-of-date records. On the internal network, this
is not much of a risk as servers do not change IP addresses often. On Internet-
facing DNS servers, erring on the side of accuracy is probably a good approach.

Configuring DNS Zones and Resource Records

Each DNS zone contains resource records (RRs), which the DNS service uses to
return information. When a DNS client attempts to resolve a host name, such
as DC1.Reskit.Org, the DNS server searches the zone to find the appropriate
resource record or records to return them to the DNS client.

Many RRs are automatically added to your internal DNS servers using the
DNS dynamic update feature whereby DNS clients update DNS with their
IP address. If you have Internet-facing DNS servers, you are unlikely to want
dynamic updates turned on.

The DNS records needed to support AD are updated in DNS each time a DC
starts up and once every 24 hours thereafter. Likewise, Address (A) records for
each host are written each time a host comes up and every 24 hours thereafter.
For the most part, DNS is self-healing: you remove the records, and they are
rewritten to DNS.

Other records, such as Mail Exchange (MX) or Sender Protected Framework
(SPF) records, are not automatically added to DNS. You can add these records
statically.

If you have a number of static RRs to configure, having a PowerShell script to
create the zone and the RRs makes it easy to re-create the records should acci-
dents happen. It’s also great documentation as to what should be configured.

Before you can add RRs, you need to have the necessary zones defined on
the server as well. A zone (such as Reskit.Org) holds RRs for that domain and
possibly subdomains (e.g., UK.Reskit.Org). When the DNS client sends a DNS
server a resolution request, the server can find the zone and relevant RRs and
resolve the name.

A reverse lookup zone enables DNS to find a host name given its IP address—
the reverse of forward lookup. Reverse lookup zones are generally not required
but may be used by some services and applications. The older DNS lookup
command, nslookup.exe, for example, uses the IP address configured for the
DNS server and converts it to a friendly name via the server’s PTR (reverse
lookup) resource record when it starts up. You can see this in Figure 4.20 although
you need to set up the reverse lookup zone first, which you do in “Creating a
Reverse Lookup Zone.”

	 Chapter 4 ■ Managing Networking	 139

If you do not create a reverse lookup zone, then nslookup.exe reports the
default server is “UnKnown.”

Before You Start
This section adds DNS RRs to the DNS Server you installed on DC1.Reskit.Org,
which you created initially in “Establishing a Forest Root Domain” in Chapter 3.

Creating a DNS Forward Lookup Zone
A DNS forward lookup zone, for example Cookham.Net, is required before your
DNS server can resolve a host name such as Home.Cookham.Net into an IP address
such as 10.42.42.42. You create a zone on DC1 by doing the following:

1. Create a new primary forward DNS zone for Cookham.Net
Import-Module DNSServer
$ZHT1 = @{
 Name = 'Cookham.Net'
 ResponsiblePerson = 'dnsadmin.cookham.net.'
 ReplicationScope = 'Forest'
 ComputerName = 'DC1.Reskit.Org'
}
Add-DnsServerPrimaryZone @ZHT1

Although this snippet produces no output, you can see the results by using
the DNS MMC console or by using DNS cmdlets. By default, this zone is AD
integrated, meaning the zone information is stored in the AD. And, again by
default, the zone is replicated to all DCs in the forest, which includes both DC1
and DC2.

Creating a Reverse Lookup Zone
You can also create reverse lookup zones that resolve IP addresses back into
their respective host names. You use the Add‑DnsServerPrimaryZone command
to add a reverse lookup zone like this:

2. Create a reverse lookup zone
$ZHT2 = @{
 NetworkID = '10.10.10.0/24'
 ResponsiblePerson = 'dnsadmin.reskit.org.'
 ReplicationScope = 'Forest'

Figure 4.20: Starting NSLookup

Continues

140	 Chapter 4 ■ Managing Networking

 ComputerName = 'DC1.Reskit.Org'
}
Add-DnsServerPrimaryZone @ZHT2

In most cases, DNS clients register their reverse lookup information
automatically using dynamic DNS update at the same time they register their
forward lookup information. If you had an Internet-facing server offering DNS
resolution for Internet-facing line-of-business (LOB) applications or systems,
you would usually configure reverse lookups manually and turn off dynamic
update. Allowing dynamic updates of Internet-facing DNS servers could be a
security concern.

Registering DNS Records for DC1, DC2
By default, Windows hosts re-register their DNS resource records every 24 hours
or when the system is rebooted. It can take time before the new zones work on all
servers. To speed things up, you can force key systems to register their forward
and reverse lookup records (A and PTR) using Register-DnsClient, as follows:

 # 3. Register DNS for DC1, DC2
Register-DnsClient
Invoke-Command -ComputerName DC2 -ScriptBlock {Register-DnsClient}

These commands cause DC1 and DC2 to re-register their A and PRT records
on their configured DNS Server, which is DC1.

Checking the DNS Zones on DC1
After creating two new zones, you verify that the zones are available. In this
book, you have two forward lookup zones on the DC1 DNS server. The first holds
the Reskit.Org information (which was created by the snippets in Chapter 3 that
create the AD). The second zone is the one just added. You also have a reverse
lookup zone for 10.10.10.0/24.

To view all the zones held in DC1, you can use Get-DNSServerZone and specify
DC1 explicitly.

 # 4. Check The DNS zones on DC1
Get-DNSServerZone -ComputerName DC1

The output, which you see in Figure 4.21, shows details of the zones held on DC1.
As you see, there are two main forward lookup zones (for Reskit.Org and

Cookham.Net), a forwarder (for Kapoho.Com) and a reverse-lookup zone for
10.10.10.0;/24. You see whether the zones were created manually, are AD-
integrated, or are reverse lookup zones.

continued

	 Chapter 4 ■ Managing Networking	 141

Adding DNS RR to the Cookham.Net Zone
With your zones created, you next need to add RRs for DNS to use when resolving
names/addresses. There are many different RR types that you might want to
add to a zone; the most important are these:

A record: This provides the IP address for a specific host name.

CNAME: This RR type provides an alias mechanism, enabling you to define
an alias, such as WWW.Reskit.Org, and point that to another host, such as
SRV2.Reskit.Org.

MX record: This tells email services where to send email for a particular
domain.

You can add these RR types to the zone RR-specific commands, as follows:

5. Add Resource Record to Cookham.Net zone
Add an A record
$RRHT1 = @{
 ZoneName = 'Cookham.Net'
 A = $true
 Name = 'Home'
 AllowUpdateAny = $true
 IPv4Address = '10.42.42.42'
 TimeToLive = (30 * (24 * 60 * 60)) # 30 days in seconds
}
Add-DnsServerResourceRecord @RRHT1
Add a Cname record
$RRHT2 = @{
 ZoneName = 'Cookham.Net'
 Name = 'MAIL'
 HostNameAlias = 'Home.Cookham.Net'
 TimeToLive = (30 * (24 * 60 * 60)) # 30 days in seconds
}

Figure 4.21: Checking on recently created DNS zones

Continues

142	 Chapter 4 ■ Managing Networking

Add-DnsServerResourceRecordCName @RRHT2
Add an MX record
$MXHT = @{
 Preference = 10
 Name = '.'
 TimeToLive = '1:00:00'
 MailExchange = 'Mail.Cookham.Net'
 ZoneName = 'Cookham.Net'
}
Add-DnsServerResourceRecordMX @MXHT

The DNS Server module provides cmdlets that add specific RRs for most
commonly used RR types with parameters suitable for that RR as used in this
snippet. For other DNS resource records you might need to add, you can use
the more generic Add-DnsServerResourceRecord command. For a deeper look
at the range of RRs supported by Windows Server’s DNS service, see docs
.microsoft.com/en-us/windows/win32/dns/managing-dns-resource-records.

Restarting the DNS Service
The zones you have created so far were created on DC1 and were AD-integrated
with forest-wide replication. That means that once DC1 has been updated, AD
replicates the new zone and RR details to all DCs in the forest. If a DC runs the
DNS Service, it finds the new zones automatically. With AD-integrated zones,
a DNS client can register records on any DC (that runs a DNS service). AD then
replicates those. The DNS service regularly updates its record information based
on the newly replicated AD contents. While the replication and updating all
happens fairly quickly, they can take some time. To speed things up you can
restart the DNS service on DC1 and DC2, like this:

6. Restart DNS Service to ensure replication
Restart-Service -Name DNS
$SB = {Restart-Service -Name DNS}
Invoke-Command -ComputerName DC1 -ScriptBlock $SB

These commands have the side effect of clearing the DNS server’s name
cache. For busy intranet servers, that means losing cached RRs, which can
lead to increased external traffic for a time. As a best practice, you should do
maintenance like this during off-peak times or if possible, during a routine
maintenance outage.

Checking the DNS RRs in the Cookham.Net Zone
After adding resource records to the Cookham.Net forward lookup zone, and
restarting the DNS service, you can verify that the RRs are set up correctly.

continued

	 Chapter 4 ■ Managing Networking	 143

7. Check results of RRs in Cookham.Net zone
Get-DnsServerResourceRecord -ZoneName 'Cookham.Net'

The output from these commands, in Figure 4.22, shows the RRs you just
created (the MX, CNAME, and A records) plus two RRs created by the DNS
server when you created the zone (the NS and SOA RRs).

In this figure, the SOA record shows a version number of 5. Over time this
version number increases as changes are made. This is normal.

Testing DNS Server Resolution
You should always test any DNS installation and changes to that installation
carefully. Little mistakes can lead to huge consequences. An often-repeated
bit of IT Pro humor suggests “The cause of your issue is DNS—now what was
your issue?”

Besides the obvious checks that the DNS service is running and confirm-
ing key configuration values, such as recursion, server cache, and EDNS, you
also need to test that key resource records are being resolved by all your DNS
Servers (that is, DC1 and DC2). You can test the resolution on both DNS servers
with code like this:

8. Test DNS Resolution on DC1, DC2
Test the Cname
Resolve-DnsName -Server DC1.Reskit.Org -Name 'Mail.Cookham.Net'
Test the MX
Resolve-DnsName -Server DC2.Reskit.Org -Name 'Cookham.Net' -Type MX

The testing produces the output you see in Figure 4.23.
As you can see in the figure, resolving the Mail.Cookham.Net domain name

retrieves the CNAME record and the A record (for Home.Cookham.Net), which
the CNAME points to. This DNS resolution was performed on DC1, and you
verified that the MX record for the domain Cookham.Net points to the server
Mail.Cookham.Net.

Figure 4.22: Checking on DNS RRs

144	 Chapter 4 ■ Managing Networking

In this section you used a number of the core DNS server configuration com-
mands. There are a number of advanced DNS features this book does not cover,
such as DNS security (DNSSec), root hints, DNS server virtualization instances,
DNS scavenging, and more. The DNS Server module has 134 commands to
enable you to configure DNS as your needs dictate.

Summary

Networking is at the heart of every organization. In this chapter, you saw how
to configure IP addressing and test network connectivity. You also looked at
the installation and configuration of DHCP. With DHCP, you created a simple
DHCP Server with one scope and then added a second failover/load-balancing
DHCP server. In this chapter’s final sections, you installed and configured your
DNS server, and you configured and tested DNS zones and resource records.

Figure 4.23: Checking DNS name resolution on DC1

C H A P T E R

145

5

Since the dawn of IT, computer systems have supported a variety of mecha-
nisms to store and retrieve data. Today, Windows supports a variety of physical
storage and storage devices, including spinning disks, USB memory sticks, and
SSD storage including Non-Volatile Memory Express (NVMe).

Before you can use a disk to store data, you need to first create a partition
on the device. You want each physical storage device to contain one or more
partitions or volumes. Once these are created, you format each volume with a
filesystem that enables you to store and retrieve data.

Windows supports two different partitioning mechanisms: Master Boot
Record (MBR) and GUID Partition Table (GPT). See www.howtogeek.com/193669/
whats-the-difference-between-gptand-mbr-when-partitioning-a-drive/ for
more information about the differences between these partitioning schemes.
Disks formatted with MBR disks are limited to 2TB, which can be an issue in
some cases.

You can use a number of different filesystems for a given volume or parti-
tion. The filesystems Windows supports include NTFS, exFAT, UDF, FAT32, and
ReFS. In most cases the volumes you use are likely to be formatted with NTFS,
but you have options. For details of the filesystems, see docs.microsoft.com/
windows/win32/fileio/filesystem-functionality-comparison.

Note in particular that Windows Server supports the ReFS filesystem. Based
on NFTS, this filesystem provides additional resiliency features, although it
lacks some features you might need for certain roles. For example, it does not

Managing Storage

PowerShell 7 for IT Pros: A Guide to Using PowerShell 7 to Manage Windows® Systems, First Edition. Thomas Lee.
© 2021 John Wiley & Sons, Inc., Published 2021 by John Wiley & Sons, Inc.

146	 Chapter 5 ■ Managing Storage

support file encryption by the filesystem. For a comparison between the ReFS and
NTFS filesystems, see www.iperiusbackup.net/en/refs-vs-ntfs-differences-
and-performance-comparison-when-to-use/.

Systems Used in This Chapter

This chapter demonstrates using PowerShell 7 to manage storage. Its example
makes use of the following systems:

DC1.Reskit.Org: This is a domain controller in the domain Reskit.Org.

SRV1.Reskit.Org: This is a domain-joined server that you use for storage
management.

SRV2.Reskit.Org: This is another domain-joined server that you use for
storage management.

Figure 5.1 shows the systems you use in this chapter.

Note that all systems need PowerShell 7 loaded before starting. You can do
that using the scripts from Chapter 1, “Setting Up a PowerShell 7 Environment.”

DC1.Reskit.Org

SRV1.Reskit.Org SRV2.Reskit.Org

Figure 5.1: Systems used in this chapter

	 Chapter 5 ■ Managing Storage	 147

Managing Disks and Volumes

A disk device on Windows needs to be partitioned into one or more individual
volumes or drives. You also need to format each partition to add the appro-
priate filesystem.

You manage storage on Windows using the commands in the Storage module,
whose 166 commands help you to manage disks, volumes, and partitions.

When creating new disk volumes (such as an NTFS-based F: drive from a newly
added disk), you can create the volumes two ways, using either New-Partition or
New-Volume. The latter command is also used for managing the Storage Spaces and
Storage Spaces Direct technologies. For more details on Storage Spaces, see docs
.microsoft.com/en-us/windows-server/storage/storage-spaces/overview, and
for more information on Storage Spaces Direct, see docs.microsoft.com/en-us/
windows-server/storage/storage-spaces/storage-spaces-direct-overview.

An important distinction between these commands is that New-Volume both
creates a disk partition and formats the partition, whereas New-Partition just
creates the partition, which you then need to format separately.

In this section, you use a server, SRV1, to which you have added two new
disk devices. You then use the storage-related commands to bring these disks
online, partition, and format them. You use these two disks on SRV1 in later
sections of this chapter.

Before You Start
In this section you use a Window Server 2019 host, SRV1, a domain-joined system
on which you have installed PowerShell 7, and, optionally, VS Code. You can
use the scripts in Chapter 1 to do this.

After creating the server, you need to add two disks to this host. If you are
using Hyper-V to implement SRV1, you can add these two drives by running
the following:

0. Add 2 VHDs to SRV1 VM
Run this on the Hyper-V VM Host

Stop the VM
Stop-VM -VMName SRV1

Get File location for the disk in this VM
$VM = Get-VM -VMName SRV1
$Par = Split-Path -Path $VM.HardDrives[0].Path

Continues

148	 Chapter 5 ■ Managing Storage

Create two VHDx for F and G
$NewPath1 = Join-Path -Path $par -ChildPath FDrive.VHDX
$NewPath2 = Join-Path -Path $par -ChildPath GDrive.VHDX
$D1 = New-VHD -Path $NewPath1 -SizeBytes 128GB -Dynamic
$D2 = New-VHD -Path $NewPath2 -SizeBytes 128GB -Dynamic

Add a new SCSI Controller to SRV1
$C = (Get-VMScsiController -VMName SRV1)
Add-VMScsiController -VMName SRV1

Add first disk to VM
$HDHT = @{
 Path = $NewPath1
 VMName = 'SRV1'
 ControllerType = 'SCSI'
 ControllerNumber = $C.count
 ControllerLocation = 0
}
Add-VMHardDiskDrive @HDHT
Add second disk to VM
$HDHT.Path = $NewPath2
$HDHT.ControllerLocation = 1
Add-VMHardDiskDrive @HDHT

Start the VM
Start-VM -VMName SRV1

This snippet creates a new SCSI controller, along with two VHDX hard disk
files on the VM host, and then it adds these VHDXs as SCSI disks to the SRV1
host. The two disks are attached to the net SCSI adapter in the VM and occupy
the first two LUN values (0 and 1).

Getting Information about Physical Disks in SRV1
After you add the new disks to the SRV1 host and restart the host, log in to it
as Reskit\Administrator. Use Get-Disk to examine the disk devices contained
in SRV1, as follows:

1. Get physical disks on this system:
Get-Disk |
 Format-Table -AutoSize

Figure 5.2 shows the output from this snippet.
You can see that SRV1 has three disk drives. The VM sees the drive that you

created when you built the VM either as an IDE drive by default, or, if the VM is
created as a Generation 2 VM in Hyper-V, as a SCSI drive. You also see the two
newly created disks, which are presented to Windows as SCSI drives. Because these
two disk drives were just added to the host, Windows shows them as being offline.

continued

	 Chapter 5 ■ Managing Storage	 149

Initializing the New Disks
Before you can use these disks, which Windows shows as offline, you need to
initialize them using Initialize-Disk. You can do this as follows:

2. Initialize the disks
Get-Disk |
 Where-Object PartitionStyle -eq Raw |
 Initialize-Disk -PartitionStyle GPT

This step gets the two new disks and initializes them. Each disk is now set
up to use the GPT partitioning method noted earlier. Initializing the disks
brings them online.

Viewing the Initialized Disks
Now that you have initialized the new disks, you can view their disk status
again as follows:

3. Re-display disks
Get-Disk |
 Format-Table -AutoSize

Figure 5.3 shows the output from this snippet.

As you see in the output, these two new disks are now healthy and online.
Also note the disk number property of each disk. You use this disk number to
perform disk-related activities.

Figure 5.2: Examining physical disks in SRV1

Figure 5.3: Examining the initialized disks in SRV1

150	 Chapter 5 ■ Managing Storage

Creating an F: Volume in Disk 1
One way you can create a new disk volume is to use the New-Volume command,
which both creates the necessary partition and then formats the partition in a
single operation. You create a new disk volume on the first of the two added
disks, as follows:

4. Create an F: volume in Disk 1
$NVHT1 = @{
 DiskNumber = 1
 FriendlyName = 'Storage(F)'
 FileSystem = 'NTFS'
 DriveLetter = 'F'
}
New-Volume @NVHT1

Figure 5.4 shows the output of this snippet.

As you can see, you have created a new F: volume, formatted as NTFS, with
127.88GB of space remaining.

Creating a Partition in Disk 2
Whereas New-Volume both creates the disk partition and formats it, you can also
perform these operations separately. To create a first small volume on disk 2
(the second of the two disks added to SRV1), you create a G: volume using the
New-Partition command, as follows:

5. Now create a partition on Disk 2
New-Partition -DiskNumber 2 -DriveLetter G -Size 42gb

Figure 5.5 shows the output of this command. As you can see, the G: drive
now exists and has 42GB of space available out of the 128GB total disk size.

Figure 5.4: Creating an F: volume

	 Chapter 5 ■ Managing Storage	 151

You may see a pop-up window saying “You need to format the disk in drive
G: before you can use it. Do you want to format it? Format disk/Cancel.” Since
you format it later in this example, you can ignore this pop-up (and just click
Cancel).

Creating a Second Partition
If a disk has unallocated free space, you can create a new partition and use
whatever space is available, with the New-Partition command.

6. Create a second partition H:
New-Partition -DiskNumber 2 -DriveLetter H -UseMaximumSize

Figure 5.6 shows the output of this command.

As you can see, the command with these options creates an H: drive on disk
2 with 85.98GB of available space, using all the remaining free space on disk 2.

Viewing Volumes on SRV1
After creating several volumes, you can view them using the Get‑Volume command,
as follows:

7. View Volumes on SRV1
Get-Volume

Figure 5.5: Creating a G: volume

Figure 5.6: Creating an H: volume

152	 Chapter 5 ■ Managing Storage

The output from this command, shown in Figure 5.7, lists drives available
to SRV1.

As you can see, the volumes on SRV1 include an A: drive for a floppy disk—
rarely used in real or virtual machines but available.

	 N OT E     Hyper-V does not provide support for floppy disks in Hyper-V Generation
2 VMs. See blogs.technet.microsoft.com/jhoward/2013/11/04/hyper-
v-generation-2-virtual-machines-part-7 for fuller details.

There is also the C: system drive, a CD/DVD drive (currently empty), and
three drives created in the two prior sections (the F: , G:, and H: drives). Also,
the F: drive (created with the New-Volume command) has been formatted with
an NTFS filesystem, whereas you still need to format the G: and H: volumes
before Windows can make use of them.

Formatting G: and H:
As noted in the previous section, the drives you created using New‑Partition
are not formatted. You can create and then format separate partitions as follows:

8. Format G: and H:
Format G:
$NVHT1 = @{
 DriveLetter = 'G'
 FileSystem = 'NTFS'
 NewFileSystemLabel = 'Logs'
}
Format-Volume @NVHT1
Format H:
$NVHT2 = @{
 DriveLetter = 'H'
 FileSystem = 'NTFS'
 NewFileSystemLabel = 'Music'
}
Format-Volume @NVHT2

Figure 5.7: Viewing created volumes

	 Chapter 5 ■ Managing Storage	 153

The output in Figure 5.8 shows that these two partitions are now formatted
using NTFS and have a friendly name. As you can see, the two partitions have
different (maximum) size remaining and size values.

Getting Partitions on SRV1
Now that you have partitioned and formatted both new disk drives, you can
review the partitions, as follows:

9. Get partitions on SRV1
Get-Partition |
 Sort-Object -Property DriveLetter |
 Format-Table -Property DriveLetter, Size, Type

Figure 5.9 shows the output from this command.

Figure 5.8: Formatting volumes G: and H:

Figure 5.9: Viewing partitions on SRV1

154	 Chapter 5 ■ Managing Storage

As you can see, after running the snippets in this section, SRV1 now has six
partitions across three disk drives. Of those, four contain usable filesystems.

Getting Volumes on SRV1
Another way to look at the disk volumes available on SRV1 is to use the
Get-Volume command, as follows:

10. Get Volumes on SRV1
Get-Volume |
 Sort-Object -Property DriveLetter

Figure 5.10 shows the output from this command.

You have the option of using the Get-Partition and Get‑Volume commands—
either singly or together—to view the disk volumes available to you on SRV1.
Each command produces somewhat different output. As ever with PowerShell,
you have choices.

In this section you have seen how to manage disks, volumes, and partitions.

Managing NTFS Permissions

One prevalent issue with any filesystem and any operating system is ensuring
that people see only what they are supposed to see and nothing else. Doing that
requires a permissions mechanism to grant permissions to groups or users as
your business requirements dictate.

The NTFS filesystem supports access control lists (ACLs) on files and folders.
For each file or folder, the ACL describes who can have access to the resource and
what kind of access is allowed. Each ACL contains one or more access control
entries (ACEs) that define that a specific account (for example, a user or group)
has a specific permission (such as Read-Only) to the resource. Permissions can
include Deny, which explicitly denies a user access to the file/folder. If a user
has no relevant ACEs in an ACL, they have no access to the resource implicitly.

Figure 5.10: Viewing partitions on SRV1

	 Chapter 5 ■ Managing Storage	 155

Access control can also be inherited. If you have an ACE on, say, C:\Foo that
allows a group full control of that folder, by default, that permission is inherited
by lower-level folders (for example, C:\Foo\Test). Inheritance is provided by
default, but you can turn it off.

With PowerShell, you can view the ACL of a file by using the Get‑ACL cmd-
let. You can also set an ACL (using Set-ACL). But there is no cmdlet available to
create a new ACE; you would have to dip down into the .NET Framework to
create the ACE that you could then set using Set‑ACL. Managing inheritance is
also not supported directly using the built-in commands.

As an alternative to managing ACLs using native .NET calls, you can leverage
the NTFSSecurity module. This module works natively within PowerShell 7,
and to use it, you download it from the PowerShell Gallery. This module makes
it easier to manage ACLs and ACL inheritance with NTFS files and folders.

Before You Start
This section makes use of SRV1, a domain-joined server in the Reskit.Org domain.
This server requires Internet access, and you should log on using the Reskit\
Administrator credentials. You also need to have the domain controller (DC1
.Reskit.Org) online.

Downloading and Installing the NTFSSecurity Module
The NTFSSecurity module is a third-party module, and Windows (and PowerShell)
does not install it by default. For managing NTFS permissions on a server (SRV1),
you might also need to update AD users/groups; and thus, the AD RSAT tools
might be handy. You can add these modules as follows:

1. Download NTFSSecurity module from PSGallery
Install-Module -Name NTFSSecurity -Force
Import-Module ServerManager -WarningAction SilentlyContinue
Install-WindowsFeature -Name RSAT-AD-Tools -IncludeAllSubFeature |
 Out-Null

The NTFSSecurity module is community-developed, and you install it from
the PowerShell Gallery. You can also obtain it directly from the GitHub page
related to the module, here: github.com/raandree/NTFSSecurity.

The module and the source code are available for you to view, although
downloading from the PS Gallery is simpler. The GitHub pages also provide two
NTFSSecurity tutorials: one on basic permission management and the second
on NTFS inheritance and privileges. These are worth exploring to learn more
about the module’s capabilities and usage.

This snippet also imports the Server Manager module and uses it to install
the RSAT-AD tools. You use these tools to create a new AD in “Creating the
Sales Group” shortly.

156	 Chapter 5 ■ Managing Storage

Finding Commands in the NTFSSecurity Module
With the NTFSSecurity module downloaded and installed, you can use
Get-Command to discover the commands contained in the module, as follows:

2. Get commands in the module
Get-Command -Module NTFSSecurity

As shown in Figure 5.11, this command displays the cmdlets contained in the
module. In the NTFSSecurity module (the latest version at the time of writing
being 4.2.6), there were a total of 36 cmdlets that help you manage NTFS security.

Figure 5.11: Viewing cmdlets in the NTFSSecurity module

	 Chapter 5 ■ Managing Storage	 157

Some of the commands in this module improve on the cmdlets built into
PowerShell 7. For example, the module includes the Get-Item2 cmdlet, which
shows whether a file’s ACL includes inherited ACEs.

Creating a New Folder and File
To demonstrate the use of the NFTSSecurity module, you create first a folder
and then a file, as follows:

3. Create a new folder, and a file in the folder
New-Item -Path C:\Secure1 -ItemType Directory |
 Out-Null
'Secure' | Out-File -FilePath C:\Secure1\Secure.Txt
Get-ChildItem -Path C:\Secure1

Figure 5.12 shows the output of this snippet.

Using this snippet, you created a new folder (C:\Secure1) and a new file within
that folder (C:\Secure1\Secure.Txt). Since the C:\ drive is formatted as NTFS,
both the folder and the file have ACLs, and by default the ACEs in the ACL for
both contain inherited permissions.

Viewing the Default Folder ACL
When you created the folder, Windows assigned a default ACL. To see the
specific permissions of the folder’s default ACL, you can run the Get-NTFSAccess
command as shown here:

4. View ACL of the folder
Get-NTFSAccess -Path C:\Secure1 |
 Format-Table -AutoSize

Figure 5.13 shows the output from this snippet.

Figure 5.12: Creating a folder and file

158	 Chapter 5 ■ Managing Storage

The folder’s ACL consists of six ACEs, all of which were inherited. The default
ACL also gives wide permissions to the Builtin\Users group, which may not
be appropriate. Naturally, you can refine the ACL for the folder as needed.

Viewing the Default ACL on File
When you created the file, Windows created a default ACL for the file as well,
which you can view as follows:

5. View ACL of file
Get-NTFSAccess -Path C:\Secure1\Secure.Txt |
 Format-Table -AutoSize

As you can see in the output, shown in Figure 5.14, the file has an ACL con-
sisting of inherited permissions.

In Windows, a folder and a file within that folder are separate objects. You
control access to these objects by setting ACLs that match their underlying
business need; for example, to define a Sales group that might contain Sales
Team members from across your organization. You need to assign folder per-
missions to define what users can do in the folder (Can they create files? Can
they create subfolders?) and what they can do to an individual file. Some files
may be more “secure” than others and may need their ACLs adjusted as well.

Figure 5.13: Viewing the ACL of the folder

Figure 5.14: Viewing the ACL of the file

	 Chapter 5 ■ Managing Storage	 159

Creating the Sales Group
To demonstrate using the NTFSSecurity module, you create an AD Universal
group to hold the members of the organization-wide Sales group. To ensure
that the group is created, you can do the following:

6. Create Sales group if it does not exist
try {
 Get-ADGroup -Identity 'Sales' -ErrorAction Stop
}
catch {
 New-ADGroup -Name Sales -GroupScope Universal |
 Out-Null
}

This snippet first checks to see whether the group already exists. If the group
does not exist yet, the snippet creates it. The AD cmdlets run on SRV1 but access
the domain database on DC1.Reskit.Org.

At first sight, this method of creating a new group looks long-winded. However,
this is a good method of creating a group if the group does not exist. The Get-
ADGroup cmdlet either returns the AD group or generates a nonterminating error
(by default). You use the ‑ErrorAction parameter to turn the non-terminating
error into a terminating error that is caught by the catch block.

This step creates a Universal group. Depending on your requirements, there
are other group membership schemes you could adopt that are just variations
on the steps shown here. In many larger organizations, an approach known as
AGDLP (account, global, domain local permission) is used. See en.wikipedia
.org/wiki/AGDLP for more details on this approach.

Displaying the Sales Group
To verify that the Sales group exists, you can do the following:

7. Displaying the Sales Group
Get-ADGroup -Identity Sales

Figure 5.15 shows the output from this command.

Figure 5.15: Checking the sales group

160	 Chapter 5 ■ Managing Storage

In this case, having previously loaded the RSAT-AD tools, you can use
Get-ADGroup. Had you not loaded these tools, you could have used remoting to
run that command on a DC or a host with the AD tools loaded.

Adding Full Control for Domain Admins
The folder and file you created is intended for use only by the Sales group. To
achieve that, you need to remove the inherited permissions and add permissions
for the Sales group. You begin this by first giving the domain administrators
full control over the folder (and the files within) using the Add-NTFSAccess
command, as follows:

8. Adding explicit full control for Domain Admins
$AHT1 = @{
 Path = 'C:\Secure1'
 Account = 'Reskit\Domain Admins'
 AccessRights = 'FullControl'
}
Add-NTFSAccess @AHT1

This snippet adds an explicit and non-inherited ACE onto the folder, providing
full control for domain admins. This explicit ACE is, by default, inherited by files
in the folders and any other subfolders in the C:\Secure1 folder. Depending on
your requirements, you may choose not to do this and instead simply restrict
the files to members of the Sales group. Should admin access be required at
some later date, a domain or enterprise could always take control of the folder
or file and give itself access.

Removing the Default File ACE
When you created Secure.Txt, Windows assigned a default (inherited) ACE
allowing all users to read and execute all files. Because this is not desirable in
most cases, you need to remove this ACE from the file’s ACL, using the Remove-
NTFSAccess command.

9. Remove Builtin\Users access from Secure.Txt file
$AHT2 = @{
 Path = 'C:\Secure1\Secure.Txt'
 Account = 'Builtin\Users'
 AccessRights = 'FullControl'
}
Remove-NTFSAccess @AHT2

	 Chapter 5 ■ Managing Storage	 161

Removing a Folder’s Inherited Rights
The next step in securing the folder is to remove all inherited rights so that the
folder has only those permissions explicitly set, with no inherited permissions.
You do this using Disable-NTFSAccessInheritance, as follows:

10. Remove inherited rights for the folder
$IRHT1 = @{
 Path = 'C:\Secure1'
 RemoveInheritedAccessRules = $True
}
Disable-NTFSAccessInheritance @IRHT1

Adding Sales Group Access to the Folder
The final step in securing the folder is to add an explicit permission on the
folder to the appropriate users. In this case, that means giving the domain’s
Sales group access to the files and any subfolders below C:\Secure1.

You do this again using Add-NTFSAccess, as follows:

11. Add Sales group access to the folder
$AHT3 = @{
 Path = 'C:\Secure1\'
 Account = 'Reskit\Sales'
 AccessRights = 'FullControl'
}
Add-NTFSAccess @AHT3

Because the Sales group has full control over the folder, this permission is
inherited.

Depending on the nature of the information being held, alternate permis-
sion schemes may be needed. Achieving the desired scheme may require some
additional folders and more complex permission sets. You may also need some
additional groups so as to segregate users based on the desired level of secu-
rity. And rather than giving users Full Control access (which enables them to
change permissions), granting them Modify permissions may be adequate for
their business needs.

However you choose to implement permissions for folders like this, setting
the necessary permissions is made much easier by the NTFSSecurity module.

162	 Chapter 5 ■ Managing Storage

Viewing Permissions on the Folder
With the folder and file ACLs configured, you can verify the ACLs that
result from these configuration steps. You can check the ACL on the folder using
Get-NTFSAccess, as follows:

12. Get ACL of folder

Get-NTFSAccess -Path C:\Secure1 |
 Format-Table -AutoSize

Figure 5.16 shows the output. As you can see, the folder now has no inherited
permissions—only the permissions you have set explicitly.

Viewing Permissions on the File
As a final step, you can view the ACL on the file itself, as follows:

13. Get ACL of the file
Get-NTFSAccess -Path C:\Secure1\Secure.Txt |
 Format-Table -AutoSize

Figure 5.17 shows the output of this snippet.

This output shows the ACLs you have configured in this section. These ACLs
give the necessary permissions to both the Domain Admins and members of
the Sales Universal group.

Figure 5.16: Viewing the ACL of the folder

Figure 5.17: Viewing the ACL of the file

	 Chapter 5 ■ Managing Storage	 163

In this section, you created a file folder on SRV1 and a file in that folder on which
you set explicit ACLs. To achieve this, you ensured that you had the relevant mod-
ules loaded on SRV1, and you created a Universal group that holds the members
of the Sales group. The steps shown did not add any users to the Sales group;
that is easy enough to do, as shown in Chapter 3, “Managing Active Directory.”

Also, this section created a Universal user group. If you are to have multiple
domains and especially if you are creating groups that utilize a cross-forest
trust, you might consider using a Domain Local group.

The commands in the NTFSSecurity module make it easier to manage ACLs
on NTFS files and folders.

Managing Storage Replica

Storage Replica (SR) is a feature of Windows Server that replicates storage vol-
umes between servers to support disaster recovery. Both the Standard and Data
Center editions of Windows Server 2019 support SR. However, with Windows
Server 2019 Standard Edition, SR can replicate only a single volume of 2TB (or
less). Data Center edition has no specific limitations.

SR can replicate from any storage type to any other storage type. You can
replicate spinning disks, SSDs, and iSCSI and Fiber Channel LUNs. For an
overview of Storage Replica, see docs.microsoft.com/en-us/windows-server/
storage/storage-replica/storage-replica-overview.

Before You Start
In this example you use three hosts. SRV1 and SRV2 are domain-joined hosts. In
“Managing Disk and Volumes,” you added two disk drives to SRV1 and made
them available for use. You also make use of DC1, the domain controller for the
Reskit.Org domain.

To demonstrate SR, both SRV1 and SRV2 require extra disks. You added two
disks and created the necessary volumes for SRV1 in “Managing Disks and
Volumes.” For SRV2, you can create the necessary disks, add them to the SRV2
virtual machine, and then format them as follows:

0. Add VHDs to SRV2 VM
Run this on the Hyper-V VM Host
Stop the vm
Stop-VM -Name SRV2
Get File location for the disk in this VM
$VM = Get-VM -VMName SRV2
$Par = Split-Path -Path $VM.HardDrives[0].Path

Create two VHDx for G and H on SRV2

Continues

164	 Chapter 5 ■ Managing Storage

$NewPath1 = Join-Path -Path $par -ChildPath FDrive.VHDX
$NewPath2 = Join-Path -Path $Par -ChildPath GDrive.VHDX
$D1 = New-VHD -Path $NewPath1 -SizeBytes 128GB -Dynamic
$D2 = New-VHD -Path $NewPath2 -SizeBytes 128GB -Dynamic

Add a new SCSI Controller to SRV2
$C = (Get-VMScsiController -VMName SRV2).count
Add-VMScsiController -VMname SRV2

Add first disk to SRV2 VM
$HDHT = @{
 Path = $NewPath1
 VMName = 'SRV2'
 ControllerType = 'SCSI'
 ControllerNumber = $C
 ControllerLocation = 0
}
Add-VMHardDiskDrive @HDHT # Add 1st disk to vm
Add Seconf disk to VM
$HDHT.Path = $NewPath2
$HDHT.ControllerLocation = 1
Add-VMHardDiskDrive @HDHT # Add 2nd disk to VM
Start-VM -VMName SRV2

After restart, run this on SRV2 as reskit\administrator

Get-Disk |
 Where-Object PartitionStyle -eq Raw |
 Initialize-Disk -PartitionStyle GPT
$NVHT = @{
 DiskNumber = 1
 FriendlyName = 'Storage(F)'
 FileSystem = 'NTFS'
 DriveLetter = 'F'
}
New-Volume @NVHT # Add 1st new disk
$NVHT.DiskNumber = 2
$NVHT.FriendlyName = 'Log'
$NVHT.DriveLetter = 'G'
New-Volume @NVHT # Add 2nd new disk

###

With this snippet, you add two new disks to SRV2 and format the disks. With
this and the configuration you set in “Managing Disks and Volumes,” you now
have two VMs with two additional disk drives that you have formatted using
the NTFS filesystem.

continued

	 Chapter 5 ■ Managing Storage	 165

Creating Content on F:
You start this exploration of SR by logging on to SRV1 as a domain administrator.
Then you create some content on SRV1, as follows:

1. Create Content on F:
1..100 | ForEach-Object -Parallel {
 $NF = "F:\CoolFolder$_"
 New-Item -Path $NF -ItemType Directory | Out-Null
 1..100 | ForEach-Object {
 $NF2 = "$NF\CoolFile$_"
 "Cool File" | Out-File -PSPath $NF2
 }
}

This snippet creates 100 folders within the recently created F: drive and inside
each folder creates 100 files, each with a tiny bit of content. This creates some
data to be replicated using Storage Replica—not a large amount of data but
enough for basic testing. If you are considering deploying Storage Replica, you
may want to do performance testing; in that case, you would create a source
volume of the size appropriate for your environment.

This snippet uses a new PowerShell 7 feature, Foreach-Object’s new param-
eter -Parallel. In testing, using this switch reduces the run time of this snippet
from around 17 seconds to less than 10 seconds. By default, PowerShell 7 runs five
parallel operations at once, but you can adjust that by using the -Throttlelimit
parameter. On most modern multicore systems, the default throttle limit is prob-
ably a good starting point. Depending on your hardware, you might choose to
increase the throttle limit for improved performance. On a dual processor (each
with six cores), setting the throttle limit to 12 improves performance.

Measuring the New Content
Having created content on F:, you measure the files/folders contained in the
created content, as follows:

2. Measuring New Content on F:
Get-ChildItem -Path F:\ -Recurse | Measure-Object

Figure 5.18 shows the output of this cmdlet.
This is useful to verify the created content. As you can see, there are 10,100

items on F:. This consists of 100 folders plus 10,000 files, or 100 files in each folder.

166	 Chapter 5 ■ Managing Storage

Checking Content on the Target
In this exercise we plan to replicate data from SRV1 to SRV2, using SR. Before
setting this up, check to see what is on the F: drive on SRV2, as follows:

3. Examine the same drives remotely on SRV2
$SB = {
 Get-ChildItem -Path F:\ -Recurse |
 Measure-Object
}
Invoke-Command -ComputerName SRV2 -ScriptBlock $SB

Figure 5.19 shows the output of this snippet. Since the drive on SRV2 has not
been used, there are no files on the drive.

Adding the Storage Replica Feature to the Source
The SR feature is not installed by default but is easy to install, as follows:

4. Add Storage Replica feature to SRV1
Import-Module ServerManager
Install-WindowsFeature -Name Storage-Replica -IncludeManagementTools

Figure 5.19: Viewing the content of SRV2

Figure 5.18: Viewing the F: drive

	 Chapter 5 ■ Managing Storage	 167

You can see the output of this command in Figure 5.20.

In the figure, you see a warning message that Import-Module produces when
it loads any module using the Windows PowerShell compatibility mechanism
described in Chapter 2, “PowerShell 7 Compatibility with Windows PowerShell.”
You can, as you see in other code fragments in this book, use the -WarningAc-
tion parameter to avoid seeing this warning.

Restarting the Source
With the installation of the SR feature completed, you need to reboot the server
to finalize the installation, using Restart-Computer as follows:

5. Restart SRV1 to finish the installation process
Restart-Computer

Adding Storage Replica to the Target
When you set up a Storage Replica partnership, you need to have the
Storage Replica feature installed on both the source and target systems, in
this case SRV1 and SRV2. You next add the feature, remotely, to SRV2 with the
Install-WindowsFeature command.

6. Add SR Feature to SRV2 Remotely
$SB = {
 Install-WindowsFeature -Name Storage-Replica | Out-Null
}
Invoke-Command -ComputerName SRV2 -ScriptBlock $SB

Figure 5.20: The result of adding SR to SRV1

168	 Chapter 5 ■ Managing Storage

Restarting the Target
As with SRV1, you need to restart SRV2 to finalize the installation of SR on that
server.

7. Restart SRV2 and wait for the restart
$RSHT = @{
 ComputerName = 'SRV2'
 Force = $true
}
Restart-Computer @RSHT -Wait -For PowerShell

This snippet restarts SRV2 and waits until the reboot has completed and con-
nectivity to the server is available (using PowerShell). In some cases, it appears
that the Restart-Computer cmdlet takes a long time to complete (even though
the reboot has been completed). If you can verify that the reboot is complete (for
example, by logging into SRV2), then you can stop this command (using Ctrl+C)
and move on to the next step.

Testing the Configuration of SR
You now have the Storage Replica feature installed on the two servers, the
necessary disk volumes established, and the source disk populated with content.
With this in place, you can test the validity of an SR partnership between these
two servers. You can do this from SRV1 using the Test-SRTopology cmdlet, as
follows:

8. Test Replica on SRV2 from SRV1
Import-WinModule -Name StorageReplica -WarningAction SilentlyContinue
$TSTHT = @{
 SourceComputerName = 'SRV1.Reskit.Org'
 SourceVolumeName = 'F:'
 SourceLogVolumeName = 'G:'
 DestinationComputerName = 'SRV2.Reskit.Org'
 DestinationVolumeName = 'F:'
 DestinationLogVolumeName = 'G'
 DurationInMinutes = 15
 ResultPath = 'C:\Foo'
 Verbose = $true
 IgnorePerfTests = $true
}
Test-SRTopology @TSTHT

Figure 5.21 shows the output.
The Storage Replica module is among those that PowerShell 7 does not support

natively. But the commands in the module work when used with the Windows
PowerShell compatibility mechanism described in Chapter 2.

	 Chapter 5 ■ Managing Storage	 169

As you can see, Test-SRTopology performs the topology test and creates a
report showing the test results. The report is generated as an HTML file in the
ResultPath specified, in this case C:\Foo. The filename is created embedding
the date and time of the test.

If you are using SR in production, it may be useful to perform routine testing
of your SR infrastructure.

Viewing the Topology Test Report
You can view the report as follows:

9. View the Report
$File = Get-ChildItem C:\Foo\testsr* |
 Sort-Object -Property LastWriteTime -Descending |
 Select-Object -First 1
Start-Process -Filepath $File

This snippet brings up the topology test report in a browser, as shown in
Figure 5.22. The report consists of two parts. At the top of the report, you see an
overview of results; in this case the overall topology test was successful. Then,
you see detailed test results for each of the 20 specific tests that the command
ran to diagnose the potential SR partnership. This snippet also displays only
the most recent report.

One test that the Test-SRTopology command runs is to ensure you have ade-
quate memory. If you created your SRV1 VM with low memory, you may see
an error or warning. In that case, consider increasing the amount of memory
allocated to the VM.

Figure 5.21: Testing the SR configuration

170	 Chapter 5 ■ Managing Storage

The Test-SRTopology cmdlet can also evaluate the likely performance of the
partnership, although in the snippet here, this test was omitted. If you are using
Storage Replica to replicate volumes across a WAN, this testing should be done
to ensure performance meets your requirements.

You might also consider running these topology tests on a frequent basis if
Storage Replica forms a part of your disaster recovery strategy.

Creating a Storage Replica Partnership
Given that the test in the previous section was successful, you can now set up a
Storage Replica partnership with the New-SRPartnership command as follows:

10. Create an SR Replica Partnership
$SRHT = @{

Figure 5.22: Viewing topology test results

	 Chapter 5 ■ Managing Storage	 171

 SourceComputerName = 'SRV1'
 SourceRGName = 'SRV1RG'
 SourceVolumeName = 'F:'
 SourceLogVolumeName = 'G:'
 DestinationComputerName = 'SRV2'
 DestinationRGName = 'SRV2RG'
 DestinationVolumeName = 'F:'
 DestinationLogVolumeName = 'G:'
 LogSizeInBytes = 2gb
}
New-SRPartnership @SRHT -Verbose

You can see the results of running this code in Figure 5.23.

As you can see, there is not much information returned when an SR partner-
ship is created successfully.

With the SR partnership in place, Storage Replica is now able to replicate the
data from SRV1 to SRV2. The initial synchronization time is dependent on the
total amount of data to be transferred. Once the drive is synchronized initially,
any changes to the source volume are replicated to the target volume on the
other server.

Viewing the Partnership
You can view the just-created SR partnership using Get-SRPartnership as follows:

11. View the SR partnership
Get-SRPartnership

Figure 5.24 shows the output of this command.

Figure 5.23: Creating an SR partnership

172	 Chapter 5 ■ Managing Storage

We can see the source and target systems and volumes in use in the part-
nership. The output from this step is essentially the same output you observed
when creating the SR partnership.

Examining Volumes on the Target
With the SR partnership established, you can look to see what is on the F:
volume on SRV2, as follows:

12. Examine the same drives remotely on SRV2
$SB = {
 Get-Volume |
 Sort-Object -Property DriveLetter |
 Format-Table
}
Invoke-Command -ComputerName SRV2 -ScriptBlock $SB

Figure 5.25 shows the output of this snippet.

As you can see, the F: partition/drive on SRV2 is not available as a volume.
The partition is locked by Storage Replica, which means you cannot access it
as a usable file storage volume so long as SR is using it as a replication target.

Figure 5.24: Viewing the SR partnership

Figure 5.25: Examining volumes on SRV2

	 Chapter 5 ■ Managing Storage	 173

Even though you can’t see any files, Storage Replica continues to monitor the
F: partition/drive on SRV1 and replicate it to SRV2.

Reversing the Replication
Even though the target volume in an SR partnership is not viewable or acces-
sible, Windows Server is constantly replicating any content update.

As part of recovering from a disaster, you may need to reverse the replication
and have Windows replicate from SRV2 to SRV1. If you do this, Storage Replica
makes the F: volume on SRV2 viewable while making the new target volume
on SRV1 unviewable. You reverse the replication as follows:

13. Reverse the replication
$SRHT2 = @{
 NewSourceComputerName = 'SRV2'
 SourceRGName = 'SRV2RG'
 DestinationComputerName = 'SRV1'
 DestinationRGName = 'SRV1RG'
 Confirm = $false
}
Set-SRPartnership @SRHT2

Viewing Updated Replication Group Status
With the replication reversed, you can view the status of the replication part-
nership, as follows:

14. View SR Partnership on SRV1
Get-SRPartnership

You can see the results of this command in Figure 5.26.

This output shows that SR is now replicating from SRV2 to SRV1. This means
the files are available on SRV2 but are not visible as files on SRV1.

Figure 5.26: Examining updated RG status

174	 Chapter 5 ■ Managing Storage

Examining SRV2 Volumes
With the replication reversed, you can examine the disks and the replicated
content available on SRV2, as follows:

15. Examine the same drives remotely on SRV2
$SB = {
 Get-Volume |
 Sort-Object -Property DriveLetter |
 Format-Table
 Get-ChildItem -Path F:\ -Recurse | Measure-Object |
 Format-List

}
Invoke-Command -ComputerName SRV2 -ScriptBlock $SB

You can see the output of this snippet in Figure 5.27.

The F: drive is now available on SRV2 and healthy. Additionally, you can see
that this drive now has the same 10,100 total items.

This section has demonstrated the ease with which you can use Storage Rep-
lica as part of a disaster-recovery implementation. As you have seen, you cannot
use the data on the SR target while the SR is replicating (or able to replicate).

Figure 5.27: Examining volumes on SRV2

	 Chapter 5 ■ Managing Storage	 175

Managing Filestore Quotas

The File Server Resource Manager (FSRM) is a Windows Server feature that
helps you to manage file servers. FSRM allows you to implement quotas on file
stores, perform a variety of file management tasks, perform file screening, and
offer in-depth reporting. For an overview of FSRM, see docs.microsoft.com/
windows-server/storage/fsrm/fsrm-overview.

In this section, you install the FSRM feature and use FSRM’s quota management
capability to set and test these quotas.

Before You Start
This section uses three servers (VMs), SRV1, SRV2, and DC1, which you have used
in other sections of this chapter. You run the snippets in this section on SRV1.
This Windows Server 2019 host has PowerShell 7 loaded.

FSRM features include the ability to send email, for example when a user
has exceeded a filestore quota or has attempted to store a file of a particular
file type (for example, an MP3 music file) prohibited via FSRM file screening.

To test FSRM email functionality, you need an SMTP server that FSRM uses
to send email. In this section, you also use SRV1 as the SMTP server (or relay).

For testing purposes in this chapter, you have alternatives with respect to
the email server. If you have an internal SMTP server, then you can change the
FSRM settings accordingly.

If you do not have access to an SMTP server, an option is to install IIS with
the SMTP server on SRV1 and use it as an SMTP relay to an SMTP smart host.
One free relay service that many IT pros have used is offered by SendGrid.com.
With the free service, you can send up to 100 emails per day, which should be
more than adequate to test FSRM. To assist you in setting up this service, use
//tfl09.blogspot.com/2020/04/setting-up-smtp-relay-using-sendgrid.html.

The example emails shown in this section were sent via the SMTP relay on
SRV1 to SendGrid.com, which then forwarded them onward. This is an excellent
solution for testing. However, in production, you would configure FSRM with
different settings to send mail to an internal mail server.

Installing the FS Resource Manager Feature
The FSRM feature is not deployed by default. You add it in the same way as
other Windows Server features, as follows:

1. Install FS Resource Manager feature on SRV1
Import-Module -Name ServerManager -WarningAction 'SllentlyContinue'

Continues

176	 Chapter 5 ■ Managing Storage

$IHT = @{
 Name = 'FS-Resource-Manager'
 IncludeManagementTools = $True
 WarningActtion = 'SilentlyContinue'
}
Install-WindowsFeature @IHT

Figure 5.28 shows the output from this step.

Setting Up SMTP Settings for FSRM
FSRM can be configured to send email when important filesystem events occur.
Now that you have installed the FSRM feature, you configure the email settings
as follows:

2. Set SMTP settings in FSRM
$MHT = @{
 SmtpServer = 'SRV1.Reskit.Org'
 FromEmailAddress = 'FSRM@Reskit.Org'
 AdminEmailAddress = 'Doctordns@Gmail.Com'
}
Set-FsrmSetting @MHT

This snippet tells FSRM to send email to an SMTP server on SRV1. You should
adjust these details if you can send mail via another SMTP server. Ensure that
you are able to send email via your configured server before continuing.

Also, you should change the admin email address, unless you want to send
the book’s author email.

Sending a Test Email
To check your SMTP settings, you can get FSRM to send a test email using the
email settings you just configured, using Send-FsrmTestEmail.

Figure 5.28: Installing FSRM

continued

	 Chapter 5 ■ Managing Storage	 177

3. Send a test email to check the setup
$MHT = @{
 ToEmailAddress = 'DoctorDNS@gmail.com'
 Confirm = $false
}
Send-FsrmTestEmail @MHT

This snippet sends a test email to the configured email address, using the
SMTP server on SRV1.Reskit.Org. Although the snippet produces no visible
output, you can see the email sent in Figure 5.29. If for some reason FSRM is
not able to connect to the SMTP server, you would see an error 0x8004531c. In
that case, you need to troubleshoot your SMTP server.

If you intend to utilize FSRM’s email features, you need to ensure the FSRM
email settings are working before proceeding. And you need to ensure that
the remote SMTP server is online, is reachable, and is processing email. Some
ISPs do not allow customers to use SMTP gateways such as SendGrid. Con-
figuring and troubleshooting SMTP email is outside the scope of this book. If
you get stuck, consider asking for help in the Spiceworks PowerShell forum at
community.spiceworks.com/programming/powershell. Or just continue and omit
using FSRM’s email features.

Figure 5.29: Viewing the test email

178	 Chapter 5 ■ Managing Storage

Creating an FSRM Quota Template
FSRM implements templates for quotas that you can use to apply specific quota
permissions. Several are built in, and you can create your own FSRM quota
template that preconfigures some FSRM quota settings. Doing so allows you
to create a filestore quota at any later time based on a template. You can create
a new template as follows:

4. Create a new FSRM quota template for a 10MB hard limit
$QHT1 = @{
 Name = '10 MB Reskit Quota'
 Description = 'Filestore Quota (10mb) For'
 Size = 10MB
}
New-FsrmQuotaTemplate @QHT1

This snippet creates a new FSRM quota template.

Viewing Available FSRM Quota Templates
FSRM ships with a number of quota templates, and you can add or modify tem-
plates to suit your needs. You can view all the available FSRM quota templates
with the Get-FsrmQuotaTemplate command.

5. View available FSRM quota templates
Get-FsrmQuotaTemplate |
 Format-Table -Property Name, Description, Size, SoftLimit

You can see the output of this snippet in Figure 5.30.

Figure 5.30: Viewing quota templates

	 Chapter 5 ■ Managing Storage	 179

Creating a New Folder
To test FSRM quotas, you create a new folder, as follows:

6. Create a new folder on which to place quotas
If (-Not (Test-Path C:\Quota)) {
 New-Item -Path C:\Quota -ItemType Directory |
 Out-Null
}

With this folder created, you can complete the actions necessary to protect
the folder with an FSRM quota.

Building an FSRM Action
An FSRM action is an in-memory object that contains details of an action you
want FSRM to take when a quota threshold is exceeded. You create an action
before creating the FSRM quota, as follows:

7. Build an FSRM Action
$Body = @'
User [Source Io Owner] has exceeded the [Quota Threshold]% quota
threshold for the quota on [Quota Path] on server [Server].
The quota limit is [Quota Limit MB] MB, and [Quota Used MB] MB
currently is in use ([Quota Used Percent]% of limit).
'@
$NAHT = @{
 Type = 'Email'
 MailTo = 'Doctordns@gmail.Com'
 Subject = 'FSRM Over limit [Source Io Owner]'
 Body = $Body
}
$Action1 = New-FsrmAction @NAHT

This FSRM action is used to send email to DoctorDNS@Gmail.Com with a body
containing details of the quota exceeded. The email body contains a number of
variables and is customizable. For details of the variables you can use in an Email
body, see docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-
server-2008-R2-and-2008/cc788122%28v%3dws.10%29#quota-notification-variables.

This action is created in memory and as such is not persisted anywhere. Also,
there is no Get-FSRMAction cmdlet.

180	 Chapter 5 ■ Managing Storage

Create an FSRM Threshold
You next build an FSRM threshold. The threshold, which is another in-memory
object, contains a threshold percentage and an action. You create the threshold
object as follows:

8. Create an FSRM threshold
$Thresh = New-FsrmQuotaThreshold -Percentage 85 -Action $Action1

This threshold object, when later added to an FSRM quota, instructs FSRM
to do the action in $action1 when the usage exceeds 85% of the quota.

Note that the FSRM threshold and the FSRM action are in-memory objects
and do not persist across a reboot or into another PowerShell session. You use
these objects as part of creating an FSRM quota.

Building an FSRM Quota
To build a persistent FSRM quota, you use the New-FSRMQuota cmdlet, like this:

9. Build a quota for the folder
$NQHT1 = @{
 Path = 'C:\Quota'
 Template = '10 MB Reskit Quota'
 Threshold = $Thresh
}
New-FsrmQuota @NQHT1

You can view the output of this snippet in Figure 5.31.

Figure 5.31: Building a quota

	 Chapter 5 ■ Managing Storage	 181

This code tells FSRM to impose a 10MB quota on C:\Quota. Additionally, when
the usage of the folder exceeds 85% (8.5MB), FSRM sends email to the user who
exceeds the threshold. In this case, the quota uses the specified template, which
provides you with flexibility. You could have just specified a limit (such as 10MB).

Test the 85% Quota Threshold
Now that you have set up an FSRM quota, based on a template, you can test the
quota. Here is one way to test it:

10. Test the 85% SOFT quota limit on C:\Quota
Get-ChildItem -Path C:\Quota -Recurse |
 Remove-Item -Force # for testing purposes!
$S = '+'.PadRight(8MB)
make a first file - under the soft quota
$S | Out-File -FilePath C:\Quota\Demo1.Txt
$S2 = '+'.PadRight(.66MB)
Now create a second file to take the user over the soft quota
$S2 | Out-File -FilePath C:\Quota\Demo2.Txt

In this snippet, you first ensure that the folder is empty and then create a file
(Demo1.Txt) that is smaller than the quota threshold. You then create a second
file (Demo2.txt) that exceeds the soft quota threshold but does not use all of the
quota. Because this snippet did not exceed the full 10MB quota limit, there is
no direct output. Once a user exceeds a threshold, FSRM sends an email as you
previously configured.

Examining the FSRM Email
In the previous step, you created two files. The first was within the threshold,
but creating the second took you over the 85% soft quota threshold. Because
you exceeded the soft threshold, FSRM sends an email, which you can see in
Figure 5.32.

The output tells you which user has exceeded which quota. The mail also
tells you the current maximum quota limit and how much is presently in use.

Testing the Hard Quota Limit
With a soft quota, a user can exceed the quota and save extra data. You can also
create hard quota limits; for example, a hard quota limit on the C:\Quota folder
of 10MB. With such a hard quota, any attempt to use more than the quota fails.
You can test this by creating another large file in the C:\Quota folder, as follows:

11. Test hard limit quota
$S | Out-File -FilePath C:\Quota\Demo3.Txt

182	 Chapter 5 ■ Managing Storage

This step does two things. First FSRM generates an error message, shown
in Figure 5.33.

The error message says that there is not enough space in the drive even
though the actual error is that the quota has been fully used. If you are used to
Windows PowerShell, the figure shows you PowerShell 7’s new error report-
ing feature, which simplifies what you see when errors occur in your scripts or
when running commands as in this case.

Note that error display in PowerShell differs from Windows PowerShell. You
also get slightly different output if you run a line of code directly at the console
or if you run it via a script file (or highlight the line of code with VS Code and
run the selection). When run as a script, PowerShell provides details of where
the error occurred.

The second thing that happens is that the Out-File option creates a new
file, Demo3.Txt. But Windows only writes away contents that do not exceed the
quota—the file is truncated to ensure that the folder does not exceed the hard
quota.

Figure 5.33: Testing the quota limit

Figure 5.32: Examining the FSRM email

	 Chapter 5 ■ Managing Storage	 183

Viewing the Folder Contents
Although you attempted to create Demo3.Txt to be the same size as Demo1.Txt,
there is insufficient quota left. You can see the total size of all three files, as follows:

13. View Folder
Get-ChildItem -Path C:\Quota |
 Measure-Object -Sum -Property Length

Figure 5.34 shows the output from this step.

As you can see, the total amount of space used by the three files you created
in C:\Quota does not exceed the 10MB quota you assigned.

Managing File Screening

FSRM’s file screening controls the types of files you allow to be stored on your
file server. You could, for example, define a file screen to prohibit music files
(files with the .FLAC or .MP3 extension) to be saved to your file server. If a user
attempts to download and save a file such as GD71-02-18.T09.FLAC, FSRM stops
the user from saving the file.

To configure FSRM file screening, you need to specify the folder to be screened
and a file screen template that describes the file characteristics of files that FSRM
should block. FSRM comes with five built-in file screen templates. You can create
further templates to suit your requirements.

A file screen template contains a set of file groups, in which each file group
defines a set of file extensions to block. FSRM comes with 11 built-in file groups
that cover common content types and can be updated and extended.

One built-in FSRM file group is Audio and Video Files. This group, for
example, includes a wide variety of audio and video file extensions, including
.AAC, .MP3, .FLAC, and more. Interestingly, this built-in file group does not block
.SHN (Shorten) files. Shorten is a lossless compression algorithm that was in effect
replaced by .FLAC files but is much loved in music trading circles. You could
easily add this extension to the relevant file group, should you wish.

Figure 5.34: Viewing the total size of the folder contents

184	 Chapter 5 ■ Managing Storage

Note that file screening works solely on the basis of file extensions. FSRM
would block you saving a file such as GD71-02-18.T09.FLAC. However, if you
stored that same file as GD71-02-18.T09.CALF, FSRM would allow the file to be
stored. The FSRM file screening does not examine the file to ascertain the actual
file type. A user who attempts to get around a corporate file screen ban using
this technique can be disciplined more harshly for deliberately and willfully
violating company security.

Before You Start
This section uses the domain-joined server SRV1.Reskit.Org, which has FSRM
installed and configured. You set up FSRM on SRV1 in the “Managing Filestore
Quotas” section.

Examining Existing FSRM File Groups
When you install FSRM (in “Managing Filestore Quotas”), the default installa-
tion creates a set of file groups you can use when you set up file screening. You
can use Get-FsrmFileGroup to view the existing file groups.

1. Examine the existing file groups
Get-FsrmFileGroup |
 Format-Table -Property Name, IncludePattern

Figure 5.35 shows the output of this snippet.
As you can see, there is a useful set of file groups you can use to set up file

screening.
There is a lot of information being output from this snippet, so you may need

to adjust the width of your PowerShell console or VS Code to see the full output
(and avoid PowerShell truncation). Also, consider changing the value of the
default variable $PSFormatEnumerationLimit to see more of the file patterns.

Examining the Existing File Screen Templates
The default installation of FSRM also creates a number of file screening tem-
plates, which you can view using Get-FsrmFileScreenTemplate as follows:

2. Examine existing File Screen templates
Get-FsrmFileScreenTemplate |
 Format-Table -Property Name, IncludeGroup, Active

You can see the output in Figure 5.36.

	 Chapter 5 ■ Managing Storage	 185

Figure 5.35: Examining the existing file groups

Figure 5.36: Examining existing templates

186	 Chapter 5 ■ Managing Storage

This snippet shows you the name of each of the five built-in templates and,
for each template, what file groups are included in the template and whether
the screen template represents an active file screen.

Creating a New File Folder
To test file screening, you create a new folder, C:\FileScreen, as follows:

3. Create a new folder
$Path = 'C:\FileScreen'
If (-Not (Test-Path -Path $Path)) {
 New-Item -Path $Path -ItemType Directory |
 Out-Null
}

If the folder does not exist, this snippet creates it.

Creating a New File Screen
You create a file screen that blocks executable files from being saved to the folder
C:\FileScreen, as follows:

4. Create a new file screen
$FSHT = @{
 Path = $Path
 Description = 'Block Executable Files'
 IncludeGroup = 'Executable Files'
}
New-FsrmFileScreen @FSHT

You can view the output of this snippet in Figure 5.37.

Figure 5.37: Creating a file screen

	 Chapter 5 ■ Managing Storage	 187

The output indicates that this file screen is active and identifies what it is
screening (executable files in C:\Filescreen).

Testing File Screening
Now that you have set up the file screening, you can test it. One simple way to
test the screen is to copy an executable file (such as the Windows notepad.exe
program) into the protected folder. You can test this as follows:

5. Test file screen by copying notepad.exe
$FSTHT = @{
 Path = "$Env:windir\notepad.exe"
 Destination = 'C:\FileScreen\notepad.exe'
}
Copy-Item @FSTHT

You can see the error output from this command in Figure 5.38.

As you can see, FSRM found that the extension of the file to be saved is one
that has been blocked. As a result, Windows displays an error message and
does not complete the file copy.

Setting Up an Active File Screen
An active file screen is one that carries out an action (in addition to blocking
the “wrong” files). FSRM can, for example, allow you to send an email message
when the file save fails.

You set up an active file screen as follows:

6. Setup Active Email Notification
$Body = "You attempted to save an executable program. " +
 "This is not allowed."
$FSRMA = @{

Figure 5.38: Testing a file screen

Continues

188	 Chapter 5 ■ Managing Storage

 Type = 'Email'
 MailTo = "[Admin Email];[File Owner]"
 Subject = "Warning: attempted to save an executable file"
 Body = $Body
 RunLimitInterval = 60
}
$Notification = New-FsrmAction @FSRMA
$FSFS = @{
 Path = $Path
 Notification = $Notification
 IncludeGroup = 'Executable Files'
 Description = 'Block any executable file'
 Active = $true
}
Set-FsrmFileScreen @FSFS

In this snippet, you create an FSRM action to send an email message. Then
you update the FSRM file screen to include the notification. The file screen now
prevents executable files from being saved and sends an email message if a user
attempts to save an executable file in the protected folder.

Viewing Notification Limits
Depending on how often screening or other limits are exceeded, the number of
alerts and email can be an issue. On a busy FSRM file server, you could quickly
generate large amounts of alerts or email. To minimize this, FSRM allows you
to specify a period of time before another notification of the same type is sent.
The default time is 60 minutes, but you can change that. To view the current
limits, you can use the Get-FsrmSetting command.

7. Get-FSRM Notification Limits
Get-FsrmSetting |
 Format-List -Property "*NotificationLimit"

Figure 5.39 shows the output from this snippet.

Figure 5.39: Viewing notification limits

continued

	 Chapter 5 ■ Managing Storage	 189

Changing Notification Limits
To change any of these notification limits, you use the Set-FSRMSetting command,
like this:

8. Changing FSRM notification limits
$FSRMSHT = @{
 CommandNotificationLimit = 1
 EmailNotificationLimit = 1
 EventNotificationLimit = 1
 ReportNotificationLimit = 1
}
Set-FsrmSetting @FSRMSHT

This limit allows you to test your file screens and perhaps refine the email
messages generated. In production, such low limits may result in an excessive
number of emails, which may be undesirable.

Testing the Active File Screen
To test this file screen, you can repeat the attempt to save an executable file in
the screened folder, as follows:

9. Re-test the file screen to check the action
Copy-Item @FSTHT

As in the earlier test of this file screen, FSRM prevents you from saving the
executable file, as you can see in Figure 5.40.

Viewing Active File Screen Email
You can see the file screen email sent by FSRM in the previous step in Figure 5.41.

The body of the message, as you have seen in “Managing Filestore Quotas,”
can be highly customized with a variety of additional FSRM variables to pro-
vide more information for both the user and the administrator.

Figure 5.40: Testing the active file screen

190	 Chapter 5 ■ Managing Storage

Summary

PowerShell 7 enables you to manage disks and disk volumes on a variety of
physical and virtual media. There are some built-in commands for managing
NTFS permissions that can be supplemented with the community-developed
NTFSSecurity module. For disaster recovery, PowerShell 7 supports and sim-
plifies the use of the File System Resource Manager. FSRM provides a lot of
assistance to customers using Windows Server to deliver file server features to
users, and these are straightforward to use via PowerShell. They enable you to
implement filestore quotas and filestore screening.

Some of the modules used in this chapter are not natively supported using
PowerShell 7. As this chapter demonstrates, that does not provide a significant
barrier to adoption.

Figure 5.41: Viewing the screening email

C H A P T E R

191

6

Sharing data between users and hosts is a core feature of every corporate net-
work. In Chapter 5, “Managing Storage,” you looked at managing disks and
volumes/partitions. In this chapter, you examine the sharing of files between
systems and some mechanisms for doing so.

The Server Message Block (SMB) file- and printer-sharing protocol has been
in use since the late 1980s as a mechanism for storing data on a server and
accessing it from client systems. All recent versions of Windows include an
SMB client and SMB server feature, allowing users to share and use shared files.

Security of shared files is important. The SMB protocol has been around for
a long time, and the first version, SMB1, is not considered safe for use so should
be disabled. (Disabling SMB1 on a host can mean that older systems may not
be able to connect to the host.)

When you share files, you can provide additional access controls over the
share itself. The user of any shared folder or file is entitled to the lesser of the
NTFS permissions and the share permissions. This can simplify the setting of
permissions.

Windows Server comes with a number of file server features (each of which
you can install using Install-WindowsFeature), which are organized as sub-
features of the FileAndStorage-Services role. The FileAndStorage-Services
role, which enables some basic file sharing, is installed by default in Windows
Server 2019. The subfeatures, which are not installed by default, include these:

Managing Shared Data

PowerShell 7 for IT Pros: A Guide to Using PowerShell 7 to Manage Windows® Systems, First Edition. Thomas Lee.
© 2021 John Wiley & Sons, Inc., Published 2021 by John Wiley & Sons, Inc.

192	 Chapter 6 ■ Managing Shared Data

FS-FileServer: This feature manages shared files and folders to enable users
to access data on a server across the network.

FS-BranchCache: BranchCache is a WAN bandwidth optimization technology
that caches content from a main office server on local systems. This avoids
some WAN access.

FS-Data-Deduplication: This feature implements a single-instance storage
feature. If a volume has multiple copies of the same file, this feature stores
the data only once to save disk space.

FS-DFS-Namespace: DFS Namespace (DFSN) allows you to set up a logical
file folder topology for data stored on different servers in your organi-
zation. DFSN also provides a level of fault tolerance by allowing you to
store multiple copies of a given folder across multiple hosts. DFSN does
not provide replication of data between the copies.

FS-DFS-Replication: DFS Replication (DFSR) is a multimaster replication
engine that synchronizes folders in servers across your organization.
Typically, you use DFSR to replicate data in DFSN-based folders.

FS-Resource-Manager: FSRM provides a number of features related to
managing a file server. You used FSRM in Chapter 5 to provide file screen-
ing and file quotas.

FS-VSS-Agent: This feature enables you to create volume shadow copies of
data on a server. Typically, you use this feature with backup applications.

FS-iSCSITarget-Server: This feature allows you to set up a Windows host
to be an iSCSI target. The iSCSI initiator (client) service is installed on
Windows hosts, although that service is stopped by default. You use the
target server feature in “Creating and Using an iSCSI Target.”

FS-NFS-Service: This feature enables the server to share files using the
Network File System (NFS) protocol. NFS is used mainly in Linux/Unix
environments. You can also use the NFS-Client Windows feature if you
want to use NFS resources stored on other NFS servers (Windows or
Linux/Unix-based).

FS-SyncShareService: This feature provides support for work folders. You
can use work folders to host and synchronize user files.

All of these features can be used in any organization that needs to share files or
data. Covering all these topics properly would take more space than is available.

This chapter looks at the following:

Setting up and securing an SMB file server: Setting up a Windows Server–
based file server is simple and straightforward. Securing it is also easy
and something you should be doing on any file server.

	 Chapter 6 ■ Managing Shared Data	 193

Creating and securing SMB shares: Creating and securing shared folders
is straightforward using the cmdlets in the SmbShare module augmented
by the cmdlets in the downloadable NTFSSecurity module.

Using iSCSI: iSCSI is a mechanism for separating physical storage from a
file server. You create an iSCSI disk on one server, a storage server, and
use it on another, a file server. On the storage server, you implement an
iSCSI target that you then use in the file server system. There are cmdlets
for both creating and using iSCSI.

Creating a scale-out file server (SOFS): This feature leverages clustering to
deliver a highly resilient and high-performance SMB3 file server.

Systems Used in This Chapter

In this chapter, you use the following systems:

DC1.Reskit.Org: This is a DC in the Reskit.Org domain. It also provides a
DNS service for the Reskit.Org domain.

SRV2.Reskit.Org: You use this server to create an iSCSI target for use in a
scale-out file server.

FS1.Reskit.Org, FS2.Reskit.Org: These are both domain-joined Windows
Server 2019 hosts. You create an SMB server and share data from FS1 and
then use the iSCSI initiator on FS1 to connect to the iSCSI target on SRV2.
Finally, you also use FS1 and FS2 to deploy an SOFS.

Figure 6.1 shows the systems in use in this chapter.

DC1.Reskit.Org

SRV2.Reskit.Org FS2.Reskit.OrgFS1.Reskit.Org

Figure 6.1: Systems used in this chapter

194	 Chapter 6 ■ Managing Shared Data

Note that all systems need PowerShell 7 loaded before starting. You can do
that manually, using the scripts from Chapter 1, “Establishing a PowerShell 7
Administrative Environment.”

Setting Up and Securing an SMB File Server

The SMB protocol is a network protocol that runs on top of TCP/IP and is used
to share access to files, printers, and other resources on your network. All cur-
rently supported versions of Windows (server and client) contain an SMB client
and an SMB server.

In Windows, the SMB server is implemented by the LanmanServer service.
In Linux and Unix, the Samba project (www.samba.org) provides an SMB server
and client that interoperate with Windows clients/servers. For more information
about the SMB protocol, see docs.microsoft.com/en-us/windows/win32/fileio/
microsoft-smb-protocol-and-cifs-protocol-overview.

The SMB protocol has evolved significantly since it was first introduced with
Microsoft’s LAN Manager in the late 1980s, and SMB Version 1 is no longer
considered safe for use. An important step in securing your file servers is to
ensure you disable this version of the SMB protocol.

The latest version of the SMB protocol, SMB3, contains a number of significant
improvements. These include SMB Scale-Out, SMB Multichannel, and SMB
Direct, which all improve the performance and resilience of SMB and enable
you to store SQL databases as well as Hyper-V virtual hard drives on an SMB3
file server. All current versions of Windows contain SMB3 support. For more
details on SMB3, see docs.microsoft.com/en-us/windows-server/storage/file-
server/file-server-smb-overview.

Before You Start
In this section, you use FS1.Reskit.Org, a domain-joined Windows Server 2019
host with no additional features installed (and with Internet access). To assist
with DNS resolution, you must also have a DC in the Reskit.Org domain, DC1
.Reskit.Org, online. Also, ensure you have installed PowerShell 7 on this host
(and optionally VS Code). You can use the scripts in Chapter 1 to do this.

Adding File Server Features to FS1
To create a file server using Windows Server 2019, you use the Server Manager
module to add the necessary services and tools.

1. Add File Server features to FS1
 Import-Module -Name ServerManager -WarningAction SilentlyContinue
$Features = 'FileAndStorage-Services',

	 Chapter 6 ■ Managing Shared Data	 195

 'File-Services',
 'FS-FileServer'
Install-WindowsFeature -Name $Features -IncludeManagementTools

You can view the output of this snippet in Figure 6.2.

With this snippet, you install the Windows Compatibility module, import
the ServerManager module, and then install the file server features. Once this
is complete, FS1 is capable of being a file server—you just need to configure the
server and share folders.

Getting SMB Server Settings
You can use the Get-SmbServerConfiguration command to view the default
configuration of the SMB service in FS1.

2. Get Default SMB Server Settings
Get-SmbServerConfiguration

The output, shown in Figure 6.3, shows the default property settings for the
SMB service.

Before putting a file server into production, you should review the 43 prop-
erties of your file server. These default settings have changed over the different
versions of Windows Server, so it’s important that you check these properties
and update them where needed.

Ensuring That SMB1 Is Disabled
Version 1 of the SMB protocol contains a vulnerability that enables an intruder to
run arbitrary code. See cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-0144
for details of the vulnerability and the systems affected. The WannaCry
ransomware, for example, exploited this weakness.

Figure 6.2: Installing file server features

196	 Chapter 6 ■ Managing Shared Data

By default, Windows Server 2019 has SMB1 disabled. It is, though, a good
thing to make sure this protocol is disabled explicitly.

3. Ensure SMB V1 is turned off
$CHT = @{
 EnableSMB1Protocol = $false
 Confirm = $false
}
Set-SmbServerConfiguration @CHT

In this snippet, you explicitly disable the SMB1 protocol. Alternatively, you
could have tested whether SMB1 was enabled and only then explicitly disable
SMB1.

Figure 6.3: Viewing SMB server settings

	 Chapter 6 ■ Managing Shared Data	 197

With Windows PowerShell, you could have used Desired State Configuration
(DSC) to ensure that the SMB1 remains turned off. Unfortunately, as described
in Chapter 2, “PowerShell 7 Compatibility with Windows PowerShell,” DSC is
not supported fully by PowerShell 7.

Enabling SMB Signing and SMB Encryption
The SMB protocol by default transfers all data unencrypted. On an internal net-
work this may not matter, but it does represent a potential vulnerability. Two
things you can do to improve network security are to encrypt any transferred
data and sign each packet.

4. Turn on SMB signing and encryption
$SHT1 = @{
 RequireSecuritySignature = $true
 EnableSecuritySignature = $true
 EncryptData = $true
 Confirm = $false
}
Set-SmbServerConfiguration @SHT1

Signing and encrypting packets takes additional CPU time. This could be an
issue on a busy file server serving hundreds of users simultaneously. If you are
implementing file servers as virtual machines, you might consider adding one
or more virtual CPUs to any file server VM if the VM shows a high CPU load
(a CPU usage of 80% or more over a sustained time).

Encryption on the client side should not provide any significant performance
issue.

Disabling Default Shares
Windows servers and clients create a number of default shares, also known as
administrative shares. These shares are hidden and enable IT pros to have remote
access to each disk volume on a network-connected system. You cannot delete
these shares permanently, but you can disable them.

5. Turn off default server and workstations shares
$SHT2 = @{
 AutoShareServer = $false
 AutoShareWorkstation = $false
 Confirm = $false
}
Set-SmbServerConfiguration @SHT2

198	 Chapter 6 ■ Managing Shared Data

Turning Off Server Announcements
By default, SMB servers announce themselves on the network. This could be a
potential security risk, but it is easy to stop.

6. Turn off server announcements
$SHT3 = @{
 ServerHidden = $true
 AnnounceServer = $false
 Confirm = $false
}
Set-SmbServerConfiguration @SHT3

Restarting the SMB Server Service
The SMB server settings you have set do not take effect until you restart the
service.

7. Restart the service with the new configuration
Restart-Service -Name LanmanServer

Reviewing the Updated SMB Server Configuration
Once you have reconfigured the SMB server and restarted the service, you can
review the SMB server settings and observe the updated configuration.

8. Review SMB Server Configuration
Get-SmbServerConfiguration

Figure 6.4 shows the results of the configuration changes.
As you can see from the figure, the settings you configured are now in

operation on the running SMB service. There are many more settings you can
set for an SMB server, although most of them remain not well documented.

Creating and Securing SMB Shares

SMB shares in Windows can be secured independently of any underlying file-
system security. Irrespective of the filesystem you implement, you can provide
ACLs to SMB shares to control access to the underlying data. With the NTFS
filesystem, you are able to set share access permissions as well as filesystem
permissions.

	 Chapter 6 ■ Managing Shared Data	 199

Managing permissions for files (in an NTFS volume) is not fully supported by
in-the-box cmdlets. You can use the Get-ACL and Set-ACL commands to update
an ACL, but you have to use .NET Framework objects to create the individual
ACEs you want to add to any ACL. The NTFSSecurity module makes updating
ACLs much easier.

Before You Start
This section uses FS1, a server you set up in “Setting Up and Securing an SMB
File Server.” You also need the domain controller, DC1. This section also uses
the AD group Sales created in “Managing NTFS Permissions” in Chapter 5.

Figure 6.4: Viewing the reconfigured SMB server settings

200	 Chapter 6 ■ Managing Shared Data

Setting Up FS1
This section creates a new folder, C:\Sales. Later in this section, you also make
use of commands in the NTFSSecurity module in this section, and you need to
ensure you have it installed. You can do both tasks as follows:

1. Ensure folder exists and install NTFS Security module
$EAHT = @{Erroraction = 'SilentlyContinue' }
New-Item -Path C:\Sales1 -ItemType Directory @EAHT | Out-Null
Install-Module -Name NTFSSecurity -Force

This snippet ensures that the C:\Sales1 folder exists on FS1 and that the
NTFSSecurity module is installed.

Discovering Existing SMB Shares
To discover the SMB shares available on your server, use the Get-SmbShare
command.

2. Discover existing SMB shares on FS1
Get-SmbShare -Name *

You can see the output from this snippet in Figure 6.5.

Notice that there is only one share on FS1, the IPC$ interprocess communica-
tion share. The IPC$ share is built into Windows and is used when performing
remote administration of a computer or viewing a computer’s shared resources.

You can see more information about the IPC$ share at support.microsoft
.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows.

Creating an SMB Share
To create a new SMB share to the C:\Sales1 folder on FS1, you use the New-
SmbShare command.

3. Creating a new share Sales1
New-SmbShare -Name Sales1 -Path C:\Sales1

Figure 6.5: Viewing shares on FS1

	 Chapter 6 ■ Managing Shared Data	 201

Figure 6.6 shows the output of this command.

You could also have used the older Net.exe command, which has been part
of Windows since Windows NT first shipped.

Setting a Share Description
It is useful to add a description to the share, which you can do with the
Set-SmbShare command.

4. Set the share's Description
$CHT = @{Confirm=$False}
Set-SmbShare -Name Sales1 -Description 'Sales share on FS1' @CHT

The description field can help users find the correct share. You could also
have created the description at the same time you created the share.

Setting the Folder Enumeration Mode
You can set the folder enumeration mode for a share to AccessBased. This tells
Windows to not display any folders within a share that the user does not have
access to.

5. Setting folder enumeration mode
$CHT = @{Confirm = $false}
Set-SmbShare -Name Sales1 -FolderEnumerationMode AccessBased @CHT

This is a useful approach as it helps to avoid questions from curious users
who see folders in a share to which they have no access.

Requiring Encryption for a Share
As you saw in “Setting Up and Securing an SMB File Server,” you can configure
the system to always encrypt any shared data transmitted to/from an SMB share.
You can configure Windows to always encrypt the traffic for that specific share
with this Set-SmbShare command:

6. Require encryption on data transmistted to/from the share
Set-SmbShare –Name Sales1 -EncryptData $true @CHT

Figure 6.6: Creating an SMB share

202	 Chapter 6 ■ Managing Shared Data

This ensures that data transferred to/from this share is to be encrypted.
For more details about SMB encryption, see docs.microsoft.com/en-us/
windows-server/storage/file-server/smb-security#smb-encryption.

Requiring encryption increases CPU usage on a file server. As noted on the
SMB Security page, “. . . there is a notable performance operating cost with any
end-to-end encryption protection when compared to non-encrypted.”

As always with settings like this, you should be measuring the CPU utiliza-
tion of your file server and take appropriate actions to minimize the impact of
any performance bottlenecks. In Chapter 10, “Reporting,” the section “Collect-
ing Performance Data Using PLA” shows how to collect this information, and
“Reporting on PLA Performance Data” shows how you can create a graph of
server performance.

Removing All Access to Sales1 Share
By default, when you create a new share, Windows enables the Everyone group
to have read access to the share. To restrict access to the share, you first remove
that universal access, using Revoke-SmbShareAccess.

7. Removing all access to Sales1 share for the Everyone group
$AHT1 = @{
 Name = 'Sales1'
 AccountName = 'Everyone'
 Confirm = $false
}
Revoke-SmbShareAccess @AHT1 | Out-Null

This has the effect of, initially, denying everyone access to the data within
the SMB share. Once you have revoked all access, you can set the specific per-
missions appropriate to the share to enable the security you need for the share.

Adding Reskit\Domain Admins to the Share
To enable administrator read access to the share, you can use the Grant-Smb-
ShareAccess command.

8. Adding Reskit\Domain Admins to the share
$AHT2 = @{
 Name = 'Sales1'
 AccessRight = 'Read'
 AccountName = 'Reskit\Domain Admins'
 ConFirm = $false
}
Grant-SmbShareAccess @AHT2 | Out-Null

	 Chapter 6 ■ Managing Shared Data	 203

This snippet gives the domain’s Domain Admins group read access to the
share. By default, a domain or enterprise administrator can take ownership
of a file and then give themselves more permissions should that ever become
necessary. Giving domain admins only basic read access, as in this example,
may or may not be appropriate in day-to-day operations.

Adding System Full Access
To ensure that Windows continues to have access to the folder, you can add
another access control entry to the share’s ACL.

9. Adding system full access
$AHT3 = @{
 Name = 'Sales1'
 AccessRight = 'Full'
 AccountName = 'NT Authority\SYSTEM'
 Confirm = $False
}
Grant-SmbShareAccess @AHT3 | Out-Null

Giving the Creator/Owner Full Access
You also need to enable the owner or creator of a file to have full access to the
files/folders they create.

10. Set Creator/Owner to Full Access
$AHT4 = @{
 Name = 'Sales1'
 AccessRight = 'Full'
 AccountName = 'CREATOR OWNER'
 Confirm = $False
}
Grant-SmbShareAccess @AHT4 | Out-Null

Granting the Sales Group Access
You can also grant the Sales group change access to the share.

11 Granting Sales group change access
$AHT5 = @{
 Name = 'Sales1'
 AccessRight = 'Full Control'
 AccountName = 'Sales'
 Confirm = $false
}
Grant-SmbShareAccess @AHT5 | Out-Null

204	 Chapter 6 ■ Managing Shared Data

In this snippet, you give all members of the Sales group change access over
data in the share. This is a simple share permission to set, but it does mean that
any member can make changes to any file.

You can, of course, limit access to data in the share by changing the ACL on
the underlying NTFS files or folders. Although a user might have full control
at the share level, you can set more restrictive NTFS permissions where that is
appropriate.

Reviewing Share Access
With the configuration of this share completed, you can view the new access
rights on the share.

12. Review Access to Sales1 sShare
Get-SmbShareAccess -Name Sales1 |
 Sort-Object AccessRight

Now that you have configured share access rights, you can view the share’s
resultant access rights, as shown in Figure 6.7.

In this output, you can see that the share has an ACL that consists of the three
explicit ACE entries.

It is important to note that these steps have reconfigured only the share’s
ACL. The NTFS filesystem holds a separate set of permissions that you can set
independently from the share permissions. When accessing shared data, the
user’s effective permissions are the lesser of the NTFS and the share permis-
sions. Thus far in this section, the NTFS permissions remain based on default
Windows permissions and are probably overly generous. An important step in
securing a file server is managing the default ACLs set by Windows.

Reviewing the NTFS Permissions
You can view the initial NTFS permissions on a folder by using the Get-NTFSAccess
command from the NTFSSecurity module.

Figure 6.7: Viewing share access

	 Chapter 6 ■ Managing Shared Data	 205

13. Review initial NTFS Permissions on the folder
Get-NTFSAccess -Path C:\Sales1

You can see the output in Figure 6.8, showing the current NTFS permissions
on the C:\Sales1 folder.

An advantage of using Get-NTFSAccess is that you can also view inherited
permissions. As you can see, the ACL for the C:\Sales1 folder is made up entirely
of inherited permissions—as is normal for newly created folders. In many, and
probably most, cases, this can be an overly permissive set of permissions. You
can adjust this as needed.

Setting the NTFS ACL to Match the Share
A simple way to ensure that the share and the NTFS permissions are aligned
is to use the Set-SmbPathAcl command, like this:

14. Setting the NTFS ACL to match share
Set-SmbPathAcl -ShareName 'Sales1'

This command makes the ACL for the C:\Sales1 folder match the share’s
ACL. This copies the explicit permissions on the share to the NTFS permissions
on the folder.

Removing NTFS Inheritance
To complete securing the share and underlying data, you can also remove
unwanted inherited ACLs, by removing the inheritance for the C:\Sales1 folder,
like this:

15. Removing NTFS Inheritance
Set-NTFSInheritance -Path C:\Sales1 -AccessInheritanceEnabled:$False

Figure 6.8: Reviewing NTFS permissions

206	 Chapter 6 ■ Managing Shared Data

Note that, currently, this command generates a spurious error stating “Nullable
object must have a value.” Despite the error, this snippet does turn off inheri-
tance on the C:\Sales1 folder.

Viewing the Folder ACL
Now that you have configured the NTFS access to match only the share’s access,
you can view the NTFS access.

16. Viewing Folder ACL using Get-NTFSAccess
Get-NTFSAccess -Path C:\Sales1 |
 Format-Table -AutoSize

You can see the output in Figure 6.9.

As you can see from the output, the only ACEs remaining in the ACL for the
C:\Sales1 folder are those you set explicitly on the share and then copied into
the NTFS folder.

In this section, you add and configure a new share on FS1. The share you cre-
ated is on a single host on a single volume and thus is not highly fault tolerant.

For departmental file sharing, as long as regular backups are performed, this
configuration is, in many cases, cost-effective and generally acceptable, espe-
cially given the reliability of modern computer systems.

If you are less risk tolerant and have sufficient budget, you can improve the
reliability and fault tolerance by ensuring the data volume is protected with
some form of RAID and use failover clustering on your file server. “Setting Up
a Clustered Scale-Out File Server” later in this chapter looks at clustering and
creating a highly reliable file server solution.

Figure 6.9: Viewing folder ACL

	 Chapter 6 ■ Managing Shared Data	 207

Creating and Using an iSCSI Target

When you deploy a file server, you have a wide choice of storage technologies
you can use to store your data. In “Creating and Securing SMB Shares,” you
deployed a new share, Sales1, based on a folder held locally on the FS1 host.
That share pointed to a local disk, which means there is a potential single point
of failure—if a disk fails and you don’t have a good backup, you may have lost
user information.

Many organizations deploy a storage area network (SAN) to hold information.
The SAN can provide great protection security for your organization’s data.
One popular method of attaching a host to data held on the SAN is to use iSCSI.

By way of background, Small Computer Systems Interface (SCSI) is a storage
technology used to connect disk drives with host computers. SCSI provides
faster bus speeds and also provides the ability to support larger numbers of
disks than IDE/ATA drives. In larger enterprise servers, you typically use
SCSI or serial attached SCSI (SAS) disks. These can include both spinning and
solid-state drives.

iSCSI is a TCP/IP-based protocol that enables you to access what appear to be
SCSI disks across TCP/IP networks. iSCSI is a client-server protocol. An iSCSI
server effectively allows access to a disk (defined as a logical unit number, or
LUN) on the server from the client. The virtual disk is known as an iSCSI target.

The iSCSI client, known as the iSCSI initiator, connects to the iSCSI target to
use the data on the remote disk. The iSCSI initiator enables the client system
(or systems) to access the iSCSI virtual disk as if it were local. After connecting
to the iSCSI target, you could use the Disk Management application (diskmgmt.
msc) and view the iSCSI disk as if it were a local disk.

Once you have connected to the iSCSI target, you can use the same commands
you used in Chapter 5 to create a volume and manage the data on disk.

For a bit more background in iSCSI terminology, visit lazywinadmin
.com/2013/07/create-iscsi-target-using-powershell-on.html.

To deploy an iSCSI target in Windows, you begin by adding some physical
storage to your host and creating a local volume. Ideally, you should use hardware
RAID to create a fault-tolerant local volume for your storage server. Within this
local volume, you create a virtual iSCSI disk. Then, you expose this disk as an
iSCSI target.

If you deploy a physical host, you can implement hardware RAID, create
a local volume (using, for example, RAID 5 or RAID 20), and then create the
virtual iSCSI disk in that volume.

208	 Chapter 6 ■ Managing Shared Data

If you deploy your iSCSI target in a VM, you store the iSCSI virtual disk
inside a volume that is held within a VHDX in the Hyper-V host. This volume
holding the VHDX file should also be protected using hardware RAID deployed
on the VM host.

The iSCSI target in Windows Server has not been the subject of much
development in recent times. It works and is a great solution for test labs or
proof-of-concept deployments. In production, you may want to use other iSCSI
vendors with more up-to-date and better-performing products. With third-party
iSCSI products delivering your iSCSI targets, you should be able to use the iSCSI
initiator in Windows to connect to any iSCSI target.

If you are to make heavy use of iSCSI, you might consider using TCP and/or
iSCSI offload, moving some of the processing into hardware in your NICs. To
check whether offloading is in operation on a host, you can use the netstat -t
command to see which connections to your host are making use of any offload.
TCP offloading has been an issue in some cases, so you need to check carefully
that enabling a hardware-based offload solution works in your network. For more
on performance tuning your network adapters, take a look at docs.microsoft
.com/en-us/windows-server/networking/technologies/network-subsystem/

net-sub-performance-tuning-nics.
In this section, you create an iSCSI target on SRV2 and then use it via the

iSCSI initiator on FS1.

Before You Start
This demonstration makes use of two servers: FS1.Reskit.Org and SRV2.Reskit.
Org. You create an iSCSI virtual hard disk on SRV2 and set up an iSCSI target for
this virtual hard disk. You then use the iSCSI initiator on FS1 to connect to the
iSCSI target. You also want DC1.Reskit.Org online to enable DNS name resolution.

This section also makes use of a new physical disk within the SRV2 host.
Assuming you are using Hyper-V to host SRV2, adding a new disk is easy, as
you saw in the Chapter 5’s “Managing Disks and Volumes” section. If you are
using Hyper-V, you can run the following code on your Hyper-V host:

0. Add additional disk to hold iSCSI VHD to SRV2 VM
Run this on the Hyper-V VM Host in an elevated console
Stop the VM
Stop-VM -VMName SRV2 -Force
Get File location for the disk in this VM
$VM = Get-VM -VMName SRV2
$Par = Split-Path -Path $VM.HardDrives[0].Path
Create a new VHD for S drive
$NewPath3 = Join-Path -Path $Par -ChildPath SDrive.VHDX
$D4 = New-VHD -Path $NewPath3 -SizeBytes 128GB -Dynamic
Work out next free slot on Controller 0
$Free = (Get-VMScsiController -VMName SRV2 |

	 Chapter 6 ■ Managing Shared Data	 209

 Select-Object -First 1 |
 Select-Object -ExpandProperty Drives).count
Add new disk to VM
$HDHT = @{
 Path = $NewPath3
 VMName = 'SRV2'
 ControllerType = 'SCSI'
 ControllerNumber = 0
 ControllerLocation = $Free
}
Add-VMHardDiskDrive @HDHT
Start the VM
Start-VM -VMName SRV2

If you created your VM as a Type 2 Hyper-V VM, there is no need to start
(or restart) it. If you created your VMs using the Reskit build scripts noted in
Chapter 1, then the VM is of Type 1 and does need to be turned off to add more
volumes.

Once you have added the virtual hard disk to the VM and restarted the VM,
you need to log on to SRV2 and create a new volume in the new disk, as follows:

Run on SRV2 once disk added
Find the new disk
$NewDisk = Get-Disk |
 Where-Object PartitionStyle -eq Raw
$NewDisk |
 Initialize-Disk -PartitionStyle GPT

Create a S: volume in newly added disk
$NVHT1 = @{
 DiskNumber = $NewDisk.Number
 FriendlyName = 'iSCSI'
 FileSystem = 'NTFS'
 DriveLetter = 'S'
}
New-Volume @NVHT1

With these steps, you have added a new (virtual) hard disk to the SRV2 VM.
You are now ready to create an iSCSI target on SRV2.

Installing the iSCSI Target Feature on SRV2
Because you are setting up SRV2 to expose an iSCSI target, you need to install
the FS-ISCSITarget-Feature feature on SRV2, using the Install-WindowsFeature
command.

1. Installing the iSCSI target feature on SRV2
Import-Module -Name ServerManager -WarningAction SilentlyContinue

210	 Chapter 6 ■ Managing Shared Data

$WFHT = @{
 Name = 'FS-iSCSITarget-Server'
 IncludeManagementTools = $true
}
Install-WindowsFeature @WFHT

You can see the output of this snippet in Figure 6.10.

Exploring iSCSI Target Server Settings
With the iSCSI target feature installed, you can view the iSCSI target server
settings on SRV2 by using Get-IsciTargetServerSettings.

2. Exploring default iSCSI target server settings
Import-Module -Name IscsiTarget
Get-IscsiTargetServerSetting

Figure 6.11 shows the output from these commands.

As you can see, the target is currently not clustered and can be reached via
both an IPv4 address and an IPv6 address. With more virtual NICs in your VM
and with IPv6 enabled, you may see more portal addresses.

Creating a Folder on SRV2
You next need to create a folder on SRV2 to hold the iSCSI virtual disk, using
the New-Item command.

Figure 6.11: Viewing iSCSI target server settings

Figure 6.10: Installing the iSCSI target feature

	 Chapter 6 ■ Managing Shared Data	 211

3. Creating a folder on SRV2 to hold the iSCSI virtual disk
$NIHT = @{
 Path = 'S:\iSCSI'
 ItemType = 'Directory'
 ErrorAction = 'SilentlyContinue'
}
New-Item @NIHT | Out-Null

Creating an iSCSI Virtual Disk
To create the iSCSI virtual hard disk, you use the New‑IscsiVirtualDisk command
as follows:

4. Creating an iSCSI Virtual Disk
Import-WinModule -Name IscsiTarget
$LP = 'S:\iSCSI\SalesData.Vhdx'
$LN = 'SalesTarget'
$VDHT = @{
 Path = $LP
 Description = 'LUN For Sales'
 SizeBytes = 500MB
}
New-IscsiVirtualDisk @VDHT

You can view the output from this snippet in Figure 6.12.

Figure 6.12: Creating an iSCSI virtual disk

212	 Chapter 6 ■ Managing Shared Data

With this snippet, you create a new iSCSI virtual disk of 500MB. In produc-
tion, you would probably create much larger volumes. In most cases, you would
probably configure the virtual disk to use all the space on the physical drive.
In production, you would probably implement hardware Redundant Array
of Independent Disks (RAID) on the storage server to enable the iSCSI target
virtual disk to be fault tolerant.

Creating the iSCSI Target on SRV2
With the iSCSI virtual disk created, you create an iSCSI target on SRV2 by using
New-IscsiServerTarget.

5. Creating the iSCSI target on SRV2
$THT = @{
 TargetName = $LN
 InitiatorIds = 'IQN:*'
}
New-IscsiServerTarget @THT

You can see the output of this command in Figure 6.13.

Figure 6.13: Creating an iSCSI target

	 Chapter 6 ■ Managing Shared Data	 213

This command creates an iSCSI target, which points to the iSCSI virtual disk.
In creating the target, you specify a wildcard initiator ID for initiators allowed
to connect to this target. This allows any initiator to connect to the disk, which
simplifies deployment. You can specify DNS host names or IP addresses allowed
to connect.

Creating iSCSI Disk Target Mapping on SRV2
The final step in deploying the target is creating a mapping from the iSCSI
target to the virtual iSCSI hard disk, with the command.

6. Creating iSCSI disk target mapping on SRV2
Add-IscsiVirtualDiskTargetMapping -TargetName $LN -Path $LP

With the mapping created, SRV2 is now configured as an iSCSI target server.
It can allow any iSCSI initiator to connect to this new LUN. To demonstrate
using this iSCSI target, you can use any iSCSI initiator.

To see the Windows Server iSCSI initiator in action, complete the remaining
steps in this section on FS1.

Configuring the iSCSI Service on SRV2
With an iSCSI target created on SRV2, you can now access it using the built-in
Windows iSCSI initiator on FS1. The iSCSI initiator service is installed in Windows
Server 2019 by default, although the service is configured to not start. Enter the
following commands to start the service and to set the service to start automat-
ically after restarting the host:

7. Configuring the iSCSI service to auto start, then start the service
Run on FS1
Set-Service -Name MSiSCSI -StartupType 'Automatic'
Start-Service -Name MSiSCSI

If your iSCSI initiator (client) is Windows 10, then feature updates can, and
do, reset the MSiSCSI service’s startup type to the default (not started). The
startup type for servers does not change. Depending on your host, you may
see the occasional warning message “Waiting for the Service ‘Microsoft iSCSI
Initiator Service (MSiSCSI)’ to start....”

Setting Up the iSCSI Portal
To use the iSCSI target on FS1, you need to set up the iSCSI portal, which
is the mechanism iSCSI uses to find iSCSI targets. To do this, use the
New-IscsiTargetPortal command.

214	 Chapter 6 ■ Managing Shared Data

8. Setup portal to SRV2
Import-Module -Name Iscsi -WarningAction SilentlyContinue
$PHT = @{
 TargetPortalAddress = 'SRV2.Reskit.Org'
 TargetPortalPortNumber = 3260
}
New-IscsiTargetPortal @PHT

Creating the iSCSI target portal produces the output you can see in Figure 6.14.
An iSCSI initiator uses the portal to discover the iSCSI targets on the remote

machine.

Viewing the SalesTarget iSCSI Disk
Now that you have the iSCSI initiator set up, you can view the iSCSI target on
SRV2.

9. Find and view the SalesTarget on portal
$Target = Get-IscsiTarget
$Target

The output from this snippet, in Figure 6.15, shows the Sales Target LUN that
is now available via the iSCSI portal.

Figure 6.15: Viewing the SalesTarget

Figure 6.14: Creating the iSCSI target portal

	 Chapter 6 ■ Managing Shared Data	 215

Connecting to the Target on SRV2
Connecting to the target enables FS1 to have access to the iSCSI disk on SRV2.

10. Connecting to the target on SRV2
$CHT = @{
 TargetPortalAddress = 'SRV2.Reskit.Org'
 NodeAddress = $Target.NodeAddress
}
Connect-IscsiTarget @CHT

This snippet connects FS1 to the iSCSI target held on SRV2. The output, in
Figure 6.16, shows details of the iSCSI connection.

You can see the iSCSI initiator and target address in the figure. Before
proceeding, it is useful to check to ensure you have set up the target (and
initiator) correctly.

Although it’s not shown in these snippets, another feature you could add to
the solution is Multipath IO (MPIO), which enables you to create multiple paths
between your file server and the underlying iSCSI file server. For more details
on MPIO, see whatis.techtarget.com/definition/Multipath-I-O-MPIO. And for
more detail on using MPIO with the Windows iSCSI initiator, see petri.com/
using-mpio-windows-server-iscsi-initiator.

Figure 6.16: Connecting to the SalesTarget

216	 Chapter 6 ■ Managing Shared Data

Viewing the iSCSI Virtual Disk
Now that you have connected to the iSCSI target on SRV2, you can use Get-Disk
to view the contents of the iSCSI virtual disk.

11. Viewing iSCSI disk from FS1 on SRV2
$ISD = Get-Disk |
 Where-Object BusType -eq 'iscsi'
$ISD |
 Format-Table -AutoSize

Figure 6.17 shows the output of this snippet.

As you can see in the figure, this disk is raw (no partitions have yet been cre-
ated on it). Additionally, the disk does not have a filesystem and is not online.
This example demonstrates that the iSCSI virtual disk, exposed as an iSCSI
target on SRV2, is seen in FS1 as just another disk.

Setting the Disk Online and Making It Read/Write
You use the Set-Disk command to ensure both that the disk is online and that
it is read/write.

12. Turning disk online and make R/W
$ISD |
 Set-Disk -IsOffline $False
$ISD |
 Set-Disk -IsReadOnly $False

This snippet sets the disk to be online and ensures that it is read/write. To
verify this, you could repeat the previous step to view the properties of this disk.

Creating a Volume on FS1
The disk, when viewed from FS1, is now online and partitioned but has no
volumes created. That is simple to do, as shown here:

13. Formatting the iSCSI volume on FS1
$NVHT = @{

Figure 6.17: Viewing the disk

	 Chapter 6 ■ Managing Shared Data	 217

 FriendlyName = 'SalesData'
 FileSystem = 'NTFS'
 DriveLetter = 'S'
}
$ISD |
 New-Volume @NVHT

You can see the output from this snippet in Figure 6.18.

With this step completed, the iSCSI disk on SRV2 is now formatted and available
within FS1. From FS1, the iSCSI disk appears to be another disk on which you
can format and create volumes. This disk is small: 500GB with a usable capacity
of 467.78GB. In production, you would probably create much larger volumes.

Using the iSCSI Drive on FS1
With the steps so far, you have set up an S: drive on FS1, which is the iSCSI
disk that you previously set up on SRV2. You can use this as if it were a locally
attached disk on FS1.

14. Using the iSCSI drive on FS1
New-Item -Path S:\ -Name SalesData -ItemType Directory |
 Out-Null
'Testing iSCSI 1-2-3' | Out-File -FilePath S:\SalesData\Test.Txt
Get-ChildItem -Path S:\SalesData

You can see in Figure 6.19 that the S: volume is available, and you can use it
just as if it were locally attached.

In the snippet, you created a file on the S: drive and then used Get‑ChildItem
to verify that the file now exists on the S: volume.

This completes the task of creating an iSCSI disk on SRV2 and using it from FS1.
This section created a single iSCSI client, FS1, for the iSCSI target held on SRV2.

Figure 6.18: Creating an S: drive

218	 Chapter 6 ■ Managing Shared Data

Setting Up a Clustered Scale-Out File Server

In this section, you leverage the iSCSI disk you created in “Creating and Using
an iSCSI Target” and create a clustered scale-out file server (SOFS) using both
FS1 and FS2. You also create a continuously available SMB3 file share on the
SOFS cluster.

Once you have both FS1 and FS2 set up and are able to view the iSCSI target
on SRV2, you can cluster the two hosts and create the SOFS based on the cluster.

The Scale-Out File Server is based on Microsoft’s Failover Clustering tech-
nology. Failover Clustering was first introduced with Windows NT4, where
there was a very restricted Hardware Compatibility List (HCL). With the later
versions, Microsoft created a cluster validation wizard to check the servers. As
long as the cluster validation test is successful, the cluster is eligible for Microsoft
support, and for large organizations, clustering and support are both important.

For some background on the SOFS feature, see docs.microsoft.com/en-us/
windows-server/failover-clustering/sofs-overview.

Once you create a failover cluster, you can build an SOFS on top. The SOFS relies
on the clustering technology to deliver highly available and high-performance
storage across your network.

Before You Start
This example uses three systems:

■■ SRV2: This is a domain-joined server hosting an iSCSI target (which you
set up in “Creating and Using an iSCSI Target”).

■■ FS1: This is a domain-joined server that is to be part of a two-node failover
cluster.

■■ FS2: This is another domain-joined server that you add to the two-node
cluster. You configure the cluster from this host. When you use this host,
ensure you log in using credentials with domain administration privi-
leges, Reskit\Administrator.

Figure 6.19: Using the iSCSI S: drive

	 Chapter 6 ■ Managing Shared Data	 219

Since this section relies on Active Directory and DNS, you also need the
domain controller and DNS server, DC1, online.

To set up the failover cluster, you also need to create the iSCSI environment
on FS2. The setup for FS2 is similar to the setup of FS1 carried out in “Creating
and Using an iSCSI Target.”

Setting Up the iSCSI Portal for FS2
To set up the cluster, you need to configure FS2 to have access to the iSCSI shared
disk. You set up FS2 as follows:

1. Setup FS2 to support ISCSI
Adjust the iSCSI service to auto start, then start the service.
Set-Service MSiSCSI -StartupType 'Automatic'
Start-Service MSiSCSI

This snippet ensures that the iSCSI service on FS2 is started and configured
to restart this service automatically whenever you restart the host.

Configuring the iSCSI Portal for FS2
With the iSCSI service started, configure the service on FS2, as follows:

2. Setup iSCSI portal to SRV2
$PHT = @{
 TargetPortalAddress = 'SRV2.Reskit.Org'
 TargetPortalPortNumber = 3260
}
New-IscsiTargetPortal @PHT
Get the SalesTarget on portal
$Target = Get-IscsiTarget
Connect to the target on SRV2
$CHT = @{
 TargetPortalAddress = 'SRV2.Reskit.Org'
 NodeAddress = $Target.NodeAddress
}
Connect-IscsiTarget @CHT
$ISD = Get-Disk |
 Where-Object BusType -eq 'iscsi'
$ISD |
 Set-Disk -IsOffline $False
$ISD |
 Set-Disk -Isreadonly $False

You can see the output of these commands in Figure 6.20. You may see
different values for TargetSideIdentifier, but that is not significant.

220	 Chapter 6 ■ Managing Shared Data

These commands establish the iSCSI portal for FS2 and connect to the iSCSI
disk, similarly to how you configured FS1 in the “Creating and Using an iSCSI
Target” section earlier in this chapter.

Note that you had to use Set-Disk twice to ensure that the disk is both read/
write and online. The Set-Disk command does not allow you to specify both
parameters at the same time.

Figure 6.20: Setting up the iSCSI portal

	 Chapter 6 ■ Managing Shared Data	 221

Adding the File Server Role to FS2
In “Adding File Server Features to FS1,” you added key file server-related Windows
features to FS1. Because you are creating a clustered file server, you add those
same features to FS2, like this:

3. Add File Server features to FS2
Import-Module -Name ServerManager -WarningAction SilentlyContinue
$Features = 'FileAndStorage-Services',
 'File-Services',
 'FS-FileServer'
Install-WindowsFeature -Name $Features -IncludeManagementTools |
 Out-Null

Adding Clustering Features to FS1/FS2
When installing Windows Server, the setup process by default does not install
the Failover Clustering feature. You use the Server Manager module’s Install-
WindowsFeature command to install the feature on both FS1 and FS2. Run this
on FS2.

4. Adding clustering features to FS1/FS2
Import-Module -Name ServerManager -WarningAction SilentlyContinue
$IHT = @{
 Name = 'Failover-Clustering'
 IncludeManagementTools = $true
}
Install-WindowsFeature -ComputerName FS2 @IHT
Install-WindowsFeature -ComputerName FS1 @IHT

Figure 6.21 shows the output from this snippet.

Figure 6.21: Installing clustering on FS1 and FS2

222	 Chapter 6 ■ Managing Shared Data

As you can see from the output, you need to restart Windows after you install
the Failover Clustering feature.

Restarting FS1 and FS2
Adding the Failover Clustering feature to both hosts requires a reboot to complete
the installation.

5. Restarting both FS1, FS2
Restart-Computer -ComputerName FS1 -Force
Restart-Computer -ComputerName FS2 -Force

Testing the Cluster Nodes
Microsoft added failover clustering with Windows NT4 but with a restricted
set of supported hardware. Later, Microsoft created a cluster test tool—if your
cluster passes the test, Microsoft can support it. Full Microsoft support is essential
for many larger organizations that run mission-critical workloads based on
failover clustering.

Before you create a failover cluster (using FS1 and FS2), you test the cluster
members to determine whether the systems can be clustered in a supported
fashion, using the Test-Cluster command.

6. Testing the Cluster Nodes
Import-Module -Name FailoverClusters -WarningAction SilentlyContinue
$CheckOutput = 'C:\Foo\Clustercheck'
Test-Cluster -Node FS1, FS2 -ReportName $CheckOutput | Out-Null

This snippet, which produces no console output, tests the cluster. When setting
up a cluster, you should ensure that the test is successful. If it is not, then you
need to do some additional work to overcome any deficiencies that the Test-
Cluster output shows.

With this snippet, you import the FailoverClusters module manually. This
module is not supported natively in PowerShell 7, but its commands work well
using the Windows PowerShell compatibility feature described in Chapter 2.

Viewing Cluster Validation Test Results
Once the tests are complete, you can view the results generated by the Test-
Cluster command.

7. View the cluster validation test results
$COFILE = "$CheckOutput.htm"
Invoke-Item -Path $COFILE

	 Chapter 6 ■ Managing Shared Data	 223

You can view some of the output from this command in Figure 6.22.

The cluster validation report is long—there are a large number of tests that
Microsoft has specified are necessary in order to support the cluster. So long as
the tests are all successful, you can proceed to create the cluster.

Figure 6.22: Viewing cluster test results

224	 Chapter 6 ■ Managing Shared Data

This snippet also omits any explicit storage testing. Depending on the disks
you plan to add to your cluster, disk testing could mean some downtime, partic-
ularly if you are updating an existing cluster. To create the scale-out file server,
you do not need to do any testing, so you can skip this testing.

For more information about cluster validation, see docs.microsoft.com/
en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/

jj134244(v=ws.11).
As you can see, in this case, there were three tests carried out by the command,

and all tests were successful. This means you are ready to create the cluster.
One issue that arises a lot when creating clusters is that the two nodes may

not have the same set of updates. The Test-Cluster command makes the check
to ensure that the hosts are up-to-date. You may find the PSWindowsUpdate
module (available from the PowerShell Gallery; see www.powershellgallery.
com/packages?q=pswindowsupdate) might be useful to help you to ensure that
both FS1 and FS2 are up-to-date before proceeding to create a cluster.

A tip to simplify successful testing is to remove the Windows Defender service.
Removing this service minimizes the issue of incompatible updates occurring
while you are creating the cluster. If you do remove this service while you are
creating the SOFS, be sure to re-enable it after you finish installing the cluster.
As an alternative, you could use the -Ignore parameter and ignore the Validate
Software Update Levels test, but that might miss other important updates.

Creating the Cluster
Once the cluster check is completed successfully, you can create the actual
cluster, using the New-Cluster command.

8. Creating the Cluster
$NCHT = @{
 Name = 'FS'
 Node = 'FS1.Reskit.Org', 'FS2.Reskit.Org' StaticAddress =
'10.10.10.100'
}
New-Cluster @NCHT | Out-Null

This snippet creates a cluster with a cluster name of FS and a cluster address
of 10.10.10.100.

Configuring a Quorum Share on DC1
Windows Failover Clustering provides high availability for your workloads.
Cluster resources are highly available as long as the host is available.

You can configure a quorum witness to avoid issues that can arise with mul-
tiple nodes. To understand more about failover clustering and quorums, see
docs.microsoft.com/windows-server/storage/storage-spaces/understand-

quorum.

	 Chapter 6 ■ Managing Shared Data	 225

One approach is for you to configure your cluster to have a file share witness.
To do this, you configure a file share witness, and to do that, you must first cre-
ate a new file share on DC1, as follows:

9. Configure a share on DC1 to act as quorum
$SBDC1 = {
 New-Item -Path C:\Quorum -ItemType Directory
 New-SmbShare -Name Quorum -Path C:\Quorum -FullAccess Everyone
}
Invoke-Command -ComputerName DC1 -ScriptBlock $SBDC1 | Out-Null

Setting the Cluster Witness
With the share created on DC1, you can configure the cluster to use the file share
as the quorum witness, as follows:

10. Set the cluster Witness
Set-ClusterQuorum -NodeAndFileShareMajority \\DC1\quorum | Out-Null

Ensuring that iSCSI Disks Are Connected
If and when you reboot both servers, it is useful to ensure that the iSCSI disks
are connected to both cluster nodes, like this:

11. Ensuring iSCSI disks are connected
$SB = {
 Get-ISCSITarget |
 Connect-IscsiTarget -ErrorAction SilentlyContinue
}
Invoke-Command -ComputerName FS1 -ScriptBlock $SB
Invoke-Command -ComputerName FS2 -ScriptBlock $SB

Note that this snippet uses the Invoke-Command cmdlet. By default, the script
block is executed using a Windows PowerShell 5.1 remoting endpoint. This
works well for commands in the iSCSI module, since this module is not sup-
ported natively by PowerShell 7.

Adding the iSCSI Disk to the Cluster
Now you can add the iSCSI disk to the failover cluster.

12. Adding the iSCSI disk to the cluster
Get-Disk |
 Where-Object BusType -eq 'iSCSI'|
 Add-ClusterDisk

226	 Chapter 6 ■ Managing Shared Data

You can see the results of adding this iSCSI disk to your cluster in Figure 6.23.

Moving the iSCSI Disk into the CSV
For both nodes in the cluster to share data in the iSCSI disk, you must move the
disk into the cluster shared volume (CSV), using the Add-ClusterSharedVolume
command.

13. Move disk into CSV
Add-ClusterSharedVolume -Name 'Cluster Disk 1'

You can see the result of this snippet in Figure 6.24.

Once you add the disk to the CSV, the iSCSI volume (which is stored phys-
ically on SRV2) is available to the cluster, and you can use it from both nodes.
The CSV is, in effect, a filesystem that coordinates I/O from any cluster member.

Adding the SOFS Role to the Cluster
To create a clustered scale-out file server, you need to add the Cluster Scale-Out
File Server role on FS2.

14. Add SOFS role to Cluster
Import-Module -Name ServerManager -WarningAction SilentlyContinue
Add-WindowsFeature File-Services -IncludeManagementTools | Out-Null
Add-ClusterScaleOutFileServerRole -Cluster RKFS

This snippet ensures that the File-Services feature is created and then adds
the SOFS role to the FS cluster.

Figure 6.23: Adding an iSCSI disk to the cluster

Figure 6.24: Adding the new disk to the CSV

	 Chapter 6 ■ Managing Shared Data	 227

Creating a Folder
With the cluster set up and the iSCSI volume mounted in both nodes, you can
use the storage as if it were local.

15. Create a folder and give Sales Access to the folder
Install-Module -Name NTFSSecurity -Force | Out-Null
$HvFolder = 'C:\ClusterStorage\Volume1\HVData'
New-Item -Path $HvFolder -ItemType Directory |
 Out-Null
$ACCHT = @{
 Path = $HvFolder
 Account = 'Reskit\Sales'
 AccessRights = 'FullControl'
}
Add-NTFSAccess @ACCHT

Note that you created the Sales domain security group in “Managing NTFS
Permissions” in Chapter 5.

Adding a Continuously Available Share
With the SOFS set up, you can add a continuously available share.

16. Adding a Continuously Available share to the entire cluster
$SMBSHT2 = @{
 Name = 'SalesHV'
 Path = $HvFolder
 Description = 'Sales HV (CA)'
 FullAccess = 'Reskit\Sales'
 ContinuouslyAvailable = $true
}
New-SmbShare @SMBSHT2

Figure 6.25 shows the output of this snippet.

Figure 6.25: Adding a continuously available share

228	 Chapter 6 ■ Managing Shared Data

Viewing Shares from FS1
With your SOFS set up and sharing a folder (held on the iSCSI target on SRV2),
you can view the shares available from FS2.

17. View Shares on FS1 and FS2
Get-SmbShare # FOR FS1
Invoke-Command -ComputerName FS2 -ScriptBlock {Get-SmbShare}

You can see the output of this command in Figure 6.26.

As you can see in the output, the SalesHV share is set up on the cluster.
You could view the shares using Net View \\FSSOFS, which would return the
SalesHV share.

Now that you have the SOFS set up, you can use the Cluster Manager MMC
console to pause the active node, and the file server continues to work. But note
that the iSCSI target you created on SRV2 is a single point of failure (SPOF). To
avoid SPOF issues, you could ensure that the drive created on SRV2 is based on
hardware (or software) RAID.

In general, the iSCSI target is not a widely used feature of Windows Server
2019. However, many smaller organizations deploy low-cost third-party SANs
that provide both fault tolerance in the box and an iSCSI interface.

Whether or not you are using a Windows Server iSCSI target, you may use
the Windows iSCSI initiator to access an organization’s SAN if it offers an iSCSI
interface.

Figure 6.26: Viewing shares

	 Chapter 6 ■ Managing Shared Data	 229

An example of such a SAN is from Synology; see www.synology.com/
en-global/knowledgebase/DSM/tutorial/Virtualization/How_to_use_iSCSI_

Targets_on_a_Windows_Server for details on how you set up iSCSI on this
device. There are many other vendors that can offer lower-cost networked
storage based on iSCSI.

Summary

In this chapter, you have examined setting up and configuring an SMB file server
and how you can deploy an SOFS. The SOFS made use of an iSCSI target, which
you also set up. Although in this case the actual target that you built on SRV2
was not fault tolerant, you could add a degree of fault tolerance (for example,
by using RAID 5 on the underlying iSCSI partition in SRV2).

The use of the Windows-based iSCSI target in this chapter shows how easy
it is to share data using SMB-based file services within Windows, controlled
by PowerShell 7.

C H A P T E R

231

7

Printing is a function of network infrastructure so basic to daily business
operations that users just assume it is going to work the first time/every time.
Meanwhile, IT pros have the challenge of making it so.

Although there has been no real change in the way users experience printing,
its quality and speed have improved from the earliest days of the PC, when
each application had its own set of printer drivers. The evolution of Windows
has simplified printing significantly, although the printer server architecture in
Windows Server 2019 is little changed from Windows Server 2012.

In Windows, the term printer refers to what is effectively a printer queue.
Windows calls the physical printer a print device. When the application prints a
document, it sends a print job to a print spooler. This spooler holds the individual
print jobs, which may arrive faster than the print device can handle at any given
time. The spooler then sends each print job to the printing device via a printer
port, which can be either a physical port (such as LPT1:) or a network address.

With Windows Server 2019, the Print Services feature has three components.

Print server: This feature includes tools necessary to enable you to manage
one or more print servers. It includes the Print Management MMC snap-in.

Internet printing: This provides the ability to connect and print to shared
printers using the Internet Printing protocol (IPP).

LPD service: This feature installs the Line Printer Daemon (LPD) service.
Linux/Unix users can use the Line Printer Remote (LPR) service to use
shared printers via the LPD host.

Managing Printing

PowerShell 7 for IT Pros: A Guide to Using PowerShell 7 to Manage Windows® Systems, First Edition. Thomas Lee.
© 2021 John Wiley & Sons, Inc., Published 2021 by John Wiley & Sons, Inc.

232	 Chapter 7 ■ Managing Printing

This chapter covers only the Print Server feature. Neither the LPD service
nor the Internet Printing feature in Windows Server is used widely in today’s
networks.

In this chapter, you explore the following tasks:

■■ “Installing and Sharing Printers” demonstrates the complete process of
installing a physical printer on your network and sharing it.

■■ In “Publishing a Printer in AD,” once you’ve installed a printer on the
network, publishing it in Active Directory enables your users to find it.

■■ In “Changing the Spool Folder,” following best practice, you move the
print spooler file from the default temporary folder to one you configure
here.

■■ “Printing a Test Page” uses Windows Management Instrumentation (WMI),
discussed further in Chapter 9, “Using WMI and CIM cmdlets,” to gen-
erate and print a test page.

■■ The “Creating a Printer Pool” section shows how to create a printer pool
so that a single Windows printer can be associated with two or more
physical print devices.

Systems Used in This Chapter

This chapter uses two hosts.

DC1.Reskit.Org: This is a domain controller in the Reskit.Org domain that
you created in Chapter 3, “Managing Active Directory.”

PSRV.Reskit.Org: This is a Windows Server 2019 host that is a member server
in the Reskit.Org domain. In this chapter, you use this host and set it up
as a print server.

This chapter also uses two networked printers, which you install using the
chapter’s scripts.

Figure 7.1 shows the systems (and printers) in use in this chapter.
Note that all systems used in this chapter need PowerShell 7 loaded before

starting. You can do that manually, using the scripts from Chapter 1, or using
the GitHub Gist at bit.ly/Pwsh-install-1 (or use the full URL shown in the
introduction). Optionally, you can configure VS Code with the GitHub Gist at
bit.ly/Pwsh-install-2 (or use the full URL shown in the introduction).

	 Chapter 7 ■ Managing Printing	 233

Installing and Sharing Printers

When you install Windows Server, the installation process sets up several
printers on each system by default. These enable you to “print” to PDF or to
Microsoft’s XPS format. Adding applications can also add additional printers.
For example, installing the Foxit PDF reader adds the entry Foxit Reader PDF
Printer. Microsoft’s Office product also installs a OneNote printer. These addi-
tional “printers” tend to be client-side and print to the respective document
types. If you want to print to paper, you need to install, configure, and deploy
further physical printers.

Deploying a new print device involves several steps.

1.	 Obtain and install the physical printer. You need to unpack it, turn it on,
and connect it.

2.	 Obtain the print drivers for the print device and install them on the print
server. Windows ships with a large number of printer drivers, but you can
find, download, and install additional ones. The example begins with this
step.

3.	 Configure a printer port to enable the print server to send data to the print
device. This port is often a network address but can include printers attached
physically to your print server.

DC1.Reskit.Org PSRV.Reskit.Org

Port:SalesPP1
10.10.10.61

Port:SalesPP2
10.10.10.62

Printer: Sales Printer1
10.10.10.61, 10.10.10.62

Figure 7.1: Systems used in this chapter

234	 Chapter 7 ■ Managing Printing

4.	 Install the printer in Windows. This creates the printer queue and associ-
ates the queue with a driver and port.

5.	 Share the printer. You can share the printer to enable users to access it.

Before You Start
This section uses the PSRV host, a Windows 2019 server (installed with the full
Desktop Experience), with no other features loaded. You should have installed
PowerShell 7 on this server. This section makes use of Xerox printer drivers that
you can download from the Internet. For the purposes of this chapter, you don’t
need an actual Xerox print device, as all you need are the driver files (although
without the print device you are not going to see any physical output). If you
have a different manufacturer’s printer on your network, you may be able to
modify the scripts to reflect your manufacturer and the driver URL(s) along with
changes necessary to reflect how the drivers are packaged by the manufacturer.

Some printer manufacturers create installation programs that do the printer
installation via a GUI. In that case, you could run the installation program on
the printer server (for example, via RDP). Depending on the manufacturer and
how it created the installation files, you may be able to install the drivers in a
test machine and then extract the printer drivers and install them as shown here.

Installing the Print Server Feature on PSRV
You use the Install-WindowsFeature command to install the Print Server fea-
ture and the associated management tools.

1. Install the Print-Server feature on PSRV plus tools
Import-Module -Name ServerManager -WarningAction SilentlyContinue
Install-WindowsFeature -Name Print-Server -IncludeManagementTools

You can see the output of this code in Figure 7.2.

Figure 7.2: Installing the Print Server feature

	 Chapter 7 ■ Managing Printing	 235

Creating a Folder for the Print Drivers
In preparation for installing a new printer, you need to create a temporary
folder into which you can download the drivers. In this example, they are Xerox
drivers. If you install printers from a different manufacturer, be sure to use an
appropriate folder name.

2. Creating a folder for the Xerox printer drivers
$NIHT = @{
 Path = 'C:\Xerox'
 ItemType = 'Directory'
 Force = $true
 ErrorAction = 'Silentlycontinue'
}
New-Item @NIHT | Out-Null

Downloading Printer Drivers
Different printing vendors provide their drives in a variety of channels. Xerox,
for example, provides the drivers in a ZIP file that you can download using the
Background Intelligent Transfer Service (BITS).

3. Downloading printer drivers for Xerox printers
$URL = 'http://bit.ly/XDrivers'
$Target='C:\Xerox\XDrivers.zip'
Start-BitsTransfer -Source $URL -Destination $Target

In many cases, you may use a web browser to navigate to your printer manu-
facturer’s web site and search for the drivers you need.

In this example, you use a compressed URL to save space. The full URL for
the driver package is download.support.xerox.com/pub/drivers/6510/drivers/
win10x64/ar/6510_5.617.7.0_PCL6_x64.zip.

Expanding the ZIP File
In the previous step, you downloaded a ZIP file. In this step, you extract the
Xerox drivers to C:\Xerox\Drivers, as follows:

4. Expand the zip file
$Drivers = 'C:\Xerox\Drivers'
Expand-Archive -Path $Target -DestinationPath $Drivers

236	 Chapter 7 ■ Managing Printing

Installing the Drivers
Once you have expanded the driver package, you install the drivers it contains.
This specific driver package contains drivers for two Xerox printer models
(Phaser 6510 and Phaser 6515) using printui.dll.

5. Installing the drivers
$M1 = 'Xerox Phaser 6510 PCL6'
$P = 'C:\Xerox\Drivers\6510_5.617.7.0_PCL6_x64_Driver.inf\x3NSURX.inf'
rundll32.exe printui.dll,PrintUIEntry /ia /m "$M1" /f "$P"
$M2 = 'Xerox WorkCentre 6515 PCL6'
rundll32.exe printui.dll,PrintUIEntry /ia /m "$M2" /f "$P"

The Print Management module does not provide a command to add printer
drivers. You can, however, use the functionality in printui.dll to add the
printers. This DLL is part of the Print Manager GUI. This GUI’s underlying tool,
printmanagement.msc, uses the DLL to perform printer-related administration.
You use rundll32.exe to invoke the DLL, in this case to add drivers to the
Windows driver store.

In some cases, you may find that these commands produce an error, calling
rundll32.exe. If so, just rerun the command to resolve the issue.

The Xerox drivers you downloaded were contained in a ZIP file. Some printer
drivers are built into Windows and do not require downloading. Other driver
downloads may use other compression formats. Additionally, some drivers are
delivered inside an installation program you run on the print server to install
the drivers.

Adding a New Printer Port
In this example, the printer you are going to add is a networked printer. To
enable the print spooler on PSRV to send data to the printer, you first define a
new printer port.

6. Adding a new printer port
$PPHT = @{
 Name = 'SalesPP'
 PrinterHostAddress = '10.10.10.61'
}
Add-PrinterPort @PPHT

In this case, you use the IP address 10.10.10.61. This is a hard-coded address
you assign for the networked printing device. If the printer gets its IP address
details via DHCP, ensure you create a reservation. This simplifies adding a new
printer on the print server.

	 Chapter 7 ■ Managing Printing	 237

Adding a New Printer
With the drivers installed and a printer port created, you can use the Add-Printer
command to add the printer to PSRV.

7. Adding a new printer
$PRHT = @{
 Name = 'SalesPrinter1'
 DriverName = $M1
 PortName = 'SalesPP'
}
Add-Printer @PRHT

Once this has completed, you should be able to print to the printer from PSRV.

Sharing the Printer
The steps thus far allow printing only from the print server. To enable users to
access the printer remotely, you need to share it.

8. Sharing the printer
Set-Printer -Name SalesPrinter1 -Shared $True

Once you share a printer, users can begin to use it to print their documents.
You can review the printer setup either using Net View \\PSRV (from an elevated
PowerShell session) or using the printer commands.

Reviewing the Printer Configuration
The printer installation and configuration steps you have performed in this
section produce no output. Once you have finished the installation of your new
Xerox printer, you can use the relevant Get commands to review the printer
port, printer driver, and printer settings, like this:

9. Review printer configuration
Get-PrinterPort -Name SalesPP |
 Format-Table -Autosize -Property Name, Description,
 PrinterHostAddress, PortNumber
Get-PrinterDriver -Name Xerox* |
 Format-Table -Property Name, Manufacturer,
 DriverVersion, PrinterEnvironment
Get-Printer -ComputerName PSRV -Name SalesPrinter1 |
 Format-Table -Property Name, ComputerName,
 Type, PortName, Location, Shared

You can see the output of these commands in Figure 7.3.

238	 Chapter 7 ■ Managing Printing

In this section, you set up a new print server, created a printer port, and
added/shared a new printer. Your printer is now available, and your users
should be able to print to it.

Publishing a Printer in AD

Once you have a printer created and installed, you can also publish it to Active
Directory. This helps your users find the printer. You can also specify a physical
location for the printer to assist your users in finding the actual print device.

Once you publish the printer, your users can then search for published printers
based on location, as well as on capabilities (such as color printers). In larger
organizations this can be useful to enable users to find and use printers.

Before You Start
This example uses two hosts: PSRV and DC1. DC1 is a domain controller in the
Reskit.Org domain. PSRV is a Windows 2019 server that you configured as a
print server in “Installing and Sharing Printers.”

Figure 7.3: Reviewing the setup of the new printer

	 Chapter 7 ■ Managing Printing	 239

Getting the Printer Object
To publish a printer in AD, you first must create a printer object for the printer.

1. Get the printer object
Import-Module -Name PrintManagement -WarningAction SilentlyContinue
$Printer = Get-Printer -Name SalesPrinter1

PowerShell 7 does not natively support the Print Management module, but
the commands in the module work via the Windows PowerShell compatibility
mechanism discussed in Chapter 2, “PowerShell 7 Compatibility with Windows
PowerShell.” By setting the -WarningAction parameter to SilentlyContinue,
you avoid the warning message (warning that you are importing the module
via the PowerShell compatibility mechanism).

Checking the Initial Publication Status
By default, printers are not published in AD. You can check the initial publica-
tion status by examining the printer object you just created.

2. Checking the initial publication status
$Printer | Format-Table -Property Name, Published

You can see, in the output in Figure 7.4, that the SalesPrinter1 printer is not
currently shared in AD.

Publishing the Printer to AD
Publishing a printer is straightforward. Before you publish the printer, you should
use the Set-Printer command to add a location to the printer information both
held by PSRV and in AD, using the Set-Printer command, like this:

3. Publish and share the printer to AD
$Printer | Set-Printer -Location '10th floor 10E4'
$Printer | Set-Printer -Published $true

This code configures your printer with a Location value and then publishes
it in AD.

Figure 7.4: Checking on the SalesPrinter1 printer

240	 Chapter 7 ■ Managing Printing

Viewing the Printer Publication Status
Having set the printer details, you can use Get-Printer to observe the updated
configuration.

4. View the updated publication status
Get-Printer -Name SalesPrinter1 |
 Format-Table -Property Name, Location, DriverName, Published

You can use the Get-Printer command to view the key settings for your new
printer, as shown in Figure 7.5.

As you can see, the Sales printer, SalesPrinter1, is now published to the AD.

Changing the Spool Folder

The Windows print spooler receives print jobs from printer users and sends the
jobs to the print device. The print jobs that pass through the print server are
stored temporarily in a spool folder on the print server. By default, Windows
uses the folder $Env:SystemRoot\system32\spool\PRINTERS.

If you have a large print server handling a large number of printers, the
potential size of this folder could become quite large. In turn, this could result
in the system drive becoming full or full enough to affect the operation of your
print server.

To avoid this issue, and as a best practice, you should move the spool file to
another folder. This will allow you to keep your eye on the folder and possibly
leverage Filesystem Resource Manager (FSRM) to generate reports on this folder.
For a large print server, you might consider adding a disk to the server to hold
the temporary spool files and updating the spool folder configuration to point
to the new folder.

There are no PowerShell commands to enable you to change the spool folder.
The .NET Framework includes the System.Printing.PrintServer class, which
you use to set the spool folder location. By default, PowerShell does not load the
System.Printing .NET namespace, which is necessary before you can change
the spooler folder. Thus, you need to manually load the namespace and then
use the classes to update the spool folder.

Figure 7.5: Reviewing the setup of the new printer

	 Chapter 7 ■ Managing Printing	 241

You can also configure the spool folder via the registry. Both methods work.
The second method, via the registry, is probably a little faster than the first
approach, but the difference is probably negligible in practice.

Before You Start
This section uses the printer server PSRV, which you created in “Installing and
Sharing Printers.”

Loading the System.Printing Namespace
As mentioned, you need to add the System.Printing namespace explicitly to
load the classes that this namespace contains into the current PowerShell session;
you do that using the Add-Type command.

1. Loading the System.Printing namespace and classes
Add-Type -AssemblyName System.Printing

Until you add this assembly, part of .NET Core, you cannot access the classes
needed. If this assembly and the classes it contains are something you need to
use on a regular basis, consider loading it as part of your PowerShell profile.

Displaying the Initial Spool Folder
Assuming you have not yet changed the configuration of the print server, you
can use New-Object to observe the current, and default, spool folder.

2. Displaying the initial spool folder
New-Object -TypeName System.Printing.PrintServer |
 Format-Table -Property Name, DefaultSpoolDirectory

The output from this code, shown in Figure 7.6, shows the default spool folder
on the PSRV print server.

As you can see, the default spool folder is C:\Windows\system32\spool\PRINTERS.

Figure 7.6: Reviewing existing spool folder

242	 Chapter 7 ■ Managing Printing

Defining Required Permissions
To administrate the printer, you have to create a print server object using
administrative permissions. To do that, you first create an object that states the
required permissions.

3. Define the required permissions—that is, the ability to
administrate the server
$Permissions =
 [System.Printing.PrintSystemDesiredAccess]::AdministrateServer

Creating a Print Server Object
Next, you create a print server object with administrative permissions.

4. Create a PrintServer object with the required permissions
$NOHT = @{
 TypeName = 'System.Printing.PrintServer'
 ArgumentList = $Permissions
}
$PS = New-Object @NOHT # Print Server object (as admin)

Creating a New Spool Folder
To illustrate the effect of changing the spool folder, you can use New-Item to
create a new folder.

5. Create a new spool folder
$SP = 'C:\SpoolPath'
$NIHT = @{
 Path = $SP
 ItemType = 'Directory'
 Force = $true
 ErrorAction = 'SilentlyContinue'
}
New-Item @NIHT | Out-Null

Changing the Spool Folder Path
You can now change the default spool folder by updating the appropriate
property on the $PS object.

6. Changing the spool folder path
$PS.DefaultSpoolDirectory = $SP

	 Chapter 7 ■ Managing Printing	 243

Committing the Change
The updated $PS object next needs to be committed to save the change.

7. Committing the change
$PS.Commit()

The print server object is in-memory. To enable the Print Spooler service to
use the updated settings, you need to commit the changed printer object as
shown here.

Restarting the Spooler Service
Once you have updated the spool folder, use the Restart-Service command
to restart the print spooler service. The PSRV server now spools all subsequent
print jobs to the new spool folder.

8. Restart the Spooler Service to use the new folder
Restart-Service -Name Spooler

Depending on your system, you may see some warning messages. As long
as the service starts, the messages are benign.

Reviewing the Spooler Folder
Once you have restarted the spooler, users can now print jobs, and Windows
spools the print jobs to the newly specified folder. You can view this new folder:

9. Reviewing the spooler folder
New-Object -TypeName System.Printing.PrintServer |
 Format-Table -Property Name, DefaultSpoolDirectory

As you can see in the output, shown in Figure 7.7, your new spool folder is
now in operation.

Note that if there were unprinted printer jobs in the older spool folder, chang-
ing the folder name does not move those documents. You should ensure that
the existing spool folder is empty before changing the spool folder.

Figure 7.7: Reviewing the spool folder

244	 Chapter 7 ■ Managing Printing

Creating Another Spool Folder
As mentioned, there are two mechanisms for modifying the spooler folder, and
you’ve just explored the first of them, using the System.Printing.PrintServer
class. To demonstrate the second mechanism, using the registry, you need to
create another new folder in the filesystem.

10. Creating a new/different spool folder
$SPL = 'C:\SpoolViaRegistry' # different spool folder
$NIHT2 = @{
 Path = $SPL
 Itemtype = 'Directory'
 ErrorAction = 'SilentlyContinue'
}
New-Item @NIHT2 | Out-Null

Stopping the Spooler Service
Before updating the registry, use Stop-Service to stop the spooler service.

11. Stopping the Spooler service
Stop-Service -Name Spooler

Configuring the New Spool Folder
Next, you update the appropriate registry value to configure the new printer
spool folder, with Set-ItemProperty.

12. Configure the new spooler folder
$RPath = 'HKLM:\SYSTEM\CurrentControlSet\Control\Print\Printers'
$IP = @{
 Path = $RPath
 Name = 'DefaultSpoolDirectory'
 Value = $SPL
}
Set-ItemProperty @IP

Restarting the Spooler
To complete the configuration of a new spool folder, you restart the spooler service.

13. Restarting the Spooler
Start-Service -Name Spooler

	 Chapter 7 ■ Managing Printing	 245

Viewing the Results
As you did previously, you can now review the updated spool directory by
viewing the .NET PrintServer object.

14. Viewing the results
New-Object -TypeName System.Printing.PrintServer |
 Format-Table -Property Name, DefaultSpoolDirectory

As you can see in the output, shown in Figure 7.8, PSRV is now using the new
spooler folder (C:\SpoolViaRegistry).

Printing a Test Page

After deploying a new printer or after changing printer consumables, it can be
useful to print a test page. A test page shows that the printer and print server are
working and demonstrates the quality of printing performed by the print device.

There is no PowerShell command support for creating a printer test page.
However, Windows Management Instrumentation (WMI) provides a mecha-
nism to print a test page.

WMI, discussed in more detail in Chapter 9, provides the IT professional
with a great wealth of information via the hundreds of available classes. On
a Windows system, the WMI class WIN32 _ Printer contains a WMI object for
each printer in the system. This WMI object contains a method, PrintTestPage,
that you use here to generate a test page.

Before You Start
This section uses the printer server PSRV, which you created in “Installing and
Sharing Printers.”

Figure 7.8: Reviewing the spool folder after the change

246	 Chapter 7 ■ Managing Printing

Getting Printer Objects from WMI
You retrieve the printers defined on this system by using WMI (and the Get-
CimInstance command).

1. Get printer objects from WMI
$Printers = Get-CimInstance -ClassName Win32_Printer

This command returns an array of printer objects—one for each printer
defined in the system. The command returns the same printers and the same
number of printers you would see calling Get-Printer.

PowerShell 7 (and Windows PowerShell) uses a feature known as cmdlet
definition over XML, which enables PowerShell to create commands based on
WMI classes, combined with a small amount of XML. This incredibly useful
technology enabled Microsoft to create a large number of new commands
without a huge amount of effort. These commands, defined by XML contained
in CDXML files, act just like cmdlets written in C#. The commands in the Print
Management module are implemented using this technology.

The developers of the Print Management module chose which underlying
properties and methods to expose. Not all the WMI printer object properties
are exposed in the objects produced by Get-Printer. Also, there is no cmdlet to
create a printer test page even though the underlying WMI class does provide
a method to do that. You use that method in this section to create a test page.

Displaying the Number of Printers Defined
You can view the number of printers available on PSRV.

2. Display the number of printers defined on PSRV
'{0} Printers defined on this system' -f $Printers.Count

The output of this code, in Figure 7.9, shows seven printers defined on PSRV.

Getting the Sales Group Printer WMI Object
To print a test page, you first have to obtain the WMI object representing the
SalesPrinter1 printer, by using Where-Object.

3. Get the Sales Group printer WMI object
$Printer = $Printers |
 Where-Object Name -eq 'SalesPrinter1'

Figure 7.9: Displaying the number of printers

	 Chapter 7 ■ Managing Printing	 247

Display the Printer’s Details
To view the printer’s details, you can display the $Printer object.

4. Display the printer's details
$Printer | Format-Table -AutoSize

You can view the output of this command in Figure 7.10.

Printing a Test Page
To print the printer test page, you invoke the PrintTestPage method.

5. Printing a test page
Invoke-CimMethod -InputObject $Printer -MethodName PrintTestPage

WMI objects can contain methods, which are commands that act on the
underlying WMI object (or WMI class). You invoke these methods using
the Invoke-CimMethod cmdlet. In this case, the printer object has a method,
PrintTestPage, which creates a test page and sends it to the printer. Invoking the
method produces some basic output, which you can see Figure 7.11 (in addition
to printing the test page).

In the output shown in Figure 7.11, the CIM method produces a ReturnValue
of 0. This indicates the WMI method was successful. Of course, the actual test
page output as rendered by the print device is the ultimate test. WMI might
work successfully, but the printer might have issues preventing it from printing
properly. To view the details of the print jobs waiting to be printed, including
test pages, you can use the Print Manager GUI, printmanagement.msc.

Figure 7.10: Displaying the printer’s details

Figure 7.11: Printing a test page

248	 Chapter 7 ■ Managing Printing

Creating a Printer Pool

In Windows, a printer pool is a single printer associated with two or more printing
devices (each of which is assigned to a different printer port). This can be useful
in environments that generate a lot of printed output, for example a large legal
practice printing lots of long documents.

This is one of those rare cases where there are no existing commands, WMI
classes, or .NET classes that enable you to create a printer pool directly. How-
ever, the printui.dll library (added to the PSRV system when you added the
print server feature) contains functionality to create the printer pool. You used
this DLL to add a printer driver in “Installing and Sharing Printers.”

Before You Start
This section uses the printer server PSRV, which you created in “Installing and
Sharing Printers.”

Adding a Printer Port
To create a printer pool, you need at least two print devices attached via differ-
ent printer ports. You created the first port in “Installing and Sharing Printers”
and now need to create a second port.

1. Add a printer port for the printer
$P = 'SalesPrinter1' # printer name
$PP2 = 'SalesPP2' # new printer port name
Add-PrinterPort -Name $PP2 -PrinterHostAddress 10.10.10.62

Creating the Printer Pool for SalesPrinter1
To create the printer pool, you call printui.dll and tell it the printer and which
ports to use.

2. Creating the printer pool for SalesPrinter1
$PP1='SalesPP' # first port name
rundll32.exe printui.dll,PrintUIEntry /Xs /n $P Portname $P1,$P2

This code sets up a printer pool. The printer SalesPrinter1 is now served by
two ports and two printing devices.

The rundll32.exe program runs the print utility DLL. In effect, rundll
pretends to be the Printer Management GUI that uses the DLL to carry out some
action. RunDLL allows you to pass parameters to the DLL and get the DLL to do
things, such as creating a printer port.

	 Chapter 7 ■ Managing Printing	 249

For more details on how to use rundll32 with printui.dll, see docs
.microsoft.com/en-us/windows-server/administration/windows-commands/

rundll32-printui.

Viewing Resulting Details
You can view the details for this printer using Get-Printer.

3. Viewing resultant details
Get-Printer $P |
 Format-Table -Property Name, Type, DriverName,
 PortName, Shared, Published

In the output of this code, shown in Figure 7.12, you can see that the
SalesPrinter1 printer now has two ports associated and is set up in a printer
pool.

Summary

In this chapter, you have worked with Windows printing, using PowerShell
commands, WMI and .NET classes, and a Windows DLL.

You saw that the Printer Management module provided you the means to
perform common printer-related maintenance such as adding a printer. The
module, however, does not provide commands for all the activities you might
need to carry out, and therefore you need to use .NET objects and other com-
mand-line tools.

This chapter illustrates well that where there are no PowerShell 7 or Window
PowerShell commands to perform a task, you can often find other methods of
automating your environment.

Figure 7.12: Viewing printer pool details

C H A P T E R

251

8

OS virtualization is a process whereby you run an operating system instance
inside another. Your host computer and its operating system can run multiple
virtual machines, each with a different operating system and virtual hardware.
Virtualization as a concept is not new. IBM used virtualization with its Time
Sharing System OS (TSS) in the late 1960s, for example.

Microsoft’s virtualization efforts began with the purchase of Connectix and the
launch of two products: Microsoft Virtual PC and Microsoft Virtual Server. Both
products enabled you to create and use virtual machines. Microsoft Virtual PC,
version 2004, ran on Windows XP Professional and Windows 2000 Professional.
Virtual Server was an enhanced product primarily for use on servers.

Hyper-V replaced these products, although initially, it was a server-only
product. Microsoft shipped Hyper-V as a feature inside Windows Server 2008.
Subsequently, Microsoft incorporated a client version of Hyper-V into Windows
8. Today, Microsoft supports Hyper-V in versions of Windows Server, Windows
8.1, and Windows 10 (Enterprise, Professional, and Education editions of Win-
dows 10 only).

Microsoft also provides a free version of Hyper-V, the Microsoft Hyper-V
Server. This product is a bare-metal hypervisor that only runs virtual machines
and has no management GUI, very much like Windows Server installed without
the Desktop Experience (aka Server Core). After installing the Hyper-V server,

Managing Hyper-V

PowerShell 7 for IT Pros: A Guide to Using PowerShell 7 to Manage Windows® Systems, First Edition. Thomas Lee.
© 2021 John Wiley & Sons, Inc., Published 2021 by John Wiley & Sons, Inc.

252	 Chapter 8 ■ Managing Hyper-V

you perform some initial configuration using sconfig.exe and can then man-
age the server remotely using PowerShell or the Hyper-V management console
virgmgmt.msc.

With Windows Server 2019 and Windows 10, Microsoft incorporated nested
virtualization. This feature allows you to build a VM that can itself host VMs.
Nested virtualization can be useful in cases such as training—you could pro-
vide each student a single VM on a large server dedicated to the class in which
you create VMs as needed for lab work. Nested virtualization also provides
an additional layer of security that might be useful when deploying VMs in
multitenant scenarios. And for the geeks, it is pretty cool.

This chapter looks at Hyper-V running on Windows Server. If you are managing
Hyper-V in Windows 10 or using Hyper-V Server, you can use the same tools
discussed here. Some features, such as VM migration, are not available in Win-
dows 10. You can use nested virtualization and create virtual machines running
Windows Server 2019 and then use VM migration as shown in this chapter.

In this chapter, you examine the following topics:

■■ In “Installing and Configuring Hyper-V,” you start to look at Hyper-V by
installing and configuring the Hyper-V feature on Windows Server 2019.

■■ In “Creating a Hyper-V VM,” you learn that once you have a VM host up
and running, you can create a VM inside the host. You configure Hyper-V
Virtual Machine Networking. Then you look at configuring the VM
network.

■■ In “Using PowerShell Direct,” you configure and use the PowerShell Direct
(PS Direct) feature to manage a VM without network connectivity. PS
Direct enables you to run scripts inside a VM even if the VM does not
have networking configured. This is a useful part of setting up a VM.

■■ In “Configuring VM Networking,” you configure Hyper-V Virtual Machine
Networking. Then you look at configuring the VM network.

■■ In “Configuring VM Hardware,” you learn that once you have a VM
created, you can use commands in the Hyper-V Module to configure the
virtual hardware on your VMs.

■■ In “Implementing Nested Virtualization,” you learn that nested virtual-
ization allows you to install Hyper-V inside a Hyper-V VM, running a
VM inside another VM. In this chapter, you explore nested virtualization
by enabling this feature on the HVDirect VM and then adding the Hyper-V
role to the VM.

■■ In “Using VM Checkpoints,” you learn that a checkpoint is a snapshot of
a VM’s state at a given time. You can create multiple checkpoints and move
between them.

	 Chapter 8 ■ Managing Hyper-V	 253

■■ In “Using VM Replication,” you learn that Hyper-V Replica (HVR) is a
feature of Hyper-V that creates a full replica of a VM for disaster recovery.

■■ In “Managing VM Movement,” you learn that Hyper-V allows you to
move either a VM or a VM’s storage to a different location or onto a dif-
ferent host.

■■ In “Measuring VM Resource Usage,” you look at monitoring resources
used by a VM. In this final section, you learn how to monitor the resources
that each VM uses.

Systems Used in This Chapter

This chapter uses three hosts:

DC1.Reskit.Org: This is a domain controller in the Reskit.Org domain, which
you created in Chapter 3, “Managing Active Directory.”

HV1.Reskit.Org, HV2.Reskit.Org: These are two Windows Server 2019
hosts—each is a member server in the Reskit.Org domain. In this chapter,
you use these hosts to install and manage Hyper-V virtualization.

Figure 8.1 shows the systems in use in this chapter.

If you create HV1 and HV2 using the build scripts at github.com/doctordns/
ReskitBuildScripts, make sure you adjust the amount of virtual RAM to

DC1.Reskit.Org

HV1.Reskit.Org HV2.Reskit.Org

Figure 8.1: Systems used in this chapter

254	 Chapter 8 ■ Managing Hyper-V

allocate to both HV1 and HV2. Having 4GB on each of these VMs is recommended,
and more is preferable.

Note that all systems used in this chapter need PowerShell 7 (and VS Code)
loaded before starting. You can do that manually using the scripts from Chapter 1,
“Establishing a PowerShell 7 Administrative Environment.”

Optionally, you can configure VS Code as shown in Chapter 1.

Installing and Configuring Hyper-V

Hyper-V is a Windows Server feature that you can install on Windows Server
2019 and Windows Server 2016. On supported editions of Windows 10, the
Hyper-V client is an optional feature, and you install it differently.

You can install the Hyper-V management tools independently; doing so pro-
vides the ability for local and remote administration. And with the management
tools, you have the choice of using the GUI or using PowerShell 7. If you choose
to use Hyper-V with Windows 10, see docs.microsoft.com/virtualization/
hyper-v-on-windows/quick-start/enable-hyper-v for more information on
installing Hyper-V.

Before You Start
In this section, you install the Hyper-V feature on the HV1 server. HV1 is a Windows
Server 2019 Datacenter host installed with the Desktop Experience. You should
add PowerShell 7 and, optionally, VS Code to this host before proceeding.

Assuming you are using Hyper-V to host the HV1 VM, after you create DC1 as
a basic, domain-joined host, you should then add PowerShell 7 and the Hyper-V
feature. You can configure the HV1 VM as follows:

0. Configure HV1 VM
Run on the Hyper-V Host running HV1
Stop-VM -VMName HV1
Enable nested virtualization and set processor count for HV1
$VMHT = @{
 VMName = 'HV1'
 ExposeVirtualizationExtensions = $true
 Count = 4
}
Set-VMProcessor @VMHT
Set VM Memory for HV1
$VMHT = [ordered] @{
 VMName = 'HV1'
 DynamicMemoryEnabled = $true
 MinimumBytes = 4GB
 StartupBytes = 4GB
 MaximumBytes = 6GB
}
Set-VMMemory @VMHT
Start-VM -VMName HV1

	 Chapter 8 ■ Managing Hyper-V	 255

Installing the Hyper-V Feature on HV1
The first step in configuring a Windows Server 2019 host to support Hyper-V
is to use Install-WindowsFeature to install both Hyper-V and the necessary
management tools.

1. Install the Hyper-V feature on HV1
Import-Module -Name ServerManager -WarningAction SilentlyContinue
Install-WindowsFeature -Name Hyper-V -IncludeManagementTools

You can view the output of this code in Figure 8.2.

In most cases, you want to install both the feature and the tools on each
Hyper-V host. You can also install the management tools separately where you
need them by installing the Hyper-V RSAT tools.

Rebooting HV1
As you can see in the output in Figure 8.2, you need to reboot HV1 to complete
the installation of Hyper-V.

2. Reboot HV1 to complete the installation
Restart-Computer

Creating Folders to Hold VM Disks and VM Details
Hyper-V provides control over where to store VM configuration details and VM
hard disks. To see this for yourself, create some new folders using New-Item.

3. Create new folders to hold VM details and disks
$VMS = 'C:\VM\VMS'
$VHDS = 'C:\VM\VHDS\'
New-Item -Path $VMS -ItemType Directory -Force | Out-Null
New-Item -Path $VHDS -ItemType Directory -force | Out-Null

Figure 8.2: Installing Hyper-V on HV1

256	 Chapter 8 ■ Managing Hyper-V

If you use the -Force parameter when creating a new folder, PowerShell
automatically creates any intermediate folders in the path. In this case, you are
creating C:\VM\VMS, and using -Force creates both the C:\VM and C:\VM\VMS folders.

Building a Configuration Hash Table
You can set a number of separate configuration items on your Hyper-V host. You
use Set-VMHost to apply these settings and begin by creating a splatting hash
table with some of the configuration options given nondefault values. Then you
pass the hash table to Set-VMHost to configure the options specified there. The
complete snippet looks like this:

4. Build Hash Table to configure the VM Host
$VMCHT = @{
Where to store VM configuration files
 VirtualMachinePath = $VMS
Where to store VHDx files
 VirtualHardDiskPath = $VHDS
Enable NUMA spanning
 NumaSpanningEnabled = $true
Enable Enhanced Session Mode
 EnableEnhancedSessionMode = $true
Specify Resource metering save interval
 ResourceMeteringSaveInterval = (New-TimeSpan -Hours 2)
}
Set-VMHost @VMCHT

There are 15 configuration settings you can update using the Set‑VMHost
command. For more details on the command and the options you can set, see
docs.microsoft.com/powershell/module/hyper-v/set-vmhost. For Microsoft’s
explanation of splatting in PowerShell 7, see docs.microsoft.com/powershell/
module/microsoft.powershell.core/about/about _ splatting?view=powershell-7.

Reviewing Key VM Host Settings
You can review some of the VM host settings using the GUI, or you can review
or you can review them all using all using Get-VMHost. To see the updated set-
tings for your host, you can use this syntax:

5. Review key VMHost settings
Get-VMHost |
 Format-Table -Property 'Name', 'V*Path','Numasp*', 'Ena*','RES*'

This code produces the output you can see in Figure 8.3.

	 Chapter 8 ■ Managing Hyper-V	 257

With some objects, selecting properties can be challenging, especially when
you have long property names. As shown in the output, you can “cheat” a bit
when specifying the property names with wildcards. As an alternative, you
could create a string array holding the full names of all the properties to display
and pass that to Format-Table. For production scripts, you may want to spell
out explicitly the name of the properties to view.

Creating a Hyper-V VM

Once you have a VM host up and running, you can create a VM inside the host.
To create a Hyper-V VM and install an operating system as part of the process,
you need a bootable OS installation ISO file. You can download an ISO image for
Window Server 2019 from the Microsoft Evaluation Center web site at microsoft.
com/evalcenter/evaluate-windows-server-2019.

This section uses a Windows Server ISO image. As an alternative, Micro-
soft’s Evaluation Center also provides a virtual disk file you can use to build a
preconfigured VM.

Before You Start
This section uses the HV1 host, which you configured in “Installing and
Configuring Hyper-V.” It also uses an ISO image of Windows Server, a 180-day
evaluation edition downloaded from the Microsoft Evaluation Center.

The filename of the ISO can (and often does) vary depending on your particular
image source and when you download it. You can use the same ISO image in
this section that you used to create the other VMs used throughout this book.
For the purposes of this chapter, a specific filename for the ISO image is used.
After downloading the ISO image, you store the image as C:\ISO\WinSrv2019.ISO.

Creating Variables
You start this section by setting values for key variables to be used later in this
section, as follows:

1. Set up the VM name and paths
$VMname = 'HVDirect'

Figure 8.3: Reviewing VM host settings

258	 Chapter 8 ■ Managing Hyper-V

$VMLocation = 'C:\VM\VMs'
$VHDlocation = 'C:\VM\Vhds'
$VHDPath = "$VHDlocation\HVDirect.Vhdx"
$ISOPath = 'C:\ISO\WinSrv2019.ISO'

These variables are used in creating a VM. $ISOPath is the path name for the
Windows Server 2019. This section assumes a specific filename, although the
actual name of the file you download may vary depending on your source and
when you do the download. You can either change the file name of the ISO image
or change the value you assigned to $ISOPath to match your actual filename.

Verifying That the ISO Image Exists
To verify that the ISO image is available, you can use Test-Path.

2. Verify drive contents
If (-Not (Test-Path -Path $ISOPath)) {
 Throw "ISO Image [$ISOPath] NOT found"
}

The Test-Path cmdlet returns a value of True (if the file exists) or False. If
for some reason the ISO file is not there, the code throws an exception. If the
file is there, this code produces no output, and you move on to the next step.

Importing the DISM Module
Microsoft’s Windows Deployment Image Servicing and Management (DISM)
module is a set of tools that help you to manage Windows images as part of
deployment. In this section, you use DISM to obtain the versions of Windows that
can be installed from your ISO image. A typical ISO image contains Windows
Server Standard and Windows Server Datacenter, with and without the Desktop
Experience. This book uses Windows Server Datacenter with Desktop Experience.

The DISM module is one of the older Windows PowerShell modules that
is not natively supported within PowerShell 7. Nevertheless, you can use the
module based on the Windows PowerShell compatibility feature described in
Chapter 2. The Import-Module statement looks like this:

3. Import the DISM Module
Import-Module -Name DISM -WarningAction SilentlyContinue

Running this command normally produces a warning message that the
module has been loaded using a compatibility remoting session (as described in
Chapter 2, “PowerShell 7 Compatibility with Windows PowerShell”). To avoid
this warning, you can use the -WarningAction parameter to tell PowerShell
not to display it.

	 Chapter 8 ■ Managing Hyper-V	 259

Mounting the ISO Image
An ISO image represents a bootable DVD containing the Windows Installation
media. You could burn the image to a physical CD or put the image on a USB
stick for use in installing Windows on physical hardware. You can also mount
the ISO image within Windows as if it were an actual DVD. You use the Mount-
DiskImage command to mount the ISO image on HV1 as follows:

4. Mount ISO Image
Mount-DiskImage -ImagePath $ISOPath

This command mounts the ISO image onto your host computer and produces
the output you can see in Figure 8.4.

Viewing ISO Image Contents
When you mount the ISO image, Windows gives it a drive letter and enables
read-only access to all the files/folders within the image. With Windows Server
2019, the Windows installation ISO contains a file called <dvddrive>:\sources\
install.wim. This file contains one or more specific images that you can install
using this image. To see what version of Windows Server you can install, you
use the Get-WindowsImage cmdlet, as shown here:

5. Get details and Display ISO image contents and Dismount the ISO
$ISOImage = Get-DiskImage -ImagePath $ISOPath | Get-Volume
$ISODrive = [string] $ISOImage.DriveLetter + ":"
Get-WindowsImage -ImagePath $ISODrive\sources\install.wim |
 Format-Table -Property ImageIndex, Imagename, Imagedescription -Wrap
Dismount-DiskImage -ImagePath $ISOPath | Out-Null

These commands provide you with details of the versions of Windows Server
you can install from the ISO image, after which you dismount the image.

Figure 8.4: Mounting the ISO disk image

260	 Chapter 8 ■ Managing Hyper-V

Depending on the source of your ISO image, the output from this step looks
like Figure 8.5.

Before proceeding, you should ensure that the ISO contains an image for
Windows Server 2019 Datacenter with Desktop Experience.

Creating a New VM in HV1
To create a VM, you use the New-VM command, as shown here:

6. Create a new VM
New-VM -Name $VMname -Path $VMLocation -MemoryStartupBytes 1GB

This creates a new Hyper-V VM, although at this point it is not usable yet.
You can see the output from this command in Figure 8.6.

Creating a VHDX File for the VM
Every VM needs at least one virtual disk on which you install the OS. You use
the New-VHD command to create this file for the new VM, as follows:

7. Create a virtual disk file for the VM
New-VHD -Path $VhdPath -SizeBytes 128GB -Dynamic | Out-Null

Figure 8.5: Viewing the contents of install.wim

Figure 8.6: Creating a new VM

	 Chapter 8 ■ Managing Hyper-V	 261

Adding the VHD to the VM
You use the Add-VMHardDiskDrive command to add a disk to a VM:

8. Add the virtual hard drive to the VM
Add-VMHardDiskDrive -VMName $VMname -Path $VhdPath

By default, a Hyper-V VM has two IDE controllers that both have two loca-
tions that can contain virtual disks or virtual CDs. This command adds the
newly created (and empty) disk in the first location on the first controller, which
Windows creates as the C: drive.

Adding the ISO Image to the VM
You next use the Set-VMDvdDrive command to set the ISO image in the VM’s
virtual DVD drive.

9. Set ISO image in the VM's DVD drive
$IHT = @{
 VMName = $VMName
 ControllerNumber = 1
 Path = $ISOPath
}
Set-VMDvdDrive @IHT

This inserts the ISO image into the virtual DVD drive. The $ISOPath variable
holds the full path for the ISO image file.

Starting the VM
With the disk drive and DVD added to the VM, you can now start the VM. By
default, Hyper-V boots from the DVD image to begin the process of installing
Windows Server 2019. You use the Start-VM command to start the VM as follows:

10. Start the VM
Start-VM -VMName $VMName

Installing Windows Server 2019
Now that you have started the VM, you should use the Hyper-V Virtual Machine
Connection tool (vmconnect.exe) to connect to it. You can run this tool directly
from the command line or via the Hyper-V Manager MMC (wbadmin.msc). After
connecting to the newly created VM, you can complete the manual installa-
tion of Windows Server. This includes creating the Administrator user and

262	 Chapter 8 ■ Managing Hyper-V

specifying the password. For the examples in this chapter, be sure to use the
book’s general-use password (Pa$$w0rd). Alternatively, use a different password
(and remember to use that password in later sections of this chapter).

Viewing the Results
Once you complete the installation process, you can view the VM details using
Get-VM, as follows:

12. View the results
Get-VM -VMName $VMName

You can see the output from this command in Figure 8.7.

Using PowerShell Direct

PowerShell Direct is a Hyper-V feature that allows you to use a VM that does not
have a working network stack. Without a working network stack, you cannot,
for example, use the Remote Desktop application to connect to the VM. Instead,
you can use PowerShell and just specify the VM name. Using the feature means
you do need to have the credentials for the VM. PS Direct enables you to use
the VM, often to configure networking within the VM.

Before You Start
You run the code in this section on HV1, which you set up in “Installing and
Configuring Hyper-V,” and after you have created the HVDirect VM in “Creating
a Hyper-V VM.”

Creating Variables for Use in This Section
To begin this section, you create a number of variables, as follows:

1. Create a credential object for local Administrator
$LHAN = 'Localhost\Administrator'
$PS = 'Pa$$w0rd'

Figure 8.7: Viewing newly created VM details

	 Chapter 8 ■ Managing Hyper-V	 263

$LHP = ConvertTo-SecureString -String $PS -AsPlainText -Force
$CREDHT = @{
 TypeName = 'System.Management.Automation.PSCredential'
 Argumentlist = $LHAN, $LHP
}
$LHCred = New-Object @CREDHT
$VMNAME = 'HVDirect'

This code first creates a new credential object for the HVDirect VM. Note
that you use the hostname Localhost. Then you set the variable $VMNAME to the
VM name. By default, the VM’s hostname was assigned by the Windows Server
setup process and so is different from the VM name.

Displaying Details of HVDirect VM
Before using the HVDirect VM, check to ensure the VM is up and running,
using Get-VM as follows:

2. Display the details of the HVDirect VM
Get-VM -Name $VMNAME

This command produces the output shown in Figure 8.8.

Invoking a Command using VMName
To demonstrate using PS Direct, you can use Invoke-Command to run a command
inside the VM, as follows:

3. Invoke a command on the VM, specifying VM name
$SBHT = @{
 VMName = $VMNAME
 Credential = $LHCred
 ScriptBlock = {hostname}
}
Invoke-Command @SBHT

Figure 8.8: Displaying VM details

264	 Chapter 8 ■ Managing Hyper-V

The Invoke-Command cmdlet runs the script block inside the HVDirect VM
and produces the output you can see in Figure 8.9.

The output confirms the host name as, in this case, WIN‑DIDLT555LM3. This
host name was assigned by the Windows Setup process automatically when
you created the VM. This is probably not a host name you want to retain and
is easy to change.

Invoking a Command Based on VM ID
In the previous step, you ran a command on a VM based on the Hyper-V VM
name. Another way to identify the VM is based on the internal Hyper-V VM
ID. This is a GUID created by Hyper-V when you create the VM and, unlike
the VM name itself, never changes. You can use the VM ID in conjunction with
Invoke-Command as follows:

4. Invoke a command based on VMID
$VMID = (Get-VM -VMName $VMNAME).VMId.Guid
Invoke-Command -VMid $VMID -Credential $LHCred -ScriptBlock {ipconfig}

You can see the output from this command in Figure 8.10.

As you can see in Figure 8.10, the network inside HVDirect is not connected to
a working network. This is expected, given that you created this VM as shown
in “Creating a Hyper-V VM,” and it is easy to resolve as you see in “Configuring
VM Networking.”

Figure 8.9: Getting the VM host name

Figure 8.10: Displaying VM details using VM ID

	 Chapter 8 ■ Managing Hyper-V	 265

Configuring VM Networking

With Hyper-V, you can configure a VM to have one or more virtual NICs asso-
ciated with different virtual switches. To enable VMs to communicate with each
other, with the VM host, and with the wider Internet, you also need to imple-
ment one or more VM switches. Once you create a virtual switch, you assign
a VM’s virtual NIC to the switch to enable communication with other systems
using the same switch. For more details on planning Hyper-V networking,
see docs.microsoft.com/en-gb/windows-server/virtualization/hyper-v/
plan/plan-hyper-v-networking-in-windows-server.

Before You Start
In this section, you configure networking for the VM you created in “Creating
a Hyper-V VM.” This VM, HVDirect, runs on the HV1 host, which you set up in
“Installing and Configuring Hyper-V.”

In “Creating a Hyper-V VM,” you created a VM with a host name of HVDi-
rect. In this section, you create a new external switch on HV1 and configure the
HVDirect VM to be connected to that switch.

Once you have networking for this VM configured fully, you can join the VM
to the Reskit domain and change the host name in the process. In this section
you assign a new host name, Tiger, to this VM.

Getting Virtual NIC Details from HVDirect
You start this section by getting details of the virtual NIC inside the HVDirect VM.

1. Get NIC details and any IP Address from the HVDirect VM
$VMNAME = 'HVDirect'
Get-VMNetworkAdapter -VMName $VMNAME

Figure 8.11 shows the output from this command.

Figure 8.11: Viewing NIC details

266	 Chapter 8 ■ Managing Hyper-V

Creating a Credential for the VM
You need to create a credential object for this VM, which you can do using
New-Object as follows:

2. Create a credential
$LHAN = 'Localhost\Administrator'
$PS = 'Pa$$w0rd'
$LHP = ConvertTo-SecureString -String $PS -AsPlainText -Force
$T = 'System.Management.Automation.PSCredential'
$LHCred = New-Object -TypeName $T -ArgumentList $LHAN, $LHP

This credential object is for the VM host’s administrator account.
This snippet shows one of the many methods you can use to create a Power-

Shell account credentials object.

Getting NIC Details
You use the Get-NetIPConfiguration command run inside the VM to get the
IP address configuration, as follows:

3. Get NIC Details from inside the VM
$VMHT = @{
 VMName = $VMName
 ScriptBlock = {Get-NetIPConfiguration |
 Format-List }
 Credential = $LHCred
}
Invoke-Command @VMHT

When you use Invoke-Command in this way, PowerShell runs the script block
within the VM. This produces the output you see in Figure 8.12.

Figure 8.12: Viewing the NIC configuration

	 Chapter 8 ■ Managing Hyper-V	 267

In the output, you can see that the network adapter is shown as being dis-
connected. Given the way you created the VM (by using the code in “Creating
a Hyper-V VM”), this is to be expected.

Creating a Virtual Switch
By default, when you install Hyper-V, the installation process does not create any
virtual switches. You can create a simple external switch using New-VMSwitch,
as follows:

4. Create a virtual switch on HV1
$VSHT = @{
 Name = 'External'
 NetAdapterName = 'Ethernet'
 Notes = 'Created on HV1'
}
New-VMSwitch @VSHT

Figure 8.13 shows the output.

Connecting the VM to the Switch
Now that you have an external virtual switch defined, you can connect the NIC
inside the HVDirect VM to the switch, using the Connect‑VMNetworkAdapter
command.

5. Connect HVDirect to the switch
Connect-VMNetworkAdapter -VMName $VMNAME -SwitchName External

This command connects the virtual NIC to the external switch, which enables
networking.

Figure 8.13: Creating a virtual switch

268	 Chapter 8 ■ Managing Hyper-V

Enabling MAC Spoofing
The examples in this chapter make use of the nested virtualization feature
you examine later, in “Implementing Nested Virtualization.” If you are using
Hyper-V and have implemented HV1 as a VM, you need to update HV1’s NIC
configuration to enable MAC address spoofing, using the Set-VMNetworkAdapter
command, as follows:

6. Enable spoofing From VM Host
Run this command on the VM Host that hosts HV1
Get-VMNetworkAdapter -VMName HV1 |
 Set-VMNetworkAdapter -MacAddressSpoofing On

With this command, the virtual NIC inside the VM now appears to be on
the local network. Since the VM was created, by default, with a single NIC that
is set to get its address by DHCP, if you have a DHCP server on the network,
DHCP allocates IP address details to the VM.

Viewing VM Network Information
Now that you have set up networking for the HVDirect VM, you can view the
results by using Get-VMNetworkAdapter from your VM host.

7. Get VM networking information
Get-VMNetworkAdapter -VMName $VMName

You can see the output from this command in Figure 8.14.

Viewing IP Address Inside HVDirect
In Chapter 4, “Managing Networking,” you installed a DHCP server (“Installing
the DHCP Service”) and created a DHCP scope (in “Configuring DHCP Scopes”)
on DC1. If you have the DHCP service running on DC1, then after you connect the
virtual NIC to the network, Windows assigns a new DHCP-supplied IP address
to the NIC. You can view this IP address by running Get‑NetIPConfiguration
as follows:

8. With HVDirect now in the network, observe the IP address in the VM
$NCHT = @{
 VMName = $VMName

Figure 8.14: Viewing the virtual NIC configuration

	 Chapter 8 ■ Managing Hyper-V	 269

 ScriptBlock = {Get-NetIPConfiguration | Format-List}
 Credential = $LHCred
}
Invoke-Command @NCHT

You can see the output from this command in Figure 8.15.

In this command, you retrieved the IP address information for the NIC inside
the VM using PowerShell remoting. Since there is a DHCP server (on DC1) in
your network, the VM obtains IP configuration from the DHCP server.

By default, the objects that PowerShell creates within a remoting session are
serialized when returned. In this case, PowerShell does not have access to the
display XML that was in the remote session, which results in output that is much
harder to read. A way around this is to pipe the network details to Format-List
inside the remote session, which produces easier-to-use output.

If, for any reason, there is no DHCP server in the network, you need to con-
figure HVDirect to have a working IP address so that it can connect to the domain
controller (to join the domain).

Joining the Reskit Domain
In the steps in this section so far, you have configured the HVDirect VM to obtain
a working IP address configuration. You can now join this host to the Reskit
domain by using the Add-Computer command, as shown here:

9. Join the Reskit Domain
Update the script block
$NCHT.ScriptBlock = {
 $RKAdmin = 'Reskit\Administrator'
 $PS = 'Pa$$w0rd'
 $RKPW = ConvertTo-SecureString -String $PS -AsPlainText -Force

Figure 8.15: Viewing the NIC IP address

270	 Chapter 8 ■ Managing Hyper-V

 $T = 'System.Management.Automation.PSCredential'
 $DomCred = New-Object -TypeName $T -ArgumentList $RKAdmin, $RKPW
 $JCHT = @{
 Domain = 'Reskit.Org'
 Credential = $DomCred
 NewName = 'Tiger'
 }
 Add-Computer @JCHT
}
Invoke-Command @NCHT

These commands produce the output you can see in Figure 8.16.

In this code fragment, you first created a script block that contains the com-
mands necessary to join the Reskit domain and to change the host name. Then
you use PowerShell remoting to run that script block inside the HVDirect VM.
This has the effect of joining the Reskit domain and changing the host name
from the name Windows created for you to Tiger. As the output shows, you
have to restart the system for these changes to take effect.

Once you reboot and these changes take effect, you have a VM with a VM
name of HVDirect and a host name of Tiger.

Rebooting the VM
To complete the renaming of the host and join the host to the domain, you
need to restart the host. To do this, you use the Restart-VM command from the
Hyper-V host.

10. Reboot and wait for the restarted VM
Restart-VM -VMName $VMName -Wait -For IPAddress -Force

Figure 8.16: Joining the domain

	 Chapter 8 ■ Managing Hyper-V	 271

This command reboots the VM and waits for it to restart and get an IP address.
This illustrates how you can use PowerShell to reboot another host and wait
until the host has fully restarted and can accept incoming network connections.
After the VM has rebooted, its FQDN is now Tiger.Reskit.Org.

Getting the Host Name of the HVDirect VM
Once the VM has restarted the HVDirect VM, you can check inside the VM to get
the host name (which was changed to Tiger in “Configuring VM Networking”).
Also, since the host has been joined to the domain, you use domain credentials
to invoke commands inside the VM.

You can check the host name using the hostname command. But since the VM
credentials have changed, you need to recreate a credential object, as follows:

11. Get hostname of the HVDirect VM
$RKAdmin = 'Reskit\Administrator'
$PS = 'Pa$$w0rd'
$RKPW = �ConvertTo-SecureString -String $PS -AsPlainText

-Force
$T = 'System.Management.Automation.PSCredential'
$DomCred = �New-Object -TypeName $T -ArgumentList $RKAdmin,

$RKPW
$NCHT.Credential = $DomCred
$NCHT.ScriptBlock = {hostname}
Invoke-Command @NCHT

This set of commands produces the output you see in Figure 8.17.

Now that you have joined the HVDirect VM to the Reskit domain, you can
use the domain credentials when running a remote session. In this case you
saw that the HVDirect VM has the host name Tiger.

Configuring VM Hardware

With Hyper-V, your VMs contain virtual hardware—virtual NICs, virtual CPUs,
virtual disk controllers, virtual disks, virtual memory, and so on. Once you have

Figure 8.17: Obtaining the host name

272	 Chapter 8 ■ Managing Hyper-V

a VM created, you can use commands in the Hyper-V module to configure the
virtual hardware on your VMs.

Before You Start
This section uses the Hyper-V Server HV1 (created in “Installing and Configuring
Hyper-V”) and the HVDirect VM you created in “Creating a Hyper-V VM” and
updated in “Configuring VM Networking.”

Turning Off the HVDirect VM
Depending on the VM generation on your VMs, some hardware can be hot-
added/removed. Some changes to virtual hardware, for example, changing
the number of virtual processors in a VM, can be done only while the VM is
turned off.

1. Turn off the HVDirect VM
$VMName = 'HVDirect'
Stop-VM -VMName $VMName
Get-VM -VMName $VMName

You can see the output from these commands in Figure 8.18.

To update the virtual hardware in a VM, you need to turn off the VM before
adjusting the hardware. Some hardware changes can, however, be made while
the VM is running.

With Windows Server 2019 and Generation 1 VMs, you can adjust the amount
of virtual memory for a hard drive. Additionally, for Generation 2 VMs, you can
add or remove network adapters while the VM is running. Both VM generations
support hot-add hot-adding of SCSI disks of SCSI disks.

Figure 8.18: Shutting down a VM

	 Chapter 8 ■ Managing Hyper-V	 273

Setting the Hardware Startup Order
With a Hyper-V VM, you can specify the startup order, using the Set-VMBios
command as follows:

2. Set the StartupOrder in the VM's BIOS
$Order = 'IDE','CD','LegacyNetworkAdapter','Floppy'
Set-VMBios -VmName $VMName -StartupOrder $Order
Get-VMBios $VMName

This produces the output you see in Figure 8.19.

When you next attempt to start the VM, Hyper-V attempts to boot from the
first volume in the first IDE controller (which is where Hyper-V inserted the C:
drive for your VM). Changing the BIOS startup order means when you start
up a VM, Hyper-V does not attempt to boot from a DVD image but boots from
the system drive.

Setting Socket Count
Like a physical machine, Hyper-V allows you to add virtual processors to the
VM, using the Set-VMProcessor command.

3. Set CPU count for HVDirect
Set-VMProcessor -VMName $VMName -Count 2
Get-VMProcessor -VMName $VMName |
 Format-Table VMName, Count

This produces the output you see in Figure 8.20.

Figure 8.19: Updating VM BIOS

Figure 8.20: Changing the VM processor count

274	 Chapter 8 ■ Managing Hyper-V

This code gives the HVDirect VM a total of two virtual processors. When
Windows is running inside the VM, it sees that the virtual hardware has two
CPUs and uses both.

If you have multiple cores in your Hyper-V Host, then you can allocate larger
numbers of virtual processors to VMs. You might, for example, devote eight
cores or more to a Microsoft SQL Server VM.

Setting VM Memory
You can also vary the memory allocated for the VM by using the Set-VMMemory
command, as follows:

4. Set VM memory
$VMHT = [ordered] @{
 VMName = $VMName
 DynamicMemoryEnabled = $true
 MinimumBytes = 768MB
 StartupBytes = 960MB
 MaximumBytes = 1GB
}
Set-VMMemory @VMHT
Get-VMMemory -VMName $VMName

This produces the output you see in Figure 8.21.

You can specify any amount of memory you want, but Hyper-V needs to have
sufficient free memory on the VM host to allocate, in this case, a 1GB maximum
amount of virtual RAM for this VM.

In setting VM memory, you can only start VMs that, in total, use less RAM
than you have available on your host.

Figure 8.21: Changing the VM memory allocation

	 Chapter 8 ■ Managing Hyper-V	 275

Adding an SCSI Controller
Larger VMs frequently need multiple disks. Hyper-V’s IDE controllers enable
you to support a maximum of four virtual disk drives (or three if you are using
a DVD). To support more disks, you can add additional virtual SCSI control-
lers to the VM, each of which can contain many VHD drives. To add an SCSI
controller, you use the Add‑VMScsiController command as follows:

5. Add an ScsiController to the VM
Add-VMScsiController -VMName $VMName
Get-VMScsiController -VMName $VMName

This produces the output you see in Figure 8.22.

As you can see in the output, the HVDirect VM now has two SCSI controllers
you can use.

Restarting the VM
With the changes to the virtual hardware made, you use the Start‑VM command
to start the HVDirect VM.

6. Restart the HVDirect VM
Start-VM -VMName $VMName
Wait-VM -VMName $VMName -For IPAddress

When you run these commands from HV1, Hyper-V starts up the HVDirect
VM. You can use the Wait-VM command to wait until the VM is up and running
and has an IP address with which you can connect.

Creating a New Virtual Disk
To demonstrate adding a virtual disk to a VM, first you use New‑VHD from HV1
to create a new VHD, as follows:

7. Create a new VHDX file
$VHDPath = 'C:\Vm\Vhds\HVDirect-D.VHDX'
New-VHD -Path $VHDPath -SizeBytes 8GB -Dynamic

Figure 8.22: Adding an SCSI controller

276	 Chapter 8 ■ Managing Hyper-V

This command creates a new virtual disk drive and produces the output
shown in Figure 8.23.

Because this is for demonstration and not production use, you define a
maximum size of 8GB.

Adding a Disk to a VM
You can now use the Add-VMHardDiskdrive command to add the newly created
VHDX to the HV1 VM.

8. Add the VHD to the ScsiController
$VHDHT = @{
 VMName = $VMName
 ControllerType = 'SCSI'
 ControllerNumber = 0
 ControllerLocation = 0
 Path = $VHDPath
}
Add-VMHardDiskDrive @VHDHT

This command immediately adds the VHDX to the virtual SCSI controller,
and you can now begin to use it. You can use the scripts shown in Chapter 5
“Managing Windows Storage,” including the ones in “Managing Disks and
Volumes” and “Managing NTFS Permissions.”

Figure 8.23: Creating a new virtual disk

	 Chapter 8 ■ Managing Hyper-V	 277

Viewing SCSI Disks inside HVDirect
You use the Get-VMScsiController command to see details of the virtual SCSI
disks within the VM, as follows:

9. Get SCSI Disks in the VM
Get-VMScsiController -VMName $VMName |
 Select-Object -ExpandProperty Drives

Figure 8.24 shows the SCSI virtual disk drives contained in the HVDirect VM.

Implementing Nested Virtualization

Nested virtualization is a feature that allows you to install Hyper-V inside a
Hyper-V VM, running a VM inside another VM. This nesting has a number of use
cases. The VMs used in writing this book are all based on nested virtualization,
for example. To learn more about nested virtualization, see docs.microsoft.com/
en-us/virtualization/hyper-v-on-windows/user-guide/nested-virtualization.

In this section you explore nested virtualization by enabling this feature on
the HVDirect VM and then adding the Hyper-V role to the VM. Without nested
virtualization, the installation of Hyper-V in the HVDirect VM would not suc-
ceed. Once nested virtualization has been enabled, you can install Hyper-V
inside the nested VM.

Before You Start
This section uses the HVDirect VM, which you set up in “Creating a Hyper-V
VM.”

Stopping HVDirect VM
To configure nested virtualization in a VM, you must first shut down the VM,
using Stop-VM.

1. Stop HVDirect VM
$VMName = 'HVDIRECT'
Stop-VM -VMName $VMName

Figure 8.24: Viewing SCSI disks

278	 Chapter 8 ■ Managing Hyper-V

Configuring Virtual Processor
With the VM stopped, you can now configure nested virtualization (and add
an extra virtual processor for this VM) using the Set‑VMProcessor command
as follows:

2. Change the VM's processor to support virtualization
$VMName = 'HVDIRECT'
$VMHT = @{
 VMName = $VMName
 ExposeVirtualizationExtensions = $true
 Count = 2
}
Set-VMProcessor @VMHT
Get-VMProcessor -VMName $VMName |
 Format-Table -Property Name, Count,
 ExposeVirtualizationExtensions

You can see the output of these commands in Figure 8.25.

These commands expose hardware virtualization features to this VM and
add a second virtual processor to the VM.

Enabling MAC Address Spoofing
Because you are going to be running VMs inside this VM, you need to enable
MAC address spoofing on the virtual NIC inside the HVDirect VM, using Set-
VMNetworkAdapter. The code looks like this:

3. Enable MAC Address spoofing on the virtual NIC
Get-VM -VMName $VMName |
 Get-VMNetworkAdapter |
 Set-VMNetworkAdapter -MacAddressSpoofing On

Figure 8.25: Configuring the VM processor

	 Chapter 8 ■ Managing Hyper-V	 279

MAC address spoofing is one approach to networking of nested VMs. Using
Network Address Translation is an alternative. Using NAT, you would create a
new internal virtual switch and configure the switch to support NAT. For more
information on supporting NAT, see docs.microsoft.com/en-us/virtualiza-
tion/hyper-v-on-windows/user-guide/nested-virtualization.

Restarting the VM
You restart the VM and view the VM status by using the following commands:

4. Restart the VM
Start-VM -VMName $VMName
Wait-VM -VMName $VMName -For Heartbeat
Get-VM -VMName $VMName

You can see the output from these commands in Figure 8.26.

Creating Credentials
You need a credentials object to run commands in a remoting session. You cre-
ate the credentials object using New-Object.

5. Create credentials for HVDirect
$User = 'Reskit\Administrator'
$PHT = @{
 String = 'Pa$$w0rd'
 AsPlainText = $true
 Force = $true
}
$PSS = ConvertTo-SecureString @PHT
$Type = 'System.Management.Automation.PSCredential'
$CredRK = New-Object -TypeName $Type -ArgumentList $User,$PSS

Figure 8.26: Restarting HVDirect

280	 Chapter 8 ■ Managing Hyper-V

Installing Hyper-V in HVDirect VM
Now that the VM is running, as a test of nested virtualization, you can attempt
to install the Hyper-V Windows feature inside the VM, using the following
commands:

6. Install Hyper-V inside the HVDirect VM
$SB = {
 Install-WindowsFeature -Name Hyper-V -IncludeManagementTools
}
$IHT = @{
 VMName = $VMName
 ScriptBlock = $SB
 Credential = $CredRK
}
Invoke-Command @IHT

These commands use PowerShell remoting to install the Hyper-V Windows
feature and produce the output shown in Figure 8.27.

As indicated in the output, you need to restart the VM to complete the instal-
lation of Hyper-V.

Restarting the VM
To restart the VM, you need to stop and then restart the VM, using the follow-
ing commands:

7. Restart the VM to finish adding Hyper-V
Stop-VM -VMName $VMName

Figure 8.27: Installing Hyper-V in HVDirect

	 Chapter 8 ■ Managing Hyper-V	 281

Start-VM -VMName $VMName
Wait-VM -VMName $VMName -For IPAddress
Get-VM -VMName $VMName

These commands produce the output shown in Figure 8.28.

As you can see from the output, the VM has restarted. As an alternative to
using the Stop-VM and Start-VM commands, you could have used Restart-
Computer and specified the VM’s host name.

Checking Hyper-V in HVDirect
To complete your look at nested virtualization, you can examine the Hyper-V
feature that you just installed in the VM and the Hyper-V services that support
Hyper-V. You use the following commands to view these details:

8. Check Hyper-V inside HVDirect VM
$SB = {
 Get-WindowsFeature *Hyper* |
 Format-Table Name, InstallState
 Get-Service VM*
}
Invoke-Command -VMName $VMName -ScriptBlock $SB -Credential $CredRK

You can view the output produced from these commands in Figure 8.29.
As you can see from the output, Hyper-V and related features are installed.

Additionally, you can see that the key Hyper-V integration services are installed
and the needed services are all running. Without nested virtualization, none of
these services would have been installed or running.

To find out more about these services, see docs.microsoft.com/en-us/
virtualization/hyper-v-on-windows/reference/integration-services.

Figure 8.28: Restarting HVDirect

282	 Chapter 8 ■ Managing Hyper-V

Using VM Checkpoints

A benefit of Hyper-V, and any virtualization solution, is the ability to save a
state and later revert to that state. You might take a checkpoint for a VM just
prior to adding an application that you can later revert back to.

Hyper-V supports two types of checkpoints: standard and production. A stan-
dard checkpoint is a snapshot of a VM and its system memory at the moment that
the checkpoint is initiated. A production checkpoint uses the Volume Shadow
Copy Service (or File System Freeze in Linux VMs) to create a data-consistent
backup of the VM. Production checkpoints do not take a snapshot of system
memory. For more details on Hyper-V checkpoints, see docs.microsoft.com/
en-us/virtualization/hyper-v-on-windows/user-guide/checkpoints.

In this section you create checkpoints and examine the results of taking and
reverting to a checkpoint.

Before You Start
This section uses the HVDirect VM you created in “Creating a Hyper-V VM.”
You run the commands in this section on HV1, the Hyper-V host you set up in
“Installing and Configuring Hyper-V.” You must run these commands in an
elevated console (or in VS Code that you run as Administrator).

Figure 8.29: Examining Hyper-V within HVDirect

	 Chapter 8 ■ Managing Hyper-V	 283

Creating Credentials
In this section you run numerous commands within the HVDirect VM, and for
that you need to create a credential object for the Reskit Administrator user.
You create the credential object using New-Object as follows:

1. Create credentials for HVDirect VM
$RKUN = 'Reskit\Administrator'
$PS = 'Pa$$w0rd'
$RKP = ConvertTo-SecureString -String $PS -AsPlainText -Force
$T = 'System.Management.Automation.PSCredential'
$RKCred = New-Object -TypeName $T -ArgumentList $RKUN,$RKP

Examining C: in the HVDirect VM
In this section you create checkpoints and files within the C: drive for the HVDirect
VM to observe the effect of taking and reverting to checkpoints. Before doing
this, you look at the contents of C: in the HVDirect VM, using Invoke-Command.

2. Look at C:\ in HVDirect before starting
$VMName = 'HVDirect'
$ICHT = @{
 VMName = $VMName
 ScriptBlock = {Get-ChildItem -Path C:\ | Format-Table}
 Credential = $RKCred
}
Invoke-Command @ICHT

These commands produce the output you see in Figure 8.30.

Figure 8.30: Examining the HVDirect C: drive

284	 Chapter 8 ■ Managing Hyper-V

Creating a Checkpoint
You use the Checkpoint-VM command to create a Hyper-V checkpoint as follows:

3. Create a checkpoint of HVDirect
$CPHT = @{
 VMName = $VMName
 SnapshotName = 'Checkpoint1'
}
Checkpoint-VM @CPHT

This command creates a VM checkpoint for the HVDirect VM. For each virtual
disk drive in the VM, Hyper-V creates a differencing disk each time you create
a new checkpoint. When Hyper-V takes the checkpoint, the previous base disk
is frozen, and Hyper-V makes any changes to the differencing disk(s). Each
additional checkpoint you take creates further differencing disks.

This means in a case where you have a large number of checkpoints, a disk
read being performed by a VM might have to read all of the differencing disks
to carry out the I/O operation. Unless there is a good reason, you should avoid
having excessive checkpoints as it can affect disk performance.

Examining the Checkpoint Files
Having taken a first checkpoint, you can view the supporting checkpoint files
using Get-ChildItem.

4. Look at the files created to support checkpoints
$Parent = Split-Path -Parent (Get-VM -Name $VMName |
 Select-Object -ExpandProperty HardDrives).Path |
 Select-Object -First 1
Get-ChildItem -Path $Parent

Figure 8.31 shows the output from these commands.

Figure 8.31: Examining the checkpoint files

	 Chapter 8 ■ Managing Hyper-V	 285

These commands discover the folder name that Hyper-V uses to store the
VM’s virtual hard drives and then get the files stored in that folder. As you can
see in the output, there are two base virtual disks.

You see four files in this output. The first is the VM’s C: drive with the second
the VM’s D: drive. The two additional files are the differencing disks Hyper-V
creates when you create the checkpoint.

Creating Content in HVDirect
To illustrate the effects of checkpoints, you can create some content on the
HVDirect VM. This content is created after you created the first checkpoint.

5. Create some content in a file on HVDirect and display it
$SB = {
 $FileName1 = 'C:\File_After_Checkpoint_1'
 'After Checkpoint 1' |
 Out-File -FilePath $FileName1
 Get-Content -Path $FileName1
}
$ICHT = @{
 VMName = $VMName
 ScriptBlock = $SB
 Credential = $RKCred
}
Invoke-Command @ICHT

These commands create a file in the C: drive in HVDirect and then view the
content of this file, producing the output you see in Figure 8.32.

Figure 8.32: Creating content on HVDirect

286	 Chapter 8 ■ Managing Hyper-V

Taking a Second Checkpoint
After creating a file in C:, you can take a further checkpoint using Checkpoint-VM.

6. Take a second checkpoint
$SNHT = @{
 VMName = $VMName
 SnapshotName = 'Checkpoint2'
}
Checkpoint-VM @SNHT

Viewing Checkpoint Details for HVDirect
After taking the two checkpoints, you can again view the existing checkpoints
by using the Get-VMCheckPoint alias.

7. Get the VM checkpoint details for HVDirect
Get-VMCheckPoint -VMName $VMName

This command produces the output shown in Figure 8.33.

The Get-VMCheckpoint command is an alias to Get-VMSnapShot. In early ver-
sions of Hyper-V, the terminology for this technology was inconsistent. System
Center VM Manager, for example, used the term checkpoint, while Hyper-V
called it a snapshot. Additionally, the term snapshot was often confused with the
Volume Shadow Copy Service snapshots that backup programs use. In Hyper-V
with Server 2012 R2, the Hyper-V team renamed the term. Thus, the command
that creates the snapshot/checkpoint is now named Checkpoint-VM. However,
instead of renaming the other VM snapshot cmdlets, the team chose to keep
the existing cmdlet names, such as Get-VMSnapshot, and instead created aliases
such as Get‑VMCheckpoint.

Examining Files Supporting Checkpoints
With two checkpoints taken for the HVDirect VM, you can look at the files that
Hyper-V is using to support the two virtual disks in the VM.

8. Look at the files supporting the two checkpoints
Get-ChildItem -Path $Parent

Figure 8.33: Viewing Hyper-V checkpoints

	 Chapter 8 ■ Managing Hyper-V	 287

You can view the output from this command in Figure 8.34.

As you can see, there are now two differencing disks for each of the original
VHDX files.

Creating Another File in HVDirect
With two checkpoints taken, you create a new file in the HVDirect VM to dem-
onstrate the content that is created after you take the second checkpoint. You
then view the contents of that file, as follows:

9. Create and display another file in HVDirect
(after you have taken Checkpoint2)
$SB = {
 $FileName2 = 'C:\File_After_Checkpoint_2'
 'After Checkpoint 2' |
 Out-File -FilePath $FileName2
 Get-ChildItem -Path C:\ -File | Format-Table
}
$ICHT = @{
 VMName = $VMName
 ScriptBlock = $SB
 Credential = $RKCred
}
Invoke-Command @ICHT

These commands display the two files you created in the C: drive. You can
view the output from these commands in Figure 8.35.

Reverting to Checkpoint1
You have, thus far, created two checkpoints of the VM and have added some
content beyond the second checkpoint. You can now use the Restore‑VMCheckpoint
command to revert the VM to the first checkpoint.

Figure 8.34: Viewing checkpoint files

288	 Chapter 8 ■ Managing Hyper-V

10. Restore the VM back to the checkpoint named Checkpoint1
$CP1 = Get-VMCheckpoint -VMName $VMName -Name Checkpoint1
Restore-VMCheckpoint -VMSnapshot $CP1 -Confirm:$false
Start-VM -Name $VMName
Wait-VM -For IPAddress -Name $VMName

These commands first find Checkpoint1 and then revert the HVDirect VM
to the earlier checkpoint. Once it is reverted, you start the VM, waiting until it
has fully started.

Viewing VM Files
With the VM reverted to the point at which you took the first checkpoint, you
can observe the files available in the C: drive in HVDirect using Get-ChildItem.

11. See what files we have now in the VM
$ICHT = @{
 VMName = $VMName
 ScriptBlock = {Get-ChildItem -Path C:\ |
 Format-Table }
 Credential = $RKCred
}
Invoke-Command @ICHT

You can see the output from these commands in Figure 8.36.

Figure 8.35: Viewing checkpoint files after the second checkpoint

	 Chapter 8 ■ Managing Hyper-V	 289

In this output, you can see that neither of the two files you created after tak-
ing the first checkpoint is missing. This is to be expected.

Rolling Forward to Checkpoint2
Hyper-V enables you to roll forward and apply a checkpoint you made previ-
ously. You can do this by using the Restore-VMCheckpoint command.

12. Roll forward to Checkpoint2
$Checkpoint2 = Get-VMCheckpoint -VMName $VMName -Name Checkpoint2
Restore-VMCheckpoint -VMSnapshot $Checkpoint2 -Confirm:$false
Start-VM -Name $VMName
Wait-VM -For IPAddress -Name $VMName

These commands find the second checkpoint and roll the VM forward to the
state that existed when you took the second checkpoint.

Viewing VM Files After Rolling Forward
Now that you have rolled the VM forward to the state that existed when you
created the second checkpoint, you can look at the files that exist inside the
HVDirect VM, using Get-ChildItem (remotely), as shown here:

13. Observe the files you now have on HVDirect VM
$ICHT = @{
 VMName = $VMName
 ScriptBlock = {Get-ChildItem -Path C:\ |
 Format-Table }
 Credential = $RKCred
}
Invoke-Command @ICHT

Figure 8.36: Viewing files in the VM

290	 Chapter 8 ■ Managing Hyper-V

Figure 8.37 shows the output from these commands.

As you can see in this output, the file you created after Checkpoint1 is avail-
able. However, as is to be expected, the file you created after you took the second
checkpoint is lost.

This illustrates a key point about checkpoints. If you do have to revert to an
earlier checkpoint, consider carefully what state your VM is in before reverting.
If you revert a VM but want to keep any data modified after the last checkpoint,
you should take an additional checkpoint (Checkpoint3) before reverting. You
can always remove the checkpoints later.

Viewing Checkpoints in the VM
With two checkpoints taken, you can view the Hyper-V checkpoint details using
Get-VMCheckpoint, as shown here:

14. View checkpoints for HVDirect
Get-VMCheckpoint -VMName $VMName

You can view the output of this command in Figure 8.38, where you can see
the two checkpoints you have taken thus far for the HVDirect VM.

Figure 8.37: Viewing files in the VM after rolling forward

Figure 8.38: Viewing checkpoints for HVDirect

	 Chapter 8 ■ Managing Hyper-V	 291

Removing Checkpoints
You can use the Remove-VMSnapshot command to remove the checkpoints for
the HVDirect VM.

15. Remove all the checkpoints for HVDirect
Get-VMCheckpoint -VMName $VMName |
 Remove-VMSnapshot

These commands use both cmdlet name (Remove-VMSnapshot) and an alias
name (Get-VMCheckpoint). If you are writing scripts to manage VM backups,
you should be consistent with which commands, or cmdlet nouns, you use.

Checking VM Data Files after Removing Checkpoints
Now that you have removed all the checkpoints, you can reexamine the files
supporting the HVDirect VM, using Get-ChildItem.

16. Check VM data files again
Get-ChildItem -Path $Parent

You can see the output from this command in Figure 8.39.

With all the checkpoints removed, you now just have a single VHDX file for
each virtual disk. The state of the VM, however, is that of the second checkpoint.

Using VM Replication

Hyper-V Replica (HVR) is a feature of Hyper-V that creates a full replica of a
VM for disaster recovery. HVR takes a running VM, such as the HVDirect VM
you used in earlier sections of this chapter, running on the HV1 VM host, and
replicates it to a second host, HV2. In the case of a disaster affecting HV1, HV2 has
an up-to-date copy of the HVDirect VM, which you could then use.

Figure 8.39: Viewing virtual hard disks

292	 Chapter 8 ■ Managing Hyper-V

With HVR, you can co-locate the replica source and target in another nearby
Hyper-V host, for example, in the same rack in your computer suite. Alterna-
tively, you can locate the target across a WAN. The Hyper-V hosts whose VMs
you replicate can be any combination of workgroup, domain-joined, or clustered
hosts. Additionally, there is no specific dependency on AD. This provides simple
and easy disaster recovery across a range of scenarios.

HVR uses change tracking with asynchronous replication. This means that,
initially, HVR creates a full duplicate of the VM’s data on the replication target’s
host. Then, as changes are made on the source VM, HVR writes the changes to
a log file and replays them on the replica target’s VM host.

HVR also allows for extended replication, that is, from the replication target
to a second extended target. You might use this to create basic VM replication
within a single data center and create a third replica in your off-site DR location.
This provides quick failover in the case of relatively minor hardware issues and
full disaster recovery via the extended replicas.

Before You Start
This section makes use of two Hyper-V servers: HV1 and HV2. You created HV1
in “Installing and Configuring Hyper-V” and updated it in later sections in
this chapter. Before you work with the code in this section, you need a second
Hyper-V host, HV2. This host is another domain-joined Windows Server 2019
Enterprise.

After installing Windows Server 2019 Enterprise edition onto HV2, you need
to configure the host to support virtualization. If HV2 is a VM, then you can
configure the VM from the VM host, as follows:

0.1 Configure HV2 VM from the VM host
If HV2 is a VM, configure it on the Hyper-V Host running HV2
Stop the VM
Stop-VM -VMName HV2
Enable nested virtualization and set processor count for HV2
$VMHT = @{
 VMName = 'HV2'
 ExposeVirtualizationExtensions = $true
 Count = 4
}
Set-VMProcessor @VMHT
Set VM Memory for HV2
$VMHT = [ordered] @{
 VMName = 'HV2'
 DynamicMemoryEnabled = $true
 MinimumBytes = 768MB
 StartupBytes = 2GB
 MaximumBytes = 4GB
}

	 Chapter 8 ■ Managing Hyper-V	 293

Set-VMMemory @VMHT

Restart HV2 VM
Start-VM -VMName HV2
Wait-VM -VMName HV2 -For IPAddress

After HV2, newly configured to support virtualization and related features,
has rebooted, log into it as Domain Admin and then add the Hyper-V Windows
feature using Install-WindowsFeature.

0.2 Login to HV2 to add Hyper-V feature to HV2
Install the Hyper-V feature on HV2
Import-Module -Name Servermanager -WarningAction SilentlyContinue
Install-WindowsFeature -Name Hyper-V -IncludeManagementTools
Reboot HV2 to complete the installation of Hyper-V
Restart-Computer
Login to HV2 again and configure Hyper-V Host on HV2
Create folders to hold VM details and disks
$VMS = 'C:\VM\VMS'
$VHDS = 'C:\VM\VHDS\'
New-Item -Path $VMS -ItemType Directory -Force | Out-Null
New-Item -Path $VHDS -ItemType Directory -force | Out-Null
Build Hash Table to Configure the VM Host
$VMCHT = @{
Where to store VM configuration files on
 VirtualMachinePath = $VMS
Where to store VHDx files
 VirtualHardDiskPath = $VHDS
Enable NUMA spanning
 NumaSpanningEnabled = $true
Enable Enhanced Session Mode
 EnableEnhancedSessionMode = $true
Specify Resource metering save interval
 ResourceMeteringSaveInterval = (New-TimeSpan -Hours 2)
}
Set-VMHost @VMCHT
Create new External Switch
$NIC = Get-NetIPConfiguration | Select-Object -First 1
New-VMSwitch -Name External -NetAdapterName $NIC.InterfaceAlias

This snippet also creates an external switch in the HV2 VM. That virtual
switch enables HV1 and HV2 to communicate.

Configuring HV1 and HV2 for Delegation
To simplify security of HVR, you set each VM host to enable delegation, using
Set-ADComputer as follows:

1. Configure HV1 and HV2 to be trusted for delegation in AD on DC1
$SB1 = {

294	 Chapter 8 ■ Managing Hyper-V

 Set-ADComputer -Identity HV1 -TrustedForDelegation $True
}
Invoke-Command -ComputerName DC1 -ScriptBlock $SB1
$SB2 = {
 Set-ADComputer -Identity HV2 -TrustedForDelegation $True
}
Invoke-Command -ComputerName DC1 -ScriptBlock $SB2

These commands enable Kerberos delegation for the two Hyper-V servers.
You can read a bit more about delegation in argonsys.com/microsoft-cloud/
library/live-migration-via-constrained-delegation-with-kerberos-in-

windows-server-2016/.

Rebooting HV1 and HV2
To complete the configuration of delegation you need to restart both hosts using
Restart-Computer.

2. Reboot the HV1 and HV2
Restart-Computer -ComputerName HV1 -Force
Restart-Computer -ComputerName HV2 -Force

Setting VMReplication
You begin the setup of HVR using the command Set‑VMReplicationServer as
follows:

3. Once both systems are restarted, logon back to HV2,
set up both servers as a replication server
$VMRHT = @{
 ReplicationEnabled = $true
 AllowedAuthenticationType = 'Kerberos'
 KerberosAuthenticationPort = 42000
 DefaultStorageLocation = 'C:\Replicas'
 ReplicationAllowedFromAnyServer = $true
 ComputerName = 'HV1', 'HV2'
}
Set-VMReplicationServer @VMRHT

Enabling Replication from the Source VM
Before you can replicate a VM between Hyper-V hosts, you need to use Enable-
VMReplication to configure the replication as follows:

4. Enable HVDirect on HV1 to be a replica source with HV2 the target
$VMRHT = @{

	 Chapter 8 ■ Managing Hyper-V	 295

 VMName = 'HVDirect'
 Computer = 'HV1'
 ReplicaServerName = 'HV2'
 ReplicaServerPort = 42000
 AuthenticationType = 'Kerberos'
 CompressionEnabled = $true
 RecoveryHistory = 5
}
Enable-VMReplication @VMRHT

This command initializes the replication of the HVDirect VM. The HVR rep-
lica source VM is on HV1, and the target is on HV2.

This command specifies that Kerberos is to be used to authenticate the two
hosts involved in VM replication. Since both HV1 and HV2 are members of the
Reskit domain (and you have configured them for Kerberos delegation), this
is straightforward to configure.

If the source and target Hyper-V hosts are in different security realms, then you
can use certificate authentication. For a look at how you can set up replication using
self-signed certificates, see medium.com/@pbengert/setup-2-hyper-v-2016-serv-
ers-enable-hyper-v-replica-with-self-created-certificates-and-connect-

to-fceef21c8b8e.

Viewing VM Replication Status
Now that you have enabled replication, you can view the replication status of
each Hyper-V host using Get-VMReplicationServer.

5. View the replication status of HV1 and HV2
Get-VMReplicationServer -ComputerName HV1
Get-VMReplicationServer -ComputerName HV2

You can see the output from these commands in Figure 8.40.

Figure 8.40: Viewing replication status

296	 Chapter 8 ■ Managing Hyper-V

Viewing VM Status
Before initiating the replication, use Get-VM to ensure that the VM is running
on HV1.

6. Check HVDirect on HV1
Get-VM -ComputerName HV1 -VMName HVDirect

As you can see in the output, shown in Figure 8.41, the HVDirect VM is up
and running on HV1.

Initiating Replication
Having previously defined the replication source and target for HVDirect, you
are ready to initiate replication. To do that, use Start-VMInitialReplication.

7. Start the initial replication from HV1 to HV2
Start-VMInitialReplication -VMName HVDirect -ComputerName HV1

This command starts the creation of a replica. Hyper-V first has to make a
copy on HV2 of the VM hard drives, which can take some time.

Examining Initial Replication State
To view the state of the replication of HVDirect, you can use the Measure-
VMReplication command.

8. Examine the initial replication state on HV1 just after
you start the initial replication
Measure-VMReplication -ComputerName HV2

Figure 8.42 shows the output of this command, issued shortly after the initial
replication began.

Figure 8.41: Viewing VM status

Figure 8.42: Examining the replication status

	 Chapter 8 ■ Managing Hyper-V	 297

The initial replication can take some time; this depends on the available
bandwidth between HV1 and HV2, the size of the VM, and the workload on each
Hyper-V host. On a fast network, the initial replication of the HVDirect VM you
created in this chapter should take two to three minutes.

Viewing Replication
You can use Measure-VMReplication repeatedly to watch the progress of the
initial replication.

9. Wait for replication to finish, then examine the
replication status on HV2
Measure-VMReplication -ComputerName HV2

Figure 8.43 shows the output of this command after the initial replication
has completed.

You can run this command multiple times to observe the progress until you
see, as in the output from this step, that Hyper-V has completed the initial rep-
lication.

Testing Replica Failover
Once initial replication has completed, Hyper-V detects changes to the VM on
HV1 and replicates them to HV2.

You can test the failover by using the Start-VMFailOver command.

10. Test HVDirect failover from HV1 to HV2
$VM = Start-VMFailover -AsTest -VMName HVDirect -Confirm:$false
Start-VM $VM

This snippet initiates a test of the replica failover. When you test an HVR
replica failover, Hyper-V creates a new VM on the replication target host with
a new name. This VM is, in effect, the replica of the VM, running but with a
different Hyper-V-generated VM name.

During the test, the original VM on HV1 continues to run and Hyper-V con-
tinues to replicate any changes.

Figure 8.43: Viewing the progress of replication

298	 Chapter 8 ■ Managing Hyper-V

Viewing VM Status on HV2 after Failover
Use Get-VM to see the VMs that are now running on HV2, as follows:

11. View the status of VMs on HV2
Get-VM -ComputerName HV2

The output, shown in Figure 8.44, shows the VMs now running on HV2.

The first VM you see in this output is the replica target for the HVDirect
VM. The second is the VM failover test. Note that the replication test VM name
has - Test appended to the replicated VM’s name. Thus, the test VM’s name
is HVDirect - Test.

Getting VM Details from HV1
To test replication, you first run some commands on the HVDirect VM running
on HV1.

12. Get VM Details in replica source
$RKUN = 'Reskit\Administrator'
$PS = 'Pa$$w0rd'
$RKP = ConvertTo-SecureString -String $PS -AsPlainText -Force
$CREDHT = @{
 TypeName = 'System.Management.Automation.PSCredential'
 Argumentlist = $RKUN, $RKP
}
$RKCred = New-Object @CREDHT
$SB1 = {
 $SB1a = @{
 VMName = 'HVDirect'
 ScriptBlock = {hostname;ipconfig}
 Credential = $using:RKCred
 }
 Invoke-Command @SB1a
}
Invoke-Command -Computer HV1 -Script $SB1

You can see the output from this command in Figure 8.45.

Figure 8.44: Viewing the VMs running on HV2

	 Chapter 8 ■ Managing Hyper-V	 299

The output from these commands shows that the HVDirect VM is up and
running normally on HV1. This VM has an IP address and network details
provided by the DHCP server you created on DC1.

Getting VM Details from HV2
Once the failover test VM has started, you can also examine it using the same
commands.

13. Get VM details in replica test VM on HV2
$SB2 = {
 $SB2a = @{
 VMName = 'HVDirect - Test'
 ScriptBlock = {hostname;ipconfig}
 Credential = $using:RKCred
 }
 Invoke-Command @SB2a
}
Invoke-Command -Computer HV2 -Script $SB2

You can see the output from these commands in Figure 8.46.

Figure 8.45: Getting the VM details on the replica source

300	 Chapter 8 ■ Managing Hyper-V

The output shows that the test VM is up and running and can process com-
mands. Note that the host name of the test VM is Tiger. This is also the host
name for the HVDirect VM (running on HV1). You created this host name when
you joined the VM to the domain in “Configuring VM Networking.” But you
also see that there is no TCP/IP networking configured. Given how you have
configured HV2 so far, this is to be expected.

This step also illustrates sending a script block to a host (HV2) and then having
that script invoke a second script block inside a VM. If you are managing many
Hyper-V servers, which each run multiple VMs, this can be a useful technique
to target a particular VM running on a particular Hyper-V host.

You can now test the failover VM, possibly using PowerShell to investigate
the VM. In production, you should ensure that relevant services are up and
running and that, if needed, the failover VM could be used to recover from a
disaster befalling HV1.

Stopping the Failover Test
Once you have ensured that the failover test has succeeded and that the test
VM is up and running (all but the networking), you can stop it using the Stop-
VMFailover command.

14. Stop the failover test
Stop-VMFailover -VMName HVDirect

Prior to the failover test, you had the working HVDirect VM on HV1 plus the
replica on HV2. The failover test created a new and temporary VM on HV2, which
Hyper-V removes when you stop the failover test.

Figure 8.46: Testing the replica VM

	 Chapter 8 ■ Managing Hyper-V	 301

Viewing VM Status
With the failover test stopped, you can again view the status of the two VM
hosts, using Get-VM.

15. View the status of VMs on HV1 and HV2 after failover stopped
Get-VM -ComputerName HV1
Get-VM -ComputerName HV2

You can see the output from these commands in Figure 8.47.

The output shows that all traces of the failover VM on HV2 are now gone from
HV2. As you can see, the two Hyper-V hosts are back to the pre-failover test state
where HV1 continues to run the HVDirect VM with Hyper-V replicating any
changes from HV1 to the replica on HV2.

Setting Failover IP Address for VM Failover
When you performed the failover test of HVDirect, you notice that the test VM
(HVDirect - Test) had no networking setup. As noted, this is normal. If you
want specific network address details (such as IP address and subnet mask), you
can set them using the Set‑VMNetworkadapterFailoverConfiguration command.

16. Set Failover IP address for HVDirect on HV2
$NAHT = @{
 IPv4Address = '10.10.10.142'
 IPv4SubnetMask = '255.255.255.0'
 IPv4PreferredDNSServer = '10.10.10.10'
}
Get-VMNetworkAdapter -VMName HVDirect -ComputerName HV2 |
 Set-VMNetworkAdapterFailoverConfiguration @NAHT
Connect-VMNetworkAdapter -VMName HVDirect -SwitchName External

Figure 8.47: Viewing VM status

302	 Chapter 8 ■ Managing Hyper-V

This snippet obtains the network details of the HVDirect replica VM as cur-
rently residing on HV2. This VM is not active and is the target of Hyper-V VM
replication—but the VM does have a virtual NIC.

You can use the commands shown previously to set IP address configuration
in the event of any failover. These commands also ensure that the virtual NIC is
associated with a switch. The result of these commands is to set up the replica
to have a different network configuration and to attach to a virtual switch in the
case of further failover. With this configured, when you fail over the HVDirect
VM to HV2, Hyper-V connects the NIC in the VM to a switch and configures the
virtual NIC with an appropriate IP address configuration.

Stopping HVDirect on HV1
With the steps so far, you have configured HVR to maintain a replica on a
second Hyper-V host so that Hyper-V replicates all changes from HV1 to the
replica on HV2.

To simulate a real-life failover, you first stop the HVDirect VM on HV1.

17. Stop HVDirect on HV1 prior to performing a failover
Stop-VM HVDirect -ComputerName HV1

This simulates the failure of the VM on HV1. However, failover is not automatic.
If you wanted automatic failover, you could use failover clustering and cluster
the Hyper-V role.

Starting Failover from HV1 to HV2
Using HVR, failover is not automatic but something you need to do in two steps
(as noted if you want automatic failover, you should deploy failover clustering).

To start the failover, you use the Start-VMFailover on HV2. This tells Hyper-V
to begin a failover.

18. Start VM failover from HV1
Start-VMFailover -VMName HVDirect -Confirm:$false

You can use the Start-VMFailover for several purposes.

■■ To start a planned failover of a VM

■■ To create a test virtual machine on a replica virtual machine

■■ To failover a replica virtual machine to a chosen recovery point

In effect, this command tells Hyper-V what kind of a failover it is to perform.
By using the -Confirm:$false, you ensure that Start-VmFailover does not
prompt for confirmation.

	 Chapter 8 ■ Managing Hyper-V	 303

Completing the Failover of HVDirect
Once you have started the failover, you can complete it using Complete-VMFailover,
like so:

19. Complete the failover
$CHT = @{
 VMName = 'HVDirect'
 ComputerName = 'HV2'
 Confirm = $false
}
Complete-VMFailover @CHT

This command completes the failover. Note that this command also removes
all recovery points on the VM that Hyper-V has failed over.

Note that in this case you used a hash table to specify the parameters for
Complete-VMFailOver—another way to invoke a cmdlet.

Starting the Failover VM
Once the VM failover has completed, you have a working VM on HV2, although
it is not running. To start the VM, you use the Start-VM command and then
wait until the VM is up and running on HV2.

20. Start the replicated VM on HV2
Start-VM -VMname HVDirect -ComputerName HV2
Wait-VM -VMName HVDirect -For IPAddress

These commands start the failover replica on HV2. As it takes some time for
the VM to start, you can use the Wait-VM command to wait until the HVDirect
VM is up and running on HV2 and has a working IP address.

One reason to use this two-step approach is to enable you to make a good
decision as to when to start the replica.

Checking VM Status After Failover
You can repeat the use of Get-VM on both Hyper-V servers to view the VMs on
the two virtualization hosts.

21. See VMs on HV1 and HV2 after the planned failover
Get-VM -ComputerName HV1
Get-VM -ComputerName HV2

You can see the output from these commands in Figure 8.48.
As the output shows, the HVDirect VM is running on HV2 but stopped on HV1.

304	 Chapter 8 ■ Managing Hyper-V

Testing Failover VM Networking
With the steps so far, you have set up and initiated a failover of the HVDirect
VM from HV1 to HV2. Having set up failover network details, you can verify the
networking configuration by running the following commands:

22. Retest Migrated HVDirect VM
$SB4 =@{
 VMName = 'HVDirect'
 ScriptBlock = {hostname; ipconfig}
 Credential = $rkcred
}
Invoke-Command @SB4

You can see the output from these commands in Figure 8.49.

The output shows that the VM has the host name Tiger and has a new IP
configuration (the one that you set using Set‑VMNetworkAdapterFailoverCon-
figuration in “Setting Failover IP Address for VM Failover”).

Figure 8.48: Checking VM status after failover

Figure 8.49: Verifying the VM networking configuration

	 Chapter 8 ■ Managing Hyper-V	 305

In this section you have configured and tested HVR and VM failover. You
now have the HVDirect VM up and running on HV2.

Managing VM Movement

Hyper-V provides you with the ability to move both a VM and its virtual disk
drives to other systems with the VM up and running—live migration.

Before You Start
This section uses the two Hyper-V hosts you have used in this chapter. This
section assumes you have created the HVDirect VM and that it’s running on HV1.

In the previous section, you ended up with the HVDirect VM running on
HV2. You can revert the running of HVDirect back to HV1 with this syntax:

0. Revert VMs before starting
Stop-VM -Name HVDirect -ComputerName HV2 -Force
Remove-VM -Name HVDirect -ComputerName HV2 -Force
Start-VM HVDirect -ComputerName HV1

Viewing the HVDirect VM
You start this section by examining the state of the HVDirect nested VM on HV1,
using the Get-VM command.

1. View the HVDirect VM on HV1 and verify that it is running and not
saved
Get-VM -Name HVDirect

You can see the results of this command in Figure 8.50.

You should see the HVDirect VM, which you created in “Creating a Hyper-V
VM.” Depending on how you have configured the VM, your output might be
slightly different—for example you might see a different amount of memory.

Figure 8.50: Viewing HVDirect VM

306	 Chapter 8 ■ Managing Hyper-V

Getting VM Configuration Location
Next, you need to see the folder that Hyper-V is currently using to hold the con-
figuration information for the HVDirect VM. Do that using the Get-VM command.

2. Get the VM configuration location
(Get-VM -Name HVDirect).ConfigurationLocation

You can see the output of this command in Figure 8.51.

If you have run the code in “Managing VM Replication,” you may see a dif-
ferent path. Irrespective of where Hyper-V stores this information, later steps
in this section change the location.

In an enterprise deployment of Hyper-V, you would typically hold the virtual
hard drives on a SAN or via an SMB3 scale-out file server. In production, the
VM details and the virtual hard drives are on separate hosts connected by a
fast network.

Getting VM Hard Drive Locations
You use the Get-VMHardDiskDrive command to get details of the virtual hard
drives contained in the HVDirect VM.

3. Get Hard Drive locations
Get-VMHardDiskDrive -VMName HVDirect |
 Format-Table -Property VMName, ControllerType, Path

You can see the output of this command in Figure 8.52.

If you have run the commands in “Managing VM Replication,” you may see
a different file paths, but the virtual drive name is the same. And as with the

Figure 8.51: Viewing the VM configuration path

Figure 8.52: Getting the VM hard drive locations for HVDirect

	 Chapter 8 ■ Managing Hyper-V	 307

VM details location, what is important is where the files are now since they
change using the later steps in this section.

Migrating VM Storage
You can move the virtual disk drives used by a running VM using the Move-
VMStorage command.

4. Move the VMs to the C:\HVD_NEW folder
$MHT = @{
 Name = 'HVDirect'
 DestinationStoragePath = 'C:\HVD_NEW'
}
Move-VMStorage @MHT

This command moves the files to the path you specify. In this case, you are
just moving the virtual disks on a local hard drive. Instead of storing the VHD
files on the local hard disk, you could store them on a remote host or your SAN.

It is important to also note that moving files did not require the VM to be
stopped—this was a “live” storage migration.

Viewing Configuration Details
After you have moved the VM’s storage, you can view the configuration details
again using the Get-VM and Get-VMHardDiskDrive commands.

5. View the configuration details after moving the VM's storage
(Get-VM -Name HVDirect).ConfigurationLocation
Get-VMHardDiskDrive -VMName HVDirect |
 Format-Table -Property VMName, ControllerType, Path

Figure 8.53 shows the output from these commands.

Figure 8.53: Viewing the VM configuration path

308	 Chapter 8 ■ Managing Hyper-V

As you can see in the output, the virtual disk drives for the HVDirect VM are
now in a different location. Had you been running applications inside the VM,
they would continue running as normal.

Viewing VMs on HV2
Prior to migrating an entire VM, you should first look at the VMs currently
running on HV2, using Get-VM.

6. Get the VM details for VMs from HV2
Get-VM -ComputerName HV2

This command produces no output—there are no VMs running on HV2.

Enabling VM Migration
Installing Hyper-V does not enable VM replication by default. But that is easy
to change using Enable-VMMigration.

7. Enable VM migration on both HV1 and HV2
Enable-VMMigration -ComputerName HV1, HV2

This command enables VM replication on both HV1 and HV2.

Configuring VM Migration
Hyper-V provides a number of options for configuring migration. These allow
for the different deployment scenarios you might find in production. You might
run VMs in production on domain-joined hosts but need to migrate VMs to
a host in a work group or a separate domain. In this case, you use Kerberos
authentication and configure the replication using Set-VMHost, as follows:

8. Configure VM Migration on both hosts
$SVHT = @{
 UseAnyNetworkForMigration = $true
 ComputerName = 'HV1', 'HV2'
 VirtualMachineMigrationAuthenticationType = 'Kerberos'
 VirtualMachineMigrationPerformanceOption = 'Compression'
}
Set-VMHost @SVHT

Because both HV1 and HV2 are in the Reskit domain, you can use Kerberos
for authentication between the two hosts. Were these hosts in different security
realms (for example, with one Hyper-V host in your network and the other in a
disaster recovery partner’s network), then you could use certificate authentication.

	 Chapter 8 ■ Managing Hyper-V	 309

Migrating a VM Between Hosts
To migrate a running VM from one host (HV1) to another (HV2), you use the
Move-VM command.

9. Move the VM to HV2
$Start = Get-Date
$VMHT = @{
 Name = 'HVDirect'
 ComputerName = 'HV1'
 DestinationHost = 'HV2'
 IncludeStorage = $true
 DestinationStoragePath = 'C:\HVDirect' # on HV2
}
Move-VM @VMHT
$Finish = Get-Date

Hyper-V performs the migration as fast as it can, but the migration time
depends on several factors, including the load on the two Hyper-V servers and
the quality of the network.

Displaying Migration Time
After the migration has completed, you can subtract the two date/time objects
to calculate how long it took Hyper-V to migrate the VM from HV1 to HV2.

10. Display the time taken to migrate
$OS = "Migration took: [{0:n2}] minutes"
$OS -f ($($Finish-$Start).TotalMinutes)

You can see the output of these commands in Figure 8.54.

The migration time shown in this figure came from running this step on a
high-speed multiprocessor system. In production, the time taken to migrate a
VM will vary depending on the size of the virtual hard drives and CPU load
on both the two VM hosts. You also need to factor in the load on the network(s)
connecting the two Hyper-V hosts. If you migrate a large production VM across
a suboptimal WAN, migration times are likely to be a lot longer. If you plan

Figure 8.54: Displaying migration time

310	 Chapter 8 ■ Managing Hyper-V

to use migration often, it might be useful to test the migration time to inform
future planning.

Live migration using Move-VM is an easy way to move a VM to a new home
(and back again as needed). But for large VMs, the time it takes to copy the virtual
hard disks may be an issue. If you are regularly moving VMs around, the Hyper-
V Replica tool, as you saw in “Using VM Replication,” might be more useful.

Checking VMs on HV1
Now that you have migrated your HVDirect VM to HV2, you can use Get-VM to
look at the VMs on HV1.

11. Check the VMs on HV1
Get-VM -ComputerName HV1

Assuming that the migration was successful, you should see no output from
this command—there are no VMs running on HV1.

Checking VMs on HV2
You can also use Get-VM to look at the VMs on HV2.

12. Check the VMs on HV2
Get-VM -ComputerName HV2

You can see the output from this command in Figure 8.55.

In this case, you should see the HVDirect VM is now running on HV2.

Examining Virtual Disk Details
You can also get the details of where Hyper-V now stores the VM configuration
details for the HVDirect VM and the details of the virtual drives used in this
VM, like so:

13. Look at the details of the moved VM
(Get-VM -Name HVDirect -Computer HV2).ConfigurationLocation
Get-VMHardDiskDrive -VMName HVDirect -Computer HV2 |
 Format-Table -Property VMName, Path

Figure 8.55: Viewing the VMs on HV2

	 Chapter 8 ■ Managing Hyper-V	 311

You can see the output from these commands in Figure 8.56.

As you can see, the VM configuration details are now stored in C:\HVDirect,
and the virtual hard drives are held in C:\HVDirect\Virtual Hard Disks.

Measuring VM Resource Usage

If you deploy Hyper-V in production, you may find you are running different
VMs that belong to different cost centers and you need to measure resource usage
of VMs for chargeback. You can use Hyper-V resource metering to determine the
resources used by a given VM. In turn, this can enable you to measure accurately
both the assigned capacity and current usage of key resources (such as CPU).
This Hyper-V feature removes the need to develop chargeback solutions, which
can be complex and expensive to develop, depending on your requirements.

With resource metering, Hyper-V enables you to measure the following key
resources:

■■ Average CPU usage

■■ Average physical memory usage

■■ Minimum memory usage

■■ Maximum memory usage

■■ Maximum amount of disk space allocated to a virtual machine

■■ Total incoming network traffic

■■ Total outgoing network traffic

Before You Start
This section uses the Hyper-V VM (HVDirect) and the two Hyper-V hosts (HV1, HV2)
that you have used throughout this chapter. The section assumes that HVDirect
VM is running on HV2 (that is, the state after you’ve completed “Managing VM
Movement”).

Figure 8.56: Examining VM details

312	 Chapter 8 ■ Managing Hyper-V

Getting VM Details
You can ensure that you have at least one VM running on HV2, using Get-VM.

1. Get-VMs on HV2
$VM = Get-VM
$VM

You can see the output from these two commands in Figure 8.57.

You should see, in this figure, just one VM, HVDirect.

Enabling VM Resource Monitoring
You use the Enable-VMResourcedMetering command to enable Hyper-V to do
resource monitoring for the HVDirect VM.

2. Enable resource monitoring of HVDirect
Enable-VMResourceMetering -VM $VM

This command directs Hyper-V to do the resource monitoring for just one
VM. In general, you will probably want to enable resource monitoring on all
your VMs.

Starting the HVDirect VM
If the VM is not running, you can use the Start-VM command to start the VM.

3. Start VM if needed
If ($VM.State -ne 'Running') {
 Start-VM $VM
 Wait-VM -VM $VM -FOR IPAddress
}

This ensures the VM is up and running.

Figure 8.57: Examining VM details

	 Chapter 8 ■ Managing Hyper-V	 313

Creating Credentials for HVDirect
You need a credential object for the HVDirect VM, which you can create as follows:

4. Create Credentials for HVDirect
$User = 'Tiger\Administrator'
$PHT = @{
 String = 'Pa$$w0rd'
 AsPlainText = $true
 Force = $true
}
$PSS = ConvertTo-SecureString @PHT
$Type = 'System.Management.Automation.PSCredential'
$CredHVD = New-Object -TypeName $Type -ArgumentList $User,$PSS

These commands create a credential object for the VM. In this case, you are
creating credentials for the administrator of the host.

Getting Initial Resource Measurements
With the HVDirect VM running and with Hyper-V measuring resource usage,
you can get an initial set of measurements by using Measure-VM.

5. Get Initial Measurements
Measure-VM -VM $VM

You can see the output from this command in Figure 8.58.

Performing Compute Work
To get the VM to do some compute work (and increase the CPU usage of the
HVDirect VM), you can invoke a simple compute-bound script block inside the
VM.

6. Do some Compute Work in the VM
$SB ={
 1..10000000 | ForEach-Object {$I++;$I--}
}
Invoke-Command -VMName HVDirect -ScriptBlock $SB -Cred $CredHVD

Figure 8.58: Measuring VM resource usage

314	 Chapter 8 ■ Managing Hyper-V

These commands, which produce no output, increment and then decrement
the value of the $I variable within a PowerShell session running on the VM.
These operations primarily use CPU time in the VM.

Measuring VM Resource Usage Again
After starting and running some compute work in the VM, you can re-measure
the resources used by HVDirect with the Measure–VM command.

7. Get Additional Measurements
Measure-VM -VM $VM

You can see the output in Figure 8.59.

As you can see in the output, the amount of average CPU usage has gone up
based on the compute work you just carried out.

The exact numbers that Measure-VM produces for you are highly likely to dif-
fer from those shown in this chapter. The key thing to note is that after doing
some computation within a VM, the measurements show an increased use of
CPU within the VM. In a chargeback scenario, the extra work might attract
additional costs to the VM owner.

Summary

In this chapter, you examined numerous aspects of Hyper-V, including installing
Hyper-V, creating and managing VMs, configuring and using nested virtualiza-
tion, and using VM replication and VM (and VM storage) migration. You also
saw how to measure VM resource usage on the VM host.

Figure 8.59: Remeasuring VM resource usage after computation

C H A P T E R

315

9

Windows Management Instrumentation (WMI) is Microsoft’s implementation
of Web-Based Enterprise Management (WBEM) and the Common Information
Model (CIM). WBEM is a standards-based management tool that unifies the
management of distributed computing environments. The CIM is a standard
for defining how device and application characteristics are represented. The
Distributed Management Task Force (DMTF) created both standards with con-
siderable industry input.

	 N OT E     Work on WBEM began in 1996. BMC Software, Cisco Systems, Compaq
Computer, Intel, and Microsoft sponsored the early work. Microsoft provided an initial
implementation of WBEM with WMI for Windows NT 4 and Windows 95. WMI has
evolved significantly ever since. WMI is a fundamental Windows component used by a
variety of Windows features and applications. PowerShell leverages WMI and provides
the IT professional with easy access to the rich capabilities of WMI.

WBEM was originally designed to use web-based protocols, such as HTTP,
to communicate. The Microsoft implementation was WMI, based instead on
using the Component Object Model (COM) and Distributed COM (DCOM). Both
COM and DCOM were popular and relatively fast at the time. Later versions of
PowerShell and WMI incorporated Windows Remote Management (WinRM)
remoting for WMI. This enabled you to access WMI on remote systems.

Using WMI with CIM Cmdlets

PowerShell 7 for IT Pros: A Guide to Using PowerShell 7 to Manage Windows® Systems, First Edition. Thomas Lee.
© 2021 John Wiley & Sons, Inc., Published 2021 by John Wiley & Sons, Inc.

316	 Chapter 9 ■ Using WMI with CIM Cmdlets

Internally, WMI is based on COM and not .NET. The .NET Framework pro-
vides applications with a way to access and leverage COM components. When
the WMI subsystem returns data, .NET encapsulates it in .NET objects. When
the literature talks about WMI objects with respect to PowerShell, technically
they are talking about WMI data returned in a .NET object.

The great thing about this is that you use WMI objects (aka WMI data wrapped
in a .NET object) the same way that you use other .NET objects. Invoking WMI
methods is a little different than invoking .NET methods, as explained in
“Invoking Static and Dynamic Methods.”

PowerShell 7 is based on .NET. Cmdlets such as Get-Process are little more
than wrappers around objects provided by the .NET Framework. When you
call Get-Process, for example, the cmdlet uses the System.Diagnostics.Process
class to obtain the Windows process details via the GetProcesses() method. For
details about the class, you can view docs.microsoft.com/dotnet/api/system
.diagnostics.process?view=netcore-3.0.

In this book so far, you have dealt with a large number of .NET objects.
You looked at the AD-related objects in Chapter 3, “Managing Active Directory,”
and at the various objects used by Hyper-V in Chapter 8, “Managing Hyper-V.”
The terminology for WMI is similar to that for .NET objects but with some small
differences. This chapter covers the following topics:

■■ In “Exploring WMI Namespaces,” you learn WMI data is stored in classes
that reside in namespaces. You look at the namespaces that exist on the
local and remote hosts.

■■ In “Exploring WMI Classes,” you discover the members of WMI classes
and examine how to discover details about WMI objects.

■■ In “Getting Local and Remote WMI Objects,” you retrieve WMI information
from local and remote hosts.

■■ In “Invoking WMI Methods,” you invoke a WMI method to create and
remove an SMB share.

■■ In “Managing WMI Events,” you look at creating event handlers using
PowerShell. To demonstrate WMI’s power, you create a WMI permanent
event handler to protect AD groups from being “accidentally improved”
by unauthorized users being added into high privilege groups by persons
unknown.

WMI is a complex subject, and this chapter does not have the space to go into
a lot of detail. You can read more about WMI in Richard Siddaway’s PowerShell
and WMI (Manning, 2012). Note that this book goes into depth about WMI, and
all of its code examples use the WMI cmdlets rather than the CIM cmdlets we
use here. That being said, much of its discussion of WMI features and functions
is still relevant even if you now access them via different cmdlets.

	 Chapter 9 ■ Using WMI with CIM Cmdlets	 317

Reviewing WMI Architecture in Windows
Before proceeding, it’s useful to have a better understanding of the WMI
architecture, which you can view in Figure 9.1.

The WMI architecture comprises multiple components:

CIM cmdlets: The CIM cmdlets provide access to the functions and fea-
tures of WMI. The CIM cmdlets shipped initially with PowerShell 3 as
an alternative to the WMI cmdlets that shipped with PowerShell 1. With
PowerShell 7, the earlier WMI cmdlets are no longer available or supported,
so all WMI access is via the CIM cmdlets.

.NET Framework: PowerShell cmdlets, including the CIM cmdlets, make
use of the .NET Framework, which provides a mechanism to access COM
and interact with WMI.

Protocol Transport: WMI needs some mechanism to communicate bet-
ween the various components. The WBEM specification used HTTP/S
as a transport layer. However, Microsoft implemented WMI using COM
(and DCOM) to enable individual WMI components to communicate and
interoperate. WMI is, in effect, a large multicomponent application built in

PowerShell
CIM Cmdlets

WMI Core
(CIM Object Manager)

Provider Provider

WMI Repository

Provider

Managed
Entity

Managed
Entity

Managed
Entity

.NET Framework

Protocol Transport

DCOM/WinRM

COM

Figure 9.1: WMI architecture

318	 Chapter 9 ■ Using WMI with CIM Cmdlets

COM. The WMI COM API enables .NET applications such as PowerShell
to access this COM application. For remote access, the CIM cmdlets use
WinRM by default as a transport but can work with DCOM for interop-
erability reasons.

CIM Object Manager (CIMOM): At the heart of WMI is the CIMOM, which
manages access to the objects within WMI. Some objects are stored in the
CIM database, while others are synthesized via WMI providers. The CIM
cmdlets communicate with the CIMOM to manage access to data in the
CIM database.

CIM Database (CIMDB): WMI stores information about WMI-Managed
objects in the CIMDB, also known as the WMI repository. The CIM cmdlets
allow you to query and update this repository. This database is, in effect,
a hierarchical database based on namespaces and classes.

Provider: A provider manages entities in WMI. It implements class methods
and events (see “Managing WMI Events” and “Implementing Permanent
WMI Event Handling” later in this chapter). A provider enables WMI to
interoperate with various Windows components and subsystems (including
AD, networking, and more). A provider can also create WMI objects dynam-
ically as an alternative to storing them in the CIMDB. For more details on
the providers built into Windows, see docs.microsoft.com/en-us/windows/
win32/wmisdk/wmi-providers.

Managed Entity: This refers to any component that WMI exposes to the
CIM cmdlets, such as the BIOS, a network card, or the operating system
running at the time. Each managed entity is represented by one or more
WMI classes. You use the CIM cmdlets to manage these entities.

In WMI, you use the CIM cmdlets to interact with managed entities.
The cmdlets enable you to add, update, and remove information from the CIMDB
(and react to events that occur within a Windows system). WMI providers do
much of the actual work involved, with the other layers just part of the plumbing.

Obtaining WMI Data
The CIMDB is a hierarchical database, which WMI uses as its data store. It con-
sists of a hierarchy of namespaces and classes. A WMI namespace is a container
object that can contain child namespaces and classes. The root WMI namespace
is named root. The CIM cmdlets use the namespace root\CIMV2 as a default
namespace.

A WMI class is a definition of a WMI-Managed object. A WMI class, which
lives in a namespace, contains members including properties and methods.
One example is the Win32_Share class, which defines an SMB share. Although
you can use WMI to manage SMB shares, you are more likely to use the SMB
cmdlets described in Chapter 6, “Managing Shared Data.”

	 Chapter 9 ■ Using WMI with CIM Cmdlets	 319

	 N OT E     Best practice is to use SMB cmdlets rather than the CIM cmdlets to manage
SMB shares. The SMB cmdlets in the SMB share module are often easier to use and are
far easier to understand/modify when that becomes necessary. The Win32_Share
WMI class, nevertheless, is useful as an introduction to WMI.

A property is an attribute of a WMI class. A Win32_Share has a property
Name, which is the name of the SMB share. Each property has a data type, such
as String or Int. The Name property in the Win32_Share class is String. Some
classes (and properties) have names that begin with two underscore characters
(__). These are system classes and properties and generally are not of much use
to IT professionals, with some exceptions.

A method is some action that a WMI object or class is able to carry out. There
are two method types you can use: dynamic and static. A dynamic method is
one based on an occurrence of a class. For example, the Delete() method in
the Win32_Share class deletes the SMB share related to a specific share object.
A static method is one that is carried out by the class itself. The Win32_Share
class has a static method Create(), which you could use to create an SMB share.

A WMI event is created, or fired, whenever a specific event occurs within
Windows. You can subscribe to events and view the information provided. The
__ClassOperationEvent, for example, is fired whenever an occurrence of a class
is added, changed, or removed within a namespace. Events in WMI are pow-
erful, as you can see in “Managing WMI Events.”

When you use the CIM cmdlets to retrieve class instances, PowerShell returns
the data wrapped in a .NET object. For example, when you retrieve the SMB
share objects from the Win32_Share class, the data representing each SMB share is
returned contained in an object of the type Microsoft.Management.Infrastructure
.CimInstance. This approach simplifies retrieving data from WMI, as the objects
are basically the same as the .NET objects you have used throughout this book.

Using the CIM Cmdlets
With the first version of Windows PowerShell, Microsoft shipped a set of WMI
cmdlets that enabled basic access into WMI, although they were not functionally
complete and could be hard to use. The WMI cmdlets also relied on DCOM for
accessing WMI on remote machines. Although these initial cmdlets were not
complete, workarounds were available for the functionality gaps.

With version 3 of Windows PowerShell, Microsoft did some reengineering
of WMI. This simplified the implementation of WMI providers, created a new
set of cmdlets, and led a drive to push WMI (WBEM) into Linux.

The CIM cmdlets were introduced with PowerShell 3 and provided greatly
improved feature coverage. The CIM cmdlets also use different .NET class
wrappers, which are smaller. This can reduce the bandwidth when accessing
WMI remotely.

320	 Chapter 9 ■ Using WMI with CIM Cmdlets

Another major improvement is that the CIM cmdlets use WinRM for remote
communications. WinRM is easier to secure and can be more lightweight than
using DCOM. WinRM is also standards-based, opening up interoperation with
Linux and Macintosh hosts. The Open Management Infrastructure project has
created an open source version of WMI for Linux.

With the CIM cmdlets, you can create a CIM session with a remote machine.
Once the session is established, you can run multiple WMI operations on the
remote machine without incurring the relatively large setup costs. If necessary,
you can create a CIM session using DCOM, which allows you to use the newer
commands against older hosts that do not support WinRM.

Systems Used in This Chapter
This chapter uses several hosts: DC1 and DC2, which are domain controllers in
the Reskit.Org domain, and SRV2, which is a member server in the domain. You
have used all these servers in previous chapters in this book.

Exploring WMI Namespaces

As mentioned in the chapter introduction, WMI data comes from instances
within WMI classes that reside in WMI namespaces. In WMI, the root namespace
is named ROOT. This root namespace contains both classes and additional
namespaces. In every namespace, WMI has an internal class __NAMESPACE that
contains the names of namespaces below the current one. This enables you to
discover the namespaces available in WMI. Although there are a number of
namespaces, not all of them are overly useful to the IT professional.

Viewing Classes in the Root Namespace
You can begin your exploration of WMI data by looking at the classes that WMI
contains in the root namespace, using Get-CimClass like this:

1. View CIM classes in the root namespace
Get-CimClass -Namespace 'root' | Select-Object -First 20

You can see the output from this command in Figure 9.2.
This output shows the first 20 classes in the root WMI namespace. As you

can see, many these classes begin with __ (two underline characters). These are
internal or system classes used by WMI and typically contain little of use for the
IT professional. From a structural point of view, WMI applications can use the
__NAMESPACE class as the key to building a complete hierarchy of namespaces
within WMI, as you will see shortly.

	 Chapter 9 ■ Using WMI with CIM Cmdlets	 321

Viewing Namespaces Below the Root
The WMI root namespace is named root. The namespaces directly below
root are contained in the WMI class __NAMESPACE. You can view the top-level
namespaces—that is, the namespaces that are children of root—by getting the
occurrences of this class, as follows:

2. Look in __NAMESPACE in Root
Get-CimInstance -Namespace 'root' -ClassName __NAMESPACE |
 Sort-Object -Property Name

You can see the output from this command in Figure 9.3.

Enumerating Classes in root\CIMV2
The classes in the root\CIMV2 namespace are the ones that are most useful for
IT professionals. To simplify access to the most commonly used classes, WMI
uses the root\CIMV2 as the default namespace for scripting.

You could use the WmiMgmt.msc management console to change this default.
If you are using classes in non-default namespaces from the command line, this
might be convenient, but that could be dangerous if you have production scripts
that assume the default; changing the default could break those scripts. So make
sure you test any changes to the default carefully—or just leave the default as is.

Figure 9.2: Viewing classes in root namespace

322	 Chapter 9 ■ Using WMI with CIM Cmdlets

To get and count all the classes in this important WMI namespace, you can
use the Get-CimClass cmdlet, like this:

3. Get and count classes in root\CIMV2
$Classes = Get-CimClass -Namespace 'root\CIMV2'
"There are $($Classes.Count) classes in root\CIMV2"

You can view the number of classes in the root\CIMV2 namespace in Figure 9.4.

Depending on the features you have installed, the exact number of classes could
vary. There are around 400 classes that might be of use to the IT professional.
The root\CIMV2 namespace contains around 350 performance-related classes,
which you examine later in this chapter and in Chapter 10, “Reporting.”

Figure 9.3: Viewing namespaces in root

Figure 9.4: Getting classes in the root\CIMV2 namespace

	 Chapter 9 ■ Using WMI with CIM Cmdlets	 323

Discovering All Namespaces in WMI
Since every namespace contains a __NAMESPACE class containing the names of
child namespaces, you can discover the names of all the namespaces within
WMI, as follows:

4. Discovering ALL namespaces on DC1
Function Get-WMINamespaceEnum {
 [CmdletBinding()]
 Param($NS)
 Write-Output $NS
 Get-CimInstance "__Namespace" -Namespace $NS -ErrorAction
SilentlyContinue |
 ForEach-Object { Get-WMINamespaceEnum "$ns\$($_.name)" }
} # End of function
$Namespaces = Get-WMINamespaceEnum 'root' | Sort-Object
"There are $($Namespaces.Count) WMI namespaces on this host"

You can see the output from these commands in Figure 9.5.

This code snippet, which was originally written by Alan Renouf (see akaplan
.com/2019/02/get-wmi-namespaces-with-powershell/), defines a recursive
function, Get-WMINameSpaceEnum, which initially gets all the namespaces in the
root namespace, and then calls the function recursively to get all the namespaces
within each child namespace. This produces a complete set of namespaces,
which is then sorted in alphabetic order.

As you can see, there are 108 namespaces on DC1. Adding applications or Win-
dows features can add additional WMI namespaces as well as adding classes
to existing namespaces.

Figure 9.5: Getting all namespaces

324	 Chapter 9 ■ Using WMI with CIM Cmdlets

Viewing Some WMI Namespaces
You can view some of the namespaces in WMI on DC1 with this syntax:

5. View some of the namespaces
$Namespaces |
 Select-Object -First 20

You can see the first 20 namespaces on WMI in Figure 9.6.

Most of these namespaces are of little interest, but a few are useful as you see
later in this chapter. In particular, you use the root\CIMV2 and root\directory\
LDAP namespaces in later exercises.

Counting WMI Classes
You can use the set of namespaces, combined with Get-CimClass, to display a
count of all the classes within WMI on DC1 using this snippet:

6. Counting WMI classes on DC1
$WMIClasses = @()
Foreach ($Namespace in $Namespaces) {
 $WMIClasses += Get-CimClass -Namespace $Namespace
}
"There are $($WMIClasses.count) classes on $(hostname)"

Figure 9.6: Viewing some namespaces

	 Chapter 9 ■ Using WMI with CIM Cmdlets	 325

As shown in Figure 9.7, this displays a count of all the WMI classes on DC1.
This count of available WMI classes demonstrates the richness of WMI. Once

you have retrieved all the WMI classes, you can use PowerShell to find classes
that might be useful. You could pipe $WMIClasses to Where-Object, looking for
class names that might be of interest.

Viewing Namespaces on a Remote Server
The CIM commands also work well across the network. It’s easy to discover the
namespaces on a remote host, such as SRV2, with this syntax:

7. View namespaces on SRV2
Get-CimInstance -Namespace root -ClassName __NAMESPACE -CimSession SRV2

In Figure 9.8 you can see the results of this command, namely, the top-level
WMI namespaces on SRV2.

Figure 9.7: Counting classes

Figure 9.8: Viewing namespaces on SRV2

326	 Chapter 9 ■ Using WMI with CIM Cmdlets

The -CimSession parameter accepts either a CIM session (that is, one that
you previously created) or a computer name. If you pass a computer name,
Get-CimInstance creates a CIM session with the remote host, runs the command
over that session, and then destroys the session.

As you can see, the namespaces are not listed in alphabetic order. You can pipe
the output of this command to Sort-Object to sort the list into alphabetic order.

Counting Namespaces/Classes on SRV2
To show how easy it is to use the CIM cmdlets across a network and to show
the differences in available CIM classes, you can count the total number of WMI
namespaces and classes on a remote host. To do that, you can combine some of
the earlier code snippets into a script block and then run that script block on a
remote host, like this:

8. Enumerate all namespaces and Classes on SRV2
$SB = {
 Function Get-WMINamespaceEnum {
 [CmdletBinding()]
 Param(
 $NS
)
 Write-Output $NS
 Get-CimInstance "__Namespace" -Namespace $NS -ErrorAction
SilentlyContinue |
 ForEach-Object { Get-WMINamespaceEnum "$ns\$($_.name)" }
 } # End of function
 $Namespaces = Get-WMINamespaceEnum 'root' | Sort-Object
 $WMIClasses = @()
 Foreach ($Namespace in $Namespaces) {
 $WMIClasses += Get-CimClass -Namespace $Namespace
 }
 "There are $($Namespaces.count) WMI namespaces on $(hostname)"
 "There are $($WMIClasses.count) classes on $(hostname)"
}
Invoke-Command -ComputerName SRV2 -ScriptBlock $SB

You can see, from the output shown in Figure 9.9, that there are 104 WMI
namespaces and 14,120 WMI classes on SRV2.

When you add features or applications to a Windows host, you can find added
WMI namespaces and classes. It is normal that the number of classes differs
between systems.

	 Chapter 9 ■ Using WMI with CIM Cmdlets	 327

Counting Namespaces/Classes on DC2
You can also run this script block on the other domain controller in the
Reskit.Org domain (DC2), like this:

9. Run the script block on DC2
Invoke-Command -ComputerName DC2 -ScriptBlock $SB

You can see the output from this command in Figure 9.10.

As you can see from the figures in this section, the number of namespaces
and classes on the three servers varies. This is to be expected. You have installed
AD on both DC1 and DC2, which adds namespaces and classes to WMI. SRV2
has other Windows features loaded (including FSRM), which likewise adds
classes. Many of the features in Windows come with WMI providers that add
namespaces and classes. The classes in WMI provide IT professionals with more
options for managing Windows systems.

Figure 9.9: Counting namespaces and classes on SRV2

Figure 9.10: Counting namespaces and classes on DC2

328	 Chapter 9 ■ Using WMI with CIM Cmdlets

There is no central registry of all WMI namespaces and classes within a
Windows host. Documentation for many namespaces and classes is thin or non-
existent. The Win32 WMI provider, which provides many of the classes in the
root\CIMV2 namespace, is covered by some documentation on docs.microsoft
.com, although it is developer-focused. Your search engine is a good source of
information on useful WMI classes.

Exploring WMI Classes

As you discovered in the previous section, WMI on a Windows Server 2019 host
contains more than 15,000 WMI classes. Each of those WMI classes can have
zero, one, or more than one occurrence. Each occurrence of a class is a separate
WMI object, which you can manage using the CIM cmdlets. Before looking at
the occurrences, it’s useful to explore the WMI class.

The vast majority of the classes in WMI today are of limited or no use to IT
professionals. But many can be useful. You use the Get-CimClass cmdlet to dis-
cover what classes exist in a namespace as well as obtaining details about any
given WMI class. Details include the WMI methods supported by the class and
the properties on WMI objects.

Examining the Win32_Share Class
You can use the Get-CimClass cmdlet to discover the details of the Win32_Share
class. This class, which is in the root\CIMV2 namespace, represents the print
and file shares offered by the Windows Server service. Each WMI object in this
class represents a single share.

While most IT professionals use the SMB share module to manage these
shares, as you did in Chapter 6, WMI is an alternative.

To find out more about this class, you use the Get-CimClass cmdlet.

1. View Win32_Share class
Get-CimClass -ClassName Win32_Share

Figure 9.11 shows the output from this command.

Figure 9.11: Viewing the Win32_Share WMI class

	 Chapter 9 ■ Using WMI with CIM Cmdlets	 329

Viewing Class Properties
You can use the Get-CimClass cmdlet to retrieve details of occurrences of a
class. This allows you to see the properties of a given WMI object as well as to
discover the data type for each property. You can use the Select-Object cmdlet
to retrieve property details.

2. Get Win32_Share class properties
Get-CimClass -ClassName Win32_Share |
 Select-Object -ExpandProperty CimClassProperties |
 Sort-Object -Property Name |
 Format-Table -Property Name, CimType

Figure 9.12 shows the output, consisting of the property and data type for the
properties of an object of the class Win32_Share.

Viewing Class Methods
Methods are actions that WMI can perform on either a class or a WMI object
(an occurrence of a WMI class). WMI methods are generally implemented by
WMI providers. You can use the Get-CimClass cmdlet to explore details of the
methods for a given WMI class.

3. Get class methods
Get-CimClass -ClassName Win32_Share |
 Select-Object -ExpandProperty CimClassMethods

You can see the methods supported by the Win32_Share class in Figure 9.13.
When you use Get-CimClass and do not specify a namespace, WMI assumes

the namespace in which to find the specified class is root\CIMv2.

Figure 9.12: Counting namespaces and classes on DC1

330	 Chapter 9 ■ Using WMI with CIM Cmdlets

For each method returned, you can see the names of the parameters (where the
methods have any). You can see that the Delete() method takes no parameters,
whereas the Create method takes seven. You can use the previous command
to confirm the data type for each parameter.

Viewing Class Details in a Specified Namespace
If you want to view details of a class in a namespace other than the default, you
specify it with the -Namespace parameter.

4. Get classes in a non-default namespace
Get-CimClass -Namespace root\directory\LDAP |
 Where-Object CimClassName -match '^ds_Group'

You can see the class details in Figure 9.14.

The AD WMI provider implements the ds_Group class in the \root\directory\
LDAP namespace. Each instance of this class represents an AD group, complete
with all the properties you can retrieve using the Get-ADGroup command.

Getting Local and Remote Objects

As you have seen, WMI contains a large number of namespaces and classes.
While most of the classes are of little or no use to the IT professional, many
contain information that can be useful. You use the Get-CimInstance cmdlet to
return instances of a WMI class.

Figure 9.13: Viewing the methods supported by the Win32_Share class

Figure 9.14: Viewing class details with a specified namespace

	 Chapter 9 ■ Using WMI with CIM Cmdlets	 331

This cmdlet gets the relevant rows from WMI and returns that information
wrapped in a .NET object.

Using Get-CimInstance
You use the Get-CimInstance cmdlet to retrieve WMI objects within a given
WMI class, like this:

1. Using Get-CimInstance in default Namespace
Get-CimInstance -ClassName Win32_Share

As shown in Figure 9.15, this command returns the objects in the
Win32_Share class.

Each WMI object returned represents a single SMB share on the host.

Getting Objects from a Non-default Namespace
To retrieve the WMI objects from any class that is not in the default root\WIN32
namespace, you must also specify the namespace, as shown here:

2. Get WMI objects from non-default namespace
$GCIMHT1 = @{
 Namespace = 'root\directory\LDAP'
 ClassName = 'ds_group'
}
Get-CimInstance @GCIMHT1|
 Sort-Object -Property Name |
 Select-Object -First 10 |
 Format-Table -Property DS_name, DS_distinguishedName

The output from these commands, which is similar to the previous step, is
shown in Figure 9.16.

As you can see, retrieving objects from any non-default namespace is pretty
simple; you just specify the namespace.

Figure 9.15: Viewing details of the Win32_Share class

332	 Chapter 9 ■ Using WMI with CIM Cmdlets

Using a WMI Filter
A WMI filter is an expression that filters the objects returned from commands
such as Get-CimIstance. A filter is similar to the ‑FilterScript parameter to
the Where-Object cmdlet, but it uses a different syntax, based on the ANSI SQL
query language. An important difference between WMI filters and Where-Object
is that a WMI filter controls occurrences at the source rather than instantiating
them and dropping the ones you are not interested in. This is known as early
filtering and is more efficient.

You apply a WMI filter to Get-CimInstance.

3. Using -Filter
$Filter = "ds_Name LIKE '%operator%' "
Get-CimInstance @GCIMHT1 -Filter $Filter |
 Format-Table -Property ds_Name

You can see the output of these commands in Figure 9.17.

Figure 9.16: Viewing details of a class in a non-default namespace

Figure 9.17: Using the -Filter parameter

	 Chapter 9 ■ Using WMI with CIM Cmdlets	 333

In this example, you use the WMI filter to return only those objects where
the ds_Name property contains the string “operator.”

Note that with the LIKE clause, WQL uses % to match one or more characters,
unlike PowerShell’s -Like operator, which uses *.

Using a WMI Query
As mentioned, WMI contains a specialized query language, WMI Query Language
(WQL), which is, in effect, a limited subset of the ANSI SQL language. WQL
contains just a single command (SELECT), which has a few useful clauses. A full
WQL query enables you to specify conditions on which instances are returned
and which specific properties are returned, which can reduce the bandwidth
used when you retrieve remote WMI objects.

You can specify a WMI query to the Get-CimInstance command like this:

4. Use a WMI Query
$Q = @"
 SELECT * from ds_group
 WHERE ds_Name like '%operator%'
"@
Get-CimInstance -Query $q -Namespace 'root\directory\LDAP' |
 Format-Table ds_Name

You can see the output of these commands, the CIM classes from this non-
standard namespace that contain “operator” in their names, in Figure 9.18.

There are two important advantages of using WMI queries, especially when
querying remote hosts. First, the SELECT command instructs WMO to return
only specific properties of each class occurrence. In a large WMI class, this can
improve performance by not passing unneeded properties. You can also use

Figure 9.18: Using a WQL query

334	 Chapter 9 ■ Using WMI with CIM Cmdlets

the WHERE clause to specify a filter. The filter specified in the WHERE clause is
the same as you specified in the Filter parameter. The WHERE clause is similar
in concept to Where-Object, except that the filtering is done by WMI when the
objects are being returned. This is known as early filtering. Additionally, the
syntax of the WHERE clause is not the same as you use with PowerShell and the
-LIKE operator.

Getting Remote WMI Objects
With the CIM cmdlets, you can get WMI objects from a remote machine. You
use the same cmdlet (Get-CimInstance) and use the -ComputerName property.
You can get class instances from a remote system with this syntax:

5. Get WMI Object from a remote system
Get-CimInstance -CimSession SRV2 -ClassName Win32_ComputerSystem

You can see the output of these commands in Figure 9.19.

As you can see, getting remote CIM objects is straightforward.

Invoking WMI Methods

A method, in many programming languages, is an action that an object (or class)
is able to perform. In WMI in Windows, methods are generally implemented by
WMI providers. In many cases, these methods duplicate functionality provided
to the IT professional via PowerShell commands.

WMI has two types of method: static and instance. A static method is one
that WMI performs based on the class, while an instance method is one that
WMI performs on an instance. As you saw in “Viewing Class Methods,” the
Win32_Share class has a static method Create, which creates a new SMB share.
WMI objects that are instances of this class have a Delete method, which deletes
the specific SMB share. The Delete method is an instance method. In general,
you use static methods to create WMI instances and instance methods to act
on instances once they are created.

Figure 9.19: Getting remote WMI objects

	 Chapter 9 ■ Using WMI with CIM Cmdlets	 335

Reviewing Static Methods of a Class
As you have already seen, the Get-CimClass cmdlet provides useful information
about a WMI class, including the methods available and the parameters that those
methods use. The object returned by the Get-CimClass cmdlet has a property,
CimClassMethods, which describes each available method, including each one’s
parameter names and whether the method is static or instance-based. You can
use Select-Object to expand and then view the method’s details.

1. Review methods of Win32_Share Class
Get-CimClass -ClassName Win32_Share |
 Select-Object -ExpandProperty CimClassMethods

You can see the output from these commands, the methods provided by the
Win32_Share class, in Figure 9.20.

In WMI, both classes and methods can have qualifiers, which provide
information about the class or method. The Constructor qualifier shows that
the Create method creates instances of this class, while the Destructor quali-
fier documents that the Delete method deletes instances of this class. Finally,
the Implemented qualifier notes that this method is implemented. During the
development of a WMI provider, you might find that some parts of a WMI
object are defined but not fully implemented. But this is not something you nor-
mally see in released versions of Windows. The qualifiers shown for the Create
method include the Static and Constructor qualifiers. This tells you that the
Create method is a static method used to construct new instances of the class.

For more details on WMI qualifiers, see docs.microsoft.com/windows/win32/
wmisdk/wmi-qualifiers.

Reviewing Properties of a Class
You can use the Get-CimClass cmdlet to provide details of the properties of the
class. Each WMI object has one or more properties that are, like .NET objects,

Figure 9.20: Viewing methods of the Win32_Share class

336	 Chapter 9 ■ Using WMI with CIM Cmdlets

of different types. For example, you can view the properties of an instance of
the Win32_Share class with this code:

2. Review properties of Win32_Share class
Get-CimClass -ClassName Win32_Share |
 Select-Object -ExpandProperty CimClassProperties |
 Format-Table -Property Name, CimType

Figure 9.21 shows the output from these commands, detailing the properties
of an instance of the Win32_Share class.

As you can see in this output, the properties of this class are similar to the
properties of the objects returned from the Get-SMBShare command. Knowing
the data types of the parameters can be important for interoperation and when
you invoke CIM methods.

Creating a New Share
To create a new SMB share via WMI, you use the Invoke-CimMethod cmdlet to
invoke the Create method.

3. Create Hash Table of new share properties using static method
$NSHT = @{
 Name = 'TestShare1'
 Path = 'C:\Foo'
 Description = 'Test Share'
 Type = [uint32] 0 # disk
}
Invoke-CimMethod -ClassName Win32_Share -MethodName Create -Arguments
$NSHT

Figure 9.21: Viewing methods of the Win32_Share class

	 Chapter 9 ■ Using WMI with CIM Cmdlets	 337

As you can see in Figure 9.22, the only output from these commands is a
result code, where zero means success.

When you invoke a WMI method, you pass the parameters via a hash table.
In the hash table, the keys represent the names of the class properties and the
values are those you want the new class occurrence to have. In this case, you
specify the SMB share name, path, description, and type. To create a disk share,
you specify Type with a value of 0 (zero).

Note that in this snippet, you pass the method arguments (that is, the details
of the share that the cmdlet is to create) as a hash table. This is different from
using a hash table to splat parameter values, so you use the notation $NSHT to
pass the method parameters.

Viewing the SMB Share Using Get-SMBShare
Now that you have created the share using the WMI method, you can use the
Get-SMBShare command to view the details of the share.

4. View the new SMB Share
Get-SMBShare -Name 'TestShare1'

Figure 9.23 shows the output from this command, the properties of an in-
stance of the Win32_Share class.

Figure 9.22: Invoking a WMI method

Figure 9.23: Viewing the SMB share

338	 Chapter 9 ■ Using WMI with CIM Cmdlets

Viewing the SMB Share Using Get-CimInstance
You can also view the newly created SMB share by using a WMI filter.

5. View the new SMB Share using Get-CimInstance
Get-CimInstance -Class Win32_Share -Filter "Name = 'TestShare1'"

You can see the output from this command, showing details about this newly
created share, in Figure 9.24.

Note that the syntax for the filter is based on the ANSI SQL language and
does not adopt normal PowerShell patterns.

Removing an SMB Share
You used the Create static method to create an SMB share. Each SMB share in-
stance has an instance method, Delete, which deletes a share. You can remove
the newly created share with this code:

6. Remove the share
Get-CimInstance -Class Win32_Share -Filter "Name = 'TestShare1'" |
 Invoke-CimMethod -MethodName Delete

You can see the output of these commands in Figure 9.25. As you saw when
creating a new share with WMI, the output indicates only that WMI has removed
the share successfully from WMI (and Windows).

This snippet first gets the WMI object related to the new share and then
pipes that to Invoke-CimMethod. WMI then removes the share instance from
the Win32_Share class.

Figure 9.24: Viewing an SMB share

Figure 9.25: Removing an SMB share

	 Chapter 9 ■ Using WMI with CIM Cmdlets	 339

As you have seen, you can use WMI to create and remove various objects, in
this case an SMB share. A final reminder: although you can use WMI to manage
SMB shares, it is easier to use the native cmdlets, in this case the SMB cmdlets.

Managing WMI Events

WMI has rich event-management functionality. WMI and its providers imple-
ment a range of event classes that enable you to detect and handle the wide
range of events that occur in a Windows computer.

WMI itself can raise events whenever any WMI object—that is, any underlying
data in the CIM database—is added, modified, or removed. This includes any
changes to a namespace, changes to classes within a namespace, and changes
to class occurrences. Such events are known as intrinsic events. An example
would be Windows starting a new process and creating a new instance of the
Win32_Process class.

WMI providers also implement provider-specific events, known as extrinsic
events. The WMI registry provider offers events that detect changes to the reg-
istry. The Active Directory WMI provider has events that fire whenever objects,
such as an AD group, are changed.

With WMI event handling, you need to create an event subscription that
tells WMI which event you are interested in. Additionally, you can define an
event handler that performs some action(s) when the event occurs. For more
information on the kinds of events that WMI can generate, see docs.microsoft
.com/en-us/windows/win32/wmisdk/determining-the-type-of-event-to-receive.

WMI provides two kinds of event handling you can use. The first, temporary
event handling, makes use of Register-CimEvent to subscribe to a specific event
such as a change to the registry. The second is permanent eventing, which you’ll
explore in “Implementing Permanent WMI Event Handling.” In both cases, you
must first register for the event, sometimes referred to as subscribing to the event.

With temporary eventing, when you register for an event, you can also
specify a script block, which you specify using the -Action parameter to
Register-CimIndicationEvent. As long as you keep the PowerShell session
open, when the event occurs, PowerShell executes the action block. The script
inside the action block runs inside a background PowerShell job. PowerShell
creates the job when you register for the event. PowerShell runs the job in the
background and buffers any output from the script block. You can view that
output by using Receive-Job. Also, if the script block contains Write-Host
statements, PowerShell writes the output directly to the console and not to the
background job output. The first time this happens, it can be a bit confusing
since the output from the Write-Host statement(s) just appears in the console.

340	 Chapter 9 ■ Using WMI with CIM Cmdlets

If you do not specify an action block when registering for the event, Power-
Shell queues any events that occur in the event log. You use the Get-WinEvent
cmdlet to retrieve the event records and process them accordingly.

When any WMI event occurs, WMI creates an event record that contains details
of the event. However, the information included in the event record is often less
than IT professionals might like. For example, WMI can detect when someone
changes the membership of an AD group, but WMI does not record who made
the change or the IP address of the host they used to make the change. Simi-
larly, the Registry WMI provider can raise an event when a Registry key value
is changed, but the event record does not contain the before and after values (or
who made the change). WMI eventing, combined with your use of other tools,
can be extremely powerful as part of troubleshooting.

Registering for an Event
You use the Register-CimIndicationEvent cmdlet to tell WMI what event you
want to register for, as shown here:

1. Register for an intrinsic event
$Query1 = "SELECT * FROM __InstanceCreationEvent WITHIN 2
 WHERE TargetInstance ISA 'Win32_Process'"
$CEHT = @{
 Query = $Query1
 SourceIdentifier = 'NewProcessEvent'
}
Register-CimIndicationEvent @CEHT

These commands specify a WQL query that describes the event you want to
subscribe to. The query tells WMI to generate an event any time a new WMI
object is added to the Win32_Process class. Any time you run a process, WMI
raises this event.

After you register for this event, WMI writes to a PowerShell event queue
each time Windows starts a new process (that is, runs some program).

Running a Windows Process
You can test the event subscription by running a Windows program.

2. Run Notepad
notepad.exe

This command runs the Notepad Windows application, and you see the
application open. At this point, WMI has raised the event and has queued the
event details in the PowerShell event queue.

	 Chapter 9 ■ Using WMI with CIM Cmdlets	 341

Getting the WMI Event
To retrieve details of this event from the event queue, you use the Get-Event
command like this:

3. Get Event
$Event = Get-Event -SourceIdentifier 'NewProcessEvent' |
 Select -Last 1

This command returns any event in the event queue with the identifier
NewProcessEvent. Depending on how busy your system is and what you have
running on it, the command may return many events, so we select the most
recent one. Depending on how long you leave this query running, Windows
may start up several processes as part of normal operation. Each time this
happens, WMI writes a further entry to the event queue.

Displaying Event Details
The WMI event, held in the $Event variable, is a complex object with a lot of
properties. Most of those properties are not overly useful for the IT professional.
If you view $Event.SourceEventArgs.NewEvent.TargetInstance, you get the
information WMI recorded about the event, like this:

4. Display event details
$Event.SourceEventArgs.NewEvent.TargetInstance

You can see the output in Figure 9.26.

As you can see in the output, the event details show that Windows started a
notepad.exe process.

Unregistering for a WMI Event
Once you have completed looking at a given event, there are two ways to
remove the event and clean up the environment. The simplest way is to just
close PowerShell, which removes all temporary event subscriptions. You can

Figure 9.26: Viewing WMI event details

342	 Chapter 9 ■ Using WMI with CIM Cmdlets

also explicitly deregister for the event by using the Unregister-Event command,
like this:

5. Unregister Event
Unregister-Event -SourceIdentifier 'NewProcessEvent'

Creating an Extrinsic Event Registration
An extrinsic WMI event is one raised by a WMI provider. The WMI registry
provider can raise an event whenever the registry changes. As noted earlier, you
can also specify an action block—a script block that WMI executes whenever
the event occurs, as follows:

6. Create and Register Extrinsic event query — handled by provider
New-Item -Path 'HKLM:\SOFTWARE\Wiley' | Out-Null
$Query2 = "SELECT * FROM RegistryValueChangeEvent
 WHERE Hive='HKEY_LOCAL_MACHINE'
 AND KeyPath='SOFTWARE\\Wiley' AND ValueName='MOLTUAE'"
$Action2 = {
 Write-Host -Object "Registry Value Change Event Occurred"
 $Global:RegEvent = $Event }
Register-CimIndicationEvent -Query $Query2 -Action $Action2 -Source
RegChange

Figure 9.27 shows the output from these commands.

These commands first create a new registry key. Then you define a WQL
query that looks for a change in any registry value. You create an action block,
which is a PowerShell script block that you want WMI to run when the event
occurs. You then register for this event, specifying the action block. The output
you see is the summary of the new background job, which PowerShell uses to
invoke the code in the action block. The action block has two commands: the

Figure 9.27: Creating an extrinsic event subscription

	 Chapter 9 ■ Using WMI with CIM Cmdlets	 343

first uses Write-Host to write a message to the PowerShell host, and the other
sets a global PowerShell variable to hold the event details.

Modifying the Registry
Now that you have the new registry key created and have registered the event,
you can test this event registration. To do that, you update a value entry on the
registry key being watched, using the following commands:

7. Create a new registry key and change a value entry
$Q2HT = [ordered] @{
 Type = 'DWord'
 Name = 'MOLTUAE'
 Path = 'HKLM:\Software\Wiley'
 Value = 42
}
Set-ItemProperty @Q2HT
Get-ItemProperty -Path HKLM:\SOFTWARE\Wiley

These commands update a registry value and create the output you can see
in Figure 9.28.

You can see the updated registry value in the figure. A few seconds after using
Set-ItemProperty, the WMI event handler sends the message to the console that
“Registry Value Change Event Occurred.”

Figure 9.28: Updating a registry value

344	 Chapter 9 ■ Using WMI with CIM Cmdlets

Unregister the Registry Event
To remove the event registration, you can use the Unregister-Event command.

8. Unregister for the event
Unregister-Event -SourceIdentifier 'RegChange'

This command removes the registration, and no further events are raised
for this subscription.

Examining Result Details
Because the action block saved the results of the most recent event in the $RegEvent
variable, you can examine this variable to see details of the event, like this:

9. Look at result details
$RegEvent.SourceEventArgs.NewEvent

You can see the output from this command in Figure 9.29.

Defining a WQL Event Query
The WQL query you create monitors any changes to the ds_group WMI class.

10. Create WQL Event Query
$Group = 'Enterprise Admins'
$Query1 = @"
 Select * From __InstanceModificationEvent Within 5
 Where TargetInstance ISA 'ds_group' AND
 TargetInstance.ds_name = '$Group'
"@

In this query, you are asking WMI to generate the event any time there is any
change to an object in the ds_group class (that is, any time a change to the group
occurs). This query also tells WMI how often to look for the event.

Figure 9.29: Viewing event details

	 Chapter 9 ■ Using WMI with CIM Cmdlets	 345

Creating a Temporary WMI Event Subscription
Now that you have the WQL query, you can create the event subscription by
using Register-CimIndicationEvent.

11. Create a temporary WMI event indication
$Event = @{
 Namespace = 'root\directory\LDAP'
 SourceID = 'DSGroupChange'
 Query = $Query1
 Action = {
 $Global:ADEvent = $Event
 Write-Host 'We have a group change'
 }
}
Register-CimIndicationEvent @Event

Since you specified an action block, PowerShell runs a batch job to perform
the script block. You can see the job details in Figure 9.30.

Adding to the Enterprise Admins Group
To test the subscription, you need to add a user to the Enterprise Admins group,
using Add-ADGroupMember.

12. Add a user to the Enterprise Admins group
Add-ADGroupMember -Identity 'Enterprise Admins' -Members Sylvester

This command adds the user Sylvester to the Enterprise Admins group.
You created this user in Chapter 3. The command itself does not produce any
output. But when WMI detects the event, it outputs the message “We have a
group change” to the console, as you can see in Figure 9.31.

Figure 9.30: Creating a temporary WMI event subscription

346	 Chapter 9 ■ Using WMI with CIM Cmdlets

Viewing the Event
Once WMI has detected the group change and generated an event, it executes
the action block. In addition to emitting the message to the console, this block
saved details of the event to the $ADEvent variable. You can view the details of
the event by examining the variable, as shown here:

13. View who was added
$ADEvent.SourceEventArgs.NewEvent.TargetInstance |
 Format-Table -Property DS_sAMAccountName,DS_Member

You can see the event information in Figure 9.32.

Although you can see the user added to the AD, WMI does not capture which
user made the change or details that might help you determine who made the
change.

Unregistering the WMI Event
To complete this section, you remove the WMI event subscription as follows:

15. Unregister for the event
Unregister-Event -SourceIdentifier 'DSGroupChange'

This removed the event registration. As an alternative, you could have just
exited from PowerShell.

In this section, you examined temporary WMI event handling. You set up an
intrinsic query and two extrinsic queries and observed how WMI handles events.

Figure 9.32: Viewing event details

Figure 9.31: Adding a user to an AD group

	 Chapter 9 ■ Using WMI with CIM Cmdlets	 347

Implementing Permanent WMI Event Handling

In the previous section, you saw how to make use of temporary event handling
with WMI. You created a subscription, with or without an action block, and
are able to consume and handle events when they occur. This event handling
is temporary in that when you exit from PowerShell, the event subscription is
removed, and no further events are generated.

Temporary event handling works only in a given PowerShell session, which
makes it a great diagnostic tool as part of troubleshooting. Cleanup is also
simple—just close the PowerShell session. This means you might need to open,
and keep open, a PowerShell console with which to carry out WMI event mon-
itoring. To avoid this, you can use permanent event handling.

With permanent event handling, you configure WMI to both subscribe to an
event and then perform some predefined action when that event occurs. You
first store details of the specific event and how to respond to it as new instances
in the WMI CIM database by adding objects to two WMI classes. Then you
bind these two new instances, which tells WMI to run the action whenever the
event occurs.

WMI in Windows provides five built-in permanent event handlers:

Active Script Consumer: You use this to run a specific VBS script.

Log File Consumer: This handler writes details of events to your own log files.

NT Event Log Consumer: This consumer writes event details into the Win-
dows Event Log.

SMTP Event Consumer: You can use this consumer to send an SMTP email
message when an event occurs.

Command Line Consumer: You use this consumer to run a program, such
as PowerShell 7, and pass a script filename. When the event occurs, the
script has access to the event details and can do pretty much anything.

Microsoft developed the Active Script consumer in the days of Visual Basic and
VBS scripts. Unfortunately, the consumer does not support PowerShell scripts.

The Log File consumer enables you to write information to a log file of your
choice. You specify the message you want to write and can ask WMI to add
information about the event to the entry. See docs.microsoft.com/windows/
win32/wmisdk/writing-to-a-log-file-based-on-an-event for more information
on how to do this.

The NT Log File consumer writes details to the Windows Event log. This is
useful if you have a tool such as System Center Operations Manager that tracks
event logs and responds to events.

348	 Chapter 9 ■ Using WMI with CIM Cmdlets

The Command Line consumer enables you to run any program, with param-
eters. You can specify pwsh.exe as the command to run and pass the name of a
script file that WMI runs each time the event fires. This section uses this consumer.

To implement permanent event handling, you must do three things:

■■ Define an event filter: This involves adding an instance to an event class.
The event filter tells WMI which specific event it should look for. The event
filter is basically the same as you used in “Managing WMI Events,” but
you save the query in the WMI database.

■■ Define an event consumer: This involves defining the action you want
to take when an event occurs.

■■ Bind the event filter and event consumer: This tells WMI that whenever
the event occurs, it should perform the action defined by an event consumer.
You do this by adding a further occurrence to another WMI class.

When you create the event filter, you define a WQL query that directs WMI
to watch for events of a particular event class. For example, you can specify
you want the event to fire whenever the Enterprise Admins group changes.
You also specify a polling or refresh interval—how often WMI should look for
that event. The shorter the refresh interval, the higher the load on the system.
A change to a high-privilege group like this could be a precursor to an attack
on the server, but at the same time, you do not cripple your DCs looking for
changes every second.

The AD WMI provider implements a wide range of events you can subscribe
to. In WMI, every namespace provides events that fire whenever any class
instance is added, modified, or removed in that namespace. For example, the
class __InstanceModificationEvent in the namespace root/directory/LDAP
detects changes to any AD group.

Creating a permanent event subscription, therefore, requires you to add three
WMI objects to three WMI classes. Once you have bound the event handler to
the action, WMI monitors events and invokes the action accordingly. This event
handling continues even after a reboot.

A word of caution: be careful when experimenting with permanent event
handling. Before you add permanent event handlers (that is, add a new object
to each of the three WMI event classes), you should understand how to remove
those objects to remove the event handler. Unless you remove a WMI permanent
event handler (that is, remove the three related WMI objects), WMI continues
to watch and handle the permanent event, consuming host resources. It is also
useful to generate two functions that display the event subscription and that
delete it.

Finally, be careful when changing an event filter’s refresh time. As you decrease
the refresh time, you add load (mainly CPU and memory) to the host. For the
most part, checking more often than every five seconds is probably overkill.

	 Chapter 9 ■ Using WMI with CIM Cmdlets	 349

Specifying Valid Users
In this section, you detect an attempt to add an unauthorized user to the Enterprise
Admins group. You begin by creating a file of authorized users and save that
into a file named C:\Foo\OKUsers.Txt, as follows:

1. Create a list of valid users for Enterprise Admins
$OKUsersFile = 'C:\Foo\OKUsers.Txt'
$OKUsers = 'Administrator'
$OKUsers | Out-File -FilePath $OKUsersFile

In practice, the file of valid users would most likely contain more users. You
can adjust the file accordingly.

Defining Helper Functions
Implementing a permanent event handler means that WMI carries out the fil-
tering and action-invoking until you remove the handler. Unlike the filters you
used in “Managing WMI Events,” these items (or at least the bindings) must be
removed to stop WMI from handling the event.

It is useful to create functions to show the details of the WMI permanent
event filter—that is, the WMI objects that make up this filter—and to delete the
relevant records, especially for testing. You define the two functions as follows:

2. Define two helper functions
Function Get-WMIPE {
 Write-Output -InputObject '***Event Filters Defined:'
 Get-CimInstance -Namespace root\subscription -ClassName __EventFilter |
 Where-Object Name -eq "EventFilter1" |
 Format-Table Name, Query
 Write-Output -InputObject '***Consumer Defined:'
 $NS = 'root\subscription'
 $CN = 'CommandLineEventConsumer'
 Get-CimInstance -Namespace $NS -Classname $CN |
 Where-Object {$_.name -eq "EventConsumer1"} |
 Format-Table Name, Commandlinetemplate
 Write-Output -InputObject'***Bindings Defined:'
 Get-CimInstance -Namespace root\subscription -ClassName __
FilterToConsumerBinding |
 Where-Object -FilterScript {$_.Filter.Name -eq "EventFilter1"} |
 Format-Table Filter, Consumer
}
Function Remove-WMIPE {
 Get-CimInstance -Namespace root\subscription __EventFilter |
 Where-Object Name -eq "EventFilter1" |
 Remove-CimInstance

350	 Chapter 9 ■ Using WMI with CIM Cmdlets

 Get-CimInstance -Namespace root\subscription CommandLineEventConsumer |
 Where-Object Name -eq 'EventConsumer1' |
 Remove-CimInstance
 Get-CimInstance -Namespace root\subscription __FilterToConsumerBinding |
 Where-Object -FilterScript {$_.Filter.Name -eq 'EventFilter1'} |
 Remove-CimInstance
}

The first function, Get-WMIPE, gets the details of the specific permanent event
hander (that is, the event filter, event consumer, and binding), while the second,
Remove-WMIPE, removes the relevant records. These commands create two
functions and set an alias for each one. If you are creating a WMI permanent
event filter, you should create these functions, if only for testing.

Creating an Event Query
The event query is a WQL SELECT statement, as shown here:

3. Create an event filter query
$Group = 'Enterprise Admins'
$Query = @"
 SELECT * From __InstanceModificationEvent WITHIN 10
 WHERE TargetInstance ISA 'ds_group' AND
 TargetInstance.ds_name = '$Group'
"@

These commands define a WMI event query, which is similar to the query
you created in “Managing WMI Events.”

Creating an Event Filter
You next add the event filter details into the CIM database, with this code:

4. Create an event filter
$Param = @{
 QueryLanguage = 'WQL'
 Query = $Query
 Name = "EventFilter1"
 EventNameSpace = "root/directory/LDAP"
}
$IHT = @{
 ClassName = '__EventFilter'
 Namespace = 'root/subscription'
 Property = $Param
}
$InstanceFilter = New-CimInstance @IHT

	 Chapter 9 ■ Using WMI with CIM Cmdlets	 351

These commands add a new item to the __EventFilter class in the root/
subscription WMI namespace. You store the details of the new CIM instance
in a variable for use later.

Creating a Script for the Event Handler to Run: Monitor.ps1
With this permanent event handler, you want WMI to run a script whenever
the event occurs. You can create a simple script and save it, like this:

5. Create Monitor.ps1 that is to run each time
the Enterprise Admins group membership changes
$MONITOR = @'
$LogFile = 'C:\Foo\Grouplog.Txt'
$Group = 'Enterprise Admins'
"On: [$(Get-Date)] Group [$Group] was changed" |
 Out-File -Force $LogFile -Append -Encoding Ascii
$ADGM = Get-ADGroupMember -Identity $Group
Display who's in the group
$ADGM | Format-Table Name, DistinguishedName |
 Out-File -Force $LogFile -Append -Encoding Ascii
$OKUsers = Get-Content -Path C:\Foo\OKUsers.Txt
Look at who is not authorized
foreach ($User in $ADGM) {
 if ($User.Name -notin $OKUsers) {
 "Unauthorizsed user [$($User.Name)] added to $Group" |
 Out-File -Force $LogFile -Append -Encoding Ascii
 }
}
"**********************************`n`n" |
Out-File -Force $LogFile -Append -Encoding Ascii
'@
$MONITOR | Out-File -Path C:\Foo\Monitor.ps1

These commands create a file, C:\Foo\Monitor.ps1, which you want WMI
to run each time the event occurs. The script outputs information about the
current membership of the Enterprise Admins group. Then it looks in the C:\
Foo\OKUsers.txt file to ensure that all users in the AD group are valid and out-
puts a message to the C:\Foo\Grouplog.txt file if not. Depending on your needs,
you could adjust the Monitor.ps1 script to remove any users in the Enterprise
Admins group that are not contained in the OKUsers.txt file and take any other
actions appropriate for your situation (such as sending an email message to a
help desk or to a security group).

Creating an Event Consumer
The event consumer tells WMI what to do if and when an event occurs. For
permanent event handlers, this means defining the specific event handler you

352	 Chapter 9 ■ Using WMI with CIM Cmdlets

want WMI to invoke when the event occurs—in this case the Command Line
event consumer. You also provide the name of the program you want to run
(which is PowerShell 7) and the parameters for that program, namely, the script
file you want to run. To create the event consumer, you add a further object to
the CIM database, with this snippet:

6. Create an Event Consumer
The consumer runs PowerShell 7 to execute C:\Foo\Monitor.ps1
$CLT = 'Pwsh.exe -File C:\Foo\Monitor.ps1'
$Param =[ordered] @{
 Name = 'EventConsumer1'
 CommandLineTemplate = $CLT
}
$ECHT = @{
 Namespace = 'root/subscription'
 ClassName = "CommandLineEventConsumer"
 Property = $Param
}
$InstanceConsumer = New-CimInstance @ECHT

These commands add a new WMI object to the CommandLineEventConsumer
class in the root/subscription WMI namespace. As with the event filter, you
save the results of New-CimInstance in a variable for later use.

Binding Event Filter and Event Consumer
Now that you have the event filter and event consumer, you create a third WMI
object that binds these two objects together. In effect, you instruct WMI to
listen for a specific event; when that event occurs, WMI is to invoke the event
consumer. You achieve this binding by adding a further CIM instance to the
__FilterToConsumerBinding class in the root/subscription namespace, like this:

7. Bind the filter and consumer
$Param = @{
 Filter = [ref]$InstanceFilter
 Consumer = [ref]$InstanceConsumer
}
$IBHT = @{
 Namespace = 'root/subscription'
 ClassName = '__FilterToConsumerBinding'
 Property = $Param
}
$InstanceBinding = New-CimInstance @IBHT

	 Chapter 9 ■ Using WMI with CIM Cmdlets	 353

These commands create a new instance in the __FilterToConsumerBinding
object, which tells WMI to start listening for this event and invoke the event
consumer when the event happens. Since Windows runs the program (that is,
PowerShell 7, running Monitor.ps1) in a separate process, any Write-Host state-
ments in Monitor.ps1 do not appear on your console, unlike temporary WMI
event handling.

Displaying Event Filter Details
As you are adding the records, and especially after you have all three added,
it’s useful to ensure you have the right objects added. You can do that by using
the Get-WMIPE function you created in “Defining Helper Functions,” like this:

8. Get the event filter details
Get-WMIPE

You can see in Figure 9.33 the three related WMI objects.

Testing Event Filtering
Once you define the binding, WMI is able to carry out the filtering. To test this,
you add a user to the Enterprise Admins group.

9. Add a user to the Enterprise Admins group
Add-ADGroupMember -Identity 'Enterprise Admins' -Members Sylvester

This adds the user Sylvester (created in Chapter 3), to the group. Unlike with
temporary event handling, WMI does not display any output to indicate that
the event has occurred and has been handled.

Figure 9.33: Viewing event details

354	 Chapter 9 ■ Using WMI with CIM Cmdlets

Viewing Results
When the event occurs, assuming correct configuration, WMI runs Monitor
.ps1, which outputs the current membership of the group and displays any
nonapproved users, as follows:

10. View Grouplog.txt file
Get-Content -Path C:\Foo\Grouplog.txt

You can see the output of this command in Figure 9.34.

In the figure, you see the current membership of the group. Since Sylves-
ter is not an approved user (that username is not contained in the OKUSers
.Txt file). Depending on your situation, you could extend Monitor.ps1 to remove
the unapproved user from the group.

Removing Event Filter Details from WMI
Once you have defined and tested the filter, you can leave it in place to protect
the membership of the group. In that case, you should probably extend Monitor
.ps1 to alert you when the event occurs. Alternatively, you can remove the rel-
evant records by running the Remove-WMIPE function and removing Sylvester
from the Enterprise Admins group.

11. Tidy up
Remove-WMIPE
$RGMHT = @{
 Identity = 'Enterprise Admins'
 Member = 'Sylvester'
 Confirm = $false
}
Remove-ADGroupMember @RGMHT
Get-WMIPE

Figure 9.34: Viewing event details

	 Chapter 9 ■ Using WMI with CIM Cmdlets	 355

These commands run the Remove-WMIPE function to remove the three objects
from the CIM database, remove Sylvester from the Enterprise Admins group,
and then rerun Get-WMIPE to verify that the filter details are no longer contained
in WMI.

Summary

In this chapter, you have taken a look at WMI in Windows using PowerShell 7.
You began by discovering details about the namespaces that exist on a host and
the classes contained in those namespaces. You then saw how to retrieve data
from the WMI CIM database using the Get-CimInstance command. Next you
looked at invoking WMI methods and how you can use a WMI method to add
an object to the CIM database. You concluded with looking at both temporary
and permanent event handling.

C H A P T E R

357

10

Reporting is a process of obtaining information and presenting it to an intended
audience. Since audiences vary, the content and layout of a report changes. Senior
management, for example, might like to see a dashboard-like report, showing
just key status items. The IT group could benefit from performance graphs or
System Diagnostics Reports to enable them to spot issues as early as possible.
And the team supporting a new virtualization project might want high-level
views of both stability and resource utilization.

PowerShell along with Windows applications provides IT pros with a variety
of reporting options. You can use many of the PowerShell commands to retrieve
information and report on it. You can use the AD cmdlets, for example, to retrieve
information about who is in a high- security group to ensure that group mem-
bership is appropriate. The Windows Performance Logs and Alerts (PLA) feature
logs various performance counters, enabling you to review the performance of
the system or some application.

Some applications or Windows features, such as File System Resource Man-
ager (FSRM), provide reports you can request using PowerShell.

In this chapter you look at the following:

■■ In “Reporting on AD Users and Computers,” you learn to create reports
with details of AD users as well as summary reports of computer or user
accounts that have not been used recently. You use the cmdlets in the
Active Directory module to retrieve and summarize AD usage.

Reporting

PowerShell 7 for IT Pros: A Guide to Using PowerShell 7 to Manage Windows® Systems, First Edition. Thomas Lee.
© 2021 John Wiley & Sons, Inc., Published 2021 by John Wiley & Sons, Inc.

358	 Chapter 10 ■ Reporting

■■ In “Managing Filesystem Reporting,” you learn about the FSRM. You
investigated FSRM in Chapter 5, “Managing Storage” (sections “Managing
Filestore Quotas” and “Managing File Screening”). FSRM can create
reports that can help you to manage file storage. You can use PowerShell
to produce up-to-the-minute reports in a predefined layout or get the
underlying information from FSRM and build your own reports.

■■ In “Collecting Performance Information Using PLA” and “Reporting on
PLA Performance Data,” you learn to use the PLA feature. PLA provides
the ability to capture detailed performance information that can form the
basis for capacity planning and other uses.

■■ In “Creating a Performance Monitoring Graph,” you learn how to create
graphs to show performance over time.

■■ In “Creating a System Diagnostics Report,” you learn to produce diag-
nostic reports that provide details about your system, typically used for
troubleshooting purposes.

■■ In “Reporting on Printer Usage,” you use the printing features you reviewed
in Chapter 7, “Managing Printing.” Specifically, you can develop a report
showing printer usage, which might be useful for usage chargeback.

■■ In “Creating a Hyper-V Status Report,” you use PowerShell 7 to produce
a basic status report for VMs running on a Hyper-V host. This is another
summary-level report that could be useful.

■■ In “Reviewing Event Logs,” you learn all about Windows event logs, which
contain a huge amount of information about events that occurred on a
Windows system. You can use PowerShell 7 to summarize the mountain
of information contained in Windows event logs.

This chapter shows you several approaches you can take when creating
reports; all of the reports shown in this chapter demonstrate ways you can use
PowerShell to create rich and useful reports.

Systems Used in This Chapter

In this chapter, you use PowerShell 7 to report on the activities of many servers.
The scripts in this chapter make use of the following servers:

DC1.Reskit.Org: This is a DC in the Reskit.Org domain. You have used this
DC throughout this book.

SRV1.Reskit.Org: You implemented FSRM on this host in “Managing Filestore
Quotas” in Chapter 5.

	 Chapter 10 ■ Reporting	 359

PSRV.Reskit.Org: You deployed and managed a print server on this system
in Chapter 7.

HV1.Reskit.Org: This is one of two Hyper-V hosts you used in Chapter 8,
“Managing Hyper-V.”

You can see a diagram of these hosts in Figure 10.1.

Reporting on AD Users and Computers

All organizations need to secure user and computer accounts. If user accounts
are compromised, an attacker could use the account credentials to enter and
damage the organization. Likewise, AD computers need to be secured. As a
basic security feature, a computer that has not been used in more than 30 days
loses its machine AD password, leaving the computer (and any user attempting
to use it) unable to log on to the domain.

In this section’s example, you create a report of potential security issues related
to user accounts. Specifically, you report the following:

■■ Each user’s basic information, including a count of bad password attempts

■■ Members of key high-security AD groups (Enterprise Admins, for example)

■■ Computers that have not been used in a long time and may be lost or
stolen

DC1.Reskit.Org

SRV1.Reskit.Org HV1.Reskit.OrgPSRV.Reskit.Org

Figure 10.1: Systems used in this chapter

360	 Chapter 10 ■ Reporting

To create the AD user and computer report, you use PowerShell’s powerful
string-handling capability. You begin by defining an empty report body. Then
you build the report, section by section, and add the output to the report body.
Finally, you output the report to the console, save it to a file, or send the report
in email.

Before You Start
You run the code in this section on DC1.Reskit.Org, the main domain controller
in the Reskit.Org forest. You have used this host throughout this book, and it
should have a number of user and computer accounts created. However, in the
various code snippets you have run, many of the AD objects were created but
not used; as a result, values such as bad password count or last logon date might
not be as well-populated as in a real-life AD domain. You may want to generate
some activity on some of the user accounts. For example, log in to one of the
hosts in the Reskit.Org VM farm using one of the user accounts.

Defining a Function to Retrieve User Accounts
As a first step to creating an AD user and computer report, you define a function,
Get-ReskitUser, to retrieve all user accounts in the AD. To simplify the report,
this function creates custom PowerShell objects for each AD user account. Each
object contains only the properties needed for the report.

1. Define a function Get-ReskitUser
The function returns objects related to users in reskit.org
Function Get-ReskitUser {
 # Get PDC Emulator DC
 $PrimaryDC = Get-ADDomainController -Discover -Service PrimaryDC
 # Get Users
 $P = "DisplayName","Office","LastLogonDate","BadPWDCount"
 $ADUsers = Get-ADUser -Filter * -Properties $P -Server $PrimaryDC
 # Iterate through them and create $Userinfo hash table:
 Foreach ($ADUser in $ADUsers) {
 # Create a userinfo HT
 $UserInfo = [Ordered] @{}
 $UserInfo.SamAccountName = $ADUser.SamAccountName
 $Userinfo.DisplayName = $ADUser.DisplayName
 $UserInfo.Office = $ADUser.Office
 $Userinfo.Enabled = $ADUser.Enabled
 $Userinfo.LastLogonDate = $ADUser.LastLogonDate
 $UserInfo.BadPWDCount = $ADUser.BadPwdCount
 New-Object -TypeName PSObject -Property $UserInfo
 }
} # end of function

	 Chapter 10 ■ Reporting	 361

This function is an example of one you might define for your environment.
You could store this function in a custom PowerShell module for use in reporting.
You can extend this simple function to obtain other information that might be
relevant when you generate reports. You might be able to get information from
other systems and applications that you can add to the output of this function.

Getting Reskit Users
Having defined the Get-ReskitUser function, you use it to retrieve summary
information about AD users.

2. Get the users
$RKUsers = Get-ReskitUser

Depending on the size of your AD, you might want to create reports grouped
by organizational unit (OU). For example, you might create an IT Team Users
report that just reported on the users in the IT Team OU. In that case, you could
extend the function to take an OU name as a parameter and have the function
return users in that OU only.

Building the Report Header
You begin to build the report by creating the report header.

3. Build the report header
$RKReport = '' # Define initial report variable
$RKReport += "*** Reskit.Org AD Report`n"
$RKReport += "*** Generated [$(Get-Date)]`n"
$RKReport += "*******************************`n`n"

These commands create a variable named $RKReport that you use to hold the
report. You add to that variable as you build the report.

Reporting on Disabled Users
An AD account that is disabled is one that a user cannot use to log in or to
access resources. There are a variety of reasons you might disable an AD user
account, such as when a user has left the company or is on long-term leave, or
an account could have been accidentally disabled. You can filter the disabled
accounts via Where-Object and add that information to the report.

4. Report on Disabled users
$RKReport += "*** Disabled Users`n"
$RKReport += $RKUsers |
 Where-Object {$_.Enabled -ne $true} |
 Format-Table -Property SamAccountName, DisplayName |
 Out-String

362	 Chapter 10 ■ Reporting

Reporting on Unused Accounts
In most cases, a disabled account is probably not much of a security risk, although
it does potentially consume resources. User accounts that have not been recently
used represent more of a risk. You can use the LastLogonDate property in the
AD User object to determine the last logon date.

5. Report users who have not recently logged on
$OneWeekAgo = (Get-Date).AddDays(-7)
$RKReport += "`n*** Users Not logged in since $OneWeekAgo`n"
$RKReport += $RKUsers |
 Where-Object {$_.Enabled -and $_.LastLogonDate -le $OneWeekAgo} |
 Sort-Object -Property LastLogonDate |
 Format-Table -Property SamAccountName,LastLogonDate |
 Out-String

One issue with this section of code is that Active Directory does not replicate
the last logon date property between domain controllers. Thus, the last logon
date for users from DC1 is not accurate for users authenticated from other hosts.
If you have a large number of DCs, this part of your report would be improved
by calculating the last logon date across all servers. You could extend the Get-
ReskitUser function to contact each DC in the domain to retrieve the accurate
last logon date.

Reporting on Invalid Password Attempts
When you log on to Windows, you need to provide credentials; if those fail,
Windows does not log you. An AD user account contains a count of bad pass-
word attempts, which you can use to report on users who show a high number
of failed attempts.

6. Users with high invalid password attempts
#
$RKReport += "`n*** High Number of Bad Password Attempts`n"
$RKReport += $RKUsers | Where-Object BadPWDCount -ge 5 |
 Format-Table -Property SamAccountName, BadPWDCount |
 Out-String

If an account has a high number of bad password attempts, it could indicate
an attacker attempting to guess a user’s password. Of course, there may be other
causes, which you can address with user training.

Determining Privileged Users
Several AD groups have high privileges. In particular, adding a user to the
Enterprise Admins group gives them significant power throughout your domain.
So it is useful to ensure that these high-privilege groups contain only those

	 Chapter 10 ■ Reporting	 363

users who need the permissions. Three specific AD groups you should monitor
are Enterprise Admins, Domain Admins, and Schema Admins. In the report,
you create a section containing details of group membership for these groups
as follows:

7. Query the Enterprise Admins/Domain Admins/Schema Admins
groups for members and add to the $PUsers array
Get Enterprise Admins group members
$RKReport += "`n*** Privileged User Report`n"
$PUsers = @()
$Members =
 Get-ADGroupMember -Identity 'Enterprise Admins' -Recursive |
 Sort-Object -Property Name
$PUsers += foreach ($Member in $Members) {
 Get-ADUser -Identity $Member.SID -Properties * |
 Select-Object -Property Name,
 @{Name='Group';Expression={'Enterprise Admins'}},
 WhenCreated,LastLogonDate
}
Get Domain Admins group members
$Members =
 Get-ADGroupMember -Identity 'Domain Admins' -Recursive |
 Sort-Object -Property Name
$PUsers += Foreach ($Member in $Members) {
 Get-ADUser -Identity $Member.SID -Properties * |
 Select-Object -Property Name,
 @{Name='Group';Expression={'Domain Admins'}},
 WhenCreated, LastLogondate
}
Get Schema Admins members
$Members =
 Get-ADGroupMember -Identity 'Schema Admins' -Recursive |
 Sort-Object -Property Name
$PUsers += Foreach ($Member in $Members) {
 Get-ADUser -Identity $Member.SID -Properties * |
 Select-Object -Property Name,
 @{Name='Group';Expression={'Schema Admins'}},
 WhenCreated, LastLogonDate
}

Depending on your organization, you may have other high-privilege groups
you can report on. You can use the code here as a template.

Adding Privileged Users to the Report
Once you have identified the set of highly privileged accounts, you add them
to the report.

8. Add the special users to the report
$RKReport += $PUsers | Out-String

364	 Chapter 10 ■ Reporting

This completes the report.
You built this report using the simple technique of compiling it as a set of

concatenated strings. For simple reports you might create in your environment,
adapt the approaches shown here. Depending on how much reporting you need
to carry out, you can always refactor the code snippets in this section to create
functions to each report section and use these functions in other reports.

Displaying the Report
You can view the report like this:

9. Display the report
$RKReport

You can see the report in Figure 10.2.

Figure 10.2: AD user and computer report

	 Chapter 10 ■ Reporting	 365

The details you see in the report you generate may differ from this figure.
Depending on what you have done—for example, logging on as different users
(successfully and unsuccessfully)—you may see different output.

Managing Filesystem Reporting

File Server Resource Manager is a Windows feature that provides tools to help
you manage a file server. You examined the installation and use of FSRM in
Chapter 5.

FSRM includes the ability to generate a variety of reports related to files stored
on a file server. It can create incident reports (as a result of a quota threshold, for
example), scheduled reports (run at some specific time), or on-demand reports
(interactive reports).

In Windows Server 2019, FSRM supports 10 report types.

Duplicate Files: Identifies files that appear to be duplicates based on size
and last modification time

Files by File Group: Lists files belonging to specified FSRM file groups, such
as backup files or image files

Files by Owner: Lists files by owner, where you can specify all or selected
owners

Files by Property: Lists files based on the value of specified FSRM classification
properties

Large Files: Lists files over a specified size, such as 10MB

Least Recently Accessed: Lists files that have not been accessed in some
specified time, such as 90 days

Most Recently Accessed: Lists files accessed in a recent specified time period,
such as the past week

Quota Usage: Lists any FSRM quotas whose usage exceeds a specified value

File Screen Audit Files: Lists any file screening audit events that occurred
during a specified time period

Folders by Property: Lists folders based on the value of specified FSRM
classification properties

FSRM provides reports in several different output formats. FSRM can pro-
duce report output in DHTML (saved with the .html extension), HTML (.htm),
text (.txt), and XML (.xml). The DHTML, HTML, and text files have predefined
formats, which you cannot change. The XML output type returns the same
information shown in the other reports, but as XML. As an alternative to the
predefined report layouts, you can use the XML to build reports better suited
for your specific needs.

366	 Chapter 10 ■ Reporting

The documentation for FSRM reporting is sparse. There are some high-level
overview web pages and cmdlet documentation, although those pages are light
on detail. They lack examples and contain no end-to-end advice and guidance.
Additionally, there is not much up-to-date information on the Internet—much
Internet content is old (although still useful!). But with that said, the workings
are straightforward and pretty easy to get working.

Before You Start
This section uses SRV1, on which you installed and used FSRM in Chapter 5’s
“Managing Filestore Quotas,” and “Managing Files Screening” sections.

Creating a Storage Report
To create a new interactive storage report, you use the New-FSRMStorageReport
command.

1. Create a new Storage report for large files on C:\ on SRV1
$REPORT1HT = @{
 Name = 'Large Files on SRV1'
 NameSpace = 'C:\'
 ReportType = 'Large'
 ReportFormat = ('DHTML','XML')
 LargeFileMinimum = 10MB
 Interactive = $true
 MailTo = 'DoctorDNS@Gmail.Com'
}
New-FsrmStorageReport @REPORT1HT

This command creates a new Large Files report and produces the output you
see in Figure 10.3.

This report shows all large files on the C:\ volume that are bigger than 10MB.
The report also generates both a DHTML file and an XML output file and mails
a copy of them to the specified email address.

New-FSRMStorageReport is a complex command with parameters for all the
options for all report types. Typically, you do not need many for any given report.

When you create an interactive storage report, FSRM runs the report (and
generates requested output).

	 Chapter 10 ■ Reporting	 367

Viewing FSRM Reports
You can view the active FSRM reports by using the following commands:

2. View FSRM Reports
Get-FsrmStorageReport * |
 Format-Table -Property Name, ReportType, ReportFormat, Status

You can see the output from these commands in Figure 10.4.

Figure 10.3: Creating a new FSRM report

Figure 10.4: Viewing the FSRM report

368	 Chapter 10 ■ Reporting

FSRM does not come with much in the way of display XML, so PowerShell
by default displays objects such as the storage report objects, with all prop-
erties displayed in a list. You may find it easier to display only the properties
you actually need.

Once you start the report, it can take some time to finish, especially for larger
file servers. You can use Get-FSRMStorageReport, specify the report you want,
and watch for the job to move from being queued, to running, then to ready
(that is, finished for now and ready to be run again).

Viewing FSRM Report Output Files
Once FSRM has completed creating the report output files, you can view
them. FSRM stores the generated report output for interactive reports in the
C:\StorageReports\Interactive folder.

3. Viewing Storage Report Output
$Path = 'C:\StorageReports\Interactive'
Get-ChildItem -Path $Path

You can see the output files in Figure 10.5.

In this figure, you see the two output files: the DHTML file stored with the
.html extension and the XML output. The DHTML report contains a few graphics,
and FSRM puts these into a subfolder.

Viewing the Large Files Report
Now that FSRM has completed the Large Files Report, you can view the report
in your browser with this snippet:

4. View the DHTML report
$Rep = Get-ChildItem -Path $Path*.html
Invoke-Item -Path $Rep

Figure 10.6 shows the report.

Figure 10.5: Viewing the FSRM report output files

	 Chapter 10 ■ Reporting	 369

Using FSRM XML Output
FSRM provides the information in the reports in the form of an XML document.
You can use PowerShell to find and load the XML and then pull key information
from the XML, as follows:

5. Extract key information from the XML
$XF = Get-ChildItem -Path $Path*.xml

Figure 10.6: Viewing the FSRM report output files

Continues

370	 Chapter 10 ■ Reporting

$XML = [XML] (Get-Content -Path $XF)
$Files = $XML.StorageReport.ReportData.Item
$Files | Where-Object Path -NotMatch '^Windows|^Program|^Users' |
 Format-Table -Property Name, Path,
 @{ Name ='Size MB'
 Alignment = 'right'
 Expression = {(([int]$_.size)/1mb).ToString('N2')}},
 DaysSinceLastAccessed -AutoSize

You can view my output from these commands in Figure 10.7; yours may
differ as discussed earlier.

These commands retrieve the details of files larger than 10MB from the XML
file and then display them nicely. While the default output of properties per-
formed by the format cmdlets is usually good enough, you occasionally need
to override default formatting. In this case, you output the size of each large
file as a right-aligned value, overriding the default format to produce a report
that is easier to use.

Creating a Scheduled FSRM Report Task
FSRM also supports scheduled reports—reports that run at specified times.
For example, you could create a monthly report showing each file owner and
what files they own. Creating a scheduled report is a two-step process. First,
you need to create an FSRM report task that runs at the appropriate time, using
the New-FsrmScheduledTask command.

6. Create a monthly FSRM Task
$Date = Get-Date '04:20'
$NTHT = @{
 Time = $Date

Figure 10.7: Using FSRM XML output

continued

	 Chapter 10 ■ Reporting	 371

 Monthly = 1
}
$Task = New-FsrmScheduledTask @NTHT

This creates a scheduled task that runs monthly, in this example at 4:20 a.m.
on the first day of every month.

Creating the Scheduled Report
The second and final step in creating a new scheduled report is to call New-
FSRMStorageReport, passing it the details of the report that FSRM is to generate,
along with the schedule created in the previous step.

7. Create a new FSRM monthly report
$ReportName = 'Monthly-Files By Owner'
$REPORT2HT = @{
 Name = $ReportName
 Namespace = 'C:\'
 Schedule = $Task
 ReportType = 'FilesByOwner'
 MailTo = 'DoctorDNS@Gmail.Com'
}
New-FsrmStorageReport @REPORT2HT | Out-Null

These commands create a new FSRM storage report, which you can view
using the Get-FSRMStorageReport cmdlet.

Viewing the Report Scheduled Task
Creating the FSRM scheduled report also created a Windows schedule task,
and you can view the task using Get-ScheduledTask.

8. Get details of the scheduled task
Get-ScheduledTask |
 Where-Object TaskName -match $ReportName |
 Format-Table -AutoSize

You can see the details of the scheduled task in Figure 10.8.

Figure 10.8: Viewing a scheduled task

372	 Chapter 10 ■ Reporting

The scheduled task runs PowerShell at the appointed hour and has Power-
Shell run the command.

Running the Report Interactively
When you create a new FSRM scheduled report, you may need to wait a while
to ensure that the output is what you want and need. It’s usually a good idea to
run the report immediately and view the output. You can do this by starting,
and then viewing, the scheduled task, as shown here:

9. Run the task interactively
Get-ScheduledTask |
 Where-Object TaskName -match $ReportName |
 Start-ScheduledTask
Get-ScheduledTask -TaskName '*Monthly*'

This snippet starts and then views the scheduled task associated with the
scheduled report, as you can see in the output in Figure 10.9.

Although you are running the report immediately, FSRM sends output details
to the C:\StorageReports\Scheduled folder.

Viewing the Report
Once the scheduled task has completed, it can take FSRM a bit of time to make
the output available. Once the output has been stored, you can view the HTML
file using Invoke-Item.

10. View the report
$Path = 'C:\StorageReports\Scheduled'
$Rep = Get-ChildItem -Path $path*.html
Invoke-Item -Path $Rep

You can see the report in Figure 10.10.

Figure 10.9: Running the report interactively

	 Chapter 10 ■ Reporting	 373

Figure 10.10: Viewing the report

374	 Chapter 10 ■ Reporting

Removing the Reports and Scheduled Task
To remove the FSRM reports and the FSRM schedule reporting task, you can
do the following:

11. Remove the objects
Remove the scheduled task
Get-ScheduledTask |
 Where-Object TaskName -match $ReportName |
 Unregister-ScheduledTask -Confirm:$False
Remove-FsrmStorageReport $ReportName -Confirm:$False
Get-Childitem C:\StorageReports\Interactive,
 C:\StorageReports\Scheduled |
 Remove-Item -Force -Recurse

These commands first remove (unregister) the scheduled task, then remove
the FSRM scheduled task and the storage report, and also remove any FSRM
report output files in the two storage report output folders.

Collecting Performance Information Using PLA

There are several ways you can report on the performance of your Windows
systems. You can use the Get-Counter command to get individual performance
counters. You can also retrieve performance information using WMI (Get-
CimInstance). There are around 400 WMI performance classes in Windows
Server 2019 that you can retrieve and use in your reports. A final way is to use
the PLA subsystem built into Windows.

Using Get-Counter or WMI to retrieve counter information is slow, and
using those tools does not scale well. While using these cmdlets is great for
retrieving a few performance counters to give you an up-to-the minute look
at some aspect of a Windows host, these mechanisms are not well suited for
long-term performance data collection. PLA is an excellent method for contin-
uous performance reporting.

PLA enables you to create a data collector set, which defines the specific performance
counters whose details you want to retrieve. You can then set a schedule for starting
the data collection (say 6:00 a.m. tomorrow) and for how many days to collect
performance information. Finally, you can start the collector set.

Once the collector set is running, Windows retrieves the counter value based
on the sample interval you specified and stores the information in a file. You
have several options as to the output type, such as binary logs, CSV, and so on.

You can analyze performance data using a number of different tools and
performance file types. Setting up a data counter set to log to a binary log file
allows you to use perfmon.exe to view the counter data. You can create a counter
set that outputs to a CSV file, which enables you to use other tools to analyze
and report on the performance information.

	 Chapter 10 ■ Reporting	 375

There are no PowerShell cmdlets for setting up and using PLA to collect
performance data. Instead, you use COM and script the related COM objects.

In this section, you set up and start two PLA data collector sets. The first you
set up to deliver the information in a binary log file, and the second you use to
deliver the data using a CSV file. Setting up the two collectors is similar—you
just specify a different log file output and a different collector set name.

Before You Start
You run the PowerShell code for this section on SRV1.

Creating a Data Collector
You create a data collector by using the New-Object command and then popu-
late key attributes of the collector, as shown here:

1. Create and populate a new collector
$Name = 'SRV1 Collector Set'
$SRV1CS1 = New-Object -COM Pla.DataCollectorSet
$SRV1CS1.DisplayName = $Name
$SRV1CS1.Duration = 12*3600
$SRV1CS1.SubdirectoryFormat = 1
$SRV1CS1.SubdirectoryFormatPattern = 'yyyy\-MM'
$JPHT = @{
 Path = "$Env:SystemDrive"
 ChildPath = "\PerfLogs\Admin\$Name"
}
$SRV1CS1.RootPath = Join-Path @JPHT
$SRV1Collector1 = $SRV1CS1.DataCollectors.CreateDataCollector(0)
$SRV1Collector1.FileName = "$Name_"
$SRV1Collector1.FileNameFormat = 1
$SRV1Collector1.FileNameFormatPattern = "\-MM\-dd"
$SRV1Collector1.SampleInterval = 15
$SRV1Collector1.LogFileFormat = 3 # BLG separated
$SRV1Collector1.LogAppend = $True

These commands create a new PLA data collector set that collects data for a
total of 12 hours and stores data in binary log (BLG) format.

Defining Counters
Now that you have created the data collector set, you define the specific
performance counters you want to capture, as follows:

2. Define counters of interest
$Counters1 = @(
 '\Memory\Pages/sec',

Continues

376	 Chapter 10 ■ Reporting

 '\Memory\Available MBytes',
 '\Processor(_Total)\% Processor Time',
 '\PhysicalDisk(_Total)\% Disk Time',
 '\PhysicalDisk(_Total)\Disk Transfers/sec',
 '\PhysicalDisk(_Total)\Avg. Disk Queue Length'

)

Adding the Performance Counters to the Collector Set
You can update the data collector set with the specific counters you want to
capture.

3. Add the counters to the collector
$SRV1Collector1.PerformanceCounters = $Counters1

Creating a Schedule
You can run a data collector set—that is, capture performance information—
based on a schedule you set up and add to the set.

4. Create a schedule — start tomorrow morning at 06:00
$StartDate = Get-Date -Day $((Get-Date).Day+1) -Hour 6 -Minute 0 -Second 0
$Schedule = $SRV1CS1.Schedules.CreateSchedule()
$Schedule.Days = 7
$Schedule.StartDate = $StartDate
$Schedule.StartTime = $StartDate

Creating and Starting the Data Collector Set
You can add the schedule to the data collector set and then start it, as follows:

5. Create, add and start the collector set
try
{
 $SRV1CS1.Schedules.Add($Schedule)
 $SRV1CS1.DataCollectors.Add($SRV1Collector1)
 $SRV1CS1.Commit("$Name", $null, 0x0003) | Out-Null
 $SRV1CS1.Start($false)
}
catch
{
 Write-Host "Exception Caught: " $_.Exception -ForegroundColor Red
 return
}

continued

	 Chapter 10 ■ Reporting	 377

These commands add the schedule to the collector set and then add this
collector set to the system (and commit the change). You then start the collector set.

Once you start the data collector set, you need to wait a few days to see the
data being logged.

Creating a Second Data Collector Set
You can create a second data collector set that logs data to a CSV file rather than
a BLG file. CSV files allow you to parse and report on performance data, as you
see later in this chapter.

This second data collector set is similar to the first one, except that the output
type is CSV.

6. Create a second collector that collects to a CSV file
$Name = 'SRV1 Collector Set2 (CSV)'
$SRV1CS2 = New-Object -COM Pla.DataCollectorSet
$SRV1CS2.DisplayName = $Name
$SRV1CS2.Duration = 12*3600
$SRV1CS2.SubdirectoryFormat = 1
$SRV1CS2.SubdirectoryFormatPattern = 'yyyy\-MM'
$JPHT = @{
 Path = "$Env:SystemDrive"
 ChildPath = "\PerfLogs\Admin\$Name"
}
$SRV1CS2.RootPath = Join-Path @JPHT
$SRV1Collector2 = $SRV1CS2.DataCollectors.CreateDataCollector(0)
$SRV1Collector2.FileName = "$Name_"
$SRV1Collector2.FileNameFormat = 1
$SRV1Collector2.FileNameFormatPattern = "\-MM\-dd"
$SRV1Collector2.SampleInterval = 15
$SRV1Collector2.LogFileFormat = 0 # CSV format
$SRV1Collector2.LogAppend = $True
Define counters of interest
$Counters2 = @(
 '\Memory\Pages/sec',
 '\Memory\Available MBytes',
 '\Processor(_Total)\% Processor Time',
 '\PhysicalDisk(_Total)\% Disk Time',
 '\PhysicalDisk(_Total)\Disk Transfers/sec',
 '\PhysicalDisk(_Total)\Avg. Disk Queue Length'
)
Add the counters to the collector
$SRV1Collector2.PerformanceCounters = $Counters2
Create a schedule — start tomorrow morning at 06:00
$StartDate = Get-Date -Day $((Get-Date).Day+1) -Hour 6 -Minute 0
-Second 0
$Schedule2 = $SRV1CS2.Schedules.CreateSchedule()

Continues

378	 Chapter 10 ■ Reporting

$Schedule2.Days = 7
$Schedule2.StartDate = $StartDate
$Schedule2.StartTime = $StartDate
Create, add and start the collector set
try
{
 $SRV1CS2.Schedules.Add($Schedule2)
 $SRV1CS2.DataCollectors.Add($SRV1Collector2)
 $SRV1CS2.Commit("$Name", $null, 0x0003) | Out-Null
 $SRV1CS2.Start($false)
}
catch
{
 Write-Host "Exception Caught: " $_.Exception -ForegroundColor Red
 return
}

These commands build and start a second data collector set.

Viewing the Collector Sets
An easy way to view the data collector sets is to use the Windows Performance
Monitor (perfmon.exe). You can run perfmon.exe either from PowerShell or by
clicking the Windows Start button and typing perfmon.

When you open perfmon.exe, you can expand the Data Collector Sets node
in the left pane and then expand the User Defined node to see the two data
collector sets, as shown in Figure 10.11.

As you can see in the figure, both collector sets are running. Each collector
set is logging values of the requested performance counters to the folders you
specified when creating the data collector sets.

Figure 10.11: Viewing data collector sets with perfmon.exe

continued

	 Chapter 10 ■ Reporting	 379

Reporting on PLA Performance Data

As noted in “Collecting Performance Information Using PLA,” Windows can
write performance counter data to files in a different format. You then use dif-
ferent techniques to leverage the different file formats. In this section you use
the data collected earlier to report on performance data from SRV1.

Before You Start
You use SRV1 for this section. You need to have created and run the data collector
sets on this host, as in “Collecting Performance Information Using PLA.”

Importing the Performance Counters
In “Collecting Performance Information Using PLA” you set up a data collector
that writes performance counter information to a CSV file. The files are stored
in C:\PerfLogs\Admin. You can discover the specific files with this code:

1. Import the CSV file of counters
$Folder = 'C:\PerfLogs\Admin'
$File = Get-ChildItem -Path $Folder*.csv -Recurse

This finds the CSV file of performance counters. Depending on your monitoring,
you may have more than one CSV file of performance measurements; thus, you
might need to be more specific as to the CSV file of performance counter data.

Importing Performance Counter Data
You can retrieve the performance counter information by using the Import-CSV
command.

2. Import the performance counters.
$Counters = Import-Csv $File.FullName
"$($Counters.Count) measurements in $($File.FullName)"

You can see the output from this command in Figure 10.12.

Figure 10.12: Counting available performance counters

380	 Chapter 10 ■ Reporting

Fixing the Data Collection Problem
A long-standing bug with PLA data collection is that the first counter measurement
is incorrect and does not contain a complete measurement. To resolve that, you
just overwrite the first measurement with the second, as shown here:

3. Fix issue with 1st row in the counters
$Counters[0] = $Counters[1]

Obtaining CPU Statistics
You can pull out basic CPU statistics using this syntax:

4. Obtain basic CPU stats
$CN = '\\SRV1\Processor(_Total)\% Processor Time'
$HT = @{
 Name = 'CPU'
 Expression = {[System.Double] $_.$CN}
}
$Stats = $Counters |
 Select-Object -Property $HT |
 Measure-Object -Property CPU -Average -Minimum -Maximum

These statements measure the collection of performance statistics to find the
maximum, minimum, and average CPU measurement.

Determining the 95th Percentile
In reviewing the basic performance statistics generated, it’s likely that over
the measurement period you might see high CPU measurements. To put such
measurements into overall context, it’s useful to calculate a 95th percentile
measurement, as follows:

5. Add 95th percent value of CPU
$CN = '\\SRV1\Processor(_Total)\% Processor Time'
$Row = [int]($Counters.Count * .95)
$CPU = ($Counters.$CN | Sort-Object)
$CPU95 = [double] $CPU[$Row]
$AMHT = @{
 InputObject = $Stats
 Name = 'CPU95'
 MemberType = 'NoteProperty'
 Value = $CPU95
}
Add-Member @AMHT

	 Chapter 10 ■ Reporting	 381

These commands sort the CPU performance measurements and then find the
row equating to 95%. That is the measurement number that is at the 95th per-
centile, the value that 95% of the CPU measurements are below (and 5% above).
While you may have a single high CPU usage of, say, 99%, if 95% of all measure-
ments are below, say, 10%, then the server probably has adequate CPU power.

Combining CPU Measurements
You next combine the various CPU measurements into a single variable.

6. Combine the results into a single variable
$Stats.CPU95 = $Stats.CPU95.ToString('n2')
$Stats.Average = $Stats.Average.ToString('n2')
$Stats.Maximum = $Stats.Maximum.ToString('n2')
$Stats.Minimum = $Stats.Minimum.ToString('n2')

These statements format the minimum, maximum, average, and 95th percen-
tile CPU measurements into a single variable.

Displaying CPU Statistics
You can display the results of the calculations by piping the results to Format-Table.

7. Display statistics
$Stats | Format-Table

You can see the output from this command in Figure 10.13.

In the output, you can see that there were 2,603 measurements used in this
calculation. Also, CPU usage averages 1.54%, with its 95th percentile at 5.14%.
For most uses, these measurements show a fairly low CPU usage for this server
over the measurement time period. The 95th percentile value, 5.14%, indicates
that CPU usage was low almost all the time during the measurement period.
For any general Windows server, this suggests that CPU is not a performance
bottleneck.

Figure 10.13: Viewing CPU Information

382	 Chapter 10 ■ Reporting

The commands in this section pull together the CPU status for one day for one
system. If you are managing multiple servers, you could implement performance
counters on each one (as shown in “Collecting Performance Information Using
PLA”). You could add counters to the counter set, for example, to record net-
work traffic for your hosts.

Creating a Performance Monitoring Graph

The performance summary you saw in “Reporting on PLA Performance Data”
can give you a high-level view of performance information. You can also use the
performance details captured by PLA and create graphs to show performance
over time. There are two ways to create a graph of performance data. You can
use perfmon.exe to view the performance information captured (using BLG
format), as you saw in the previous section, or you can use .NET to create more
customized graphs. This section looks at creating a customized graph of CPU
usage over time for SRV1.

Before You Start
For this section, you use SRV1 and make use of the performance measurement
data you collected in “Collecting Performance Information Using PLA.” You
use the data visualization features of .NET Core. These classes also exist in the
full .NET Framework, which means you could use the code here with Windows
PowerShell.

Loading the Forms Assembly
You create a graph using .NET; however, by default, PowerShell does not load
the assembly containing the necessary objects. You do that with this code:

1. Load the Forms assembly
Add-Type -AssemblyName System.Windows.Forms.DataVisualization

Importing Performance Data
You use the same technique you used in “Reporting on PLA Performance Data”
to import the data and fix row 0.

2. Import the CSV data from earlier, and fix row 0
$CSVFile = Get-ChildItem -Path C:\PerfLogs\Admin*.csv -Recurse
$Counters = Import-Csv $CSVFile
$Counters[0] = $Counters[1] # fix row 0 issues

	 Chapter 10 ■ Reporting	 383

Creating a Chart Object
Next you create a chart object.

3. Create a chart object
$TYPE = 'System.Windows.Forms.DataVisualization.Charting.Chart'
$CPUChart = New-Object -Typename $TYPE

Defining Chart Dimensions
You define a width and height for the chart with this snippet:

4. Define the chart dimensions
$CPUChart.Width = 1000
$CPUChart.Height = 600
$CPUChart.Titles.Add("SRV1 CPU Utilisation") | Out-Null

You can adjust the dimensions (and the chart title) as you need.

Defining the Chart Area
You can also create an area in the chart where .NET will place the performance
graph.

5. Create and define the chart area
$TYPE2 = 'System.Windows.Forms.DataVisualization.Charting.ChartArea'
$ChartArea = New-Object -TypeName $TYPE2
$ChartArea.Name = "SRV1 CPU Usage"
$ChartArea.AxisY.Title = "% CPU Usage"
$CPUChart.ChartAreas.Add($ChartArea)

These statements first create a new chart area, provide a name and y-axis
titles, and then add the chart area to the chart.

Identifying the Date/Time Column
You use the following statement to work out which column in the performance
counter information holds the date/time for each measurement:

6. Identify the date/time column
$Name = ($Counters[0] | Get-Member |
 Where-Object MemberType -EQ "NoteProperty")[0].Name

The first note property in each counter measurement holds the date and time
of the counter measurement.

384	 Chapter 10 ■ Reporting

Adding Performance Data to the Chart
You can use the following statements to add the performance counter information
to the chart:

7. Add the data points to the chart.
$CPUChart.Series.Add("CPUPerc") | Out-Null
$CPUChart.Series["CPUPerc"].ChartType = "Line"
$CPUCounter = '\\SRV1\Processor(_Total)\% Processor Time'
$Counters |
 ForEach-Object {
 $CPUChart.Series["CPUPerc"].Points.AddXY($_.$Name,$_.$CPUCounter) |
 Out-Null
 }

Saving a Chart Image
With the previous statements, .NET has built the chart. You can now save the
chart as a graphic file in a folder (after making sure the folder exists).

8. Ensure folder exists, then save the chart image as
a png file in the folder
$NIHT = @{
 Path = 'C:\Perflogs\Reports'
 ItemType = 'Directory'
 ErrorAction = 'SilentlyContinue'
}
New-Item @NIHT
$CPUChart.SaveImage("C:\PerfLogs\Reports\SRV1CPU.Png", 'PNG')

Viewing the Chart Image
The final step in this section is to view the generated chart.

9. View the chart image
& C:\PerfLogs\Reports\Srv1CPU.Png

You can see the output from these steps in Figure 10.14.
The information in the chart you see may differ from the figure because your

SRV1 may be performing differently in your environment.
This section shows how you can use .NET’s data visualization capabilities to

build a performance graph. In production you would probably want to add to
this graph to add in, for example, memory utilization, I/O, and network traffic.

	 Chapter 10 ■ Reporting	 385

Creating a System Diagnostics Report

In “Collecting Performance Information with PLA,” you saw how you can use
PLA to create customized data collection. Windows, since Windows Vista and
Server 2008, has also contained a number of system-defined data collectors. One
of those is the System Diagnostics Report.

Before You Start
You run the commands in this section on SRV1. You can run these commands
on any server (or all servers).

Starting the Built-in Data Collector
You use PLA to start the built-in Systems Diagnostic Report.

1. Start the built-in data collector on the local system
$PerfReportName = "System\System Diagnostics"

Figure 10.14: Viewing the CPU usage chart

Continues

386	 Chapter 10 ■ Reporting

$DataSet = New-Object -ComObject Pla.DataCollectorSet
$DataSet.Query($PerfReportName,$null)
$DataSet.Start($true)

Waiting for Data Collector to Finish
The data collection process takes some time to complete the System Diagnostics
Report. You build in a wait period, as follows:

2. Wait for the data collector to finish
Start-Sleep -Seconds $Dataset.Duration

In Windows Server 2019, by default the System Diagnostics Report has a
built-in duration of 600 seconds. This is probably generous, as the collection
takes only 60 seconds.

Saving the Report as HTML
At the end of the wait period, you save the report as HTML.

3. Get the report and store it as HTML
$Dataset.Query($PerfReportName,$null)
$PerfReport = $Dataset.LatestOutputLocation + "\Report.html"

Viewing the System Diagnostics Report
You view the report with this command:

4. View the report
& $PerfReport

You can see the output—that is, the System Diagnostics Report—in Figure 10.15.
This report is large and contains a lot of details about the server, some of

which may be important if you need to perform troubleshooting on it. You
could package up the commands in this section and run them via a scheduled
task on each production server. Each time you run the diagnostics report, you
could save it, say on a file server, for review if and when you need it. PLA and
the Windows Task Scheduler make it pretty straightforward to collect and store
your diagnostics reports.

The Windows Task Scheduler enables you to run PowerShell scripts at pre-
determined times. For more information about this tool, see docs.microsoft.
com/windows/win32/taskschd/about-the-task-scheduler.

continued

	 Chapter 10 ■ Reporting	 387

Reporting on Printer Usage

In many organizations, printers are a shared resource for which management
wants to charge back usage to specific departments. You might also want to
know which users are using the printers heavily. You can configure Windows
Server–based print servers to report details of each print job to an event log for
later analysis and/or chargeback.

Figure 10.15: Viewing the System Diagnostics Report

388	 Chapter 10 ■ Reporting

Before You Start
You run this set of commands on the print server, PSRV, which you set up and
used in Chapter 7.

To report on printer usage, you need to have generated some print job on
which to report. You can use the built-in Windows PDF printer for this purpose.
If you are in an environment where you have real print devices and Windows
printers, you can use that printer to generate better output for your organization.

Turning on Print Job Logging
By default, the Windows Printer Server does not log details of print jobs to the
Windows Event logs. But you can use wevtutil to turn on logging of printer
job details as follows:

1. Run WevtUtil to turn on printer monitoring.
wevtutil.exe sl "Microsoft-Windows-PrintService/Operational" /
enabled:true

PowerShell 7 does not (currently) include commands to enable or disable
event logs.

Defining a Get-PrinterUsage Function
Event logging can create a lot of data to wade through, much of it not particu-
larly useful in most cases. An approach to reporting is to create a function to
extract the details that are of use and return them as objects. You can then use
the objects to create reports of printer usage.

 # 2. Define Get-PrintUsage function Get-PrinterUsage {
 # 2.1 Get events from the print server event log
 $LogName = 'Microsoft-Windows-PrintService/Operational'
 $Dps = Get-WinEvent -LogName $LogName |
 Where-Object ID -eq 307
 Foreach ($Dp in $Dps) {
 # 2.2 Create a hash table with an event log record
 $Document = [ordered] @{}
 # 2.3 Populate the hash table with properties from the
 # Event log entry
 $Document.DateTime = $Dp.TimeCreated
 $Document.Id = $Dp.Properties[0].value
 $Document.Type = $Dp.Properties[1].value
 $Document.User = $Dp.Properties[2].value
 $Document.Computer = $Dp.Properties[3].value
 $Document.Printer = $Dp.Properties[4].value
 $Document.Port = $Dp.Properties[5].value

	 Chapter 10 ■ Reporting	 389

 $Document.Bytes = $Dp.Properties[6].value
 $Document.Pages = $Dp.Properties[7].value
 # 2.4 Create an object for this printer usage entry
 $UEntry = New-Object -TypeName PSObject -Property $Document
 # 2.5 And give it a more relevant type name
 $UEntry.pstypenames.clear()
 $UEntry.pstypenames.add("Wiley.PrintUsage")
 # 2.6 Output the entry
 $UEntry
 } # End of foreach
} # End of function

This function begins by getting all the printer log entries relating to com-
pleted print jobs (with the ID 307). It then pulls out key details from the event
log entries and creates an object containing the details chosen.

At the end of the function, you adjust the object type name by changing it to
"Wiley.PrintUsage". This allows you to create XML that you can add to your
system to format the output nicely. For more details on creating format.ps1xml
files, see docs.microsoft.com/en-us/powershell/module/microsoft.powershell.
core/about/about _ format.ps1xml?view=powershell-7.

Creating Print Output
To view printer event log entries, you need to produce some actual print output.
To demonstrate print reporting, you can use the Microsoft Print to PDF printer
that is built into Windows.

3. Create three print jobs
$PrinterName = "Microsoft Print to PDF"
'aaaa' | Out-Printer -Name $PrinterName
'bbbb' | Out-Printer -Name $PrinterName
'cccc' | Out-Printer -Name $PrinterName

Each time you send text to Out-Printer, Windows opens up a dialog box allow-
ing you to save the PDF file to a named location. Save each of the output files
separately. By default, this printer sends PDF output to your Documents folder
in your user profile, which is adequate for the purposes of this demonstration.

Viewing PDF Output Files
You can use Get-ChildItem to view the PDF files created by the previous step.

4. View PDF output
Get-ChildItem $Env:USERPROFILE\Documents*.pdf

You can see the output from this command in Figure 10.16.

390	 Chapter 10 ■ Reporting

Viewing Printer Usage
With those three print files created using the Microsoft Print to PDF printer, you
can run the Get-PrinterUsage function to output details of the print jobs on PSRV.

5. Get printer usage
Get-PrinterUsage |
 Sort-Object -Property DateTime |
 Format-Table

You can see the output from this command in Figure 10.17.

The output shows the three print jobs that you created earlier in this section.
For production printers in use in your organization, you might expect signifi-
cantly more event log records.

In Figure 10.17, you see the output generated at the PowerShell console. As
an alternative, you could package up these steps into a script you can run regu-
larly via the Windows Task Scheduler to produce regular printer usage reports.
You can update the steps to add any information that you might find useful in
your environment.

Creating a Hyper-V Status Report

In Chapter 8, you set up and managed Hyper-V. In this section, you create a
Hyper-V status report to show basic information about your Hyper-V servers
and the VMs running on those servers.

Figure 10.17: Viewing printer usage

Figure 10.16: Viewing PDF output files

	 Chapter 10 ■ Reporting	 391

To build the report, you create a few hash tables that contain the key information
you add to the report. Then you format those hash tables and add the for-
matted information to the overall report. The report itself contains two sets of
information: details about the Hyper-V host and details of each VM. Depending
on your needs, you can extend either of these to provide the details you need.

Before You Start
You run this section on the HV1 (or HV2, wherever HVDirect is) server, which
you created in Chapter 8. Run this after you have created the HVDirect VM on
HV1. If you moved the HVDirect VM to HV2 as described later in that chapter,
ensure that HVDirect is moved back to HV1.

You should also note that the HV1 host, however, runs only one VM (HVDirect),
so the output may not be representative of a busy Hyper-V server.

Creating a Basic Report Object Hash Table
You begin by creating an ordered PowerShell hash table. You use this hash table
to hold details of the Hyper-V server.

1. Create a basic report object hash table
$ReportHT = [Ordered] @{}

Adding Host Details to the Report
Next you obtain basic VM Host details from WMI and add them to the report
hash table.

2. Get the host details and add them to the report hash table
$HostDetails = Get-CimInstance -ClassName Win32_ComputerSystem
$ReportHT.HostName = $HostDetails.Name
$ReportHT.Maker = $HostDetails.Manufacturer
$ReportHT.Model = $HostDetails.Model

These statements add the host name, make, and model of your Hyper-V
server to the report.

Adding PowerShell and OS Version
You obtain the PowerShell version from the $PSVersiontable built-in object and
retrieve details of the OS from WMI. You then add them to the report hash table.

3. Add the PowerShell and OS version information
Add PowerShell Version

Continues

392	 Chapter 10 ■ Reporting

$ReportHT.PSVersion = $PSVersionTable.PSVersion.ToString()
Add OS information
$OS = Get-CimInstance -Class Win32_OperatingSystem
$ReportHT.OSEdition = $OS.Caption
$ReportHT.OSArch = $OS.OSArchitecture
$ReportHT.OSLang = $OS.OSLanguage
$ReportHT.LastBootTime = $OS.LastBootUpTime
$Now = Get-Date
$UTD = [float] ("{0:n3}" -f (($Now -$OS.LastBootUpTime).Totaldays))
$ReportHT.UpTimeDays = $UTD

This section adds the PowerShell version you are using to run this script
along with details about the OS.

Depending on which version of Windows Server you used to create the HVDi-
rect VM, you may observe a different OS version in the final report output.

Adding Processor Count
You retrieve a count of the CPUs and add it to the report.

4. Add a count of processors in the host
$PHT = @{
 ClassName = 'MSvm_Processor'
 Namespace = 'root/virtualization/v2'
}
$Proc = Get-CimInstance @PHT
$ReportHT.CPUCount = ($Proc |
 Where-Object elementname -match 'Logical Processor').count

If your host has hyper-threading enabled, WMI views each hyperthreaded
core separately. Thus, for a host with two physical processors, each of which
has 6 cores, WMI would return 12 CPUs (without hyper-threading) or 24 (with
hyper-threading enabled). To learn more about the allocation of CPU cores
to VMs, see docs.microsoft.com/en-us/windows-server/virtualization/
hyper-v/manage/manage-hyper-v-scheduler-types.

Adding Current CPU Usage
You can use the Get-Counter command to retrieve the current CPU usage and
add that information to the report hash table.

5. Add the current host CPU usage
$Cname = '\processor(_total)\% processor time'
$CPU = Get-Counter -Counter $Cname
$ReportHT.HostCPUUsage = $CPU.CounterSamples.CookedValue

continued

	 Chapter 10 ■ Reporting	 393

Adding Total Hyper-V Host Physical Memory
Next, you retrieve the total memory you have given the HV1 host and add it to
the report.

6. Add the total host physical memory
$Memory = Get-CimInstance -Class Win32_ComputerSystem
$HostMemory = [float] ("{0:n2}" -f ($Memory.TotalPhysicalMemory/1GB))
$ReportHT.HostMemoryGB = $HostMemory

Adding Memory Assigned to VMs
You can determine how much memory has been assigned to all the VMs on
the server.

7. Add the memory allocated to VMs
$Sum = 0
Get-VM | Foreach-Object {$Sum += $_.MemoryAssigned}
$Sum = [float] ("{0:N2}" -f ($Sum/1gb))
$ReportHT.AllocatedMemoryGB = $Sum

Creating the Host Report Object
You have created a hash table containing details of your Hyper-V server. You
next create a new report object.

8. Create the host report object
$Reportobj = New-Object -TypeName PSObject -Property $ReportHT

Creating the Report Header
Next, you create the header for the Hyper-V report and add it to the report object.

9. Create report header
$Report = "Hyper-V Report for: $(hostname)`n"
$Report += "At: [$(Get-Date)]"

Adding the Report Object to the Report
You add the report object, containing the details of your Hyper-V host, to the
report.

10. Add report object to report
$Report += $Reportobj | Out-String

394	 Chapter 10 ■ Reporting

Creating an Array for the VM Details
In the steps so far, you have created a report that contains details about the
Hyper-V host, to which you add details about the VMs.

11. Create VM details array
VM related objects
$VMs = Get-VM -Name *
$VMHT = @()

Getting VM Details
You populate the VM details array with information from each VM. For each
VM on the host, you use details returned from Get-VM and add each VM’s details
to the array.

12. Get VM details
Foreach ($VM in $VMs) {
 # Create VM Report hash table
 $VMReport = [ordered] @{}
 # Add VM's Name
 $VMReport.VMName = $VM.VMName
 # Add Status
 $VMReport.Status = $VM.Status
 # Add Uptime
 $VMReport.Uptime = $VM.Uptime
 # Add VM CPU
 $VMReport.VMCPU = $VM.
 # Replication Mode/Status
 $VMReport.ReplMode = $VM.ReplicationMode
 $VMReport.ReplState = $VM.ReplicationState
 # Create object from Hash table, add to array
 $VMR = New-Object -TypeName PSObject -Property $VMReport
 $VMHT += $VMR
}

Completing the Report
You complete building the report by adding the details of each VM, contained
in the $VMHT to the report.

13. Finish creating the report
$Report += $VMHT | Format-Table | Out-String

	 Chapter 10 ■ Reporting	 395

Viewing the Report
You now have the report, held in the $Report variable, which you can view as
follows:

14. Display the report
$Report

You can view the report output in Figure 10.18.

In this case, you are viewing the report in the PowerShell Console or in VS
Code. If you want to run this report regularly, you could use the Windows Task
Scheduler to run it as needed and modify the script to send the report via email.

This report is somewhat small in that there is only one VM. In production
you typically have more than one VM running on a given host. If you run this
report against a busier Hyper-V host, you can see more information, as shown
in Figure 10.19.

Reviewing Event Logs

With the introduction of Windows NT 3.1 (on which both Windows 10 and
Windows Server are based), Microsoft introduced the Windows event logs.
Today, those key event logs, Application, System, and Security, contain a large

Figure 10.18: Viewing the VM report

396	 Chapter 10 ■ Reporting

number of event entries. Each entry alerts you to some fact that various devel-
opers thought you should know about.

These logs were extended with Windows Vista to include Application and
Services logs—event logs for individual applications and services. In a Windows
Server 2019 host, such as DC1, there are more than 400 separate logs. Among
those, only about 100 have more than 750,000 log entries. Each entry is yet
another fact that a developer felt you should know about.

The vast majority of event log entries are not interesting to most IT profes-
sionals, at least most of the time. However, troubleshooting issues such as setting
up WMI filters or management information like printer usage can make use of
these additional logs.

You can retrieve the Windows event log entries by using the Get-WinEvent
command. You can use that command to retrieve a list of event logs (using the
-ListLog parameter) or entries from a given log. You can also filter events using
XPath queries, structured XML queries, and hash table queries. You can find some
examples of XML and hash table queries at docs.microsoft.com /powershell/
module/microsoft.powershell.diagnostics/get-winevent?view=powershell-7.

You can use the Get-WinEvent command to retrieve logon events from the
system’s Security event log. You can then report on the users who logged on to
a given system, including date and time. In Windows, there are a number of

Figure 10.19: Viewing the VM report on another Hyper-V host

	 Chapter 10 ■ Reporting	 397

different kinds of logon events such as logging on to a physical host, logging
on to a VM or remote host using the Hyper-V vmconnect.exe program, or using
the Remote Desktop client. Services and drivers can also generate logon events.

Before You Start
You run this section on DC1, a domain controller in the Reskit.Org domain.

Counting Event Logs
You can use the Get-WinEvent cmdlet to get a listing of all the event logs on a
given system.

1. Count logs and logs with records
$EventLogs = Get-WinEvent -ListLog *
$Logs = $EventLogs.Count
$ActiveLogs = ($Eventlogs | Where-Object RecordCount -gt 0).count
"On $(hostname) there are $Logs logs available"
"$ActiveLogs have records"

You can see in Figure 10.20 that on DC1, there are a total of 409 separate event
logs, of which 115 have records.

The number of event logs on a given system can vary as you add more fea-
tures to the system.

Getting the Total Number of Event Records
You can also look at each event log and calculate the total number of event log
entries across all the logs.

2. Get total event records available
$EntryCount = ($EventLogs | Measure-Object -Property RecordCount
-Sum).Sum
"Total Event logs entries: [{0:N0}]" -f $EntryCount

Figure 10.20: Viewing a count of event logs

398	 Chapter 10 ■ Reporting

You can see in Figure 10.21 that on my system there are a total of 783,122 log
events across all logs. The number of entries you see when you run this code is
likely to be different depending on how long your system has been up, whether
event logs have been cleared, and so on.

Getting Event Counts in Key Logs
You can also see the number of event log entries in the System, Application,
and Security logs.

3. Get count of events in System, Application and Security logs
$Syslog = Get-WinEvent -ListLog System
$Applog = Get-WinEvent -ListLog Application
$SecLog = Get-WinEvent -ListLog Security
"System Event log entries: [{0,10:N0}]" -f $Syslog.RecordCount
"Application Event log entries: [{0,10:N0}]" -f $Applog.RecordCount
"Security Event log entries: [{0,10:N0}]" -f $Seclog.RecordCount

You can see the output from these commands in Figure 10.22.

This snippet uses PowerShell’s -f (format) operator and .NET’s composite
formatting features. You can find more details about composite formatting at
docs.microsoft.com/ dotnet/standard/base-types/composite-formatting. This
technique allows you to create good-looking output. In this case, you format the
number of log entries into a number with thousand separators and right-justify
it within a 10-character space. That way, the numbers line up vertically within
the output, which makes reading the information much easier. Using composite
formatting is a common practice in reporting scripts.

Figure 10.21: Viewing the total number of event logs

Figure 10.22: Viewing the total numbers of System, Application, and Security event logs

	 Chapter 10 ■ Reporting	 399

Getting All Windows Security Log Events
You can use Get-WinEvent to get all the log entries in the Security log and display
a count of how many records you found with this syntax:

4. Get all Windows Security Log events
$SecEvents = Get-WinEvent -LogName Security
"Found $($SecEvents.count) security events"

You can see the output from these commands in Figure 10.23.

As you saw earlier, on a busy server there can be a large number of events in
the Security log. This means getting all the events and performing any detailed
processing of the Security log will be slow. Retrieving all the events in the security
log is going to take a while, possibly half an hour, so please be patient. Because
retrieving the security events takes so long, in most cases event log processing
is best done as a background task run by the Windows Task Scheduler.

Getting Logon Events
You can pick out individual logon events.

5. Get Logon Events
$Logons = $SecEvents | Where-Object ID -eq 4624 # logon event
"Found $($Logons.count) logon events"

You can view the different types of logons recorded on DC1 in Figure 10.24.

Figure 10.23: Viewing the Security log events

Figure 10.24: Getting logon events

400	 Chapter 10 ■ Reporting

Creating a Logon Type Summary
In Windows, there are several different logon types, as described in detail at
docs.microsoft.com/previous-versions/windows/it-pro/windows-server-2003/

cc787567(v=ws.10). A logon type of 2 indicates a local console logon (that is, log-
ging on to a physical host), while a logon type of 10 indicates logon over RDP.
Other logon types include service logon (type 5), Batch or scheduled task (type
4), and console unlock (type 7). You can review the logon events and summarize
the different logon types with this code:

6. Create summary array of logon events
$MSGS = @()
Foreach ($Logon in $Logons) {
 $XMLMSG = [xml] $Logon.ToXml()
 $t = '#text'
 $HostName = $XMLMSG.Event.EventData.data.$t[1]
 $HostDomain = $XMLMSG.Event.EventData.data.$t[2]
 $Account = $XMLMSG.Event.EventData.data.$t[5]
 $AcctDomain = $XMLMSG.Event.EventData.data.$t[6]
 $LogonType = $XMLMSG.Event.EventData.data.$t[8]
 $MSG = New-Object -Type PSCustomObject -Property @{
 Account = "$AcctDomain\$Account"
 Host = "$HostDomain\$Hostname"
 LogonType = $LogonType
 Time = $Logon.TimeCreated
 }
 $MSGS += $MSG
}

Each event log entry contains event details in XML stored as a text attribute
of the event log entry. You can use PowerShell’s built-in XML support to get the
account that logged on, the host, and at what time. The code creates an array of
objects that summarize the details.

The approach of parsing the event entry’s XML to pull out relevant details of
the event is one you can use to report from any log. Finding the specific details
of what properties are contained at what position in the XML may require you to
use the Event Viewer (eventvwr.exe) to work out where to find the information
you need within the entry or the entry’s XML.

There are several different types of audit log entries that Windows writes
as appropriate, such as a logon that failed because the account is disabled or
expired. You may want to extend the set logon event codes to look for other
possibly suspicious activity.

	 Chapter 10 ■ Reporting	 401

Displaying Logon Events by Logon Type
You can view the logon summary as follows:

7. Display results
$MSGS |
 Group-Object -Property LogonType |
 Format-Table Name, Count

You can view the different types of logons in Figure 10.25.

As you can see in the output, there are a large number of logons across most
logon types. Since DC1 is a virtual machine, you would not expect any interactive
logons but would expect logon type 10 events, logging on via RDP.

Examining RDP Logons
To drill down further, you can view the individual RDP logons as follows:

8. Examine RDP logons
$MSGS | Where-Object LogonType -eq '10'

You can see the type 10 logon events recorded on DC1 in Figure 10.26.

Figure 10.25: Getting logon event types

Figure 10.26: Getting RDP logons

402	 Chapter 10 ■ Reporting

Summary

In this chapter you have used a variety of tools, orchestrated by PowerShell
7, that create reports to help you manage your organizations. You saw how
you can retrieve information from AD about logon failures and view users
someone may have added to a high privilege security group. You used the
FSRM reporting features to generate reports on the use of a file server. You can
get preformatted reports or use the XML returned from FSRM to create your
own report. PLA enables you to collect performance information, and you can
use that information to create basic reports. You can also take that information
and use .NET’s visualization tools to create performance graphs. You also used
PLA to run the System Diagnostics Report. You saw how to enable the Windows
printing subsystem to log details of printer usage. Once you enable the logging,
you can then retrieve usage details. You saw how you retrieve details of VMs and
create Hyper-V status reports. Finally, you looked at one way to comb through
the event log and create reports on the contents.

403

Symbols
$ADEvent, 346
$Event, 341
$ISOPath, 258
$NewUserHT, 87
$Printer, 247
$Profile, 11
$PSHome, 9
$PSISE, 11
$PSVersionTable, 12
$RegEvent, 344
$SB2, 107
$Users, 97, 98

A
access control entries (ACEs),

154–155, 160, 206
access control lists (ACLs), 76,

84–85, 86, 154, 155, 157–158, 162, 198,
199, 206

account, global, domain, local
permissions (AGDLP) approach, 85

Active Directory (AD)
adding users to via CSV, 96–100
aspects of not covered in this book,

58
best practices in, 57–58

configuring cross-forest trust, 75–86
configuring Just Enough

Administration (JEA), 100–109
described, 56–57
establishment of forest root domain,

60–66
installing child domain, 70–75
installing replica DC, 66–70
management of, 55–109
managing AD users, computers, and

OUs, 86–96
naming practices in, 57
objects likely to use in, 86–96
publishing printer in, 238–240
using latest version of module for,

54
Active Directory Administrative

Center (ADAC), 94
Active Directory Certificate Services

(AD CS), 56
Active Directory: Designing, Deploying,

and Running Active Directory
(Desmond), 58

Active Directory Domain Service
(AD DS), 56

Active Directory Federation Services
(AD FS), 56

Index

PowerShell 7 for IT Pros: A Guide to Using PowerShell 7 to Manage Windows® Systems, First Edition. Thomas Lee.
© 2021 John Wiley & Sons, Inc., Published 2021 by John Wiley & Sons, Inc.

404	 Index ■ A–B

Active Directory Lightweight
Directory Services (AD LDS), 56

Active Directory Rights Management
Services (AD RMS), 56

Active Directory Users and
Computers MMC console, 94

Active Script consumer, as permanent
event handler, 347

AD (Active Directory). See Active
Directory (AD)

AD computer object
adding computer to AD, 95
displaying computers in AD domain,

95–96
as one of four sets of AD objects

likely to use, 86
AD CS (Active Directory Certificate

Services), 56
AD Domain Service feature,

installation of, 61, 76–77
AD DS (Active Directory Domain

Service), 56
AD FS (Active Directory Federation

Services), 56
AD group object

creating and viewing group
membership, 93

creation of, 92–93
displaying group membership, 94
make all users in IT members of IT

team group, 94
make new group to IT team, 93
as one of four sets of AD objects

likely to use, 86
AD LDS (Active Directory

Lightweight Directory Services), 56
AD organizational unit (OU) object

creating user in, 89
creation of for IT, 88
defined, 88
moving users into, 88
as one of four sets of AD objects

likely to use, 86
AD RMS (Active Directory Rights

Management Services), 56

AD RSAT tools, 155, 160, 255
AD user object

adding two additional users, 89
creating hash table for general user

attributes, 87
creating OU for IT, 88
creating two users, 87–88
creating user in OU, 89
moving users into OU, 88–89
as one of four sets of AD objects

likely to use, 86
removing user directly, 91
removing user with Get | Remove

pattern, 90
updating and displaying of, 91–92
viewing existing users, 90

AD WMI provider, 348
ADAC (Active Directory

Administrative Center), 94
Add-ADGroupMember, 93, 345
Add-ClusterSharedVolume, 226
Add-Computer, 269
ADD-DHCPSecurityGroup, 122
Add-DhcpServerV4Failover,

130, 131
Add-DnsServerPrimaryZone, 139
Add-DnsServerResourceRecord, 142
Add-NTFSAccess, 160, 161
AD-Domain-Services, 61
Add-Printer, 237
ADDSDeployment module, 61–62
Add-VMHardDiskDrive, 261, 276
Add-VMScsiController, 275
administrative shares, defined, 197
AGDLP (account, global, domain, local

permissions) approach, 85
Audio and Video Files, 183
automatic new version notification, 3
automatic private IP addressing

(APIPA), 114

B
Background Intelligent Transfer

Service (BITS), 235
binary modules, described, 39

	 Index ■ C–C	 405

C
CA certificate, 30
cache

FS-BranchCache, 192
module analysis cache, 47–48

Cascadia Code (font)
downloading of, 17–18
installation of, 18
as new Microsoft font, 15

cdmlet definition over XML feature,
246

certificate authority (CA), 30
certificates

CA certificate, 30
copying of to Trusted Publisher and

Trusted Root stores, 33–34
creation of self-signed certificates, 31
signing certificate, 30
viewing of, 31–32
X.509 digital certificates, 30

C:\Foo folder, 7, 14, 15, 20
Checkpoint1, reverting to, 287–288
Checkpoint2, rolling forward to, 289
checkpoints
Checkpoint1, 287–288
Checkpoint2, 289
production checkpoint, 282
standard checkpoint, 282
use of term, 286
use of VM checkpoints, 282–291

Checkpoint-VM, 284, 286
child domain

adding AD DS features to UKDC1,
72–73

creation of, 73
importing Server Manager module,

71
installation of, 70–75
verifying that DC1 can be resolved,

71–72
viewing of, 74–75
viewing updated AD forest, 73–74

C:\HW, 26
CIM (Common Information Model),

315

CIM cmdlets
as component of WMI architecture,

317
use of, 319–320

CIM Database (CIMDB), as component
of WMI architecture, 318

CIM Object Manager (CIMOM), as
component of WMI architecture,
318

CimClassMethods, 335
-CimSession, 326
cluster shared volume (CSV), 226. See

also CSV files
cluster test tool, 222
cmdlets

CIM cmdlets, 317, 319–320
Foreach-Object cmdlet, 2
Get-AuthenticodeSignature

cmdlet, 35
Import-Module cmdlet, 6, 40, 48, 49,

50, 167, 258
redevelopment of, 2
SMB cmdlets, 319

-CodeSigningCert parameter, 34
code-signing environment, creation

of, 30–35
Command Line consumer, as

permanent event handler, 347, 348
CommandLineEventConsumer, 352
commands, as contained within

modules, 37
Common Information Model (CIM),

315
compatibility issue work-arounds, 54
compatibility layer/solution

described, 2
introduction to, 48–50

Complete-VMFailover, 303
Component Object Model (COM), 315
_ComputerName property, 334
computers, reporting on AD users and

computers, 359–365
conditional DNS forwarder, 79, 82
conditional DNS forwarding, 80–81, 82
Connect-VMNetworkAdapter, 267

406	 Index ■ C–D

Constructor qualifier, 335
CreateTrustRelationship(), 84–85
cross-forest trust

adjusting DNS to resolve Reskit.Org
from KAPDC1, 79

configuration of, 75–86
connecting two independent forests

with, 57–58
creating credentials to run a

command on DC1, 81
creating script block to adjust ACL of

a file on DC1, 84
defined, 76
establishment of, 84
getting domain detail objects, 82
importing AD DS deployment

module, 77–78
importing Server Manager module,

76
installing AD Domain Services

feature and management tools,
76–77

invoking script block on DC1, 81–82
promoting KAPDC1, 78
running script block on DC1 to

demonstrate, 85–86
setting up conditional forwarder on

Reskit.Org, 80–81
setting WinRM, 81
testing conditional DNS forwarding,

80
testing network connectivity with

DC1, 77
viewing Kapoho forest details, 83–84
viewing Kapoho.com forest details,

78–79
viewing Reskit forest details, 83

CSV files. See also cluster shared
volume (CSV)

adding users to, 98
adding users to AD via, 96–100
creation of, 97
importing and viewing of, 97–98
moving iSCSI disk into CSV, 226

viewing all users in Reskit.Org,
98–100

Current User Current Host profile, 11,
14

D
data collector

creation of, 375
starting built-in data collector,

385–386
waiting for data collector to finish,

386
data collector set, 374, 376–378
DC (Domain Controller)

every domain in forest as having at
least one, 58

installation of replica DC, 66–70
reviewing of in Reskit.Org domain,

69–70
testing connectivity to, 118

DC1.Reskit.Org

checking basic connectivity to, 118
checking DNS zones on, 140–141
configuring quorum share on,

224–225
creating credential to run command

on, 81
creating script block to adjust ACL of

a file on, 84
as first DHCP server, 130
invoking script block on, 81–82
registering DNS records for, 140
running script block on to

demonstrate cross-forest trust,
85–86

as Windows Server 2019 host, 4–5
DC2.Reskit.Org

counting namespaces/classes on,
327–328

installing DHCP server feature on,
128–129

installing DNS feature on, 134
letting DHCP know it is fully

configured on, 129

	 Index ■ D–D	 407

as new DHCP server, 130
registering DNS records for, 140

DCOM (Distributed COM), 315, 319
default shares, disabling of, 197
Deployment Image Servicing and

Management (DISM) module,
importing of, 258

Desmond, Brian (author)
Active Directory: Designing, Deploying,

and Running Active Directory, 58
DFS Namespace (DFSN), 192
DHCP (Dynamic Host Configuration

Protocol). See Dynamic Host
Configuration Protocol (DHCP)

DHCP failover
authorizing second DHCP server in

AD, 129
configuration of, 128–133
configuration of and load balancing,

130–131
installing DHCP server feature on

DC2, 128–129
letting DHCP know it is fully

configured on DC2, 129
viewing active leases from both

DHCP servers, 131–132
viewing authorized DHCP servers,

129–130
viewing DHCP server statistics, 132

DHCP scope
configuring scope-specific options,

126
configuring server-wide options, 126
creation of, 125
defined, 124
getting scopes from DHCP server,

125–126
testing DHCP service in operation,

127
Directory Server Entry (DSE), viewing

of, 63–64
Disable-NTFSAccessInheritance,

161
disks

adding iSCSI disk to cluster, 225–226
adding one to VM, 276
creating an F: volume in disk 1, 150
creating iSCSI virtual disk, 211–212
creating new virtual disk, 275–276
creating partition in disk 2, 150–151
creating second partition, 151
ensuring iSCSI disks are connected,

225
examining virtual disk details,

310–311
getting information about physical

disks on SRV1, 148–149
getting partitions on SRV1, 153–154
initializing new disks, 149
management of, 147–154
moving iSCSI disk into CSV, 226
setting disk online and making it

read/write, 216
viewing initialized disks, 149
viewing iSCSI virtual disk, 216
viewing SalesTarget iSCSI disk, 214
viewing SCSI disks inside HVDirect,

277
DISM (Deployment Image Servicing

and Management) module,
importing of, 258

Distributed COM (DCOM), 315, 319
Distributed Management Task Force

(DMTF), 315
DLL, 236, 248
DNS (Domain Name Service). See

Domain Name Service (DNS)
DNS conditional forwarder, 79–80
DNS forward, creating DNS forward

lookup zone, 139
DNS forwarder, configuration of, 136
DNS Security (DNSSEC), 135
DNS settings, viewing of, 65–66
domain, described, 57
Domain Admins group, 363
Domain Controller (DC). See DC

(Domain Controller)
Domain Local groups, 85

408	 Index ■ D–E

Domain Name Service (DNS)
adding DNS RR to Cookham.Net

Zone, 141–142
checking DNS RRs in Cookham.Net

zone, 142–143
checking DNS zones on DC1,

140–141
configuration of, 135–136
configuring DNS zones and resource

records, 138–144
creating DNS forward lookup zone,

139
creating reverse lookup zone,

139–140
installing DNS feature on DC2, 134
overview, 133–135
registering DNS records for DC1,

DC2, 140
restarting DNS service, 142
testing DNS server resolution,

143–144
viewing key DNS server options,

136–138
dot sourcing, 39
ds_group WMI class, 344
DSC resource, invoking of, 3, 53
DSE (Directory Server Entry), viewing

of, 63–64
Dynamic Host Configuration Protocol

(DHCP)
authorizing DHCP server in AD, 122
authorizing second DHCP server in

AD, 129
checking DHCP service, 123–124
completing DHCP configuration, 123
configuring DHCP failover,

128–133
configuring DHCP failover and load

balancing, 130–131
configuring DHCP scopes, 124–127
configuring scope-specific options,

126
configuring server-wide options, 126
creating DHCP scope, 125

getting scopes from DHCP server,
125–126

installation of, 121–122
letting DHCP know it is fully

configured on DC2, 129
restarting DHCP service, 123
setting options for, 126
testing DHCP service in operation, 127
use of, 113
viewing active leases from both

DHCP servers, 131–132
viewing authorized DHCP servers,

129–130
viewing DHCP server statistics, 132

dynamic method, 319
dynamic modules, described, 39

E
EDNS (Extended DNS), 135
Enable-PSRemoting, 104
Enable-VMMigration, 308
Enable-VMReplication, 294
Enable-VMResourcedMetering, 312
Enterprise Admins group, 345–346,

353, 363
enterprise resource planning (ERP)

tool, 96
error messages, 2
error views, simplification of, 2–3
event consumer, 352
event filter, 352, 353–355
event logs

counting event logs, 397
creating logon type summary, 400
displaying logon events by logon

type, 401
examining RDP logons, 401
getting all Windows Security log

events, 399
getting event counts in key logs, 398
getting logon events, 399
getting total number of event

records, 397–398
reviewing of, 395–401

	 Index ■ E–F	 409

Event Viewer, 400
events

extrinsic events, 339, 342–343
intrinsic events, 339
WMI events. See WMI events

Exchange Server, 48
execution policy

enabling of, 6
resetting of, 35
setting of, 32
use of, 30

experimental features, 3
Extended DNS (EDNS), 135
extrinsic events, 339, 342–343

F
failover clustering, 206, 218, 222, 224,

302
failover test, 288, 299, 300, 301
FailoverClusters module, 222
file groups, 184–185
file screening

changing notification limits, 189
creating new file folder, 186
creating new file screen,

186–187
examining existing file screen

templates, 184–186
management of, 183–190
setting up active file screen,

187–188
testing active file screen, 189
testing of, 187
viewing active file screen email,

189–190
viewing notification limits, 188

File Server Resource Manager (FSRM)
building FSRM action, 179. See also

FSRM action
building FSRM quota, 180–181
creating FSRM quote template, 178
creating FSRM threshold, 180
creating new file folder, 186
creating new folder, 179

creating scheduled FSRM report
task, 370–371

described, 365
examining existing FSRM file

groups, 184
examining FSRM email, 181
installation of, 175–176
leveraging of to generate reports on

spool folder, 240
managing file screening, 183–190
report types supported by, 365
reporting in, 357
sending test email, 176–177
setting up SMTP settings for, 176
testing 85% quota threshold, 181
testing hard quota limit, 181–182
using FSRM XML output, 369–370
viewing available FSRM quota

templates, 178
viewing folder contents, 183
viewing FSRM report output files,

368
viewing FSRM reports, 367–368

File System Freeze, 282
FileAndStorage-Services, 191
File-Services feature, 226
filestore quotas

building FSRM action, 179
building FSRM quota, 180–181
creating FSRM quote template, 178
creating FSRM threshold, 180
creating new folder, 179
examining FSRM email, 181
installing FS Resource Manager

feature, 175–176
management of, 175–183
sending test email, 176–177
setting up SMTP settings for FSRM,

176
testing 85% quota threshold, 181
testing hard quota limit, 181–182
viewing available FSRM quota

templates, 178
viewing folder contents, 183

410	 Index ■ F–G

filesystem reporting
creating scheduled FSRM report

task, 370–371
creating scheduled report, 371
creating storage report, 366
removing reports and scheduled

task, 374
running report interactively, 372
types of reports supported by FSRM,

365
using FSRM XML output, 369–370
viewing FSRM report output files, 368
viewing FSRM reports, 367–368
viewing Large Files Report, 368–369
viewing report, 372–373
viewing report scheduled task, 371–372

_FilterToConsumerBinding, 352, 353
Flexible Single Master Operation

(FSMO), 60, 64, 65, 74
folder enumeration mode, 201
folders
C:\Foo folder, 7, 14, 15, 20
creating module working folder, 26
installation folder, 9–10
repository folder, 25–26
role capabilities folder, 101
spool folder, 240–245
transcript folder, 101, 107–108

Foo folder, 7, 14, 15, 20
-Force parameter, 11
Foreach-Object cmdlet, 2
Foreach-Object-Parallel, 52, 100
forest (in AD), defined, 57
forest root domain

creating forest root domain
controller, 62

defined, 57
establishment of, 60–66
getting details of, 65
importing Server Manager module, 60
installing AD Domain Services

feature, 61
loading AD DS Deployment module

explicitly, 61–62

viewing details of new AD DS forest,
64–65

viewing Directory Server Entry
(DSE), 63–64

viewing DNS settings, 65–66
forest root domain controller, 60, 62–63
Foxit Reader PDF Printer, 233
FS1.Reskit.Org

adding clustering features to, 221–222
adding file server features to, 194–195
creating volume on, 216–217
restarting of, 222
setting up, 200
using iSCSI drive on, 217–218
viewing shares from, 228–229

FS2.Reskit.Org

adding clustering features to, 221
adding file server role to, 221
configuring iSCSI portal for, 219–220
restarting of, 222
setting up iSCSI portal for, 219

FS-BranchCache, 192
FS-Data-Deduplication, 192
FS-DFS-Namespace, 192
FS-DFS-Replication, 192
FS-FileServer, 192
FS-iSCSITarget-Server, 192
FSMO (Flexible Single Master

Operation). See Flexible Single
Master Operation (FSMO)

FS-NFS-Service, 192
FS-Resource-Manager, 192
FSRM (File Server Resource Manager).

See File Server Resource Manager
(FSRM)

FSRM action, 179, 180, 188
FSRM threshold, 180
FS-SyncShareService, 192
FS-VSS-Agent, 192

G
GC (Global Catalog), 64
Get | Remove pattern, 90
Get-ADDomain, 65, 70

	 Index ■ G–H	 411

Get-ADForest, 64
Get-ADGroupMember, 93, 94
Get-ADRootDSE, 63
Get-ADUser, 90, 91, 92
Get-AuthenticodeSignature cmdlet,

35
Get-ChildItem, 29, 34, 47–48, 217, 284,

288, 289, 291, 389
Get-CimClass, 322, 324, 328, 329, 330, 335
Get-CimInstance, 246, 326, 331, 332,

334, 338, 374
Get-Counter, 374
Get-DHCPServer4Scope, 125
Get-DhcpServerInDC, 129
Get-DhcpServerv4ScopeStatistics,

132
Get-Disk, 148
Get-DNSServer, 136
Get-DNSServerZone, 140
Get-Event, 341
Get-FsrmFileGroup, 184
Get-FsrmFileScreenTemplate, 184
Get-FsrmQuotaTemplate, 178
Get-FsrmSetting, 188
Get-HelloWorld, 40, 41, 42, 45
Get-HelloWorld2, 46
Get-HW, 102, 106, 107, 108
Get-IsciTargetServerSettings, 210
Get-Module, 39
Get-NetIPAddress, 115
Get-NetIPConfiguration, 266, 268
Get-NTFSAccess, 157, 162, 204, 205
Get-Partition, 154
Get-Printer, 240, 246, 249
Get-PrinterUsage, 390
Get-PSRepository command, 28
Get-PSSessionCapability, 104
Get-ReskitUser, 360, 361
Get-ScheduledTask, 371
Get-SmbServerConfiguration, 195
Get-SmbShare, 200
Get-SMBShare, 336
Get-SRPartnership, 171
Get-VM, 296, 301, 303, 305, 307, 308, 310

Get-VMCheckpoint, 286, 290
Get-VMHardDiskDrive, 306, 307
Get-VMNetworkAdapter, 268
Get-VMReplicationServer, 295
Get-VMScsi, 277
Get-VMSnapShot, 286
Get-Volume, 151, 154
Get-WindowsImage, 259
Get-WinEvent, 340, 395, 397
Get-WMINameSpaceEnum, 323
Get-WMIPE, 353
GHW alias, 27
Global Catalog (GC), 64
Grant-SmbShareAccess, 202
Group Policy, as AD feature, 58
Group Policy: Fundamentals, Security,

and the Managed Desktop
(Moskowitz), 58

Group Policy objects, 119
GUID Partition Table (GPT), 145

H
Hardware Compatibility List (HCL), 218
hash tables, 7, 19, 39, 41, 42, 62–63, 87, 88,

98, 100, 256, 303, 337, 391, 392, 393, 396
HelloJEA World, 108
help information

viewing installation file help
information, 8

viewing starting PowerShell 7 help
information, 12

hot standby, 128, 131
HV1

checking VMs on, 310
configuration of for delegation,

293–294
creating new VM in, 260
getting VM details from, 298–299
installation of Hyper-V feature on,

255
rebooting of, 255, 294
starting failover from HV1 to HV2,

302
stopping HVDirect on, 302

412	 Index ■ H–H

HV2

checking VMs on, 310
configuration of for delegation, 293–294
getting VM details from, 299–300
rebooting of, 294
starting failover from HV1 to HV2,

302
viewing VM status on after failover,

298
viewing VMs on, 308

HVDirect

checking Hyper-V in, 281–282
creating another file in, 287
creating content in, 285
creating credentials for, 313
displaying details of HVDirect VM,

263
examining C: in HVDirect VM, 283
as running on HV1 host, 265
stopping of on HV1, 302
turning off of, 272
viewing checkpoint details for, 286
viewing HVDirect VM, 305
viewing IP address inside of, 268–269
viewing SCSI disks inside of, 277

HW.psd1, 28
Hyper-V. See also Hyper-V Manager

MMC; Hyper-V Replica (HVR);
Hyper-V status report

adding disk to VM, 276
adding ISO image to VM, 261
adding SCSI controller, 275
adding VHD to VM, 261
building configuration hash table, 256
checking of in HVDirect, 281–282
configuring VM hardware, 271–277
configuring VM networking, 265–271
connecting VM to switch, 267
creating credential for VM, 266
creating folders to hold VM disks

and VM details, 255–256
creating Hyper-V VM, 257–262
creating new virtual disk, 275–276
creating new VM in HV1, 260
creating variables, 257–258

creating VHDX file for VM, 260
creating virtual switch, 267
enabling MAC spoofing, 268
getting host name of HVDirect VM,

271
getting NIC details, 266–267
getting virtual NIC details from

HVDirect, 265
implementing nested virtualization,

277–282
installation and configuration of,

254–257
installation of in HVDirect VM, 280
installation of on HV1, 255
installing Windows Server 2019,

261–262
joining Reskit domain, 269–270
management of, 251–314
Microsoft’s introduction of and

support for, 251
mounting ISO image, 259
rebooting HV1, 255
rebooting VM, 270–271
restarting VM, 275
reviewing key VM host settings,

256–257
setting hardware startup order, 273
setting socket count, 273–274
setting VM memory, 274
starting VM, 261
turning off HVDirect VM, 272
using PowerShell Direct, 262–264
using VM checkpoints, 282–291
using VM replication, 291–305
verifying that ISO image exists, 258
viewing IP address inside HVDirect,

268–269
viewing ISO image contents, 259–260
viewing results of installing

Windows Server 2019, 262
viewing SCSI disks inside HVDirect,

277
viewing VM network information, 268
VM movement, 305–311
VM replication, 291–305

	 Index ■ H–I	 413

VM resource usage, 311–314
Hyper-V Manager MMC, 261
Hyper-V Replica (HVR), 291–305
Hyper-V status report

adding current CPU usage, 392
adding host details to report, 391
adding memory assigned to VMs, 393
adding PowerShell and OS version,

391–392
adding processor count, 392
adding report object to the report, 393
adding total Hyper-V host physical

memory, 393
completing report, 394
creating array for VM details, 394
creating basic report object hash

table, 391
creating host report object, 393
creating report header, 393
creation of, 390–395
getting VM details, 394
viewing report, 395

I
ICMP (Internet Control Message

Protocol) Echo Reply, 117, 118
ICMP (Internet Control Message

Protocol) Echo Request, 117, 118, 120
Implemented qualifier, 335
implicit remoting, 48
Import-Module cmdlet, 6, 40, 48, 49,

50, 167, 258
Import-PSSession, 48
Initialize-Disk, 149
Install-ADDSDomain, 73
installation folder, examination of,

9–10
installation script, 7–8, 9, 15
Install-Module, 6, 24
Install-PowerShell script, 9
Install-VSCode script, 15
Install-VSCode.ps1 file, 16
Install-WindowsFeature, 68, 121, 134,

167, 234
instance method, 334

Internet Control Message Protocol
(ICMP) Echo Reply, 117, 118

Internet Control Message Protocol
(ICMP) Echo Request, 117, 118, 120

intrinsic events, 339
Invoke-CimMethod, 336, 338
Invoke-Command, 225, 263, 264, 266,

283
IP addressing

automatic private IP addressing
(APIPA), 114

checking adapter details, 114–115
configuration of, 115
overview, 113
setting DNS server details, 116
validating new IP configuration, 116
verifying new IP address, 115

iSCSI
adding iSCSI disk to cluster,

225–226
configuring iSCSI service on SRV2,

213
connecting to the target on SRV2, 215
creating folder on SRV2, 210–211
creating iSCSI disk target mapping

on SRV2, 213
creating iSCSI target on SRV2,

212–213
creating volume on FS1, 216–217
creation and use of iSCSI target,

207–218
described, 207
ensuring iSCSI disks are connected,

225
exploring iSCSI target server

settings, 210
installing iSCSI target feature on

SRV2, 209–210
setting disk online and making it

read/write, 216
setting up iSCSI portal, 213–214
setting up iSCSI portal for FS2, 219
using iSCSI drive on FS1, 217–218
viewing iSCSI virtual disk, 216
viewing SalesTarget iSCSI disk, 214

414	 Index ■ I–M

iSCSI initiator, 207
ISE (Windows PowerShell Integrated

Scripting Environment), 1
ISO image

adding of to VM, 261
mounting of, 259
verifying existence of, 258
viewing ISO image contents, 259–260

J
JerryG, 93, 101, 105
JSON file/document, 18, 19
Just Enough Administration (JEA)

checking what the user can do,
104–105

configuration of, 100–109
creating credentials for JerryG, 105
creating JEA session configuration

file, 102–103
creating role capabilities file, 101–102
creating role capabilities folder, 101
creating three script blocks to test,

105–106
creating transcript folder, 101
enabling remoting and creating JEA

session endpoint, 103–104
examining JEA transcript, 108–109
get DNSServer command available

in JEA session, 107
how many commands exist in a JEA

session? 106–107
invoking JEA-defined function, 107
testing session configuration file, 103
viewing transcripts folder, 107–108

K
KAPDC1, 59, 75–86
Kapoho.Com, 3, 59, 76, 77, 78–79, 80, 82,

83–84, 85
Kerberos, 295

L
language operators, three new sets of, 2
LanmanServer, 194
LastLogonDate, 362

Layout.XML file
building of, 20
importing of, 20–21

LDAP ports, checking connectivity to,
119

Line Printer Daemon (LPD) service,
231

Line Printer Remote (LPR) service, 231
load balancing, 130–131
Local Machine Trusted Publisher

store, 34
Local Machine Trusted Root store, 34
Log File consumer, as permanent

event handler, 347

M
MAC spoofing, enabling of, 268,

278–279
Mail Exchange (MX), 138
managed entity, as component of

WMI architecture, 318
manifest file, 39
manifest modules, described, 39
Markdown, 14
Master Boot Record (MBR), 145
Measure-VM, 313, 314
Measure-VMReplication, 296, 297
method

defined, 319, 334
dynamic method, 319
instance method, 334
Invoke-CimMethod, 336, 338
static method, 334, 335
viewing class methods, 329–330
viewing WMI class methods,

329–330
WMI methods. See WMI methods

Microsoft Evaluation Center, 257
Microsoft Hyper-V Server. See

Hyper-V
Microsoft Virtual PC, 251
Microsoft Virtual Server, 251
module analysis cache, viewing of, 47
module autoload, use of, 46–47
module load deny list, use of, 50

	 Index ■ M–N	 415

module manifest
creation of, 27–28
using PowerShell module manifests,

41
module versioning, 43
modules

commands as contained within, 37
creating module manifest, 27
creating module with multiple

versions, 43–44
creating module working folder, 26
creating simple module, 26
creation of, 39–40
defined, 38
determining which ones support .

NET Core, 23
discovering PowerShell Gallery

modules, 22–23
downloading and installing

NTFSSecurity module, 155
examining PowerShell modules, 38–48
FailoverClusters, 222
finding commands in NTFSSecurity

module, 155
finding NTFS modules, 23–24
finding of, 30
importing AD DS deployment

module, 77–78
importing DISM module, 258
importing PowerShell modules,

40–41
importing Server Manager module,

60, 67, 71, 76
installing NTFSSecurity module, 24
loading AD DS Deployment module

explicitly, 61–62
loading and testing of, 27
naming of, 42–43
Print Management module, 236
publishing of, 29
understanding types of, 39
using module load deny list, 50
using module versions, 44–46
viewing module folder locations,

10–11

viewing new locations for module
folders, 13

Monitor.ps1, 351, 353, 354
Moskowitz, Jeremy (author)

Group Policy: Fundamentals, Security,
and the Managed Desktop, 58

Move-VM, 309
Move-VMStorage, 307
MSI file, 8
MX (Mail Exchange), 138
MyModule 1, 40, 41, 43
MyModule 2, 45, 46

N
_NAMESPACE class, 320, 321, 323
_NAMESPACE parameter, 330
nested virtualization

configuring virtual processor, 278
creating credentials, 279
defined, 277
described, 252
enabling MAC address spoofing,

278–279
implementation of, 277–282
installing Hyper-V in HVDirect VM,

280
restarting VM, 279, 280–281
stopping HVDirect VM, 277–282

.NET objects, 82–83, 249, 316, 319, 331,
335

.NET Core, 23, 37, 48, 52, 53, 241, 382

.NET Framework, 9, 34, 37, 52, 155, 199,
240, 316, 317, 382

network connectivity
checking connectivity to SMB and

LDAP ports, 119
checking of, 67–68
examining path to remote server,

119–121
testing connectivity to DC, 118
testing of, 117–121
testing of with DC1, 77
verifying that SRV2 and loopback

are working, 117–118
Network File System (NFS) protocol, 192

416	 Index ■ N–N

Network Interface Card (NIC)
configuring VM with two NICs, 4
getting NIC details, 266–267
updating configuration of, 268

networking
configuring DHCP failover, 128–133
configuring DHCP scopes, 124–127
configuring DNS service, 133138
configuring DNS zones and resource

records, 138–144
configuring VM networking, 265–271
installing DHCP service, 121–124
IP addressing, 113–116
management of, 111–144
testing of network connectivity,

117–121
new version notification, 3
New-ADGroup, 92
New-ADuser, 98
New-CimInstance, 352
New-Cluster, 224
New-FSRMQuota, 180
New-FsrmScheduledTask, 370
New-FSRMStorageReport, 366, 371
New-IscisTargetPortal, 213
New-IscsiServerTarget, 212
New-IscsiVirtualDisk, 211–212
New-Item, 7, 242, 255
New-ModuleManifest, 39
New-NetIPAddress, 116
New-Object, 241, 266, 279, 283, 375
New-Partition, 147, 150, 151, 152
NewProcessEvent, 341
New-SelfSignedCertificate, 30–31
New-SMBShare, 26
New-SRPartnership, 170
New-VHD, 260, 275
New-VM, 260
New-VMSwitch, 267
New-Volume, 147, 150, 152
NFS (Network File System) protocol, 192
NIC (Network Interface Card)

configuring VM with two NICs, 4
getting NIC details, 266–267
updating configuration of, 268

Non-Volatile Memory Express
(NVMe), 145

notification limits
changing of, 189
viewing of, 188

NT Event Log consumer, as
permanent event handler, 347

NTFS inheritance, removing of, 205–206
NTFS modules, finding, 23–24
NTFS permissions

adding full control for domain
admins, 160

adding Sales group access to folder,
161

creating new folder and file, 157
creating Sales group, 159
displaying Sales group, 159–160
downloading and installing

NTFSSecurity module, 155
finding commands in NTFSSecurity

module, 156–157
management of, 154–163
removing default file ACE, 160
removing folder’s inherited rights, 161
reviewing of, 204–205
setting NTFS ACL to match share,

205
viewing default ACL on file, 158
viewing default folder ACL, 157–158
viewing permissions on file,

162–163
viewing permissions on folder, 162

NTFSSecurity module
downloading and installation of, 155
finding commands in, 156–157
installation of, 24
use of to manage NTFS file and

folder security, 6
viewing available commands in, 24

NuGet
installing latest version of, 6–7
requirements of, 27

Null coalescing operators, 2
NVMe (Non-Volatile Memory

Express), 145

	 Index ■ O–P	 417

O
objects. See also AD computer object;

AD group object; AD
organizational unit (OU) object; AD
user object; .NET objects

getting local and remote objects in
WMI, 330–334

Group Policy objects, 119
Shell.Application COM object, 18

OneNote printer, 233
options, defined, 126
Out-File, 182
Out-Printer, 389

P
-Parallel switch, 2
perfmon.exe, 378
performance, enhancements in, 2
Performance Logs and Alerts (PLA).

See PLA (Performance Logs and
Alerts)

performance monitoring graph
adding performance data to chart, 384
creating chart object, 383
creation of, 382–385
defining chart area, 383
defining chart dimensions, 383
identifying date/time column, 383
importing performance data, 382
loading forms assembly, 382
saving chart image, 384
viewing chart image, 384–385

permanent event handling, 347, 348
permissions

AGDLP (account, global, domain,
local permissions) approach, 85

defining required permissions for
printing, 242

NTFS permissions. See NTFS
permissions

setting of, 85
Pipeline chain operators, 2
PLA (Performance Logs and Alerts)

adding performance counters to
collector set, 376

collecting performance information
using, 374–378

combining CPU measurements, 381
creating and starting data collector

set, 376–377
creating data collector, 375
creating performance monitoring

graph, 382–385
creating schedule, 376
creating second data collector set,

377–378
creating Systems Diagnostic Report,

385–387
defining counters, 375–376
determining 95th percentile, 380–381
displaying CPU statistics, 381–382
fixing data collection problem, 380
importing performance counter data,

379
importing performance counters,

379
obtaining CPU statistics, 380
reporting on PLA performance data,

379–382
viewing collector sets, 378–379

PowerShell 7
compatibility issue work-arounds, 54
compatibility layer/solution of, 37,

48–50
compatibility with Windows

PowerShell, 37, 48–50
console, 6, 9, 12, 14, 17, 19–20
creating shortcut for PowerShell 7

console, 19–20
downloading PowerShell 7

installation script, 7–8
installation folder, 9–10
installation of, actual installation, 8–9
installation of, preparation for, 5–8
modules. See modules
as .NET application, 37
new features of, 2–3
operating systems that support, 5
starting, 12
things that do not work with, 51–54

418	 Index ■ P–P

PowerShell and WMI (Siddaway), 316
PowerShell Core, 48
PowerShell Direct (PS Direct)

creating variables for use with, 262–263
displaying details of HVDirect VM,

263
invoking command based on VM ID,

264
invoking command using

WMName, 263–264
use of, 262–264

PowerShell Gallery
described, 1, 21–22
discovering PowerShell Gallery

modules, 22–23
use of, 6, 21–24

PowerShell ISE, described, 14
PowerShellGet, installing latest

version of, 6–7
PowerShellGet module, 1, 22
PowerShellGet repository, creation of,

24–30
print device, use of term, 231
Print Management module, 236
Print Manager GUI, 236
Print Server feature, installation of on

PSRV, 234–235
Print Services feature, components of,

231
print spooler, 231, 240–245
printer, use of term, 231
printer pool

creation of, 248–249
defined, 248

printer usage
creating print output, 389
defining Get-PrinterUsage, 388–389
reporting on AD users and

computers, 387–390
turning on print job logging, 388
viewing of, 390
viewing PDF output files, 389–390

printing
adding new printer, 237
adding new printer port, 236–237

adding printer port, 248
changing spool folder, 240–245
changing spool folder path, 242
checking initial publication status, 239
committing change in spool folder

path, 243
configuring new spool folder, 244
creating another spool folder, 244
creating folder for print drivers, 235
creating new spool folder, 242
creating print server objects, 242
creating printer pool, 248–249
creating printer pool for

SalesPrinter1, 248–249
defining required permissions, 242
displaying initial spool folder, 241
displaying number of printers

defined, 246
displaying printer’s details, 247
downloading printer drivers, 235
expanding ZIP file, 235
getting printer object, 239
getting printer objects from WMI,

246
getting Sales group printer WMI

object, 246
installing and sharing printers,

233–238
installing drivers, 236
loading System.Printing

namespace, 241
management of, 231–249
publishing printer in AD, 238–240
publishing printer to AD, 239
restarting spooler service, 243, 244
reviewing printer configuration,

237–238
reviewing spooler folder, 243
sharing printer, 237
stopping spooler service, 244
of test page, 245–247
viewing printer publication status, 240
viewing resulting details, 249
viewing results of updated spool

directory, 245

	 Index ■ P–R	 419

PrintTestPage, 245, 247
printui.dll, 236, 248, 249
production checkpoint, defined, 282
profile files

creating sample personal profile file,
17

viewing profile file locations, 11–12
profiles, viewing new locations for, 13
property, defined, 319
protocol transport, as component of

WMI architecture, 317–318
provider, as component of WMI

architecture, 318
PS Direct (PowerShell Direct). See

PowerShell Direct (PS Direct)
.PSD1 file, 27–28, 39, 41, 42
.PSM1 file, 26, 27, 39, 40, 42, 45
PSModulePath variable, 46, 47
PSRV.Reskit.Org, 232, 234, 236, 237,

238, 239, 241, 243, 245, 248, 359, 390
public repositories, use of, 24
Publish-Module command, 29
pwsh.exe, 9, 348

Q
qualifiers, 335

R
RAID (Redundant Array of

Independent Disks), 206, 207, 208,
212, 228–229

Receive-Job, 339
ReFS filesystem, 145–146
Register-CimEvent, 339
Register-CimIndicationEvent, 339,

340, 345
Register-DnsClient, 140
Register-PSRespository command,

28
Register-PSSessionConfiguration,

104
remoting

enabling of, 103–104
implicit remoting, 48

Remove-ADUser, 91

Remove-NTFSAccess, 160
Remove-WMIPE, 354
Renouf, Alan, 323
replica DC (Domain Controller)

adding AD DS features on DC2, 68
checking network connectivity, 67–68
importing Server Manager module, 67
installation of, 66–70
promoting DC2, 69
rebooting DC2, 69
reviewing DCs in Reskit.Org

domain, 69–70
viewing Reskit.Org domain, 70

replica failover, testing of, 297
replication. See VM replication
reporting

on AD users and computers, 359–365
adding privileged users to report,

363–364
building report header, 361
collecting performance information

using PLA, 374–378
creating performance monitoring

graph, 382–385
creating Systems Diagnostic Report,

385–387
defining a function to retrieve user

accounts, 360–361
described, 357
determining privileged users, 362–363
on disabled users, 361
displaying report, 364–365
getting Reskit users, 361
Hyper-V status report, 390–395
on invalid password attempts, 362
	 365–374
on PLA performance data, 379–382
on printer usage, 387–390
reviewing event logs, 395–397
on unused accounts, 362

repositories
trusting of, 28
use of public repositories, 24
viewing configured repositories,

28–29

420	 Index ■ R–S

repository folder
creation of, 25–26
sharing of, 26
viewing of, 29

Reskit.Org, 3, 58–59, 62, 64, 69–70, 83.
See also DC1.Reskit.Org; DC2.
Reskit.Org; FS1.Reskit.Org; FS2.
Reskit.Org; PSRV.Reskit.Org;
SRV2.Reskit.Org; UK.Reskit.Org

Resolve-DNSName, 127
resource metering, 311
resource records (RRs), 65, 138–144
Restart-Service, 243
Restart-VM, 270
Restore-VMCheckpoint, 287, 289
Revoke-SmbShareAccess, 202
RKDNSAdmins group, 92, 93, 101, 102,

104, 105
RKRepo repository, 29
role capabilities file, creation of, 101–102
role capabilities folder, creation of, 101
Root Directory Services Entry (Root

DSE), viewing of, 63–64
root\CIMV2 namespace, 322, 324, 329
root\directory\LDAP namespace, 324
ROOT/root, 320, 321
round robin, 135
RRs (resource records), 65, 138–144
RSAT-AD tools, 155, 160
rundll32.exe, 236, 248–249

S
Sales group

adding Sales group access to folder,
161

creation of, 159
displaying of, 159–160
granting access of share to, 203–204

SalesPrinter1, 239, 240, 246, 248–249
Samba project, 194
SAN (storage area network), 207,

228–229
scale-out file server (SOFS)

adding clustering features to FS1/
FS2, 221–222

adding continuously available share,
227

adding file server role to FS2, 221
adding iSCSI disk to cluster, 225–226
adding SOFS role to cluster, 226
configuring iSCSI portal for FS2,

219–220
configuring quorum share on DC1,

224–225
creating cluster, 224
creating folder, 227
ensuring iSCSI disks are connected,

225
moving iSCSI disk into CSV, 226
restarting FS1 and FS2, 222
setting cluster witness, 225
setting up clustered scale-out file

server, 218–229
setting up iSCSI portal for FS2, 219
testing cluster nodes, 222
viewing cluster validation test

results, 222–224
viewing shares from FS1, 228

Schema Admins group, 363
script modules, described, 39
script signing, requirements for, 30
scripts

attempt to run one, 32
creating script for event handler to

run: Monitor.ps1, 351
execution policy for running of, 6
installation script, 7–8, 9, 15
Install-PowerShell script, 9
Install-VSCode script, 15
running of signed script, 34–35
server VM build scripts, 4
signing of, 33
signing of again, 34
testing digital signature of, 35

SCSI (Small Computer Systems
Interface), 207

Secure.Txt, 160
Select-Object, 137, 329
self-signed certificate, creation of, 31
Sender Protected Framework (SPF), 138

	 Index ■ S–S	 421

Send-FsrmTestEmail, 176
Server Manager module, importing of,

60, 67, 71, 76
Server Message Block (SMB) protocol,

191, 194
server VM build scripts, 4
session configuration file

creation of, 102–103
testing of, 103

Set-ACL, 155
Set-ADComputer, 293
Set-ADUser, 91
Set-AuthenticodeSignature, 30, 33
Set-Disk, 216, 220
Set-FSRMSetting, 189
Set-ItemProperty, 244, 343
Set-Location, 3
Set-Printer, 239
Set-SmbShare, 201
Set-VMBios, 273
Set-VMDvdDrive, 261
Set-VMHost, 256, 308
Set-VMMemory, 274
Set-VMNetworkAdapter, 278
Set-VMNetworkadapterFailoverConf

iguration, 301
Set-VMPProcessor, 273, 278
Set-VMReplicationServer, 294
shared data

creating and securing SMB shares,
198–206

creating and using iSCSI target,
207–218

management of, 191–229
setting up and securing SMB file

server, 194–198
setting up clustered scale-out file

server, 218–229
Shell.Application COM object, 18
Siddaway, Richard (author)

PowerShell and WMI, 316
signing certificate, 30
Simple Object Access Protocol (SOAP),

53
-SkipEditionCheck parameter, 50

Small Computer Systems Interface
(SCSI), 207

SMB (Server Message Block) protocol,
191, 194

SMB cmdlets, 319
SMB file server

adding file server features to FS1,
194–195

disabling default shares, 197
enabling SMB signing and SMB

encryption, 197
ensuring that SMB1 is disabled,

195–197
getting settings for, 195
restarting SMB server service, 198
reviewing updated SMB server

configuration, 198
setting up and securing of, 194–198
turning off server announcements, 198

SMB ports, checking connectivity to, 119
SMB shares

adding full system access, 203
adding Reskit/domain admins to,

202–203
creating and securing of, 198–206
creation of, 200–201, 336–337
discovering existing ones, 200
giving the creator/owner full access,

203
granting Sales group access,

203–204
removing all access to Sales1 share, 202
removing NTFS inheritance,

205–206
removing of, 338–339
requiring encryption for, 201–202
reviewing of NTFS permissions,

204–205
reviewing share access, 204
setting folder enumeration mode, 201
setting NTFS ACL to match, 205
setting share description, 201
setting up FS1, 200
use of SMB cmdlets to manage, 319
viewing folder ACL, 206

422	 Index ■ S–S

viewing of using Get-CimInstance,
338

viewing of using Get-SMBShare, 337
SMTP, setting up SMTP settings for

FSRM, 176
SMTP Event consumer, as permanent

event handler, 347
snap-ins, 52
snapshot, use of term, 286
SOAP (Simple Object Access Protocol),

53
SOFS (scale-out file server). See

scale-out file server (SOFS)
SPF (Sender Protected Framework), 138
Spiceworks, 96
splatting, 7
spool folder, changing of, 240–245
SR (Storage Replica). See Storage

Replica (SR)
SRV1.Reskit.Org

getting information about physical
disks on, 148–149

getting partitions on, 153–154
viewing volumes on, 151–152

SRV2.Reskit.Org

configuring iSCSI service on, 213
connecting to the target on, 215
counting namespaces/classes on,

326–327
creating folder on, 210–211
creating iSCSI disk target mapping

on, 213
creating iSCSI target on, 212–213
examining volumes of, 174
installing iSCSI target feature on,

209–210
testing DHCP service using, 127
verifying that it is working, 117–118

standard checkpoint, defined, 282
Start-VM, 275, 303, 312
Start-VMFailOver, 297, 302
Start-VMInitialReplication, 296
static method, 334, 335
Static qualifier, 335
Stop-Service, 244

Stop-VM, 277
Stop-VMFailover, 300
storage

creating storage report, 366–367
disk management, 147–154
management of, 145–190
managing file screening, 183–190
managing filestore quotas, 175–183
managing NTFS permissions,

154–163
managing storage replica, 163–174
migrating VM storage, 307
volume management, 147–154

storage area network (SAN), 207,
228–229

Storage Replica (SR)
adding of to source, 166–167
adding of to the target, 167
checking content on the target, 166
creating content on F:, 165
creating Storage Replica partnership,

170–171
examining SRV2 volumes, 174
examining volumes on the target,

172–173
management of, 163–174
measuring new content, 165–166
restarting the source, 167
restarting the target, 168
reversing the replication, 173
testing configuration of, 168
viewing partnership, 171–172
viewing topology test report, 169–170
viewing updated replication group

status, 173
sysdm.cpl applet, 46
System Center Operations Manager,

347
System Diagnostics Reports, 357
System.DirectoryServices.Active

Directory, 83
System.Printing namespace, loading

of, 241
System.Printing.PrintServer, 240,

244

	 Index ■ S–V	 423

Systems Diagnostic Report
creation of, 385–387
saving report as HTML, 386
starting built-in data collector,

385–386
viewing of, 386–387
waiting for data collector to finish,

386

T
taskbar, updating of, 21
temporary event handling, 347
Ternary language operator, 2
Test-Cluster, 222, 224
Test-Connection, 117, 118
Test-NetConnection, 117, 119, 121
Test-Path, 258
Test-PSSessionConfiguration, 103
Test-SRTopology, 168, 169, 170
Tiger, 270, 271, 300, 304
Time Sharing System OS (TSS), 251
transcript folder

creation of, 101
viewing of, 107–108

tree (in AD), defined, 57
Trusted Hosts list, 81
Trusted Publisher certificate store, 33
Trusted Root certificate store, 33

U
UK.Reskit.Org, 70–75
Unregister-Event, 342, 344
user settings, updating VS Code user

settings, 18–19
users

adding privileged users to report,
363–364

defining a function to retrieve user
accounts, 360–361

determining privileged users,
362–363

getting Reskit users, 361
reporting on AD users and

computers, 359–365
reporting on disabled users, 361

V
-Verbose, 27, 28, 45, 131
VHDX file, creating new one for VM,

260
virtualization

IBM’s product for, 251
Microsoft’s product for, 251
nested virtualization. See nested

virtualization
Visual Studio Code (VS Code). See VS

Code (Virtual Studio Code)
VM checkpoints

checking VM data files after
removing checkpoints, 291

creating another file in HVDirect,
287

creating content in HVDirect, 285
creating credentials, 283
creation of, 284
examining C: in HVDirect VM, 283
examining checkpoint files, 284–285
examining files supporting

checkpoints, 286–287
removing checkpoints, 291
reverting to Checkpoint1, 287–288
rolling forward to Checkpoint2, 289
taking second checkpoint, 286
use of, 282–291
viewing checkpoint details for

HVDirect, 286
viewing checkpoints in VM, 290–291
viewing VM files, 287–288
viewing VM files after rolling

forward, 289–290
VM internet access, 4
VM movement

checking VMs on HV1, 310
checking VMs on HV2, 310
configuring VM migration, 308
displaying migration time, 309–310
enabling VM migration, 308
examining virtual disk details,

310–311
getting VM configuration location,

306

424	 Index ■ V–W

getting VM hard drive locations,
306–307

management of, 305–311
migrating VM between hosts, 309
migrating VM storage, 307
viewing configuration details,

307–308
viewing HVDirect VM, 305
viewing VMs on HV2, 308

VM replication
checking VM status after failover,

303–304
completing failover of HVDirect, 303
configuring HV1 and HV2 for

delegation, 293–294
enabling replication from the source

VM, 294–295
examining initial replication state,

296–297
getting VM details from HV1,

298–299
getting VM details from HV2,

299–300
initiating replication, 296
rebooting HV1 and HV2, 294
setting failover IP address for VM

failover, 301–302
setting VMReplication, 294
starting failover from HV1 to HV2,

302
starting failover VM, 303
stopping HVDirect on HV1, 302
stopping of failover test, 300
testing failover VM networking, 304
testing replica failover, 297
use of, 291–305
viewing replication, 297
viewing VM replication status, 295
viewing VM status, 296, 301
viewing VM status on HV2 after

failover, 298
VM resource usage

creating credentials for HVDirect,
313

enabling VM resource monitoring,
312

getting initial resource
measurements, 313

getting VM details, 312
measurement of, 311–314
measurement of again, 314
performing compute work, 313–314
starting HVDirect VM, 312

VMs (virtual machines). See Hyper-V;
VM checkpoints; VM internet
access; VM movement; VM
replication; VM resource usage

Volume Shadow Copy Service, 282,
286

volumes
creating an F: volume in disk 1, 150
creating content on F:, 165
creating G: volume, 151
creation of on FS1, 216–217
examining of on the target, 172–173
examining SRV2 volumes, 174
formatting G: and H:, 152–153
getting of on SRV1, 154
management of, 147–154
viewing of on SRV1, 151–152

VS Code (Virtual Studio Code)
creating shortcut to, 19
downloading VS Code installation

script, 15
installing and configuring of, 14–21
installing VS Code and extensions,

16–17
as recommended alternative to ISE,

14
updating VS Code user settings,

18–19
use of, 1

W
Web-Based Enterprise Management

(WBEM), 315
wevtutil, 388
Where-Object, 246

	 Index ■ W–W	 425

WIN32_Printer class, 245
Win32_Process class, 339, 340
Win32_Share class, 318, 319, 328, 329,

330, 331, 334, 335, 336, 337, 338
Windows Management

Instrumentation (WMI)
as based on COM, 316
counting namespaces/classes on

DC2, 327–328
counting namespaces/classes on

SRV2, 326–327
counting WMI classes, 324–325
discovering all namespaces in, 323
enumerating classes in root\CIMV2,

321–322
exploring WMI classes, 328–330
exploring WMI namespaces, 320–328
getting local and remote objects,

330–334
implementing permanent WMI

event handling, 347–355
invoking WMI methods, 334–339
managing WMI events, 339–346
obtaining WMI data, 318–319
printing test page with, 245–247
reviewing WMI architecture in

Windows, 317–318
use of with CIM cmdlets, 315–355
viewing classes in root namespace,

320–321
viewing namespaces below root, 321
viewing namespaces on remote

server, 325–326
viewing some WMI namespaces, 324
WMI class, 318
WMI namespace, 318

Windows Performance Logs and
Alerts (PLA) feature, 357. See also
PLA (Performance Logs and Alerts)

Windows PowerShell
incompatibilities of with PowerShell

7, 51–54
PowerShell 7 compatibility with, 37,

48–50

Windows PowerShell Integrated
Scripting Environment (ISE), 1

Windows Remote Management
(WinRM), 81, 315, 320

Windows Server 2019
configuration of to support Hyper-V,

255
creating file server using, 194
DC1 as host of, 25, 31, 396
installation of, 261–262
iSCSI initiator service as installed in,

213
Print Services feature, 231
SMB1 as disabled on, 196
as supporting Storage Replica (SR),

163
WMI performance classes in, 374

Windows Server 2019 Enterprise
edition, 292

Windows Workflow Framework, 52
WinPSCompatSession, 48
WMI (Windows Management

Instrumentation). See Windows
Management Instrumentation
(WMI)

WMI class
defined, 318
exploration of, 328–330
getting of, 341
viewing class details in specified

namespace, 330
viewing class methods, 329–330
viewing class properties, 329
Win32 _ Share class, 319, 328

WMI event handling
binding event filter and event

consumer, 352–353
creating event consumer, 351–352
creating event filter, 350–351
creating event query, 350
creating script for event handler to

run: Monitor.ps1, 351
defining helper functions, 349–350
displaying event filter details, 353

426	 Index ■ W–Z

event consumer, 348
event filer, 348
implementing permanent WMI

event handling, 347–355
removing event filter details from

WMI, 354–355
specifying valid users, 349
testing event filtering, 353
viewing results, 354

WMI events
adding to Enterprise Admins group,

345–346
creating extrinsic event registration,

342–343
creating temporary WMI event

subscription, 345
defined, 319
defining WQL event query, 344
displaying event details, 341
examining result details, 344
management of, 339–346
modifying registry, 343
registering for, 340
removing WMI event subscription,

346
running Windows process, 340
unregistering for, 341–342
unregistering registry event, 344
unregistering WMI event, 346
viewing of, 346

WMI filter, use of, 332–333
WMI methods

creating new share, 336–337
invoking of, 334–339
removing SMB share, 338–339
reviewing properties of class, 335–336
reviewing static methods of a class,

335
viewing SMB share using

Get-CimInstance, 338
viewing SMB share using

Get-SMBShare, 337
WMI namespace

described, 318
exploration of, 320–328

WMI query, 333–334
WMI Query Language (WQL), 333
WmiMgmt.msc management console, 321
WQL query, defining WQL event

query, 344
Write-Host statements, 339, 343, 353
-WarningAction, 62, 67, 134, 167

X
X.509 digital certificates, 30
XML files, 9–10, 20

Z
ZIP file, 8, 235
zone data loading, 136

