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Foreword

Questions like “is there an algorithm for this?”, “can we compute that?”, or
“can we approximate the next thing?” used to be the domain of computer
scientists; now, almost every train of thought can be enhanced by asking
versions of these questions. They’re variants of the practical question “how
can I do this better/efficiently/safely?”, which is behind every advance since
at least the fire-hardened spear. You really can’t do science or engineering if
you ignore computational thinking, and to do science or engineering well
requires hearing answers to computational questions in your head by reflex.
The most usual (and usually the best) way to start fostering this reflex is to
practice programming. This book has important features that will help you
practice:

• You can browse it online, at http://pp4e.online/, if you run into problems.
• There is interactive content, where you can provide input and see what

happens.
• You can run each example in each chapter, using the Jupyter Notebook

version of the book.
• And there are lots of examples and exercises.

Most people can learn to write simple programs quite well with practice and
with careful guidance. But programming is a deep and subtle art. You’ll find
as you proceed to learn that writing programs that do what you want them to
do can be surprisingly delicate. First, one has to get used to all that syntax.
This takes a bit of patience, and you should be willing to forgive yourself
silly mistakes as long as you don’t make too many—I’ve been programming
for at least 40 years now, and I occasionally use the wrong bracket, omit an
indentation, drop a semicolon, or whatever. Then you’ll need to learn to
express yourself, so that the program does what you want. This mostly just
takes practice, but the next step is hard. You’ll find very often that you didn’t
clearly understand what you wanted the program to do, and the program you
wrote reflects that failure of understanding—it’s actually doing what you
wanted, but you didn’t want the right thing in the first place. While everyone
finds this experience annoying on occasion, being forced to very clearly think
through what is the right thing is a valuable discipline.

An important help with all these problems is practice. Strong program-
mers have written and read many different programs. Some lucky people just
have gifts, but most strong programmers got that way by practice and
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imitation. Some types of problem—for example, sorting a list of numbers—
turn up again and again in practice, so strong programmers remember pat-
terns and learn from one another.

Practice will help you develop a valuable habit. Suspect that you might
make mistakes, and think about how you can find and fix them (Chap. 9 is
good on this). Strong programmers know what behaviors their code should
exhibit—for example, squared numbers are never negative—and check it is
doing so. So if you have something that should be the square of a number and
it’s negative, there’s a problem. Where the problem is, could get interesting;
but there is one.

You’ll find that producing programs of even moderate size that are known
to be correct is challenging. Among other difficulties, specifying the correct
behavior of a program can be difficult. Embracing these challenges has
produced astonishing artifacts that have had an impact on a very large
number of lives—for example, the fly-by-wire software that is a key part of
modern air transportation allows people to visit their relatives cheaply and
safely.

As I looked through this book, I found the lovely line “There is no servant
without fault, love me with the faults I have”. It captures my own experience
of learning to program and continuing to program rather well. I still find it
frustrating that programs do what I wrote, rather than what I should have
written; and I still find trying to express what I know (or what I suspect)
using code to be creative and fruitful. I close by commending the authors for
putting so much time and effort into helping you learn to program. My life
has certainly been enriched by learning to program, and I hope yours will be
too.

June 2023 David Forsyth
Fulton Watson Copp Chair in Computer Science

University of Illinois at Urbana-Champaign
Champaign, IL, USA

viii Foreword



Preface

Target Audience of the Book

This book is intended to be an accompanying textbook for teaching pro-
gramming to science and engineering students with no prior programming
expertise. This endeavor requires a delicate balance between providing in-
depth details on computers and programming in a complete manner and the
programming needs of science and engineering disciplines. With the hope of
providing a suitable balance, the book uses Python as the programming
language, since it is easy to learn and program with. Moreover, to keep the
balance, the book is made up of three topics:

• The Basics of Computers and Computing (Chaps. 1–3): The book starts
with the definitions of computation and an introduction to modern
hardware and software infrastructure on which programming is com-
monly performed and the spectrum of programming languages.

• Programming with Python (Chaps. 4–9): These chapters present the basic
building blocks of Python programming and continue with the ground
formation for solving a problem in Python. Since almost all science and
engineering libraries in Python are written with an object-oriented
approach, a gentle introduction to this concept is also provided in this
part.

• Using Python for Science and Engineering Problems (Chaps. 10–12): The
book reserves the last chapters to practical and powerful tools that are
commonly used in various science and engineering disciplines. These
tools provide functionalities for reading and writing data from/to files,
working with data (using e.g., algebraic, numerical or statistical compu-
tations) and plotting data. These tools are then utilized in example
problems and applications at the end of the book.

A Note on the Python Version Used in This Book

The Python version referred to in this book is 3.6. However, to the best of our
knowledge, the version at the time of printing (version 3.11) is compatible
with the codes presented in this book.
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Python is a language that was initially introduced in 1991 and has seen
regular version upgrades, with new versions typically being released
approximately once a year. Starting from Python 3.0, each major version has
been maintained for about five years. It’s important to note that Python 3.0
introduced backward incompatibilities, meaning that Python 2 code does not
run unmodified with a Python 3 interpreter. However, there are tools avail-
able that help in transitioning Python 2 code to Python 3. As of now, all
Python 3.x versions maintain backward compatibility. The expectation is that
if a future Python 4.0 version is released, it will strive to maintain backward
compatibility.

For detailed information on the version history of Python, we encourage
readers to consult the following resources:

• https://docs.python.org/3.11/whatsnew/index.html for the current version
(as of writing this book).

• https://devguide.python.org/versions/.
• https://en.wikipedia.org/wiki/History_of_Python.
• https://en.wikibooks.org/wiki/Python_Programming/Version_history.

Please refer to these resources to explore the specific changes and features
introduced in different Python versions.

How to Use the Book

This book takes an “interactive” and “minimalist” approach, focusing on
direct interaction with examples and problems rather than emphasizing every
detail or specialized subject. It is not intended to serve as a comprehensive
reference manual, but rather as a “first things first” and “hands-on” guide. To
provide additional information on skipped details, the book will include links
to further reading. With this in mind, readers are strongly encouraged to
thoroughly read and engage with all of the content of the book.

The book’s interactivity is thanks to Jupyter notebook.1 Therefore, the
book differs from a conventional book by providing some dynamic content.
This content can appear in audio-visual form as well as some applets (small
applications) embedded in the book. It is also possible that the book asks the
reader to complete/write a piece of Python program, run it, and inspect the
result, from time to time. The reader is encouraged to complete these minor
tasks. Such tasks and interactions are of great help in gaining an acquaintance
with Python and building up self-confidence in solving problems with Python.

The printed version of the book and in parallel the e-book extensively
contain four types of boxes. They are easily recognizable by their back-
ground color and numbered like figures or tables as follows:

1https://jupyter.org.

x Preface

https://docs.python.org/3.11/whatsnew/index.html
https://devguide.python.org/versions/
https://en.wikipedia.org/wiki/History_of_Python
https://en.wikibooks.org/wiki/Python_Programming/Version_history
https://jupyter.org


• This indicates a dynamic content, which can be in the form of a video or a
visual tutorial web application, where the output updates in real-time,
based on your input. In the e-book version, you can switch to the Web
application by clicking the title of the box. However, in the printed
version, this interactive feature is not available and the box displays a
static image snapshot. It is highly recommended that the reader tem-
porarily switches to the e-book version to access the relevant box and to
activate its interactive functionality by clicking on it.

• This indicates a code snippet that is executable and modifiable in the
e-book version. In the printed book, the code and its output will be
displayed. In the e-book version, when you click on the box, you will be
directed to an interactive Python environment. Essentially, you will be
taken to a portal containing the Python interpreter with some pretyped
code provided. There, you can run the code and experiment with it by
making modifications and rerunning it.

• After completing your learning period, you will likely find yourself
writing code on standalone computers. While it is possible to continue
programming on Jupyter Notebook, doing so may introduce additional
web connectivity overhead. Moreover, standalone software deployment is
often not feasible in those environments. Therefore, it is advisable to learn
how to set up a Python run-time environment on your local computer.
These boxes provide you with information on this matter.

• The gray boxes, such as the one above, are integral components of the
written tutoring material. They are static and intended for reading pur-
poses only. They do contain sample Python code runs.

Preface xi



Interactive Web Page of the Book

To facilitate dynamic contents and interaction with code segments, all
chapters are served at the following Web page and executable in your web
browser without installing any software: https://pp4e.online/.

Solutions Manual

A pdf solutions manual for problems posed in this book is available for
download by instructors adopting this book for use in their courses from
https://sites.google.com/springernature.com/extramaterial/lecturer-material.

Textual Conventions in the Book

• Codes and outputs are presented in teletype font.
• The first introduction of a term or a keyword is emphasized in italic.
• The definitions of the key concepts are also provided as a glossary at the

end of the book.
• Python function names, whether built-in or user-defined, are always

followed by a pair of parentheses “()” when referenced outside of the
code.

• External references, such as websites or external resources, are provided
as footnotes or end-notes.

• Occasionally, when a term description is lengthy, angle brackets are
employed to enclose the description, similar to their use in the syntax
of the language.

Ankara, Türkiye Sinan Kalkan
Onur T. Şehitoğlu
Göktürk Üçoluk
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1Computing and Computers

In this chapter, we will first introduce the fundamental concepts for our book: computing, computer,
and programming. Then, we will provide an overview of the internals of a modern computer. To do so,
we will first describe the general architecture on which modern computers are based. Then, we will
study the main components and the principles that allow such machines to function as general-purpose
“calculators”.

1.1 An Overview

1.1.1 What Is Computing?

Computing can be broadly described as the process of inferring data from data. Through such a process,
we are interested in solving a problem, called the task, wherein, when the task is solved, the data of
interest is produced. In this context, the original data is called the input (data) and the inferred one is
the output (data).

To better grasp these concepts, let us look at some examples:

• Multiplying two numbers, X and Y , and subtracting 1 from the multiplication result is a task. The
two numbers X and Y are the input and the result of X × Y − 1 is the output.

• Detecting faces in a digital picture is a task. Here the input is the color values (3 integers) for each
point (pixel) of the picture. The output is, as expected, the positions of the pixels that belong to
faces. In other words, the output can be a set of numbers.

• The board instance of a chess game, as input, where black has made the last move. The task is to
predict the best move for white. The best move is the output.

• The input is a set of three-tuples which look like<Age, Height, Gender>. The task, an optimization
problem in essence, is to find the curve (i.e., the function) that goes through these tuples in a three-
dimensional space spanned by Age, Height, and Gender. As you may have already guessed, the
output are the parameters that define the function and an error that describes how well the curve
goes through the tuples.

• The input is a sentence to a chatbot. The task is to determine the sentence (the output) that best
follows the input sentence in a conversation.
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2 1 Computing and Computers

These examples suggest that computing can involve different types of data, either as input or
output: numbers, images, sets, or sentences. Although this variety may seem intimidating at first, we
will see that, by using some “solution building blocks”, we can perform computations and solve various
problems with such a wide spectrum of data.

1.1.2 Are all “ComputingMachinery”Alike?

It is tempting to view modern computers as the only computing machinery. However, this is a common
misconception. There are diverse architectures based on totally different physical phenomena that can
compute. A biological brain is a mesmerizing example of this. To better understand the concept of
computing and computers, let us briefly look at how a brain computes.

A brain relies on completely different mechanisms compared to the microprocessors in our laptops,
desktops, mobile phones, and calculators. A brain is a densely connected web of a huge number of small
processing units, called neurons. A neuron is a cell that has several input channels, called dendrites,
and a single output channel, called axon. An axon branches out like a tree towards its end and connects
the neuron to the dendrites of other neurons (Fig. 1.1).

Neurons are connected to each other at synapses. A synapse functions like a valve, enabling the
flow of molecules, called neurotransmitters, to transmit a signal from one neuron to another. Neuro-

Fig. 1.1 Our brains are composed of simple processing units, called neurons. Neurons receive signals (information)
from other neurons, process those signals, and produce an output signal to other neurons. Neurons “communicate” with
each other by transmitting neurotransmitters via synapses
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Fig.1.2 When a neuron receives a “sufficient” amount of signals, i.e., stimulated, it emits an electrical charge along its
axon, i.e., it fires

transmitters are released into the synapse as the “output” and they “interact” with the dendrite (i.e., the
“input”) of the other neuron.

All neurotransmitters flown in through the input channels (dendrites) have an accumulative effect
on the (receiving) neuron. When the amount of messages (stimulus) received through the neuron’s
dendrites is above a threshold, the neuron becomes stimulated (its voltage level increases) and emits
an electrical burst through its axon via charged elements, as illustrated in Fig. 1.2. Note that such an
excitation is more sophisticated than a “what-comes-in-goes-out” process. After a burst, the neuron
returns to its resting (normal) state and becomes ready to be excited again.

The throughput of the synapse may vary with time. Most synapses have the ability to ease the flow
over time if the amount of neurotransmitters that entered the synapse is constantly high. High activity
widens the synaptic connection. The inverse also happens: Less activity over time narrows the synaptic
connection.

Some neurons are specialized in creating neurotransmitter emissions under certain physical events.
For example, neurons in the retina create neurotransmitters if light falls on them. Some, on the other
hand, create physical effects, like creating an electric potential that activates a muscle cell. These
specialized neurons feed the huge neural net, the brain, with inputs and receive outputs from it.

The human brain, containing about 1011 such neurons with each neuron being connected to 1000–
5000 other neurons by the mechanism explained above, is a very unique computing “machine” that
inspires computational sciences.
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The following is a short video that provides more information about synaptic communication between neurons:

A snapshot of the “2-Minute Neuroscience: Synaptic Transmission” video at
http://youtu.be/WhowH0kb7n0

[Provided with an explicit permission from the owner, Marc Dingman]

Compared to a modern computer, the brain never stops processing information, and the functioning
of each neuron is only based on signals (the neurotransmitters) it receives through its connections
(dendrites). There is no common synchronization timing device for the computation: i.e., each neuron
behaves on its own and functions in parallel.

An interesting phenomenon of the brain is that the information and the processing are distributed.
Thanks to this feature, when a couple of neurons die (which actually happens each day), no information
is lost completely.

In contrast to the brain, which uses varying amounts of chemicals (neurotransmitters), the
microprocessor-based computational machinery uses the existence and absence of an electric potential.
The information is stored centrally in a unit. The microprocessor consists of sub-units but they are
extremely specialized in function and far less in number compared to the 1011 all-alike neurons. In the
brain, changes take place at a pace of 50 Hz maximum, whereas this pace is 109 Hz in a microprocessor.

In the rest of the chapter, we will take a closer look at the microprocessor machinery which is used
by today’s computers. Just to make a note, there are man-made computing architectures other than
the microprocessor. A few examples include the “analog computer”, the “quantum computer”, and the
“connection machine”.

1.1.3 What Is a“Computer”?

As you may have noticed, the word “computer” is used in more than one context:

1. The broader context: Any physical entity that can do “computation”.
2. The most common context: An electronic device that has a “microprocessor” in it.
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From now on, “computer” will refer to the second concept, namely, a device that has a “micro-
processor”.

A computer...

• is based on binary (0/1) representations such that all inputs are converted to 0s and 1s and all
outputs are converted from 0/1 representations to a desired form, mostly a human-readable one.
The processing takes place on 0s and 1s, where 0 has the meaning of “no electric potential” (no
voltage, no signal) and 1 has the meaning of “some fixed electric potential” (usually 5V, a signal).

• consists of two clearly distinct entities: The Central Processing Unit (CPU), also known as the micro-
processor (µP), and a Memory. In addition to these, the computer is connected to or incorporates
other electronic units, known as “peripherals”, mainly for input–output purposes.

• performs a “task” by executing a sequence of instructions, called a “program”.
• is deterministic. That means if a “task” is performed under the same conditions, it will always

produce the same result. It is possible to include randomization in this process only by making use
of a peripheral that provides electronically random inputs.

1.1.4 What Is Programming?

The CPU (the microprocessor—µP) is able to perform several types of actions:

• Arithmetic operations on binary numbers that represent (encode) integers or decimal numbers with
fractional part.

• Operations on binary representations (e.g., shifting digits to the left or right; inverting 0s and 1s).
• Transferring to/from memory.
• Comparing numbers (e.g., whether a number n1 is larger than n2) and performing alternative actions

based on such comparisons.
• Communicating with the peripherals.
• Alternating the course of the actions.

Each such unit action is recognized by the CPU as an instruction. In more technical terms, tasks are
solved by a CPU by executing a sequence of binary instructions. Such sequences of binary instructions
are called machine codes. Constructing machine codes for a CPU is called “machine code program-
ming”.

But, a program has a broader meaning:

a series of steps to be carried out or goals to be accomplished.

As far as computer programming is concerned, we would certainly like these steps to be expressed
in a more natural (more human-readable) manner, compared to binary machine codes. Thankfully,
there exist “machine code programs” that read in such “more natural” programs and convert them into
“machine code programs” or immediately carry out those “naturally expressed” steps.

Python is such a “more natural way” of expressing programming steps.
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1.2 The Organization of Contemporary Computers

1.2.1 The von Neumann Architecture

1.2.1.1 John von Neumann
The following is a short biography written with OpenAI’s ChatGPT AI language model (generated
with the following prompt on March 2023: “Write a short biography of John von Neumann focusing
on his contributions to computer organization”):

John von Neumann (1903–1957)

“John von Neumann was a Hungarian-American mathematician who made significant contributions to
computer organization, including the development of the von Neumann Architecture. This architecture,
which is still used in most modern computers, is based on the principles of a stored-program computer.

Von Neumann’s work on the architecture of computers was groundbreaking. He recognized the
value of a flexible stored program, which allowed programs to be easily changed without altering the
computer’s basic circuits. This concept is now a fundamental principle of computer organization and
is used in the design of all modern computers.

Von Neumann was also instrumental in the development of the Electronic Numerical Integrator and
Computer (ENIAC), the first electronic computer. He helped design the computer and was responsible
for programming it. His work on the ENIAC led to the development of other computers, including the
UNIVAC, which was the first commercial computer.

Von Neumann’s research extended beyond computer architecture. He contributed to the development
of game theory and quantum mechanics, and he was involved in the Manhattan Project, a project to
build an atomic bomb. He was a prolific author, and his works include ‘Theory of Games and Economic
Behavior’, ‘Mathematical Foundations of Quantum Mechanics’, and ‘The Computer and the Brain’.

Von Neumann’s contributions to computer organization have had a lasting impact on the field.
His work on the von Neumann Architecture provided a framework for the development of modern
computers, and his ideas continue to shape the way we think about computers and their applications
in the modern world.”

1.2.1.2 Components of the von Neumann Architecture
The von Neumann Architecture (Fig. 1.3) defines the basic structure, or outline, used in most computers
today. Proposed in 1945 by von Neumann, it consists of two distinct units: an addressable memory
and a Central Processing Unit (CPU). All the encoded actions and data are stored together in the
memory unit. The CPU, querying these actions, the so-called instructions, executes them one by one,
sequentially (though, certain instructions may alter the course of execution order).

The CPU communicates with the memory via two sets of wires, namely, the address bus and the data
bus, plus a single R/W wire (Fig. 1.3). These buses consist of several wires and carry binary information
to/from the memory. Each wire in a bus carries one bit of the information (either a zero (0) or a one
(1)). Today’s machines conforming to the von Neumann Architecture are working on electricity, and
therefore these zeros and ones correspond to voltages. A one usually indicates the presence of a 5V
and a zero denotes the absence of it.
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Fig. 1.3 A block structure view of the von Neumann Architecture. [Reproduced with permission from: G. Üçoluk,
S. Kalkan, Introduction to Programming Concepts with Case Studies in Python, Springer, 2012 [1]]

1.2.1.3 TheMemory
The memory can be imagined as pigeonholes organized as a stack of rows (Fig. 1.4). Each row has
eight pigeonholes, each being able to hold a zero (0) or one (1). In electronic terms, each pigeonhole

5100
5101
5182
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114

0 1 0 1 0 1 0 1
0 1 0 0 1 0 0 0
1 0 0 0 1 0 0 1
1 1 1 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 1
1 0 1 1 0 0 1 0
0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 1 0 1 1
0 0 0 0 0 1 0 1
1 0 1 1 0 0 0 0

0 0 0 1 1 0 1 1

Address Memory

0 0 0 0 0 0 1 1

Fig. 1.4 The memory is organized as a stack of rows such that each row has an associated address. [Reproduced with
permission from: G. Üçoluk, S. Kalkan, Introduction to Programming Concepts with Case Studies in Python, Springer,
2012 [1]]

https://doi.org/10.1007/978-3-7091-1343-1
https://doi.org/10.1007/978-3-7091-1343-1
https://doi.org/10.1007/978-3-7091-1343-1


8 1 Computing and Computers

is capable of storing a voltage (can you guess what type of an electronic component a pigeonhole is?).
Each such row is named to be of the size byte, i.e., a byte means 8 bits.

Each byte of the memory has a unique address. When the address input (also called address bus—
Fig. 1.3) of the memory is provided a binary number, the memory byte that has this number as the
address becomes accessible through the data output (also called output data bus). Based on R/W wire
being set to Write (1) or Read (0), the action that is carried out on the memory byte differs:

• R/W wire is set to WRITE (1):
The binary content on the data bus is copied into the 8-bit location whose address is provided on
the address bus, the former content is overwritten.

• R/W wire is set to READ (0):
The data bus is set to a copy of the content of the 8-bit location whose address is provided on the
address bus. The content of the accessed byte is left intact.

The information stored in this way at several addresses lives in the memory happily, until the power
is turned off.

The memory is also referred to as Random Access Memory (RAM). Some important aspects of this
type of memory have to be noted:

• Accessing any content in RAM, whether for reading or writing purposes is only possible when the
content’s address is provided to the RAM through the address bus.

• Accessing any content takes exactly the same amount of time, irrespective of the address of the
content. In today’s RAMs, this access time is around 50ns.

• When a content is overwritten, it is gone forever and it is not possible to undo this action.

An important question is who sets the address bus and communicates through the data bus (sends
and receives bytes of data). As depicted in Fig. 1.3, the CPU does. How this is done by the CPU side
will become clear in the next section.

1.2.1.4 The Central Processing Unit (CPU)
The central processing unit can be considered as the “brain” of a computer. Its sole responsibility is
to execute machine instructions, which are binary sequences describing an operation and the operands
of the operation. The CPU achieves its responsibility with the help of the following units:

• Control Unit (CU), which is responsible for fetching instructions from the memory, interpreting
(“decoding”), and executing them. After finishing the execution of an instruction, the control unit
continues with the next instruction in the memory. This “fetch–decode–execute” cycle is constantly
executed by the control unit.

• Arithmetic Logic Unit (ALU), which is responsible for performing arithmetic (addition, sub-
traction, multiplication, division) and logic (less than, greater than, equal to, etc.) operations. CU
provides the necessary data to ALU and the type of operation that needs to be performed, and ALU
executes the operation.

• Registers, which are mainly storage units on the CPU for storing the instruction being executed,
the affected data, the outputs and temporary values.
The size and the quantity of the registers differ from CPU model to model. They generally have
size in the range of [2–64] bytes and most registers on today’s most popular CPUs have a size of
64 bits (i.e., 8 bytes). Their quantity is not high and in the range of [10–20]. The registers can be
broadly categorized into two: Special-Purpose Registers and General-Purpose Registers.
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Two special-purpose registers are worth mentioning to understand how a CPU’s fetch–decode–
execute cycle runs. The first is the so-called Program Counter (PC) and the second is the Instruction
Register (IR).

• Input/Output connections, which connect the CPU to the other components in the computer.

1.2.1.5 The Fetch–Decode–Execute Cycle
The CPU is, in fact, a state machine, a machine that has a representation of its current state (Fig. 1.5).
The machine, being in a state, reads the next instruction and executes the instruction according to its
current state. The state consists of what is stored in the registers. Until it is powered off, the CPU
follows the fetch–decode–execute cycle (Fig. 1.6) where each step of the cycle is based on its state.
The control unit is responsible for the functioning of the cycle.

1—The Fetch Phase

The cycle starts with the fetch phase. At the beginning of this phase, the CPU has the address (the
position in the memory) of the next instruction in the PC (program counter) register. During this phase,
the address bus is set to this address in the PC register and the R/W wire is set to Read (0). The memory
responds to this by providing the memory content at the given address on the data bus.

How many bytes are sent through the data bus is architecture dependent. Usually, it is 4–8 bytes.
These bytes are received into the IR (Instruction Register—see Fig. 1.3).

2—The Decode Phase

At the beginning of this phase, the IR is assumed to be holding the current instruction. The content
of the first part of the IR electronically triggers some action. Every CPU has an electronically built-in
hard-wired instruction table in which every possible atomic operation that the CPU can carry out has
an associated binary code, called operation code (opcode in short). This table differs from CPU brand
to brand.

There are three types of instructions:

Environment
or

User

State Machine
Use 
•
•

Fig. 1.5 The CPU is a state machine that uses the current input and the current state to compute an output and update
its state

Fig. 1.6 The CPU constantly follows the fetch–decode–execute cycle while the computer is running a program
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• Data manipulation instructions: Arithmetic/logic operations on/among registers.
• Data transfer instructions: Memory-to-register, register-to-memory, register-to-register transfers.
• Execution flow control instructions: Instructions that stop execution, jump to a different part of the

memory for the next instruction, instead of the next one in the memory.

Let us assume that our instruction looks like this:

Opcode Effected data or address
0001 0110

This is an 8-bit instruction that has the first 4 bits representing the opcode. The designer could
have designed the CPU such that the opcode 0001 denotes an instruction for reading data from the
memory, writing data to the memory, or adding the contents of the two registers, etc. The remaining 4
bits then contain the parameters of the instruction, which are the data to be operated on, the address in
the memory or the codes (denoting names) of the registers, etc.

Let us assume that this 8-bit example instruction (with the opcode 0001) denotes an addition on
two registers and that the remaining 4 bits encode the registers in question, with 01 denoting one
register and 10 the other register. Prior to the instruction, we can assume the two registers to contain
integers, and after the instruction is executed, one of the registers will be incremented by the amount
of the other (by means of integer addition).

Although this was a simple and hypothetical example, it illustrates how modern CPUs can decode an
instruction and decipher its elements. Though the length of an instruction and the variety of instructions
are clearly different.

3—The Execute Phase

As the name implies, the electronically activated and initialized circuitry carries out the instruction in
this phase. Depending on the instruction, the registers, the memory, or other components are affected.
When the instruction completes, the PC is updated to the address of the next instruction. However, if the
instruction was for changing the flow of execution (i.e., jumping to a different memory location), then
the PC is updated to the to-be-jumped address in the memory (in some designs, the PC can be updated
in the fetch phase, after fetching the instruction). Not all instructions take the same amount of time to
be carried out. Floating point division, for example, takes much more time to compute compared to
others.

A CPU goes through the fetch–decode–execute cycle until it is powered off. What happens at the very
beginning? The electronics1 of the CPU are manufactured such that when powered up, the PC register
has a very fixed content. Therefore, the first instruction is always fetched from a certain position.

An important point to note here is the mechanism of the transitions of the CPU from one state to
another. One possible answer is: whenever the previous state is completed electronically, a transition
to the next state is performed. Interestingly, this is not true. The reality is that there is an external
input to the CPU from which electronic pulses are fed. This input is called the system clock and each
period of it is named as a clock cycle. The best performance would be observed when each phase of
the fetch–decode–execute cycle is completed in one-and-only-one clock cycle. On modern CPUs, this
is true for the addition instruction, for example. But there are instructions (like floating-point division)
that take about 40 clock cycles.

What is the length of a clock cycle? CPUs are marked with their clock frequency. For example,
Intel’s latest processor, i9, has a maximal clock frequency of 5GHz (that is 5 × 109 pulses per second).

1 Circuits or devices constructed using transistors, microchips, and other hardware components.
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Since (period) = 1/(frequency), a clock cycle is 200 picoseconds for this processor. This is such a
short time that light would travel only 6 cm.

A modern CPU has many more features and functional components: Interrupts, ports, various levels
of caches are a few of them. These are out of the scope of this book.

1.2.1.6 The Stored Program Concept
In order for the CPU to compute something, the corresponding instructions for performing the compu-
tation have to be placed into the memory (how this is achieved will become clear in the next chapter).
These instructions and data that perform a certain task are called a Computer Program. The idea of
storing a computer program in the memory to be executed is coined as the Stored Program Concept.

What does a stored program look like? Below you see a real extract from the memory of a program.
This program multiplies two integer numbers in two different locations of the memory and stores the
result in another memory location (to save space, consecutive 8 bytes in the memory are displayed in
a row, the next row displays the next 8 bytes):

01010101 01001000 10001001 11100101 10001011 00010101 10110010 00000011
00100000 00000000 10001011 00000101 10110000 00000011 00100000 00000000
00001111 10101111 11000010 10001001 00000101 10111011 00000011 00100000
00000000 10111000 00000000 00000000 00000000 00000000 11001001 11000011
...
11001000 00000001 00000000 00000000 00000000 00000000

Unless you have a magical talent, this should not be understandable to you. It is difficult because it
is just a sequence of bytes. Yes, the first byte is presumably an instruction, but what is it? Furthermore,
since we do not know what it is, we do not know whether some data follow it or not, so we cannot
say where the second instruction starts. However, the CPU which these instructions were written for,
would know this, having it hard-wired in its electronics.

When a programmer wants to write a program at this level, i.e., in terms of binary CPU instructions
and binary data, s/he has to understand and know each instruction the CPU can perform, should be able
to convert data to some internal format, to make a detailed memory layout on paper, and then to start
writing down each bit of the memory. This way of programming is an extremely painful job; though
it is possible, it is impractical.

Alternatively, consider the text below:

main:
pushq %rbp
movq %rsp, %rbp
movl alice(%rip), %edx
movl bob(%rip), %eax
imull %edx, %eax
movl %eax, carol(%rip)
movl $0, %eax
leave
ret

alice:
.long 123

bob:
.long 456
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Though “pushq” and “moveq” are not immediately understandable, the rest of the text provides
some hints. “alice” and “bob” must be some names created by the programmer, in this case for
denoting variables with values “123” and “456”, respectively; “imull” must have something to do
with “multiplication”, since only registers can be subject to arithmetic operations; “%edx” and “%eax”
must be some denotation used for registers; having uncovered this, “movl” starts to make some sense:
they are some commands to move around data... and so on. Even without knowing the instruction set,
with a small brainstorming, we can uncover the action sequence.

This text is an example of an assembly program. A human invented denotation for instructions and
data. An important piece of knowledge is that each line of the assembler text corresponds to a single
instruction. This assembly text is so clear that even manual conversion to the cryptic binary code above
is feasible. From now on, we will call the binary code program a Machine Code Program (or simply
the machine code).

How do we automatically obtain machine codes from assembly text? We have machine code pro-
grams that convert the assembly text into machine code. They are called assemblers.

Despite making programming easier for programmers, compared to machine codes, even assembly
programming languages are insufficient for efficient and fast programming. They lack some high-level
constructs and tools necessary for solving problems. Therefore, higher level languages that are much
easier to read and write compared to assembly are invented.

We will cover the spectrum of programming languages in more detail in the next chapter.

1.2.1.7 Pros and Cons of the von Neumann Architecture
The von Neumann Architecture has certain advantages and disadvantages:

Advantages

• CPU retrieves data and instruction in the same manner from a single memory device. This simplifies
the design of the CPU.

• Data from input/output (I/O) devices and from memory are retrieved in the same manner. This is
achieved by mapping the device communication electronically to some address in the memory.

• The programmer has considerable control of the memory organization. So, s/he can optimize the
memory usage to its full extent.

Disadvantages

• The sequential instruction processing nature makes parallel implementations difficult. Paralleliza-
tion is achieved by rapidly transitioning between tasks, albeit in a sequential manner.

• The famous “von Neumann bottleneck”: Instructions can only be carried out one at a time and
sequentially.

• Risk of an instruction being unintentionally overwritten due to an error in the program.

An alternative to the von Neumann Architecture is the “Harvard Architecture”2 which could not
withstand the test of time due to critical disadvantages compared to the von Neumann Architecture.

2 https://en.wikipedia.org/wiki/Harvard_architecture.

https://en.wikipedia.org/wiki/Harvard_architecture
https://en.wikipedia.org/wiki/Harvard_architecture


1.3 The Running of a Computer 13

1.2.2 Peripherals of a Computer

Though it is somewhat contrary to your expectation, any device outside of the von Neumann structure,
namely, the CPU and the Memory, is considered a peripheral. In this aspect, even the keyboard, the
mouse, and the display are peripherals. So are the USB and “Ethernet” connections and the internal
hard disk. Explaining the technical details of how those devices are connected to the von Neumann
Architecture is out of the scope of this book. Though we can summarize it briefly.

All devices are electronically listening to the buses (the address and data buses) and to a wire
running out of the CPU (which is not pictured above) which is 1 or 0. This wire is called the port_io
line and tells the memory devices as well as any other device that listens to the buses whether the CPU
is talking to the (real) memory or not. If it is talking to the memory all the other listeners keep quiet.
But if the port_io line is 1, meaning the CPU is not talking to the memory but to the device which is
electronically sensitive to that specific address that was put on the address bus (by the CPU), then that
device jumps up and responds (through the data bus). The CPU can send as well as receive data from
that particular device. A computer has some precautions to prevent two different devices from having
the same address.

To communicate with the peripherals, the CPU can occasionally stop and do a port_io on all possible
devices, asking them for any data they want to send in. This technique is called polling and is extremely
inefficient for devices that send asynchronous data (data that is sent in irregular intervals): You cannot
know when there will be a keyboard button press so, in polling, you have to ask very frequently the
keyboard device for the existence of any data.

To avoid this inefficiency of polling, another mechanism based on interrupts is built into the CPU.
The interrupt mechanism relies on an electronic circuitry of the CPU which has inlets (wires) connected
to the peripheral devices. When a device wants to communicate with (send or receive some data to/from)
the CPU, they send a signal (1) from that specific wire. This gets the attention of the CPU; the CPU
stops what it is doing at a convenient point in time, and asks the device for a port_io. This way, the
device gets a chance to send/receive data to/from the CPU.

1.3 The Running of a Computer

When you power on a computer, it first goes through a start-up process (also called booting), which,
after performing some routine checks, loads a program from your disk called Operating System.

1.3.1 Start-Up Process

We have learned that at the core of a computer is the von Neumann Architecture. Now, we will see
how a machine code finds its way into the memory, and gets settled there, so that the CPU starts
executing it.

When you buy a brand new computer and turn it on for the first time, it does some actions which are
traceable on its display. Therefore, there must be a machine code in the memory that, even when the
power is off, does not lose its content, very much like a flash drive. It is electronically located exactly at
the address where the CPU looks for its first instruction. This memory, with its content, is called Basic
Input Output System (BIOS). In the former days, the BIOS was manufactured as write-only-once. To
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change the program, a chip had to be replaced with a new one. The size of the BIOS of the first PCs
was 16KB,3 nowadays it is about 1000 times larger, 16MB.

When you power up a PC, the BIOS program will do the following in sequence:

• Power-On Self-Test, abbreviated as POST, which determines whether the CPU and the memory
are intact, identifies and, if necessary, initializes devices like the video display card, keyboard, hard
disk drive, optical disk drive, and other basic hardware.

• Looking for an Operating System (OS): The BIOS program goes through storage devices (e.g.,
hard disk, floppy disk, USB disk, CD-DVD drive, etc.) connected to the computer in a predefined
order (this order is generally changeable by the user) and looks for and settles for the first operating
system that it can find. Each storage device has a small table at the beginning part of the device,
called the Master Boot Record (MBR), which contains a short machine code program to load the
operating system if there is one.

• When BIOS finds such a storage device with an operating system, it loads the content of the MBR
into the memory and starts executing it. This program loads the actual operating system and then
runs it.

BIOS nowadays is modernized into the Unified Extensible Firmware Interface (UEFI) which intro-
duces more capabilities such as faster hardware check, better user interface, and more security. With
UEFI, MBR is replaced by a modernized version, called GPT (globally unique identifier partition table)
to allow larger disks, larger partitions (drives), and better recovery options.

1.3.2 The Operating System (OS)

The operating system is a program that, after being loaded into the memory, manages resources and
services like the use of memory, the CPU, and the devices. It essentially hides the internal details of
the hardware and makes the ugly binary machine understandable and manageable to us.

An OS has the following responsibilities:

• Memory Management: In modern computers, there is more than one machine code program loaded
into the memory. Some programs are initiated by the user (like an Internet browser, document
editor, office programs, music player, etc.) and some are initiated by the operating system. The CPU
switches very fast from one program (this is called a process) in the memory to another. The user
(usually) does not feel the switching. The memory manager keeps track of the space allocated by
processes in the memory. When a new program (process) is being started, it has to be placed into the
memory. The memory manager decides where it is going to be placed. Of course, when a process
finishes execution, the place in the memory occupied by the process has to be reclaimed; that is, the
memory manager’s job. It is also possible that, while running, a process demands additional space
in the memory (e.g., a Photoshop-like program needs more space for a newly opened JPEG image
file) then the process makes this demand to the memory manager, which grants it or denies it.

• Process (Time) Management: As stated above, the memory of a modern computer generally
contains more than one machine code program. An electronic mechanism forces the CPU to switch
to the Time Manager component of the OS. At least 20 times a second, the time manager is invoked
to make a decision on behalf of the CPU: Which of the processes that sit in the memory will be run
during the next period?

3 A byte (B) is 8 bits. 1 kilobyte (KB) is 210 = 1024 bytes. 1 megabyte (MB) is 210 = 1024 KB. 1 gigabyte (GB) is
210 = 1024 MB.
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When a process gets the turn, the following actions are executed:

1. The current state of the CPU (the contents of all registers) is saved to some secure position in
the memory, in association with the last executing process.

2. From that secure position, the last saved state information of the process which is going to take
the turn is found and the CPU is set to that state.

3. Then the CPU, for a period of time, executes that process.
4. At the end of that period, the CPU switches over to the time manager. The time manager makes

a decision about which process gets the next turn, and Steps 1–4 are repeated.

Determining the next process to execute is a complex task and an active research area. The time
manager collects some statistics about each individual process and its system resource utilization.
Moreover, there is the possibility that a process has a high priority associated due to several reasons.
The time manager has to solve a kind of optimization problem under some constraints. This is a
highly complex task and a hidden quality factor of an OS.

• Device Management: All external devices of a computer have a software plug-in to the operating
system. An operating system has some standardized demands from devices and these software plug-
ins implement these standardized functionalities. This software is usually provided by the device
manufacturer and is loaded into the operating system as a part of the device installation process.
These plug-ins are named device drivers.
An operating system performs device communication by means of these drivers. It does the following
activities for device management:

– Keeps track of all devices’ status.
– Decides which process gets access to the device when and for how long.
– Implements some intelligent caching, if possible, for the data communication with the device.
– De-allocates devices.

• File Management: A computer is basically a data processing machine. Various data are produced
or used for very diverse purposes. Textual, numerical, and audio-visual data are handled. Handling
data also includes storing and retrieving it on some external recording device. Examples of such
recording devices are hard disks, flash drives, CDs, and DVDs. Data is stored on these devices as
files. A file is a persistent piece of information that has a name, some metadata (e.g., information
about the owner, the creation time, size, content type, etc.), and the data.
The organizational mechanism for how files are stored on devices is called the file system. There are
various alternatives to do this. FAT16, FAT32, NTFS, EXT2, EXT3, ExFAT, and HFS+ are a few
of about a hundred (actually the most common ones). Each has its own pros and cons as far as max
allowed file size, security, robustness (repairability), extensibility, metadata, layout policies, and
some other aspects are concerned. Files are most often managed in a hierarchy. This is achieved by
a concept of directory or folder. On the surface (as far as the user sees them), a file system usually
consists of files separated into directories where directories can contain files or other directories.
The file manager is responsible for the creation and initialization of a file system, inclusion and
removal of devices from this system, and management of all sorts of changes in the file system:
Creation, removal, copying of files and directories, dynamically assigning access rights for files and
directories to processes, etc.

• Security: This is basically for the maintenance of the computer’s integrity, availability, and confi-
dentiality. The security of a computer exists at various layers such as

– maintaining the physical security of the computer system,
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– the security of the information that the system holds, and
– the security of the network to which the computer is connected.

In all of these, the operating system plays a vital role in keeping security. The second item especially
is where the operating system is involved at most. Information, as you know by now, is placed in
the computer in two locations: The internal memory and the external storage devices. The internal
memory holds the processes, and the processes should not interfere with each other unless specifi-
cally intended. In fact, in a modern-day computer, there can be more than one user working at the
same time on the computer. Their processes running in the memory as well as their files being on
the file system must remain extremely private and separate. Even their existence has to be hidden
from every other user.
Computers are connected and more and more integrated into a global network. This integration is
done on a spectrum of interactions. In the extreme case, a computer can be solely controlled over
the network. Of course, this is done by supplying some credentials but, as you would guess, such
a system is prone to malicious attacks. An operating system has to take measures to protect the
computer system from such harm. Sometimes it is the case that bugs in the OS are discovered and
exploited in order to breach security.

• User Interface: As the computer’s user, when you want to do anything, you do this by ordering the
operating system to do it. Starting/terminating a program, exploring or modifying the file system,
and installing/uninstalling a new device are all done by “talking” to the operating system. For this
purpose, an OS provides an interface, coined as the user interface. In the past, this was done by typing
some cryptic commands into a typewriter at a console device. Over the years, the first computer
with a Graphical User Interface (GUI) emerged. A GUI is a visual interface to the user where the
screen can host several windows each dedicated to a different task. Elements of the operating system
(processes, files, directories, devices, network communications) and their status are symbolized by
icons and the interactions are mostly conducted via moving and clicking a pointing device which is
another icon (usually a movable arrow) on the screen. The Xerox Alto4 introduced in 1973 was the
first computer that had a GUI. The first personal computer with a GUI was Apple Lisa,5 introduced
in 1983 with a price of $10,000. Almost 3 years later, by the end of 1985, Microsoft released its
first OS with a GUI: Windows 1.0. The archaic console typing still exists, in the form of a type-able
window, called the terminal, which is still very much favored among programming professionals
because it provides more control for the OS.

1.4 Important Concepts

We would like our readers to have grasped the following crucial concepts and keywords from this
chapter:

• The von Neumann Architecture.
• The interaction between the CPU and the memory via address, R/W, and data bus lines.
• The crucial components of the CPU: The control unit, the arithmetic logic unit, and the registers.
• The fetch–decode–execute cycle.
• The stored-program concept.
• Operating system and its responsibilities.

4 https://github.com/sinankalkan/CENG240/blob/master/figures/XeroxAlto.jpg?raw=true.
5 https://github.com/sinankalkan/CENG240/blob/master/figures/AppleLisa.jpg?raw=true.

https://github.com/sinankalkan/CENG240/blob/master/figures/XeroxAlto.jpg?raw=true
https://github.com/sinankalkan/CENG240/blob/master/figures/AppleLisa.jpg?raw=true
https://github.com/sinankalkan/CENG240/blob/master/figures/XeroxAlto.jpg?raw=true
https://github.com/sinankalkan/CENG240/blob/master/figures/AppleLisa.jpg?raw=true
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1.5 Further Reading

• More on the CPU and the memory:

– CPU and its history: https://en.wikipedia.org/wiki/Central_processing_unit [5]
– Instruction sets: https://en.wikipedia.org/wiki/Instruction_set_architecture [9]
– Bus: https://en.wikipedia.org/wiki/Bus_(computing) [4]
– Memory: https://en.wikipedia.org/wiki/Random-access_memory [13]

• Computer architectures:

– von Neumann Architecture: http://en.wikipedia.org/wiki/Von_Neumann_architecture [14]
– Harvard architecture: http://en.wikipedia.org/wiki/Harvard_architecture [7]

• Alternatives to digital computation:

– Analog computer: https://en.wikipedia.org/wiki/Analog_computer [2]
– Quantum computer: http://en.wikipedia.org/wiki/Quantum_computer [12]
– Optical computer: https://en.wikipedia.org/wiki/Optical_computing [11]
– Chemical computer: http://en.wikipedia.org/wiki/Chemical_computer [6]

• Running of a computer:

– Booting a computer: https://en.wikipedia.org/wiki/Booting [3]
– Operating systems: https://en.wikipedia.org/wiki/Operating_system [10]
– History of operating systems: https://en.wikipedia.org/wiki/History_of_operating_systems [8].

1.6 Exercises

1. To gain more insight, play around with the von Neumann machine simulator at http://vnsimulator.
altervista.org

2. Can you think of any shortcomings of the von Neumann Architecture? If you had the chance, what
would you fix about the von Neumann Architecture?

3. Make a list of similarities and dissimilarities between the biological brain (with the context provided
in Sect. 1.1) and the von Neumann Architecture.

4. Find the following information for your desktop/laptop using a search engine or the website of your
machine’s manufacturer:

a. Memory (RAM) size.
b. CPU type and clock frequency.
c. Data bus size.
d. Address bus size.
e. Size of general-purpose registers in the CPU.
f. Hard disk or SSD size and random access time.

Opcode Affected address
0001 0100

https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/Random-access_memory
http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://en.wikipedia.org/wiki/Harvard_architecture
https://en.wikipedia.org/wiki/Analog_computer
http://en.wikipedia.org/wiki/Quantum_computer
https://en.wikipedia.org/wiki/Optical_computing
http://en.wikipedia.org/wiki/Chemical_computer
https://en.wikipedia.org/wiki/Booting
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/History_of_operating_systems
http://vnsimulator.altervista.org
http://vnsimulator.altervista.org
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5. Assume that we have a CPU that can execute instructions with the format and size given above.

a. What is the number of different instructions that this CPU can decode?
b. What is the maximum number of rows in the memory that can be addressed by this CPU?

6. Using a search engine, discover how a zero or one can be represented by a memory device.
7. Using a search engine, discover the different types of memory:

a. Volatile versus non-volatile memory.
b. Dynamic versus static memory.
c. Read-only memory.
d. Sequential memory.

8. Using a search engine, learn about Moore’s law.
9. Using a search engine, learn about (i) why Moore’s law does not hold anymore and (ii) what

potential solutions are being developed to address this issue.
10. Using a search engine, learn about the von Neumann bottleneck.
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2Programming and Programming
Languages

The previous chapter provided a closer look at how a modern computer works. In this chapter, we
will first look at how we generally solve problems with such computers. Then, we will see that a
programmer does not have to control a computer using the cryptic binary machine code instructions
we introduced in the previous chapter: We can use human-readable instructions and languages to make
programming easier.

2.1 HowDoWe Solve Problems with Programs?

The von Neumann machine, on which modern computer design is based, makes a clear distinction
between instruction and data (do not get confused by the machine code that holds both data and
instructions: The data field in such instructions are generally addresses of the data to be manipulated,
and therefore data and instructions exist as different entities in memory). This bifurcation is not merely
a technical detail; it significantly influences how computational approaches are devised for problem-
solving (Fig. 2.1). When tasked with solving a world problem, a programmer first pinpoints the specific
data that needs to be manipulated. Following this identification, they must develop a structured sequence
of operations—an algorithm—that systematically transforms this data to render a solution. Thus,
the process of programming is deeply rooted in the act of classifying the information (data) and
subsequently orchestrating a series of logical steps (instructions) that work in concert to address the
given challenge.

2.2 Algorithm

An algorithm is a step-by-step procedure that, when executed, leads to an output for the input we
provided. If the procedure is correct, we expect the output to be the desired output, i.e., the solution
we want for the algorithm to compute.

Algorithms can be thought of as recipes for cooking. This analogy is intuitive since we would define
a recipe as a step-by-step procedure for cooking something: Each step describes a little action (cutting,
slicing, stirring, etc.) that brings us closer to the outcome: The dish.

This is true for algorithms as well: At each step, we make small progress towards the desired
solution by performing a small computation (e.g., adding numbers, finding the minimum of a set of
real numbers, etc.). The only difference with cooking is that each step needs to be understandable by
the computer; otherwise, it is not an algorithm.
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typedef 
    struct element 
        { char *key;
           int value;
           struct  element*next;}
     element, *ep;
 
ep *Bucket_entry;
 
#define KEY(p)   (p->key)
#define VALUE(p) (p->value)
#define NEXT(p)  (p->next)
 
void create_Bucket(int size)
{
 Bucket_entry = malloc(size*sizeof(ep));
 if (!Bucket_entry) 
   error("Cannot allocate bucket");
}
 
insert_element(int value)
{

;

{

ALGORITHM
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Fig. 2.1 Solving a world problem with a computer requires first designing how the data is going to be represented
and specifying the steps which yield the solution when executed on the data. This design of the solution is then written
(implemented) in a programming language to be executed as a program such that, when executed, the program outputs the
solution for the world problem. [Reproduced with permission from: G. Üçoluk, S. Kalkan, Introduction to Programming
Concepts with Case Studies in Python, Springer, 2012 [1]]

2.2.1 The Origin of theWord“Algorithm”

The word “algorithm” comes from the Latin word algorithmi, which is the Latinized name of Al-
Khwarizmi. Al-Khwarizmi was a Persian Scientist who wrote a book on algebra titled “The Compen-
dious Book on Calculation by Completion and Balancing” during 813–833 which presented the first
systematic solution of linear and quadratic equations. His contributions laid the foundations of alge-
bra, which stems from his method of “al-jabr” (meaning “completion” or “rejoining”). The reason the
word algorithm is attributed to Al-Khwarizmi is because he proposed systematic methods for solving
equations using sequences of well-defined instructions (e.g., “take all variables to the right; divide the
coefficients by the coefficient of x ; etc.”)—i.e., using what we call today as algorithms.

2.2.2 Are Algorithms the SameThing as Programs?

It is very natural to confuse algorithms with programs as they are both step-by-step procedures. How-
ever, algorithms can be studied and they were invented long before there were computers or program-
ming languages. In other words, we can design and study algorithms without using computers, e.g.,
with just a pen and paper. A program, on the other hand, is just an implementation (realization) of an
algorithm in a programming language. In other words, algorithms are designs and programs are the
written realizations of these designs in programming languages.

https://doi.org/10.1007/978-3-7091-1343-1
https://doi.org/10.1007/978-3-7091-1343-1
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2.2.3 How toWrite Algorithms?

As we have discussed above, before programming our solution, we first need to design it. While
designing our solution as an algorithm, we generally use two mechanisms:

1. Pseudo-codes. Pseudo-codes are natural language descriptions of the steps that need to be followed
in the algorithm. These descriptions are not as specific or restricted as the descriptions in a pro-
gramming language but they are not as free as the language we use for communicating with other
humans: Since pseudo-codes are meant for describing actions for computers, pseudo-codes should
be composed of precise and feasible steps and avoid ambiguous descriptions.
Here is an example pseudo-code:

Algorithm 2.1 Average Calculation of Numbers Provided by the User
Input: None
Output: Result — The average of the provided numbers
1: Get how many numbers will be provided and store that in a variable N
2: Create a variable named Result with initial value 0
3: Execute the following step N times:
4: Get the next number and add it to Result
5: Divide Result by N to obtain the average
6: return Result

2. Flowcharts. As an alternative to pseudo-codes, we can use flowcharts while designing algorithms.
Flowcharts are diagrams composed of small computational elements that describe the steps of
algorithms. The example in Fig. 2.2 illustrates what kind of elements are used and how they are
brought together to describe an algorithm.
Flowcharts can be more intuitive to work with. However, for complex algorithms, flowcharts can
get very large and prohibitive to work with.

2.2.4 How to Compare Algorithms?

If two algorithms find the same solution, are they of the same quality? To get a better feeling, let us
go over an example. Do you recall “Guess My Number”, a game we used to play when we were in
primary school?

The rules are as follows: There is a setter and a guesser. The setter sets a number from 1 to 1000
which s/he does not tell. The guesser has to find this number. At each turn of the game, the guesser can
propose any number from 1 to 1000. The setter answers with one of the following:

• HIT: The guesser found the number.
• LESSER: The hidden number is less than the proposed one.
• GREATER: The hidden number is greater than the proposed one.

In how many turns the number is found is recorded. The guesser and the setter switch. This goes
on for some agreed count of rounds. Whoever has a lower total count of turns wins.

Many of you have played this game and certainly have observed that there are three categories of
gamers:
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NO PROBLEM !
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Fig. 2.2 Flowcharts describe the flow of execution by using basic geometric symbols and arrows. The program’s start
or end is depicted with an oval. A rectangular box denotes a simple action or status. Decision-making is represented by
a diamond and a parallelogram represents the input/output process



2.2 Algorithm 23

1. Random guessers: Usually they cannot keep track of the answers and just based on the last answer,
they randomly utter a number that comes to their mind. Quite possibly they repeat themselves.

2. Sweepers: They start at either 1 or 1000, and then systematically increase or decrease their proposal,
e.g.:

• Guesser: Is it 1000? Answer: LESSER.
• Guesser: Is it 999? Answer: LESSER.
• Guesser: Is it 998? Answer: LESSER.
• ...

Certainly, at some point, such players do get a HIT. There may be players who decrease (or increase)
the number by two or three as well. With a first GREATER reply, they start to increment (decrement)
by one.

3. Middle seekers: Keeping a possible lower and a possible upper value based on the reply they got,
at every stage, they propose the number just in the middle of lower and upper values, e.g.:

• Guesser: Is it 500? Answer: LESSER.
• Guesser: Is it 250? Answer: LESSER.
• Guesser: Is it 125? Answer: GREATER.
• Guesser: is it 187? (equal to (125+250)/2) Answer: GREATER.
• ...

All three categories actually adopt different algorithms, which will find the answer at the end.
However, as you may have realized even as you were a child, the first group performs the worst, then
comes the second group. The third group, if they do not make mistakes, is unbeatable.

In other words, algorithms that aim to solve the same problem may not be of the same “quality”:
Some perform better. This is the case for all algorithms and one of the challenges in Computer Science
is to find “better” algorithms. But, what is “better”? Is there a quantitative measure for “betterness”?
The answer is yes.

Let us look at this for the game described above. First, consider the last group’s algorithm (the middle
seekers). At every turn, this kind of seeker narrows down the search space by a factor of 1/2. Starting
with 1000 numbers, the search space is reduced as follows: 1000, 1000/2, 1000/22, ... Therefore, in
the worst case, it will take m turns until 1000/2m gets down to 1 (the one remaining number, which
has to be the hidden number). In other words, in the worst case, 1000/2m = 1 and from this we can
derive m = log2(1000). For 1000, this means approximately m = 10 turns. If we double the range, m
would change only by 1 (why?).

We call such an algorithm of “order of log(n)” or, more technically,O(log n). In our case 1000 deter-
mines the “size” of the problem. This is symbolized with n. O(log(n)) is the quantitative information
about the algorithm which signifies that the solution time is proportional to log(n). This information
about an algorithm is named as complexity.

What about the sweepers’ algorithm for the problem above? In the worst case, a sweeper would
ask a question 1000 times (the correct number is at the other end of the sequence). If the size (1000 in
our case) is symbolized with n, then it will take a time proportional to n to reach the solution. In other
words, this algorithm’s complexity is O(n).

Certainly the algorithm that has O(log(n)) is better than the one withO(n), as illustrated in Fig. 2.3.
In other words, an O(log(n)) algorithm requires less number of steps and will run faster than the one
with O(n) complexity.
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Fig. 2.3 A plot of various complexities

2.3 Data Representation

The other crucial component of our solutions to world problems (as shown in Fig. 2.1) is the data
representation, which deals with putting together information regarding the problem in a form that is
most suitable for our algorithm.

For example, if our problem is the calculation of the average of the grades in a class, then before
implementing our solution, we need to determine how we are going to represent (encode) the grades
of students. This is what we are going to determine in the “data representation” part of our solution.
We will discuss these in Chap.3.

2.4 TheWorld of Programming Languages

Since the advent of computers, many programming languages have been developed with different
design choices and levels of complexity. In fact, there are about 700 programming languages—see,
e.g., [2] for an up-to-date list—that offer different abstraction levels (hiding the low-level details from
the programmer) and computational benefits (e.g., providing built-in rule-search engine).

In this section, we will give a flavor of programming languages in terms of abstraction levels (low
level versus high level—see Fig. 2.4) as well as the computational benefits they provide.



2.4 TheWorld of Programming Languages 25

High-level
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Low-level
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Machine
Language
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(Python, C/C++,..)

Pseudocode English, Turkish,
...

01010101 01001000
10001001 11100101
10001011 00010101
10110010 00000011
...

Fig.2.4 The spectrum of programming languages, ranging from low-level languages to high-level languages and natural
languages

2.4.1 Low-Level Languages

In the previous chapter, we introduced the concept of a machine code program. A machine code
program is an aggregate of instructions and data, all being represented in terms of zeros (0) and ones
(1). A machine code is practically unreadable and very burdensome to create, as we have seen before
and illustrated below:

01010101 01001000 10001001 11100101 10001011 00010101 10110010 00000011
00100000 00000000 10001011 00000101 10110000 00000011 00100000 00000000
00001111 10101111 11000010 10001001 00000101 10111011 00000011 00100000
00000000 10111000 00000000 00000000 00000000 00000000 11001001 11000011
...
11001000 00000001 00000000 00000000 00000000 00000000

To overcome this, assembly language and assemblers were invented. An assembler is a machine code
program that serves as a translator from some relatively more readable text, the assembly program,
into the machine code. The key feature of an assembler is that each line of an assembly program
corresponds exactly to a single machine code instruction. As an example, the binary machine code
above can be written in an assembly language as follows:



26 2 Programming and Programming Languages

main:
pushq %rbp
movq %rsp, %rbp
movl alice(%rip), %edx
movl bob(%rip), %eax
imull %edx, %eax
movl %eax, carol(%rip)
movl $0, %eax
leave
ret

alice:
.long 123

bob:
.long 456

Pros of assembly:

• Instructions and registers have human-recognizable mnemonic words associated. For example, an
instruction like ADDI represents integer addition.

• Numerical constants can be written down in human-readable, base-10 format, the assembler does
the conversion to the internal format.

• Names can be used to refer to memory positions that hold data. In other words, assembly has a
primitive implementation of the variable concept.

Cons of assembly:

• No arithmetic or logical expressions.
• No concept of functions.
• No concept of statement grouping.
• No concept of data containers.

2.4.2 High-Level Languages

To overcome the limitations of binary machine codes and the assembly language, more capable pro-
gramming languages were developed. We call these languages high-level languages. These languages
hide the low-level details of the computer (and the CPU) and allow a programmer to write code in a
more human-readable form.

A high-level programming language (as well as an assembly language) is defined, similar to a natural
language, by syntax (a set of grammar rules governing how to bring together words) and semantics
(the meaning—i.e., what is meant by the sequences of words in the syntax) associated with the syntax.
The syntax is based on keywords from a human language (for historical reasons, English). Using
human-readable keywords eases comprehension.

The following example is a program expressed in Python that asks for a Fahrenheit value and prints
its conversion into Celsius:

Fahrenheit = input("Please Enter Fahrenheit value:")
print("Celsius equivalent is:", (Fahrenheit - 32) * 5/9)
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Here input and print are keywords of the language. Their semantics is self-explanatory.
Fahrenheit is a name we have chosen for a variable that will hold the input value.

High-level languages implement many concepts that are not present at the machine code program-
ming level. The most outstanding features are

• human-readable form of numbers and strings (like decimal, octal, hexadecimal representations for
numbers);

• containers (automatic allocation for places in the memory to hold, access, and name data);
• expressions (values or calculation formulas based on operators which have precedences the way

we are used to from mathematics);
• constructs for repetitive execution (conditional re-execution of code parts);
• functions;
• facilities for data organization (ability to define new data types based on the primitive ones, orga-

nizing them in the memory in certain layouts).

2.4.3 Implementing with a High-Level Language: Interpreter Versus Compiler

We can implement our solution in a high-level programming language in two manners:

1. Compilative Approach. In this approach, a translator, called compiler, takes a high-level pro-
gramming language program as input and converts all actions in the program into a machine code
program (Fig. 2.5). The outcome is a machine code program that can be run at any time (by asking
the OS to do so) and does the job described in the high-level language program.
Conceptually, this process is correct, but actually, there is an additional step involved. The compiler
produces an almost complete machine code with some holes in it. These holes are about the parts of
the code which are not actually coded by the programmer but filled in from a pre-created machine
code library (it is actually named as library). A program, named linker, fills those holes. The linker
knows about the library and patches in the parts of the code that are referenced by the programmer.

2. Interpretive Approach. In this approach, a machine code program, named as interpreter, inputs
and processes the high-level program line by line (Fig. 2.6). After taking a line as input, the actions
described in the line are immediately executed; if the action is printing some value, the output is
printed right away; if it is an evaluation of a mathematical expression, all values are substituted and
at that very point in time, the expression is evaluated to calculate the result. In other words, any
action is carried out immediately when the interpreter comes to that line in the program. In practice,
it is always possible to write down the program lines into a file, and make the interpreter read the
program lines one by one from that file as well.

Which approach is better?
Both approaches have their benefits. When a specific task is considered, compilers generate fast-

executing machine codes compared to the same task being carried out by an interpreter. On the other
hand, compilers are unpleasant when trial and errors are possible while developing the solution. Inter-
preters, on the other hand, allow making small changes and the programmer receives immediate
responses, which makes it easier to observe intermediate results and adjust the algorithm accordingly.
However, interpreters are slower since they involve an interpretation component while running the
code. Sometimes this slowness is by a factor of 20. Therefore, the interpretive approach is good for
quick implementations whereas using a compiler is good for computationally intensive big projects or
time-tight tasks.
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int alice = 123;
int bob = 456;
int carol;
main(void)
{
carol = alice*bob;
printf("%d", carol);

}

COMPILER
+

LINKER

SOURCE CODE IN
AN HL-LANGUAGE

MACHINE CODE

0101010101001000100010011
1000101100010101101100100
0010000000000000100010110
10110000000000110010000000000000
00001111101011111100001010001001
00000101101110110000001100100000
00000000101110000000000000000000
00000000000000001100100111000011
11011000000000011000000000101110
00000111110101111110000101011111
10001011011101110111010011010011
11010010101010101010101001011111
01110110110101010110101111101010

LOAD & RUN

RESULT

56088

Fig.2.5 A program code in a high-level language is first translated into machine-understandable binary code (machine
code) which is then loaded and executed on the machine to obtain the result. [With permission from: G. Üçoluk, S. Kalkan,
Introduction to Programming Concepts with Case Studies in Python, Springer, 2012 [1]]

INTERPRETER
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INTERPRETER
REPLIES

OK. alice is 123.

int bob = 456;

OK. bob is 456.

print bob * alice;

56088

USER TYPES

USER TYPES

USER TYPES

USER

INTERPRETER
REPLIES

INTERPRETER
REPLIES

Fig. 2.6 Interpreted languages (e.g., Python) come with interpreters that process and evaluate each action (statement)
from the user on the run and return an answer. [With permission from: G. Üçoluk, S. Kalkan, Introduction to Programming
Concepts with Case Studies in Python, Springer, 2012 [1]]

2.4.4 Programming-Language Paradigms

As we mentioned before, there are more than 700 programming languages. Certainly, some are for
academic purposes and some did not gain any popularity. But there are about 20 programming languages
that are commonly used for writing programs. How do we choose one when implementing our solution?

Picking a particular programming language is not just a matter of taste. During the course of the
evolution of programming languages, different strategies or world views about programming have also
developed. These worldviews are reflected in the programming languages.

For example, one worldview regards the programming task as transforming some initial data (the
initial information that defines the problem) into a final form (the data that is the answer to that problem)
by applying a sequence of functions. From this perspective, writing a program consists of defining
some functions which are then used in a functional composition; a composition which, when applied
to some initial data, yields the answer to the problem.

https://doi.org/10.1007/978-3-7091-1343-1
https://doi.org/10.1007/978-3-7091-1343-1
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This concept of worldviews is coined as programming paradigms. In a nutshell:

programming paradigm

is a worldview, a philosophy, in software development that governs how solutions are formulated and expressed
in programs through specific patterns and methodologies.

Below is a list of some major programming paradigms:

• Imperative: This is a paradigm where programming statements and their compositions are very
aligned with the fetch–decode–execute cycle of the machine. Therefore, program segments can be
directly mapped to the machine code segments.

• Functional: In this paradigm, solving a programming task is to construct a group of functions so
that their “functional composition” acting on the initial data produces the solution.

• Object oriented: In this paradigm the compulsory separation (due to the von Neumann Architec-
ture) of “algorithm” from “data” is lifted, and algorithm and data are reunited under an artificial
computational entity: the object. An object has algorithmic properties as well as data properties.

• Logical declarative: This is the most contrasting view compared to the imperative paradigm. The
idea is to represent logical and mathematical relations among entities (as rules) and then ask an
inference engine for a solution that satisfies all rules. The inference engine is a kind of “prover”,
i.e., a program, that is constructed by the inventor of the logical-declarative programming language.

• Concurrent: A paradigm where independent computational entities work towards the solution of
a problem in parallel. This paradigm is very suitable for problems that can be solved by a divide-
and-conquer strategy.

• Event driven: This paradigm introduces the concept of events into programming. Events are
assumed to be asynchronous and they have “handlers”, i.e., programs that carry out the actions
associated with a particular event. Programming graphical user interfaces (GUIs) are usually per-
formed using event-driven languages: An event in a GUI is generated, e.g., when the user clicks
the “Close” button, which triggers the execution of a handler function that performs the associated
closing action.

Contrary to the layman programmers’ assumption, these paradigms are not mutually exclusive.
Many paradigms can very well co-exist in a programming language together. At a meta-level, we can
call them “orthogonal” to each other. This is why we have so many programming languages around.
A language can provide imperative as well as functional and object-oriented constructs. Then it is up
to the programmer to blend them into his or her particular program. As it is with many “worldviews”
among humans, in the field of programming, fanaticism exists too. You can meet individuals that do
only functional programming or object-oriented programming. We may consider them outliers.

Python, the subject language of this book, supports the imperative, functional, and object-oriented
programming paradigms. It also provides some functionality in other paradigms with the help of some
modules.

2.5 Introducing Python

After having provided some background on the world of programming, let us introduce Python:
Although it is widely known to be a relatively recent programming language, Python’s design, by
Guido van Rossum [3], dates back to 1980s, as a successor of the ABC programming language. The
first version was released in 1991 and when the second version was released in 2000, it started gaining
a wider interest from the community. After it was chosen by some big IT companies as the main
programming language, Python became one of the most popular programming languages.
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An important reason for Python’s wide acceptance and use is its design principles. By design, Python
is a programming language that is both easy to understand and code in, while also being powerful,
functional, practical, and fun. This has deep roots in its design philosophy (a.k.a. the Zen of Python
[4]):

“Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Readability counts.
...” [there are 14 more]

Python is a multi-paradigm programming language, supporting imperative, functional, and object-
oriented paradigms, although the last one is not one of its strong suits, as we will see in Chap.7. Thanks
to its wide acceptance, especially in open-source communities, Python comes with or can be extended
with an ocean of libraries for practically solving any kind of task.

The word “python” was chosen as the name for the programming language not because of the
snake species python but because of the comedy group “Monty Python” [5]. While van Possum was
developing Python, he read the scripts of Monty Python’s “Flying Circus” and thought “python” was
“short, unique and mysterious” [6] for the new language. To make Python more fun to learn, earlier
releases heavily used phrases from Monty Python in programming code examples.

With version 3.10 being released in 2023 as the latest version, Python is one of the most popular
programming languages in a wide spectrum of disciplines and domains. With active support from the
open-source community and big IT companies, this is not likely to change in the near future. Therefore,
it is in your best interest to get familiar with Python if not excel in it.

This is what the Python interpreter looks like at a Unix terminal:

$ python3
Python 3.8.5 (default, Jul 21 2020, 10:48:26)
[Clang 11.0.3 (clang-1103.0.32.62)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

The three symbols>>> indicate that the interpreter is ready to receive and process our computational
demands, e.g.:

>>> 21+21
42

where we asked what was 21+21 and Python responded with 42. This is one small step for a man
but one giant leap for mankind.

2.6 Important Concepts

We would like our readers to have grasped the following crucial concepts and keywords from this
chapter:

• How we solve problems using computers.
• Algorithms: What they are, how we write them, and how we compare them.
• The spectrum of programming languages.
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• Pros and cons of low-level and high-level languages.
• Interpretive versus compilative approach to programming.
• Programming paradigms.

2.7 Further Reading

• The World of Programming chapter of G. Üçoluk, S. Kalkan, Introduction to Programming Concepts
with Case Studies in Python, Springer, 2012 [1].

• Programming Languages:

– For a list of programming languages: https://en.wikipedia.org/wiki/List_of_programming_
languages [2].

– For a comparison of programming languages: http://en.wikipedia.org/wiki/Comparison_of_
programming_languages [7].

– For more details: Daniel P. Friedman, Mitchell Wand, Christopher Thomas Haynes: Essentials
of Programming Languages, The MIT Press 2001 [8].

• Programming Paradigms:

– Introduction: http://en.wikipedia.org/wiki/Programming_paradigm [9].
– For a detailed discussion and taxonomy of the paradigms: P. Van Roy, Programming Paradigm for

Dummies: What Every Programmer Should Know, New Computational Paradigms for Computer
Music, G. Assayag and A. Gerzso (eds.), IRCAM/Delatour France, 2009 [10].

– Comparison between Paradigms: http://en.wikipedia.org/wiki/Comparison_of_programming_
paradigms [11].

2.8 Exercises

1. Draw the flowchart for the following algorithm:

Algorithm 2.2 Average of all Elements of a List of Numbers
Input: Numbers — A list of N numbers
Output: The average of all elements in Numbers
1: Create a variable named Sum with initial value 0
2: For each number i in Numbers, execute the following lines:
3: If i > 0 then Add i to Sum
4: If i < 0 then Add the square of i to Sum
5: Divide Sum by N
6: return Sum

2. Devise an algorithm to find the maximum of a list of three numbers using simple greater than or
less than comparisons. Represent your algorithm with a pseudo-code and a flowchart.

3. Devise an algorithm to find the median of a list of three numbers using simple greater than or less
than comparisons. Represent your algorithm with a pseudo-code and a flowchart.

https://doi.org/10.1007/978-3-7091-1343-1
https://en.wikipedia.org/wiki/List_of_programming_languages
https://en.wikipedia.org/wiki/List_of_programming_languages
http://en.wikipedia.org/wiki/Comparison_of_programming_languages
http://en.wikipedia.org/wiki/Comparison_of_programming_languages
https://mitpress.mit.edu/9780262560672/essentials-of-programming-languages/
http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Comparison_of_programming_paradigms
http://en.wikipedia.org/wiki/Comparison_of_programming_paradigms
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4. Given a 2D rectangle (with corners at (x1, y1), (x2, y2), (x3, y3), (x4, y4)) horizontal to the x-axis,
devise an algorithm that checks whether a point (x ′, y′) is in the rectangle or not. Represent your
algorithm with a pseudo-code and a flowchart.

5. Given a 2D triangle (with corners at (x1, y1), (x2, y2), (x3, y3)), devise an algorithm that checks
whether a point (x ′, y′) is in the triangle or not. Represent your algorithm with a pseudo-code and
a flowchart.

6. What is the complexity of Algorithm 2.1 (in Sect. 2.2.3)?
7. What is the complexity of the following algorithm?

Algorithm 2.3 Standard Deviation of all Elements of a List of Numbers
Input: Numbers — A list of N numbers
Output: Std — The standard deviation of all elements of Numbers
1: Get a list of N numbers in a variable named Numbers
2: Create a variable named Mean with initial value 0
3: For each number i in Numbers, execute the following line:
4: Add i to Mean
5: Divide Mean by N
6: Initialize a variable named Std with value 0
7: For each number i in Numbers, execute the following line:
8: Add the square of (i − Mean) to Std
9: Divide Std by N and take its square root
10: return Std

8. Assuming that a step of an algorithm takes 1 second, fill in the following table for different
algorithms for different input sizes (n):

Input size O(log n) O(n) O(n log n) O(n2) O(n3) O(2n) O(nn)

n = 102

n = 103

n = 104

n = 105

9. Assume that we have a parser that can process and parse natural language descriptions (without any
syntactic restrictions) for programming a computer. Given such a parser, do you think we would
use natural language to program computers? If not, why not?

10. For each situation below, try to identify which paradigm is more suitable compared to the others:

a. Writing a program that should take an image as input, an RGB color value, and find all pixels in
the image that match the given color.

b. Writing a program to prove theorems.
c. Writing an autopilot program flying an airplane.
d. Writing a document editing program as an alternative to Microsoft Word.
e. Writing a first-person shooter game.
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3Representation of Data

As we discussed in detail in Chap. 2, in order to solve a world problem using a computer, we have
to determine what data is involved in this problem and how we can process this data (i.e., devise an
algorithm) to obtain the solution—let us recall this with Fig. 3.1 from Chap.2.

At this stage, you may wonder what “structured data” is and how it differs from “data”. As we
already know, data is stored in the memory. Let us illustrate this with an example: Suppose we have a
table containing multiple rows, where each row represents an angle value and its corresponding cosine
value expressed as decimal numbers. How would you structure the storage of these rows in memory?
Two straightforward options are

(a) Row-by-row:
Anglevalue1

Cosinevalue1

Anglevalue2

Cosinevalue2
...

Anglevaluen

Cosinevaluen
(b) Column-by-column:

Anglevalue1

Anglevalue2
...

Anglevaluen

Cosinevalue1

Cosinevalue2
...

Cosinevaluen

Apart from this ordering, there is the issue of whether we should sort the values. If yes, how? By the
angle or the cosine values? In a descending order or ascending order? All these questions are what we
try to determine in “structured data”.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Kalkan et al., Programming with Python for Engineers,
https://doi.org/10.1007/978-3-031-57148-0_3
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*next;}
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ALGORITHM
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DATA

WORLD
PROBLEM

TRANSFORMED IMPLEMENTED

PROGRAM IN
HIGH LEVEL
LANGUAGE

key value next 

key value next key value next 

key value next 

key value next 

"CAT"

"DOG" "PIG"

"PIG"

"ANT"

626262 29

57

14

44

Fig. 3.1 Solving a world problem with a computer requires first designing how the data is going to be represented
and specifying the steps which yield the solution when executed on the data. This design of the solution is then written
(implemented) in a programming language to be executed as a program such that, when executed, the program outputs the
solution for the world problem. [Reproduced with permission from: G. Üçoluk, S. Kalkan, Introduction to Programming
Concepts with Case Studies in Python, Springer, 2012 [1]]

Although there are alternative methods to organize data, even for simple examples like the table
mentioned above, they fall outside the scope of this book.

Now, we will look into the atomic structure of data representation: i.e., how integers, real (floating
point) numbers, and symbols (characters) are represented.

The electronic architecture used for the von Neumann machine, namely, the CPU and the memory,
is based on the presence and absence of a fixed voltage. We symbolize this absence and presence using
“0” and “1”. Consequently, any data intended for processing on this architecture needs to be converted
into a representation consisting of “0”s and “1”s. It’s important to note that each “one” or “zero” in
our representation corresponds to the presence or absence of a voltage at a specific location within the
electronic circuitry.

3.1 Representing Integers

Mathematics already provides a solution for representing integers using binary notation, which involves
base-2 calculations or representation. The idea behind base-2 representation is the same as representing
base-10 (decimal) integers. Namely, we have a sequence of digits, each of which can be either 0 or

https://doi.org/10.1007/978-3-7091-1343-1
https://doi.org/10.1007/978-3-7091-1343-1
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Step 1

Step 2

Step 3

Step 4

Step 5

Dividend Divisor Quotient Remainder

19

9

4

2

1 2

2

2

2

2

+

+

+

+

+

=

=

=

=

= 9

4

2

1

0

1

0

0

1

1

Continue until quotient is zero

The result:
00 111

Fig. 3.2 The division method for converting a decimal number (e.g. 19) into binary

1. Counting starts from the right-most digit. A “1” in a position k means “additively include a value
of 2k”:

Position n n − 1 ... 2 1 0
Meaning 2n 2n−1 ... 22 21 20

The following is an example that illustrates how to express the integer 181 in base-2:

7 6 5 4 3 2 1 0

1 0 1 1 0 1 0 1

27 +25+24+22+20=
128+32+16+ 4 + 1 =181

Position

In other words, (181)10 = (10110101)2.

Converting a Decimal Number into Binary

A decimal number can be easily converted into binary by repeatedly dividing the number by 2, as
shown in Fig. 3.2. In each step, the quotient of the previous step is divided by two. This division is
repeated until the quotient is zero. At this point, the binary sequence of remainders is the representation
of the decimal number.

Having doubts? You can easily cross-check your calculation by multiplying each bit by its value
(2i if the bit is at position i) and sum up the values (as we did above).

This looks easy. However, this is just a partial solution to the “binary representation of integers”
problem: It does not answer how we can represent negative integers.

3.1.1 Sign-Magnitude Notation

Decimal arithmetic uses the minus sign (−) to represent negativity. However, the electronics of the
von Neumann machinery require that the minus is also represented by either a “1” or “0”. We can
reserve a bit, for example, the leftmost digit, for this purpose. If we do this, when the leftmost digit is
a “1”, the rest of the digits encode the magnitude of the “negative” integer. One point to be mentioned
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is that this requires a fixed size (a fixed number of digits) for the “integer representation”. In this way,
the electronics can recognize the sign bit and the magnitude part. This is called the sign-magnitude
notation.

For example, in four bits, (+2)10 and (−2)10 can be represented as follows:

• (0 010)2 =⇒ (+2)10

• (1 010)2 =⇒ (−2)10

Although this notation is straightforward and intuitive, it has certain disadvantages:

1. Addition and subtraction
Consider adding two integers. Based on their signs, we have the following possibilities:

• positive + positive
• negative + positive
• positive + negative
• negative + negative

A naive electronics implementation of addition may yield incorrect results (let us assume a 4-bit
representation):

Sign-magnitude representation Decimal value
(0010)2 (+2)10

+ (1101)2 (−3)10

(1111)2 (−7)10

(3.1)

To be able to perform the addition correctly, the electronics must do the following:

• If both integers are positive then the result is positive, obtained by adding the magnitudes (and not
setting the sign bit).

• If both integers are negative, then the result is negative, obtained by adding the magnitudes and
setting the sign bit to negative.

• Otherwise, if one is negative and the other is positive then:

1. Find the larger magnitude.
2. Subtract the smaller magnitude from the larger one, and obtain the result.
3. If the larger magnitude integer was negative, the result is negative (set the sign bit to “1”).

Otherwise, set the sign bit in the result to “0”.

This was only for the case of addition. A similar electronic circuitry is needed to subtract two integers.
This technique has the following drawbacks:

• It requires separate electronics for subtraction.
• It requires electronics for magnitude-based comparison and an algorithm implementation to set the

sign bit.
• Electronically, it has to differentiate between addition and subtraction.

2. Representing the number zero
Another limitation of the sign-magnitude notation is that number zero (0)10 has two different repre-
sentations, e.g., in a 4-bit representation:
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• (1 000)2 =⇒ (−0)10

• (0 000)2 =⇒ (+0)10

In modern computers, we use a method that does not have these drawbacks.

3.1.2 Two’s Complement Notation

The aforementioned drawbacks of the sign-magnitude notation can be mitigated by carefully defining
a mapping from positive and negative integers to binary numbers as follows:

• Positive integers are represented by their base-2 representation, with a leading “0”.
• For negative integers, we need a one-to-one mapping for all negative integers bounded by value to

a binary representation (also bounded by value) such that:

1. The sign bit is set to “1”, and
2. When the whole binary representation (including the sign bit) is treated as a single binary number,

it operates correctly under addition. When the result, obtained purely by addition, produces a
sign bit, this means that the result is the encoding of a negative integer.

There are two preferred alternatives to this mapping: One’s complement and two’s complement. In this
section, we will introduce the more popular one, namely, the two’s complement representation.

If we are given n binary digits (for a 32-bit computer, n = 32; for a 64-bit computer, it is 64) to
represent numbers, then we can represent integer values in the range [−2n−1, 2n−1 − 1]. Then, the
two’s complement representation of an integer (with magnitude, or absolute value, p) can be obtained
as follows:

• If the integer is positive, simply convert it to base-2.
• If it is negative, then

1. Convert p to base-2.
2. Negate this base-2 representation by flipping all 1s to 0s and all 0s to 1s: 1 ↔ 0.
3. Add 1 to the result of the negation.

Here is a simple example for representing (−2)10 in two’s complement notation:

• Take the binary representation of the magnitude (2): (0010)2.
• Flip (inverse) the bits: (0010)2 =⇒ (1101)2.
• Add 1: (1101)2 + (1)2 = (1110)2.
• The result as the two’s complement representation of (−2)10 is (1110)2.

Here are more examples for 8-bit numbers (note that the valid decimal range is [−128, 127]):
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Decimal value Two’s complement Pos. or Neg. Action Binary result
0 00000000 – Direct base-2 encoding
1 00000001 Positive Direct base-2 encoding

−1 11111111 Negative magnitude: 00000001
inverse: 11111110

+1: 11111111
−2 11111110 Negative magnitude: 00000010

inverse: 11111101
+1: 11111110

18 00010010 Positive Direct base-2 encoding
−18 11101110 Negative magnitude: 00010010

inverse: 11101101
+1: 11101110

−47 11010001 Negative magnitude: 00101111
inverse: 11010000

+1: 11010001
−111 10010001 Negative magnitude: 01101111

inverse: 10010000
+1: 10010001

111 01101111 Positive Direct base-2 encoding
112 01110000 Positive Direct base-2 encoding

−128 10000000 Negative magnitude: 10000000
inverse: 01111111

+1: 10000000
−129 Not calculated Negative (Out of valid range)

128 Not calculated Positive (Out of valid range)

3.1.3 Why Does Two’s ComplementWork?

The two’s complement notation may sound arbitrary at first. However, there are solid reasons for why
it works. To be able to explain why it works, let us first revisit our basic computer organization from
Chap.1.

The CPUs can only understand and work with fixed-length representations: Assume that our com-
puter is an 8-bit computer such that registers in the CPU holding data and the arithmetic-logic unit
can only work with 8 bits. The fixed-length design of the CPU has a severe implication. Consider the
following 8-bit number (which is 28 − 1) in a register in the CPU:

1 1 1 1 1 1 1 1

If you add 1 to this number, the result would be as follows:

0 0 0 0 0 0 0 0

Because we lose the 9th bit since the CPU cannot fit that into the 8-bit representation:

1 1 1 1 1 1 1 1

+ 1

�1 0 0 0 0 0 0 0 0

Mathematically, this arithmetic corresponds to modular arithmetic: For our example, the modulo value
is 28 and the addition that we just performed can be written mathematically as
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(28 − 1) + 1 ≡ 0. (mod 28) (3.2)

What does this have to do with the two’s complement method? Consider taking the negative of a
number a in a 2n-modulo system:

− (a) ≡ 0 − a ≡ 2n − a. (mod 2n) (3.3)

Now, let us rewrite this in a form that will seem familiar to us:

2n − a ≡ 2n − 1 + 1 − a ≡ (2n − 1 − a)
︸ ︷︷ ︸

Invert the bits of a

+ 1
︸︷︷︸

Add 1 to the inverted bits

(mod 2n) (3.4)

In other words, the two’s complement representation uses the negative value of a number relying on
modular arithmetic, i.e., the fixed-length representation of the CPU. This technique is not new and was
used in mechanical calculators long before there were computers.

3.1.4 Benefits of the Two’s Complement Notation

Let us revisit the limitations of the sign-magnitude representation (Sect. 3.1.1):

• Addition and subtraction: With the two’s complement method, we do not need to check the signs of
the numbers: We can perform addition and subtraction using just an addition circuitry. For example,
(+2)10 + (−3)10 is just equal to (−1)10 without doing anything extra other than plain addition (for
a 4-bit representation):

(0010)2 (+2)10

+
(1101)2 (−3)10

(1111)2 (−1)10

(3.5)

• Representation of +0 and −0: Another issue with the sign-magnitude representation was that +0
and −0 had different representations. In the two’s complement representation, we see that this is
resolved. For example, for a 4-bit representation:

* (+0)10 = (0000)2
* (−0)10 = −(0000)2 = (1111)2 + (1)2 = (0000)2, where we used two’s complement to convert

−(0000)2 into (1111)2 + (1)2 by flipping the bits and adding 1.

The fifth bit is lost because we have only four bits for representation.

Please visit the Web page of the chapter for a practical session on the two's complement representation.
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3.2 Representing Real Numbers

Floating point is the data type used to represent non-integer real numbers. On modern computers, all
non-integer real numbers are represented using the floating-point data type. Since all integers are real
numbers, you can represent integers using the floating point data type. Although you could do so, this
is usually not preferred, since floating-point operations are more time-consuming compared to integer
operations. Also, there is the danger of precision loss, which we will discuss later.

Almost all processors have adopted the IEEE 754 binary floating point standard for binary rep-
resentation of floating-point numbers. The standard allocates 32 bits for the representation, although
there is a recent 64-bit definition which is based on the same layout idea with some more bits.

Let us see how we represent a floating-point number with an example. Let us consider a decimal
number with fraction: 12263.921875. This number can be represented in binary as two binary numbers:
The whole part in binary and the fractional part in binary. Then, we can join them with a period (point).

To see this, let us first dissect the decimal (base-10) number 12263.921875:

104 103 102 101 100 . 10−1 10−2 10−3 10−4 10−5 10−6

1 2 2 6 3 . 9 2 1 8 7 5
(3.6)

Keeping the denotational similarity, but switching to binary (base-2), we can express the same number
as

213 212 211 210 29 28 27 26 25 24 23 22 21 20 . 2−1 2−2 2−3 2−4 2−5 2−6

1 0 1 1 1 1 1 1 1 0 0 1 1 1 . 1 1 1 0 1 1
(3.7)

How did we obtain the fractional part? By multiplying the fraction (0.921875) by two until we obtain
zero for the fraction part. This is illustrated in Fig. 3.3 for a smaller fraction. Note that this method is
in certain ways the reverse of what we did to convert the whole part to binary, in Fig. 3.2.

At this stage, it is worth mentioning the following: It is not always possible to convert the fractional
part into binary with finite number of bits. In other words, it is quite possible to have a finite number
of fractional digits in one base, and infinitely many in another base for the same value. We will come
back to this point later.

Depending on the size of the whole part, the period could be anywhere. Therefore, the next step
towards obtaining the IEEE 754 representation is to reposition the period that separates the whole part
from the fraction, to be placed just after the leftmost “1”. To be able to do this without changing the
value of the number, a multiplicative factor of 2n has to be introduced, where n is how many bits the

Step 1

Step 2

Step 3

Fraction Multiplier Whole Fraction

0.375

0.75

0.5

2

2

2

×

×

×

=

=

= 75

5

0

Continue until
fraction is zeroThe result:

0 11

.

.

.

.

1

0

1

Fig. 3.3 The multiplication method for converting a fractional number into binary
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period is moved. If it is moved to the left, it has a positive value, otherwise, it has a negative value.
This factor is important, because it will contribute to the representation.

For our example, the period has to be moved left by 13 digits. Therefore, the multiplicative factor
(to keep the value the same) is ×2+13. At this stage our representation has become

20 . 2−1 2−2 2−3 2−4 2−5 2−6 2−7 2−8 2−9 2−10 2−11 2−12 2−13 2−14 2−15 2−16 2−17 2−18 2−19

2+13× 1 . 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1
(3.8)

Since there is always a leading “1” for all values (except for 0.0, which will be represented with an
exception), there is no need to keep a record of the whole part, that is, the only remaining “1” value
to the left of the period. Moreover, as the period is always there, we can simply drop it. The mantissa
part of the representation is obtained by keeping exactly the first 23 bits of what is left. This leads
to the following 23 bits for our example (note the extra zeros at the end, added to fill complete the
representation to 23 bits):

0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0

3.2.1 The IEEE 754 Representation

In the IEEE 754 format, the exponent of the multiplicative factor, namely, n (which can be negative)
in 2n , becomes a part of the representation—see Fig. 3.4. To be able to represent negative exponent
values, a constant value, 127, is added to n. This value becomes the exponent part of the representation.

Adding a constant value to a number to be able to represent positive and negative numbers in binary
is called the excess representation, or k-excess representation, with k being the constant number that
is added, e.g., k = 127. Why we use k-excess representation is going to be clear when we compare it
with two’s complement representation in Table 3.1. You should see from the table that if the binary
representation of a decimal number is larger, the decimal number is also larger with the k-excess
representation; however, this is not the case for the two’s complement representation. This feature
is important for comparing two floating point numbers: Without decoding the whole floating-point
representation, which is expensive, we can just look at the k-excess representation of the exponents
and the mantissa parts to compare numbers.

In our example, the factor was 213. Adding k = 127 yields 13 + 127 = 140, which has an 8-bit
representation of (10001100)2. This will form the exponent portion (the 8 green bits in Fig. 3.4) of the
IEEE 754 representation.

It is possible that the value that is going to be represented is a negative value. This information is
stored as a “1” in the first bit of the representation. For a positive value, a “0” bit is used.

Finally, our example gets an IEEE 754 representation as follows:

0 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0

sign exponent mantissa

31 30 23 22 0

Fig. 3.4 The 32-bit IEEE 754 floating-point representation
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Table 3.1 A comparison between the k-excess representation and the two’s complement representation

Decimal number k-excess (k = 8) Two’s complement

7 1111 0111

6 1110 0110

5 1101 0101

4 1100 0100

3 1011 0011

2 1010 0010

1 1001 0001

0 1000 0000

−1 0111 1111

−2 0110 1110

−3 0101 1101

−4 0100 1100

−5 0011 1011

−6 0010 1010

−7 0001 1001

−8 0000 1000

How is the real number “0.0” represented?
In the IEEE 754 standard, the floating-point number zero is represented with all zero bits in the
positional range [1–31]. The zeroth bit, namely, the sign bit, can be either “0” or “1”.

3.2.2 Information Loss in Floating-Point Representations

The condition for a floating-point number to be represented “exactly” by the IEEE 754 standard is for
the number to be equal to:

f =
m

∑

i=n

digi ti × 2i , (3.9)

where m and n are two integers so that |m − n| ≤ 24 (it is fine if the equation is not very clear—we
will show some examples below). In addition to this, there is the constraint that |n| ≤ 127 (think about
why). Nothing can be done about the second constraint, but as far as the first constraint is concerned,
practically we can approximate the number leaving off (truncating) the less significant bits (those to
the right, or mathematically those with a smaller i value in the sum above), so that |m − n| ≤ 24 is
satisfied.

In fact, many rational numbers are not expressible in the form of the summation above: As an
example, try deriving the representation of 4.1 and see if you can represent it in binary with a finite
number of bits. Furthermore, we have infinitely many irrational numbers which do not have finite
fractions: e.g.,

√
2,

√
3,π, e. While using these numbers in computers, we can only work with their

approximations. Do not worry, it is something quite common in applied sciences.
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Approximation comes with some dangers: When you subtract two truncated numbers which are close
to each other, the result you obtain has a high imprecision. This is also the case for the multiplication
and division of relatively large numbers.

Though we have not started working with Python yet, we will display some self-explanatory exam-
ples and comment on them:

•
>>> 0.9375 - 0.9
0.03749999999999998

The first line is some input that we typed in to be carried out, and the following line is what the
Python interpreter returned as the result. The result is a bad surprise! In contrast to our expectations,
the result is not 0.0375. The reason is that 0.9375 is one of the rare numbers that could be represented
as a finite sum

∑N
i=1(digi ti · 2−i ), digi ti ∈ {0, 1} such that N stays in the IEEE representation

limit. Actually for 0.9375, digi t = [1, 1, 1, 1] and N = 4.
On the other hand, quite unexpectedly, representing 0.9 is problematic. Number 0.9 cannot be
expressed as a similar sum where N stays in the IEEE representation limit. N extents to +∞ for
0.9. Hence, the digi tn sequence has to be truncated before it can be stored in the IEEE representation.
The bits that do not fit into the representation are simply ignored: In other words, the number loses
its precision.
This is combined with a similar representation problem of 0.0375, which leads to another loss, and
we arrive at 0.03749999999999998. The bottom line is that many numbers cannot be represented
exactly in the IEEE 754 format, and this causes a loss of precision.

• Things can even get worse. Consider the following interaction with Python:

>>> 2000.0041 - 2000.0871
-0.0829999999998563

>>> 2.0041 - 2.0871
-0.08299999999999974

Actually, both results should have been −0.0830. In addition to having imprecision, the imprecision
is not consistent. This is because the loss in the first example (the one where the whole part is 2000)
is bigger than the loss in the second one. This is because 2000 needs more bits to be represented
compared to 2.

• The number π (pi) is a transcendental number. The fractional part never stops in any base. Let us
give it a shot on the Python interpreter:

>>> PI = 3.141592653589793238462643383279502884197169399375105820974944592307816406286
>>> print(PI)
3.141592653589793

From this, we can deduce that the IEEE representation can only allocate a limited number of bits
for the fractional part, specifically 15 decimal places. That seems quite precise, but let us take a
look at the sin and cos values:

>>> sin(PI)
1.2246467991473532e-16
>>> cos(PI)
-1.0
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Interestingly, we received a slight numerical error for the sine value, which is different from 0.0.
However, when it comes to the cosine value, we were fortunate that the imprecision somewhat
canceled out and gave us the correct result.

• We have been taught since primary school that addition is associative. Hence, A + (B + C) is the
same as (A + B) + C . In floating-point arithmetic, this may not be so:

>>> A = 1234.567
>>> B = 45.67834
>>> C = 0.0004
>>> AB = A + B
>>> BC = B + C
>>> print (AB+C)
1280.2457399999998

>>> print (A+BC)
1280.2457400000001

This is again a result of the precision loss phenomena introduced above. Most of the intermediate
steps of a calculation have precision losses of their own.

As a final word about using floating-point numbers, it is worth stressing a common mistake that has
nothing to do with the precision loss mentioned. Let us assume that you provide your program with
the number π as 3.1415. You do your calculations and obtain floating point numbers with 14–15 digit
fractional parts. Knowing about the precision loss, you assume that maybe a couple of the last digits
are wrong, but at least 10 digits after the decimal point are correct. However, this is a mistake: You
made an approximation in the fifth digit after the decimal point in the number π which will propagate
through your calculations. It can get worse (for example, if you subtract two very close numbers and
use it in the denominator), but it can never get better. Your best chance is to get a correct result on the
fourth digit after the decimal point. The following digits, as far as precision is concerned, are bogus.

So, what can we do? Here are some rules of thumb for using floating-point numbers:

• It is in your best interest to refrain from using floating points. If possible, transform the problem to
the integer domain.

• Use the most precise type of floating point provided by your high-level language, some languages
provide you with 64-bit or even 128-bit floating-point data types, use them.

• Use lower precision floating points only when you are short of memory.
• Subtracting two floating points close in value has a potential danger.
• If you add or subtract two numbers that are magnitude-wise not comparable (one very big, the other

very small), it is likely that you will lose the proper contribution of the smaller one. Especially when
you iterate the operation (repeat it many times), the error will accumulate.

• It is strongly recommended to use widely used and reputable libraries for floating-point calculations
instead of developing your own algorithms from scratch.
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Please visit the Web page of the chapter for a practical session on the IEEE 754 floating point representation.

3.3 Numbers in Python

Python provides the following representations for numbers:

• Integers: You can use integers as you are used to from your math classes. Interestingly, Python
adopts a seamless internal representation so that integers can effectively have any number of digits.
The internal mechanism of Python switches from the CPU-imposed fixed-size integers to some
elaborated large-integer representation silently when needed. You do not have to worry about it.
Furthermore, keep in mind that “73.” is not an integer in Python. It is a floating-point number (73.0).
An integer cannot have a decimal point as part of it.

• Floating-point numbers (float in short): In Python, numbers with decimal points are taken and
represented as floating-point numbers. For example, 1.45, 0.26, and −99.0 are float but 102 and
−8 are not. We can also use the scientific notation (a × 10b) to write floating-point numbers. For
example, float 0.0000000436 can be written in scientific notation as 4.36 × 10−8 and in Python as
4.36E-8 or 4.36e-8.

• Complex numbers: In Python, complex numbers can be specified using j after a floating-point
number (or integer) to denote the imaginary part: e.g., 1.5-2.6j for the complex number (1.5 +
2.6i). The j symbol (or i) represents

√−1. There are other ways to signify complex numbers, but
this is the most natural way considering your previous knowledge from high school.

3.4 Representing TruthValues (Booleans)

Boolean is another data type that has roots in the very structure of the CPU. The answers to all questions
asked to the CPU are either true or false. The logic of a CPU is strictly based on the binary evaluation
system. This logic system is coined as Boolean logic. It was introduced by George Boole in his book
“The Mathematical Analysis of Logic” (1847).
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It is tightly connected to the concepts of binary 0 and 1: In all CPUs, falsity is represented with a
0 whereas truth is represented with a 1 and on some with any value which is not 0.

3.5 Representing Text

As we said in the first lines of this chapter, programming is mostly about a world problem that generally
includes human-related or interpretable data to be processed. These data do not consist of only numbers,
but can include more sophisticated data such as text, sound signals, and pictures. We leave the processing
of sound and images out of the scope of this book. However, text is something we have to study.

3.5.1 Characters

Written natural languages consist of basic units called graphemes. Alphabetic letters, Chinese-
Japanese-Korean characters, punctuation marks, and numeric digits are all graphemes. There are also
some basic actions that commonly go hand in hand with textual data entry. “Make newline”, “Make a
beep sound”, “Tab”, and “Enter” are some examples. These are called “unprintables”.

How can we represent graphemes and unprintables in binary? Graphemes are highly culture depen-
dent. The shapes do not have a numerical foundation. As far as computer science is concerned, the only
way to represent such information in numbers is to make a table and build this table into electronic
input/output devices. Such a table will have two columns: The graphemes and unprintables in one
column and the assigned binary code in the other, e.g.:

Grapheme or unprintable Binary code
.
.
.

.

.

.

Throughout the history of computers, there have been several such tables, mainly constructed by
computer manufacturers. In time, most of them vanished and only one survived: The ASCII (American
Standard Code for Information Interchange) table which was developed by the American National
Standards Institute (ANSI). This American code, developed by Americans, is naturally quite “Ameri-
can”. It incorporates all characters of the American-English alphabet, including, for example, the dollar
sign, but stops there. The table does not contain a single character from another culture (for example,
even the pound sign “£” is not in the table).

The ASCII table has 128 lines. It maps 128 American graphemes and unprintables to 7-bit-long
(not 8-bit-long!) codes. Since the 7-bit-long code can also be interpreted as a number, for convenience,
this number is also displayed in the ASCII table—see Table3.2.

Do not worry, you do not have to memorize the ASCII table; even professional computer program-
mers do not. However, some properties of this table must be understood and kept in mind:
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Table 3.2 The ASCII table. Dec: Decimal value. Bin: Binary representation. Char: Character being represented

Dec Bin Char Dec Bin Char Dec Bin Char Dec Bin Char

0 0000 0000 [NUL] 32 0010 0000 space 64 0100 0000 @ 96 0110 0000 ‘

1 0000 0001 [SOH] 33 0010 0001 ! 65 0100 0001 A 97 0110 0001 a

2 0000 0010 [STX] 34 0010 0010 " 66 0100 0010 B 98 0110 0010 b

3 0000 0011 [ETX] 35 0010 0011 # 67 0100 0011 C 99 0110 0011 c

4 0000 0100 [EOT] 36 0010 0100 $ 68 0100 0100 D 100 0110 0100 d

5 0000 0101 [ENQ] 37 0010 0101 % 69 0100 0101 E 101 0110 0101 e

6 0000 0110 [ACK] 38 0010 0110 & 70 0100 0110 F 102 0110 0110 f

7 0000 0111 [BEL] 39 0010 0111 ’ 71 0100 0111 G 103 0110 0111 g

8 0000 1000 [BS] 40 0010 1000 ( 72 0100 1000 H 104 0110 1000 h

9 0000 1001 [TAB] 41 0010 1001 ) 73 0100 1001 I 105 0110 1001 i

10 0000 1010 [LF] 42 0010 1010 * 74 0100 1010 J 106 0110 1010 j

11 0000 1011 [VT] 43 0010 1011 + 75 0100 1011 K 107 0110 1011 k

12 0000 1100 [FF] 44 0010 1100 , 76 0100 1100 L 108 0110 1100 l

13 0000 1101 [CR] 45 0010 1101 – 77 0100 1101 M 109 0110 1101 m

14 0000 1110 [SO] 46 0010 1110 . 78 0100 1110 N 110 0110 1110 n

15 0000 1111 [SI] 47 0010 1111 / 79 0100 1111 O 111 0110 1111 o

16 0001 0000 [DLE] 48 0011 0000 0 80 0101 0000 P 112 0111 0000 p

17 0001 0001 [DC1] 49 0011 0001 1 81 0101 0001 Q 113 0111 0001 q

18 0001 0010 [DC2] 50 0011 0010 2 82 0101 0010 R 114 0111 0010 r

19 0001 0011 [DC3] 51 0011 0011 3 83 0101 0011 S 115 0111 0011 s

20 0001 0100 [DC4] 52 0011 0100 4 84 0101 0100 T 116 0111 0100 t

21 0001 0101 [NAK] 53 0011 0101 5 85 0101 0101 U 117 0111 0101 u

22 0001 0110 [SYN] 54 0011 0110 6 86 0101 0110 V 118 0111 0110 v

23 0001 0111 [ETB] 55 0011 0111 7 87 0101 0111 W 119 0111 0111 w

24 0001 1000 [CAN] 56 0011 1000 8 88 0101 1000 X 120 0111 1000 x

25 0001 1001 [EM] 57 0011 1001 9 89 0101 1001 Y 121 0111 1001 y

26 0001 1010 [SUB] 58 0011 1010 : 90 0101 1010 Z 122 0111 1010 z

27 0001 1011 [ESC] 59 0011 1011 ; 91 0101 1011 [ 123 0111 1011 {

28 0001 1100 [FS] 60 0011 1100 < 92 0101 1100 \ 124 0111 1100 |

29 0001 1101 [GS] 61 0011 1101 = 93 0101 1101 ] 125 0111 1101 }

30 0001 1110 [RS] 62 0011 1110 > 94 0101 1110 ˆ 126 0111 1110 ~

31 0001 1111 [US] 63 0011 1111 ? 95 0101 1111 _ 127 0111 1111 [DEL]

• The general layout of the ASCII table:

Dec. range Property
0–31 Unprintables
32 Space char.
33–47 Punctuations
48–57 Digits 0–9
58–64 Punctuations
65–90 Uppercase letters
91–96 Punctuations
97–122 Lowercase letters
123–127 Punctuations
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• There is no logic in the distribution of the punctuations.
• It is based on the English alphabet; characters from other languages are simply not there. Moreover,

there is no mechanism for diacritics.
• Letters are ordered in the table, and uppercase letters come first (have a lower decimal value).
• Digits are also ordered but are not represented by their numerical values. To obtain the numerical

value for a digit, you have to subtract 48 from its ASCII value.
• The table is only and only about 128 characters, neither more nor less. There is nothing like Turkish-

ASCII or French-ASCII. The extensions, where the 8th bit is set, have nothing to do with the ASCII
table.

• The older versions of Python (v1 and v2) used the ASCII character representations.

The frustrating discrepancies and shortcomings of the ASCII table have led the programming society
to seek a solution. A non-profit group, the Unicode Consortium, was founded in the late 80s with the
goal of providing a substitute for the current character tables, which is also compliant (backward
compatible) with them. The Unicode Transformation Format (UTF) is their suggested representation
scheme.

This UTF representation scheme has variable length and may include components of 1-to-4 8-bit
wide (in the case of UTF-8) or 16-bit wide components of 1-to-2 (in the case of UTF-16). UTF is now
becoming part of many recent high-level language implementations, including Python (with version
3), Java, Perl, TCL, Ada95, and C#, gaining wide popularity.

3.5.2 Strings

Strings are sequences of characters that are used to represent text data. Text data is as vital as numerical
data in the world of programming, but we have a problem here. As we discussed above, numbers
(integers and floating points) have a niche in the CPU. There are instructions designed for them:
With instructions, we can store and retrieve them to/from the memory; we can perform arithmetical
operations among them. Character data can be represented and processed as well because they are
mapped to 1-byte integers through ASCII or alternative tables. But, when it comes to strings, the CPU
does not have any facility for them.

How can we represent a string, i.e., a sequence of characters? The only reasonable way is to store
the codes of all characters that make up a string in the memory in consecutive bytes. In other words,
the string “Python rocks!” can be represented using the ASCII codes of the characters as follows:

80 121 116 104 111 110 32 114 111 99 107 115 33

Does this solve the problem of “representation”? Unfortunately, not. The trouble is determining
how to know where the string ends, for which there are two possible solutions:

1. Store string length: In front of the string’s characters, store the length (the number of characters
in the string) as an integer of a fixed number of bytes. This solution would represent our example
string as follows, with the count 13 in the front:

13 80 121 116 104 111 110 32 114 111 99 107 115 33



3.8 Further Reading 51

2. Store an end mark: Store a special byte value (number zero in general), which is not used to represent
any other character, at the end of the string characters. This solution would represent our example
string as follows with the marker “0” at the end:

80 121 116 104 111 110 32 114 111 99 107 115 33 0

Different languages adopt different solutions between these options.

3.6 Containers

The representation of a string illustrates a simple representation of data that is not directly supported
by the CPU. However, it gives an idea of what can be done in similar cases. The key concept is to find
a “layout” that provides a mapping from the space of the data to an “organization” in the memory.

Also, note that whatever is placed in the memory has an “address” and the value of the address
can also become a part of the organization. As far as strings are concerned, the usage of the “address
concept” is simple: A single address marks the start of the string. When we want to process the string,
we go to this address and then start to process the character codes sequentially.

It is possible to have data organizations that include addresses of other data organizations. In other
words, it is possible to jump from one group of data to some other data in the memory. These types of
organizations are named Data Structures in Computer Science. In other words, string is a data structure.
As far as Python is concerned, there are several other data structures. They are coined as containers in
Python. In addition to strings, Python provides lists, tuples, sets, and dictionaries as containers. These
containers will be covered in detail in the next chapter.

3.7 Important Concepts

We would like our readers to have grasped the following crucial concepts and keywords from this
chapter:

• Sign-magnitude notation and two’s complement representation for representing integers.
• The IEEE 754 standard for representing real numbers.
• Precision loss in representing floating-point numbers.
• Representing characters with the ASCII table.
• Representing truth values.

3.8 Further Reading

• Two’s Complement: http://en.wikipedia.org/wiki/Two%27s_complement [2].
• The Method of Complements: https://en.wikipedia.org/wiki/Method_of_complements [3].
• Excess-k Representation: https://en.wikipedia.org/wiki/Offset_binary [4].
• IEEE 754 Floating-Point Standard: http://en.wikipedia.org/wiki/IEEE_754-2008 [5].
• ASCII: http://en.wikipedia.org/wiki/ASCII [6].
• UTF–UCS Transformation Format: http://en.wikipedia.org/wiki/UTF-8 [7].

http://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Method_of_complements
https://en.wikipedia.org/wiki/Offset_binary
http://en.wikipedia.org/wiki/IEEE_754-2008
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/UTF-8
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3.9 Exercises

1. Represent 6 and (−7) in a 5-bit sign-magnitude notation and add them up in binary, without looking
at their signs.

2. By hand, find the 5-bit two’s complement representation of the following numbers: 4, −5, 1, −0,
11.

3. Compute the decimal values of the following 8-bit two’s complement representations:

a. 01111000
b. 10110011
c. 10000001
d. 11111110

4. Perform the following calculations on decimal numbers using only 8-bit two’s complement repre-
sentation and binary addition (you are not allowed to use binary subtraction). Verify your results
by performing the operations using decimal values.

a. 101 − 111
b. 10 − 20
c. −20 − 17
d. 118 − 18

5. Find the IEEE 754 32-bit representation of the following floating-point numbers: 3.3, 3.37, 3.375.
6. Compare the largest values that can be stored using two’s complement notation and IEEE 754

floating-point representation in 32 bits. Considering that both representations make use of all
possible 32-bit combinations (232 in total), what is the cause of the (huge) difference?

7. Let us assume that we modify the IEEE 754 32-bit representation by increasing the mantissa by 1
bit to 24 bits and decreasing the exponent by 1 bit to 7 bits. What will we gain and what will we
lose?

8. Draw the flowchart for an algorithm for comparing two 32-bit IEEE 754 floating points, based on
their sign bits, exponents, and mantissa subfields.

9. Convert the following IEEE 754 floating-point numbers to their decimal values.

a. 11100100110110000000000000000000
b. 01000010100001000000000000000000
c. 11000010100001011000000000000000
d. 10111111110010000000000000000000

10. If we had some variable-sized floating-point representation but finite memory size, would we be
able to represent:

a. All real numbers?
b. All irrational numbers?
c. All rational numbers?

For each case, if your answer is yes, explain how; if not, explain why not.
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4Dive into Python

After having covered some background on how a computer works (Chap. 1), how we solve problems
with computers (Chap.2), and how we can represent data in binary (Chap.3), we are ready to interact
with, learn to represent data, and perform actions in Python.

The Python interpreter that we introduced in Sect. 2.5 is a program waiting for our computational
demands if not executing something already. Those demands that describe an algorithm must be
expressed in Python as a sequence of “actions” where each action can serve two broad purposes:

• Creating or modifying data: These actions take in data, perform sequential, conditional, or repeti-
tive execution on the data, and produce other data. Computations that form the basis for our solutions
are going to be performed with these kinds of actions.

• Interacting with the environment: Our solutions will usually involve interacting with the user or
the peripherals of the computer to take in (input) data or take out (output) data. This is achieved by
using actions that enable interaction with the “environment”.

Regardless of its purpose, an action can be of two types:

1. Expression: An expression (e.g., 3 + 4 * 5) specifies a calculation which, when evaluated
(performed), yields some data as a result. An expression can consist of:

• basic data (integer, floating point, Boolean, etc.) or container data (e.g., string, list, set, etc.).
• expressions involving operations among data and other expressions.
• functions acting on expressions.

2. Statement: Unlike an expression, a statement does not return data as a result. It can either be basic
or compound:

• Basic statement: A basic statement can be, e.g., for storing the result of an expression in a
memory location (an assignment statement for further use in subsequent actions), deleting an
item from a collection of data, etc. Each statement has its special syntax that generally involves
a special keyword.

• Compound statement: Compound statements are composed of other statements, and control
the execution of those statements in some way.
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Naming and Printing Data
For the sake of clarity, we will make use of two concepts (variables and printing data) before they are
introduced in more detail in the second part of the chapter. Let us briefly describe them and leave the
coverage of the details to their individual sections:

• Variables: In programming languages, we can give a name to data and use that name to access it,
e.g.:

>>> a = 3
>>> 10 + a
13

Here, we asked Python to add 10 with a value referred to by the name a, and Python produced the
result as 13. We call such names variables, and the action a = 3 is called an assignment. We defer
a more detailed coverage until Sect. 4.4.1.

• Printing data: Python provides the print() function to display data items on the screen:

print(item1, item2, ..., itemN)

where item can be of any data type. For example:

>>> print('Python', 'is', 'so', 'fun')
Python is so fun

4.1 Basic Data

The following are the basic data types we frequently use:

• Numbers

– Integers
– Floating point numbers
– Complex numbers

• Booleans

In Python, arithmetic operations between numbers of the same type are provided in a way that is
consistent with our mathematical expectations. Furthermore, mixed-type operations (e.g., subtracting
a floating point number form an integer) are also possible.

In programming, being able to ask questions about data is vitally important. The atomic structures
for asking questions are the comparison operations (e.g., “is a value equal to another value”, or “is
a value greater than another value”, etc.). Operators that serve these purposes do exist in Python
and provide resulting values that are True or False (Booleans). It is also possible to combine such
questions under logical operations. Theand,or, and not operators stand for conjunction, disjunction,
and negation, correspondingly. Needless to say, these operators also return Boolean values True or
False.
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4.1.1 Numbers in Python

Python provides the following representations for numbers (the following is an essential reminder from
the previous chapter):

• Integers: You can use integers as you are used to in your math classes. Interestingly, Python adopts
a seamless internal representation so that integers can effectively have any number of digits. The
internal mechanism of Python silently switches from the CPU-imposed fixed-size integers to some
elaborated big-integer representation when needed. You do not have to worry about it. Furthermore,
keep in mind that “73”. is not an integer in Python. It is a floating point number (73.0). An integer
cannot have a decimal point as part of it.

• Floating point numbers (float in short): In Python, numbers that have a decimal point are taken
and represented as floating point numbers. For example, 1.45, 0.26, and −99.0 are float but 102 and
−8 are not. We can also use the scientific notation (a × 10b) to write floating point numbers. For
example, float 0.0000000436 can be written in scientific notation as 4.36 × 10−8 and in Python as
4.36E-8 or 4.36e-8.

• Complex numbers: In Python, complex numbers can be created by using j after a floating point
number (or integer) to denote the imaginary part: e.g., 1.5 – 2.6j for the complex number
(1.5 − 2.6i). The j symbol (or i) represents

√−1. There are other ways to create complex numbers,
but this is the most natural way, considering your previous knowledge from high school.

More on Integers and Floating Point Numbers
Python provides the int data type for integers and float data type for floating-point numbers. You
can easily play with the int and float numbers and check their types as follows:

>>> 3+4
7
>>> type(3+4)
<class 'int'>
>>> type(4.1+3.4)
<class 'float'>

where < class ’int’ > indicates type int.
As we mentioned above, in Python version 3, integers do not have fixed-size representation, and their

size is only limited by your available memory. In Python version 2, there were two integer types: (i)
int, which used the fixed-length two’s complement representation (covered in Sect. 3.1.2) supported
by the CPU, and (ii) long, which was unbounded. Since this book is based on Python version 3, we
assume that int refers to an unbounded representation.

As for the float type, Python uses the 64-bit IEEE 754 standard (covered in
Sect. 3.2.1), which can represent numbers in the range [2.2250738585072014E-308,
1.7976931348623157E+308].

Useful Operations:
The following functions can be useful when working with numbers:

• abs(<Number>): Takes the absolute value of the number.

>>> abs(-3.2)
3.2
>>> abs(3.2)
3.2
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• pow(<Number1>, <Number2>): Takes the power of<Number1>, i.e., <Number1><Number2>.
Python also provides an operator (**) for taking the power of numbers:
<Number1> ** <Number2>.

>>> pow(3, 2.4)
13.966610165238235
>>> pow(3, -1)
0.3333333333333333

• round(<FloatNumber>): Rounds the floating point number to the closest integer.

>>> round(4.2)
4
>>> round(4.6)
5

• Functions from the math library: sqrt(), sin(), cos(), log(), etc. (see the Python docu-
mentation1 for a full list). This requires importing from the built-in math library first as follows:

>>> from math import *
>>> sqrt(10)
3.1622776601683795
>>> log10(3.1622776601683795)
0.5

4.1.2 BooleanValues

Python provides the bool data type which allows only two values: True and False. For example:

>>> type(True)
<class 'bool'>
>>> 3 < 4
True
>>> type(3 < 4)
<class 'bool'>

Python converts several instances of other data types to Boolean values, if used in a place where a
Boolean value is expected. For example,

• 0 (the integer zero)
• 0.0 (the floating-point number zero)
• "" (the empty string)
• [] (the empty list)
• {} (the empty dictionary)

are interpreted as False. All other values are interpreted as True.

1 https://docs.python.org/3/library/math.html.

https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/math.html
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Useful Operations:
With Boolean values, we can use the “not” (negation or inverse), “and”, and “or” operations:

>>> True and False
False
>>> 3 > 4 or 4 < 3
False
>>> not(3 > 4)
True

and returns a True value only if both operands are True, otherwise it returns False. or returns
True if one or both of its operands are True. The following table gives the result of the Boolean
operations for the given operand pair:

a b a and b a or b
True True True True
True False False True
False True False True
False False False False

4.2 Container Data (str, tuple, list, dict, set)

Up to this point, we have seen the basic data types. They are certainly needed in our computations,
but many world problems for which we seek computerized solutions need more elaborate data. Just to
mention a few:

• Vectors
• Matrices
• Ordered and unordered sets
• Graphs
• Trees

Vectors and matrices are used in almost all simulations/problems of the physical world. Sets are
used to keep any property information as well as equivalences. Graphs are necessary for many spatial
problems. Trees are vital for representing hierarchical relational structures, action logics, and organizing
data for a quick search.

Python provides five container types for these:

1. String (str): A string can hold a sequence of characters or only a single character. A string cannot
be modified after creation.

2. List (list): A list can hold ordered sets of all data types in Python (including another list). The
elements of a list can be modified after creation.

3. Tuple (tuple): The tuple type is very similar to the list type, but the elements cannot be modified
after creation (similar to strings).

4. Dictionary (dict): A very efficient data type that implements a mapping from a set of numbers,
Booleans, strings, and tuples to any set of data in Python. Dictionaries are easily modifiable and
extendable. Querying the mapping of an element to the “target” data is carried out in almost constant
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time (irrespective of how many elements the dictionary has). In Computer Science terms, a dictionary
is called the hash table data structure.

5. Set (set): Theset type is equivalent to sets in mathematics. The order of the elements is undefined.
(We de-emphasize the use of set).

The first three, namely string, list, and tuple, are called sequential containers. They consist of
consecutive elements indexed by integer values starting at 0. A dictionary is not sequential and element
indexes are arbitrary. For brevity, we will abbreviate sequential containers as s-containers.

All these containers have external representations, which are used in inputting and outputting them
(with all their content). In the following, we will walk through some examples to explain them.

Mutability Versus Immutability
Some container types are created as “frozen”. After creating them, you can completely destroy them,
but you cannot change or delete their individual elements. This is called immutability. Strings and
tuples are immutable, whereas lists, dictionaries, and sets are mutable. With a mutable container, it is
possible to add new elements and change or delete existing ones. As we will see throughout the book,
mutable data types will make programming easier for us.

4.2.1 Accessing Elements in Sequential Containers

All containers except set reveal and provide access to their individual elements by an indexing
mechanism with brackets, as illustrated in Fig. 4.1.

Fig. 4.1 How elements of a container are accessed

For the s-containers, the index is an ordinal number where counting starts from zero. For dictionaries,
the index is a Python data item from the source (domain) set. A negative index (usable only on s-
containers) means that the (counting) value is relative to the end. A negative index can be converted to
a positive index by adding the length of the container to the negative value.

Below we have an s-container that has a length of (n + 1) (note that indexing starts at 0!) (Fig. 4.2):

Fig. 4.2 +/− indexing of an s-container

Observe that, when you add (n + 1) to the negative index, you obtain the positive one.

Slicing
S-containers provide a rich mechanism, called slicing, that allows accessing multiple elements at once.
This mechanism allows us to define a start index and an end index and access the items that lie in
between (Fig. 4.3):
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Fig.4.3 Accessing multiple elements of an s-container is possible via the slicing mechanism, which specifies a starting
index, an ending index, and an index increment between elements

• The element at the start index is the first to be accessed.
• The end index is where accessing stops (the element at the end index is not accessed—that is, the

end index is not inclusive).
• It is also possible to optionally define an increment (a “jump” amount) between the indexes. After

the element at [start] is accessed first, [start + increment] is accessed next. This goes on until
the accessed position is equal to or greater than the end index. For negative indexing, a negative
increment has to work from the bigger index towards the lesser, so (start index > end index) is
expected.

Below, with the introduction of strings, we will have extensive examples on slicing.
If the s-container is immutable (e.g., string and tuple containers) then slicing creates a copy of the

sliced data. Otherwise, i.e., if the s-container is mutable (i.e., the “list” container), then slicing provides
direct access to the original elements and therefore, they can be updated, which updates the original
s-container.

4.2.2 Useful and Common Container Operations

The following operations are common to all or a subset of containers:
1-Number of elements:
For all containers, len() is a built-in function that returns the count of elements in the container that
is given as argument to it, e.g.:

>>> len("Five")
4

2-Concatenation:
String, tuple, and list data types can be combined using the “+” operation:

<Container1> + <Container2>

where the containers need to be of the same type. For example:

>>> "Hell" + "o"
'Hello'

3-Repetition: String, tuple, and list data types can be repeated using the “*” operation:

<Container1> * <Number>
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where the container is copied <Number> many times. For example:

>>> "Yes No " * 3
'Yes No Yes No Yes No '

4-Membership: All containers can be checked for whether they contain a certain item as an element
using in and not in operations:

<item> in <Container>

or

<item> not in <Container>

Of course, the result is either True or False. For dictionaries, the in operator tests whether the
element is present in the domain set, while, for other data structures, it checks if the element is a
member.

4.2.3 String (str)

As explained in Sect. 3.5.2, a string is used to hold a sequence of characters. Essentially, it is a container
where each element is a character. However, Python does not have a special representation for a single
character. Single characters, if necessary, are represented externally as strings containing a single
character only.

Writing Strings in Python
In Python, a string is denoted by enclosing the character sequence between a pair of quotes (’Example
String’) or double quotes ("Example String"). A string surrounded with triple double quotes
("""Example String""") allows you to have any combination of quotes and line breaks within
a sequence and Python will still view it as a single entity.

Here are some examples:

• "Hello World!"
• ’Hello World!’
• ’He said: "Hello World!" and walked towards the house.’
• "A"
• """
Andrew said:
"Come here, doggy".
The dog barked in reply: ’woof’
"""

The backslash (\) is a special character in Python strings, also known as the escape character. It
is used in representing certain, the so-called, unprintable characters: \t is a tab, \n is a newline, and
\r is a carriage return. Table4.1 provides the full list.

Conversely, prefixing a special character with (\) turns it into an ordinary character. This is called
escaping. For example, \’ is the single quote character. ’It\’s raining’ therefore is a valid
string and equivalent to "It’s raining". Likewise, " can be escaped: "\"hello\"" is a string
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Table 4.1 The list of escape characters in Python

Escape sequence Meaning

\\ Backslash (\)

\’ Single quote (’)

\" Double quote (")

\a ASCII Bell (BEL)

\b ASCII Backspace (BS)

\f ASCII Formfeed (FF)

\n ASCII Linefeed (LF)

\r ASCII Carriage Return (CR)

\t ASCII Horizontal Tab (TAB)

\v ASCII Vertical Tab (VT)

\ooo ASCII character with octal value ooo

\xhh ASCII character with hex value hh

\uhhhh UNICODE character with hex value hhhh

that begins and ends with the literal double quote character. Finally, \ can be used to escape itself: \\
is the literal backslash character. For ’\nnn’, nnn is a number in base 8, for ’\xnn’ nn is a number
in base 16 (including letters from A to F as digits for values 10–15).

In Python v3, all strings use the Unicode representation where all international symbols can be used,
e.g.:

>>> a = "Fıstıkçı şahap"
>>> a
'Fıstıkçı şahap'

Examples with strings
Let us look at some examples to see what strings are in Python and what we can do with them:

>>> "This is a string"
"This is a string"
>>> "This is a string"[0]
'T'
>>> s = "This is a string"
>>> print(s[0])
T
>>> print(s[0],s[1],s[8],s[14],s[15])
T h a n g

Since strings are immutable, an attempt to change a character in a string will badly fail:

>>> s = "This is a string"
>>> print(s)
This is a string
>>> s[2] = "u"
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item assignment

Bottom line: You cannot change a character in a created string.
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Let us go through a sequence of examples. We encourage you to run the following examples on the
Web page of this chapter. Feel free to change the text and rerun the examples.
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Strings are used to represent textual information. Common places where strings are used are:

• Textual communication in natural language with the user of the program.
• Understandable labeling of parts of data: City names, individual names, addresses, tags, labels, etc.
• Denotation needs in human-to-human interactions.

Useful Operations with Strings:
In the following, we go over some common operations with strings. After having introduced object-
oriented programming, we will cover more useful operations in Sect. 7.3.
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• String creation: In addition to using quotes for string creation, the str() function can be used to
create a string from its argument, e.g.:

>>> str(4)
'4'
>>> str(4.578)
'4.578'

• Concatenation, repetition, and membership:

>>> 'Programming' + ' ' + 'with ' + 'Python is' + ' fun!'
'Programming with Python is fun!'
>>> 'really fun ' * 10
'really fun really fun really fun really fun really fun really fun really
↪→fun really fun really fun really fun '
>>> 'fun' in 'Python'
False
>>> 'on' in 'Python'
True

• Evaluating a string: If you have a string that is an expression describing a computation, you can use
the eval() function to evaluate the computation and get the result, e.g.:

>>> s = '3 + 4'
>>> eval(s)
7

Deletion and Insertion from/to Strings
Since strings are immutable, modifying them directly is not possible. The only way to modify a string
is by creating a new string, which involves utilizing slicing and concatenation operations (using “+”).
The new string is then replaced in the same location as the former one. For example:

>>> a = 'Python'
>>> a[0] = 'S'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item assignment
>>> b = 'S' + a[1:]
>>> b
'Sython'

4.2.4 List andTuple

Both list and tuple data types have a very similar structure on the surface: They are sequential containers
that can contain any other data type (including other tuples or lists) as elements. The only difference
concerning the programmer is that tuples are immutable whereas lists are mutable. As discussed at the
beginning of Sect. 4.2, being immutable means that, after being created, it is not possible to change,
delete or insert any element in a tuple.
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Lists are created by enclosing elements into a pair of brackets and separating them with commas,
e.g., ["this", "is", "a", "list"]. Tuples are created by enclosing elements into a pair of
parentheses, e.g., ("this", "is", "a", "tuple"). There is no restriction on the elements:
They can be any data (basic or container).

Let us look at some examples for lists:

• [9,3,1,-1,6]
• []
• [2020]
• [3.1415, 2.718281828]
• [["pi, 3.1415"], ["e", 2.718281828], 1.41421356]
• [’the’ ’quick’,’brown’,’fox’,’jumped’,’over’,’the’,’lazy’,’dog’]
• [10, [5, [3, [[30, [[30, [], []]], []]], []], [8, [], []]], [30,
[], []]]

• [[1,-1,0],[2,-3.5,1.1]]

and some examples for tuples:

• (’north’,’east’,’south’,’west’)
• ()
• (’only’,)
• (’A’,65,"1000001","0x41")
• ("abx",[1.32,-5.12],-0.11)

Of course, tuples can become list members as well, or vice versa:

• [("aerys","targaryen",("deceased", 1996)), ("brandon","stark",
"not born")]

• (["aerys","targaryen",("deceased", 1996)], ["brandon","stark",
"not born"])

Programmers generally prefer using lists over tuples since they allow changing elements, which is
often a useful facility in many problems.

Lists (and tuples) are used whenever there is a need for an ordered set. Here are a few use cases for
lists and tuples:

• Vectors.
• Matrices.
• Graphs.
• Board game states.
• Student records, address books, or any inventory.

Useful Operations with Lists and Tuples
In the following, we go over some common operations with lists and tuples. After having introduced
object-oriented programming, we will cover more useful operations in Sect. 7.3.

1-Deletion from lists
As far as deletion is concerned, you can use two methods for the time being:
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• Assigning an empty list to the slice that is going to be removed:

>>> L = [111,222,333,444,555,666]
>>> L[1:5] = []
>>> print(L)
[111, 666]

• Using the del statement on the slice that is going to be removed:

>>> L = [111,222,333,444,555,666]
>>> del L[1:5]
>>> print(L)
[111, 666]

2-Insertion into lists
For insertion, you can use three methods:

• Using assignment with a degenerate use of slicing:

>>> L = [111,222,333,444,555,666]
>>> L[2:2] = [888,999]
>>> print(L)
[111, 222, 888, 999, 333, 444, 555, 666]

• The second method can insert only one element at a time, and requires object-oriented programming
features (i.e., <data>.function(…)), which will be covered in Chap.7.

>>> L = [111,222,333,444,555,666]
>>> L.insert(2, 999)
>>> print(L)
[111, 222, 999, 333, 444, 555, 666]

where the insert() function takes two parameters: The first parameter is the index where the
item will be inserted and the second parameter is the item to be inserted.

• The third methods uses the append() function to insert an element only to the end or extend()
to append more than one element to the end:

>>> L = [111,222,333,444,555]
>>> L.append(666)
>>> print(L)
[111, 222, 333, 444, 555, 666]
>>> L.extend([777, 888])
[111, 222, 333, 444, 555, 666, 777, 888]

3-Data creation with tuple() and list() functions: Similar to other data types, the tuple and
list data types provide two functions for creating data from other data types. An example is provided
below, after the last item.
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4-Concatenation and repetition with lists and tuples: Similar to strings, “+” and “*” can be used,
respectively, to concatenate two tuples/lists and to repeat a tuple/list many times. An example is
provided below, after the last item.

5-Membership: Similar to strings, in and not in operations can be used to check whether a tuple/list
contains an element. An example is provided below, after the last item.

Here is an example that illustrates the last three items:

>>> a = ([3] + [5])*4
>>> a.append([3, 5])
>>> print(a)
[3, 5, 3, 5, 3, 5, 3, 5, [3, 5]]
>>> a.extend([3, 5])
>>> print(a)
[3, 5, 3, 5, 3, 5, 3, 5, [3, 5], 3, 5]
>>> b = tuple(a)
>>> print(b)
(3, 5, 3, 5, 3, 5, 3, 5, [3, 5], 3, 5)
>>> [3, 5] not in b
False
>>> [5, 3] not in b
True # test for single element, not subsequence

As mentioned, the examples with some containers included two types of constructs that were not
covered yet: One is the use of “functions” on containers, e.g., the use of len(). With your high
school background, the use of functions should be easy to understand.

The second construct is something new. It appears that we can use some functions suffixed by a
dot to a container (e.g., the append and insert usages in the examples above). This construct is an
internal function call of a data structure called object. Containers are actually objects and in addition
to their data containment property, they also have some defined action associations. These actions are
named member functions and called (applied) on that object (in our case the container) by means of
this dot notation:

•. f (�) has the conceptual meaning of f (•,�) (4.1)

Do not try this explicitly as it will not work. The equivalence is just “conceptual”: The function receives
the object internally, as a “hidden” argument. All these will be covered in detail in Chap. 7. Till then,
for the sake of completeness, from time to time, we will be referring to this notation. For the time
being, simply interpret the use of member functions based on the equivalence depicted above.

Example: Matrices as Nested Lists
In many real-world problems, we often end up with a set of values that share certain semantics or
functionality. We can benefit from representing them in a regular grid structure that we call matrix:

A =

⎛
⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n
...

. . .
...

am1 am2 . . . amn

⎞
⎟⎟⎟⎠ , (4.2)

which has n columns and m rows. We generally shorten this as m × n and say that matrix A has size
m × n.
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Solutions to many different problems can be formulated as a set (system) of equations that describe
relations among a set of variables. The following is a simple example:

3x + 4y + z = 4,

−3x + 3y + 5 = 3,

x + y + z = 0.

(4.3)

These equations can be represented with matrices as follows:

⎛
⎝

3 4 1
−3 3 5
1 1 1

⎞
⎠

⎛
⎝

x
y
z

⎞
⎠ =

⎛
⎝

4
3
0

⎞
⎠ . (4.4)

This represents Eq.4.3 in terms of matrices and matrix multiplication. It is okay if you are not familiar
with matrix multiplication—we will briefly introduce the concept and use it as an example in the next
chapter.

Writing a problem in a matrix form as we did above allows us to group the related aspects of the
problem together and focus on these groups for solving a problem. In our example, we grouped the
coefficients in a matrix, which allows us to analyze and manipulate the matrix of coefficients (the
first matrix in Eq.4.4) to check whether, for this system of equations, there is a solution, whether the
solution is unique or what the solution is. All these are questions that are studied in Linear Algebra
and beyond the scope of our book.

Let us now explore how matrices can be represented in Python. A simple and effective approach
that allows for modifying elements of the matrix later is by using nested lists, as shown below:

>>> A = [[3, 4, 1],
... [-3, 3, 5],
... [1, 1, 1]]
>>> A
[[3, 4, 1], [-3, 3, 5], [1, 1, 1]]

Compare this list with the first matrix in Eq.4.4 and note that each row is represented as a list which
is a member of the outer list. This would allow us to access entries like this:

>>> A[1] # 2nd row
[-3, 3, 5]
>>> A[1][0] # 2nd row, 1st element
-3

Although we can represent matrices like this, there are very advanced libraries that make representing
and working with matrices more practical, as we will see in Chap.10. For an extended coverage
of matrices and matrix operations, we refer to the Matrix algebra for beginners2 or Chap.2.2 of
“Mathematics for Machine Learning”.3

2 J. Gunawardena, “Matrix algebra for beginners”, lecture notes, 2006. http://vcp.med.harvard.edu/papers/matrices-1.
pdf.
3 M. P. Deisenroth, A. A. Faisal and C. S. Ong, “Mathematics for Machine Learning”, Chap.2.2, Cambridge University
Press, 2020. https://mml-book.com.

http://vcp.med.harvard.edu/papers/matrices-1.pdf
http://vcp.med.harvard.edu/papers/matrices-1.pdf
https://mml-book.com
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4.2.5 Dictionary

Dictionary is a container data type where accessing items can be performed with indexes that are not
numerical. In fact, in dictionaries, indexes are called keys. A list, tuple, or string data type stores a
certain element at each numerical index (key). Similarly, a dictionary stores an element (value) for
each key. In other words, a dictionary is just a mapping from keys to values (Fig. 4.4).

The keys can only be immutable data types, i.e., numbers, strings, or tuples (with only immutable
elements); some other immutable types that we do not cover in this book can also be used as keys.
Since lists and dictionaries are mutable, they cannot be used as keys for indexing. Regarding values,
there is no limitation on the data type.

A dictionary is a “discrete” mapping from a set of Python elements to another set of Python elements.
Dictionaries, as well as their individual elements, are mutable (you can replace them). Moreover, it is
possible to add and remove items from the mapping.

49

"Barack Obama" 

44

"casa"

("table","leg") 

("Charlize Theron",
 (0,13))

90

"james bond"
["movie char","007"]

[3,4]

"United Kingdom"

"South Africa"

["city",(41.0383,28.9703),
 "Where East meets West!",
 34, 15.5e6]

"home"

"Germany"  SEULAV  

   K
EYS

"Turkiye"

"Istanbul"

["president","USA",
 (2009,2017)]

Fig. 4.4 A dictionary provides a mapping from keys to values

A dictionary is represented as key–value pairs, each separated by a column sign (:) and all enclosed
in a pair of curly braces. The dictionary in Fig. 4.4 would be denoted as:

{49: "Germany",
44: "United Kingdom",
90: "Turkey",
"Istanbul": ["city", (41.0383,28.9703), "Where East meets West!", 34, 15.
↪→5e6],
("Charlize Theron", (0,13)): "South Africa",
"james bond": ["movie char", "007"],
"Barack Obama": ["president", "USA", (2009, 2017)],
("table", "leg"): [3, 4],
"casa": "home"}

Similar to other containers, we usually access dictionaries via variables. Let us assume the dictionary
above was assigned to a variable with the name conno and look at some examples:
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Let us ask for something that does not exist in the dictionary:

Ups, that was bad! To avoid such a situation, we have a simple method to test for the existence of a
key in a dictionary, by using the in operation:

It is also possible to remove/insert key–value pairs from/to a dictionary:

The benefit of using a dictionary is “time efficiency”. The functionality of a dictionary could be
attained by using (key, value) tuples inserted into a list. In such a representation, when you need the
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value of a certain key, you can search one-by-one each (key, value)-tuple element of the list until you
find your key in the first position of a tuple element. However, this will consume time proportional to
the length of the list (the worst case). On the contrary, in a dictionary, this time is almost constant.

Moreover, a dictionary is more practical to use since it already provides accessing elements in a
key-based fashion.

Useful Operations with Dictionaries
Dictionaries support len() and membership (in and not in) operations that we have seen above.
You can also use <dictionary>.values() and <dictionary>.keys() to obtain lists of
values and keys, respectively, as illustrated for the conno dictionary introduced above:

>>> conno.values()
dict_values(['Germany', 'United Kingdom', 'Turkey', ['city', (41.0383, 28.
↪→9703), 'Where East meets West!', 34, 15500000.0], 'South Africa', ['movie
↪→char', '007'], ['president', 'USA', (2009, 2017)], [3, 4], 'home'])
>>> conno.keys()
dict_keys([49, 44, 90, 'Istanbul', ('Charlize Theron', (0, 13)), 'james bond
↪→', 'Barack Obama', ('table', 'leg'), 'casa'])
>>> for key in conno.keys(): print(f"key: {key} => value: {conno[key]}")
key: 49 => value: Germany
key: 44 => value: United Kingdom
key: 90 => value: Turkey
key: Istanbul => value: ['city', (41.0383, 28.9703), 'Where East meets West!
↪→', 34, 15500000.0]
key: ('Charlize Theron', (0, 13)) => value: South Africa
key: james bond => value: ['movie char', '007']
key: Barack Obama => value: ['president', 'USA', (2009, 2017)]
key: ('table', 'leg') => value: [3, 4]
key: casa => value: home

4.2.6 Set

Sets are created by enclosing elements into a pair of curly braces and separating them with commas.
Any immutable data type, namely a number, a string, or a tuple, can be an element of a set. Mutable
data types (lists, dictionaries) cannot be elements of a set. Since sets are mutable, sets themselves
cannot be elements of other sets.

Here is a small example with sets:

Lists can undertake most functionalities of sets. Furthermore, lists do not possess the restrictions
that sets do. On the other hand, membership tests especially are much faster with sets, since member
repetition is avoided.
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Frozenset
Python provides an immutable version of the set type, called frozenset. A frozenset can be
constructed using the frozenset() function as follows:

>>> s = frozenset({1, 2, 3})
>>> print(s)
frozenset({1, 2, 3})

Being immutable, frozensets can be a member of a set or a frozenset.

Useful Operations with Sets
Apart from the common container operations (len(), in, and not in), sets and frozensets support
the following operators:

• S1 <= S2 : True if S1 is a subset of S2.
• S1 >= S2 : True if S1 is a superset of S2.
• S1 | S2: Union of the sets (equivalent to S1.union(S2)).
• S1 & S2: Intersection of the sets (equivalent to S1.intersection(S2)).
• S1 - S2: Set difference (equivalent to S1.difference(S2)).

Here are some examples:

>>> odd = {1, 3, 5, 7}
>>> even = {0, 2, 4, 6, 8}
>>> odd
{1, 3, 5, 7}
>>> even
{0, 2, 4, 6, 8}
>>> odd_and_even = odd | even
>>> odd_and_even
{0, 1, 2, 3, 4, 5, 6, 7, 8}
>>> odd <= odd_and_even # odd is a subset of odd_and_even?
True
>>> odd <= even # odd is a subset of even?
False
>>> odd_and_even - odd == even # (odd_and_even \ odd) =? even
True

The followings are only applicable with sets (and not with forezensets) as they require a mutable
container:

• S.add(element): Add a new element to the set.
• S.remove(element): Remove the element from the set.
• S.pop(): Remove an arbitrary element from the set.

4.3 Expressions

Expressions such as 3 + 4 describe the calculation of an operation among data. When an expression
is evaluated, the operations in the expression are applied to the data specified in the expression and a
resulting value is provided.

Operations can be graphically illustrated as follows:

�1 � �2 (4.5)
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where � is called the operator, and �1 and �2 are called the operands. In this example, the operator
is binary, i.e., it acts on two operands.

We can also have unary operators:
�� (4.6)

or operators that have more than two operands.
Before we can cover how such operations are evaluated, let us look at the commonly used operations

(operators) in Python.

4.3.1 Arithmetic, Logic, Container, and Comparison Operations

Python provides various operators for arithmetic (addition, subtraction, multiplication, division, expo-
nentiation), logic (and, or, not), container (indexing, membership), and comparison (less, less-than,
equality, not-equality, greater, greater-than) operations. Some operators might be applied to different
container data types with different meanings. An operator compatibility matrix is given in Table4.2

Table 4.2 Python operators and valid operand types are marked with a circle, •. An empty cell means the data type is
not supported by the operator

bool int float str list tuple dict set

+ •1 •1 •1 •2 •2 •2

- •1 •1 •1 •8

* •1 •1 •1 •3 •3 •3

/ •1 •1 •1

// •4 •4 •4

% •5 •5 •5 •6

** •1 •1 •1

== •1 •1 •1 •7 •7 •7 •7 •7

< •1 •1 •1 •9 •9 •9 •8

> •1 •1 •1 •9 •9 •9 •8

<= •1 •1 •1 •9 •9 •9 •8

>= •1 •1 •1 •9 •9 •9 •8

!= •1 •1 •1 •7 •7 •7 •7 •7

in •10 •10 •10 •10 •10

[] •11 •11 •11 •12

& •13 •13 •8

| •13 •13 •8 •8

ˆ •13 •13 •8

~ •13 •13

» •13 •13

« •13 •13

1 Arithmetic operator with the default meaning. bool values are mapped to integers 0 and 1. Comparison operators return
bool. Others return int if both operands are int, otherwise return float
2 Concatenates two containers of the same type and returns the new container with the same type
3 Repeats the elements of the container a given number of times to return a new container. The right operand should be
an integer
4 Integer part of the division. Returns int for int operands, float otherwise
5 Remainder of the integer division. Returns int for int operands, float otherwise
6 First operand is the format string. Returns the formatted string with the values from the right operand
7 Equality of containers with the same data type. Element by element comparison. Returns bool
8 Set operation, returns set. Comparison operators are mapped to subset (⊂) relation and return bool
9 Lexicographic or dictionary order. The result depends on the leftmost differing element. Returns bool
10 If the container contains the value provided as the right operand. For dictionaries, it searches the value in the keys
only. Returns bool
11 Member selection with an integer index. Slicing ([str:stp:inc] syntax) is supported. May return any type
12 Member selection with an immutable index type. No slicing. May return any type
13 Bitwise logical operation applied on bit by bit basis for integer types. Returns int
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with their semantics (for Python 3.9). Note that Python is an evolving language and the operator
compatibility in Table4.2 may change from version to version, especially with major versions.

Below are some illustrative examples:

4.3.2 Bitwise Operators

Bitwise operators are logical operators defined for the integer data type. In contrast to the bool type,
bitwise logical operations are carried out in bit by bit manner. Each bit of the two’s complement
representation of an integer value takes part in a logical operation with the same bit position of the
other operand. “&” denotes the logical “and”, “|” denotes the logical “or”, and unary operator “~”
denotes the logical “not”. Exclusive or, “ˆ” has no Boolean counterpart. It gives 0 for the case where
both values are the same, 1 otherwise. In addition to the binary logical operators, there are left
shift (<<) and right shift (>>) operators that shift all bits to the left or right and pad 0 for the
missing values. The right operand for a shift operator is an integer denoting how many times the bits
will be shifted.

Bitwise operators are used in limited areas of programming like “cryptography”, “low-level I/O”,
and hardware control. The following examples show how these operators work:
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4.3.3 Exercise

Give an example for each row in Table4.2. Please complete this exercise in the interactive Python
notebook version of the chapter.

4.3.4 Evaluating Expressions

In the previous section, we have seen simple uses of operators in expressions. In many cases, we
combine several operators for brevity and readability, e.g., 2.3 + 3.4 * 4.5. This expression can
be evaluated in two different ways:

• (2.3 + 3.4) * 4.5, which would yield 25.65.
• 2.3 + (3.4 * 4.5), which would yield 17.599999999999998 in Python.

Since the results are very different, it is very important for a programmer to know in which order
operators are evaluated when they are combined. There are two rules that govern this:

1. Precedence: Each operator has an associated precedence (priority) based on which we can determine
the first operator to be evaluated. For example, multiplication has higher precedence than addition,
and therefore, 2.3 + 3.4 * 4.5 would be evaluated as 2.3 + (3.4 * 4.5) in Python.

2. Associativity: If two operators have the same precedence, the evaluation order is determined based
on associativity. Associativity can be from left to right or from right to left.

For the operators, the complete associativity and precedence information are listed in Table4.3.
Therefore, according to Table4.3, a sophisticated expression such as 2**3**4*5-2//2-1 is

equivalent to 2**81*5-1-1which is equivalent to 12089258196146291747061760-2which
is 12089258196146291747061758.
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Table 4.3 Precedence and associativity for the operators in Table4.2

Operator Precedence Associativity

[] 1. Left-to-right

** 2. Right-to-left

*, /, //, % 3. Left-to-right

+, - 4. Left-to-right

<, <=, >, >=, ==, !=, in, not in 5. Left-to-right & Special

not 6. Unary

and 7. Left-to-right (with short-cut)

or 8. Left-to-right (with short-cut)

Below are some notes and explanations regarding expression evaluation:

(i) The Special keyword in Table4.3 refers to a treatment which is common to mathematics but not
to programming. Python is unique among commonly used programming languages. If �i is any
Boolean comparison operator and � j is any numerical expression, the sequence of

�1 �1 �2 �2 �3 �3 �4 · · · �n−1 �n−1 �n (4.7)

is interpreted as

�1 �1 �2 and �2 �2 �3 and �3 �3 �4 · · · �n−1 �n−1 �n (4.8)

(ii) It is always possible to override the precedence by making use of parentheses. This is precisely
how we grouped calculations in our middle school math courses. For example, for an expression
such as 3 + 4 ∗ 5, if we want the addition to be performed first, we can use parentheses like
(3 + 4) ∗ 5.

(iii) If two numeric operands are of the same type, then the result is of that type unless the operator
is / (for which the result is always a floating-point number). Also, comparison operators return
bool typed values.

(iv) If two numeric operands that enter an operation are of different types (e.g., as in 3 + 4.5), then
the operation is performed according to the following rules (see also Sect. 4.3.5):

• If one operand is an integer and the other is a floating-point number: The integer is
converted to floating point.

• If one operand is complex: Complex arithmetic is performed according to the rules of mathe-
matics among the coefficients of the real/imaginary parts (which are integers or floating points).
Each of the two resulting coefficients is separately checked for having zero fractional part (.0).
If so, then that one is converted to an integer.

(v) Except for the logical operators and and or, all operators have an evaluation scheme that is
coined as eager evaluation. Eager evaluation is the strategy where all operands are evaluated first
and then the semantics of the operators kick in, providing the result.
Here is an example: Consider the mathematical expression "0*(2**150-3**95)". As intel-
ligent beings, our immediate reaction would be as follows: Anything multiplied with 0 (zero)
is 0, therefore, we do not have to compute the two huge exponentiation operations within the
parentheses. This is taking a short-cut in evaluation and is certainly far from eager evalua-
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tion. Eager evaluation would evaluate the operations within the parentheses, obtain the value
−693647454339354238433323618063349607247325483 and then multiply this with
0 to obtain 0.
Python would follow this “less intelligent” way and perform eager evaluation. The logical oper-
ators and and or, though, do not adopt eager evaluation. On the contrary, they use short-cuts
(this is known as based-on-need evaluation in computer science).
For a conjunctive expression like:

�1 and �2 and �3 and · · · and �n (4.9)

The evaluation proceeds as illustrated in Fig. 4.5:

Fig. 4.5 Logical AND evaluation scheme

Similarly, a disjunctive expression:

�1 or �2 or �3 or · · · or �n (4.10)

has the following evaluation scheme in Fig. 4.6.

Fig. 4.6 Logical OR evaluation scheme

Although high-level languages provide mechanisms for evaluating expressions involving multiple
operators, it is not a good programming practice to leave multiple operators without parentheses. A
programmer should do his/her best to write code that (i) is readable and understandable by other
programmers and (ii) does not include any ambiguity.

4.3.5 Implicit and Explicit Type Conversion (Casting)

In Python, when you apply a binary operator on items of two different data types, it tries to convert
one data type to another data type if possible. This is called implicit type conversion. For example,
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>>> 3+4.5
7.5
>>> 3 + True
4
>>> 3 + False
3

illustrates that an integer is converted to a float, True is converted to the integer 1, and False is
converted to the integer zero.

Although Python can do such conversions, it is a good programming practice to make these conver-
sions explicit to ensure the clarity of the intention to the reader. Explicit type conversion, also called
type casting, can be performed using the keyword for the target type as a function. For example:

>>> 1.1*(7.1+int(2.5*5))
21.01

Not all conversions are possible. Implicit conversions are allowed only for the basic data types as
illustrated in Fig. 4.7.

Fig. 4.7 Type casting among numeric and Boolean data types

Type conversion can accommodate conversion between a wider spectrum of data types, including
containers:

>>> str(34)
'34'
>>> list('34')
['3', '4']

4.4 Basic Statements

Now, let us continue with actions that do not provide (return) us data as a result.

4.4.1 Assignment Statement andVariables

After obtaining a result in Python, we often print and/or keep the result for further computations.
Variables help us here as named memory positions in which we can store data. You can imagine
variables as pigeonholes that can hold single data items.

There are two methods to create and store data into a variable. Here, we will mention the one that
is overwhelmingly used. The other is more implicit and will be introduced when we cover functions.
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A variable receives data for storage using the assignment statement. It has the following form:

V ariable = Expression

Although the equal sign resembles an operator that is placed between two operands, it is not an
operator: Operators return a value, and in Python, the assignment is not an operator and it does not
return a value (this can be different in other programming languages).

The action semantics of the assignment statement is simple:

1. The Expression is evaluated.
2. If the V ariable does not exist, it is created.
3. The evaluation result is stored into the V ariable (by doing so, any prior value, if there is one, is

purged).

After the assignment, the value can be used repetitively. To use the value in a computation, we can
use the name of the variable. Here is an example:

>>> a = 3
>>> b = a + 1
>>> (a-b+b**2)/2
7.5

It is quite common to use a variable on both sides of the assignment statement. For example:

>>> a = 3
>>> b = a + 1
>>> a = a + 1
>>> (a-b+b**2)/2
8.0

The expression in the second line uses the integer 3 for a. In the next line, namely, the third line, again
3 is used for a in the expression (a+1). Then, the result of the evaluation (3+1), which is 4, is stored
in the variable a. The variable a had a previous value of 3; this value is purged and replaced by 4. The
former value is not kept anywhere and cannot be recovered.

Multiple Assignments
Multiple variables can be assigned to the same value at once. For example,

>>> a = b = 4

assigns an integer value of 4 to both a and b. After the multi-assignment above, if you change b to
some other value, the value of a will still remain at 4.

Multiple Assignments with Different Values
Python provides a powerful mechanism for providing different values to different variables in assign-
ment:

>>> a, b = 3, 4
>>> a
3
>>> b
4
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This is internally handled by Python with tuples and is equivalent to:

>>> (a,b) = (3, 4)
>>> a
3
>>> b
4

This is called tuple matching and would also work with lists (i.e., [a, b] = [3, 4]).

Swapping Values of Variables
Tuple matching has a very practical benefit: Let us say that you want to swap the values of two variables.
Normally, this requires the use of a temporary variable:

>>> print(a,b)
3 4
>>> temp = a
>>> a = b
>>> b = temp
>>> print(a,b)
4 3

With tuple matching, we can do this in one line:

>>> print(a,b)
3 4
>>> a,b = b,a
>>> print(a,b)
4 3

Frequently-Asked Questions About Assignments

• QUESTION: Considering the example below, one may have doubts about the value of variable
b: Is it updated? On the fourth line, there is an expression using the variable b: Which value is it
referring to? 4 or 5? When we use the variable b in the following expression, will the “definition”
be retrieved and recalculated?

>>> a = 3
>>> b = a + 1
>>> a = a + 1
>>> (a-b+b**2)/2
8.0

• ANSWER: No. Statements are executed only once here, when they are entered into the Python
interpreter (it is possible to repetitively execute a statement but that is not the case in this example).
Each assignment in the example above is executed only once. No re-evaluation is performed, the
use of a variable in an expression, the “a” and those “b”s, refer solely to the last calculated and
stored values: In the evaluation of “(a-b+b**2)/2”, “a” is 4, and “b” is 4.

• QUESTION: We had variables in math, especially in middle school and high school. This is very
similar to that, right? But I am confused having seen a line like a = a + 1. What is happening?
The “a” s cancel out and we are left with 0 = 1?
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• ANSWER: The use of the equal sign (=) is confusing to some extent. It does not stand for a
balance between the left-hand side and the right-hand side. Do not interpret it as an “equality” in
mathematics. It has absolutely different semantics. As discussed above, it only means:

1. First calculate the right-hand side,
2. Then store the result into an (electronic) pigeonhole which has the name label given to the

left-hand side of the equal sign.

• QUESTION: I typed the following lines:

>>> x = 5
>>> y = 3
>>> x = y
>>> y = x
>>> print (x,y)
3 3

However, it should have been 3 5, right? Or am I doing something wrong?
• ANSWER: You might be missing the time flow. The statements are executed in the following order:

1. First: “x” is set to 5.
2. Second: “y” is set to 3.
3. Third: “x” is set to the value stored in “y” which is 3. “x” now holds 3.
4. Fourth: “y” is set to the value stored in “x” which is 3 (owing to the third step). “y” now

holds 3.
5. Fifth: print both the values in “x” and “y”. Both are “3”, as displayed on screen.

4.4.2 Variables and Aliasing

There is something peculiar about lists (and other mutable data types) that we need to be careful about
while assigning them to variables. First, consider the following code:

“The first example”

Here, we used the id() function to display the addresses of the variables in the memory to help us
understand what happened in those assignments:
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• The second line creates 5 in the memory and links that with a.
• The fourth line links the content of a with the variable b. Hereby, they are two different names for

the same content.
• The sixth line creates a new content, 3, and assigns it to a. Now, a points to a different memory

location than b.
• b still points to 5, which is printed.

Now, let us keep the task the same but change the data from an integer to a list:

“The second example”

In other words, this works similarly to the first example, as expected.
In contrast, consider the following slightly different example:

“The third example”

To our surprise, changing the first element of a (with a[0] = 3) also affected b. This should not
be surprising since both a and b point to the same memory location and since a list is mutable, when
we change an element in that memory location, it affects both a and b since they are just different
names for the same memory location.

This behavior is called aliasing. Although the examples above used lists for illustration purposes,
aliasing pertains to all mutable data types.

Aliasing is a powerful concept that can be hazardous and beneficial depending on the context:

• If you carelessly assign a mutable variable to another variable, changes made on one variable are
going to affect the other one. If this is not intended and the location in the code where the aliasing
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is initiated cannot be identified, you may lose hours or days trying to identify the source of the
problem in your code.

• Aliasing can be beneficial, especially when we want changes made to one variable to be reflected
in another. This will be useful for passing data to functions and getting the results of computations
from functions.

4.4.3 NamingVariables

Programmers usually choose a name for a variable such that the name signifies what the content will
be. In Python, variable names may be arbitrarily long. They may contain letters (from the English
alphabet), as well as numbers and underscores, but they must start with a letter or an underscore. While
using uppercase letters is allowed, bear in mind that programmers reserve starting with an upper case
to differentiate a property (i.e., scope) of the variable which you will learn later (when we introduce
functions).

y y1 Y Y_1 _1
temperature temperature_today Temperature Today Cumulative coordinate_x
a1b145c a_1_b1_45_c s_s_ _ s___

As you might have noticed, though they are perfectly valid, the five examples in the last row may
not be sensible as they do not provide any information about the content they store.

When naming variables, you can consider the following guideline:

• It is a better practice to name variables that reflect the value they are going to store. For example:

>>> a = b * c

is syntactically correct, but its purpose is not evident. Contrast this with:

>>> salary = hours_worked * hourly_pay_rate

where the values stored by the variables are more clear, making the computation and the code easier
to follow.

• You should use different variables for different data, which is named as the “Single Responsibility
Principle” in Computer Science. For example, even if you could use the same variable in one state-
ment to count students and in another statement to hold the largest grade, this is not recommended.
In programming, we do not economize with variables. Rather, we strive to make the code readable,
and for this purpose, we introduce different variables, when necessary, to reflect the semantics and
the context, uniquely.

• Variable names should be pronounceable, making them easier to remember.
• Avoid variable names that could misguide you or others looking at your code.
• Use i,j,k,m,n only for counting: Programmers implicitly recognize such variables as holding

integers (for historical reasons).
• Use x,y,z for coordinate values or multi-variate function arguments.
• Avoid the single character variable l as it can be easily confused with 1 (one).
• If you are using multiple words as a variable name, choose one of the following:

https://en.wikipedia.org/wiki/Single-responsibility_principle
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– Make all words lowercase, combine them using _ as separator; e.g.,
highest_midterm_grade, shortest_path_distance_up_to_now.

– Capitalize the first letter of each word, except for the first, and combine all words directly without
using a separator; e.g., highestMidtermGrade, shortestPathDistanceUpToNow.

Reserved Names
The following keywords are being used by Python already and, therefore, cannot be used as variable
names. It is possible to use the name of a built-in function as a variable name (e.g., len = 20). This,
however, loses access to such a built-in function until the interpreter is restarted.

and def exec if not return
assert del finally import or try
break elif for in pass while
class else from is print yield
continue except global lambda raise

4.4.4 Other Basic Statements

Python has other basic statements listed below:
pass, del, return, yield, raise, break, continue, import, future,

global, nonlocal.
Among these, we have seen del and we will see some others in the rest of the book.
print used to be a statement in Python version 2. However, this has changed, and print is a

function in Python version 3. Therefore, print has a value (which we will see later).

4.5 Compound Statements

Like other high-level languages, Python provides statements that combine other statements as their
parts. Two examples are:

• Conditional statements where different statements are executed based on the truth value of a con-
dition, e.g.:

if <boolean-expression>:
statement-true-1
statement-true-2
...

else:
statement-false-1
statement-false-2
...

• Repetitive statements where some statements are executed more than once depending on a condition
or for a fixed number of times, e.g.:
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while <boolean-condition>:
statement-true-1
statement-true-2
...

which executes the statements while the condition is true.

We will see these and other forms of compound statements in the rest of the book.

4.6 Basic Actions for Interacting with the Environment

In our programs, we frequently require obtaining some input from the user or displaying some data to
the user. For these purposes, we can use the following.

4.6.1 Actions for Input

In Python, you can use the input() function to obtain input from the user:

input(<prompt>)

where <prompt> is an optional informative string displayed to the user before getting the input. The
following is a simple example:

>>> s = input("Now enter your text: ")
Now enter your text: This is the text I entered
>>> print(s)
This is the text I entered

The input() function gives the programmer a string. If you expect the user to enter an expression,
you can evaluate the expression in the string using the eval() function as we explained in Sect. 4.2.3.

4.6.2 Actions for Output

To display data on the screen, Python provides the print() function:

print(item1, item2, ..., itemN)

For example:

>>> print('Python', 'is', 'so', 'fun')
Python is so fun

In many cases, we end up with strings that have placeholders (marked with {int}) for data items that
we can fill in using a formatting function as follows:
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>>> print("I am {0} tall, {1} years old and have {2} eyes".format(1.86, 20,
↪→"brown"))
I am 1.86 tall, 20 years old, and have brown eyes

where the placeholder with the integer index i is filled in with the parameter of the format() function
at index i .

Alternatively, instead of using integers for the placeholders, we can give them names or labels (as
{label}):

>>> print("I am {height} tall, {age} years old and have {eyes} eyes. Did I
↪→tell you that I was {age}?".format(age=20, eyes="brown", height=1.86))
I am 1.86 tall, 20 years old, and have brown eyes. Did I tell you that I was
↪→20?

where a placeholder is filled in with the matching labeled parameter of the format function.
The format() function provides many more functionalities than the ones we have illustrated.

However, the use exemplified here should be sufficient for general use and this book. The reader
interested in complete coverage is referred to Python’s documentation on string formatting.4

A more handy approach for printing is to tell Python (using f"…") to use existing variables to fill
in the placeholders:

>>> age = 20
>>> height = 1.70
>>> eye_color = "brown"
>>> print(f"I am {height} tall, {age} years old and have {eye_color} eyes")
I am 1.7 tall, 20 years old, and have brown eyes

Note that, in this example, the format() function is not used. Instead, Python directly used the
variables defined before the print() function.

4.7 Actions That Are Ignored

In Python, we have two actions that are ignored by the interpreter:

4.7.1 Comments

Like other high-level languages, Python provides programmers with mechanisms for writing comments
in their programs:

• Comments with #: When Python encounters the symbol # in your code, it assumes that the
current line is finished, ignores the rest of the line, evaluates and runs the current line and continues
interpretation with the next line. For example:

>>> 3 + 4 # We are adding two numbers here
7

• Multi-line comments with triple-quotes: To provide comments longer than one line, you can use
triple quotes:

4 https://docs.python.org/3/library/string.html.

https://docs.python.org/3/library/string.html
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"""
This is a multi-line comment.
We are flexible with the number of lines &
characters, and
spacing. Python
will ignore them.

"""

Multi-line comments are generally used by programmers to write documentation-level explanations
and descriptions for their codes. There are document-generation tools that process triple quotes to
automatically generate documents for codes.
As we have seen before, multi-line comments are actually strings in Python. Therefore, if you use
triple quotes to provide a comment, make sure that it does not overlap with an expression or a
statement line in your code.

4.7.2 pass Statement

Python provides the pass statement that is ignored by the interpreter. The pass statement is generally
used in incomplete function implementations or compound statements to place a dummy placeholder
(to be filled in later) so that the interpreter does not complain about missing a statement. For example:

if <condition>:
pass # @TODO fill this part

else:
statement-1
statement-2
...

4.8 Actions and Data Packaged in Libraries

Python, like many high-level programming languages, provides a wide spectrum of actions and data
predefined and organized in “packages” that we call libraries. For example, there is a library for
mathematical functions and constant definitions which you can access using from math import
* as follows:

>>> pi
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'pi' is not defined
>>> sin(pi)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'sin' is not defined
>>> from math import *
>>> pi
3.141592653589793
>>> sin(pi)
1.2246467991473532e-16
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Below is a short list of libraries that might be useful:

Library Description
math Mathematical functions and definitions
cmath Mathematical functions and definitions for complex numbers
fractions Rational numbers and arithmetic
random Random number generation
statistics Statistical functions
os Operating system functionalities
time Time access and conversion functionalities

Of course, the list is too wide to practically cover and explain here. The interested reader is directed
to check the comprehensive list at Python docs.5

The import statement that we used above loads the library and makes its contents directly acces-
sible by directly using their names (e.g., sin(pi)). Alternatively, we can do the following:

>>> import math
>>> math.sin(math.pi)
1.2246467991473532e-16

which requires us to specify the name math every time we need to access something from it. We could
also change the name:

>>> import math as m
>>> m.sin(m.pi)
1.2246467991473532e-16

However, we discourage this way of using libraries until Chap.7 where we introduce the concept of
objects and object-oriented programming.

To find out what is available in a library or any data item, you can use the dir() function:

>>> import math
>>> dir(math)
['__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__',
↪→'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'comb
↪→', 'copysign', 'cos', 'cosh', 'degrees', 'dist', 'e', 'erf', 'erfc', 'exp
↪→', 'expm1', 'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma
↪→', 'gcd', 'hypot', 'inf', 'isclose', 'isfinite', 'isinf', 'isnan', 'isqrt
↪→', 'ldexp', 'lgamma', 'log', 'log10', 'log1p', 'log2', 'modf', 'nan',
↪→'perm', 'pi', 'pow', 'prod', 'radians', 'remainder', 'sin', 'sinh', 'sqrt
↪→', 'tan', 'tanh', 'tau', 'trunc']

4.9 Providing Actions to the Interpreter

Python provides different options to provide your actions and get them executed.

5 https://docs.python.org/3/library/.

https://docs.python.org/3/library/
https://docs.python.org/3/library/
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4.9.1 Directly Interacting with the Interpreter

As we have seen until now, you can interact with and type our actions into the interpreter directly.
When you are done with the interpreter, you can finish the session and quit the interpreter using the
functions quit() or exit() or by pressing CTRL-D. For example:

$ python3
Python 3.8.5 (default, Jul 21 2020, 10:48:26)
[Clang 11.0.3 (clang-1103.0.32.62)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> print("Python is fun")
Python is fun
>>> print("Now I am done")
Now I am done
>>> quit()
$

where we see that, after quitting the interpreter, we are back at the terminal shell.
Although this way of coding is simple and very interactive, when your code gets longer and more

complicated, it makes it difficult to manage. Moreover, when you exit the interpreter, all your actions
and executions are lost, and to be able to run them again, you need to retype them from scratch. This
can be tedious, redundant, impractical, and inefficient.

4.9.2 Writing Actions in a File (Script)

Alternatively, you can place our actions in a file with the ".py" extension in the filename as follows:

print("This is a Python program that reads two numbers from the user, adds
↪→the numbers and prints the result\n\n")
[a, b] = eval(input("Enter a list of two numbers as [a, b]: "))
print("You have provided: ", a, b)
result = a + b
print("The sum is: ", result)

Assuming you have saved these lines in a file (named test.py), you can execute the actions in a
terminal shell by running the command “python3 test.py” (“cat test.py” only displays the
content of the file):

$ cat test.py
print("This is a Python program that reads two numbers from the user, adds
↪→the numbers, and prints the result\n\n")
[a, b] = eval(input("Enter a list of two numbers as [a, b]: "))
print("You have provided: ", a, b)
result = a + b
print("The sum is: ", result)
$ python3 test.py
This is a Python program that reads two numbers from the user, adds the
↪→numbers and prints the result

Enter a list of two numbers as [a, b]: [3, 4]
(continues on next page)
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(continued from previous page)
You have provided: 3 4
The sum is: 7

A more advanced feature is to provide command-line arguments to your script and use the arguments
provided in your script (named test.py):

from sys import argv

print("The arguments of this script are:\n", argv)

exec(argv[1]) # Get a
exec(argv[2]) # Get b

print("The sum of a and b is: ", a+b)

which can be run as follows with the command-line arguments:

$ python3 test.py a=10 b=20
The arguments of this script are:
['test.py', 'a=10', 'b=20']
The sum of a and b is: 30

Note that this example used the functionexec(), which executes the statement provided to the function
as a string argument. Compare this with theeval() function that we have introduced before:eval()
takes an expression, whereas exec() takes a statement.

4.9.3 Using Actions from Libraries (Modules)

Another mechanism for executing your actions is to place them into libraries (modules) and provide
them to Python using the import statement, as we have illustrated in Sect. 4.8. For example, if you
have a test.py file with the following content:

a = 10
b = 8
sum = a + b
print("a + b with a =", a, " and b =", b, " is: ", sum)

In another Python script or in the interpreter, you can directly type:

>>> from test import *
a + b with a = 10 and b = 8 is: 18
>>> a
10
>>> b
8

In other words, what you have defined in test.py becomes accessible after being imported.
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4.10 Important Concepts

We would like our readers to have grasped the following crucial concepts and keywords from this
chapter (all related to Python):

• Basic data types.
• Basic operations and expression evaluation.
• Precedence and associativity.
• Variables and how to name them.
• Aliasing problem.
• Container types.
• Accessing elements of a container type (indexing, negative indexing, slicing).
• Basic I/O.
• Commenting on your codes.
• Using libraries.

4.11 Further Reading

• A detailed history of Python and its versions: https://en.wikipedia.org/wiki/History_of_Python [1].
• The concept of aliasing: http://en.wikipedia.org/wiki/Aliasing_%28computing%29 [2].

4.12 Exercises

1. Without using Python, determine the results of the following expressions and validate your answers
with Python:

a. 2 - 3 ** 4 / 8 + 2 * 4 ** 5 * 1 ** 8
b. 4 + 2 - 10 / 2 * 4 ** 2
c. 3 / 3 ** 3 * 3

2. Assuming that a is True, b is True, and c is False, what would the values of the following
expressions be?

a. not a == b + d < not a
b. a == b <= c == True
c. True <= False == b + c
d. c / a / b

3. The Euclidean distance between two points (a, b) and (c, d) is defined as
√

(a − c)2 + (b − d)2.
Write a Python code that reads a, b, c, d from the user, calculates the Euclidean distance, and
prints the result.

4. To convert Celsius to Fahrenheit, we multiply Celsius by 9/5 and then add 32. Write a Python
code that reads a Celsius value and prints the equivalent Fahrenheit.

5. Discover the procedure to convert Fahrenheit to Celsius. Then, write a Python code that reads a
Fahrenheit value and prints the Celsius equivalent.

https://en.wikipedia.org/wiki/History_of_Python
http://en.wikipedia.org/wiki/Aliasing_%28computing%29
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6. The formula for compound interest is the following:

A = P
(
1 + r

n

)nt
,

where:
A = final amount,
P = initial principal value,
r = annual interest rate,
n = the number of times interest is applied per year,
t = the number of years.

Write a Python code that reads P, r, n, t from the user and prints A as the result.
7. A sphere of radius R1 is made of plastic. There is a sphere-shaped hole of radius R2 (R2 < R1)

in the plastic sphere. Write a Python code that reads R1, R2 from the user, and prints the volume
of plastic used.

8. Write a Python code that reads a string from the user and prints True if the string is a palindrome,
and False if not. A string is a palindrome if it is symmetrical. For example, "madam" and "kek"
are palindromes whereas "mamma" and "carcar" are not.

9. Body Mass Index (BMI) is a measure of a person’s weight (in kilograms) relative to the person’s
height (in meters), defined as follows:

BMI = weight

height2 .

A BMI of 25.0 or more is considered overweight.
Write a Python code that reads a weight and a height from the user, calculates the BMI value, and
prints OVERWEIGHT or NORMAL, accordingly.

10. Given the variable perplexed with a list as follows:

perplexed = [[[[1, 2], [3, 4]], [[5, 6], [7, 8]]], \
[[[9, 10], [11, 12]], [[13, 14], [15, 16]]]]

Construct an expression that fetches out the number 12, then print it on the screen.

References

[1] Wikipedia contributors, “History of python,” Wikipedia, The Free Encyclopedia (2023). https://en.wikipedia.org/
w/index.php?title=History_of_Python&oldid=1172730884. Accessed 5 Sept 2023

[2] Wikipedia contributors, “Aliasing (computing),” Wikipedia, The Free Encyclopedia (2023). https://en.wikipedia.
org/w/index.php?title=Aliasing_(computing)&oldid=1133707419. Accessed 5 Sept 2023

https://en.wikipedia.org/w/index.php?title=History_of_Python&oldid=1172730884
https://en.wikipedia.org/w/index.php?title=History_of_Python&oldid=1172730884
https://en.wikipedia.org/w/index.php?title=Aliasing_(computing)&oldid=1133707419
https://en.wikipedia.org/w/index.php?title=Aliasing_(computing)&oldid=1133707419


5Conditional and Repetitive Execution

Many circumstances require a program’s execution (i) to change its flow based on the truth value of a
condition, or (ii) to repeat a set of steps for a certain number of times or until a condition is no longer
true. These two kinds of actions are crucial components of programming solutions, for which Python
provides several alternatives. As we will see in this chapter, some of these alternatives are compound
statements, while others are expressions.

5.1 Conditional Execution

Asking (mostly) mathematical questions that have Boolean-type answers and taking some actions (or
not) based on the Boolean answers are fundamental in designing algorithms. This is so vital that there
is no programming language that does not provide conditional execution.

5.1.1 The if Statement

The syntax of the conditional (if) statement is as follows:

if Boolean expression : Statement

The semantics is rather straightforward: If the Boolean expression evaluates to True, then the
Statement is carried out; otherwise, the Statement is not executed. Here is a simple example:

>>> if 5 > 2: print("Hurray")
Hurray
>>> if 2 > 5: print("No I will not believe that!")

We observe that the Boolean expression in the last example evaluates to False and hence the
statement with the print() function is not carried out.
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How to group statements?
It is quite often that we want to do more than one action instead of executing a single statement. This
can be performed in Python as follows:

• Switch to a new line, indent by one tab, write your first statement to be executed,
• Switch to the next line, indent by the same amount (usually your Python-aware editor will do it for

you), write your second statement to be executed, and
• Continue doing these as many times as necessary.
• To finish this writing task, and presumably enter a statement which is not part of the group action,

just do not indent.

It is very important that these statements, that are part of the if part (statements after the colon),
have the same amount and type of whitespace for indentation. For example, if the first statement has
four spaces, all the following statements in the if statement need to start with four spaces. If the first
indentation is a tab character, all the following statements in the if statement need to start with a tab
character. Since these whitespaces are not visible, it is very easy to make mistakes and get annoying
errors from the interpreter. To avoid this, we strongly recommend you choose a style of indentation
(e.g., either four whitespaces or a single tab) and stick to it as a programming style.

Here is an example:

>>> if 5 > 2:
... print(7*6)
... print("Hurray")
... x = 6
42
Hurray
>>> print(x)
6

The “>>>” as well as the “…” prompts appear when you sit in front of the interpreter. They will
not show up if you run your programs from a file. If you type in these small programs (we call them
snippets) just ignore “>>>” and “…” from the examples, as follows:

As you continue to practice programming, you will soon come across a need to be able to define actions
that should be carried out in case a Boolean expression turns out to be False. If such a programming
construct were not provided, we would have to ask the same question again, but this time negated:

>>> if x == 6: print("it is still six")
>>> if not (x == 6): print("it is no longer six")
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One of them will certainly fire (be true). Although this is a feasible solution, there is a more convenient
way: We can combine the two parts into one if-else statement with the following syntax:

if Boolean expression : Statement1

else : Statement2

Making use of the else part, the last example can be re-written as:

>>> if x == 6: print("it is still six")
... else: print("it is no longer six")

Of course, using multiple statements in the if part or the else part is possible by indenting them
to the same level.

5.1.2 Exercise

In the following code cell, you are expected to insert a few lines so that the output is always the absolute
value of N (try the program for various values of N by altering the right-hand side of the assignment):

5.1.3 Nested if Statements

It is quite possible to nest if-else statements: i.e., combine multiple if–else statements within
each other. There is no practical limit to the depth of nesting.

Nested if–else statements allow us to code a structure called a decision tree. A decision tree is a set
of binary questions and answers where, at each instance of an answer, either a new question is asked
or an action is carried out. Figure5.1 displays such a decision tree for forecasting rain based on the
temperature, wind, and air pressure values.

The tree in Fig. 5.1 can be coded with nested if–else statements as follows:

if temperature > 21:

if wind > 3.2:
if pressure > 66: rain = True
else: rain = False

else: rain = False
else:

if wind > 7.2: rain = True
else:

if pressure > 79: rain = True
else: rain = False
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wind > 3.2 km/h wind > 7.2 km/h

pressure > 66 mmHg pressure > 79 mmHg

temperature > 21 °C

No RainRain

Rain

Rain No Rain

No Rain

YES NO

YES

YES

YES

YES

NO

NO

NO

NO

Fig. 5.1 An example decision tree

Sometimes the else case contains another if, which, in turn, has its own else case. This new
else case can also have its own if statement, and so on. For such a cases, elif serves as a combined
keyword for the else if action, as follows:

if Boolean expression1 : Statement1

elif Boolean expression2 : Statement2
...

elif Boolean expressionn : Statementn

else : Statementotherwise

The flowchart in Fig. 5.2 explains the semantics of the if–elif–else combination.

Fig. 5.2 The semantics of the if–elif–else combination
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There is no restriction on how many elif statements are used. Furthermore, the presence of the
last statement (the else case) is optional.

5.1.4 Practice

Let us assume that you have a value assigned to a variable x. Based on this value, a variable s is going
to be set as

s =

⎧
⎪⎪⎨

⎪⎪⎩

(x+ 1)2, x < 1
x− 0.5, 1 ≤ x < 10√
x+ 0.5, 10 ≤ x < 100

0, otherwise

(5.1)

It is convenient to make use of an if–elif–else structure as follows:

5.1.5 Conditional Expression

The if statement, like other statements, does not return a value. A non-statement alternative that has
a return value is the conditional expression.

A conditional expression also uses the keywords if and else. However, this time, if is not at the
beginning of the action, but following a value. Here is the syntax:

expressionY E S if Boolean expression else expressionN O

This whole structure is an expression that yields a value. Therefore, it can be used in any place an
expression is allowed to be used. It is evaluated as follows:

• First the Boolean expression is evaluated.
• If the outcome is True, then expressionY E S is evaluated and used as value (expressionN O is left

untouched).
• If the outcome is False, then expressionN O is evaluated and used as value (expressionY E S is

left untouched).

Although it is not compulsory, it is wise to use the conditional expression enclosed within parentheses
to make your code more readable and to prevent unintentional sub-expression groupings.

Let us look at an example:



100 5 Conditional and Repetitive Execution

>>> x = -34.1905
>>> y = (x if x > 0 else -x)**0.5
>>> print(y)
5.84726431761

As you have observed, y is assigned the value
√|x|.

For the sake of readability, it is strongly advised not to nest conditional expressions. Instead, it
is better to restructure the code into nested if–else statements (by making use of intermediate
variables).

5.2 Repetitive Execution

Repeating a sequence of actions over and over is another fundamental programming ingredient. An
action that repeats other actions is called iteration or loop. Iteration is carried out either for a known
number of times or until a criterion is met.

We use iteration:
Type I. To systematically deal with all possible cases or all elements of a collection, or
Type II. To jump from one case to another as a function of the previous case.

Some examples are:

• Computing letter grades of a class (Type I, for all students).
• Finding the shortest path from city A to city B on a map (Type II).
• Root finding by Newton–Raphson method (Type II).
• Finding the darkest and brightest point(s) in an image (Type I, for all pixels).
• Computing a function value using Taylor expansion (Type I, for a number of orders).
• Computing the next move in a chess game (Type II).
• Obtaining the letter frequency of a text (Type I, for all letters).

Python provides two statements for iteration: while and for. for is used mainly for (Type I)
iterations, whereas while is used for both types.

5.2.1 The while Statement

The syntax of while resembles the syntax of the if statement:

while Boolean expression : Statement

Statement is executed while Boolean expression is True.

Similar to the if statement, it is possible to have a statement group as part of the while statement.
The semantics can be expressed with the flowchart in Fig. 5.3.

In Sect. 5.2.5, we will introduce the (break and continue) statements that are allowed in a
while or for statement. These statements are capable of altering the execution flow (to some limited
extent).

Since a while statement is a statement, it can be part of another while statement (or any other
compound statement) as illustrated below:
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Fig. 5.3 The flowchart illustrating how a while statement is executed

while <condition-1>:

statement-1
statement-2
...

while <condition-2>:
statement-inner-1
statement-inner-2
...

statement-inner-M
... # statements after the second while
statement-N

Of course, there is no practical limit on the nesting level.
Let us look at several examples below to illustrate these concepts.

5.2.2 Examples with the while Statement

Example 1: Finding the Average of Numbers in a List
Let us say we have a list of numbers and we are asked to find their average. To make things easier to
follow, let us start with the mathematical definition:

avg(L) = 1

N

N∑

i=1

Li , (5.2)

where Li is the i th number in the list L and N is the number of items in L .
Let us look at the algorithm before implementing the solution in Python (note that, in the equation,

indexing starts with 1, compare this with the implementation):

Algorithm 5.1 Average of all Elements of a List of Numbers
Input: L—A list of N numbers
Output: avg—The average of numbers in L
1: Initialize a total variable with value 0
2: Initialize an index variable, i , with value 0
3: While i < N do execute steps 4–5
4: total ← total + L[i]
5: i ← i + 1
6: avg ← total/N
7: return avg

Before proceeding with the Python implementation, make sure that you have understood the algo-
rithm. The best way to ensure that is to take a pen and paper and go through each step while keeping
track of the variables as if you were the computer.

Here is the implementation in Python:
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Have you noticed the remarkable similarity between Python code and the algorithm? Python’s
principles of simplicity make it significantly easier to write code that closely resembles pseudo-code.

Example 2: Standard Deviation

Now, let us look at a closely associated problem, that of calculating the standard deviation. Standard
deviation can be formally defined as follows:

std(L) =
√
√
√
√ 1

N

N∑

i=1

(Li − avg(L))2. (5.3)

The extension of the previous example is rather straightforward but we will write it down nonetheless
since these are your first iterative examples.
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Exercise
Write the algorithm of the second example as a pseudo-code.

Example 3: Factorial

The factorial of a number, denoted by n!, is an important mathematical construct that we frequently
use when formulating our solutions. n! can be defined formally as:

n! =
{

n × (n − 1) × · · · 2 × 1, if n > 0

1, if n = 0.
(5.4)

Let us first write down the algorithm:

Algorithm 5.2 Factorial Computation
Input: n—A non negative integer
Output: n_ f actorial—The factorial if n
1: n_ f actorial ← 1
2: If n > 0 then execute steps 3–6
3: Initialize an index variable, i , with 1
4: While i ≤ n do execute steps 5–6:
5: n_ f actorial ← n_ f actorial × i
6: i ← i + 1
7: return n_ f actorial

which can be implemented in Python as follows:

Exercise
Modify our factorial implementation so that the variable i starts from n.

Example 4: Computing Sine with Taylor Expansion

Let us assume that we want to compute sin(x), for a given value of x , up to a given precision. Actually,
today’s CPUs have embedded math coprocessors that calculate Sine values at a microcode level. We
will not use this convenience and perform the computation ourselves.
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The computations of many analytic functions are performed using the Taylor series expansion. The
Taylor series expansion of sin(x) around zero is

sin (x) ≈ x − x3

3! + x5

5! − x7

7! · · · , (5.5)

which could also be written as ∞∑

k=0

(−1)k

(2k + 1)! x
2k+1. (5.6)

Let us implement this. We will use the factorial code we have developed above as part of a nested
iteration. The outer iteration runs over the terms in the summation and continues until a term becomes
too small (|term| < ε, where ε is a small value, e.g., 10−12).

epsilon = 1.0E-12
x = 3.14159265359/4.0 # i.e., pi/4 (45 degrees in radians)
result = 0.0
k = 0
term = 2*epsilon # just a trick to bypass the first test
while abs(term) > epsilon:

# Calculate the denominator - i.e., (2k+1)!
factorial = i = 1
while i <= 2*k+1:

factorial *= i
i += 1

# Now calculate the term
term = (((-1)**k) / factorial) * (x**(2*k+1))

result += term
k += 1

This code is readable, but at the same time, it is quite inefficient due to the following aspects:

• 2*k+1 is computed several times. Do we need 2*k+1 at all?
• It uses factorial computation that does not make use of its preceding computations. For example,

9! is actually 9 × 8 × 7! and 7! could be reused while computing 9!. Therefore, there is significant
inefficiency regarding the use of the factorial in the nested iteration.

• Similar to the inefficiency of factorial computation, the computation of x (n+2) does not make use
of the already computed xn value.

• There is a similar problem with (−1)k. Do we need to compute (−1)k to get an alternating sign?
Can there be a simpler way to program this?

Let us investigate the ratio between two consecutive terms (k = n) and (k = n + 1) to see what changes
in each iteration:

termn+1

termn
= (−1)(n+1)x2(n+1)+1

(2(n + 1) + 1)! × (2n + 1)!
(−1)nx2n+1 = −x2

(2n + 2)(2n + 3)
. (5.7)

This is interesting because it suggests a relatively faster way to compute the next term in the series.
We do not have to compute xn for each new term that we are going to add. We also find that there is
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nothing magical about (2n + 1). It can be simply called (d ≡ 2n + 1) which increments by 2 for each
consecutive term. Taking these into account, we can have the following:

termn+1

termn
= −x2

(d + 1)(d + 2)
. (5.8)

Now, let us see the more efficient implementation:

5.2.3 The for Statement

The syntax of the for statement is:

for V ariable in I terator : Statement

An iterator is an object that provides a countable number of values on demand. It has an internal
mechanism that responds to three requests:

1. Reset (initialize) it to the start.
2. Respond to the question “Are we at the end?”.
3. Provide the next value in the line.

The for statement is a mechanism that allows traversing all values provided by an I terator , assigning
each value to the V ariable one at a time and then executing the given Statement for each value.

The semantics of the for statement is displayed in Fig. 5.4.

What iterators do we have?

1. All containers are also iterators (strings, lists, dictionaries, sets).
2. The built-in function range() returns an iterator that generates a sequence of integers. The

sequence starts at 0 (default) and with increments of 1 (default), continues until a given stop number,
excluding the stop number:
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Fig. 5.4 The flowchart illustrating how a for statement is executed

range(start , stop, step)

Parameter Opt./Req Default Description

start Optional 0 An integer specifying the start value

stop Required An integer specifying the stop value (stop value will not be taken)

step Optional 1 An integer specifying the increment

3. Users can define their own iterators. Since this is an introductory book, we will not cover how this
is done.

5.2.4 Examples with the for Statement

Example 1: Words Starting with Vowels and Consonants
Let us split a list of words into two lists: those that start with a vowel and those that start with a
consonant.

Exercise
Write this solution in pseudo-code.
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Example 2: Run-length Encoding

Run-length encoding is a compression technique for data that repeats itself contiguously. Images bear
such a property: For example, a clear sky in an image is actually many pixels with the color “blue”.

In the example below, we investigate a string for consequent character occurrences: If found, rep-
etitions are coded as a list of [character, repetition count]. As an example, the text
"aaaaaaxxxxmyyyaaaassssssssstttuivvvv" should be encoded as

[[’a’,6],[’x’,4],’m’,[’y’,3],[’a’,4],[’s’,9],[’t’,3],’u’,’i’,[’v’,4]]

Let us write a Python code that produces this encoding for us:

Exercise

Modify this code such that it removes consecutive duplicate characters. In other words,
"aaaabbbcdd" should be reduced to "abcd".

Example 3: Permutations

Permutations are keys to shuffling a sequence of data. Permutations can be denoted in various forms.
One way is to give an ordered list: The i th element of the list stores the old position where the i th
element of the new sequence will come from. In our implementation, counting starts from 0 (zero).
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Example 4: List Split

In this example, the first element of the list is taken and the rest is split into two lists: Those that are
smaller than the first element, and those that are not.

Example 5: Dot Product

A frequently used operation with vectors is the dot product between two vectors, e.g., u and v:

u · v =
n∑

i=1

uivi , (5.9)

where the vectors have n elements each. Let us implement this in Python:
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Exercise

Implement the dot product between two vectors using a while statement.

Example 6: Angle between Two Vectors

The angle between two vectors u and v is closely related to their dot product:

u · v = ||u|| ||v|| cos(θ), (5.10)

where θ is the angle between the vectors, and || · || denotes the norm of a vector:

||u|| = √
u · u =

√
√
√
√

n∑

i=1

u2
i . (5.11)

The angle can be derived from these as follows:

θ = arccos

(
u · v

||u|| ||v||
)

. (5.12)

Let us implement this:
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Example 7: Matrix Multiplication

Our last example is about matrix multiplication. A matrix A can be multiplied by a matrix B if the
column count (m) of A is equal to the row count of B. The product matrix is of a size where the row
count equals that of A and the column count equals that of B:

(A · B)i j =
m−1∑

k=0

Aik · Bkj . (5.13)

As we discussed in the previous chapter, since Python does not provide two-dimensional containers, but
a very flexible list container, matrices are mostly represented as lists of lists each of which represents
a row. For example, a 3 × 4 matrix: ⎛

⎝
−2 3 5 −1
0 3 10 −7
11 0 0 −8

⎞

⎠, (5.14)

can be represented as:

A = [[-2,3,5,-1], [0,3,10,-7], [11,0,0,-8]]

This representation is also coherent with the indexing of matrices: Ai j is accessible in Python as
A[i][j]. The code below multiples the two matrices given in this representation and prints the result.
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5.2.5 The continue and break Statements

It is possible to alter the flow of execution in a while or for statement using the continue or
break statements.

Let us assume that you are executing a sequence of statements. Somewhere in the process, without
waiting for the terminating condition to become False in a while statement or exhausting all items
of the iterator in a for statement, you decide to terminate the iteration. The break statement exactly
serves this purpose: Thewhile (or for) statement is stopped immediately and the execution continues
with the statement after the while (or for) statement.

Similarly, at some point in the process, if you decide not to execute the remaining statements within a
group, and instead want to continue testing the termination condition in the case of a while statement
or proceed with the next item in the case of a for statement, you can utilize the continue statement.
See Figs. 5.5 and 5.6 for how the continue and break statements change the flow of execution.

Fig. 5.5 How continue and break statements change execution in a while statement
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Fig. 5.6 How continue and break statements change execution in a for statement

5.2.6 Set and List Comprehension

A well-known and extensively used notation to describe a set in mathematics is the so-called “set-
builder notation”. This is also known as set comprehension. This notation has three parts (from left to
right):

1. An expression including a variable,
2. A colon or vertical bar separator, and
3. A logical predicate.

For example:
{x3 | x ∈ {0, 1, . . . , 7}} (5.15)

defines the following set:
{0, 1, 8, 27, 64, 125, 216, 343} (5.16)

A more elaborate example is provided below:

{
x3 | x ∈ {0, 1, . . . , 7} ∧ (x mod 2) = 1

}
(5.17)

defining the following set:
{1, 27, 125, 343} (5.18)

Python is one of the few languages that provides a notation with the same semantics for both sets
and lists (the one for lists is called list comprehension):

>>> [x**3 for x in range(8)]
[0, 1, 8, 27, 64, 125, 216, 343]
>>> {x**3 for x in range(8)}
{0, 1, 64, 8, 343, 216, 27, 125}

The second example, which imposes a constraint on x to be an odd number, would be coded as:

>>> [x**3 for x in range(8) if x%2 == 1]
[1, 27, 125, 343]
>>> {x**3 for x in range(8) if x%2 == 1}
{1, 27, 125, 343}
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The condition (following the if keyword) could have been constructed as a more complex Boolean
expression.

The expression that can appear to the left of the for keyword can be any Python expression or
container. Here are more examples on matrices.

5.3 Important Concepts

We would like our readers to have grasped the following crucial concepts and keywords from this
chapter:

• Conditional execution with if, if–else, if–elif–else statements.
• Nested if statements.
• Conditional expression as a form of conditional computation in an expression.
• Repetitive execution with while and for statements.
• break and continue statements to change the flow of iterations.
• Set and list comprehension as a form of iterative computation in an expression.

5.4 Further Reading

• “Managing the Size of a Problem” (Chap.4) of G. Üçoluk, S. Kalkan, Introduction to Programming
Concepts with Case Studies in Python, Springer, 2012 [1].

5.5 Exercises

We have provided many exercises throughout the chapter, please study and answer them as well.

1. Implement the while statement examples in Sect. 5.2.2 using for statement:
a. Calculating the average of a list of numbers.
b. Calculating the standard deviation of a list of numbers.
c. Calculating the factorial of a number.
d. Taylor series expansion of sin(x).

https://doi.org/10.1007/978-3-7091-1343-1
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2. Implement the for statement examples in Sect. 5.2.4 using while statement:
a. Words with vowels and consonants.
b. Run-length encoding.
c. Permutation.
d. List split.
e. Matrix multiplication.

3. What does the variable c hold after executing the following Python code?

c = list("address")
for i in range(0, 6):

if c[i] == c[i+1]:
for j in range(i, 6):

c[j] = c[j+1]

4. Write a Python code that removes duplicate items in a list. For example, [12, 3, 4, 12]
should be changed to [12, 3, 4]. The order of the items should not change.

5. Write a Python code that replaces a nested list of numbers with the average of the numbers. For
example, [[1, 3], [4, 5, 6], 7, [10, 20]] should yield [2, 5, 7, 15].

6. Write a Python code that finds all integers that divide a given integer without a remainder. For
example, for the number 21, your code should compute [1, 3, 7].

7. Write a Python code that uses a for/while loop to convert a positive integer less than 128 into
a binary string representing the binary representation of the number. For example, the number 21
should be converted into the binary string "00010101".

8. Write a Python code that converts a binary string like "00010101" into integer.
9. Given a list of integers in a variable named Subjects and another list of integers in a variable

AvoidMultiples, print the sum of elements which are in Subjects and are not multiples
of any element in AvoidMultiples.
Hint: Make use of list comprehension.
Example:
Subjects = [10, 12, 70, 75, 42, 17, 28, -24, 77, -12, 13]
AvoidMultiples = [3, 7]

The value to be printed:

40

10. Write a program that takes a list of strings and prints the frequency of each word in the list.
Hint: Make use of a dictionary.
Example: For the following list,

["apple", "banana", "apple", "cherry", "orange", "banana",
"cherry", "elderberry", "orange", "fig", "fig", "fig"]

Your code should print the following:

Frequency of words:
apple: 2
banana: 2
cherry: 2
orange: 2
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elderberry: 1
fig: 3

11. You are given a dictionary of food and price information, stored under a variable Menu. Here is
an example:

Menu = {"soup":22.5, "fries":15.0, "coke":10.0, "beer":30.0,
"bread":5.0, "hamburger":65.0, "scrambled egg":27.5,
"coffee":18.0, "pastry":23.5, "large pizza":70.0,
"medium pizza":40.0, "small pizza":25.0, "salad":7.75}

Write a program that takes a list of items (from the menu), i.e., the bill as:

["hamburger", "fries", "beer", "medium pizza", "beer"]

and then, prints the sum as follows:

180.0

Now, modify your program so that the same bill above can be entered as:

["hamburger", "fries", (2,"beer"), "medium pizza"]

12. A dictionary named Nominals contains nominal values for blood sample measurements. Each
nominal value is a tuple with two elements. The first element represents the lower end of the range,
and the second element represents the upper end of the range. Here is an example:

Nominals = {"EO%":(0.5,7),"BA%":(0.0,1),"RBC":(3.5,5.7),
"WBC":(4,10),"LY#":(0.8,4),"LY%":(20,40),
"MO%":(3,12),"MO#":(0.12,1.2),"NE#":(2,7),
"EO#":(0.02,0.7),"BA#":(0,0.1),"NE%":(50,70),
"HGB":(13.2,17.3),"HCT":(39,52),"MCV":(80,100),
"RDW":(11.8,14.3),"MPV":(6.5,12),"PCT":(0.1,0.4),
"PDW":(0.15,17),"PLT":(150,450),"IMG#":(0,0.02),
"IMG%":(0,0.2),"MCH":(27,35),"MCHC":(32,36)}

Your program takes a list of measurements (name, value) as tuples and prints each value with a
suffix of "LOW", "NORMAL", or "HIGH" based on the nominal values.

Example: For the following list:

[("WBC",7.4),("LY#",4.61),("MO#",0.58),("NE#",4.78),
("EO#",0.35),("BA#",0.04),("LY%",21.9),("MO%",7.9),
("NE%",64.9),("EO%",4.7),("BA%",0.6),("RBC",4.8),
("HGB",13.2),("HCT",40.3),("MCV",83.9),("MCH",27.4),
("MCHC",32.7),("RDW",15.4),("PLT",56.0),("MPV",13.5),
("PCT",0.02),("PDW",0.14),("IMG#",0.01),("IMG%",0.002)]
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Your program should print:

WBC 7.4 NORMAL
LY# 4.61 HIGH
MO# 0.58 NORMAL
NE# 4.78 NORMAL
EO# 0.35 NORMAL
BA# 0.04 NORMAL
LY% 21.9 NORMAL
MO% 7.9 NORMAL
NE% 64.9 NORMAL
EO% 4.7 NORMAL
BA% 0.6 NORMAL
RBC 4.8 NORMAL
HGB 13.2 NORMAL
HCT 40.3 NORMAL
MCV 83.9 NORMAL
MCH 27.4 NORMAL
MCHC 32.7 NORMAL
RDW 15.4 HIGH
PLT 56.0 LOW
MPV 13.5 HIGH
PCT 0.02 LOW
PDW 0.14 LOW
IMG# 0.01 NORMAL
IMG% 0.002 NORMAL

13. Write a program that inputs a list of numbers L and a positive integer n that is less than the length
of L. Considering each element of L only once, construct a sorted list of the biggest n elements
of L and print it. You are not allowed to make a copy of the list and/or sort it.

14. Write a program that inputs an integer (0 ≤ N ≤ 9999) from the user and converts that number
into its written form.

Example: For the numbers 1606 and 111, the outputs should be:

onethousandsixhundredandsix
onehundredandeleven

15. Write a program that inputs an integer (0 < N < 4000) and converts that number into its Roman
value.

Example: For the numbers 928 and 800, the outputs should be:

CMXXVIII
DCCC

16. Write a program that inputs a Roman number (0 < N < 4000) as a string and converts it to its
decimal value.
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17. Write a program that inputs three numbers, representing a day, a month, and a year, and returns
the weekday. You can assume that year > 1789.

Example: For the numbers 15, 12, 1999, the output should be:

WEDNESDAY

18. A quadratic equation has the following form:

ax2 + bx + c = 0.

To find x that satisfies such an equation, first the discriminant (�) is computed:

� = b2 − 4ac.

Based on �, we can reason about the solutions of the quadratic equation:

If � < 0: There is no real solution.

If � = 0: There is a single solution: x0 = − b

2a
.

If � > 0: There are two distinct solutions: x1,2 = −b ± √
�

2a
.

Write a program that inputs values for a, b, and c from the user, consecutively. If there are no real
solutions, print "NO ROOT". Otherwise, print the solution(s) on the screen.

19. You are given an ordered list of (frequency, station-name) tuples of radio stations assigned to a
variable MyRadio. An example for MyRadio would be:

MyRadio = [(171, 'Morocco'), (198, 'Ouargla'), (227, 'Polskie'),
(234, 'Luxembourg'), (540, 'Solt'), (585, 'Madrid'),
(621, 'Batra'), (683, 'Beograd'), (801, 'Ajloun'),
(909, 'BBC'), (1089, 'Rossii'), (1440, 'Dammam'),
(1521, 'Duba')]

Given this variable, write a program that:

• Inputs from the user a frequency (not necessarily one of those above).
• Finds the radio station that has the closest frequency to the input frequency.
• Prints the found station’s name, prefixed with a word "Radio", separated with a single blank.

Example: Given input 580, the output should be:

Radio Madrid

20. Solve the previous exercise with the following restriction: If the length of MyRadio is N , you
have the right to look-up its content (with MyRadio[�]) at most log2(N ) + 1 times.

21. Write a program that inputs a list of 2D coordinates of 4 points:
[[x1,y1], [x2,y2], [x3,y3], [x4,y4]]
where xi and yi are numeric values.
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Your program should determine whether these four points are on a circle or not and output
"CIRCLE" or "NOT CIRCLE", respectively.

Example: Given the following list,

[[1.75,-1.918698582794336],[3.1,4.948187929913334],
[0.5,4.372281323269014],[5.5,-0.30277563773199456]])

Your program should output:

CIRCLE

Hints and notes:

• The four points are distinct.
• Use floating-point arithmetic. If you need to do an equality test with floating points, do not use

the ’==’ comparison operator. You should consider two values x and x ′ to be equal if:

∣
∣
∣
∣
x − x ′

x + x ′

∣
∣
∣
∣ ≤ 10−3.

22. Consider your high school knowledge of lenses. Let us recall the main governing equation:

1

f
= 1

i
+ 1

o
,

with the magnification as −i/o. To refresh your knowledge, please check Wikipedia for “Lens
(optics)”.

Consider the x-axis. Given that, at the origin, there is a real object with height h cm. The image is
along the positive y-axis. At x = x1, a lens with a diopter of d1 is placed, and at x = x2 another
lens with a diopter of d2 is positioned. Assume that x1 and x2 are both positive values whereas
d1,2 can be positive or negative, for converging or diverging lenses, respectively.

Write a program that inputs a list with exactly five elements, namely,[d1,x1,d2,x2,h], and out-
puts a 3-tuple (posi tion, t ype, height) for the image position, the image type ("virtual"
or "real"), and the image height formed by the rays that are refracted by both lenses (there is
only one such image). You can assume that x1 < x2.

Reference

[1] G. Üçoluk, S. Kalkan, Introduction to Programming Concepts with Case Studies in Python (Springer Science &
Business Media, 2012)
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A function (or sometimes synonymously referred to as subroutine, procedure, or sub-program) is
a group of actions under a given name that performs a specific task. len(), print(), abs(),
type() are functions that we have covered before. Python adopts a syntax that resembles mathematical
functions.

A function, i.e., “named” pieces of code, can receive parameters. These parameters are variables
that carry information from the “calling point” (e.g., when you write N = len("The number of
chars")) to the callee, i.e., the piece of code that defined the function (len() in our example). The
life span of these variables (parameters) is as long as the function is active (for that call).

6.1 Why Define Functions?

There are four main reasons for using functions while solving world problems with a programming
language:

1- Reusability
A function is defined at a single point in a program, but it can be called from several different points.
To better illustrate this, let us consider an example: Assume that you need to calculate the run-length
encoding of a string (the example code from Sect. 5.2.4) in your program for n different strings in
different positions in your code. In a programming language without functions, you would have to
copy-paste that run-length encoding code piece in n different places. Thanks to functions, we can
place the code piece in a function once (named encodeRunLen for example) and use it in n places
via simple function calls like enc = encodeRunLen(inpstr).

2- Maintenance
Using functions makes it easier to make updates to an algorithm. Let us explain this with the run-length
encoding example: Assume that we found an error in our calculation or that we discovered a better
algorithm than the one we are using. Without functions, you would need to go through all your code,
find the locations where your run-length encoding algorithm is implemented, and update each and
every one of them. This is very impractical and tedious. With functions, it is sufficient just to change
the function that implements the run-length encoding.
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3- Structuredness
Let us have a look at a perfectly valid Python expression:

(b if b<c else c) if (a if a<b else b)<(b if b<c else c) else (a if a<b else b)

which certainly takes some time for a human to parse and understand but it just performs the
following:

max(min(a,b), min(b,c))

The version with the min and max functions has a structure that is easier to parse and follow. This
in turn makes the code more readable: Even if the definitions of max and min are not given yet, one
can still grasp what the expression is up to. It is not only because the expression is smaller, but because
function names can give clues about the purposes of the actions.

4- Benefits of the functional programming paradigm
If a programmer sticks to the functional paradigm (briefly covered in Sect. 2.4.4), then he or she has to
plot a functional decomposition so that the solution of the problem is obtained by means of functional
composition, something that is well known and understood in mathematics. This type of solution does
not suffer from unexpected side effects or variable alterations (e.g., due to the aliasing problem covered
in Sect. 4.4.2); therefore, testing and debugging become easier.

Another benefit of the functional paradigm is recursion: In other words, while defining a function,
we can call the function that is being defined—a seemingly confusing concept, which we will cover
in this chapter. Moreover, we can define higher-order functions that take functions as input and apply
them to a sequence of data. All these benefits come free with using functions, as we will illustrate
below.

Even when we do not limit ourselves to the functional programming paradigm, it is essential to
use functions in professional programming. Generic and general algorithms coded as functions have
become very valuable because they can be reused again and again in new programs. Collections
formed by such general purpose functions are called libraries. Libraries have been created for almost
all application areas over decades.

6.2 Defining Functions

For defining a function, Python adopts the following syntax:

def FunctionName ( Parameter1 , Parameter2 , · · · ) : Statement

The Statement , which can be replaced by multiple statements as we did with the other compound
statements, can make use of the Parameters as variables to access the actual arguments (data) sent
to the function at the call-time. If the function is going to give a resulting value in return to the call,
this value is provided by a return statement.

FunctionName is the name of the function being defined. Python follows the same naming rules
and conventions used for naming variables—if you do not remember them, we recommend you go
back and check the restrictions for naming variables in Sect. 4.4.3.
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Here is a straightforward example. Let us assume that we want to implement the following mathe-
matical function:

Fgravi t y(m1,m2, r) = G
m1m2

r2 . (6.1)

The following is the one-line Python code that defines it:

def F_gravity(m_1, m_2, r): return G * m_1 * m_2 / (r * r)

This function, F_gravity(), returns a value (i.e., the result of G * m_1 * m_2 / (r *
r)). This is achieved with the return statement. As you may have observed, the values m1, m2 and
r are provided as the first, second and third parameters, named as m_1, m_2 and r, respectively.

What about G? It is not provided in the arguments and is used in the return expression for its
value. If the definition were a multi-statement definition (indented multi-statements following the def
line), then Python would seek for a defined value for G among them. As G is not defined in the
function, Python would look for the variable in the global environment, the environment in which
F_gravity() is called.

Therefore, before callingF_gravity(), we must make sure that a value is set for a global variable
G (which apparently is the Gravitational Constant), e.g., as follows:

We will cover these concepts in detail in the Scope of Variables section (Sect. 6.4).

6.3 Passing Parameters to Functions

When a function is called, first its arguments are evaluated. The function will receive the results of
these evaluations. For this, the parameter variables used in the definition are created, and set to the
results of the argument evaluations. Then, the statement that follows the column (:) after the argument
parenthesis is executed. Certainly, this statement can and will make use of the parameter variables
(which are set to the results of the argument evaluations).
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Let us look at an example:

This is a legitimate piece of code that performs a sequence of actions in a specific order.

• Defines the function F_gravity().
• Sets the value of the global variable G and S and Q.
• Calls the (internally defined) print() function that takes one argument. This argument is a

function call to F_gravity(). Therefore, to have a value to print, this function call must be
performed.

• A call to F_gravity() is prepared: It has three arguments, each has to be evaluated and boiled
down to a value. For this, in a left-to-right order, the arguments are evaluated:

– Q+S is evaluated, and the result is stored in m_1.
– Q-S is evaluated, and the result is stored in m_2.
– The Euclidean distance,

√
(504.3−66.1)2+(351.1−7.7)2, is evaluated and the result is stored in r.

• Since all arguments are evaluated, the statement defining the function F_gravity() can be
executed.

• This statement is “return G * m_1 * m_2 / (r * r)”, which requires the expression
following the return keyword to be evaluated and the result to be returned as the result of the call
to the function.

• Now the print() function has got its parameter evaluated. The defining action of the print()
function can be carried out (this is an internally defined function, i.e., we cannot see its definition,
but the documents defining the language explain it).

To summarize, prior to the function call, there is a preparation phase where all arguments are
evaluated and assigned a value. This process is known in Computer Science as call-by-value.

6.3.1 Default Parameters

While defining a function, we can provide default values for parameters as follows:

def FunctionName ( Parameter1 = Exp1 , Parameter2 = Exp2 , · · · ) : Statement

where Expi is an expression. When calling the function, we may omit providing the parameters for
which the function has default values.
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Let us take a look at a simple example:

Let us look at some cases that lead to errors:

In this example, you should notice the following crucial points:

• We can call a function without providing any value for the parameters that have default values
(CASE 1-CASE 4).

• We can change the order of default parameters when we call the function (CASE 5 and CASE 6).
• When calling a function, we can give values to non-default parameters by using their names

(CASE 6).
• Parameters after default parameters also need to be given names, while both defining and calling

the function (CASE 7).

6.4 Scope of Variables

We extensively use variables while programming our solutions. Not all variables are accessible from
everywhere in our solutions: There is a governing set of rules that determine which parts of a code can
access a variable. The code segment from which a variable is accessible is called its scope.
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In Python, there are four categories of scopes. As will be explained shortly, they are abbreviated
with their initials, which then combine to form the rule mnemonic LEGB which stands for:

Local Scope < Enclosing Scope < Global Scope < Built-in Scope
1- Local Scope
Defining a variable in a function makes it local in Python. The variable G in the following function is
a local variable of the function F_gravity():

def F_gravity(m_1, m_2, r):

G = 6.67408E-11
return G * m_1 * m_2 / (r * r)

Local variables are the most “private” ones: Any code that is external to that function cannot see it.
If you make an assignment anywhere in the function to a variable, it is registered as a local variable. If
you attempt to refer to such a local variable prior to assignment, Python will generate a run-time error.

The local variables are created each time the function is called (it is activated), and they are anni-
hilated (destructed) the moment the function returns (finishes).

2- Enclosing Scope
As we mentioned before, it is possible to define functions inside functions. They are coined as local
functions and can refer to (but not change) the values of the local variables of its parent function (the
function in which the local function is defined). The scope of the outer function is the enclosing scope
for the inner function. Though the parent function’s variables are visible to the local function, the
converse is not true. The parent function cannot access its local function’s local variables. Therefore,
the accessibility is from inward to outward and for referring (reading) purposes only.

This is illustrated below (distance() and particle_list are not defined for brevity):

def n_body_interaction(particle_list): # a function enclosing F_gravity

G = 6.67408E-11 # G is defined in an enclosing scope of the function F_gravity

def F_gravity(m_1, m_2, r): return G * m_1 * m_2 / (r * r)

for p1 in particle_list:
p1['forces'] = []

for p2 in particle_list:

p1['forces'] += F_gravity(p1['mass'], p2['mass'], distance(p1['position'], p2['position']))

3- Global Scope
The default scope provided by the Python interpreter is the global scope. If a variable is not defined
in a function, then it is a global variable, i.e., a variable in the global scope. A global variable can
be accessed both outside and inside of any function. In the following, the variable G and the function
F_gravity() are in the global scope:

def F_gravity(m_1, m_2, r): return G * m_1 * m_2 / (r * r)

G = 6.67408E-11

If a global variable is accessed inside a function, it cannot be altered there. If it is altered anywhere
in the function, this is recognized at the declaration-time and that variable is declared (created) as a
local variable. A local variable that has the same name as a global variable conceals the global variable
(because of the LEGB ordering among the scopes).
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If you want to change the value of a global variable inside a function, then you have to explicitly
declare it as a global variable by a statement:

global V ariable

Then an assignment to V ariable will not register it as a local variable but will merely refer to the
global V ariable. As said, since the system will recognize them automatically, there is no need to use
the global statement for global variables which are referred to only for their values. However, it is a
good programming habit to do so to enhance readability and prevent accidental local variable creations
(due to careless assignments to global variables).

4- Built-in Scope
The built-in scope is a special Python scope that is created or loaded whenever you run a script or
open an interactive session. This is actually the scope in which the Python interpreter starts. It contains
names such as keywords, built-in functions, exceptions, and some other attributes. Entities in this scope
are available from everywhere in your code.

In the interactive Jupyter Notebook page of the chapter, an interactive example is provided to get a better

understanding of different scopes. You can hover over the variables with your mouse to see where each

variable is accessible.

A variable occurrence has different meanings for different positions in the program:

1. First-time occurrence of the variable at the left-hand side of an assignment: This tells Python to
declare a variable in the current scope, the current function, or the global scope. If there is a variable
with the same name in an outer scope, it is hidden as long as the new variable is active. This
declaration will be active for the scope in which it is created, including statements preceding it.

2. Second and subsequent occurrences of the variable at the left-hand side of an assignment: They
simply update the previously declared variable.

3. Occurrences of the variable at the right-hand side of an assignment or any other place in an
expression: Python places the value (content) of the variable in the expression position. The variable
is searched in all scopes following the LEGB ordering, and the first found variable is used. If the
declaration of the variable is made after its reference in the current scope, Python will raise the error
’Reference before assignment’.

Note that a global declaration changes the behavior above. It makes all occurrences refer to the
global variable and does not declare a variable in the current scope with the globally defined names.
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6.5 Higher-Order Functions

Python provides several flavors of the functional paradigm, one of the most powerful of which is the
ability to easily pass functions as parameters to other functions. No special syntax or rule is needed
for this: If you use a parameter as if it is a function and when calling the higher-order function, pass a
function name as a parameter, Python will handle the rest.

Python provides two convenient higher-order functions for us:

• map function: The map() function has the following syntax:
map(function, iterator)
which yields an iterator where each element is the result of applying the function on the corre-
sponding element in the iterator as illustrated below:

Arguments Return
function

iterator: [e0, e1, ...., en ]
map(function, iterator)−−−−−−−−−−−−−−−−−→ A new iterator:

[function(e0),function(e1), ....,function(en )]

Here is a simple example:

>>> abs_it = map(abs, [10, -4, 20, -100])
>>> for x in abs_it: print(x)
10
4
20
100

• filter function: The filter() function has a similar syntax to the map() function:
filter(predicate, iterator)
where predicate is a function with a Boolean return value. The filter() function applies
predicate to each element of the Iterator and only keeps the ones for which predicate
returns True, as illustrated below:

Arguments Return
predicate

iterator: [e0, e1, ...., en ]
filter(predicate,iterator)−−−−−−−−−−−−−−−−−−→ A new iterator:

[predicate(ei ) | predicate(ei ) is True]

For example:

>>> def positive(x): return x > 0
>>> for x in filter(positive, [10, -4, 20, -100]): print(x)
10
20

Of course, the functional capabilities of Python are more diverse than we can cover in this introductory
textbook. The reader is referred to Python docs1 for a more complete coverage. The curious reader is
especially recommended to look at lambda expressions and the reduce function.

1 https://docs.python.org/3/howto/functional.html.

https://docs.python.org/3/howto/functional.html
https://docs.python.org/3/howto/functional.html
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6.6 Functions in ProgrammingVersus Functions in Mathematics

It is crucial to note that functions have a differentiated meaning compared to functions in mathematics,
as listed below:

• In mathematics, a function is a mapping from a domain to a range (target); a function returns a value.

In Python: Functions may not return a value at all. If so, they are intended to code a parametrized
action. A few examples of this are:

– Drawing a red line from (x0, y0) to (x1, y1).
– Printing a separating line made of n “minus” signs.
– Turning off the lights.
– Sending a digital initialization string to a device connected through the USB port.

• In mathematics, a function definition is global. You do not have function definitions local to some
function.

In Python: Since a function definition is done by a Python Statement (or a group of statements—
grouped by indentation), it is quite possible to have another definition as part of the defining
statements. Such a function can only be usable in the Statement group that defines the outer function
and accesses its local variables and parameters. Outside of the function, this interior function (called
a local function) will not be visible or usable.

• In mathematics, an element from the domain is mapped to one and only one target element by the
function. The mapping does not change. Moreover, a mathematical function returns a value that
depends only on the arguments. Therefore, for the same arguments, the result is the same.

In Python: Even if such a mapping exists (i.e., a function returns a value), it is possible that the
function acts differently due to different settings of the variables (outside of the function) that can
be accessed in the function. Consider the F_gravity() function again:

def F_gravity(m_1, m_2, r): return G * m_1 * m_2 / (r * r)

A different value for G (the Gravitational Constant) will yield a different F_gravity() result
even when the parameters remain the same.

• In mathematics, the operation of a function is reflected in the value it returns: It does not have side
effects. In other words, a mathematical function does not change the mathematical environment
that is external to it (variables or the ways other functions are evaluated).

In Python: This may not be true. Consider the G value of the F_gravity() function above.
Hypothetically, it is possible that, at each call of F_gravity(), the G value is increased slightly
(1% for example):
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>>> def F_gravity(m_1, m_2, r):
... global G # since we alter it
... G = 1.01 * G
... return G * m_1 * m_2 / (r * r)

>>> G = 6.67408E-11

>>> print(F_gravity(1000, 20, 0.5), "Newton")
5.39265664e-06 Newton

>>> print(F_gravity(1000, 20, 0.5), "Newton")
5.4465832064e-06 Newton

>>> print(F_gravity(1000, 20, 0.5), "Newton")
5.501049038464e-06 Newton

In these aspects, a function defined in Python has greater freedom. As previously stated in Sect.
2.4.4, there are paradigms of programming. One of these paradigms, the functional paradigm, promotes
function usage to be restricted to the mathematical sense. In other words, the functional paradigm
followers deliberately renounce the additional freedom programming languages like Python provide
in function definitions and usages with respect to the mathematical sense. The main reason is that
deviating from the mathematical sense makes programming more error-prone.

6.7 Recursion

Recursion is a function definition technique in which the definition makes use of calls to the function
being defined. Although this might be difficult to grasp at first, it allows compact and more readable
code for recursive algorithms, relations, or mathematical functions.

To explain recursion, it is almost customary to start with the infamous example of the recursive
definition of factorial. First, let us put it down in mathematical terms:

N ! = (N − 1)! × N , for N ∈ N, N > 0
0! = 1.

Based on this, we can realize that:

• 6! is 6 × 5!
• 5! is 5 × 4!
• 4! is 4 × 3!
• 3! is 3 × 2!
• 2! is 2 × 1!
• 1! is 1 × 0!
• 0! is 1

Substituting any factorial value, based on this rule, one ends up with the following:

6! = 6 × 5 × 4 × 3 × 2 × 1 × 1. (6.2)
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Making use of (N − 1)! while defining N ! is making a recursive definition. The Python equivalent of
the above recursive mathematical definition of the factorial would be:

def factorial(N):

if N == 0: return 1
else: return N * factorial(N-1)

High-level languages are designed so that each call to the factorial() function does not overwrite
any previous call(s) even if they are still active (unfinished). For every new call, fresh positions for
all local variables are created in the memory without overwriting (forgetting) the former values of
variables for the unfinished calls.

From the programmer’s point of view, the only concern is the algorithmic answer to the following
question:

Having the recursive call returned with the correct answer to the smaller problem, how can I cook up the answer
to the actual problem?

It requires a kind of “stop thinking” (a leap of faith) action: “Stop thinking how the recursive call
comes up with the correct answer”. Instead, just concentrate on the next step as stated above (“How
can I cook up the answer to the actual problem?”).

Not to get into an infinite, non-stopping recursive loop, you should be careful about two aspects:

1. The recursive call should be made with a decrescent (getting smaller) argument. In the factorial
example, the calculation of N ! recursively called (N − 1)!, i.e., a smaller value than N !.

2. The function definition must start with a test for the smallest possible argument case (in the factorial
example, this was 0 (zero)) where a value for this case is directly returned (in the factorial example,
this was 1 (one)). This is called the termination condition or base condition.

Let us consider another example: We have a list of unordered numbers. Nothing is pre-known about
the magnitude of the numbers. The problem is to find the maximum of the numbers in that list.

Let us say that you are given a list of 900 numbers. For a second, assume that you have a very loving
grandpa. Your grandfather has a rule of his own: Not to corrupt you, he will not solve the problem for
you but, if you reduce the problem slightly, his heart softens and provides the answer for the smaller
problem.

Presumably, the simplest “reduction” that you can do on the 900-element list is to remove an element
from it, making it a list of 899 numbers. As far as Python lists are concerned, the simplest of the simple
is to remove the first element: If L is your list, L[0] is the first element and L[1:] is the list of
remaining elements. So, the trick is to remove the first element, take L[1:] to your grandfather (that
is, making the recursive call), and ask for the solution. Your grandfather is very cooperative and gives
you the solution (the highest number) for the list (L[1:]) you gave him.

We are not finished yet: On the one hand, you have what your grandfather returned to you as the
highest number of the slightly reduced list (L[1:]), and on the other hand, you have the removed
(first) element L[0]. Now, which one will you return as the solution for the 900 number list? Certainly,
the larger one, since we are interested in finding the largest number in L.

Here is the solution in Python:
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As you may have recognized, the definition started with testing for the smallest case. That is, a
single-element list for which the result (the biggest number in the list) is that single number itself.

Recursion helps writing elegant functions. However, it is not free. The price is in the time and
memory overhead spent on creating a new function call. Time may be something tolerable, but memory
is limited. For functions that make thousands of recursive calls, you should better seek algorithmic
solutions that do not lean on recursion. Python has a default for the recursion depth, which is set to
1000. This can be altered.

Any recursive function can be implemented using iterations. The reverse is also true: Any iterative
function can be implemented using recursion. The definition of the problem or the algorithm generally
provides hints for whether recursion or iteration is better for implementing your solution.

6.8 Function Examples

Example 1: Computing average and standard deviation
In the previous chapter, we provided iterative definitions for calculating the average and the standard
deviation of a list of numbers. Let us look at these definitions again with functions. For the sake of
ease, the mathematical definitions are provided again. Moreover, we will use this opportunity to talk
more about iterations as well.

The average of a set (S) of numbers is calculated by dividing the summation of the values in the set
by their number:

avg(S) = 1

|S|
∑

x∈S

x, (6.3)

which can be coded as:



6.8 Function Examples 131

This is quite elegant. As you can see, it works at a higher abstraction level. This can be done because
the in operator is very handy, and when used with an iterator, it iterates over the elements of the list.

Sometimes it is more desirable to work with the indices to reach out to each element. Recall that
the indexing of container elements starts at zero. Therefore, a more index-based variation of the same
formula would be:

avg(S) = 1

|S|
|S|−1∑

i=0

Si , (6.4)

which can be implemented as follows:

This is almost okay, but not perfect. len() is a built-in function that returns the element count
of any container (string, list, tuple). As you have observed, len(S) is calculated twice, which is
inefficient. Function calls have a price, time- and space-wise; therefore, unnecessary calls should be
avoided. To fix this, we change the code to calculate the length once and store the result for further
usage:

total, length, i and the parameter S are all local variables of the function avg(). Contrary to
many other programming languages, we do not have to declare locals in Python. They are automatically
recognized. This comes in handy.

One point to note about the code is that |S| − 1 is missing. This is not an issue because the range
iterator excludes the end value, as we discussed in Sect. 5.2.3.

Now, let us also introduce the code for standard deviation. First, the mathematical definition:

std(S) =
√√√√ 1

|S|
|S|−1∑

i=0

(Si − avg(S))2. (6.5)
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This time, we bear in mind that unnecessary function calls should be avoided:

We implemented the solution using explicit indexing. As given below, this particular problem can be
coded without iteration over the indices. Such problems are rare. Problems that require operations over
vectors and matrices or problems that aim at optimizations usually require explicit index iterations.

For the sake of completeness, below, we provide an index-less implementation for calculating the
average and standard deviation. This version will work on any container data type without the need
for support of index selection and the len() function:
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1 6 29 17

=25
5

This becomes the check digit
5

Fig. 6.1 How the check digit is calculated for a student number

Example 2: Computing check digit

What is a check digit?

A check digit serves as a redundancy check employed to detect errors in identification numbers, like
social security numbers, bank account numbers, or student id’s. These numbers are often entered
manually in computer applications which is an error-prone action. The check digit is calculated using
an algorithm based on the other digits or letters present in the identification number. Incorporating a
check digit enables the identification of basic errors in a string of characters, typically digits. These
errors could involve a single mistyped digit or the transposition of two consecutive digits.

Middle East Technical University, with which the authors are affiliated, also implements a check digit
algorithm for student numbers. A student number has exactly six digits. The algorithm for generating
the check digit is as follows:

• total ← 0
• For each digit in the student number (the leftmost digit is named as the “first”) that has an odd

position (first, third, fifth), take the digit and add it to the total.
• For each digit in the student number that has an even position (second, fourth, sixth), double the

digit. If this result of doubling is a two-digit number, then add each of these digits to the total;
otherwise, add the result of the doubling (which is a single-digit number itself) to the total.

• The one-digit number, which, when added to the total, results in a multiple of 10, is the check digit.

To illustrate the steps, consider the student number 167912 as an example in Fig. 6.1.
The check digit of the student number 167912 is found to be 5, which is appended to the student

number and becomes part of the student ID as 167912-5.
This algorithm can be implemented as follows (assume that the student number, S, is a string):
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We encourage the reader to investigate the code carefully. A very good technique to understand
how a code progresses when it runs is to insert print actions to the points of interest. You can start by
inserting:

print(digit, total)

as the last action in the for statement, right after the line of else: (left-aligned with the else).
A few notes about the code:

• Remember that indexing starts in Python at zero. One group of digits, namely (first, third, fifth), are
actually at S[0], S[2] and S[4]. So, their indices are even. Or in mathematical terms, they are
(modulo 2) zero.

• Summing the digits of a number is a trick we learned in primary school. It is actually nothing else
but a quick way to do (modulo 9). So, we are actually taking the (modulo 9) of the doubled digit.
With one exception: If the digit is 9, the double is 18 where we have to add a 1+8=9 to the total.
But (18 % 9) would give us zero (not 9). So, here we have to insert an exception: For all digits
except 9, we can use (2*digit) % 9. For 9, we ought to add a 9 to the total.

• The rule of constructing the check digit from the total has a similar exception case for total
being a multiple of 10 (i.e., n (modulo 10) = 0). In that case, we would have a check digit of 10
(because 10–0 = 10) which is not a digit, but two digits. The designers decided to use a zero as the
check digit for this particular case.

Example 3: Recovering a missing digit in a student ID
Now let us see how the check digit can be used to recover a missing digit in a student ID.
Consider a student ID such as 1�9503-7. Now, can we discover what the missing digit (�) is?
For this purpose, we will write a function find_q_mark() that will take a string as an argument,
in which the missing digit is indicated by a “?” (question mark). We are expecting that a call of
find_q_mark("1?9503-7") will recover the missing digit and return the demystified string:
“139503-7”.
Note that the check_digit() definition above is still effective.

A few notes about the code:
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• replace_q_mark() function is called by find_q_mark(). It is called only once, therefore
its actions could have been merged into find_q_mark(). Efficiency-wise, there would be no
change (except for one extra function call). However, separating it, making it into a function, and
naming it accordingly make the code more readable.

• The first two lines that define find_q_mark() actions are merely dissecting the string into a
student ID and a check digit part.

• What we do in the for loop in find_q_mark() (on Lines 11–13) is coined in Computer Science
as brute force. Practically, it is trying every possible case for being a solution. In this problem, the
“?” mark can be any digit in the range [0, 9]. The for loop tries each of these possibilities out until
the computed check digit is equal to the check digit appearing in the input string.

Example 4: Sequential Search
Searching for an item in a list or any other container is a frequently performed operation while solving
world problems. For the sake of simplicity, let us just focus on situations where only numbers are
involved; i.e., the searched item is a number and the list includes only numbers. Extension to other
data types is trivial.

In a search problem, we have a query item (let us call it x) and a list of items (let us call it L). If x
is a member of L, then we want the search algorithm to return True, optionally by returning its index
in L. If x is not a member of L, we expect the algorithm to return False.

Consider the example list below:

109 –48 25 4 –13 (6.6)

If x is 4, the search algorithm should return True. If it is 5, the answer should be False.
Let us start with the simplest algorithm we can use: Sequential Search. In sequential search, we

start at the beginning of the list, go over each item in the list, and check if the query (x) is equal to any
item that we go over.

The following is the pseudocode for the algorithm:

Algorithm 6.1 Sequential Search with While Iterations
Input: x — The query number

L — the list of numbers
Output: True (if x is in L) or False (if x is not in L)
1: Create a variable named I ndex with initial value 0
2: Create a variable named N with value length(L)
3: While I ndex < N is True do execute Steps 4-5:
4: If x=L[I ndex] then return True as the result
5: I ndex ← I ndex + 1
6: return False as the result

Let us implement this simple algorithm in Python:
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That looks good. However, we can have a more compact solution using for loops:

That’s the beauty of Python. These two are iterative solutions. Let us have a look at a recursive
solution. First, let us update the algorithm. The idea is essentially the same: We compare with the first
item and return True if they match. Otherwise, we continue our search with the remaining items:
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Algorithm 6.2 Sequential Search with Recursion
Input: x — the query number

L — the list of numbers
Output: True (if x is in L) or False (if x is not in L)
1: If L is empty then return False
2: If x is equal to the first item of L , (L[0]) then return True
3: Make a recursive call on L[1 : N ], and return its answer

And here is the recursive implementation in Python:

Exercise
Write down the pseudocode for the Python function seq_search() with for statement.

Exercise
Extend the recursive implementation of seq_search() to search for an item x in a list L in the case
where L can be nested. In other words, the extended search algorithm should return True for:
seq_search_nested(5, [10, [4, [5]], -84, [3]])
and False for:
seq_search_nested(8, [10, [4, [5]], -84, [3]])

Example 5: Binary Search
If the list of items (numbers in our case) is not sorted, sequential search is the only option to search
for an item. If, however, the numbers are sorted (in an increasing or decreasing order), then we have a
much more efficient algorithm, called binary search.

Assuming that L, our list of numbers, is sorted in increasing order: In binary search, we recursively
execute the following steps (see also Fig. 6.2):

1. Compare x with the number that is at the center (middle) of the list. If the middle number is equal
to x, then we obviously return True.

2. Otherwise, we have two options:

a. x is smaller than the middle number: Then x has to be to the left of the middle number—we can
continue our search on the left part of L.
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Fig. 6.2 Binary search algorithm

b. x is larger than the middle number: Then x must be on the right side of the middle number—we
can continue our search on the right part of L.

Here is the pseudocode that describes this algorithm:

Algorithm 6.3 Binary Search with Recursion
Input: x — the query number

L — the sorted list of numbers (ascending order)
Output: True (if x is in L) or False (if x is not in L)
1: If length(L) = 0 then return False since the list is empty
2: Create a variable Mid_index with value length(L)/2
3: If x = L[Mid_I ndex] then return True, we found the item
4: If x < L[Mid_index] then make recursive call with L[0 : Mid_index] and return its answer
5: Otherwise, make a recursive call with L[Mid_index + 1 : ]

and return its answer

The following is the implementation in Python:
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Exercise
Implement binary search using while statements.

Exercise
Identify the complexity of sequential search and binary search in the following cases:

• Best case: When the item that we are making our first comparison with is the one we were looking
for.

• Worst case: The item we are looking for is the last item with which we performed the comparison.
• Average case.

Example 6: Sorting
Sorting pertains to ordering a list of items (L) so that each item in L satisfies the following constraint:

Li < Li+1, (6.7)

which leads to an ascending (increasing) order of items in L and this is called ascending sort. If the
order of the constraint is changed to Li > Li+1, the outcome is a descending (decreasing) order of the
items in L and this is called descending sort.

An algorithm that can perform ascending sort can easily be changed to do descending sort; therefore,
we will just focus on one of them, namely ascending sort. Moreover, we will focus on sorting a list
of numbers; however, the same algorithms can be applied to other data types as long as an ordering
constraint (< or >) can be defined.

Bubble Sort
Let us look at a very simple but inefficient sorting algorithm, called Bubble Sort. In Bubble Sort, we
start from the beginning of the list and check whether the constraint Li < Li+1 is violated for an index
i . If it is, we swap Li with Li+1. When we reach the end of the list, we start from the beginning of the
list again and continue checking the constraint Li < Li+1. Once we reach the end of the list, we go
back to the beginning and continue to check the constraint for each i . This continues until the constraint
Li < Li+1 is not violated for any index i , which means that the numbers are sorted.

Therefore, in Bubble Sort, we have two loops, one outer loop that continues until all numbers are
sorted, and an inner loop that goes through the list and checks the constraint. An outer iteration of the
algorithm is illustrated on a small list of numbers below in Fig. 6.3.

With one outer iteration, the list appears to be one step closer to a sorted list. In the example in
Fig. 6.3, the largest number has found its correct place after one outer iteration. With a second one,
the second largest number will find its place. With a third iteration, the third largest number will find
its place, etc.

Here is a pseudocode for the Bubble Sort algorithm:
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Algorithm 6.4 Bubble Sort
Input: L — the list of numbers (not sorted)
Output: L — the sorted list of numbers (ascending order)
1: Create a variable I s_sorted with value False
2: Create a variable N with value length(L)
3: Create a variable I ndex
4: While I s_sorted is False do repeat steps 5–11:
5: I s_sorted ← True
6: I ndex ← 0
7: While I ndex < (N − 1) do repeat steps 8–11
8: If L[I ndex] > L[I ndex + 1] then execute steps 9–10:
9: Swap L[I ndex] and L[I ndex + 1]
10: I s_sorted ← False
11: I ndex ← I ndex + 1
12: return L

Fig. 6.3 One outer iteration of the Bubble Sort algorithm
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And here is the implementation in Python:

6.9 Programming Style

With the topics covered in this chapter, we have started working with longer and more elaborate
Python codes. Up to now, we have introduced crucial aspects that can be arranged differently among
programmers:

• Naming variables and functions.
• Indentation.
• Function definition.
• Commenting.

Longing for brevity and readability, the creators of Python have defined some guidelines of style
for those interested: Python Style Guide.2

There are alternative styles, and we strongly recommend that you choose one and stick to it as a
programming habit.

2 https://www.python.org/dev/peps/pep-0008/.

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
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6.10 Important Concepts

We would like our readers to have grasped the following crucial concepts and keywords from this
chapter (all related to Python):

• Defining functions.
• Function parameters and how to pass values to functions.
• Default parameters.
• Scopes of variables.
• Local, enclosing, global, and built-in scopes.
• Higher-order functions.
• Differences of functions between programming and mathematics.
• Recursion.

6.11 Further Reading

• Functional tools of Python: https://docs.python.org/3/howto/functional.html [1].
• For a more comprehensive coverage on recursion, see “Managing the Size of a Problem” (Chap.4)

of G. Üçoluk, S. Kalkan, Introduction to Programming Concepts with Case Studies in Python,
Springer, 2012 [2].

• Python style guide: https://www.python.org/dev/peps/pep-0008/ [3].

6.12 Exercises

1. Write a Python function named only_numbers() that removes items in a list that are not
numbers. For example,only_numbers([10, "ali", [20], True, 4]) should return
[10, 4]. Implement two versions: One using iteration and another using recursion.

2. Write a Python function named flatten() that removes nesting in a nested list and
lists all elements in a single non-nested list. For example, flatten([1, [4, 5, [6]],
[["test"]]]) should return [1, 4, 5, 6, "test"].

3. Write a function named find_indices() that takes two arguments. The first argument is a
list. The second argument is the element being searched for. The return value should be a list of
indices at which the searched element is found. For example,

find_indices(["How", "much", "wood", "could", "a", "wood", "chuck",
"chuck", "if", "a", "wood", "chuck", "could", "chuck",
"wood?"], "chuck")

should return [6, 7, 11, 13]. The function should return an empty list if the searched ele-
ment is not in the list.

4. Write a Python function named reverse() that reverses the order of elements in a list. For
example, reverse([10, 5, 0]) should return [0, 5, 10]. Implement two versions:
One using iteration and another using recursion.

5. A prime factor is a positive integer (bigger than 1) whose only factors are 1 and itself. Write a
Python function named prime_factors() that finds the prime factors for a positive integer
given as argument. prime_factors() should return the list of prime factors in increasing
order. For example, prime_factors(2184) should return [2, 2, 2, 3, 7, 13]

https://docs.python.org/3/howto/functional.html
https://doi.org/10.1007/978-3-7091-1343-1
https://www.python.org/dev/peps/pep-0008/
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6. Write a function called combination() that takes two integers n and k as arguments and

returns the combination, which is also known as the binomial coefficient,

(
n

k

)
.

In this exercise, you should:

• Write the function using a helper function called factorial(), which you should also code.
• Then, rewrite the function by attempting to minimize the number of mathematical operations.
• Finally, implement the function using only the addition operation and recursion.

7. Write a Python function that accepts a string as an argument and counts the number of uppercase
and lowercase letters (ignoring all other characters). The function should return a 2-tuple of:
(Count_of_uppercase_chars, Count_of_lowercase_chars)

8. Write a function named merge() that takes two sorted lists with numeric ele-
ments, as arguments, and returns a merged, order-preserving (sorted), list. For exam-
ple, merge([-3, 3, 17, 29, 100], [-11, 1, 20, 22, 81, 85, 86, 99])
should return:
[-11, -3, 1, 3, 17, 20, 22, 29, 81, 85, 86, 99, 100].

9. Write a Python function named greatest_divisor() that finds the greatest divisor of an
integer. The greatest divisor of an integer n is the largest integer x < n that satisfies n = k · x for
some integer k. For example, greatest_divisor(12) should return 6.

10. Write a Python function named GCD() that finds the greatest common divisor of two integers.
You should use the following algorithm for finding the GCD (greatest common divisor). Let us
assume we want to find GCD(192,72):

Implement two versions: One using iteration and another using recursion.
11. A fraction or an integer can be represented by means of a list. Here are a few examples:

Fraction/Integer Representation
351 → [351]

−351 → [-351]

2

5
→ [2,5]

−2

5
→ [-2,5]

3
2

5
→ [3,2,5]

−3
2

5
→ [-3,2,5]
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As you may have already noticed, a negative value is only represented by a negative value in the
first member of the list.
You are expected to implement four functions add(), sub(), mul(), div(), which will
take exactly two arguments (two values represented as above) and perform addition, subtraction,
multiplication or division, respectively. These functions should return their results as a list which
is in the same format as their inputs.
Here is an example:

>>> mul([2], mul(sub([1, 2, 3], [7, 4]), [520, 36]))
[-2, 11, 27]

12. In the realm of number theory, a perfect number is a positive integer that is equal to the sum of
all its positive divisors except for itself. For example, 6 is a perfect number because its proper
positive divisors are 1, 2, and 3, and their sum is 6. Other examples of perfect numbers include
28, 496, and 8128.
Write a Python function named is_perfect() that takes a positive integer as argument and
checks whether it is perfect or not. The function should return a Boolean value.

13. You are given a list of 3-tuple elements in a variable called Cities. Each 3-tuple has the structure
(cityname, latitude, longitude) where:

cityname is a string.
latitude is a string of the form: dd:mm:ssL1, where dd is degrees, mm is minutes, ss is seconds
and L1 is one of N or S.
longitude is a string of the form: dd:mm:ssL2, where dd is degrees, mm is minutes, ss is seconds
and L2 is one of E or W.

Example of the first elements of Cities might be:

Cities = [("ankara", "39:55:00N", "32:55:00E"),
("dublin", "53:20:10N", "06:15:15W"), ...]

The task is to find the city, which we will call the meeting place, such that the sum of the flight
distances from all the other cities to this meeting place is minimized. Write a function that takes
Cities as argument and returns the cityname of the meeting place.

14. A date can be expressed as a 3-tuple of integers. Namely, day, month, and year. Write a function,
named delta_date(), which takes two such date tuples as arguments and returns the distance
(difference) between the two dates in days. If the first argument is later in time with respect to the
second then the result should be a negative value.

15. Write a function named dispense() that takes two arguments. The first argument is a list
of banknote values. The second argument of dispense() is a positive integer indicating the
amount of money that has to be summed up in terms of banknotes. The return value should be a
list of counts of banknotes.
Example: dispense([1, 5, 10, 20, 50, 100, 200], 2797) should return [2,
1, 0, 2, 1, 1, 13]
Notes: It is compulsory to give out the least number of banknotes possible. You can assume that
there is an infinite stock of each banknote type.
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7AGentle Introduction to Object-Oriented
Programming

At this stage of programming, you must have realized that programming possesses some idiosyncrasies:

• Unless some form of randomization is explicitly built in, all computations are deterministic; i.e.,
the result is always the same for the same input.

• The logic involved is binary; i.e., there are two truth values: True and False.
• There is a clear distinction between actions and data. Actions are coded into expressions, statements,

and functions. Data is coded into integers, floating point numbers, and containers (strings, tuples,
and lists).

The first two can be dealt with in a controlled manner. Furthermore, it is mostly more preferable to have
a crisp and deterministic outcome. However, the third is not as natural. The world we live in is not made
up of data and independent actions acting on that data. This is merely an abstraction. The need for this
abstraction stems from the very nature of the computing device we use, the von Neumann Machine.
What you store in the memory is either some data (integer or floating point) or some instruction. The
processor processes the data based on a series of instructions. Therefore, we have a clear separation
of data and action in computers.

However, when we look around, we do not see such a distinction. We see objects. We see a tree, a
house, a table, a computer, a notebook, a pencil, a lecturer, a student... Objects have some properties
that would be quantified as data, but they also have some capabilities that would correspond to some
actions. What about reuniting data and action under the natural concept of “object”? Object-Oriented
Programming, abbreviated as OOP, is the answer to this question.

7.1 Properties of Object-Oriented Programming

OOP is a paradigm that comes with some properties:

• Encapsulation: Combining data and functions that manipulate that data under a concept that we
name as “object” so that a rule of “need-to-know” and “maximal privacy” is satisfied.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Kalkan et al., Programming with Python for Engineers,
https://doi.org/10.1007/978-3-031-57148-0_7
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• Inheritance: Defining an object and then using it to create “descendant” objects so that the descendant
objects inherit all functions and data of their ancestors.

• Polymorphism: A mechanism that allows a descendant object to appear and function like its ancestor
object when necessary.

7.1.1 Encapsulation

Encapsulation is the property that data and actions are glued together in a data-action structure called
“object” that conforms to a rule of “need-to-know” and “maximal privacy”. In other words, an object
should provide access only to data and actions that are needed by other objects. The data and actions
that are not needed should be “hidden” and used by the object itself for its own merit.

This is important especially to keep the implementation modular and manageable: An object stores
some data and implements certain actions. Some of these are private and hidden from other objects,
whereas others are public to other objects so that they can access such public data and actions to suit
their needs.

Public data and actions function as the interface of the object to the outside world. In this way, objects
interact with each other’s interfaces by accessing public data and actions. This can be considered as
a message-passing mechanism: Object1 calls Object2’s action f(), which calls Object3’s function g(),
which returns a message (a value) back to Object2, which, after some calculation, returns another value
to Object1.

In this modular approach, Object1 does not need-to-know how Object2 implements its actions or
how it stores data. All Object1 needs to know is the public interface through which “messages” are
passed to compute the solution.

As a realistic example of a university registration system, assume that Student object calls
register() action of a Course object and it calls checkPrerequisite() action of a
Curriculum object. checkPrerequisite() checks if the course can be taken by the student
and returns the result. register() action performs additional checks and returns the success status
of the registration to the Student.

As another example, assume that you need to implement a simple weather forecasting system. This
hypothetical system gets a set of meteorological sensor data like humidity, pressure, and temperature
from various levels of the atmosphere and tries to estimate the weather conditions for the next couple of
days. The data of such a system may have a time series of sensor values. The actions of such a system
would be a group of functions that add sensor data as they are measured and forecasting functions to
obtain the future estimate of weather conditions. For example:

sensors = [{'datetime':'20201011 10:00','temperature':12.3,

'humidity': 32.2, 'pressure':1.2,
'altitute':1010.0},
{'datetime':'20201011 12:00','temperature':14.2,
'humidity': 31.2, 'pressure':1.22,
'altitute':1010.0},
....]

def addSensorData(sensorarr, temp, hum, press, alt):

'''Add sensor data to sensor array with
current time and date'''

....

(continues on next page)
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(continued from previous page)
def estimate(sensorarr, offset):

'''return whether forecast for given
offset days in future'''

...
...
addSensorData(sensors, 20.3, 15.4, 0.82, 10000)
...
print(estimate(sensors, 1))
...

In the implementation above, the data and actions are separated. The programmer should maintain the
list containing the data and make sure that actions are available and called as needed with the correct
data. This approach has a couple of disadvantages:

1. There is no way to ensure that actions are called with the correct sensor data format and values (i.e.,
addSensorData(’Hello world’, 1, 1, 1, 1)).

2. addSensorData implementation can ensure that the sensor list contains correct data; however,
since sensor data can be directly modified, its integrity can be violated later on (i.e., sensors[0]
= ’Hello World’).

3. When you want to forecast for more than one location, you need to duplicate all data and maintain
them separately. Keeping track of which list contains which location requires extra special care.

4. When you need to improve your code and change data representation, such as storing each sensor
type on a separate sorted list by time, you need to change the action functions. However, if some
code directly accesses the sensor data, it may conflict with the changes you made to the data
representation. For example, if the new data representation is as follows:

sensors = {'temperature': [('202010101000',23),...],

'humidity': [('2020101000',45.3),...],
'pressure': [('2020100243',1.02),...]}

Any access to sensors[0] as a dictionary directly through code segments will be incorrect.

With encapsulation, sensor data and actions are put into the same body of definition so that the only
way to interact with the data would be through the actions. In this way:

1. Data and actions are kept together. The encapsulation mechanism guarantees that the data exists
and has the correct format and values.

2. Multiple instances can be created for forecasting for multiple locations, and each location is main-
tained in its object as if it were a simple variable.

3. Since no code part accesses the data directly but calls the actions of the object, changing the internal
representation and implementation of functions will not require changing code segments using this
class.

The following is an example of OOP implementation for the problem at hand:

class WhetherForecast:

# Data
__sensors = None

(continues on next page)
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(continued from previous page)
# Actions acting on the data
def __init__(self):
self.__sensors = [] # this will create initial sensor data

def addSensorData(self, temp, hum, press, alt):
....

def estimate(self, offset):
...

return {'lowest':elow, 'highest':ehigh,...}

ankara = WhetherForecast() # Create an instance for location Ankara
ankara.addSensorData(...)
....

izmir = WhetherForecast() # Create an instance for location Izmir
izmir.addSensordata(...)
....

print(ankara.estimate(1)) # Work with the data for Ankara
print(izmir.estimate(2)) # Work with the data for Izmir

The above syntax will be more clear in the following sections; however, note how the newly created
objects ankara and izmir behave. They contain their sensor data internally, and the programmer
does not need to care about their internals. The resulting object will syntactically behave like a built-in
data type of Python.

7.1.2 Inheritance

In many applications, the objects with which we will work will be related. For example, in a drawing
program, we are going to work with shapes such as rectangles, circles and triangles which have some
common data and actions, e.g.:

• Data:

– Position
– Area
– Color
– Circumference

• and actions:

– draw()
– move()
– rotate()

What kind of data structure do we use for these data and how we implement the actions are important.
For example, if one shape is using Cartesian coordinates (x, y) for position and another is using Polar
coordinates (r, θ ), a programmer can easily make a mistake by providing (x, y) to a shape using Polar
coordinates.
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As for actions, implementing such overlapping actions in each shape from scratch is redundant and
inefficient. In the case of separate implementations of overlapping actions in each shape, we would
have to update all overlapping actions if we want to correct an error in our implementation or switch
to a more efficient algorithm for the overlapping actions. Therefore, it makes sense to implement the
common functionalities in another object and reuse them whenever needed.

These two issues are handled in OOP via inheritance. We place common data and functionalities into
an ancestor object (e.g., Shape object for our example) and other objects (Rectangle, Triangle,
Circle) can inherit (reuse, derive) these data and definitions as if those data and actions were defined
in their object definitions.

In real-life entities, you can observe many similar relations. For example:

• A Student is a Person and an Instructor is a Person. Updating personal records of a
Student is not different from that of an Instructor.

• A DCEngine, a DieselEngine, and a StreamEngine are all Engines. They have the same
characteristic features like horsepower, torque, etc. However, DCEngine has power consumption
in units of Watt, whereas DieselEngine consumption can be measured in liters per km.

• In a transportation problem, a Ship, a Cargo_Plane and a Truck are all Vehicles. They
have the same behavior of carrying a load; however, they have different capacities, speeds, costs,
and ranges.

Assume that we would like to improve the forecasting accuracy by adding radar information in our
WhetherForecast example above. We need to obtain our traditional estimate and combine it with
the radar image data. Instead of duplicating the traditional estimator, it is wiser to use the existing
implementation and extend its functionality with the newly introduced features. This way, we avoid
code duplication and when we improve our traditional estimator, our new estimator will automatically
use it.

Inheritance is a very useful and important concept in OOP. Together with encapsulation, it enhances
reusability, maintenance, and reduces redundancy.

7.1.3 Polymorphism

Polymorphism is a property that enables a programmer to write functions that can operate on different
data types uniformly. For example, calculating the sum of elements of a list actually behaves the
same for a list of integers, a list of floats, and a list of complex numbers. As long as the addition
operation is defined among the members of the list, the summation operation would be the same. If we
can implement a polymorphic sum() function, it will be able to calculate the summation of distinct
datatypes, and hence it will be polymorphic.

In OOP, all descendants of a parent object can act as objects of more than one type. Consider our
example on shapes above: The Rectangle object inheriting from the Shape object can also be used
as a Shape object since it contains the data and actions defined in a Shape object. In other words, a
Rectangle object can be assumed to have two data types: Rectangle and Shape. We can exploit
this to write polymorphic functions: If we write functions that operate on Shape with well-defined
actions, they can operate on all descendants of Shape including Rectangle, Circle, and all
objects inheriting Shape. Similarly, the actions of a parent object can operate on all its descendants
if it uses a well-defined interface.

Polymorphism improves modularity, code reusability, and expandability of a program.
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7.2 Basic OOP in Python

The way Python implements OOP is not to the full extent in terms of the properties listed in the
previous section. Encapsulation, for example, is not implemented strongly. Thankfully, inheritance
and polymorphism are provided more firmly. Moreover, operator overloading, a feature that is much
demanded in OOP, is present.

In the last decade, Python has become increasingly popular and widely used as a standard lan-
guage for scientific and engineering computations. Before Python, there were software packages for
various computational purposes. Packages to do numerical computations, statistical computations,
symbolic computations, computational chemistry, computational physics, and all sorts of simulations
were developed over four decades. Today, many such packages, free or proprietary, are wrapped to be
called through Python. This packaging is done mostly in an OOP manner. Therefore, it is vital to know
some basics of OOP in Python.

7.2.1 The Class Syntax

In Python, an object is a code structure as illustrated in Fig. 7.1.
First, a piece of jargon:

• Class: A prescription that defines a particular object. The blueprint of an object.
• Class Instance ≡ Object: A computational structure that has functions and data fields built accord-

ing to the blueprint, namely the class. Similar to the construction of buildings according to an
architectural blueprint, in Python we can create objects (more than one) conforming to a class def-
inition. Each of these objects will have its own data space and in some cases customized functions.
Objects are equivalently called class instances.
Each object provides the following:

– Methods: Functions that belong to the object.
– Sending a message to an object: Calling a method of the object.
– Member: Any data or method that is defined in the class.

Now, let us look at how we can define a class. In Python, this is done by the keyword class:

class ClassName :

Statement block

Fig. 7.1 An object includes both data and actions (methods and special methods) as one data item
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Here is an example:

class shape:

color = None
x = None
y = None

def set_color(self, red, green, blue):
self.color = (red, green, blue)

def move_to(self, x, y):
self.x = x
self.y = y

This blueprint tells Python that:

1. The name of this class is shape.
2. Any object that will be created according to this blueprint has three data fields, named color, x

and y. At the moment of creation, these fields are set to None (a special value of Python indicating
that there is a variable here but no value is assigned yet).

3. Two member functions, the so-called methods, are defined: set_color() and move_to(). The
first takes four arguments, constructs a tuple of the last three values and stores it into the color
data field of the object. The second, move_to(), takes three arguments and assigns the last two
of them to the x and y data_fields, respectively.

The peculiar keyword self in the blueprint refers to the particular instance (when an object is created
based on this blueprint). The first argument to all methods (the member functions) has to be coded as
self. That is a rule. The Python interpreter will fill it out when that function is activated.

To refer to any function or data field of an object, we use the dot (.) notation. Inside the class definition,
self.� syntax should be used for this purpose. Outside of the object, the object is certainly stored
somewhere (in a variable or a container), in which case the way (syntax) to access the stored object is
followed. Then, this syntax is appended by the dot (.) which is then followed by the data field name or
the method name.

For our example shape class, let us create two objects and assign them to two global variables p
and s, respectively:

p = shape()
s = shape()
p.move_to(22, 55)
p.set_color(255, 0, 0)
s.move_to(49, 71)
s.set_color(0, 127, 0)

The object creation is triggered by calling the class name as if it is a function (i.e., shape()). This
creates an instance of the class. Each instance has its private data space. In the example, two shape
objects are created and stored in the variables p and s. As said, the object stored in p has its private
data space and so does s. We can verify this by:

print(p.x, p.y)
print(s.x, s.y)
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7.2.2 Special Methods and Operator Overloading

There are many more special methods than the ones we described above. For a complete reference, we
refer to “Sect. 3.3 of the Python Language Reference”.1

When a class is defined, there are a bunch of methods, which are automatically created to facilitate
the integration of the object with the Python language. For example, what if we issue a print action on
the object?

print(s)

<_ _main_ _.shape object at 0x7f295325a6a0>

Not very informative, is it? We can change this behavior by overwriting a special function in the class,
named _ _str_ _(). By doing so, the print function can output the color and coordinate information,
as follows:

shape object: color=(0,127,0) coordinates=(47,71)

_ _str_ _() is the method that is automatically activated when a print() function has an
object to be printed. The built-in print function calls the _ _str_ _() member function (method) of
the object (in the OOP jargon, the print function sends to the object an _ _str_ _() message). All
objects, when created, have some special methods predefined. Many of them are out of the scope of
this course, but _ _str_ _() and _ _init_ _() are among these special methods.

It is possible that the programmer, in the class definition, overwrites (redefines) these predefinitions.
_ _str_ _() is set to a default definition so that when an object is printed such an internal location
information is printed.

Another special method that we will illustrate is the _ _init_ _() method, also called the con-
structor. _ _init_ _() is the method that is automatically activated when the object is first created.
As default, it will do nothing, but can also be overwritten. Observe the following statement in the code
above:

s = shape()

The object creation is triggered by calling the class name as if it is a function. Python (and many other
OOP languages) adopt this syntax for object creation. What is done is that the arguments passed to the
class name are sent “internally” to the special member function _ _init_ _(). We will overwrite it
to take two arguments at object creation, and these arguments will become the initial values for the x
and y coordinates.

In the following code block, we change our class definition and illustrate the use of these special
member functions:

1 https://docs.python.org/3/reference/.

https://docs.python.org/3/reference/
https://docs.python.org/3/reference/
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After defining a class, a critical issue that arises frequently is the behavior of the operators (+,−,>

, . . .) on the objects. For example, if you have an object, how will it behave under comparison?
In Python, you can change the behaviors of the following operators by defining the corresponding
member functions:
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• x<y calls x._ _lt_ _(y),
• x<=y calls x._ _le_ _(y),
• x==y calls x._ _eq_ _(y),
• x!=y calls x._ _ne_ _(y),
• x>y calls x._ _gt_ _(y), and
• x>=y calls x._ _ge_ _(y).

Having learned this, let us look at the following function definition inside the shape class definition
above.

def _ _lt_ _(self, other):

return self.x + self.y < other.x + other.y

With this, you have the (<) comparison operator available on shape objects. As you can see, the
comparison result is based on the Manhattan distance from the origin. You can give it a test right away
and compare the two objects s and p as follows:

print(s<p)

How would you modify the comparison method so that it compares the Euclidean distances from the
origin?

As we have created our first object in Python, we strongly advise that the encapsulation property of
OOP is followed by the programmer, i.e., you. This property is that the data of an object is private to
the object and not open to modification (or not even to inspection if encapsulation is taken extremely
strictly) by a piece of code external to the object. Only member functions, the so-called methods, of
that object can do this. Therefore, if you want to update the color value, for example, of an shape
object, though you can do it “brutally” by, e.g.:

p.color = (127,64,5)

However, you should not do so. Contrary to some other OOP programming languages, Python does
not forbid this by brutal force. Therefore, it is not a “you cannot” but a “you should not” type of
action. All data access should be done through messages (functions).

7.2.3 Example 1: Counter

Now, let us implement a very simple class calledCounter. The counter has two important restrictions:
It starts with zero and it can only be incremented. If you were to use a simple integer variable instead
of Counter, it could be initialized to any value and it can directly be assigned to an arbitrary value
without any checks or restrictions. Implementing a Python class for a Counter will let you enforce
those restrictions since you define the initialization and the actions.
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Here is the definition for such a counter:

7.2.4 Example 2: Rational Number

As our next example, let us try to define a new data type, rational number, as a Python class. It is possible
to represent a rational number simply as a tuple of integers as (numerator, denominator).
However, this representation has a couple of issues. First, the denominator can be 0, which leads to an
invalid value. Second, many distinct tuples represent practically the same value and they need to be
interpreted in a special way in operators like comparison. We need to either normalize all into their
simplest form or implement comparison operators to respect the values they represent. In the following
implementation, we choose the first approach: We find the greatest common divisor of the numerator
and the denominator and normalize them.
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This class definition only implements *, +, and comparison operators. The remaining operators are
left as an exercise. Our new class Rational behaves like a built-in data type in Python, thanks to the
special methods implemented.

7.2.5 Inheritance with Python

Now let us have a look at the second property of OOP, namely inheritance, in Python. We will do that
by extending our shape example:

A shape is a relatively general term. We have many types of shapes: Triangles, circles, ovals,
rectangles, and even polygons. If we were to incorporate them into software, for example, a simple
drawing and painting application for children, each of them would have a position on the screen and a
color. This would be common to all shapes. But then, a circle would be identified (additionally) by a
radius; a triangle by two additional corner coordinates, etc.

Therefore, it is more efficient if a triangle object inherits all the properties and member functions
of a shape object and defines only data and functions that are specific to the triangle shape.

This inheritance can be specified while defining the triangle class as follows:

class triangle(shape):

following the general syntax below:

class ClassName ( BaseClass1, BaseClass2, …, ):

Statement block

Though multiple inheritance (inheriting from more than one class) is possible, it is seldom used and
not preferred. It has elaborated rules for resolving member function name clashes, which is beyond
the scope of this introductory book.

We will continue with an example that does inheritance from a single base class.

7.2.6 Interactive Example: A Simple Shape Drawing Program

In Fig. 7.2, you see a simple object-oriented Python code that draws a red circle and a green rectangle,
and then moves the green rectangle towards the circle. You can visit the Web page of the chapter to
interact with the program. You can get additional information by hovering your mouse over any piece
of the code.
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Fig. 7.2 Interactive Python code for a simple-drawing program with an object-oriented paradigm
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Fig. 7.3 Steps of the shape displacement example

Following this interactive code display, you can find a code box, the one with a small triangle on
the left, which is the same code. You can run the code, and observe it live, running. In the exercise
part, you will be asked to modify the code.

The dark brownish sections in the code contain calls to a drawing library (named calysto), which
we will not explain in this book. Not to distract the reader intentionally, we have darkened it out.

Our object-oriented programming intention in this example is to define a general class that we
will name shape. shape contains all the properties and functions that a drawable geometric object
(circle, rectangle, triangle, . . .) possesses. All of them are drawn on an imaginary canvas at a certain
coordinate with some color. So, all shapes have a coordinate at which they are drawn and a color. The
first lines of the class shape definition start with these variables.

In this example, we implement just two geometric shapes, the circle, and the rectangle. This piece
of code with the green background is the definition of the circle class. It is derived from the base
class shape. So, it inherits all the definitions of shape (but these definitions can be overwritten,
in other words, can be redefined). As you observe, it defines a radius variable (in addition to the
color, x, y variables that were inherited from the base class). In addition, it defines, for the first
time, a draw() member function which has the duty to draw a circle on the canvas, based on the
parameters x, y, radius and color using some functions of the library calysto. The details of
this drawing implementation are not our focus here (therefore, it is darkened out).

The second geometric shape, which is implemented, is the rectangle. The code with the orange
background defines this class. Again, it is a descendent of the base class shape. Hence, it inherits all
the definitions of shape (just as the circle did). This time, it does not add a radius but a width
and a height variables to the class. In addition to the redefinition of the initializer _ _init_ _(),
which is activated the moment an instance is created, this class has its own definition of the draw()
member function.

Now, for an instance, return to the class shape definition (the yellow box). There, you will see
a displace() member function being defined. It is a function that displaces a geometric shape by
an amount of (�x,�y). Please inspect the function now. You will discover that the function:

• “memorizes” the color of the shape,
• changes the color to white,
• calls the draw() member function and draws a white shape exactly on top of the old one,
• restores the drawing color (from white to the memorized color),
• changes the x, y values by amounts delta_x and delta_y, respectively,
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• calls the draw()member function and draws at the new x,y coordinates the shape with the original
color.

Now we have an interesting phenomenon. draw() is not even defined in shape. It will be defined
differently for each class that is derived from the shape base class. How can a function of shape
make a reference to a function which does not exist for shape and will only be defined in classes
that are descendants of this base class? Also note that the each of the descendant classes (circle
and rectangle) are going to define it (the draw() function) their own way. This is called forward-
referencing and polymorphism, a nice and powerful feature of OOP.

Note that the class definitions (class shape, class circle, class rectangle) are
merely blueprints. They do not create any data. They define how they will be created and which
functions will act how. The actual creations (based on these blueprints) are done in the code in the last
(turquoise-colored) box.

In summary, the code in blue in Fig. 7.2 performs the following:

• An instance of the circle class is created (by calling its initializer) at coordinates (100, 100)
with a radius of 50. This instance is stored in the variable mycircle.

• The color of this freshly created object is changed to the brightest red.
• The object’s draw() function is called (in OOP jargon: a drawmessage is sent to the object stored

in mycircle)
• Similarly, an instance of rectangle class is created at coordinates (200, 100) and with
width = 50, height = 80. This instance is stored in the variable myrectangle.

• The color of the rectangle is changed to the brightest green.
• The rectangles draw() function is called.
• The program pauses (waits) for 1 second.
• Finally, it calls the displace() function of the rectangle. Though it was defined in the base class,
displace() locates the correct draw() (the draw of the rectangle) and performs the job.

Fig. 7.3 shows how shapes are drawn initially and how the rectangle is displaced by
myrectangle.displace(–60, –10) call.

Please use the webpage of the chapter to see the interactive demo.

7.2.7 Useful Short Notes on Python’s OOP

These notes are provided for completeness and as pointers for the curious reader. A detailed coverage
of these notes is out of the scope of this introductory book.

• It is possible that a derived class overrides a member function of its base (parent) class, but still
wants to access the (former) definition in the base class. This is possible by prefixing the function
call by super(). (no space after the dot). For example, super().draw(x, y).

• There is no proper destructor in Python. This is because the Python engine does all the memory
allocation and bookkeeping of data. Though entirely under the control of Python, sometimes the
so-called garbage collection is carried out. At that moment, all unused object instances are wiped
out of the memory. Before that, a special member function _ _del_ _() is called. If you want to
do a special treatment of an object before it is wiped out forever, you can define the _ _del_ _()
function. The concept of garbage collection is complex and it is wrong to assume that _ _del_ _()
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will right away be called even if an object instance is deleted by the del statement (del will mark
the object as unused but it will not necessarily trigger a garbage collection phase).

• Infix operators have special, associated member functions (those that start and end with double
underscores). If you want your objects to participate in infix expressions, then you have to define
those. For example “+” has the associated special member function _ _add_ _(). For a complete
list and how-to-do’s, search for “special functions of Python” and “operator overloading”.

• You can restrict the accessibility of variables defined in a class. There are three types of accessibility
modifications you can perform: public, protected, and private. The default is public.

– Public access variables can be accessed anywhere inside or outside the class.
– Protected variables can be accessed within the same package (file). A variable that starts with a

single underscore is recognized by programmers as protected.
– Private variables can only be accessed inside the class definitions. A variable that starts with two

underscores is recognized by programmers as private.

7.3 Widely-UsedMember Functions of Containers

Being acquainted with the OOP concepts, it is time to reveal the “object” properties of some Python
components. We will do so only for containers.

7.3.1 Strings

In Table 7.1, you will find some of the very frequently used member functions of strings:

7.3.2 Lists

In Table 7.2, you will find some of the very frequently used member functions of lists.

7.3.3 Dictionaries

In Table 7.3, you will find some of the very frequently used member functions of dictionaries.

7.3.4 Sets

In Table 7.4, you will find some of the very frequently used member functions of sets.
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Table 7.1 Widely-used member functions of strings. Assume S is a string. In the Operation column, anything in square
brackets denotes that the content is optional-if you enter the optional content, do not type in the square brackets

Operation Result

S.capitalize() Returns a copy of S with its first character capitalized, and
the rest of the characters lowercased

S.count(sub [,start [, end]]) Returns the number of occurrences of substring sub in
string S

S.find(sub [,start [,end]]) Returns the lowest index in S where substring sub is
found. Returns -1 if sub is not found

S.isalnum() Returns True if all characters in S are alphanumeric,
False otherwise

S.isalpha() Returns True if all characters in S are alphabetic, False
otherwise

S.isdigit() Returns True if all characters in S are digit characters,
False otherwise

S.islower() Returns True if all characters in S are lowercase, False
otherwise

S.isspace() Returns True if all characters in S are whitespace
characters, False otherwise

S.isupper() Returns True if all characters in S are uppercase, False
otherwise

separator.join(seq) Returns a concatenation of the strings in the sequence
seq, separated by string separator, e.g.,
"#".join(["a","bb","ccc"]) returns
"a#bb#ccc"

S.ljust/rjust/center(width
[,fillChar=’ ’])

Returns S, left/right justified/centered in a string of length
width. surrounded by the appropriate number of
fillChar characters

S.lower() Returns a copy of S converted to lowercase

S.lstrip([chars]) Returns a copy of S with leading chars (default: blank
chars) removed

S.partition(separ) Searches for the separator separ in S, and returns a tuple
(head, sep, tail) containing the part before it, the
separator itself, and the part after it

S.replace(old, new [, maxCount = -1]) Returns a copy of S with the first maxCount (-1:
unlimited) occurrences of substring old replaced by new

S.split([separator [, maxsplit]]) Returns a list of the words in S, using separator as the
delimiter string

S.splitlines( [keepends]) Returns a list of the lines in S, breaking at line boundaries

S.startswith(prefix [, start [, end]]) Returns True if S starts with the specified prefix,
otherwise returns False. Negative numbers may be used
for start and end. prefix can also be a tuple of
strings to try

S.strip([chars]) Returns a copy of S with leading and trailing chars
(default: blank chars) removed

S.swapcase() Returns a copy of S with uppercase characters converted
to lowercase and vice versa

S.upper() Returns a copy of S converted to uppercase
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Table 7.2 Widely-used member functions of lists. Assume L is a list. In the Operation column, anything in square
brackets denotes that the content is optional-if you enter the optional content, do not type in the square brackets

Operation Result

L.append(x) same as L[len(L) : len(L)] = [x]

L.extend(x) same as L[len(L) : len(L)] = x

L.count(x) returns number of i’s for which L[i] == x

L.index(x [, start [, stop ]]) returns smallest i such that L[i] == x. start and
stop limit search to only part of the list

L.insert(i, x) same as L[i:i] = [x] if i ≥ 0. if i = -1, inserts
before the last element

L.remove(x) same as del L[L.index(x)]

L.pop([i]) same as x = L[i]; del L[i]; return x

L.reverse() reverses the items of L in place

L.sort([cmp]) OR L.sort([cmp=cmpFct]
[,key=keyGetter] [,reverse=bool])

sorts the items of L in place

Table 7.3 Widely-used member functions of dictionaries. Assume D is a dictionary. In the Operation column, anything
in square brackets denotes that the content is optional-if you enter the optional content, do not type in the square brackets

Operation Result

D.fromkeys(iterable, value=None) Class method to create a dictionary with keys provided by
the iterator, and all values set to value

D.clear() Removes all items from D

D.copy() A shallow copy of D

D.has_key(k) OR k in D True if D has key k, else False

D.items() A copy of D’s list of (key, item) pairs

D.keys() A copy of D’s list of keys

D1.update(D2) for k, v in D2.items(): D2[k] = v

D.values() A copy of D’s list of values

D.get(k, defaultval) The item of D with key k

D.setdefault(k [, defaultval]) D[k] if k in D, else defaultval (also
setting it)

D.iteritems() Returns an iterator over (key, value) pairs

D.iterkeys() Returns an iterator over the mapping’s keys

D.itervalues() Returns an iterator over the mapping’s values

D.pop(k [, default ]) Removes key k and returns the corresponding value. If
key is not found, default is returned if given, otherwise
KeyError is raised

D.popitem() Removes and returns an arbitrary (key, value) pair
from D
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Table 7.4 Widely-used member functions of sets. Assume T, T1, T2 are sets (unless otherwise stated). In the Operation
column, anything in square brackets denotes that the content is optional-if you enter the optional content, do not type in
the square brackets

Operation Result

T1.issubset(T2) True if every element in T1 is in iterable T2

T1.issuperset(T2) True if every element in T2 is in iterable T1

T.add(elt) Adds element elt to set T (if it doesn’t already exist)

T.remove(elt) Removes element elt from set T. KeyError if element
not found

T.discard(elt) Removes element elt from set T if present

T.pop() Removes and returns an arbitrary element from set T;
raises KeyError if empty

T.clear() Removes all elements from this set

T1.intersection(T2 [, T3 …]) Synonym to (T1 & T2). Returns a new Set with
elements common to all sets (in the method T2, T3, …can
be any iterable)

T1.union(T2 [, T3 …]) Synonym to (T1 | T2). Returns a new Set with
elements from either set (in the method T2, T3, … can
be any iterable)

T1.difference(T2 [, T3 …]) Synonym to (T1–T2). Returns a new Set with elements
in T1 but not in any of T2, T3, … (in the method T2,
T3, … can be any iterable)

T1.symmetric_difference(T2) Synonym to (T1 ^ T2). Returns a new Set with
elements from either of two sets but not in their
intersection

T.copy() Returns a shallow copy of set T

7.4 Important Concepts

We would like our readers to have grasped the following crucial concepts and keywords from this
chapter:

• Encapsulation, inheritance, and polymorphism.
• Benefits of the Object-Oriented Paradigm.
• Concepts such as class, instance, object, member, method, message passing.
• Concepts such as base class, ancestor, and descendant.

7.5 Further Reading

• Special Methods in Python: https://docs.python.org/3/reference/datamodel.html#special-method-
names [1].

• The “Object-oriented Programming” chapter of G. Üçoluk, S. Kalkan, Introduction to Programming
Concepts with Case Studies in Python, Springer, 2012 [2].

7.6 Exercises

1. Define a class Vec3d to represent 3-dimensional vectors. Vec3d should encapsulate 3 float
values, x,y, and z. You should implement the following methods for your class:

https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#special-method-names
https://doi.org/10.1007/978-3-7091-1343-1
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• _ _init_ _(self, x,y,z): The constructor, which gets 3 values and construct a 3D vector.
• _ _str_ _(self): Returns the string representation of vector as (x,y,z) so that print() and

str() functions can display the vector in a human-readable form.
• add(self, b): Constructs and returns a new Vec3d object which is the addition of the

current object and b which is another Vec3d object. Vector addition is defined as the addition
of all corresponding dimensions.

• sub(self, b): Same as add() but dimensions are subtracted.
• dot(self, b): Returns the dot product of two vectors as a scalar (float) value. Dot-

product is defined as x1x2 + y1y2 + z1z2, i.e., the sum of products of the corresponding dimen-
sions.

• cross(self, b): Constructs and returns a new Vec3d object which is cross product of the
current vector and b. The cross product is defined as (y1z2 − z1y2, z1x2 − x1z2, x1y2 − y1x2)

• len(self): Returns length (norm) of the vector as a scalar:
√

x2 + y2 + z2.
• norm(self): Construct and return a vector in the same direction but the length is 1.0. Simply

divide all dimensions by the length of the vector.

The test run and its output would look as follows:

a = Vec3d(1,0,0)
b = Vec3d(0,1,0)
c = Vec3d(0.7,0.7,0.7)
print(a.add(b), a.sub(b), a.dot(b), a.cross(b))
print(a.add(c), a.sub(c), a.dot(c), a.cross(c))
print(c.len(), c.norm())

(1, 1, 0) (1, -1, 0) 0 (0, 0, 1)
(1.7, 0.7, 0.7) (0.30000000000000004, -0.7, -0.7) 0.7 (0.0, -0.7, 0.7)
1.212435565298214 (0.5773502691896258, 0.5773502691896258, 0.
↪→5773502691896258)

2. Modify the Vec3d class and replace add, sub, dot, and cross functions with the special func-
tions _ _add_ _(), _ _sub_ _(), _ _mul_ _(), _ _matmul_ _(). This change will enable
+, -, * and @ operators to be used on Vec3d objects. After this change, the test run should look
like this:

a = Vec3d(1,0,0)
b = Vec3d(0,1,0)
c = Vec3d(0.7,0.7,0.7)
print(a + b, a - b, a * b , a @ b)
print(a + c, a - c, a * c, a @ c)
print(c.len(), c.norm())

3. Define a class Vector to represent N-dimensional vectors. Vector should encapsulate N float
values. Its constructor gets any object that can be iterated (typically a list or a tuple) and constructs
a vector with the same size as the iterated value. Implement the same methods as the Vec3d class
above except for cross product, which is not a binary operator in N dimensions.
Internally, you can use a tuple or a list, and easily construct the value to be represented by iteration
as follows:

[x for x in constructorparam]
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A sample test run can be given as:

a = Vec([1,2,3,4])
b = Vec([4,3,2,1])
c = Vec([1,0,0,0])
print(a+b, a-b, a*b)
print(a+c, a-c, a*c)
print(a.len(), a.norm())

4. Implement a class sortedList which will work like a Python list but keep all values sorted
in increasing order. Implement the following methods:

• _ _init_ _(self, it): Constructs the current object from the iterated object. It basically
inserts values from it in a loop. It should call self.insert() to make sure the values are
stored sorted.

• insert(self, val): Inserts the value in its place. For this, you should first search for its
position (the index of the first number larger than val), then insert the value in this position.
You can use insert(position, val) in the internal list.

• extend(self, it): Adds values from the iterator it into the list. Similar to the constructor,
self.insert() should be used.

• _ _getitem_ _(self, idx), _ _str_ _(self), and _ _delitem_ _(self, idx)
methods to direct the following calls to the internal list: list[idx], str(list), del
list[idx] specifically.

You can use binary search in Sect. 6.8 for an efficient implementation. A sample run and output
can be given as follows:

a = sortedList([7,5,3,8])
print(a)
a.extend([7,8,2,1])
print(a)
del a[4]
print(a)

[3, 5, 7, 8]
[1, 2, 3, 5, 7, 7, 8, 8]
[1, 2, 3, 5, 7, 8, 8]

5. Implement a class for mobile subscription management called mobilePlan. Its constructor gets
3 float values for price per minute, price per SMS, and price per megabyte of Internet transfer.
After construction, each mobile use by the user is recorded to the object with call(seconds),
sms() and useInternet(megabytes) member function calls. Each record is saved inside
the object with its timestamp in a data structure (a list of tuples for example). For getting the
timestamp, use time.time() call (first, you need to import time). Later, you can call
time.ctime(timestamp) function to convert this timestamp to a human-readable form.
The user can check the current billing amount by calling thecurrentBill()method. The amount
is calculated by multiplying unit prices with usage amounts. For call-time calculation, charging is
done in units of 10 s, which means that all remainder values between 0 and 10 are rounded up to
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10s. The method returns a quadruple of the amount for calls, the amount for SMS’es, the amount
for Internet usage, and the total amount as the last value.
The last function you need to implement is detailedBill()which should generate in a string a
table that lists usage information, time, amount, and price. In the last row, the bill summary should
be given.
Sample run and output are given as follows:

a = mobilePlan(0.5, 0.5, 0.1)

a.call(12)
time.sleep(1)
a.sms()
time.sleep(1)
a.use(8.5)
time.sleep(1)
a.call(302)
time.sleep(1)
a.use(823)

print(a.detailedBill())
print(a.currentBill())

Date Type Amount Price----------------------------------------------------
Fri May 5 14:23:03 2023 call 12.00 10.00
Fri May 5 14:23:04 2023 sms 1.00 0.50
Fri May 5 14:23:05 2023 internet 8.50 0.85
Fri May 5 14:23:06 2023 call 302.00 155.00
Fri May 5 14:23:07 2023 internet 823.00 82.30
----------------------------------------------------
Calls: 165.00, SMS: 0.50, Int: 83.15, Tol: 248.65
(165.0, 0.5, 83.15, 248.65)

6. Derive a class frommobilePlan above calledmobileFixPlan. This new class gets 4 additional
values in the constructor: Minutes, SMS’es, quota and some fixed amount. In this plan, the customer
agrees to pay the minimum fixed amount. In return, the given amounts are covered by the plan.
Only excess usages are subject to the price per minute, SMS etc.
mobileFixPlan’s constructor gets 7 parameters and passes first 3 to mobilePlan by calling
super()._ _init_ _(cp, sp, ip). It inherits call, sms, use methods but overrides
the detailedBill() and currentBill() methods with new bill calculation logic. The
accumulated values up to the quota values cost 0, the rest will be billed per usage.
A sample run would look like:

b = mobileFixPlan(0.5, 0.5, 0.1, 100, 300, 10, 500)

b.call(12)
time.sleep(1)
b.sms()
time.sleep(1)
b.use(8.5)
time.sleep(1)
b.call(302)
time.sleep(1)

(continues on next page)
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(continued from previous page)
b.use(823)

print(b.detailedBill())
print(b.currentBill())

Date Type Amount Price----------------------------------------------------
Fri May 5 16:09:17 2023 call 12.00 0.00
Fri May 5 16:09:18 2023 sms 1.00 0.00
Fri May 5 16:09:19 2023 internet 8.50 0.00
Fri May 5 16:09:20 2023 call 302.00 7.00
Fri May 5 16:09:21 2023 internet 823.00 33.15
----------------------------------------------------

Usage: Calls: 314.0, SMS: 1, Int: 831.5
Plan: Calls: 300.0, SMS: 10, Int: 500.0

Calls: 15.00, SMS: 0.00, Int: 33.15, Tol: 148.15
(15.0, 0.0, 33.15, 148.15)

7. Implement a class studentPlan that is derived from mobileFixPlan with a given set of
prices and quotas. studentPlan’s constructor should get no parameters other than self and
call super()._ _init_ _()with the seven parameter values of your choice. This way, you can
create any specific mobile plan object without supplying any parameters.

8. Revisit the sortedList class above. Instead of implementing it as a separate class, and con-
taining a list in an internal variable, try to implement it as “class sortedList(list):”.
This way, you can implement the same class only by implementing a custom insert method and
overloading the constructor, append() and extend() methods. The constructor should call
super()._ _init_ _() and other methods should call the methods directly on self to manip-
ulate the inner list from inheritance. Rewrite the example this way, and inherit other methods of
Python list. Observe that you can use methods like index, len and iterate on your object
without writing any specific code.

9. Go to the interactive example in Sect. 7.2.6 and modify it as follows:

a. Add a triange class. It should take, at creation time,(x,y,dx2,dy2,dx3,dy3) as param-
eter, where x,y are the coordinates of one of the corners of the triangle on the canvas, and
dx2,dy2 are the increments relative to x1,y1 to reach the second corner of the triangle (so, the
absolute coordinate on the canvas of the second corner becomes (x+dx2,y+dy2)), dx3,dy3
have a similar meaning to reach the third corner. You are expected to define all member func-
tions present in circle or rectangle, this time for triangle. For the draw() member
function, you can investigate the content of the draw() method of the rectangle class.

b. Implement a move_on_line(x_fin, y_fin, count_of_steps) method that will
work for all geometric shapes and displace a geometric shape starting from its current posi-
tion on the canvas and ending at (x_fin,y_fin) coordinate in count_of_steps many
displacements.

c. Create a class carmethod, which is a child-drawing style car that consists of a rectangle and
two circles below it. It should implement all member functions of circle or rectangle.
Make use of the existing rectangle and circle classes.
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All variables used in a program are kept in the main memory and they are volatile, i.e., their values
are lost when the program ends. Even if you write a program that runs forever, your data will be lost
in case of a shutdown or power failure.

Another drawback of the main memory is the capacity limitation. In the extreme case, when you
need more than a couple of gigabytes for your variables, it will be difficult to keep all of them in the
main memory. In particular, infrequently required data is better kept on an external storage device
instead of the main memory.

Files provide a mechanism for storing data persistently on hard drives that provide significantly
larger storage than the main memory. These devices are also called secondary storage devices. The
data you put in a file will stay on the hard drive until someone overwrites or deletes the file (or when
the hard drive fails, which is an unfortunate but rare case).

A file is a sequence of bytes stored on the secondary storage, typically hard drive (alternative
secondary storage devices include CD, DVD, USB disk, tape drive). Data in a file have the following
differences from data in memory (variables):

1. A file is just a sequence of bytes. Therefore, data in a file is unorganized, there is no data type, and
there are no variable boundaries.

2. Data must be accessed indirectly, using I/O functions. For example, updating a value in a file requires
reading it into the main memory, updating it in the main memory, and then writing it back into the
file.

3. Accessing and updating data are significantly slower since it is on a slow external device.

Keeping data in a file instead of the main memory has the following use cases:

1. Data needs to be persistent. Data will be in the file when you restart your program, reboot your
machine, or when you find your ancient laptop in the basement 30years later (probably it will not
be there when an AD 3000 archeologist finds your laptop on an excavation site. Hard disks are not
that durable. Therefore, persistence is bounded).

2. You need to exchange data with another program. Examples:

• You download data from the Web and your program gets it as input.
• You would like to generate data in your program and put it on a spreadsheet for further processing.
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3. You have a large amount of data that does not fit in the main memory. In this case, you will probably
use a library or software like a database management system to access data in a faster and more
organized way. Files are the most primitive, basic way of achieving it.

In this chapter, we will talk about simple file access so that you will learn about simple file operations
such as opening, closing, reading, and writing. The examples of the chapter will create and modify
files when run—we strongly encourage you to check the contents of the created files.

8.1 First Example

Let us quickly look at a simple example to get a feeling for the different steps involved in working
with files.

The program above will create a file in the current directory with filename firstexample.txt.
You can open it with your favorite text editor (there are plenty of text editors for all operating systems:
notepad, wordpad, textedit, nano, vim) to see and edit it. The content will look like this:

hello
how are
you?

The first line of the program is fpointer = open(’firstexample.txt’, "w"). This
line opens the file named firstexample.txt for writing to it. If the file exists, its content will be
erased (and it will be an empty file afterward). The result of open() is a file object that we will use
in the following lines. This object is assigned to the variable fpointer.

In the following lines, all functions we call with this file object fpointer will work on the corre-
sponding file (i.e., firstexample.txt). This special dot notation helps us with calling functions
in the scope of the file. fpointer.functionname() will call the functionname function for this file.
write(string) function will write the string content to the file. Each call towrite(string)
will append the string to the file and the file will grow. At the end, when we are done, we call
close() to finish accessing the file so that your operating system will know and take necessary
actions. All open files will be closed when your program terminates. However, calling close() after
finishing writing is a good programming practice.



8.2 Files and Sequential Access 175

Now, let us read this file:

In this case, we called open() with argument "r" which tells the interpreter that we are going to
read the file (or use it as an input source). If you skip the second argument in open(), it is assumed
to be "r", so open("firstexample.txt") will be equivalent.

The read() function gets an optional argument, which is the number of bytes to read. If you skip
it, it will read the entire file content and return it as a string. Therefore, after the call, the content
variable will be a string with the file content.

8.2 Files and Sequential Access

A file consists of bytes, and read/write operations access those bytes sequentially. In sequential
access, the current I/O operation updates the file state so that the next I/O operation will resume from
the end of the current I/O operation.

Assume that you have an old MP3 player that supports only the “play me next 10s” operation on
a button. Pressing it will play the next 10 s of the song. When you press again, it will resume from
where it is left off and play for another 10 s. This follows until the song is over. The sequential access
is similar. A file pointer keeps the current offset of the file and each I/O operation advances it so that
the next call will read or write from this new offset—see Fig. 8.1.

Fig. 8.1 Sequential reading of a file
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The following is a sample program illustrating sequential access:

The text in the file was:

hello
how are
you?

The first read() reads ’hell’, the second reads ’o\nho’ (note that \n stands for a new line
so that ho is printed on a new line), and the third reads ’w ar’. After these operations, the file offset
is left at a position so that the following reads will resume from content ’e\nyou\n’.

We provided the example with 4-byte read operations. However, for text files, the typical scenario
is reading characters line by line instead of fixed size strings.

8.3 Data Conversion and Parsing

A file, specifically a text file, consists of strings. However, especially in engineering and science, we
work with numbers. A number is represented in a text file as a sequence of characters including digits,
a sign prefix (’–’ and ’+’) and at most one occurrence of a dot (’.’). That means you may use π

as 3.1416 in your Python program. However, in the text file, you store ’3.1416’, which is a string
consisting of chars ’3’, ’.’, ’1’, ’4’, ’1’, ’6’.

Note that the second line of output above is a result of Python interpreting + operator as string
concatenation, and * as adjoining multiple copies of a string. If we need to treat numbers as numbers,
we need to convert them from strings. There are two handy functions for this: int() and float()
convert a string into an integer and a floating point value, respectively. Here is an illustration:
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Note that we cannot call int(’3.1416’) since the string is not a valid integer. That brings us
another challenge of making sure that the strings we need to convert are actually numbers. Obviously,
int(’hello’) and float(’one point five’) will not work either. The mechanisms for
dealing with such errors are left for the next chapter. In this chapter, we assume that we have our data
carefully created and all conversions work without any error.

Our next challenge is having multiple numbers in a string separated by special characters or simply
spaces, e.g., ’10.0 5.0 5.0’. In this case, we need to decompose a string into string pieces
representing numbers, so that we will have ’10.0’, ’5.0’, ’5.0’ for the above string. The
next step will be converting them into numbers:

’10.0 5.0 5.0’
Step 1−→ [’10.0’, ’5.0’, ’5.0’]

Step 2−→ [10.0, 5.0, 5.0]
For the first step, we will use the split() method of a string. A string, or the variable containing

the string, is followed by .split(delimiter), which returns a list of strings separated by the
given delimiters. The delimiters are removed and all values in between are put in the list—for example:

For the second step, we will use the float() function on a list (or the int() function if you
have a list of integers). We have a couple of options for this. One is to start from an empty list and
append the converted value at each step:
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A more practical and faster version will be list comprehension, which is the compact version of
mapping a value into another as:

As we have explained in Sect. 5.2.6, the syntax is similar to the set/list notation in mathematics:

{ f loat (s) | s ∈ S} versus [float(s) for s in S]

If you need to have multiple spaces within the values, you can use “import re” and call
“re.split(’ +’, inputstr)” instead of “inputstr.split(’ ’)”. This will split the
'multiple spaces are tricky' example above into four words without
spaces. How it works is beyond the scope of the book. Curious readers can refer to the “re” and
“parse” modules for more advanced forms of input parsing. These are not trivial modules for begin-
ners.

Now, let us consider the reverse of the operation: Assume we have a list of integers and we like to
convert that into a string that can be written to a file. For this, we follow the inverse of the steps:

[10.0, 5.0, 5.0]
Step 1−→ ["10.0", "5.0", "5.0"]

Step 2−→ "10.0 5.0 5.0"

The first step will be handled with the str() function which converts any Python value into a
human-readable string:
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The next step is to join those elements with a delimiter, which is the reverse of the split()
operation. Not by accident, the name of this operation isjoin().join() is a method of the delimiter
string and list is the argument. ’:’.join([’hello’, ’how’, ’are’, ’you?’]) returns
’hello:how:are:you?’.

A more advanced way of converting values into strings is called formatted output and briefly
introduced in Sect. 8.7.

8.4 Accessing Text Files Line by Line

Files consisting of human-readable strings are called text files. Text files consist of strings separated by
the end-of-line character’\n’, also known as new line. The sequence of characters in a file contains the
end-of-line characters so that a text editor will end the current line and show the following characters
on a new line. We use end-of-line characters so that logically relevant data is on the same line. For
example:

4
10.0 20.0
15.5 22.2
3 44
10 10.5

Let us assume the integer value 4 on the first line denotes how many lines will follow. Assume also
that each of the following four lines has two real values, denoting x and y values of a point. In this
way, we can represent our input separated by the end-of-line characters for each point and by the space
character for each value in a line.

Let us create such a text file from a Python list. Please note that the file read() function returns a
string and the write() function expects a string argument. In other words, calling write(3.14)
will fail. In order to make the conversion, we use the str() function for numeric values and call
write(str(3.14)) instead. Another tricky point is that write() does not put the end-of-line
character automatically. You need to insert it in the output string or call an extra write("\n").
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Using read() will get the whole content of the file; if the file is large, your program will use too
much memory and processing the data will be difficult. In such a situation, we can access a text file
line by line using the readline() function.

Let us write a program to read and output the content of a text file. We need a loop to read the file
line by line and output. Here, when we are going to stop the loop is crucial. Python’s read() and
readline() functions return an empty string (’ ’) when there is nothing left to read. We can use this
to stop reading:

Please note the empty lines between each output line. This is due to the ’\n’ character at the end
of the string that readline() returns. In other words, readline() keeps the new line character
it reads. print() puts an end-of-line after the output (this can be suppressed by adding an end=’ ’
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argument). As a result, we have the extra end-of-line at the end of each line. In order to avoid it, you
can call rstrip(’\n’) on the returned string to remove the end-of-line. The new code will be:

Converting this file into the initial Python list [(0,0), (10,0), (10,10), (0,10)] is
our next challenge. This requires conversion of a string as "0 0\n" into (0,0). The first one is of
type str whereas the second is a tuple of numeric values. We can use int() or float() functions
to convert strings into numbers. Note that the string should contain a valid representation of a Python
numeric value: int("hello") will raise an error.

The second issue is separating two numbers in the same string. We can use split() function
followed by the separator string as in nextline.split(’ ’). This call will return a sequence of
strings from a string. If the separator does not occur in the string, it will return a list with one element.
If there is one separator, it will return two elements. For n occurrences of the separator, it will return
a list with n − 1 elements.

Here is the solution in Python:
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8.5 Termination of Input

There are two ways to stop reading input:

1. By reading a definite number of items.
2. By the end of the file.

In our previous examples, we read an integer that told us how many lines followed in the file. Then,
we called readline() in a for loop with the given number of lines. This is an example of the first
case which provides a definite number of items.

The alternative is to read lines in a while loop until a termination condition arises. The termination
condition is usually the end of file, the case where functions like read() and readline() return
an empty string ’ ’.

Note that the example above skips (reads and throws away) the first line in our input file so that the
integer on the first line is ignored. When your input does not contain such an unnecessary value, you
can delete this line.

Sometimes termination can be marked explicitly by a sentinel value which is a value marking the
end of values. This is especially useful when you have multiple objects to read:
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In this input, there are two lists with arbitrary sizes and we use a word of our choice, EOLIST to
separate them. We can use the EOLIST word to input distinct lists as follows:
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8.6 Example: Processing CSV Files

CSV stands for Comma-Separated Value; it is a text-based format for exporting/importing spreadsheet
(i.e., Excel) data. Each row in a CSV file is separated by a newline, and each column is separated by
a comma (,). Actually, the format is more complex but for the time being, let us ignore commas that
might be appearing in strings and focus on a simple form as follows:

Name,Surname,Age
Ada,Lovelace,37
John,von Neumann,53
Alan,Turing,42
Edsger W.,Dijkstra,72
Donald,Knuth,85
Leslie,Lamport,82
Dennis,Ritchie,70

Usually, the first line is reserved for the names of the columns in a spreadsheet. Now, let us create
this file:

Our next task is to read this file into the memory as a list of dictionaries, as: [{"Name":"Ada",
"Surname":"Lovelace", "Age":"37"}, …]

We need to read the file line by line, extract the components using the split() function, then
create the dictionary. Then, we can append it to a result list. For example:
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Let us improve this example by adding a column as a result of a computation. Let us calculate the
grade average and show the difference from the average as a new column. We need to go over all grade
values in the list, convert them to real values (so that we can do arithmetic on them), calculate the
average, then go over all rows to add a new column. Then, go over the list again to export/write it into
a new CSV file.
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The content of the file “second.csv”, after this code runs is as follows:

Name,Surname,Age,Avgdiff
Ada,Lovelace,37,-22.833333333333336
John,von Neumann,53,-6.833333333333336
Alan,Turing,42,-17.833333333333336
Edsger W.,Dijkstra,72,12.166666666666664
Donald,Knuth,85,25.166666666666664
Dennis,Ritchie,70,10.166666666666664

8.7 Formatting Files

Sometimes readability is important for text files, especially if data is in a tabular form. For example,
seeing all related data in a column starting at the same position can improve readability significantly.
The following shows the unformatted and formatted versions of the same data side by side:

UNFORMATTED FORMATTED
Name,Surname,Age,Avgdiff Name , Surname , Age , Avgdiff
Ada,Lovelace,37,-22.833333333333336 Ada , Lovelace , 37, -22.833
John,von Neumann,53,-6.833333333333336 John , von Neumann , 53, -6.833
Alan,Turing,42,-17.833333333333336 Alan , Turing , 42, -17.833
Edsger W.,Dijkstra,72,12.166666666666664 Edsger W. , Dijkstra , 72, 12.167
Donald,Knuth,85,25.166666666666664 Donald , Knuth , 85, 25.167
Dennis,Ritchie,70,10.166666666666664 Dennis , Ritchie , 70, 10.167

In order to achieve this, you can use the format() method of a template string as in

’{:10}, {:20}, {:3d}, {:7.3f}’.format(’Ada’, ’Lovelace’, 37,
–22.833333333336)’.

Each {} in the template matches a data value in the arguments and specifies how the data will be
converted as follows:

• The value after : denotes the (minimum) width of the data. To make a text fit a specified size with
a smaller number of characters, spaces are added to the right side, aligning the text to the left.

• For integers, the number is followed by a d to format it as a decimal value space-padded on the left
(right aligned).

• When working with floating point values, you can format the output by specifying the number of
digits after the decimal point. This is achieved by appending a period (.) followed by the desired
digit count and the letter f to indicate the value as a float. The fraction part of the number will be
rounded to match the specified number of digits.

The detailed description of format() is out of the scope of the book. For a detailed description,
please refer to the Python reference manuals.

Let us rewrite the output part of the code using formatted output:
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Producing the file “third.csv” with the following content:

Name , Surname , Age , Avgdiff
Ada , Lovelace , 37, -22.833
John , von Neumann , 53, -6.833
Alan , Turing , 42, -17.833
Edsger W. , Dijkstra , 72, 12.167
Donald , Knuth , 85, 25.167
Dennis , Ritchie , 70, 10.167

8.8 Binary Files

So far, we have only looked at text files where all values are represented as human-readable text and
all numerical values are represented as decimal strings. However, if you remember from Chapter 3,
computers do not store and process numbers as decimal digit sequences. They store variables in binary
format using the two’s complement method and the IEEE 754 floating point standard. In order to
process, read and write decimal data in text, programming languages and libraries have to convert data
from/to human-readable form to/from the internal form. Even though you will not notice the time spent
in conversion in small amounts of data, if you read 10 million numbers, you start spending a significant
amount of CPU time for converting data.

Binary files, on the other hand, store numbers as they are stored in the computer’s memory. They
are still sequences of bytes, but in a more structured way. For example, a 4-byte integer is kept as a
sequence of 4 bytes, each byte is a part of the number in two’s complement form. Reading a binary
file is simply copying data to the memory; while doing so, either no conversion is performed or only
the order of bytes is changed.

A floating point number 0 takes 1 byte in a text file, but the number
3.1415926535897932384626433832795028 takes 34 bytes. In a binary file, the total
size of a number is fixed as the size of the IEEE 754 format, i.e., 4 bytes on a 32-bit computer. Both 0
and the number π are stored in 4 bytes for single precision, 8 bytes for double precision, in a binary
file.

Keeping values in binary files have the following advantages:

1. It is more compact: Data occupies less space in the file.
2. No decimal-to-binary conversion is required. More efficient in terms of CPU usage.
3. Since sizes are fixed, randomly jumping to a location and reading relevant data is possible. In a text

file, you have to start from the beginning and read all lines up to the relevant data. This kind of
usage is a more advanced case and harder to understand for beginners.

On the other hand, using text files has the following advantages:

1. Files are human readable and editable. Users can change data using a standard editor. In binary files,
special software has to be used.

2. File format is more flexible, using variablename:value patterns in the file, data can be stored
in any order in a flexible way. This is why text files are often used as configuration files.

Most of the special formats with .exe, .xls, .zip, .pdf extensions are binary file formats.
Note: Binary files are kept out of the scope of this book. The following paragraphs give a couple of

pointers for curious readers.
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In order to use binary files:

1. You need to add ’b’ character in the second argument of the open() method as:
open(’test.bin’, ’rb’) or open(’test.bin’, ’wb’).

2. Binary I/O requires bytes typed values instead of str typed values. bytes is a sequence of
bytes. Elements of a byte sequence are not printable in contrast to str.

3. Python has the struct module for converting any value into bytes value.
struct.pack(format, values) converts values into bytes. Computationally this
conversion is much more cheaper than decimal-to-binary conversion.

4. struct.unpack(format, bytesval) can be used to convert bytes value into Python
values. It is much cheaper than binary-to-decimal conversion.

5. read(), write() can be used as usual. In read(nbytes), data size should be given.
struct.calcsize(format) can be used to calculate data size from format.

The following is an example of binary I/O. Assume the binary file contains an integer N , for the
number of points, followed by 2 × N floating point values. Let us write and then read this data:
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8.9 Notes on Files,Directory Organization and Paths

Files are organized under directories so that you can put relevant files under the same category together.
Operating systems provide a filesystem hierarchy consisting of directories (some prefer word folder
instead) and regular files.

Directories can be arbitrarily nested. You may need to traverse N levels of directories to find
your file. For example, on a UNIX originated operating system, your program can be in the
/Users/user/Desktop/Homeworks directory. This means there is a Homeworks directory,
under the Desktop directory, under the user directory, under the Users directory, under the root
directory (/), which is the topmost level on your filesystem. The top-level directory and the separator
in the MS Windows operating systems, is slightly different, being a backslash, “\”. However, “/” works
in Python for Windows too.

In order to address a file, we use a path which is a sequence of direc-
tory names separated by “/”, ended by the name of the file. For example,
"/Users/user/Desktop/Homeworks/homework1.py" is a path for the file named
"homework1.py".

A path can be either full (absolute) or relative. In the former case, a path starts with a slash (/). In
the relative case, it is considered relative to the current working directory, i.e., the directory where you
started your program. Full paths ignore your current directory whereas relative paths depend on it. For
example, if you are currently in the Desktop directory, the path "Homeworks/homework1.py"
will address the same full path above.

8.10 List of File Class Member Functions

In Table 8.1, you will find some of the very frequently used member functions of files.

Table 8.1 Frequently used member functions of files. Assume F is a file. In the Operation column, anything in square
brackets denotes that the content is optional—if you enter the optional content, do not type in the square brackets

Operation Result

F.seek(offset[,
whence=0])

Set file F’s position, like stdio’s fseek(). whence == 0 then use absolute
indexing (using offset). whence == 1 then offset relative to current pos.
whence == 2 then offset relative to file end

F.tell() Return file F’s current position (byte offset)

F.truncate([size]) Truncate F’s size. If size is present, F is truncated to (at most) that size, otherwise
F is truncated at current position (which remains unchanged)

F.write(str) Write string str to file F

F.writelines(list) Write list of strings to file F. No EOL are added

F.close() Close file F

F.fileno() Get fileno (fd) for file F

F.flush() Flush file F’s internal buffer

F.isatty() 1 if file F is connected to a tty-like dev, else 0

F.next() Returns the next input line of file F, or raises StopIteration when EOF is hit

F.read([size]) Read at most size bytes from file F and return as a string object. If size omitted,
read to EOF

F.readline() Read one entire line from file F. The returned line has a trailing \n, except possibly
at EOF. Return "" on EOF

F.readlines() Read until EOF with readline() and return a list of lines read
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8.11 Important Concepts

We would like our readers to have grasped the following crucial concepts and keywords from this
chapter:

• Sequential access. File access.
• Text files. Reading and writing text files. Parsing a text file.
• End-of-file, new line.
• Formatting files.
• Binary files and binary file access.

8.12 Further Reading

• String formatting in Python: https://docs.python.org/3.4/library/string.html#formatspec [2].
• Working with binary data and files in Python: https://docs.python.org/3/library/binary.html [1].
• Comma-Separated Values (CSV) file format: https://en.wikipedia.org/wiki/Comma-separated_

values [3].

8.13 Exercises

1. Write a function that reads a text file with the following format (ignore characters following #):

N # Number of students
# Empty line

Name Surname # Fist student
M # Number of courses that the student has taken
Coursename1: Grade # Grade is a real number
Coursename2: Grade
Coursename3: Grade
...
CoursenameM: Grade

# Empty line
Name Surname # Second student
P # Number of courses that the student has taken
Coursename1: Grade # Grade is a real number
Coursename2: Grade
Coursename3: Grade
...
CoursenameP: Grade
...
...
...

# Empty line
Name Surname # Last student
Z # Number of courses that the student has taken
Coursename1: Grade # Grade is a real number
Coursename2: Grade
Coursename3: Grade
...
CoursenameZ: Grade

https://docs.python.org/3.4/library/string.html#formatspec
https://docs.python.org/3/library/binary.html
https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/Comma-separated_values
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The function gets the filename as a parameter and returns a list of dictionaries as follows:

[ { 'name':'John', 'surname':'Doe',
'courses':[ ('ceng240', 'AA'), ('ceng301','BB')]},

{ 'name':'Jane', 'surname':'Doe',
'courses':[ ('arch101', 'CC') ]},

{ 'name':'Bill', 'surname':'Smith',
'courses':[ ] }

]

The input file for getting this example list is as follows:

3

John Doe
2
ceng240 AA
ceng301 BB

Jane Doe
1
arch101 CC

Bill Smith
0

2. Write a function that writes a list of dictionaries that have the following format into a text file. You
may choose to write the number of elements at the top of the file.

{ "city": "Ankara",
"plate code": "06",
"max temperature (C)": 40,
"min temperature (C)": -20,
"population": 5700000

}

The text file should have a dictionary content in each line and all fields should be separated by
space character.

Ankara 06 40 -20 5700000
İstanbul 34 40 -10 15800000

3. Write a function that reads the file that you have written in the previous question and returns a list
of dictionaries.

4. You are given a text file with fixed-column size records on each line. The fields names, their widths
in the input, and data types are given as follows:

• Name: 20, string.
• Surname: 20, string.
• Age: 4, integer.
• Height: 8, float.
• Weight: 8, float.
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A sample file is as follows:

Johnathan Motley 28 2.06 104.00
Metecan Birsen 28 2.08 101.00
Scottie Wilbekin 30 1.88 80.00

Melih Mahmutoğlu 33 1.91 85.00
Nigel Hayes 28 2.03 103.00

Dyshawn Pierre 29 1.98 104.00
Tonye Jekiri 28 2.12 103.00
Marko Gudurić 28 1.98 91.00
Tyler Dorsey 26 1.93 82.00
Devin Booker 32 2.06 113.00
Nick Calathes 34 1.98 97.00

Write a function to read this into a list of dictionaries with the field names in the description. The
function gets the file name as a parameter and returns the list of dictionaries. Instead of reading
the file line by line and parsing afterward, try to read it field by field as:

name = fp.read(20)
surname = fp.read(20)
age = fp.read(4)
height = fp.read(8)
weight = fp.read(8)
rest = fp.readline() # read remainder

Do not forget to convert the fields into their numerical types in the resulting dictionary.
5. Assume you would like to extend the above function into a generic fixed-column reader. Your field

names, widths and types are given in a header line in the input as:

city,15,s:population,12,i:mintemp,8,f:maxtemp,8,f
Ankara 5700000 -20.0 40.5

İstanbul 15800000 -12.0 42.0
...

Write a function that reads the header in the first line, then read and construct the list of dictionaries
based on this header.

6. Three-dimensional surfaces can be represented as a collection of polygons. A polygon consists of
a list of 3D points and a 3D point consists of 3 float values. The following format defines a set
of polygons (triangles, quadrilaterals, etc.) from a set of points. First, points (nodes) are defined
as 3 coordinate values separated by space. Then, polygons are defined by referring to a point with
their numbers. For example, face "1 5 6" defines a triangle from points 1, 5, and 6 in the input.

NODES
0 0 0
1 0 0
0.5 1 0
0 0 1
1 0 1
0.5 1 1
FACES
0 1 2
0 1 3 4
1 2 4 5
0 2 3 5
3 4 5



8.13 Exercises 193

This input defines a triangle prism.

Write a function that converts the file above into a file with a list of points per polygon format as
follows:

0,0,0 1,0,0 0.5,1,0
0,0,0 1,0,0 0,0,1 1,0,1
1,0,0 0.5,1,0 1,0,0 0.5,1,1
0,0,0 0.5,1,0 0.5,1,0 0.5,1,1
0,0,1 1,0,1 0.5,1,1

Each line consists of space-separated points where each point is comma-separated coordinate
values. The function gets two parameters: The name of the input file and the name of the output
file.

7. Write a function that reverses the conversion in the previous exercise. In other words, it should
read a file with a list of points of a polygon format and write a file in NODES/FACES format. Note
that points are repeated in the input. Put new points in a dictionary and match old points with their
previous number in the dictionary. Generate the output afterward.

8. You are given inter-city distances in a file with the following format:

city1 city2 distance1
city3 city4 distance2
city2 city4 distance3
...

The input terminates with the end-of-file. The distance information is symmetrical and a pair of
cities is only given once in the input. Write a function that reads an input file with the above
format and writes a file in a distance matrix format described below.

The distance matrix consists of distance values organized into a tabular form. Since the distance
is symmetric, the matrix contains only the upper triangular part of the table as:

Paris Istanbul Madrid Rome
Berlin 1054 2191 2319 1502
Rome 1421 2245 1957
Madrid 1274 3544
Istanbul 2731

Assume the constructed city list is Paris, Istanbul, Madrid, Rome, Berlin. Note
that the cities in the rows are in reverse order. Also last items in the rows and columns are omitted.
If two cities have no distance information, print a dash “-”.

9. Write a function that makes the reverse of the conversion above. Use “re.split(’ +’,
inputline)” from the “re” library to split with multiple spaces.
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10. Write a function that reads a file containing match details in the following format:

Team1:Team2:Day:City
ALBA Berlin:ASVEL Villeurbanne:13 April 2023:Berlin
Crvena Zvezda:Fenerbahce:13 April 2023:Belgrade
Olympiacos Piraeus:Cazoo Baskonia:13 April 2023:Piraeus
Anadolu Efes:AS Monaco:13 April 2023:Istanbul
ASVEL Villeurbanne:Cazoo Baskonia:15 April 2023:Lyon
AS Monaco:Crvena Zvezda:15 April 2023:Monaco
Olympiacos Piraeus:ALBA Berlin:15 April 2023:Piraeus
Fenerbahce:Anadolu Efes:15 April 2023:Istanbul

The function should convert the data into a “per team” report with the following format:

ALBA Berlin:
ASVEL Villeurbanne:13 April 2023:Berlin
Olympiacos Piraeus:15 April 2023:Piraeus

Crvena Zvezda:
Fenerbahce:13 April 2023:Belgrade
AS Monaco:15 April 2023:Monaco

Cazoo Baskonia:
Olympiacos Piraeus:13 April 2023:Piraeus
ASVEL Villeurbanne:15 April 2023:Lyon

Anadolu Efes:
AS Monaco:13 April 2023:Istanbul
Fenerbahce:15 April 2023:Istanbul

ASVEL Villeurbanne:
ALBA Berlin:13 April 2023:Berlin
Cazoo Baskonia:15 April 2023:Lyo

...

Note that each match is reported twice. The order of teams and games is not important.
11. Consider the reverse of the operation above. Write a function that reads the input in a “per team”

report format and outputs all games in a colon-separated format. Assume the games are not repeated
in the input and the team at the header is reported as the first team in the output. Note that the team
header and other lines are distinguished by the leading space.

12. Write a function that reads the text file given below that contains two lists with arbitrary lengths
separated by the word EOLIST.

3 0 3.4 2.1 5.1 3.2 EOLIST 1 1.5 2.0 2.5

The function should write these two lists to a binary file. The format of the binary file consists
of the list size as an integer, let’s call it N , followed by N floating point values. This pattern is
repeated twice for the two lists. Hint: Example code in Sect. 8.8 writes a single list in a binary file
with this format. Repeat this twice for the input.

13. Write a function that does the reverse of the operation above: reads the two lists from the binary
file and writes them to a text file.
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As a Turkish song says “There is no servant without fault, love me with the faults I have”, we all
make mistakes, and programming is far from being an exception to this. It is a highly technical, error-
intolerant task that requires full attention from the programmer. Even a single letter that you mistype
can produce the complete opposite of what you aim to get.

The history of computing is full of examples of large amounts of money wasted on small program-
ming mistakes (banks losing millions due to penny roundings, satellites turning into the most expensive
fireworks, robots getting stuck on Mars’s surface, etc.). Even more concerning, human lives can be
affected by the proper functioning of a program.

For this reason, writing programs as error-free as possible is an important challenge and responsi-
bility for a programmer. Programming errors can be classified into three groups:

1. Syntax errors.
2. Run-time errors.
3. Logical errors.

9.1 Types of Errors

9.1.1 Syntax Errors

Syntax errors are due to the strict well-formedness requirements of programming languages. In a natural
language essay, we can use no punctuation at all; we can use silly abbreviations, mix the ordering of
words, make typing mistakes, and still it will make sense to a reader (though your English teacher
might barely give you points).

Computer programs are entirely different. When a programming language specification tells you
to define blocks based on indentation, to match parentheses properly, to follow certain statements
with some certain punctuation (i.e., loops and functions and “:”), you have to obey that. Because our
compilers and interpreters cannot convert a program with syntax errors into a machine-understandable
form.
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The first step of the Python interpreter reading your program is to break it into parts and construct
a machine-readable structure out of it. If it fails, you will get a syntax error, for example:

>>> for i in range(10)
... print(i)

File "<ipython-input-1-12d72cac235a>", line 1
for i in range(10)

ˆ
SyntaxError: invalid syntax

>>> x = float(input())
>>> a = ((x+5)*12+4

File "<ipython-input-2-dead5b360d91>", line 2
a = ((x+5)*12+4

ˆ
SyntaxError: invalid syntax

>>> s = 0
>>> for i in range(10):
... s += i
... print(i)

File "<ipython-input-3-c3ef5d622e47>", line 4
print(i)
ˆ

IndentationError: unexpected indent

>>> while x = 4:
... s += x

File "<ipython-input-4-befcf7769cec>", line 1
while x = 4:

ˆ
SyntaxError: invalid syntax

In the examples above, the following syntax errors are present:

1. “:” is missing at the end of the for header.
2. The first parenthesis does not have a matching closing parenthesis.
3. Different levels of indentation are used in the loop body.
4. while expects a Boolean expression, but an assignment is given (“=” is used instead of “==”).

These are only a small sample of a large number of possible syntax errors one can do.
Syntax errors are the most innocent errors since you are notified of the error immediately when

you start running your program. Running your program once will give you the exact spot (though
sometimes matching parentheses and quote can be non-trivial, causing the interpreter to incorrectly
point to an error in an adjacent line instead) in the error output. If you have learned the syntax of your
language, you can fix a syntax error with a small effort.
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9.1.2 Type Errors

Python is an interpreted language and it does not make strict type checks as a compiler would check
type compatibility at compile time. Though, when it comes to performing an operation that is not
compatible with the current type of data, Python will complain. For example, when you try to override
a string element with an integer value, use an integer in a string context, or attempt to index a float
variable, etc., you will get an error:

astr = 'hello'
bflt = 4.56
cdict = {'a':4, 'b':5}

print(astr ** 3) # third power of a string
print(bflt[1]) # select first member of a float
print(cdict * 2) # multiply a dictionary by two
cdict < astr # compare a dictionary with a string

These will lead to the following errors:

>>> print(astr ** 3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for ** or pow(): 'str' and 'int'
>>> print(bflt[1])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'float' object is not subscriptable
>>> print(cdict * 2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for *: 'dict' and 'int'
>>> cdict < astr
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: '<' not supported between instances of 'dict' and 'str'

Compiled languages and some interpreters enforce type compatibility at compile time and treat all
such errors as syntax errors, providing a safer programming experience at run time. However, Python
and most other interpreters wait until the command is first executed and raise the error at the execution
time, causing a run-time error.

9.1.3 Run-Time Errors

Run-time errors are sneakier compared to syntax and other compile-time errors. Your program initiates
execution smoothly; traverses numerous loops and functions without encountering any errors; generates
intermediate output along the way; and then, at the most unexpected juncture, it abruptly throws an
error, leaving you with a disheartening error message instead of the anticipated satisfactory result.

The following example gets an input value and counts how many of the integers in the range [1, 1000]
are divisible by the input value.
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It works without any problem for non-zero input values. However, if you enter 0, it outputs the long
message in Fig. 9.1:

This output is called an Error Traceback. When a run-time error occurs, you will get one of these
and the execution of the program will be terminated. Depending on the settings, the output may be
more brief but you will get line numbers and the line leading to the error.

The classification of the error is defined as an Exception and colored red in the error output. It is
displayed in the first line and repeated with its explanation in the last line. Traceback also reports the
functions involving the error, from the outermost to the innermost. Each arrow (colored green) marks
the program line causing the error. The last item in the traceback is the actual position where the error
occurred; the 2nd line having return m % n == 0 in this case. The divisible() function
containing the error line is called by the 7th line, the count() function, which is called by the 14th
line of the program.

Fig. 9.1 A traceback example for a run-time error



9.1 Types of Errors 201

By looking at the error output, you will see the whole chain of calls that led your program to the
error state. The last one is the most important one, showing where Python tried to execute an operation
and failed.

The reason for failure is ZeroDivisionError in this case. If you trace the program with
the input value 0, you will see that Python tried to evaluate m % 0 == 0 for some m value. The
remainder operator is division based and dividing something by 0 is mathematically impossible. Most
programming languages reject this operation with a run-time error. The Python style is to reject this
operation with a ZeroDivisionError exception.

The following are the most common exceptions and run-time errors in Python:

Exception Reason
KeyboardInterrupt User pressed Ctrl-C; not an error but user intervention
ZeroDivisionError Right-hand side of / or % is 0
AttributeError Object/class does not have a member
EOFError input() function gets End-of-Input by user
IndexError Container index is not valid (negative or larger than length)
KeyError dict has no such key
FileNotFoundError The target file of open() does not exist
TypeError Wrong operand or parameter types, or wrong number of parameters for functions
ValueError The given value has the correct type but the operation is not supported for the given value

The following code illustrates each of these errors (except for the user-generated ones):

b = 0
a = a / b # ZeroDivisionError

x = [1,2,3]
print(x.length) # AttributeError: lists don’t have a length attribute (use len(x))

print(x[4]) # IndexError: last valid index of list x is 2

person = { 'name' : 'Ada', 'surname': 'Lovelace'}
print(person['Name']) # KeyError: person does not have 'Name' key but 'name'

fp = open("example.txt") # FileNotFoundError: file "example.txt" does not exist

print([1,2,3] / 12) # TypeError: Division is not defined for lists

def f(x, y):
return x*x+y

print(f(5)) # TypeError: Only one argument is supplied instead of 2.

print(int('thirtytwo')) # ValueError: string value does not represent an integer

a,b,c = [1,2,3,4] # ValueError: too many values on the right hand side

9.1.4 Logical Errors

Logical errors are the worst among all errors because Python does not raise an error. It single-mindedly
keeps running your program; however, your program has a mistake about what it intends to compute.
In other words, it simply does not do what it is supposed to do because of an error.
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Such an error can be due to a small typo, improper nesting of blocks, bad initialization of variables,
and many other reasons. However, the code segment containing the error has correct syntax; hence, it
does not cause a syntax or run-time error. As a result, you will not know that such an error exists until
you observe some discrepancies in your output.

The following are a few examples of logical errors:

y = x / x+1 # you meant y = x / (x+1), forgetting about precedence

lastresult = 0
def missglobal(x):

result = x*x+1 # you intend to update the global variable
if x > result: # but you assign a local variable instead.

lastresult = result # you should have used "global lastresult"

def returnsnothing(x, y):
y = x*x+y*y
if x <= y:

return x # if x > y, the function returns nothing
print(returnsnothing(0.1, 0.1)) # does not have any value. prints "None"

s = 1
while i < n: # you forgot incrementing i as i+=1

s += s*x/i # loop will run forever. "infinite loop"

9.2 How toWork with Errors

In programming, errors are an inevitable part of the process. As you accumulate experience, the
frequency of errors tends to decrease, although a few may still occur. Thankfully, there are techniques
available to mitigate the occurrence of errors, but achieving a state of absolute error-free programming
is not attainable.

The following is a list of strategies for eliminating the errors:

1. Program with care.
2. Place controls in your code.
3. Handle exceptions.
4. Write verification code and raise exceptions.
5. Debug your program.
6. Write test cases.

Programmers at different experience levels can employ these strategies. In more critical scenarios,
guaranteeing program quality and performing software testing become vital elements of the software
engineering field, and dedicated engineers fulfill these responsibilities.
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9.2.1 Programwith Care

The best way to write error-free programs is not to cause one in the first place. As an analogy, instead
of cleaning your living room every day, you may just choose to keep it tidy in the first place and not
to leave garbage around. Programming is similar, a large percentage of errors are due to the careless
acts of programmers.

Programming is not an evolutionary process where you start from an ugly code and improve it as
you correct errors. This way of programming is possible but not efficient. You better spend some time
before starting to write code to design your solution and develop a strategy: You should determine
which functions you need, which data structures you use, which algorithms you use, and in which
order you will write the code. It is a good practice to divide your problem into pieces (functions for
example). Write one function at a time and test it before going to the next step.

As you gain more experience as a programmer, this strategy will become more effective. However,
there’s no reason to refrain from being extra attentive on your very first day of coding.

9.2.2 Place Controls in Your Code

The values that a variable can have or a function may return are not known in advance. Especially,
user-supplied values as inputs are completely untrustable. Moreover, there may be other environmental
issues. For example, a required file may not exist.

If you have an untrustworthy value, subsequent operations may fail as a result, as illustrated below:

a = [1,2,3]
age = {'Han': 30, 'Leia': 20, 'Luke': 20}

# CASE 1
n = int(input())
print(a[n]) # will fail for n > 2 or n < -2

# CASE 2
name = input()
print(age[name]) # will fail names other than 'Han', 'Leia', 'Luke'

# CASE 3
x = float(input())
y = math.sqrt(x) # will fail for x < 0
y = 1 / x # will fail for x == 0

In order to deal with such errors, you can check all values, especially the user-supplied ones.
Checking all input values before starting a computation is called Input Sanitization. For the above
example cases, we can sanitize inputs as follows:
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Initially, writing such conditions may appear to be a tedious task. However, encountering issues
related to these conditions while the program is running can be even more troublesome for users. If
you are developing a program that aims to be genuinely useful, it is essential to incorporate these types
of input checks.

9.2.3 Handle Exceptions

This is an alternative to placing check conditions in your code. Sometimes there are too many conditions,
one for each step of your computation, so that each line of code opens a new if block and nests like the
branches of a tree. Instead of writing a whole nested sequence of if …else statements, exceptions
give you a chance to handle all errors in the same place. Especially, they allow you to handle the errors
in the caller function rather than the original place where the error occurred.

Before we can see how this works, let us look at its syntax first:

try:
...... # a block with possible errors
...... # if there are function calls here
...... # and an error occurs in the function, we can handle it here

except exceptionname: # exceptionname is optional
..... # this is error handling block.
..... # when there is an error, execution jumps here
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The try-except statement consists of two parts: a block of code (after try:) that may generate
run-time errors, and one or more except clauses to handle those errors. When an error occurs within
the try block, the execution jumps to the corresponding except clause that matches the type of the
error. The code within the matching except clause is then executed. Multiple except clauses can
be used to handle different types of exceptions. The except: clause, without specifying an exception
name, catches all errors and can be used to handle any type of exception within a single block.

The following is the same example of the previous section, but the errors are handled in the same
location.

You can try the above example with different inputs:

1. -3
2. 2 ’Obi’
3. 2 ’Han’ -2
4. 2 ’Han’ 0
5. 2 ’Han’ 1

The first will cause a[n] to raise an IndexError. The second will cause age[name] to raise
a KeyError. The third will cause math.sqrt(x) to raise a ValueError. The fourth will cause
1 / x to raise a ZeroDivisionError. The last one will have no error and finish the try block
and continue with the next instruction jumping over except clauses. You can also create exceptions
with the raise statement. raise ValueError will create the error.
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Exceptions save you from nested if …else statements for data validation, e.g.:

if cond1:
..1..
if cond2:
..2..
if cond3:

..3..

..4.. # success at last
else:

# report error
else:
# report error

else:
# report error

is harder to read compared to the following:

try:
if !cond1:
raise Error

..1..

if !cond2:
raise Error

..2..

if !cond3:
raise Error

..3..

..4.. # success
except :
... # Error handling

This is flatter and allows you to focus on the actual code.

9.2.4 Write Verification Code and Raise Exceptions

Even if you sanitize the user input and check all data for valid values, your program can still have
logical errors and it might calculate incorrect intermediate/final values. If your program consists of
multiple steps, a logical error in step one will cause step two to calculate an incorrect value and this
will create a snowball effect, potentially causing all steps to produce incorrect values.

For example, you write a function for solving second-order equations ax2 + bx + c = 0. You name
the function as solvesecond(a, b, c)which returns (x1, x2) as the roots. You are (almost)
sure that you always send correct a, b, c values to this function. However, it will be safer if you add
a check like the following:
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def solvesecond(a,b,c):
det = b*b - 4*a*c
# the following is the verification code
if det < 0:

print("Equation has no real roots for", a, b, c)
raise ValueError

....

...

The math.sqrt() function would have raised the exception anyway. However, you added an
extra error message about what caused the problem. Unfortunately, in cases of logical errors, there are
usually no run-time errors but only false generated results and this may lead to serious problems.

9.2.5 DebugYour Code

The process of identifying and resolving programming errors is known as debugging. It entails locating
the exact position of the error (the bug), determining the underlying causes, and modifying the code
to prevent its recurrence.

Debugging methods are explained in detail in their own sections below.

9.2.6 Write Test Cases

To ensure that your program is functioning correctly and free of logical errors, it is essential to perform
thorough testing. Testing is a crucial but challenging aspect of all engineering disciplines.

In order to test a program, you should create a set of inputs, run your program for each input case, and
collect the outputs. Then you inspect them. If there is a way of verifying the outputs, you shall verify
them. For instance, when solving an equation, you verify its validity by substituting the determined
variable back into the equation and checking if it actually holds.

(x1, x2) = findrootsecond(a,b,c)

if a*x1*x1 + b*x1 + c != 0 or a*x2*x2 + b*x2 +c != 0:
print('test failed for', a, b, c, 'roots', x1, x2)

You can generate millions of such numbers and automatically verify them. If the problem is not
verifiable, you can get a set of known solutions and compare your solutions against the known solutions.

9.3 Debugging

Debugging is an act of looking for errors in a code, finding what causes the errors and correcting them.
Since even modest programs can extend to hundreds of lines of code, debugging is not an easy task.
Even if a run-time error gives you the exact location of the error, the variable values causing the error
could be set in different parts of your code and you will not easily determine how your variable got
into that error-causing state.
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Debugging involves an iterative process. You break down your program into smaller parts and
systematically eliminate each part, ruling out potential error locations one by one. By narrowing down
possibilities step by step, you can pinpoint the exact step where the mistake occurred. The outputs of
run-time errors assist in expediting this process.

There are several methods for debugging. A programmer may use one or more of them for debugging.
The following is a sample program with an error (you may jump to the Jupyter Notebook page of

the chapter and run this interactive example):

The first call returns 5, which is printed on the screen, telling us that “ada” is at position 5 of
“abracadabra”, matches after “abrac”. However, the second call should return −1 since the
“aba” substring does not exist in “abracadabra” but it generates an error.

9.3.1 Debugging Using Debugging Outputs

This is one of the simplest and oldest but most effective methods for debugging a program. In this
method, you add extra output lines that shed light on the behavior of your program. This way, you
can trace where your program diverted from the expected behavior. For example (you may check the
Jupyter Notebook page of the chapter and run this interactive example):
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In the output, you can see that the execution failed after the output “check if aba != a for
i= 1”. Therefore, we can reason that an error occurred at the next step. The following test is

if srcstr[i] != tarstr[i] for “aba” and “a” for i = 1.

Apparently, attempting to get tarstr[1] if tarstr is “a” fails. The length of tarstr is 1
and, hence, the only valid index is 0. There are different ways to get rid of this error. One quick solution
is to test if lengths of srcstr and tarstr are compatible. len(tarstr) >= len(srcstr)
should hold in startswith(). The programmer should have considered and handled this case.
Now, we can correct it as a result of our debugging session.
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Of course, debugging output should be added in the correct places with sufficient descriptive infor-
mation. If you add too much debugging output, you may be lost in the output lines. If there is not
sufficient output, you may not locate the error.

For generic tracing of programs with multiple functions, you can use the following Python magic
called decorator, which reports all function calls with parameters when a function is decorated as (you
may check the Jupyter Notebook page and run this interactive example):
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Putting “@tracedec” before the function definitions will give you the entry and return states of
these functions. How this decorator works and the “@” syntax are far beyond the scope of this book.
You may adapt and use the decorator above if it suits you.

9.3.2 Handle the Exception to Get More Information

One issue with run-time errors is that they do not offer information about the program’s current state,
specifically the set of variables. They provide a traceback, indicating the line that caused the exception
and the sequence of functions that led to that point. To retrieve variable values, you can handle the
exception and include log output in the handler, as shown in the following example.
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This way, we get the output in the first line:

Error: srcstr: aba , tarstr: a , i: 1

which gives us the state of the variables at the moment of the error.

9.3.3 Use the Python Debugger

All decent programming environments come with a debugger software which helps a programmer
to execute a program step by step, observe the current state, add breakpoints (stops) to inspect, and
provide a controlled execution environment.

For compiled languages, debuggers are external programs getting the user’s program as input.
For Python, it is a module called pdb, which stands for Python DeBugger. If you use an integrated
development environment (IDE), a debugger is embedded in the tool so you can use it via the graphical
user interface controls. Otherwise, you can use the command line interface.

In the Python command line, the only thing you need to do is to input:

import pdb

at the beginning of your program, and then type:

pdb.set_trace()

at any point you want the execution to stop and go into the debugging mode. When you run your
program or call a function, your program will start executing and when the execution hits one of the
breakpoints, execution will stop and a debugger prompt “(Pdb)” will be displayed:

> <ipython-input-14-110393975fb5>(7)startswith()
-> for i in range(len(srcstr)): # check all characters of srcstr
(Pdb) h

Documented commands (type help <topic>):
========================================
EOF c d h list q rv undisplay
a cl debug help ll quit s unt
alias clear disable ignore longlist r source until
args commands display interact n restart step up
b condition down j next return tbreak w
break cont enable jump p retval u whatis
bt continue exit l pp run unalias where

Miscellaneous help topics:
==========================
exec pdb

The first line tells at which function and line the execution has been stopped. For the following
example let us assume that we inserted the set_trace() call in the first line of startswith()
function. When the execution stops, it is possible to get help on the commands that can be entered.
When h or help is typed on the debugger prompt, a list of all the debugger commands is displayed.
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Single- or two-letter commands are abbreviated forms of the longer ones (e.g., a for args, b for
break, c for cont, cl for clear, · · · ).

After this point, you can use the next (n) command to execute the program line by line. If the
current statement contains a function call, you may choose to go into the function call using the step
(s) command. Otherwise, next will call all functions, wait for their return, and execute the current
line until the end in a single step. During debugging, the print (p) command can be used to display
the content of a variable. The following is a debugging session output summarizing some of the useful
commands of the debugger. Each time execution hits a breakpoint, the debugger prompt will show the
current position. You can use the cont command to continue execution:

Command Description
next Execute the current line and stop at the next statement, jump over functions
step Execute the current line, if there is a function enter it
args show arguments of the current function
break Add a new breakpoint. Execution will stop at that line too
clear Remove the breakpoint(s)
cont Continue execution until hitting a breakpoint
print print the current value of the variable
display display the variable value whenever it changes in the current function
list list program at the current line
ll list the current function
return continue execution until the current function returns
where show currently active functions: which function calls brought the code execution flow here

The following is an example run. Note that Web-based interactive environments, like the Jupyter
Notebook, do not provide an effective debugger yet. You need to execute this in a local environment:

import pdb

def startswith(srcstr, tarstr):
'''check if tarstr starts with srcstr
like srcstr="abra" tarstr="abracadabra" '''

pdb.set_trace()
for i in range(len(srcstr)): # check all characters of srcstr

if srcstr[i] != tarstr[i]: # if does not match return False
return False

return True # if False is not returned yet, it matches

def findstr(srcstr, tarstr):
'''Find position of srcstr in tarstr'''
for i in range(len(tarstr)):

# if scrstr is same as tarstr from i to rest
# return i
if startswith(srcstr, tarstr[i:]):

return i
return -1

print(findstr("aba", "abra"))

when it is run, it stops execution and outputs a prompt “(Pdb)”. The following is a sample interaction
with the debugger. All words following the (Pdb) prompt are user input:
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> <ipython-input-18-bf80973a0bf6>(7)startswith()
-> for i in range(len(srcstr)): # check all characters of srcstr
(Pdb) cont
> <ipython-input-18-bf80973a0bf6>(7)startswith()
-> for i in range(len(srcstr)): # check all characters of srcstr
(Pdb) help

Documented commands (type help <topic>):
========================================
EOF c d h list q rv undisplay
a cl debug help ll quit s unt
alias clear disable ignore longlist r source until
args commands display interact n restart step up
b condition down j next return tbreak w
break cont enable jump p retval u whatis
bt continue exit l pp run unalias where

Miscellaneous help topics:
==========================
exec pdb

(Pdb) cont
> <ipython-input-18-bf80973a0bf6>(7)startswith()
-> for i in range(len(srcstr)): # check all characters of srcstr
(Pdb) cont
> <ipython-input-18-bf80973a0bf6>(7)startswith()
-> for i in range(len(srcstr)): # check all characters of srcstr
(Pdb) cont
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-18-bf80973a0bf6> in <module>()

20 return -1
21

---> 22 print(findstr("aba", "abra"))

1 frames
<ipython-input-18-bf80973a0bf6> in findstr(srcstr, tarstr)

16 # if scrstr is same as tarstr from i to rest
17 # return i

---> 18 if startswith(srcstr, tarstr[i:]):
19 return i
20 return -1

<ipython-input-18-bf80973a0bf6> in startswith(srcstr, tarstr)
5 like srcstr="abra" tarstr="abracadabra" '''
6 pdb.set_trace()

----> 7 for i in range(len(srcstr)): # check all characters of srcstr
8 if srcstr[i] != tarstr[i]: # if does not match return False
9 return False

IndexError: string index out of range

This example selects the debugger intervention point with a call to pdb.set_trace(). If you
want to start the debugging right away with the script start, execute your script at the operating system
command line as
python3 -m pdb yourscript.py
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Assume yourscript.py contains the script without pdb related calls:

OS Command Line Prompt> python3 -m pdb yourscript.py
> /tmp/yourscript.py(1)<module>()
-> def startswith(srcstr, tarstr):
(Pdb) cont
Traceback (most recent call last):
File "/usr/lib/python3.9/pdb.py", line 1705, in main
pdb._runscript(mainpyfile)

File "/usr/lib/python3.9/pdb.py", line 1573, in _runscript
self.run(statement)

File "/usr/lib/python3.9/bdb.py", line 580, in run
exec(cmd, globals, locals)

File "<string>", line 1, in <module>
File "/tmp/yourscript.py", line 1, in <module>
def startswith(srcstr, tarstr):

File "/tmp/yourscript.py", line 15, in findstr
if startswith(srcstr, tarstr[i:]):

File "/tmp/yourscript.py", line 5, in startswith
if srcstr[i] != tarstr[i]: # if does not match return False

IndexError: string index out of range
Uncaught exception. Entering post mortem debugging
Running 'cont' or 'step' will restart the program
> /tmp/yourscript.py(5)startswith()
-> if srcstr[i] != tarstr[i]: # if does not match return False
(Pdb) where
/usr/lib/python3.9/pdb.py(1705)main()

-> pdb._runscript(mainpyfile)
/usr/lib/python3.9/pdb.py(1573)_runscript()

-> self.run(statement)
/usr/lib/python3.9/bdb.py(580)run()

-> exec(cmd, globals, locals)
<string>(1)<module>()
/tmp/t.py(1)<module>()

-> def startswith(srcstr, tarstr):
/tmp/t.py(15)findstr()

-> if startswith(srcstr, tarstr[i:]):
> /tmp/t.py(5)startswith()
-> if srcstr[i] != tarstr[i]: # if does not match return False
(Pdb) list
1 def startswith(srcstr, tarstr):
2 '''check if tarstr starts with srcstr
3 like srcstr="abra" tarstr="abracadabra" '''
4 for i in range(len(srcstr)): # check all characters of srcstr
5 -> if srcstr[i] != tarstr[i]: # if does not match return False
6 return False
7 return True # if False is not returned yet, it matches
8
9

10 def findstr(srcstr, tarstr):
11 '''Find position of srcstr in tarstr'''
(Pdb) print(srcstr,tarstr,i)
aba a 1
(Pdb) quit
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In this run, execution stops as soon as the script is started. The cont command tells the debugger
to continue execution. Execution stops again when the run-time error occurs. All debugger commands
are available in this state. The user can inspect the current values of variables or variables in the upper
call levels.

Debuggers are incredibly powerful tools, particularly when dealing with complex code that involves
numerous modules and functions. However, they require time and effort to master and wield effectively.
The good news is that if you utilize an integrated development environment (IDE), they become more
user-friendly and accessible. The following is a list of some of the free IDE software supporting Python
debugging:

PyCharm https://www.jetbrains.com/pycharm
PyDev https://www.pydev.org/
Spyder https://www.spyder-ide.org/
Thonny https://thonny.org/
VSCode https://code.visualstudio.com/

9.4 Important Concepts

We would like our readers to have grasped the following crucial concepts and keywords from this
chapter:

• Different types of errors: Syntax, type, run-time, and logical errors.
• How to deal with errors.
• Exceptions and exception handling.
• Debugging by “printing” values, exception handling, and a debugger.

9.5 Further Reading

• Python’s built-in exceptions: https://docs.python.org/3/library/exceptions.html [1].
• Python’s document on errors and exceptions: https://docs.python.org/3/tutorial/errors.html [2].

9.6 Exercises

We have included numerous exercises throughout the chapter. Please take the time to study and answer
them.

1. Find the errors and exception types in the following code:

https://www.jetbrains.com/pycharm
https://www.pydev.org/
https://www.spyder-ide.org/
https://thonny.org/
https://code.visualstudio.com/
https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/tutorial/errors.html
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students = { 131223: "john doe", 2314123: "jane doe", 2334233: "john smith"}
files = ["a.txt", "b.txt", "c.txt", "d.txt"]
s = "hello"
f = 7.1231231
i = 1

d = i / (i-1)
p = s + "/" + files[4]
print(students["john doe"])
print(f.split('.'))
print(s * 3)
s[0] = "H"
print(':'.join(files,s)
j = int(str(f))

2. Whenever possible, add a conditional test before each error line in the above program so that the
code works without any error. Replace any
error generating line

with:
ifsometest :

error generating line
3. Put each error generating line in a try: ... except:... block and handle the exception in

the above program. For each exception, the program should print an error message and continue
with the next statement.

4. The following program reads an input file and calculates an average value. The first line of the input
file is a number N denoting the count of student records. The following N lines are student records
in the format:
id:name:surname:grade
where id is an integer and grade is a float. After the student records, the input file has 0 or more
lines providing student IDs or student full names. The file terminates with the end-of-file.
Possible sources for error are marked in comments as ####. Those lines may generate an error
depending on the input or current state of the program.

def tostudent(line):
stid, name, surname, grade = line.split(':') ####
stid = int(stid) ####
grade = float(grade)
return {'stid': stid, 'fullname': name+' '+surname, 'grade':grade}

fp = open("students.txt") ####

stbyname = {}
stbyid = {}
numstudents = int(fp.readline()) ####
for i in range(numstudents):

st = tostudent(fp.readline())
stbyname[st['fullname']] = st ####
stbyid[st['stid']] = st ####

# following lines read student names or
# ids until end-of-file

sum = 0
(continues on next page)
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(continued from previous page)
i = 0
while True:

idorname = fp.readline().strip()
if idorname == '': # EOF test

break
st = stbyname[idorname] if stbyname[idorname] else stbyid[idorname] ####
sum += st['grade']
i += 1

average = sum/i #####

print('Average of',i,'students are',average)

Correct the code above so that it will report and ignore the errors whenever possible (i.e., skip over
invalid student records). The updated program should execute until the last line. Use if conditionals
instead of try:.. except: whenever possible.

5. Solve the exercise above only with try:... except: blocks. Compare your solution with
the solution to the previous exercise. Also, compare the handling of exceptions generated in the
tostudent() function inside the function body or in the main program.

6. You are given the following binary search function, which searches a value in a list. At each step,
it finds a mid-point of the search range. If the value is smaller than the mid-point, it narrows down
the search in the first half, otherwise in the second half.

def bsearch(val, lst):
if not issorted(lst):

return -1
start = 0
end = len(lst)
while start != end:

mid = (start+end) // 2
if val == lst[mid]:

return mid
elif val > lst[mid]:

start = mid
else:

end = mid-1

This code makes a sanity check before starting the search. It calls the issorted() function to
ensure the list is sorted in increasing order. First, implement this function.
Unfortunately, the bsearch() function does not work. It finds the correct result for some values
but fails in many cases. It does not generate a run-time error but goes into an infinite loop. Use the
debugging methods covered in the chapter to find and correct this error.

7. The following function gets two sorted lists as arguments and returns a sorted list by merging them.
However, the code generates a run-time error.
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def merge(a,b):
na, nb = len(a),len(b)
if not (issorted(a) and issorted(b)):

print("error")
return []

rlist = [] # value to be returned
i,j = 0,0 # indices for a and b

while i < na or j < nb:
if a[i] < b[j]: # a is smaller pick it

rlist.append(a[i])
i += 1

else: # b is smaller pick it
rlist.append(b[j])
j += 1

return rlist

Debug and correct this function. Note that this is a debugging exercise, not a puzzle. Focus on
applying the debugging techniques even after fixing the error. Try all techniques described in the
chapter.
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10Scientific and Engineering
Libraries

In this chapter, we cover several libraries that are very functional in scientific & engineering-related
computing problems. In order to keep our focus on the practical usages of these libraries and considering
that this is an introductory textbook, the coverage of this chapter is not intended to be comprehensive.

10.1 Numerical Computing with NumPy

NumPy can be considered as a library for working with vectors and matrices. NumPy calls vectors and
matrices as arrays.

10.1.1 Arrays andTheir Basic Properties

Let us consider a simple vector and a matrix:

array1 = (
1 2 3

)
, (10.1)

and

array2 =
(

1 2 3
4 5 6

)
. (10.2)
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Let us see how we can represent and work with these two arrays in NumPy:

>>> import numpy as np # Import the NumPy library
>>> array1 = np.array([1, 2, 3])
>>> array2 = np.array([[1, 2, 3], [4, 5, 6]])
>>> type(array1)
<class 'numpy.ndarray'>
>>> type(array2)
<class 'numpy.ndarray'>
>>> array1
array([1, 2, 3])
>>> array2
array([[1, 2, 3],

[4, 5, 6]])
>>> print(array2)
[[1 2 3]
[4 5 6]]

We see from this example that we can pass lists of numbers as arguments to the np.array()
function which creates a NumPy array for us. If the argument is a nested list, each element of the list
is used as a row of a 2D array (as in the array2 case).

Arrays can contain any type of data as elements; however, we limit ourselves to numbers (integers
and real numbers) in this chapter.

Shapes, Dimensions and Number of Elements of Arrays.
The first thing we can do with a NumPy array is check its shape. For our example array1 and
array2, we can do so as follows:

>>> array1.shape
(3,)
>>> array2.shape
(2,3)

where we can see that array1 is a one-dimensional array with 3 elements and array2 is a 2 × 3
array (a 2D matrix).

For a 2D array, a shape value (R, C) denotes the number of rows first (R), which is sometimes
also called the first dimension, and then the number of columns (C), which is the second dimension.
For nD arrays with n > 2, the meaning of the shape values is the same except that there are n values
in the shape.

In NumPy, we can easily create a new array with a new shape but the same content (notice that the
shape parameter is a tuple):

>>> array1.reshape((3,1))
array([[1],

[2],
[3]])

>>> array2.reshape((1,6))
array([[1, 2, 3, 4, 5, 6]])

Note that this operation does not change array1 or array2.
For many applications, we will need to access the number of dimensions of an array. For this

purpose, we can use the <array>.ndim value:
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>>> array1.ndim
1
>>> array2.ndim
2

The number of elements in an array is another important value that we are frequently interested in.
To access that, we can use the <array>.size value:

>>> array1.size
3
>>> array2.size
6

Accessing Elements in Arrays.
NumPy allows for the same indexing mechanisms as those you can use with Python’s native container
data types (e.g., tuples, lists). For NumPy, let us look at some examples:

>>> array1[-1]
3
>>> array2[1][2]
6
>>> array2[-1]
array([4, 5, 6])

Creating Arrays.

We have already seen that we can create arrays using the np.array() function. However, there are
other ways of creating arrays that conform to certain predefined specifications. We can, for example,
create arrays filled with zeros or ones (note that the argument is a tuple describing the shape of the
matrix):

>>> np.zeros((3, 4))
array([[0., 0., 0., 0.],

[0., 0., 0., 0.],
[0., 0., 0., 0.]])

>>> np.ones((2,6))
array([[1., 1., 1., 1., 1., 1.],

[1., 1., 1., 1., 1., 1.]])

Alternatively, we can create an array filled with a range of values using the np.arange()
function—notice that the usage is very similar to the range() function we introduced in Sect. 5.2.3
to create an iterator:

>>> np.arange(1,10) # 1: starting value. 10: ending value (excluded)
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.arange(1,10,2) # 1: starting value. 10: ending value. 2: Increment
array([1, 3, 5, 7, 9])
>>> np.arange(1,10).reshape((3,3))
array([[1, 2, 3],

[4, 5, 6],
[7, 8, 9]])
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10.1.2 Working with Arrays

Now let us see the different types of operations we can perform with arrays.

Arithmetic, Relational, and Membership Operations with Arrays
The arithmetic operations (+, -, *, /, **), the relational operations (==,<,<=,>,>=), and the mem-
bership operations (in, not in) that we can apply on numbers and other data types in Python can
be applied on arrays with NumPy. These operations are performed element-wise. Therefore, the arrays
that are provided as operands to a binary arithmetic operator need to have the same shape.

Let us look at some examples of arithmetic operations:

>>> A = np.arange(4).reshape((2,2))
>>> A
array([[0, 1],

[2, 3]])
>>> B = np.arange(4, 8).reshape((2,2))
>>> B
array([[4, 5],

[6, 7]])
>>> print(B-A)
[[4 4]
[4 4]]
>>> print(B+A)
[[ 4 6]
[ 8 10]]
>>> A
array([[0, 1],

[2, 3]])
>>> B
array([[4, 5],

[6, 7]])

Note that these operations create a new array whose elements are the results of applying the operation.
Therefore, the original arrays are not modified. If you are interested in in-place operations that modify
an existing array during the operation, you can use combined statements such as +=, -=, *=.

Relational and membership operations are also applied element-wise, and we can easily anticipate
the outcomes of such operations, e.g., as follows:

>>> A < B
array([[ True, True],

[ True, True]])
>>> B > A
array([[ True, True],

[ True, True]])
>>> A > B
array([[False, False],

[False, False]])
>>> 4 in B
True
>>> 10 in B
False
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Useful Functions
NumPy arrays provide several useful functions. These include:

• Standard mathematical functions such as exponent, sine, cosine, square-root:
np.exp(<array>), np.sin(<array>), np.cos(<array>), np.sqrt(<array>).

• Minimum and maximum: <array object>.min() and <array object>.max().
• Summation, mean and standard deviation: <array object>.sum(),
<array object>.mean() and <array object>.std().

Note that minimum, maximum, summation, mean, and standard deviation can be applied on the
whole array as well as along a pre-specified dimension (specified with an axis parameter). Let us see
some examples to clarify this important aspect:

>>> A
array([[0, 1],

[2, 3]])
>>> A.sum()
6
>>> A.sum(axis=0)
array([2, 4])
>>> A.sum(axis=1)
array([1, 5])
>>> A.sum(axis=2)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/usr/local/lib/python3.7/site-packages/numpy/core/_methods.py", line 47, in _sum
return umr_sum(a, axis, dtype, out, keepdims, initial, where)

numpy.AxisError: axis 2 is out of bounds for array of dimension 2

where we understand from the error that the axes start being numbered from zero.

Splitting and Combining Arrays
For many problems, we will need to split an array into multiple arrays or combine multiple arrays
into one. For splitting arrays, we can use functions such as np.hsplit() (for horizontal split),
np.vsplit() (for vertical split), and np.array_split() (for more general split operations).
Below is an example for hsplit() and vsplit():

>>> L = np.arange(16).reshape(4,4)
>>> L
array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])

>>> np.hsplit(L,2) # Divide L into 2 arrays along the horizontal axis
[array([[ 0, 1],

[ 4, 5],
[ 8, 9],
[12, 13]]), array([[ 2, 3],
[ 6, 7],
[10, 11],
[14, 15]])]

>>> np.vsplit(L,2)
[array([[0, 1, 2, 3],

[4, 5, 6, 7]]), array([[ 8, 9, 10, 11],
[12, 13, 14, 15]])]
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Note that the resultant arrays are provided as a Pythonlist. Note also that the functionshsplit()
and vsplit() work on even sizes (i.e., they can split into equally sized arrays). For more specific
split operations, you can use array_split().

To combine multiple arrays, we can use np.hstack() (for horizontal stacking), np.vstack()
(for vertical stacking), and np.stack() (for more general stacking operations). Below is an example
(for the arrays A and B that we have created before):

>>> A
array([[0, 1],

[2, 3]])
>>> B
array([[4, 5],

[6, 7]])
>>> np.hstack((A, B))
array([[0, 1, 4, 5],

[2, 3, 6, 7]])
>>> np.vstack((A, B))
array([[0, 1],

[2, 3],
[4, 5],
[6, 7]])

Iterations with Arrays
NumPy already provides us with many functionalities that we might need while working with arrays.
However, in many circumstances, these will not be sufficient and we will need to be able to iterate over
the elements of arrays and perform custom algorithmic steps.

Luckily, iteration with arrays is very similar to how we would perform iterations with other container
data types in Python. Let us see some examples:

>>> L
array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])

>>> for r in L:
... print("row: ", r)
...
row: [0 1 2 3]
row: [4 5 6 7]
row: [ 8 9 10 11]
row: [12 13 14 15]
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Here we see that iteration over a multidimensional array iterates over the first dimension. To iterate
over each element, we have at least two options:

>>> for element in L.flat:
... print(element)
...
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
>>> for r in L:
... for element in r:
... print(element)
...
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Now let us implement one of the NumPy operations we have seen above in Python from scratch as
an exercise:
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10.1.3 Linear Algebra with NumPy

Now let us get a flavor of the linear algebra operations provided by NumPy. Note that some of these
operations are provided in the module numpy.linalg.

Transpose
The transpose operation flips a matrix along the diagonal. For an example matrix A,

A =
(

1 2
3 4

)
, (10.3)
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its transpose is the following:

AT =
(

1 3
2 4

)
. (10.4)

In NumPy, the transpose of a matrix can be easily accessed by accessing its .T member variable or by
calling its .transpose() member function:

>>> A
array([[1, 2],

[3, 4]])
>>> A.T
array([[1, 3],

[2, 4]])
>>> A
array([[1, 2],

[3, 4]])

Note that .T is simply a member variable of the array object and is not defined as an operation. Try
finding the transpose of A with A.transpose() and see that you obtain the expected result. Note
also that the transpose operation does not change the original array.

Inverse
The inverse of an n × n matrix A is an n × n matrix A−1 that yields an n × n identity matrix I when
multiplied:

A × A−1 = I. (10.5)

In NumPy, we can use np.linalg.inv(<array>) to find the inverse of a square array. Here is
an example:

>>> A
array([[1, 2],

[3, 4]])
>>> A_inv = np.linalg.inv(A)
>>> A_inv
array([[-2. , 1. ],

[ 1.5, -0.5]])

Let us check whether the inverse was correctly calculated:

>>> np.matmul(A, A_inv)
array([[1.0000000e+00, 0.0000000e+00],

[8.8817842e-16, 1.0000000e+00]])

which is the identity matrix (I ) except for some rounding error at index (1, 0) due to the floating point
approximation. However, as we have seen in Chap.2, while writing our programs, we should compare
numbers such that 8.8817842e-16 can be considered equal to zero.

Determinant, norm, rank, condition number, trace
While working with matrices, we often require the following properties, which can be easily calculated.
For the sake of brevity and to keep the focus, we will omit their explanations:
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Matrix Property How to Calculate with NumPy
Determinant (|A| or det (A)) np.linalg.det(A)
Norm (||A||) np.linalg.norm(A)
Rank (rank(A)) np.linalg.matrix_rank(A)
Condition number (κ(A)) np.linalg.cond(A)
Trace (tr(A)) np.trace(A)

Dot Product, Inner Product, Outer Product, and Matrix Multiplication
The product of two vectors and matrices can be defined and calculated in different ways:

• np.dot(a, b): For vectors (1D arrays), this is equivalent to the dot product (i.e.,
∑

i ai × bi

for two vectors a and b). For 2D arrays and arrays with more dimensions, the result is matrix
multiplication.

• np.inner(a,b): For vectors, this is the dot product (like np.dot(a,b)). For higher-
dimensional arrays, the inner product is a sum product over the last axes. Consider the following
example for clarification on this:

>>> A
array([[0, 1],

[2, 3]])
>>> B
array([[4, 5],

[6, 7]])
>>> np.inner(A,B)
array([[ 5, 7],

[23, 33]])

The last axes for both A and B are the horizontal axes. Therefore, each first-axis element of A (i.e.,
[0, 1] and [2,3]) is multiplied with each first-axis element of B ([4, 5] and [6, 7]).

• np.outer(a, b): The outer product is defined on vectors such that result[i, j] = a[i]
* b[j].

• np.matmul(a, b): Multiplication of matrices a and b. The result is simply calculated as
resulti j = ∑

k aikbk j , as also illustrated in Fig. 10.1.

Eigenvectors and Eigenvalues
Explaining eigenvectors and eigenvalues is beyond the scope of the book. However, we can briefly
remind that eigenvectors and eigenvalues are the variables that satisfy the following for a matrix A
which can be considered as a transformation in a vector space:

Av = λv. (10.6)

In other words, v is such a vector that A just changes its scale by a factor λ.
In NumPy, eigenvectors and eigenvalues can be obtained by np.linalg.eigh(<array>)

which returns a tuple with the following two elements:

1. Eigenvalues (an array of λ) in decreasing order.
2. Eigenvectors (v) as a column matrix. In other words, v[:, i] is the eigenvector corresponding

to the eigenvalue λ[i].
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Fig. 10.1 Illustration of matrix multiplication of two matrices A and B.

Matrix Decomposition
NumPy also provides many frequently used matrix decomposition methods, as listed below:

Matrix Decomposition How to Calculate with NumPy
Cholesky decomposition linalg.cholesky(A)
QR factorization np.linalg.qr(A)
Singular Value Decomposition linalg.svd(a)

Solve a Linear System of Equations
Given a linear system of equations as follows:

a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,

...

an1x1 + a22x2 + · · · + annxn = bn,

(10.7)

which can be represented in compact form as

ax = b, (10.8)

Such a system can be solved in NumPy using np.linalg.solve(a, b).
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Here is an easy example:

>>> A
array([[0, 1],

[2, 3]])
>>> B
array([3, 4])
>>> np.linalg.solve(A,B)
array([-2.5, 3. ])
>>> X = np.linalg.solve(A,B)
>>> X
array([-2.5, 3. ])

which can be easily verified using multiplication:

>>> np.inner(A, X)
array([3., 4.])

which is equal to B.

10.1.4 Why Use NumPy? Efficiency Benefits

The previous sections have illustrated how capable the NumPy library is and how easily we can do
many calculations with the pre-defined functionalities, e.g., in its linear algebra module. Since we can
access each element of an array using Python’s indexing mechanisms, we can be tempted to implement
those functionalities ourselves, from scratch.

However, these functionalities in NumPy are not implemented in Python but in C, another high-
level programming language where programs are directly compiled into machine-executable binary
code. Therefore, they would execute much faster in comparison to what we would be implementing in
Python.

The following example illustrates this. When executed, you should observe a significant difference
in running time, typically on the order of approximately ~1000 times faster.

In other words, it is strongly recommended, whenever possible, to use existing NumPy functions
and routines, and to write every operation in vector or matrix form as much as possible if you are
working with matrices.
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10.2 Scientific Computing with SciPy

SciPy is a library that includes many methods and facilities for Scientific Computing. It is closely
linked to NumPy so much that NumPy needs to be imported first to be able to use SciPy.
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The following is a list of some modules provided by SciPy. Even a brief coverage of these modules
is not feasible in a chapter. However, we will see an example in Chap.12 using SciPy’s stats and
optimize modules.

Module Description
cluster Clustering algorithms
constants Physical and mathematical constants
fftpack Fast Fourier Transform routines
integrate Integration and ordinary differential equation solvers
interpolate Interpolation and smoothing splines
io Input and Output
linalg Linear algebra
ndimage N-dimensional image processing
odr Orthogonal distance regression
optimize Optimization and root-finding routines
signal Signal processing
sparse Sparse matrices and associated routines
spatial Spatial data structures and algorithms
special Special functions
stats Statistical distributions and functions

10.3 Data Handling and Analysis with Pandas

Pandas is a very handy library for working with files and analyzing data in different formats. To keep
things simple, in this section, we will just look at CSV (Comma Separated Values) files (briefly covered
in Sect. 8.6). Note that the facilities for other formats are very similar.
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10.3.1 Supported File Formats

As we have seen before, Python already provides facilities for reading and writing files. However, if
you need to work with “structured” files such as CSV, XML, XLSX, JSON, HTML, the native Python
features would need to be significantly extended.

That is where Pandas comes in. Pandas complements Python’s native facilities to be able to work
with structured files for both reading data from them and creating new files. Below is a list of the
different file formats that Pandas supports and the corresponding functions for reading or writing
them. The table is adapted from, and the reader is encouraged to check the Pandas IO Reference1 to
see a more up-to-date list:

Format Type Data Description Reader Writer
text CSV read_csv() to_csv()
text Fixed-Width Text File read_fwf() –
text JSON read_json() to_json()
text HTML read_html() to_html()
text Local clipboard read_clipboard() to_clipboard()
– MS Excel read_excel() to_excel()
binary OpenDocument read_excel() –
binary HDF5 Format read_hdf() to_hdf()
binary Feather Format read_feather() to_feather()
binary Parquet Format read_parquet() to_parquet()
binary ORC Format read_orc() to_orc()
binary Msgpack read_msgpack() to_msgpack()
binary Stata read_stata() to_stata()
binary SAS read_sas() –
binary SPSS read_spss() –
binary Python Pickle Format read_pickle() to_pickle()
SQL SQL read_sql() to_sql()
SQL Google BigQuery read_gbq() to_gbq()

10.3.2 Data Frames

Pandas library is built on top of a data type called DataFrame which is used to store all types of
data while working with Pandas. In the following, we will illustrate how you can get your data into a
DataFrame object:

1. Loading data from a file.
If you have your data in a file that is supported by Pandas, you can use its reader to directly obtain a
DataFrame object. Let us look at an example CSV file:

1 https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html.

https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html
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Note the following critical details:

• The read_csv() function used the header (“Name”, “Grade”, and “Age”) from our CSV file. If
your file does not have a header, you can call read_csv() with the header parameter set to
None as follows: pd.read_csv(filename, header=None).

• The read_csv() function reads all columns in the CSV file. If you wish to load only some of the
columns (e.g., “Name”, “Age” in our example), you can relay this using the usecols parameter
as follows: pd.read_csv(filename, usecols=[’Name’,’Age’]).

2. Convert Python data into a DataFrame.
Alternatively, you can provide an existing Python data object as an argument to a DataFrame()
constructor, as illustrated in the following example:

In many cases, we will require the rows to be associated with names, or sometimes called keys. For
example, instead of referring to a row as “the row at index 1”, we might require accessing a row with a
non-integer value. This can be achieved as follows (note how the printed DataFrame looks different):
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Alternatively, we can obtain a DataFrame from a dictionary, which might be easier for us to create
data column-wise—note that the column names are obtained from the keys of the dictionary:

10.3.3 Accessing Data with DataFrames

We can access data column-wise or row-wise.

1. Column-wise access.
For column-wise access, you can use df["Grade"], which returns a sequence of values. To access
a certain element in that sequence, you can either use an integer index (as in df["Grade"][1]) or
a named index if it has been defined (as in df["Grade"]["Amanda"]). The following example
illustrates this for the example DataFrame we have created above:

>>> print(df)
Grade Age

Jack 40.2 20
Amanda 30.0 25
Mary 60.2 19
>>> print(df['Grade'][1])
30.0
>>> print(df['Grade']['Amanda'])
30.0

2. Row-wise access.
To access a particular row, you can either use integer indexes with df.iloc[<row index>] or
df.loc[<row name>] if a named index is defined. This is illustrated below:
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>>> print(df)
Grade Age

Jack 40.2 20
Amanda 30.0 25
Mary 60.2 19
>>> print(df.iloc[1])
Grade 30.0
Age 25.0
Name: Amanda, dtype: float64
>>> print(df.loc['Amanda'])
Grade 30.0
Age 25.0
Name: Amanda, dtype: float64

You can also provide both column index and name index in a single operation, i.e.,
[<row index>, <column index>] or [<row name>, <column name>] as illustrated
below:

>>> df.loc['Amanda','Grade']
30.0
>>> df.iloc[1, 1]
25

While accessing a DataFrame with integer indexes, you can also use Python’s slicing; i.e.,
[start:end:step] indexing.

10.3.4 Modifying Data with DataFrames

Although modifying data in a DataFrame is simple, you need to be careful about one crucial concept:
Let us say that you use column and row names to change the contents of a cell and you first access the
column and then the corresponding row as follows:

>>> print(df)
Grade Age

Jack 40.2 20
Amanda 30.0 25
Mary 60.2 19
>>> df['Grade']['Amanda'] = 45
/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:6: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html
↪→#returning-a-view-versus-a-copy

This is called chained indexing and Pandas will warn you that you are modifying a DataFrame
that was returned while accessing columns or rows in your original DataFrame: df[’Grade’]
returns a direct access for the original Grade column or a copy of it. Depending on how your data is
structured and stored in the memory, the end result may differ, and your change might not get reflected
on the original DataFrame.

To prevent this from happening, you should use a single-access operation as illustrated below (you
may also do this with loc and iloc):
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>>> print(df)
Grade Age

Jack 40.2 20
Amanda 30.0 25
Mary 60.2 19
>>> df.loc['Amanda','Grade'] = 45
>>> df.iloc[1,1] = 30
>>> print(df)

Grade Age
Jack 40.2 20
Amanda 45.0 30
Mary 60.2 19

With these facilities, you can now access every item in a DataFrame and modify them.

10.3.5 Analyzing Data with DataFrames

Once we have our data in a DataFrame, we can use Pandas’s built-in facilities for analyzing our
data. One very simple way to analyze data is via descriptive statistics, which you can access with
df.describe() and df[<column>].value_counts():

Apart from these descriptive functions, Pandas provides functions for sorting (using
.sort_values() function), finding the maximum or the minimum (using .max() or .min()
functions) or finding the largest or smallest n values (using .nsmallest() or .nlargest()
functions:
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Note that the displayed output includes the names because we selected names as the indices for
accessing the rows.

10.3.6 Presenting Data in DataFrames

Pandas provides a very easy mechanism to plot your data through the .plot() function. Some
examples are provided below to illustrate how you can plot your own data. This plotting facility is
provided by Matplotlib, which we will see next. If you are not using Jupyter Notebook, you need to
use the following method to show the plot:
df.plot().figure.show()
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10.4 Plotting Data with Matplotlib

Matplotlib is a very capable library for drawing different types of plots in Python. It is very well
integrated with NumPy, SciPy, and Pandas, and therefore, all these libraries are very frequently used
together seamlessly.

10.4.1 Parts of a Figure

A figure consists of the following elements (see also Fig. 10.2):

• The title of the figure.
• The axes, together with their ticks, tick labels, and axis labels.
• The canvas of the plot, which contains a drawing of your data in the form of dots (scatter plot),

lines (line plot), bars (bar plot), surfaces, etc.
• The legend, which informs the observer about the different plots in the canvas.
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Fig. 10.2 A figure consists of several components all of which you can change in Matplotlib easily. [Produced by
adapting the code at https://matplotlib.org/2.0.2/examples/showcase/anatomy.html]

10.4.2 PreparingYour Data for Plotting

Matplotlib expects NumPy arrays as input and therefore, if you have your data in a NumPy array, you
can directly plot it without any data type conversion. With pandas DataFrame, the behavior is not
guaranteed and therefore, it is recommended that the values in a DataFrame are first converted to a
NumPy array, using, e.g.:

https://matplotlib.org/2.0.2/examples/showcase/anatomy.html
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10.4.3 Drawing Single Plots

There are two ways to plot with Matplotlib: In an object-oriented style or the so-called PyPlot style:

1. Drawing in an Object-Oriented Style
In this style, we create a figure object and an axes object and work with those to create our plots. How
this is done is illustrated in the following example:
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2. Drawing in a Pyplot Style
In the Pyplot style, we directly call functions in the Pyplot module (matplotlib.pyplot) to create
a figure and draw our plots. This style does not work with an explicit figure or axes objects. This is
illustrated in the following example (assuming Matplotlib and NumPy libraries are already imported
as in the previous example):

10.4.4 DrawingMultiple Plots in a Figure

In many situations, you will need to draw multiple plots side by side in a single figure. This can be
performed in the object-oriented style using the subplots() function to create a grid and then use
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the created subplots and axes to draw the plots. This is illustrated with an example below (assuming
the libraries are already imported and x has been defined as before):



246 10 Scientific and Engineering Libraries

It is possible to do this in the PyPlot style as well, as illustrated below:
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10.4.5 Changing the Elements of a Plot

All elements that are visualized in Fig. 10.2 can be changed in Matplotlib. We will skip these details
to keep our focus in the book on the practical uses of these libraries. The interested reader can look up
the extensive documentation at https://matplotlib.org/2.1.1/contents.html or look at the help page of a
function (e.g., help(plt.plot)) to see how to modify all elements of a figure.

10.5 Important Concepts

We would like our readers to have grasped the following crucial concepts and keywords from this
chapter:

• NumPy arrays and their properties: array shape, dimensions, sizes, elements.
• Accessing and modifying elements of a NumPy array.
• Simple algebraic functions on NumPy arrays.
• SciPy and its basic capabilities.
• Pandas, DataFrame, loading files with Pandas.
• Accessing and modifying content in DataFrames.
• Analyzing and presenting data in DataFrames.
• Matplotlib and different ways to make plots.
• Drawing single and multiple plots. Changing elements of a plot.

10.6 Further Reading

• NumPy User Guide: https://numpy.org/doc/stable/user/index.html [2].
• SciPy User Guide: https://docs.scipy.org/doc/scipy/tutorial/index.html [5].
• Pandas User Guide: https://pandas.pydata.org/docs/user_guide/index.html [4].
• Matplotlib User Guide: https://matplotlib.org/2.1.1/users/index.html [1].
• Introduction to Algebra with Python by Pablo Caceres: https://pabloinsente.github.io/intro-linear-

algebra [3].

10.7 Exercises

1. Define functions that work like the sum(), mean(), min(), and max() operations provided by
NumPy. These functions should take a single 2D array and return the result as a number. You can
assume that the operation applies to the whole array and not to a single axis.

2. Create a simple CSV file using your favorite spreadsheet editor (e.g., Microsoft Excel or Google
Spreadsheets) and create a file with your exams and their grades as two separate columns. Save the
file, upload it to the Jupyter Notebook viewer and do the following:

• Load the file using Pandas.
• Calculate the mean of your exam grades.
• Calculate the standard deviation of your grades.

3. Using Matplotlib, generate the following plots with suitable names for the axes and the titles.

https://matplotlib.org/2.1.1/contents.html
https://numpy.org/doc/stable/user/index.html
https://docs.scipy.org/doc/scipy/tutorial/index.html
https://pandas.pydata.org/docs/user_guide/index.html
https://matplotlib.org/2.1.1/users/index.html
https://pabloinsente.github.io/intro-linear-algebra
https://pabloinsente.github.io/intro-linear-algebra
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• Draw the following four functions in separate single plots: sin(x), cos(x), tan(x), cot(x).
• Draw these four functions in a single plot.
• Draw a multiple 2x2 plot where each subplot is one of the four functions.
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11AnApplication: Approximation
and Optimization

In this chapter, as an application for programming with Python, we cover some mathematical methods
widely used in many disciplines. We start with the Taylor series for approximating a function. We
then look at Newton’s method for finding the roots of a function f (x), which can also be considered
as an application of the Taylor series. Finally, we extend Newton’s method to find the minimum of a
function.

11.1 Approximating Functions with Taylor Series

In some problems, we have limited access to a function: We might be provided with only the value of
the function or its derivatives at certain input values, and we might be required to make estimations
(approximations) about the values of the function at other input values. The Taylor series is one method
that provides us with a very elegant solution for approximating a function.

The Taylor series of a function f (·) is essentially an infinite sum of terms that converges to the
value of the function at x , i.e., f (x). In more formal terms:

f (x) = f (a) + f ′(a)
1! (x − a) + f ′′(a)

2! (x − a)2 + f ′′′(a)
3! (x − a)3... (11.1)

which can be re-written in a more compact form:

f (x) =
∞∑

n=0

f (n)(a)

n! (x − a)n . (11.2)

In the limit (n → ∞), f (x) will be equal to its Taylor series. However, in realistic applications, it is
impractical to take n → ∞. In practice, we take the first m terms of the series and approximate the
function with them:

f (x) ≈ f (a) + f ′(a)
1! (x − a) + f ′′(a)

2! (x − a)2 + f ′′′(a)
3! (x − a)3... + f (m)(a)

m! (x − a)m,

(11.3)
ignoring the terms for n > m.
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Fig. 11.1 The Taylor Series approximates a function by using its derivatives. The drawing illustrates f (x0) being
approximated (with the first derivative of the Taylor Series only) by the known value of the function f (a) and the
derivative f ′(a) at that point. The gray line denotes the tangent line at f (a) whose slope is f ′(a)

Note that the denominator (n!) grows very large very quickly when n grows large. Therefore, the
higher-order terms in the Taylor series are likely to be very small. For this reason, taking the first m
terms in the series provide sufficient approximations to f (x) in practice.

We can provide some intuition for the Taylor series as follows: If we know the value of the function
f at x = a, then we can calculate the value of the function at any other value of x as long as we know
all (or the first m) derivatives of the function at x = a, i.e., f (n)(a) for n = 1, ...,∞ (or m).

To see this better, consider the Taylor series approximation with the first two terms: f (x) ≈ f (a) +
f ′(a)
1! (x − a), which is illustrated in Fig. 11.1. With this first-order approximation, we can use the first

derivative of the function to calculate the change in the function’s value and anticipate the value for a
new x (x0 in the figure).

If the function changes with higher-order nonzero derivatives, there will be a difference between the
correct value of the function ( f (x0)) and our approximation. This is called the approximation error.

11.1.1 Taylor Series Example in Python

Let us take a “simple” function, namely f (x) = x3, and approximate it with the first few terms of the
Taylor Series:
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11.2 Finding the Roots of a Function

Let us assume that we have a non-linear, continuous function f (x) that intersects the horizontal axis
as in Fig. 11.2. We are interested in finding r0, ..., rn such that f (ri ) = 0. We call these intersections
(r0, r1, r2 in Fig. 11.2) the roots of function f ().

For many problems, finding the values of these intersections is a fundamental step. For example,
many problems requiring solutions to equations like g(x) = h(x) can be reformulated as a root-finding
problem for g(x) − h(x) = 0.

11.2.1 Newton’s Method for Finding the Roots

Newton’s method is one of the many for finding the roots of a function. It is a very common method
that randomly starts at an initial, x0, value and iteratively takes one step at a time towards a root. The
method can be described with the following main iterative steps:

Step 1: Set an iteration variable, i , to 0. Initialize xi randomly; however, if you have a good guess,
it is always better to initialize xi with that. For our example function f (x) in Fig. 11.2, see the selected
xi in Fig. 11.3.

Step 2: Find the intersection of the tangent line at xi with the horizontal axis. The tangent line to
the function at xi is illustrated as the gray dashed line in Fig. 11.3. This line can be easily obtained
using xi and f ′(xi ).

Fig. 11.2 Finding the roots of a function f (x) means finding r0, .., rn for which the function is zero, f (ri ) = 0

Fig.11.3 One iteration of Newton’s method. The tangent line at f (x0) is used to calculate the next value of xi , getting
us closer to a root
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Let us use xi+1 to denote the intersection of the tangent line with the horizontal axis. Using the
definition of the derivative and simple geometric rules, we can easily show that xi+1 satisfies the
following:

xi − xi+1

f (xi )
= 1

f ′(xi )
, (11.4)

with which we can formulate how we can find xi+1 as follows:

xi+1 = xi − f (xi )

f ′(xi )
. (11.5)

Step 3: Repeat Step 2 by replacing xi ← xi+1 until “convergence”.
The intuition behind Newton’s method is simple: For a linear function such as y = ax + b, the

root is r = −b/a, which can be easily derived from the slope and a known y value. For a non-linear
function y = f (x), we make an approximation by assuming that f () is linear at the point x0 and use
the slope of this linear approximation to find a new x0 that is closer to the root.

11.2.2 Misc Details on Newton’s Method for the Curious

It is not possible to cover all aspects of these elegant methods in detail. However, it would be a shame
to skip the following details and hide them from the curious mind.

The Taylor Series Perspective for Newton’s Method

Newton’s method for finding a root of a function f () works iteratively starting from an initial value x0

using the first-order expansion of f () around xi :

f (xi+1) ≈ f (xi ) + f ′(xi )

1! (xi+1 − xi ), (11.6)

which can be simplified by rewriting xi+1 = xi + δ:

f (xi + δ) ≈ f (xi ) + f ′(xi )

1! δ. (11.7)

We are interested in finding δ such that the approximation is equal to zero, in other words:

0 = f (xi ) + f ′(xi )

1! δ, (11.8)

which yields the delta value for which the approximation is zero:

δ = − f (xi )

f ′(xi )
. (11.9)



254 11 An Application: Approximation and Optimization

Plugging this into xi+1 = xi + δ, we obtain the equation to calculate the next value in the sequence
towards a minimum of the function f ():

xi+1 ← xi − f (xi )

f ′(xi )
. (11.10)

Notes on Convergence

A careful reader should have identified two important issues with Newton’s method:
1- How can we be sure that this method converges to a solution, i.e., a root?
If the function f () satisfies certain conditions, then we can guarantee that Newton’s method con-

verges to a root. The details of these conditions and the proofs are beyond the scope of the book and
the interested reader can check [4, 5].

To be on the safe side, we can limit the maximum number of steps that we can take and use the
calculated value at the end.

2- If convergence can be guaranteed, how can we know that we have converged to a solution?
A common technique in such iterative algorithms is to check whether the difference between the

consecutive values is tiny. In our case, if |xi+1 − xi | < ε, where ε is a very small number, then we can
assume that the consecutive steps do not lead to much change in xi and, therefore, we can stop our
algorithm. Of course, the value of ε will be critical in determining how many iterations are needed to
“converge” to a result.

Notes on Multiple Roots
Newton’s method converges only to a single root based on the initial value x0. To find other roots, the
algorithm needs to be executed with a different value of x0, which will hopefully lead to a different
root than the ones we have identified before.

Since our knowledge about f () or its roots is limited, running the algorithm for N times for different
values of x0 is the only option. If, on the other hand, we knew roughly the ranges of x where the function
f () might have roots, then we could use this knowledge to choose better values as x0.

11.2.3 Newton’s Method in Python

Let us implement Newton’s method in Python and try to find the roots of an example function.
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11.2.4 Newton’s Method in SciPy

Let us see how we can use Newton’s method from the SciPy library (from Sect. 10.2) to find the
roots of a function. Note that we do not need to provide the derivative of the function to SciPy. It uses
“numerical differentiation” to calculate the derivative for us.
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11.3 Finding aMinimum of Functions

An important problem frequently encountered in many disciplines is optimization. In such problems,
as illustrated in Fig. 11.4, we have a function f (x) and we wish to find its minimum value ( f ∗):

f ∗ ← min
x∈R f (x), (11.11)

or the value (x∗) that minimizes it:
x∗ ← arg min

x∈R f (x). (11.12)
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Fig. 11.4 Finding a minimum of a function f (x) means finding x∗ for which f (x∗) is the lowest value (or lower than
all others in a local neighborhood) that function f () can take

In many practical settings, the functions with which we work may have multiple minima. In such a
case, the minimum point, x∗, can be either (i) a global minimum such that there may not be any other
point x̂ with f (x̂) < f (x∗), (ii) a local minimum such that x∗ is the minimum of a local neighborhood.

The methods generally exploit two important cues: (i) At a minimum, the sign of the first-order
derivative changes (on the sides of the minimum). (ii) At a minimum, the first derivative is zero.

11.3.1 Newton’s Method for Finding theMinimum of a Function

Similar to find the root of a function explained in Sect. 11.1.1, Newton’s method for finding a local
minimum of a function f ()works iteratively starting from an initial value x0 by using the second-order
expansion of f () around xi this time:

f (xi+1) ≈ f (xi ) + f ′(xi )

1! (xi+1 − xi ) + f ′′(xi )

2! (xi+1 − xi )
2, (11.13)

which can be simplified by rewriting xi+1 = xi + δ:

f (xi + δ) ≈ f (xi ) + f ′(xi )

1! δ + f ′′(xi )

2! δ2. (11.14)

We are interested in finding δ that minimizes the approximation. This can be obtained by setting the
first derivative to zero:

d

dδ

(
f (xi ) + f ′(xi )

1! δ + f ′′(xi )

2! δ2
)

= f ′(xi ) + f ′′(xi )δ = 0, (11.15)

which yields the delta value minimizing the approximation:

δ = − f ′(xi )

f ′′(xi )
. (11.16)

Plugging this into xi+1 = xi + δ, we obtain the equation for calculating the next value in the sequence
towards a minimum of the function f ():

xi+1 ← xi − f ′(xi )

f ′′(xi )
. (11.17)
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11.3.2 Misc Details for the Curious

Notes on Convergence

Newton’s method can converge to a local minimum if (i) f is a strongly convex function with “Lipschitz
Hessian” and (ii) x0 is close enough to x∗ ← arg minx∈R f (x). More formally when:

‖xi+1 − x∗‖ ≤ 1

2
‖xi − x∗‖2. ∀i ≥ 0. (11.18)

In plain English, (i) we have a “well-shaped” local neighborhood in which we can talk about the
concept of a minimum, (ii) our initial value, x0, is within such a neighborhood.

Notes on Multiple Minima

Similar to the case for root finding, Newton’s method converges only to a single minimum based on
the initial value x0. In order to find other minima, the algorithm must be executed with a different value
of x0, which will hopefully lead to a different minimum than the ones that we have identified before.

11.3.3 Newton’s Method in Python

Now let us implement Newton’s method for finding a minimum of a function from scratch, in Python.
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11.3.4 Newton’s Method for FindingMinima in SciPy

Unfortunately, Newton’s method as explained in Sect. 11.3.1 does not exist in SciPy. However, there
are many alternatives, and we will just illustrate one of them here.
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11.4 Important Concepts

We would like our readers to have grasped the following crucial concepts and keywords from this
chapter:

• Taylor series for approximation of functions.
• Newton’s method for finding the roots and the minima of functions.
• Local minimum versus global minimum.

11.5 Further Reading

• Taylor series chapter of “Calculus Volume 2” available at https://openstax.org/books/calculus-
volume-2/pages/6-3-taylor-and-maclaurin-series [3].

• Newton’s method section of “Calculus Volume 1” available at https://openstax.org/books/calculus-
volume-1/pages/4-9-newtons-method [2] and Sect. 2.7 of “Contemporary Calculus” available at
https://www.contemporarycalculus.com/ [1].

https://openstax.org/books/calculus-volume-2/pages/6-3-taylor-and-maclaurin-series
https://openstax.org/books/calculus-volume-2/pages/6-3-taylor-and-maclaurin-series
https://openstax.org/books/calculus-volume-1/pages/4-9-newtons-method
https://openstax.org/books/calculus-volume-1/pages/4-9-newtons-method
https://www.contemporarycalculus.com/
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11.6 Exercises

1. For the Taylor series approximation of x3 in Sect. 11.1.1:

a. Discuss how and why the approximation changes when we add more terms.
b. Discuss why having three terms in the approximation yields a function that is very close to the

original function.
c. Write a Python code that checks whether an approximation is exactly the same as the function

being approximated. Use this code to check whether using three terms in Taylor series expansion
was sufficient to approximate x3.

2. Approximate the sin(·) function:

a. Approximate the sin(·) function with the Taylor series by taking a = 0. You will need the nth
derivative of sin, which turns out to be simply dn

dxn sin(x) = sin(x + nπ/2).
b. Plot the approximation for a different number of terms (m): 1, 2, 3, and 4. Observe what happens

when more terms are added to the approximation.
c. Compare your approximation results with those we obtained for x3. Discuss the reasons for

similarities and differences.

3. Find the roots of the following functions using Newton’s method:

a. f (x) = x2 − 5x + 6 for x ∈ [0, 5].
b. f (x) = sin(x) for x ∈ [0,π].
c. f (x) = log(x) for x ∈ [0.5, 2.5].

4. Consider a second-order function, e.g., f (x) = x2 − 5x + 6, which has a minimum at x = 2.5.

a. Plot f () and its derivative f ′() using matplotlib.
b. Do you see a link between the root of f ′() and the minimum of f ()?
c. Using scipy.optimize.newton() function, which is for finding the roots of a function,

find the minimum of function f (). Hint: A minimum is a root of the first-order derivative.
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12AnApplication: Solving a Simple
Regression Problem

In this chapter, we cover another important problem frequently encountered in many disciplines: The
problem of fitting (regressing) a function to a set of data, the so-called regression problem. We look
at two versions, namely linear regression and non-linear regression, using SciPy. While doing so, we
also use Pandas, NumPy, and Matplotlib, which we covered in Chap. 10.

12.1 Introduction

Let us first formulate the problem and clearly outline the notation. In a regression problem, we have a
set of x, y values: {(x0, y0), (x1, y1), ..., (xn, yn)}, where xi and yi can be multidimensional variables
(i.e., vectors) but for the sake of simplicity, they are assumed to one-dimensional in this chapter.

In a regression problem, we are interested in finding the function f () that goes through those (xi , yi )

values. In other words, we wish to find f () that satisfies the following:

yi = f (xi ). (12.1)

At first, this might seem difficult, since we are trying to estimate a function from its input–output values
and there can be infinitely many functions that can go through a finite set of (xi , yi ) values. However,
by restructuring the problem a little bit and making some assumptions about the general form of f (),
we can easily solve such complicated regression problems.

Let us briefly describe how we can do so: We first re-write f () as a parametric function and try to
formulate the regression problem as the problem of finding the parameters of f ():

y = f (x) = f (x;θ) =
m∑

i=1

gi (x; θi ), (12.2)

where θ = (θ1, ..., θn) is the set of parameters that we need to find to solve the regression problem;
and g1(), ..., gm() are our “simpler” functions (compared to f ()) whose parameters can be identified
more easily compared to f ().

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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With this parameterized definition of f (), we can formally define regression as an optimization
(minimization) problem (see also Chap.11):

θ∗ ← arg min
θ∈Rd

∑

i

(yi − f (xi ; θ))2 , (12.3)

where the summation runs over the (x0, y0), (x1, y1), ..., (xn, yn) values that we are trying to regress;
(yi − f (xi ; θ))2 is the error between the estimated (regressed) value (i.e., f (xi ; θ)) and the correct yi

value with θ as the parameters.
We can describe this optimization formulation in words as follows: Find parameters θ that minimize

the error between yi and what the function predicts given xi as input.
This is a minimization problem, and in Chap.11, we have seen a simple solution and how SciPy

can be used for such problems. In this chapter, we will spend more time on this and examine sample
regression problems and solutions. That is,

• Linear regression, where f () is assumed to be a line, y = ax + b, and θ is (a, b).
• Non-linear regression, where f () has a non-linear form, e.g., a quadratic, exponential, or logarithmic

function.

12.1.1 Why Is Regression Important?

In many disciplines, we observe an environment, an event, or an entity through sensors and obtain some
information about what we observe in the form of a variable x . Each x generally has an associated
outcome variable y. Or, x can represent an action that we are exerting in an environment and we are
interested in finding how x affects the environment by observing a variable y.

Here are some examples for x and y for which finding a function f () can be really useful:

• x : The current that we are providing to a motor. y: The speed of the motor.
• x : The day of a year. y: The average rainfall in a year.
• x : The changes in the stock value of a bond on the last day. y: The value of a bond in one hour.
• x : The number of COVID cases per day. y: The number of casualties due to COVID.

12.1.2 The Form of the Function

As discussed before, solving a regression problem without making any assumptions about the underly-
ing function is very challenging. However, an incorrect assumption can produce an inaccurate regression
model as illustrated in Fig. 12.1 (see also https://xkcd.com/2048/ for a simplified comic illustration):

If the form of the function is too simple (e.g., linear), the fitted function will not be able to capture
the true nature of the data. However, if the assumed function form is too complex (e.g., a higher-order
polynomial), the fitted function will try to go through every data point, which may not be ideal since
the data can be noisy.

Choosing the right form of the function is therefore tricky and requires some prior idea about the
function or the problem. If the relationship between x and y is known to be linear, then a linear function
form should be chosen. If the relation between x and y is known to be non-linear, but the exact form
is unknown, x and y can first be plotted to get a sense of the underlying form. This can give an idea of
what kinds of function forms can be suitable.

https://xkcd.com/2048/
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Fig. 12.1 An unsuitable function form may yield sub-optimal regression results

12.2 Least-Squares Regression

A commonly used method for regression is called Least-Squares Regression (LSE). In LSE, the mini-
mization problem in Sect. 12.1 is solved by setting the gradient of the objective to zero:

∂

∂θ j

∑

i

(yi − f (xi ; θ))2 = 0, for each j. (12.4)

Linear Least-Squares Regression

If our function is linear, i.e., f (xi ; θ) = θ1xi + θ2, setting the gradient to zero provides us with a set of
equations for each θ j . If the number of data points (xi , yi ) is greater than the number of variables, these
equations can be easily solved to obtain θ that minimizes the objective in Sect. 12.1. Those interested
in the derivation of the solution and its exact form can look up, e.g., the “Linear Regression: Least
Squares Estimation” chapter of [1].

Non-linear Least-Squares Regression. If our function is not linear, a solution can be obtained iter-
atively by making a linear approximation/step at each iteration using the so-called Gauss–Newton
method [2, 4].

12.3 Linear Regression with SciPy

SciPy has a function called scipy.stats.linregress(x, y) that we can use to regress a line
passing through a set of points. Let us go through an example to see how we can do that. Moreover,
we will use our regressed line to analyze some properties of our data.

12.3.1 Create Artificial Data

To keep things simple, let us generate some artificial data in Python and save it in a file called
ch12_linear_data_example.csv. We have already run this code and saved this CSV file on
the Web. In the following steps, we will continue with this file on the Web. However, you can change
the following code to generate data in different forms and with different noise levels and observe how
the different regression methods perform.
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12.3.2 Download andVisualize Data

You can download the ch12_linear_data.csv file from the interactive webpage, under the
input directory. This way, you can experience the complete data analysis pipeline.

We can quickly visualize the loaded data as follows:
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We see that our data is rather “noisy”, though it more or less follows a linear function. Let us see if
we can capture that.

12.3.3 Fit a Linear Function with SciPy

Now, let us fit a line (linear function) to our data usingscipy.stats.linregress(). The specific
method used by this function is least-squares regression which we briefly explained in Sect. 12.2.
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12.3.4 Analyze the Solution

We have obtained a solution. Now, let us analyze how good the solution is. We can do that qualitatively
(by visual inspection) or quantitatively (by looking at some numerical measures of how good the fit
is).

1- Qualitative Analysis

For regression, a qualitative analysis can be performed by plotting the data, the obtained solution, and
the correct solution. If the obtained solution goes through the data well and is close to the original
solution in the graph, then we can visually evaluate whether the solution looks acceptable.

Let us do this for our example:
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From this plot, we can visually confirm that the obtained solution (blue line) passes through the
original data points well and is almost identical to the correct line, i.e., the line from which we gener-
ated the original (x, y) pairs. Therefore, our regression solution appears to be visually (qualitatively)
accurate.

2- Quantitative Analysis

Qualitative analysis can sometimes be difficult and its judgment is subjective; i.e., different observers
might draw different conclusions, especially in cases where the solution is different from the correct
solution. Therefore, in addition to qualitative analysis, as we did above, it is very important to measure
the quality of our solution with a number.

Depending on the problem, different measures can be used. For regression, we frequently use the
following three:

1. Mean Squared Error (MSE). For N data points, assuming that ŷi denotes the predicted value and
yi the correct value for xi , MSE can be defined as follows:

M SE = 1

N

N∑

i=1

(yi − ŷi )
2, (12.5)

which essentially averages the squared errors for each data point.
2. Root Mean Squared Error (RMSE). RMSE is simply the square root of MSE:

RM SE =
√√√√ 1

N

N∑

i=1

(yi − ŷi )2. (12.6)

3. R2 Error (also called the coefficient of determination). R2 is a normalized measure that also con-
siders the error of the “correct” solution. Since the data can be noisy, this can be a better way to
understand how good/bad our error value (MSE or RMSE) was. R2 Error is defined as

R2 = 1 − MSE of estimates

MSE wrt. the mean of y
= 1 − 1/N

∑N
i=1(yi − ŷi )

2

1/N
∑N

i=1(yi − yi )
2

= 1 −
∑N

i=1(yi − ŷi )
2

∑N
i=1(yi − y)2

,

(12.7)
where y = 1/N

∑
i yi is the mean of y values.

If R2 = 1, that means the MSE of the estimates is zero; i.e., we have obtained a perfect regression.
If R2 = 0, all yi = y; in other words, all estimates are the mean of the y values, therefore, the
regression method did not find a good solution. If, on the other hand, R2 < 0, that means the
obtained solution is even worse than the mean yi values.

Now, let us analyze our solution using these three metrics.
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We see that we have obtained very low errors. Especially the R2 value is very close to one, which
suggests a good approximation of the regressed line to the underlying solution. Note that since our
data was noisy, it was not possible to obtain R2 = 1.

12.4 Non-linear Regression with SciPy

Let us now see how we can perform non-linear regression.

12.4.1 Create Artificial Data

To keep things simple, similar to the linear regression example, let us generate some artificial data in
Python and save it in a file called ch12_nonlinear_data_example.csv. We have already run
this code and saved this CSV file on the Web. In the following steps, we will continue with this file
on the Web. However, you can change the following code to generate data in different forms and with
different noise levels and observe how the different regression methods perform.
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12.4.2 Download andVisualize Data

You can download the ch12_nonlinear_data.csv file from the interactive webpage so that we
can provide you with the experience of a full data analysis pipeline.
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12.4.3 Fitting a Non-linear Function with SciPy

For non-linear regression, we will use scipy.optimize.curve_fit which internally performs
non-linear least-squares regression.
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12.4.4 Analyzing the Solution

Similar to our analysis in Sect. 12.3.4, let us analyze our solution qualitatively and quantitatively.

1- Qualitative Analysis
Let us first analyze the found solution qualitatively.

Visually, it appears that our estimated solution is a very good fit for the data, and it overlaps nicely
with the correct function with which we had generated the data.

2- Quantitative Analysis
Now, let us look at some of the metrics we have defined in Sect. 12.3.4 to get a better feeling for how
good our fit was:
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We again see that we have obtained low error values, despite the noise. However, we could not obtain
a perfect regression (R2 = 1) since our data was very noisy.

12.5 Important Concepts

We would like our readers to have grasped the following crucial concepts and keywords from this
chapter:

• Regression problem and its uses.
• Least-squares regression.
• Linear versus non-linear regression.
• Linear and non-linear regression with SciPy.
• Qualitative and quantitative analyses of a regression solution.

12.6 Further Reading

• A good resource which covers linear and non-linear regression is the book by T. Hastie, R. Tib-
shirani, and J. Friedman, titled “The Elements of Statistical Learning: Data Mining, Inference, and
Prediction” [3].

12.7 Exercises

1. For clarity, we implemented the error metrics in Sect. 12.3.4 using for loops. Re-implement them
using NumPy functions without using explicit for or while loops.

2. Generate 100 random (x, y) values from a non-linear function, e.g., y = x2, for x ∈ [−10, 10], and
use the linear regression steps in Sect. 12.3 to regress a linear solution. Qualitatively and quantita-
tively analyze the obtained solution.

3. Choose your favorite city and download its temperature readings for two consecutive days from
Open-Meteo.1 Download the readings as CSV files and load them using Pandas. Plot the data using
Matplotlib and see the general shape of the function. Choose a suitable non-linear function and
follow the steps in Sect. 12.4 to regress a function to the temperature data. Measure also how well
the function represents the temperature values.

1 https://open-meteo.com/en/docs/historical-weather-api.

https://openmeteo.com/en/docs/historical-weather-api/
https://open-meteo.com/en/docs/historical-weather-api
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Glossary

a

address An integer that uniquely identifies a location (byte) in the memory.

algorithm A step-by-step procedure that, when executed, leads to an output for the input we pro-
vided.

aliasing A situation where more than one variable is the name of (or point to) the same location in
memory.

assembler A machine code program that serves as a translator from some relatively more readable
text, the assembly program, into machine code.

assembly A human-readable low-level programming language that is very close to binary machine
code that is understandable by the CPU.

Arithmetic Logic Unit (ALU) One of the important units in the CPU responsible for performing
arithmetic (addition, subtraction, multiplication, division) and logic (less-than, greater-than, equal-
to, etc.) operations.

b

basic data types The data types that represent single information items, i.e., integers, floating-point
numbers, complex numbers, and Booleans.

Basic Input Output System (BIOS) A machine code responsible for initializing the critical com-
puter hardware and the main operating system in the computer. It resides in a memory which, even
when the power is off, does not lose its content, much like a flash drive. It is electronically located
exactly at the address where the CPU looks for its first instruction.

bit The smallest unit of information in digital computers. A bit can be either 0 or 1.

Boolean A data type which can take only two values, True or False.

byte A sequence of 8 bits.
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c

Central Processing Unit (CPU) One of the main components of the von Neumann Architecture
responsible for executing programs. It has three main units: Control Unit, Arithmetic Logic Unit,
and Registers.

class A prescription that defines a particular object. The blueprint of an object.

compiler A program that can translate code written in a high-level human-readable programming
language into binary machine code. The binary code produced by a compiler is generally stored in
a file that can be loaded into the memory and executed by the CPU when requested.

complexity (of algorithms) A measure for comparing different algorithms, in general, with respect
to their running times.

computer An electronic device that has a “microprocessor” in it. In a broader sense, any physical
entity that can do “computation” can also be called a computer.

computer program Instructions and data that perform a certain task.

computing The process of inferring data from other data.

constructor A special member function of an object that is responsible for initializing the object,
e.g., its member variables.

container data types Data types that represent multiple information items. Commonly used con-
tainer data types are tuple, list, str, dict, and set data types.

Control Unit (CU) A special unit in the CPU responsible for fetching instructions from the memory,
interpreting (“decoding”) them, and executing them. After executing an instruction finishes, the
control unit continues with the next instruction in the memory. This “fetch–decode–execute” cycle
is constantly executed by the control unit.

d

debugging An act of looking for errors in a code, finding their causes, and correcting them.

dictionary (dict) A mutable container data type in Python for storing pairs of (key, value).

directory A file system structure that contains files and other directories. Directories are used by
operating systems to provide an easy-to-use (file system) hierarchical access to information in
storage devices.

e

electronics Circuits or devices constructed using transistors, microchips, and other hardware com-
ponents.

encapsulation One of the important features of object-oriented programming. It describes that data
and actions are glued together in a data–action structure called “object” that conforms to a rule of
“need-to-know” and “maximal-privacy”.

exception An event that occurs due to a specific error (e.g., division by zero) during the execution
of a program.
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expression Specification of a calculation (e.g., 3 + 4 * 5), which, when evaluated (performed), yields
some data as a result.

f

Fetch–Decode–Execute Cycle The cycle followed by a CPU while running a program. A computer
typically follows this cycle from the moment it is turned on until it is turned off.

file A sequence of bytes stored on a secondary storage, typically a hard drive (alternative secondary
storage devices include CD, DVD, USB disk, tape drive).

file system A hierarchical organization of data into files. It usually consists of files separated into
directories where directories can contain files or other directories.

floating point The data type used to represent real numbers.

flowchart A graphical representation of an algorithm. A flowchart uses boxes with specific shapes
to denote the steps and arrows to describe the flow of an algorithm. See also pseudo-code.

folder —see directory.

function A grouping of actions under a given name that performs a specific task.

i

immutable An immutable data type cannot be changed after being initialized. Common examples
are the tuple, str, and frozenset data types.

index An integer representing the position of an item in a container. It can be positive or negative. If
it is positive, the index of the first element is zero. If it is negative, the index of the last item is −1.

inheritance One of the important features of object-oriented programming. It refers to defining
‘descendant’ objects from ‘parent’ objects so that the descendant objects inherit all functions and
data of their ancestors.

instruction A machine-understandable specification of an operation that can be understood and
executed by a CPU. It is often used to refer to binary machine instruction.

Instruction Register (IR) A special-purpose register in the CPU to hold the current instruction
being executed.

interpreter An interactive program that translates code written in a high-level human-readable
programming language into binary machine code. An interpreter does not provide binary machine
code to the programmer but, instead, it always acts as an intermediary between the programmer
(i.e., the programmer’s code) and the binary machine code.

interrupt A low-level mechanism that facilitates communication between peripheral devices and
the CPU.

iteration A fundamental programming ingredient that facilitates repeating a sequence of instructions
over and over.

iterator An object that provides a countable number of values on demand.
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l

library A package that contains a wide spectrum of predefined and organized actions and data.

list comprehension A compact mechanism for specifying the elements of a list.

loop —see iteration.

m

Master Boot Record (MBR) A small table at the beginning of a storage device, which contains a
short machine code program to load the operating system if there is one.

memory An electronical table composed of a set of rows with a fixed set of cells each. Each cell is
responsible for representing a bit. Each consecutive 8 bits (bytes) has a unique address, and reading
or modifying a byte is possible by providing its address.

mutable A mutable data type may be changed after being initialized. Common examples are the list
and dict data types.

n

nesting The mechanism with which certain compound statements (or data structures) can be defined
within other compound statements (or data structures). For example, iterative statements (while and
for) and function definitions can be nested.

o

object A computational structure that has functions and data fields built according to the blueprint,
namely the class.

Operating System (OS) A program that, after being loaded into the memory, manages resources
and services such as the memory, the CPU, and the devices. It essentially hides the internal details
of the hardware and makes the ugly binary machine understandable and manageable to us.

operation code, or opcode A fixed-length binary sequence that identifies the type of the operation
in an instruction.

p

package —see library.

paradigm —see programming paradigm.

peripheral Any device outside of the von Neumann structure, namely the CPU and the memory.
Examples include the keyboard, the storage devices, the monitor, and the printer.

polling A mechanism where the CPU regularly asks the peripheral devices if there is anything the
CPU needs to take care of. See also interrupt.

polymorphism A mechanism allowing a descendant object to appear and function like its ancestor
object when necessary.

program —see computer program.

programming paradigm A style or an approach to programming that outlines rules, concepts, and
practices for developing computer programs.
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pseudo-code A natural language description of the steps that are followed in an algorithm. It is not
as specific or restricted as a programming language, but it is not as free as the language we use
for communicating with other humans: A pseudo-code should be composed of precise and feasible
steps and avoid ambiguous descriptions. See also flowchart.

Program Counter (PC) A special register in the CPU that holds the address of the next instruction
in the memory.

r

Random Access Memory (RAM) An addressable memory which provides constant-time access to
data for reading or writing purposes given the address of the data.

recursion A fundamental tool of the functional paradigm for defining a function such that the
function being defined is called while defining the function.

register A small memory unit in the CPU that is typically addressed with a special name, e.g.,
Program Counter, Instruction Register, and Data Register.

s

script A human-readable program code that can be executed by an interpreter.

sign-magnitude notation An intuitive method for representing integers in binary such that the first
bit is reserved for the sign of the number and the remaining bits for the magnitude. See also Two’s
complement notation.

set comprehension A compact mechanism for specifying the elements of a set.

slicing An indexing mechanism for describing the indices of a range of elements.

string A data type for representing a sequence of characters, i.e., text.

t

two’s complement notation An ingenious method for representing integers in binary such that a
negative number is represented by flipping the bits of its magnitude (in binary) and adding 1 to it.
See also sign-magnitude notation.

type conversion Transforming data from one data type to another; e.g., from a floating point number
to an integer.

v

variable A name or reference to a memory location that holds data.

von Neumann Architecture An architecture that describes the organization of the main hardware
components and their interaction.



Index

.
_ _init_ _, 154
_ _str_ _, 154
type(), 57

A
address, 7
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Al-Khwarizmi, 20
algorithm, 19, 20
aliasing, 83
Arithmetic Logic Unit (ALU), 8
ASCII table, 48
assembler, 12, 25
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assignment, 80, 81

B
base-2, 36
basic data, 56

Boolean, 58
complex numbers, 57
floating point numbers, 57
integer, 57

Basic Input Output System (BIOS), 13
binary search, 137
bit, 6
bool, 58
Boolean, 47, 58
break, 111
bubble sort, 139
built-in scope, 125
bus, 6, 13
byte, 8

C
Central Processing Unit (CPU), 5–8, 11
characters, 48

graphemes, 48
unprintables, 48

check digit, 133
class, 152
comments, 88, 89
compiler, 27
complex numbers, 57
complexity, 23
computer, 4
computer program, see program
computing, 1
conditional expression, 99
conditional statement, 95
constructor, 154
container data, 59

dictionary (dict), 71
frozenset, 74
list, 66
set, 73
string (str), 62
tuple, 66

continue, 111
Control Unit (CU), 8, 9
CTRL-D, 91

D
data bus, 6
DataFrame, 235
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decimal-to-binary conversion, 37
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device management, 15
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driver, 15

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024
S. Kalkan et al., Programming with Python for Engineers,
https://doi.org/10.1007/978-3-031-57148-0

283

https://doi.org/10.1007/978-3-031-57148-0


284 Index

E
encapsulation, 148
enclosing scope, 124
examples

application
finding minimum, 259
linear regression, 267
Newton’s method for finding root, 254
non-linear regression, 272
Taylor series, 250

file
CSV files, 184

function
average of numbers, 130
binary search, 137
bubble sort, 139
check digit, 133
sequential search, 135
standard deviation, 130

iteration
angle between vectors, 109
average of numbers, 101
dot product, 108
factorial, 103
list split, 108
matrix multiplication, 110
permutation, 107
run-length encoding, 107
standard deviation, 102
Taylor expansion for sine, 103
words with vowels & consonants, 106

OOP
counter, 156
rational number, 157
shape drawing, 159

exception, 200, 204
exec(), 92
exit(), 91
expression, 55, 74

F
Fetch–Decode–Execute Cycle, 8, 9
file, 173

close, 174
CSV, 184
formatting, 186
line-by-line, 179
open, 174
parsing, 176
read, 175
readline, 180
sequential access, 175
write, 174

file management, 15
file system, 15
filter(), 126
float, 57
floating point

IEEE 754 representation, 43

information loss, 44
floating point numbers, 57
flowchart, 21
folder, 189
for statement, 105
frozenset, 74
function minimum, 257
function roots, 252
functions

benefits, 119
defining, 120
higher-order functions, 126
parameter passing, 121

G
global scope, 124
global statement, 125
Graphical User Interface (GUI), 16

I
if statement, 95
immutable, 60
implementation, 20
import, 89, 90
indentation, 96
index, 60

negative, 60
slice, 60

indexing, 60
inheritance, 150, 159
Input sanitization, 203
input(), 87
instruction, 8, 9
Instruction Register (IR), 9
int, 57
integer, 57
integer representation

sign-magnitude, 37
two’s complement, 39

interpreter, 27
interrupt, 13
iteration, 100
iterator, 105

J
John von Neumann, 6

L
library, 27, 89, 90
list, 66
list comprehension, 112
local scope, 124
logical errors, 201
loop, 100
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M
machine code, 12, 25
map(), 126
Master Boot Record (MBR), 14
math library, 89–91
Matplotlib, 241
matrix, 69
matrix product, 230
memory, 6–8, 11
memory management, 14
microprocessor, 5
mutable, 60

N
nesting, 97
Newton’s Method, 252
NumPy, 221

O
object, 147, 152
object-oriented programming, 147
opcode, 10
Operating System (OS), 14
operation code (opcode), 9

P
package, 89, 90
Pandas, 234
pass, 89, 90
peripheral, 13
polling, 13
polymorphism, 151
Power-On Self-Test (POST), 14
print(), 87, 88
process, 14
process management, 14
program, 11, 20
Program Counter (PC), 9
programming, 5
programming languages, 24

high-level, 26
low-level, 25
paradigms, 28

pseudo-code, 21

Q
quit(), 91

R
raise statement, 205
Random Access Memory (RAM), 8
range(), 105
real numbers, 42
recursion, 128
register, 8
regression, 263

representing integers, 37
run-time errors, 199

S
SciPy, 233
scope

built-in, 125
enclosing, 124
global, 124
local, 124

scope of variables, 123
script, 91, 92
secondary storage devices, 173
security, 15
sequential search, 135
set, 73
set comprehension, 112
Sign-Magnitude Notation, 37
slice, 60
slicing, 60
sorting, 139
start-up of a computer, 13
statement, 55, 80

basic statement, 55, 80
compound statement, 55, 86, 87

stored program concept, 11
str, 62
string, 62
syntax, 26
syntax errors, 197

T
Taylor Series, 103, 249
try-except, 204
tuple, 66
tuple matching, 82
Two’s Complement Notation, 39
type conversion

explicit, 80
implicit, 79, 80

type conversion (casting), 79, 80
type errors, 199

U
Unicode Transformation Format (UTF), 50
user interface, 16

V
variable, 80, 81

naming, 85
scope, 123

von Neumann Architecture, 6, 7, 12

W
while statement, 100
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