
Pragmatic
Python
Programming

Learning Python the Smart Way
—
Gabor Guta

Pragmatic Python
Programming

Learning Python the Smart Way

Gabor Guta

Pragmatic Python Programming: Learning Python the Smart Way

ISBN-13 (pbk): 978-1-4842-8151-2		 ISBN-13 (electronic): 978-1-4842-8152-9
https://doi.org/10.1007/978-1-4842-8152-9

Copyright © 2022 by Gabor Guta

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham
Coordinating Editor: Mark Powers
Copyeditor: Kim Wimpsett

Cover designed by eStudioCalamar

Cover image by David Clode on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York,
NY 10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress/pragmatic-python-programming).
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Gabor Guta
Budapest, Hungary

https://doi.org/10.1007/978-1-4842-8152-9

I am thankful to my wife and to my family for their
endurance and support.

v

About the Author��xi

About the Technical Reviewer��xiii

Acknowledgments���xv

Introduction���xvii

Table of Contents

Chapter 1: ��Expression: How to Compute���1

Expressions with Additional Types���3

Boolean Type in an Expression���4

String Type in an Expression��4

Expressions with Conditional Operators���5

Floating-Point Number Type in an Expression��6

Complex Number Type in an Expression��7

Variable Names��8

Statements���10

Deletion of a Variable Name���12

Additional Language Constructs��13

Statements and Expressions in Practice��14

Advanced Details���16

Names��16

Keywords and Special Names��16

Literals��17

Characters with Special Meaning���21

Python Standards���23

vi

Object Diagram Notation��23

Key Takeaways���23

Chapter 2: ��The Function: Programs as a Series of Statements�����������25

Calling a Function��26

Side Effects of Functions���27

Function Arguments���29

Defining a Function��30

Keyword Arguments���32

Visibility of Names���33

Functions as Parameters���35

Definitions of Nested Functions���36

Functions in Practice���37

Advanced Details���40

Namespace and Scope���41

Positional-Only and Keyword-Only Parameters��41

Variable Number of Arguments��42

Lambda Expression��43

Decorator��43

Yield Statement and Asynchronous Functions���45

Key Takeaways���45

Chapter 3: ��The Class: How to Model the World������������������������������������47

What Is a Class?���49

Creating Objects���50

Using Instance Variables and Methods��50

Defining Classes��51

Relationships Among Classes��55

Properties���58

Table of Contents

vii

Inheritance���61

Nested Classes��64

Special Methods��65

Classes in Practice���68

Advanced Details���70

Class Variables, Class Methods, and Static Methods�������������������������������������70

Abstract Base Classes��72

Immutable Objects and Data Classes���73

Methods of Identifying Classes��76

Class Diagrams���77

Key Takeaways���78

Chapter 4: ��The Control Structure: How to Describe the Workflow�������81

if Statement���82

match Statement���86

while Statement���90

for Statement���97

Exception Handling��100

Context Management���104

Recursion���105

Loops in Practice���106

Advanced Details���108

Matching Classes and Other Kinds of Patterns��108

Exception Classes���111

Context Manager Classes���112

Evaluating Strings��113

Activity Diagram���113

Key Takeaways���114

Table of Contents

viii

Chapter 5: ��The Sequence: From Data to the Data Structure��������������115

Lists and Their Operations���116

Processing of a List��123

Tuples���127

Dictionaries��129

Sets��132

Copying Sequences��134

Sequences in Practice���136

Advanced Details���137

Iterable Objects��137

Deep Copy of Data Structures��138

Generator Functions and Coroutines��139

Functional-Style Manipulation of Lists���143

Multiplicity of Class Diagram Connections���143

Sequence Diagram���144

Key Takeaways���145

Chapter 6: The Module: Organization of Program Parts
into a Unit��147

Built-in Modules���148

Defining Modules���152

Packages���153

Future Package��154

Package Management���155

Useful Third-Party Packages��156

Modules in Practice���159

Advanced Concepts���160

Table of Contents

ix

Structure of Python Projects���160

Virtual Environments��163

Tools for Testing��163

Tools for Static Analysis��165

Tools for Formatting���166

Preparation of Documentation��166

Key Takeaways���169

��Appendix A: Binary Representation���171

��Appendix B: Type Annotations���177

��Appendix C: Asynchronous Programming���181

��Bibliography��189

Index��193

Table of Contents

xi

About the Author

Gabor Guta studied and carried out research

at the Research Institute for Symbolic

Computation, Johannes Kepler University,

Linz, to gain an understanding of the formal

meaning of programming languages. He

worked on complex technology transfer,

cheminformatics, and bioinformatics projects

where both strong theoretical background

and practical software development skills were crucial. Currently, he is

developing distributed software for an open data project. Besides his

software development work, he has been continuously training people

both in academic and industrial settings. He has been actively teaching

Python since 2017.

xiii

About the Technical Reviewer

Joshua Willman began using Python in 2015

when he needed to build neural networks

using machine learning libraries for image

classification. While building large image

datasets for his research, he needed to build

a program that would simplify the workload

and labeling process, which introduced him

to PyQt. Since then, he has tried to dive into

everything that is Python. 

He currently works as a Python developer, building projects to help

others learn more about coding in Python for game development, AI, and

machine learning. Recently, he set up the site redhuli.io to explore his and

others’ interests in utilizing programming for creativity.

He is the author of Modern PyQt: Create GUI Applications for Project

Management, Computer Vision, and Data Analysis and Beginning PyQt:

A Hands-on Approach to GUI Programming, both published by Apress.

xv

Acknowledgments

I am thankful to István Juhász, my former diploma supervisor; without his

encouragement and enthusiastic support, this book could not have come

into existence. I am grateful to my friend László Szathmáry, who helped

me as an experienced Python developer and trainer with his insightful

feedback.

xvii

Introduction
Communication gaps can build up in IT workplaces between developers

and other roles not requiring programming skills. This gap frequently

hurts the project’s progress and makes cooperation between participants

difficult. My intention is to bridge this gap with this book by explaining the

common mental models with which humans think. I will also demonstrate

the way these models are applied during the programming process.

The book is based on more than two decades of training and software

development experience. Python is not only a popular and modern

programming language, but it is also an easy-to-learn and efficient tool to

reach your goals.

I will not provide too many hands-on exercises and technical details

(how an operating system is built, the way a networking protocol works,

etc.). Regrettably, I cannot offer a quick option to acquire these skills, as

the only way to achieve these skills is with extensive amounts of practice

and troubleshooting. This book will give you a strong basis for starting that

practice.

�Structure and Use of the Book
My intention with the book is to discuss the Python language, along the

key concepts, using a new approach. Every chapter of the book starts

with the introduction of a particular concept and then goes through the

advanced features of the language (as if it were a reference manual).

xviii

•	 For those who are just getting acquainted with the

language and whose aim is only to understand the

major concepts of the programming language, focusing

on the first parts of the chapters is recommended.

Please feel free to skip the “Advanced Features”

sections. Studying Appendix A will also be worthwhile.

•	 For those who are just becoming acquainted with

the language aiming to learn how to program, I

recommend running and experimenting with the

examples. It will be worthwhile to skim the “Advanced

Features” section and then return to that section later

for a detailed reading.

•	 For experienced software developers, it is worthwhile

to quickly read the first parts of each chapter by paying

attention to the concepts in the Python language that

do not exist in other program languages. For such

readers, the “Advanced Features” sections at the end of

the chapters are mandatory.

Figures use the UML notation, and a short description of their meaning

is shown at the end of Chapters 1, 3, 4, and 5. In the source code examples,

I deviate sometimes from the Python coding standard due to the page

layout constraints. These appear mostly with short or shortened names

and 40- to 50-character lines. Program code examples are conceptually

independent units, but they assume former examples of the book have

been run, since they may refer to definitions in them. The examples are

based on the most up-to-date Python 3.10.2 version available when writing

the book. Most of the examples can be run in versions 3.8.x and 3.9.x,

which are the most widespread at this time. Results of the examples are

intentionally not published in the book. The source code in the book is

available for download and you can experiment with it.

Introduction

xix

�Source Code
All source code used in this book is available for you to download from

https://github.com/Apress/pragmatic-python-programming.

�Installing an Environment
The installation steps for the most widespread operating systems

(Windows 10, macOS, Ubuntu Linux 22.04 LTS) are described here so you

can run the examples in this book. For another operating system, you can

find assistance on the Internet.

�Installation on Windows 10
Follow these steps to install and run Python on Windows 10:

 1. Open http://python.org in a browser, select the

Downloads menu, and then select Python 3.10.2 (or

a newer version if it’s offered).

 2. The browser automatically launches the download

or displays the file download dialog, which starts the

download.

 3. After selecting the Download menu, the newly

downloaded file appears: python-3.10.2.exe.

Launch the installer by clicking the filename.

 4. Select the Add Python 3.10 to PATH option in the

installation window and click the “Install now” button.

Introduction

https://github.com/Apress/pragmatic-python-programming
http://python.org

xx

 5. The installer continues to inform you about the

status of installation. At the end of the installation,

select the “Disable path length limit” option and

click the Close button.

 6. Click the magnifying glass icon next to the Windows

icon, and start typing in cmd. The icon for the

command line appears; open it by pressing Enter.

 7. Install and start a Jupyter lab by entering the

python -m pip install jupyterlab and jupyter

lab commands (assuming that the working

directory will be the user directory).

 8. After launching the Jupyter lab, the contents of

the working directory will be displayed. If you

download the examples, selecting a file will open

it. Or click the New button and select the Python

3 option; an empty notebook will open in a new

browser window.

 9. Your Jupyter notebook is built up from cells. The

content of the cells can be program code, text, or

something else. The default content of the cells is

the Python program code you type in. A cell can be

run by pressing Shift+Enter. The value of the latest

expression will appear under the cell.

Introduction

xxi

�Installation on macOS
Follow these steps to install and run Python on macOS:

 1. Open http://python.org in a browser and select

the Downloads menu. Then select Python 3.10.2 (or

a newer version if it’s offered).

 2. The browser automatically launches the download

or displays the file download dialog, which starts the

download.

 3. After selecting the Download menu, the newly

downloaded file appears: python-3.10.2-

macosx10.9.pkg. Launch the installer by clicking

this name.

 4. Confirm the default settings by clicking the

Continue buttons in consecutive windows in the

browser and then selecting the Install button to

launch the installation.

 5. The installer continues to inform you about the

status of installation. At the end of the installation,

click the Close button.

 6. Select the Launchpad and start to type in the term

word. The icon for the Terminal appears; click the

icon to open the Terminal.

 7. Install and start a Jupyter lab by entering the

python -m pip install jupyterlab and jupyter

lab commands (assuming that the working

directory will be the user directory).

Introduction

http://python.org

xxii

 8. After launching the Jupyter lab, the contents of

the working directory will be displayed. If you

downloaded the examples earlier, selecting the

directory will open it. If you click the New button

and select the Python 3 option, an empty notebook

will open in a new browser window.

 9. Your Jupyter notebook is built up from cells. The

content of the cells can be program code, text, or

something else. The default content of the cells is

the Python program code you type in. A cell can be

run by pressing Shift+Enter. The value of the latest

expression will appear under the cell.

�Installation on Ubuntu Linux 22.04
Python 3.10.x version is installed by default. Follow these steps to run

Python on Ubuntu Linux 22.04:

 1. Press the Windows key, and start to type in the word

term. The icon of the terminal appears; open it by

clicking the icon.

 2. Install and start a Jupyter lab by entering the

python -m pip install jupyterlab and jupyter

lab commands (by assuming that the working

directory will be the user directory).

 3. After launching the Jupyter lab, the contents of the

working directory will be displayed. If the examples

were downloaded earlier, you can open them by

selecting it. If you click the New button and select

the Python 3 option, an empty notebook will open

in a new browser window.

Introduction

xxiii

 4. Your Jupyter notebook is built up from cells. The

content of the cells can be program code, text, or

something else. The default content of cells is the

Python program code you type in. A cell can be

run by pressing Shift+Enter. The value of the latest

expression will appear under the cell.

After installing a Jupyter lab, you can download the accompanying

Jupyter notebook to its working directory. Now, you are ready to start your

journey in the world of the Python programming language.

Introduction

1

CHAPTER 1

Expression: How to
Compute

“Expressions are formed from operators and operands.”

Brian W. Kernighan, Dennis M. Ritchie

One of the basic building blocks of programming languages is the

expression, which serves to describe a logical or mathematical relation. In

this chapter, you will learn how exactly an expression denotes relations

between objects, how expressions can be used in statements, and how the

objects can be labeled by names.

As an example, take the calculation of the price of an order. The

formula is as follows: the price of the product multiplied by the quantity

plus the shipping cost. Let’s look at how it is calculated in Python if the

product’s price is 500 USD, two pieces are ordered, and the shipping cost is

200 USD.

Listing 1-1 shows an expression consisting of numbers (integers) and

operators. The order of operations is determined by specific rules (much

like those you can recall from your elementary school education).

Listing 1-1.  A Simple Expression

500*2 + 200

© Gabor Guta 2022
G. Guta, Pragmatic Python Programming, https://doi.org/10.1007/978-1-4842-8152-9_1

https://doi.org/10.1007/978-1-4842-8152-9_1

2

Caution  Spaces should not be inserted before the expressions and
statements shown in this chapter, and they should not be broken
into multiple lines. This is important as the space(s), tabulators at the
beginning of the lines, and line breaks do have a special meaning in
Python. The relevant rules are detailed later in the chapter.

The computer processes the expression in Listing 1-1 in multiple

steps. Integers are considered objects, which, in this case, are integer

type ones. The structure referred to as the expression tree and shown in

Figure 1-1a is constructed of integer objects and operators. In the figure

the rectangles are objects or operators; if the objects correspond to an

operator, they are linked with lines to the operator. You can find a bit

more about this standard notion at the end of the chapter. The expression

tree is constructed by assigning objects to an operator, among which the

operation is to be performed. In the expression tree, the result of another

operator can also be assigned to an operator, not just an object. This is

indicated by connecting it to another operator, meaning that it is to be

performed first, and the resulting object will be used then. The uppermost

element of the expression tree is the operator to be performed last.

The computer interprets the expression tree by performing the

operators between objects first. In the example, this is the leftmost

multiplicative operator at the bottom. The result of this operator will be a

new integer object with the value of 1000. Figure 1-1b shows the resulting

intermediate expression tree, along with the addition operator between

the integer objects with the values 1000 and 200, and the result is an

integer object value 1200, as shown in Figure 1-1c.

Chapter 1 Expression: How to Compute

3

500:int 2:int

*:operator 200:int

+:operator

1000:int 200:int

+:operator 1200:int

a) Original Expression b) After Multiplication c) Final Result

Figures 1-1a, 1-1b, and 1-1c.  Simple expression

If there is uncertainty about the operation order, placing brackets is

encouraged, as in Listing 1-2.

Listing 1-2.  Fully Parenthesized Expression

((500*2) + 200)

The expression without brackets and the fully bracketed expression

have the same meaning for the computer. Notably, the expressions can be

of any complexity; however, there is a certain level of complexity where

they become difficult to understand.

�Expressions with Additional Types
In Listing 1-1, we have seen integers as objects on which to perform the

operators. Expressions, however, can be used in the general sense, whereas

operators can be performed between objects of various types. In addition

to the integer type objects, other types of objects will also be covered, e.g.,

Boolean types (true/false values) and strings. You will learn how to create

your own type in Chapter 3.

Chapter 1 Expression: How to Compute

4

The type of the particular object is important also because certain

operators can be executed only by objects of a specified type. If, for

example, an attempt was made to add an integer and a string, an error

will be raised. When the operation has been successfully executed, the

resulting object will always have a type (determined by the operation,

the object performing the operation, and the type of the other object

participating in the operation).

�Boolean Type in an Expression
Listing 1-3 shows an expression where two integers are compared. When

comparing two integers, the created new value will be of the Boolean

type. The true value is denoted by the word True, while the false value is

represented by False. Part of this expression tree on the left side of the

comparison sign is the same as the previous example, and its evaluation

is also the same. Thus, the last step will be carrying out the comparison,

wherein the result of comparing the two integers will be a True object.

Listing 1-3.  Boolean Expression

500*2 + 200 >= 1000

�String Type in an Expression
Listing 1-4 contains string objects. The string type objects are characters

between single or double quotation marks. From these quotation marks,

the computer will know where characters forming the string begin

and where they end and that there is no need to interpret them, just to

handle them as any text. The addition operator between strings means

concatenation. The first step upon evaluation of this expression is the

formation of a novel string object from the two left string objects, and then

in the next step, the resulting string object is created by the concatenation

of the newly created string object and the right-side object.

Chapter 1 Expression: How to Compute

5

Listing 1-4.  Operation Between Strings

'no' + ' ' + 'discount'

�Expressions with Conditional Operators
A conditional expression can describe the computation that the result

should be one or another value depending on some condition. This

expression is interpreted among three objects. The first object is of any

type, the supposed value when the condition is fulfilled. The second object

is of Boolean type, the condition itself, after the word if. The last object

is the expected value when the condition is not fulfilled, located after the

word else. (As you would expect, any of the objects can be substituted

with an expression.) Listing 1-5 demonstrates how to combine the

conditional expression with the types reviewed so far.

Listing 1-5.  Conditional Expression

'5%' if 500*2+200 >= 1000 else 'none'

The task solved by the example is the following: if the amount of the

order is greater than 1000, a string containing the discount rate would be

created with the values 5% or none. Figure 1-2 shows the expression trees

formed upon evaluation of the expression.

Chapter 1 Expression: How to Compute

6

500:int 2:int

*:operator 200:int

+:operator 1000:int

>=:operator

if-else:operator

'5%':str 'none':str

1000:int 200:int

+:operator 1000:int

>=:operator

if-else:operator

'5%':str 'none':str

1200:int 1000:int

>=:operator

if-else:operator

'5%':str 'none':str True:bool

if-else:operator

'5%':str 'none':str

'5%':str

a) Original Expression b) After Multiplication

c) After Addition d) After Comparison e) Final Result

Figures 1-2a, 1-2b, 1-2c, 1-2d, and 1-2e.  Expression with
multiple types

�Floating-Point Number Type in an Expression
Finally, let’s look at the number types. Three kinds of number types are

distinguished in Python: integers, floating, and complex numbers. You have

already seen examples for the integers. The float type can store the decimal

Chapter 1 Expression: How to Compute

7

fractions. Listing 1-6 shows an expression wherein two decimal fractions

with the same value are added (the first number object was written in the

usual format as 0.05, while the other one was in 5*10-2 format).

Listing 1-6.  Floating-Point Numbers

0.05 == 5e-2

�Complex Number Type in an Expression
Complex numbers (used in higher mathematical computations) are

called the complex type. The simplest way a complex number could be

considered is a pair of decimal fractions wherein the first one is the real

value, and the second one is the imaginary one. The imaginary value

corresponds to the square root of -1. It is checked in Listing 1-7, if (0+1j)2 is

really equal to the value of -1.

Listing 1-7.  Complex Numbers

(0+1j)**2 == -1

During the design of the Python language, it was a vital design decision

that it should contain a small number of built-in types, and at first sight,

the behavior of those types is the same as that of the other, not built-in

types. Only five data types are examined more thoroughly here; the rest

will be discussed in Chapters 5 and 6.

Tip I n the Python language, it is possible to put the comparisons
into a chain, meaning the 0 < a and a < 100 expressions can
be written in the form of 0 < a < 100. The two expressions are
equivalent, except that in the second case the expression standing in
the place of a is computed only once. This notation can also be used
between more than two comparisons.

Chapter 1 Expression: How to Compute

8

�Variable Names
Now that we have seen how to carry out computation in specific cases,

let’s look at how a computation can be generalized. For this case, objects

are assigned to variable names. Variable names may be thought of most

simply as labels. Variable names usually begin with a letter and continue

with letters or digits. The expression in Listing 1-5 could be rewritten by

first assigning the numbers to variable names, as shown in Listing 1-8.

The advantage of this approach is that in case we were to compute the

expression for other numbers, we simply change only the assignment

statements in lines 1–3 and would not have to modify the expressions.

Listing 1-8.  Assignment Statements

PRICE = 500

QUANTITY = 2

LIMIT = 1000

total_amount = PRICE * QUANTITY

d_available = total_amount >= LIMIT

discount = '5%' if d_available else 'none'

To express the intent that the variable names to which the value once

assigned will not require change, the variable names are capitalized. This

notation is not more than a convention, and the Python language does not

prevent them from being changed.

The resulting expression is thus much easier to understand.

Importantly, not the formula itself is assigned to the variable name, but

an object created upon computation of the expression instead. It is always

necessary to assign an object to the variable name before it is used (it

must appear on the left side of the equation before it can appear on the

right side).

Chapter 1 Expression: How to Compute

9

Table 1-1.  Effects of Spaces Between Characters

Without Space With Space Interpretation

a+b a + b Identical.

a=2 a = 2 Identical.

ab a b Adding a space between alphabetic characters turns

the single name into two separate names, which are

in most cases syntactically incorrect (an important

exception is when one of the names is a keyword).

12 1 2 Adding a space between numeric characters turns

a single literal into two separate literals, which are

in most cases syntactically incorrect.

(continued)

Variable names are also used to break down complicated expressions

into simpler ones. This can be accomplished by assigning some part of

the expression to the variable names and then using the variable names

in place of the extracted expressions. Furthermore, if the variable names

assigned to the particular expressions are chosen well, the meaning of the

expression will be more explicit.

Tip W hen do you have to insert space between characters? The
short answer is: when the characters without space would evidently
have a different meaning. For example, the meanings of a + b and
a+b are the same; thus, the space can be left out. But the cases of
a b and ab are different; the two names (identifiers) would become a
single name. Table 1-1 shows some examples. If spaces do not affect
the meaning, they can be inserted or omitted, depending on readability.
The detailed answer will be given in the section “Advanced Details.”

Chapter 1 Expression: How to Compute

10

Without Space With Space Interpretation

a1 a 1 Adding a space between an alphabetic and a

numeric characters turns the single name into

a name and a literal, which are in most cases

syntactically incorrect (an important exception is

when the name is a keyword).

1a 1 a Adding a space between a numeric and an

alphabetic characters turns the syntactically

incorrect character sequence into a literal and a

name, which are in most cases also syntactically

incorrect (an important exception is when

the name is a keyword like 1 or); in earlier

versions of Python 1or character sequence was

syntactically correct, but know it is deprecated

and will cause a syntax error in the future.

Table 1-1.  (continued)

�Statements
Listing 1-8 showed a program consisting of multiple lines. Each line is one

statement, more precisely an assignment statement. Programs consist of

statements that are executed one after the other, thereby exerting some effect

on their environment. The default in Python is that one line is one statement.

The recommended maximal line length is 79 characters. Listing 1-9 shows

how a long statement can be stretched to multiple lines (lines 3 to 7) or

multiple statements can be condensed into a single line (line 7). When a line

is too short for a statement, part of the statement can be brought over to the

following line after an end-of-line backslash (\). Should we want to compact

multiple statements in a line, the statements would have to be separated by a

semicolon (;). Both notations should generally be avoided.

Chapter 1 Expression: How to Compute

11

Listing 1-9.  Statements

PRICE = 500

QUANTITY = 2

PRICE = \

500

QUANTITY = \

2

PRICE = 500; QUANTITY = 2

Integer objects are assigned to variable names in the previous example.

If, for example, statements in the second and third lines were replaced, an

error would occur since there are no objects yet assigned to the quantity

label. It is also a consequence of the stepwise statement execution that no

object assigned to a variable name would change (except for the unit price)

if one more PRICE = 450 line were inserted at the end of the program. For

example, the d_available variable name would still point to an object

with a true value. To change the assignments, the statements from line 3 to

line 5 would have to be re-executed.

The assignment statement consists of a name, an assignment operator,

and an expression. In Python, the equal sign means the result of the right-

side expression is assigned to the left-side variable name. (The double

equal sign is used to test the equality of two expressions.) The assignment

statement is not an expression; therefore, it does not have a return value.

To obtain an object assigned to the variable name as an expression, the

:= walrus operator can be used, but it can be used only in restricted cases

(details of the walrus operator will be explained in Chapter 5).

Chapter 1 Expression: How to Compute

12

�Deletion of a Variable Name
Variable names can also be deleted by the del statement. In Listing 1-10,

after the variable name difference is deleted, reading the variable name

content results in an error. Objects assigned to the variable names

are automatically unallocated when they are not referenced anymore

(i.e., when they are not assigned to any variable names). Referencing

to the variable name difference after Listing 1-10 would cause a

NameError error.

Listing 1-10.  Deletion of a Variable Name

difference = 550 - 500

del difference

Note  The source code elements are the expressions, statements,
and concepts touched upon later. The name source code (a code
readable for humans) originates from the fact that it is the source of
the executable code run by the computer. Files containing the source
code are referred to as source files. We can speak about a program
when we want to emphasize that it is about the source code realizing
an independent and meaningful task. For completeness, programs
that can be run as direct source code are usually called scripts.
Unfortunately, these denominations are often used loosely in the
literature and leave the correct interpretation to the reader.

Chapter 1 Expression: How to Compute

13

�Additional Language Constructs
In the program fragments described so far, objects are expressed by

specific integer, string, and Boolean (True and False) values. Their

collective term is literals. Operators are used between them. You have seen

the if and else names in the conditional expressions. Names with such

special meaning are called keywords. The pass keyword represents the no

operation statement. This statement is used to designate that a statement

would follow, but our deliberate intention is that nothing happens at that

point of the program.

The text located after the character # up to the end of the line is called

a comment that is used to place any textual information. A comment is a

message to the reader of the source code and can help in understanding

the program. If variable names in the program are chosen well, a minimum

amount of commenting is necessary.

Multiline comments can be achieved with multiline strings. Multiline

strings start and end with a triple quotation mark (typically """), and line

breaks are allowed inside the string. Technically these are not comments,

but expressions. So, multiline comments must always start in a separate

new line. You will see in Chapter 2 that these multiline comments can have

a special role depending on their position in the source code. Listing 1-11

shows some examples.

Listing 1-11.  Pass Statement and Comments

pass #this statement does nothing

this line is only a comment

""" these lines form

a multiline

comment """

Chapter 1 Expression: How to Compute

14

�Statements and Expressions in Practice
With type annotations, the expected type of object to be assigned to the

variable name can be expressed. Python is a dynamically typed language,

which means that the type of a variable name depends solely on the type of

the assigned object. This means that currently Python does not check if these

type annotations are correct. Originally, Python did not have any notation to

explicitly add typing information as it was considered extra effort to maintain

and makes the code more inflexible. As Python is used for large and complex

programs, these annotations become more useful for the developers and

tools. External tools can be used to verify whether the assigned object types

are consistent with the type annotations without running the program. Use

of external tools will be described in Chapter 6. The type is specified after the

variable name, separated from it by a colon, as shown in the Listing 1-12.

Listing 1-12.  Assignments with Type Definitions

PRICE: int = 500

QUANTITY: int = 2

LIMIT: int = 1000

total_amount: int = PRICE * QUANTITY

d_available: bool = total amount >= LIMIT

discount: str = '5%' if d_available else 'none'

It is crucial for the readability of the program to put spaces in certain

spots in the expressions and statements. The documentation of Python

contains a recommendation for the placement of spaces to ensure the best

readability:

•	 It is recommended to insert a space on both sides of an

equal signs; and put a space only after colons.

•	 Extra spaces should not be inserted for parentheses,

but spaces are recommended so that the context is

preserved.

Chapter 1 Expression: How to Compute

15

•	 Spaces are inserted around the operators as a default;

an exception is if the order of operations in the

expression is other than simply from left to right, since

there are parentheses, or certain operations should

be executed sooner. In this case, spaces are removed

around operations executed sooner, such as in the case

of (a+2) * (b+4) or a*2 + b*4.

If required, the aim or use of the statements can be documented by

a comment placed after it (beginning with the character #, as discussed

earlier). Lengthier comments can be placed among the statement lines,

and each line should begin with the character #. It is recommended that

the information recorded here should be such that it could not be figured

out from the variable names and the type annotations.

Tip A n expression can be included in the so-called formatted string
literals (or f-strings). In this case, there is a letter f (as shown in Listing 1-13)
before the string’s opening quotation mark, and the expressions are
within the quotation marks, between the braces. The result of these
expressions will be inserted after they are converted to a string.

In the f-strings, format specifiers can also be added after the
expression, separated by a colon (:). Listing 1-14 shows the format
of the variable PRICE1 as a decimal fraction with two decimal places
and shows writing out variable PRICE2 as an integer filled with 0s,
up to five digits.

Listing 1-13.  Formatted String Literals

PRICE1 = 10

PRICE2 = 2500

Difference of f’{PRICE1} and {PRICE2} is {PRICE2-PRICE1}'

Chapter 1 Expression: How to Compute

16

Listing 1-14.  Formatted String Literals with Format Specifiers

f'{PRICE1:.2f}, {PRICE2:05d}'

�Advanced Details
This section describes technical details in reference manual style and

advanced concepts that may need more technical background.

�Names
You saw that names (also called identifiers) can be given to objects. The

following characters can be present in a name: beginning with a letter or

an underscore and continuing with a letter-like character, underscore,

or digit. Letter-like means that other categories are added to characters

considered letters in the Unicode standard, namely, the “nonspacing

mark,” the “spacing combining mark,” and the “connector punctuation”

categories. Within names Python discriminates lowercase and uppercase

letters, but certain character combinations can be regarded the same

according to the NFKC standard. It is recommended to use only letters of

the English alphabet in names.

�Keywords and Special Names
There are certain names that have special meaning in Python; these are

called keywords and are shown in Table 1-2. You have already learned the

meanings of the keywords True and False, and the meanings of the other

ones will be gradually introduced in subsequent chapters.

Chapter 1 Expression: How to Compute

17

Table 1-2.  Keywords

and as assert async await

break class continue def del

elif else except False finally

for from global if import

in is lambda None nonlocal

not or pass raise return

True try while with yield

Names both beginning and ending with a double underscore character

may have a special meaning in the Python language. Therefore, your own

variables should not be denoted in this way. A single or double underscore

only at the beginning of the name is not subject to this restriction. Their

function is detailed in Chapter 3. A single underscore after a variable name

is used in case the name would otherwise be a keyword. Finally, a single

underscore character as a variable name is used to signal that the value

of the variable won’t be used, but defining a variable name is required for

syntactic constraints.

�Literals
Literals represent objects corresponding to their meanings. Rules applied

to the bool, complex, float, int, and str type values are as follows:

•	 The value of a Boolean can be true or false. The true

value is denominated by True, while false is signified

by False.

Chapter 1 Expression: How to Compute

18

•	 There are also rules applied for integers. Simple

decimal integers begin with a digit that is not zero and

continue with any digit. If a zero is written, any integer

of zeros can follow, but no other digits. If an integer is

written in a system other than decimal, the b, o, or x

letters after a zero digit annotate the following number

in the binary, octal, or hexadecimal number system;

then the particular number itself is written according

to the rules of the particular number system. (For

example, in terms of the binary number system, digits

can be only 0 or 1, while in the case of the hexadecimal

system, besides the number 9, the lowercase or

uppercase letters between A and F are allowed.

Lowercase or uppercase letters are both allowed for

the letters denoting the number system, as they are for

the numbers in the hexadecimal system.) Numbers

can always be separated by underscoring. Listing 1-15

shows examples of the previously mentioned syntax.

Listing 1-15.  Integers in Various Number Systems

42

0b10_1010

0o52

0x2A

•	 Floats or, more precisely, floating-point numbers, are

those always represented in the decimal system: a dot

is placed within the integer or around it, or the integer

exponent of number 10 multiplying the particular

number is written after the number, separated by a

letter e. Floating-point numbers used in Python are

according to the IEEE 754 standard.

Chapter 1 Expression: How to Compute

19

•	 Complex numbers, in turn, can be represented by two

floats. One of them is the imaginary part that is denoted

by a letter j written after a float; according to this

notation, the 1j corresponds to the square root of -1.

•	 Strings are written between pairs of quotation marks, '

or ". The meanings of the two kinds of quotation marks

are the same, but it is recommended to select one and

use that one consistently. An exception is when the

original text itself contains a kind of quotation mark.

In this case, it is recommended to use the other kind at

both ends of the string. If you want to write a multiline

string, it will have to be between the characters of '''

or """. Any character except the quotation mark can

appear within a string. If you would like to write the

same characters as the opening and closing quotation

marks, we have to use a backslash character before

them. After the backslash, other characters can denote

otherwise not representable characters (according to

Table 1-3).

Chapter 1 Expression: How to Compute

20

Table 1-3.  Escape Character Table

Character Meaning

\ and “new line” The backslash and the new line will be ignored.

\\ The backslash itself (\).

\a ASCII bell character (BEL).

\b ASCII backspace (BS).

\f ASCII form feed (FF).

\n ASCII linefeed (LF).

\r ASCII carriage return (CR).

\t ASCII horizontal tabulation (TAB).

\v ASCII vertical tabulation (VT).

\ooo Character code with a value of ooo in an octal number system.

\xhh Character code with a value of hh in a hexadecimal number system.

•	 The character r can be present before strings with the

effect of the backslash character working as a simple

character. This is useful in describing access paths (for

example, the r 'C:\Users' notation is equivalent to

'C:\\Users') and regular expressions. The letter f

can also be present before strings, meaning that if an

expression is written between the characters { and }, it

is computed, and the result will be inserted as a string

(see the former paragraph on formatted string literals).

The letter b may also occur; you can find a more

detailed description about it in Appendix B.

Chapter 1 Expression: How to Compute

21

�Characters with Special Meaning
Table 1-4 summarizes characters having a special meaning in Python.

Operations are denoted in the expressions by the operator characters.

Delimiters occur primarily in statements. Other special characters serve to

denote values or comments. There are characters that can be used only in

literals.

Table 1-4.  Characters with Special Meaning

Category Characters

Operators << >> & ^ ~ :=

< > <= >= == !=

Delimiters , : . ; @ = ->

+= -= *= /= //= %= @=

&= |= ^= <<= >>= **=

Other special characters ’ " # \

Can be used only in strings $? ‘

The dot can appear within a decimal fraction. Three consecutive dots

may be present one after the other, which is called an ellipsis literal. This is

not used in core Python, only in some extensions (e.g., NumPy).

Table 1-5 shows that the precedence of the operators is shown

downward increasing. Stronger operations will be performed first.

If strengths were equal, applying the operations takes place from left

to right. An exception is exponentiation with a reverse direction of

application.

Chapter 1 Expression: How to Compute

22

Table 1-5.  Precedence of Operators

Operators Meaning

x := y Assignment expression

x if y else z Conditional expression

x or y Logical or

x and y Logical and

not x Logical negation

x in y, x not in y,

x is y, x is not y,

x < y, x <= y, x > y,

x >= y, x != y, x == y

Membership tests,

identity tests,

and comparisons

x | y Bitwise or

x ^ y Bitwise exclusive or

x & y Bitwise and

x << y, x >> y Bitwise shift

x + y, x - y Addition, subtraction

x / y, x // y, x % y Division, integer division,

remainder

+x, -x, ~x Positive, negative, bitwise negation

x**y Raising to the power

(x) Expression in parentheses

Chapter 1 Expression: How to Compute

23

�Python Standards
The Python language is defined in The Python Language Reference. The

content of the book covers basically this document. In addition, several

language-related standards will be described in the Python Enhancement

Proposals; they are usually referenced as PEP plus a number. An often

mentioned PEP document is PEP 8, which contains a recommendation for

formatting the Python source code.

�Object Diagram Notation
Figures used in the chapter are represented in the object diagram notation

of the Unified Modeling Language (UML). These diagrams can represent

objects and their connections of a particular moment. Rectangles

represent objects in the diagrams. The names of the objects appear as text

written into the rectangle. The names of the objects are always written

underlined, optionally with its type after it preceded by a colon. Lines

between the rectangles denote connections. Objects in the figures are

denoted according to their value, and the value is not represented by a

separate instance variable.

�Key Takeaways
•	 In the chapter, you learned about the concept of an

expression, which is one of the most important building

blocks of programming languages. An expression

describes operations between objects. Usually, the goal

of their usage is to construct a new object needed for

the next step of processing (e.g., calculating the sum of

the price of products).

Chapter 1 Expression: How to Compute

24

•	 The statements describe a step of a program and make

changes in the execution context. The assignment

statement, which assigns an object to a name, is a good

example of this. An expression can serve as a statement,

but statements cannot stand where expressions are

expected.

•	 The variable name is the first tool to organize your

program. For example, a complex expression can

be broken into several simpler expressions of which

results are assigned to variable names and then

combined in a final step.

Chapter 1 Expression: How to Compute

25

CHAPTER 2

The Function:
Programs as a Series
of Statements

“It is usual in mathematics—outside of mathematical logic—to use the
word function imprecisely and to apply it to forms such as y2 + x. Because
we shall later compute with expressions for functions, we need a distinction
between functions and forms and a notation for expressing this distinction.
This distinction and a notation for describing it, from which we deviate
trivially is given by Church.”

John McCarthy et al.

The function is the simplest construct able to describe a behavior.

Functions can behave similarly as in math: they compute a number from

a given number or numbers. Functions in programming languages are

of a somewhat more general construction, though: they generate a new

object by executing statements from given objects. In this chapter, you will

learn how functions work in programming languages and about related

concepts such as blocks.

© Gabor Guta 2022
G. Guta, Pragmatic Python Programming, https://doi.org/10.1007/978-1-4842-8152-9_2

https://doi.org/10.1007/978-1-4842-8152-9_2

26

�Calling a Function
Let’s start by looking at how to use the built-in functions that already exist

in Python. Using a function usually means executing a function call. The

result of the function is referred to as the returned value. The computer

executes the statements assigned to the function name with the specified

objects, and the result object will be obtained. This is expressed by

placing a pair of parentheses after the function name, in which parameter

objects are enumerated optionally. The enumerated objects are called the

arguments of the functions. Calling the absolute value function visible in

Listing 2-1 will result in a number object with a value of 1. This is exactly

what you would expect from the |-1| expression.

Listing 2-1.  Calculation of an Absolute Value

abs(-1)

The function call can be combined with expression notations: it can

be present anywhere a reference to an object can be written, and so the

arguments of the function can become arbitrarily complicated expressions.

From among the built-in mathematical functions you saw examples for the

absolute value function (abs()). In addition, there also exists the functions

of raising to a power (pow()) and rounding (round()). You can see this in

Listing 2-2. The result of price calculation of 3499 with tax (which is 10%

in the United States, so the original number must be multiplied by 1.1) is

3848.9, which is rounded to an integer (to 3849) in the example.

Listing 2-2.  Calculation of a Rounded Value

round(3499 * 1.1)

Chapter 2 The Function: Programs as a Series of Statements

27

Tip T he built-in types of the Python language cannot always
accurately store decimals. This is a consequence of the binary
representation of decimals in memory. For example, the 3848.9 value
shown in the previous example is stored as 3848.90000000000009.
How to store best financial data in Python is described in detail in
Chapter 6.

Listing 2-3 shows a more complicated expression. What we are

calculating is the gross difference of two net prices. First the rounded gross

values of the two prices are calculated in the expression; then these are

subtracted from each other. It is visible in the example that the function

calls can be embedded, and the result of the abs() function call is assigned

to a variable name.

Listing 2-3.  Calculation of a More Complicated Expression

OLD_NET = 5000

NEW_NET = 6500

VAT_RATE = 1.1

�difference_gross = abs(round(OLD_NET*1.1) - round(NEW_NET*1.1))

�Side Effects of Functions
The function concept in the programming languages is more general

than that in the mathematical sense, as previously clarified. An important

difference is that functions can have side effects. By side effects, we mean

it not only calculates a value and that value will be returned, but it also

changes something in its environment: changes the value of an object

in the environment of a function, displays text to the screen, saves a file,

sends an email on the network, etc.

Chapter 2 The Function: Programs as a Series of Statements

28

The Python language even allows a function to not have a result

object. In this case, its return value will be a None object. This makes sense,

usually, when the function completes its task by causing a side effect (e.g.,

writing a string to display, writing to a file, etc.).

In Listing 2-4 the function writes Hello World to the screen. (This is a

typical first example when teaching a program language.)

Listing 2-4.  Function with a Side Effect

print('Hello World!')

Listing 2-5 shows a practical example, where the print() function

has two arguments: one is the string containing the message, and the

other is the total amount. These arguments will be printed on a single line

separated by spaces. In Listing 2-6, you can see the reverse of the print()

function, which reads a line instead of printing it. The line is a string closed

by a linefeed; hence, the input() function reads characters until the Enter

key is pressed. The result of reading a line does not contain the linefeed

character. The input() function receives a parameter as well, a string,

which is additionally written out before reading the line.

Listing 2-5.  Function with Multiple Parameters

total_amount = 1000

print('Order total:', total_amount)

Listing 2-6.  Input and Output Statements

product_name = input('Please, enter the name of the product')

print('The name of the product:', product_name)

Chapter 2 The Function: Programs as a Series of Statements

29

�Function Arguments
Arguments have so far been specified to functions by listing them in due

order. This method of argument specification is referred to as positional

parameter specification. However, it is possible to specify an argument not

only according to position but also as a keyword argument.

There are two important arguments of the print() function that can

be specified as keyword arguments: the sep and end arguments. These

arguments can be strings: the first one specifies which separator character

should be printed between the printed values, and the second one

specifies what is printed at the end of the line. Among the arguments of

the function, the positional arguments should always precede the keyword

parameters.

The Python language allows positional or keyword arguments to be

optional. In other words, the function will assign them a default value if

they are not specified. The keyword arguments of print() can be omitted

because they have default values. The default value for the sep parameter

is a space, and the default value for the end parameter is a new line

(linefeed) character. See Listing 2-7.

Listing 2-7.  Specification of Keyword Arguments

PRODUCT_NAME = 'Cube'

PRICE = 100

print('The product:', PRODUCT_NAME, end=' ')

print('(', PRICE, ' USD)', sep='')

The other feature you can observe is that the print() function has any

number of positional parameters. We speak of a variable-length parameter

list, and at the function call you specify them as normal fixed parameters.

This is useful in cases when it is not known in advance how many

arguments will be specified.

Chapter 2 The Function: Programs as a Series of Statements

30

�Defining a Function
Now that you have seen how to call functions, you will learn how to

define your own function. Defining a function always begins with the

def keyword, followed by the name of the function, and the parentheses

optionally with parameters; then the statements constituting the function

come on new lines after a colon. Parameters are listed in parentheses

separated by commas, and the values of these variables will be defined by

the arguments during the call of the function.

Note  Function parameter or argument? When the variable names
are listed in the function definition to be required at the function call,
they are called parameters or formal arguments. When values are
specified in the function call to be passed, they are called arguments
or actual arguments. In practice, parameter and argument are often
used imprecisely in an interchangeable way, and their exact meaning
can be figured out from the context.

Listing 2-8 shows a function definition. It takes two parameters

and returns the product of them. This function can be called as shown

in Listing 2-9. The first argument (the value 1000) will be assigned to

the price parameter, and the second argument (the value of 8) will be

assigned to the amount parameter. The result of the function call shown in

the example will be the value 8000.

Listing 2-8.  Function Definition

def total_sum(price, quantity):

 return price * quantity

Chapter 2 The Function: Programs as a Series of Statements

31

Listing 2-9.  Call of the Defined Function

total_sum(1000, 8)

It is known from the indentation that statements belong to the

function: they start with an indentation one level deeper as compared

to the first line of the function definition. Lines after each other with the

same indentation depth are referred to as blocks. Additionally, blocks can

contain statements that require the following lines to be indented one

more level deeper, i.e., so a novel, nested block is formed. The new block

so formed is part of the block it is contained by. You can see a block in lines

2 and 3 in Listing 2-10, which are indented to the same level. This signals

that it belongs to the definition in line 1. Line 4 appears on the top level,

and actually lines 1 to line 4 are also considered as a block.

Listing 2-10.  Blocks

def total_sum(price, quantity):

 total = price * quantity

 return total

extra_price = 2000

Caution T he space and the tab are two different characters.
How many spaces are included in a tab depends on the settings.
This is the reason mixed space and tab characters are not allowed
to be used to indent blocks. The official recommendation is to
use four spaces for every block. Compliance to this is assisted by
development tools supporting the Python language: they replace tabs
automatically with spaces.

Chapter 2 The Function: Programs as a Series of Statements

32

A block corresponding to a function definition is called a function

body. Statements forming the function can contain a return keyword and

an expression after it. This statement indicates the end of the function and

value of the expression will be the result of the function. When no such

statement is present, the function has no results; i.e., its result is None as

discussed earlier.

�Keyword Arguments
If you want to pass arguments as keyword arguments, you can do it as

shown in Listing 2-11. Parameters can be passed either as positional

arguments or as keyword arguments, or as combination of the two,

until the constraint of specifying positional arguments before keyword

arguments is met. (There is no third variation in the example due to this

constraint.)

Listing 2-11.  Call of the Defined Function with Keyword Arguments

total_sum(price=1000, quantity=8)

total_sum(1000, quantity=8)

For the function definition in Listing 2-12, parameters get the default

values. The parameters with default values are not allowed to be followed

by parameters without default values. This is demonstrated in lines 1, 2, 3,

and 4 of Listing 2-13, where for a default value the function can be called

according to the previous one; this time arguments specified at the call

will be passed. In lines 5, 6, 7, and 8, a single argument is specified, or no

arguments are specified, and in these cases the not-specified parameters

will be assigned with the default values. This is the way parameters

modified on rare occasions can be made optional.

Chapter 2 The Function: Programs as a Series of Statements

33

Listing 2-12.  Function Definition with Default Parameters

def total_sum_v2(price=500, quantity=5):

 return price * quantity

Listing 2-13.  Calling the Defined Function with Various Arguments

total_sum_v2(1000, 8)

total_sum_v2(1000, quantity=8)

total_sum_v2(price=1000, quantity=8)

total_sum_v2(quantity=8, price=1000)

total_sum_v2(1000)

total_sum_v2(price=1000)

total_sum_v2(quantity=8)

total_sum_v2()

�Visibility of Names
After a variable name has been defined in the earlier examples, it can

be referred to from the point of the definition. In the functions, in turn,

if a variable name is defined, it cannot be referred to from “outside.”

If the defined total value variable name is referred to from outside the

definition of the function (in our case after the definition in the line where

the statements are not indented) in Listing 2-14, an error will be raised.

Visibility can be summarized in three points.

•	 A name defined outside but before the function

definition (in the block containing the definition of the

function or any of the blocks containing the particular

block) is visible from the function (only to access the

object referenced by the name).

Chapter 2 The Function: Programs as a Series of Statements

34

Listing 2-14.  Function Referencing to an Outer Variable Name

PRICE = 2000

def total_sum_v3(quantity):

 return PRICE * quantity

total_sum_v3(100)

•	 A name is assigned to an object in the function body

(inside the block belongs to the function), and a

reference can be made to the name only inside the

function after the assignment; the name is not visible

outside the function. If the name is identical to a name

defined outside the function, this new assignment will

be in effect, but it does not change the assignment

outside the function. In other words, by leaving the

function, the object assigned to the name outside the

function will be reachable with the name (it will not

be overwritten; it only will be shadowed within the

function). In Listing 2-15, the result of the total_sum_

v4 function call will be 30000.

Listing 2-15.  Function Referencing a Shadowed Outer

Variable Name

PRICE = 2000

def total_sum_v4(quantity):

 PRICE = 3000

 return PRICE * quantity

total_sum_v4(100)

Chapter 2 The Function: Programs as a Series of Statements

35

•	 The previous two use cases cannot be mixed. That is,

if a value that was also defined outside the function

is assigned at any point in the function body, the

reference preceding the definition in the function body

will refer to the name inside the function body (an error

message is given in this case indicating that no object

assignments took place to the name yet, instead of

accessing the value outside the function).

�Functions as Parameters
Functions are objects as well, like with numbers. Therefore, a function

can be given as a value of a variable name, and it can be invoked. This

is useful when there is behavior to be transferred. In Listing 2-16, three

methods are defined: the first and second functions calculate the discount

rate from the unit price and quantity, and the third function calculates the

reduced price from the unit price, quantity, and discount rate calculation

function. The last two lines show examples of how the reduced_price_p

can be called. The discount_30 and the discount_4p1 return a 30 percent

discount value if the unit price is higher than 500 and a rate that makes one

item out of free free, respectively. The reduce_price_p function calculates

the total_value from the price and quantity as a first step. Then it calls

its discount parameter, which is a function, to retrieve the rate of the

discount. Finally, it calculates the reduced price from the total_value and

discount_rate. In the first and second examples, the results are 3500 and

4000, respectively.

Listing 2-16.  Function as Argument

def discount_30(price, quantity):

 return 0.3 if price>500 else 0

Chapter 2 The Function: Programs as a Series of Statements

36

def discount_4p1(price, quantity):

 return ((quantity//5) / quantity)

def reduced_price_p(price, quantity, discount):

 total_value = price * quantity

 discount_rate = discount(price, quantity)

 return total_value * (1-discount_rate)

print(reduced_price_p(1000, 5, discount_30))

print(reduced_price_p(1000, 5, discount_4p1))

�Definitions of Nested Functions
In the Python language, the definition of a function is considered an

ordinary statement. Therefore, it may be present in a block of any depth.

This is the reason why you are allowed to define a function within a

function if you want to use it only in the block. Listing 2-17 shows that

two short functions being defined within the functions to calculate the

discounted price.

Listing 2-17.  Nested Function Definition

def reduced_price_e(price, quantity, discount, limit = 5000):

 def total_sum():

 return price * quantity

 def d_available(total_value):

 return total_value >= limit

 multiplier = 1.0 - (discount

 if d_available(total_sum())

 else 0.0)

 return round(total_sum() * multiplier)

reduced_price_e(1000, 5, 0.3)

Chapter 2 The Function: Programs as a Series of Statements

37

�Functions in Practice
Three types of notations can help you when defining functions: define the

parameter and return types, specify the preconditions with respect to the

parameters, and include a detailed documentation string. These three

notations are completely optional and primarily do not affect the behavior

of a function.

Similar to the way type hints were defined for variable names in

Chapter 1, the types of function parameters can be written after the name,

separated by a colon. The return type of the function can be written after

the function parameters, separated from it by an arrow (->).

Function can begin with a so-called documentation string (docstring),

which provides a description of the function, that can be queried. The

documentation string is a multiline comment that contains the task of

the function briefly, on one line; its detailed description separated by

one empty line; and finally, a description of the parameters after the

Args: word.

After the documentation string, the preconditions can be represented

to describe the conditions necessary for the function to work properly.

These can be described with the assert statement: an assert keyword

followed by a Boolean expression and optionally by an error message

separated by a comma. If the preconditions expressed by the Boolean

expression is not fulfilled, an error is given.

By convention, there is no space between the function name and the

parentheses when calling the functions, as you saw in the examples. As to

the commas, it is recommended to put a space only after the comma.

Listing 2-18 describes the process shown in Figure 2-1. Each step in the

figure corresponds to one line of the example. This example demonstrates

in practice how the source code can differ from the documentation. The

gap can be narrowed by inserting comments into the source code identical

to the ones in the figure and giving the function a name consistent with the

documentation. The example uses the definitions of Listing 2-19.

Chapter 2 The Function: Programs as a Series of Statements

38

Listing 2-18.  Function Definition

def total_sum(price: int, quantity: int) -> int:

 """Calculates the total sum

 The total sum is the product of the price and quantity.

 Args:

 price: the unit price

 quantity: the quantity of the product

 Returns:

 �the result of the computation, which is the value of

the product

 """

 assert price >= 0, "the price cannot be negative"

 assert quantity >= 0, "the quantity cannot be negative"

 total_sum = price * quantity

 return total_sum

def discount_available(value: int, limit: int = 5000) -> bool:

 """Checks whether any discount is available

 �Based on the limit it decides whether the discount can

be applied

 Args:

 value: the total price of the product

 limit: a new limit if it differs from 5000

 Returns:

 True if discount is available, otherwise False

 """

Chapter 2 The Function: Programs as a Series of Statements

39

 assert value >= 0, "the value cannot be negative"

 assert limit >= 0, "the limit cannot be negative"

 return value >= limit

def reduced_price(value: int, discount: float) -> int:

 """Calculate the discounted price

 �Calculates the final price according to value and discount

variables,

 which will be the discounted price if discount is available

 Args:

 value: the total price of the product

 discount: amount of the discount in fraction

 (e.g. 0.5 equals 50%)

 Returns:

 �The discounted price if discount is available,

otherwise the original value

 """

 assert value >= 0, "the value cannot be negative"

 �assert 1 >= discount >= 0, "discount is not in the

valid range"

 multiplier = 1.0 - (discount

 if discount_available(value)

 else 0.0)

 return round(value * multiplier)

Chapter 2 The Function: Programs as a Series of Statements

40

Calculates the total sum

Print whether any discount is available

Definies the unit price (5500)

Start

End

Defines the quantity (5)

Print the discounted price

Figure 2-1.  Discount calculator

Listing 2-19.  Discount Calculator

PRICE: int = 5500 # unit price

QUANTITY: int = 5 # quantity

total_value = total_sum(PRICE, QUANTITY)

print('Total sum: ', reduced_price(total_value, 0.5))

print('5%' if discount_available(total_value) else 'None')

�Advanced Details
This section describes some technical details in reference manual style

and advanced concepts that may need more technical background.

Chapter 2 The Function: Programs as a Series of Statements

41

�Namespace and Scope
A namespace is an object that stores the mapping of names (variable

names, function names, etc.) to objects. The outermost user-accessible

namespace of the program is called the global namespace. In addition,

there are so-called built-in namespaces that include the names of the

built-in objects. The definition of the function creates a new namespace

called a local namespace. Functions can contain further function

definitions; thus, an arbitrary number of nested local namespaces can be

constructed. This way, namespaces form a tree-like hierarchy, the root of

which is the built-in namespace.

The scope of a variable name is part of the source code where a name

of a namespace can refer. Resolution of a referenced name takes place

by finding the assignment in the relevant local or global namespace. If

this is unsuccessful, an attempt is made to find it in the next namespace

outside the referenced one. The last namespace in the hierarchy is the

built-in namespace. If it cannot be resolved even in this namespace, an

error will be raised. Namespaces can “shadow name” each other in case an

identical name is defined. This shadowing behavior can be changed by two

statements: a local namespace outside of the local and global namespaces

can be referenced by a nonlocal statement and a global statement (which

consist of the keyword and the variable name), respectively.

�Positional-Only and Keyword-Only Parameters
The function in Listing 2-20 has strange characters as parameters: / and *.

These characters are not real parameters, but they have special meaning:

all parameters that are preceding the / are positional-only parameters, and

all parameters that are following the * signs are keyword-only arguments.

The two function calls at the end of the listing are the only valid way to call

the function f.

Chapter 2 The Function: Programs as a Series of Statements

42

Listing 2-20.  Function with Positional-Only and Keyword-Only

Parameters

def f(a, /, b, *, c):

 print('positional-only parameter:', a)

 print('positional or keyword parameter:', b)

 print('keyword-only parameter:', c)

f(1, 2, c=3)

f(1, b=2, c=3)

�Variable Number of Arguments
You saw in the examples of the function call in Listings 2-4 and 2-5 that

functions can have a variable number of arguments. The notation that

can be used for this is a star put in front of the parameter’s name. This

parameter will then be a special parameter that does not behave like

a simple positional parameter, but an object that will contain all the

positional arguments that were not assigned to the preceding parameters.

If there are two stars, the parameter will contain the keyword arguments

that were not assigned to the preceding parameters.

This notation also works the other way around too. If such an object

containing collected parameters is transferred with a star or with two stars,

the contained values will be expanded. In Listing 2-21, the function f call

prints “1, 2, 3” as positional parameters and then the “a: 1, b: 2, c: 3” pairs

as keyword parameters.

Listing 2-21.  Variable Number of Arguments

def f(*args, **kwargs):

 print('positional parameters', args)

 print('keyword parameters', kwargs)

f(1, 2, 3, a=1, b=2, c=3)

Chapter 2 The Function: Programs as a Series of Statements

43

�Lambda Expression
For functions expecting another function as their parameter, the definition

of the function to be passed as a parameter is frequently clumsy. The lambda

function can solve this problem; it’s a simple anonymous function definition

containing a single expression. Listing 2-22 shows a discount_50() function

that is transferred as an argument in line 4 to the reduced_price_p function,

as shown in Listing 2-16. Listing 2-23 shows the replacement of the function

calculating the previous discount by a lambda expression. A lambda

expression in this example has two parameters: the price and the quantity to

maintain the compatibility with the earlier function definition conventions,

but only the quantity parameter used in the expression. As the lambda

expression returns a function object, it can be written directly as a function

argument of the reduced_price_p function.

Listing 2-22.  Simple Function as Parameter

def discount_50(price, quantity):

 return 0.5 if quantity>10 else 0

print(reduced_price_p(1000, 15, discount_50))

Listing 2-23.  Lambda Expression as Parameter

print(reduced_price_p(1000, 15, lambda price, quantity: 0.5 if

quantity>10 else 0))

�Decorator
A decorator is a special notation to modify the behavior of the function.

The decorator is in fact a function receiving a function as a parameter

and returning a function as a result. It can be used in two typical ways: it

records the obtained function into some global data structure and returns

Chapter 2 The Function: Programs as a Series of Statements

44

with the function originally received, or it returns with another function

instead of that received as a parameter. Depending on the purpose of

this new function, it can carry out operations before and after calling the

original function.

A decorator is presented in Listing 2-24, which checks if the functions

calculating the discount function do not calculate too high of a discount

rate. If they calculate too high of a discount rate, the decorator intervenes

and returns the maximum allowed discount rate. Listing 2-16 shows the

definition of the function reduced_price_p used in the example.

Listing 2-24.  Decorators

def limit_discount(discount):

 def check(price, quantity):

 pre_calculation = discount(price, quantity)

 �return pre_calculation if pre_calculation<0.75

else 0.75

 return check

@limit_discount

def discount_40(price, quantity):

 rate = 0.4 if price*quantity > 500 else 0

 return rate

@limit_discount

def sell_for_free(price, quantity):

 rate = 1.0 if quantity == 1 else 0

 return rate

print(reduced_price_p(1000, 1, discount_40))

print(reduced_price_p(1000, 1, sell_for_free))

Chapter 2 The Function: Programs as a Series of Statements

45

�Yield Statement and Asynchronous Functions
Functions that contain yield statements behave differently than the

functions discussed in this chapter. They are called generator functions

or co-routines, and you can find more information on them at the end of

Chapter 4. These kinds of functions are the core building blocks of so-

called asynchronous functions. We discuss them separately in Appendix C.

�Key Takeaways
•	 A function call is an expression that can be denoted

by writing parentheses (this is called a function

call operator) after the name of the function. The

parentheses can contain further expressions that

are the arguments of the function. Calling a function

means executing the statements assigned to the

function. The function usually describes some

calculations or changes its environment. The function

call usually returns a value that can be used.

•	 Defining a function requires nothing more than

assigning a block (list of statements) to a name. In

the definition of a function, the parameters expected

by the function can be listed. These parameters will

be assigned to values during the call. The statements

assigned to the defined function may contain a return

statement, which can prescribe what object must be

returned to the caller.

Chapter 2 The Function: Programs as a Series of Statements

46

•	 It is important to note that the variables defined inside

the function cannot be accessed from outside (they

form a new namespace). The external variables can be

accessed from the function if they meet certain criteria.

If you define a variable inside the function definition

with the name identical to an external variable, then

this variable will be shadowed by the new variable

and changing it won’t have any effect on the external

variable.

•	 The functions are also objects, like objects of the other

types shown so far. Although they are defined in a

different way than other objects assigned to variable

names, a function is actually a variable name. Because

of this, a function name can be assigned to another

variable name or can be used as an argument.

Chapter 2 The Function: Programs as a Series of Statements

47

CHAPTER 3

The Class: How
to Model the World

“Think like an object. Of course, this statement gets its real meaning by
contrast with the typical approach to software development: Think like a
computer.”

David West

When designing programming languages, one of the important goals is to

enable the formulation of the programs in a way that is as close as possible

to a real-world description of solutions. The object-oriented programming

or paradigm attempts to fulfill this aim with the possibility of creating

objects in the program’s text that are related to objects existing in the real

world. These can be either objects representing actual, existing products

in the program according to Figure 3-1a, or some more abstract, technical

objects, such as objects representing a file in the computer according to

Figure 3-1b. In this chapter, you will gain understanding of what objects

and classes are and what you can do with them.

© Gabor Guta 2022
G. Guta, Pragmatic Python Programming, https://doi.org/10.1007/978-1-4842-8152-9_3

https://doi.org/10.1007/978-1-4842-8152-9_3

48

a) Product objects b) File objects

product 1
price = 1000
name = small cube
code = T001

product 2
old price = 15000
price = 20000
name = large cube
code = T002

product 3
name = nano cube
code = T004
price = 2000

program
name = main.py

documentation
name = manual.pdf

description
name = README

documentation
name = manual.html

Figures 3-1a and 3-1b.  Objects

Objects have instance variables and methods. Instance variables

are variable names bound to the object. Methods, in turn, are functions

describing the behavior characterizing the object. Sticking to the former

example, the instance variables of the Product object can be codes, names,

prices, and old prices, as well as the behaviors of the object, e.g., the

product can be discounted.

Note  The term attribute is often used in the documentation of the
Python language, meaning names after a dot. The attributes of an
object are both its instance variables and its methods. Similarly, the
attributes of a module are variable names, functions, and classes
defined in the module. Instead of the term instance variable, the data
attribute designation is also frequently used.

Chapter 3 The Class: How to Model the World

49

�What Is a Class?
A class describes the common blueprint of similar objects. In the Python

language, these classes are the types of the objects. If, for example, in an

order management program products are to be represented by objects,

a Product class must be defined. This definition of class describes how

instance variables of the new objects are formed, and the methods that

read or write these instance variables are also defined here.

Determining the classes during the development process is crucial: if

the responsibilities of a class is clear, i.e., which aspects of reality are to be

modeled, the program will be much easier to understand. Specifying the

responsibilities of the classes can be represented only informally in the

documentation, but it is the consequence of this decision that defines what

kind of instance variables and methods appear in the classes. The product

class would be quite different if, say, the program manages chemicals,

and, besides its name, the hazard classification or storage requirements of

the material would also have to be represented as the product’s instance

variables. See Figure 3-2.

product_1: Product
old_price = 1000
price = 1000
name = small cube
code = T001 product_2: Product

old_price = 15000
price = 20000
name = large cube
code = T002product_3: Product

old_price = 2000
price = 2000
name = nano cube
code = T003

Product
+ code: str
+ name: str
+ old_price: int
+ price: int
+ __init__(str, str, int): void
+ discount(int): void

«instanceOf»

«instanceOf»

«instanceOf»

Figure 3-2.  Product objects and class

Chapter 3 The Class: How to Model the World

50

�Creating Objects
In examples cited so far, objects of a particular class have been created

by defining them as values or results of expressions. Objects can also be

explicitly created from classes. Object formation is called instantiation, as

it is like creating an actual representation/instance of an abstract concept/

category/generalization. When an object is to be generated from a class,

parentheses are put after the class name, as if a function were to be called.

Depending on the class, parameters can be specified, which usually affect

the values of the instance variables of the generated object.

For example, when class int is instantiated, an int type object will be

formed with a value of 0. A string can be a parameter at the instantiation of

the int type, which—if containing a number—will be an integer with the

same value. Listing 3-1 shows these examples.

Listing 3-1.  Instantiating Objects from the Integer Type

INTEGER_NUMBER_0 = int()

INTEGER_NUMBER_5 = int('5')

�Using Instance Variables and Methods
Among the types already discussed earlier, complex numbers have real

and imag instance variables. For example, an important method for the

complex numbers is conjugate(). Figure 3-3 shows the whole class.

Chapter 3 The Class: How to Model the World

51

complex
imag: float
real: float
conjugate(): complex

Figure 3-3.  Complex class

The instance variables can be referenced in the following way: putting

a dot after the variable name referring to the complex number and giving

the name of the instance variable (x.real and x.imag, as shown in

Listing 3-2).

Listing 3-2.  Using a Complex Class

I = complex(0, 1) # 0+1j

real_part = I.real

imaginary_part = I.imag

In the case of methods, a pair of parentheses will follow the dot and

the method name. These parentheses can remain empty (as shown for the

functions), or parameters can be present in the parentheses.

conjugate_value = I.conjugate()

�Defining Classes
You saw earlier how a class construct is used. Let’s look at an example of

how to define your own class. The class representing the product shown

in Figure 3-4 is defined in Listing 3-3. The instantiation of this class is

demonstrated in Listing 3-4.

Chapter 3 The Class: How to Model the World

52

Product
code
name
old_price
price
__init__(code, name, price): void
reduce_price(amount): void

Figure 3-4.  Product class

The definition of a class begins with the keyword class and a colon,

and the block containing definitions of the class elements follows. The

class usually has an initialization method named __init__(), which

sets up the default state of the instance (this is similar to the concept of

a constructor in other programming languages). The definition of the

class contains a discount() method, which modifies the price instance

variables of the Product type objects in the case of adding a discount.

The first parameter of methods defined in the class always refers to the

object itself, conventionally called self. To access or modify an instance

variable of the object from a method of the class, the self parameter

must be used. In Listing 3-3 lines 3 to line 6 show the instance variable

definitions of the Product object. In line 9, the value of the price instance

variable is assigned to the old_price instance variable. In line 10, the new_

price variable will take the value of the calculated price. The new_price

variable is just a “normal” method variable, which is not assigned to the

object in any form. The last line assigns the value of this method variable

to the price instance variable. The methods of the object can be called in a

similar way as instance variables are referenced: the reduce_price method

could be called like self.reduce_price(0) from an additional method of

the same class.

Chapter 3 The Class: How to Model the World

53

Listing 3-3.  Definition of the Product Class

class Product:

 def __init__(self, code, name, price):

 self.code = code

 self.name = name

 self.price = price

 self.old_price = price

 def reduce_price(self, percent):

 self.old_price = self.price

 new_price = self.price * (1 - percent/100)

 self.price = round(new_price)

The initialization method defines the instance variables of the newly

formed object by assigning their initial values. Parameters of this method

will be the values specified in parentheses after the name of the class, as

shown in Listing 3-4.

Listing 3-4.  Instantiating from the Product Class

k01 = Product('K01', 'cube', 1000)

You can see in the first row of Listing 3-5 how to define a novel c02

object. The prices and names of object c01 defined earlier, and the newly

defined c02, are printed in the second line. The price of object c01 in the

third line and the name of c02 in the fourth line are changed. Both objects’

names and values are printed in the last line. This example demonstrates

well that although instance variables of both objects were described in the

same class definition, their values are specific to the objects and can be

changed independently.

Chapter 3 The Class: How to Model the World

54

Listing 3-5.  Examples of Instance Variable Usage

k02 = Product('K02', 'small cube', 500)

print(k01.name, k01.price, k02.name, k02.price)

k01.price = 1100

k02.name = 'mid cube'

print(k01.name, k01.price, k02.name, k02.price)

In line 1 of Listing 3-6, the names and values of the objects are also

printed. The method implementing the discount is called on line 2. This

changes only the instance variables of c01 as it can be verified based on

the result of print statements in the last line.

Listing 3-6.  Example of Method Usage

print(k01.name, k01.price, k02.name, k02.price)

k01.reduce_price(30)

print(k01.name, k01.price, k02.name, k02.price)

An extreme case can also come up when a class contains only instance

variables. A good example of this case is the Address class shown in

Figure 3-5, since it consists only of instance variables: country, postcode,

city, and address. Listing 3-7 shows the definition of the class.

Address
address
city
country
zip_code

Figure 3-5.  Address class

Chapter 3 The Class: How to Model the World

55

Listing 3-7.  Address Class

class Address:

 def __init__(self, country, zip_code, city, address):

 self.country = country

 self.zip_code = zip_code

 self.city = city

 self.address = address

Objects have unique identifiers that do not change after their creation.

This identifier can be queried by the id() function, the result of which

is an integer. If the identifiers of two objects are equal, the objects are

the same. The methods and the instance variables of the objects can be

queried by the dir() function. Listing 3-8 shows the calls of the previous

two functions and the output of their results.

Listing 3-8.  Printing the Identifier and Attributes of an Object

product = Product('K01', 'cube', 1000)

print(id(product), dir(product))

�Relationships Among Classes
The example in Figure 3-6 demonstrates a case when the customer has one

billing address and one delivery address. Types of both addresses—i.e.,

their class—is Address.

Chapter 3 The Class: How to Model the World

56

Customer
email
name
phone

Address
address
city
country
zip_code

shipping address

invoice address

Figure 3-6.  Customer class

The definition of the class of Address was shown in Listing 3-7. As you

can see from the definition of the Customer class in Listing 3-9, references

to the addresses are realized as simple instance variables.

Listing 3-9.  Customer Class

class Customer:

 def __init__(self, name, email, phone,

 shipping_address,

 billing_address=None):

 self.name = name

 self.email = email

 self.phone = phone

 self.shipping_address = shipping_address

 self.billing_address = billing_address

Now, we would like to model the orders in an enterprise system by

classes, as shown in Figure 3-7.

Chapter 3 The Class: How to Model the World

57

Product
code
name
old_price
price
__init__(code, name, price): void
reduce_price(amount): void

Order
quantity
state
close(): void
post(): void

Address
address
city
country
zip_code

Customer
email
name
phone

product

invoice_address

shipping_address

customer

Figure 3-7.  The order and the associated classes

Let’s suppose for the sake of simplicity that only one product is ordered

in a single order, in any quantity. Listing 3-10 shows the definition of the

class modeling the order. The definitions of the other classes are already

known from the earlier examples.

Listing 3-10.  Order Class

class Order:

 def __init__(self, product, quantity, customer):

 self.product = product

 self.quantity = quantity

 self.customer = customer

 self.state = 'CREATED'

 def close(self):

 self.state = 'READYTOPOST'

 def post(self):

 self.state = 'SENT'

Chapter 3 The Class: How to Model the World

58

Listing 3-11 shows how to use the classes.

Listing 3-11.  Usage of the Class Model

address = Address(1020, 'Budapest', '1 Wombat Street',

"HUNGARY")

customer = Customer("Alice", "alice@wombatcorp.nowehere",

"0123456789", address)

product = Product('C01', 'Chocolate', 1000)

order = Order(product, 2, customer)

print(order.state)

order.post()

print(order.state)

order.close()

print(order.state)

An object first instantiated from the Address class was defined in

Listing 3-7. Then an object is instantiated from the Customer class in

Listing 3-9, which references the address object. In line 3, a Product

class is instantiated. Finally, an object is instantiated from the Order

class defined in Listing 3-3, which references both the customer and the

product objects. In lines 5, 7, and 9 the state instance variable of the

order is printed. In lines 6 and 8, the post and close methods of the order

object are called to transition between states, respectively.

�Properties
In the query of the instance variable values or in the assignment of values,

it may be required to execute some operations by the object before the

operation happens. In these cases, so-called properties can be defined.

Chapter 3 The Class: How to Model the World

59

The properties can return a value in the same way as an instance

variable of the object, but a method will be called in the background, and

the value of the property will be the output of the method. This is useful

in two typical cases: 1) we do not want to store the value, since it can be

computed from values of other instance variables, and 2) the instance

variable refers to an object that can be modified, and we do not want it

to change; therefore, a copy will be returned. Listing 3-12 shows that the

property of full_address representing the full address is computed from

the object’s other instance variables. The name of the property is the same

as the name of the method computing the property, and an @property

decorator is placed before the method’s definition. When a value is

required to be assigned to this attribute of the object, an error will occur.

Listing 3-12.  Readable Property

class Address:

 def __init__(self, zip_code, city, address, country):

 self._zip_code = zip_code

 self.city = city

 self.address = address

 self.country = country

 @property

 def full_address(self):

 return (f'{self.zip_code} {self.city}, '

 + f'{self.address}, {self.country}')

To define writable properties, in addition to the method performing

the reading, another method needs to be defined with the same name,

and whose decorator is the name of the method, with the setter name

separated from it by a dot. This is shown in Listing 3-13, wherein the

postcode is converted from a string to a number, and vice versa. The

writable properties enable you to check the type of the passed-in value,

Chapter 3 The Class: How to Model the World

60

for example. When the instance variable is to be deleted, a third function is

needed that has the same name as the ones of the methods defined so far;

its decorator begins with the same name as well and ends with a deleter

after the dot.

Listing 3-13.  Readable/Writable Property

class Address:

 def __init__(self, zip_code, city, address, country):

 self._zip_code = zip_code

 self.city = city

 self.address = address

 self.country = country

 @property

 def full_address(self):

 return (f'{self._zip_code} {self.city}, '

 + f'{self.address}, {self.country}')

 @property

 def zip_code(self):

 return str(self._zip_code)

 @zip_code.setter

 def zip_code(self, zip_code):

 self._zip_code = int(zip_code)

Listing 3-14 shows how to use the properties. They are accessed and

modified like instance variables. In reality, the methods with the property

decorator are called to get the value. The method with the zip_code.

setter decorator is called to set the value of the zip_code property, and

the actual value is assigned to the _zip_code instance variable.

Chapter 3 The Class: How to Model the World

61

Listing 3-14.  Get and Set Properties

address = Address(1020, 'Budapest', '1 Wombat Street',

"HUNGARY")

print(address.full_address)

print(address.zip_code)

address.zip_code='1011'

print(address.zip_code)

�Inheritance
Inheritance basically serves to reuse the code already written. If a new

class differs from an existing one only because it extra instance variables

and methods, it is not necessary to define the recurring parts again;

instead, the existing class can be referenced. In this case, the existing class

will be called a base class (or superclass), and the newly specified one will

be called a derived class (or subclass). The nature of the connection is

inheritance, and it can be said that the base class is a generalization of the

derived class. The opposite is specialization.

As shown in Figure 3-8, and as demonstrated earlier in Listing 3-13, the

Product class is extended to store the quantity of the product.

Chapter 3 The Class: How to Model the World

62

Product

code
name
old_price
price

__init__(code, name, price)
discount(amount)

QuantifiableProduct

amount
unit

__init__(code, name, price, amount, unit)

Figure 3-8.  Inheritance among classes

The original Product class was defined in Listing 3-3. The derived class

is defined by specifying the name of the base class in parentheses after the

class keyword and the class name. When a base class is not specified, the

object class will be the base class of the defined class. The object class

implements default functionalities, and it is—directly or indirectly—the

base class of all classes. The base class can be accessed by the super()

function. This function is used in the example shown in Listing 3-15 to call

the initialization method of the base class.

Listing 3-15.  Product with Quantity Class

class QuantifiableProduct(Product):

 def __init__(self, code, name, price,

quantity, unit):

 super().__init__(code, name, price)

 self.quantity = quantity

 self.unit = unit

Chapter 3 The Class: How to Model the World

63

When defining inheritance, the derived class conceptually also needs

to be a specialization of the base class. The simplest way to test this is to

determine whether the derived class would behave similarly wherever the

base class was present. This behavior must be transitive; namely, it should

be substitutable to the place of the base class’s base class. This principle is

supported by the two functions shown in Listing 3-16. The isinstance()

function call assists in deciding whether an object is an instance of a

particular class or any one of its derived classes. In turn, the issubclass()

function call assists in deciding whether another class is a derived class of

a particular class. In Listing 3-16, all the queried features are true.

Listing 3-16.  isinstance/issubclass Functions

m = QuantifiableProduct('C01', 'Chocolate', 1000, 500, 'g')

print('The m is an instance of the QuantifiableProduct class:',

 isinstance(m, QuantifiableProduct))

print('The m is an instance of the Product class:',

 isinstance(m, Product))

print('The QuantifiableProduct is a subclass of the Product

class:',

 issubclass(QuantifiableProduct, Product))

In the Python language, conceptual substitutability of the classes is

decided based on correspondence to protocols (implicit list of required

methods and properties), not only on base classes (duck typing). If

a class has methods required by the protocol, it is sufficient for it to

be substitutable. These protocol types can also be integrated into the

type system.

Chapter 3 The Class: How to Model the World

64

The Python language supports multiple inheritance. Several base
classes can be specified separated by commas. Since the order of
the base classes is determined dynamically, the specification order
of the base classes is considered when specifying this list. This list is
stored in the __mro__ instance variable of the class, and based on
this, the super() function will know what is the base class of the
particular object class in the given case.

�Nested Classes
Like in the case of functions, the definition of classes may also be present

within other classes. These nested classes (sometimes called inner classes)

are usually applied for storing some internal data of the containing class,

as shown in Listing 3-17.

Listing 3-17.  Nested Class

class Order:

 class Item:

 def __init__(self, product, quantity):

 self.product = product

 self.quantity = quantity

 def __init__(self, product,

 quantity, customer):

 self.item = self.Item(product, quantity)

 self.customer = customer

 self.state = 'CREATED'

Chapter 3 The Class: How to Model the World

65

 def close(self):

 self.state = 'CLOSED'

 def post(self):

 self.state = 'SENT'

The embedded class can be instantiated from externally too, as shown

in Listing 3-18. The Product class used in this listing was defined in

Listing 3-3.

Listing 3-18.  Instantiating an Embedded Class

product = Product('C01', 'Chocolate', 1000)

item = Order.Item(product, 2)

print(item.product, item.quantity)

Note  Classes are also objects in the Python language, and they are
instances of the type class. Classes that can create other classes
are called meta classes. Meta classes are the derived classes of the
type and not the object.

�Special Methods
You saw that when specifying a number or Boolean value with the print()

function that the value will somehow become a string. Up to now, when we

defined an object, it was printed on the screen as a string containing the

name and the identifier of the class without its instance variables. You will see

how to make your own object capable of returning an informative string. In

Listing 3-19 the __str__() method carrying out the conversion to the string

representation is defined. The method __str__() has a counterpart called

__repr__(), which is called when the resulting string will be displayed for the

developer.

Chapter 3 The Class: How to Model the World

66

Listing 3-19.  Special Methods for String Conversion

class Product:

 def __init__(self, code, nev, price):

 self.code = code

 self.name = nev

 self.price = price

 self.old_price = price

 def reduce_price(self, percentage):

 self.old_price = self.price

 new_price = self.price * (1 - percentage/100)

 self.price = round(new_price)

 def __str__(self):

 return (f'{self.name} ({self.code}): '

 + f'{self.old_price}=>{self.price}')

 def __repr__(self):

 return (f'<Product code={self.code}, '

 + f'name={self.name}, '

 + f'price={self.price}, '

 + f'old price={self.old_price}>')

Methods that both begin and end with double underscores, like the

previous methods, are called special methods in the Python language.

These methods often determine the behavior of a class when they are

used with built-in functions or operators applied on the object of the class.

One important method is __eq__(), which performs the comparison of

two objects. When we write a == b, in reality object a is performing an

operation, parametrized by object b as described in Chapter 1, and a new

Boolean type object is generated as a result. The previous comparison

is carried out exactly as if a method call to a.__eq__(b) was in its place.

Method __eq__() in Listing 3-20 works so that it compares only a single

Chapter 3 The Class: How to Model the World

67

instance variable when comparing products: the product code. As its exact

description and its current price are irrelevant from the point of view of

the match, these instance variables will be ignored. When the object is

removed, method __del__() of the class may be called, similarly to the

destructor of other programming languages. Python does not guarantee

that this method will be called before completing the program; therefore, it

is recommended to take this into account when implementing this method.

Listing 3-20.  Equals Special Method

class Product:

 def __init__(self, code, name, price):

 self.code = code

 self.name = name

 self.price = price

 self.old_price = price

 def discount(self, percent):

 self.old_price = self.price

 new_price = self.price * (1 - percent/100)

 self.price = round(new_price)

 def __str__(self):

 return (f'{self.name} ({self.code}): '

 + f'{self.old_price}=>{self.price}')

 def __repr__(self):

 return (f’<Product {self.name}({self.code}): '

 +f'{self.old_price}=>{self.price}>')

 def __eq__(self, other):

 if isinstance(other, self.__class__):

 return (self.code == other.code)

 return False

Chapter 3 The Class: How to Model the World

68

�Classes in Practice
Figure 3-9 shows the model of the classes we’ve defined thus far with type

information. In a larger system, it is important that the responsibilities of

the classes are properly selected.

Product
code: str
name: str
old_price: int
price: int
__init__(code: str, name: str, price: int): void
reduce_price(amount: int): void

Order
quantity: int
s
close(): void
post(): void

tate: str

Address
address: str
city: str
country: str
zip_code: str

Customer
email: str
name: str
phone: str

invoice_address

customer

product

shipping_address

Figure 3-9.  The order and the associated classes with types

Similarly to functions, classes can be extended with type annotations

and documentation. You can see the type annotations of the instance

variables from line 13 to line 16 in Listing 3-21.

You should document the class and record design decisions specifying

the responsibilities of the class, as discussed in the introduction. You can

see this documentation in Listing 3-21: the first line of the comment is the

single-line description of the class, then the detailed information on the

class follows in one paragraph, and finally a list of the instance variables

beginning with the word Attributes: appears.

Chapter 3 The Class: How to Model the World

69

Listing 3-21.  Class with Type Annotations and Documentation

class Order:

 """The data and state belong to the Order

 This order contains only a single product.

 Attributes:

 product: ordered product

 quantity: the quantity of the product

 customer: the customer

 state: state of the order; 'CREATED',

 'SENT' or 'CLOSED'

 """

 product: Product

 quantity: int

 customer: Customer

 allapot: str

 def __init__(self, product: Product, quantity: int,

 customer: Customer):

 """The state of the order is created"""

 self.product = product

 self.quantity = quantity

 self.customer = customer

 self.state = 'CREATED'

 def send(self) -> None:

 """The order sent by the supplier"""

 self.state = 'SENT'

 def close(self) -> None:

 """The order closed by the supplier"""

 self.state = 'CLOSED'

Chapter 3 The Class: How to Model the World

70

�Advanced Details
This section describes some technical details in reference manual style

and advanced concepts that may need more technical background.

�Class Variables, Class Methods,
and Static Methods
Python—similarly to other object-oriented languages—allows you to

assign variables and methods to a class. These class variables will be

specified directly in the class definition block, while class methods contain

an @classmethod decorator before the method definition, and the first

parameter is named cls by convention.

It can also be inferred from the parameter name that, in terms of

class methods, the first parameter of the method refers to the object

representing the class and has no access to the instance variables.

Variables defined in the class are available for the objects as global

variables related to the class. The Python language also enables you to

define static methods assigned to the same class, but they do not have

access to the instance variables or the class variables. The notions of the

static method and static instance variable of the popular object-oriented

programming languages correspond to the notions of the class method

and the class variable of Python, respectively. These programming

languages do not contain a notion similar to the static method in Python.

Listing 3-22 shows the class method and the static method. A single

counter is defined as a class variable that will always be increased from

the initialization method. This is the value of the class variable by which

our class method can return. Our static method, in turn, prepares a string

from the specified parameters, which will be utilized in the methods being

converted to the string. It can be observed that, to produce the result,

Chapter 3 The Class: How to Model the World

71

the static method processes only objects passed on to it as parameters in

its call.

Listing 3-22.  Order Class with Class and Static Methods

class Product:

 counter = 1

 def __init__(self, code, name, price):

 self.code = code

 self.__class__.counter += 1

 self.name = name

 self.price = price

 self.old_price = price

 def reduce_price(self, percentage):

 self.old_price = self.price

 new_price = self.price * (1 - percentage/100)

 self.price = round(new_price)

 @classmethod

 def product_count(cls):

 return cls.counter

 @staticmethod

 def generate_str(code, name, price, old_price):

 return f'{name} ({code}): {old_price}=>{price}'

 def __str__(self):

 product_str = self.generate_str(self.code, self.name,

 self.price, self.old_price)

 return f'{product_str}'

 def __repr__(self):

 product_str = self.generate_str(self.code, self.name,

Chapter 3 The Class: How to Model the World

72

 self.price, self.old_price)

 return f'<Product {product_str}>'

 def __eq__(self, other):

 if isinstance(other, self.__class__):

 return (self.price == other.price

 and self.code == other.code)

 return False

�Abstract Base Classes
The purpose of the abstract base classes (ABC classes) is to make possible

class definitions even in cases when the common base of several classes

is not suitable for instantiation. Missing properties or methods necessary

for operation are marked as abstract. This means that the class, which

is the specialization of this abstract base class, must define the features

and methods marked as abstract. Python reserves this notation primarily

for framework developers. When an abstract class is attempted to be

instantiated, an error occurs. ABC classes are intended to help the work of

the framework developers.

Listing 3-23 shows a Sales abstract base class, which can compute

the new price of a product using the method establishing the discount

rate. However, this method is abstract; how the result is computed will

only be known in the class implementing the particular sales. An example

for the sales class is called Sales4p1, making one free of charge out of

four products and inheriting the method of computing the product’s

price from the Sales class. The inherited method will use the newly

defined method for calculation. The exact meaning of the first line will be

explained in Chapter 6. For now, it is relevant only that ABC class and the

abstractmethod decorator are made accessible in the code.

Chapter 3 The Class: How to Model the World

73

Listing 3-23.  Abstract Base Class

from abc import ABC, abstractmethod

class Sales(ABC):

 @abstractmethod

 def calculate_discount(self, price, pieces):

 ...

 def discount_price(self, price, pieces):

 value = price * pieces

 discount = self.calculate_discount(price, pieces)

 return value * (1-discount)

class Sales4p1(Sales):

 def calculate_discount(price, pieces):

 return ((pieces//5) / pieces)

�Immutable Objects and Data Classes
If a class has a __hash__() method, it can be used as a key. The

requirement is that it has to be immutable, and for each case when

two objects are equal, the __hash__() method has to provide identical

results (the reverse of this requirement is not required to be fulfilled). In

Listing 3-24 you can see a modified version of the Address class, which

is immutable and has __eq__() and __hash__() methods. As writing

a correct and efficient hash function is not a trivial task, we will reuse

the built-in hash function of Python: the instance variables, which are

considered relevant for comparison, are packed into a tuple, and we return

the hash of this tuple.

Chapter 3 The Class: How to Model the World

74

Listing 3-24.  Implementing a Hash Function

class Address:

 def __init__(self, zip_code, city, address, country):

 self._zip_code = zip_code

 self._city = city

 self._address = address

 self._country = country

 @property

 def full_address(self):

 return (f’{self._zip_code} {self.city}, ‘

 + f’{self.address}, {self.country}’)

 @property

 def zip_code(self):

 return str(self._zip_code)

 @property

 def city(self):

 return str(self._city)

 @property

 def address(self):

 return str(self._address)

 @property

 def country(self):

 return str(self._country)

 def __eq__(self, other):

 if isinstance(other, self.__class__):

 return (self.zip_code == other.zip_code

 and self.city == other.city

 and self.address == self.address

Chapter 3 The Class: How to Model the World

75

 and self.country == self.country)

 return False

 def __hash__(self):

 �return hash((self.zip_code, self.city, self.address,

self.country))

Classes that are used only to store data and do not have any behavior

(i.e., do not have any methods) are called data classes. Automatic creation

of initialization, string conversion, and other special methods is made

possible by the @dataclass decorator. Listing 3-25 shows a version of the

Address class, wherein the @dataclass decorator is used.

Listing 3-25.  Data Class

from dataclasses import dataclass, field

@dataclass(frozen=True)

class Address:

 postcode: int

 city: str

 address: str

 country: str = field(default='HUNGARY')

 @property

 def full_address(self):

 return (f'{self.postcode} {self.city}, '

 + f'{self.address}, {self.country}')

address1 = Address(1020, 'Budapest', '1 Wombat Street')

This decorator constructs __init__ and all other necessary methods

based on the type annotation shown in lines 7–10. The generated class

will be similar to the class shown earlier in Listing 3-24. The parameter

frozen=True of the decorator means that instances of the Address class

Chapter 3 The Class: How to Model the World

76

cannot be changed after its creation. The country instance variable

demonstrates how it is possible to specify a default value using the field

function. The decorator necessary to define the data class and the latter

mentioned function can be made accessible using the first line of the

example (for details, see Chapter 6).

�Methods of Identifying Classes
One of the key issues during object-oriented modeling is how to identify

objects relevant to the program. One option is to analyze the text of the

existing documents: the nouns are searched in the text, and then the list

is refined. Refining means identifying the synonyms and then removing

the irrelevant, too general, or too specific names. Then, connections

between the classes identified are analyzed, and any missing classes are

identified (in most cases, these denote concepts considered trivial in the

particular field; therefore, they are not mentioned in the text). The detailed

description of the method can be found in the methodology called

Object Modeling Technique (OMT). As the last step, this methodology

recommends optimizing the classes formed here according to the

technical requirements.

A CRC card is an alternative tool to identify classes. The abbreviation

comes from the words of class, responsibilities, and collaborators. On the

card, the class name is located on the top, the scope of responsibilities of

the particular class is located on the left side, and the list of the cooperating

classes is on the right side. The small size of the card prevents too much

from being written on it for a particular class; thus, it helps to keep both

the class’s responsibilities and the number of classes cooperating with it

low. The method’s strength is that it makes the responsibility of the classes

explicit and it regards a class as more than just a set of data and behaviors.

Chapter 3 The Class: How to Model the World

77

Often in the first phase of object-oriented development only abstract

classes are identified that model business or domain-specific concepts.

Later (at implementation time), technical classes are mixed with these

classes, and the responsibilities of the business/domain-specific classes

may change.

�Class Diagrams
Class diagrams are the most well-known and widespread type of UML

diagram. The most fundamental element in the diagram is the rectangle

representing the classes; it is generally divided into three parts. The three

parts contain the following textual contents: the name of the class, its

instant variables, and its methods. Instant variables and methods are

written in single lines each usually by indicating their type too, similar

to the definition usual in programming languages. These lines can be

appended by further extra information, such as the default values of the

variables.

Connections between the classes are presented in the class diagram.

In diagrams, associations are marked by a continuous line. Inheritance,

in turn, is marked by a continuous line with an empty, closed arrowhead.

If the association has a direction (the connection is essential for one of

the classes only), an open arrowhead is present at the end of the line.

Two important types of connections between classes exist beyond the

former: dependence and containment. Dependence means that one class

somehow refers to another one. This is marked by a dashed line, at the

end of which an open arrowhead points to the reference. Containment

denotes that one class models some part of the other class. A continuous

line signifies this with a rhombus at the end of the containing class. The

strength of the containment is marked by a solid or empty rhombus,

depending on whether the connection is permanent (aggregation) or

temporary (composition), respectively.

Chapter 3 The Class: How to Model the World

78

�Key Takeaways
•	 In Python everything is an object: integers, strings,

functions, files, or any concept modeled by the

developer. The definition according to which objects

are initially constructed is called a class. In Python, the

words class and type are synonyms. Additionally, a class

is also an object.

•	 The objects represent elements of some conceptual

or physical system. The object in practice contains

instance variables that represent properties of the

elements and methods that are connected to these

variables. Instance variables and methods are called

attributes of an object. Objects instantiated from the

same class have the same set of attributes.

•	 There can be many kinds of connections between the

classes. A class can be defined as a refinement of an

existing class. This connection is called inheritance

as the new class inherits the attributes of the existing

one. There can be dependency between the classes as

one class references the attributes of other classes. The

most common form of the connections between classes

is that one class serves as the type of the attributes of

another class. This conceptually can mean association

or aggregation relation (although the technical

implementation of these does not differ). If a class

definition is embedded in another class definition, it

means that the embedded class is intended to be used

where it is defined.

Chapter 3 The Class: How to Model the World

79

•	 The objects implement language-specific behaviors

with special attributes. For example, this is the way the

behavior of operators between objects are defined.

Chapter 3 The Class: How to Model the World

81

CHAPTER 4

The Control Structure:
How to Describe
the Workflow

“Features of a programming language, whether syntactic or semantic, are
all part of the language’s user interface. And a user interface can handle
only so much complexity or it becomes unusable.”

Guido van Rossum

If different statements have to be executed based on various conditions

or if statements need to be executed repeatedly, then so-called control

structures can be used. They allow different statements to be executed

depending, for example, on the value of a Boolean expression. These

control structures are another important tool to enable programs to

express complex behavior. In this chapter, you will learn the four main

kinds of control structures of the Python language: the if statement, the

match statement, the while statement, and the for statement. All these

statements can be embedded into each other arbitrarily.

© Gabor Guta 2022
G. Guta, Pragmatic Python Programming, https://doi.org/10.1007/978-1-4842-8152-9_4

https://doi.org/10.1007/978-1-4842-8152-9_4

82

�if Statement
The simplest control structure is the if statement. The if statement allows

a series of statements to be executed depending on a condition formulated

in a Boolean expression. This control structure is an if statement followed

by statements depending on the condition with indentation (in the form

of a block). The if statement begins with an if keyword followed by the

Boolean expression and closed by a colon.

Optionally, another branch can be connected to this control structure,

which runs if the condition is not satisfied. This is denoted by an else

keyword located in the same indentation level as the if statement, with a

succeeding colon; the statements that follow are executed if the condition

is not satisfied.

You’ll recall the Product class was defined in Listing 3-20. If the value

of the discount is between the acceptable range (i.e., it is higher than 0

and lower than 99), the price of the product will be reduced. Otherwise, an

error message is displayed. Figure 4-1 shows the flow.

Chapter 4 The Control Structure: How to Describe the Workflow

83

Start

Defining product

Reading amount of
discount

End

Reduce the price
Message: Discount
value is too low or

too high

[else]
[0 < discount value <= 99]

Figure 4-1.  Simple if statement

In the first two lines of Listing 4-1, a product object is instantiated, and

the extent of the discount will be asked for.

Listing 4-1.  Simple if Statement

product = Product('K01', 'cube', 1000)

discount_value = int(input('Amount of the discount (in %)?'))

if discount_value > 0 and discount_value <= 99:

 product.reduce_price(discount_value)

else:

 print('Discount value is too low or too high')

Chapter 4 The Control Structure: How to Describe the Workflow

84

The if statement may contain multiple branches guarded by different

conditions. The branch following the first one starts with the elif

keyword, followed by a Boolean expression and a colon with indented

statements that run if the condition is satisfied. This can be repeated any

number of times. With many statements guarded by different conditions,

the one satisfied first will run. An else branch can be defined in this case

as well to the very end, which will be executed if none of the conditions got

satisfied.

Figure 4-2 shows that all kinds of invalid values are handled as separate

branches, and a corresponding error message is displayed.

Start

Defining product

Reading amount of
discount

End

Reduce the price

Message: Discount value is negative

Message: No discount

Message: Discount value is too high

Message: Price will be negative

[0 < discount value <= 99]

[discount value == 0]

[discount value < 0]

[99 < discount value <= 100]

[else]

Figure 4-2.  if statement with multiple branches

Listing 4-2 shows the corresponding Python code.

Chapter 4 The Control Structure: How to Describe the Workflow

85

Listing 4-2.  If Statement with Multiple Branches

product = Product('K01', 'cube', 1000)

discount_value = int(input('Amount of the discount (in %)?'))

if 0 < discount_value <= 99:

 product.reduce_price(discount_value)

elif discount_value < 0:

 print('Discount value is negative')

elif discount_value == 0:

 print('No discount')

elif 99 < discount_value <= 100:

 print('Discount value is too high')

else:

 print('Price will be negative')

As mentioned earlier, control structures can be embedded into

each other. In Listing 4-3, the top-level if statement has a branch

corresponding to the case when discount_value is not in the expected

range. This branch contains an if statement that checks whether the value

is too low or too high.

Listing 4-3.  if Statement with an Embedded if Statement

product = Product('K01', 'cube', 1000)

discount_value = int(input('Amount of the discount (in %)?'))

if discount_value > 0 and discount_value <= 99:

 product.reduce_price(discount_value)

else:

 if discount_value <= 0:

 print('Discount value is too low')

 else:

 print('Discount value is too high')

Chapter 4 The Control Structure: How to Describe the Workflow

86

�match Statement
The match statement is similar to the if statement. The main difference is

that it matches the resulting object of an expression to patterns to select

the branch to be executed, instead of evaluating Boolean expressions.

The match statement was introduced in Python 3.10. This statement starts

with a match keyword followed by the expression to which the patterns

are compared. After a colon, the block contains the list of the patterns.

The pattern in the simplest case can be a string, integer, Boolean value, or

None. Multiple patterns can be listed connected with the | symbol, which

indicates an “or” connection (i.e., at least one of the patterns must match).

The pattern is written between a case keyword and a colon, followed by

the block that will be executed if there is a successful match.

The pattern can contain variable names and an if keyword followed

by a guard condition (a Boolean expression), which can already

reference the variable names. This notation of guard condition enables

the practical combination of simple matching with the comparison, as

shown in the if statement. What else can be a pattern will be detailed

in the “Advanced Details” section.

You can also follow its functionality in Figure 4-3. In the first case, the

discount_value must be equal to 0, and in this situation the “No discount”

text will be displayed. In the second case, the discount_value must be

equal to 1, and in this situation, the “Only 1%” text will be displayed, and

the price will be reduced by 1 percent. The third case is similar to the

second case with the difference that here the discount_value must be

equal to 5 or 10 and the displayed text will be slightly different. The last

case contains the underscore character, which means that it will match

any value.

Chapter 4 The Control Structure: How to Describe the Workflow

87

Start

Defining product

Reading amount of
discount

End

Message: No discount

Message: Only 1%

Message: 5 | 10 is reasonable

Message: We allow only 0%, 1%...

Reduce the price

Reduce the price

[discount value == 1]

[discount value == 0]

[discount value == 5 | 10]

[else]

Figure 4-3.  match statement with literals

In Listing 4-4, you can see a match statement in which one of the four

cases can be selected.

Listing 4-4.  match Statement with Literals

product = Product('K01', 'cube', 1000)

discount_value = int(input('Amount of the discount (in %)?'))

match discount_value:

 case 0:

 print('No discount')

 case 1:

Chapter 4 The Control Structure: How to Describe the Workflow

88

 print('Only 1%')

 product.reduce_price(discount_value)

 case 5|10:

 print(f'{discount_value}% is reasonable')

 product.reduce_price(discount_value)

 case _:

 print('We allow only 0%, 1%, 5% or 10% discounts')

Figure 4-4 shows a similar example with more complex guard

conditions. This can be also realized with a match statement.

Chapter 4 The Control Structure: How to Describe the Workflow

89

Start

Defining product

Reading amount of
discount

End

Message: No discount

Reduce the price

Message: Within allowed range

Message: Discount value is negative

Message: Discount value is too high

Message: Price will be negative
[else]

[99 < discount value <= 100]

[0 < discount value]

[0 < discount value <= 99]

[discount value == 0]

Figure 4-4.  match statement with guard conditions

In Listing 4-5, you can see the combination of fixed patterns with

guard conditions, which enables the handling of more complex cases. In

the second, third, and fourth cases, the variable name x is assigned to the

integer expected to be evaluated in the guard conditions.

Chapter 4 The Control Structure: How to Describe the Workflow

90

Listing 4-5.  match Statement with Guard Conditions

product = Product('K01', 'cube', 1000)

discount_value = int(input('Amount of the discount (in %)?'))

match discount_value:

 case 0:

 print('No discount')

 case x if 0 < x <= 99:

 print(f'Within allowed range: {x}%')

 product.reduce_price(discount_value)

 case x if x <= 0:

 print('Discount value is negative')

 case x if 99 < x <= 100:

 print('Discount value is too high')

 case _:

 print('Price will be negative')

�while Statement
The while statement is intended to repeat a series of statements until a

condition is met. Such conditions can be, for example, reaching a value or

a certain event occurring. The common property is that you do not know

how many repetitions will lead to the desired result.

Figure 4-5 shows an example that can be implemented in Python with

the while statement.

Chapter 4 The Control Structure: How to Describe the Workflow

91

Reduce the Price

Reading Amount of
Discount

Defining product

Start

Reading Amount of
Discount

Displaying the
Message

End

[not (0 < discount value <= 99)]

[else]

Figure 4-5.  Simple while statement

In Listing 4-6 reading the extent of the discount is repeated until the

read value falls within the expected range. When this occurs, the repetition

will end, and line 6 will be executed.

Listing 4-6.  Simple while Statement

product = Product('K01', 'cube', 1000)

discount_value = int(input('Amount of the discount (in %)?'))

while not 0 < discount_value <= 99:

 print('Discount abount is too low or too high')

 �discount_value = int(input('Amount of the discount

(in %)?'))

product.reduce_price(discount_value)

Chapter 4 The Control Structure: How to Describe the Workflow

92

There are two lines in the previous example where data is read: the

value is read once always at the start, and second time it is read only when

it was not possible to obtain a value meeting the conditions on the first try.

If you wanted to read data only at one point, the read statement will have

to be placed inside the loop. Additionally, the condition must be evaluated

in a way that its value should be determined after the reading. Figure 4-6

represents this process visually.

Reduce the Price

Need to read new
value = True

Defining Product

Start

Reading Amount
of Discount

Displaying
Massage

End

Need to read new
value = False

[need to rad
new value]

[else]

[0 < discount value <= 99]

[else]

Figure 4-6.  while statement with a status variable

The condition of the loop has been modified in Listing 4-7 so now it

depends on a read_next variable. This is first true; then if the read value is

found to be inside the range, it changes to false. If its value is false, the next

repetition will not run. If it is not within range, its value will still be true;

hence, the reading is repeated.

Chapter 4 The Control Structure: How to Describe the Workflow

93

Listing 4-7.  while statement with a Status Variable

product = Product('K01', 'cube', 1000)

read_next = True

while read_next:

 �discount_value = int(input('Amount of the discount

(in %)?'))

 if 0 < discount_value <= 99:

 read_next = False

 else:

 print('Discount abount is too low or too high')

product.reduce_price(discount_value)

The assignment expression (alias walrus expression) was introduced

in Python 3.8, and it provides an elegant solution to the issue shown

earlier. In Listing 4-8 the assignment of the level of discount located in

the expression guards the while loop. The code will be more transparent;

therefore, the same value giving the statement will not have to be repeated

in two places or have not have to introduce a new variable to delay the

evaluation of the condition.

Listing 4-8.  while Statement with Assignment Expression

product = Product('K01', 'cube', 1000)

while not 0 < (discount_value

 := int(input('Amount of the discount (in %)?'))) <= 99:

 print('Discount abount is too low or too high')

product.reduce_price(discount_value)

Note that the assignment expression can be used in the while

statement, if statement, and similar context and cannot be used in a

stand-alone statement (as a trick it can be used in a parenthesized form,

but it is not recommended).

Chapter 4 The Control Structure: How to Describe the Workflow

94

The loop can be interrupted by a break statement. This is usually used

when we want to discontinue the loop based on another condition or if it

by default repeats infinitely many times. An infinitely repeating loop can be

constructed by using a Boolean expression evaluated always as true (e.g.,

a constant of true) as a conditional expression instead of a real variable,

which is changed to false at some point of the execution. Figure 4-7 shows

an example.

Terméket
leértékel

Defining Product

Start

Reading Amount
of Discount

Displaying
Message

End
[0 < discount value <= 99]

[else]

Figure 4-7.  while statement as an infinite loop

Listing 4-9 shows the Python code for this example.

Listing 4-9.  while Statement as an Infinite Loop

product = Product(‘K01’, ‘cube’, 1000)

while True:

 �discount_value = int(input(‘Amount of the discount

(in %)?’))

 if 0 < discount_value <= 99:

 break

Chapter 4 The Control Structure: How to Describe the Workflow

95

 else:

 print(‘Discount abount is too low or too high’)

product.reduce_price(discount_value)

The execution of the statements within the loop can be interrupted

by the continue statement too. This aborts the execution of the following

statements and starts a new cycle of the loop. This causes the re-evaluation

of the loop condition, and if it is still true, the statements start to be

executed again. The continue statement is usually used when the rest of

statements must be skipped; the loop condition must be evaluated based

on the changed environment or to continue an infinite loop.

Figure 4-8 shows an example of the solution being implemented in

this way.

Reducing the
Price

Defining Product

Start

Reading Amount
of Discount

Displaying Message

End

Displaying Message

[else]

[else]

[discount value > 99]

[0 >= discount value]

Figure 4-8.  while statement as an infinite loop (second version)

Listing 4-10 shows the implementation of the example. This

demonstrates the restart of the cycle after the execution of the if branches

is implemented with the help of the continue statements.

Chapter 4 The Control Structure: How to Describe the Workflow

96

Listing 4-10.  while Statement as an Infinite Loop (Second Version)

product = Product('K01', 'cube', 1000)

while True:

 �discount_value = int(input('Amount of the discount

(in %)?'))

 if discount_value <= 0:

 print('Discount abount is too low')

 continue

 if discount_value > 99:

 print('Discount abount is too high')

 continue

 break

product.reduce_price(discount_value)

After the while statement, there can be an else keyword and a block

that runs once if the condition is not met. The else branch is not executed

if the loop is ended with the break statement. Listing 4-11 shows this.

Listing 4-11.  while Statement with an else Branch

product = Product('K01', 'cube', 1000)

tries = 0

while tries < 3:

 �discount_value = int(input('Amount of the discount

(in %)?'))

 if 0 < discount_value <= 99:

 break

 else:

 print('Discount abount is too low or too high')

 tries += 1

Chapter 4 The Control Structure: How to Describe the Workflow

97

else:

 print('No more try')

 discount_value = 0

product.reduce_price(discount_value)

�for Statement
In a for loop, you can specify a repetition that corresponds to a range of

values (the range can even be infinite). This statement is started with a for

keyword followed by a target variable name; then an in keyword followed

by an expression that generates values assigned to the variable; finally, a

colon and the statements to be repeated with indentations appear. The

simplest and most frequent iterator is the range function. This function

makes the loop repeated by a fixed number, and the target variable name

will take a value from a fixed range of numbers. The range function can

have one, two, or three integer numbers as arguments.

•	 In the case of a single argument, the number is the

repetition number (from 0 to n-1).

•	 In the case of two arguments, the start and end of the

range are specified (from a to b-1).

•	 In the case of three arguments, also the size of the steps

can be specified.

Chapter 5 will cover what kind of expression can be used in the for

statement instead of the range function. The for statement can contain an

else branch that behaves similarly to those previously covered.

The upcoming examples will show that the price change of the product

is calculated for each value of discount in a specific range. Figure 4-9

shows the essence of this behavior.

Chapter 4 The Control Structure: How to Describe the Workflow

98

Displaying new priceReduce the PriceDefining Product

Start

Reading next
amount of

discount

End

[Till amount of discount
to process available]

[no more]

Figure 4-9.  A for statement with a fixed number of steps

Listing 4-12 shows an example of the value of the discount running

between 0 and 9. This is achieved by a range function that has a single

parameter, which represents the number of steps. In this case, the first

value assigned to discount_value is 0.

Listing 4-12.  A for Statement with a Fixed Number of Steps

for discount_value in range(10):

 product = Product('K01', 'cube', 1000)

 product.reduce_price(discount_value)

 print('Cost of the product:', product.price)

Listing 4-13 shows the value of the discount running between 1 and

10. This is done by providing two arguments to the range function: the first

value and the one after the last value.

Chapter 4 The Control Structure: How to Describe the Workflow

99

Listing 4-13.  A for statement with a Fixed Number of Steps with

Range Arguments

for discount_value in range(1,11):

 product = Product('K01', 'cube', 1000)

 product.reduce_price(discount_value)

 print('Cost of the product:', product.price)

It is important to emphasize that in the case of two arguments the

second argument is not the number of steps, but the first number that is

not included in the range.

Listing 4-14 shows the discounts of 1, 3, 5, 7, and 9 percent. In this case,

the range function is called with three arguments: the first value, the one

after the last value, and the step size.

Listing 4-14.  A for Statement with a Fixed Number of Steps with

Step Size

for discount_value in range(1,11, 2):

 product = Product('K01', 'cube', 1000)

 product.reduce_price(discount_value)

 print('Cost of the product:', product.price)

This is important to emphasize that in the case of two arguments, the

second argument is not the number of steps, but the first number that is

not included in the range.

Listing 4-15 shows an example of what the else branch of a for

statement looks like. It will be executed after the for loop successfully

iterates over each value in the specified range. If the inferred price is

considered too low, the if statement will break the loop, and the else

branch will not be executed.

Chapter 4 The Control Structure: How to Describe the Workflow

100

Listing 4-15.  A for Statement with the else Branch

TOO_LOW_PRICE = 900

for discount_value in range(10):

 product = Product('K01', 'cube', 1000)

 product.reduce_price(discount_value)

 if product.price < TOO_LOW_PRICE:

 break

 print('Cost of the product:', product.price)

else:

 print('All discount values are acceptable')

�Exception Handling
Exception handling helps to manage errors or exceptional cases separately.

Thus, you do not have to insert error handling sections between statements

executed during the normal executions. This helps to separate clearly

which statements belong to the normal operation and which belong to the

handling of exceptional or faulty operation. Errors can range from “division

by zero” to “file not found.” When handling an exception, the type of error

or problem is signaled by the system with the instantiation of an exception

object (or alternatively such an object created by the program itself as well).

The exception handling is built around four keywords: in the block

after the try keyword, there is the code, which is attempted to be executed;

in the blocks after the except keywords comes the statements managing

the exceptional cases; the block after the else keyword contains the

statements managing the nonexceptional cases; and statements in the

block after the finally keyword always run. The except keyword can

be followed by a class determining the type of the exception. Then it will

be executed only when the exception belongs to the particular class;

otherwise, it can be executed for any exception. Let’s start with the

simplest case in which only a try and an except branch exists.

Chapter 4 The Control Structure: How to Describe the Workflow

101

Figure 4-10 illustrates this concept.

Start

End

Reading Amount
of Discount Discount value = 0Invalid

value

Figure 4-10.  Exception handling

In Listing 4-16, the string read is converted to an integer. If this

conversion is unsuccessful as the string contains characters other than

numbers, the exception handling block is executed to set the discount

value to 0.

Listing 4-16.  A Simple Way to Handle Exceptions

try:

 �discount_value = int(input('Amount of the discount

(in %)?'))

except ValueError as e:

 print(f'Error: {e}')

 discount_value = 0

The except and the following block can be repeated with different

exception types, but then they have to be organized in a way that the

more specific class would be the preceding one. The block after the else

keyword is executed if no exception occurred. The finally block will

run even when the block belongs to the try statement, which can be

interrupted by break, continue, or return statements.

Chapter 4 The Control Structure: How to Describe the Workflow

102

Listing 4-17 shows a complete try statement. It can have three

different execution paths.

•	 A valid integer is given as input, and the block

corresponding to the try executes without interruption.

Then the else and finally branches are executed too

in this order.

•	 A noninteger string is given as input, and the block

corresponding to the try will be aborted with a

ValueError exception. Then the first except and the

finally branch are executed.

•	 An internal error occurs in the interpreter (actually this

scenario is close to impossible), and a SystemError

exception is raised. Then the second except and the

finally branch are executed.

Listing 4-17.  A Complete Way to Handle Exceptions

try:

 �discount_value = int(input('Amount of the discount

(in %)?'))

except ValueError as e:

 print(f'Error converting the input: {e}')

 discount_value = 0

except Exception as e:

 print(f'Error: {e}')

 discount_value = 0

else:

 print(f'The input value is a valid integer')

finally:

 print(f'The amount of discount will be {discount_value}')

Chapter 4 The Control Structure: How to Describe the Workflow

103

Triggering the exception can be achieved by the raise keyword

followed by the instantiation of an exception type. This can be left out

when in the exception handling block it is expected to reuse the currently

handled exception object. The exception object can be instantiated from

a class where the base class is the ExceptionBase. An exception can arise

at any point of the program. This means that the program is stopped there

and steps back to the outer block or block of the statements calling the

function until it finds a point where handling of this exception took place.

If there is no such point during the whole process, the program exits with

an error message.

Listing 4-18 demonstrates how to raise an exception from a function.

If due to any reason it cannot discount the product, the function raises an

exception. To handle the conversion error of the string to a number, there

is an exception handling block within the function itself. The outermost

exception handling block is located around the invocation of the function.

Listing 4-18.  Exception Handling with Raising an Exception

def reduce_price(product):

 try:

 amount = input('Amount of the discount (in %)?')

 discount_value = int(amount)

 except ValueError as e:

 raise ValueError('Not an integer')

 if discount_value > 0 and discount_value <= 99:

 product.reduce_price(discount_value)

 else:

 �raise ValueError('Discount abount is too low or too high')

try:

 product = Product('K01', 'cube', 1000)

 reduce_price(product)

Chapter 4 The Control Structure: How to Describe the Workflow

104

except ValueError as e:

 �print('Modification is failed for the following

reason:', str(e))

�Context Management
It occurs frequently in a program that some resources are needed to

be reserved and then released again. Such resources can be files or

network connections that are opened and then closed. As the resource

reservation and releasing pairs are easily messed up, this can be provided

automatically by the context management device. A with keyword is

followed by the creation of the object representing the resource to be

reserved and then released. In the block that follows, the resource can be

used; then when leaving the block, this is automatically closed or released.

Listing 4-19 shows how to open a file that you write to; then after

leaving the block, it will be automatically closed.

Listing 4-19.  Context Management

with open('orders.txt', 'wt') as orders_doc:

 orders_doc.write('Orders:')

The open function takes two parameters: a filename and a file mode

(wt means writing to a text file). It returns a file object that will be assigned

to the orders_doc variable name. In the second line, the Orders: string

will be written in the opened files. Without the context management

statement, the write statement must be followed by the method call

order_doc.close() to explicitly close the file.

Chapter 4 The Control Structure: How to Describe the Workflow

105

■■ Tip F ile objects can be used to manipulate files. When opening
a file by default, it is opened for reading in text mode. Files can be
opened for reading (denoted with r), for reading and writing (denoted
with +), or for writing (denoted with w to truncate an existing file, a
to append to an existing file, or x to create a new file). The mode
determines the type of the object expected by the file objects: in text
mode (denoted with t) strings are read and written; in binary mode
(denoted with b) bytes are expected.

The following are the five most important methods of the file object:

- �The read(n) method reads n characters or bytes from the file and
the entire file if the parameter is omitted.

- �The readline() method reads a line from a file, but only works
for the file opened in text mode.

- The write(v) method writes v into the file.

- The seek(n) method changes the position to n in the file.

- The tell() method returns the current position in the file.

�Recursion
Recursion is being covered with the control structures since its behavior is

similar to what can be achieved with a while statement; one has to use only

a combination of a function call and an if statement. From a function, it is

possible to invoke not only another function, but itself as well. This option is

used typically in cases where the task can be described as an initial step and

repetition of a step with changing parameters. Listing 4-20 solves recursively

the following problem: how many times can a product be discounted by 10

percent to make its price lower than a given sum? A function calculating this

Chapter 4 The Control Structure: How to Describe the Workflow

106

must examine whether the current price of the product is lower than the

expected price. If it is lower, it does not have to be discounted; if it is not true,

these steps have to be repeated with the discounted price (i.e., the result

will be that the price of the product will be reduced one more time). In this

second case, the function calls itself with modified arguments. After some

calls, these modifications in the arguments are expected to reach a value for

which the price of the product will fall below the expected price; thus, the

recursion will terminate. If the conditions are not properly specified or the

step does not make the values converge fast enough to fulfill the conditions,

the recursion will terminate after a certain number of calls (the default value

of allowed function call depth is typically 1000).

Listing 4-20.  Recursion

def how_many(single_pass_value, total_value,

 actual_value=None, count=0):

 print(actual_value, count)

 if actual_value is None:

 actual_value = single_pass_value

 if actual_value>=total_value:

 return count

 else:

 return how_many(single_pass_value, total_value,

 �actual_value*single_pass_value,

count+1)

print(how_many(1.1, 1.5))

�Loops in Practice
For loops, it is worthy to explain in the comments the reasoning behind

their expected termination and what the invariant is (a Boolean expression

that will always be true upon executing the loop). As shown in Listing 4-21,

Chapter 4 The Control Structure: How to Describe the Workflow

107

the loop will terminate once an applicable discount amount is specified.

During the execution of the loop, you can be sure that if the loop does

not repeat more times, the amount of the discount value will be inside

the range. This invariant could be useful in understanding or debugging

the loop.

Listing 4-21.  Comments at the Loop

product = Product('K01', 'cube', 1000)

read_next = True

attempts = 0

while read_next and attempts < 3:

 # Stop condition: will terminate after 3 attempts

 # Invariant: 0 < discount_value <= 99

 # or read_next

 �discount_value = int(input('Amount of the discount

(in %)?'))

 if 0 < discount_value <= 99:

 read_next = False

 else:

 print('Discount value to high/low')

 attempts += 1

product.reduce_price(discount_value)

If you are unsure about the termination of the loop, you can consider

introducing a counter to specify an upper number of attempts, as shown in

Listing 4-22.

Listing 4-22.  Loop with a Counter

product = Product('K01', 'cube', 1000)

read_next = True

attempts = 1

while read_next:

Chapter 4 The Control Structure: How to Describe the Workflow

108

 �# Stop condition: will terminate after 3 attempts in

worst case

 # Invariant: 0 < discount_value <= 99

 # or read_next

 �discount_value = int(input('Amount of the discount

(in %)?'))

 if 0 < discount_value <= 99:

 read_next = False

 else:

 print('Discount value to high/low')

 if attempts >= 3:

 �raise ValueError('No valid discount value after 3

attempt')

 attempts += 1

product.reduce_price(discount_value)

It is important to note that after the failed attempts the loop is left by

raising an exception; this prevents the execution of the statement after

the loop, which expects discount_value and does have a valid value.

Naturally, a loop with a counter can be expressed with a for statement too.

Advanced Details
This section describes mostly technical details in reference manual style

and some advanced concepts that may need more technical background.

�Matching Classes and Other Kinds of Patterns
In the case of class patterns, you can specify patterns that can match

to specific objects. The pattern contains the name of the class and in

parentheses positional or keyword arguments. This syntax resembles the

object instantiation syntax, but no object will be created in the current

Chapter 4 The Control Structure: How to Describe the Workflow

109

case. The sole purpose of this syntax is to describe that the expected

object belongs to a certain class and to specify its expected data attribute

values. The parameters are listed as keyword arguments, or in the case of

positional arguments the class definition must contain a special __match_

args__ class variable. This variable must contain the list attributes relevant

during the matching and their expected order in the pattern.

Listing 4-23 shows that the Product class contains the __match_

args__ variable to specify that the code, name, and price attributes can

be matched and in this order. In the first case, you expect an object in

which all three attributes match with values specified in the pattern. The

second pattern matches an object with fixed code and value attributes, but

any name. The third pattern matches an object with fixed code and name

attributes, but any value. The fourth pattern matches if the object does

meet any of the earlier criteria but has at least a K01 code.

Listing 4-23.  match Statement with Class Patterns

class Product:

 __match_args__ = ("code", "name", "price")

 def __init__(self, code, name, price):

 self.code = code

 self.name = name

 self.price = price

 self.old_price = price

product = Product('K01', 'cube', 1000)

product.name = input('Default name?')

product.price = int(input('Default price?'))

match product:

 case Product('K01', 'cube', 1000):

 print('No changes')

 case Product('K01', name, 1000):

 print('Has new name')

Chapter 4 The Control Structure: How to Describe the Workflow

110

 case Product('K01', 'cube', value):

 print('Same old name, but different price:', value)

 case Product('K01', name, value):

 print('Everything has changed')

Additional kinds of patterns can be used: lists and dictionaries (these

types will be explained in the next chapter). Listing 4-24 and Listing 4-25,

respectively, show examples analogous to Listing 4-23 but using lists and

dictionaries.

Listing 4-24.  match Statement with List Patterns

default_product_values = ['K01', 'cube', 1000]

default_product_values[1] = input('Default name?')

default_product_values[2] = int(input('Default price?'))

match default_product_values:

 case ['K01', 'cube', 1000]:

 print('No changes')

 case ['K01', name, 1000]:

 print('Has new name')

 case ['K01', 'cube', value]:

 print('Same old name, but different price:', value)

 case ['K01', name, value]:

 print('everything is changed')

Listing 4-25.  match Statement with Dictionary Patterns

default_product_values = {'id': 'K01', 'name': 'cube',

'price': 1000}

default_product_values['id'] = input('Default name?')

default_product_values['name'] = int(input('Default price?'))

match default_product_values:

 case {'id': 'K01', 'name': 'cube', 'price': 1000}:

 print('No changes')

Chapter 4 The Control Structure: How to Describe the Workflow

111

 case {'id': 'K01', 'name': name, 'price': 1000}:

 print('Has new name')

 case {'id': 'K01', 'name': 'cube', 'price': value}:

 print('Same old name, but different price:', value)

 case {'id': 'K01', 'name': name, 'price': value}:

 print('everything is changed')

�Exception Classes
As described earlier, exceptions are also objects. An exception will be

instantiated from classes, the base class of which is the BaseException

class or a derived class of it, the Exception. In Listing 4-26, a class

named ProductcodeError is defined with two extra instance variables

(the code and the message) storing error-specific information. The last

line is necessary to make the message instance variable to the string

representation of the exception.

Listing 4-26.  Custom Exception Class

class ProductCodeError(Exception):

 def __init__(self, code):

 self.code = code

 self.message = f'Code {code} does not exists'

 super().__init__(self.message)

The exception class defined in Listing 4-26 can be raised as shown

in Listing 4-27. The raised exception is also caught in the example. The

last line of the listing demonstrates how the string representation of the

exception can be printed.

Chapter 4 The Control Structure: How to Describe the Workflow

112

Listing 4-27.  Raising a Custom Exception

try:

 raise ProductCodeError('B1')

except ProductCodeError as e:

 print(f'Error: {e}')

�Context Manager Classes
When a context is being created, an expression that yields a context

manager class must be specified. The context manager classes contain two

special methods: __entry__() and __exit__(). The former creates the

context, while the latter destructs it.

In Listing 4-28, the DiscountAttempt class is defined that stores a

reference in its instantiation to a Product type object. When entering

the context managed block, it saves the instance variables of the product

object, and when exiting the context, it restores the saved values.

Listing 4-28.  Context Manager

class PriceReductionTry:

 def __init__(self, product):

 self.product = product

 def __enter__(self):

 self.price = self.product.price

 self.old_price = self.product.old_price

 return self.product

 def __exit__(self, exc_type, exc_val, exc_tb):

 self.product.price = self.price

 self.product.old_price = self.old_price

sub_cube = Product('T01', 'Substitute cube', 300)

Chapter 4 The Control Structure: How to Describe the Workflow

113

with PriceReductionTry(sub_cube):

 sub_cube.reduce_price(20)

 print(sub_cube)

print(sub_cube)

�Evaluating Strings
The Python language contains a built-in tool for calculating an expression

stored in the form of an arbitrary string. Listing 4-29 demonstrates the

evaluation of the expression covered in Chapter 1. It can be used to store

the expression to be calculated in a configuration file or in other form. As

the eval() makes possible the calculation of an arbitrary expression, you

should be careful regarding the source of the string to be calculated so as

not to give an opportunity to run malicious code.

Listing 4-29.  Evaluating a String

eval('5000 * 2 + 2000')

�Activity Diagram
The activity diagram is the workflow diagram of the UML standard. The

activity on the diagram—denoting typically a function call or execution

of an operation—is denoted by rectangles with rounded edges. The

beginning and end of the process are denoted by solid and empty circles,

respectively. These elements can be connected by a solid line having an

open arrowhead at one end, which denotes the succession of the elements.

The arrow points at the element later in time. The branches are denoted

by rectangles, and conditions are written between square brackets with

arrows pointing outward.

Chapter 4 The Control Structure: How to Describe the Workflow

114

�Key Takeaways
•	 if and match statements allow you to execute

different parts of the program based on the state of

the environment. If a statement evaluates a Boolean

expression and the result is true, it executes a block of

code. Additionally, any number of elif branches and a

single else branch can be attached to the if statement.

The match statement selects a branch based on the

matching of a pattern to the specified object, and the

branch containing the first matching pattern will be

selected.

•	 Other important control structures are loops, namely,

the while statement and the for statement. They make

possible the repetition of program steps. The while

statement executes the next block based on the result

of a Boolean expression. The for statement expects an

expression that defines how many times and for which

values the next block must be executed.

•	 There are control structures serving special purposes.

The exception handling helps to execute program

blocks only in the case of errors or unexpected

conditions. The objects triggering such blocks are

called exceptions, and the developer can use the raise

statement with an exception object to signal an error or

unexpected condition.

Chapter 4 The Control Structure: How to Describe the Workflow

115

CHAPTER 5

The Sequence: From
Data to the Data
Structure

“Computer programs usually operate on tables of information. ... In its
simplest form, a table might be a linear list of elements, when its relevant
structural properties might include the answers to such questions as:
Which element is first in the list? Which is last? Which elements precede
and follow a given one? How many elements are in the list? A lot can be
said about structure even in this apparently simple case ...”

Donald E. Knuth

Several data types have been described so far, such as numbers, Boolean

values, and strings. In addition, you learned how to define your own types,

i.e., classes. In the case of the Order class, you might realize that allowing it

to reference more than one product (or an arbitrary number of products)

in the model would be useful. To make this possible, you need a notation

to reference the objects with an index number or other identifiers. Such

classes or types able to reference a variable number of objects—based on

some structural property—are called data structures.

© Gabor Guta 2022
G. Guta, Pragmatic Python Programming, https://doi.org/10.1007/978-1-4842-8152-9_5

https://doi.org/10.1007/978-1-4842-8152-9_5

116

When elements are represented after each other in a row and you can

refer to them based on their position in the row, they are called sequences.

Two important sequence types exist in the Python language: one is the

list; the other is the so-called tuple. Lists can be modified, while tuples

have a fixed number of elements and cannot be modified after creation.

The sequence is rather a natural concept when you think of the many

situations when data to be processed is listed sequentially.

For the sequence, the succession of the objects provides the structure

of the class. Data structures have another important group in addition

to the sequences. In that group, it matters only whether a reference by a

key can be made or not to a particular object. The two most important

examples of this kind of structuring of data are the dictionary and the set.

They will be examined in this chapter too.

�Lists and Their Operations
Objects to be put into a list should be written in square brackets ([]) and

separated by commas. To read objects from the list—which is also called

“accessing an object”—you have to know their index numbers. As a list can

be modified, any number of new elements can be added later or can even

be deleted from it.

Listing 5-1 creates a list with five product names, as depicted in

Figure 5-1.

Listing 5-1.  List of Product Names

product_codes = ['cube', 'small cube', 'tiny cube',

 'large cube', 'XL cube']

Chapter 5 The Sequence: From Data to the Data Structure

117

product_name:list :str

:str

:str

:str

:str

2

0

1

3

4

Figure 5-1.  List of product names

Lists can contain more complex elements, for example Product

objects. Listing 5-2 creates a list with five Product objects (the Product

class was defined in Listing 3-20), as shown in Figure 5-2.

Listing 5-2.  List of Products

products = [Product('K1', 'cube', 1000),

 Product('K2', 'small cube', 500),

 Product('K3', 'tiny cube', 50),

 Product('K4', 'large cube', 1500),

 Product('K5', 'XL cube', 5000)]

Chapter 5 The Sequence: From Data to the Data Structure

118

products:list :Product

:Product

:Product

:Product

:Product

2

0

1

3

4

Figure 5-2.  List of products

Finally, Listing 5-3 creates a list containing elements of different types,

as shown in Figure 5-3. Such a list is usually used as a record, and variables

are stored in certain positions. In our example, the code of the product

is stored in the first position, the product name is stored in the second

position, and the Product object is in the last position. However, this is

generally not recommended as classes provide a much cleaner structure.

Listing 5-3.  List of Mixed Type Objects

mixed_list = [

 1,

 'cube',

 Product('K1', 'cube', 1000)

]

Chapter 5 The Sequence: From Data to the Data Structure

119

mixed_list:list :int

:str

:Product

Figure 5-3.  List of mixed type objects

Elements of the list can be accessed by writing their index number

after the variable names in square brackets (this is also frequently called

indexing or subscript notation). In most programming languages, the first

element gets the 0 as the index number, the second one the number 1, the

third one the number 2, and so on. This index number is always an integer

or an expression, the result of which is an integer. Listing 5-4 shows how

to access the first, second, and fifth elements. When the index number is

negative, the index number of the elements is counted from the end of the

list. In Listing 5-5, the -1 refers to the last element, and the -5 refers to the

first one. The positive index value can be calculated by adding the length of

the sequence to the negative index value.

Listing 5-4.  Accessing Objects in the List

print('First element:', product_names[0])

print('Second element:', product_names[1])

print('Fifth element:', product_names[4])

Chapter 5 The Sequence: From Data to the Data Structure

120

Listing 5-5.  Accessing Objects in the List with Indexing from the

End of the List

print('Last element:', product_names[-1])

print('Fifth element from the end:', product_names[-5])

A range of the elements of a list, i.e., a sublist, can also be accessed

(this operation is called slicing in Python). To do this, you must specify the

index number of the first element to be included in the new list, separated

by a colon from the index number of the first one not included in the new

list, as shown in Listing 5-6.

Listing 5-6.  Sublists of a List

print('Elements from the index 0 to the index 2:',

product_names[0:3])

print('Elements from the beginning to the index 2:',

product_names[:3])

print('Elements from the index 2 to the end:',

product_names[2:])

This operation is called slicing. When the index numbers preceding or

following the colon are omitted, the new list is meant from the first or last

element. When an additional colon is specified inside the square brackets,

the number of steps can be specified after the second colon. Listing 5-7

shows an example of stepping by two in the first expression, the result of

which is the partial list consisting of elements with index numbers of 1 and

3, respectively. An example is shown for the backward stepping by two in

the second expression. This time the initial and final index numbers must

be specified interchanged, the result of which is a new list consisting of

elements with the index numbers 3 and 1, respectively. When there is only

a single colon in the square bracket, a partial list identical to the original

list will be obtained.

Chapter 5 The Sequence: From Data to the Data Structure

121

Listing 5-7.  Sublists of a List with Increments

print('Every second elements from the index 1 to index 3:',

 product_names[1:4:2])

print('Every second elements reversed from the index 3 to

index 1:',

 product_names[3:0:-2])

print('All of the elements:', product_names[:])

The length of the list (the number of elements in it) can be queried

by the len() built-in function. As shown in Listing 5-8, it is possible to

append by the append() and extend() methods, depending on whether

one element or another list is appended. In the case of these methods,

the change takes place in the existing list; in other words, they create an

in-place modification of the list. When a new list is intended to be created

by appending two existing ones, using the + (concatenation) operator is

expected.

Listing 5-8.  List Operations

print('The product names list:', product_names)

print('Length of the products list:', len(product_names))

product_names.append('pluss cube')

product_names.extend(['cube v2.0', 'cube v3.0'])

print('The list after the inplace modification:',

product_names)

print('The concatenated lists:', product_names + ['CUBE 4++'])

print('The product names list:', product_names)

The deletion of the list elements can be carried out by the del keyword.

The remove(x) method of the list can be used to remove elements based

on their values. For example, as shown in Listing 5-9, the first element is

removed from the product_names in line 2 and the element with the value

cube v2.0 in line 3.

Chapter 5 The Sequence: From Data to the Data Structure

122

Listing 5-9.  Deleting from a List

print('The product names list:', product_names)

del product_names[0]

product_names.remove('cube v2.0')

print('The product names list:', product_names)

Lists can be easily processed in a for loop. Namely, sequences can also

be present instead of the range object. In this case, the cycle variable of the

for takes the values of this sequence. Listing 5-10 shows how to print each

product of a list.

Listing 5-10.  Processing a List in a Loop

print('Products for sale:')

for product in products:

 print(product)

Lists, like the numbers, are also objects; therefore, they can be

elements of other lists, too. (A list can also be added to itself technically,

but this doesn’t make too much sense.) It also must be noted that these

embeddings can be arbitrarily deep.

Listing 5-11 shows a list, and the elements of the list are other lists.

These embedded lists contain groups of product names. In the first

print call, the first group is displayed. Then in the next print call, the first

element of the first group is displayed. In this example, you can see that

the embedded list element is accessed the same way as the top-level

list element; in other words, the first index operator returns the first list,

and the second index operator its first element. After the first two print

statements, the second list is modified. After selecting the second element

of the top-level list, a new element is appended to the accessed list object.

After that, the second list (the group of medium-sized cube names) is

printed. Finally, the two elements of the second group are printed.

Chapter 5 The Sequence: From Data to the Data Structure

123

Listing 5-11.  Embedding a List

product_name_groups = [

 ['small cube', 'tiny cube'],

 ['cube'],

 ['large cube', 'XL cube'],

]

print('First group:', product_name_groups[0])

print('First element of the first group:',

 product_name_groups[0][0])

product_name_groups[1].append("Cube M+")

print('2nd group:', product_name_groups[1])

print('First and second elements of the 2nd group:',

 product_name_groups[1][0], 'and',

 product_name_groups[1][1])

As you can see, the list is also an object, the type of which is list.

Hence, it can also be generated by directly instantiating the list()

expression. From among the types shown so far, this is the first embedded

type that is mutable (i.e., it can be modified).

�Processing of a List
The Python language has a so-called list comprehension statement that

generates a list from a list-like object. This statement is usually applied

to execute some operation on the objects in the existing list and place

the result objects in a new list. In the list comprehension statement,

only the operations that have no side effects are recommended. The list

comprehension statement consists of the following elements written

between square brackets ([]): an expression, for keyword, target variable

name, in keyword, and iterator object. This has a meaning similar to the

Chapter 5 The Sequence: From Data to the Data Structure

124

for statement: the target variable takes the next element of the iterator

and calculates the expression before the for keyword. The result of the

calculation is placed in a newly generated list, which will be the result of

the whole list comprehension expression.

In Listing 5-12, from line 1 to line 3, from the product type objects

a product name list is generated with the notation previously covered.

The same thing is performed in line 4, but with the “list comprehension”

notation. The two equivalent lists are printed in line 5 to enable

verification of their equivalence.

Listing 5-12.  Processing a List

names = []

for product in products:

 names.append(product.name)

names_v2 = [product.name for product in products]

print(names, names_v2)

Let’s look at examples of how to make use of list comprehension.

List comprehension that is identical to the previous example is

shown separately in Listing 5-13 (only the variable name product was

renamed to p).

Listing 5-13.  List Comprehension

[p.name for p in products]

Listing 5-14 shows that extra filtering is added to the processing: it will

be part of the resulting list only if the expression after the if is evaluated

as true.

Listing 5-14.  List Comprehension with Condition

[p.name for p in products

 if p.price >= 1000]

Chapter 5 The Sequence: From Data to the Data Structure

125

Listing 5-15 shows how to prepare the product name pairs from

all combinations of the elements of the two lists where the price of the

first product is lower than that of the second. This example produces all

combinations without the if keyword as follows: the first variable of the

pair (p), which first references the first product object, will “step” to the

next object only after all the objects were enumerated as the value of the

second variable (p2); then objects are enumerated as the value of the

second variable repeatedly after the first variable takes a new value as long

as the last object is selected for the first variable.

Listing 5-15.  List Comprehension with Multiple Lists

[(p.name, p2.name) for p in products

 for p2 in products

 if p.price < p2.price]

Operations on sequences are efficiently supported by various built-in

functions. When you want to know whether all elements in a list are true

or not, you can use the all() function to query; and when the question

is whether the sequence has at least one true element, you can use the

any() function. When using it in connection with a list comprehension to

examine an arbitrary feature, as shown in Listing 5-16, you can figure out

whether a particular condition is satisfied or not for all elements or at least

for one of them.

Listing 5-16.  Operation on Lists of Boolean

print('All names contains "cube":',

 all(['cube' in p.name for p in products]))

print('Any names contains "cube":',

 any(['cube' in p.name for p in products]))

Chapter 5 The Sequence: From Data to the Data Structure

126

Listing 5-17 shows functions applicable for lists of number objects: the

selection of the maximum and minimum elements and the calculation of

the total amount.

Listing 5-17.  Operation on Lists of Numbers

print('Highest price:',

 max([p.price for p in products]))

print('Lowest price:',

 min([p.price for p in products]))

print('Avarage price:',

 sum([p.price for p in products])/len(products))

When using lists as iterators, two useful functions are worth

mentioning. One is the enumeration function, which generates another

iterable object from an iterable object; it will contain pairs of an index

number of the element and the original element. The other is a zip

function, which is able to join the iterable objects specified as a parameter

to a single iterable object. This object returns with the next elements of

the objects specified as parameters as a tuple of the elements. The iterator

object created by the zip function is able to produce as many elements as

the shortest of the function’s iterable parameters. Some cases for the use

of these functions were shown in Listing 5-18. A numbered enumeration

of the products is shown on lines 1 and 2. The number that should be

assigned to the first enumerated element can be specified in the start

parameter. An example is shown on lines 3–5 for how to process elements

of a list in pairs without an indexing operator: the original list is appended

to its copy shifted by one element. The difference between the pairs and

direction of the relation is displayed.

Chapter 5 The Sequence: From Data to the Data Structure

127

Listing 5-18.  Enumerating and Zipping Lists

for i, p in enumerate(products, start=1):

 print(i, p.name)

for p1, p2 in zip(products, products[1:]):

 print(abs(p1.price-p2.price), p1.name,

 '<' if p1.price < p2.price else '>', p2.name)

�Tuples
The tuples (or they are also called ordered lists or records) are read-only

lists with N elements. The tuples with two elements will be called pairs in

the book, those with three elements triples, and so on. A tuple’s definition

is similar to that of a list, but round parentheses are used instead of square

ones. The same operations can be used as operations to read the list.

Listing 5-19 shows a definition of a pair.

Listing 5-19.  Tuples Within Parentheses

products_fix = (Product('K1', 'cube', 1000),

 Product('K2', 'small cube', 500))

The Python language makes it easy to use tuples in its syntax because

it is not necessary to write the brackets in certain cases. As shown in

Listing 5-20, with two Product objects separated by a comma, you get a

tuple. This behavior can be checked according to Listing 5-21 by reading

its first element (or alternatively querying its type by using the type()

function).

Chapter 5 The Sequence: From Data to the Data Structure

128

Listing 5-20.  Tuples Without Parentheses

products_fix2 = Product('K1', 'cube', 1000), \

 Product('K2', 'small cube', 500)

Listing 5-21.  Accessing Objects in a Tuple

products_fix2[0]

This separation by comma notation can also be used to unpack

sequences. If the tuple defined previously (or any other sequence type)

is assigned to variable names separated by commas, the first variable

gets the first element, and the second variable gets the second one. The

number of the variables and the number of the sequence elements should

be the same. If the exact length of the sequence is unknown, a star can

be placed before the last variable name, which will contain the rest of the

sequence not assigned to variables. In line 1 of Listing 5-22, the unpacking

of a sequence with two elements is shown. The unpacking of a previously

defined list with five elements is shown on line 2, the way the first two

elements are assigned to variables k_1 and k_2, while the rest of the list will

be contained by the k_rest variable.

Listing 5-22.  Unpacking Sequences

k1, k2 = products_fix

k1, k2, *k_rest = products

The unpacking notation can be also used in for statements, as you will

see in the following sections.

Chapter 5 The Sequence: From Data to the Data Structure

129

Tip T uples with a single element can also be created. Since the
notation of this coincides with the notation of the parenthesized
expression, a comma should always be placed after a single element.
For example, a tuple with a single element (containing one product) is
defined by the product notation.

�Dictionaries
Dictionaries are useful types when elements are intended to be referenced

by an arbitrary value (usually called a key) instead of their index numbers.

You can define a dictionary by listing the key-value pairs in braces,

separating a key from a value by colons, and using a comma between the

different key-value pairs. It is important that the keys are immutable. Five

key-value pairs are listed in Listing 5-23. The keys are strings containing

two characters, while the values are Product objects.

Listing 5-23.  Dictionaries of Products

codes = {'K1': Product('K1', 'cube', 1000),

 'K2': Product('K2', 'small cube', 500),

 'K3': Product('K3', 'tiny cube', 50),

 'K4': Product('K4', 'large cube', 1500),

 'K5': Product('K5', 'XL cube', 5000)}

Listing 5-24 demonstrates that the reference is made to the dictionary

element with a key instead of a number, as you saw with lists.

Listing 5-24.  Accessing Objects in a Dictionary

codes['K1']

Chapter 5 The Sequence: From Data to the Data Structure

130

Assigning a value to a key of a dictionary if a key has already been

taken causes the value to be overwritten; otherwise, it will be added as a

new element. Modification of the dictionary is shown in the first line in

Listing 5-25, while addition of a new key-value pair to the dictionary is

shown in the same example in line 2.

Listing 5-25.  Modifying Values of a Dictionary

codes['K2'] = Product('K2', 'mini cube', 600)

codes['K6'] = Product('K6', '+ cube', 1000)

You can form the union with the | operator, as shown in Listing 5-26.

Elements of the dictionary can be updated also in groups by the update

method, as shown in lines 1 to 4 of Listing 5-27. Lines 5 to 8 have the same

effect, but an operator is used.

Listing 5-26.  Union of Dictionaries

new_codes = {'K1': Product('K1', 'starter cube', 900),

 �'K10': Product('K10', 'premium cube', 90000)}

codes | new_codes

Listing 5-27.  Updating Dictionaries

codes.update({

 'K7': Product('K7', 'cube v2.0', 2000),

 'K8': Product('K8', 'cube v3.0', 2900)

})

codes |= ({

 'K17': Product('K17', 'cube v12.0', 12000),

 'K18': Product('K18', 'cube v13.0', 12900)

})

Chapter 5 The Sequence: From Data to the Data Structure

131

When you want to process all elements in the dictionary like a

sequence in a for statement, three methods can be used. These three

different methods to iterate through the dictionary are as follows: the

key() enumerates the keys, the values() method enumerates the

values, and the items() enumerates the key-value pairs. The order of

the enumerated values is the same as the order of their addition to the

dictionary. A dictionary that retains the order of addition to the dictionary

is called an ordered dictionary. Listing 5-28 shows an example that iterates

over the keys of the codes dictionary and reduces the price of the products

by 3 percent.

Listing 5-28.  Enumerating Dictionary Keys

for k in codes.keys():

 codes[k].reduce_price(3)

 �print(f"New price of the product with {k} code is

{codes[k].price}")

In Listing 5-29 the same functionality is achieved, but this example

enumerates the values of the dictionary entries.

Listing 5-29.  Enumerating Dictionary Values

for p in codes.values():

 p.reduce_price(3)

 �print(f"New price of the product with {p.code} code is

{p.price}")

Finally, in Listing 5-30 the same functionality is achieved by

enumerating key-value pairs.

Chapter 5 The Sequence: From Data to the Data Structure

132

Listing 5-30.  Enumerating Dictionary Key-Value Pairs

for k, p in codes.items():

 p.reduce_price(3)

 �print(f"New price of the product with {k} code is

{p.price}")

Not only lists but dictionaries can be generated similarly to the list

comprehension. The difference compared to the notation of the list

comprehension is that the dictionary comprehension requires the usage of

braces instead of the square parentheses, and there must be independent

expressions for the calculation of the key-value pairs, separated by a colon.

In Listing 5-31, a dictionary is generated from the list of Product type

objects, which contains codes assigned to the product names.

Listing 5-31.  Dictionary Comprehension

{p.code: p.name for p in products}

�Sets
The behavior of the set type is equivalent to the mathematical set

concept. You can also think of a set as a dictionary without a value, which

corresponds to its notation. Listing 5-32 shows three set definitions.

Listing 5-32.  Sets of Strings

SIZES = {'LARGE', 'SMALL'}

OTHER = {'DISCOUNTED', 'LASTONES'}

THE_PRODUCT = {'LARGE', 'DISCOUNTED'}

The same operations can be performed between sets, which we are

used to perform between mathematical sets. The operations shown in

Listing 5-33 are in this order: union, section, and difference. And the

same operation is shown in Listing 5-34 only realized with method calls.

Chapter 5 The Sequence: From Data to the Data Structure

133

Listing 5-33.  Operations Between Sets with Operators

labels = SIZES | OTHER

the_size = THE_PRODUCT & SIZES

print(the_size)

opposite = labels - THE_PRODUCT

print(opposite)

Listing 5-34.  Operations Between Sets with Methods

labels = SIZES.union(OTHER)

the_size = THE_PRODUCT.intersection(SIZES)

print(the_size)

opposite = labels.difference(THE_PRODUCT)

print(opposite)

A set is a modifiable type; therefore, if it is intended to be used as a key,

it should be converted to a read-only type. Read-only sets are notated by

the frozenset type. The simplest way to create them is to convert existing

sets, as shown in Listing 5-35.

Listing 5-35.  Immutable Sets as Keys

categories = {

 frozenset({'DISCOUNTED', 'SMALL'}),

 frozenset({'DISCOUNTED', 'LARGE'}),

 frozenset({'LARGE'}),

 frozenset({'SMALL'}),

 frozenset()}

frozenset({'LARGE', 'DISCOUNTED'}) in categories

Chapter 5 The Sequence: From Data to the Data Structure

134

Tip  In the definitions of the list, it is allowed in Python to have
an extra comma after the last element in tuples, dictionaries, and
set values. This is useful because if each element is present on a
separate line, there is no need to deal with correcting the previous
line in the case of adding an extra item or removing an item at the
end of the list.

�Copying Sequences
It is important to be aware that these data structures can be modified.

Since variable names are just references to the objects in Python, in the

case of an assignment to another, the variable name refers to the same

object. This means that after the modification through referencing with the

new variable name, the modification will be visible also when accessing

the object with the original variable name.

If you want to assign a copy of an object to a new variable name, a new

object has to be instantiated in a way that the content of source is copied.

Objects in the data structure generated in this way continue to be identical,

but now, in turn, in case the data structure itself got changed, this will have

no effect on the original data structure. This means that new elements

can be added, elements can be removed, and the order or other structural

features can be changed, and they will apply only to the newly instantiated

object. Listing 5-36 demonstrates this theory and shows various ways of

copying lists. In the assignment in line 2, the object referenced by the b

variable name is identical with that referenced by a. In the assignment in

line 3, the object referenced by the c variable name is a copy of the object

referenced by a. An alternative notation for copying the a list is shown in

Chapter 5 The Sequence: From Data to the Data Structure

135

line 4. This alternative notation means that a partial list is generated from

the list that contains the elements from the first element of the list to the

last one. The identity of the references is examined in the last line: based

on the above, a and b are identical, while the rest are different.

Listing 5-36.  Copying Lists

a = ['S cube', 'M cube', 'L cube']

b = a

c = list(a)

d = a[:]

print('Do a and b reference to the same object?', a is b)

print('Do b and c reference to the same object?', a is c)

print('Do a and d reference to the same object?', a is d)

Since the objects referenced by the copied lists are identical, any

changes in the mutable elements will continue to be visible in the source

data structure. Thus, the previous copy mechanisms are called a shallow

copy. Listing 5-37 shows the effect of the shallow copying mutable

objects. In this example, you are creating a list from lists of strings called

orig_names and shallow copying it to the list copied_list. Elements are

added to the list orig_names and its last embedded list. When the lists

are printed, the first addition is visible only in the original list, while the

second addition is also visible in the copied list. This is because even the

list copied_name is a new list; it references the same objects as the original

list, and some of the referenced elements were mutable.

Chapter 5 The Sequence: From Data to the Data Structure

136

Listing 5-37.  Copying Lists with Mutable Elements

orig_names = [['XS cube', 'S cube'], 'M cube', ['L cube',

'XL cube']]

copied_names = orig_names[:]

orig_names.append('+ cube')

orig_names[2].append('XXL cube')

print('Original list:', orig_names)

print('Copied list:', copied_names)

If you want to prevent this behavior, you have to duplicate all of the

elements, not just the top-level object. This is called a deep copy; you can

find further information in the “Advanced Details” section.

�Sequences in Practice
For data structures, what is worth documenting are the constraints on

the elements in the comments (for example, the price of every product

is at least $100 USD) or their layout (for example, the list always contains

an element, and they are ordered). Listing 5-38 shows three comments

on lists: the second comment is useful for its reader as it confirms the

properties of the list, which can be inferred from the initial values; and the

first and third ones are useful as the described properties are hard to guess

from the values.

Listing 5-38.  Commenting Sequences

unordered positive integers

daily_sales = [1, 2, 4, 7]

monotonically increasing positive integers

cummulative_daily_sales = [1, 3, 7, 14]

unordered signed integers

changes_in_daily_sales = [1, 1, 2, 3]

Chapter 5 The Sequence: From Data to the Data Structure

137

�Advanced Details
This section describes mostly technical details in reference manual style

and some advanced concepts that may need more technical background.

�Iterable Objects
Iterability as a feature of objects has been mentioned several times without

its exact definition. A class is iterable if it is able to return a so-called iterator

object; i.e., it has an __iter__() method. Iterator objects, in turn, are

objects that have a __next__() method giving a “next” element. The iterator

objects also have a method, similarly to the iterable classes; this method is

able to return an iterator—in this case, it means itself. Listing 5-39 shows an

example.

Listing 5-39.  An Iterable Class

class Items:

 class Item_iter:

 def __init__(self, item):

 self.i=iter(item)

 def __iter__(self):

 return self

 def __next__(self):

 return next(self.i)

 def __init__(self, items):

 self.items = list(items)

 def __iter__(self):

 return Items.Item_iter(self.items)

Listing 5-40 shows an instantiation of the Items class. Then a for

statement prints the elements of the items object.

Chapter 5 The Sequence: From Data to the Data Structure

138

Listing 5-40.  Iteration with for Statement

items = Items(('K1', 'K2', 'K3'))

for item in items:

 print(item)

Finally, Listing 5-41 shows an emulation of the behavior of the for

statement: an iterator corresponding to the items object is retrieved. Then

the objects emitted by this iterator are printed until no StopIteration

exception is raised.

Listing 5-41.  Manual Iteration

item_iter = iter(items)

print(next(item_iter))

print(next(item_iter))

print(next(item_iter))

print(next(item_iter))

�Deep Copy of Data Structures
If you want to fully retain a data structure before modification, you have

to create a so-called deep copy. This technically means that not only a

single object has to be copied, but all the objects it refers to. This has to

be repeated recursively if the referenced objects refer to further objects.

Python has built-in tools to accomplish this, as shown in Listing 5-42.

The meaning of the first line will be explained in Chapter 6. The copy

function creates a shallow copy, while the deepcopy function creates the

deep copy. At the end of the listing, it can be verified from the results of the

print statements that the deep copied list was not affected by any of the

modification of the original data structure.

Chapter 5 The Sequence: From Data to the Data Structure

139

Listing 5-42.  Shallow and Deep Copy

from copy import copy, deepcopy

orig_names = [['XS cube', 'S cube'], 'M cube', ['L cube',

'XL cube']]

shallow_copied_names = copy(orig_names)

deep_copied_names = deepcopy(orig_names)

orig_names.append('+ cube')

orig_names[2].append('XXL cube')

print('Original list:', orig_names)

print('Shallow copied list:', shallow_copied_names)

print('Deep copied list:', deep_copied_names)

�Generator Functions and Coroutines
Generator functions are functions that produce a sequence of return

values instead of a single return value. Syntactically it looks like a function

that returns a value, and then it continues its execution. This is realized

technically by the functions themselves returning an iterable generator

object. The function body will be executed when the next element is

requested from the generator object. The generator object stores the state

applicable in the moment of returning the element, and this state is used

to produce the next element. Generator functions have the advantage

against the precalculated lists that they do not have to reserve memory,

because they always calculate only the next element. After returning the

last element, the request of the next one raises a StopIteration exception.

Listing 5-43 shows a generator function, the result of which are values

of a particular Product discounted by different amounts.

Chapter 5 The Sequence: From Data to the Data Structure

140

Listing 5-43.  A Generator Function

def discount_price():

 for discount_value in range(10):

 product = Product('K01', 'cube', 1000)

 product.reduce_price(discount_value)

 yield product.price

for price in discount_price():

 print(price)

Figure 5-4 shows the actual execution of the discount_price generator

function. The vertical lines correspond to objects, and the vertical lines

represent function calls (and returns). The time flows from the top of the

figure to the bottom. The iterator object appears first in a lower position

as it is created only at that point after the discount_price() generator

function was called.

Chapter 5 The Sequence: From Data to the Data Structure

141

Main discount_price()
function

discount_price()
iterator

for price in discount_price():

yield price

print(price)

next

print(price)

print(price)

next

next

yield price

yield price

Figure 5-4.  Execution of a generator function

Note T he range class and the enumerate() and zip() functions
shown previously are all realized by a generator function. The
advantage of this is they don’t have to calculate elements of the
sequence in advance, and they do not occupy space in memory.

Chapter 5 The Sequence: From Data to the Data Structure

142

A generator function can also be specified by a notation similar to that

used in list comprehension. The difference will be that round parentheses

are used instead of square ones. In Listing 5-44, a generator object is

produced from the list of Product objects, and this will generate the code-

product name pairs.

Listing 5-44.  Generator Expression

((p.code, p.name) for p in products)

Coroutines are special generator functions that not only yield a

value, but also receive one. Recent Python versions support two kinds

of coroutines: generator-based coroutines and native coroutines. The

first one is the “earlier” feature, which contains a yield expression or a

yield from expression. This variant is discussed in this section, while

the relatively new native coroutine is discussed in detail in Appendix

C. You must note that coroutines form the basis of the programs with the

so-called asynchronous behavior. Listing 5-45 shows a coroutine, the

result of which are values of a particular Product discounted to different

extents.

Listing 5-45.  A Coroutine

def discount_price():

 product = Product('K01', 'cube', 1000)

 discount_value = 0

 while True:

 product.reduce_price(discount_value)

 discount_value = yield product.price

 if discount_value is None:

 return

Chapter 5 The Sequence: From Data to the Data Structure

143

�Functional-Style Manipulation of Lists
The map function provides a functionality similar to the list

comprehension. The filter function is able to create a list from an iterable

expression that contains only the elements fulfilling a condition. In

Listing 5-46, the function map() applies the function specified as the first

parameter to each element of the iterable expression specified as the

second parameter and generates a new list from them. The filter()

function receives a Boolean function as a first parameter and an iterable

object as a second parameter. If the Boolean function evaluates to true on

the value returned by the iterable object, the value will be included in the

list to be generated, otherwise not.

Listing 5-46.  Functions for Functional-Style List Processing

(list(filter(lambda p: p.price >= 1000, products)),

list(map(lambda p: p.name, products)))

�Multiplicity of Class Diagram Connections
A relationship between two classes can be depicted as a multiplicity

property that an object instantiated from one class is referencing multiple

objects instantiated from the other class. This multiplicity property

can be represented by a notation drawn next to the arrows, as shown

in Figure 5-5a. It is frequently the case that you do not display the class

performing the data storage, as shown in Figure 5-5b. This meaning of the

two figures is the same, but the second one is most common.

Chapter 5 The Sequence: From Data to the Data Structure

144

list ProductOrder

Order Product

a) Products in the list

b) Products in the Order

products

1 0..*

1

products

0..*

Figures 5-5a and 5-5b.  Relation between products and orders

�Sequence Diagram
The sequence diagram can depict how objects are communicating with

each other. A so-called lifeline on the diagram—denoting typically an

executing function object or an object that has methods that are called—

is denoted by rectangles with a vertical line under them. The horizontal

lines with arrowheads show the communication between the lifelines.

The timing of the communication is represented by the vertical order

of the arrows as the first call is the topmost one and the last one is the

bottommost one. The vertical lines show that the objects are available, and

their parts can be thickened to show they are actively executed.

Chapter 5 The Sequence: From Data to the Data Structure

145

�Key Takeaways
•	 Lists are the simplest and most frequently used data

structures, which stores objects with before/after

relationships. Objects in the lists are referenced by their

index number.

•	 Dictionaries are probably the second most important

data structure, in which you map key objects to value

objects. Objects in the dictionary can be referenced

by keys. Sets can be considered a special case of

dictionaries with no value objects assigned to them;

only the presence or absence of the keys can be

queried.

•	 Iterable objects can return a sequence of elements

one by one and signal if there are no more elements.

An object with this kind of property is expected by

the for statement. The data structures described in

this chapter can behave as iterable classes, and their

instances can return sequences of the stored objects in

some order (in the case of lists, this happens according

to the index numbers of the objects, while in the case

of dictionaries it happens in the addition order of the

objects).

Chapter 5 The Sequence: From Data to the Data Structure

147

CHAPTER 6

The Module:
Organization of
Program Parts into
a Unit

... reuse components that are already available, compose applications
from big chunks of premade libraries, glue them together, and make sure
it works, even without fully understanding how. Although many would
reject this point of view, it is the de facto style, mostly unconsciously, behind
today’s biggest software projects.

Jaroslav Tulach

When developing computer programs, perhaps the most important

question is how to organize your program into logical units. Two of

the three most important constructions supporting this goal, namely,

functions and classes, have already been discussed. What has not been

discussed yet is the next organizational unit above the class, the module.

The related variable names, functions, and classes are usually organized

© Gabor Guta 2022
G. Guta, Pragmatic Python Programming, https://doi.org/10.1007/978-1-4842-8152-9_6

https://doi.org/10.1007/978-1-4842-8152-9_6

148

into a module. In this chapter, we will discuss the concepts of modules and

packages, how they can be imported, the built-in and third-party packages,

how packages can be created, and what kind of tools can help to make

packages high quality.

�Built-in Modules
Python comes with more than 200 built-in modules, including everything

from specialized data structures to relational database management

functionality. This is also the reason behind one of the slogans of Python,

namely, “batteries included.”

You reference a module by using the import keyword and specifying

the name of the module. The module containing the date type is imported

on line 1 of Listing 6-1 and used on line 2. Modules are also objects, so, for

example, classes defined in them can be accessed by putting a dot between

the module name and the class name.

Listing 6-1.  Importing a Module

import datetime

datetime.date(2020,2,2).strftime('%Y.%m.%d.')

When a module is frequently used and its name is lengthy, a shorter

name can be defined after the as keyword. As shown in Listing 6-2, the

example module name is shortened to dt.

Listing 6-2.  Importing a Module with a New Name

import datetime as dt

dt.date(2020,2,2).strftime('%Y.%m.%d.')

Chapter 6 The Module: Organization of Program Parts into a Unit

149

Variable names, functions, and classes can be imported selectively

from a module. It is also possible in this case to assign another name to the

imported object, as shown in Listing 6-3 and Listing 6-4.

Listing 6-3.  Importing an Object from a Module

from datetime import date

date(2020,2,2).strftime('%Y.%m.%d.')

Listing 6-4.  Importing an Object from a Module with a New Name

from datetime import date as Date

Date(2020,2,2).strftime('%Y.%m.%d.')

During the import, even multiple names of classes, functions, or

variable names can be specified after the from keyword in a list. The

difference between dates is a time difference object. Listing 6-5 shows how

to test whether the difference of two dates is more than 30 days.

Listing 6-5.  Operations with Date Type

from datetime import date, timedelta

date(2020,2,2)-date(2020,1,1) > timedelta(days=30)

The float type used so far is not suitable to store financial data, as

it performs rounding of the decimal places based on standards usual in

mathematics. This is the reason why only an integer type is used for this

purpose so far. Therefore, to store financial data, the decimal package

is recommended. This package defines the decimal type that can be

used, as shown in Listing 6-6. Decimal numbers are specified generally

as strings, and the value of the decimal object will match exactly with

the number described by the string. Listing 6-7 compares the float type

and decimal type. The first value will be a number, which approximates

1.100000000000000088, while the second one will be exactly 1.1.

Chapter 6 The Module: Organization of Program Parts into a Unit

150

Listing 6-6.  Importing Decimal Types

from decimal import Decimal

VALUE_DEC = Decimal('9.45')

Listing 6-7.  Comparing the Precision of Number Types

FLOAT_NUM = 1.1

FINANCIAL_NUM = Decimal('1.1')

print(f'{FLOAT_NUM:.50f}, {FINANCIAL_NUM:.50f},')

The result of an operation between two decimals (i.e. how the result is

rounded and the number of its stored digits) depends on the environment of

the calculation. In Listing 6-8, the environment of the calculation is accessed

by the getcontext() function. The listing shows how to use the two instance

variables from among the numerous settings: the prec variable specifies

the number of stored digits (before and after the decimal point together),

and the rounding variable controls the rounding rules (to apply the rules

used in standard rounding or in banker’s rounding, the ROUND_HALF_UP or

ROUND_HALF_EVEN value has to be set, respectively). These settings affect

operations only on decimal numbers. During the operations it can happen

that the decimal digits produced by the calculation exceed the precision of

the original numbers. This can be restored to the accuracy specified in the

parameter by the quantize() method.

Listing 6-8.  Operations with Decimal Type

from decimal import getcontext, ROUND_HALF_UP

getcontext().rounding = ROUND_HALF_UP

getcontext().prec=28

PRICE=Decimal('33')

VAT=Decimal('1.1')

total=(PRICE*VAT).quantize(Decimal('0.01'))

print(f'{total:.20f}')

Chapter 6 The Module: Organization of Program Parts into a Unit

151

The other important module—containing various extra data

structures—is a collection. The deque type—a double-ended queue—is

imported in Listing 6-9. This is a list type optimized to be manipulated

from both sides (beginning and end) by adding new elements or removing

elements. In line 1 of Listing 6-10, a deque with four elements is assigned

to the variable name index_numbers. A new element is appended to this

list in line 2 in the usual way. Then the first element, whose value is 1 in

this example, from the beginning of the index_numbers is removed in the

last line.

Listing 6-9.  Importing the Deque Type

from collections import deque

Listing 6-10.  Operations with the Deque Type

index_numbers = deque((1, 2, 3, 4))

index_numbers.append(5)

index_numbers.popleft()

Python searches for the module to be imported first among the built-

in modules. If it cannot be found here, try to load it from the location

listed in the path variable of the sys module. (Its value can be checked by

printing the value of the path variable name after executing the from sys

import path statement.) These are as follows: the current directory (i.e.,

the directory from which your Python program is started); the directories

in the environmental variable PYTHONPATH, which was set by the operating

system; and the directories specified during the installation.

Chapter 6 The Module: Organization of Program Parts into a Unit

152

�Defining Modules
It is simple to prepare your own module in Python as the file containing

the source code is considered a module by default. Importing a module

in Python means that the source code of that module is executed. To turn

a stand-alone Python script into a reusable module, you must make its

functionalities accessible through functions or classes. Additionally, the

statements that are not intended to be executed when the file is used as a

module must be guarded by an if statement. The conditional expression

of this if statement is typically __name__=='__main__'. The exact meaning

of this if statement is as follows: if the file is imported as a module, the

name of the module is assigned to the __name__ variable name, while if the

file is executed directly as a script, its value is the __main__ string.

The upcoming listings contain only the most relevant fragments of the

files from this point. Listing 6-11 references the classes associated with

the Order class (in Listings 3-7, 3-13, 3-17, and 3-20) organized into a file

named model.py. You can download the complete file of this module. The

first line of the fragment is the condition, which is needed to ensure the

rest of the code runs only when launched as an independent program.

Listing 6-11.  Fragment of the model.py File

if __name__=='__main__':

 customer = Customer('X Y',

 'xy@axonmatics.com',

 '1/1234567',

 Address('1011', 'Budapest',

 'Wombat street 1st', 'HUNGARY'))

 products = [

 Order.Item(Product('A', 'cubE', 1), 2),

 Order.Item(Product('B', 'cubF', 3), 5)

]

 order = Order(products, customer)

 print(order)

Chapter 6 The Module: Organization of Program Parts into a Unit

153

Modules can be run from a command line by specifying the filename

after the Python command. If your newly generated file is run with the

python model.py command, the defined Order type object will appear on

the screen.

Note I n this chapter, some of the examples do not consist of source
code written in the Python language but commands writable to the
operating system command prompt or shell. We covered how to
access the command line on a particular operating system at the end
of the Introduction chapter.

Commands that need to run Python may be different depending on
the operating system and the environment. After installation, under
a Windows OS, the py-3.10 command can be used instead of the
python command, while under macOS and Linux the python3.10
command has to be issued.

�Packages
Packages are modules containing other modules. They can be used to

organize the modules into further units. One package is usually one

directory with modules with additionally a file named __init__.py in

it. This package can also be placed into another package, and this can

be repeated arbitrarily. If this package has to be executable directly, a

__main__.py file can be placed in the directory that will contain the code

to be executed in such a case only.

Chapter 6 The Module: Organization of Program Parts into a Unit

154

A model.py file can be created from the class definitions in

Listings 3-7, 3-13, 3-17, 3-20, and 6-11. As an example, a package can be

built by creating a registry directory and copying the model.py file into this

directory. An empty __init__.py file must be created in this directory too,

which can be used in the future to add documentation and statements to

be executed when loading the package. The model module from this newly

constructed package can be imported with the import registry.model

statement.

�Future Package
The Python language has a statement that can switch on and off new

language additions or change their behavior. This statement is the from

__future__ import followed by the name of the feature and can be present

only at the beginning of the source file. This statement is a different

statement than the earlier reviewed import statement. For compatibility

reasons, the __future__ package exists and can be used with other forms

of import statements, but this is not to be confused with the previous

statement.

Since version 3.7, the only active feature that can be turned on is the

delayed evaluation of the type annotations, and the name of this feature is

annotations (see PEP563; type annotations will be discussed in Appendix C).

This functionality is turned on by default starting from version 3.11, and in

later versions this statement will not change the behavior of the language

anymore.

Chapter 6 The Module: Organization of Program Parts into a Unit

155

�Package Management
The Python environment supports managing third-party packages with

a package managing tool named pip. This package manager is able to

download versions of the package together with their dependencies from

the Python Package Index and make it available to your machine.

Listing 6-12 shows the most important package management

commands.

Listing 6-12.  Package Management Commands

python -m pip list

python -m pip list --outdated

python -m pip search requests

python -m pip install requests

python -m pip install requests ==2.20

python -m pip install requests --upgrade

python -m pip show requests

python -m pip freeze > requirements.txt

python -m pip install -r requirements.txt

The first two commands list all the installed packages and all packages

having a more up-to-date version than the one installed. The command

in line 3 lists packages from the Python Package Index that match the

requested word. Lines 4 and 5 show how simple it is to install a package (in

the second case, a version number is also specified; a relation sign can also

be used here to express the required package version more loosely). The

command in line 6 shows information about the installed package, such

as the list of packages this one depends on. The last two lines show how to

save the list of the installed packages into a file and how to install packages

based on a dependency file.

Chapter 6 The Module: Organization of Program Parts into a Unit

156

�Useful Third-Party Packages
Two scenarios of using third-party packages will be presented in this

section. In the first scenario, a web page is downloaded, and information is

extracted from the downloaded page. In another scenario, an Excel table is

processed.

The package requests will download the web page, while the HTML

processing will be carried out with the bs4 package. In the other scenario,

the pandas package will load an Excel table and answer queries about it.

This package can also be connected to databases and import data from

other data formats. Listing 6-13 shows how to install the corresponding

packages for the two scenarios.

Listing 6-13.  Installation of Third-Party Packages

python -m pip install requests

python -m pip install beautifulsoup4

python -m pip install pandas

python -m pip install openpyxl

Note T he commands needed to install the package may depend on
the operating system and the environment. If you have installed the
default environment described in the introduction, these commands
are as follows: in the case of Windows 10, replace the python -m
pip part at the beginning of the commands with py -3.10 -m
pip; in the case of macOS and Linux, replace the python -m pip
part at the beginning of the commands with sudo python3.10 -m
pip or python3.10 -m pip --user.

Chapter 6 The Module: Organization of Program Parts into a Unit

157

The first step of the first scenario is to import the packages as shown

in Listing 6-14. The next step is to download the web page, as shown in

Listing 6-15, followed by printing the response code of the download

request, type of the content, and format of the text coding. Then the

downloaded web page is processed. Listing 6-16 and Listing 6-17 show

how the header element of the processed web page and the text of the

header element can be accessed, respectively.

Listing 6-14.  Importing Requests and bs4 Packages

import requests

from bs4 import BeautifulSoup

Listing 6-15.  Downloading a Website

APRESS = 'https://apress.github.io'

Q = APRESS + 'pragmatic-python-programming/quotes.html'

r = requests.get(Q, timeout=1)

print(r.status_code, r.headers['content-type'],

 r.encoding)

site = BeautifulSoup(r.text, 'html.parser')

Listing 6-16.  Header Element of the Web Page

site.head.title

Listing 6-17.  Header Test of the Web Page

site.head.title.text

Listing 6-18 shows fragments of the data obtained from the website.

Listing 6-19 shows the data being processed. This is implemented by

iterating through all the tr elements; the class is book, and the text part of

the two td elements are printed during this procedure.

Chapter 6 The Module: Organization of Program Parts into a Unit

158

Listing 6-18.  Fragment of the Web Page

<tr class="book">

 <td class="auth">Donald E. Knuth</td>

 <td class="title">TAOCP</td>

</tr>

Listing 6-19.  Extracting Data from the Body of the Web Page

for row in site.find_all('tr',

 class_='book'):

 cells = row.find_all('td')

 print(cells[0].text, ': ',

 cells[1].text, sep='')

In the second scenario, the pandas package is imported, and the Excel

table is loaded according to Listing 6-20. To display the loaded table, the

orders variable is printed.

Listing 6-20.  Importing the pandas Package

import pandas as pd

orders = pd.read_excel('orders.xlsx',

 index_col=0)

On the loaded tables, different kinds of queries can be executed. The

table is sorted according to column 1 in Listing 6-21. In turn, values of the

orders are grouped by the customer ID in Listing 6-22.

Listing 6-21.  Sorting the Table by Order Value

orders.sort_values(by='Order value')

Chapter 6 The Module: Organization of Program Parts into a Unit

159

Listing 6-22.  Grouping the Value of the Orders by Customer ID

orders.groupby('Customer id').sum()

�Modules in Practice
Modules are the highest-level organizational unit in the Python language.

For the design of the modules, it is important that the related definitions

are located in one module following some organizational principle. It is

important for the organizational intent (frequently called the responsibility

of the module) to be documented as well. In Listing 6-23, the beginning

and end fragments of the models.py file are shown. At the beginning the

module, the documentation includes short and long descriptions of the

module and then presents the use of the module. At the end of the module,

there is the idiom-like structure, which runs only when the module is

directly launched. This section is usually applied when you want your

module to work also as an independent command-line program. This

example also contains the version number of the module, assigned to the

__version__ variable name.

Listing 6-23.  Fragment of the Model Module

"""Model of the order management

The domain model of order management system is

modeled by these classes. They can be used

to represent an actual order.

 Example usage:

 product = Product('T1', 'A product', 100)

 product.reduce_price(10)

"""

Chapter 6 The Module: Organization of Program Parts into a Unit

160

__version__ = '1.0.0'

...

if __name__=='__main__':

 ...

Modules are frequently written to be reusable, and it’s helpful when

the functionality of the module can be accessed via a class providing a

simplified interaction. This is called a facade designing pattern, and it

has two benefits: the module does not have to know the exact internal

structure of the module, and using the module takes place on a well-

specified “narrow” surface. Therefore, in the case of an internal change,

other modules using this one would not need to be changed. Developing

an easily reusable module can be even three times more effort than

developing a module for only a single use.

�Advanced Concepts
This section describes some technical details in reference manual style

and some advanced concepts that may need more technical background.

�Structure of Python Projects
Several recommendations exist for the structure of Python projects, which

differ in detail like the format used to store dependencies or the package

description (often named README) file. The recommended location of

the source files is the src directory. Depending on whether the program

contains one or more files, the src directory contains a single Python

source file named identically with the package name or a directory

named identically to the package name. In addition, it usually includes a

tests directory for the tests and a docs directory of the documentation.

In addition, the project usually includes a LICENSE file containing a

description of the license and/or a package description file. This file is

Chapter 6 The Module: Organization of Program Parts into a Unit

161

named README.md or README.rst depending on whether markdown or

reStructuredText is chosen as a format, respectively. In the simplest case,

the dependencies of our module on third-party packages are stored in a

requirements.txt file. If you want to share/publish your module, you will

also need a setup.py file, pyproject.toml file, or other files that can also

substitute the function of requirements.txt as well.

If you want the Python package to be available for others, you can

prepare a compressed file from it suitable for binary distribution. This file

can be shared manually or can be uploaded to a package index server. This

server can be the default pypi.org or any other repository server. Packages

can be configured classically with a setup.py file, which stores the package

information (such as version, author, dependencies, license, and the like)

programmatically. New versions of tools support to substitute the setup.py

file with a configuration file, which is named pyproject.toml and contains

the necessary information to describe the package.

Listing 6-24 shows the content of the setup.py file. If this file is

executed with the python setup.py bdist command, it will generate a

compressed package file in the build directory. For example, this file would

be named registry-1.0.win-amd64.zip.

Listing 6-24.  The setup.py File

from setuptools import setup

setup(name='registry',

 version='1.0.0',

 description='Order Management System',

 author='Gabor Guta, PhD',

 author_email='info@axonmatics.com',

 license='GPL',

 packages=['registry'],

 package_dir={'':'src'},

 python_requires='>=3.10')

Chapter 6 The Module: Organization of Program Parts into a Unit

162

To transition to the new approach, you need the install the build

package and update the setuptools package. This can be achieved

with the pip install --upgrade setuptools build command. The

contents of pyproject.toml and setup.cfg are shown in Listing 6-25

and Listing 6-26, respectively. The command python -m build can

be used to generate the registry-1.0.0-py2.py3-none-any.whl and

registry-1.0.0.tar.gz compressed package files.

Listing 6-25.  The pyproject.toml File

[build-system]

requires = ["setuptools"]

build-backend = "setuptools.build_meta"

Listing 6-26.  The setup.cfg File

[metadata]

name = registry

version = 1.0.0

description = Order Management System

author = Gabor Guta, PhD

author_email = info@axonmatics.com

license = GPL

[options]

package_dir =

 = src

packages = find:

python_requires = >=3.10

[options.packages.find]

where=src

Chapter 6 The Module: Organization of Program Parts into a Unit

163

�Virtual Environments
The virtual environment can be useful when the exact reproducibility

of the environment is important or you have to use various Python

versions and package versions in parallel. The virtual environment

can be created by the python -m venv ENVIRONMENT_NAME command,

where ENVIRONMENT_NAME is the name of the environment to be created.

The environment will be created in a directory named the same as the

name specified in the command. The directory will contain a pyvenv.

cfg configuration file; an include directory for the C header files; a lib

directory, which contains the site-packages directory for the third-party

packages; and finally, a bin or Scripts directory—depending on whether

the installation is under Linux or Windows—containing program files

of the Python environment. The environment can be activated with the

source ENVIRONMENT_NAME/bin/activate command on Linux, while the

same can be accomplished by the ENVIRONMENT_NAME\script\activate.

bat command on Windows 10. The environment can be switched off by

the deactivate command. (The macOS commands are identical to the

commands used for Linux.)

Other tools are also available to manage the virtual environments.

The most popular alternatives for the built-in tools are the pipenv and

poetry tools.

�Tools for Testing
Python provides built-in packages to make testing easier. The most

important package is the unittest package, which supports the automatic

testing of functions and classes. A test case class typically contains test

methods, which exercise functionalities and verify that the functionality

worked as expected. Often special setUp and tearDown methods are

used to prepare the test method and clean up the environment after the

Chapter 6 The Module: Organization of Program Parts into a Unit

164

execution of the method, respectively. The verification of the functionality

is typically realized by calling assert methods to compare actual results to

the expected results. Test cases can be organized into test suites.

Listing 6-27 shows a test class to test the Product class. The first

method instantiates a Product object. This method is called each time

before the execution of other test methods. The second method is the first

actual test: it verifies that the attributes of the tested object are initialized

correctly. The third function calls a method of the object and verifies

that the price and old_price data attributes have changed as expected.

Finally, the last method verifies that the method terminates with an

exception in the case of an invalid parameter value.

Listing 6-27.  Unit Test of the Product Class

from unittest import TestCase

class TestProduct(TestCase):

 def setUp(self):

 self.prod = Product('K01', 'Standard Cube', 1000)

 def test_product_creation(self):

 self.assertEqual(self.prod.code, 'K01')

 self.assertEqual(self.prod.name, 'Standard Cube')

 self.assertEqual(self.prod.price, 1000)

 self.assertEqual(self.prod.old_price, 1000)

 def test_price_reduction(self):

 self.prod.reduce_price(10)

 self.assertEqual(self.prod.price, 900)

 self.assertEqual(self.prod.old_price, 1000)

 def test_invalid_input(self):

 with self.assertRaises(TypeError):

 self.prod.reduce_price("A")

Chapter 6 The Module: Organization of Program Parts into a Unit

165

If you are interested in testing, two topics may be worth further study:

•	 How can functionalities that require complex

environments be tested in isolation with the help

packages like the unittest.mock package?

•	 What are the popular tools to ease testing like the

pytest framework?

�Tools for Static Analysis
Several tools are available to automatically identify suspected errors in

the code. Only two popular tools that can help to ensure the quality of the

Python code will be shown in this section. One is pylint, which basically

checks syntactic patterns and the formatting rules described in PEP8. The

other tool is mypy, which can perform static type checking based on the

type annotations. Listing 6-28 shows how to use them.

Listing 6-28.  Static Analysis Commands

python -m pip install pylint

python -m pip install mypy

pylint src/registry

mypy --strict src/registry

There is an option for both tools to include comments in the source

file, which disable some of the checks of the tool. This is useful when you

intentionally do not want to comply with the default checking rules for

some reason.

Chapter 6 The Module: Organization of Program Parts into a Unit

166

�Tools for Formatting
Python code formatters are useful to automatically make your source

code easier to read and conform to the PEP8 standard. There are several

such tools like autopep8 or yapf, but the most popular tool is probably

black. While the first two of tools can be widely customized, black is

famous for providing good results out of the box and hardly allowing any

customization in its formatting style.

In Listing 6-29 you can see the installation of the black package and

the reformatting of the model.py file.

Listing 6-29.  Installing and Using the black Formatting Tool

pip install black

black src/registry/model.py

�Preparation of Documentation
The program Sphynx can be used to generate documentation for your

package. Preparing the documentation consists of two steps: the tool

extracts the documentation comments from the Python source files,

and then it combines them with the documentation files and creates

documentation of your package. Documentation files provide the frame

of the documentation of the package, and they can also contain further

documentation about the package. As an example, a file containing the

user guide will be created. A format called reStructuredText can be used

to add formatting to the text in the documentation files. Some formatting

notation for example: the text highlighting can be denoted by stars put

around the text; or the chapter title can be marked by underlining (a series

of equal signs in the next line as long as the title text).

Chapter 6 The Module: Organization of Program Parts into a Unit

167

Listing 6-30 shows the commands used to generate the

documentation. The command in line installs the tool. The documentation

files have to be created next, which can be done with the commands in

lines 2 and 3. After executing the sphinx-quickstart command, select

the no option to answer the source and destination question, name the

project registry, set any name for the author’s name, and confirm the

default option to the last two questions. The default documentation and

configuration files are automatically generated by these two commands.

Listing 6-30.  Commands to Execute Sphinx

python -m pip install sphinx

sphinx-quickstart

sphinx-apidoc -o docs src/registry

make html

Thereafter, you can add the user guide shown in Listing 6-31 to your

project, by copying the content of the listing into the userguide.rst file

in the docs directory. The files that are generated by default require the

following modifications: references to the documentation files have to be

added in the index.rst file, as shown in Listing 6-32; in the conf.py file,

the hash marks before the first three lines have to be removed, the source

directory path have to be fixed, and lines 7–10 (the section beginning with

the extensions word) should be rewritten as shown in Listing 6-33. These

modifications are necessary for Sphynx to be able to automatically load

the comments (docstrings) from the Python source files. The command in

line 4 will generate the description of the module in HTML format. If the

files are changed, the documentation can be regenerated with the last two

commands.

Chapter 6 The Module: Organization of Program Parts into a Unit

168

Listing 6-31.  The File which Contains the Module Description

User Guide

=====================

This is the description of the *modul*.

Listing 6-32.  The Sphinx index.rst File

.. toctree::

 :maxdepth: 2

 :caption: Contents:

 docs/userguide

 docs/modules

Listing 6-33.  The Sphinx conf.py File

import os

import sys

sys.path.insert(0, os.path.abspath('./src/'))

Please, leave the original conent between these two sections

extensions = [

'sphinx.ext.autodoc',

'sphinx.ext.napoleon',

]

Chapter 6 The Module: Organization of Program Parts into a Unit

169

�Key Takeaways
•	 Functions, classes, and other definitions can be

organized into modules to make it easier to navigate

between them. A Python source file itself is a module

already. A package is a module that contains further

modules in it. Modules must be imported before they

can be used.

•	 Packages are usually stored as files. If a package is not

included in the built-in Python library, the package file

must be copied into your work environment somehow.

This problem can be solved with the package manager

called pip, which can download and copy the packages

into your work environment. The third-party packages

used by your program are called the dependencies of

your program, and it is recommended to list them in a

file (e.g., requirements.txt).

•	 When you’re developing a Python program, you have a

huge collection of built-in packages that can help you.

If this isn’t enough, a huge collection of third-party

packages are provided by the Python ecosystem.

Chapter 6 The Module: Organization of Program Parts into a Unit

171

�APPENDIX A

Binary Representation
This appendix discusses how 0s and 1s can be understood by the

computer to represent the simple or complicated types shown in the book.

For a computer, the 0s and 1s—called bits—are organized into groups of

eight. This is called a byte, which can take 256 different values: 00000000,

00000001, 00000010, 00000011, ..., 11111111.

After refreshing our knowledge on the concept of numeral systems,

these bits can be treated as digits in the binary system, behaving similarly

to their counterparts in the decimal system. The two main differences are

that the highest digit here is the 1 and that the place values of the digits

are 1, 2, 4, 8, 16, etc., instead of 1, 10, 100, 1000, etc. That is, 101 is a binary

number corresponds to 5 since there is a 1 in the place values of 1 and

4. You can see in Listing A-1 how to display the decimal number 42 as a

binary number and how to specify integers as binary numbers.

Listing A-1.  Bits

print(bin(42))

print(0b101010, int('101010', 2))

Several operations can be performed with the numbers in the binary

system, which may be hard to understand from the result that appears in

the decimal system. Listing A-2 shows how negation (0s are exchanged

with 1s, 1s with 0s) and shift operations work. Listing A-3 shows how

different bitwise operators work: for the AND, the result is 1 only when

both are 1; for OR, the result is 1 if either number is 1; and for the exclusive

© Gabor Guta 2022
G. Guta, Pragmatic Python Programming, https://doi.org/10.1007/978-1-4842-8152-9

https://doi.org/10.1007/978-1-4842-8152-9

172

OR, it is 1 when only one of the numbers is equal to 1. The AND operator is

usually applied for masking: those place values that we would like to keep

will be given the 1 value, and those to be deleted will be given a 0. In our

example, we want to keep only the lowest four place values.

Listing A-2.  Simple Operation with Bits

print('A:', bin(42), '~:', bin(~42%256),

 '<<:', bin(42<<1), '>>:', bin(42>>1),)

Listing A-3.  Further Operation with Bits

print('A:', bin(42), 'B:', bin(15),

 '&:', bin(42&15),'|:', bin(42|15),

 '^:', bin(42^15))

Bytes can be stored similarly to strings, except here there is a letter b

in front of the quotation marks. Operators are identical to those usual for

strings. The bytes type has a modifiable counterpart, the bytearray, that

works like a list with the restriction that its elements can be only bytes, as

shown in Listing A-4. Objects having bytes and bytearray for the type can

be mixed in operators.

Listing A-4.  Types to Store Bytes

DATA = b'temp'

data_rw = bytearray()

data_rw.extend(DATA)

data_rw.append(5)

print(DATA, data_rw)

Appendix A Binary Representation

173

It was already explained how numbers are represented. Let’s look now

at characters. Characters are stored such that each letter has a number

assigned to it. The code for the letter t is 116, as shown in Listing A-5. The

code of a character can be queried by the ord() built-in function, while

the character belonging to the particular code can be queried by the chr()

function.

Listing A-5.  Characters as Numbers

print(ord('t'), chr(116))

Strings and bytes form independent data types since different

standards assign different characters to numbers; it is possible even for

a character to need multiple bytes to denote it. The standards of code

assignments are the so-called code tables, and the most widespread

ones currently are the ASCII and UTF-8 tables. The ASCII code assigns

characters to a number between 0 and 127, which requires only one byte

to store. This is enough to denote letters of the English alphabet, digits,

and most important special characters. Table A-1 the codes of the most

important characters (these codes are identical in the ASCII and UTF-8

standards). The UTF-8 standard contains a code mapping practically for

all characters in the word, because it allows codes to be stored in several

bytes. Python uses UTF-8 for storing the strings, while the notation of the

bytes allows only the use of ASCII characters.

Listing A-6.  Strings and Bytes

print(b'temp'.decode())

print('temp ÁÉÍÓÚ'.encode())

Appendix A Binary Representation

174

Table A-1.  ASCII Codes of Some Important Characters

ASCII Code Character ASCII Code Character

9 \t (TAB) 64 @

10 \n (LF) 65 A

13 \r (CR) 90 Z

32 SPACE 91 [

34 " 92 \

40 (93]

41) 97 a

43 + 122 z

47 / 123 {

48 0 124 |

57 9 125 }

It is important to note that the bytes are not intended to represent

characters, but only their binary representation. This means that strings

that store characters can be converted to bytes according to any code

pages. Naturally, not all characters can be represented in all code pages.

Listing A-6 shows that a string is created from the bytes from the decode()

method and bytes from the strings by the encode() method. In both

directions you use the UTF-8 code page. As shown, multiple bytes belong

to the accentuated letters.

When representing the integers, you saw how a number in the decimal

system is presented in one byte; but what happens when the number is

greater than 255? In this case, more than one byte can be used for the

representation like two bytes would be connected: one contains the lower

place value, while the other one accommodates the higher place value. It

is a question of convention whether the lower is written first or the higher

Appendix A Binary Representation

175

one. The former solution is called little endian (the lower one goes first) and

the latter one big endian (the higher one goes first) encoding, as shown in

Listing A-7. (If the two encoding systems are exchanged and the values of

the two bytes are not identical, the result obtained will be incorrect.) The

currently used machines with x86 processors use the little endian encoding,

while the network standards use the big endian encoding.

Listing A-7.  Representing Integers on Multiple Bytes

INTEGER = 768

byte_repr = INTEGER.to_bytes(2, byteorder='little')

reverse = int.from_bytes(byte_repr, byteorder='little')

print(byte_repr, reverse)

Floating-point numbers are stored as two integers to encode separately

the mantissa and the base. Python stores the floating-point numbers

according to the IEEE 754 standard, which describes in detail how these

two integers are stored exactly.

Listing A-8 shows the struct package. This package is able to transform

most data types to a byte series and vice versa. The conversion to the

bytes can be carried out with the pack() function, while converting bytes

to other types can be carried out with the unpack() function. For the

transformation back and forth, the program expects a format specification

string in which the type of the data to be transformed to/from bytes can be

specified by a notation.

Listing A-8.  Converting Simple Types to Bytes and Back

from struct import pack, unpack

print(pack('B', (42)),

 pack('>H', (42)), pack('<H', (42)))

print(unpack('>H', b'\x00*'),

 unpack('<H', b'\x00*')) #42*256

Appendix A Binary Representation

177

�APPENDIX B

Type Annotations
Type annotations are currently only for documentation purposes. The

Python language does not use this information in any form. These

annotations are usually applied for two reasons: static type checking

programs are able to verify whether the particular variable name will make

reference only to the denoted type of objects without running the program;

and the integrated development environments (IDEs) can provide better

type hinting and code completion.

Annotations of the most important built-in types were shown in the

first three chapters. For the more complex type annotations, you need to

import the typing module. This module contains definitions of the data

structure and the various type modifiers. More complex type annotations

are shown in Listing B-1.

•	 a: A list of integers (the types of the list elements are in

square brackets)

•	 b: A set of strings (the types of the set elements are in

square brackets)

•	 c: A dictionary with string keys and float values (the

types of dictionary keys and values are in square

brackets)

•	 d: A pair, the first element of which is a string, and its

second element is an integer (the types of the elements

by position are in square brackets)

© Gabor Guta 2022
G. Guta, Pragmatic Python Programming, https://doi.org/10.1007/978-1-4842-8152-9

https://doi.org/10.1007/978-1-4842-8152-9

178

•	 e: An integer or None (Optional means the None value is

also allowed)

•	 f: An integer or string (the union indicates that both

types are allowed)

•	 g: Any type

Listing B-1.  Type Annotations

from typing import (Optional, Union, Any)

a: list[int] = [1, 2, 4, 8]

b: set[str] = {'a', 'b', 'c'}

c: dict[str, float] = {'a': 2.3, 'b': 5.5}

d: tuple[str, int] = ('a', 1)

e: Optional[int] = None

e = 3

f: Union[int, str] = 3

f = 'hello'

g: Any = 3

g = 'hello'

An alias can be generated for types to avoid having to repeat a

complicated type expression. A tuple is visible in Listing B-2, the first

two elements of which are strings and the last is a number. Values stored

in identical types but having different meanings are interchangeable by

mistake. This can be prevented by introducing a new type. The first two

strings in this example (though the first one is a product ID and the second

one is a product name) are error prone with the default type annotation.

Listing B-3 demonstrates how this source of mistake can be prevented

by introducing new types: ProductId and ProductName are defined

as subtypes of the string. This type annotation makes possible static

verification of the usage of correct types.

Appendix B Type Annotations

179

Listing B-2.  Type Alias

ProductRecord = Tuple[str, str, int]

Listing B-3.  New Type Definition

from typing import NewType

ProductId = NewType(‘ProductId’, str)

ProductName = NewType(‘ProductName’, str)

TypedProductRecord = Tuple[ProductId, ProductName, int]

As mentioned previously, in the Python language typing can be based

on protocols. If a class has the expected methods, it can be regarded to be

a specific type. For the annotation of this, the Protocol type can be used.

Listing B-4 shows that by specifying whether a class has a reduce_price()

method or not, it will be regarded as a Discountable type.

Listing B-4.  Protocol Type

from typing import Protocol

class Discountable(Protocol):

 def reduce_price(self, percent: int) -> int:

 ...

The generic types are suitable for defining a function or a class in a way

types of certain parameters or returning values could be specified later. In

the case of a generic type definition, it is specified only which ones have to

be identical from among the types to be specified later or whether some

kind of restriction applies to the deferred type definitions. In Listing B-5,

types of the price and of the function calculating the reduced price should

be the same and suitable to store the financial value. This is attained in the

example by allowing only the specification of int or Decimal types.

Appendix B Type Annotations

180

Listing B-5.  Generic Type

from decimal import Decimal

from typing import TypeVar, Callable

#Number suitable for a financial operation

FN = TypeVar(‘FN', int, Decimal)

def discounted_value(price: FN, amount: int,

 sale: Callable[[FN, int], FN]) -> FN:

 value: FN = price * amount

 discount: FN = sale(price, amount)

 return value*(1-discount)

print('Result of the example call of discount_value function:',

 �discount_value(1000, 10, lambda p, q: 0.1 if p*q >

5000 else 0))

Appendix B Type Annotations

181

�APPENDIX C

Asynchronous
Programming
In general, asynchronous behavior means that we do not wait for the effect

of a triggered event. As an example, after sending a message, the sender

will not wait for the response but will continue to the next step, and the

response will be handled when it arrives. This makes sense because it’s the

opposite of the usual synchronous behavior when the process blocks until

the arrival of the response.

Executing slow parts of a program (functions reading data from a hard

disk or from the network) asynchronously makes it possible to execute

further program parts until the requested data arrives. To implement

this, Python provides various language constructs and the asyncio

package. Additionally, several third-party packages support asynchronous

functionality such as aiofile, aiohttp, asyncpg, etc. In this appendix, the

goal is to explain the behavior of the language constructs connected to the

native coroutines and the necessary parts of the asyncio package.

© Gabor Guta 2022
G. Guta, Pragmatic Python Programming, https://doi.org/10.1007/978-1-4842-8152-9

https://doi.org/10.1007/978-1-4842-8152-9

182

Note I t is important to clarify the concepts of concurrent and
parallel execution as they are often referenced in a confusing manner.
Let’s start with parallel execution: this means that parts of the
program are executed on two or more physical computational units
(cores, processors, or machines).

Concurrent execution means that parts of the programs run in an
interleaving way; i.e., one part of the program does not wait for the
completion of the other parts before it starts. Naturally, these parts
can be executed in parallel, but often concurrency is realized in a way
that program parts execute in chunks. The execution of the parts is
coordinated partly by the environment, but the program parts usually
have to support this by a cooperative behavior of signaling when they
can pass the control to another part.

You can achieve asynchronous behavior with native coroutines,

which are defined as the functions or methods prefixed with an extra

async keyword. These coroutines can create coroutine objects when they

are called, which can be awaited. The execution of awaitable objects is

supported by the asyncio package. This package contains various low-

level and high-level functions, but as mentioned earlier, this appendix will

just explain the bare minimum of the high-level functionality.

The Python language has two different kinds of coroutines: the

generator-based coroutine already discussed in Chapter 5 and the native

coroutine. Although their names sound similar, they work fairly differently.

So, the native coroutine will be introduced as a new building block of the

language. From now on, by coroutine, I mean native coroutine function if it

is not specified explicitly otherwise.

Appendix C Asynchronous Programming

183

Listing C-1 shows how a coroutine called main can be executed. Note

that if main is simply called with a function call operator like main(), it

won’t execute; it will just return a coroutine object. In Figure C-1, the

process of executing the main coroutine can be traced: when the coroutine

is called, it returns a coroutine object, which is passed to the asyncio.

run function for execution. This function internally wraps the coroutine

object into a Task and runs it on the so-called event loop. The event loop is

responsible for switching to the next executable Task if there are any.

Listing C-1.  A Native Coroutine

import asyncio

async def main():

 print('Hello World!')

asyncio.run(main())

Event Loop main()
coroutine function

main()
coroutine object

print("Hello World!")

asyncio.run(main() coroutine object)

main()

Figure C-1.  A native coroutine execution

Appendix C Asynchronous Programming

184

Listing C-2 shows that a coroutine has to use the await statement to

execute another coroutine. The await statement can be used only inside a

coroutine and expects an awaitable object. This listing practically chains

two coroutines. The hello coroutine prints the greeting with the specified

name 10 times if it is not parameterized differently.

Listing C-2.  Usage of the await Statement

import asyncio

async def hello(name, count=10):

 for i in range(1, count+1):

 print(f'Hello {name}! (x {i})')

async def main():

 await hello("World", 1)

asyncio.run(main())

In Listing C-3, a new asyncio function is introduced. The gather

function can schedule several coroutines simultaneously on the event

loop. This results in Alice being greeted ten times and then Bob being

greeted ten times.

Listing C-3.  Use of the gather Function

import asyncio

async def hello(name, count=10):

 for i in range(1, count+1):

 print(f'Hello {name}! (x {i})')

async def main():

 await asyncio.gather(hello("Alice"), hello("Bob"))

asyncio.run(main())

Appendix C Asynchronous Programming

185

Listing C-4 shows that the hello coroutine is slightly changed by

adding 0 seconds of delay after printing the greeting. When calling the

sleep function, you can signal to the event loop that other tasks can be

scheduled. This results in the interleaving printing of the greeting for Alice

and Bob. Figure C-2 shows three steps of this interleaving behavior.

Listing C-4.  Usage of the sleep Function

import asyncio

async def hello(name, count=10, delay=0):

 for i in range(1, count+1):

 print(f'Hello {name}! (x {i})')

 await asyncio.sleep(delay)

async def main():

 await asyncio.gather(hello("Alice"), hello("Bob"))

asyncio.run(main())

Appendix C Asynchronous Programming

186

Event Loop main()
coroutine function

main()
coroutine object

hello()
coroutine function

hello("Alice")
coroutine object

hello("Bob")
coroutine object

asyncio.sleep(0)

main()

print(f'Hello Bob! (x 1)')

asyncio.sleep(0)

hello("Bob")

asyncio.gather(hello("Alice") coroutine object, hello("Bob") coroutine object)

print(f'Hello Alice! (x 2)')

asyncio.run(main() coroutine object)

print(f'Hello Alice! (x 1)')

asyncio.sleep(0)

hello("Alice")

Figure C-2.  Execution of multiple native coroutines

In Listing C-5 the explicit creation of Tasks can be seen. Tasks can be

imagined as handlers that store the execution states of the coroutines.

In this example, two coroutines are executed one after each other. The

variable names task_a and task_b reference the corresponding tasks, and

the print(task_a.done(), task_b.done()) calls print the status of the

two tasks. The statement await task_b will wait until the hello coroutine,

which greets Bob five times, finishes. It is expected that by reaching the last

status message both tasks are completed.

Appendix C Asynchronous Programming

187

Listing C-5.  Use of the create_task Function

import asyncio

async def hello(name, count=10, delay=0):

 for i in range(1, count+1):

 print(f'Hello {name}! (x {i})')

 await asyncio.sleep(delay)

async def main():

 �task_a = asyncio.create_task(hello("Alice", count=10,

delay=1))

 �task_b = asyncio.create_task(hello("Bob", count=5,

delay=1))

 print(task_a.done(), task_b.done())

 await task_b # approx. 5 sec

 print(task_a.done(), task_b.done())

 await asyncio.sleep(10) # approx. 2+4 sec

 print(task_a.done(), task_b.done())

asyncio.run(main())

In Listing C-6 an asynchronous generator can be seen. It is defined

similarly to a coroutine but contains at least one yield statement. It can

return an asynchronous iterator calling the aiter function on its instance.

The asynchronous iterator returns awaitable objects and can be queried

with the anext() function. Asynchronous iterators can be consumed by

async for statements, as shown in the listing.

Appendix C Asynchronous Programming

188

Listing C-6.  An Asynchronous Generator

import asyncio

async def hello(name, count, delay=0):

 for i in range(1, count+1):

 print(f'Hello {name}! (x {i})')

 await asyncio.sleep(delay)

async def hello_gen(name, count, delay=0):

 for i in range(1, count+1):

 print('Returned a value {count} (x {i})')

 yield f'Hello {name}! (x {i})'

 await asyncio.sleep(delay)

async def main():

 task_a = asyncio.create_task(hello("Alice", 10, delay=1))

 async for message_b in hello_gen("Bob", 10, delay=1):

 print(message_b)

 await task_a

asyncio.run(main())

There is an async with statement that expects an asynchronous

context manager; otherwise, it works similarly to a with statement. All

statements starting with the async keyword can be used only in the

coroutines or asynchronous generators.

Appendix C Asynchronous Programming

189

�Bibliography

	 1.	 Kent Beck, Ward Cunningham. A laboratory for

teaching object oriented thinking. Proceedings of

OOPSLA ’89, Pages 1-6, ACM, 1989

	 2.	 Michael R. Blaha, James R. Rumbaugh. Object-

Oriented Modeling and Design with UML (2nd

edition). Pearson, 2004

	 3.	 Robert L. Glass. Facts and Fallacies of Software

Engineering. Addison-Wesley Professional, 2002

	 4.	 Brian W. Kernighan, Dennis M. Ritchie. The C

programming language (2nd ed.). Prentice Hall, 1988

	 5.	 Russ Miles, Kim Hamilton. Learning UML 2.0.

O’Reilly Media, 2006

	 6.	 Donald E. Knuth. The Art of Computer

Programming, Vol. 1: Fundamental Algorithms (3rd

ed.). Addison Wesley Professional, 1997

	 7.	 John McCarthy. LISP I programmer’s manual.

Massachusetts Institute of Technology,

Computation Center and Research Laboratory of

Electronics, 1960

	 8.	 Guido van Rossum. Language Design Is Not

Just Solving Puzzles. https://www.artima.com/

weblogs/viewpost.jsp?thread=147358, 2006

© Gabor Guta 2022
G. Guta, Pragmatic Python Programming, https://doi.org/10.1007/978-1-4842-8152-9

https://doi.org/10.1007/978-1-4842-8152-9
https://www.artima.com/weblogs/viewpost.jsp?thread=147358
https://www.artima.com/weblogs/viewpost.jsp?thread=147358

190

	 9.	 Jaroslav Tulach. Practical API Design: Confessions of

a Java Framework Architect. Apress, 2008.

	 10.	 David West. Object Thinking. Microsoft Press, 2004

	 11.	 Beautiful Soup 4.4.0 documentation. https://

www.crummy.com/software/BeautifulSoup/bs4/

doc/, 2022

	 12.	 Black documentation. https://black.

readthedocs.io/en/stable/, 2022

	 13.	 Pandas User Guide. https://pandas.pydata.

org/pandas-docs/stable/user_guide/index.

html, 2022

	 14.	 Pipenv: Python Dev Workflow for Humans.

https://pipenv.pypa.io/en/latest/, 2022

	 15.	 + Poetry – Documentation. https://python-

poetry.org/docs/, 2022

	 16.	 Pylint User Manual. http://pylint.pycqa.org/en/

latest/, 2022

	 17.	 PyPI: The Python Package Index. http://pypi.

org, 2022

	 18.	 Pytest. https://docs.pytest.org/en/7.1.x/, 2022

	 19.	 Python 3.10.2 documentation. https://docs.

python.org/3/, 2022

	 20.	 Requests: HTTP for Humans. https://requests.

readthedocs.io/en/master/, 2022

Bibliography

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://black.readthedocs.io/en/stable/
https://black.readthedocs.io/en/stable/
https://pandas.pydata.org/pandas-docs/stable/user_guide/index.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/index.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/index.html
https://pipenv.pypa.io/en/latest/
https://python-poetry.org/docs/
https://python-poetry.org/docs/
http://pylint.pycqa.org/en/latest/
http://pylint.pycqa.org/en/latest/
http://pypi.org
http://pypi.org
https://docs.pytest.org/en/7.1.x/
https://docs.python.org/3/
https://docs.python.org/3/
https://requests.readthedocs.io/en/master/
https://requests.readthedocs.io/en/master/

191

	 21.	 Setuptools – Documentation. https://setuptools.

pypa.io/en/latest/, 2022

	 22.	 Sphinx documentation. https://www.sphinx-doc.

org/en/master/, 2020

	 23.	 Mypy documentation. https://mypy.readthedocs.

io/en/stable/, 2022

Bibliography

https://setuptools.pypa.io/en/latest/
https://setuptools.pypa.io/en/latest/
https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/
https://mypy.readthedocs.io/en/stable/
https://mypy.readthedocs.io/en/stable/

193

Index

A
Absolute value, 26
Abstract base classes (ABC

classes), 72, 73
Accessing an object, 116
Activity diagram, 113
all() function, 125
Annotations, 177, 179
Arguments, 26, 29
ASCII code, 173
Assert statement, 37
Assignment expression, 93
Asynchronous behavior, 142,

181, 182
Asynchronous functionality, 181
Asynchronous generator, 187, 188
Asynchronous iterators, 187
asyncio package, 181, 182
Attributes, 48, 68, 78
Await statement, 184

B
BaseException class, 111
Big endian, 175
Binary representation, 174–178
Bits, 171, 172
Blocks, 1, 23, 25, 31

Boolean expression, 4, 37, 81,
82, 84, 86

Boolean type object, 66
Boolean types, 3–5
break statement, 96
Bytes, 172–175

C
Characters, special

meaning, 21
Class

ABC, 72, 73
data classes, 73–75
defining, 51, 52, 154
diagrams, 77
identification methods, 76
immutable objects, 73–75
inheritance, 61–63
instance variables, 49
instantiation, 53–55
nested classes, 64, 65
objects, 49
in practice, 68, 69
relationships, 55–58
responsibilities, 49
special methods, 65–67
variables, 70

© Gabor Guta 2022
G. Guta, Pragmatic Python Programming, https://doi.org/10.1007/978-1-4842-8152-9

https://doi.org/10.1007/978-1-4842-8152-9

194

Class method, 70–72
Collaborators, 76
Comments, 13, 21, 106, 107,

136, 165–167
Complex class, 51
Complex numbers, 7, 19, 50
Complex type, 7, 177
concatenation, 4, 121
Conceptual substitutability, 63
Concurrency, 182
Concurrent execution, 182
Conditional expression, 5, 13, 22
Containment, 77
Context Manager classes, 104, 112
continue statement, 95
copy function, 138
Copying sequences, 134
Coroutines, 139, 142, 181, 182, 184
CRC card, 76
Custom Exception Class, 111

D
Data classes, 73, 75
Data structure, 115, 116, 134–136, 138
Decorator, 43, 44, 59
Dictionaries, 110, 129, 130, 132,

134, 145
Dictionary comprehension, 132
Documentation, 166, 167
Documentation of Python, 14
Documentation string

(docstring), 37
duck typing, 63

E
Ellipsis literal, 21
else keyword, 82, 96, 100, 101
Event loop, 183–186
ExceptionBase, 103
Exception class, 111
Exception handling, 100, 101,

103, 114
Exceptions, 111, 114
Expressions, 3, 23, 24

Boolean types, 3, 4
complex numbers, 7
conditional expression, 5
floating-point numbers, 6, 7
fully parenthesized

expression, 3
logical/mathematical

relation, 1
numbers (integers) and

operators, 1, 2
order of operations, 1
string type objects, 4, 5
variable names, 8

Expression tree, 2, 4, 5
External tools, 14
External variables, 46

F
Facade designing pattern, 160
Floating-point numbers, 7, 18, 175
Floats, 18, 19
float type, 6, 149

INDEX

195

for loop, 97, 99, 106, 122
for statement, 97, 114, 131
Formatted string literals (f-strings),

15, 16, 20
frozenset type, 133
Functions

arguments, 29
asynchronous functions, 45
body, 32
calling, 26, 27, 45
decorator, 43, 44
defining, 30–32, 45
definition, 25
keyword arguments, 32, 33
lambda expression, 43
namespace, 41
nested functions, 36
objects, 46
parameters, 35
in practice, 37–40
programming languages, 25
scope, 41
side effects, 27, 28
variable names, 33, 34
variable number of

arguments, 42
yield statement, 45

G
Generator-based coroutine, 142, 182
Generator function, 45, 139–142
Generic types, 179, 180
getcontext() function, 150

H
Hash function, 73, 74

I, J
if keyword, 125
if statement, 82–85, 114
Imaginary value, 7
index_numbers, 151
Inheritance, 61–63, 78
Instance variables, 48, 51, 65
Integers, 2, 18, 177
Integrated development

environments (IDEs), 177
isinstance() function, 63
Iterable generator object, 139
Iterable objects, 126, 145

K
Keyword arguments, 29, 32, 33, 108
Keywords, 13, 16, 17
Keyword-only parameters, 41, 42

L
Lambda expression, 43
Language-specific behaviors, 79
len() built-in function, 121
list() expression, 123
List of products, 117, 118
Lists of Boolean, 125
Lists of Numbers, 126
Literals, 13, 17

INDEX

196

Little endian, 174, 175
Local namespace, 41
Loops, 106, 107

M
Map function, 143
match statement, 86–90, 109,

110, 114
Meta classes, 65
Mixed type objects, 118, 119
model module, 154
Module, 153, 159

descriptions, 159
in Python, 152

Multiline comments, 13
Multiline strings, 13
Multiple bytes, 173–175
Multiplicity property, 143

N
Names, 16, 182, 186
Namespace, 41, 46
Native coroutine, 142, 182, 183, 186
Native coroutine execution, 183
Native coroutine function, 182
Nested classes, 64, 65
Nested functions, 36
None object, 28

O
Object diagram notation, 23
Object Modeling Technique

(OMT), 76

Object-oriented
development, 77

Object-oriented
programming, 47, 70

Objects, 46
concepts, 78
creating, 50
elements, 78
instance variables and

methods, 48, 50, 51
instantiation, 50

P, Q
Package Management

Commands, 155
Packages, 153, 169
Package versions, 163
pandas package, 156, 158
Parallel execution, 182
path variable, 151
Positional-only

parameters, 41, 42
prec variable, 150
Precedence of the

operators, 21, 22
print() function, 29
Product class, 53, 61, 109, 164
product_names, 121, 122
Product object, 117, 118
Product type objects, 52
Properties, 58–60
Protocol type, 179
Python, 134, 148, 151, 153, 163

INDEX

197

Python code, 84, 94, 165
Python code formatters, 166
Python ecosystem, 169
Python Enhancement Proposals

(PEP), 23
Python environment, 155, 163
Python language, 6, 7, 10, 11, 14,

16, 17, 23, 81, 113, 116, 123,
127, 154, 159

Python language typing, 179
Python package, 161
Python program, 151, 169
Python projects, 160
Python script, 152
Python source, 160
Python versions, 163

R
Readable property, 59
readline() method, 105
read_next variable, 92
read(n) method, 105
Recursion, 105, 106
Reference manual style, 160
remove(x) method, 121
Returned value, 26
Rounded value, 26
r-string, 20

S
Sales abstract base class, 72
Scripts, 12, 163

seek(n) method, 105
self parameter, 52
Sequence diagram, 144
Set type, 132
setuptools package, 162
site-packages directory, 163
Slicing, 120
Source code, 12, 13
Sphynx, 166, 167
Statements, 10, 11
Static Analysis

Commands, 165
Static method, 70–72
StopIteration, 138, 139
Strings, 19, 113, 172–175, 177
Struct package, 175
Synchronous behavior, 142,

181, 182

T
tell() method, 105
Third-Party Packages, 155, 156,

161, 163, 169, 181
try statement, 101, 102
Tuples, 127–129
Type annotations (Type hints), 14,

37, 177–200

U
Unified Modeling

Language (UML), 23
unittest.mock package, 165

INDEX

198

unittest package, 163
UTF-8 standard, 173

V
ValueError exception, 102
Variable names, 8, 9, 12, 149
Virtual environment, 163

W, X, Y, Z
walrus operator, 11
while statement, 90, 91, 93, 96
Writable properties, 59, 60
write(v) method, 105

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Expression: How to Compute
	Expressions with Additional Types
	Boolean Type in an Expression
	String Type in an Expression
	Expressions with Conditional Operators
	Floating-Point Number Type in an Expression
	Complex Number Type in an Expression

	Variable Names
	Statements
	Deletion of a Variable Name
	Additional Language Constructs
	Statements and Expressions in Practice
	Advanced Details
	Names
	Keywords and Special Names
	Literals
	Characters with Special Meaning
	Python Standards
	Object Diagram Notation

	Key Takeaways

	Chapter 2: The Function: Programs as a Series of Statements
	Calling a Function
	Side Effects of Functions
	Function Arguments
	Defining a Function
	Keyword Arguments
	Visibility of Names
	Functions as Parameters
	Definitions of Nested Functions
	Functions in Practice
	Advanced Details
	Namespace and Scope
	Positional-Only and Keyword-Only Parameters
	Variable Number of Arguments
	Lambda Expression
	Decorator
	Yield Statement and Asynchronous Functions

	Key Takeaways

	Chapter 3: The Class: How to Model the World
	What Is a Class?
	Creating Objects
	Using Instance Variables and Methods
	Defining Classes
	Relationships Among Classes
	Properties
	Inheritance
	Nested Classes
	Special Methods
	Classes in Practice
	Advanced Details
	Class Variables, Class Methods, and Static Methods
	Abstract Base Classes
	Immutable Objects and Data Classes
	Methods of Identifying Classes
	Class Diagrams

	Key Takeaways

	Chapter 4: The Control Structure: How to Describe the Workflow
	if Statement
	match Statement
	while Statement
	for Statement
	Exception Handling
	Context Management
	Recursion
	Loops in Practice
	Advanced Details
	Matching Classes and Other Kinds of Patterns
	Exception Classes
	Context Manager Classes
	Evaluating Strings
	Activity Diagram

	Key Takeaways

	Chapter 5: The Sequence: From Data to the Data Structure
	Lists and Their Operations
	Processing of a List
	Tuples
	Dictionaries
	Sets
	Copying Sequences
	Sequences in Practice
	Advanced Details
	Iterable Objects
	Deep Copy of Data Structures
	Generator Functions and Coroutines
	Functional-Style Manipulation of Lists
	Multiplicity of Class Diagram Connections
	Sequence Diagram

	Key Takeaways

	Chapter 6: The Module: Organization of Program Parts into a Unit
	Built-in Modules
	Defining Modules
	Packages
	Future Package
	Package Management
	Useful Third-Party Packages
	Modules in Practice
	Advanced Concepts
	Structure of Python Projects
	Virtual Environments
	Tools for Testing
	Tools for Static Analysis
	Tools for Formatting
	Preparation of Documentation

	Key Takeaways

	Appendix A: Binary Representation
	Appendix B: Type Annotations
	Appendix C: Asynchronous Programming
	Bibliography
	Index

