

C O N T E N T S

Acknowledgments . v
Introduction . . vii
Part I: Sources and Datasets . 1
Chapter 1: Protecting Sources and Yourself 3
Chapter 2: Acquiring Datasets . 33
Part II: Tools of the Trade . 53
Chapter 3: The Command Line Interface 55
Chapter 4: Exploring Datasets in the Terminal 87

 . 119
 149

Chapter 5: Docker, Aleph, and Making Datasets Searchable
Chapter 6: Reading Other People’s Email
Part III: Python Programming . 167
Chapter 7: An Introduction to Python 169
Chapter 8: Working with Data in Python 199
Part IV: Structured Data . 235
Chapter 9: BlueLeaks, Black Lives Matter,

and the CSV File Format . 237
Chapter 10: BlueLeaks Explorer . . 277
Chapter 11: Parler, the January 6 Insurrection,

and the JSON File Format . 301
Chapter 12: Epik Fail, Extremism Research,

and SQL Databases . 347
Part V: Case Studies . . 387
Chapter 13: Pandemic Profiteers and COVID-19

Disinformation . 389
Chapter 14: Neo-Nazis and Their Chat Rooms 427
Afterword . 471
Appendix A: Solutions to Common WSL Problems 473
Appendix B: Scraping the Web . 483
Index

The chapters in red are included in this Early Access PDF.

A C K N O W L E D G M E N T S

I’d like to express my sincere thanks to the following people:
To Abigail Schott-Rosenfield, my editor at No Starch Press, who did an

amazing job helping me revise each chapter and encouraging me to slow
down when I would have otherwise lost readers with too much technical
detail too quickly. Did you know that it takes a lot of work to write a book?
I’d also like to thank everyone else at No Starch Press that helped make this
book a reality.

To Jen Helsby, my amazingly talented technical reviewer, who double-
checked all of my work and suggested many improvements. Thanks to Jen
(who also happens to be my Dungeon Master!), I feel incredibly confident
in the technical accuracy of this book.

To my Signal group of beta readers, who gave me excellent early feed-
back: Akil Harris, Kushal Das, Mara Hvistendahl, and Yael Grauer. I’d also
like to thank the Aleph developers and the fine journalists at Unicorn Riot
for giving feedback on specific chapters.

To my wife, Crystal, for supporting me throughout writing this book
even though it cost us quite a few nights and weekends. Thank you also for
encouraging me to publish it under a Creative Commons license in order
to remove barriers to access for everyone who needs the skills it teaches, no
matter their income or what country they live in.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Unlike any other point in history, hackers, whistle
blowers, and archivists now routinely make off with
terabytes of data from governments, corporations,
and extremist groups. These datasets often contain
gold mines of revelations in the public interest, and
in many cases are freely available for anyone to down-
load. Yet these digital tomes can prove extremely diffi-
cult to analyze or interpret, and few people today have
the skills to do so.

I wrote this book for journalists, researchers, hacktivists, and anyone
else who wants to learn the technologies and coding skills required to
investigate these troves of hacked or leaked data. I don’t assume any prior
knowledge. Along with lessons on programming and technical tools, I’ve
incorporated many anecdotes and firsthand tips from the trenches of inves-
tigative journalism. In a series of hands-on projects, you’ll work with real
datasets, including those from police departments, fascist groups, militias,

I N T R O D U C T I O N

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

viii Introduction

a Russian ransomware gang, and social networks. Throughout, you’ll
engage head-on with the dumpster fire that is 21st-century current events:
the rise of neofascism and the rejection of objective reality, the extreme
partisan divide, and an internet overflowing with misinformation.

By the end of the book, you’ll have gained the skills to download and
analyze your own datasets, extracting the revelations they contain and
transforming previously unintelligible information into your own ground-
breaking reports.

Why I Wrote This Book
I’ve worked as an investigative journalist for The Intercept since 2013,
reporting on a large variety of leaked datasets. The first dataset I cut my
teeth on was the Snowden Archive: a collection of top-secret documents
from National Security Agency whistleblower Edward Snowden revealing
that the NSA spies on pretty much everyone in the world who uses a phone
or the internet. I wrote a dozen articles and helped publish over 2,000
secret documents from that dataset, helping bring the issues of privacy and
government surveillance to the forefront of public consciousness and lead-
ing to the widespread adoption of privacy-protecting technologies.

Huge data leaks like these used to be rare, but today they’re increas-
ingly common. In my work at The Intercept, I encounter datasets so fre-
quently I feel like I’m drowning in data, and I simply ignore most of them
because it’s impossible for me to investigate them all. Unfortunately, this
often means that no one will report on them, and their secrets will remain
hidden forever. I hope this book helps to change that.

Revelations based on leaked datasets can change the course of history.
In 1971, Daniel Ellsberg’s leak of military documents known as the Pentagon
Papers led to the end of the Vietnam War. The same year, an underground
activist group called the Citizens’ Commission to Investigate the FBI broke
into a Federal Bureau of Investigation field office, stole secret documents,
and leaked them to the media. This dataset mentioned COINTELPRO.
NBC reporter Carl Stern used Freedom of Information Act requests to pub-
licly reveal that COINTELPRO was a secret FBI operation devoted to sur-
veilling, infiltrating, and discrediting left-wing political groups. This stolen
FBI dataset also led to the creation of the Church Committee,
a Senate committee that investigated these abuses and reined them in.
More recently, Chelsea Manning’s 2010 leaks of Iraq and Afghanistan docu-
ments helped spark the Arab Spring, and documents and emails stolen by
Russian military hackers helped elect Donald Trump as US president in
2016.

As you make your way through this book, you’ll download a variety of
real hacked and leaked datasets for yourself, learning how they’re struc-
tured and how to extract their secrets—and perhaps, someday, you’ll
change history yourself. You’ll read stories from many more datasets as well,
some of which are private and not available for the public to download.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Introduction ix

What You’ll Learn
This book is split into five parts, with each building on the previous part.
You’ll begin with security and privacy considerations, including how to
verify that datasets are authentic and how to safely communicate with
sources. You’ll then work with datasets in your computer’s terminal and on
remote servers in the cloud and learn how to make various kinds of data
sets searchable, including how to scour email dumps for information. You’ll
get a crash course in Python programming, with a focus on writing code to
automate investigative tasks. These coding skills will allow you to analyze
datasets that contain millions of files, which is impossible to do manually.
Finally, I’ll discuss two exciting real-world case studies from some of my
own investigations.

The following outline describes each chapter in greater detail.

Part I: Sources and Datasets
Part I discusses issues you should resolve before you start analyzing datasets:
how to protect your sources, how to keep your datasets and your research
secure, and how to acquire datasets safely.

In Chapter 1, you’ll learn about how to protect your sources from retali-
ation. This includes how to safely communicate with sources, how to store
sensitive datasets, and how to decide what information to redact. It also
covers the critical step of how to authenticate datasets, using the example of
chat logs from WikiLeaks and patient records from a far-right anti-vaccine
group. You’ll learn how to secure your own digital life, and by exten-
sion, how to secure the data-driven investigations you’re working on. This
includes using a password manager, encrypting hard disks and USB disks,
sanitizing potentially malicious documents using the Dangerzone applica-
tion, and more.

In Chapter 2, you’ll learn how to acquire copies of hacked and leaked
datasets. I’ll introduce Distributed Denial of Secrets (DDoSecrets), a trans-
parency collective I’m involved with that hosts copies of all of the datasets
you’ll work with in this book, and you’ll learn how to download datasets
from DDoSecrets using BitTorrent. I’ll explain several ways to acquire
datasets directly from sources and introduce security and anonymity tools
like Signal, Tor Browser, OnionShare, and SecureDrop. As an example, I’ll
explain how I communicated with a source who leaked data from the con-
servative activist group Tea Party Patriots.

You’ll also download a copy of the BlueLeaks dataset, one of the pri-
mary datasets you’ll work with in this book. BlueLeaks is a collection of
270GB of data hacked from hundreds of US law enforcement websites in
the summer of 2020, in the midst of the Black Lives Matter uprising. As
you’ll see, it’s full of evidence of police misconduct. BlueLeaks has been
widely covered in the press, but most of it hasn’t been reported on yet. By
the end of this book, you’ll have the tools you need to conduct your own
BlueLeaks investigations.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

x Introduction

Part II: Tools of the Trade
In Part II, you’ll practice using the command line interface (CLI) to quickly
assess leaked datasets and to use tools that don’t have graphical interfaces,
developing skills you’ll apply extensively throughout the rest of the book.

In Chapter 3, you’ll learn the basics of controlling your computer
through CLI commands, as well as various tips and tricks for quickly
measuring and searching datasets like BlueLeaks from the command
line. You’ll also write your first shell script, a file containing a series of CLI
commands.

In Chapter 4, you’ll expand your basic command line skills, learning
new commands and setting up a server in the cloud to remotely analyze
hacked and leaked datasets. As an example, you’ll work with the Oath
Keepers dataset, which contains emails from the far-right militia that par-
ticipated in a seditious conspiracy to keep Trump in power after he lost the
2020 election.

In Chapter 5, you’ll learn to use Docker, technology that lets you run a
variety of complex software crucial for analyzing datasets. You’ll then use
Docker to run Aleph, software that can analyze large datasets, find connec-
tions for you, and search the data for keywords.

Chapter 6 focuses on tools and techniques for investigating email
dumps. You’ll read emails from Nauru Police Force about Australia’s off-
shore detention centers, including many messages about refugees seek-
ing Australian asylum, and from the president of Nauru himself. You’ll
also investigate emails from a conservative think tank called the Heritage
Foundation, which include homophobic arguments against gay marriage.
Using the skills you learn, you’ll be able to research any email dumps you
acquire in the future.

Part III: Python Programming
In Part III, you’ll get a crash course in writing code in the Python program-
ming language, focusing on the skills required to analyze the hacked and
leaked datasets covered in future chapters.

Chapter 7 introduces you to basic programming concepts: you’ll learn
to write and execute Python scripts and commands in the interactive
Python interpreter, doing math, defining variables, working with strings
and Boolean logic, looping through lists of items, and using functions.

Chapter 8 builds on the Python fundamentals covered previously. You’ll
learn to traverse filesystems and work with dictionaries and lists. Finally,
you’ll put theory into practice by writing several Python scripts to help you
investigate BlueLeaks and explore leaked chat logs from the Russian ran-
somware gang Conti.

Part IV: Structured Data
In Part IV, you’ll learn to work with some of the most common file formats
in hacked and leaked datasets.

In Chapter 9, you’ll learn the structure of the CSV (comma-separated
value) file format, viewing CSV files in both graphical spreadsheet software
and text editors. You’ll then write Python scripts to loop through the rows

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Introduction xi

of a CSV file and to save CSV files of your own, allowing you to further
investigate the CSV spreadsheets in the BlueLeaks data.

Chapter 10 introduces a custom application called BlueLeaks Explorer
that I developed and released along with this book, outlining how I built
the app and showing you how to use it. You can use this app to investigate
the many parts of BlueLeaks that haven’t yet been analyzed, hunting for
new revelations about police intelligence agencies across the United States.
If you ever need to develop an app to investigate a specific dataset, you can
also use this chapter as inspiration.

Chapter 11 focuses on the JSON file format and the Parler dataset of
over a million videos uploaded to the far-right social networking site Parler,
including thousands of videos of the January 6, 2021, insurrection at the
US Capitol. This dataset includes metadata for each video in JSON format,
including information like when the video was filmed and in what location.
Some of these videos were used as evidence during Donald Trump’s second
impeachment inquiry. You’ll write Python scripts to filter through these
videos and plot the GPS coordinates of Parler videos on a map, so you can
work with similar location data in future investigations.

In Chapter 12, you’ll learn to extract revelations from SQL databases by
working with the Epik dataset. Epik is a Christian nationalist company that
provides domain name and web hosting services to the far right, including
sites known for hosting the manifestos of mass shooters. The Epik data-
set contains huge databases full of hacked customer data, along with the
true ownership information for domain names for extremist websites—
information that’s supposed to be hidden behind a domain name privacy
service. You’ll use your new skills to discover domain names owned by one
of the people behind QAnon and the far-right image board 8kun. If you’re
interested in extremism research, the Epik dataset might be useful for
future investigations.

Part V: Case Studies
Part V covers two in-depth case studies from my own career, describing how
I conducted major investigations using the skills you’ve learned so far. In
both, I explain my investigative process: how I obtained my datasets, how I
analyzed them using techniques described in this book, what Python code
I wrote to aid this analysis, what revelations I discovered, and what social
impact my journalism had.

In Chapter 13, I discuss my investigation into America’s Frontline
Doctors (AFLDS), a right-wing anti-vaccine group founded during the
COVID-19 pandemic to oppose public health measures. I’ll explain how I
turned a collection of hacked CSV and JSON files into a major news report,
revealing that a network of shady telehealth companies swindled tens of
millions of dollars out of vaccine skeptics. My report led to a congressional
investigation of AFLDS.

In Chapter 14, I describe how I analyzed and reported on massive data-
sets of leaked neo-Nazi chat logs. I also discuss my role in developing a pub-
lic investigation tool for such datasets, called DiscordLeaks. This tool aided
in a successful lawsuit against the organizers of the deadly Unite the Right

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

xii Introduction

rally in 2017, resulting in a settlement of over $25 million in damages against
the leaders of the American fascist movement.

Appendixes
Appendix A includes tips for Windows users completing the exercises in
this book to help your code run more smoothly. Appendix B teaches you
web scraping, or how to write code that accesses websites for you so that you
can automate your investigative work or build your own datasets from pub-
lic websites.

What You’ll Need
This book is an interactive tutorial: every chapter other than the case stud-
ies in Part V includes exercises. Many later exercises require you to have
completed earlier ones, so I recommend reading this book sequentially. For
example, in Chapter 2, you’ll encrypt a USB disk to which you’ll download a
copy of the BlueLeaks dataset in Chapter 3.

Read this book with your computer open next to you, completing the
exercises and trying out technologies and software as you learn about them.
The source code for every assignment, as well as the code used in case stud-
ies and appendixes, is available in an online repository organized by chapter
at https://github​.com​/micahflee​/hacks​-leaks​-and​-revelations.

To make this book as accessible as possible, I’ve tried to keep the
requirements simple and affordable. You will need the following:

•	 A computer that’s running Windows, macOS, or Linux. Windows is
very different from macOS and Linux, but I’ll explain all the extra
steps Windows users will need to take to set up their computers appro-
priately. If you’re a Linux user, I assume that you’re using Ubuntu; if
you’re using a different version of Linux, you may need to slightly mod-
ify the commands.

•	 A USB hard disk with at least 1TB of disk space. You’ll use this to store
the large datasets you’ll work with.

•	 An internet connection that can download roughly 280GB of datasets
and several more gigabytes of software. If you live in a country with
decent internet service, your home internet should work fine, though
it may take hours or days to download the largest datasets in the book.
Alternatively, you might find more powerful internet connections at
local libraries, coffee shops, or university campuses.

•	 For the two exercises in which you’ll work with datasets from servers in
the cloud, you’ll also need a few US dollars (or the equivalent) and a
credit card to pay a cloud hosting provider.

Now grab your laptop, your USB hard disk, and perhaps a coffee or tea,
and get ready to start hunting for revelations.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

PART I
S O U R C E S A N D D A T A S E T S

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Most of us aren’t very aware of it, but we’re all under
surveillance. Telecom companies and tech giants have
access to a massive amount of private data about every
one who uses phones and the internet, from our exact
physical locations at any given time to the content of
our text messages and email, and they can share this
data with leak investigators.

Even when our private data doesn’t get sent directly to tech companies,
our devices still record our every move locally. Can you name every single
web page you visited last month? Your web browser probably can, and so can
web trackers that follow your activity across the internet.

In addition to the constant background surveillance that everyone
faces, workers with access to sensitive datasets are often under even stricter
corporate or government surveillance. Their work computers and phones
come preinstalled with spyware that monitors everything the employees do.
Database systems keep track of exactly who searches for which search terms
and when, and which documents they open, download, or print.

1
P R O T E C T I N G S O U R C E S

A N D Y O U R S E L F

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

4 Chapter 1

It’s in this environment that ordinary people find themselves becoming
sources. Through the course of their work, they witness something unethi-
cal or disturbing. They might make a folder with incriminating documents,
or take screenshots of the company chat, or do some searches on internal
databases to learn more and make sure their suspicions are correct. They
might email themselves some documents or copy files to a USB stick that
they plug into their work computer. They might text their friends or family
for advice while thinking about what to do next. Most sources aren’t aware
of the massive digital trail that they’ve already left by the time they reach
out to a journalist or regulator.

In this chapter, you’ll learn about protecting sources and securing the
datasets you obtain from them. I’ll go over the editorial and ethical consid-
erations involved in redacting documents and deciding what information
to publish, as well as where you should store datasets based on how sensitive
they are. I’ll show you how to verify that datasets are authentic, describing
how I’ve done so in the past for hacked data from COVID-19 pandemic
profiteers and chat logs from WikiLeaks. Verifying the authenticity of
datasets is not only important to writing accurate stories but also critical
to protecting your reputation as a journalist. Finally, you’ll learn how to
use password managers, encrypt disks, and protect yourself from malicious
documents.

Safely Communicating with Sources
Because everything we do leaves a data trail, protecting sources is com-
plicated and difficult. After you publish a blockbuster report based on
information you’ve obtained from an anonymous whistleblower, you should
expect the target of your investigation to launch an investigation of their
own into your source’s identity. The balance of power between a confiden-
tial source and the investigators on their trail is extremely asymmetric. If
you’re a journalist or researcher trying to protect your source, even doing
all the right things perfectly isn’t always enough. Because so much of source
protection is beyond your control, it’s important to focus on the handful of
things that aren’t.

As a journalist or researcher, verifying that data you’ve obtained is
authentic is one of your core responsibilities. The simplest way to authenti-
cate documents is to ask the company or government that produced them if
they’re real, but this is fraught with risk to your source. In some cases, you
don’t want to give up any details that might reveal your source’s identity.
I’ll discuss this further in the “Authenticating Datasets” section later in the
chapter. You also might not want to reveal that specific documents have
been leaked, a topic you’ll learn more about in this chapter’s “Redaction”
section.

In this section, I’ll describe which sources face risks and which don’t,
as well as strategies for reducing those risks. I’ll also discuss the differences
between working with confidential sources who have legitimate access to
inside information and hackers who break the law to obtain it. It’s important

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Protecting Sources and Yourself 5

to carefully consider how your own choices as an investigator could impact
your source, preferably before you even begin speaking with one.

Working with Public Data
Some datasets don’t pose any risk to the source at all. When the govern-
ment publishes a set of documents in response to a public records request
or when documents are made public as part of a lawsuit, you can include as
much of the data as you like in your report. This data might contain revela-
tions that powerful people don’t want anyone to know, but sharing those
won’t put anyone at risk of retaliation, since the data is already public.

Similarly, you don’t need to worry about source protection for datasets
that may contain sensitive data but are public and widely available, such as
the BlueLeaks dataset you’ll download in Chapter 2. Any information you
discover from that dataset has already been scoured by the FBI investigators
trying to determine who the hacker was. In these cases, it doesn’t matter
how many people had access to the documents. There’s no chance of acci-
dentally burning your source by providing too many details to a govern-
ment or corporate media office when you ask if the data is real and if they
have a statement. Since the dataset is already public, any damage to the
source has already been done.

Protecting Sensitive Information
If you’re dealing with a dataset from a confidential source, revealing their
identity could cause your source to be fired, arrested, or even murdered.
The most basic step you should take to protect your source is to simply not
talk about them with anyone that isn’t closely collaborating with you on
your investigation. Don’t post to social media any details about your source
that you’re not planning on making public, don’t talk about them to your
friends at parties, and don’t even talk about them to colleagues who aren’t
involved in the investigation.

If you’re interviewing a company or government agency about a leaked
dataset you’ve obtained, don’t give them any details about your confiden-
tial source, even if they directly ask. If you get arrested and the police are
demanding to know who your source is, you have the right to remain silent,
and you should exercise it: don’t give the police any information they don’t
already have. The only time that you’re obligated to reveal information about
your source is if a judge orders you to—and even then, you can resist it.

Minimizing the Digital Trail
Be sure to leave the smallest digital trail possible when communicating with
your source. As much as you can, avoid communication by email, SMS mes-
sages, phone calls, direct messages in social media apps, and so on. Don’t
follow your confidential source on social media, and make sure they
don’t follow you.

If you must send messages or make calls, use an encrypted messaging
app like Signal, which I’ll cover in Chapter 2, and make sure your source

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

6 Chapter 1

deletes any records of their chats with you. You’ll often need to record what
your source told you in order to report on it, but take steps to protect those
records, such as removing them from messaging apps on your phone and
keeping them locally on your computer rather than in a cloud service. If you
no longer need your own records of conversations after you’ve published
your report—for potential follow-up stories, for example—then delete them.

Make sure your source knows not to search the internet for you or for
the reports you’ve published in a way that could be associated with them.
Google search history has been used as evidence against sources in the
past. For example, in 2018, Treasury Department whistleblower Natalie
Mayflower Sours Edwards was indicted for allegedly providing a secret data-
set to BuzzFeed journalist Jason Leopold. The documents she was accused
of leaking detailed suspicious financial transactions involving Republican
Party operatives, senior members of Donald Trump’s 2020 election cam-
paign, and a Kremlin-connected Russian agent and Russian oligarchs.
During the leak investigation, the FBI obtained a search warrant to access
her internet search history, and her indictment accused her of searching
for multiple articles based on the contents of her alleged leaks shortly after
they were published.

Working with Hackers and Whistleblowers
The steps you must take to protect your source vary greatly depending
on the person’s technical sophistication. Not all sources are whistleblowers,
people with inside access to datasets or documents who leak evidence of
wrongdoing for ethical reasons. Sometimes your source may be a hacktivist
who wants to bring down companies or government agencies that they find
unjust.

Unlike most whistleblowers, hackers tend to understand that they’re
under surveillance and that everything they do leaves a digital trail, so they
usually take countermeasures to hide their tracks. It’s common for whistle
blowers to reveal their identities to journalists for verification reasons, even
if they aren’t publicly named, but hackers typically remain fully anonymous.
However, hackers can often provide technical information you can use to
independently authenticate a dataset using open source intelligence. As
with any source, you can’t necessarily trust what hackers tell you, but their
expertise can help you independently verify that the data they sent you is
authentic. For these reasons, there’s often less risk to your source when you
publish documents from hackers rather than from whistleblowers.

When communicating with a hacker source, it’s important that you
stick to your role as a journalist or researcher. In the US, you’re not break-
ing any laws just by speaking with a source who’s a hacker, but your source
is almost certainly breaking laws by hacking into companies or governments
and stealing data. Don’t do anything that could be construed as conspir-
ing with them. For example, don’t ask them to get specific data for you; let
them give you whatever data they choose. If you’re a journalist working with
an established newsroom, you might fare better against legal threats than

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Protecting Sources and Yourself 7

a freelancer would. While everyone should be protected equally under the
law, newsrooms often have resources like lawyers and defense funds. When
you’re not sure whether something you’re doing could get you in trouble,
consult a lawyer.

Sometimes sources pretend to be hacktivists or whistleblowers but are
actually state-sponsored hackers. For instance, Russian military hackers
posed as hacktivists when they compromised the Democratic Party and
Hillary Clinton’s presidential campaign in 2016, interfering with the US
election by sending hacked datasets to WikiLeaks. This sort of dataset might
be authentic and newsworthy, but you don’t want to end up being a pawn
in someone else’s information warfare. If you’re unsure about your source’s
credibility or believe that they might have ulterior motives—or if you’re con-
fident that they’re being dishonest with you—it’s important to mention your
skepticism about your source, and why you have doubts, in your reporting.
WikiLeaks did the opposite: it insisted its source wasn’t Russian intelligence
when it knew otherwise, and it even spread the conspiracy theory that Seth
Rich, a Democratic Party employee who was murdered, was the group’s real
source, leading to years of harassment against Rich’s family members.

Secure Storage for Datasets
As you prepare to receive a dataset from a source, first assess how sensitive
you think that dataset is, since this will inform how you should go about
protecting it, as well as how you’ll continue protecting your source. As men-
tioned, some datasets are completely public, while others are highly clas-
sified national security secrets, and others are somewhere in between. You
might encounter a dataset with unique challenges that doesn’t fit into one
of these categories, but in general, there are three different levels of sensi-
tivity: low, medium, and high.

Low-Sensitivity Datasets
A dataset might be low sensitivity if it meets one of the following criteria:

•	 It’s already completely public, such as documents in response to a pub-
lic records request or public datasets that anyone can download from a
transparency collective like Distributed Denial of Secrets. (You’ll learn
more about DDoSecrets in Chapter 2.)

•	 Law enforcement or an adversarial corporation has already gained
access to the dataset, meaning how you store it won’t lead to retaliation
against your source.

•	 It doesn’t contain personal identifiable information, or PII, which I describe
in detail in the “Redaction” section.

Basically, if you can’t think of any harm that would result if a given
dataset is shared more widely than you intended, including with law
enforcement or leak investigators, it’s probably low sensitivity.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

8 Chapter 1

It’s safe to work with low-sensitivity datasets in the cloud, by which I
mean storage services like Google Drive, iCloud, and Dropbox; hosting
services like Amazon Web Services (AWS); and any other service where
anyone besides you and the people you’re working with will have access to
the data. Cloud services are all vulnerable to legal requests, however, so if
you’re investigating governments or corporations with powerful lawyers,
they can send subpoenas to cloud providers to get data associated with your
account. Additionally, the data you store in the cloud is only as safe as your
account itself. Make sure you have a strong password and turn on features
like two-factor authentication to make your account significantly more dif-
ficult to hack.

Medium-Sensitivity Datasets
Most datasets that aren’t low sensitivity are medium sensitivity; that is,
they’re not already public, but securing them doesn’t require you to go
to extreme measures. For example, a dataset I describe later in this chap-
ter that includes medical records of hundreds of thousands of patients
is medium sensitivity. These datasets should be stored on disks that are
encrypted, or locked in such a way that only the owner should be able to
unlock them to access the data. This way, if your laptop is stolen, lost, or
seized in a police raid, no one can access your files. If you haven’t already
encrypted your disk, you’ll do so in Exercise 1-3.

Medium-sensitivity data should also stay on your computer’s hard
disk or a removable disk. Avoid storing it in cloud services unless you have
a good reason to do so or you’re able to encrypt it in way that the cloud
service can’t decrypt it. Storing datasets on local, encrypted disks greatly
reduces the risk of anyone else gaining unauthorized access to them.

You can work with medium-sensitivity data on your typical work com-
puter, as long as you secure your machine. Here’s how:

•	 Make sure your computer’s hard disk is encrypted.

•	 Take steps to protect your computer physically. Make sure the screen
locks automatically after a short amount of inactivity and requires a
password to unlock.

•	 Install software updates promptly, and be wary of what programs you
install and what documents you open on your computer. If you acciden-
tally run malicious software or open a malicious document, someone
could hack your computer and gain access to your datasets.

•	 Store the dataset on an external USB disk, which allows you to store
more data than will fit on your computer and means you can travel
with your laptop without worrying about protecting the datasets stored
on it. Make sure your external disk is encrypted as well (see the “Disk
Encryption” section for instructions).

•	 Don’t store files in parts of your computer that are automatically
uploaded to the cloud. For example, many Mac users configure their
computers to upload their Documents folder to iCloud, Apple’s cloud

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Protecting Sources and Yourself 9

storage service. If your computer is set up this way, don’t put files
related to these investigations in that folder.

In general, work with medium-security data locally, meaning as files
stored on your hard disk that aren’t exposed to any online services. In
some cases it’s reasonable to work with medium-security datasets remotely.
If you’re working with other people, you may need to use an encrypted
file-sharing solution so that the service you’re using can’t decrypt the files,
but you and your colleagues can. One simple option is to send files back
and forth using the Signal messenger app. And if you or your organization
is hosting a secure tool for searching datasets, such as Aleph (covered in
Chapter 5), it’s also reasonable to copy the data into that tool.

All of the datasets you’ll be working with in this book are low sensitiv-
ity, since they’re already public. The techniques you’ll learn throughout the
book will apply for medium-sensitivity datasets as well, however, as you’ll
work with the data locally on your computer. While it’s fine to work with
these particular datasets in the cloud, learning to work with them locally
will give you the practice you need for handling more sensitive datasets.

High-Sensitivity Datasets
High-sensitivity datasets are by far the most difficult to work with, for good
reason. The Snowden Archive, for example, is high sensitivity. I spent years
reporting on this massive trove of secret government documents from
National Security Agency (NSA) whistleblower Edward Snowden, who
exposed the fact that US and allied spy agencies were conducting warrant-
less surveillance and privacy invasions on an unimaginable scale. We didn’t
want the FBI or NSA to gain access to it, which made cloud services out
of the question, but more important, we didn’t want foreign intelligence
services to access it either. We assumed that nation-state attackers had the
capability to remotely hack pretty much any computer we used unless we
took steps to make sure it never connected to any remote network.

Going into detail on how to conduct high-sensitivity investigations
is beyond the scope of this book, and you won’t need such skills to work
through later chapters. However, for future reference, this section outlines
how you should proceed if you find yourself working with a cache of top-
secret documents.

If a dataset is high sensitivity, until you are close to publishing your
report, store it or access it only using air-gapped computers—those that
never connect to the internet. Move files off the air-gapped computer
only when they’re already redacted and necessary for publishing. In short,
buy a new computer, never connect it to the internet, and use that. Or, if
you have an old computer that would work, you can format its disk, reinstall
the operating system, and use that computer while never connecting it to
the internet. These steps will help you ensure that you’re starting from a
clean system free of existing trackers or malware. To make it even more
secure, unscrew the computer’s case and physically remove the wireless
hardware.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

10 Chapter 1

You’ll run into all sorts of challenges related to moving data between
your air-gapped computer and your normal work computer—for example,
installing or updating software on your air-gapped computer requires
downloading it on another computer, carefully verifying that it’s legitimate
software, and then transferring it to your air-gapped computer to install
it. The extra steps are worth it, though, when a breach might have severe
consequences.

It’s also important that the disk in your air-gapped computer and any
USB disks that you use with it are encrypted with strong passphrases. Also
consider the physical security of where you store your air-gapped computer
and USB disks. If possible, keep them in a safe or vault with a good lock. If
that’s not possible, at least keep them in a locked room to which few people
have keys. Always power off your air-gapped computer when you’re not using
it to make it harder for attacks against the disk encryption to work.

When working on air-gapped computers, be mindful of nearby internet-
connected electronic devices with microphones or cameras. Avoid having
conversations related to highly sensitive documents within earshot of micro-
phones, and consider whether any nearby cameras (including smartphones)
could capture photographs of your screen.

Authenticating Datasets
You can’t believe everything you read on the internet, and juicy documents or
datasets that anonymous people send you are no exception. Disinformation is
prevalent. It’s important to explain in your published report, at least briefly,
what makes you confident in the data. If you can’t authenticate it but still
want to publish your report in case it’s real, or in case others can authenticate
it, make that clear. When in doubt, err on the side of transparency.

How you go about verifying that a dataset is authentic completely
depends on what the data is. You have to approach the problem on a case-
by-case basis. The best way to verify a dataset is to use open source intelligence
(OSINT), or publicly available information that anyone with enough skill
can find. This might mean scouring social media accounts, consulting
the Internet Archive’s Wayback Machine (https://web​.archive​.org), inspect-
ing metadata of public images or documents, paying services for historical
domain name registration data, or viewing other types of public records.
If your dataset includes a database taken from a website, for instance, you
might be able to compare information in that database with publicly avail-
able information on the website itself to confirm that they match.

This book’s discussion of OSINT focuses on how I’ve used it in my
own investigations. If you want to learn more, see Michael Bazzell’s OSINT
Techniques: Resources for Uncovering Online Information, along with the com-
panion tools listed at https://inteltechniques​.com​/tools. Bazzell describes a large
number of tools and techniques for discovering details that might help you
verify datasets using OSINT.

In this section, I’ll share two examples of authenticating data from my
own experience: one about a dataset from the anti-vaccine group America’s

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Protecting Sources and Yourself 11

Frontline Doctors, and another about leaked chat logs from a WikiLeaks
Twitter group.

Authenticating the AFLDS Dataset
In late 2021, in the midst of the COVID-19 pandemic, an anonymous hacker
sent me hundreds of thousands of patient and prescription records from
telehealth companies working with America’s Frontline Doctors (AFLDS).
AFLDS is a far-right anti-vaccine group that misleads people about COVID-19
vaccine safety and tricks patients into paying millions of dollars for drugs
like ivermectin and hydroxychloroquine, which are ineffective at preventing
or treating the virus. The group was initially formed to help Donald Trump’s
2020 reelection campaign, and the group’s leader, Simone Gold, was
arrested for storming the US Capitol on January 6, 2021. In 2022, she served
two months in prison for her role in the attack.

My source told me that they got the data by writing a program that
made thousands of web requests to a website run by one of the telehealth
companies, Cadence Health. Each request returned data about a different
patient. To see whether that was true, I made an account on the Cadence
Health website myself. Everything looked legitimate to me. The informa-
tion I had about each of the 255,000 patients was the exact information I
was asked to provide when I created my account on the service, and various
category names and IDs in the dataset matched what I could see on the
website. But how could I be confident that the patient data itself was real,
that these people weren’t just made up?

I wrote a simple Python script to loop through the 72,000 patients
and put each of their email addresses in a text file. I then cross-referenced
these email addresses with a totally separate dataset containing PII from
members of Gab, a social network popular among fascists, anti-democracy
activists, and anti-vaxxers. In early 2021, a hacktivist who went by the name
“JaXpArO and My Little Anonymous Revival Project” had hacked Gab
and made off with 65GB of data, including about 38,000 Gab users’ email
addresses. Thinking there might be overlap between AFLDS and Gab users,
I wrote another simple Python program that compared the email addresses
from each group and showed me all of the addresses that were in both lists.
There were several.

Armed with this information, I started scouring the public Gab timelines
of users whose email addresses had appeared in both datasets, looking for
posts about AFLDS. Using this technique, I found multiple AFLDS patients
who posted about their experience on Gab, leading me to believe that the
data was authentic. For example, according to consultation notes from the
hacked dataset, one patient created an account on the telehealth site and
four days later had a telehealth consultation. About a month after that, they
posted to Gab saying, “Front line doctors finally came through with HCQ/
Zinc delivery” (HCQ is an abbreviation for hydroxychloroquine).

Chapter 13 focuses entirely on my AFLDS investigation and describes
the technical details of my Python script in greater depth. By the time

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

12 Chapter 1

you’ve worked through the intervening chapters, you’ll have the Python
knowledge to understand how that script worked.

Authenticating the WikiLeaks Twitter Group Chat
In late 2017, journalist Julia Ioffe published a revelation in the Atlantic:
WikiLeaks had slid into Donald Trump Jr.’s Twitter direct messages. Among
other things, before the 2016 election, WikiLeaks suggested to Trump Jr.
that even if his father lost the election, he shouldn’t concede. “Hi Don,” the
verified @WikiLeaks Twitter account wrote, “if your father ‘loses’ we think
it is much more interesting if he DOES NOT conceed [sic] and spends time
CHALLENGING the media and other types of rigging that occurred—as
he has implied that he might do.”

A long-term WikiLeaks volunteer who went by the pseudonym Hazelpress
started a private Twitter group with WikiLeaks and its biggest supporters
in mid-2015. After watching the group become more right-wing, conspira-
torial, and unethical, and specifically after learning about WikiLeaks’
secret direct messages (DMs) with Trump Jr., Hazelpress decided to blow
the whistle on the whistleblowing group itself. She has since publicly come
forward as Mary-Emma Holly, an artist who spent years as a volunteer legal
researcher for WikiLeaks.

To carry out the WikiLeaks leak, Holly logged into her Twitter account,
made it private, unfollowed everyone, and deleted all of her tweets. She also
deleted all of her DMs except for the private WikiLeaks Twitter group and
changed her Twitter username. Using the Firefox web browser, she then
went to the DM conversation—which contained 11,000 messages and had
been going on for two and a half years—and saw the latest messages in the
group. She scrolled up, waited for Twitter to load more messages, scrolled
up again, and kept doing this for four hours, until she reached the very first
message in the group. She then used Firefox’s Save Page As function to save
an HTML version of the web page, as well as a folder full of resources like
images that were posted in the group.

Now that she had a local, offline copy of all the messages in the DM
group, Holly leaked it to the media. In early 2018, she sent a Signal mes-
sage to the phone number listed on The Intercept’s tips page. At that
time, I happened to be the one checking Signal for incoming tips. Using
OnionShare—software that I developed for this purpose, which I describe
in detail in Chapter 2—she sent me an encrypted and compressed file,
along with the password to decrypt it. After extracting it, I found a 37MB
HTML file—so big that it made my web browser unresponsive when I tried
opening it, and which I later split into separate files to make it easier to
work with—and a folder with 82MB of resources.

How could I verify the authenticity of such a huge HTML file? If I could
somehow access the same data directly from Twitter’s servers, that would do
it; only an insider at Twitter would be in a position to create fake DMs that
show up on Twitter’s website, and even that would be extremely challeng-
ing. When I explained this to Holly (who, at the time, I still knew only as
Hazelpress), she gave me her Twitter username and password. She had

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Protecting Sources and Yourself 13

already deleted all the other information from that account. With her con-
sent, I logged in to Twitter with her credentials, went to her DMs, and found
the Twitter group in question. It immediately looked like it contained the
same messages as the HTML file, and I confirmed that the verified account
@WikiLeaks frequently posted to the group.

Following these steps made me extremely confident in the authentic-
ity of the dataset, but I decided to take verification one step further. Could
I download a separate copy of the Twitter group myself in order to com-
pare it with the version Holly had sent me? I searched around and found
dmarchiver, a Python program that could do just that. Using this program,
along with Holly’s username and password, I downloaded a text version of
all of the DMs in the Twitter group. It took only a few minutes to run this
tool, rather than four hours of scrolling up in a web browser.

N O T E 	 After this investigation, the dmarchiver program stopped working due to changes on
Twitter’s end, and today the project is abandoned. However, if you’re faced with a
similar challenge in a future investigation, search for a tool that might work for you.
You could also consider developing your own, using programming skills that you’ll
learn in Chapters 7 and 8.

The output from dmarchiver, a 1.7MB text file, was much easier to work
with compared to the enormous HTML file, and it also included exact time-
stamps. Here’s a snippet of the text version:

[2015-11-19 13:46:39] <WikiLeaks> We believe it would be much better for GOP
to win.
[2015-11-19 13:47:28] <WikiLeaks> Dems+Media+liberals woudl then form a block
to reign in their worst qualities.
[2015-11-19 13:48:22] <WikiLeaks> With Hillary in charge, GOP will be pushing
for her worst qualities., dems+media+neoliberals will be mute.
[2015-11-19 13:50:18] <WikiLeaks> She's a bright, well connected, sadistic
sociopath.

I could view the HTML version in a web browser to see it exactly as it
had originally looked on Twitter, which was also useful for taking screen-
shots to include in our final report, as shown in Figure 1-1.

Figure 1-1: A screenshot of the leaked HTML file

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

14 Chapter 1

Along with the talented reporter Cora Currier, I started the long
process of reading all 11,000 chat messages, paying closest attention to the
10 percent of them from the @WikiLeaks account—which was presumably
controlled by Julian Assange, WikiLeaks’ editor—and picking out every
thing in the public interest. We discovered the following details:

•	 Assange expressed a desire for Republicans to win the 2016 presidential
election.

•	 Assange and his supporters were intensely focused on discrediting two
Swedish women who had accused him of rape and molestation, as well
as discrediting their lawyers. Assange and his defenders spent weeks
discussing ways to sabotage articles about his rape case that feminist
journalists were writing.

•	 Assange tried to discredit filmmaker Laura Poitras because of how she
portrayed him in Risk, the 2016 documentary about WikiLeaks. The
film includes a scene in which Assange tells his lawyer that his accusers
were part of a “thoroughly tawdry radical feminist political positioning
thing,” and in another scene he says, “Part of the problem in this case is
there’s two women, and the public just can’t even keep them separate.
If there was one, you could go, ‘She’s a bad woman.’ I think that would
have happened by now.”

•	 Assange used transphobic and misogynistic language when talking
about Chelsea Manning, his source from 2010, and her friends. I dis-
cuss Manning’s relationship with WikiLeaks further in Chapter 2.

•	 After Associated Press journalist Raphael Satter wrote a story about
harm caused when WikiLeaks publishes personal identifiable informa-
tion, Assange called him a “rat” and said that, “he’s Jewish and engaged
in the ((())) issue,” referring to an antisemitic neo-Nazi meme. He then
told his supporters to “Bog him down. Get him to show his bias.”

You can read our reporting on this dataset at https://theintercept​.com​/2018​/
02​/14​/julian​-assange​-wikileaks​-election​-clinton​-trump​/. After The Intercept pub-
lished this article, Assange and his supporters also targeted me personally
with antisemitic abuse, and Russia Today, the state-run TV station, ran a
segment about me. I discuss WikiLeaks and its history in greater depth in
Chapter 2.

The techniques you can use to authenticate datasets vary greatly
depending on the situation. Sometimes you can rely on OSINT, sometimes
you can rely on help from your source, and sometimes you’ll need to come
up with an entirely different method.

Redaction
Once you’ve authenticated your dataset, you must consider whether or how
you want to redact—that is, hide or delete—sensitive information before
publishing the results of your investigation. In some cases it might be safe
to publish original documents without any redaction, and in others you

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Protecting Sources and Yourself 15

might choose not to publish any documents at all. In this section I’ll discuss
how to make these decisions and the reasons you might choose to redact, or
not redact, information.

Deciding What Data to Publish
When deciding how much data to publish, consider whether your method
of reporting the revelations will enable leak investigators to uncover your
source. For example, if a company’s human resources department sends
an email to all of its 10,000 employees and one of them leaks the message to
you, it will be very hard for the company to find the culprit. But if only
10 people have access to a document—or database logs show a list of 10 people
 who recently accessed it—the company has a real suspect list to work from.

How many people had access to the data you’ve obtained, how sensitive
it is, what your source is risking, and what they’re comfortable with are all
factors that will determine the different types or quantities of data you pub-
lish. The following list provides options to consider, ordered from the most
risk to your source to the least:

•	 Publish unaltered documents or datasets.

•	 Publish documents after you’ve redacted them and stripped them of
metadata.

•	 Publish documents after re-creating them from scratch by typing them
by hand into new separate documents and publishing those instead.
When you re-create documents, you remove any hidden trackers and
make it impossible to tell from the documents themselves whether your
source obtained them by photographing their screen, copying them to
a USB stick, uploading them to a website, or using some other method.

•	 Don’t publish the documents at all; only describe and quote from them.

•	 Don’t even quote from the documents, just describe the revelations
they contain. If leak investigators don’t know what documents were
compromised, only that an accurate news story somehow reveals con-
fidential information, they’ll have a harder time making progress in
their investigation.

Publishing documents is more transparent to your readers, and provid-
ing direct evidence makes your work more credible, but doing so has to be
weighed against protecting your source. You’ll make these decisions on a
case-by-case basis, but always keep in mind the risks that your source faces.

Determining What to Redact
If you’ve carefully considered the risks to your source and decided to pub-
lish documents rather than just describing them, the next step is to decide
what, if any, information in those documents to redact before publishing.
There are three reasons for redaction: to continue protecting your source,
to protect the privacy of others involved, or to protect government or corpo-
rate information that should justifiably remain secret.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

16 Chapter 1

Protecting Your Source

If your dataset includes archives of a private website or databases that your
source was logged into, you’ll want to redact their username or any other
identifying information before publishing. In addition, make sure you don’t	
accidentally publish metadata that could reveal your source. This book
won’t describe the many ways that could happen, but here are two common
examples: Word documents often include the name of the author, and pho-
tos often include GPS coordinates and the type of camera that was used.

In 2012, John McAfee, the controversial millionaire software executive,
was on the run. Police raided his home in Belize, and he fled the country.
In a blog post, he wrote, “I am currently safe and in the company of two
intrepid journalist [sic] from Vice Magazine . . . ​We are not in Belize, but
not quite out of the woods yet.” That day, Vice published its article about
McAfee, which included a photograph. According to the photo’s metadata,
it was taken on an iPhone 4S and included GPS coordinates to a specific
house in Guatemala. By not stripping the photo of metadata, Vice acciden-
tally published his exact location. If Vice had simply taken a screenshot of
the image and published that instead, the magazine would have erased the
metadata and kept the location secret.

In 2017, when President Donald Trump constantly called the accusa-
tions that Russia interfered in the US elections “fake news,” NSA whistle
blower Reality Winner anonymously mailed a top-secret document to The
Intercept with evidence that the NSA had, in fact, witnessed a Russian
cyberattack against local election officials. The Intercept published the doc-
ument, and a short time later Reality Winner was arrested. The published
document included a type of metadata called printer dots, nearly invisible
yellow dots that printers add to paper that include the serial number of the
printer and the timestamp of when it was printed. While there’s no evi-
dence that leak investigators even noticed them until after Reality Winner
was arrested (she was one of six people who had printed this document,
and the only one who had written an email to The Intercept), the printer
dots could have outed her as well. The Intercept could have mitigated this
by re-creating the document (retyping it and re-creating the artwork) and
publishing that instead of a scanned version of the original.

Protecting Personal Information in Datasets

Many datasets include names, email addresses, usernames, phone num-
bers, home addresses, passwords, and other similar personal identifiable
information of people who aren’t public figures. Many government and
corporate documents include PII for random employees that won’t add
anything to your story, but could make these people targets of harassment.
Even when dealing with public figures, in most cases it’s still responsible to
redact their PII unless publishing it adds value to your report. For example,
if the focus of your investigation is a lavish mansion owned by a billionaire,
it might be reasonable to publish the address of that mansion. If you’re

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Protecting Sources and Yourself 17

writing an unrelated story about that billionaire, however, there’s no reason
to include their home address.

Even if you believe the targets of your investigation are jerks, it’s better
to redact their PII if including it doesn’t add to your report. Even jerks have
privacy rights, and needlessly publishing PII could be used to discredit your
report regardless of the revelations it contains.

The exception to this rule is if publicly outing someone is an important
part of your story and could keep other people safe. For example, it’s ethical
to name someone who is abusive in a workplace or industry, or to out some-
one as a member of a hate group. Even when you’re publicly outing someone,
though, don’t publish unnecessary PII about them, like their home address.
If you do, you might be accused of harassment, which could distract the
conversation from the wrongdoing you’re trying to expose.

Protecting Legitimate Secrets

Occasionally, governments and companies do in fact have legitimate rea-
sons to keep secrets. In my experience, this is rare—the US government
has a severe overclassification problem. This is one reason it’s important to
ask related parties for comment before you publish your story, though: a
government agency or company may give you context that could make you
decide not to publicize the data. For example, I was once part of a decision
to redact details from a top-secret US government document related to
another country’s nuclear weapons program.

Making Requests for Comment
Always give the people or companies on which you’re reporting a chance to
tell their side of the story. Even if you’re confident that they won’t respond
truthfully or at all, you should still attempt to contact them, explain what
you’re going to publish, and give them a chance to defend themselves. If
they do respond, quote their response in your published report (and if you
know they aren’t telling the truth, explain that alongside their quote). If
they don’t respond or they decline to comment, include that in your report
as well.

For example, in 2017, I reported on leaked chat logs from neo-Nazis,
which I cover in Chapter 14. In my article, I named a member of the pro-
slavery hate group League of the South who was arrested during the deadly
Charlottesville, Virginia, Unite the Right protest for carrying a concealed
handgun. He had posted messages in a chat room saying that he had
“scores to settle” with local antifascists because they had gotten him fired
from his job. Using public records, I tracked down his phone number. I set
up a new virtual phone number using Google Voice and called him with
that, since I didn’t want to give him my private number. I left messages, but
he never responded.

If your investigation is adversarial—that is, the people you’re looking
into aren’t going to be happy about it—wait until shortly before you publish

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

18 Chapter 1

your report to contact them and tip your hand. It’s polite to give them at
least 24 hours to respond, while giving them less time to sabotage your
story. They might leak your story to a friendly publication to publish first
with a positive spin, announce to their followers that a hit piece is com-
ing, or attempt to use legal means to stop you from publishing. I’ve been
involved in investigations where all of those scenarios have happened.

Chances are, you’re not an expert in all aspects of what you’re reporting
on, so it’s often a good idea to consult outside experts (university profes-
sors, authors, scientists, and so on) and include quotes from them in your
published reports. In my own reporting, I’ve interviewed cryptography pro-
fessors, disinformation researchers, medical doctors, and civil rights advo-
cates who work for nonprofits. Even if you’re an expert on the topic of your
investigation, providing outside voices often adds to your story, helping you
make stronger arguments.

As long as you trust the experts you’re talking with, it’s fine to contact
them early in the reporting process. It’s also common to share confiden-
tial documents with them, so long as they agree to keep them secret until
you publish. In the case of highly sensitive documents, you might need to
arrange for outside experts to visit you in person and view the files on your
air-gapped computer. Sometimes these experts can point you in research
directions that you wouldn’t think to go yourself.

Now that you’ve seen how to protect your sources and authenticate the
information they give you, let’s go over some ways to secure your computer
and online accounts to keep your datasets and other sensitive records safe.

Password Managers
Most people’s passwords aren’t unique, meaning they’re reused in multiple
places. This is a very bad idea, since any duplicate password is only as secure
as the least secure place you’ve used it. Go to https://haveibeenpwned​.com,
search for your email address or phone number, and you’ll see a list of data
breaches that you’re included in. If your LinkedIn password was exposed
in a data breach a few years ago but it’s the same password you use for your
Twitter account, to log into your laptop, or to unlock your encrypted USB
disk full of sensitive datasets, you may be in trouble.

The solution is to make all your passwords unique as well as strong, which
really just means long and random enough that they’re impossible to predict.
Unfortunately, strong passwords are hard to memorize, and it’s impossible
for humans to memorize hundreds of passwords that are both strong and
unique. Yet we’re required to use hundreds of passwords in our daily lives.

Fortunately, we can have computers memorize most of our passwords
for us. Password managers are programs that keep track of an encrypted
database of passwords that you unlock using a master password, the only
one you have to memorize. Password managers often allow you to sync
your password database to the cloud, which is fine so long as you’re using
a strong master password. If a hacker steals your encrypted password

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Protecting Sources and Yourself 19

database, or if your password manager company hands it to the FBI or
other authorities, they won’t be able to unlock it without your master pass-
word. An encrypted password database is completely inaccessible to anyone
without the master password. If your master password is strong, it will be
literally impossible for them to guess it, and your other passwords will be
safe. Encryption is cool like that.

DON A L D T RUMP’S T W IT T ER PA SS WOR D

I learned from an episode of the excellent podcast Darknet Diaries, hosted by
Jack Rhysider, that Donald Trump’s LinkedIn password was exposed in a 2012
data breach. His password, yourefired, was his signature phrase from The
Apprentice, the reality TV show he hosted. While he was running for president
in 2016, three Dutch hackers, Victor, Edwin, and Matt, who are part of a group
called the Guild of the Grumpy Old Hackers, discovered his LinkedIn password
in the dataset from that breach. They tried it on Trump’s @realDonaldTrump
Twitter account and . . . ​it worked.

You might be thinking, “Isn’t using a password manager just putting all
my eggs in one basket? If it gets hacked, doesn’t that give the hacker access
to everything?” This is true—it’s very important to secure your password
manager—but not using one at all is like trying to hold hundreds of eggs
with just your hands, without using a basket, and without breaking any of
them. If you try that, you’re bound to drop a lot of your eggs eventually. You
also always have the option of using multiple password managers (multiple
baskets) for different projects so that if one gets hacked, the others remain
secure.

There are several good password managers available, and if you already
know of one you like, by all means use it. Here are three that I recommend:

Bitwarden ​  ​This manager is free and open source, and it syncs pass-
words between your computers and phone. It has browser extensions
to fill in passwords automatically when you log into websites. It’s a
good choice for a day-to-day password manager. Download it at https://
bitwarden​.com.

1Password ​  ​Like Bitwarden, 1Password syncs passwords between your
computer and phone and has a browser extension. It’s also a good choice
for a day-to-day password manager. It costs money, but 1Password gives
free licenses to journalists. Download it at https://1password​.com, or see
https://1password​.com​/for​-journalism​/ for more information about the free
license program.

KeePassXC ​  ​This software is great for high-security situations. Unlike
Bitwarden and 1Password, KeePassXC doesn’t sync your encrypted
password database to the cloud, which makes it less convenient but

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

20 Chapter 1

potentially more secure. It works well on air-gapped computers.
Download it at https://keepasscx​.org.

If you’d like to use Bitwarden, 1Password, or a similar password man
ager that syncs between devices, follow the installation instructions on its
website to install the program on your computer, your phone, and as an
extension in your web browser. If you’re using a local-only password man
ager like KeePassXC, just install it on your computer.

When you first set up your password manager, it’s extremely important
that you not forget your master password. Unlike most website passwords,
a master password can’t be reset. If you forget it, you’re locked out of your
password manager forever and you lose all your passwords. Write the master
password on a piece of paper until you’ve memorized it, and then destroy
the paper.

The best master passwords are passphrases, a sequence of words picked
at random from a dictionary. They’re also easier to remember than com-
pletely random passwords. An example of a good passphrase is movie-
flanked-census6-casino-change. It has no meaning at all, but with practice
it’s not too hard to memorize.

Once you’ve set up your password manager account, add your other
passwords to the manager. Start by adding the passwords you use the most:
perhaps your email password or passwords to social media accounts. If
you’ve ever reused these passwords, take this opportunity to change them and
make them better. Whenever you create a new password, use your password
manager’s password generator, a tool included to help you create strong
passwords. Typically, password generators have settings that let you choose
whether it should generate a password or a passphrase, whether it should
contain numbers or special characters, how long it should be, and so on.

Bitwarden, for example, can create both passwords or passphrases.
Figure 1-2 shows Bitwarden’s password generator, which is configured to
create a passphrase with five words, separated by dashes, capitalized, and
including a number.

Bitwarden can also make strong passwords, such as Frz6ioX4o@cCY. All
of your passwords should either be strong passphrases or passwords like this.

The password generators included in 1Password, KeePassXC, and other
password managers all include similar features. While Bitwarden allows you
to open the password generator tool independently, some password man
agers require you to add a new item in your password database or edit an
existing one to access the generator.

When you need to come up with a new password, it doesn’t matter if you
choose to use a password or a passphrase so long as it’s strong and unique.
However, passphrases tend to be easier to memorize and to enter. For this
reason, I tend to use passwords to log into websites (my password manager
fills them in for me) and passphrases for anything that I might need to mem-
orize or enter, such as a disk encryption passphrase or the passphrase to log
into my computer.

Every time you create a new account or log into an existing one, add the
password to your password manager.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Protecting Sources and Yourself 21

Disk Encryption
Disk encryption allows you to protect your data from people who have
physical access to your phone, laptop, or USB disk. It prevents anyone from
accessing data on a device if you lose it, someone steals it, it gets confiscated
at a border crossing or checkpoint, or your home or office is raided. For
example, when the internal disk in your laptop isn’t encrypted, anyone with
physical access to it can unscrew your laptop’s case, remove the disk, and
plug it into their own computer, accessing all of the data without needing
to know any of your passwords. But when your disk is encrypted, all of this
data is completely inaccessible to anyone who doesn’t have the right key. If
disk encryption is enabled, they’ll need to first unlock the disk, typically
using a password, a PIN, or biometrics like a fingerprint or face scan. You’ll
learn how to encrypt your internal disk and your 1TB USB disk in this chap-
ter’s exercises.

Although disk encryption is an important part of protecting your data,
it doesn’t protect against remote attacks. For example, if your laptop is
encrypted but someone tricks you into opening a malicious Word docu-
ment that attacks your computer, disk encryption won’t stop them from
accessing your files. Disk encryption also won’t help much if the attack-
ers get access to your device while it’s unlocked—for example, if you step
away from your laptop at a coffee shop without locking your screen, or if

Figure 1-2: Bitwarden’s password generator

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

22 Chapter 1

attackers can easily unlock your phone by forcing you to use biometrics. For
instance, after arresting you, a cop might wave your phone in front of your
face to unlock it with a face scan.

You, of course, won’t be relying on disk encryption to commit crimes,
but the story of Ross Ulbricht, the creator of the darknet market website
Silk Road, is a good illustration of how it can fail you. In 2013, Ulbricht was
using his encrypted laptop at the San Francisco Public Library when two
undercover FBI agents distracted him by pretending to be lovers in a fight.
Making sure his screen was unlocked, they quickly arrested him, then cop-
ied important files off of his computer. If his screen had been locked and
he’d had a strong password, the disk encryption might have prevented them
from accessing his data at all. Ulbricht was charged with money laundering,
hacking, drug trafficking, and other crimes.

Encrypting your laptop’s internal disk is a basic security measure that
everyone should take. It’s quick and easy to set up, doesn’t require you to do
any extra work on a regular basis, and protects your privacy if you lose your
device. You can think of it like wearing a seatbelt: there’s really no good rea-
son not to do it. Encrypting your laptop’s internal disk is especially impor
tant if you’re going to be working with sensitive data.

Exercise 1-1: Encrypt Your Internal Disk
This exercise shows you how to encrypt the internal disk in your computer,
whether you have a Windows, Mac, or Linux machine. Skip to the appropri-
ate section for your operating system.

Windows
Different Windows versions and PC models have support for different types
of disk encryption. Pro editions of Windows include BitLocker, Microsoft’s
disk encryption technology, and Home editions include device encryption,
which is basically BitLocker with limited features. These features work only
if your PC is new enough, though. If your computer came with at least Win
dows 10 when it was new, it should support disk encryption, but if it came
with an earlier version of Windows, it might not. I go over options for how
to proceed in this case at the end of this section.

BitLocker

To find out whether your computer includes BitLocker, click Start (the Win
dows icon in the bottom left of your computer), search for bitlocker, and
open Manage BitLocker. If your version of Windows supports it, the window
should show whether BitLocker is enabled on your C: system drive, and you
should have the option to enable it. If so, do that now.

When you enable BitLocker, it makes you save a recovery key to either
your Microsoft account, a file on a nonencrypted USB disk, or a printed
document. Saving your recovery key to your Microsoft account is the sim-
plest option, but it does mean that Microsoft or anyone with access to your
Microsoft account can access the key needed to unlock your disk. If you’d

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Protecting Sources and Yourself 23

prefer to not give Microsoft this access, print the recovery key. You should
also save your key in your password manager. If your computer breaks, you’ll
need your recovery key to access any of the data on your encrypted disk.

Device Encryption

If your version of Windows doesn’t include BitLocker, try device encryption.
Click Start, then navigate to SettingsUpdate & Security (or Privacy &
Security, depending on your Windows version). Then go to the Device
encryption tab to check whether it’s enabled; if not, enable it.

If you see no Device encryption tab, your PC doesn’t support device
encryption, unfortunately. You have a few options. The easiest option is to
upgrade to the Pro version of Windows, which typically costs about $100,
and then use BitLocker. Alternatively, use VeraCrypt.

VeraCrypt

VeraCrypt is free and open source disk encryption software. To begin,
download VeraCrypt from https://veracrypt​.fr, install it on your computer,
and open it.

Click Create Volume to open the VeraCrypt Volume Creation Wizard.
VeraCrypt lets you choose from three types of encrypted volumes. Select
Encrypt the System Partition or Entire System Drive and click Next.

On the Type of System Encryption page, choose Normal and click
Next. On the Area to Encrypt page, choose Encrypt the Windows System
Partition and click Next. On the Number of Operating Systems page,
choose Single-Boot and click Next (unless you have multiple operat-
ing systems on your computer, in which case choose Multi-boot). On the
Encryption Options page, use the default settings and click Next.

The next page is the Password page. You’ll need to come up with a
strong passphrase that you’ll have to enter each time you boot up Windows.
If that password is weak, your disk encryption will be weak. I recommend
generating a strong passphrase and saving it in your password manager—
this way, if you forget it the next time you reboot your computer, you can
look it up in your password manager on your phone. Enter the passphrase
twice and click Next.

The next page is called Collecting Random Data. VeraCrypt includes a
feature where you move your mouse around the window randomly so that it
can collect information from your mouse movements to make the encryp-
tion more secure. Move your mouse around until the bar at the bottom
of the screen is green, and then click Next. Click Next again on the Keys
Generated page.

The Rescue Disk page prompts you to create a VeraCrypt Rescue Disk,
which you can use in the event that your disk gets damaged and you have
issues booting Windows. Creating a rescue disk is outside the scope of
this book, so check Skip Rescue Disk Verification and click Next. On the
Rescue Disk Created page, click Next again.

On the Wipe Mode page, select None (Fastest) as the Wipe mode
and click Next. On the System Encryption Pretest page, click Test to test that

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

24 Chapter 1

disk encryption will work properly on your computer—this will reboot your
computer, and you’ll need to enter your VeraCrypt passphrase to boot up.

When you reboot your computer it should boot up to the VeraCrypt
bootloader, and you’ll need to enter the VeraCrypt passphrase to proceed.
Under PIM, just press enter. If all goes well, it will succeed, Windows will
boot up, and VeraCrypt will open on the Pretest Completed page again
after you log in. Click Encrypt to begin encrypting your internal disk with
VeraCrypt. From now on, you’ll need to enter your VeraCrypt passphrase
each time you boot your computer, but all of your data will also be pro-
tected with this passphrase.

macOS
Apple’s disk encryption technology is called FileVault. If you’re using
macOS Ventura or newer, open the System Settings app, click Privacy &
Security on the left, and scroll down to the FileVault section. (If you’re
using a version of macOS older than Ventura, open the System Preferences
app, click Security & Privacy, and make sure you’re on the FileVault tab.) If
FileVault is turned off, turn it on.

The password that unlocks your Mac’s disk is the password you use to
log into your account. Make sure your Mac password is strong; if it’s weak,
your disk encryption is weak.

When you enable FileVault, it makes you save a recovery key. Save that
key in your password manager. If you forget your Mac password, you’ll need
the recovery key to access any of your data. If you’re using a local password
manager that doesn’t sync to the cloud, like KeePassXC, store a copy of your
recovery key somewhere else as well, such as on a piece of paper kept in a
secure location.

Linux
Linux uses technology called LUKS for disk encryption. You can check the
Disks program (in most versions of Linux, press the Windows key to open this
program, type disks, and press enter) to see whether your internal disk is
encrypted. The program shows you all of the disks attached to your computer
and allows you to format them (see Figure 1-3). If your internal disk has an
unlocked partition with LUKS encryption, disk encryption is enabled.

In this case, my internal disk is the 500GB Samsung SSD listed on the
left. My disk is partitioned into four parts, and the last part (Partition 4) is
499GB and is encrypted with LUKS. Your disk might look different from
mine, but you’ll know it’s encrypted if the main partition says LUKS.

Unfortunately, you can’t just turn LUKS on or off. If your disk isn’t
encrypted, the only way to encrypt it is to reinstall Linux, this time mak-
ing sure to encrypt the disk. When you’re installing Linux, one of the first
steps in the installation process will be to partition your disk; make sure
to enable encryption during that step. If you’re going to reinstall Linux,
always back up your data first. After choosing your encryption passphrase,
save a copy of it in your password manager; you’ll need it every time you
boot up your computer.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Protecting Sources and Yourself 25

Exercise 1-2: Encrypt a USB Disk
Your internal disk alone likely isn’t large enough to store all of the datasets
you’ll need to work with. As mentioned in the book’s introduction, in order
to complete the exercises in this book and work with the massive datasets,
you need a USB disk that’s at least 1TB. To encrypt that USB disk, you also
need to format it, which deletes any data already on it. This exercise shows
you how to do that for whichever operating system you’re using.

Before you get started, let’s go over some background on how mass
storage devices (like hard disks, SD cards, and so on) work. Storage devices
are typically split into one or more partitions, also called volumes, with each
partition using a format called a filesystem. You can think of partitions as
cabinets that use different shelving systems (filesystems) to organize data.
Different operating systems use different filesystems. Windows often uses a
filesystem called NTFS, macOS often uses APFS, and Linux often uses ext4.
There are also filesystems that all three operating systems can use, such as
ExFAT.

When you erase a storage device, you delete all of the partitions on it
so that it contains unallocated space. You can then create a new partition—
with USB disks, you’ll typically create a single partition that takes up all
of the unallocated space—and format it using the filesystem that matches
your operating system.

Whether you’re working in Windows, macOS, or Linux, begin by plug-
ging your USB disk into your computer. Open your password manager
and save a new strong passphrase, created using your password manager’s
password generator. Name the password something like datasets USB disk
encryption.

To begin encrypting your disk, skip to the appropriate subsection for
your operating system.

Figure 1-3: Managing disks and partitions using Disks in Linux

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

26 Chapter 1

Windows
Windows users with BitLocker should work through the following subsec-
tion; if you don’t have BitLocker, skip to the VeraCrypt section.

BitLocker

If you have a Windows computer with BitLocker, use that to encrypt your
USB. First, make sure to format the USB disk as NTFS. To do so, click Start,
search for disk management, and open Create and Format Hard Disk
Partitions. This opens the Windows Disk Management app, as shown in
Figure 1-4, which lists all of the disks connected to the PC and lets you for-
mat them.

Figure 1-4: The Disk Management app in Windows

The bottom part of the window in the screenshot shows each disk
attached to your computer and how they’re separated into partitions. Disk 0
is my internal hard disk (as you can see, one of the partitions is C:), and
Disk 1 is a USB disk (one of those partitions is D:). On my computer, Disk 1
has a single 32GB partition, as well as about 86GB of unallocated space.

Find the USB disk you need to format. Right-click on every partition
and choose Delete Volume until you’ve deleted all the partitions on the
disk. Then right-click on the unallocated space in your disk and choose
New Simple Volume, which should open a wizard to help you create the
volume. Choose the full amount of disk space and format it as NTFS. The
wizard will ask you for a volume label, which is just a name for your partition;
in Figure 1-4, the label for D: is data. I recommend calling this disk datasets.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Protecting Sources and Yourself 27

Once the disk is formatted, click Start, search for bitlocker, and open
Manage BitLocker. You should now see your USB disk and have the option
to turn on BitLocker. When you enable BitLocker on your USB disk, a win
dow should pop up asking how you would like to unlock this drive. Choose
Use a Password to Unlock the Drive, then copy and paste your USB disk
encryption passphrase from your password manager into the password
field. You’ll need to paste it into the field to re-enter the password as well.
When you enable BitLocker, you’ll be required to save a recovery key to a
file. Since you’re saving the passphrase in a password manager, however,
you don’t need your recovery key, and you can delete the file.

VeraCrypt

If you use Windows Home and don’t have BitLocker available on your com-
puter, use VeraCrypt to encrypt your USB disk.

If you don’t already have VeraCrypt, download it from https://veracrypt​.fr,
install it on your computer, and open it. Click Create Volume to open
the VeraCrypt Volume Creation Wizard. On the first page of the wizard,
VeraCrypt lets you choose from three types of encrypted volumes. Select
Encrypt a Non-system Partition/Drive and click Next.

On the Volume Type page, VeraCrypt asks if you want a standard vol-
ume or a hidden one. Select Standard VeraCrypt Volume and click Next.
On the Volume Location page, click Select Device, choose the USB disk
you want to encrypt, and click Next. On the Volume Creation Mode page,
select Create Encrypted Volume and Format It and click Next. On the
Encryption Options page, use the default settings and click Next. You can’t
do anything on the Volume Size page, since you’re encrypting a whole parti-
tion rather than creating an encrypted file container, so just click Next.

On the Volume Password page, copy and paste your USB disk encryp-
tion passphrase from your password manager into the Password field, and
paste it again into the Confirm field. Then click Next. On the Large Files
page, VeraCrypt asks if you intend to store files larger than 4GB in your
VeraCrypt volume. Select Yes and click Next. On the Volume Format page,
under the Filesystem drop-down menu, select exFAT and check the box
next to Quick Format. VeraCrypt also includes a feature where you move
your mouse around the window randomly so that it can collect information
from your mouse movements to make the encryption more secure. Move
your mouse around until the bar at the bottom of the screen is green, and
then click Format.

A window should pop up, warning you that all of the data on your USB
disk will be erased and asking if you’re sure you want to proceed. Click
Yes, and then wait while VeraCrypt creates an encrypted partition on your
USB disk. As long as you selected Quick Format on the previous page, this
should only take a few seconds. On the Volume Created page, click Exit to
exit the wizard and get back to the main VeraCrypt window.

After you encrypt a USB disk with VeraCrypt, you need to use VeraCrypt
to mount it, or make it available on your computer as a drive letter. In the

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

28 Chapter 1

main VeraCrypt window, select an available drive letter (such as F:), click
Select Device, select your VeraCrypt-encrypted USB disk, and click OK,
then Mount. After you provide the encryption passphrase to unlock it,
VeraCrypt will mount your encrypted USB disk so you can use it. Now any
files that you save to this drive will be stored encrypted on disk.

Before unplugging your USB disk, unmount it by selecting the drive let-
ter in VeraCrypt and clicking Dismount.

N O T E 	 VeraCrypt also comes in handy if you need to access the same encrypted disk across
operating systems—for example, if you need to use it on both a Windows PC and
a Mac. However, for the purposes of this book, only Windows users who don’t have
BitLocker should use VeraCrypt. In general, you’ll have fewer headaches if you stick
with the disk encryption software built into your operating system.

macOS
Open the Disk Utility app, which you can find in the Applications/Utilities
folder. This app lists all of the disks attached to your computer and lets you
format them.

In Disk Utility, select the USB disk you plugged in and click the Erase
button. Name the disk datasets and choose APFS (Encrypted) for format.
You will then be prompted for the password to unlock the encrypted disk.
Copy and paste the USB disk encryption passphrase that you created at the
beginning of this exercise from your password manager into Disk Utility.
Disk Utility will also prompt you for a password hint, but because you’re sav-
ing this passphrase in your password manager and not bothering to memo-
rize it anyway, you can leave the password hint blank.

Linux
Open the Disks app as you did in Exercise 1-1. Select your USB disk in the
list of disks on the left, then click the menu button and choose Format
Disk. This will delete all of the data on the USB.

Click the ++ button to add a new partition and set the partition size to
the largest option. Name your disk datasets, choose Internal Disk for Use
with Linux Systems Only, and check the box Password Protect Volume
(LUKS). It will prompt you to enter a password. Copy and paste the USB
disk encryption passphrase that you created at the beginning of this exer-
cise from your password manager into Disks.

Protecting Yourself from Malicious Documents
Before you start working with any datasets on your encrypted USB disk, you
should know how to protect yourself from potentially malicious documents
they contain.

Have you ever been told to avoid opening email attachments from
unknown senders? This is solid computer security advice, but unfortunately

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Protecting Sources and Yourself 29

for researchers, journalists, activists, and many other people, it’s impossible
to follow. In these lines of work, it’s often your job to open documents from
strangers, including leaked or hacked datasets.

Opening documents you don’t trust is dangerous because it may allow
others to hack your computer. PDFs and Microsoft Office or LibreOffice
documents are incredibly complex. They can be made to automatically load
an image from a remote server, tracking when a document is opened and
from what IP address. They can contain JavaScript or macros that, depending
on how your software is configured, could automatically execute code when
opened, potentially taking over your computer. And like all software, the pro-
grams you use to open documents, like Microsoft Office and Adobe Reader,
have bugs, which can sometimes be exploited to take over your computer.

This is exactly what Russian military intelligence did during the 2016
US election, for example. First, the Main Directorate of the General Staff
of the Armed Forces of the Russian Federation (GRU) hacked a US elec-
tion vendor known as VR Systems and got its client list of election workers
in swing states. It then sent 122 email messages to VR Systems’ clients from
the email address vrelections@gmail​.com, with the attachment New EViD User
Guides.docm. If any of the election workers who got this email opened the
attachment using a vulnerable version of Microsoft Word in Windows, the
malware would have created a backdoor into their computer for the Russian
hackers. (We don’t know for sure whether any of the targets opened the
malicious attachment.)

Sending malicious email to specific targets in this way as part of a
hacking operation is called spearphishing. Figure 1-5 shows a spearphishing
email message targeting an election worker in North Carolina, which The
Intercept obtained using a public records request.

In 2017, Reality Winner leaked a classified document describing this
spearphishing attack to The Intercept. Thanks to her whistleblowing, the
public knows considerably more about Russia’s attacks on the US election in
2016 than it otherwise would. In fact, US states like North Carolina learned
that they were under attack by Russian hackers only by reading The Intercept.
In 2022, two former election officials told 60 Minutes that Reality Winner’s
disclosure helped secure the 2018 midterm elections against similar hack-
ing attempts.

To make it safer to untrusted open documents, I developed an open
source app called Dangerzone. When you open an untrusted document in
Dangerzone, the app converts it into a known-safe PDF—one that you can be
confident is safe. Using technology called Linux containers—which are like
quick, small, self-contained Linux computers running inside your normal
computer—it converts the original document into a PDF if it’s not already
one, splits the PDF into different pages, and converts each page into raw
pixel data. Then, in another Linux container, it converts the pixel data back
into a PDF. You can also ask Dangerzone to use optical character recognition
(OCR) technology, software that looks at an image of text and figures out
what the characters are, to add a text layer back to the PDF so you can still
search the text.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

30 Chapter 1

Dangerzone is essentially the digital equivalent of printing out a docu-
ment and rescanning it, stripping anything malicious from it and removing
the original document’s digital metadata. If you opened the malicious New
EViD User Guides.docm document using Dangerzone, it would create a new
document called New EViD User Guides-safe.pdf. You could then safely open
this PDF without risk. As an added benefit, you don’t need internet access to
use Dangerzone, so it works well on air-gapped computers.

You’ll learn more about Dangerzone and Linux containers in
Chapter 5, which covers how to make datasets searchable. In the meantime,
Exercise 1-3 will show you how to get started with it.

Figure 1-5: A spearphishing email targeting an election worker

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Protecting Sources and Yourself 31

Exercise 1-3: Install and Use Dangerzone
In this exercise, you’ll install Dangerzone and use it to convert documents
into known-safe versions. Figure 1-6 shows a screenshot of Dangerzone in
action, in this case converting the untrusted document D&D 5e - Players
Handbook.pdf to a known-safe version called D&D 5e - Players Handbook-safe.
pdf, which is also OCR’d and searchable.

Figure 1-6: Dangerzone in action

Download and install Dangerzone from https://dangerzone​.rocks.
Dangerzone relies on Linux containers. If you’re working on a Windows or
macOS machine, the easiest way to get containers running is to use soft-
ware called Docker Desktop, which you’ll be prompted to install the first
time you open Dangerzone. (You don’t need to do anything with Docker
Desktop for now; simply install and open it. You’ll learn more about Docker
in Chapter 5.)

Now that Dangerzone is installed, try it out. Open any PDF, Microsoft
Office document, LibreOffice document, or image on your computer
in Dangerzone and convert it to a safe PDF. If someone attaches a docu-
ment to an email and you don’t trust it, download a copy of it first, open
Dangerzone, and click Select Suspicious Documents. Then browse for the
document you downloaded and use Dangerzone to convert it into a known-
safe version.

V IR T UA L M ACHINES

Another option, which is a bit more complicated, is setting up a virtual machine
(VM). VMs are like a stronger version of Linux containers. They isolate the
software running inside the VM more than Linux containers can, and they can
run on any operating system. If you choose this option, make sure to disable

(continued)

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

32 Chapter 1

internet access in your VM before opening documents. This way, if the docu-
ment is malicious, it won’t let any attackers know the document was opened.

Giving detailed instructions on using VMs is outside the scope of this book.
However, if you want to try them on your own, the easiest way to get started is
to use the free and open source virtualization software VirtualBox (https://www​
.virtualbox​.org). VirtualBox works for Intel-based Macs, Linux, and Windows
computers. At the time of writing, there’s a beta version of VirtualBox that sup-
ports Apple Silicon Macs, but it has issues. If you have an Apple Silicon Mac,
I recommend you try Paralells (https://www​.parallels​.com) or VMware Fusion
(https://www​.vmware​.com​/products​/fusion​.html) instead; note, however, that
neither is free.

Dangerzone works great with PDFs and Word documents, but not
so great with spreadsheets. No matter what type of file you open in
Dangerzone, you always end up with a safe PDF, and spreadsheets really
aren’t meant to be read in that format.

If Dangerzone doesn’t do a good enough job with a document you’d
like to read, you can open it a few other ways while containing the damage.
If you don’t believe the document is sensitive, upload it to Google Drive and
open it there, using Google’s web interface. This way, technically Google is
opening the malicious document on its computers instead of you opening
it on yours.

Summary
In this chapter, you’ve learned how to think about source protection in
today’s world of widespread digital surveillance. You’ve also learned about
securely storing datasets, depending on their sensitivity; verifying that your
datasets are authentic; and redacting information from documents before
you publish your final report. You started using a password manager to keep
your passwords safe, and you encrypted your internal disk and set up your
encrypted datasets USB disk. Finally, you practiced turning potentially mali-
cious documents into ones you know are safe to open using Dangerzone.

In the next chapter, you’ll put your datasets disk to good use by down-
loading your first hacked dataset.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

In early January 2010, 22-year-old Chelsea Manning
sat at a Windows computer in a temporary Sensitive
Compartmented Information Facility (SCIF)—an
enclosed area or room suitable for working with secret
documents—in eastern Baghdad. She was download-
ing half a million secret “significant activity” reports
from the military network SIPRNet, a Department of
Defense computer network used for transmitting clas-
sified information.

As an intelligence analyst working for the US Army, Manning needed
regular access to these databases, so she downloaded them for work pur-
poses. Having a local copy would be useful in a war zone where network
access can be unreliable. It wasn’t until later that month that she decided
to leak them to the public, after realizing they documented American war
crimes in Iraq and Afghanistan. They would soon become some of the most
significant public datasets of the 21st century. “I believe that if the general

2
A C Q U I R I N G D A T A S E T S

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

34 Chapter 2

public, especially the American public, had access to the information con-
tained within the [Iraq War Logs and Afghan War Logs], this could spark
a domestic debate on the role of the military and our foreign policy in gen-
eral,” she later said at her court martial hearing.

At the SCIF computer, Manning compressed the files using a program
called WinRAR, burned them to a rewritable CD, and left them in the
SCIF for easy reference. A few weeks later, at the end of her shift on a Friday
night, she slipped the CD into her cargo pocket and headed to her dorm,
where she copied the data to her laptop. Eventually, she copied it to the
SD card in her digital camera, and on January 23 she flew into the Reagan
National Airport just outside of Washington, DC, with the SD card in hand.

In 2010, massive leaks like this were unprecedented. Today, they hap-
pen all the time. Back then, WikiLeaks was the only place for sources to
go—traditional newsrooms weren’t prepared to handle leaks like this. Now,
however, there are lots of options: sources can send documents to a trans-
parency collective like Distributed Denial of Secrets (DDoSecrets), they can
contact journalists directly using tools like Signal and OnionShare, or they
can get in touch with a newsroom by following instructions on its public
tips page.

In this chapter, you’ll learn best practices for safely acquiring public
and private datasets. You’ll learn more about the history of WikiLeaks and
DDoSecrets, then use a technology called BitTorrent to obtain your own
copy of the BlueLeaks dataset from DDoSecrets. You’ll download the Signal
instant messaging app to securely communicate with sources and learn
about PGP encryption, an alternative method of securing messages. You’ll
practice sending data anonymously with Tor and OnionShare, then read
the story of how I communicated with a source using several of these tools.
Finally, I’ll outline several more ways to securely receive data from sources,
including techniques appropriate for professional newsrooms rather than
individual reporters.

The End of WikiLeaks
After deciding she wanted to leak the War Logs, Manning first called a
reporter at the Washington Post, but she didn’t feel like they took her seri-
ously. She tried the New York Times but managed only to leave a voicemail,
and the paper never returned her call. Finally, she settled on WikiLeaks,
a leak site founded in 2006 by Australian information activist Julian
Assange. This turned out to be a great choice at the time. In addition to
publishing the documents, WikiLeaks worked in partnership with news-
papers across the world, including the New York Times, the Guardian, and
Der Spiegel, to break major stories about US imperialism. Along with the
dataset of 250,000 State Department cables known as Cablegate, the two
datasets that Manning leaked were a catalyst for the Arab Spring, the 2011
pro-democracy movement that led to the toppling of governments in the
Middle East and North Africa, including the authoritarian regimes in
Egypt and Tunisia.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Acquiring Datasets 35

Back then, WikiLeaks was revolutionary, initiating the document-based
transparency movement by making massive datasets accessible to the pub-
lic. The documents that Manning leaked were its first major releases with
international consequences, making WikiLeaks a proof-of-concept for sites
that allow anyone to anonymously submit leaked documents. Today, nearly
every major newsroom in the US and many throughout the world have
this capability using open source software like SecureDrop, though news
organizations rarely publish raw datasets like WikiLeaks did.

Manning sent these datasets to WikiLeaks several years before the
transparency group and its editor, Assange, shifted from a journalism
outfit based on the premise that “information wants to be free” to an ethi-
cally dubious political organization working to get Donald Trump elected
president in 2016. During that US election, WikiLeaks and Assange went
off the rails. The group published a dataset full of hacked Democratic
National Committee (DNC) and Clinton campaign email messages just in
time to distract the news cycle from the infamous Access Hollywood audio
clip of Trump bragging about committing sexual assault. Assange lied
to the public about his source for this data (it was Russian military intel-
ligence), boosting the conspiracy theory that Seth Rich, an unrelated
Democratic Party staffer who was murdered in Washington DC, was his real
source. WikiLeaks also promoted the Pizzagate conspiracy theory claiming
that high-ranking Democratic Party officials were involved in a child sex-
trafficking ring run out of a pizza shop in DC.

Today, WikiLeaks is little more than a Twitter account. Its document
submission systems have stopped working and its website is no longer
maintained. The loss of WikiLeaks to the online fever swamp was tragic
for investigative journalism around the world, but a new and better
organization has grown to take its place: DDoSecrets.

Distributed Denial of Secrets
Distributed Denial of Secrets, or DDoSecrets, is a nonprofit transpar-
ency collective in the US founded by Emma Best in 2018. It’s similar to
WikiLeaks, but without the toxic ego of Julian Assange and with consider-
ably more transparency around the group’s decision-making, and it’s largely
run by queer people.

DDoSecrets hosts data previously published by WikiLeaks, like the DNC
Emails dataset, as well as those WikiLeaks declined to publish, like the Dark
Side of the Kremlin dataset, which contains over 100GB of documents and
emails from Russian oligarchs and politicians. Notably, it also hosts a great
deal of data leaked in the months following Russia’s invasion of Ukraine
in February 2022. At that time, hackers—mostly claiming to be hacktivists,
many identifying with the Anonymous hacktivist movement—bombarded
Russia with cyberattacks. They hacked dozens of Russian organizations,
including government agencies, oil and gas companies, and finance institu-
tions, and submitted tens of terabytes of data to DDoSecrets to distribute to
the public and to journalists.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

36 Chapter 2

N O T E 	 I work closely with DDoSecrets as an adviser and sometimes volunteer.

Anyone can download the following datasets from DDoSecrets:

BlueLeaks

BlueLeaks is a collection of 270GB of documents from hundreds of US
law enforcement and police fusion center websites, released during the
height of 2020’s Black Lives Matter uprising. You’ll know this dataset
well by the end of this book, and you’ll download a copy of it in this
chapter’s first exercise.

Parler

The Parler dataset contains 32TB (yes, terabytes) of video scraped
from the right-wing social network Parler, including many from the
January 6, 2021, anti-democracy riot at the US Capitol. Many of these
videos were used as evidence in Donald Trump’s second impeachment
inquiry. You’ll learn more about this dataset in Chapter 11.

Epik Fail

The Epik Fail dataset includes 10 years of domain name registrar data
from Epik, a company that’s notorious for hosting domain names and
websites for neo-Nazis and other extremist groups. You’ll explore this
dataset in Chapter 12.

In addition to public datasets like these, DDoSecrets hosts many private
datasets available only to journalists and researchers who request access.
Datasets containing large quantities of PII, like names, email addresses,
birth dates, or passwords, are often kept private. For example, the Oath
Keepers dataset includes gigabytes of data from the American far-right
paramilitary organization, including spreadsheets full of the group’s mem-
ber and donor records. That part of the release is limited only to journalists
and researchers who request access, but another part, 5GB of email and
chat logs, is available to the public. You’ll download part of this release in
Chapter 4 and work with it in Chapter 6.

DDoSecrets publishes many more datasets than these, and it continues
to release new ones all the time. For an inventory of all of those available,
as well as instructions on how to request access to the limited-distribution
datasets, visit https://ddosecrets​.com.

N O T E 	 You won’t be able to share that DDoSecrets link on Twitter. Shortly after DDoSecrets
released BlueLeaks, Twitter permanently suspended the @DDoSecrets account
and censored all links to https://ddosecrets​.com, citing its selectively enforced
policy against posting hacked data. Twitter prevents tweets or even DMs includ-
ing DDoSecrets links from going through, though WikiLeaks has faced no such
censorship.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Acquiring Datasets 37

DDoSecrets distributes public datasets using a protocol called
BitTorrent. To download datasets, you’ll need to learn how to use it.

Downloading Datasets with BitTorrent
At the turn of the 21st century, long before services like Netflix and Spotify
made online entertainment cheap and accessible to the public, peer-to-peer
file sharing services like Napster, LimeWire, and Kazaa enjoyed immense
popularity because they made downloading pirated media and software so
easy. The copyright industry quickly shut down these centralized services
with lawsuits, but decentralized technologies rose from their ashes. The
most popular of these is BitTorrent. In addition to piracy, BitTorrent is also
frequently used to legally distribute large files like Linux operating systems,
as well as massive datasets.

BitTorrent works well for sharing controversial data like BlueLeaks,
because no one—not the US government, police departments, tech com-
panies, internet service providers, or anyone else—can easily censor it.
Traditionally, one computer on the internet hosts data (on a website, for
example), and all other computers connect to that host to download it. If
someone wants to censor that data, they only have to bring down that single
host. With BitTorrent, however, data is hosted in swarms, a collection of
computers currently sharing a specific set of files. If you want to download
some data, you join the swarm by opening a link to the data, called a tor-
rent, in your BitTorrent software, and become a peer. Your BitTorrent soft-
ware downloads pieces of the data that you need from other peers in the
swarm, and in return, you upload pieces of data you already have to peers
who need it. Once you have all of the data you need, you can remain in the
swarm and continue sharing with peers as long as you keep your BitTorrent
software open, making you a seed. If you have the internet bandwidth and
are allowed to share the files, it’s generally good practice to keep seeding,
especially if there are few other seeds.

Every BitTorrent swarm needs to have at least one seed in order to
enable the peers to finish downloading all the data. The more popular the
data, the bigger the swarm, the faster the downloads—and the more dif-
ficult censorship becomes. It’s hard to block access to every peer in a swarm
(swarms can grow to have tens of thousands of peers), and nothing stops
more peers from joining. There’s no single entity to sue or pressure finan-
cially. Swarms often consist of computers distributed around the world, so
national laws also can’t achieve the censorship they might otherwise aim for.

There is nothing illegal about using BitTorrent to share files that you’re
legally allowed to share. Blizzard Entertainment has even adopted the
technology itself to distribute large video games like World of Warcraft to its
users, and the Internet Archive, the nonprofit digital library at https://archive​
.org, uses BitTorrent to distribute large files like radio and TV shows. The
structure of BitTorrent hosting makes for faster downloads, and bandwidth
costs are shared throughout the swarm.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

38 Chapter 2

Most publicly available DDoSecrets datasets are distributed through
BitTorrent. In order to download something with BitTorrent, you’ll need
the following:

•	 A program installed in your computer called a BitTorrent client. You can
use whatever client you prefer, including a command line version, but I
like one called Transmission. It’s free and open source and works great
in Windows, macOS, and Linux.

•	 Either a .torrent file that you can open in your BitTorrent client or a mag-
net link, a type of URL that starts with magnet: and tells your BitTorrent
client where to find the full .torrent file.

•	 Roughly 1TB of storage space, at least if you want to download the
datasets used in this book. I recommend downloading to the encrypted
datasets USB disk that you set up in Exercise 1-2.

In a moment, you’ll use BitTorrent to download a copy of the BlueLeaks
dataset, but first let’s take a look at where that data originated.

The Origins of BlueLeaks
The disparate surveillance systems of local, state, and federal law enforce-
ment agencies in the United States collected enough intelligence to learn
critical clues about the September 11, 2001, terrorist attack before it hap-
pened. However, each agency kept this information to itself, failing to
prevent the attack. Afterward, the US government decided these agencies
needed to improve how they share information with each other. Congress
directed the newly formed Department of Homeland Security (DHS) to
create fusion centers across the country, collaborations between federal agen-
cies like the DHS and FBI with state and local police departments, to share
intelligence and prevent future terrorist attacks. These fusion centers are
the source of much of the BlueLeaks data.

According to a 2012 Senate report, these fusion centers have “not pro-
duced useful intelligence to support Federal counterterrorism efforts,”
and the intelligence reports they produced were “oftentimes shoddy, rarely
timely, sometimes endangering citizens’ civil liberties and Privacy Act
protections, occasionally taken from already-published public sources,
and more often than not unrelated to terrorism.” Fusion centers had also
been caught infiltrating and spying on anti-war activists, and in 2008,
the American Civil Liberties Union published a report about fusion cen-
ter abuses, including spying on religious groups in violation of the First
Amendment.

In June 2020, a hacktivist self-identifying with the Anonymous move-
ment hacked 251 law enforcement websites, most of them fusion centers
and related organizations. The hacked data, known as BlueLeaks, includes
thousands of police documents and spreadsheets with over 16 million rows of
data. The data spans from 2007 to June 14, 2020, when the Black Lives Matter
uprising triggered by the police murder of George Floyd was in full swing.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Acquiring Datasets 39

While the hacktivist from Anonymous violated the law when they broke
into these police websites and stole all this data, in the US it’s legal for you
to download BlueLeaks, investigate it, and publish your findings.

Exercise 2-1: Download the BlueLeaks Dataset
In this exercise, you’ll download a local copy of the BlueLeaks dataset onto
the 1TB USB disk you encrypted in the previous chapter. You’ll be investi-
gating the contents of this dataset later in the book.

Download Transmission (https://transmissionbt​.com) or any other
BitTorrent client of your choice and install it on your computer following
the instructions for your operating system. Load the BlueLeaks page on the
DDoSecrets website at https://ddosecrets​.com​/wiki​/BlueLeaks. From there, find
the magnet link for the BlueLeaks torrent and copy that to your clipboard.

Next, open Transmission. Click FileOpen Torrent Address, paste the
magnet link, and click Open to start downloading the data. When you first
add this torrent to your client, it will ask where you want to save it. Save it
to your datasets USB disk, then sit back and watch BitTorrent do its thing. It
should connect you to the swarm, start downloading chunks of BlueLeaks
from other peers (while possibly uploading chunks to other peers as well),
and alert you when it’s done downloading. When the download completes,
you’ll be seeding the BlueLeaks torrent and letting others download from
you, until you remove the torrent from Transmission.

The 269GB download might take several hours, or even days if you have
a slow internet connection. While you’re waiting, read on.

Communicating with Encrypted Messaging Apps
Most ways you communicate online aren’t very secure, even when you send
messages that are ostensibly private. This is fine if you’re discussing non-
sensitive information over Slack, SMS messages, or DMs on social media.
However, when communicating with a confidential source who might face
retaliation for talking with you, you should always use an encrypted messag-
ing app.

Among encrypted messaging apps like WhatsApp and iMessage, Signal
stands out as the best choice for source communications. Unlike other apps,
Signal can’t be forced to share most information about its users with law
enforcement or leak investigators, because it can’t access that user data in
the first place. The only information the company can retrieve is the date
that a user created their Signal account, and the date that account most
recently connected to Signal. Not even those who might typically be able
to spy on your communications, like the messaging app’s employees, cloud
hosting provider, or internet monitoring agencies, can access your Signal
messages. Signal is the primary app I use for sensitive work communica-
tion, as well as for personal messaging. If I start out chatting with people on
other platforms—SMS, DMs on social media, or anything else—I tend to
move the conversation to Signal as soon as possible.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

40 Chapter 2

In more detail, here’s how Signal ensures that it has as little informa-
tion about its users as possible:

•	 Since messages and calls are end-to-end encrypted, the Signal service can’t
access their contents. This means if you type a Signal message to me
on your phone (your end) and hit send, the Signal app will encrypt it
for me or create a totally scrambled version of the message so that it’s
impossible for anyone but me to unscramble it. The encrypted message
then goes to Signal’s servers, which forward it to my phone (my end).
Once it’s on my phone, the Signal app can then decrypt it so I can read
the original message. Signal’s servers themselves never have access to the
original message, only the encrypted version, and they never have the
ability to decrypt it—only message recipients do.

•	 Signal servers don’t store metadata, the records of when you send mes-
sages and to whom. They also can’t access your list of contacts, or even
the name and avatar associated with your own phone number.

•	 Signal invented a technology called sealed sender, which uses crypto
graphy to prevent anyone besides you and the recipient of your message
from knowing who you’re communicating with. Even if Signal secretly
wanted to store your metadata (or if someone hacked Signal’s servers to
monitor for metadata), they still wouldn’t have access to it.

•	 Signal doesn’t know which phone numbers are part of which Signal
groups, or any metadata about the group, such as its name or avatar.

Signal’s code is open source, which lets experts inspect it for flaws and
backdoors, and its encryption protocol has been peer reviewed by crypto
graphy experts.

Signal’s security protocols stand in stark contrast to those of other
encrypted messaging apps. WhatsApp, for example, routinely shares
metadata with law enforcement, like exactly which phone numbers a sur-
veillance target communicates with and when the target has used them.
WhatsApp can even share this data in real time, allowing it to be used as
evidence against whistleblowers like Treasury Department employee Natalie
Mayflower Sours Edwards, mentioned in Chapter 1. When she was indicted
in 2018 and accused of sharing a secret dataset to BuzzFeed journalist Jason
Leopold, the evidence against her included real-time metadata from an
encrypted messaging app. The metadata showed Edwards and Leopold
exchanging hundreds of messages right as Leopold published multiple
articles based on this dataset. Edwards and Leopold would have been better
off if they had used Signal.

N O T E 	 The web page https://signal​.org​/bigbrother​/ lists the handful of times that
Signal has been ordered to share data with law enforcement and how they responded.
In all cases, Signal either didn’t share any data (because, as the organization says,
“It’s impossible to turn over data that we never had access to in the first place”) or
shared only the date that the target Signal account was created and the date that it
most recently connected to the service.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Acquiring Datasets 41

For additional security, you can compare Signal safety numbers with
another Signal user, allowing you to verify that the end-to-end encryption
with that person is secure and isn’t being actively tampered with by the
Signal service, your internet service provider, or anyone else. From a Signal
conversation, you can tap on the name of the person you’re talking to at
the top, then tap View Safety Number. This should show you your safety
number, both as a number and as a QR code. If your safety number is the
same as the other person’s, you can be sure that the end-to-end encryption
is secure. If you’re physically in the same room, you can both use the safety
number screen to scan each other’s QR codes to confirm. To confirm
remotely, you can copy the safety number and paste it into a different mes-
saging app (not Signal), then send it to the same person. If you confirm
that your safety number matches, tap Mark as Verified. Once you’ve verified
your safety number with a contact, Signal will make it clear that it’s verified
and warn you if it ever changes—this could mean the encryption is under
attack, but more likely it just means the person you’re talking to got a new
phone, and you’ll have to verify them again.

Once Signal messages are on your device, they’re only as safe as your
phone itself. Leak investigators searching your phone or your source’s
phone will have access to all the messages on each device. To protect
against device searches, always use Signal’s disappearing messages feature,
which automatically deletes messages a set amount of time after you view
them, unless you have a good reason to retain messages for a specific con-
versation. You can choose to delete messages anywhere between 30 seconds
and 4 weeks after viewing, or set a custom time. I typically set disappearing
messages to 4 weeks, change it to an hour or so if I’m sending secret infor-
mation like a password, and then change it back to 4 weeks. In your Signal
privacy settings, I recommend choosing to make all new conversations start
with disappearing messages. You should also take steps to lock down your
phone itself, like using a strong random passcode so that no one but you
can easily unlock your device.

Signal is not only very secure but also very easy to use. Any two people
with the app installed can send each other encrypted text messages, share
encrypted files, and make encrypted voice and video calls or group chats
for multiple users.

Exercise 2-2: Install and Practice Using Signal
In this exercise, you’ll install Signal on your phone and computer and prac-
tice using it.

Start with your phone: open the iPhone App Store or the Android Play
Store and download the Signal Private Messenger app. After you open the
app, you’ll need to verify your phone number and set a PIN (save this PIN
in your password manager). Signal will also request some permissions. In
my opinion, it’s perfectly safe to grant all of them. Signal uses the Contacts
permission to discover which of your contacts also use the app, but in

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

42 Chapter 2

such a way that it can’t access your contact list itself. (If you grant access to
your contacts, the app will notify you when one of them creates a Signal
account.)

Next, download Signal on your computer from https://signal​.org. After
installing it, you’ll need to scan a QR code from your phone to set up your
computer as a linked device. Keep in mind that your Signal messages will
now be copied to both devices, so make sure to keep them both secure.

To practice sending encrypted messages, get some friends to install
Signal too. Send them messages, play with disappearing messages, and try
out encrypted voice calls and video calls. If you have enough friends on
Signal, start a Signal group.

Encrypting Messages with PGP
In addition to communicating via secure messaging apps, you can also
encrypt messages with PGP (“pretty good privacy”) encryption. This
encryption method was first developed in 1991 to encrypt email. It has
historically been very important in securely communicating with sources
and other journalists; I used it extensively while reporting on the Snowden
archive. Compared to modern encrypted messaging apps like Signal, PGP
is complicated and error-prone, so I recommend that you avoid it if you can
and choose one of the better alternatives instead. However, you may find it
useful in future investigations if one of your sources uses it.

PGP works like this: a user creates a file on their computer called a
PGP key, which can be split into two parts, a public key and a secret key. If you
have a copy of this user’s public key, you can use it to encrypt a message so
that it can be decrypted only with that secret key. You can then email this
scrambled message to the PGP user with the secret key. If anyone else gets
access to that email, the message is scrambled and they can’t read it. When
the person with the secret key checks it, though, they can decrypt it and
read the original message.

People sometimes still send me PGP-encrypted email, and I use PGP to
respond to them securely. You can find my PGP public key on my personal
website, https://micahflee​.com. I keep my PGP secret key on a USB device
called a YubiKey, which looks kind of like a USB stick with a button on it.
YubiKeys (and other security keys) are mainly used to lock down online
accounts. Even if a hacker knows the username and password to my Google
account, for example, they won’t be able to log in without first physically
stealing my YubiKey, plugging it into their computer, and pressing its but-
ton while they try to log in. YubiKeys can also be used to securely store PGP
secret keys.

Staying Anonymous Online with Tor and OnionShare
Tor and OnionShare are both important tools for working with sources
who want to send you data anonymously, and for conducting investigations
where you need to remain anonymous yourself.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Acquiring Datasets 43

Tor is a decentralized network of volunteer servers called nodes. It keeps
you anonymous online by bouncing your internet connection through a
series of these nodes. Tor Browser is a web browser that sends all web traffic
through the Tor network. Using Tor Browser works much like using Chrome
or Firefox. Let’s say you want to anonymously visit the Organized Crime
and Corruption Reporting Project’s (OCCRP) website at https://www​.occrp​
.org. You simply open Tor Browser (which you can download from https://
www​.torproject​.org), wait for it to connect to the Tor network, type occrp​.org
in the address bar, and hit enter, and the page will load.

N O T E 	 I’ve been a volunteer in the Tor community for a long time, attending the nonprofit’s
physical gatherings around the world, sometimes running Tor nodes to contribute to
the network, and developing software related to Tor.

Tor Browser operates more slowly than a normal browser, because it
bounces your web traffic between three random Tor nodes around the
world before sending it to the OCCRP website. No single node knows both
your real IP address, which would reveal your location, and what website
you’re visiting. This means you don’t need to trust the nodes to use them.
Even if a Tor node is run by criminals or spies, they won’t be able to de-
anonymize you, at least not without exploiting a vulnerability in the Tor
network itself. When you close Tor Browser, everything about your browsing
session gets deleted without leaving a trace on your local computer.

Since Tor allows users to be anonymous online, people routinely use
it for hacking websites, creating accounts to spam or phish people, or
engaging in similar activities. For this reason, plenty of websites (including
Google) are often extremely suspicious of Tor traffic, and make Tor users
jump through additional hurdles like filling out CAPTCHAs or even block
them altogether. Unfortunately, this is the price of online anonymity.

In addition to allowing internet users to remain anonymous, Tor can
keep servers themselves anonymous. These servers are called Tor onion
services (sometimes referred to as the dark web) and have domain names
ending in .onion. You can load onion services only by using Tor. Like Tor
Browser, onion services also pick three random Tor nodes to route their
traffic through. When a user loads an onion site in Tor Browser, it actually
requires six hops through the Tor network: three on the Tor Browser side
and three on the onion service side.

N O T E 	 The .onion domain name is derived from a cryptographic fingerprint of the public
key that belongs to the onion service. The Tor protocol ensures that no one else can use
that same name without knowing that onion service’s secret key.

OnionShare, which I first developed in 2014 and have been adding fea-
tures to ever since, is software that makes it easy for anyone to run onion
services, allowing them to anonymously and securely send and receive files. It
runs a web server directly on your computer, makes that server accessible to
others as an onion service, and shows you a .onion address to send to someone
else. When you start an OnionShare service, you can choose between Share

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

44 Chapter 2

mode, which allows others to download specific files from your computer, or
Receive mode, which allows others to upload files to your computer.

OnionShare also supports other modes. With Chat mode, for instance,
you can spin up an anonymous chat room. It doesn’t have as many features
as a Signal group, but it keeps you significantly more anonymous. With
Website mode, you can quickly host a static website—a simple website made
up of HTML files and resources like images and JavaScript, but without any
databases or code running on the server—as an onion service. If someone
loads that address in Tor Browser, their connection bounces through the
Tor network until it reaches your computer, then loads the website hosted
by OnionShare.

Figure 2-1 shows the OnionShare software configured as an anonymous
dropbox, allowing my URL recipient (such as a source) to anonymously and
securely upload files directly to my computer.

Figure 2-1: OnionShare in Receive mode

For example, to use OnionShare to let a source send me data, I’d open
OnionShare on my computer, connect to the Tor network, click Receive
Files, and then click Start Receive Mode. The service would give me a URL
like http://ic2kaoao3fspynexwxlajxhb3zwcwrjuf57ykfuq7tsrhzlveeamkrid​.onion.
I would send that URL to my source and wait. My source would then open
Tor Browser; load that URL, which would load a website hosted directly on
my computer; and then upload their files. Because OnionShare uses Tor,
I’d have no way of learning my source’s IP address, and my source would
have no way of learning mine.

Figure 2-2 shows what that web page would look like for my source.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Acquiring Datasets 45

Figure 2-2: Using Tor Browser to access the OnionShare Receive mode site shown in
Figure 2-1

The URL I sent to my source starts with http:// and not https://. HTTPS
encrypts traffic between the web browser and the web server; normally, with
just plain HTTP, anyone monitoring the network can spy on exactly what
you’re doing, what files your uploading, and what passwords you’re submit-
ting into forms. Onion services are an exception to this rule, though, since
the connection between Tor Browser and an onion service is already end-
to-end encrypted. It’s possible to add HTTPS to an onion service, but doing
so would be redundant and unnecessary. Also notice that the domain name
part of the URL in Figure 2-2 is 56 random-looking letters and numbers fol-
lowed by .onion. Unlike with normal domain names, you don’t get to choose
onion service names. They all look like this.

OnionShare runs a web server directly on your computer. This means
third-party companies don’t have access to any of the files that are shared in
it, but also that you have to time things right. If I sent that OnionShare link
and then closed my laptop so it went to sleep, my source wouldn’t be able to
load the website until I woke my computer up again. OnionShare works best
when you’re working with people in real time. However, because it uses the
Tor network, it’s really slow. It might take many hours or even days to trans-
fer gigabytes of data. To transfer especially large datasets, consider using a
non-Tor method like those described later in this chapter.

N O T E 	 For more information, read the detailed documentation for OnionShare at https://
docs​.onionshare​.org.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

46 Chapter 2

If you’re using OnionShare to send sensitive data, I recommend that
you share OnionShare URLs only using encrypted messaging apps like
Signal and avoid sending them over insecure communication channels like
email or social media DM. This will prevent anyone who has access to those
insecure channels from loading the OnionShare URL first, or from modify-
ing the OnionShare URL to trick your source into uploading documents to
them, for example.

Exercise 2-3: Play with Tor and OnionShare
In this exercise, you’ll install Tor Browser and OnionShare on your
computer and practice using them. Download OnionShare from https://
onionshare​.org and Tor Browser from https://www​.torproject​.org, and follow the
instructions for your operating system.

Open Tor Browser, search for anything you like, and visit various web-
sites to see how the online experience differs. The default Tor Browser
search engine is DuckDuckGo, which works great over Tor. However, you’ll
find that it’s frustrating to use Google, because it constantly forces you to
prove you’re not a robot by filling out CAPTCHAs. Several websites have
both clearnet versions (those accessible using normal web browsers) and
.onion versions. If you’re using Tor Browser and visit a website that supports
both, like https://freedom​.press, you’ll see a “.onion available” button in the
top right of the address bar. Clicking it should bring you to the onion ver-
sion of that site.

Figure 2-3 shows the Freedom of the Press Foundation’s website in Tor
Browser with the “.onion available” button.

Figure 2-3: The Freedom of the Press Foundation’s home page

Next, try using OnionShare. Open a Share Files tab, browse for some
files on your computer, and start the service. Then open Tor Browser, load
the OnionShare URL, and download those files. Test out small files, large
files, and different settings. Then try setting up an anonymous dropbox
to receive files: open OnionShare, open a Receive Files tab, and start the
service. In Tor Browser, load the OnionShare URL and upload files to your
computer. Again, test out small files, large files, and different settings.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Acquiring Datasets 47

Communicating with My Tea Party Patriots Source
This section describes a real-world example of how I gathered data from
an anonymous source using several tools you’ve seen so far: Twitter DMs, a
PGP-encrypted message, communicating via Signal, and receiving a dataset
through OnionShare.

In the summer of 2021, a journalist sent me a DM on Twitter, passing
along a note from someone else. The journalist had no idea what the note
said, because it was PGP-encrypted. The note looked something like this:

-----BEGIN PGP MESSAGE----

[lots of scrambled letters and numbers]
-----END PGP MESSAGE----

I plugged in my YubiKey and used it to decrypt the PGP message. It sim-
ply said:

interested in data?
signal: [redacted phone number]

At the time, I didn’t publish my phone number directly on my social
media bios or in my staff profile page on The Intercept’s website. If I had,
this source could have just contacted me directly on Signal, which would
have been much simpler. Nevertheless, using PGP ensured that all com-
munication between us was end-to-end encrypted, and even though Twitter
DMs were involved, Twitter didn’t have any communication metadata
between my source and me.

I opened Signal Desktop on my computer, typed in the phone number
I’d found in the PGP-encrypted message, and turned on disappearing mes-
sages for the conversation. I said hello and that I was interested in data. At
this point I had a secure communication channel with my new source.

The source told me that they had hacked the Tea Party Patriots, a
major US conservative organization that bills itself as one of the largest
grassroots groups on the right. They wanted to send me a dataset that
included membership lists, donation history, and petition data, and asked
how they should send it. I sent them an OnionShare link to upload the
dataset directly to my computer.

I later learned from this dataset that the Tea Party Patriots organization
isn’t nearly as grassroots as it claims: three ultra-wealthy donors, two of
them billionaires, provided the bulk of the group’s donations. I also learned
that the group’s claim of being a network of “over 3 million patriots” was
wildly exaggerated: only 144,000 members were marked “active” in the
hacked database. (Read my analysis of this dataset at https://theintercept​.com​
/2021​/08​/05​/tea​-party​-patriots​-hacked​-billionaire​-donors​.)

Other Options for Acquiring Datasets from Sources
In this section, you’ll learn a couple more ways to communicate with
sources when the skills you’ve learned so far don’t fit your needs.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

48 Chapter 2

Sending Encrypted USB Drives
Some of your future sources may want to send you more data than is
feasible to transfer over Tor. In that case, you can consider sending an
encrypted USB drive through postal mail.

First, your source encrypts a USB hard drive or a small USB stick using
a strong passphrase, via the technologies covered in Chapter 1, and then
copies the dataset to the drive. Then they physically mail the USB drive to
you. To remain anonymous, they can write your address on the package
or envelope but leave the return address blank (at least in the US), attach
the right amount of postage, and drop it in a public mailbox. Using an
encrypted messaging app like Signal, your source can send you the encryp-
tion passphrase. When you receive the drive in the mail, you can use the
passphrase to unlock the drive and access the dataset.

If the drive gets intercepted in the mail, the data is encrypted and
impossible to access without the passphrase. However, the postal service will
know exactly which public mailbox it was mailed from, and if your source
isn’t careful they might leave handwriting, fingerprints, DNA, or other clues
to their identity in the package.

Keep in mind that sending an encrypted drive costs money, since you
need to buy a hard drive and pay for postage, and the package might take a
long time to arrive, so this isn’t the best option for time-sensitive data.

SENDING ENCRY P T ED DATA V I A

PUBL IC F IL E-SH A R ING SERV ICES

Rather than using an encrypted USB, your source can encrypt their data and
upload it to a public file-sharing service like Mega or WeTransfer, if they have
the technical skill to do so. The exact process is outside the scope of this book,
but here’s the gist:

First, your source would need to encrypt the dataset, using one of the fol-
lowing methods:

•	 Compress the dataset in a password-protected ZIP file, using a strong pass-
phrase. This protects only the file contents, not the filenames themselves,
meaning your source may not want to use this method if the filenames in
the dataset are sensitive.

•	 Use software like VeraCrypt (discussed in Chapter 1) to create an
encrypted container that’s locked with a strong passphrase.

•	 Use some other disk encryption software that you and the source agree
upon. For example, if you both use Macs, you can create an encrypted
DMG file using macOS’s built-in Disk Utility instead of VeraCrypt.

Once they’ve encrypted the dataset, the source uploads it to a public file-
sharing service. Depending on which service they use, they may need to create

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Acquiring Datasets 49

an account. If they want to remain anonymous to that service, they might create
a temporary email address just for this task and take steps to protect their
IP address with a VPN service or Tor Browser. (Uploading a huge dataset to a
file-sharing service over Tor is still faster than uploading it to an onion service,
because the data takes fewer hops over the Tor network.) Once the encrypted
dataset is uploaded, the source sends you a link to it, along with the dataset’s
passphrase. After you download the dataset, use the passphrase to decrypt it.

If anyone else gets access to the data stored on the file-sharing
service—such as an employee of the service, or law enforcement after sending
a subpoena demanding that the service hand over data—it will be impossible
for them to decrypt the dataset without knowing the passphrase.

Using Virtual Private Servers
A virtual private server (VPS) is a virtual computer on the internet, hosted by
a company like Amazon Web Services (AWS) or DigitalOcean and normally
running the Linux operating system, that your source can use to share
their data. You’ll learn the details of how to set up and work with a VPS
in Chapter 4, but here we’ll discuss when they might be appropriate for a
given investigation.

The VPS option has a few downsides: it works only if your source has the
necessary technical skills, it costs a small amount of money, and it’s easy for
your source to make mistakes if they’re trying to remain anonymous. On the
upside, a VPS allows your source to use extremely reliable tools to transfer
large amounts of data. These tools also support resuming the transfer if it
fails midway, and you can even use a VPS anonymously over Tor.

It costs just a few dollars a month to rent a VPS—if you need to use
it for only a day or two it’s even cheaper—and you can specify how big its
hard disk needs to be depending on how much data your source wants to
send you. You can then enable your source to upload data to the server
remotely using a technology called SSH, which stands for Secure Shell.
Your source could encrypt the dataset before uploading it if they feel it’s
sensitive.

Throughout this chapter, you’ve learned ways individual journalists
can receive data from their sources. In the next section, I’ll introduce addi-
tional tools and techniques appropriate for established newsrooms.

Whistleblower Submission Systems
As mentioned earlier, when Chelsea Manning tried to contact the
Washington Post and the New York Times to leak the War Logs to the public,
neither paper was receptive or even really prepared to accept leaked data-
sets. Today that’s no longer the case. Dozens of major newsrooms now run

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

50 Chapter 2

their own whistleblower submission systems, making it simple to securely
and anonymously submit leaked datasets or other tips.

Go to your favorite news site and see if you can find its tips page, which
explains to potential sources and whistleblowers how to contact the news-
room securely. Here are a few examples:

•	 The Intercept: https://theintercept​.com​/source/

•	 Washington Post: https://www​.washingtonpost​.com​/anonymous​-news​-tips/

•	 New York Times: https://www​.nytimes​.com​/tips

•	 ProPublica: https://www​.propublica​.org​/tips/

•	 CNN: https://www​.cnn​.com​/tips/

•	 Guardian: https://www​.theguardian​.com​/securedrop

•	 Globe and Mail: https://sec​.theglobeandmail​.com​/securedrop/

The guidelines on these tips pages are all similar, instructing sources to
securely contact the newsroom by either sending a message to a dedicated
Signal phone number, physically mailing their documents using the postal
service, or reaching out over the open source whistleblower submission soft-
ware called SecureDrop.

The late information activist Aaron Swartz, along with journalist
Kevin Poulsen, developed a platform in 2013 called DeadDrop for sources
to securely communicate with and send documents to journalists. After
Swartz’s death, Poulsen handed the project over to Freedom of the Press
Foundation, which renamed it to SecureDrop. At the time, I was the chief
technology officer for Freedom of the Press Foundation and contributed a
significant amount of code to the project.

Like OnionShare, SecureDrop turns computers into anonymous drop-
boxes (also powered by Tor onion services) to enable file sharing. However,
it’s designed for professional newsrooms. It runs on a dedicated server that’s
always online and available for sources to use, and it forces more secure
and paranoid behavior than OnionShare does—for example, it’s designed
so that you can open documents sent through SecureDrop only in an air-
gapped environment.

SecureDrop’s increased security protects sources who are potentially
risking their lives, but that security comes at a cost. The platform requires
a significant amount of work to set up and maintain, including the ongo-
ing daily work of checking it for new submissions. I spent years checking
SecureDrop for The Intercept, and I know that it can be frustrating jump-
ing through security hoops when the vast majority of submissions are
nonsense or could have been sent in an email. But the effort is worth it if it
protects just one genuine whistleblower.

If you work with a newsroom or an organization that wants to accept
datasets from sources or whistleblowers, create a tips page on your website
and look into SecureDrop. You can learn more about the SecureDrop proj
ect at https://securedrop​.org and read detailed documentation at https://docs​
.securedrop​.org.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Acquiring Datasets 51

Summary
In this chapter, you learned about the demise of WikiLeaks and the genesis
of DDoSecrets and you downloaded a copy of the BlueLeaks dataset using
BitTorrent. You’ve seen some common tools for securely communicating
with sources, like Signal, Tor, and OnionShare. You’ve also learned about
a few other techniques for securely and anonymously transferring large
amounts of data, as well as about tips pages and SecureDrop.

The next chapter marks the beginning of Part II, where you’ll learn
how to use the command line interface, a powerful text-based method of
controlling your computer. This will prove essential for digging into data
sets like BlueLeaks.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

PART II
T O O L S O F T H E T R A D E

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

If you’re like most people, you interface with your com-
puter primarily via its graphical desktop environment:
you move the pointer with your mouse or trackpad
and click icons to run programs and open documents.
Programs open in windows that you can resize, maxi-
mize, minimize, and drag around the screen. You can
run various programs at once in separate windows and
switch between them. However, there’s an alternative,
incredibly powerful interface you can use to commu-
nicate with your computer and give it instructions: the
command line interface (CLI).

Command line interfaces are text-based, rather than graphical, inter-
faces to interact with your computer. Instead of clicking on icons, you enter
commands to run programs in a terminal emulator (normally referred to just

3
T H E C O M M A N D L I N E I N T E R F A C E

Back in the days of the command-line interface, users were all Morlocks who had to convert
their thoughts into alphanumeric symbols and type them in, a grindingly tedious process

that stripped away all ambiguity, laid bare all hidden assumptions, and cruelly
punished laziness and imprecision.

—Neal Stephenson, In the Beginning . . . ​Was the Command Line

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

56 Chapter 3

as a terminal). After running a command, you’ll typically see text-based out-
put displayed in the terminal.

In this chapter, you’ll learn the basic command line skills you need
to follow along with the rest of this book. Whether you’re using Windows,
macOS, or Linux, you’ll learn how to install and uninstall software via the
command line, how filepaths work, how to navigate around the folders on
your computer, and how to use text editors. You’ll also write your first shell
script, a file containing a series of CLI commands.

Introducing the Command Line
To prepare you to start working on the command line, this section explains
some fundamentals: what shells are, how users and paths work in different
operating systems, and the concept of privilege escalation.

The Shell
The shell is the program that lets you run text-based commands, while the
terminal is the graphical program that runs your shell. When you open a
terminal and see a blinking text cursor waiting for commands, you’re using
a shell. When hackers try to break into a computer, their initial goal is to
“pop a shell,” or access the text-based interface that allows them to run
whatever commands they want.

All operating systems, even mobile ones like Android and iOS, have
shells. This book focuses on Unix shells, the kind that come with macOS
and Linux (but Windows users can also use them). Most versions of Linux
use a shell called bash, and macOS uses one called zsh. These shells are
very similar, and for the purposes of this book you can think of them as
interchangeable.

Windows, on the other hand, comes with two shells: an older one called
Command Prompt (or cmd.exe) and a newer one called PowerShell. The
syntax—rules that define what different commands mean—used by Win
dows shells is very different from that used by Unix shells. If you’re a
Windows user, you’ll primarily work in a Unix shell for the examples in this
book. Setting up your computer to run Linux directly in Windows will be
this chapter’s first exercise.

To make your shell do something, such as run a program, you care-
fully enter the desired command and then press ENTER (or RETURN
on Mac keyboards). To quit the shell, enter exit and press ENTER. Shells
are finicky: you need to enter commands using the correct capitalization,
punctuation, and spacing, or they won’t work. Typos usually result in noth-
ing more serious than error messages, however, and it’s easy to go back
and fix a mistake in a command. I’ll explain how to do so in the “Editing
Commands” section later in the chapter.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

The Command Line Interface 57

Users and Paths
Although operating systems like Windows, macOS, and Linux are differ
ent in some ways, they all share basic building blocks, including users and
paths.

All operating systems have users, separate accounts that different
people use to log into the same computer. Users generally have home fold-
ers, also known as home directories, where their files live. Figure 3-1 shows
my terminal in Ubuntu, a popular Linux distribution.

Figure 3-1: My Ubuntu terminal

My username is micah and the name of my Ubuntu computer is rogue.
Your terminal will look different depending on your operating system, user-
name, and computer name.

All operating systems also have filesystems, the collection of files and
folders available on the computer (you got a brief introduction to filesys-
tems in Chapter 1 while encrypting your USB disk). In a filesystem, each file
and folder has a path, which you can think of like the location, or address,
of that file. For example, if your username is alice, the path of your home
folder in different operating systems would look as follows:

•	 Windows: C:\Users\alice

•	 macOS: /Users/alice

•	 Linux: /home/alice

Windows filesystems operate differently from macOS or Linux filesys-
tems in a few key ways. First, in Windows, disks are labeled with letters. The
main disk, where Windows itself is installed, is the C: drive. Other disks,
like USB disks, are assigned other letters. In Windows, folders in a path are
separated with a backslash (\), while other operating systems use forward
slashes (/). In macOS and Linux, paths are case sensitive, but not in Win
dows. For example, in macOS you can store one file called Document.pdf and
another called document.pdf in the same folder. If you try to do the same in
Windows, saving the second file overwrites the first.

Let’s look at some example paths. If your username is alice and you
download a file called Meeting Notes.docx into the Downloads folder, here’s
what that path would look like:

•	 Windows: C:\Users\alice\Downloads\Meeting Notes.docx

•	 macOS: /Users/alice/Downloads/Meeting Notes.docx

•	 Linux: /home/alice/Downloads/Meeting Notes.docx

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

58 Chapter 3

When you plug in a USB disk, it’s mounted to different paths for differ
ent operating systems. If your disk is labeled datasets, the path representing
the location of that disk might look as follows:

•	 Windows: D: (or whatever drive letter Windows decides to mount the
disk to)

•	 macOS: /Volumes/datasets

•	 Linux: /media/alice/datasets

It’s important to understand how to read paths, since you’ll need to
include the location of your dataset or files it contains in the commands you
run.

User Privileges
Most users have limited privileges in an operating system. However, the root
user in Linux and macOS and the administrator user in Windows have abso-
lute power. While alice may not be able to save files into bob’s home folder,
for example, the root user has permissions to save files anywhere on the
computer. When a Mac asks you to enter your user password to change sys-
tem preferences or install software, or when a Windows machine asks if you
want to allow a program to make changes to your computer, the operating
system is asking for your consent before switching from your unprivileged
user account to the root or administrator user account.

Most of the time when you’re working in a terminal, you run commands
as an unprivileged user. To run a command that requires root (or admin-
istrative) privileges in Linux and macOS, such as to install a new program,
just put sudo in front of it and press ENTER, and you’ll be prompted to
enter the password for your regular user account.

As an example, the whoami command tells you which user just ran a com-
mand. On my computer, if I enter whoami without sudo, the output is micah.
However, if I enter sudo whoami, which requires me to type my password, the
output is root:

micah@rogue:~$ whoami
micah
micah@rogue:~$ sudo whoami
 [sudo] password for micah:
root

If you recently ran sudo, you can run it again for a few minutes without
having to re-enter your password.

W A R N I N G 	 Be very careful when running commands as root, since running the wrong com-
mands as the root user can accidentally delete all of your data or break your operating
system. Before using sudo, make sure you have a clear understanding of what you’re
about to do.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

The Command Line Interface 59

You can use sudo to gain root access only if your current user has admin-
istrator access. If you’re the only user on your computer, you’re probably an
administrator. To find out, try using sudo and see whether you get a “permis-
sion denied” error.

Figure 3-2 shows a comic by Randall Munroe from his XKCD website
that succinctly demonstrates the power of sudo.

Figure 3-2: Demanding a sandwich with sudo

Before learning more command line code, Windows users must install
Ubuntu (see Exercise 3-1). Mac or Linux users can skip to the “Basic
Command Line Usage” section on page XX.

Exercise 3-1: Install Ubuntu in Windows
To work with Ubuntu on a Windows machine, you could install both Win
dows and Linux or use a virtual machine within Windows, as mentioned
in Chapter 1. However, for this book’s purposes, it’s simplest to use the
Windows Subsystem for Linux (WSL), a Microsoft technology that lets you run
Linux programs directly in Windows. Opening an Ubuntu window in WSL
will, in turn, open a bash shell and let you install and run Ubuntu software.
(Technically, WSL does use a VM, but it’s fast, managed by Windows, and
unobtrusive, running entirely behind the scenes.)

To install WSL, open a PowerShell window as an administrator: click
Start, search for powershell, right-click Windows PowerShell, choose Run
as Administrator, and click Yes. Figure 3-3 shows this process, which may
look slightly different depending on your version of Windows.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

60 Chapter 3

Figure 3-3: Running PowerShell as an administrator in Windows

In your administrator PowerShell window, enter the following com-
mand and press ENTER:

wsl --install -d Ubuntu

This installs the Windows Subsystem for Linux, then downloads and
installs Ubuntu Linux on your computer.

Your screen should now look something like this:

PS C :\Windows\system32> wsl --install -d Ubuntu
Installing: Windows Subsystem for Linux
Windows Subsystem for Linux has been installed.
Downloading: WSL Kernel
Installing: WSL Kernel
WSL Kernel has been installed.
Downloading: GUI App Support
Installing: GUI App Support
GUI App Support has been installed.
Downloading: Ubuntu
The requested operation is succession. Changes will not be effective until the
system is rebooted.
PS C:\Windows\system32>

The final line of this output tells you to reboot your computer. Enter
exit and press ENTER (or just close the window) to quit PowerShell, then
reboot. After you log into Windows again, you should see an Ubuntu win
dow informing you that the installation may take a few more minutes to

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

The Command Line Interface 61

complete. Then the window should present you with a prompt asking you to
create a new user:

Please create a default UNIX user account. The username does not need to match
your Windows username.
For more information visit: https://aka​.ms​/wslusers
Enter new UNIX username:

Ubuntu needs to keep track of its own users rather than the existing
users on your Windows computer.

With the Ubuntu terminal window in focus, enter a username
and press ENTER. The terminal should then prompt you to create a
password:

New password:

Either use the same password you use to log into your Windows account
or create a new one and save it in your password manager. Enter your pass-
word and press ENTER. While you’re typing, nothing will appear in the
Ubuntu terminal.

The terminal should now prompt you to re-enter your new password;
do so and press ENTER, which should drop you into an Ubuntu shell with
a prompt and a blinking cursor. My prompt says micah@cloak:~$ because my
username is micah and the name of my Windows computer is cloak:

New password:
Retype new password:
passwd: password updated successfully
Installation successful!
--snip--
micah@cloak:~$

You can now open Ubuntu in your Windows computer. From this point
on, when instructed to open a terminal or run some command line code,
use an Ubuntu terminal window unless I specify otherwise.

From within your Ubuntu shell, you can access your Windows disks in
the /mnt folder. For example, you can access the C: drive in /mnt/c and the
D: drive in /mnt/d. Suppose I download a document using my web browser
and want to access it from Ubuntu. The path to my Downloads folder in
Windows is /mnt/c/Users/micah/Downloads, so the document would be in that
folder. If I want to access the BlueLeaks data that I downloaded to my USB
disk from Ubuntu, then assuming that D: is the USB disk’s drive, the path
would be /mnt/d/BlueLeaks.

For more details on using Windows and WSL, including information
on common problems related to using USB disks in WSL, as well as disk
performance issues and various ways to deal with them, check out Appendix A.
Wait until you’ve worked through at least Chapter 4 to start implementing
these solutions, since the instructions involve more advanced command line
concepts introduced in that chapter.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

62 Chapter 3

Basic Command Line Usage
In this section, you’ll learn to use the command line to explore files and
folders on your computer. This is a prerequisite to working with datasets,
which are just folders full of files and other folders. You’ll learn how to open
a terminal, list files in any folder, distinguish between relative and absolute
paths, switch to different folders in your shell, and look up documentation
on commands from within your terminal.

N O T E 	 When learning command line skills, you can always look things up if you run into
problems—I still do this every day. You’re likely not the first person to encounter any
given command line issue, so with a few well-worded internet searches, you can find
someone else’s solution.

Opening a Terminal
To get started, skip to the subsection for your operating system to learn how
to open a terminal. Throughout this chapter, keep a terminal open while
you’re reading to test all the commands.

The Windows Terminal

If you’re using Windows, open the Ubuntu app by clicking Start in the
bottom-left corner of the screen, searching for ubuntu, and clicking Ubuntu.

You’ll use Ubuntu most often for this book, but you may need to open
the native Windows terminals occasionally as well. You can likewise open
PowerShell and Command Prompt by clicking Start and searching for
them. Check out the Microsoft program Windows Terminal (https://aka​.ms​/
terminal), which lets you open different terminals in different tabs, choosing
between PowerShell, Command Prompt, Ubuntu, and others. If you choose
to install it, you can open it the same way.

Pin the Ubuntu app or Windows Terminal app to your taskbar so you can
quickly open it in the future: right-click its icon and select Pin to Taskbar.

The macOS Terminal

On macOS, open the Terminal app by opening Finder, going to the
Applications folder, double-clicking the Utilities folder, and double-clicking
Terminal. Figure 3-4 shows my macOS terminal running zsh, the default
macOS shell. My username is micah, and the name of my Mac is trapdoor.

Figure 3-4: My macOS terminal

Snap the Terminal app to your dock so you can quickly open it in
the future. To do so, after you open Terminal, press CTRL and click the
Terminal icon on your dock, then choose OptionsKeep in Dock.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

The Command Line Interface 63

The Linux Terminal

If you’re using Linux, open the Terminal app. In most Linux distributions,
you can do so by pressing the Windows key, typing terminal, and press-
ing ENTER. If you’re running Ubuntu (or any other Linux distribution
that uses the GNOME graphical environment), pin the Terminal app to
your dock so you can quickly open it in the future. To so so, right-click the
Terminal icon and select Add to Favorites.

Clearing Your Screen and Exiting the Shell
As you practice using the terminal in the following sections, you’ll some-
times want to start fresh, without having to see all the previous commands
you ran or their output or error messages. Run this simple command to
declutter your terminal:

clear

This clears everything off the screen, leaving you with nothing but a
blank command prompt. Make sure to do this only if you no longer need
to see the output of your previous commands. (In the Windows Command
Prompt and PowerShell, use cls instead of clear.)

When you’re done using the CLI, exit your shell by running this command:

exit

You can also close the terminal window to exit. If you’re running a pro-
gram when you close the terminal, that program will quit as well.

Exploring Files and Directories
When you open a terminal, your shell starts out in your user’s home folder,
represented as a tilde (~). The folder you’re currently in is your current work-
ing directory, or just working directory. If you ever forget what directory you’re
in, run the pwd command (short for “print working directory”) to find out.

Running the ls command in your terminal lists all of the files in your
working directory. You can use this command to check the contents of fold-
ers you’re working with. If there are no files or only hidden files, ls won’t list
anything. To check for hidden files, modify the ls command using -a (short
for --all):

ls -a

When you add anything to the end of a command, like -a, you’re using
a command line argument. Think of arguments as settings that change how
the program you’re running will act—in this case, by showing hidden files
instead of hiding them.

By default, the ls command displays files in a format intended to take
up as few lines in your terminal as possible. However, you may want to
display one file per line for easier reading and to get more information

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

64 Chapter 3

about each file, such as its size, when it was last modified, permissions, and
whether it’s a folder. Using the -l argument (short for --format=long) formats
the output as a list.

You can use both -a and -l at the same time like so:

ls -al

Running this command on my Mac gives me the following output:

total 8
drwxr-x---+ 13 micah staff 416 Nov 25 11:34 .
drwxr-xr-x 6 root admin 192 Nov 9 15:51 ..
-rw------- 1 micah staff 3 Nov 6 15:30 .CFUserTextEncoding
-rw------- 1 micah staff 2773 Nov 25 11:33 .zsh_history
drwx------ 5 micah staff 160 Nov 6 15:31 .zsh_sessions
drwx------+ 3 micah staff 96 Nov 6 15:30 Desktop
drwx------+ 3 micah staff 96 Nov 6 15:30 Documents
drwx------+ 3 micah staff 96 Nov 6 15:30 Downloads
drwx------+ 31 micah staff 992 Nov 6 15:31 Library
drwx------ 3 micah staff 96 Nov 6 15:30 Movies
drwx------+ 3 micah staff 96 Nov 6 15:30 Music
drwx------+ 3 micah staff 96 Nov 6 15:30 Pictures
drwxr-xr-x+ 4 micah staff 128 Nov 6 15:30 Public

The first column of this output describes the type of file—whether it’s
a directory (another name for a folder) or an ordinary file—as well as the
file’s permissions. Directories start with d, and ordinary files start with a
hyphen (-). The second column represents the number of links in the file,
which isn’t relevant for the purposes of this book.

The third and fourth columns represent the user and the group that
owns the file. In addition to users, operating systems have groups of users
that can have their own permissions. For example, in Linux, all users
allowed to use sudo are in the sudo group. If you create or download a file, its
user and group are normally your username. The fifth column is the file size
in bytes. For example, in the file called .zsh_history, my output is 2,773 bytes.

The next three columns of the output represent the time and date
when the file was last modified, and the final column shows the filename.

To see a listing of files in a folder other than the working directory, add
the path to that folder to the end of the ls command. For example, this is
how I’d create a listing of files in my code/hacks-leaks-and-revelations folder,
which contains the files released with this book:

micah@trapdoor ~ % ls -la code/hacks-leaks-and-revelations

I’d get the following output:

total 120
drwxr-xr-x 22 micah staff 704 Dec 21 14:11 .
drwxr-xr-x 73 micah staff 2336 Dec 6 16:45 ..
-rw-r--r--@ 1 micah staff 8196 Dec 9 16:12 .DS_Store

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

The Command Line Interface 65

drwxr-xr-x 15 micah staff 480 Dec 21 14:41 .git
-rw-r--r-- 1 micah staff 30 Dec 21 14:22 .gitignore
-rw-r--r-- 1 micah staff 35149 Sep 23 14:54 LICENSE
-rw-r--r-- 1 micah staff 6717 Dec 21 14:17 README.md
drwxr-xr-x 4 micah staff 128 Sep 23 14:54 appendix-a
drwxr-xr-x 8 micah staff 256 Dec 9 16:18 appendix-b
drwxr-xr-x 6 micah staff 192 Dec 21 14:23 chapter-1
drwxr-xr-x 5 micah staff 160 Dec 21 14:35 chapter-10
drwxr-xr-x 12 micah staff 384 Dec 21 14:35 chapter-11
drwxr-xr-x 12 micah staff 384 Dec 21 14:39 chapter-12
drwxr-xr-x 8 micah staff 256 Nov 23 18:51 chapter-13
drwxr-xr-x 4 micah staff 128 Dec 21 14:23 chapter-2
drwxr-xr-x 10 micah staff 320 Dec 21 14:24 chapter-3
drwxr-xr-x 13 micah staff 416 Dec 21 14:25 chapter-4
drwxr-xr-x 13 micah staff 416 Dec 21 14:26 chapter-5
drwxr-xr-x 10 micah staff 320 Dec 21 14:28 chapter-6
drwxr-xr-x 13 micah staff 416 Dec 21 14:30 chapter-7
drwxr-xr-x 18 micah staff 576 Dec 21 14:32 chapter-8
drwxr-xr-x 15 micah staff 480 Dec 21 14:34 chapter-9

You’ll download your own copy of these files in Exercise 3-7.

Navigating Relative and Absolute Paths
Programs often require you to provide paths to files or folders, usually when
you run a program that works with specific files on your computer. The path
that I passed into ls in the previous section, code/hacks-leaks-and-revelations,
is a relative path, meaning it’s relative to the current working directory, my
home folder. Relative paths can change. For example, if I change my work-
ing directory from my home folder (/Users/micah) to just /Users, the relative
path to that folder changes to micah/code/hacks-leaks-and-revelations.

The absolute path to the code/hacks-leaks-and-revelations folder is /Users/
micah/code/hacks-leaks-and-revelations, which always provides the location of
that folder regardless of my working directory. Absolute paths start with a
forward slash (/), which is also known as the root path.

You can use two keywords to access relative paths to specific folders:
.(dot), which represents a relative path to the current folder, and .. (dot
dot), which represents a relative path to the parent folder (the folder that con-
tains the current folder).

Changing Directories
The cd command (which stands for “change directory”) allows you to change
to a different folder. To change your working directory to the folder, run:

cd path

For path, substitute the path to the folder to which you’d like to move.
You can use either a relative or an absolute path.

Suppose I’m using macOS and have downloaded BlueLeaks to a datasets
USB disk plugged into my machine. After opening a terminal, I can run the

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

66 Chapter 3

following command to change my working directory to the BlueLeaks folder,
using the absolute path to the folder:

cd /Volumes/datasets/BlueLeaks

Alternatively, I can use a relative path to the folder, running the follow-
ing command from my home folder:

cd ../../Volumes/datasets/BlueLeaks

Why does the relative path start with ../.. in this example? When
I open the terminal, the working directory is my home folder, which in
macOS is /Users/micah. The relative path .. would be its parent folder, /Users;
the relative path ../.. would be /; the relative path ../../Volumes would be
/Volumes; and so on.

As noted earlier, the tilde symbol (~) represents your home folder. No
matter what your working directory is, you can run the following to go back
to your home folder:

cd ~

Use the following syntax to move to a folder inside your home folder:

cd ~/folder_name

For example, the following command would move you to your Documents
folder:

cd ~/Documents

If you run ls again after a cd command, the output should show you the
files in the folder to which you just moved.

Using the help Argument
Most commands let you use the argument -h, or --help, which displays
detailed instructions explaining what the command does and how to use it.
For example, try running the following:

unzip --help

This command should show instructions on all of the different argu-
ments that are available to you when using the unzip command, which is
used to extract compressed ZIP files.

Here’s the output I got when I ran that command on my Mac:

UnZip 6.00 of 20 April 2009, by Info-ZIP. Maintained by C. Spieler. Send
bug reports using http://www​.info​-zip​.org​/zip​-bug​.html; see README for details.
--snip--

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

The Command Line Interface 67

 -p extract files to pipe, no messages -l list files (short format)
 -f freshen existing files, create none -t test compressed archive data
 -u update files, create if necessary -z display archive comment only
 -v list verbosely/show version info -T timestamp archive to latest
 -x exclude files that follow (in xlist) -d extract files into exdir
--snip--

This output briefly describes what each argument for the unzip command
does. For example, if you use the -l argument, the command shows a list of
all of the files and folders inside the ZIP file without actually unzipping it.

Accessing Man Pages
Many commands also have manuals, otherwise known as man pages, which
give more detail about how to use those commands. Run the following to
access a command’s man page:

man command_name

For example, to read the manual for the unzip command, run:

man unzip

The output should display a longer explanation of how to use the unzip
command and its arguments.

Use the up and down arrows and the page up and page down keys to
scroll through the man pages, or press / and enter a term to search. For
example, to learn more details about how the unzip command’s -l argument
works, press / and enter -l, then press ENTER. This should bring you to the
first time -l appears on the man page. Press n to move on to the next occur-
rence of your search term.

When you’re finished, press q to quit the man page.

Tips for Navigating the Terminal
This section introduces ways to make working on the command line more
convenient and efficient, along with tips for avoiding and fixing errors. It
also shows how to handle problematic filenames, such as those with spaces,
quotes, or other special characters. A basic understanding of these concepts
will save you a lot of time in the future.

Entering Commands with Tab Completion
Shells have a feature called tab completion that saves time and prevents errors:
enter the first few letters of a command or a path, then press the TAB key.
Your shell will fill in the rest if possible.

For example, both macOS and Ubuntu come with a program called
hexdump. In a terminal, enter hexd and press TAB. This should automatically

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

68 Chapter 3

fill in the rest of the hexdump command. Tab completion also works for paths.
For example, Unix-like operating systems use the /tmp folder to store tem-
porary files. Enter ls /tm and press TAB. Your shell should add the p to fin-
ish typing out the full command.

If you enter only the first couple letters of a command or a path, there
may be more than one way for your shell to complete your line of code.
Assuming that you have both Downloads and Documents folders in your home
folder, type ls ~/Do and press TAB. You’ll hear a quiet beep, meaning that
the shell doesn’t know how to proceed. Press TAB one more time, and it
should display the options, like this:

Documents/ Downloads/

If you enter a c so that your command so far is ls ~/Doc and press TAB,
the command should complete to ls ~/Documents/. If you enter a w so that
your command so far is ls ~/Dow and press TAB, it should complete to
ls ~/Downloads/.

If you’ve already typed out the path of a folder, you can also press TAB
to list files in that folder, or to automatically complete the filename if there’s
only one file in the folder. For example, say I have my datasets USB disk, on
which I’ve downloaded BlueLeaks, plugged into my Ubuntu computer. If I
want to change to my BlueLeaks folder, I can enter the following and press
TAB:

cd /Vo

This completes the command as follows:

cd /Volumes/

I press TAB again, and my computer beeps and lists the folders in
/Volumes, which in my case are Macintosh HD and datasets. I enter d, so my
command is cd /Volumes/d, and press TAB, and the shell completes the com-
mand as follows:

cd /Volumes/datasets/

I press TAB again. My computer beeps again and lists all of the files
and folders in my datasets USB disk. I enter B (the first letter of BlueLeaks)
and press TAB, which gives me:

cd /Volumes/datasets/BlueLeaks/

Finally, I press ENTER to change to that folder.

Editing Commands
You can also edit commands. When you start typing a command, you can
press the left and right arrow keys to move the cursor, allowing you to edit

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

The Command Line Interface 69

the command before running it. You can also press the HOME and END
keys—or, if you’re using a Mac keyboard, CONTROL-A and CONTROL-E—
to go to the beginning and end of a line, respectively. You can also cycle
between commands you’ve already run using the up and down arrows. If
you just ran a command and want to run it again, or to modify it and then
run it, press the up arrow to return to it. Once you find the command
you’re looking for, use the arrow keys to move your cursor to the correct
position, edit it, and then press ENTER to run it again.

For example, I frequently get “permission denied” errors when I acci-
dentally run commands as my unprivileged user when I should have run
them as root. When this happens, I press the up arrow, then CONTROL-A
to go to the beginning of the line, add sudo, and press ENTER to success-
fully run the command.

Dealing with Spaces in Filenames
Sometimes filenames contain multiple words separated by spaces. If you
don’t explicitly tell your shell that a space is part of a filename, the shell
assumes that the space is there to separate parts of your command. For
example, this command lists the files in the Documents folder:

ls -lh ~/Documents

Under the hood, your shell takes this string of characters and splits it
into a list of parts that are separated by spaces: ls, -lh, and ~/Documents. The
first part, ls, is the command to run. The rest of the parts are the com-
mand’s arguments. The -lh argument tells the program to display the out-
put as a list and make the file sizes human-readable. That is, it will convert
the file sizes into units that are easier to read, like kilobytes, megabytes, and
gigabytes, rather than a large number of bytes. The ~/Documents argument
means you want to list the files in that folder.

Suppose you want to use the same command to list the files in a folder
with a space in its name, like ~/My Documents. You’ll run into problems if
you enter this command:

ls -lh ~/My Documents

When your shell tries to separate this command into parts, it will come
up with ls, -lh, ~/My, and Documents; that is, it sees ~/My Documents as two sep-
arate arguments, ~/My and Documents. It will try to list the files in the folder ~/
My (which doesn’t exist), then also list files in the folder Documents, which
isn’t what you intended.

To solve this problem, put the name of the folder in quotes:

ls -lh "~/My Documents"

The shell sees anything within quotes as a single entity. In this case, ls
is the command and its arguments are -lh followed by ~/My Documents.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

70 Chapter 3

Alternatively, you can use a backslash (\) to escape the space:

ls -lh ~/My\ Documents

In the Unix family of operating systems, the backslash is called the
escape character. When the shell parses that string of characters, it treats an
escaped space (\ followed by a space) as a part of the name. Again, the shell
reads ls as the command and -lh and ~/My Documents as its arguments.

Using Single Quotes Around Double Quotes
You can use the escape character to escape more than spaces. Suppose you
want to delete a filename that has a space and quotes in it, like Say “Hello”.
txt. You can use the rm command to delete files, but the following syntax
won’t work:

rm Say "Hello".txt

Your shell will split this command into the words rm, Say, and Hello.txt.
You might think you could solve this by simply adding more quotes

rm "Say "Hello".txt"

but that won’t work either, since you’re quoting something that contains
quotes already. Instead, surround the argument with single quotes ('), like
this:

rm 'Say "Hello".txt'

When your shell sees an escaped quote (\"), it won’t treat it as a normal
quote. It will read the command as rm and the argument as Say "Hello".txt,
exactly as you intended.

Avoid putting spaces, quotes, or other troublesome characters in file-
names whenever possible. Sometimes you can’t avoid them, especially when
working with datasets full of someone else’s files. Tab completion helps
in those cases, allowing you to enter just enough of the filename so that
when you press TAB, your shell will fill out the rest for you. To delete a file
in your working directory called Say “Hello”.txt, for example, entering
rm Sa<TAB> completes the command to rm Say\ \"Hello\".txt with the correct
escape characters included, so you don’t have to provide the proper syntax
yourself.

Installing and Uninstalling Software with Package Managers
Of the many powerful command line tools that let you quickly work with
datasets, only some come preinstalled; you’ll need to install the rest your-
self. While you’re likely used to installing software by downloading an
installer from a website and then running it, the command line uses package

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

The Command Line Interface 71

managers, programs that let you install, uninstall, and update software.
Nearly all CLI software is free and open source, so Linux operating systems
come with large collections of software that you can easily install or unin-
stall with a single command. Package management projects are also avail-
able for macOS (Homebrew) and Windows (Chocolately).

If you’re using Linux, you likely use a package manager called apt. This
is what the popular Linux operating systems like Ubuntu and Debian use,
as well as all of the Linux distributions based on them (including Ubuntu
in WSL). If your Linux distribution doesn’t use apt, you’ll need to look up
the package manager documentation for your operating system.

PACK AGE M A N AGEMEN T FOR NON- UBUN T U L INU X USERS

You should be able to follow along with this book no matter what version of
Linux you’re using. Several other Debian-based Linux distributions also rely
on apt, like Linux Mint, Pop! OS, and others. If you’re using one of these,
the apt commands in this book should work, though the names of software
packages may be slightly different. If you encounter that issue, run apt search
software_name to find the name of the package that you should be installing
 for your operating system.

If you’re using a version of Linux that doesn’t use apt as its package man
ager, you’ll need to slightly modify this book’s commands to use your Linux
distribution’s package manager. For example, if you’re running Fedora, Red
Hat, CentOS, or other similar Linux distributions, you’ll use a package manager
called DNF (for older versions of these distributions, the package manager is
called yum). See Fedora’s documentation at https://docs​.fedoraproject​.org​/en​
-US​/quick​-docs​/dnf​/ for more details on using DNF. Arch Linux uses a package
manager called pacman (https://wiki​.archlinux​.org​/title​/Pacman).

If you’re using a Linux distribution not mentioned here, read your operating
system’s package management documentation and learn how to search for,
install, uninstall, and update software from the terminal. When you come across
an apt command in this book, use your operating system’s package manager
software instead. Other Linux commands covered in this book should be the
same regardless of your distribution.

If you’re using a Mac, start with Exercise 3-2 to learn how to
use Homebrew. If you’re using Linux or Windows with WSL, skip to
Exercise 3-3 to learn how to use apt. This book mostly uses Unix shells and
doesn’t cover Chocolately, which installs Windows software instead of Linux
software.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

72 Chapter 3

Exercise 3-2: Manage Packages with Homebrew on macOS
To install Homebrew, macOS’s package manager, open a browser and go to
Homebrew’s website at https://brew​.sh, where you should find the command
to install the tool. Copy and paste the installation command into your ter-
minal and press ENTER:

/bin/bash -c "$(curl -fsSL https://raw​.githubusercontent​.com​/Homebrew​/install​/HEAD​/install​.sh)"

This command uses a program called cURL, which I’ll discuss later in
this chapter, to download a shell script from GitHub. It then runs that script
using the bash shell. The script itself uses sudo, meaning that if you enter
your password, it will run commands as root on your computer.

This is what the output looks like on my Mac:

==> Checking for 'sudo' access (which may request your password)...
Password:

Enter the password you use to log into your Mac and press ENTER
to change your status from unprivileged user to root. No characters will
appear in the terminal while you’re typing.

After you enter your password, Homebrew should show you a list of
paths for files that it will install. The output should end with the following
message:

Press RETURN to continue or any other key to abort:

Press ENTER and wait for Homebrew to finish installing. If any prob
lems arise, Homebrew will fail and show you an error message.

W A R N I N G 	 Copying and pasting commands into your terminal can be dangerous: if a hacker
tricks you into running the wrong shell script, they could hack your computer. Copy
and paste commands in your terminal only from sources you trust.

Now that you’ve installed Homebrew, you have access to the brew com-
mand, which you can use to install more software. To check whether
Homebrew has a certain program available to install, run:

brew search program_name

For example, Neofetch is a CLI program that displays information
about your computer. To see if it’s available in Homebrew, run:

brew search neofetch

The output should list the packages that have neofetch in their names
or descriptions; in this case, Neofetch should be listed. Similarly combine

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

The Command Line Interface 73

brew search with other program names to check whether they’re available to
install.

When you find a package you want to install, run:

brew install program_name

For example, to install Neofetch, run:

brew install neofetch

This should download and install the neofetch tool. Try running it:

neofetch

Figure 3-5 shows Neofetch running on my Mac. The figure is black-and-
white in print, but if you run the command on your computer, you should
see a rainbow of colors.

Figure 3-5: Running Neofetch on my Mac

Uninstall programs with the brew uninstall command. For example, run
the following to uninstall Neofetch:

brew uninstall neofetch

To update all programs you’ve installed with Homebrew to their latest
versions, run:

brew update

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

74 Chapter 3

Run brew help to see some examples of how to use this command.
Now that you have a package manager installed, you’ll practice using

the command line in Exercise 3-4.

Exercise 3-3: Manage Packages with apt on Windows or Linux
You must run most apt commands as root. Before installing or updating
software, make sure your operating system has an up-to-date list of available
software by opening a terminal and running the following:

sudo apt update

When I run that command on my Linux computer, I get this output:

Hit:1 http://us​.archive​.ubuntu​.com​/ubuntu jammy InRelease
Hit:2 http://security​.ubuntu​.com​/ubuntu jammy-security InRelease
Hit:3 http://us​.archive​.ubuntu​.com​/ubuntu jammy-updates InRelease
Hit:4 http://us​.archive​.ubuntu​.com​/ubuntu jammy-backports InRelease
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
178 packages can be upgraded. Run 'apt list --upgradable' to see them.

This tells me I have 178 packages that can be upgraded. Run the follow-
ing to upgrade your own software:

sudo apt upgrade

Here’s the output when I run that command:

Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
Calculating upgrade... Done
The following packages will be upgraded:
--snip--
178 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
64 standard security updates
Need to get 365 MB of archives.
After this operation, 2,455 kB of additional disk space will be used.
Do you want to continue? [Y/n]

Type Y and press ENTER to install the updates.
You’re now ready to install new software. To check whether the package

manager has a certain program available to install, run:

apt search program_name

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

The Command Line Interface 75

You don’t need to use sudo with this search command because it’s not
installing or uninstalling anything. However, once you find a package you
want to install, run:

sudo apt install program_name

For example, Neofetch is a CLI program that displays information
about your computer. To see if Neofetch is available in your package man
ager, run:

apt search neofetch

The output should show a list of packages that have neofetch in their
names or descriptions—in this case, Neofetch should be listed.

To install the neofetch tool, run:

sudo apt install neofetch

You should see a list of packages that you must install in order to use
Neofetch. Press Y and then ENTER to download and install them all.

Once installation is complete, try running Neofetch:

neofetch

Figure 3-6 shows Neofetch running on my Ubuntu computer. The fig-
ure is black-and-white in print, but if you run the command on your com-
puter, the output should appear in several different colors.

Figure 3-6: Running Neofetch on my Ubuntu computer

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

76 Chapter 3

Uninstall packages with the sudo apt remove command. For example, to
uninstall Neofetch, run:

sudo apt remove neofetch

Now that you have a package manager installed, you’ll practice using
the command line in Exercise 3-4.

Exercise 3-4: Practice Using the Command Line with cURL
In this exercise, you’ll learn how to determine whether you have a com-
mand installed, download web pages, save the output from a file using redi-
rection, and view the contents of files directly from the terminal.

The cURL program is a common way to load web pages from the
command line. To load all of the HTML code for the website https://www​
.torproject​.org, for example, run the following command:

curl https://www​.torproject​.org

To see if cURL is installed, use the which command:

which curl

If cURL is installed, the output should show you the path where the
program is installed on your computer (something like /usr/bin/curl). If not,
the output should return you to the shell prompt.

If you don’t have cURL, use your package manager to install it. Enter
sudo apt install curl for Windows with WSL and Linux machines, or brew
install curl for Macs. Then run which curl again, and you should see the
path to the cURL program.

Download a Web Page with cURL
When you load a web page, your web browser renders a human-readable
version of its content based on the page’s HTML, CSS, and JavaScript code.
To see the raw HTML content from the web page hosted at https://example​
.com, run the following command in your terminal:

curl example​.com

If you load that site in a browser and then view the HTML source by
pressing CTRL-U in Windows or Linux, or z-U in macOS, you should
see the same HTML code that this command displays in your
terminal.

Some websites are designed to show you text that’s easy to read in a
terminal when you access them through cURL, as opposed to showing you
HTML. For example, https://ifconfig​.co will tell you your IP address, geolocate

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

The Command Line Interface 77

it, and tell you what country and city it thinks you’re in. Try running the
following command:

curl https://ifconfig​.co

This should display your IP address. Next, run the following:

curl https://ifconfig​.co​/country

When I run this command, my output is United States. You can try con-
necting to a VPN server in another country and then run it again; it should
detect your web traffic as coming from that other country.

Save a Web Page to a File
Run the following commands to load https://example​.com and save it to a file:

cd /tmp
curl example​.com > example​.html

The first line of code changes your working directory to /tmp, a tempo-
rary folder where files you store get deleted automatically. The second line
loads https://example​.com, but instead of displaying the site’s contents for you
in the terminal, it redirects them into the file example​.html and doesn’t dis-
play anything in the terminal.

The > character takes the output of the command to its left and saves
it into the filename to its right. This is called redirection. Since you changed
to the /tmp folder before running the curl command, and the filename you
provided was a relative path, it saved to the file /tmp/example​.html.

Run a directory listing to make sure you’ve stored the file correctly:

ls -lh

This should list all the files in /tmp, which should include a file called
example​.html. Try displaying the contents of that file in your terminal using
the cat command:

cat /tmp/example​.html

The terminal isn’t always a good place to view a file’s contents. For
example, long lines will wrap, which may make them difficult to compre-
hend. In the following section, you’ll learn more about the different types
of files and how to work with them more easily in the command line.

Text Files vs. Binary Files
There are many different types of files, but they all fit into one of two cat-
egories: text files and binary files.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

78 Chapter 3

Text files are made up of letters, numbers, punctuation, and a few spe-
cial characters. Source code, like Python scripts (discussed in Chapters 7
and 8); shell scripts; and HTML, CSS, and JavaScript files are all examples
of text files. Spreadsheets in CSV (comma-separated value) format and
JSON files (discussed in Chapters 9 and 11, respectively) are also text files.
These files are relatively simple to work with. You can use the cat command
to display text files, as you did in the previous exercise.

Binary files are made up of data that’s more than just letters, numbers,
and punctuation. They’re designed for computers programs, not humans,
to understand. If you try to view the contents of a binary file using the cat
command, you’ll just see gibberish. Instead, you must use specialized pro-
grams that understand those binary formats. Office documents like PDFs,
Word documents, and Excel spreadsheets are binary files, as are images
(like PNG and JPEG files), videos (like MP4 and MOV files), and com-
pressed data like ZIP files.

N O T E 	 The term binary file is technically a misnomer, because all files are represented by
computers as binary—strings of ones and zeros.

Text files aren’t always easy to understand (if you’re not familiar with
HTML, viewing it might look like gibberish), but it’s at least possible to dis-
play them in a terminal. This isn’t true for binary files. For example, if you
try using cat to display the contents of binary files like PNG images in your
terminal, the output will look something like this:

?PNG

IHDR?L??
?D?ؐ???? Pd@?????Y????????u???+?2???ע???@?!N???? ^?K??Eׂ?(??U?N????E??ł??.?ʛ?u_??|?????g?s?ܙ{?@;?
?sQ
 ?x?)b?hK'?/??L???t?+???eC????+?@????L??????/@c@웗7?qĶ?F
 ?L????N??4Ӈ4???!?????
--snip--

Your terminal can’t display all of the characters that make up PNG
images, so those characters just don’t get displayed. If you want to see
the information stored in a PNG, you need to open it in software that’s
designed to view images.

To work with the files in datasets or write shell scripts and Python code,
you’ll need a text editor, a program designed to edit text files. You’ll install a
text editor in Exercise 3-5 to prepare for writing your first shell script.

Exercise 3-5: Install the VS Code Text Editor
In this exercise, you’ll download the free and open source text editor Visual
Studio Code (VS Code) and practice using it to view a file. Download VS
Code from https://code​.visualstudio​.com and install it. (If you’re already famil-
iar with another text editor, feel free to keep using that one instead.)

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

The Command Line Interface 79

VS Code comes with a command called code that makes it easy to open
files in VS Code directly from your terminal. Once VS Code is finished
installing, run the following commands:

curl example​.com > /tmp/example​.html
code /tmp/example​.html

The first line of code saves the HTML from example​.com in the file /tmp
/example​.html, just like you did in Exercise 3-4. The second line opens this
file in VS Code.

When you open new files and folders in VS Code, it asks whether you
trust each file’s author, giving you the option to open the file in Restricted
Mode. For the exercises in this book, you can open files without using
Restricted Mode.

When you open example​.html, it should look something like this:

<!doctype html>
<html>
<head>
 <title>Example Domain</title>

 <meta charset="utf-8" />
 <meta http​-equiv​="Content​-type" content="text/html; charset=utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1" />
 <style type="text/css">
 body {
 background-color: #f0f0f2;
 margin: 0;
 padding: 0;
 font-family: -apple-system, system-ui, BlinkMacSystemFont, "Segoe UI", "Open Sans",
"Helvetica Neue", Helvetica, Arial, sans-serif;

 }
--snip--

The output shows the same HTML code that you saw in your terminal
when you ran cat/tmp/example​.html in Exercise 3-4, but this time it should be
much easier to read. VS Code and many other text editors have a feature
called syntax highlighting, where different parts of the file appear in differ
ent colors. This makes it far quicker and easier for your brain to interpret
source code, and also for you to catch mistakes in syntax.

VS Code is highly customizable and includes a wide variety of exten-
sions that add extra functionality and make the program more pleasant to
use. When you open new types of files, for instance, VS Code might ask if
you’d like to install extensions to better support those files.

N O T E 	 To learn more about VS Code’s other features, including when to use Restricted Mode,
check out the documentation at https://code​.visualstudio​.com​/docs.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

80 Chapter 3

Now that you have some experience running commands in a shell and
have set up a text editor, you’ll write your first shell script in Exercise 3-6.

Exercise 3-6: Write Your First Shell Script
As mentioned earlier, a shell script is a text file that contains a list of shell
commands. When you tell your shell to run the script, it runs those com-
mands one at a time. Many commands are themselves shell scripts, such as
the man command you used earlier in this chapter.

Navigate to Your USB Disk
Make sure your datasets USB disk is plugged in and mounted, and open up a
terminal. To change your working directory to the datasets disk, skip to the
subsection for your operating system.

Windows

After mounting your USB disk, open File Explorer by clicking This PC on
the left. This page will show all of your connected drives and their drive let-
ters. Note your USB disk’s drive letter, then change your working directory
to the disk by running the following command, substituting d for the cor-
rect drive letter:

cd /mnt/d/

Your shell’s working directory should now be your datasets USB disk. To
check, run ls to view the files on this disk.

macOS

After mounting your datasets USB disk, open a terminal and change your
working directory to the disk by running the following command:

cd /Volumes/datasets

Your shell’s working directory should now be your datasets USB disk. To
check, run ls to view the files on this disk.

Linux

After mounting your datasets USB disk, open a terminal and change your
working directory to the disk. In Linux, the path to your disk is probably
something like /media/<username>/datasets. For example, my username is
micah, so I would run this command:

cd /media/micah/datasets

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

The Command Line Interface 81

Your shell’s working directory should now be your datasets USB disk. To
check, run ls to view the files on this disk.

Create an Exercises Folder
The mkdir command creates a new folder. Now that you’re in your USB disk
drive in your terminal, run the following commands to create a new folder
called exercises, and then switch to it:

mkdir exercises
cd exercises

Now make a folder for your Chapter 3 homework:

mkdir chapter-3

Next, you’ll open the exercises folder in VS Code.

Open a VS Code Workspace
Each VS Code window is called a workspace. You can add folders to your
workspace, which allows you to easily open any files in that folder or create
new ones. To open a VS Code workspace for your exercises folder, run the
following command:

code .

If the argument that you pass into code is a folder, like . (the current
working directory), VS Code will add that folder to your workspace. If the
path is a file, like in Exercise 3-5 when you opened /tmp/example​.html, it will
open just that file.

Next, create a new file in the chapter-3 folder. To do this, right-click the
chapter-3 folder, choose New File, name your file exercise-3-6.sh, and press
ENTER. This should create a new file that you can edit. Since the file exten-
sion is .sh, VS Code should correctly guess that it’s a shell script and use the
right type of syntax highlighting.

Figure 3-7 shows a VS Code workspace with the exercises folder added
and the empty file exercise-3-6.sh created.

The VS Code window is split into two main parts. The Explorer panel
on the left shows the contents of all of the folders added to your workspace.
In this case, it shows exercises and everything it contains: a chapter-3 folder
and the exercise-3-6.sh file you just created. The right side of the window is
the editor, where you’ll enter your shell script.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

82 Chapter 3

Write the Shell Script
Enter the following text into exercise-3-6.sh in VS Code and save the file:

#!/bin/bash
echo "Hello world! This is my first shell script."
Display the current user
echo "The current user is:"
whoami
Display the current working directory
echo "The current working directory is:"
pwd

The first line that starts with #! is called the shebang, and it tells the shell
which interpreter—the program that opens and runs the script—to use. In
this case, the shell will use /bin/bash, meaning you’re writing a bash script.
In this book, you’ll add that same shebang to the top of all of your shell
scripts. Even if you’re working from a shell besides bash, this shebang tells
your computer to run the current script using bash.

In shell scripts, lines that start with the hash character (#) are called
comments, and they don’t affect how the code itself works; if you removed the
comments from this script, it would run the same way. The first character
of the shebang is a hash character, which means that it’s technically a com-
ment in bash and zsh.

Comments like # Display the current user work as notes to remind you
what your code does when you come back to a script you wrote months or
years earlier. Anyone else who works with your code, perhaps trying to fix
something or add features, will appreciate your comments for the same
reason.

Figure 3-7: VS Code with the exercises folder open in a workspace

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

The Command Line Interface 83

The echo command displays text to the terminal. The whoami command
displays the name of the user running the script. The pwd command displays
the current working directory.

Run the Shell Script
Before you can run a script, you need to make it executable by giving it per-
mission to run as a program. The chmod command lets you change permis-
sions on files with the following syntax:

chmod permissions filename

To mark a file as executable, use +x as the permissions argument. Run
the following command in your terminal (from within your exercises folder):

chmod +x ./chapter-3/exercise-3-6.sh

You can now run the script by entering either its absolute path or its
relative path:

./chapter-3/exercise-3-6.sh

Starting your command with ./ tells your shell that you’re entering the
relative path to a script.

Here’s the output I get when I run this script on my Mac:

Hello world! This is my first shell script.
The current user is:
micah
The current working directory is:
/Volumes/datasets/exercises

The current user is micah and the current working directory is /Volumes/
datasets/exercises.

This script shows you different output depending on your working direc-
tory. To demonstrate the differences, here’s what happens when I switch to
my home folder and then run it again:

micah@trapdoor exercises % cd ~
micah@trapdoor ~ % /Volumes/datasets/exercises/chapter-3/exercise-3-6.sh
Hello world! This is my first shell script.
The current user is:
micah
The current working directory is:
/Users/micah

This time, the current working directory in the output has changed to
/Users/micah. Try switching to your own home folder with cd ~ and running
the script again.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

84 Chapter 3

The script also shows different output depending on which user is
running it. So far I’ve been running it as micah, but here’s what the output
looks like when I run it as root:

micah@trapdoor ~ % sudo /Volumes/datasets/exercises/chapter-3/exercise-3-6.sh
Password:
Hello world! This is my first shell script.
The current user is:
root
The current working directory is:
/Users/micah

This time, the output lists the current user as root. Try running the
script as root on your own computer.

You’ll write many more scripts throughout this book. I’ve included
a copy of the code for every exercise in this book’s online resources. In
Exercise 3-7, you’ll download a copy of all of this code.

Exercise 3-7: Clone the Book’s GitHub Repository
Programmers store source code in git repositories (or git repos for short),
which are composed of a collection of files (usually source code) and the
history of how they have changed over time. By storing your scripts this way,
you can host them on GitHub, a popular website for hosting git repos. Git
repos help you share your code with others, and they make it easier for mul-
tiple people to write code for the same project. When you clone a git repo,
you download a copy of it to your computer.

This book comes with a git repo at https://github​.com​/micahflee​/hacks​-leaks​
-and​-revelations containing the code for every exercise and case study in this
book, along with additional instructions and source code related to the
book’s appendixes. In this assignment, you’ll clone this repo and store the
copy locally on your computer.

First, check whether the git program is installed on your machine:

which git

If git is installed, you’ll see its path in the output, like /usr/bin/git. If it’s
not installed, this command won’t display anything in the terminal. In that
case, install git by entering the appropriate command for your operating
system: brew install git for macOS users, or sudo apt install git for Linux
and WSL users.

Next, in your terminal, change to your USB disk folder. On my macOS
computer, I do this with the following command:

cd /Volumes/datasets

If necessary, replace the path in my command with the appropriate
path to your datasets USB disk for your operating system.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

The Command Line Interface 85

Once you’re in the datasets disk, run this command to clone the repo:

git clone https://github​.com​/micahflee​/hacks​-leaks​-and​-revelations​.git

This should create a new folder called hacks-leaks-and-revelations contain-
ing all of the code from the book’s repo.

Finally, add the book’s git repo folder to your VS Code workspace. In
VS Code, click FileAdd Folder to Workspace, then browse for the hacks-
leaks-and-revelations folder on your USB disk. This will add the book’s code
to your VS Code workspace so you can easily browse through all of the files.

You now have access to solutions for all future exercises! In the follow-
ing chapters, I’ll walk you through the process in all of the programming
exercises, but you can also run the complete scripts taken from the git repo
or copy and paste their code into your own programs.

Summary
In this chapter, you’ve learned the basics of command line theory, includ-
ing how to use the shell in a terminal, run various shell commands, and
navigate the shell using features like tab completion. You installed software
directly in the terminal using a package manager, and you wrote your first
simple shell script.

In the next chapters, you’ll put these techniques into practice to
explore hundreds of gigabytes of data, make datasets searchable, convert
email from a proprietary format to an open format, and write Python
code. You’ll start in the following chapter by taking a deeper dive into the
BlueLeaks dataset.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

In this chapter, you’ll build on the command line skills
you’ve learned so far and begin investigating real data-
sets. You’ll use for loops to unzip the BlueLeaks files,
then search the files to determine which fusion centers
have the most data and which documents contain the
keywords antifa and Black Lives Matter. I’ll also give an
overview of the mysterious encrypted data in the data-
set and describe my hypothesis of how the hacker col-
lected the data.

You’ll also learn to create Linux cloud servers and connect to them
securely for faster internet and extra disk space. As practice, you’ll use
a remote server to download and briefly examine hacked data from the
Oath Keepers militia, a far-right extremist group that participated in the
January 6, 2021, US Capitol insurrection.

4
E X P L O R I N G D A T A S E T S

I N T H E T E R M I N A L

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

88 Chapter 4

Introducing for Loops
The BlueLeaks torrent you downloaded in Exercise 2-1 is 269GB and con-
tains 168 different ZIP files ranging from 49GB to half a kilobyte each. In
theory, you could manually unzip these 168 files one at a time to access the
data. However, this slow, tedious process becomes impractical with even
larger datasets (imagine individually extracting 10,000 ZIP files). In this
section, you’ll learn to speed up this task by automating it with for loops.

A for loop is a type of command that runs a piece of code once for
every item in a list. Each time the code loops, it stores the current item in a
variable, which you can think of as a placeholder for some value. Code vari-
ables are similar to those in math, where the value of x might be different
for different problems, but in shell scripting, the values can be text or num-
bers. Even though each loop runs the same code, the results may be differ
ent, because the value of the variable changes with each loop.

For example, the following for loop displays the numbers 1, 2, and 3:

for NUMBER in 1 2 3
do
 echo $NUMBER
done

This for loop starts with the syntax for variable_name in list_of_items,
followed by do, followed by the commands to run for each item in the list,
followed by done. In this case, variable_name is NUMBER and list_of_items is 1 2 3.
The value of the NUMBER variable will be 1 the first time the code loops, 2 dur-
ing the second loop, and 3 during the third loop.

The echo command displays something to the terminal, in this case
$NUMBER. The dollar sign ($) means the code should display the value of the
NUMBER variable, rather than the word NUMBER.

N O T E 	 Using all caps is a common convention for variable names, but it’s not required. For
example, you could call the variable number instead of NUMBER and display it with echo
$number instead of echo $NUMBER. Variable names are case sensitive.

When you run the previous for loop in your terminal, you should see
the following output:

1
2
3

You can also use a for loop to loop through the output of another shell
command, as shown in the following code:

for FILENAME in $(ls *.zip)
do
 echo "ZIP filename: $FILENAME"
done

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Exploring Datasets in the Terminal 89

The variable name in this code is FILENAME. Next, $(ls *.zip) tells your
machine to run the ls *.zip command. This command outputs a list of all
of the ZIP files in the current folder, producing a list of filenames. The for
loop cycles through that list and runs the code between do and done for each
filename. In this case, the echo command prints the filenames to the termi-
nal in ZIP filename: filename format.

For example, here’s what it looks like when I run this code in the
BlueLeaks folder in my terminal on macOS:

micah@trapdoor BlueLeaks % for FILENAME in $(ls *.zip)
for> do
for> echo "ZIP filename: $FILENAME"
for> done
ZIP filename: 211sfbay.zip
ZIP filename: Securitypartnership.zip
ZIP filename: acprlea.zip
--snip--

Each loop, the value of FILENAME is the name of one of the ZIP files.
When the echo command runs, it displays those filenames, one after
another.

Exercise 4-1: Unzip the BlueLeaks Dataset
In this exercise, you’ll write a script to unzip all the ZIP files in BlueLeaks
so you can work with the data they contain. Once unzipped, the files will
take 271GB of additional space on your datasets USB.

If you’re using macOS or Linux, follow the instructions in “Unzip Files
on macOS or Linux” next. If you’re using Windows, read that subsection to
learn how to write for loops in bash since you’ll need that skill later in the
book, but you won’t need to follow along until “Unzip Files on Windows” on
page XX.

Unzip Files on macOS or Linux
Open a terminal and navigate to your BlueLeaks folder by running the fol-
lowing command, replacing blueleaks_path with your own folder path:

cd blueleaks_path

On Linux, I’d use this command (your path will be different):

cd /media/micah/datasets/BlueLeaks

On macOS, I’d use the following (again, your path will vary):

cd /Volumes/datasets/BlueLeaks

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

90 Chapter 4

Run ls to see the list of files in this folder and ls -lh to see detailed
information about these files, like their sizes.

To unzip single files, you use the following syntax:

unzip filename

For example, run this command to unzip the first file in BlueLeaks:

unzip 211sfbay.zip

This should extract the 2.6GB 211sfbay.zip file into the folder called
211sfbay. Run ls again and you should see the new folder containing all of
the hacked data from one of the BlueLeaks sites.

However, you want to unzip all of the BlueLeaks files. Delete the
211sfbay folder:

rm -r 211sfbay

The rm command on its own deletes files; to delete entire folders, you
include -r (short for --recursive). The -r option deletes all the files in that
folder, and all the files in folders in that folder, and so on, before finally
deleting the target folder.

Navigate to your text editor, create a new folder in your exercises folder
called chapter-4, and create a new file in the chapter-4 folder called exercise-
4-1-unzip.sh. (Storing your script in a separate folder prevents you from pol-
luting the dataset with your own files.) In your new file, enter the following
code:

#!/bin/bash
for FILENAME in $(ls *.zip)
do
 echo "Unzipping $FILENAME..."
 unzip -o $FILENAME
done

Since exercise-4-1-unzip.sh is a shell script, it begins with the same
#!/bin/bash shebang as the script in Chapter 3. After you define this for
loop, the script starts it with do and ends it with done, running the echo
"Unzipping $FILENAME..." and unzip -o $FILENAME commands over and over.
The echo command displays the value of the FILENAME variable, which
changes to a new filename with each loop, and the unzip command unzips
that file. The -o argument tells unzip to overwrite files if necessary, meaning
that if any file being unzipped already exists, the script will replace it with
the newer version.

For example, when you run this code on BlueLeaks, the value of
FILENAME during the first loop is 211sfbay.zip. The code that runs in this loop
is equivalent to the following commands:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Exploring Datasets in the Terminal 91

echo "Unzipping 211sfbay.zip..."
unzip -o 211sfbay.zip

The second time the code loops, it runs the same code with acprlea.zip
as the FILENAME value, and so on.

Change to your BlueLeaks folder. On my Mac, I do this by running the
following command:

cd /Volumes/datasets/BlueLeaks

Next, make this shell script executable and run it as follows:

chmod +x ../exercises/chapter-4/exercise-4-1-unzip.sh
../exercises/chapter-4/exercise-4-1-unzip.sh

These commands assume that your exercises folder is in the same folder
as the BlueLeaks folder. The relative path to your exercises folder is ../exercises,
and the relative path to the shell script you just saved is ../exercises/chapter-4/
exercise-4-1-unzip.sh.

After you run these commands, your script should begin unzipping all
168 BlueLeaks files. Sit back, relax, and perhaps enjoy a beverage while you
wait for it to finish, which could take hours.

LOOPING T HROUGH F IL EN A MES W IT H SPACES

Looping over the output of ls as you’ve just done works only if the filenames
don’t contain spaces. If they did, your script would fail due to invalid filenames.
For example, if you had a file called Work Documents.zip in the folder, the
for loop would consider it two files, Work and Documents.zip, as discussed in
Chapter 3.

The output of the ls command is a string—that is, a list of characters—with
each filename separated by a newline character (\n), which represents a line
break. If you have two files in a folder, readme.txt and Work Documents.zip,
the ls command outputs a string like readme.txt\nWork Documents.zip.

The bash shell includes an environment variable called IFS (short for
“internal field separator”), which the shell uses to figure out how to split strings
in a for loop. By default, strings are split by any whitespace: spaces, tabs, or
newlines. This is why, if you loop through the string 1 2 3, you get three smaller
strings—1, 2, and 3—separated with spaces. Likewise, looping through the string
readme.txt\nWork Documents.zip results in the smaller strings readme.txt, Work,
and Documents.zip, separated with a newline character and a space.

To work with filenames with spaces, you change the value of the IFS vari-
able so that it splits strings only on newline characters, but not on spaces or
tabs. Then you change it back after the loop. Here’s an example:

(continued)

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

92 Chapter 4

#!/bin/bash
ORIGINAL_IFS=$IFS
IFS=$(echo -n "\n")
for FILENAME in $(ls)
do
 echo "$FILENAME"
done
IFS=$ORIGINAL_IFS

Inside the for loop, the FILENAME variable will contain the full filename,
even if it includes spaces. You can use code like this to unzip files (as long as
they’re all ZIP files) or open them using any other CLI program.

None of the ZIP filenames in the BlueLeaks data have spaces, but you may
need to use this script on filenames with spaces for future projects.

If you’re not using Windows, skip ahead to the “Organize Your Files”
subsection on page XX. Otherwise, read on.

Unzip Files on Windows
Unzipping files in WSL from a USB disk formatted for Windows might be
very slow, due to WSL performance problems. Fortunately, there’s a much
faster way to unzip all 168 files in BlueLeaks, using PowerShell and a pro-
gram called 7-Zip.

Install 7-Zip

The open source Windows archiving program 7-Zip lets you extract
various types of compressed files. Download and install 7-Zip from https://
www​.7​-zip​.org. You’ll receive a warning saying that the program is made by
an unknown publisher, but it’s safe to install as long as you’ve downloaded it
from the official website.

After you install 7-Zip, you can use its 7z.exe program to extract files
directly from PowerShell. By default, 7z.exe should be located in C:\Program
Files\7-Zip\7z.exe. However, to run the program from any directory, add
C:\Program Files\7-Zip to your Path environment variable.

Environment variables are variables that already exist when you open
your shell, as opposed to ones that you create in a for loop or by other
methods. The Path environment variable is a list of folders that contain pro-
grams. It contains some folders by default, but you can also add your own.
When you run 7z, PowerShell looks in each folder listed in Path and checks
for a file called 7z.exe, then runs that program for you.

To add 7z.exe to Path, click Start, search for environment variables, and
click Edit the System Environment Variables. In the window that opens,
click Environment Variables, and you should see a window with lists of user
variables and system variables. Double-click Path in the User Variables box,
which should show you all of the folders stored in Path. Click New, add

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Exploring Datasets in the Terminal 93

C:\Program Files\7-Zip, and click OK to save. If you have a PowerShell window
open, close PowerShell and open it again, forcing the shell to use the new
changes to the Path environment variable.

You can now use the 7z command to run 7-Zip.

Unzip in PowerShell with 7-Zip

In a PowerShell terminal, change to the BlueLeaks folder on your datasets
USB disk. For example, on my computer, I run:

cd D:\BlueLeaks

Next, run the following PowerShell commands (this is the PowerShell
version of the exercise-4-1-unzip.sh shell script in the previous subsection):

$ZipFiles = Get-ChildItem -Path . -Filter "*.zip"
foreach ($ZipFile in $ZipFiles) {
 7z x $ZipFile.FullName
}

The first line sets the PowerShell variable $ZipFiles to the list of ZIP files
it finds in the current folder, represented by the dot (.). This is followed by
a foreach loop, which loops through this list, setting the variable $ZipFile to
the name of each file. The 7z command runs over and over again for each
different filename, unzipping each file.

When I run these commands in my PowerShell terminal, I get the fol-
lowing output:

Scanning the drive for archives:
1 file, 2579740749 bytes (2461 MiB)

Extracting archive: D:\BlueLeaks\211sfbay.zip
--
Path = D:\BlueLeaks\211sfbay.zip
Type = zip
Physical Size = 2579740749
--snip--

Your PowerShell window should likewise begin unzipping all 168
BlueLeaks files.

N O T E 	 Once you’re finished with this chapter, read Appendix A and implement one of the
solutions it describes for avoiding WSL performance problems to make it easier to
work with big datasets like BlueLeaks in Windows going forward. You’ll use WSL for
the remainder of the book, so you’ll need a plan to resolve any issues you encounter.

Organize Your Files
Your BlueLeaks folder should now be full of both ZIP files and extracted
folders. Now you’ll make a separate BlueLeaks-extracted folder for the

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

94 Chapter 4

extracted data and keep the ZIP files themselves in the BlueLeaks folder so
that you can continue to seed the torrent with them if you like.

Open a terminal (if you’re in Windows, switch to a WSL Ubuntu termi-
nal again), change folders to your datasets USB disk, and run the following
commands:

mv BlueLeaks BlueLeaks-extracted
mkdir BlueLeaks
mv BlueLeaks-extracted/*.zip BlueLeaks

The mv command moves or renames files. On the first line, it renames
the BlueLeaks folder BlueLeaks-extracted. The mkdir command, which you
used in Chapter 3, creates a new empty folder called BlueLeaks. The third
command moves all of the ZIP files in the BlueLeaks-extracted folder into the
newly created BlueLeaks folder.

Your datasets USB disk should now contain a folder called BlueLeaks with
250GB of ZIP files, along with another folder called BlueLeaks-extracted with
269GB of extracted hacked police data.

How the Hacker Obtained the BlueLeaks Data
We don’t know how the hacker hacked and leaked the BlueLeaks files, but
we can make an educated guess based on clues from the dataset.

Imagine that it’s June 6, 2020, less than two weeks after Minneapolis
cop Derek Chauvin murdered George Floyd by kneeling on his neck for
over nine minutes while Floyd struggled to breathe, triggering the sum-
mer’s Black Lives Matter uprising against police violence. Millions of people
took to the streets to demand police accountability and the end of racist
police violence in what was “the largest movement in the country’s history,”
according to the New York Times.

Now imagine you’re a hacktivist. In addition to confronting police in
the streets, you’re confronting them on the internet. Using OSINT, you’ve
discovered that hundreds of police websites use the same shoddy web appli-
cation developed by the Texas web development firm Netsential. All these
sites run on Windows, use Microsoft’s Internet Information Services (IIS)
web server software, and are programmed using Microsoft’s web framework
ASP​.NET. They’re also all hosted from IP addresses in the same data center
in Texas.

After you spend some time poking around one of these sites, the
Arizona High Intensity Drug Trafficking Area (AZHIDTA), you find what
you were looking for: a remote code execution vulnerability, a type of bug
that lets you run commands on a remote server, like the Windows server
running the AZHIDTA website. (My guess is that the vulnerability started
with SQL injection, a technology beyond the scope of this book.)

To open a shell on this web server, you use a web shell, a web page that,
when you submit a form with a command in it, runs that command on the
web server and responds with its output. Using the vulnerability you discov-
ered, you save a web shell into a file called blug.aspx on the web server’s disk.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Exploring Datasets in the Terminal 95

Loading https://www​.azhidta​.org​/blug​.aspx in your browser allows you to run
whatever commands you want on the server.

W A R N I N G 	 Don’t actually try loading that URL in your browser, because it might be illegal. It
appears to be the location of the web shell left behind by the hacker, and attempting to
access someone else’s hacking tools is definitely a legal gray area.

The web shell blug.aspx is included in the BlueLeaks dataset. In order
to understand how this web shell works, I set up a Windows virtual machine
with an IIS server to test it, as shown in Figure 4-1. The left side of the
screenshot is the shell (in which I ran the command dir c:\). The right side
let me browse the server’s filesystem and upload new files.

Figure 4-1: Testing the blug.aspx web shell in a Windows VM

I don’t know for sure if this is how the BlueLeaks hack happened, but
I think it’s very likely. While researching BlueLeaks, I found the follow-
ing web shell files, all timestamped late on June 6, 2020, making them the
among the most recently created files in the dataset:

azhidta/ntdaddy.aspx ​  ​The Classic ASP web shell NTDaddy, developed
around 2001 by a hacker named obzerve

azhidta/blug.aspx ​  ​The ASP​.NET web shell called ASPX Shell, devel-
oped in 2007 by a hacker named LT

azhidta/pscp64.exe ​  ​A program that comes with PuTTY, a popular Win
dows tool for securely logging into and copying files to remote servers

icefishx/7z.exe ​  ​A copy of the 7-Zip compression and extraction
program

My guess is that the hacktivist first tried to create a ntdaddy.aspx web
shell, but found that it didn’t work because it was developed using an earlier
version of ASP called Classic ASP, while the BlueLeaks site used the modern
version, ASP​.NET. They then created the blug.aspx web shell instead, used
that shell to upload pscp64.exe and 7z.exe, used 7z.exe to compress all of the
files for a given police website, and uploaded that data to their own server
with pscp64.exe.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

96 Chapter 4

After manually hacking one of the BlueLeaks sites, the hacker likely
automated the process for the rest of the BlueLeaks sites. Perhaps they
created a shell script that used cURL instead of a web browser to perform
the same steps. They could have run that script in a for loop targeting all
251 websites, uploading hundreds of gigabytes of data to themselves, in
a single Saturday evening. They then likely forgot to delete the blug.aspx,
pscp64.exe, 7z.exe, and ntdaddy.aspx files before submitting the dataset to
DDoSecrets.

Exercise 4-2: Explore BlueLeaks on the Command Line
In this exercise, you’ll start exploring the contents of your unzipped
BlueLeaks files, using commands and advanced shell features that let you
quickly measure file and folder size and sort and count lines of output.

Calculate How Much Disk Space Folders Use
The du command (short for “disk usage”) is a powerful tool for assessing a
new dataset. Linux and macOS come with slightly different versions of du.
The Linux version, which is part of a software package called GNU
coreutils, is better and more up-to-date at the time of writing, so you’ll use
it for this exercise.

Users of Linux and Windows with WSL should already have the correct
built-in du tool. If you’re using macOS, run brew install coreutils in the ter-
minal to install coreutils. After this, the du command will run the macOS
version of the tool, while the gdu command will run the coreutils version
that you just installed. In the following commands, macOS users should
replace du with gdu.

To find out how much space the extracted BlueLeaks dataset takes,
open your terminal and run this command, using the path to the BlueLeaks-
extracted folder on your computer:

du -sh --apparent-size /media/micah/datasets/BlueLeaks-extracted

The -s argument in this command (short for --summarize) displays the
total disk space of a folder rather than how much space each file inside it
takes up. The -h argument (short for --human-readable) shows file sizes in
units like kilobytes, megabytes, or gigabytes, rather than in terms of system
blocks (a unit that changes depending on how your disk is set up). Finally,
the --apparent-size argument shows you how big the files actually are, as
opposed to how much space they take up on your disk.

The command checks the size of every file in BlueLeaks and adds them
all together, so it takes a while to run. When it’s done, it should tell you that
the BlueLeaks-extracted folder takes up 269GB.

N O T E 	 In addition to using -h to generate human-readable units, you can specify which
units you want to use. The -b argument, short for --bytes, shows file sizes in bytes,
-k shows them in kilobytes, and -m shows them in megabytes.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Exploring Datasets in the Terminal 97

Next, you’ll measure the size of an individual folder in BlueLeaks.
Change to your BlueLeaks-extracted folder; for example, I’d run cd /media/
micah/datasets/BlueLeaks-extracted on my Linux computer. From there,
run the following command to measure the size of the ncric folder, which
contains documents from the Northern California Regional Intelligence
Center (NCRIC), the fusion center I’ve spent the most time researching:

du -sh --apparent-size ncric

The output should tell you that the ncric folder takes 19GB.
To find out the size of each folder in BlueLeaks, you could run the

du -sh --apparent-size path command for each folder, but it’s quicker to use
another for loop. Run the following code in the terminal:

for FOLDER in $(ls); do du -sh --apparent-size $FOLDER; done

As shown here, you can run multiple commands on the same line by
separating them with semicolons (;). This one-liner loops through the
output of the ls command, which, since you’re currently in the BlueLeaks-
extracted folder, is the name of each BlueLeaks folder. The code stores these
names in the FOLDER variable and then, inside each iteration of the loop,
runs the du -sh --apparent-size $FOLDER command.

Here are the first few lines of output:

2.8G 211sfbay
29M Securitypartnership
216M acprlea
65M acticaz
748M akorca
--snip--

This shows you how much disk space each folder uses.

Use Pipes and Sort Output
You now know the size of each folder in the BlueLeaks dataset. Next, you’ll
sort the 168 folders in order of disk space. By determining which folders are
the largest, you can quickly tell which fusion centers have the most data and
therefore are probably the biggest or most active.

To sort this list of folders by the smallest file size to the largest, use the
sort command, which takes a list of text lines and, by default, sorts them
alphanumerically; that is, text is sorted alphabetically and numbers are sorted
by their first numeral. For example, the list file1, file10, file2,...​, file9 is
sorted alphanumerically: since text lines are sorted one character at a time,
and since 1 is less than 2, file10 comes before file2.

To sort your BlueLeaks files by file size, modify the command with the
-h (--human-numeric-sort) argument. This argument pays attention to the
value of numbers, not just characters, so it correctly places smaller numeri-
cal values before larger ones. It also takes file size units into account,

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

98 Chapter 4

meaning it will place 2MB before 1GB, even though 2 is numerically greater
than 1.

In shell scripting, the pipe operator (|) lets you take the output of a
command to the left of the operator and pipe it into the command on the
right. When you pipe input into the sort command, it outputs a sorted ver-
sion of that input. Run the for loop from the previous subsection, this time
piping the output into sort:

for FOLDER in $(ls); do du -sh –apparent-size $FOLDER; done | sort -h

This line first runs the for loop that measures the space each BlueLeaks
folder takes up. The output of this code is a list of lines of text, where each
line starts with the human-readable size of a folder. Piping those lines of
text as input into the sort -h command sorts those lines numerically while
paying attention to the file size units.

Your output should look like this:

256 miacxold
256 ncric-history-good
256 ncricSteveBackup
259K terrorismtip
548K oaktac
625K sccpca
--snip--
13G lacleartraining
14G jric
19G ncric
36G miacx
46G repo

The folders that have the least data should be at the top: miacxold, ncric-
history-good, and ncricSteveBackup contain only empty subfolders. The repo
folder, the largest folder in BlueLeaks, should appear at the bottom of the
list, right after miacx, the second largest folder.

F IL E SIZE UNIT S A ND CON V ERSIONS

You’re likely familiar with file size units like megabytes and gigabytes, and
might have a mental model of how much information those units can hold:
office documents are often a few megabytes, a two-hour video file might be
a gigabyte or two, and a video game might be hundreds of gigabytes. Being
able to convert between the different units of disk space is an important skill for
working with large datasets.

Units like kilobyte, megabyte, gigabyte, and terabyte sound metric, but
they’re not. For instance, the kilo- prefix denotes a factor of 1,000, but there are
1,024 bytes in a kilobyte. Here’s a list of common conversions:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Exploring Datasets in the Terminal 99

1 byte (B) is 8 bits, or eight ones and zeros in binary

•	 1 kilobyte (KB): 1,024 bytes

•	 1 megabyte (MB): 1,024 kilobytes

•	 1 gigabyte (GB): 1,024 megabytes

•	 1 terabyte (TB): 1,024 gigabytes

•	 1 petabyte (PB): 1,024 terabytes

As an example, the ncric folder in BlueLeaks is 20,008,051,852 bytes,
which is 19,539,113.1KB, or 19,081.2MB, or 18.6GB—about 160 billion bits.

Create an Inventory of Filenames in a Dataset
When you’re working with an enormous dataset like BlueLeaks, it’s help-
ful to create an inventory of all of the files it contains by listing them in a
text file. This way you can easily count the number of files in the dataset or
search for filenames without having to go through the much slower process
of looping through the dataset itself.

You can create this inventory with the find command, which outputs a
list of files and folders in a folder. From within the BlueLeaks-extracted folder,
run the following command to list all of the files in BlueLeaks:

find . -type f

The first argument after find is the folder whose contents you want to
list. This command uses a dot to find files in the current folder, but you
could use any relative or absolute path. The -type f arguments filters the list
so it includes only files. (To include only folders, add the -type d arguments.)

When you run this command, the names of the many files in BlueLeaks
should start rapidly scrolling across your terminal. To make the output
more manageable, run the command again, this time redirecting the out-
put into the file ../BlueLeaks-filenames.txt:

find . -type f > ../BlueLeaks-filenames.txt

As discussed in Chapter 3, redirection tells your shell to take the output
from the left side of the redirection operator (>) and save it into the file
at the path you specify on the right. In this case, the shell sends the list of
filenames from the find command to the BlueLeaks-filenames.txt file on your
datasets USB disk, rather than displaying the filenames across your terminal.

To read through these filenames at your leisure, open BlueLeaks-
filenames.txt in VS Code by running this command:

code ../BlueLeaks-filenames.txt

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

100 Chapter 4

It’s easier to slowly scroll through these files in your text editor, but
there are too many to count with the naked eye.

Count the Files in a Dataset
The wc command takes some input and tells you how many characters,
words, or lines it contains. When used with the -l (or --lines) argument, it
counts the number of lines. To count the lines in the BlueLeaks-filenames.txt
file you created, and by extension count the number of files in BlueLeaks,
run the following command:

cat ../BlueLeaks-filenames.txt | wc -l

The cat command outputs the contents of a file—in this case, BlueLeaks-
filenames.txt. Instead of displaying it, the command pipes the output into wc
to count the number of lines that it contains. It should tell you that there
are just over one million files in BlueLeaks.

Another way to get the same result is to run the find command from
the previous section again, and pipe its output into wc, like this:

find . -type f | wc -l

That command takes longer to run, though, since it searches through
the whole dataset again (press ctrl-C to cancel this command before it
finishes).

Exercise 4-3: Find Revelations in BlueLeaks with grep
In the summer of 2020, while American society was going through a long-
due reckoning about the scale of racist police killings, right-wing media
(and police) instead focused on the dangers of the protesters themselves.
They lumped the modern civil rights movement into two categories: “Black
Lives Matter” and “antifa,” the latter a label used by antifascist activists since
the 1930s. The modern American antifa movement grew in response to the
2016 election of Donald Trump and the mainstreaming of white supremacy
in the US.

The grep command will filter input for keywords, letting you search the
content of datasets for newsworthy information. In this exercise, you’ll use
grep to find out what police had to say about antifa during the protests.

Filter for Documents Mentioning Antifa
You’ll start by grepping your list of filenames to find any that include
the word antifa. From the BlueLeaks-extracted folder, search the BlueLeaks-
filenames.txt file that you created in Exercise 4-2 by running the following
command:

cat ../BlueLeaks-filenames.txt | grep antifa

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Exploring Datasets in the Terminal 101

This command pipes the output of cat ../BlueLeaks-filenames.txt,
which is a list of a million filenames, into grep antifa. This should filter the
huge list of filenames to show you only those that include the word antifa.
However, it returns no results.

Since the grep command is case sensitive, try again using the -i (or
--ignore-case) argument:

cat ../BlueLeaks-filenames.txt | grep -i antifa

When I run this command on my macOS computer, I get the following
output:

./ociac/files/EBAT1/U-FOUO_CFIX__OCIAC_JRA_DVE Use of Social Media_ANTIFA_ANTI-ANTIFA MOVEMENTS

.pdf

./arictexas/files/DDF/ARIC-LES - Situational Awareness - Antifa Activity.pdf

./arictexas/files/DDF/SWTFC-LES - Situational Awareness - ANTIFA Event Notification.pdf

./arictexas/files/DPI/ARIC-LES - Situational Awareness - Antifa Activity.png

./arictexas/files/DPI/SWTFC-LES - Situational Awareness - ANTIFA Event Notification.png

./dediac/files/DDF/ANTIFA - Fighting in the Streets.pdf

./dediac/files/DDF/ANTIFA Sub Groups and Indicators - LES.pdf

./dediac/files/DDF/FBI_PH_SIR_Tactics_and_Targets_Identified_for_4_November_2017_ANTIFA_Rally_in_
Philadelphia_PA-2
.pdf
./dediac/files/EBAT1/ANTIFA - Fighting in the Streets.pdf
./dediac/files/EBAT1/ANTIFA Sub Groups and Indicators - LES.pdf
./dediac/files/DPI/ANTIFA - Fighting in the Streets.png
./dediac/files/DPI/FBI_PH_SIR_Tactics_and_Targets_Identified_for_4_November_2017_ANTIFA_Rally_in_
Philadelphia_PA-2
.png

This command returns 12 results, all files that have the term antifa in
their filenames. The grep command might highlight your search terms in
each line of output by coloring them differently; I’ve highlighted them here
in bold. Open a few of the documents in this list to see what they contain.

N O T E 	 You can run BlueLeaks documents through Dangerzone if you like, but the risks are
low with this dataset. These documents are now all public, so if any have tracking
technology that lets the original file owner know someone is looking at the document,
it doesn’t matter much. Given that these are hacked documents from police fusion cen-
ters, not attachments on phishing email or something similar, they’re also unlikely to
be malicious.

I often combine find and grep to make lists of filenames and filter those
lists down, which allows me to locate files on my computer more quickly
and precisely than with my operating system’s graphical file search tools.
For example, suppose you’re looking into the azhidta folder for the Arizona
High Intensity Drug Trafficking Area site. To quickly find any documents
that have the word marijuana in their filename, you could run find azhidta
| grep -i marijuana. To count the number of files with marijuana in the file-
names, you could pipe all of that into the wc -l command.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

102 Chapter 4

Filter for Certain Types of Files
In addition to searching for keywords like antifa or marijuana, grep can
help you filter a list of filenames to include only certain file types. Grep for
Microsoft Word documents, filenames that end in .docx, by running the fol-
lowing command:

cat ../BlueLeaks-filenames.txt | grep -i .docx

This command uses cat to display the list of filenames in BlueLeaks,
then filters it down for those that contain .docx. You should see thousands
of filenames scroll by. To learn exactly how many, run the command again,
this time piping the output into wc -l:

cat ../BlueLeaks-filenames.txt | grep -i .docx | wc -l

The wc command should tell you that the previous command had 8,861
results.

Use grep with Regular Expressions
If you scroll through the .docx filenames you just found, you’ll see that a few
of them aren’t actually Word documents. For example, the filename ./aric-
texas/files/DDF/2014 Austin City Limits Festival - APD Threat Overview.docx.pdf
contains .docx but is actually a PDF.

When you use grep, you can pass a regular expression (regex for short)
into it as an argument. A regex is a character or sequence of characters that
defines a search pattern. For example, the caret character (̂) represents the
beginning of a line, and the dollar sign character ($) represents the end
of a line. Grepping for something$ will show you only results that end with
something. Grepping for ^something will show you only results that begin with
something.

To search just for filenames that end with .docx, add a dollar sign ($) to
the end of the text you’re grepping for. For example, try running the follow-
ing command:

cat ../BlueLeaks-filenames.txt | grep -i .docx$ | wc -l

The output should tell you that there are 8,737 results, 124 less than the
previous command. That means there are 8,737 Word docs in this dataset.

Run the following command to find out how many Word docs are in
the ncric folder:

cat ../BlueLeaks-filenames.txt | grep ^./ncric/ | grep -i .docx$ | wc -l

The cat command outputs the list of filenames in BlueLeaks, which is
then piped into the first grep command, which in turn filters your output
down to files that begin with ./ncric, using .̂ Next, that output is piped into
the second grep command, which further filters the output to files that end

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Exploring Datasets in the Terminal 103

with .docx, using $. Finally, the remaining output is piped into the wc -l
command, which tells you how many lines are left. The output of the full
command should tell you that there are 600 Word docs in the ncric folder.

On your own, try using find, grep, and wc to find out how many PDFs
(.pdf) and Excel documents (.xlsx) are in the dataset. You can also experi-
ment with other file types.

Search Files in Bulk with grep
In addition to piping output from other commands into grep, you can use
grep to search directly within text files by using the following syntax:

grep search_term filename

For example, Linux comes with a file called /etc/passwd, which includes
a list of users on the system. To find just the line about my own user in that
file, I can use one of the following commands:

 grep micah /etc/passwd
 cat /etc/passwd | grep micah

The grep command opens the /etc/passwd file and then searches it, while
the cat command opens that file and then pipes its contents into grep, which
searches it. Both of these commands output the following result:

micah:x:1000:1000:,,,:/home/micah:/bin/bash

You can use grep to search multiple files, or even folders full of files,
for hits all at once. As noted earlier, to search a folder, you use the -r (or
--recursive) argument and specify the name of a folder. To specify multiple
files at once, use an asterisk (*) as a wildcard character. For example, you
can use *.txt as the filename to search all text files in your current folder.

There are CSV spreadsheets in every BlueLeaks folder that contain the
contents of the websites’ databases. Now that you’ve grepped for filenames
that contain the keyword antifa, use the following command to bulk-search
the term Black Lives Matter in the contents of the files, not just in their
filenames:

grep -i "black lives matter" */*.csv

The -i argument in this command makes the search case-insensitive.
The black lives matter argument is the search term (in quotation marks,
because it has spaces). The */*.csv argument is the path to search, which
uses two wildcard characters. These arguments tell grep to open every
folder, then each file within those folders that ends in .csv, and search for
the black lives matter keyword.

This command takes some time to run because it’s searching all
158,232 CSV files in BlueLeaks. When it’s finished, it should show you the
lines from CSV files that mention black lives matter and tell you in which files

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

104 Chapter 4

it found those lines. For example, here are snippets from a few of the lines
of the output from that command:

arictexas/IncidentMap.csv:834,"10/26/16 00:00:00",-9.7735716800000006e+01,3.0267881299999999e+0
1,"TX",,"TLO","An APD Police Explorer received a call from a blocked number in which the caller
identified himself as an activist for Black Lives Matter, and identified the recipient by name,
address, and personal descriptors before calling him a racist for having an interest in a LE
career. No explicit threats were made during the call...
bostonbric/EmailBuilder.csv:<p>
BRIC SHIELD Alert: To promote public safety and situational awareness for
events taking place in the City of Boston tonight, the BRIC is sharing the information below
regarding planned activities. </p>... ​<p>Known COB Activities for Tuesday, June 2nd</p>
Violence in Boston Inc & Black Lives Matter Rally and Vigil - 4:45 PM at 624 Blue Hill
Avenue. Not One More! - 5:00 PM to 8:00 PM. Meeting at Franklin Park Road & Blue Hill
Ave and marching to Franklin Park. ...
chicagoheat/Blog.csv:Media sources report that the online activist group Anonymous, or a group
claiming to be Anonymous, has called for a collective 'Day of Rage' to take place in numerous
cities across the United States on Friday, July 15th. The action has been called in solidarity
with the Black Lives Matter movement in light of the recent controversial officer-involved
shootings that resulted in the deaths of Alton Sterling and Philando Castile. The group that
posted the call for action states that acts of violence or rioting are to be condemned.
ncric/Requests.csv:Organizer of a Black Lives Matter Protest for 06/02. Currently scheduled
1PM meet time at Sears parking lot of Newpark Mall. They plan to march to City Hall and then
to Fremont PD. She has repeated she intends for a peaceful protest. She further claims she
reached out to City and PD to join the march. Recent graphics encourage non-descript clothing,
heat resistant gloves, turning off Face Id on iPhone etc.

The command finds a total of 178 lines in BlueLeaks CSVs that contain
the term black lives matter. Each is a potential lead for further investigative
research.

N O T E 	 The grep command is a great tool for searching the content of text files, but it doesn’t
work with binary files, like Microsoft Office documents or PDFs. To search those in
bulk, you’ll need more sophisticated tools, which you’ll learn about in Chapter 5.

On your own, try using grep to filter the list of BlueLeaks filenames for
specific words or bulk-search terms within the CSV files. If you find any
interesting documents, read them to see if they’re newsworthy. Consider
narrowing your searches once you find a lead by looking for other related
documents. You might focus on a single fusion center or a topic like
antifa that spans different centers. Individual documents may contain law
enforcement lingo you can use as search terms for related documents. Take
detailed notes on what’s most revealing in each document, then rely on
these notes if you decide to write about your findings.

Encrypted Data in the BlueLeaks Dataset
As you dig around in the BlueLeaks dataset, you’ll notice some patterns.
Most folders contain many CSVs, as well as .aspx files, the source code of
the hacked websites. They also contain files subfolders containing the bulk

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Exploring Datasets in the Terminal 105

of the files and folders uploaded to each site, including PDFs and Microsoft
Office documents.

However, one folder, repo, contains just a config file and data, index, keys,
locks, and snapshots subfolders. Inside those subfolders are other subfolders
and files with apparently random names. There are no documents that
can be opened—no spreadsheets or similar files. As you discovered in
Exercise 4-2, the repo folder is the largest folder in BlueLeaks, at 46GB. Its
timestamps are from June 8, 2020, although the latest timestamps for most
of the rest of the dataset are from June 6. Without more information, it’s
not clear what these files mean or how to access them.

When I discover a mystery like this in a dataset, I search the internet.
In this case, I searched for the names of the files and folders within the repo
folder by entering config data index keys locks snapshots into a search engine,
and found documentation for a CLI program called restic. A restic reposi-
tory, according to the documentation I found at https://restic​.readthedocs​.io​/en​
/latest​/100​_references​.html, is a folder that holds backup data. Restic reposito-
ries contain a config file and folders called data, index, keys, locks, and snap-
shots, as shown in Figure 4-2.

Figure 4-2: The layout of a restic respository

This suggests that the repo folder in BlueLeaks contains backup data
in restic format. To find out what’s inside this backup, I installed the restic
package. Users of Linux or Windows with WSL can install restic using apt:

sudo apt install restic

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

106 Chapter 4

Mac users can install restic from Homebrew with the following
command:

brew install restic

I ran restic --help and found that I could view the snapshots in a repos-
itory with the restic snapshots command, which I then used to try to view
the snapshots in the repo folder like so:

restic snapshots --repo repo/

I was then confronted with a password prompt:

enter password for repository:

This prompt indicates that the backup is encrypted. The only way to
proceed is to guess the password, which I haven’t been able to do.

While a 46GB folder full of encrypted data in a public leak is rare, it’s not
uncommon to stumble upon other encrypted files in datasets like Office doc-
uments or ZIP files. I can’t help but imagine that the most interesting details
in any dataset might be the encrypted parts. Password-cracking is outside the
scope of this book, but if you can figure out the password for repo, please let
me know.

Data Analysis with Servers in the Cloud
So far, you’ve used the CLI locally on your own computer, but you can also
use it remotely via servers to which you connect through a cloud network.
DigitalOcean, AWS, Microsoft Azure, and countless other cloud hosting
companies rent virtual private servers (VPSes) to the public, usually for
a few dollars a month or a few cents an hour. All the command line skills
you’ve learned so far apply to remote servers, too.

There are many advantages to working with massive datasets in the cloud:

•	 Instead of dealing with USB hard disks, you can attach virtual hard
disks to your virtual servers, increasing their size if you’re running low
on disk space.

•	 VPS bandwidth is generally much better than residential or commercial
internet service, speeding up large dataset downloads.

•	 You can also pay for more powerful VPSes for scripts that require sig-
nificant computational resources, so they no longer take hours or days
to finish running.

•	 Rather than being forced to wait while a script runs on your local
machine, you can do whatever you want on your computer, even suspend-
ing it or shutting it down, while your remote server is crunching data.

•	 If your source has the required technical skills, you can ask them to
upload data to a VPS with a large hard disk, as discussed in Chapter 2.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Exploring Datasets in the Terminal 107

They can even do this anonymously using Tor. You can then download
the dataset or choose to analyze it remotely on the VPS.

W A R N I N G 	 Avoid working on cloud servers with high- or medium-sensitivity datasets. The cloud
hosting provider has total access over your VPS and the data on it and can even give
copies of that data to law enforcement or other parties in response to legal requests.

This section will go into more detail on SSH (Secure Shell) software
(introduced in Chapter 2), which allows you to securely get a shell on a VPS,
as well as two tools that are essential for working remotely on the command
line: text-based window managers and CLI text editors. This should prepare
you to set up a VPS in the next exercise.

The SSH protocol is a method for securely logging into another com-
puter remotely. You can connect to a VPS remotely by running the ssh com-
mand with a username and the IP address or domain name of the server
to which you want to connect. For example, to log in as the root user to the
server with the hostname example​.com, you run:

ssh root@example​.com

You then need to authenticate to the server, or prove that you have per-
mission to log in, by typing the user password or using SSH keys. Similar to
PGP keys (discussed in Chapter 2), generating an SSH key on your com-
puter gives you two files: a public key and a secret key. Once you put your
public key on the remote server, only people with your secret key on their
computer (hopefully just you) can remotely log into that server using SSH.
If someone spies on your internet, they can’t see anything you’re doing
in your SSH session—they’ll just see garbled encrypted data. Every SSH
key also has a fingerprint, a unique string of characters that identifies that
specific key. SSH keys are more secure than passwords, so cloud provid-
ers often require that you use them. Once you SSH into a remote server,
you’ll be dropped into a shell just like the one on your own computer, but
running on a computer across the internet.

A text-based window manager is software that lets you open and switch
between separate shells in the same terminal window, all in the same SSH
session. Text-based window managers also allow you to keep programs
running in the background even if you disconnect from SSH, by maintain-
ing an active terminal session on your VPS. This protects your work if, for
example, your laptop dies, you lose internet access, or you close your termi-
nal window by mistake.

For example, say you want to download BlueLeaks on your VPS and
then unzip it with a for loop. If you close your terminal window before the
loop is done, you’ll quit the remote shell, which will close the unzip pro-
gram, and your remote work will stop. However, if you SSH to your VPS,
connect to a window manager session, and then start unzipping BlueLeaks
files, you can safely close the terminal window without stopping your work.
If you open a new terminal later, SSH back into your server, and open
your window manager again, your previous session with all your running

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

108 Chapter 4

programs should reappear. In the upcoming exercise, you’ll use the Byobu
window manager, which comes with Ubuntu.

When you SSH into a remote server, you don’t have easy access to a
graphical text editor like VS Code. To edit files—to modify a shell script,
for example—you’ll need to use a CLI text editor instead. Two popular CLI
text editors are nano and vim. Nano is relatively easy to use but doesn’t have
advanced features, while vim is more powerful but has a steeper learning
curve. For simplicity’s sake, in the following exercise you’ll use nano.

N O T E 	 Technically, you can use VS Code to edit files remotely over SSH, but there are some
limitations. See https://code​.visualstudio​.com​/docs​/remote​/ssh for more infor-
mation on VS Code’s support for editing files over SSH.

Exercise 4-4: Set Up a VPS
In this exercise, you’ll create an account on a cloud hosting provider,
generate an SSH key, create a VPS on your cloud provider, SSH into it,
start a Byobu session, and install updates. To follow along you’ll need to
spend a small amount of money. I provide detailed instructions for using
DigitalOcean in this exercise, but use whatever cloud hosting provider you
prefer, keeping in mind that the initial steps will likely be slightly different.

Go to https://www​.digitalocean​.com and create an account, providing a
credit card number while signing up. Use a strong password, store it in your
password manager, and turn on two-factor authentication.

Generate an SSH Key
To generate an SSH key, open a terminal on your local computer (if you’re
using Windows, use a WSL terminal), and run:

ssh-keygen -t ed25519

The ssh-keygen command generates an SSH key, while the options spec-
ify the type of encryption key you want to generate—in this case, ed25519,
which uses modern elliptic curve encryption and is the most secure option.

After you run this command, the program will ask you a few questions,
starting with where you want to save your key. For example, I get the follow-
ing output on my Mac:

Generating public/private ed25519 key pair.
Enter file in which to save the key (/Users/micah/.ssh/id_ed25519):

Press enter to use the default location for the key, ~/.ssh/id_ed25519.
Next, the program should ask you for a passphrase:

Enter passphrase (empty for no passphrase):

I recommend generating a random passphrase in your password man
ager, saving it as SSH key passphrase, then copying and pasting the password

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Exploring Datasets in the Terminal 109

into your terminal. After pressing enter, re-enter your passphrase and
press enter again.

When you’re done, the ssh-keygen command should have created two
new files: your SSH secret key in ~/.ssh/id_ed25519 and your SSH public key
in ~/.ssh/id_ed25519.pub.

N O T E 	 If you’re using Windows and prefer to SSH from PowerShell, you can install the
OpenSSH client directly in Windows. Open a PowerShell window as an administra-
tor and run Add-WindowsCapability -Online -Name OpenSSH.Client~~~~0.0.1.0 to
enable using the ssh command from PowerShell.

Add Your Public Key to the Cloud Provider
Next, add your public key to your new DigitalOcean account. After logging
into the web console, go to the Settings page and switch to the Security tab.
Click Add SSH Key, then copy and paste your SSH public key into the form.

Back in your terminal, display the content of your public key by
running this command:

cat ~/.ssh/id_ed25519.pub

Here’s the output I get:

ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAILxYgUq1ePSRSv7LTITG5hecwNBQzs3EZmo4PRzsV4yT micah@trapdoor
.local

Your output should look similar, with the last word being your user-
name and the hostname of your own computer. Copy this whole string,
starting with ssh-ed25519, and paste it into DigitalOcean, then give it a
name, as shown in Figure 4-3.

Figure 4-3: The form for adding a new SSH key to a DigitalOcean account

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

110 Chapter 4

Name your SSH keys after the computer on which you generated them,
since they’re allowing this specific computer to access remote computers.
For example, I’ve called my key trapdoor, the name of my Mac.

Create a VPS
Now that DigitalOcean has your SSH public key, you can create a new VPS.
Click Create at the top of the DigitalOcean console and follow the instruc-
tions to create a new droplet, DigitalOcean’s term for a VPS. Choose the fol-
lowing settings for your VPS:

	 1.	For Choose an Image, pick Ubuntu.

	 2.	For Choose a Plan, pick Shared CPUBasic and choose how much mem-
ory, CPU power, hard disk space, and internet bandwidth you want. Less
powerful machines are cheaper; more powerful ones are more expensive.
For this assignment, choose a relatively cheap option like 1GB of RAM,
1 CPU, 25GB of disk space, and 1TB of bandwidth for $7 per month.

	 3.	For Add Block Storage, you can choose to attach an additional hard
disk to your droplet. You don’t need to do this now, but in the future, to
work with a large dataset like BlueLeaks, you can add more disk space.

	 4.	For Choose a Datacenter Region, choose the host city for your VPS.
File transfers between your computer and your server will be fastest if
you choose a nearby location, but feel free to create your VPS anywhere
you’d like.

	 5.	For Authentication, choose SSH Keys and select the SSH key that you
just added to your DigitalOcean account.

	 6.	For Select Additional Options, check the box beside Monitoring to
see statistics about how much memory and processor power the VPS is
using over time from the DigitalOcean console.

	 7.	For Finalize and Create, choose one droplet and give it the hostname
test-vps.

Click Create Droplet and wait a minute or two for DigitalOcean to
provision your new VPS, then find its IP address. Figure 4-4 shows the
Droplets page of my DigitalOcean account with my new server’s IP address,
178.128.22.151.

Figure 4-4: My test-vps IP address

Click the IP address to copy it to your clipboard.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Exploring Datasets in the Terminal 111

SSH into Your Server
Run the following command to SSH into your server:

ssh username@hostname

where username is the user you want to connect to on the remote server, and
hostname is either the hostname or IP address of the remote server. With
DigitalOcean, the username is root, and the hostname is the IP address of
your server.

Here’s what it looks like when I SSH into my server for the first time:

micah@trapdoor ~ % ssh root@178.128.22.151
The authenticity of host '178.128.22.151 (178.128.22.151)' can't be established.
ED25519 key fingerprint is SHA256:062oSOXq+G1sGLIzoQdFnQvJE/BU8GLLWnNr5WUOmAs.
This key is not known by any other names
Are you sure you want to continue connecting (yes/no/[fingerprint])?

A remote server has its own SSH key, a server key. This output shows
you the server key’s fingerprint and asks whether you want to trust it. If you
enter yes, your SSH software will store this fingerprint in the ~/.ssh/known_
hosts file containing all the fingerprints for the SSH servers to which you’ve
connected in the past, so that when you SSH into your server in the future,
it shouldn’t prompt you again. You can also enter no to cancel, or copy and
paste the fingerprint of the server key that you’re expecting.

N O T E 	 If you SSH into a server and the fingerprint isn’t what your software expects it to be,
SSH will show you a warning message, which could mean that the server key has
changed or that your SSH connection is being attacked. This authentication scheme
is known as trust on first use (TOFU): you trust the first fingerprint you see and
deny all other fingerprints for that server in the future.

Enter yes and press enter to continue. You should be dropped into a
root shell on your remote server:

root@test-vps:~#

Since you provided DigitalOcean with your SSH public key, you don’t
need to enter a password to log in. If anyone else tries SSHing to your
server, they’ll get the Permission denied (publickey) error.

Take a look around your new cloud-based system. Run ls to list files, ls
-al to see hidden files, and cd to change to folders.

Start a Byobu Session
If you used the Ubuntu image to set up your droplet, the Byobu window
manager should be installed. Run the byobu command to start a Byobu ses-
sion. (If you’re using a different operating system, or if for some reason
Byobu isn’t installed, you’ll get a Command 'byobu' not found error message.
Run apt update, followed by apt install byobu, to install the program.)

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

112 Chapter 4

The byobu command should drop you into a shell inside of your new
session. A line at the bottom of your terminal shows which window you’ve
opened, along with information like the date and time. Each Byobu window
is like its own separate shell in the same Byobu session, and you can open as
many windows as you want.

To demonstrate how Byobu works, run whoami (which should tell you
that you’re the root user) and ls -l / (which should show you a list of files
in your server’s root folder). Now press ctrl-A. Byobu will ask you how you
want this keyboard command to operate:

Configure Byobu's ctrl-a behavior...

When you press ctrl-a in Byobu, do you want it to operate in:
 (1) Screen mode (GNU Screen's default escape sequence)
 (2) Emacs mode (go to beginning of line)

Note that:
 - F12 also operates as an escape in Byobu
 - You can press F9 and choose your escape character
 - You can run 'byobu-ctrl-a' at any time to change your selection

Select [1 or 2]:

Enter 1 and press enter. This allows you to open a new window in
Byobu by pressing ctrl-A, followed by C (for “create”). Try that now to
open a new empty shell. Press ctrl-A followed by N (for “next”) to switch
back to your first window. To exit a Byobu window, you run the exit com-
mand in that shell.

N O T E 	 See https://www​.byobu​.org for more complete documentation for this program,
including a video tutorial.

Completely close your terminal window and click through any warn-
ings saying that your active programs will close if you do this. Open a new
terminal window and SSH back into your server using the ssh username@
hostname command. Then run byobu again to attach your previous session.
Any programs you run inside this Byobu session won’t quit when you dis-
connect from SSH.

Install Updates
Always install updates when you set up a new server to keep it secure. Run the
following commands (you don’t need to use sudo, since you’re the root user):

apt update
apt upgrade

Follow the instructions to finish installing updates.
If you ever need to reboot your server (such as after updating the Linux

kernel), run the reboot command. You’ll get kicked out of your SSH session,

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Exploring Datasets in the Terminal 113

but you should be able to SSH back in shortly when the reboot completes.
You can also reboot your VPS from DigitalOcean’s web console—for exam-
ple, if the entire server crashed and you can’t SSH into it.

Exercise 4-5: Explore the Oath Keepers Dataset Remotely
In this exercise, you’ll use BitTorrent to download the Oath Keepers data-
set to your cloud server and explore it using the skills you’ve gained in this
chapter. You’ll also learn to copy data from your remote server to your
laptop using the rsync command. Finally, you’ll delete your VPS to avoid get-
ting charged for time when you’re not using it.

The Oath Keepers dataset contains data from the far-right extremist
group that participated in the January 6, 2021, US Capitol insurrection. In
September 2021, a hacktivist broke into the Oath Keepers servers and made
off with the group’s email messages, chat logs, membership lists, and other
data, and then leaked it to DDoSecrets. You’ll continue working with this
dataset when you learn to analyze email dumps in Chapter 6.

N O T E 	 This book works only with the publicly available part of the Oath Keepers dataset,
which contains email messages and chat logs. To access content like the Oath Keepers’
donor and membership lists, which contain PII, contact DDoSecrets.

Because your home or office internet connection is likely significantly
slower than a cloud provider’s, it’s inefficient to download a dataset to
your laptop, then upload it to your remote server. To download the dataset
directly to your VPS, you’ll use transmission-cli, the command line version
of the BitTorrent client you used to download BlueLeaks in Chapter 2. In
your VPS, run the following command to install transmission-cli:

apt install transmission-cli

You can now use the transmission-cli command to download files. You
must pass in either the path to a .torrent file or a magnet link as an argu-
ment. In this exercise, you’ll use the torrent file available at https://ddosecrets​
.com​/wiki​/Oath​_Keepers.

Run the following commands:

mkdir ~/datasets
cd ~/datasets

This creates a new folder called datasets on your server, then changes
to it. Download the torrent file from the link on the DDoSecrets page and
load it into your BitTorrent client with the following commands:

wget https://ddosecrets​.com​/images​/0​/02​/Oath​_Keepers​.torrent
transmission-cli -w . Oath_Keepers.torrent

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

114 Chapter 4

The wget command downloads files—in this case, Oath_Keepers.torrent—
and saves them in the current folder. The transmission-cli command
downloads the 3.9GB torrent to your server from the BitTorrent swarm
and uploads parts of it to other parts of the swarm. The -w . arguments tell
transmission-cli to download the torrent into the current working folder.
(You could change that to -w ~/Downloads, for example, if you wanted to
download it into the ~/Downloads folder instead.)

N O T E 	 If no torrent file is available for a dataset, you can replace the torrent filename with a
magnet link in double quotes as an argument in the transmission-cli command.

When you’ve finished downloading the torrent, your server will be a
seed until you quit the program by pressing ctrl-C. While you’re waiting
for the dataset to finish downloading, or if you’ve finished but want to con-
tinue seeding the torrent, you can work on your VPS in a separate Byobu
shell.

To check how much free space your server has left, run the following
command after the download is complete:

df -h

The df command tells you how much disk space is free on each con-
nected drive, and the -h argument displays these numbers in human-
readable units. After downloading the Oath Keepers dataset, I got the
following output from these commands on my server:

Filesystem Size Used Avail Use% Mounted on
tmpfs 98M 1000K 97M 2% /run
/dev/vda1 25G 5.8G 19G 24% /
tmpfs 486M 80K 486M 1% /dev/shm
tmpfs 5.0M 0 5.0M 0% /run/lock
/dev/vda15 105M 5.3M 100M 5% /boot/efi
tmpfs 98M 4.0K 98M 1% /run/user/0

As shown in bold, my root partition mounted on / has 25GB of space, has
used 5.8GB, and has 19GB free.

Change your working directory to ~/datasets/Oath Keepers, remembering
to put the filepath in quotes or escape the space in the path. For example,
you could run this command from the ~/datasets folder:

cd Oath\ Keepers

Run the following command to find that the Oath Keepers dataset
takes up 3.9GB of space:

root@test-vps:~/datasets/Oath Keepers# du -sh --apparent-size .
3.9G .

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Exploring Datasets in the Terminal 115

Next, run the ls command to list the files in the Oath Keepers folder:

root@test-vps:~/datasets/Oath Keepers# ls -lh
total 13M
drwxr-xr-x 2 root root 4.0K Aug 2 23:47 'Oath Keepers.sbd'
-rw-r--r-- 1 root root 12M Aug 2 23:47 messages.json
-rw-r--r-- 1 root root 1.4M Aug 2 23:44 messages_old.json

The output shows that this folder contains a folder called Oath Keepers.
sbd, a 12MB file called messages.json, and a 1.4MB file called messages_old.json.
These JSON files are chat logs.

Switch to the Oath Keepers.sbd folder and run ls again:

root@test-vps:~/datasets/Oath Keepers# cd Oath\ Keepers.sbd/
root@test-vps:~/datasets/Oath Keepers/Oath Keepers.sbd# ls -lh
total 3.9G
-rw-r--r-- 1 root root 2.2M Aug 2 23:45 Archive
-rw-r--r-- 1 root root 23K Aug 2 23:44 'Saved Correspondence'
-rw-r--r-- 1 root root 25K Aug 2 23:44 Systems
-rw-r--r-- 1 root root 2.8M Aug 2 23:44 ak
--snip--

The output shows that this folder contains 100 files, each representing a
different inbox full of email.

Since you’ll use the Oath Keepers dataset later in the book, next you’ll
copy it from your VPS to your datasets USB disk with the rsync program,
which synchronizes local folders and remote folders using SSH.

N O T E 	 The scp command (short for “secure copy”) also copies files and folders from your com-
puter to a remote server, or vice versa, over SSH. The BlueLeaks hacker likely used a
Windows version of scp, pscp64.exe, to exfiltrate data from the hacked police web
servers to a server they controlled. For very large folders, however, rsync is often a
better choice than scp, since if it fails halfway through, you can rerun the command
and it will start where it left off.

Open a terminal running locally on your computer (not SSHed to your
VPS) and run which rsync to check whether rsync is installed. If so, the com-
mand returns the path to the program, something like /usr/bin/rsync. If not,
you’ll see no output. Windows with WSL and Linux users can install rsync
with the following command:

sudo apt install rsync

macOS users can install it with the following command:

brew install rsync

To copy a file from a remote server to your local computer, run the fol-
lowing command:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

116 Chapter 4

rsync -av --progress remote_user@remote_host:remote_path local_path

The -av argument is a combination of -a (short for --archive), which
preserves the file permissions in the copy you’re making, and -v (short for—
verbose), which outputs each filename as it copies the files. The --progress
argument displays progress bars for each file as it’s copying. The rsync com-
mand will SSH into the server remote_host with the username remote_user. If
it authenticates successfully, it will download the file or folder at remote_path
and save it on your computer at local_path.

For example, here’s how I’d download the Oath Keepers dataset from
my VPS to my datasets USB disk:

rsync -av --progress root@178.128.22.151:"~/datasets/Oath\ Keepers" /Volumes/datasets/

In this case, root@178.128.22.151:"~/datasets/Oath\ Keepers" is the remote_
user@remote_host:remote_path argument, since the Oath Keepers folder is in the
datasets folder in the root user’s home folder on my VPS. I put the remote
path in quotes and escape the space in the filename, telling my local shell
that root@178.128.22.151:"~/datasets/Oath\ Keepers" is a single argument. The
local_path argument is the /media/micah/datasets/ path to my datasets USB
disk.

N O T E 	 You can also use rsync to upload files from your computer to a remote server—just
put the local_path argument first, as the source, and put the remote_user@remote_
host:remote_path argument second, as the destination.

Here’s the output I get when I run this command:

receiving incremental file list
Oath Keepers/
Oath Keepers/messages.json
 12,109,624 100% 1.89MB/s 0:00:06 (xfr#1, to-chk=102/104)
Oath Keepers/messages_old.json
 1,393,296 100% 1.65MB/s 0:00:00 (xfr#2, to-chk=101/104)
Oath Keepers/Oath Keepers.sbd/
Oath Keepers/Oath Keepers.sbd/Archive
 2,288,916 100% 1.81MB/s 0:00:01 (xfr#3, to-chk=99/104)
Oath Keepers/Oath Keepers.sbd/Saved Correspondence
 23,192 100% 111.02kB/s 0:00:00 (xfr#4, to-chk=98/104)
Oath Keepers/Oath Keepers.sbd/Systems
 25,382 100% 121.51kB/s 0:00:00 (xfr#5, to-chk=97/104)
Oath Keepers/Oath Keepers.sbd/ak
 2,921,276 100% 4.33MB/s 0:00:00 (xfr#6, to-chk=96/104)
Oath Keepers/Oath Keepers.sbd/al
 41,772,536 100% 6.57MB/s 0:00:06 (xfr#7, to-chk=95/104)
--snip--

The rsync command copies every file, one at a time, from the remote
folder to the local folder over SSH, displaying a line after each filename

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Exploring Datasets in the Terminal 117

that shows the file’s download speed and progress. You can press ctrl-C to
cancel the command, then rerun that command, and rsync should continue
where it left off. This is especially useful when you need to copy gigabytes or
terabytes of data spread across millions of files—if the file transfer fails, you
can pick up where you left off.

Once rsync finishes running, you’ll have downloaded a local copy of the
Oath Keepers dataset to your datasets USB disk. You’ll use this dataset again
in Chapter 6, when you learn techniques for researching email dumps.

W A R N I N G 	 Destroy your VPS from the DigitalOcean web console when you’re done with it. Using
it for an hour or two should cost you only a few cents, but the bill can get expensive if
you don’t pay attention.

Summary
In this chapter, you’ve put your command line skills to the test, unzipping
the compressed files in BlueLeaks and learning to quickly search and sort
datasets. You also worked with servers in the cloud and briefly explored the
Oath Keepers dataset.

In the next chapter, you’ll continue expanding your command line
skills and learn two new tools: Docker, which allows you to run Linux soft-
ware on any operating system, and Aleph, which allows you to search data
sets by keyword.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

When I get my hands on a new dataset, the first thing
I do is search it for any juicy, easy-to-find revelations.
Depending on the dataset, I might look for politicians,
organizations, or the city where I live. In the previous
chapter, you learned to search text files like CSV or
JSON files using grep, but grep won’t work on binary
files like PDFs or Office documents. In this chapter,
you’ll expand your search capabilities with Aleph, an
open source investigation tool.

Aleph is developed by the Organized Crime and Corruption Reporting
Project, a group of investigative journalists largely based in Eastern Europe
and Central Asia. The tool allows you to index datasets, extracting all the
text they contain so they’re easy to search. You can use Aleph to search for
keywords or entities (like people, companies, organizations, or addresses)
and discover related entities in other datasets. Aleph also performs optical

5
D O C K E R , A L E P H , A N D M A K I N G

D A T A S E T S S E A R C H A B L E

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

120 Chapter 5

character recognition (OCR), which, as mentioned in Chapter 1, takes flat
images like scanned documents or screenshots, uses artificial intelligence to
recognize any words, and converts those words into text that you can search
or copy and paste.

In the first half of this chapter, you’ll learn the ins and outs of using
Docker and Docker Compose, the software required for running Aleph. In
the second half, you’ll use your new Docker skills to run an Aleph server,
then index and search part of the BlueLeaks dataset.

Introducing Docker and Linux Containers
Docker is the most popular software for running Linux containers, a type
of software package. Linux containers can organize ready-to-go Linux
software—complete with all of its dependencies, configuration, and source
code—into a single bundle called a container image that you can quickly and
easily run. The software inside containers is isolated from the rest of your
computer; it can’t access any of those files unless you allow it to do so.

For example, let’s say you want to set up the popular WordPress blog-
ging software in Linux. You use a package manager like apt or Homebrew
to install the software WordPress depends on. You then put the WordPress
source code in a location on your disk with the right permissions, configure
your web server software so it knows where to look for that source code, and
configure a database to store the blog’s data. You can then save all this work
in a Linux container called wordpress and reuse that container to spin up
new WordPress sites with a single Docker command.

Because Linux containers are isolated from the rest of your computer,
multiple WordPress containers can run at the same time without interfer-
ing with each other. If someone hacks the software running in your con-
tainer, they won’t be able to access any of the data located elsewhere on
your computer—at least, not without also hacking Docker itself. This is why
Dangerzone relies on Linux containers: if a malicious document manages
to hack the Dangerzone container you’re using, your computer should still
be safe. In addition to software like WordPress, you can use Linux contain-
ers to run commands in most Linux distributions without having to install
those operating systems.

Docker comes with two commands you’ll use in this chapter: docker,
which runs individual containers, and docker-compose, which lets you run
multiple containers at once. You’ll practice using the docker command
by running Linux containers for the Ubuntu and Kali Linux operating sys-
tems, as well as for the data science software Jupyter Notebook. You’ll then
use docker-compose to run a WordPress server and an Aleph server. Aleph
requires a small network of services that communicate with each other, but
as with WordPress, you can use a single Docker command to start up all
these individual servers in their own containers. This process should pre-
pare you to run Linux containers with Docker for other purposes later in
the book.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Docker, Aleph, and Making Datasets Searchable 121

This chapter covers two applications for running Docker containers:
Docker Desktop and Docker Engine. Docker Desktop runs Docker con-
tainers on workstation computers in a Linux VM. Docker Engine, on the
other hand, runs Docker directly on a Linux computer. Windows and Mac
users, turn to Exercise 5-1 to set up Docker Desktop. Linux users, turn to
Exercise 5-2 to install Docker Engine.

N O T E 	 It’s possible for Linux users to install Docker Desktop, but I don’t recommend it for
this chapter. Without a VM, Docker will be free to use all of your computer’s memory
and processors, which will make indexing datasets in Aleph much faster.

Exercise 5-1: Initialize Docker Desktop on Windows and macOS
When you installed Dangerzone in Exercise 1-3, Docker Desktop also
should have been installed, since Dangerzone requires it. Confirm that
Docker Desktop is installed by checking whether your Applications folder in
macOS or Start menu in Windows has a Docker program; if not, download
it from https://www​.docker​.com​/products​/docker​-desktop​/.

Open Docker and follow the on-screen instructions to initialize the
software. You may need to reboot your computer. Before you can use
Docker, Docker Desktop’s Linux VM should be up and running. If you click
the Docker icon in your system tray and it tells you that Docker Desktop is
running, you’re ready to proceed.

If you’re using Windows, you can use either PowerShell or Ubuntu with
WSL for this chapter, since the docker and docker-desktop commands should
run fine in either. Even when you use Docker from PowerShell, it techni-
cally relies on WSL under the hood.

If you’re using macOS, click the Docker icon in your system tray and
choose Preferences. Switch to the Resources tab and make sure that the
Memory resource is set to at least 6GB—higher if you have more to spare—
to be sure Docker’s Linux VM has enough memory to handle Aleph. Click
Apply & Restart.

For either operating system, to test whether Docker is working, open a
terminal and run this command:

docker run hello-world

This command should run a Docker container image called hello-world.
If you don’t already have the hello-world image on your computer, Docker
should download it first. The output should look something like this:

Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
2db29710123e: Pull complete
Digest: sha256:10d7d58d5ebd2a652f4d93fdd86da8f265f5318c6a73cc5b6a9798ff6d2b2e67
Status: Downloaded newer image for hello-world:latest

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

122 Chapter 5

Hello from Docker!
This message shows that your installation appears to be working correctly.
--snip--

Your computer is ready to run Linux containers. Skip to the “Running
Containers with Docker” section on page XX.

Exercise 5-2: Initialize Docker Engine on Linux
Follow the detailed instructions for Server rather than Desktop at

https://docs​.docker​.com​/engine​/install​/ to install Docker Engine for your version
of Linux. In Ubuntu, the installation process involves adding a new apt
repository to your computer and installing some Docker packages.

Docker Engine on Linux requires root access to run containers. After
completing this exercise, if you’re using Linux, add sudo to the beginning of
all docker or docker-compose commands in this book. To run all your Docker
commands as root automatically without using sudo, check the Docker
Engine documentation for instructions on adding your Linux user to the
docker group; however, keep in mind that doing so decreases your computer’s
security and isn’t recommended.

Once Docker is installed, open a terminal and run:

sudo docker run hello-world

This command runs a Docker container image called hello-world. If you
don’t already have the hello-world image on your computer, Docker down-
loads it first. The output should look something like this:

Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
2db29710123e: Pull complete
Digest: sha256:507ecde44b8eb741278274653120c2bf793b174c06ff4eaa672b713b3263477b
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.
--snip--

If the hello-world container ran successfully, you can now use the docker
command on your computer. Next, run the following command to install
the docker-compose package, which will give you access to the docker-compose
command:

sudo apt install docker-compose

Your computer is now ready to run Linux containers.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Docker, Aleph, and Making Datasets Searchable 123

PODM A N

Podman (https://podman​.io) is another software solution for running Linux con-
tainers. It’s lightweight and doesn’t require root access, which makes it more
secure than Docker. I prefer Podman—in fact, Dangerzone for Linux uses it
instead of Docker. However, Docker is more popular, and some containers that
work in Docker may not run properly in Podman. I recommend sticking with
Docker while you follow along with this chapter. If you become a Linux con-
tainer nerd, you can try out Podman on your own later.

Running Containers with Docker
The docker command you’ve just installed allows you to run Linux contain-
ers on your computer. In this section you’ll learn how to use this command
to open a shell inside containers, force running containers to quit, mount
volumes to save persistent data or access certain files, set environment vari-
ables, and publish ports so your computer can connect to network services
inside your container. This foundational understanding of Docker will
prepare you to run Docker containers in Exercise 5-3 and help you trouble-
shoot any problems you later encounter with Aleph.

N O T E 	 For additional information on Docker commands, run docker help or check the docu-
mentation at https://docs​.docker​.com.

Running an Ubuntu Container
You’ll begin by learning how to run a Linux container with the Ubuntu
operating system in it. People often base more complicated container
images on the Ubuntu container image to access all Ubuntu software that
apt can install. An Ubuntu container is also a convenient way to access
a shell on a clean Ubuntu system, allowing you to install software or test
programs.

Docker commands use the docker command syntax. Run the following to
start your own Ubuntu container (if you’re using Linux, remember to add
sudo):

docker run -it ubuntu:latest bash

This command runs ubuntu:latest, the latest version of the ubuntu image.
If that image isn’t already on your computer, Docker automatically down-
loads it from Docker Hub, a library of public container images at https://hub​
.docker​.com. Next, the bash command runs, giving you shell access inside that

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

124 Chapter 5

container. Include the -it argument, which is short for -i (or --interactive)
and -t (or --tty), after docker run whenever you plan to open a shell in a con-
tainer, so that any commands you type in the terminal run in the container.
Without the -it argument, the bash shell would immediately quit before
you could run any commands, as would the container.

This command gives me the following output:

micah@trapdoor ~ % docker run -it ubuntu:latest bash
Unable to find image 'ubuntu:latest' locally
latest: Pulling from library/ubuntu
d19f32bd9e41: Pull complete
Digest: sha256:34fea4f31bf187bc915536831fd0afc9d214755bf700b5cdb1336c82516d154e
Status: Downloaded newer image for ubuntu:latest
root@5661828c22a2:/#

Since I didn’t already have the ubuntu:latest image, the command
downloaded that image, started the container, and dropped me into a bash
shell. I can now run whatever commands I want inside this container, such
as installing software or running programs.

Running the exit command quits the container. If you start a new
ubuntu:latest container, it contains none of the old container’s data. For
example, with the following commands, I create a file called test.txt in one
container, quit the container, and start a new one:

root@5661828c22a2:/# echo "Hacks, Leaks, and Revelations" > test.txt
root@5661828c22a2:/# cat test.txt
Hacks, Leaks, and Revelations
root@5661828c22a2:/# exit
exit
micah@trapdoor ~ % docker run -it ubuntu:latest bash
root@e8888f73a106:/# cat test.txt
cat: test.txt: No such file or directory
root@e8888f73a106:/#

The output shows that test.txt no longer exists. For data in a container
to persist when you rerun the container image, you need to use volumes, as
we’ll discuss in “Mounting and Removing Volumes” on page XX.

Listing and Killing Containers
If you’ve exited your Ubuntu container, run a new one. With that container
running in the background, open a second terminal window and run the
docker ps command. This should show you a list of all containers currently
running. Here’s the output I get, for example:

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
337a795a53b2 ubuntu:latest "bash" 9 minutes ago Up 9 minutes
nostalgic_keldysh

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Docker, Aleph, and Making Datasets Searchable 125

When you start a container with docker run, you can give it a name with
the arguments --name your_container_name. Otherwise, it will be assigned a ran-
dom name. The container in my docker ps output is called nostalgic_keldysh.

To kill a container, or force it to quit, you run docker kill your_container_
name. For example, running the following command in my other terminal
window quits my nostalgic_keldysh container:

docker kill nostalgic_keldysh

Run this command for your own container. If you switch back to your
other terminal window, the container should have quit, and you should be
back in your normal shell.

When you exit a container, Docker still keeps track of it, allowing you to
restart it if you want. To see all of the containers Docker is tracking, includ-
ing ones that aren’t running anymore, you run docker ps -a (short for --all).
Here’s the output I get when I run this command:

CONTAINER ID IMAGE ... ​ STATUS PORTS NAMES
337a795a53b2 ubuntu:latest ... ​ Exited (0) 43 minutes ago nostalgic_keldysh

It’s good practice to run docker rm container_name to prune your stopped
Docker containers when you’re done using them. For example, I’d run
docker rm nostalgic_keldysh to remove my nostalgic_keldysh container.

You can run docker container prune to remove all stopped containers at
once. When I ran this command, I saw the following output:

WARNING! This will remove all stopped containers.
Are you sure you want to continue? [y/N]

I entered y and got the following output:

Deleted Containers:
337a795a53b25e6c28888a44a0ac09fac9bf6aef4ab1c3108844ca447cce4226

Total reclaimed space: 5B

This displays the container ID, a long string of random-looking text, for
each container that’s deleted. In my case, I deleted a single container.

Mounting and Removing Volumes
Containers support volumes, which you can think of as folders in your
container designed to store persistent data. You can use volumes to save
changes you’ve made to your container after you quit and remove it.

For example, suppose you start a container without any volumes that
runs the PostgreSQL database software. Any data you add to it is saved
to the /var/lib/postgresql/data folder inside your container. When you quit
and remove the container, you’ll lose all of your data. If you instead mount
a folder on your host operating system into /var/lib/postgresql/data on the
container, when software in the container accesses that folder, it’s actually

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

126 Chapter 5

accessing the folder on your host operating system. You’ll still have all of
your data when the container closes and is removed, and you can start the
container again in the future with the same data.

Docker has two main types of volumes: bind mounts, or folders from
your host machine mounted into a container, and normal Docker volumes,
where Docker keeps track of your persistent folders without your having to
provide a path on your host operating system. For example, if you want to
store your database container’s data in the /Volumes/datasets/volumes/db-data
folder on your host filesystem, you would mount this folder as a bind mount.
If you don’t need your data to be stored in a specific folder on your host,
just use a normal volume, and Docker will keep track of where it’s stored.

N O T E 	 Storing volumes in a Linux VM with Docker Desktop makes them faster than bind
mounts, but your VM might run out of disk space if your volumes get too big (if
you index large datasets into Aleph, for example). In macOS, you can increase the
amount of disk space available to your VM in the Docker Desktop preferences under
the Resources tab. In Windows, your VM will use as much space on the C: drive as it
needs, but again, this drive could run out of disk space if you’re dealing with large
amounts of data. Alternatively, you could use bind mounts instead of volumes, stor-
ing data on external disks.

You can also use volumes to access data outside of a container while
that container is running. In Exercise 5-5, you’ll bind-mount your datasets
USB disk as a folder in an Aleph container. This way, your container can
access the BlueLeaks dataset, allowing you to index it.

Use this command to start a container with a volume:

docker run --mount type=volume,src=volume-name,dst=/container/path image

Use this command to start a container with a bind mount:

docker run --mount type=bind,src=/path/on/host,dst=/container/path image

The --mount argument tells Docker that you’re going to mount a vol-
ume and is followed by comma-separated details about that volume. The
type parameter specifies the type of mount: volume for volumes and bind for
bind mounts. The src parameter specifies the source of the volume or bind
mount. For volumes, its value is the volume name; for bind mounts, its value
is the absolute path on your host filesystem to the folder you want to mount.
The dst parameter specifies the destination of the volume or bind mount,
in both cases the absolute path of the folder inside the container to which
you’re mounting.

Let’s practice these two commands, starting with mounting a volume.
Run the following code (your prompt will be different from mine):

micah@trapdoor ~ % docker run -it --mount type=volume,src=test-data,dst=/mnt
ubuntu:latest bash

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Docker, Aleph, and Making Datasets Searchable 127

root@50b8b6f86e4d:/# echo "Hacks, Leaks, and Revelations" > /mnt/test.txt
root@50b8b6f86e4d:/# exit

This code starts an Ubuntu container and mounts a volume called
test-data into the /mnt folder in the container. It then saves some data into
the /mnt/test.txt file and exits the container.

Use the following commands to open a separate container, mounting
the same volume into it to see whether your data is still there (again, your
command prompt will be different):

micah@trapdoor ~ % docker run -it --mount type=volume,src=test-data,dst=/mnt
ubuntu:latest bash
root@665f910bb21c:/# cat /mnt/test.txt
Hacks, Leaks, and Revelations
root@665f910bb21c:/# exit

This time, because you mounted /mnt in the test-data volume, the data
persisted.

To see a list of the volumes that Docker is managing, run the docker
volume ls command. You should get the following output:

DRIVER VOLUME NAME
local test-data

You can remove volumes only from containers that have been com-
pletely removed from Docker. If you’ve just stopped a container but Docker
is still tracking it, it won’t let you remove the volume. Completely remove all
stopped containers by running docker container prune, which then allows you
to remove any volumes attached to those containers. You should get the fol-
lowing output:

WARNING! This will remove all stopped containers.
Are you sure you want to continue? [y/N]

Enter y to continue:

Deleted Containers:
665f910bb21ca701be416da94c05ee6a226117923367d2f7731693062683a402
50b8b6f86e4d0eab9eb0ba9bf006ae0473525d572ea687865f8afca8a92e7087

Total reclaimed space: 82B

You can now run docker volume rm volume-name to remove any volumes
attached to those containers, or run docker volume prune to delete all vol-
umes that Docker containers aren’t currently using. Run docker volume rm
test-data to remove the test-data volume, then run the docker volume ls com-
mand again. This time, you shouldn’t see any volumes listed in the output.

Next, you’ll practice bind mounting by mounting the folder on your
host system containing the BlueLeaks dataset into a container running Kali
Linux. This Linux distribution is designed for penetration testing, in which

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

128 Chapter 5

people hack into systems with permission from the system owners to find
and fix security flaws.

If you’re a Mac or Linux user, run the following command, replacing
the path with the appropriate path on your machine:

docker run -it --mount type=bind,src=/Volumes/datasets/BlueLeaks-extracted,dst=/blueleaks
kalilinux/kali-rolling bash

This should run a kalilinux/kali-rolling container, mounting your
BlueLeaks-extracted folder in it at the path /blueleaks, and drop you into a
bash shell.

Windows users might have trouble bind-mounting a folder on the data-
sets USB disk into a container, because Docker Desktop for Windows runs
Linux containers using WSL, and WSL doesn’t always have access to your
USB disks. To avoid this problem, if you plugged in your USB disk after
opening a WSL terminal or using Docker, restart WSL by running
wsl --shutdown in PowerShell. You should see a notification from Docker
Desktop asking if you want to restart it. Click Restart. After you restart WSL
with the USB disk already plugged in, Docker should be able to mount it.
(See Appendix A for more information.)

If you’re using Windows with PowerShell to work through this chap-
ter, run the following command to mount the folder that contains the
BlueLeaks data into /datasets, replacing D:/BlueLeaks-extracted with the
appropriate path:

docker run -it –mount type-bind,src=D:/BlueLeaks-extracted,dst=/blueleaks kalilinux/
kali-rolling bash

If you’re using Ubuntu with WSL in Windows, mount the BlueLeaks
folder by accessing the D: drive from /mnt/d with the following syntax:

docker run -it --mount type=bind,src=/mnt/d/BlueLeaks-extracted,dst=/blueleaks kalilinux/
kali-rolling bash

From within your Kali container, you can now use the tools that come
with Kali on the BlueLeaks dataset. By default, Kali customizes your bash
shell to look slightly different than Ubuntu does. The prompt will look
something like this:

┌──(root㉿6a36e316663c)-[/]
└─#

Docker containers are assigned random hostnames. In this case, root is
the name of the current user, 6a36e316663c is the hostname of the computer,
and / is the current working directory. From here, run ls /blueleaks/ to list
the files in the BlueLeaks folder:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Docker, Aleph, and Making Datasets Searchable 129

211sfbay iowaintex pleasantonpolice
Securitypartnership jerseyvillagepd prvihidta
acprlea jric pspddoc
acticaz kcpers publicsafetycadets
--snip--

N O T E 	 You can learn more about volumes at https://docs​.docker​.com​/storage​/volumes​/
and about bind mounts at https://docs​.docker​.com​/storage​/bind​-mounts​/.

Passing Environment Variables
You can also use environment variables, introduced in Chapter 4, to pass
sensitive information like database credentials into containers. When start-
ing up a container, you pass an environment variable into it using the
-e variable_name=value (the -e is short for --env) arguments. Programs in the
container can then access the value of that variable.

For example, run the following command:

docker run -it -e DB_USER=root -e DB_PASSWORD=yourefired ubuntu:latest bash

This starts an Ubuntu container with the variable DB_USER set to root
and the variable DB_PASSWORD set to yourefired. From inside the container, try
displaying the values of those variables to confirm that you can access this
information there, using the echo $variable_name command like so:

bash-5.1# echo $DB_USER
root
bash-5.1# echo $DB_PASSWORD
yourefired

You’ll practice passing environment variables to containers further in
Exercise 5-3.

Running Server Software
You can also run robust, fully configured software on the operating systems
running in containers. This technique is mostly used to access server software,
software to which you can connect over a network using web browsers, data-
base clients, or other similar programs. You’ll need this skill for Exercise 5-3
and, eventually, to run Aleph.

Different computers (or VMs, or containers), called hosts, are identified
by IP addresses or hostnames. Your own computer’s IP address is always
127.0.0.1, and its hostname is always localhost. Hosts can listen on different
ports for incoming network connections, meaning the host is available for
other hosts to connect to over a network. A port is a number that the com-
puter uses to sort out which network traffic should go to which application.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

130 Chapter 5

Different services have different default ports. For example, HTTP and
HTTPS services are two types of websites that use port 80 and port 443,
respectively. When you load the URL http://example​.com in your browser, it
will try to connect to the host example​.com on port 80 using HTTP. If you
load https://example​.com, it will try to connect on port 443 using HTTPS.

However, you can change the default ports that services use. If you’re
running an HTTP service on localhost on port 5000, the URL for that
service would be http://localhost:5000, where http:// means you’re using the
HTTP protocol, localhost means you’re connecting to the localhost host,
and :5000 means you’re connecting to port 5000 instead of the default
HTTP port, 80.

To connect to a network port inside your Docker container, you must
publish a network port when you run your container, making that port
available on the host operating system. To do so, use the arguments
-p host_port:container_port (-p is short for --publish). Once the container
starts up, your host operating system will listen on host_port. If you connect
to that port, your connection will be forwarded to container_port inside the
container.

Let’s look at an example of running server software and publishing a
port so that you can connect to it from your host computer. Run the follow-
ing command:

docker run -p 8000:8888 jupyter/scipy-notebook:latest

This command should download and run the latest version of the
jupyter/scipy-notebook container image, which includes the most popular
science-related Python libraries. (Jupyter Notebook is a powerful data sci-
ence tool for creating and sharing computational documents.) The syntax
to publish ports is -p host_port:container_port. Jupyter Notebook starts an
HTTP service on port 8888, so in this command, host_port is 8000 and
container_port is 8888. If you connect to localhost on port 8000, using either
the URL http://localhost:8000 or http://127​.0​.0​.1:8000, you’ll now actually con-
nect to port 8888 inside the container.

Here’s the output from the previous command:

Unable to find image 'jupyter/scipy-notebook:latest' locally
latest: Pulling from jupyter/scipy-notebook
08c01a0ec47e: Pull complete
--snip--
Status: Downloaded newer image for jupyter/scipy-notebook:latest
Entered start.sh with args: jupyter lab
Executing the command: jupyter lab
--snip--

 To access the server, open this file in a browser:
 file://​/home​/jovyan​/​.local​/share​/jupyter​/runtime​/jpserver​-7​-open​.html
 Or copy and paste one of these URLs:
 http://cc4a555569e4:8888​/lab​?token​=d570e7d9ecc59bbc77536ea4ade65d02dd575ff3c6713dd4
 or http://127​.0​.0​.1:8888​/lab​?token​=d570e7d9ecc59bbc77536ea4ade65d02dd575ff3c6713dd4

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Docker, Aleph, and Making Datasets Searchable 131

The output shows that this command downloaded the latest version of
the jupyter/scipy-notebook container image from Docker Hub and then ran it.
This time, instead of starting a shell in the container, the container runs
only the service it was designed for, which is Jupyter Notebook. Each time
Jupyter Notebook outputs a log message, the terminal window now
displays it.

The end of the output shows three different URLs to access the server.
Copy the final URL, paste it in your browser, and change the port number
from 8888 to 8000 before you load it. When you connect to your own com-
puter on port 8000 (127.0.0.1:8000), your connection will be forwarded to
the container on port 8888. Your browser should load the Jupyter Notebook
service running in your container. When this happens, you should see more
log messages appear in the terminal.

Figure 5-1 shows a web browser running on my Mac, connected to a
Jupyter Notebook server, which is running in my Linux container.

Figure 5-1: Jupyter Notebook running in a container

The container keeps running until you press ctrl-C to quit it. If you
need to run any other terminal commands while the container is still
running, you’ll need to open a separate terminal window. For now, press
ctrl-C in your terminal to exit the Jupyter Notebook container.

You won’t use Jupyter Notebook further in this book, but you’ll rely on
your new understanding of running server software to run a WordPress
website in Exercise 5-3.

N O T E 	 For more information about Jupyter Notebook, visit https://jupyter​.org, and for
thorough documentation on running Jupyter Notebook in Docker, see https://
jupyter​-docker​-stacks​.readthedocs​.io.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

132 Chapter 5

Freeing Up Disk Space
Docker images take up a lot of disk space. To free up space quickly, use
the following command to delete all of the container images you’ve down-
loaded from Docker Hub and other data that Docker stores (besides
volumes):

docker system prune -a

Since this command doesn’t delete volumes, it won’t delete any of your
important data. The next time you use docker run commands, you’ll just
redownload the container images you need from Docker Hub.

Exercise 5-3: Run a WordPress Site with Docker Compose
More complicated software like Aleph requires running multiple containers
that interact with each other. To do that, you’ll need to learn to use Docker
Compose, as the docker run command’s arguments quickly become hard to
keep track of when used to run more complicated containers—those with
volumes, environment variables, publishing ports, and so on. It’s especially
unwieldy to run a single application that requires multiple containers at
once.

Docker Compose makes it easier to define and run such Docker appli-
cations. The tool allows you to configure your containers (choosing images,
volumes, environment variables, published ports, and so on) in a single file,
and to start and stop all of your containers with a single command. I often
use Docker Compose even for software that requires a single container,
because it simplifies keeping track of all of the configuration. You’ll need to
be proficient in Docker Compose to run an Aleph server.

In this exercise, you’ll familiarize yourself with Docker Compose by
using it to run WordPress. You won’t need WordPress for the remainder of
this book, but here it serves as an example to prepare you for using Docker
Compose with Aleph.

Make a docker-compose.yaml File
The YAML file format (https://yaml​.org) is popular among programmers for
storing configuration files because it’s relatively human-readable. YAML
files have either a .yml or .yaml file extension. Docker Compose defines con-
tainers and their settings in a file called docker-compose.yaml.

Open a terminal and change to your exercises folder. Make a new folder
called wordpress for this exercise and then, using your text editor, make a
file in that folder called docker-compose.yaml. Enter the following code into
that file (or copy and paste it from https://github​.com​/micahflee​/hacks​-leaks​-and​
-revelations​/blob​/main​/chapter​-5​/wordpress​/docker​-compose​.yaml):

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Docker, Aleph, and Making Datasets Searchable 133

services:
 wordpress:
 image: wordpress:latest
 volumes:
 - wordpress_data:/var/www/html
 ports:
 - 8000:80
 restart: always
 1 environment:
 - WORDPRESS_DB_HOST=db
 - WORDPRESS_DB_USER=wordpress
 - WORDPRESS_DB_PASSWORD=yourefired
 - WORDPRESS_DB_NAME=wordpress
 db:
 image: mariadb:10.9
 volumes:
 - db_data:/var/lib/mysql
 restart: always
 2 environment:
 - MYSQL_ROOT_PASSWORD=supersecurepassword
 - MYSQL_USER=wordpress
 - MYSQL_PASSWORD=yourefired
 - MYSQL_DATABASE=wordpress

volumes:
 db_data:
 wordpress_data:

YAML files are whitespace sensitive, meaning that indentations affect
the meaning of the code. This file defines two containers named wordpress
and db. For each container, it defines which container image to use, what
volumes to mount, which ports to publish (in the case of the wordpress
container), which environment variables to set, and other settings.

The wordpress container uses the wordpress:latest image to create an
instance of the WordPress web application. The db container uses the
mariadb:10.9 container image to create an instance of a MySQL database
server. (MySQL is a popular data management system that you’ll learn
more about in Chapter 12.)

Because these two containers are defined in the same docker-compose.
yaml file, by default they’re part of the same Docker network so that they can
communicate with each other. The wordpress container sets WORDPRESS_DB_HOST
to db, the name of the other container, because it connects to that hostname.
The wordpress environment variables 1 also match the db environment vari-
ables 2. If these database credentials aren’t the same, WordPress gets a “per-
mission denied” error when trying to connect to the database.

N O T E 	 The WordPress docker-compose.yaml file in this example is a slightly modified
version of a sample file in the Docker documentation at https://docs​.docker​.com​
/samples​/wordpress​/. See the documentation for a more thorough description of
how to use Docker Compose.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

134 Chapter 5

Start Your WordPress Site
In your terminal, change to the folder you created for this exercise and run
the following command to start both containers at the same time:

docker-compose up

The first time you run it, Docker should download the mariadb:10.9
and wordpress:latest container images from Docker Hub. The command
should then run a MySQL container and a web server container running
WordPress, and you should see logs from both containers scroll by in your
terminal. Logs from the db container start with db_1, while logs from the
wordpress container start with wordpress_1.

The db container doesn’t need to publish any ports for WordPress to
connect to it, since both containers share a Docker network. However,
the wordpress container publishes ports 8000:80. This means that loading
http://127​.0​.0​.1:8000 in your browser connects to your host operating system
on port 8000 and loads the web server in the wordpress container running
on port 80.

Enter http://127​.0​.0​.1:8000 in your browser, and you’re running
WordPress! Figure 5-2 shows the WordPress installation process that appears
when I load that URL on my Mac after selecting English as my language.

Figure 5-2: WordPress running in two containers, with Docker Compose

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Docker, Aleph, and Making Datasets Searchable 135

Fill out the form with your WordPress site’s title, a username, and a
password, and then explore your new WordPress site.

To open a shell and run commands in an active container with Docker
Compose, you use the docker-compose exec container_name command syntax. For
example, this is how you’d get a shell in the wordpress container:

docker-compose exec wordpress bash

While docker-compose run starts a new container, docker-compose exec runs
a command in an active container—a little like opening a new terminal
window inside a running container.

Exit the shell when you’re done. Back in the terminal running docker-
compose up, press ctrl-C to shut down the containers. Now you’re ready to
use your new Docker and Docker Compose skills to make your datasets
searchable with Aleph.

Introducing Aleph
Truth cannot penetrate a closed mind. If all places in the universe are in the Aleph,

then all stars, all lamps, all sources of light are in it, too.
—Jorge Luis Borges, “The Aleph”

The Organized Crime and Corruption Reporting Project (OCCRP),
founded in 2006, has a history of publishing high-profile investigations into
corruption, often leading to criminal investigations, arrests, and seizure of
stolen funds. In partnership with dozens of newsrooms around the world, the
group relies on large datasets for its investigations. For example, OCCRP,
along with the International Consortium of Investigative Journalists (ICIJ),
was part of a coalition investigating the Panama Papers, an offshore tax
haven dataset that led to over 40 stories about corruption. One of those
stories implicated a close friend of Vladimir Putin who had embezzled
$230 million from Russian taxpayers. Because OCCRP deals with so much
data, it developed Aleph as an investigation tool to make it easier to track
white collar crime, follow the money, and cross-reference various datasets.

OCCRP runs an Aleph server available to the public at https://data​.occrp​
.org. This server includes over 250 public datasets with documents from
139 different countries and territories. While there’s some overlap with
datasets published by DDoSecrets, most public datasets in OCCRP’s Aleph
server are different. Many of them are regularly updated datasets of public
records: registries of company ownership around the world, lists of people
and organizations facing international sanctions, and court records. These
datasets might not seem exciting on their own, but when your investigation
leads you to a specific person or company, they can be crucial for helping
you fill in the gaps. OCCRP’s Aleph server also contains many more private
datasets, which are available to journalists who apply for access.

Take some time to check out OCCRP’s Aleph server, explore which
public datasets are available, and make some searches. For example, if you

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

136 Chapter 5

search for Rudy Giuliani (Donald Trump’s confidant and lawyer, and the
former mayor of New York City) and filter by the US Federal Courts Archive
dataset, you’ll find a series of court documents that reference Giuliani.

You can upload your own datasets to OCCRP’s Aleph server only if
OCCRP makes an account for you. Even if you do have an account, you
won’t be able to upload medium- or high-security datasets without sharing
this data with a third party: OCCRP. That’s why I help run a private Aleph
server for The Intercept. You won’t use OCCRP’s public Aleph server fur-
ther in this book. Instead, in Exercise 5-4, you’ll run a small Aleph server
and bring up Aleph containers on your own laptop.

Exercise 5-4: Run Aleph Locally in Linux Containers
This exercise prepares you to run your own server directly on your com-
puter with Docker Compose. Instead of accessing Aleph at https://data​.occrp​
.org, you’ll bring up your Aleph containers and access your private server at
http://127​.0​.0​.1:8080. You’ll use Docker Compose to run the many different
services Aleph requires on your computer with a single command.

Make a new folder called aleph to use for this exercise and the next.
Save a copy of docker-compose.yml and aleph.env.tmpl from Aleph’s git repo,
located at https://github​.com​/alephdata​/aleph​/, into the aleph folder.

The docker-compose.yml file describes the nine containers that Aleph
requires and all of their configuration, including the volumes that will save
the indexed versions of your datasets. One of these containers, called shell,
includes a bind mount that maps your home folder (~) on your host filesys-
tem to /host in the container:

- "~:/host"

In your copy of docker-compose.yml, delete this line or comment it out by
prepending a hash mark (#) to make Aleph run faster and avoid giving the
container access to your home folder.

Now rename aleph.env.tmpl to aleph.env, and open that file in your text
editor. This file contains the settings for your Aleph instance on different
lines, in the format SETTING_NAME=setting_value, which you’ll need to modify
in a few ways.

First, run the following command to generate a random value for ALEPH_
SECRET_KEY (Windows users, run this in your Ubuntu terminal):

openssl rand -hex 24

Since you’re running Aleph on your computer instead of setting it up
on a server for others to use, change ALEPH_SINGLE_USER in aleph.env to true
instead of false, which allows you to use Aleph without having to create an
admin user for yourself. Save the file.

Aleph relies on many different services to run, including three data-
bases: PostgreSQL, Redis, and Elasticsearch. Elasticsearch is designed to

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Docker, Aleph, and Making Datasets Searchable 137

search large amounts of data for text strings. For it to operate quickly, it
needs to hold lots of data in memory. Linux’s default memory management
setting vm.max_map_count is far too low for Elasticsearch to work properly. If
you’re using Linux or Windows with WSL, run the following command to
increase the value of vm.max_map_count:

sudo sysctl -w vm.max_map_count=262144

If you’re using macOS, run sysctl -w vm.max_map_count=262144 inside of
your Linux VM managed by Docker Desktop. Then run the following com-
mand to start a shell directly in your Linux VM:

docker run -it --rm --privileged --pid=host alpine:edge nsenter -t 1 -m -u -n -i sh

Once you’re in this shell, run this command:

sysctl -w vm.max_map_count=262144

Run exit to exit the Linux VM shell. Each time you restart Docker
Desktop, this change is undone, so you’ll need to run these commands again
to continue using Elasticsearch. (Refer to the “Increasing Elasticsearch
Memory in Docker Desktop” box to speed up this process in the future.)

INCR E A SING EL A S T ICSE A RCH MEMORY

IN DOCKER DESK TOP

If you’re using macOS, you’ll need to change settings before starting the Aleph
containers. Instead of referring to this chapter to remember what commands to
run, store them as the following shell script (which you can also find at https://
github​.com​/micahflee​/hacks​-leaks​-and​-revelations​/blob​/main​/chapter​-5​/aleph​/fix​
-es​-memory​.sh):

#!/bin/bash
docker run -it --rm --privileged --pid=host alpine:edge \
 nsenter -t 1 -m -u -n -i \
 sysctl -w vm.max_map_count=262144

Save a copy of this script in the same folder as your docker-compose.yml file for
Aleph, and run chmod +x fix-es-memory.sh to make sure it’s executable. You
can now run the script before starting the Aleph containers with just these two
commands:

./fix-es-memory.sh
docker-compose up

You’ll need to run this script only once each time you restart Docker Desktop.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

138 Chapter 5

Finally, for all operating systems, run the following command to start
Aleph:

docker-compose up

The first time you run this command, you’ll download a few gigabytes
of container images. Text will scroll past in the terminal while Aleph boots
up; wait for it to stop.

You also need to run an upgrade command the first time you use Aleph
and whenever you upgrade your version of it. Once Aleph finishes booting,
open a second terminal, change to the exercises folder, and run:

docker-compose run --rm shell aleph upgrade

This command initializes the databases that Aleph uses by running the
command aleph upgrade inside the shell container. Wait for this command to
completely finish; you’ll know it’s done when the program stops displaying
output and you end up back at your terminal’s command prompt.

N O T E 	 For more detailed documentation for Aleph, see https://docs​.alephdata​.org.

Using Aleph’s Web and CLI Interfaces
Now that you have a local Aleph server, you can explore its two different
interfaces: the web interface, which you’ll use to investigate datasets, and
the CLI interface, which you’ll use to index new datasets or administer your
Aleph server.

With your Aleph containers up, open http://127​.0​.0​.1:8080​/ in a browser
to see the web interface. For example, Figure 5-3 shows Aleph running in
Linux containers on my Mac.

Figure 5-3: Aleph hosted in Docker containers

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Docker, Aleph, and Making Datasets Searchable 139

You’ll use this interface to search data you upload into Aleph. The
search bar at the top allows you to search every dataset you’ve indexed in
your Aleph server at once, and the slider icon just to the right of the search
box lets you perform advanced searches.

The Datasets and Investigations buttons at the top show you the data
sets in Aleph; for now, both of those pages will be empty. In Aleph, datasets
and investigations are both collections of documents, with different user
interfaces for exploring each. A dataset should be static, while an investiga-
tion is a collection of documents that you might still be adding to.

After performing a search in Aleph, you can optionally save your search
query as an alert. This feature is useful only on servers that have multiple
users and are configured to send email. In those cases, the server automati-
cally searches any new data indexed into the server for all of the user’s saved
alerts. If it gets a hit, it sends an email to the user. In the example, you set
ALEPH_SINGLE_USER to true, so that feature doesn’t apply.

In addition to the web-based user interface you just explored, designed
for journalists and researchers, Aleph has a CLI interface designed for
running the Aleph server itself. You must use the command line interface
for administrative tasks like creating Aleph users (if you aren’t using the
ALEPH_SINGLE_USER setting in future projects) or indexing folders of data,
which you’ll do later in this chapter.

To use the CLI interface, run bash inside the container called shell to
start an Aleph shell like so:

docker-compose run --rm shell bash

When you first opened a shell in a container using Docker Compose,
you used docker-compose exec, which executes a command in an already
running container. Here, docker-compose run runs a new container in which
to execute your command. The --rm argument tells Docker to remove the
container as soon as your command finishes running. In this case, your
command is bash, so you can run exit in the bash shell to remove this tem-
porary container.

You can now use the aleph command. Run aleph --help to see a list of all of
the commands that Aleph supports. To learn more about a specific command,
run --help on it. For example, to learn more about the crawldir command
(which we’ll discuss in Exercise 5-5), you’d run aleph crawldir --help.

Run exit to quit the Aleph shell. Back in your other terminal window,
press ctrl-C to shut down all the Aleph containers when you’re not using
them. When you run docker-compose up to start the containers again, all the
data in Aleph—including any datasets that you’ve added to it—will still be
there, because that data is stored in Docker volumes, making it persistent.

Indexing Data in Aleph
Adding data to Aleph is called indexing. By loading and processing every file
in a dataset, Aleph allows you to extract useful information, which you can
browse and search via its web-based user interface.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

140 Chapter 5

Indexing works differently for different types of files:

Office documents and PDFs ​  ​Aleph extracts all of the searchable text
from these documents and attempts to find anything that looks like a
person’s name, a company name, or other types of data that Aleph calls
entities. It also extracts any metadata it can find.

Email messages ​  ​Aleph again extracts searchable text and entities.
This time, the entities it finds are likely to include both names and
email addresses, which it determines by checking the sender and recipi-
ent of each email. It also extracts email attachments and indexes those
individually.

Compressed files, such as ZIP files ​  ​Aleph decompresses these files,
then indexes each file inside them individually, which can become as
recursive as necessary. For example, a ZIP file might contain an email
file with an attachment that contains another ZIP file, and so on.

Indexing datasets can take hours, days, or weeks, depending on the
size of the dataset and the computational resources available to your Aleph
server. In Exercise 5-5, you’ll index a single BlueLeaks folder called icefishx.

Exercise 5-5: Index a BlueLeaks Folder in Aleph
The icefishx folder contains data from an American police intelligence
network called Intelligence Communications Enterprise for Information
Sharing and Exchange (ICEFISHX), a partnership between law enforce-
ment in Minnesota, North Dakota, and South Dakota. I’ve selected this data
because it covers the state where Minneapolis cop Derek Chauvin murdered
George Floyd, sparking the 2020 Black Lives Matter uprising. Searching
this dataset for George Floyd might reveal some interesting internal docs
about police violence or the protests that it triggered.

Mount Your Datasets into the Aleph Shell
If you don’t already have Aleph running, change to your aleph folder and
enter the following command:

docker-compose up

Wait for Aleph to boot up.
In a separate terminal, start an Aleph shell. This time, however, bind-

mount your datasets USB disk into the container, using the following com-
mand, substituting the correct path for your USB disk:

docker-compose run --rm -v /Volumes/datasets:/datasets:ro shell bash

The arguments in this command are similar to the --mount argument
you used earlier to mount a volume with the docker command. The -v argu-
ment (short for --volume) is followed by the colon-separated list /Volumes/

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Docker, Aleph, and Making Datasets Searchable 141

datasets:/datasets:ro containing three parts: the absolute path to the folder
on the host operating system (on my computer, this is /Volumes/datasets), the
absolute path to the folder in the container (/datasets), and the ro option.
Short for read-only, ro gives the container permission to access the files in
the bind mount but not to change any of them or create new files.

When you run this command, make sure to use the correct path for
your USB disk. In macOS, the path is /Volumes/datasets or similar; in Linux,
it’s /media/micah/datasets or similar; and in Windows with WSL, it’s /mnt/d or
similar. If you’re using Windows with PowerShell, mount the D: drive into
the container at the path /datasets with this command:

docker-compose run --rm -v D:/datasets:ro shell bash

Altogether, this command runs a new shell container and executes
the bash command inside of it. Your datasets folder on your host operating
system becomes accessible as the folder /datasets in the container, and it’s
mounted in read-only mode, preventing the container from modifying any-
thing on the USB disk.

Now that you have access to your datasets within the Aleph shell, you’ll
index the icefishx data.

Index the icefishx Folder
To index a dataset, you use the aleph crawldir command. Aleph’s use of the
term crawl means to open the folder and index each file in it, then open
each subfolder it finds and index each file in that, and so on, until every
thing in the original folder has been indexed.

Run the following command to start indexing the icefishx folder:

aleph crawldir -l eng /datasets/BlueLeaks-extracted/icefishx

This command tells Aleph to index data in the /datasets/BlueLeaks-
extracted/icefishx folder in the container (which is actually /Volumes/datasets/
BlueLeaks-extracted/icefishx on my host operating system). The -l option
(short for --language) helps you to use OCR on documents. Because differ
ent languages use different alphabets and words, using -l tells the OCR
software what language you’re dealing with—in this case, English (eng).

Aleph should begin to work its way through each of the 19,992 files in
the icefishx folder, totaling over 2GB. The output should display the file-
name of each file, which is added to a list of files to crawl. Even before the
aleph crawldir command finishes, Aleph begins to index each file.

Switch to your other terminal window running Docker Compose and
watch the output as it indexes and performs OCR on each file.

N O T E 	 You can use OCR for documents in languages other than English, too. To index
a Russian dataset, for example, you’d use -l rus so that Aleph recognizes Russian
words in the Cyrillic alphabet. Under the hood, Aleph uses software called Tesseract
to do the OCR; for a list of valid language codes in Tesseract’s documentation, see
https://tesseract​-ocr​.github​.io​/tessdoc​/Data​-Files​-in​-different​-versions​.html.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

142 Chapter 5

The icefishx folder took about an hour and a half to index on my Mac. It
also used about 17GB worth of Docker volumes. Indexing larger quantities
of data could take days and require much more disk space.

Check Indexing Status
After aleph crawldir has finished running, while you’re waiting for the
indexing to complete, try a few more Aleph commands to query your Aleph
server and check the indexing status.

First, run the following command to see a list of all of the datasets and
investigations (known together as collections) in your Aleph server:

root@26430936533f:/aleph# aleph collections
Foreign ID ID Label
--- ---- ------------------
28c82cbe1ba247e6a16e3fb4b7d50a67 1 Test Investigation
directory:datasets-blueleaks-extracted-icefishx 2 icefishx

The Foreign ID field is the unique identifier for each dataset, and the
Label field is the human-readable name for the dataset displayed in the
Aleph web application. I used the Aleph web interface to create a new inves-
tigation called Test Investigation before I started indexing ICEFISHX, so
I have two collections. When you use the web interface to make investiga-
tions, they get assigned completely random foreign IDs. When you use aleph
crawldir to create them, the Foreign ID is based on the filesystem path that
you’re indexing; alternatively, you can use the -f foreign_id arguments to
specify your own if you like.

Next, run the following command while indexing ICEFISHX to check
the status of the indexing:

root@26430936533f:/aleph# aleph status
 Collection Job Stage Pending Running Finished
------------ -------------------------------- ------- --------- --------- ----------
 2 19263 4 3387
 2 a4bb59c4e23b4b96b14d747ff78c69e2 ingest 19239 3 1145
 2 a4bb59c4e23b4b96b14d747ff78c69e2 analyze 24 1 1123
 2 a4bb59c4e23b4b96b14d747ff78c69e2 index 0 0 1119

This command displays a table of data that tells you the number of
pending, running, and finished tasks for each collection that’s indexing,
split into analyze, ingest, and index phases. The Collection column shows the
ID of the collection—if you look back at the output of aleph collections,
the ID of the ICEFISHX dataset is 2. When I ran aleph status, based on the
total pending and finished numbers, indexing was roughly 15 percent com-
plete (though this might be misleading; for example, one of those pending
files could be a ZIP file containing another 1,000 files).

If Aleph breaks in the middle of indexing a dataset, you can recover your
progress. If you’re seeing a lot of error messages in the Docker Compose
logs or in the Aleph web interface, the simplest solution is to restart the

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Docker, Aleph, and Making Datasets Searchable 143

containers. In your Docker Compose terminal window, you’d press ctrl-C
to quit all of the containers, and then run docker-compose up to start them
again. After a few minutes, your containers should finish booting and the
indexing should commence where it left off. If something failed before
your aleph crawldir command finished running in the Aleph shell, you
can run aleph crawldir again. This will reindex the entire dataset, but it
should be quicker the second time around, because it won’t redo time-
consuming tasks like performing OCR on documents that have already
been processed.

You can also check the indexing status via the Aleph web interface.
In your browser, navigate to the Investigations page. From there, click the
ICEFISHX investigation, and you should see a progress bar showing you
how the indexing is doing. Figure 5-4 shows the indexing status from inside
the web application.

Figure 5-4: The ICEFISHX dataset in the process of indexing

While you’re here, click the gear icon in the top-right corner of the
screen and go to Settings. From there you can change the label, category,
and summary of this dataset. For example, you can change the label
from icefishx to something more descriptive, like BlueLeaks: Intelligence
Communications Enterprise For Information Sharing and Exchange (ICEFISHX).
The default category is Investigations. If you change it to anything else, like
Leaks, Court Archives, or Other Material, ICEFISHX will appear under
Datasets instead of Investigations. For now, stick with the Investigations
category.

Sit back and wait for Aleph to finish indexing the ICEFISHX dataset
before moving on to the next section, where you’ll begin to use Aleph to
explore the data.

N O T E 	 It’s possible to start looking through datasets in Aleph before indexing is complete, but
it’s best to wait for the full index to finish before digging too deep. If you don’t, you’ll
search only the data that’s been indexed to that point, so your searches might miss
important documents.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

144 Chapter 5

Explore BlueLeaks with Aleph
Once you’ve finished indexing the icefishx folder, navigate to the ICEFISHX
dataset you’ve just imported in the Aleph web interface. It should be listed
under the Investigations link at the top of the page. The Documents link in
the left sidebar lets you manually browse the files in the dataset and open
various documents, but where Aleph really shines is its search engine.

When you enter a term in the search field, Aleph searches every dataset
you’ve imported. You can filter your results in a variety of ways, using the
left sidebar: for example, you can filter to a specific dataset, a specific date
range, or even to documents that mention specific email addresses, phone
numbers, or names. Once you’ve filtered the search results, you can click on
documents to preview them.

Figure 5-5 shows some of the 335 search results for the term George
Floyd in the ICEFISHX dataset.

Figure 5-5: Aleph’s search interface with results returned for George Floyd

The document selected in Figure 5-5, classified as U//LES
(Unclassified, Law Enforcement Sensitive), was created by the Minnesota
Fusion Center on May 27, 2020. It warns of an increase in threatening activ-
ity toward law enforcement officers in response to George Floyd’s murder
in police custody two days earlier. According to the document, two of the
four officers involved had been doxed, and people protested outside one

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Docker, Aleph, and Making Datasets Searchable 145

of their homes. Thousands of people began marching in the streets, and
there were “increased discussions on White Supremacist Extremist (WSE)
online forums.” The document recommends that police “avoid wearing
organizationally-affiliated clothing outside of work settings,” “reduce social
media footprint and use an alias,” and consider “varying travel patterns to
avoid surveillance.”

Aleph makes it easy to find connections between documents. If you
click Expand in the top left of the selected document, you should end up at
that document’s detail page. This page shows the document’s metadata on
the left, as well as any names or email addresses it finds that are also men-
tioned in other documents. If you click on one of those—for example, on
someone’s name or email—you should be taken to search results that list all
of the documents mentioning that person.

When you’re done exploring icefishx, try indexing additional folders in
BlueLeaks or even the entire BlueLeaks-extracted folder.

Additional Aleph Features
There’s a lot more to Aleph than what we’ve covered so far. This section
will introduce a few of the other cool things it can do, which you’ll find use-
ful in the future as you continue to analyze hacked and leaked datasets.
As you’ve seen, Aleph is great at indexing folders full of a wide variety of
documents, but it also supports importing structured data—data that fol-
lows a consistent and well-defined data model. Entities in Aleph, which I
mentioned earlier, are an example of structured data. Specifically, Aleph
uses a data model called FollowTheMoney, which contains types of entities
like Person, Company, Organization, or Address. Learn more about the
FollowTheMoney data model, and how to import these entities directly into
Aleph, at https://followthemoney​.tech​/.

When you index a dataset in Aleph, it automatically extracts its best
guess at entities—data like the names of people and companies, and phone
numbers and addresses—but its guesses are far from perfect. Aleph also
allows you to manually create and edit entities in more detail. You can add
a list of people to an investigation, for example, providing not just their
names but also their contact information and any relationships they have to
other entities like their employers. When you’re viewing an entity in Aleph’s
web interface, it shows you all of the data about that entity and links to all of
its related entities.

You can also generate entities from data in spreadsheets like CSV or
Excel files. For example, the ICEFISHX dataset has a spreadsheet called
Registrations.csv that lists the name, rank, agency, home address, email
address, phone number, supervisor, and other information about all 6,000
people who had accounts on the site. From the detail page of this file in the
Aleph web interface, you can click Generate Entities to define exactly how
this data should map to entities, and even how these entities should relate
to other entities. This could help you build an organization chart of who
reports to whom, for example.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

146 Chapter 5

In addition to the aleph crawldir command you used in Exercise 5-5,
there are other ways to index data into Aleph. First, you can use a different
CLI program called alephclient, which allows you to index data and push it
into a remote Aleph server over the internet using Aleph’s application pro-
gramming interface (API), without opening an Aleph shell. APIs are designed
to allow software, rather than humans, to communicate. Every user on an
Aleph server (or, if it’s a server with users disabled, the whole server) has
an API secret access key, a credential that allows software to add data to,
or otherwise interact with, the Aleph server. You can pass this API key into
alephclient as an argument to index large datasets on an Aleph server that
someone else runs. The command to install alephclient is python3 -m pip
install alephclient.

Alternatively, you can create a new investigation directly in the web
interface by clicking Investigations at the top, then New Investigation. You’ll
be prompted to give your investigation a title and an optional summary and
language. You can upload files to your investigation directly from your web
browser. This is useful if you want to upload a spreadsheet of names and
email address and cross-reference it with the rest of the data in your Aleph
server. For uploading big datasets like BlueLeaks, however, using the Aleph
shell or alephclient is easier and less error-prone.

One of Aleph’s most powerful features is its ability to search multiple
datasets at once. For example, you could index the BlueLeaks dataset, the
Oath Keepers dataset you downloaded in Chapter 4, and several others
to search them all for someone’s name, email address, or phone number.
Since the BlueLeaks dataset is full of PII of law enforcement officers and the
Oath Keepers militia is known to recruit retired police, you could check if
any Oath Keepers members or donors are mentioned in BlueLeaks. (I recom-
mend waiting to try this until you further explore the Oath Keepers dataset
in Chapter 6.)

Aleph can also cross-reference the entities from one dataset with
entities in all of the other datasets that have been indexed in a server.
Navigating to an investigation and clicking Cross-Reference in the left
sidebar allows you to compare each entity in the investigation with entities
in every other dataset or investigation. For example, you could upload a
spreadsheet of people you’re investigating—say, everyone who works at the
White House—into an investigation, use the Generate Entities feature to
convert it into a detailed list of Person entities, and then cross-reference this
list with all of the other datasets you’ve indexed to see if any White House
employees show up in them.

Spend some time experimenting with Aleph and getting to know its
features on your own. When DDoSecrets publishes a dataset that you’re
interested in, try downloading it and indexing it in Aleph. Explore search-
ing multiple datasets at once as well as using the cross-referencing feature.
Aleph’s documentation is available at https://docs​.alephdata​.org.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Docker, Aleph, and Making Datasets Searchable 147

Dedicated Aleph Servers
Running Aleph in containers on your computer works well if you want
to search just a few small datasets yourself. However, to index a large
amount of data (such as all of BlueLeaks) that will stretch your laptop’s
computational resources, or to work with others on the same datasets,
consider setting up a dedicated Aleph server instead. Full instructions on
doing that are outside the scope of this book, but this section provides an
introduction.

In Chapter 4, you learned how to create servers in the cloud; earlier
in this chapter, you learned how to set up your own Aleph server. By com-
bining those skills, you should be able to set up Aleph running in Docker
containers on a cloud server. However, you’ll also need to decide how to
secure the server and make sure it stays updated. How will you manage
its users, and how will you restrict access to the server? How will you know
and what will you do if someone hacks it? To run an Aleph server for your
organization, I recommend that you bring in a professional system adminis-
trator or DevOps engineer to set it up and maintain it over time.

As you set up your server, consider the security levels of the datasets
on which you plan to use Aleph. For low- to medium-security datasets, you
can host Aleph in a cloud server, which allows you to temporarily give your
server more RAM or processing power to index a dataset more quickly. For
medium- to high-security datasets, host Aleph on physical hardware, like
a server in an office or in a server closet in a data center. Decide whether
to require people to come into the office to use Aleph or to configure it
so that they can access it over the internet. If you choose the latter, you’ll
need to secure your Aleph server and the data it contains. For the highest-
security datasets, you’ll have to download Linux containers on a computer
with internet access, export the datasets, and import them on an air-
gapped server.

IN T EL L A A ND DATA SH A R E

You can also use software besides Aleph to help you make datasets search-
able. As mentioned in Chapter 1, the first leaked dataset I worked on was
the Snowden Archive. At that time, Aleph didn’t exist. To index and search the
Snowden Archive, we used proprietary software called Intella, installed on air-
gapped Windows laptops. Intella, developed by Vound Software, is investiga-
tion software that was designed for law firms and law enforcement to explore
large datasets, like email dumps or the contents of seized computers.

The Intercept used to have a license for Intella Connect, a web-based ver-
sion of Intella. This software has a few advantages over Aleph: it rarely has
technical issues, it comes with tech support, and it allows you to index and
search large datasets faster. Like Aleph, Intella Connect supports collaborating
with multiple users. After Russia invaded Ukraine in 2022 and hackers started

(continued)

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

148 Chapter 5

dumping terabytes of data from Russian companies online, I began download-
ing and indexing all of these datasets into Intella Connect. I quickly found that
this project was far too complicated for The Intercept alone to handle, espe-
cially considering that all of the data was in Russian. I helped spearhead a proj
ect to invite outside journalists who spoke Russian or were interested in these
datasets to use our Intella service. This project grew into a major international
collaboration with OCCRP and dozens of reporters around the world, including
both Russian and Ukrainian journalists, to research the Russian datasets. The
project’s collaborators used both Intella Connect and OCCRP’s Aleph server,
and we organized our findings on an internal wiki.

The Intercept has now decided to stop paying for Intella Connect and
uses Aleph exclusively instead. Intella has some disadvantages: it doesn’t have
Aleph’s ability to cross-reference between datasets and map out relationships
between entities, it’s quite expensive, and it requires Windows.

Another open source tool for indexing datasets is Datashare, developed
by ICIJ, the group that worked in a coalition on the Panama Papers dataset
along with OCCRP. Datashare is similar to Aleph but is designed for a single
user to run it locally on their computer, rather than on a server. Like Aleph,
Datashare runs inside of Docker containers. While it’s a very promising project,
I ran into issues trying to install it at the time of writing. Because it’s open source
and actively developed, however, I expect this will improve over time. You can
read more about Datashare at https://datashare​.icij​.org and https://github​.com​
/ICIJ​/datashare.

Summary
In this chapter, you’ve learned how to run software in Linux containers
using Docker, then applied those skills to run Aleph on your computer and
index the icefishx folder from BlueLeaks, making it searchable. A search for
the keyword George Floyd uncovered interesting law enforcement documents
about the 2020 racial justice protests that you couldn’t have uncovered with
just grep. You’ve also learned about some Aleph features you can explore
on your own, the possibility of running a dedicated Aleph server instead of
running it on your laptop, and dataset-indexing tools other than Aleph.

You’ll revisit Docker in Chapter 10, when you learn to use BlueLeaks
Explorer, and in Chapter 12, when you learn about SQL databases. In the
following chapter, you’ll learn the tools and techniques required to dig
through one of the most prevalent forms of data leaks: email dumps.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

After Russia invaded Ukraine in February 2022, hack-
ers started flooding DDoSecrets with stolen data from
Russian organizations. The data came in many formats,
but the bulk of it—several terabytes’ worth—was email.
The entire inboxes of government agencies, oil and gas
companies, and investment firms were laid bare.

Email leaks are among the most common types of data leaks, and
they can have serious consequences. In the 2016 US presidential election
between Hillary Clinton and Donald Trump, leaked email messages from
the DNC and Clinton campaign chair John Podesta—both hacked by the
Russian government—played a major role in Trump’s election. The 2020
US presidential election between Trump and Joe Biden also involved email
leaks, in this case stolen from the laptop of Biden’s son Hunter.

With so many messages to sort through in email leaks, though, find-
ing a place to start can be overwhelming. Depending on how the email was
obtained and what software was running on the hacked server, the leaked

6
R E A D I N G O T H E R P E O P L E ’ S

E M A I L

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

150 Chapter 6

data could be in any of several different formats, and it may not be clear
how to access the messages it contains.

In this chapter, you’ll learn about common formats for leaked email,
the benefits and shortcomings of indexing and searching email with Aleph,
and how to import email datasets into Thunderbird and Microsoft Outlook.
You’ll sift through leaked email from the Oath Keepers dataset you down-
loaded in Chapter 4, in addition to datasets from Australian offshore deten-
tion centers and the conservative US think tank the Heritage Foundation.
We’ll begin by taking a look at the standard composition of an email
message.

The Email Protocol and Message Structure
A protocol is a shared language that software developers agree upon to make
their code interoperate. The email protocol we use today was first imple-
mented in the early 1980s, got a major revamp in 1995, and hasn’t changed
much since. Unlike modern centralized messaging systems (Facebook
Messenger, for example), this protocol allows anyone to run an email server
with their own software. For example, Google runs a server at gmail​.com,
the Russian search engine Yandex runs one at mail​.yandex​.com, and the
Swiss company Proton runs one at proton.me. These servers are powered by
different software but communicate using the same protocol, meaning they
can all send messages to one another. Internet standards, specifications for
how certain types of software should behave, ensure that all email software
communicates with a shared protocol and a shared message format.

Because the email message format is an internet standard, all messages
have a similar structure. To see what this format looks like, open any email
and choose Show Original or View Source. Each message is a text file with
two sections: the headers and body. The headers contain an email’s meta-
data in Header-Field: Value format, while the body contains the main text of
the message.

The following headers are included in nearly every email message:

Subject: What's up?
From: Alice <alice@example​.com>
To: Bob <bob@example​.com>

There are many more headers than these; your email software shows
only a few of them. When email servers send, forward, or receive mes-
sages, they add headers describing these actions. For example, the com-
mon header DKIM-Signature allows you to verify, using cryptography, that
an email actually came from the server that it claims sent it. Messages also
typically include a Content-Type header, which describes the format of the
body text.

After the headers, the email includes a blank line followed by the body.
The body is typically in plaintext (text with no formatting), HTML, or
Multipurpose Internet Mail Extensions (MIME) format. In MIME email,

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Reading Other People’s Email 151

the most common format, the body is split into parts for text, HTML com-
ponents, and email attachments.

Though email messages are text files, you can send binary files like
PNGs or ZIPs as attachments. Your email client converts the binary file into
text using Base64 encoding and includes that encoded attachment in the
message. Just as you can convert any decimal number (that is, one conveyed
using 10 digits) into a binary number (conveyed using 2 digits) and back,
you can convert any binary data into Base64 data (conveyed using 64 char-
acters). For example, here’s how a PNG image containing a 1 × 1 trans-
parent pixel looks with each of its 86 bytes of data represented as binary
digits:

10001001 01010000 01001110 01000111 00001101 00001010 00011010 00001010 00000000 00000000
00000000 00001101 01001001 01001000 01000100 01010010 00000000 00000000 00000000 00000001
00000000 00000000 00000000 00000001 00001000 00000110 00000000 00000000 00000000 00011111
00010101 11000100 10001001 00000000 00000000 00000000 00000110 01100010 01001011 01000111
01000100 00000000 11111111 00000000 11111111 00000000 11111111 10100000 10111101 10100111
10010011 00000000 00000000 00000000 00001011 01001001 01000100 01000001 01010100 00001000
11010111 01100011 01100000 00000000 00000010 00000000 00000000 00000101 00000000 00000001
11100010 00100110 00000101 10011011 00000000 00000000 00000000 00000000 01001001 01000101
01001110 01000100 10101110 01000010 01100000 10000010

And here’s the Base64-encoded version of the same binary file:

iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAABmJLR0QA/wD/AP+gvaeTAAAAC0lE
QVQI12NgAAIAAAUAAeImBZsAAAAASUVORK5CYII=

Base64-encoded data looks like a block of seemingly random text
that includes capital letters, lowercase letters, numbers, plus signs (+), and
forward slashes (/), and sometimes ends with equal signs (=). The Base64-
encoded version of some data conveys the same information as the decoded
version, but it can be included more compactly in a text file, like an email.
When the recipient of the email loads it, their email client will convert it
from Base64 text back into a binary file. Sometimes plaintext or HTML email
is encoded in Base64 as well (for example, hello world is aGVsbG8gd29ybGQ=
in Base64). Although email messages are text files, you can’t rely on grep
to search them, because much of the content you’re hunting for might be
Base64-encoded.

Keeping in mind those basics, let’s turn now to the specific formats
typically encountered in email leaks.

File Formats for Email Dumps
The most common file formats for email dumps, or collections of email mes-
sages, are EML files, MBOX files, and PST Outlook data files. You’ll down-
load email in each format in the upcoming exercise.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

152 Chapter 6

EML Files
The simplest type of email dump is a folder full of EML files, the standard
email message format. An EML file is a text file with the extension .eml that
contains the raw email message—the headers followed by the body.

When you download an email from your personal account, it will be
in EML format. If you have a Gmail account, for example, open a message,
click the More menu (the three dots icon) in the upper-right corner, and
choose Download Message. Other email clients should likewise allow you
to download individual messages in EML format. You can sometimes read
an EML file in a text editor, but you’ll frequently be stymied by the Base64-
encoded parts, so it’s more useful to open it in an email program like
Thunderbird, Outlook, or the Mail app on macOS.

You can forward an email inline or as an attachment. Most email sys-
tems default to forwarding inline, copying the text of the body of the email
you’re forwarding into the body of the email you’re writing. When you
instead forward as an attachment, you attach the raw EML file to the email
you’re writing. From a Gmail inbox, for example, select the box next to an
email message, click the More menu, and choose Forward as Attachment.
Other email clients should allow you to forward email as attachments as
well. EML files include information that isn’t included in inline forwarded
email, such as the original email headers.

EML files don’t include information on how the email was organized
in the user’s inbox, such as the folder where the email was stored. For this
reason, people who leak email dumps in EML format often organize the
files into folders, with each folder representing a different user’s inbox.
Sometimes they organize the files from each inbox into subfolders, too.

In Exercise 6-1, you’ll download email messages in EML format from
the Nauru Police Force dataset.

MBOX Files
In an MBOX email dump, each file is a collection of many email messages,
generally representing a full folder of email. MBOX files often have the file
extension .mbox, but sometimes they have no file extension at all.

Like EML files, MBOX files are text files that are viewable in a text edi-
tor but not very human-readable because of the Base64 encoding. However,
you can’t just open an MBOX file in an email client to read the email like
you can with an EML file. Instead, you’ll need to import the file.

The Oath Keepers dataset is a series of MBOX files, one for each
hacked inbox. I’ll give more detail on the structure of this dataset in
Exercise 6-1.

PST Outlook Data Files
Email dumps may also come in the form of PST files, a proprietary for-
mat that represents a Microsoft Outlook inbox with the .pst file exten-
sion. Microsoft’s email server is called Microsoft Exchange. Whenever an

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Reading Other People’s Email 153

Outlook user wants to create a backup of their email, or when an Exchange
server is hacked, the data is downloaded in PST format.

A PST file represents a full email inbox, complete with a hierarchy
of folders and their contents. These files can get big. For example, in
April 2022 hackers made off with 786GB of data from the All-Russia State
Television and Broadcasting Company (VGTRK), the largest state-owned
media company in Russia, and leaked it to DDoSecrets. This dataset
includes 252 PST files, each representing a different email address. One
file, intercoord@vgtrk.ru.pst, is 48GB alone.

In Exercise 6-1 you’ll download a 1GB PST file containing email from
the Heritage Foundation.

Exercise 6-1: Download Email Dumps from Three Datasets
In this exercise, you’ll work with three different datasets from the Nauru
Police Force, the Oath Keepers, and the Heritage Foundation. You should
already have the Oath Keepers dataset from Chapter 4, so you’ll down-
load the other two next. You’ll also learn more about their contents and
structure.

The Nauru Police Force Dataset
Nauru is a tiny island in the Pacific with a population of about 10,000.
While technically it’s an independent country, it hosts abuse-ridden off-
shore detention centers that the Australian government uses to hold immi-
grants and asylum seekers. The Nauru Police Force dataset (https://ddosecrets​
.com​/wiki​/Nauru​_Police​_Force) is a 54GB torrent full of 127 ZIP files, each
a copy of all of the email from a specific email address at npf​.gov​.nr, the
domain for the Nauru Police Force. Inside each ZIP file is a collection of
folders containing EML files. This dataset contains over 285,000 messages.

For this chapter, you’ll be working with the file iven-notte.zip, which
is about 2.9GB. Download the file directly from https://data​.ddosecrets​.com​
/Nauru%20Police%20Force​/npf​.gov​.nr​/iven​-notte​.zip. Once you’ve done so, save it
into a folder called Nauru Police Force on your datasets USB disk and unzip
it. You should end up with a folder called iven-notte containing the subfolders
calendar, contacts, deleteditems, drafts, inbox, and more. Each of these subfold-
ers is full of EML files.

The Oath Keepers Dataset
The public part of the Oath Keepers dataset is a 3.9GB torrent of MBOX
files taken from the server that hosted email for the oathkeepers​.org
domain. This dataset has a folder called Oath Keepers.sbd, containing sub-
folders called ak, al, alb, ar, Archive, az, and many others, each of which is
an MBOX file (without the .mbox file extension) that contains several email
messages. Each US state chapter of the Oath Keepers militia has its own
inbox, so, for example, you can find the Arizona chapter’s email in the
MBOX file az. There are a few other MBOX files, including volunteers and

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

154 Chapter 6

stewart.rhodes (Stewart Rhodes is the founder of the militia, and was con-
victed of seditious conspiracy and sentenced to 18 years in prison for his
group’s role in the January 6, 2021, attack on the US Capitol). DDoSecrets
distributes an additional part of the dataset, which contains donor and
membership records, only to journalists and researchers who request
access, because it contains so much PII.

If you didn’t already download the Oath Keepers dataset in Chapter 4,
visit the DDoSecrets page for the Oath Keepers at https://ddosecrets​.com​/wiki​
/Oath​_Keepers. This page includes a link to the torrent file as well as the
magnet link. Add the torrent to your BitTorrent client and download the
full dataset, saving it to your datasets USB disk.

The Heritage Foundation Dataset
The Heritage Foundation is a conservative think tank that played a major
role in US politics during the Reagan administration. This dataset, a 1GB
file called backup.pst, is a backup of a personal email account used by an
employee on the foundation’s major gifts team. His email address was
hosted with his residential ISP at the domain embarqmail​.com. In 2015, the
Twitter user @jfuller290 noticed that the foundation had accidentally put
this backup in PST format on a public Amazon S3 bucket—an Amazon
cloud service that hosts files—and he tweeted the link to it. (The Heritage
Foundation at first claimed that it was hacked, but in fact it had inadver-
tently made the file public itself.) The email backup was made in 2009, six
years before @jfuller290 noticed it.

Visit the DDoSecrets page for the Heritage Foundation at https://
ddosecrets​.com​/wiki​/Heritage​_Foundation. This page includes links to the tor-
rent as well as a direct download for this dataset. Because the dataset is just
a single, relatively small Outlook Data File, directly download it from https://
data​.ddosecrets​.com​/Heritage%20Foundation​/backup​.pst and save it into a folder
called Heritage Foundation on your datasets USB disk.

While you’re waiting for these email dumps to finish downloading, read
on to learn about the tools you can use to research them.

Researching Email Dumps with Thunderbird
Before you start reading the email you’ve downloaded, you’ll install and
configure Thunderbird, an open source email program for Windows, macOS, and
Linux that allows you to work with email dumps in different formats. You
can use Thunderbird to import folders full of EML or MBOX files and
search and read everything inside them. When you open an EML file in
Thunderbird, the program will parse the file, Base64-decode everything for
you, and let you see HTML email and download attachments.

Thunderbird users typically use the program just to check their per-
sonal email, sometimes for multiple email accounts. If you want, you can
add your existing email accounts to it and use it to read and write email

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Reading Other People’s Email 155

yourself. For research purposes, though, you’ll use Thunderbird to import
email into local folders, which will allow you to work with the email locally on
your computer without connecting to an email server. You don’t need inter-
net access when using Thunderbird to research email dumps in this way,
which means you can use an air-gapped computer.

Like its sister project, the Firefox web browser, Thunderbird sup-
ports third-party extensions that add functionality to the program. The
ImportExportTools NG extension is crucial to working with email dumps; it
adds support for importing MBOX files and for bulk-importing folders full
of EML files, keeping their folder structure intact. However, to import PSTs
into Thunderbird, you must first convert them into EMLs using the readpst
program. You’ll import all three file types into Thunderbird later in the
chapter.

After importing email dumps into Thunderbird, you can click through
all of the folders and read the email messages as if you were reading
your own email. You can also use Thunderbird’s built-in search feature
to bulk-search all of the email you’ve imported. However, you can’t use
Thunderbird to search the content of attachments—for that, you’ll need a
tool like Aleph, which we’ll discuss in “Other Tools for Researching Email
Dumps” on page XX.

Exercise 6-2: Configure Thunderbird for Email Dumps
In this exercise, you’ll install Thunderbird and configure it in order to ana-
lyze the three email dumps you’ve downloaded.

Download Thunderbird from https://www​.thunderbird​.net and install it
on your computer. When you open the program the first time, it asks if you
want to set up an existing email account. While you won’t need to use a real
email account to research email dumps, adding an account to Thunderbird
makes it easier to import these data dumps later on. If you don’t want to use
Thunderbird to check your real email, I recommend that you create a new
email account just for this purpose. Click the Get a New Email Address
link to create a new free email account directly within Thunderbird on
an email provider called Mailfence. Select an email address and generate
a random password in your password manager, then provide an existing
email address to activate your new account. After creating your account, log
in to it with Thunderbird, and you should see the message “Account success-
fully created.”

Next, switch to the main Thunderbird tab. In the Folders sidebar on
the left, you should see the email address you added, and beneath it a sec-
tion called Local Folders. You added an email address just to create the
Local Folders section, so if you don’t plan on using Thunderbird to check
this email account, you can delete it. To do so, click the menu icon in the
top-right corner and choose Account Settings. Make sure your new email
account is selected, click Account Actions in the bottom left, and choose
Remove Account. Select the Remove Message Data box and click Remove.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

156 Chapter 6

Now switch back to the main Thunderbird window, and only Local Folders
should remain in the left sidebar.

Next, to install the ImportExportTools NG Thunderbird add-on, click
the menu icon in the top-right corner and choose Add-ons and Themes.
Switch to the Extensions tab, search for ImportExportTools NG, and
install the add-on. A lot of this add-on’s functionality appears in the Tools
menu bar at the top, which appears automatically in macOS. To access it in
Windows or Linux, click the menu icon in the top-right corner and choose
ViewToolbarsMenu Bar. A menu bar should appear at the top of the
Thunderbird window. Go to ToolsImportExportTools NG to access the
add-on’s features.

Finally, click the Thunderbird menu icon and choose Settings. Switch
to the Privacy & Security tab and make sure that Allow Remote Content in
Messages is unchecked (it should be unchecked by default). Remote content
is any content hosted on the internet instead of inside of the email, like
images loaded from URLs. When you open an email with remote content,
like an HTML email with images, loading those images will leave a trace
that the email was opened from a certain IP address.

N O T E 	 Thunderbird will always give you the chance to load remote content on individual
email messages if you’d like, but I recommend that you connect to a VPN beforehand
so that the VPN’s IP address, rather than your IP address, will be tracked (see the
“Covering Your Tracks with a VPN Service” box in Chapter 9).

Reading Individual EML Files with Thunderbird
During your own investigations, you may find only a few EML files in a
dataset, or someone might forward email messages to you as attachments.
Thunderbird is a good tool for inspecting these messages individually with-
out needing to import them.

Once your downloads from Exercise 6-1 have finished, try using
Thunderbird to view some individual messages. Open your file manager
app, like Explorer in Windows or Finder in macOS, and browse to the
extracted iven-notte folder in the Nauru Police Force dataset. Open the
inbox folder, right-click one of the EML files, and open it in Thunderbird.
Thunderbird should show you the headers, like the date the email was
sent, and the From, To, and Subject lines. You can also read the email
exactly as it was originally formatted, and if it has attachments, you can
open them.

Just as you shouldn’t blindly open attachments you receive in your per-
sonal email, don’t blindly open attachments that you find in email dumps,
because they could hack your computer. Refer back to Chapter 1 for tips on
how to open such documents safely.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Reading Other People’s Email 157

E X T R AC T ING AT TACHMEN T S F ROM EML F IL ES

A single EML file could contain several file attachments, all Base64-encoded.
The munpack program lets you extract these attachments without needing to use
an email client. Install munpack with sudo apt install mpack in Linux or Win
dows with WSL, or use brew install mpack in Homebrew on macOS. You can
then run the command munpack filename.eml to extract the attachments from an
email.

For example, the Nauru Police Force dataset contains an EML file called
68.eml. When I run munpack 68.eml, it extracts the attachments from that
email—in this case, RegistrationXForm.pdf and COPXPassport.pdf—into the cur-
rent working folder. You could also use munpack in a script to extract all of the
attachments from every email message in an email dump, all from the terminal.

In the following exercises, you’ll import each of the email dumps you
just downloaded into Thunderbird, starting with the EML files from the
Nauri Police Force dataset.

Exercise 6-3: Import the Nauru Police Force Email Dump in EML Format
To import an email dump with the ImportExportTools NG add-on, select
the folder into which you’d like to import it. Always import email dumps
into a local folder, rather than a remote folder on an email server. From the
Folders sidebar on the main Thunderbird tab, right-click Local Folders and
choose New Folder, as shown in Figure 6-1.

Figure 6-1: Creating a new local folder in Thunderbird

Name your folder Nauru Police Force and click Create Folder. You
should now see the Nauru Police Force folder in your Local Folders list.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

158 Chapter 6

Right-click the Nauru Police Force folder you just created and choose
New Subfolder. Name your subfolder iven-notte, the name of the email
account whose inbox data you’ll be importing, and click Create Folder.
Right-click the new iven-notte subfolder that you just created and choose
ImportExportTools NGImport All Messages from a DirectoryAlso
from Its Subdirectories. A dialog will pop up, allowing you to browse for a
folder. Select your iven-notte subfolder.

This subfolder should immediately start filling up with the 14,964 email
messages that you’re importing. It will probably take a few minutes to finish
(importing all 127 inboxes in this dataset would take considerably longer).

Figure 6-2 shows Thunderbird with the iven-notte inbox loaded up. You
can see all of the folders and the number of unread messages in each. (If
you’d like, you can mark all of these messages as unread to keep track of
which messages you have left to read.)

Figure 6-2: An email dump imported in Thunderbird

The email selected in Figure 6-2 is in the inbox folder and was sent
from Lionel Aingimea, at that time the president of Nauru. In the email,
he instructs Iven Notte, the Nauru police chief and the inbox owner, to not
respond to Australian journalist Eden Gillespie, who had asked about two

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Reading Other People’s Email 159

Nauru men who had allegedly attacked a refugee worker, possibly run him
over, and stolen his motorbike. “Leave it,” President Aingimea wrote. “Don’t
answer them.”

Cam Wilson, a reporter for the Australian news site Crikey, dug into the
Nauru Police Force dataset and revealed “the appalling disregard for refu-
gees and asylum seekers detained there.” You can read Wilson’s reporting
on Crikey’s website, https://www​.crikey​.com​.au​/.

Searching Email in Thunderbird
Now that you’ve got Thunderbird configured and loaded with data,
you’re ready to explore that data. For example, you may want to search
the Nauru Police Force dataset for other email from President Aingimea
or from Australian politicians. You could also search for email that con-
tains keywords like refugee or was written on specific days. This section
covers search methods you can use on any email dump you import into
Thunderbird.

Quick Filter Searches
The simplest search option is to filter the email that shows up in the
currently selected folder. When viewing a folder, near the top of the
Thunderbird window, make sure the Quick Filter button is toggled on so
that an extra toolbar appears. This toolbar has buttons to quickly filter
out only messages that are unread, contain attachments, or have other
properties.

The Quick Filter toolbar also has a search box that you can use to find
only messages that include certain text. You can also filter for messages that
include the search term in the sender field, recipient field, subject line, or
body. This is the most common way I search in Thunderbird. For example,
I entered Aingimea in the Quick Filter search box to quickly find all of
the email related to President Aingimea in the inbox folder. I could also
put his email address in the search box and filter for messages where he’s
the sender or the recipient (though he won’t be the recipient of any of this
email, because this is Iven Notte’s inbox, not his).

The Search Messages Dialog
The Quick Filter search is essentially a more limited version of the Search
Messages dialog, which is the most powerful way to search for email in
Thunderbird. Open this dialog by clicking the Edit menu and choosing
FindSearch Messages. You can choose which folder to search, or you can
elect to search all the email in an account at once. You can then choose
more granular search queries. For example, you could find all email mes-
sages that mention asylum in the body. You can then filter those results by
adding further criteria, such as showing only email sent from or to a spe-
cific email address, or only email with attachments.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

160 Chapter 6

There’s also a search box in the top right of the Thunderbird window,
above the Quick Filter search box, that will quickly search the full email
account. I find this feature less useful than the Search Messages dialog.
If I can’t find what I’m looking for with Quick Filter, I move on to
Search Messages, which lets me make my searches as granular as
necessary.

Exercise 6-4: Import the Oath Keepers Email Dump in MBOX Format
In this exercise, you’ll import email from the Oath Keepers dataset into
Thunderbird. The Oath Keepers dataset contains the files messages.json
and messages_old.json, which are chat logs, and the Oath Keepers.sbd folder,
which contains 100 files in MBOX format. You’ll focus on the latter here.
As mentioned previously, you can’t open MBOX files in an email client to
read the messages like you can with EML files; you must import them into
Thunderbird first.

To keep your different datasets separate in Thunderbird, you’ll cre-
ate a new folder for the Oath Keepers data. In the left panel, right-click
Local Folders and choose New Folder. Name your folder Oath Keepers
and click Create Folder. You should now see the Oath Keepers folder in your
Local Folders list. Right-click the Oath Keepers folder you just created and
choose ImportExportToolsImport MBOX File. A pop-up dialog with
more options should appear. Choose Import Directly One or More MBOX
Files and click OK. Browse for your Oath Keepers.sbd folder and select all of
the files in it.

Thunderbird might become unresponsive while it imports the
3.9GB of email, not allowing you to click on anything, but be patient.
When the import is complete, you should have 100 separate folders full
of email.

The Oath Keepers folder with the most email, by far, is oksupport,
the Oath Keepers support email account. Figure 6-3 shows an email in
this folder from a member renouncing his membership shortly after the
January 6 attack.

I haven’t found many major revelations in this email dump; most of
those are contained in the private part of the Oath Keepers database, the
membership and donor lists that DDoSecrets distributes only to journalists
and researchers. The publicly available email contains many people writing
about joining the militia or complaining that they paid their membership
dues but haven’t had any further communication. There’s also a massive
amount of spam, including right-wing extremist, conspiratorial, and anti-
vaccine bulk email. Look through the various email accounts you imported
and try out Thunderbird’s search tools to see if you can find anything inter
esting I missed.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Reading Other People’s Email 161

Exercise 6-5: Import the Heritage Foundation Email
Dump in PST Format

In this exercise, you’ll import the Heritage Foundation email dump, a
Microsoft Outlook PST file called backup.pst, into Thunderbird. Since the
ImportExportTools NG add-on doesn’t support PST files, first you’ll need to
convert the PST into an EML or MBOX file.

The readpst program can convert a PST file into several different
formats, including EML and MBOX files. You can access the program by
installing the libpst package in macOS or the pst-utils package in Ubuntu.
Start by opening a terminal. Mac users, run the following command:

brew install libpst

Linux and Windows with WSL users, run this command:

sudo apt update
sudo apt install pst-utils

Figure 6-3: An email from the Oath Keepers email dump

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

162 Chapter 6

Next, change to the folder that contains the backup.pst file. For example,
on my macOS computer, I run:

cd /Volumes/datasets/Heritage\ Foundation

To convert a PST file into EML file, you use the following command,
where the -e argument tells readpst to output as EML files:

readpst -e filename.pst

Run that command on the backup.pst file like so:

readpst -e backup.pst

This command creates a folder called Personal Folders, which contains
additional Contacts, Heritage, Inbox, Junk E-mail, and other subfolders (this
is how the email in backup.pst is organized). Within each folder are several
EML files, one for each email message.

N O T E 	 I’ve found it easier to import EML files generated by readpst into Thunderbird, but
you can also convert PSTs into MBOX files with the readpst -r filename.pst
command.

In the left panel, right-click Local Folders and choose New Folder, as
you did in the previous exercises. Name your folder Heritage Foundation
and click Create Folder. You should now see the Heritage Foundation folder
in your Local Folders list.

Right-click the Heritage Foundation folder, choose New Subfolder,
and name your new subfolder backup.pst. Right-click the backup.pst sub-
folder and choose ImportExportTools NGImport All Messages from a
DirectoryAlso from Its Subdirectories. Browse for the Personal Folders
folder that you just created using readpst and start the import. This folder
should start filling up with over a thousand email messages.

These email messages, all belonging to the former Heritage
Foundation fundraiser Steve DeBuhr, are meticulously organized into fold-
ers. In addition to Heritage Foundation work, this email dump also includes
DeBuhr’s personal email. This email dump is very old—the latest messages
are from 2009—so it’s unlikely you’ll find very many revelations in here.
Since DeBuhr worked with major donors, though, the email in the Heritage
folder contains many attachments full of financial details. Figure 6-4 shows
this email dump in Thunderbird.

Particularly, I noticed as I browsed through this email that the Social
Issues folder contains homophobic and otherwise bigoted messages that
DeBuhr had forwarded from his official heritage​.org address account to
his personal one.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Reading Other People’s Email 163

Other Tools for Researching Email Dumps
This chapter has focused on using Thunderbird as a tool for researching
email dumps, but in your future work, you might find two alternative tools
helpful: Microsoft Outlook and Aleph. In this section I’ll go over how you can
use each tool to import and search email dumps. You don’t need to follow the
instructions in this section to work through the rest of the book, but reading
along will give you a sense of what the options are and when to use them.

Microsoft Outlook
Unlike Thunderbird, Microsoft’s desktop email program, Outlook, sup-
ports importing email dumps directly in PST format. However, Outlook
has some downsides. First, it’s not free; the cheapest way to get Outlook is
to buy a Microsoft 365 license, which at the time of writing costs around
$7 per month or $70 per year. Second, Outlook is available only for Win
dows and macOS, not Linux (though Linux users can run Outlook in a
Windows VM). Still, you might find Outlook useful if you’re familiar with

Figure 6-4: A Heritage Foundation email in Thunderbird

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

164 Chapter 6

the program and understand its advanced features, or just want to see an
email in its original interface.

Let’s look at how to import PST files directly into Outlook, using a real
example from a hacked Russian email dump. First, set up a Windows VM
for Outlook. Do this even if you’re a Windows or macOS user who already
uses Outlook for email, in order to avoid mixing up your actual email and a
leaked email dump. Microsoft publishes free Windows VM images for several
different VM programs like VirtualBox, VMWare, and Parallels. Download
the VM image at https://developer​.microsoft​.com​/en​-us​/windows​/downloads​/virtual​
-machines and import it into your VM software. You’ll also need to install
Microsoft Office in your VM. If you have a Microsoft 365 license, download
Office from https://www​.office​.com by logging in and clicking the Install Office
link. If you don’t have a license, Microsoft offers a free trial.

When you open Outlook the first time, it prompts you to log in to your
Office 365 account to check your license. After that, it prompts you to set
up an email account. At the bottom, click the link Create an Outlook​.com
Email Address to Get Started in order to create a new account. Make sure
to save your email and password in your password manager. Once you’re
finished, click Done. Outlook should open with the empty inbox of the new
email account you just created.

With Outlook set up, add the PST email dumps to it. Click File
Account SettingsAccount Settings, then click Data FilesAdd and browse
for the PST file you want to add. If you have the disk space to spare, make
a copy of the PST file and add the copy instead. All information about this
inbox, including details like which messages are marked read, is stored in this
file, so working from a copy will prevent you from modifying the original.

The PST file you added should appear in the left sidebar. You can now
sift through this inbox as if it were your own. Even the unread email counts
you’ll see are the actual counts of unread email for each folder at the time
the PST file was exported.

As an example, I set up a Windows VM, installed Outlook, logged into
it using my Microsoft 365 account, and added intercoord@vgtrk.ru.pst (the
48GB PST file hacked from VGTRK mentioned earlier in the chapter).

Figure 6-5 shows this VGTRK inbox, where I’ve used Outlook’s search
feature to search for Такер Карлсон. This is the Cyrillic spelling of Tucker
Carlson, the American white nationalist and former Fox News host.

The subject line of the selected email in Figure 6-5 translates roughly to
“Tucker Carlson sync.” The email body contains a translated quote in which
Carlson claims that Ukraine is not an independent country, but rather is
controlled by the US Democratic Party. The quote also includes the false
claim that in 2016, then Vice President Joe Biden fired Ukraine’s attorney
general for investigating Biden’s son Hunter. (In fact, Biden leveraged $1 bil-
lion in US aid to persuade Ukraine to oust its top prosecutor, Viktor Shokin,
who refused to investigate corruption from powerful Ukrainians. Biden
worked in tandem with anti-corruption efforts across Europe: European
leaders, as well as civil society groups within Ukraine, urged Shokin to
resign for the same reason.) Russian TV likely aired this Tucker Carlson clip,
and this email was likely the translation for their Russian dubbed version.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Reading Other People’s Email 165

N O T E 	 When working with data dumps in foreign languages that you don’t read, you can
rely on machine translation tools like DeepL or Google Translate—assuming, of
course, that you’re comfortable sharing the contents of the leak with a third-party
service. I’ve also found the Google Translate phone app useful: if you hold your
phone’s camera up to your screen, it will translate text in real time. This works even
with scanned documents that aren’t OCR’d.

Aleph
As you learned in Chapter 5, you can use Aleph to index and browse a wide
variety of email, including PST or EML files. When you index a folder con-
taining PSTs, Aleph recognizes the file format and indexes all of the indi-
vidual messages inside of each PST file, keeping the folder hierarchy intact.
Aleph also has the following benefits for working with email dumps:

•	 Unlike Thunderbird and Outlook, Aleph will also index, make search-
able, and even add OCR to email attachments.

•	 As with any dataset it processes, Aleph will automatically list all of the
people and organizations it finds in the dataset, and you can use it to
cross-reference that data with other datasets you’ve indexed.

Figure 6-5: Researching a PST file in Outlook

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

166 Chapter 6

•	 If you run an Aleph server for a group of researchers, you can easily
enable them to search email dumps; all they need is a web browser and
an Aleph account.

Using Aleph for email dumps has a few downsides. First, it requires
a lot of technical work to spin up an Aleph server and to index datasets,
especially if you plan on putting it on the internet for others to use. In my
experience, if you try to import large datasets like email dumps into Aleph,
you’re likely to run into technical hurdles with your Docker setup. Using
Thunderbird is a simpler solution.

Aleph also can’t properly index MBOX files; it tries to index them as
text files rather than as collections of different email messages. It won’t do
any Base64-decoding of the data inside MBOX files, so it’s not much more
useful than grep for this task. If you want an MBOX-formatted email dump
indexed in your Aleph server, import it into Thunderbird and then export
it again (using ImportExportTools NG) in EML format.

Aleph has other quirks that make working with email dumps more
complicated. For example, if there’s an email attachment in a format Aleph
doesn’t understand, it just won’t display the attachment at all when you
view that email message. If you want to be sure you’re seeing everything
in the email, download an individual EML file from Aleph and open it in
Thunderbird.

In sum, Outlook is a reasonable choice for PST files, and Aleph is
a good choice if you’re working with groups of people or want to cross-
reference an email dump with other datasets. However, Thunderbird is the
simplest way to quickly start your email dump investigation, and it supports
all email formats.

Summary
In this chapter, you learned how to import email dumps in the EML,
MBOX, and PST formats into Thunderbird to read and search them. You
read an email from the president of Nauru, got insights into the type of
email the Oath Keepers receive, and explored an old email dump from the
Heritage Foundation. You also saw how to use Microsoft Outlook and Aleph
as alternatives to Thunderbird. You can use the skills you’ve learned here in
your future email dump investigations.

In the next chapter, you’ll level up your technical skills for analyzing
datasets by taking a crash course in Python programming.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

PART III
P Y T H O N P R O G R A M M I N G

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

The skills you’ve learned in the last few chapters are
instrumental for investigating leaked datasets, but
having basic programming knowledge is even more
powerful. Using Python or other programming lan-
guages, you can give your computer precise instruc-
tions for performing tasks that existing tools or shell
scripts don’t allow. For example, you could write a
Python script that scours a million pieces of video
metadata to determine where the videos were filmed.
In my experience, Python is also simpler, easier to
understand, and less error-prone than shell scripts.

This chapter provides a crash course on the fundamentals of Python
programming. You’ll learn to write and execute Python scripts and use the
interactive Python interpreter. You’ll also use Python to do math, define
variables, work with strings and Boolean logic, loop through lists of items,

7
A N I N T R O D U C T I O N T O P Y T H O N

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

170 Chapter 7

and use functions. Future chapters rely on your understanding of these
basic skills.

Exercise 7-1: Install Python
Some operating systems, including most versions of Linux and macOS,
come with Python preinstalled, and it’s common to have multiple versions
of Python installed at once. This book uses Python 3. After you follow the
Python installation instructions for your operating system in this exercise,
you should be able to run Python scripts with the python3 (for Linux and
Mac) or python (for Windows) command.

Windows
Download and install the latest version of Python 3 for Windows from
https://www​.python​.org. During installation, check the box Add Python 3.x to
PATH (where 3.x is the latest Python 3 version), which allows you to run the
python command in PowerShell without using the Python program’s abso-
lute path.

Wherever this chapter instructs you to open a terminal, use PowerShell
instead of an Ubuntu terminal. You can also learn to use Python in Ubuntu
with WSL by following this chapter’s Linux instructions, but running
Python directly in Windows makes reading and writing data on your
Windows-formatted USB disk much faster.

Windows users should replace all instances of python3 with python when
running the example code in this chapter.

Linux
Open a terminal and make sure the python3, python3-pip, and python3-venv
packages are installed, using this apt command:

sudo apt install python3 python3-pip python3-venv

This command either installs the latest version of Python 3 available in the
Ubuntu repositories (as well as a few related packages you’ll need for this
chapter) or does nothing if the packages are already installed.

macOS
Open a terminal and run the following Homebrew command to make sure
python3 is installed:

brew install python3

This command either installs the latest version of Python 3 available in
Homebrew or does nothing if it’s already installed.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

An Introduction to Python 171

Exercise 7-2: Write Your First Python Script
Now that you’ve downloaded Python, you’ll write and run a simple Python
script that displays some text in your terminal.

In your text editor, create a new file called exercise-7-2.py (all Python scripts
end in .py). The first time you open a Python script in VS Code, it asks if you
want to install the Python extension. I recommend doing so in order to enable
VS Code to make suggestions as you’re typing. The extension also has various
features for highlighting syntax errors and helping you format your code nicely.

Enter the following code (or copy and paste it from https://github​.com​
/micahflee​/hacks​-leaks​-and​-revelations​/blob​/main​/chapter​-7​/exercise​-7​-2​.py), then
save the file:

print("hacks")
print("leaks")
revelations = "revelations".upper()
print(revelations)

As with shell scripts, Python scripts run instructions one line at a time,
starting at the top. When you run this code, print("hacks") calls a function
called print() and passes the string hacks into it, displaying hacks in your ter-
minal window. The second line similarly displays leaks. (I’ll explain strings
in greater detail in the “Python Basics” section on page XX, and functions
in the “Functions” section on page XX.)

Next, the script defines a variable called revelations and sets its value to
the uppercase version of the string revelations. To find the uppercase ver-
sion of that string, the program calls the upper() method, which is a type of
function. The final line then displays what’s stored in the revelations vari-
able: REVELATIONS.

N O T E 	 I have fond memories of retyping snippets of code from books. When I was a teenager,
I taught myself web and video game development by reading programming books and
typing the code samples I found into my own editor. I always found that actually
retyping the code, rather than copying and pasting it, helped make the concepts stick,
so I recommend doing that for the exercises in this book.

In a terminal, change to your exercises folder for this exercise and run
the script you just created with the following command (Windows users,
remember to replace python3 with python):

micah@trapdoor chapter-7 % python3 exercise-7-2.py

The argument in this command is the path to the script that you want
to run, exercise-7-2.py. You should get the following output:

hacks
leaks
REVELATIONS

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

172 Chapter 7

Try making the following changes to your script, running it after each
change to see the results:

•	 Change the text in the print() functions.

•	 Add new print() functions to display more text.

•	 Use the string methods lower() and capitalize() instead of upper().

Python Basics
In this section, you’ll learn to write code in the interactive Python inter-
preter, comment your code, start doing simple math in Python, and use
strings and lists. This gentle introduction to Python syntax will let you
quickly try out some code on your own, before you dive into more advanced
topics.

As you read, don’t be shy about searching online for answers to any
Python questions you might have beyond what this book covers. I frequently
find solutions to Python problems on websites like Stack Overflow, a forum
where people can ask technical questions and others can answer them.

The Interactive Python Interpreter
The Python interpreter is a command line program that lets you run Python
code in real time, without writing scripts first, allowing you to quickly test
commands. To open the Python interpreter, you run the python3 command
without any arguments, like so:

micah@trapdoor ~ % python3
--snip--
Type "help", "copyright", "credits" or "license" for more information.
>>>

The interpreter starts by telling you exactly which version of Python
you’re using. Similar to a command line interface, it gives you the prompt
>>> and waits for you to enter a Python command.

Run the following command:

>>> print("Hello World!")
Hello World!
>>>

Entering print("Hello World!") and pressing ENTER should immediately
run your code, displaying Hello World! on the next line. Exit the interpreter
and return to the shell by running exit() or pressing CTRL-D.

In the remainder of this book, if my examples include the >>> prompt,
that means they’re running in the Python interpreter. Run the same code
in your own interpreter as you follow along.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

An Introduction to Python 173

Comments
Writing code can be confusing even to experienced programmers, so it’s
always a good idea to comment your code: add inline notes to yourself or
to others who might read your program. If you describe the purpose of a
specific portion of code in plain English (or whatever language you speak),
whoever looks at this code in the future can understand the gist of what it’s
doing at a glance.

If a line of code starts with a hash mark (#), the whole line is a com-
ment. You can also add a hash mark after some code, followed by your com-
ment. For example, run the following lines of code:

>>> # This is a comment
>>> x = 10 # This sets the variable x to the value 10
>>> print(x)
10

This is exactly the same as comments in shell scripting, which you
learned about in Chapter 3. Python ignores comments, since they’re
intended for humans.

Math with Python
Computers, which are technically complicated calculators, are great at
doing math. It might not be immediately apparent, but investigating datas-
ets means constantly dealing with basic math: calculating disk space, count-
ing files, searching for keywords, and sorting lists. Here’s how a few basic
mathematical operations work in Python:

Operators

The arithmetic operators for addition (+), subtraction (−), multiplica-
tion (×), and division (/) are mostly the same in Python: +, -, and /,
with an asterisk * for multiplication.

Variables

In math, a variable is a placeholder, normally a letter like x. Variables in
math often represent something unknown and it’s your job to solve for
it, but Python variables are never unknown—they always have a
value. Name your Python variables something descriptive like price or
number_of_retweets rather than single letters without clear meanings.
Variables in Python can represent much more than just numbers, as
you’ll see later in this chapter.

Expressions

An expression is a bit like a sentence made up of numbers, variables,
and operators. For example, here are a few expressions:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

174 Chapter 7

1 + 1
100 / 5
x * 3 + 5

Like sentences, expressions need to have the correct syntax. Just like
“potato the inside” isn’t a valid sentence, 1 1 + isn’t a valid expression.
Enter the following expressions in the Python interpreter to see how it
evaluates them:

>>> 1 + 1
2
>>> 100 / 5
20.0
>>> 3.14 * 2
6.28

Just like a calculator, Python respects the order of operations. It also
supports using parentheses:

>>> 100 - 12 * 2
76
>>> (100 - 12) * 2
176

As in the rest of math, Python won’t allow you to divide by zero:

>>> 15 / 0
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero

You define a variable in Python by saving a value inside that variable
with the equal sign (=). Try defining price and sales_tax variables and then
using them in an expression:

>>> price = 100
>>> sales_tax = .05 # 5% sales tax
>>> total = price + (price * sales_tax)
>>> print(total)
105.0

You can’t use variables that you haven’t yet defined. For example, if you
use an undefined variable x in an expression, you’ll get an error:

>>> x * 10
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'x' is not defined

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

An Introduction to Python 175

Instead of just setting a variable equal to some value, you’ll often want
to modify its existing value by a certain amount. For example, if you’re
keeping track of the total price of items in a shopping cart in the total vari-
able and want to add 10 dollars to that total, you would define the variable
like so:

total = total + 10

Python’s += operator performs the same operation:

total += 10

The += operator adds the number on the right to the variable on the left.
The Python operators -=, *=, and /= work the same way. In your Python
interpreter, define a variable, then try changing its value using these
operators.

Strings
A string is a sequence of characters. Any time you need to load, modify, or
display text, you store it in a string. If you load the contents of a text file
into a variable in Python (for example, a 5MB EML file that includes attach-
ments), that’s a string. But strings are also often very short: in Exercise 7-2,
you used the strings "hacks", "leaks", and "revelations".

In Python, strings must be enclosed in either single quotes (') or dou-
ble quotes ("). Run the following examples, which demonstrate how to use
each type of quote:

>>> "apple" # A string with double quotes
'apple'
>>> 'apple' # The same string with single quotes
"apple'
>>> # Use double quotes if you have single quotes within the string
>>> "She's finished!"
"She's finished!"
>>> # Use single quotes if you have double quotes within the string
>>> 'She said, "Hello" '
'She said, "Hello" '

Some of the same techniques you learned in Chapter 3 to work with
strings in your shell also apply to strings in Python. If your string uses dou-
ble quotes, you can escape them like so:

>>> "She said, \"Hello\" "

You can similarly escape single quotes in a single-quote string:

>>> 'She\'s finished!'

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

176 Chapter 7

Like numbers, strings can be stored in variables. Run the following
code to define first_name and last_name variables, replacing my name with
yours:

>>> first_name = "Micah"
>>> last_name = "Lee"

In Python, f-strings are strings that can contain variables. To use an
f-string, put the letter f before the quotes, then put variable names in
braces ({ and }). For example, run the following commands to display the
values of the variables you just defined:

>>> print(f"{first_name} {last_name}")
Micah Lee
>>> full_name = f"{first_name} {last_name}"
>>> print(f"{first_name}'s full name is {full_name}, but he goes by {first_name}")
Micah's full name is Micah Lee, but he goes by Micah

Place expressions inside f-strings in order to evaluate them:

>>> print(f"1 + 2 + 3 + 4 + 5 = {1 + 2 + 3 + 4 + 5}")
1 + 2 + 3 + 4 + 5 = 15

Python will evaluate the expression for you, in this case 1 + 2 + 3 + 4 + 5,
and just print the result, which is 15.

Exercise 7-3: Write a Python Script with Variables, Math,
and Strings

In this exercise, you’ll practice the concepts you’ve learned so far by writ-
ing a simple Python script that uses variables and a few basic math expres-
sions and prints some strings. The script calculates how old a person is in
months, days, hours, minutes, and seconds, given their name and an age (in
years), and then displays this information. In your text editor, create a new
file called exercise-7-3.py and define these two variables:

name = "Micah"
age_years = 37

Replace the values of name and age_years with your own name and age.
Next, define some more variables that represent age in different units:

months, days, hours, minutes, and seconds. Start with months:

age_months = age_years * 12

Add a days variable:

age_days = age_years * 365

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

An Introduction to Python 177

Finally, define variables for hour, minutes, and seconds:

age_hours = age_days * 24
age_minutes = age_hours * 60
age_seconds = age_minutes * 60

Now that you’ve defined the variables, you can display them to the user.
Since the numbers in this exercise are going to get big, you’ll include com-
mas to make them easier to read. For example, run this code in the inter-
preter to display the variable number with commas using an f-string, adding :,
after the variable name within the braces:

>>> number = 1000000
>>> print(f"the number is: {number}")
the number is: 1000000
>>> print(f"the number is: {number:,}")
the number is: 1,000,000

Back in the Python script, add code to display all of the values, like this:

print(f"{name} is {age_years:,} years old")
print(f"That would be {age_months:,} months old")
print(f"Which is {age_days:,} days old")
print(f"Which is {age_hours:,} hours old")
print(f"Which is {age_minutes:,} minutes old")
print(f"Which is {age_seconds:,} seconds old")

This code uses {name} to display the value of the name variable. That
variable is a string, so it doesn’t make sense to try to separate it with commas.
The rest of the variables are numbers, though, so the code includes :, inside
the braces for all of them to include commas in the output. (The age_years
values don’t need commas, unless you happen to be older than 1,000, but it
doesn’t hurt to use the :, syntax—it adds a comma only if one is needed.)

Save the file in your text editor. (A complete copy of the script is avail-
able at https://github​.com​/micahflee​/hacks​-leaks​-and​-revelations​/blob​/main​/chapter​
-7​/exercise​-7​-3​.py​.) In a terminal, change to your exercises folder for this exer-
cise and run the script. Here’s what happens when I do so:

micah@trapdoor chapter-7 % python3 exercise-7-3.py
Micah is 37 years old
That would be 444 months old
Which is 13,505 days old
Which is 324,120 hours old
Which is 19,447,200 minutes old
Which is 1,166,832,000 seconds old

When you run the script with your name and age, try changing the age
and running it again to see how the numbers change.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

178 Chapter 7

Lists and Loops
You’ll often need to manage lists when investigating datasets. For example,
you might work with lists of filenames or rows in a spreadsheet. In this sec-
tion, you’ll learn how to store lists as variables and loop through those lists
in order to run the same code for each list item. You did something similar
in Chapter 4 with for loops in the shell, but this time, you’ll be working in
Python.

Defining and Printing Lists
In Python, lists are defined with brackets ([and]), with each item in the list
separated by commas (,). You might have a list of numbers:

[1, 2, 3]

Or of strings:

["one", "two", "three"]

Or an empty list:

[]

Just as variables can contain numbers or strings, they can also contain
lists. Use this line of code to store a list of letters in the Hebrew alphabet,
spelled out using Latin characters, in the hebrew_letters variable:

>>> hebrew_letters = ["aleph", "bet", "gimel", "dalet", "he", "vav", "zayin",
"chet", "tet", "yod", "kaf", "lamed", "mem", "nun", "samech", "ayin", "pe",
"tsadi", "qof", "resh", "shin", "tav"]

Now use the print() function to display the items in the hebrew_letters
variable:

>>> print(hebrew_letters)
['aleph', 'bet', 'gimel', 'dalet', 'he', 'vav', 'zayin', 'chet', 'tet', 'yod',
'kaf', 'lamed', 'mem', 'nun', 'samech', 'ayin', 'pe', 'tsadi', 'qof', 'resh',
'shin', 'tav']

You can make long lists easier to read by entering each item in the list
on its own line, indented, like this:

hebrew_letters = [
 "aleph",
--snip--
 "tav"
]

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

An Introduction to Python 179

Each item in a list has an index, a number that represents where in the
list that item is located. The index of the first item is 0, the second is 1, the
third is 2, and so on. To select a list item, you append brackets with the
item’s index to the end of the list. For example, to select the first letter in
the hebrew_letters list, use hebrew_letters[0]:

>>> print(hebrew_letters[0])
aleph
>>> print(hebrew_letters[1])
bet

The first line of code uses the print() function to display the item from
the hebrew_letters list at index 0 (aleph), and the second line displays the
item at index 1 (bet).

Now use negative numbers to select items starting from the end of the
list, like so:

>>> print(hebrew_letters[-1])
tav
>>> print(hebrew_letters[-2])
shin

You can use the len() function to count the number of items in a list.
For example, run this code to get the number of items in the hebrew_letters
list:

>>> print(len(hebrew_letters))
22

This code uses the print() function to display the output of the len()
function. You could get the same result by storing the output of the
len() function in a variable:

>>> length_of_hebrew_alphabet = len(hebrew_letters)
>>> print(length_of_hebrew_alphabet)
22

The first line of code runs len(hebrew_letters) and stores the result in
the length_of_hebrew_alphabet variable. The second line uses the print() func-
tion to display that result.

You don’t have to store a list in a variable to select items from it. For
example, run this code to display the second item (at index 1) in the list
[1,2,3]:

>>> print([1,2,3][1])
2

The append() method lets you add items to lists. For example, run the
following code to add a new color to a list of favorites:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

180 Chapter 7

>>> favorite_colors = ["red", "green", "blue"]
>>> favorite_colors.append("black")
>>> print(favorite_colors)
['red', 'green', 'blue', 'black']

This code defines the variable favorite_colors as a list of strings contain-
ing red, green, and blue. It then adds another string, black, to the list by using
the append() method, before finally displaying the value of the favorite_colors
variable, using the print() function.

When writing code that analyzes datasets, you’ll often create an empty
list and then append items to that list to make the data easier to work with.
For example, you’ll learn in Chapter 13 about the code I wrote while inves-
tigating America’s Frontline Doctors, an anti-vaccine group. To properly
analyze a dataset of hundreds of thousands of files containing patient
information, I wrote code that created an empty list, opened each file, and
appended the pertinent patient data to that list.

Running for Loops
In Chapter 4, you used a for loop to unzip each BlueLeaks ZIP file. Python
also has for loops, and they work the same way they do in shell scripting: by
running a snippet of code, called a block, on each item in a list. A for loop
has the following syntax:

for variable_name in list_name:

followed by a block of indented code. Once you choose a new variable to
define in variable_name, you can use it in your code block.

For example, run this code to loop through the hebrew_letters list, store
each item in the variable letter, and then display that item:

>>> for letter in hebrew_letters:
... print(letter)
...

After you enter the for loop, which ends in a colon (:), the Python inter-
preter changes the prompt from >>> to ... and waits for you to enter the
code block that will run for each item. Indent every line in your block with
the same number of spaces, then end your block with a blank line. In this
example, the code block that runs is just one line: print(letter).

The code should return the following output:

aleph
bet
--snip--
shin
tav

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

An Introduction to Python 181

In this example, the for loop runs 22 times, once for each item in the
list, and stores the item in the variable letter. The first time it loops, the
value of letter is aleph. The second time, the value is bet, and so on.

N O T E 	 Indentation tells Python which lines of code are part of your code blocks. If some lines
are indented with four spaces, but others with two or three spaces, your Python code
won’t work. To keep things simple, I recommend always indenting with four spaces.
When writing scripts in VS Code, you can indent multiple lines of code by selecting
them with your mouse and then pressing TAB (which indents four spaces for you) or
Unindent by selecting a line and pressing SHIFT-TAB.

The following, slightly more complicated, example uses the len()
function to count not the number of items in a list, but characters in
a string:

>>> for letter in hebrew_letters:
... count = len(letter)
... print(f"The letter {letter} has {count} characters")
...
The letter aleph has 4 characters
The letter bet has 3 characters
The letter gimel has 5 characters
--snip--
The letter resh has 4 characters
The letter shin has 4 characters
The letter tav has 3 characters

This code tells you how many characters are used to spell the word for
each Hebrew letter in the Latin alphabet.

You can use for loops to loop through strings as well, since a string is
essentially a list of characters:

>>> word = "hola"
>>> for character in word:
... print(character)
...
h
o
l
a

You can run a single for loop as many times as you need for the dataset
you’re working on. For example, in Chapter 9, you’ll write code that can
open each of the hundreds of spreadsheets in the BlueLeaks dataset and
uses a for loop to run your block of code on each row.

In the next section, you’ll learn to make your programs more dynamic
and useful by determining which blocks of code should run under which
circumstances.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

182 Chapter 7

Control Flow
Python scripts start at the top and run one line of code at a time, but they
don’t always run these lines consecutively. In for loops, for example, the
same block of code might run over and over again before the loop com-
pletes and the program continues to the next line. The order in which your
lines of code run is your program’s control flow.

As you start writing code, you’ll often alter the control flow by telling
your computer to do different things in different situations. If you write a
program that loops through a list of files in a dataset, for instance, you may
want to run different code when the program reaches a PDF document
than when it encounters an MP4 video.

This section teaches you how to run certain blocks of code under certain
conditions. To do this, you’ll learn how to compare values, use if statements
based on these comparisons, and express arbitrarily complicated conditions
using Boolean logic, all of which allow you to control the flow of your pro-
gram. You’ll need this sort of logic whenever you write code that searches a
dataset for something specific and then responds according to what it finds.

Comparison Operators
As mentioned earlier in this chapter, expressions that use the arithmetic
operators +, -, /, and * generally evaluate to numbers: 1 + 1 evaluates to 2, for
example. Expressions in Python also use the following comparison operators
to compare terms:

< ​  ​Less than

<= ​  ​Less than or equal to

> ​  ​Greater than

>= ​  ​Greater than or equal to

== ​  ​Equal to (not to be confused with a single equal sign (=), which
defines a variable)

!= ​  ​Not equal to

A Boolean is a type of variable that is either True or False. Expressions
that use comparison operators evaluate to Booleans instead of numbers, as
in the following examples:

>>> 100 > 5
True
>>> 100 < 5
False
>>> 100 > 100
False
>>> 100 >= 100
True
>>> 0.5 < 1
True
>>> 0.999999 == 1
False

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

An Introduction to Python 183

You can use these same operators to compare strings, too. In Python,
saying that one string is less than another means that the former comes
before the latter in alphabetical order, as in the following examples:

>>> "Alice" == "Bob"
False
>>> "Alice" != "Bob"
True
>>> "Alice" < "Bob"
True
>>> "Alice" > "Bob"
False

Strings are case sensitive. If you don’t care about capitalization and
want to just see whether the strings are made up of the same words, make
them both lowercase before you compare them:

>>> name1 = "Vladimir Putin"
>>> name2 = "vladimir putin"
>>> name1 == name2
False
>>> name1.lower() == name2.lower()
True

This technique allows you to determine whether strings of data fulfill
a given condition. For example, in Chapter 11, you’ll write code to analyze
the metadata of over a million videos uploaded to the far-right social net-
work Parler. Using comparison operators, you’ll determine which videos
were filmed on January 6, 2021, in Washington, DC, during the insurrec-
tion after Trump lost the 2020 election.

if Statements
You use if statements to tell your code to do something under certain con-
ditions but not others. The syntax for an if statement is if expression: fol-
lowed by an indented block of code. If the expression evaluates to True, then
the code block runs. If the expression evaluates to False, the code doesn’t
run, and the flow moves on to the next line.

For example, run the following code:

>>> password = "letmein"
>>> if password == "letmein":
... print("ACCESS GRANTED")
... print("Welcome")
...
ACCESS GRANTED
Welcome
>>>

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

184 Chapter 7

This code sets the value of the password variable to letmein. That means
the expression in the if statement (password == "letmein") evaluates to True
and the code block runs, so it displays ACCESS GRANTED and Welcome.

Now try including the wrong password in your if statement:

>>> password = "yourefired"
>>> if password == "letmein":
... print("ACCESS GRANTED")
... print("Welcome")
...
>>>

This time, because you set the password to "yourefired", the expression
password == "letmein" evaluates to False, and Python doesn’t run the if state-
ment’s code block.

An if statement can optionally incorporate an else block so that
if the condition is true, one code block runs, and if it’s false, another
block runs:

if password == "letmein":
 print("ACCESS GRANTED")
 print("Welcome")
else:
 print("ACCESS DENIED")

You can also incorporate elif blocks, short for “else if.” These let you
make another comparison if the first comparison is false, as shown in
Listing 7-1.

if password == "letmein":
 print("ACCESS GRANTED")
 print("Welcome")
elif password == "open sesame":
 print("SECRET AREA ACCESS GRANTED")
else:
 print("ACCESS DENIED")

Listing 7-1: Comparing if, elif, and else statements

In this code, the if statement evaluates the password == "letmein" expres-
sion. If it evaluates to True, the code block runs and displays the ACCESS
GRANTED and Welcome messages. If the expression evaluates to False, the
program moves on to the elif block, which evaluates the password == "open
sesame" expression. If that evaluates to True, it runs the block of code that
displays SECRET AREA ACCESS GRANTED. If it evaluates to False, the program
moves on to the else code block, which displays ACCESS DENIED.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

An Introduction to Python 185

Nested Code Blocks
You can also accomplish the results of Listing 7-1 with multiple if state-
ments and no elif, using nested code blocks, or indented blocks of code
inside other indented blocks of code:

if password == "letmein":
 print("ACCESS GRANTED")
 print("Welcome.")
else:
 if password == "open sesame":
 print("SECRET AREA ACCESS GRANTED")
 else:
 print("ACCESS DENIED")

This code is functionally the same as Listing 7-1.
The more complicated your code, the more nested code blocks may

come in handy. You might include for loops inside your if statement code
blocks, or if statements inside for loops, or even for loops inside for loops.

You might prefer elif statements to nested if statements purely for read-
ability purposes: it’s easier to read and write code with 100 elif statements
than code that’s indented 100 times because it has 100 nested if statements.

Searching Lists
The Python in operator, which tells you whether an item appears in a list, is
useful for working with lists. For example, to check whether the number 42
appears in a list of numbers, you can use in as follows:

favorite_numbers = [7, 13, 42, 101]
if 42 in favorite_numbers:
 print("life, the universe, and everything")

To the left of the in operator is a potential item inside a list, and to the
right is the list name. If the item is in the list, then the expression evaluates
to True. If not, it evaluates to False.

You can also use not in to check if an item isn’t in a list:

if 1337 not in favorite_numbers:
 print("mess with the best, die like the rest")

Additionally, you can use in to search for smaller strings inside of larger
strings:

sentence = "What happens in the coming hours will decide how bad the Ukraine
crisis gets for the vulnerable democracy in Russian President Vladimir Putin's
sights but also its potentially huge impact on Americans and an already deeply
unstable world."
if "putin" in sentence.lower():
 print("Putin is mentioned")

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

186 Chapter 7

This code defines the variable sentence, then checks to see if the string
putin is inside the lowercase version of that sentence.

Logical Operators
It’s possible to describe any scenario, no matter how complicated, using the
logical operators and, or, and not. Like comparison operators, logical operators
also evaluate to True or False, and they let you combine comparisons.

For example, say you like astronomy and want to know if it’s a good
time for stargazing. Let’s set this up as a logical expression: if ((it’s dark out)
and (it’s not raining) and (it’s not cloudy)) or (you have access to the James
Webb Space Telescope), then yes. Otherwise, no. Logical operators let you
define this sort of logic in your Python code.

Like other operators, the and and or operators compare an expression
on the left with an expression on the right. With and, if both sides are true,
the whole expression is true. If either is false, the whole expression is false.
For example:

True and True == True

True and False == False

False and True == False

False and False == False

With or, if either expression is true, the whole expression is true. The
whole expression is false only when both expressions are false. For example:

True or True == True

True or False == True

False or True == True

False or False == False

The not expression differs from the others in that it doesn’t use an
expression to the left, just to the right. It flips true to false, and false to
true. For example:

not True == False

not False == True

In sum, use and to determine whether two things are both true, use
or to determine whether at least one of two things is true, and use not to
change a true to a false or vice versa. For example, consider this code:

if country == "US" and age >= 21:
 print("You can legally drink alcohol")
else:
 if country != "US":
 print("I don't know about your country")
 else:
 print("You're too young to legally drink alcohol")

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

An Introduction to Python 187

The first if statement has an expression that compares two other
expressions, country == "US" and age >= 21. If country is US and age is greater
than or equal to 21, the expression simplifies to True and True. Since
both Booleans are true, this evaluates to simply True, and the code block
after the if statement runs, printing You can legally drink alcohol to
the screen.

The first else block determines what happens if that expression evalu-
ates to False. For example, if country is Italy, but age is 30, the expression
simplifies to False and True. Since at least one of the Booleans is false, this
evaluates to simply False, so the code block after else runs. Likewise, if
country is US but age is 18, then the expression simplifies to True and False.
This, too, evaluates to False, so the code block after else runs.

Inside the second else block is a simple if statement without Boolean
logic: if country isn’t US, the screen displays I don't know about your country.
Otherwise (meaning country is US), it displays You're too young to legally
drink alcohol.

Just like with math, you can use parentheses in if statements to com-
pare multiple expressions. For example, the drinking age in the US is 21
and the drinking age in Italy is 18. Let’s add Italy to this program, this time
incorporating an or operator:

if (country == "US" and age >= 21) or (country == "Italy" and age >= 18):
 print("You can legally drink alcohol")
else:
 if country not in ["US", "Italy"]:
 print("I don't know about your country")
 else:
 print("You're too young to legally drink alcohol")

In plain English, the first if statement tells the program that if your
country is the US and you’re at least 21, or if your country is Italy and you’re
at least 18, then you can legally drink. In either case, the whole expression
in the if statement is true, and the program prints You can legally drink
alcohol. If just one of those is true and not the other (for instance, if you’re
a 19-year-old Italian), the whole statement is still true. That’s what or means:
if either of the things you’re comparing is true, then the whole expression is
true.

Use the operator not to turn True values into False or False values into
True. For example:

if country == "US" and not age >= 21:
 print("Sorry, the drinking age in the US is 21")

You could replace not age >= 21 with age < 21 for the same result.

Exception Handling
Python programs may abruptly quit with an error called an exception. This is
typically known as “throwing an exception.” Exception handling ensures that

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

188 Chapter 7

your Python code will run another code block when your code catches an
exception, instead of quitting with an error.

You’ve seen a few examples of exceptions already in this chapter, like
when you tried dividing by zero (something you can’t do in math) or using
a variable that hasn’t been defined:

>>> 15 / 0
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero
>>> x * 10
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'x' is not defined

In these cases, Python threw a ZeroDivisionError exception and a NameError
exception, respectively.

You can write code that catches exceptions when they’re thrown, allow-
ing you to handle them gracefully. For example, let’s say you have a list of
names called names, and you want display the first name in the list:

>>> names = ["Alice", "Bob", "Charlie"]
>>> print(f"The first name is {names[0]}")
The first name is Alice

This code displays the value at names[0], or the first item in the names list.
This works as expected if there are a few names in the list. But what if names
is empty?

>>> names = []
>>> print(f"The first name is {names[0]}")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list index out of range

In this case, since the index 0 doesn’t exist because the list is empty,
Python throws an IndexError exception.

You can catch this exception using try and except statements, like this:

try:
 print(f"The first name is {names[0]}")
except:
 print("The list of names is empty")

This code first runs a try statement, followed by a code block. It
attempts to run the code in that block, and if it succeeds without hitting
an exception, it moves on to the next line of code after the except block.
However, if it hits an exception, then it runs the code in the except block
before moving on.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

An Introduction to Python 189

Here’s what it looks like when there’s no exception:

>>> names = ["Alice", "Bob", "Charlie"]
>>> try:
. . . print(f"The first name is {names[0]}")
. . . except:
. . . print("The list of names is empty")
. . .
The first name is Alice

In this case, the code block after the try statement ran successfully, so the
control flow moved on past the except block.

Here’s what it looks like when the exception is thrown, but the code
catches it and handles it gracefully:

>>> names = []
>>> try:
. . .   print(f"The first name is {names[0]}")
. . .  except:
. . .   print("The list of names is empty")
. . .
The list of names is empty

The code block after the try statement ran, but Python threw an
IndexError exception when it evaluated names[0]. Instead of crashing and
displaying an error, this code caught the exception and the except block
ran. In this case, the except statement runs if any exception is thrown in
the try block, but you can get more granular than that by using different
except statements for different types of exceptions. Consider the following
example:

try:
 --snip--
except ZeroDivisionError:
 # This catches ZeroDivisionError exception
 --snip--
except NameError:
 # This catches NameError exceptions
 --snip--
except IndexError:
 # This catches IndexError exceptions
 --snip--
except:
 # This catches any other exceptions that haven't been caught yet
 --snip--

By using except Exception:, where you replace Exception with a specific
exception you’re interested in catching, you can write different code to
handle different types of exceptions. You’ll revisit exception handling
in Chapter 10, when you learn how to work with JSON data, and in the
Chapter 14 case study on neo-Nazi chat logs.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

190 Chapter 7

Now that you know how control flow works in Python, you’ll practice
some basic Python syntax and make comparisons using if statements and
Boolean logic in the next exercise.

Exercise 7-4: Practice Loops and Control Flow
In social media slang, a common form of mockery is to employ alternating
caps, or switching from uppercase to lowercase and back to uppercase, when
quoting people. For example, here’s the text of a viral tweet from the now-
suspended Twitter account account @BigWangTheoryy:

failing classes
Me: “Can I get some extra credit?”
Professor: “cAn i GEt SomE eXtRa creDiT?”

In this exercise, you’ll write a Python script that starts with some text and
converts it into alternating caps style, using the control flow concepts you
learned in the previous section.

In your text editor, create a new file called exercise-7-4.py, and start by
defining the variable text, like this:

text = "One does not simply walk into Mordor"

The simplest way to write this script is to start with an empty string,
called alternating_caps_text, and then loop through the characters in text,
adding characters to alternating_caps_text one at a time and alternating
their capitalization as you do so. Add a second line to your script defining
that variable, like this:

alternating_caps_text = " "

Next, you’ll define a Boolean variable called should_be_capital. Each
time you loop through a character in text, you’ll use this Boolean to keep
track of whether the current character should be capital or lowercase. For
this example, start with a capital letter:

should_be_capital = True

Beneath that line, add the main part of the script:

for character in text:
 if should_be_capital:
 alternating_caps_text += character.upper()
 should_be_capital = False
 else:
 alternating_caps_text += character.lower()
 should_be_capital = True

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

An Introduction to Python 191

Using a for loop, this code loops through the characters in text, stor-
ing each character in the character variable. It then adds these characters to
alternating_caps_text, switching between upper- and lowercase.

During each iteration of the for loop, character is another character
in text, the variable containing the "One does not simply walk into Mordor"
string. The first time the code loops, character is O. When the code reaches
the if statement, should_be_capital evaluates to True for this character, so the
code block runs. The += operator adds character.upper() (or, the uppercase
version of character) to alternating_caps_text. Since the code began by adding
a capital letter, you want it to add a lowercase letter next, so you set should_be
_capital to False. The code block ends, and the code starts its second loop.

During the second iteration, character is n and should_be_capital evalu-
ates to False. When the code reaches the if statement, the expression
evaluates to False, so the else block runs. This is similar to the other block,
except that it appends the lowercase version of character, character.lower(),
to alternative_caps_text and sets should_be_capital back to True. So far,
alternating_caps_text is On.

During the third iteration, character is e and should_be_capital evaluates
to True. When the code reaches the if statement, the expression evaluates
to True, so that code block runs again, adding a capital E to alternating
_caps_text and setting should_be_capital to False again. The code continues
in this way for the rest of the characters in text. Note that the uppercase
and lowercase versions of the space character, " ".upper() and " ".lower(),
are identical. The upper() and lower() methods also don’t change punctua-
tion characters like ,, ., !, and so on.

When this for loop is finished, all you have left to do is display the value
of alternating_caps_text by adding this line to your script:

print(alternating_caps_text)

Your Python script is complete (you can also find a complete copy
at https://github​.com​/micahflee​/hacks​-leaks​-and​-revelations​/blob​/main​/chapter​-7​
/exercise​-7​-4​.py). Run your script. Here’s the output I get:

micah@trapdoor chapter-7 % python3 exercise-7-4.py
OnE DoEs nOt sImPlY WaLk iNtO MoRdOr

Now change the value of text and run the script again. For example, I
changed the value to "There are very fine people on both sides":

micah@trapdoor chapter-7 % python3 exercise-7-4.py
ThErE ArE VeRy fInE PeOpLe oN BoTh sIdEs

You’ve gained a beginner’s understanding of using lists and loops and
controlling the flow of execution. I’ll conclude the chapter with one more
fundamental programming skill: breaking your code down into simpler
chunks using functions.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

192 Chapter 7

Functions
The more complicated your programs get, the more important it is to break
the problems you’re trying to solve down into smaller chunks and work on
them individually. This allows you to focus on the bigger picture, using
those smaller chunks of code as building blocks. In this section, you’ll learn
how to do this using functions.

Functions, fundamental building blocks of programming, are reusable
chunks of code. They take arguments—the variables that you pass into a
function—as input, and can return a value after they finish running. You’ve
already used a few functions that come with Python, like print() and len(), but
you can also define your own function and use it as many times as you want
without having to rewrite that code. You’ll learn how to do that in this section.

The def Keyword
You can define a new function using the def keyword. For example, this
code defines a function called test(), which prints a string to your terminal:

>>> def test():
... print("this is a test function")
...
>>> test()
this is a test function

Function definition lines end with a colon and are followed by an
indented code block that defines exactly what the function does: in this
case, it displays the string this is a test function. This test() function
doesn’t include any arguments, which means every time you run it, it will do
the exact same thing.

Listing 7-2 defines a slightly more complicated function, sum(), that
adds two numbers together.

def sum(a, b):
 return a + b

Listing 7-2: Defining an example function

This new function takes a and b as arguments and returns the sum of
those two variables. For any function that takes more than one argument,
like this one, you separate the arguments with commas (,).

Each variable has a scope, which describes which parts of your code can
use that variable. The arguments of a function (in this case, a and b), as
well as any variables defined inside the function, have a scope that can be
accessed only by code in that function’s code block. In other words, you can
use these a and b variables only inside the sum() function, and they won’t be
defined outside of that code block.

You can think of defining a function as telling Python, “I’m making a
new function with this name, and here’s what it does.” However, the func-
tion itself won’t run until you call it. Consider the following Python script:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

An Introduction to Python 193

def sum(a, b):
 return a + b

red_apples = 10
green_apples = 6
total_apples = sum(red_apples, green_apples)

print(f"There are {total_apples} apples")

First, the code defines a function called sum() to be a code block with
just a return statement. This function doesn’t run yet. The code then defines
the red_apples variable, setting its value to 10, and the green_apples variable,
setting its value to 6.

The next line starts with total_apples =, but before Python can set
the value of that variable, it needs to learn what that value should be. To
do that, the code first calls the sum() function, passing in the arguments
red_apples and green_apples as a and b. Now that the code is finally calling
this function, return a + b runs. In this function call, a is red_apples and b is
green_apples. The function returns a + b, which is 16. Now that the sum() func-
tion has returned, the code defines a variable called total_apples, setting its
value to the return value of the sum() function, 16.

Finally, the code calls the print() function, passing in an f-string as an
argument, which displays the total_apples variable. It will display the mes-
sage There are 16 apples.

Default Arguments
Function definitions can also have default arguments, which means defining
their value is optional. If you haven’t passed in any values for them when
the function is called, the default value is used instead.

For example, consider this function, which, given a number and option-
ally a number of exclamation marks and question marks, prints a greeting
using its arguments:

def greet(name, num_exclamations=3, num_questions=2):
 exclamations = "!" * num_exclamations
 questions = "?" * num_questions
 print(f"Hello {name}{exclamations}{questions}")

The argument name is a positional argument, which means when you call
this function, the first argument you pass in always has to be name. However,
num_exclamations and num_questions are default arguments, so passing values
in for those is optional. The greet() function defines the strings exclamations
and questions and sets them to a series of exclamation points and question
marks. (In Python, when you multiply a string by a number, you get the
original string repeated multiple times; for example, "A" * 3 evaluates to
the string AAA.) The code then displays Hello, followed by the value of name,
followed by the number of exclamation points and question marks passed
into the function.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

194 Chapter 7

This function has one positional argument (name) and two default argu-
ments (num_exclamations and num_questions). You can call it just passing in
name, without passing values in for the default arguments, and they will auto-
matically be set to 3 and 2, respectively:

>>> greet("Alice")
Hello Alice!!!??

You can also keep the default value for one of the default arguments,
but choose a value for another. When you manually choose a value for a
default argument, you’re using a keyword argument. For example:

>>> greet("Bob", num_exclamations=5, num_questions=5)
Hello Bob!!!!!?????
>>> greet("Charlie", num_questions=0)
Hello Charlie!!!
>>> greet("Eve", num_exclamations=0)
Hello Eve??

The first function call uses keyword arguments for both num_exclamation
and num_questions; the second function call uses a keyword argument only
for num_questions and uses the default argument for num_exclamations; and the
third function call uses a keyword argument for num_exclamations and uses
the default argument for num_questions.

Return Values
Functions become a lot more useful when they take some input, do some com-
putation, and then return a value, known as the return value. The greet() func-
tion just described displays output, but it doesn’t return a value that I could
save in a variable or pass into further functions. However, the len() function
you used earlier takes input (a list or a string), does some computation (calcu-
lates the length of the list or string), and returns a value (the length).

Here’s an example of a function that takes a string s as an argument
and returns the number of vowels in the string:

def count_vowels(s):
 number_of_vowels = 0
 vowels = "aeiouAEIOU"
 for c in s:
 if c in vowels:
 number_of_vowels += 1

 return number_of_vowels

This function brings together many of the concepts covered in this
chapter so far: it defines the variable number_of_vowels as 0, then defines the
variable vowels as a string containing lowercase and uppercase English vow-
els. Next, it uses a for loop to loop through each character in s, the string
that’s passed into the function.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

An Introduction to Python 195

In each loop, the code uses an if statement to check whether the char-
acter is a vowel (since vowels contains both lowercase and uppercase letters,
this code considers both a and A to be vowels). If the character is a vowel,
the code increases the number_of_vowels variable by one. Finally, it returns
number_of_vowels, which equals however many vowels it counted in s.

Here are a few examples of calling this function and passing in differ
ent strings:

>>> count_vowels("THINK")
1
>>> count_vowels("lizard")
2
>>> count_vowels("zzzzzzz")
0
>>>

When you define a variable, you can set its value to the return value of a
function just by setting the variable equal to that function call:

>>> num_vowels_think = count_vowels("THINK")
>>> num_vowels_lizard = count_vowels("lizard")

This code defines the variable num_vowels_think and sets its value to the
return value of count_vowels("THINK"), or the number of vowels in the string
THINK. It also defines the variable num_vowels_lizard and sets its value to the
return value of count_vowels("lizard").

You can then use those variables to define new variables:

>>> total_vowels = num_vowels_think + num_vowels_lizard
>>> print(total_vowels)
3

This code adds those two variables together, saving their sum in a new
variable called total_vowels. It then prints the value of total_vowels to the
terminal.

When a return statement runs, the function immediately ends, so return
is also useful if you want to stop a function early. For example, the following
is_exciting() function loops through all the characters in a string s to check
whether the character is an exclamation point:

def is_exciting(s):
 for character in s:
 if character == "!":
 return True

 return False

If the function finds an exclamation point, it returns True, immediately
stopping the function. If it checks each character and finds no exclamation
points, it returns False. For example, if you call this function and pass in

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

196 Chapter 7

the string !@#$, the function will return True during the first iteration of the
loop and immediately end—it will never even get to the second iteration.
If you pass in the string hello!, it won’t return True until the last iteration of
the loop, since it doesn’t find the ! until the end of the string. And if you
pass in the string goodbye, it will loop through the entire string and not find
an exclamation point, so it will return False.

Docstrings
In self-documenting code, documentation is defined as part of the code
as docstrings rather than in a separate document. Docstrings are strings
enclosed by three double quotes (" "") or three single quotes ('") on either
side, placed as the first line of code after a function definition. When you
run the function, the program ignores the docstring, but Python can use
it to pull up documentation about the function on request. Docstrings are
optional, but they can help other people understand your code.

For example, here’s how you’d define the sum() function with a docstring:

>>> def sum(a, b):
... " ""This function returns the sum of a and b" ""
... return a + b

This is exactly the same as the sum() function defined in Listing 7-2,
except it includes a docstring.

If you run the help() function, passing in the name of a function (with-
out arguments) as the argument, the Python interpreter will display docu-
mentation for that function. For example, running help(sum) gives you the
following output:

Help on function sum in module __main__:

sum(a, b)
 This function returns the sum of a and b

The help() function works for any function, though it’s useful only if
the programmer who wrote that function included a docstring. In this case,
it tells you that it’s showing you help for the function called sum() in the
__main__ module. You’ll learn more about modules in Chapter 8, but they’re
essentially functions you write yourself. Try running help(print) or help(len)
to view the docstrings for the print() and len() functions.

Press Q to get out of the help interface and back to the Python
interpreter.

Exercise 7-5: Practice Writing Functions
In this exercise, you’ll turn the script you wrote in Exercise 7-4 into a func-
tion. You can then call this function multiple times, passing text into it so
that it returns an alternating caps version of that text each time.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

An Introduction to Python 197

In your text editor, create a new file called exercise-7-5.py and create a
new function called alternating_caps(), which takes in the argument text,
like this:

def alternating_caps(text):
 " ""Returns an aLtErNaTiNg cApS version of text" ""

Next, copy the code from Exercise 7-4 and paste it into this function,
making sure to indent it so that it aligns with the docstring. Delete the line
that defines the text value; instead, define text by passing it into the func-
tion as an argument. Also change the last line of the Exercise 7-4 code from
print(alternating_caps_text) to return alternating_caps_text. This function
shouldn’t display the alternating caps version of a string; it should create a
variable containing this version of a string and return it.

Your complete function should look like this (you can also find a copy
at https://github​.com​/micahflee​/hacks​-leaks​-and​-revelations​/blob​/main​/chapter​-7​
/exercise​-7​-5​.py):

def alternating_caps(text):
 " ""Returns an aLtErNaTiNg cApS version of text" ""
 alternating_caps_text = " "
 should_be_capital = True

 for character in text:
 if should_be_capital:
 alternating_caps_text += character.upper()
 should_be_capital = False
 else:
 alternating_caps_text += character.lower()
 should_be_capital = True

 return alternating_caps_text

Now that you have a function—a reusable chunk of code—you can use
it as many times as you want. Call this function a few times, remembering to
display its return value using the print() function, like this:

print("Hacks, Leaks, and Revelations")
print(alternating_caps("This book is amazing"))
print(alternating_caps("I'm learning so much"))

You can change the text that you pass in to the alternating_caps() func-
tion calls to whatever you want.

Here’s what it looks like when I run this script:

micah@trapdoor chapter-7 % python3 exercise-7-5.py
Hacks, Leaks, and Revelations
ThIs bOoK Is aMaZiNg
I'M LeArNiNg sO MuCh

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

198 Chapter 7

While the output of this script is displayed in a mocking tone, I hope
that the sentiment is true for you!

Summary
This chapter has covered several basic Python programming concepts
you’ll rely upon in future investigations. You learned to write simple Python
scripts that incorporate the major features of the language, including vari-
ables, if statements, for loops, and functions. You’re ready to continue your
Python programming journey in the next chapter, this time writing code to
directly investigate datasets.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

The basics of Python are behind you, but there’s still
a lot to learn. In this chapter, you’ll expand your pro-
gramming skills and start to directly investigate data-
sets, including BlueLeaks and chat logs leaked from
a pro-Putin ransomware gang after Russia invaded
Ukraine in 2022.

We’ll go over some more advanced Python topics, like how to use mod-
ules, how to traverse the filesystem, and how to create your own command
line programs in Python. You’ll write programs that look through all of
the files in a folder, including the hundreds of thousands of files in the
BlueLeaks dataset, and learn to add arguments to your programs. You’ll
also start working with a new type of variable in Python, the dictionary,
which will prove handy for working with data that’s too complex to store
in simple lists. As with the previous chapter, future chapters rely on your
understanding of the topics covered here.

8
W O R K I N G W I T H D A T A

I N P Y T H O N

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

200 Chapter 8

Modules
As you learned in Chapter 7, functions are reusable blocks of code that
you can run as many times as you want without having to rewrite any code.
Python modules are similar, but instead of making a single block of code
reusable, they make an entire Python file (or multiple files) reusable. You
can think of a module as a separate Python file that you can load into the
file you’re currently working on.

Python includes a wealth of features, but most of them aren’t available
to every Python script by default. Instead, they’re stored in built-in modules,
those that come with Python. Once you import a module into your script
using an import statement, you can access all of the functions, variables, and
other Python objects defined in that module using the syntax module_name
.item_name.

For example, the time module includes the function time.sleep() (pro-
nounced “time dot sleep”), which makes your program wait a given number
of seconds before continuing to the next line of code. Run the following
commands to import the time module and then have it tell Python to wait
five seconds:

>>> import time
>>> time.sleep(5)

Your Python interpreter should wait five seconds before the prompt
appears again.

Here are a few of the built-in modules I use the most:

os ​  ​Includes useful functions for browsing the filesystem, like
os.listdir() and os.walk(). It also includes the submodule os.path, which
is full of functions to inspect files. For example, it includes os.path
.isfile() and os.path.isdir(), which help determine whether a specific
path is a file or a folder.

csv ​  ​Lets you work with CSV spreadsheet data.

json ​  ​Lets you work with JSON data.

datetime ​  ​Includes useful Python features for working with dates and
times. For example, it allows you to convert strings like February 24,
2022 5:07:20 UTC+3 (the exact time that Russia invaded Ukraine) into a
timestamp that Python can understand and compare with other time-
stamps, then convert it back into strings of any format you choose.

You’ll use the os module extensively later in this chapter, the csv mod-
ule in Chapter 9, and the json module in Chapter 11. You’ll briefly see how
datetime works later in this chapter when you take a look at chat logs from a
ransomware gang, as well as in the Chapter 14 case study, where you’ll ana-
lyze leaked neo-Nazi chat logs.

As your programs get more complex, you might find it useful to split
them up into multiple files, with each file containing a different part of
your code. When you do this, you’re creating your own modules. The name

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Working with Data in Python 201

of the module is the same as its filename. For example, if you define some
functions in a file called helpers.py, another Python file can access those
functions by importing the helpers module. The helpers.py file could contain
the following code:

def get_tax(price, tax_rate):
 return price * tax_rate

def get_net_price(price, tax_rate):
 return price + get_tax(price, tax_rate)

This module contains two functions for calculating sales tax, get_tax()
and get_net_price(). The following Python script, price.py, imports
it like so:

import helpers
total_price = helpers.get_net_price(50, 0.06)
print(f"A book that costs $50, and has 6% sales tax, costs ${total_price}")

The first line, import helpers, makes the functions defined in the helpers
module accessible to this script. The second line calls the helpers.get_net
_price() function from that module and stores the return value in the vari-
able total_price. The third line displays the value of total_price.

Here’s what it looks like when I run this script:

micah@trapdoor module % python3 price.py
A book that costs $50, and has 6% sales tax, costs $53.0

Running the price.py script executes the code defined in the helpers
module. Inside that module, the get_net_price() function calls get_tax() and
uses its return value to calculate the net price, then returns that value back
into the price.py script.

Before you write your first advanced Python script in Exercise 8-1, let’s
look at the best way to start new Python scripts.

Python Script Template
I use the same basic template for all my Python scripts, putting my code
into a function called main(), then calling that function at the bottom of the
file. This isn’t required (you didn’t do this for any of the scripts you wrote in
Chapter 7, after all), but it’s a good way to organize your code. Here’s what
it looks like:

def main():
 pass

if __name__ == "__main__":
 main()

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

202 Chapter 8

The template defines the main() function with a pass statement that
tells Python, “Skip this line.” I later replace pass with the real body of
the script.

Next, the if statement tells Python under which conditions it should
run main(). Python automatically defines the __name__ variable, and the defi-
nition differs depending on what Python file is being run. If you’re running
the currently executing Python file directly, then Python sets the value of
__name__ to the __main__ string. But if you imported the currently executing
Python file from another script, Python sets the value of __name__ to the
name of the imported module. Using the example from the previous sec-
tion, if you run the helpers.py script directly, the value of __name__ inside that
script will be __main__, but if you run the price.py script, then the value of
__name__ will be __main__ inside price.py and the value of __main__ will be
helpers inside helpers.py.

In short, if you run your script directly, the main() function will run. But
if you import your script as a module into another script or into the Python
interpreter, the main() function won’t run unless you call it yourself. This
way, if you have multiple Python scripts in the same folder, you can have
one script import another script to call the functions defined within it with-
out worrying about calling the latter script’s main() function.

After I create this template script, I start filling in the main() function
with whatever I want the script to do. Putting the main logic of your script
inside a function allows you to use the return statement to end main() early,
which will quit the script early. You can’t use return when you’re not in a
function.

In the following exercise, you’ll put this into practice by writing a script
to start investigating BlueLeaks.

Exercise 8-1: Traverse the Files in BlueLeaks
To efficiently investigate datasets, you need to be able to write code that
looks through large collections—sometimes thousands or millions—of files
for you. In this exercise, you’ll learn various ways to traverse the filesystem
in Python using functions in the os module, working with the BlueLeaks
dataset. You’ll also rely on the foundational skills you learned in Chapter 7,
like using variables, for loops, and if statements.

As you read along and run the scripts, feel free to modify the code
however you’d like and try running those versions too. You might discover
revelations I didn’t think to look for.

List the Filenames in a Folder
Start by using os.listdir() to list the files in the BlueLeaks-extracted folder. In
your text editor, create a file called list-files1.py and enter this short script (or
copy and paste it from https://github​.com​/micahflee​/hacks​-leaks​-and​-revelations​
/blob​/main​/chapter​-8​/list​-files1​.py):

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Working with Data in Python 203

import os

def main():
 blueleaks_path = "/Volumes/datasets/BlueLeaks-extracted"
 for filename in os.listdir(blueleaks_path):
 print(filename)

if __name__ == "__main__":
 main()

First, the script imports the os module. It then defines the variable
blueleaks_path with the path of the BlueLeaks-extracted folder (update the
script to include the path of this folder on your own computer). The os.
listdir() function takes the path to the folder as an argument and returns a
list of filenames in that folder. The code uses a for loop to loop through the
output of os.listdir(blueleaks_path), displaying each filename.

N O T E 	 Windows paths include the backslash character (\), which Python strings consider
an escape character. For example, if your BlueLeaks-extracted folder is located
at D:\BlueLeaks-extracted, Python will misinterpret the string "D:\BlueLeaks-
extracted", assuming that \B is a special character. To escape your backslashes for
any Windows path you store as a string, use \\ instead of \. In this case, set the
blueleaks_path string to “D:\\BlueLeaks-extracted”.

Run this script. Here’s what the output looks like on my computer:

micah@trapdoor chapter-8 % python3 list-files1.py
211sfbay
Securitypartnership
acprlea
acticaz
akorca
--snip--

Next, you’ll try something slightly more advanced. Instead of just listing
the filenames in BlueLeaks, you’ll check each filename to see if it’s a folder,
and if so you’ll open each of those folders and count how many files and
subfolders they contain.

Count the Files and Folders in a Folder
Create a file called list-files2.py and enter the following code (or copy and
paste it from https://github​.com​/micahflee​/hacks​-leaks​-and​-revelations​/blob​/main​
/chapter​-8​/list​-files2​.py):

import os

def main():
 blueleaks_path = "/Volumes/datasets/BlueLeaks-extracted"
 1 for bl_folder in os.listdir(blueleaks_path):
 bl_folder_path = os.path.join(blueleaks_path, bl_folder)

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

204 Chapter 8

 2 if not os.path.isdir(bl_folder_path):
 continue

 3 files_count = 0
 folders_count = 0
 4 for filename in os.listdir(bl_folder_path):
 filename_path = os.path.join(bl_folder_path, filename)

 5 if os.path.isfile(filename_path):
 files_count += 1

 if os.path.isdir(filename_path):
 folders_count += 1

 6 print(f"{bl_folder} has {files_count} files, {folders_count} folders")

if __name__ == "__main__":
 main()

This script counts the number of files and folders it finds within each
BlueLeaks folder. It starts like list-files1.py does, importing os and defining
the blueleaks_path variable (remember to update the variable’s value to
match the correct path on your computer).

The first for loop cycles through the filenames in your BlueLeaks-
extracted folder, this time saving each filename in the bl_folder variable, so
its value will be something like miacx or ncric 1. The script then sets the
value of the new bl_folder_path variable accordingly. The os.path.join()
function connects filenames together to make complete paths. Its first argu-
ment is the starting path, and it adds all other arguments to the end of that
path. For example, if the value of bl_folder is miacx, then this function will
return the string /Volumes/datasets/BlueLeaks-extracted/miacx on my computer
(the output will be different if your blueleaks_path is different, or if you’re
using Windows and your filenames use backslashes instead of slashes).

Since you want to look inside bl_folder_path and count the number of
files and folders it contains, the script needs to check that it’s actually a
folder and not a file, using the os.path.isdir() function 2. If bl_folder_path
isn’t a folder, the script runs the continue statement. This statement, which
can run only inside of loops, tells Python to immediately continue on to the
next iteration of the loop. In short, if the script comes across a file instead
of a folder, it ignores it and moves on.

The script then prepares to count the number of files and folders
within each individual BlueLeaks folder as the code loops by defining the
variables files_count and folders_count with a value of 0 3.

A second for loop loops through the files in the BlueLeaks folder from
the first for loop, saving each filename in the filename variable 4. Inside
this loop, the script defines filename_path as the absolute path for the file-
name under consideration. For instance, if the value of filename is a string
like Directory.csv, then the value of filename_path would be a string like
/Volumes/datasets/BlueLeaks-extracted/211sfbay/Directory.csv.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Working with Data in Python 205

The script then checks to see if this absolute path is a file or a folder,
using the os.path.isfile() and os.path.isdir() functions 5. If the path is a
file, the script increments the files_count variable by 1; if it’s a folder, the
script increments folders_count by 1. When the second for loop finishes
running, these two variables should contain the total count of files and
folder for the BlueLeaks folder you’re currently looping through in the first
for loop. Finally, the script displays an f-string that shows these numbers 6.

Try running the script. The output should show how many files and
folders are contained in each BlueLeaks folder, potentially with the list of
folders in a different order:

micah@trapdoor chapter-8 % python3 list-files2.py
bostonbric has 506 files, 10 folders
terrorismtip has 207 files, 0 folders
ociac has 216 files, 1 folders
usao has 0 files, 84 folders
alertmidsouth has 512 files, 10 folders
chicagoheat has 499 files, 10 folders
--snip--

So far, you’ve combined various functions in the os module to make a
list of filenames in your BlueLeaks folder and check whether each name
actually refers to a file or to another folder. Now it’s time to learn to write
code that can also traverse the BlueLeaks folder’s nested folders.

Traverse Folders with os.walk()
Let’s say you want to write a program that displays all of the files in a folder
and its subfolders, and its subsubfolders, and so on. When you have nested
folders but don’t actually know how deep the folder structure goes, listing
all of the filenames just by using os.listdir(), os.path.isfile(), and os.path
.isdir() isn’t so simple. Python’s os.walk() function solves this problem.

The os.walk() function takes a path to a folder as an argument and
returns a list of tuples, or multiple values contained in a single value. To
define a tuple, you place all of the values, separated by commas, within
parentheses. For example, (3, 4) is a tuple, as is ("cinco", "seis", "siete").
Tuples can also contain mixed types like (1, "dos") and can contain any
number of values.

The os.walk() function returns a list of tuples where each tuple contains
three values:

(dirname, subdirnames, filenames)

where dirname is a string, subdirnames is a list of strings, and filenames is a list
of strings. For example, the following code loops through the return value
of os.walk(path):

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

206 Chapter 8

for dirname, subdirnames, filenames in os.walk(path):
 print(f"The folder {dirname} has subfolders: {subdirnames} and files: {filenames}")

When you use for loops to loop through lists, you normally assign just
a single variable to each item in the list. However, since each item is a tuple,
you can assign three variables to it: dirname, subdirnames, and filenames. In
each loop, the values for this set of variables will be different: the value of
dirname is the path to a folder, the value of subdirnames is a list of subfold-
ers inside that folder, and the value of filenames is a list of files inside that
folder.

For example, suppose you have a folder called example that contains
these subfolders and files:

example
├── downloads
│   ├── screenshot.png
│   └── paper.pdf
└── documents
 ├── work
 │ └── finances.xlsx
 └── personal

This folder has two subfolders: downloads (containing the files screenshot.
png and paper.pdf) and documents. The documents folder has its own subfold-
ers: work (containing finances.xlsx) and personal.

The following commands loop through the return value of os.walk("./
example"), where ./example is the path to this example folder, to find the values
of dirname, subdirnames, and filenames for each loop:

>>> for dirname, subdirnames, filenames in os.walk("./example"):
... print(f"The folder {dirname} has subfolders: {subdirnames} and files: {filenames}")
...

Running this command returns the following output:

The folder ./example has subfolders: ['documents', 'downloads'] and files: []
The folder ./example/documents has subfolders: ['personal', 'work'] and files: []
The folder ./example/documents/personal has subfolders: [] and files: []
The folder ./example/documents/work has subfolders: [] and files: ['finances.xlsx']
The folder ./example/downloads has subfolders: [] and files: ['paper.pdf', 'screenshot.png']

This code loops once for each folder, including all subfolders, with the
path to that folder stored in dirname. The list of subfolders in that folder is
stored in subdirnames, and the list of files is stored in filenames. Once you’ve
looped through the folder and all of its subfolders, the for loop ends.

Any time you need to traverse all of the files in a dataset that contains
lots of nested folders, you’ll want to use os.walk(). With a single for loop,
you’ll be able to write code that inspects each file in the entire dataset. The
os.walk() function has many uses, including figuring out which files are the
largest or smallest, as you’ll see next.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Working with Data in Python 207

Exercise 8-2: Find the Largest Files in BlueLeaks
In this exercise, you’ll use os.walk() to write a script that looks through all
the files, folders, and subfolders in BlueLeaks; measures the size of each file;
and displays the filenames for files over 100MB. This code allows you to loop
through all of the files in a folder, no matter how deep the folder structure.

Create a file called find-big-files.py and enter the following code (or copy
and paste it from https://github​.com​/micahflee​/hacks​-leaks​-and​-revelations​/blob​
/main​/chapter​-8​/find​-big​-files​.py):

import os

def main():
 blueleaks_path = "/Volumes/datasets/BlueLeaks-extracted"
 for dirname, subdirnames, filenames in os.walk(blueleaks_path):
 for filename in filenames:
 absolute_filename = os.path.join(dirname, filename)
 size_in_bytes = os.path.getsize(absolute_filename)
 size_in_mb = int(size_in_bytes / 1024 / 1024)
 if size_in_mb >= 100:
 print(f"{absolute_filename} is {size_in_mb}MB")

if __name__ == "__main__":
 main()

Inside the main() function, the script first defines the blueleaks_path vari-
able as the path of the BlueLeaks-extracted folder and loops through all of
the files in the entire BlueLeaks dataset using the os.walk() function. Inside
each loop in the first for loop are the dirname, subdirnames, and filenames
variables. Each item in the list that os.walk() returns represents a different
folder or subfolder in the BlueLeaks dataset, so by the time this loop fin-
ishes, the code will have traversed the entire dataset.

To find the biggest files, the next step is to look at each file with
another for loop, this time looping through filenames. Inside this second for
loop, the script defines absolute_filename to be the absolute path to the file-
name. Since dirname tells the script which folder it’s looking in, and filename
tells the script which file it’s looking at, the script passes these values into
os.path.join() to combine them, creating the absolute path to the filename.

A new function, os.path.getsize(), returns the size, in bytes, of the file
under consideration, and stores it in the variable size_in_bytes. The script
then converts this value from bytes to megabytes (storing that in the vari-
able size_in_mb) and checks if it’s greater than or equal to 100MB. If it is,
the output displays its filename and file size in megabytes with the print()
function.

Try running the script. It will take longer than the previous scripts in
this chapter, because this time, you’re measuring the size of every single file
in BlueLeaks. Here’s what the output looks like when I run it (your output
may be displayed in a different order):

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

208 Chapter 8

micah@trapdoor chapter-8 % python3 find-big-files.py
/Volumes/datasets/BlueLeaks-extracted/usao/usaoflntraining/files/VVSF00000/001.mp4 is 644MB
/Volumes/datasets/BlueLeaks-extracted/chicagoheat/html/ZA-CHICAGO HEaT_LR-20160830-034_Final
Files.pdf is 102MB
/Volumes/datasets/BlueLeaks-extracted/nmhidta/files/RFIF300000/722.pdf is 148MB
/Volumes/datasets/BlueLeaks-extracted/nmhidta/files/RFIF200000/543.pdf is 161MB
/Volumes/datasets/BlueLeaks-extracted/nmhidta/files/RFIF100000/723.pdf is 206MB
/Volumes/datasets/BlueLeaks-extracted/fbicahouston/files/VVSF00000/002.mp4 is 145MB
/Volumes/datasets/BlueLeaks-extracted/fbicahouston/files/PSAVF100000/009.mp4 is 146MB
/Volumes/datasets/BlueLeaks-extracted/fbicahouston/files/PSAVF100000/026.mp4 is 105MB
--snip--

The script should display the absolute paths of the 101 files in
BlueLeaks that are at least 100MB, along with each file’s size.

Third-Party Modules
In addition to built-in modules, Python also supports third-party modules
that you can easily incorporate into your own code. Most Python scripts
that I write, even simple ones, rely on at least one third-party module (when
a Python program depends on third-party modules, they’re called dependen-
cies). In this section, you’ll learn how to install third-party modules and use
them in your own scripts.

The Python Package Index (PyPI) contains hundreds of thousands of
third-party Python packages, or bundles of Python modules, and subpackages.
Pip, which stands for Package Installer for Python, is a package manager simi-
lar to Ubuntu’s apt or macOS’s Homebrew used to install packages hosted
on PyPI. You can search for packages on PyPI’s website (https://pypi​.org), then
install a package by running the python3 -m pip install package_name command.

For example, I frequently use a package called Click, which stands for
Command Line Interface Creation Kit. The click Python module makes it
simple to add command line arguments to your scripts. To see what hap-
pens when you try importing this module before you’ve installed it, open a
Python interpreter and run import click. Assuming you don’t already have
the package installed, you should see a ModuleNotFoundError error message:

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ModuleNotFoundError: No module named 'click'
>>>

Now exit the Python interpreter and install click with pip by running
the following command:

micah@trapdoor ~ % python3 -m pip install click
Collecting click
 Using cached click-8.1.3-py3-none-any.whl (96 kB)
Installing collected packages: click
Successfully installed click-8.1.3

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Working with Data in Python 209

Open the Python interpreter again and try importing Click once more:

>>> import click
>>>

If no error messages pop up, you’ve successfully imported the click
module, and its additional features are now available for you to use.

The command to uninstall a package is python3 -m pip uninstall
package_name. Try uninstalling click:

micah@trapdoor ~ % python3 -m pip uninstall click
Found existing installation: click 8.1.3
Uninstalling click-8.1.3:
 Would remove:
 /usr/local/lib/python3.10/site-packages/click-8.1.3.dist-info/*
 /usr/local/lib/python3.10/site-packages/click/*
Proceed (Y/n)? y
 Successfully uninstalled click-8.1.3

As you can see, when I ran this command, the output listed the files
that pip would need to delete to uninstall the click module, then asked if
I wanted to proceed. I entered Y and pressed ENTER, and the files were
deleted and the module uninstalled.

You can install multiple Python packages at once like so:

python3 -m pip install package_name1 package_name2 package_name3

The same is true of uninstalling.
It’s common to define the Python packages that your script requires

inside a file called requirements.txt, then install all of them at once with the
python3 -m pip install -r requirements.txt command. For example, suppose
in addition to using click, you want to use the HTTP client httpx to load
web pages inside Python and the sqlalchemy module to work with SQL data-
bases. To include all three in your Python script, first create a requirements
.txt file with each package name on its own line:

click
httpx
sqlalchemy

Then run the following command to install them simultaneously:

micah@trapdoor chapter-8 % python3 -m pip install -r requirements.txt
Collecting click
 Using cached click-8.1.3-py3-none-any.whl (96 kB)
Collecting httpx
 Using cached httpx​-0​.23​.0​-py3​-none​-any​.whl (84 kB)
--snip--
Successfully installed anyio-3.6.1 certifi-2022.9.24 click-8.1.3 h11-0.12.0 httpcore​-0​.15​.0
httpx-0.23.0 idna-3.4 rfc3986-1.5.0 sniffio-1.3.0 sqlalchemy-1.4.41

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

210 Chapter 8

As you can see, this command installs more than just those three
Python packages: rfc3986, certifi, sniffio, and so on are also included.
That’s because click, httpx, and sqlachemy have dependencies of their own.
For example, httpcore is a dependency of the httpx package, so it installs that
as well. To summarize, the requirements.txt file defines your project’s depen-
dencies, each of which might depend on its own list of packages.

N O T E 	 To learn more about how to use httpx and other Python modules to automate inter-
acting with websites, check out Appendix B. I recommend waiting until you complete
Chapters 7, 8, 9, and 11, however, since the instructions covered there rely on the
skills you’ll pick up in those chapters.

V IR T UA L EN V IRONMEN T S

It’s not unusual to have multiple versions of Python, and multiple versions of the
same dependencies for different projects, installed on the same computer. If you
routinely install Python packages with pip for various projects, this can get very
messy over time. For example, different projects might depend on different ver-
sions of the same module to work, but you can’t have two versions of a module
installed at the same time—at least not without virtual environments, which are
like stand-alone folders containing your Python dependencies for a specific
project. This way, different projects’ dependencies won’t trip each other up.

To keep things simple, this book doesn’t use virtual environments, and it
uses only pip to install Python packages. As long as you don’t have multiple
Python projects requiring specific versions of the few third-party modules this
book uses, you should be fine without using a virtual environment.

You can learn more about virtual environments at https://docs​.python​.org​
/3​/tutorial​/venv​.html. For larger Python projects, you might also consider using
Python package management programs such as Poetry (https://python​-poetry​
.org) or Pipenv (https://github​.com​/pypa​/pipenv), which handle the complicated
parts of keeping track of Python packages and virtual environments for you.

Now that you know how to install third-party modules, you’ll practice
using Click.

Exercise 8-3: Practice Command Line Arguments with Click
As you learned in the previous section, the Click package makes it simple to
add command line arguments to your scripts. You can use it to define vari-
ables to pass into your main() function from the terminal, without having
to define those variables in your code. In this exercise, you’ll learn how to
use Click by writing a sample script in preparation for using this module in
later exercises.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Working with Data in Python 211

First, install the Click package with pip again by running python3 -m pip
install click. Next, open your text editor and enter the following Python
script, exercise-8-3.py (or copy and paste it from https://github​.com​/micahflee​
/hacks​-leaks​-and​-revelations​/blob​/main​/chapter​-8​/exercise​-8​-3​.py):

import click

@click​.command()
@click.argument("name")
def main(name):
 """Simple program that greets NAME"""
 print(f"Hello {name}!")

if __name__ == "__main__":
 main()

First, the script imports the click module. It then runs a few decorators,
function calls that begin with @ and add functionality to another func-
tion you’re about to define—the main() function, in this case. The @click​
.command() decorator tells Click that main() is a CLI command, and the
@click.argument("name") decorator tells Click that this command has a CLI
argument called name.

Next, the script defines the main() function, which takes name as an argu-
ment. This function has a docstring, Simple program that greets NAME. Click
uses this docstring for its commands when it builds the output for --help, as
you’ll see shortly. The main() function simply displays a string with the name
you passed in as an argument.

Finally, the script calls the main() function. Notice that even though
main() requires an argument (name), the script doesn’t explicitly pass that
argument in when calling the function. This is where the magic of the Click
decorators comes in. When the script calls main(), Click will figure out what
arguments it needs to pass in, find their values from the CLI arguments,
and pass them in for you.

Run the script as follows:

micah@trapdoor chapter-8 % python3 exercise-8-3.py
Usage: click-example.py [OPTIONS] NAME
Try 'click-example.py --help' for help.

Error: Missing argument 'NAME'.

When you run the program, if you don’t pass in the correct CLI argu-
ments, Click tells you what you did wrong. As you can see, you’re missing
the required NAME argument. Click also tells you that you can get help by
running the script again with the --help argument.

Try running the --help command:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

212 Chapter 8

micah@trapdoor chapter-8 % python3 exercise-8-3.py --help
Usage: click-example.py [OPTIONS] NAME

 Simple program that greets NAME

Options:
 --help Show this message and exit.

This time, the output shows a description of the program based on the
docstring. Any CLI program that uses Click will display the docstring for
the command when you run it with --help.

Try running the command again, this time passing in a name. For
example, here’s what happens when I pass in Eve as the name:

micah@trapdoor chapter-8 % python3 exercise-8-3.py Eve
Hello Eve!

N O T E 	 You can read more about using Click at https://click​.palletsprojects​.com.

Avoiding Hardcoding with Command Line Arguments
As you’ve seen in previous chapters, CLI arguments let you run the same
program in many different ways, targeting different data. For example, in
Chapter 4, you used the du command to estimate the disk space of a folder
by adding the folder’s path as an argument. In du -sh --apparent-size path,
the arguments are -sh, --apparent-size, and path.

The du command would be much less useful if it could only measure
disk space for a single hardcoded folder. Hardcoding means embedding
information, like a path, directly into source code. You can avoid hardcod-
ing anything in your CLI programs by having the user provide this informa-
tion as arguments when running them.

Passing paths into scripts, rather than hardcoding them, makes for a
better user experience. In previous exercises in this chapter, you hardcoded
the path to your copy of the BlueLeaks dataset into your Python scripts. If
you were to pass the appropriate path in as an argument, however, other
people could use your script without editing it—they could just pass in their
path when they ran it.

Using arguments rather than hardcoding can also make your scripts
more universally useful. For example, in Exercise 8-2, you wrote a script to
find all of the files that are at least 100MB in the BlueLeaks dataset. Using
CLI arguments, you could make this script work for any dataset you get your
hands on, not just BlueLeaks, and for any minimum file size, allowing you
to run it in a variety of situations. You’d just need to pass in the dataset path
and the minimum file size as CLI arguments. You’ll try this out in the next
exercise.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Working with Data in Python 213

Exercise 8-4: Find the Largest Files in Any Dataset
In this exercise, you’ll modify the script you wrote in Exercise 8-2 to make it
work for any dataset, and for any minimum file size, using CLI arguments.
In the following chapters you’ll write simple Python scripts that use Click
for CLI arguments, so you can provide the paths to the datasets you’ll be
working with.

Create a new file called exercise-8-4.py, and copy and paste the exer-
cise-8-2.py code into it. Next, make the following modifications to the code,
highlighted in bold (or find the full modified script at https://github​.com​
/micahflee​/hacks​-leaks​-and​-revelations​/blob​/main​/chapter​-8​/exercise​-8​-4​.py):

import os
import click

@click​.command()
@click.argument("path")
@click.argument("min_file_size", type​=click​.INT)
def main(path, min_file_size):
 """Find files in PATH that are at least MIN_FILE_SIZE MB big"""
 for dirname, subdirnames, filenames in os.walk(path):
 for filename in filenames:
 absolute_filename = os.path.join(dirname, filename)
 size_in_bytes = os.path.getsize(absolute_filename)
 size_in_mb = int(size_in_bytes / 1024 / 1024)
 if size_in_mb >= min_file_size:
 print(f"{absolute_filename} is {size_in_mb}MB")

if __name__ == "__main__":
 main()

This code imports the click module at the top of the file. Next, it adds
Click decorators before the main() function: @click​.command() makes the
main() function a Click command, and @click.argument() adds path and
min_file_size as CLI arguments. The script specifies with type​=click​.INT
that the min_file_size argument should be an integer, or a whole number, as
opposed to a string. Then it adds path and min_file_size as arguments to the
main() function and adds a docstring that describes what this command does.

The new script uses CLI arguments instead of hardcoded values. It
deletes the line that defines the blueleaks_path variable, and in the os.walk()
function call, it changes blueleaks_path to just path, which is the CLI argu-
ment. Finally, it changes 100 in size_in_mb >= 100 to min_file_size.

You can now use this program to find big files in any folder in the
BlueLeaks dataset or elsewhere. For example, here’s what it looks like when
I search for all files that are at least 500MB in /Applications on my Mac:

micah@trapdoor chapter-8 % python3 exercise-8-4.py /Applications 500
/Applications/Dangerzone.app/Contents/Resources/share/container.tar.gz is 692MB
/Applications/Docker.app/Contents/Resources/linuxkit/services.tar is 577MB

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

214 Chapter 8

As you can see, I have only two apps installed that include files this big:
Dangerzone and Docker Desktop.

Now that you’ve seen how to add CLI arguments to your Python scripts
using Click, you should be able to avoid hardcoding information like data-
set paths in your future programs.

Next, we’ll switch gears and explore a new powerful type of Python
variable called dictionaries.

Dictionaries
In the course of your investigations, sometimes you’ll need to keep track of
data with more structure than a simple list. To do so, you can use Python
dictionaries. Instead of a collection of items, a dictionary (dict for short) is a
collection of keys that map to values. Keys are labels that you use to save or
retrieve information in a dictionary, and values are the actual information
being saved or retrieved. Nearly every Python script I write that deals with
data uses dictionaries. In this section, you’ll learn how to define dictionar-
ies, get values from them, add values to them, and update existing values in
them.

Defining Dictionaries
Dictionaries are defined using braces ({ and }), sometimes referred to as curly
brackets. Inside the braces is a list of key/value pairs in the format key: value,
where each pair is separated from the next by commas—for example,
{"country": "Italy", "drinking_age": 18}. For longer dictionaries, you can
make your code more readable by putting each key/value pair on its own line.

Listing 8-1 shows an example dictionary stored in the variable capitals.

capitals = {
 "United States": "Washington, DC",
 "India": "New Delhi",
 "South Africa": "Cape Town",
 "Brazil": "Brasília",
 "Germany": "Berlin",
 "Russia": "Moscow",
 "China": "Beijing"	
}

Listing 8-1: A dictionary stored in the capitals variable

In this case, the keys are country names and the values are the capitals
of those countries.

Each key in a dictionary can have only one value. If you try to set the
same key more than once, Python will save the version you last set. For
example, if you define a dictionary and use the name key more than
once, the dictionary will overwrite the previous value with the most
recent one:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Working with Data in Python 215

>>> test_dict = {"name": "Alice", "name": "Bob", "hobby": "cryptography"}
>>> print(test_dict)
{'name': 'Bob', 'hobby': 'cryptography'}

However, you can also use lists, or other dictionaries, as values:

>>> test_dict = {"names": ["Alice", "Bob"], "hobby": "cryptography"}
>>> print(test_dict)
{'names': ['Alice', 'Bob'], 'hobby': 'cryptography'}

In this case, the value for the key names is ['Alice', 'Bob'], which itself is
a list. You can use a combination of lists and dictionaries to organize pretty
much any type of data, no matter how complicated, allowing you to more
easily work with it in Python.

Getting and Setting Values
To retrieve an item you’ve stored inside a dictionary, add square brackets
containing the item’s key to the end of the dictionary name. If you try to
use a key you haven’t defined, your script will crash with a KeyError. For
example, here’s how to look up the capitals of certain countries in the
capitals dictionary:

>>> capitals["United States"]
'Washington, DC'
>>> capitals["China"]
'Beijing'
>>> capitals["Kenya"]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'Kenya'

When you run capitals["Kenya"], Python throws the error message
KeyError: 'Kenya'. This means that Kenya isn’t a valid key in the capitals
dictionary. You can see that the only keys defined in Listing 8-1 are United
States, India, South Africa, Brazil, Germany, Russia, and China. Because Kenya
isn’t a key in this dictionary, you can’t retrieve its value.

You can add new key/value pairs to a dictionary, or update an existing
one, like this:

>>> capitals["Kenya"] = "Nairobi"
>>> capitals["United States"] = "Mar-a-Lago"
>>> print(capitals)
{'United States': 'Mar-a-Lago', 'India': 'New Delhi', 'South Africa': 'Cape Town', 'Brazil':
'Brasília', 'Germany': 'Berlin', 'Russia': 'Moscow', 'China': 'Beijing', 'Kenya': 'Nairobi'}

This code defines a new key, Kenya, with the value Nairobi. It also updates
an existing key, United States, to have the value Mar-a-Lago, overwriting its
old value, which used to be Washington, DC.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

216 Chapter 8

Navigating Dictionaries and Lists in the Conti Chat Logs
You can combine dictionaries and lists in a single flexible data structure
that allows you to represent a wide variety of information. If you’re writing
Python code to work with datasets, chances are you’re going to need both.
You might directly load the data in this format, or you might create your
own dictionaries and lists to store aspects of the data.

To describe how to use data structures that include a combination of
dictionaries and lists, I’ll use an example from a real dataset. The day after
Russia invaded Ukraine on February 24, 2022, the notorious Russian ran-
somware gang Conti, known for hacking companies around the world and
extorting millions of dollars from them, published a statement on its web-
site throwing its full support behind the Russian government. It threatened
any “enemy” who launched cyberattacks against Russia with retaliation
against their “critical infrastructure.” Three days later, a Ukrainian security
researcher anonymously leaked 30GB of internal data from Conti: hacking
tools, training documentation, source code, and chat logs. The Conti chat
logs originally came in the form of JSON files, which is structured data,
so it can be stored inside dictionaries and lists. When you load JSON files
into Python, they’ll automatically be loaded as a combination of lists and
dictionaries.

In this section, you’ll look through some of these chat logs in order to
practice working with real leaked data stored in dictionaries and lists. Using
Python code, you’ll learn how to navigate these structures to access spe-
cific pieces of data as well as how to quickly loop through the chat logs and
select just the parts you’re interested in.

Exploring Dictionaries and Lists Full of Data in Python
You can download the complete Conti dataset from vx-underground (https://
share​.vx​-underground​.org​/Conti​/), a website that hosts a database of malware
and other hacking information. However, for this section, you’ll use just one
file from the dataset, 2022-02-24-general.json, which the Ukranian security
researcher extracted from a chat system called RocketChat.

Download 2022-02-24-general.json from https://github​.com​/micahflee​/hacks​
-leaks​-and​-revelations​/blob​/main​/chapter​-8​/2022​-02​-24​-general​.json. Open a ter-
minal, change to the folder where you stored this file, and open a Python
interpreter. Load this file into a dictionary with the following commands:

>>> import json
>>> with open("2022-02-24-general.json") as f:
... data = json.load(f)
...

This code uses the json module and loads the data from
2022-02-24-general.json into the data variable. The chat logs from this file are
too long to display in their entirety, but Listing 8-2 shows a snippet of the
value of the data dictionary that demonstrates its structure:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Working with Data in Python 217

{
 "messages": [1
 {
--snip--
 },
 {
 "_id": "FmFZbde9ACs3gtw27",
 "rid": "GENERAL",
 "msg": "Некоторые американские сенаторы предлагают помимо соцсетей блокировать в
Россииещё и PornHub!",
 "ts": "2022-02-24T22:02:38.276Z",
 "u": {"_id": "NKrXj9edAPWNrYv5r", "username": "thomas", "name": "thomas"},
 "urls": [],
 "mentions": [],
 "channels": [],
 "md": [
 {
 "type": "PARAGRAPH",
 "value": [
 {
 "type": "PLAIN_TEXT",
 "value": "Некоторые американские сенаторы предлагают помимо
соцсетейблокировать в России ещё и PornHub!",
 }
],
 }
],
 "_updatedAt": "2022-02-24T22:02:38.293Z",
 },
 {
--snip--
 },
],
 "success": True 2
}

Listing 8-2: Conti chat logs from RocketChat

The data variable is a dictionary with two keys, messages and success. You
access the value of the messages key, which is a list of dictionaries, using the
expression data["messages"] 1. You can tell that the value of data["messages"]
is a list because it’s enclosed in square brackets ([and]), and you can tell
that the items inside it are dictionaries because they’re enclosed in braces
({ and }). Almost all of the data in this file is stored in this list.

Each dictionary in the data["messages"] list describes a chat message.
This snippet of code includes only one of the dictionaries, the ninth chat
message in the list (I snipped out the first eight messages, so you can’t tell
that it’s the ninth without looking at the original file). You can access the
dictionary that contains that specific chat message using the expression
data["messages"][8]. (Remember, in programming we start counting at 0, not
1, so the first item is at index 0, the second item is at index 1, and so on.) If
you run the command print(data["messages"][8]) to display the dictionary

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

218 Chapter 8

for the ninth message, the output should match the message in the listing.
Notice that just as you place index numbers within brackets to select
from lists, you place keys within brackets to select from dictionaries, like
["messages"] or ["success"].

You can also access the value of the success key with data["success"]. Its
value is the Boolean True 1. I’m not entirely sure what this means, but I sus-
pect that the success key was left over from whatever system the Ukrainian
researcher used to export these chat messages from RocketChat, confirm-
ing that exporting the data was successful and that there were no errors.

The file from which I loaded this code contained 604 different chat
messages, each in its own dictionary, that were sent in Conti’s #general
RocketChat channel on February 24, 2022. I discovered that this list has 604
items by measuring its length with the len() function, like this:

>>> len(data["messages"])
604

The dictionary for each chat message has many keys: _id, rid, msg, u,
urls, and so on.

You can find out what types of data these keys contain using the for
key_variable in dictionary syntax, and you can determine a variable’s data
type using the type() function. Try this out using the following commands:

>>> for key in data["messages"][8]:
... print(f"{key}: {type(data['messages'][8][key])}")
...

This command loops through the data["messages"][8] dictionary and
stores each key in the key variable. Then, using the print() function and an
f-string, it displays the key (key) and the type of data stored in that key, as
shown in the following output:

_id: <class 'str'>
rid: <class 'str'>
msg: <class 'str'>
ts: <class 'str'>
u: <class 'dict'>
urls: <class 'list'>
mentions: <class 'list'>
channels: <class 'list'>
md: <class 'list'>
_updatedAt: <class 'str'>

In the output, the values at the _id, rid, msg, ts, and _updatedAt keys are
all strings. The value at the u key is a dictionary. The value at the urls,
mentions, channels, and md keys are lists.

You can get the value of the data at the key using data['messages'][8]
[key]. Remember that to retrieve the value of a key in a dictionary, you put
the key in square brackets. In this case, the key itself is stored in the vari-
able key, so you can get its value by putting key inside the square brackets.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Working with Data in Python 219

To find out what type of data that is, then, just pass the value into the type()
function.

Selecting Values in Dictionaries and Lists
When working with datasets, you often end up with structures like this: a
mess of dictionaries and lists that you need to make sense of. Being able to
select the exact values you’re looking for is an important skill. To practice
navigating through dictionaries and lists, take a closer look at the value of
just one of these keys, the md key, by running the following command:

>>> print(data["messages"][8]["md"])

In the output, you can tell that this value is a list because it’s sur-
rounded by square brackets:

[{'type': 'PARAGRAPH', 'value': [{'type': 'PLAIN_TEXT', 'value': 'Некоторые американские
сенаторы предлагают помимо соцсетей блокировать в России ещё и PornHub!'}]}]

The list’s single item is a dictionary, which is surrounded by braces. The
dictionary has a type key whose value is PARAGRAPH, as well as a value key. The
value of value is another list with one item containing another dictionary;
that dictionary itself contains type and value keys, where the value of type is
PLAIN_TEXT.

These data structures can have as many sublists and subdictionaries
as you’d like. To select specific values, after the data variable keep adding
square brackets containing an index (if it’s a list) or a key (if it’s a diction-
ary) until you get to the value you’re looking for. For example, use the fol-
lowing command to access the value of the value key in the inner dictionary
within the inner list, which is in another value key in the outer dictionary in
the outer list:

>>> print(data["messages"][8]["md"][0]["value"][0]["value"])

You already know that data["messages"][8] is a dictionary that repre-
sents a chat message. To find the value of the md key in that dictionary, you
include["md"] in the command. As you can tell from inspecting the struc-
ture in Listing 8-2, this is a list with one item, so adding [0] selects that
item. This item is a dictionary, and you select the value of its value key by
adding ["value"]. This item is another list with one item, so you again add
[0] to select that one item. This is yet another dictionary, so you can select
the value of the final inner value key by adding another ["value"].

You should get the following output:

Некоторые американские сенаторы предлагают помимо соцсетей блокировать в России ещё и PornHub!

In English, the message that you just displayed says, “Some American
Senators suggest blocking PornHub in Russia in addition to social net-
works!” It was posted right after Russia started its invasion of Ukraine, and

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

220 Chapter 8

US and European leaders immediately began imposing economic sanctions
on Russia. After invading Ukraine, the Russian government censored access
to Twitter and Facebook from the Russian internet. Rumors spread that
PornHub, a popular American porn website, would block access to Russian
users (though this didn’t happen). This same user followed up their first
post with, “That’s it, we’re done,” and then “They will take away our
last joys!”

Analyzing Data Stored in Dictionaries and Lists
Whenever I work with any sort of structured data, I find myself looping
through a list of dictionaries and selecting specific pieces of data. As long as
you understand its structure, you can write your own similar code to quickly
pull out the relevant information, no matter what dataset you’re working
with. For example, you might want to view the chat logs in the format
timestamp username: message in order to hide the unimportant sections of
data so that you can directly copy and paste the relevant parts into machine
translation systems like DeepL or Google Translate. Run the following com-
mands to display all of the messages in data["messages"] in that format:

>>> for message in data["messages"]:
... print(f"{message['ts']} {message['u']['username']}: {message['msg']}")
...

You should get the following output:

--snip--
2022-02-24T22:02:49.448Z thomas: последние радости у нас заберут
2022-02-24T22:02:44.463Z thomas: ну все, приплыли)
2022-02-24T22:02:38.276Z thomas: Некоторые американские сенаторы предлагают помимо соцсетей
блокировать в России ещё и PornHub!
2022-02-24T22:00:00.347Z thomas:
2022-02-24T21:58:56.152Z rags: угу :(
--snip--

Since data["messages"] is a list, each time the for loop in this command
runs, it updates the value of the message variable to a different item in that
list. In this case, each item is a different dictionary. Inside the for loop, the
print() function displays three values: the timestamp (message['ts']), the
username (message['u']['username']), and the message itself (message['msg']).

You can change this command to display whatever information you’d
like from each message. Maybe you’re interested is the user’s ID rather than
their username. In that case, you could display message['u']['_id'].

The previous output shows the same messages about PornHub just dis-
cussed, as well as a message posted just before that from another user, rags.
If you’re interested in seeing only the messages posted by rags, view those by
running the following commands:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Working with Data in Python 221

>>> for message in data["messages"]:
... if message["u"]["username"] == "rags":
... print(f"{message['ts']} {message['u']['username']}: {message['msg']}")
...

This code is similar to the previous example. A for loop loops through
each message in data["messages"], and then a print() statement displays spe-
cific pieces of information from that message. This time, though, each loop
also contains an if statement. Each time the code finds another message, it
checks to see if the username is rags, and if so, displays the message. Other
wise, it moves on to the next message. You should get the following output:

2022-02-24T22:08:49.684Z rags: давай бро спокойной ночи
2022-02-24T22:03:50.131Z rags: сча посмотрю спасиб =)
2022-02-24T21:58:56.152Z rags: угу :(
--snip--

Finally, suppose you want to figure out how many messages each person
posted, perhaps to find the most active poster in the #general chat room
on this day. The simplest way to do this is to create a new empty dictionary
yourself and then write code to fill it up. Run the following command to
create an empty dictionary called user_posts:

>>> user_posts = {}

The keys in this dictionary will be usernames and the values will be the
number of posts from that user. Fill up the user_posts dictionary with the
following code:

>>> for message in data["messages"]:
... username = message["u"]["username"]
... if username not in user_posts:
... user_posts[username] = 1
... else:
... user_posts[username] += 1
...
>>>

Again, this code uses a for loop to loop through the messages. Next,
it defines the username variable as message["u"]["username"], the username of
the person who posted the message the code is currently looping through.
Next, using an if statement, the code checks to see if this username is
already a key in the user_posts dictionary. (It’s not checking to see if the
string username is a key, but rather if the value of the username variable, like
thomas or rags, is a key.)

If this user doesn’t exist in the user_posts dictionary, the program
adds a key to this dictionary and sets the value at that key to 1, with the
line user_posts[username] = 1. Otherwise, it increases the value by 1, with

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

222 Chapter 8

user_posts[username] += 1. By the time the for loop finishes running, the
user_posts dictionary should be complete. The keys should be all of the user-
names found in the messages, and the values should be the total number of
messages for that user.

Use the following code to display the information inside the user_posts
dictionary, viewing the data you just collected:

>>> for username in user_posts:
... print(f"{username} posted {user_posts[username]} times")
...

You should get the following output:

weldon posted 64 times
patrick posted 62 times
rags posted 38 times
thomas posted 58 times
ryan posted 2 times
kermit posted 151 times
biggie posted 39 times
stanton posted 12 times
angelo posted 102 times
Garfield posted 61 times
jaime posted 2 times
grem posted 5 times
jefferson posted 1 times
elijah posted 6 times
chad posted 1 times

These are the users who posted in the Conti’s #general chatroom, in
their RocketChat server, on the day Russia invaded Ukraine in 2022. The
user kermit posted 151 times, more than any other user.

In these examples, you looped through hundreds of chat messages, but
the same concepts would work with millions or billions of messages or with
data representing any sort of information.

R E V EL AT IONS IN T HE CON T I DATA SE T

This dataset includes far more chat logs than just a few messages worrying
about a porn site getting blocked. The example I used in this section included
the chat logs for the #general channel for a single day, but the logs for this
RocketChat server span from July 24, 2021, to February 26, 2022. The leak
also includes many logs from the chat service known as Jabber, including some
where Conti hackers discuss hacking a contributor to the OSINT-based investi-
gative journalism group Bellingcat. The hackers were hoping to find information

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Working with Data in Python 223

about Alexei Navalny, the imprisoned Russian opposition leader who survived
an FSB assassination attempt.

The anonymous Ukrainian researcher who leaked the Conti dataset told
CNN, “I cannot shoot anything, but I can fight with a keyboard and mouse.”
According to CNN, a few weeks after leaking the data, the researcher success-
fully slipped out of Ukraine during Russia’s invasion, laptop in hand.

From reading the chat logs, I learned that many of the Conti hackers are
Russian ultranationalists. Many of them believe Putin’s conspiratorial lies about
Ukraine, like that it’s run by a “neo-Nazi junta,” while at the same time making
antisemitic comments about Volodymyr Zelenskyy, Ukraine’s Jewish president.
You can see my full reporting on this dataset at https://theintercept​.com​/2022​/
03​/14​/russia​-ukraine​-conti​-russian​-hackers​/.

In this section, you learned how to work with flexible data structures
that combine dictionaries and lists, including how to pick out specific ele
ments that you’re interested in, and how to quickly traverse them by loop-
ing through them. These skills will often prove useful when you’re writing
Python scripts to help you analyze data.

Now that you’re familiar with data structures that combine dictionaries
and lists, it’s time to create your own to map out the CSV files in BlueLeaks.

Exercise 8-5: Map Out the CSVs in BlueLeaks
Each folder in BlueLeaks includes data from a single hacked law enforce-
ment website in the form of hundreds of CSV files. These files contain some
of the most interesting information in all of BlueLeaks, such as the contents
of bulk email that fusion centers sent to local cops, or “suspicious activ-
ity reports.” In this exercise, you’ll construct a map of the contents of the
dataset.

By manually looking in different BlueLeaks folders, I noticed that each
folder seems to have a file called Company.csv (each containing different
content), but only one folder, ncric, has a file called 911Centers.csv. Clearly,
not all of the BlueLeaks sites have the same data. Which CSV files are in
every folder in BlueLeaks, which are in some folders, and which are unique
to a single folder? Let’s write a Python script to find out.

As with most programming problems, there are multiple ways you
could write a script that answers this question. If you feel comfortable
enough with Python by now that you’d like a challenge, try writing one on
your own. Otherwise, follow along with this exercise. Either way, the pro-
gram must meet the following requirements:

•	 Make the script accept a CLI argument called blueleaks_path using Click.

•	 Create an empty dictionary called csv_to_folders. Your script should
fill this dictionary with data. The keys should be CSV filenames, and

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

224 Chapter 8

the values should be lists of BlueLeaks folders that contain this CSV
data.

•	 Loop through all of the files and folders in blueleaks_path. For each
folder, loop through all of the files it contains. For each CSV file, add
data to the csv_to_folders dictionary.

•	 Display the contents of the csv_to_folders dictionary.

In each step that follows, I’ll quote a snippet of code, explain how it
works, and give you a chance to run it as is. You’ll then add more features to
that code and run it again. It’s good practice to write code in small batches,
pausing frequently to test that it works as you expect. This will help you
catch bugs early, making the process of debugging much simpler.

Accept a Command Line Argument
Create an exercise-8-5.py file and enter the Python template:

def main():
 pass

if __name__ == "__main__":
 main()

Next, instead of hardcoding the path to the BlueLeaks data like you did
in Exercise 8-2, let’s use Click to pass in the path as a command line argu-
ment, blueleaks_path. To do so, make the following modifications to your
code (the added syntax is highlighted in bold):

import click

@click​.command()
@click.argument("blueleaks_path")
def main(blueleaks_path):
 """Map out the CSVs in BlueLeaks"""
 print(f"blueleaks_path is: {blueleaks_path}")

if __name__ == "__main__":
 main()

This code modifies the template to import the click module, adds the
correct decorators before the main() function, adds the blueleaks_path argu-
ment to the main() function, and adds a simple docstring to the main() func-
tion so that running this script with —help will be more useful. Finally, it
includes a line to display the value of blueleaks_path, so that you can confirm
the code is working when you run it.

Try running your script with —help to see if the help text works, and with
a value for blueleaks_path to see if the argument is successfully sent to the
main() function:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Working with Data in Python 225

micah@trapdoor chapter-8 % python3 exercise-8-5.py --help
Usage: exercise-8-4.py [OPTIONS] BLUELEAKS_PATH

 Map out the CSVs in BlueLeaks

Options:
 --help Show this message and exit.
micah@trapdoor chapter-8 % python3 exercise-8-5.py test-path
blueleaks_path is: test-path

If your output looks like this, everything is working correctly so far.

Loop Through the BlueLeaks Folders
Now that you can use the blueleaks_path CLI argument, make the following
modifications to your code to have it loop through all of the folders it finds
in that path:

import click
import os

@click​.command()
@click.argument("blueleaks_path")
def main(blueleaks_path):
 """Map out the CSVs in BlueLeaks"""
 for folder in os.listdir(blueleaks_path):
 blueleaks_folder_path = os.path.join(blueleaks_path, folder)

 if os.path.isdir(blueleaks_folder_path):
 print(f"folder: {folder}, path: {blueleaks_folder_path}")

if __name__ == "__main__":
 main()

First, you import the os module in order to be able to list all of the files
 in the BlueLeaks-extracted folder using the os.listdir() function. Inside the
main() function, a for loop loops through the return value of os.listdir
(blueleaks_path), the list of filenames inside the folder at blueleaks_path.

Inside the loop, the code defines blueleaks_folder_path as the path of the
specific BlueLeaks folder for the current loop. For example, if the value of
blueleaks_path is /Volumes/datasets/BlueLeaks-extracted, and at this point in the
for loop, the value of folder is icefishx, then the value of blueleaks_folder_path
will be /Volumes/datasets/BlueLeaks-extracted/icefishx.

You want to look inside subfolders in the BlueLeaks-extracted folder, not
inside files. If there are any files in that folder, you want to skip them. To
meet these requirements, the code includes an if statement that checks
whether blueleaks_folder_path is actually a folder. Finally, the code displays
the current value of folder and blueleaks_folder_path.

Run your script again. This time, pass in the real path to your BlueLeaks-
extracted folder:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

226 Chapter 8

micah@trapdoor chapter-8 % python3 exercise-8-5.py /Volumes/datasets/BlueLeaks-extracted
folder: bostonbric, path: /Volumes/datasets/BlueLeaks-extracted/bostonbric
folder: terrorismtip, path: /Volumes/datasets/BlueLeaks-extracted/terrorismtip
folder: ociac, path: /Volumes/datasets/BlueLeaks-extracted/ociac
--snip--

The output should show that the folder variable holds just the name of
the folder, like bostonbric, and the blueleaks_folder_path variable includes the
full path to that folder, like /Volumes/datasets/BlueLeaks-extracted/bostonbric.
When you run this on your own computer, you may see these values in a dif
ferent order than what’s shown here.

Fill Up the Dictionary
You now have a script that accepts blueleaks_path as a CLI argument and
then loops through every folder in that path. This code creates the csv_to
_folders dictionary and starts to fill it up with data:

import click
import os

@click​.command()
@click.argument("blueleaks_path")
def main(blueleaks_path):
 """Map out the CSVs in BlueLeaks"""
 csv_to_folders = {}

 for folder in os.listdir(blueleaks_path):
 blueleaks_folder_path = os.path.join(blueleaks_path, folder)

 if os.path.isdir(blueleaks_folder_path):
 for filename in os.listdir(blueleaks_folder_path):
 if filename.lower().endswith(".csv"):
 if filename not in csv_to_folders:
 csv_to_folders[filename] = []

 csv_to_folders[filename].append(folder)

if __name__ == "__main__":
 main()

Your goal with this script is to map out which CSV files are in which
BlueLeaks folders. To store this data, the code creates the empty dictionary
csv_to_folders at the top of the main() function. The next step is to fill up
that dictionary.

The code loops through all of the filenames in blueleaks_path, checking
each to see if it’s a folder. Removing the print() statement in the previous
iteration of the code, this code instead adds a second for loop that loops
through all of the files in that specific BlueLeaks folder.

In this second for loop, an if statement checks whether the filename
ends in .csv. This if statement calls lower() method on the filename string,

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Working with Data in Python 227

which returns a lowercase-only version of the string. The code then calls
the endswith() method on that lowercase string, which returns a Boolean
describing whether the string ends with the string that was passed in. If the
string filename ends with .csv, .CSV, .cSv, the lower() method will convert the
file extension to .csv, and endswith() will return True. If filename ends with
anything else, like .docx, then endswith() will return False.

Each time the code following this if statement runs, it means the pro-
gram has found a CSV (called filename) in the current BlueLeaks folder
(called folder). You want csv_to_folders to be a dictionary where the keys are
CSV filenames and the values are lists of folders. This code checks to see if
the key filename has been created in csv_to_folders, and if it hasn’t, creates it
and set its value to an empty list ([]). Finally, after the code has confirmed
that the filename key has been created and is a list, it appends the value of
folder to that list.

These last lines are tricky, so let’s dig in a little more. The first time the
script comes across a CSV filename (like CatalogRelated.csv), the script sets
the value of that key in csv_to_folders to an empty list. If the same filename
exists in another BlueLeaks folder later on, the expression filename not in
csv_to_folders will evaluate to False (meaning csv_to_folders["CatalogRelated
.csv"] already exists), so the code following the if statement won’t run.
Finally, the code appends folder, the name of the BlueLeaks folder it’s cur-
rently looking in, to the list of folders that include that filename.

Pause and try running the script so far:

micah@trapdoor chapter-8 % python3 exercise-8-5.py /Volumes/datasets/BlueLeaks-extracted

This should take a moment to run but displays nothing, since you’re
not yet using the print() function anywhere. The code is simply creating the
csv_to_folders dictionary and filling it up with data.

Display the Output
By the time the previous version of the script runs, the csv_to_folders dic-
tionary should contain a complete set of CSV filenames, mapped to the
BlueLeaks sites where they were found. The following code should show you
what the program found:

import click
import os

@click​.command()
@click.argument("blueleaks_path")
def main(blueleaks_path):
 """Map out the CSVs in BlueLeaks"""
 csv_to_folders = {}

 for folder in os.listdir(blueleaks_path):
 blueleaks_folder_path = os.path.join(blueleaks_path, folder)

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

228 Chapter 8

 if os.path.isdir(blueleaks_folder_path):
 for filename in os.listdir(blueleaks_folder_path):
 if filename.lower().endswith(".csv"):
 if filename not in csv_to_folders:
 csv_to_folders[filename] = []

 csv_to_folders[filename].append(folder)

 for filename in csv_to_folders:
 print(f"{len(csv_to_folders[filename])} folders | {filename}")

if __name__ == "__main__":
 main()

The added code loops through all of the keys (each a CSV filename) in
csv_to_folders, then displays the number of BlueLeaks folders that contain
that file (len(csv_to_folders[filename])) along with the filename itself.

You can find this final script at https://github​.com​/micahflee​/hacks​-leaks​-and​
-revelations​/blob​/main​/chapter​-8​/exercise​-8​-5​.py. When you run it, the output
should look like this:

micah@trapdoor chapter-8 % python3 exercise-8-5.py /Volumes/datasets/BlueLeaks-extracted
161 folders | CatalogRelated.csv
161 folders | Blog.csv
161 folders | EmailBuilderOptions.csv
--snip--
1 folders | HIDTAAgentCategory.csv
1 folders | Lost.csv
1 folders | AgencyContacts.csv

Since this script displays the number of folders at the beginning of each
line of output, you can pipe the output into sort -n to sort it numerically in
ascending order, like so:

micah@trapdoor chapter-8 % python3 exercise-8-5.py /Volumes/datasets/BlueLeaks-extracted | sort
-n
1 folders | 1Cadets.csv
1 folders | 1Mentors.csv
1 folders | 1Unit.csv
--snip--
161 folders | VideoDownload.csv
161 folders | VideoHistory.csv
161 folders | VideoOptions.csv

Most of the CSV files are in either a single folder or all 161 folders.
However, there are a few exceptions: Donations.csv should be in 10 folders,
SARs.csv should be in 25, and so on. This information would have taken you
many hours of busywork to find manually.

At this point, you’ve learned the basics of navigating the filesystem in
Python. You’ve seen how to loop through folders using os.listdir(), loop
through entire folder structures using os.walk(), and look up information

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Working with Data in Python 229

about the files and folders you find. In the next section, you’ll learn
how to actually read the contents of a file you find and create new files
yourself.

Reading and Writing Files
To follow the rest of this book, you’ll need to know one more major
Python concept: how to read and write files. During a data investigation,
you’ll almost certainly need to read the contents of files, especially CSV
and JSON files. You’ll also probably want to be able to create new files,
by calculating some data of your own and saving it to a spreadsheet, for
example. In this section you’ll learn how to open files and write or read
content to them.

In programming, to work with a file, you first need to open it and spec-
ify the mode—that is, whether you’re planning on reading from or writing to
this file. To open an existing file and access its contents, open it for reading
using mode r. To create a new file and put data in it, open it for writing
using mode w.

Opening Files
To prepare to work with a file, whether for writing or reading, you use the
built-in Python function open(). To open it for reading, you use the follow-
ing code:

with open("some_file.txt", "r") as f:
 text = f.read()

This code uses a with statement, which tells Python that after the open()
function is done running, it should set the variable f to that function’s
return value. The f variable is a file object, a type of variable that allows you
to read or write data to a file. The first argument to the open() function is a
path, and the second argument is the mode, which in this example is "r" for
reading.

In the code block after the with statement, you can call methods on f to
interact with the file. For example, f.read() will read all of the data in the
file and return it, in this case storing it in the text variable.

To open a file for writing, you set the mode to "w" like so:

with open("output.txt", "w") as f:
 f.write("hello world")

The open() function returns the file object f. To write data into the file,
you can use the f.write() method. Here, this code is opening a file called
output.txt and writing the string hello world to it.

In the next two sections, you’ll learn more about using f.write() to
write to files, and f.read() and f.readlines() to read from files.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

230 Chapter 8

Writing Lines to a File
Text files are made up of a series of individual characters. Consider a text
file with these contents:

Hello World
Hola Mundo

You could also represent the entire contents of this file as a Python
string:

"Hello World\nHola Mundo\n"

The first character of the string is H, then e, then l, and so on. The
12th character (counting the space), \n, is a special character known as a
newline that represents a break between lines. As with shell scripting, the
backslash is the escape character in Python, so a backslash followed by
another character represents a single special character.

Newlines are used to write lines to a file. Try running these commands
in your Python interpreter:

>>> with open("output.txt", "w") as f:
... f.write("Hello World\n")
... f.write("Hola Mundo\n")
...
12
11

The 12 and 11 in the output represent the number of bytes written. The
first f.write() call wrote 12 bytes, because the string Hello World takes
11 bytes of memory: it has 11 characters, plus 1 for the newline character.
The second call wrote 11 bytes, since Hola Mundo takes 10 bytes of memory,
plus 1 for the newline character.

In your terminal, use the following command to view the file you just
wrote:

micah@trapdoor ~ % cat output.txt
Hello World
Hola Mundo

If you had written the same code but without the newlines, the output
would have been Hello WorldHola Mundo, with no line breaks.

Reading Lines from a File
Run the following command to read the file you just created:

>>> with open("output.txt", "r") as f:
... text = f.read()
...

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Working with Data in Python 231

This code reads all of the data from the file and saves it in the string
text. In fact, this might look familiar: earlier in this chapter, in the
“Exploring Dictionaries and Lists Full of Data in Python” section, we used
similar code to load the leaked Conti chat logs into a Python dictionary.

Since splitting text files into multiple lines is so common, file objects
also have a convenient method called readlines(). Instead of reading
all of the data into a file, it reads only one line at a time, and you can
loop over the lines in a for loop. Try this out by running the following
commands:

>>> with open("/tmp/output.txt", "r") as f:
... for line in f.readlines():
... print(line)
...
Hello World

Hola Mundo

This code opens the file for reading, then loops through each line in
the file. Each line is stored in the variable line, then displayed with the
print() function. Because the line variable in each loop ends in \n (for
example, the first line is Hello World\n, not Hello World), and the print() func-
tion automatically adds an extra \n, the output shows an extra hard return
after each line.

If you don’t want to display these extra newlines, you can use the strip()
method to get rid of any whitespace (spaces, tabs, or newlines) from the
beginning and end of the string. Run the same code, but this time strip out
the newline characters on each line:

>>> with open("/tmp/output.txt", "r") as f:
... for line in f.readlines():
... line = line.strip()
... print(line)
...
Hello World
Hola Mundo

You’ll practice the basics of how to read and write files in Python in the
following exercise.

Exercise 8-6: Practice Reading and Writing Files
In Exercise 7-5, you wrote a function that converts a string to an alternating
caps version, like This book is amazing to ThIs bOoK Is aMaZiNg. To practice your
newfound reading and writing files, in this exercise, you’ll write a script to
create an alternating caps version of all of the text in an entire text file.

If you’d like a challenge, you can try programming your own script to
meet the following requirements:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

232 Chapter 8

•	 Accepts two CLI arguments, input_filename and output_filename, using
Click.

•	 Opens the file input_filename for reading and loads its contents into the
string text.

•	 Opens the file output_filename for writing and saves the alternating caps
version of text to that new file.

Otherwise, follow along with my explanation of the following code,
which implements this iNcReDiBlY uSeFuL command line program.

Start by copying the alternating_caps() function that you wrote in
Exercise 7-5 into a new Python script called exercise-8-6.py. Next, make the
modifications highlighted in bold here (or copy the final script at https://
github​.com​/micahflee​/hacks​-leaks​-and​-revelations​/blob​/main​/chapter​-8​/exercise​-8​-6​.py):

import click

def alternating_caps(text):
 """Returns an aLtErNaTiNg cApS version of text"""
 alternating_caps_text = ""
 should_be_capital = True

 for character in text:
 if should_be_capital:
 alternating_caps_text += character.upper()
 should_be_capital = False
 else:
 alternating_caps_text += character.lower()
 should_be_capital = True

 return alternating_caps_text

@click​.command()
@click.argument("input_filename")
@click.argument("output_filename")
def main(input_filename, output_filename):
 """Converts a text file to an aLtErNaTiNg cApS version"""
 with open(input_filename, "r") as f:
 text = f.read()

 with open(output_filename, "w") as f:
 f.write(alternating_caps(text))

if __name__ == "__main__":
 main()

This code first imports the click module, used for the CLI arguments,
and then defines the alternating_caps() function. Again, the main() function
is a Click command, but this time it takes two arguments, input_filename and
output_filename.

Once the main() function runs, the section for reading and writing
files runs. The code opens input_filename for reading and loads all of the

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Working with Data in Python 233

contents of that file into the string text. It then opens output_filename for
writing and saves the alternating caps version of that string into the new
file. It does so by running alternating_caps(text), which takes text as an
argument and returns its alternating caps version, and then passes that
return value directly into f.write(), writing it to the file.

To demonstrate how this script works, try running it on the famous
“To be, or not to be” soliloquy from Hamlet. First, save a copy of the solilo-
quy found at https://github​.com​/micahflee​/hacks​-leaks​-and​-revelations​/blob​/main​
/chapter​-8​/shakespeare​.txt to a file called shakespeare.txt. Here are the original
contents of shakespeare.txt, displayed using the cat command:

micah@trapdoor chapter-8 % cat shakespeare.txt
To be, or not to be, that is the question:
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take Arms against a Sea of troubles,
And by opposing end them: to die, to sleep
No more; and by a sleep, to say we end
--snip--

Next, pass that filename into your script to create an alternating caps
version of that file. Here’s what happens when I do it:

micah@trapdoor chapter-8 % python3 exercise-8-5.py shakespeare.txt shakespeare-mocking.txt
micah@trapdoor chapter-8 % cat shakespeare-mocking.txt
To bE, oR NoT To bE, tHaT Is tHe qUeStIoN:
wHeThEr 'TiS NoBlEr iN ThE MiNd tO SuFfEr
tHe sLiNgS AnD ArRoWs oF OuTrAgEoUs fOrTuNe,
Or tO TaKe aRmS AgAiNsT A SeA Of tRoUbLeS,
aNd bY OpPoSiNg eNd tHeM: tO DiE, tO SlEeP
No mOrE; aNd bY A SlEeP, tO SaY We eNd
--snip--

First, I ran the script, passing in shakespeare.txt as input_filename and
shakespeare-mocking.txt as output_filename. The script itself displayed no out-
put (it doesn’t include any print() statements), but it did create a new file.
I then used cat to display the contents of that new file, which is indeed an
alternating caps version of Hamlet’s soliloquy.

Summary
Congratulations on making it through a crash course in the fundamentals
of Python programming! You’ve learned how to bring extra functionality
to your scripts with built-in and third-party Python modules. You’ve also
learned how to make your own CLI programs using Click, how to write
code that traverses the filesystem, how to work with structured data using
dictionaries and lists, and how to read and write files.

You’ll use these skills throughout the following chapters as you dig
through various datasets, uncovering revelations you’d never discover

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

234 Chapter 8

otherwise. In the next chapter, you’ll write Python programs that loop
through rows in the BlueLeaks CSV spreadsheets, transforming the data
into a more workable format. You’ll get practice writing the content of law
enforcement bulk email messages to files, and you’ll use Python to create
your own CSV spreadsheets.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

PART IV
S T R U C T U R E D D A T A

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

The BlueLeaks dataset is full of an overwhelming
number of documents, but it’s not immediately obvi-
ous where to start or how to make sense of the data
they contain. Before beginning an investigation, I
needed a way to efficiently determine the significance
of these documents. After manually digging through
many files, I discovered that the context I needed
was in the hundreds of CSV spreadsheets in each
BlueLeaks folder. In this chapter, you’ll learn how to
investigate CSV files like these yourself.

You’ll view CSVs in both graphical spreadsheet and text editing soft-
ware, write Python code to loop through the rows of a CSV, and save
CSVs of your own. You’ll then put this knowledge into practice by digging
through the CSVs in the BlueLeaks dataset, focusing on data from the
NCRIC fusion center. This is the data I myself have primarily focused on

9
B L U E L E A K S , B L A C K L I V E S

M A T T E R , A N D T H E
C S V F I L E F O R M A T

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

238 Chapter 9

since BlueLeaks was published years ago, but there are over a hundred
other folders in the dataset full of newsworthy revelations. By the end of
this chapter, you’ll have the tools to continue investigating these folders, as
well as similar datasets loaded with CSVs.

Installing Spreadsheet Software
The most user-friendly way to view the contents of a CSV file is to open
it using spreadsheet software such as LibreOffice Calc, Microsoft Excel,
Apple Numbers, or Google Sheets. Spreadsheet software is a great option
to see the data you’re dealing with in an organized way, and it can also be a
powerful tool to analyze CSVs. However, in many cases, depending on the
data you’re working with, you’ll need to go beyond such software and write
custom code to work with CSVs.

If you already have a favorite spreadsheet program, you can use that
for the projects in this book. If not, I suggest using LibreOffice Calc since
it’s free, open source, and available for Windows, macOS, and Linux; it’s
also what I’ve used for the examples in this chapter. Installing LibreOffice
(https://www​.libreoffice​.org) installs a whole suite of office software, including
Calc.

Alternatively, Microsoft Excel is a good option, but it costs money and
isn’t available for Linux. If you have a Mac, you can also use Apple’s free
spreadsheet software, Numbers. Finally, you can consider using Google
Sheets, the spreadsheet feature of Google Docs. Google Docs is free and
works in Windows, macOS, and Linux, since it’s web-based. The problem
with Google Sheets and any other cloud-based spreadsheet software (like
the web-based version of Microsoft Excel) is that you have to upload a copy
of your CSV file to a third-party service before you can view it. For public
datasets like BlueLeaks, this is okay. However, it’s better to use desktop
spreadsheet software when you’re dealing with more sensitive datasets.

Spreadsheet software, when used with more complicated spreadsheet
formats such as Microsoft Excel files (.xlsx) or ODF Spreadsheet files (.ods),
is powerful and feature-rich. It can do math, like summing all of the val-
ues in a column, and visualize data, like creating pie charts or line graphs.
None of these features are supported in CSV files, though, so I won’t discuss
them in this book.

Once you have your spreadsheet software installed, you’re ready to
learn more about the structure of CSV files.

Introducing the CSV File Format
You can think of spreadsheets as tables of data. The top row normally
has headers for each column, and the rest of the rows represent data that
matches those headers. CSV is the simplest spreadsheet format. You can
open CSV files using software like Microsoft Excel or LibreOffice Calc, or
you can view them in a text editor and use CLI tools like grep to search them.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Blueleaks, Black Lives Matter, and the CSV File Format 239

BlueLeaks is full of CSV files, but the original data from the fusion
center websites wasn’t in that format. The BlueLeaks dataset includes
source code for those websites, and by reviewing that I discovered that each
site had actually stored its data in a Microsoft Access database file. The
BlueLeaks hacker exported tables from the Access databases and saved that
data in CSV format before leaking it to DDoSecrets.

CSV files are simply text files made up of multiple lines representing
rows in a table. Each line contains a list of values, usually separated by com-
mas (hence the name comma-separated values), with each value representing
a cell in the spreadsheet. Sometimes a spreadsheet row is referred to as a rec
ord, with each cell in that row referred to as a field in that record. Typically,
each row contains the same number of cells.

Here’s an example CSV file called city-populations.csv:

City,Country,Population
Tōkyō,Japan,37400000
Delhi,India,28514000
Shanghai,China,25582000
São Paulo,Brazil,21650000
Mexico City,Mexico,21581000
Cairo,Egypt,20076000

You can find a copy of this file in the book’s GitHub repository at https://
github​.com​/micahflee​/hacks​-leaks​-and​-revelations​/blob​/main​/chapter​-9​/city​-populations​
.csv. I’ll use this file as an example CSV later in this chapter, so download it
now (or reenter it) and save it in a folder for this chapter’s exercises.

Table 9-1 shows the data from the city-populations.csv file organized into
rows and columns.

Table 9-1: City Populations

City Country Population

Tōkyō Japan 37,400,000

Delhi India 28,514,000

Shanghai China 25,582,000

São Paulo Brazil 21,650,000

Mexico City Mexico 21,581,000

Cairo Egypt 20,076,000

When a value includes commas, it must be surrounded by quotation
marks. For example, the values “Hello, World” and “Hola, Mundo” both
contain commas. Here’s how they look in a CSV file along with fields for
their respective languages:

Language,Greeting
English,"Hello, World"
Español,"Hola, Mundo"

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

240 Chapter 9

Table 9-2 shows this data organized into rows and columns.

Table 9-2: Translations of “Hello, World”

Language Greeting

English Hello, World

Español Hola, Mundo

It’s common to enclose every value in quotes, regardless of whether or
not it includes commas. Here’s another version of the previous spreadsheet,
now with every value in quotes:

"Language","Greeting"
"English","Hello, World"
"Español","Hola, Mundo"

As with shell scripting and Python programming, you can escape
quotes in CSVs by using a backslash and double quotes (\"). For example,
the value "Not I," said the cow contains both quotes and commas, so to add
it to a CSV file you would surround the entire value in quotes and escape
the inner quotes, like this:

"\"Not I,\" said the cow"

Because the CSV file format is so simple, it’s one of the most commonly
used spreadsheet formats, especially for anyone working with spreadsheets
using code. Like CSVs, SQL databases also store tabular data (data that can
be represented in a table), so CSVs are a convenient format for exporting
tables from them. In fact, all of the CSVs in BlueLeaks are exported SQL
tables from the databases that power law enforcement and fusion center
websites. (You’ll learn about SQL databases in Chapter 12; for now, you’ll
work with the exported CSVs.)

Now that you understand a bit about the CSV file format, let’s take a
look at some real CSV data from BlueLeaks.

Exploring CSV Files with Spreadsheet Software
and Text Editors

In your graphical file browser (such as Explorer in Windows or Finder in
macOS), browse to the BlueLeaks-extracted folder on your USB disk. You’ll
start by examining the dediac subfolder, which contains data from the
Delaware Information Analysis Center. Scroll through the files in this
folder—nearly all of them are CSVs—and open Documents.csv in your graph-
ical spreadsheet software.

When you open a file in LibreOffice Calc or other spreadsheet soft-
ware, you’ll likely be presented with a window asking you to confirm the

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Blueleaks, Black Lives Matter, and the CSV File Format 241

settings for this CSV. Figure 9-1 shows the window that pops up when I
open Documents.csv in LibreOffice Calc on my Mac.

Figure 9-1: The LibreOffice Calc Text Import settings

The most important setting to select is the correct separator character,
which is, in this and most cases, a comma (,). Some CSVs separate values
with characters other than commas, like semicolons (;) or tabs (\t), though
this is rare. In the future if you aren’t sure which character your CSV uses,
you can open the CSV in a text editor first to check.

Click OK to open the spreadsheet. This one should open quickly, but
sometimes CSVs are huge—hundreds of mega- or gigabytes—so you may
need to wait several seconds, or even minutes, for a large CSV to finish
loading.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

242 Chapter 9

Figure 9-2 shows the Documents.csv spreadsheet in LibreOffice Calc.

Figure 9-2: Viewing Documents.csv in LibreOffice Calc

This spreadsheet has 23 columns and 6,934 rows (one of which is the
header row). At the top of the file, the dates in the DateEntered column
are from 2011. You can find the most recent data in a spreadsheet by sort-
ing it, either in ascending (from smaller to bigger) or descending (bigger
to smaller) order. I’ll show you how to sort this spreadsheet in LibreOffice
Calc, but the instructions should be similar for other spreadsheet software
and apply to any spreadsheet you want to sort.

First, since you don’t want to sort the header row, click ViewFreeze
CellsFreeze First Row. This should freeze the headers row, so now when
you scroll up and down, the headers will remain at the top of the file.

Next, you need to pick which column you want to sort by. To see the
most recent documents at the top, sort by DateEntered descending. Before
sorting this column, you must tell the spreadsheet software that those fields
are dates with times and specify how they’re formatted (otherwise, the soft-
ware might assume they’re strings and sort them alphabetically). Click on
column D to select all of the cells in that column and then click DataText
to Columns. This pops up a window that lets you define what type of data is
in each column. At the bottom of the window, click the DateEntered column
and choose Date (MDY) from the Column Type drop-down, because the
dates in this data are formatted with month, then date, then year. Click OK.

Now that the spreadsheet software knows the correct format for the
DateEntered cells, you can sort it by this column. Click the DateEntered
header cell to select it (make sure not to select the whole column, just the
header cell) and then click DataSort Descending. This should reorder all
of the rows so that the row with the most recent DateEntered is at the top
and the one with oldest is at the bottom. In Documents.csv, the most recent
documents are from June 6, 2020, during the Black Lives Matter protests.
Some of the most recent document titles include “Special Bulletin Planned
Protests 060620 1800 UPDATE,” “ANTIFA Sub Groups and Indicators –
LES,” and “ANTIFA - Fighting in the Streets.”

I often use graphical spreadsheet programs to search CSVs. In
LibreOffice, as well as in other spreadsheet programs, you can find specific

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Blueleaks, Black Lives Matter, and the CSV File Format 243

cells using the Find feature. Press ctrl-F (or, in macOS, ζ-F), enter your
search term, and press enter. This should search every cell in the spread-
sheet for your term. You can use this method to find a row containing, for
example, a specific ID number or email address.

When you close the spreadsheet, don’t save your changes. It’s good
practice to avoid changing original documents in a dataset. If you want
to keep a record of your changes, save the file as a copy in either the ODF
Spreadsheet (.ods) or Excel (.xlsx) format.

Now let’s look at the same CSV in a text editor instead of spreadsheet
software. Here are the first few lines of the Documents.csv file, as viewed in a
text editor like VS Code:

DocumentID,DocFilename,Author,DateEntered,SortOrder,DocTitle,Description,ShortDescription,
PageIdentifier,Keywords,DocumentCategoryID,URLLaunchNewBrowser,URL,Featured,YoutubeLink,
YoutubeVideoName,FrontPageText,YouTubeStartTime,DocFileName2,PreviewImage,ForceSaveAsDialog,
OpenInIframe,DeleteDate
84,"DDF00000\084.pdf",,"10/21/11 13:40:33",,"Daily Roll-Call Bulletin 102111",,,52,,36,0,,0,,,,
,,"DPI00000\084.png",0,0,
85,"DDF00000\085.pdf",,"10/24/11 13:40:33",,"Daily Roll-Call Bulletin 102411",,,79,,36,0,,0,,,,
,,"DPI00000\085.png",0,0,
86,"DDF00000\086.pdf",,"10/25/11 13:40:33",,"Daily Roll-Call Bulletin 102511",,,86,,36,0,,0,,,,
,,"DPI00000\086.png",0,0,
--snip--

Because text editors show you only the text when you view a CSV file,
without lining up the columns like spreadsheet software does, it’s less clear
which value matches to which header for each row. There’s no simple way to
manipulate the data, either—you can’t sort it by DateEntered like you can
in LibreOffice Calc or Microsoft Excel. However, it’s simple to write code
that loads the data from CSVs into dictionaries, allowing you to manipulate
it in any way you choose, as you’ll do later in this chapter.

Now that you’re familiar with the structure of CSVs, you’re ready to see
how I began my investigation into the BlueLeaks dataset.

How I Started Investigating BlueLeaks
I didn’t even realize that my local police intelligence agency, the Northern
California Regional Intelligence Center (NCRIC, pronounced “nick-rick”),
existed until I discovered it in the BlueLeaks dataset in June 2020. In this
section I describe how I went about my investigation into BlueLeaks, what I
discovered in the NCRIC portion of the dataset, and a specific revelation
I found in one of the NCRIC CSV files.

Picking a Fusion Center to Focus On
After downloading BlueLeaks, I indexed it in The Intercept’s Intella server
to make it easier to search. This allowed me and journalists I worked with
to quickly search it for keywords and find interesting documents. However,
I could tell that searching for keywords would only get me so far. There

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

244 Chapter 9

was so much data that if I only searched terms like Black Lives Matter, I was
bound to miss a lot of it. Moreover, the searches I did make often led me to
CSVs, which would take more work to untangle.

BlueLeaks was split into hundreds of folders, each one belonging
to a different law enforcement organization. Since almost all of these
organizations were unfamiliar to me, though, I couldn’t tell from the names
which folder belonged to which organization. I started my own spreadsheet
to keep track of this, manually adding rows for each folder as I matched
organizations and their websites to it. Eventually, I realized that I could
automate this with a Python script.

I also used shell scripting to figure out which folders had the most
data, because I guessed they were the largest or most active fusion centers.
I quickly discovered that the ncric folder, one of the largest in the dataset,
held documents for NCRIC, so that’s where I decided to focus my digging.

Introducing NCRIC
NCRIC, based in San Francisco, shares information between federal agen-
cies, local police departments across Northern California, and private
industry partners, including tech companies. As I discovered by combing
through the CSVs in this dataset, it also provides services to local cops, like
monitoring social media or helping break into locked smartphones, and it
hosts events and classes for law enforcement officers.

Using a custom tool I developed called BlueLeaks Explorer, which I’ll
discuss in detail in Chapter 10, I examined everything I could find in the
ncric folder dated within the 13 days between George Floyd’s murder and
when NCRIC was hacked. I discovered that twice a day, NCRIC emailed
over 14,000 cops an updated list of Black Lives Matter protests. Local police
and other partners could also log into NCRIC’s website and submit suspi-
cious activity reports (SARs) to distribute to the fusion center’s partners.
Local police also requested NCRIC’s help with monitoring the social media
accounts of protest organizers and, in two instances, with identifying
threats against white female teenagers who were facing harassment after
making racist statements and using anti-Black slurs.

Investigating a SAR
By investigating a row from a CSV file, I found a PDF of a scanned letter
that turned out to be newsworthy. The letter, written by an unhinged San
Francisco–area lawyer to a local district attorney’s office, called a polite
student from Oregon an “antifa terrorist.” In this section, I describe how I
found this revelation in BlueLeaks, what it contains, and how the BlueLeaks
CSVs reference other documents in the dataset.

When I grepped the CSV files in the ncric folder for the word antifa, I
found that there were only a handful of references in the files EmailBuilder.
csv, Requests.csv, SARs.csv, and Survey.csv. In particular, this row in SARs.csv
stood out because it referenced a student protester, allegedly a member of
an antifa group, and mentioned “Radicalization/Extremism”:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Blueleaks, Black Lives Matter, and the CSV File Format 245

micah@trapdoor ncric % grep -ri antifa *.csv
--snip--
SARs.csv:14277,"06/05/20 14:20:09","6/5/2020","Marin","The attached letter was received via US
Postal Service this morning. The letter was passed on from an anonymous party claiming to be a
lawyer who was contacted by [redacted name] who is a University of Oregon student. [Redacted
name] appears to be a member of the Antifa group and is assisting in planning protesting
efforts in the Bay Area despite living in Oregon.","[redacted IP address]",,"NCRICLawEnforceme
ntReporting",,"Unknown",,"[redacted phone number]","f14e1d15-a052-489c-968b-5fd9d38544e1",
"20200596","0820",,"Bay Area",,0,,0,0,0,,0,0,,,0,0,0,0,,,,,"[redacted name]",,,,0,,,,,,,"
[redacted name]","[redacted name]","[redacted name]",,,"Marin County District Attorney's
Office",,,,,"SARF100014\277.pdf",,,,,"- Other ​-",,,,,,"Letter​.pdf",,,,,,,"[redacted]@marincounty​
.org","AM","1",,,,,,0,0,"Radicalization​/Extremism,Suspicious Incident",,"Emergency
Services,Government Facility",,,"No"
--snip--

Looking into the SARs.csv file, I found that it lists one month of SARs
submitted to NCRIC. The earliest report was May 6, 2020, and the latest was
June 6, 2020, so my guess is that NCRIC retains SARs only for a month.

Try opening this file, ncric/SARs.csv, in your spreadsheet software, and
you’ll see that it’s difficult to parse. There are 91 different columns, and
some of the cells are filled with so much text that even with a large monitor,
you can see only part of a row at a time. To make it easier to read, I copied
the content of the BriefSummary cell from the spreadsheet and pasted it
into my text editor, something that I frequently needed to do with the CSVs
in this dataset before I developed BlueLeaks Explorer. Here are the rel-
evant fields from the row that caught my eye:

SARSid ​  ​14277

FormTimeStamp ​  ​06/05/20 14:20:09

IncidentDate ​  ​6/5/2020

ThreatActivity ​  ​Radicalization/Extremism,Suspicious Incident

BriefSummary ​  ​The attached letter was received via US Postal Service
this morning. The letter was passed on from an anonymous party
claiming to be a lawyer who was contacted by [redacted name] who is a
University of Oregon student. [Redacted name] appears to be a member
of the Antifa group and is assisting in planning protesting efforts in the
Bay Area despite living in Oregon.

Subjects ​  ​[redacted name]

AgencyOrganizationNameOther ​  ​Marin County District Attorney’s
Office

File1 ​  ​SARF100014\277.pdf

File1Name ​  ​Letter.pdf

EmailAddress ​  ​[redacted]@marincounty​.org

PhoneNumber ​  ​[redacted phone number]

The SAR listed the full name, email address, and phone number of
the person who had submitted it. I looked them up online and discovered

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

246 Chapter 9

that they worked as an investigator for the district attorney’s office in
Marin County (just north of San Francisco). On June 5 at 2:20 PM (per
the FormTimestamp field), the day before NCRIC was hacked, they logged
into the NCRIC website and submitted the SAR form. They included a PDF
called Letter.pdf (per the File1Name field), though the website saved it in the
SARF100014 folder as 277.pdf (per the File1 field).

N O T E 	 The server that hosted NCRIC’s website and all of the other BlueLeaks sites was
running Windows, which is why folders in paths are separated by backslashes (\), like
SARF100014\277.pdf, instead of forward slashes (/).

Each BlueLeaks folder has a subfolder called files, where you can find
the files referenced in the CSV. See if you can find the PDF referenced
in the File1 field in the ncric folder. It should be at the path ncric/files/
SARF100014/277.pdf (see Figure 9-3).

Figure 9-3: A PDF attachment in the SAR submitted by an investigator from the Marin
County DA’s office

The PDF shows a letter in all caps mailed to the Marin County
DA’s office by a Bay Area attorney: “PLEASE SEE THE ATTACHED
SOLICITATION I RECEIVED FROM AN ANTIFA TERRORIST
WANTING MY HELP TO BAIL HER AND HER FRIENDS OUT OF JAIL,
IF ARRESTED FOR RIOTING.” He explained that he was remaining

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Blueleaks, Black Lives Matter, and the CSV File Format 247

anonymous because he “CANNOT RISK THIS PIECE OF SHIT ANTIFA
[. . .] FILING A BAR COMPLAINT AGAINST ME,” and warned that “THE
SAN FRANCISCO PUBLIC DEFENDERS WILL VIGOROUSLY DEFEND
THESE TERRORISTS.” He ended his letter, “HAPPY HUNTING.”

Further down in the PDF, the attorney included the solicitation from
the “antifa terrorist,” shown in Figure 9-4.

Figure 9-4: The letter that the Oregon student sent to the California lawyer

“I am a long time activist and ally of the Black Lives Matter move-
ment,” the Oregon student wrote. “Is there anyway[sic] that I could add
your firm, or consenting lawyers under your firm, to a list of resources who
will represent protesters pro bono if they were/are to be arrested? Thank
you very much for your time.” The Marin County DA investigator appar-
ently believed that this was useful enough intelligence that they logged into
their account on NCRIC’s website and submitted it as “suspicious activity”
for other law enforcement officers around Northern California to access.
Under threat activity, they chose Radicalization/Extremism.

N O T E 	 You can read more about my findings from this SAR in the first article I wrote about
BlueLeaks, at https://theintercept​.com​/2020​/07​/15​/blueleaks​-anonymous​

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

248 Chapter 9

-ddos​-law​-enforcement​-hack​/. To learn more about what I discovered while
researching NCRIC in general, check out my in-depth article at https://theintercept​
.com​/2020​/08​/17​/blueleaks​-california​-ncric​-black​-lives​-matter​-protesters​/.

In theory, I could have stumbled upon the PDF in Figure 9-3 on its
own; I might have just randomly clicked through documents and happened
to open ncric/files/SARF100014/277.pdf, the path to the PDF in question. I
could also have indexed the ncric folder in Aleph, OCRing all of the docu-
ments, and searched for antifa. However, the PDF alone doesn’t explain who
uploaded it to the NCRIC website, when and why they uploaded it, and how
they described the document. Moreover, if you’re interested in focusing on
activity in the fusion center from a specific time period, it’s easier to find
which documents are relevant by their timestamps in the CSV files. If you’re
researching BlueLeaks yourself, you can quickly find all of the documents
associated with a time period by sorting the spreadsheets by date, reading
all the rows in the CSVs for that time period, and looking at the documents
that those rows reference.

Whenever you find an interesting document in BlueLeaks, search the
CSVs for its filename to figure out why that document is there to begin
with. It could be an attachment in a SAR, part of a bulk-email message
the fusion center sent to thousands of local police, or included for other
reasons. In the case of 277.pdf, now you know this document was uploaded
as an attachment to a SAR by an investigator in a DA’s office. The CSV pro-
vides the investigator’s summary of the document’s contents, along with
their contact information, which you can use to reach out to them for com-
ment before publishing your findings.

Now that you’ve seen the type of data SARs.csv contains, you need a way
to easily read the long blocks of text in those CSV cells without having to copy
and paste them into a text editor. We’ll cover that in Exercise 9-1, but first,
let’s have a quick tutorial on how to write code that works with CSV files.

Reading and Writing CSV Files in Python
As you learned in Chapter 8, Python modules bring extra functionality into
the script that you’re writing. It’s easy to load CSVs and turn each row into
a Python dictionary using Python’s built-in csv module. You’ll need csv for
this chapter’s exercises, so import it using the following command:

import csv

After importing it, you can take advantage of its functionality. The csv
features I use the most are csv.DictReader(), which lets you parse rows of a
CSV as dictionaries, and csv.DictWriter(), which lets you save your own CSVs
from data stored in dictionaries.

The following code loads a CSV file and loops through its rows by using
csv.DictReader():

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Blueleaks, Black Lives Matter, and the CSV File Format 249

with open(csv_path) as f:
 reader = csv.DictReader(f)
 for row in reader:
 print(row)

This code assumes the path to the CSV filename is in the csv_path vari-
able, which could be a string that you hardcoded or a CLI argument you
passed into your program. After opening the CSV file with open(csv_path)
and storing the file objects as f, the code defines a new variable called
reader and sets its value to csv.DictReader(f), which prepares you to read
rows from this CSV. The reader object acts a little like a list of dictionaries,
where each dictionary represents a row. Although it’s not actually a list, you
can use a for loop to loop through it as if it were. Inside the for loop, row is a
dictionary that represents the data in a row from the spreadsheet.

The process of saving new CSVs is similar, except you use csv.
DictWriter(). For example, the following code uses Python to save the city-
populations.csv file discussed in the “Introducing the CSV File Format” sec-
tion earlier in the chapter:

headers = ["City", "Country","Population"]
with open(csv_path, "w") as f:
 writer = csv.DictWriter(f, fieldnames=headers)
 writer.writeheader()
 writer.writerow({"City": "Tōkyō", "Country": "Japan", "Population": 37400000})
 writer.writerow({"City": "Delhi", "Country": "India", "Population": 28514000})
 writer.writerow({"City": "Shanghai", "Country": "China", "Population": 25582000})
 writer.writerow({"City": "São Paulo", "Country": "Brazil", "Population": 21650000})
 writer.writerow({"City": "Mexico City", "Country": "Mexico", "Population": 21581000})
 writer.writerow({"City": "Cairo", "Country": "Egypt", "Population": 20076000})

This code first defines the headers of the spreadsheet in the list headers,
then opens the output file (csv_path) for writing. Creating a csv.DictWriter()
object allows you to save data into the CSV. You must pass the headers
in as a keyword argument called fieldnames. You must also run writer
.writeheader(), which saves the header row to the CSV file, before writing
any of the data rows.

You can then add rows to the spreadsheet by running writer.writerow(),
passing in a dictionary whose keys match your headers. For example,
the first call of writer.writer() passes in the dictionary {"City": "Tōkyō",
"Country": "Japan", "Population": 37400000}. The keys for this dictionary are
the same as the headers for the CSV: City, Country, and Population.

In the following exercises, you’ll use your new CSV programming skills
to write scripts that make the data hidden in BlueLeaks CSVs easier to read
and understand.

N O T E 	 To learn more about the csv module, you can find the full documentation, including
plenty of example code, at https://docs​.python​.org​/3​/library​/csv​.html.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

250 Chapter 9

Exercise 9-1: Make BlueLeaks CSVs More Readable
While it’s easier to read SARs.csv in a spreadsheet program than in a text
editor, it’s still quite difficult. As mentioned earlier, there are 91 columns
(though most of their values are blank), and some of the text fields, like
BriefSummary, contain way too much text to see at one time in a spreadsheet
cell. In this exercise, you’ll write a script that makes SARs.csv (or any CSV
with similar content) easier to read by showing you the data a single row at
a time.

This exercise is designed not just to show you how to work with the
SARs.csv file, but to give you practice looping through the rows and fields in
a CSV. These skills will come in handy whenever you write code that reads
data from CSVs.

For a challenge, you could try programming your own script to meet
the following requirements:

•	 Make this script accept a CLI argument called csv_path using Click,
which you first learned to use in Exercise 8-3.

•	 Import the csv module and loop through all of the rows in the CSV
located at csv_path, loading each row as a dictionary, as discussed in pre-
vious section.

•	 For each row, display all of the non-empty values for its columns. If a
value is empty, meaning it’s an empty string (""), skip it. There’s no
reason to display all of the columns when so many of them have blank
values.

•	 Display each field on its own line. For example, one line could show
SARSid: 14277 and the next line could show FormTimeStamp: 06/05/20
14:20:09.

•	 Output a separator line like === between each row so that you can tell
rows apart.

Alternatively, follow along with the rest of this exercise and I’ll walk you
through the programming process. Start with the usual Python script tem-
plate in a file called exercise-9-1.py:

def main():
 pass

if __name__ == "__main__":
 main()

Next, you’ll modify your script to accept the csv_path CLI argument.

Accept the CSV Path as a CLI Argument
Instead of hardcoding the path to a specific CSV, let’s use Click to accept
the path as a CLI argument. Here’s the code that does that (with modifica-
tions shown in bold):

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Blueleaks, Black Lives Matter, and the CSV File Format 251

import click

@click​.command()
@click.argument("csv_path")
def main(csv_path):
 """Make BlueLeaks CSVs easier to read"""
 print(f"CSV path: {csv_path}")

if __name__ == "__main__":
 main()

Just like in Exercise 8-4, this code imports the click module, adds
Click decorators before the main() function to turn it into a command that
accepts the csv_path argument, and adds a docstring. For now, it also dis-
plays the value of csv_path so you can test if the program works. Run the
code to test it as follows:

micah@trapdoor chapter-9 % python3 exercise-9-1.py some-csv-path.csv
CSV path: some-csv-path.csv

The script just displays the CSV path that was passed in. So far, so good.

Loop Through the CSV Rows
Next, you’ll modify the code to open the CSV in csv_path, and, using the
csv module, create a csv.DictReader() object to loop through the rows of
that CSV:

import click
import csv

@click​.command()
@click.argument("csv_path")
def main(csv_path):
 """Make BlueLeaks CSVs easier to read"""
 with open(csv_path, "r") as f:
 reader = csv.DictReader(f)
 for row in reader:
 print(row)

if __name__ == "__main__":
 main()

This code now imports the csv module at the top. When the main()
function runs, the code opens the file at csv_path for reading, creating a file
object variable called f. As noted in “Working with CSV Files in Python,”
you can use csv.DictReader() to loop through a CSV file, getting access to
each row as a dictionary. The code does this next, creating a variable called
reader and setting it equal to csv.DictReader(f). Using reader, the code then
loops through each row and displays the dictionary containing its data.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

252 Chapter 9

Test the code again, this time passing in the path to SARs.csv as the
CLI argument. Make sure you use the correct path for your copy of the
BlueLeaks dataset:

micah@trapdoor chapter-9 % python3 exercise-9-1.py /Volumes/datasets/BlueLeaks-extracted/ncric/
SARs.csv
{'SARSid': '14166', 'FormTimeStamp': '05/14/20 19:15:03', 'IncidentDate': '2020-05-11',
'County': 'Santa Clara', 'BriefSummary': '*INFO ONLY- no action required* \n\nThe San Francisco
PD was contacted by the CIA Threat Management Unit regarding a suspicious write-in to the
CIA\'s public website apparently by a subject [redacted name] (DOB: [redacted birthdate]). See
details below.\n\n-------- Original message --------\nFrom: ADAMCP4 \nDate: 5/13/20 12:17
(GMT-08:00)\nTo: "[redacted name] (POL)" \nSubject: CIA Passing Potential Threat Information\
nThis message is from outside the City email system. Do not open links or attachments from
untrusted sources.\nGood afternoon,\nPer our conversation, Mr. [redacted name] wrote in to
CIA's public website with the following two messages. A CLEAR report showed Mr. [redacted
name]'s address to be in Dixon, CA. Dixon, CA police made contact with the Subject's mother
who reported she has not had contact with him in quite some time and last knew him to be in the
Bay area, likely off his medication. She reported he suffers from bi-polar disorder.
--snip--

The output shows that during each loop, the row variable is a dictionary
containing the values for that row. So far, the code is simply displaying this
whole dictionary. This is a good start, but it still doesn’t make the text much
easier to read. To do that, you’ll display each field on its own row.

Display CSV Fields on Separate Lines
The following modified code displays each row separately:

import click
import csv

@click​.command()
@click.argument("csv_path")
def main(csv_path):
 """Make BlueLeaks CSVs easier to read"""
 with open(csv_path, "r") as f:
 reader = csv.DictReader(f)
 for row in reader:
 for key in row:
 if row[key] != "":
 print(f"{key}: {row[key]}")

 print("===")

if __name__ == "__main__":
 main()

Rather than just displaying the row dictionary, this code loops through
all of its keys, storing each in the variable key. Since key is the key to the
dictionary row, you can look up its value by using row[key]. You only want to

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Blueleaks, Black Lives Matter, and the CSV File Format 253

display fields that aren’t blank, so after making sure that this key doesn’t
have a blank value, the code displays both it and the value. Finally, after it
has finished looping through all of the keys in each row, the code displays
the separator === between the rows.

You can find a copy of the complete script at https://github​.com​/micahflee​
/hacks​-leaks​-and​-revelations​/blob​/main​/chapter​-9​/exercise​-9​-1​.py. Run the final
script like so:

micah@trapdoor chapter-9 % python3 exercise-9-1.py /Volumes/datasets/BlueLeaks-extracted/
ncric/SARs.csv
SARSid: 14166
FormTimeStamp: 05/14/20 19:15:03
IncidentDate: 2020-05-11
County: Santa Clara
BriefSummary: *INFO ONLY- no action required*

The San Francisco PD was contacted by the CIA Threat Management Unit regarding a suspicious
write-in to the CIA's public website apparently by a subject [redacted name] (DOB: [redacted
birthdate]). See details below.

-------- Original message --------
From: ADAMCP4
Date: 5/13/20 12:17 (GMT-08:00)
To: "[redacted name] (POL)"
Subject: CIA Passing Potential Threat Information
This message is from outside the City email system. Do not open links or attachments from
untrusted sources.
Good afternoon,
Per our conversation, Mr. [redacted name] wrote in to CIA's public website with the following
two messages. A CLEAR report showed Mr. [redacted name]'s address to be in Dixon, CA. Dixon,
CA police made contact with the Subject's mother who reported she has not had contact with him
in quite some time and last knew him to be in the Bay area, likely off his medication. She
reported he suffers from bi-polar disorder.
--snip--
ThreatActivityOther: Suspicious write-in received by the CIA
ImpactedEntity: Government Facility
===
SARSid: 14167
FormTimeStamp: 05/15/20 10:46:00
IncidentDate: 5/14/2020
County: Sonoma
BriefSummary: Handheld radio went missing. Radio was in the dozer tender or in the office of
the Santa Rosa shop at station 41. The dozer tender was parked outside of the shop. There has
been unknown individuals seen passing on the compound near the shop. Dozer tender did not
appear to have been broken into. Dozer tender is usually locked but could have been missed
while the operator was off duty. Unsure of when exactly the radio went missing. Could of been
anytime within the last month.
--snip--

This time, the output should display === between the rows and display
each field of a row on its own line. If there are any blank fields, the program
skips them.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

254 Chapter 9

Using the command line skills you learned in Chapters 3 and 4, redi-
rect the output into a file with the following command:

python3 exercise-9-1.py /Volumes/datasets/BlueLeaks-extracted/ncric/SARs.csv > SARs.txt

This should run your script again, this time saving the output into
SARs.txt instead of displaying it in your terminal. Now you can easily scroll
through the saved output in a text editor like VS Code and search it for
keywords to learn about the “suspicious activity” that occurred in Northern
California from May 6 to June 6, 2020.

Next we’ll move on from SARs to explore another important spread-
sheet in NCRIC: EmailBuilder.csv.

How to Read Bulk Email from Fusion Centers
The primary purpose of fusion centers is to share information between
local, state, and federal law enforcement agencies. They do this, essentially,
by sending bulk email to a large list of local police officers. You can find
the content of this email for all sites in BlueLeaks, including NCRIC, in the
EmailBuilder.csv file located in each site’s folder. These files include the con-
tent of all of the bulk-email messages each fusion center sent until June 6,
2020, when it was hacked.

Some of these messages are security bulletins from federal agencies like
the FBI or the Department of Homeland Security (DHS). Others contain
content directly created by the fusion center—for example, NCRIC and
other fusion centers around the US generated detailed daily lists of pro-
tests against police brutality during the summer of 2020. For the 13 days
of NCRIC data I looked at in detail, over half of the bulk email contained
information about largely peaceful protests.

The SARs spreadsheet contains plaintext data, so it’s easy to read in
a text editor. But the bulk-email spreadsheet contains data in HyperText
Markup Language (HTML) format, making it difficult to read unless
you use a web browser. In this section, you’ll learn to more easily read the
HTML content of NCRIC’s bulk email, find the recipients of each email,
and find the documents attached to the email messages. Open ncric/
EmailBuilder.csv in your spreadsheet software to follow along.

Lists of Black Lives Matter Demonstrations
Most of the intelligence on Black Lives Matter protests flowed through
NCRIC’s Terrorism Liaison Officer (TLO) program, whose purpose is to
keep the intelligence center’s members “engaged & knowledgeable about
current terrorist tactics, techniques & trends, regional crime trends &
threats, and Officer safety information,” according to the TLO page on
NCRIC’s website. During the summer of 2020, this counterterrorism
program didn’t focus on terrorism so much as upcoming racial justice
protests.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Blueleaks, Black Lives Matter, and the CSV File Format 255

This section describes the twice-daily lists of upcoming protests that TLO
sent to thousands of local cops. Not only is this incredibly newsworthy—a
counterterrorism program abused to monitor racial justice protests—but
these were the most common bulk-email messages that NCRIC sent during
the 13-day period I examined.

For example, here are the most interesting fields from the most recent
row in ncric/EmailBuilder.csv (this CSV has 81 columns in total, most of
which didn’t contain any relevant information):

EmailBuilderID ​  ​6170

EmailFrom ​  ​NCRIC <info@ncric​.net>
EmailSubject ​  ​NCRIC TLO Bulletin LES

EmailBody ​  ​<base href​="https://ncric​.ca​.gov​/"><div style=	
"font-family: times; text-align: center;">	
UNCLASSIFIED//LAW ENFORCEMENT
SENSITIVE</div> [. . .]

Attachment1 ​  ​EBAT1\Events_060620_1800.pdf

DateSent ​  ​06/06/20 20:25:06

EmailTable ​  ​Registrations

SentEmailList ​  ​EBSE00006\170.csv

This row tells us that on the evening of June 6, 2020, NCRIC sent
an email with the subject line “NCRIC TLO Bulletin LES” to the list of
people described in EBSE00006\170.csv (LES stands for Law Enforcement
Sensitive). The email included the PDF attachment located at EBAT1\
Events_060620_1800.pdf.

The body of the email is the HTML in the EmailBody column. HTML
is the markup language that describes web pages, so it can be hard to
make sense of when you’re not viewing it in a web browser. To read this
email body, in your text editor, create a new file called EmailBuilder​
-6170​.html (since 6170 is the EmailBuilderID). Copy the content of the
EmailBody field from your spreadsheet software for this row, paste it into
this file, and save it. You can now open this file in a web browser to view
it, but before you do that, you may want to read the box “Covering Your
Tracks with a VPN Service” to consider mitigating what information you
might leak by opening it.

COV ER ING YOUR T R ACKS W IT H A V PN SERV ICE

The BlueLeaks CSV files are full of HTML code, such as the EmailBody field in
the EmailBuilder.csv files. Many of these blocks of HTML include embedded
images. If you read through the HTML code in the EmailBody cell in the preced-
ing example, you’ll see that it loads an image hosted on NCRIC’s server at the

(continued)

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

256 Chapter 9

URL https://ncric​.org​/html​/Picture2​.jpg​?135653. Viewing HTML from BlueLeaks
in a web browser makes it much easier to read and understand compared to
trying to read the HTML code directly, but it will also cause your computer to
make an internet request to the law enforcement servers themselves. These serv-
ers will most likely log your IP address, leaving clues that you’re investigating
them.

For the BlueLeaks dataset, it doesn’t matter much if the fusion center serv-
ers track your IP address. It’s not illegal to load images off of law enforcement
websites. For more sensitive datasets, however, it’s prudent to hide your IP
address from organizations you’re investigating. You can load these images
while hiding your real IP address by connecting to a virtual private network
(VPN) service, which reroutes your internet traffic through its own server, then
forwards your traffic to those websites. This leaves the VPN server’s IP address,
rather than your own, in the websites’ web logs.

For example, say you load the EmailBuilder​-6170​.html file in your web
browser from your home in San Francisco. If you load images hosted on https://
ncric​.org, a San Francisco IP address from a residential neighborhood will show
up in the website’s logs. The site might be able to determine that this IP address
belongs to you by sending a data request to your internet service provider, for
example. If you first connect to a VPN, however—one in New York, let’s say—
then they’ll see a New York IP address from a data center in their logs instead.
They’ll still know that someone loaded the image, but it won’t be immediately
obvious that you loaded the image. Everyone using that VPN service shares its
IP address, making it harder to track down individual users.

While VPNs may make you anonymous from the websites you’re visit-
ing, they don’t make you anonymous from the VPN provider itself. Use a
trustworthy VPN provider that you believe isn’t logging your traffic and selling
it. Additionally, contrary to popular opinion, commercial VPN services don’t
prevent websites from tracking your browsing habits; that’s mostly done using
a technology called cookies. In other words, VPNs don’t stop the Googles and
Facebooks of the world from following you around the web.

Consumer Reports publishes in-depth reviews of different VPN services,
comparing them on overall privacy and security, whether they’ve had public
security audits, whether they’re open source, and whether they include mislead-
ing marketing. VPN services normally cost a few dollars a month. For the most
part, I recommend avoiding free VPNs; they’re nearly all scams set up to spy on
their users and sell their data, or even to inject advertisements into web pages
users visit. The only exception I know of are VPNs powered by the open source
software Bitmask, like the one run by the Seattle-based tech collective Riseup.
You can learn more about Bitmask from https://bitmask​.net, and you can learn
about Riseup’s free VPN service at https://riseup​.net​/en​/vpn.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Blueleaks, Black Lives Matter, and the CSV File Format 257

Whether or not you’ve connected to a VPN service (the choice is
yours), open EmailBuilder​-6170​.html using a web browser by double-clicking
on it in your file manager. Figure 9-5 shows what it looks like in a web
browser.

Figure 9-5: HTML from the EmailBody field in a row of EmailBuilder.csv, viewed in a web browser

As you can see from the screenshot, this email body is a template, not
the email itself. The HTML files stored inside CSVs for BlueLeaks sites
are all templates. When sending the email, the NCRIC site would replace
[AttachmentLinks] with the actual links to the email attachments as well as
replacing other placeholders in the template. The attachments themselves
are listed as fields in the CSV.

This email contained one attachment, as noted in the Attachment1
field of the most recent row in EmailBuilder.csv: the PDF file EBAT1\
Events_060620_1800.pdf. Figure 9-6 shows the first page of that
document.

The NCRIC Terrorism Liaison Officer program distributed this list
to local police across Northern California. The events included Novato
Peaceful Car Caravan, Taking a Knee for Change, and the Noe Valley
Police Violence Protest with Social Distancing (the protests took place dur-
ing the COVID-19 pandemic, after all).

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

258 Chapter 9

Figure 9-6: A list of upcoming Black Lives Matter protests in the file Events_060620_1800.pdf

You can use the SentEmailList and EmailTable values to discover how
many, and exactly which, local police officers received these daily bulletins.
The value of SentEmailList is the path to a CSV file itself: EBSE00006\170.
csv. When you open that CSV file (it’s in ncric/files), you can see that it has
14,459 rows (one of which is the header) and looks like this:

IDs,Registrations
63861
63862
63929
63930
--snip--

In short, this CSV contains a huge list of ID numbers. The value of
EmailTable in the EmailBuilder.csv row is Registrations, which is a good hint.
Since I knew that these IDs must match up to rows in some other table, I
decided to check the file Registrations.csv.

Open that spreadsheet yourself at ncric/Registrations.csv. It has 185 col-
umns and over 29,000 rows, apparently listing everyone who had an account
on NCRIC’s website. It includes each user’s full name; the agency they work
for and whether it’s local, state, federal, or military; their email address,
physical address, and cell phone number; their supervisor’s name and con-
tact information; their password hash; and other details.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Blueleaks, Black Lives Matter, and the CSV File Format 259

The first column of Registrations.csv is called RegistrationsID. Each
ID in the EBSE00006\170.csv file can be cross-referenced with one of
these registrations. For example, the person in Registrations.csv with the
RegistrationsID 63861 works at the Santa Clara County Sheriff’s Office,
lives in San Jose, has an email address at the domain pro​.sccgov​.org, and has
a phone number with a 408 area code. In other words, NCRIC sent the
email to this list of 14,458 contacts, whose contact details can be found in
the Registrations.csv file. The BlueLeaks dataset includes this information
about everyone who received bulk email through any of the websites. In
Exercise 9-3, when you read through bulk email found in BlueLeaks, you’ll
be able to look up exactly who received these email messages.

“Intelligence” Memos from the FBI and DHS
As mentioned earlier, in addition to detailed lists of upcoming protests,
NCRIC also frequently forwarded memos from its federal partners—
agencies like the FBI and DHS—to its list of over 14,000 local cops. These
memos largely contained internet rumors, hoaxes that had already been
debunked but that federal agencies apparently fell for, and warnings about
violence from protesters that didn’t materialize.

For example, in the row in EmailBuilder.csv with the EmailBuilderID
of 6169, the email body says, “The NCRIC is disseminating this (U//LES)
Update on behalf of the FBI.” The Attachment1 value in that row is EBAT1\
SITREP-6-JUN-1300_OPE.pdf, an unclassified FBI document dated June 6,
2020. The document is full of cherry-picked quotes from social media posts
threatening violence, but without any context. There was no way of knowing
how many followers an account had, how much engagement their post had,
or even if they were parodies.

The “Social Media Exploitation (SOMEX)” section of this FBI docu-
ment describes people using Facebook, Snapchat, and Instagram to post
“flyers seeking to hire ‘professional anarchists.’ ” This appears to reference
an internet hoax from late May 2020. In fact, I found multiple articles
debunking this hoax on fact-checking sites, including Snopes, PolitiFact,
and Reuters, dated a week before the FBI distributed this memo. The fake
recruitment flyer offers to compensate “professional anarchists” with
$200 per direct action, and includes the text “Funded by George Soros.”
(Antisemitic right-wing Americans frequently and falsely claim that Soros,
a Jewish billionaire, funds left-wing protesters.) The flyer also included the
phone number for a local branch of the Democratic Party. Both this local
Democratic Party branch and Soros’s Open Society Foundations confirmed
that the flyer was a fake, but this didn’t stop the FBI from distributing it
to NCRIC, which disseminated it to 14,458 local police across Northern
California.

The DHS also sent several memos to NCRIC to distribute to the cen-
ter’s list. For example, take a look at the row in EmailBuilder.csv with the
EmailBuilderID of 6144. The email body says, “The NCRIC is disseminating
the Intelligence Note ‘(U//FOUO) Some Violent Opportunists Probably
Engaging in Organized Activities’ on behalf of DHS,” and the attached

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

260 Chapter 9

document is EBAT1\(U—FOUO) IN - Some Violent Opportunists Probably
Engaging in Organized Activities 06012020.pdf.

The attached PDF declares that “As the protests persist, we assess
that the organized violent opportunists—including suspected anarchist
extremists—could increasingly perpetrate nationwide targeting of law
enforcement and critical infrastructure.” (This didn’t happen.) The memo
goes on to say that an NYPD official “had strong evidence that suspected
anarchist groups had planned to incite violence at protests, including
by using encrypted communications.” Incidentally, if you completed
Exercise 2-2 and installed Signal, you too are now a user of encrypted
communications.

As noted in Chapter 1, it’s important to reach out to the people you’re
investigating to get their side of the story. Mike Sena, NCRIC’s execu-
tive director, told me that his intelligence agency was monitoring Black
Lives Matters protests in order to make sure that they remained safe. “We
weren’t keeping track of the protests themselves, but we were identify-
ing where we were gonna have gatherings of people,” he said. “That’s our
concern; we want to make sure the events are safe—and if there are any
threats that come up that may be associated with any of those events that
we’re able to get that threat data to whatever agency may have protection
responsibilities.”

It’s also good practice to contact outside experts—those who know
more about the subject matter than you do—for comment. Vasudha Talla,
a senior staff attorney with the American Civil Liberties Union of Northern
California, told me, “Really what we have here is overbroad collection and
dissemination of people’s protected First Amendment activity, and it’s unte-
thered to any basis in the law.”

As you can see, there are a lot of newsworthy details in EmailBuilder.csv.
However, it’s still somewhat difficult to work with, especially because of the
HTML email bodies. Soon you’ll write some code to make all of the bulk
email easier to read. To do that, first you’ll need to learn the basics
of HTML.

A Brief Primer on HTML
In the following exercise, you’ll write some Python code that in turn writes
some HTML code. This section covers just enough HTML syntax to get you
through this chapter.

HTML is made up of components called tags. For example, consider the
following HTML:

<p>Hello world</p>

This code opens a <p> tag (which represents a paragraph), includes
some content (the text Hello world), and then closes the <p> tag with </p>.
You open a tag with <tag-name> and close it with </tag-name>.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Blueleaks, Black Lives Matter, and the CSV File Format 261

HTML typically includes tags inside of tags inside of tags. It’s com-
mon to indent HTML code for legibility, but unlike in Python, indenting
is completely optional. Here’s an example of a simple web page in HTML,
indented to make it easier to read:

<html>
 <head>
 <title>My Super Cool Web Page</title>
 </head>
 <body>
 <h1>Under Construction</h1>
 <p>This web page is under construction!</p>
 </body>
</html>

The whole page is wrapped in the <html> tag. Inside that, there’s a <head>
tag, which includes metadata about the web page, and then a <body> tag,
which includes the content of the web page. The <title> tag is a metadata
tag that describes the title of the web page, which is what’s displayed in the
browser tab itself. Inside the <body>, the biggest heading is <h1>, followed by a
<p> paragraph.

There are plenty of other tags in HTML, but in the following exercise,
you’ll use just two more: and . The tag stands for “unordered
list,” and it’s how you make bulleted lists in HTML. Inside the tag are
 tags, which stand for “list item.” For example, here’s some HTML for a
simple bulleted list:

 Bash
 Python
 HTML

When displayed in a web browser, that HTML code would look like this:

•	 Bash

•	 Python

•	 HTML

The less than and greater than characters (< and >) are used to open
and close tags in HTML. If you want to display literal less than or greater
than characters in HTML, you have to HTML escape them. This is similar to
escaping in shell scripts and Python code, but the syntax is different. Escape
< by replacing it with < and escape > by replacing it with >. For example,
here’s some HTML code that displays the text I <3 you in a paragraph:

<p>I <3 you</p>

There are a few other special characters in HTML that are each escaped
in their own way. For example, you’d use & to escape an ampersand (&).

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

262 Chapter 9

In the next exercise, you’ll make the email messages in EmailBuilder.csv
easier to read by writing a script that automatically saves an HTML file for
each one. This will also make it much simpler for you to find the newswor-
thy ones.

Exercise 9-2: Make Bulk Email Readable
For this exercise, you’ll write a script similar to the one you wrote in
Exercise 9-1, but instead of displaying text output to the screen, you’ll
save HTML output to files. This allows you to look through a folder full
of HTML files, each one a different bulk email, open these files in a web
browser, and read them in a more legible format. While this particular exer-
cise is designed specifically for the EmailBuilder.csv files in BlueLeaks, it’s
common to find HTML in datasets, so being able to write a similar script
could help you in the future.

For a challenge, you can try programming your own script to meet the
following requirements:

•	 Make this script accept two CLI arguments called emailbuilder_csv_path
and output_folder_path using Click. The emailbuilder_csv_path argument
should be the path to an EmailBuilder.csv file, and the output_folder_path
argument should be the path to a folder in which to save the HTML files.

•	 Make sure the folder at output_folder_path exists by importing the os
module and running os.makedirs(output_folder_path, exist_ok=True).

•	 Import the csv module and loop through all of the rows in the CSV
located at emailbuilder_csv_path, loading each row as a dictionary.

•	 For each row, save a new HTML file. This file should include infor-
mation from the bulk-email fields most relevant for your purposes:
EmailBuilderID, EmailFrom, EmailSubject, DateSent, Attachment1,
and SentEmailList. It should also include the HTML body of the email
itself, EmailBody.

Otherwise, follow along with the rest of this exercise and I’ll walk you
through the programming process. Start with the usual Python script tem-
plate in a file called exercise-9-2.py:

def main():
 pass

if __name__ == "__main__":
 main()

Next, you’ll modify your script to make the script accept command line
arguments using Click.

Accept the Command Line Arguments
The following code has been modified to import the Click module and
accept some command line arguments:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Blueleaks, Black Lives Matter, and the CSV File Format 263

import click

@click​.command()
@click.argument("emailbuilder_csv_path")
@click.argument("output_folder_path")
def main(emailbuilder_csv_path, output_folder_path):
 """Make bulk email in BlueLeaks easier to read"""
 print(f"Path to EmailBuilder.csv: {emailbuilder_csv_path}")
 print(f"Output folder path: {output_folder_path}")

if __name__ == "__main__":
 main()

First, the code imports the click module, and then it uses Click deco-
rators to make the main() function a Click command that accepts two
arguments, emailbuilder_csv_path and output_folder_path. The code also has
two print() statements that display the values of the two arguments. The
emailbuilder_csv_path argument should point to the path of a BlueLeaks
EmailBuilder.csv, which you’ll load and loop through, and the output_folder
_path argument should be the path to a folder in which you’ll store the
HTML files for the bulk-email messages.

Test your code and make sure it’s working as expected so far, replacing
the path to EmailBuilder.csv with the appropriate path for your computer:

micah@trapdoor chapter-9 % python3 exercise-9-2.py /Volumes/datasets/BlueLeaks-extracted/
ncric/EmailBuilder.csv output
Path to EmailBuilder.csv: /media/micah/datasets/BlueLeaks-extracted/ncric/EmailBuilder.csv
Output folder path: output

As expected, the script displays the values of the two arguments.

Create the Output Folder
Next, use Python to create the folder in output_folder_path where you’ll save
the HTML files:

import click
import os

@click​.command()
@click.argument("emailbuilder_csv_path")
@click.argument("output_folder_path")
def main(emailbuilder_csv_path, output_folder_path):
 """Make bulk emails in BlueLeaks easier to read"""
 os.makedirs(output_folder_path, exist_ok=True)

if __name__ == "__main__":
 main()

To be able to use the os.makedirs() function, first the script imports the
os module. Then it uses the os.makedirs() function to create a new folder in
Python, passing in the path to the folder to create, output_folder_path.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

264 Chapter 9

The exists_ok=True keyword argument tells this function that it’s fine
if that folder already exists; otherwise, if the folder already existed, the
script would crash with an error message. This way, the first time you run
this script with a specific output folder, it will create that folder and use it
to store the HTML files. If you run the script again in the future with that
same output folder, it will use the folder that’s already there.

When you run the complete script at the end of this exercise, you’ll be
able to browse the files in this folder to read through the bulk-email mes-
sages sent by a fusion center.

Define the Filename for Each Row
The goal of this script is to save an HTML file for each row in the spread-
sheet. To do this, you’ll need to load the CSV, loop through its rows, and
figure out the filename for each HTML file that you’re going to save. Next,
define the filename variable, naming each HTML file based on data that you
found in that row. To do so, make the following modifications:

import click
import os
import csv

@click​.command()
@click.argument("emailbuilder_csv_path")
@click.argument("output_folder_path")
def main(emailbuilder_csv_path, output_folder_path):
 """Make bulk emails in BlueLeaks easier to read"""
 os.makedirs(output_folder_path, exist_ok=True)

 with open(emailbuilder_csv_path) as f:
 reader = csv.DictReader(f)
 for row in reader:
 filename = (
 f"{row['EmailBuilderID']}​_{row['DateSent']}​_{row['EmailSubject']}​.html"
)
 filename = filename.replace("/", "-")
 filename = os.path.join(output_folder_path, filename)
 print(filename)

if __name__ == "__main__":
 main()

The script starts by importing the csv module. As in the previous
exercise, the code then opens the CSV file and creates a CSV reader using
csv.DictReader(). Using a for loop, the code loops through each row in
the CSV.

Rather than just displaying information, you ultimately want to save
each row as an HTML file. To prepare to write the code that actually gen-
erates those files in the next section, this code defines a filename variable
with the name of the unique HTML file to be generated for each row. In

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Blueleaks, Black Lives Matter, and the CSV File Format 265

order to make it unique, the code defines filename using the current row’s
EmailBuilderID, DateSent, and EmailSubject fields, and ends it with the ​.html file
extension. For example, according to this format, the filename for the bulk
email described in the previous section would be 6170_06/06/20 20:25:06_
NCRIC TLO Bulletin LES​.html.

The code defines filename as an f-string surrounded in double quotes
("). The variables inside it, like row["EmailSubject"], have quotes of their
own, but you can’t use the double-quote character inside a double-quoted
f-string without Python mistakenly thinking you’re closing the f-string.
Instead, this code uses single quotes (') for the variables within the f-string:
row['EmailSubject'].

The slash characters (/) contained in the DateSent column are invalid
characters for filenames because slashes separate folders in a path. To
address this, the line filename = filename.replace("/", "-") replaces any
slashes it finds in the filename with dash characters (-). This generates the
valid filename 6170_06-06-20 20:25:06_NCRIC TLO Bulletin LES​.html.

Finally, this code uses os.path.join(), discussed in Chapter 8, to append
filename to the end of output_folder_path, giving you the complete path to
the file you’re going to write. You’ll ultimately save the HTML file in this
path. For example, if the filename output_folder_path is output and filename
is 6170_06-06-20 20:25:06_NCRIC TLO Bulletin LES​.html, os.path.join() updates
filename to be output/6170_06-06-20 20:25:06_NCRIC TLO Bulletin LES​.html.

To make sure everything is working so far, the code displays this final
filename. Pause and test your code, using the correct filepath for your oper-
ating system:

micah@trapdoor chapter-9 % python3 exercise-9-2.py /Volumes/datasets/BlueLeaks-extracted/
ncric/EmailBuilder.csv output
output/4867_09-04-18 09:13:49_2018 CNOA Training Institute​.html
output/4868_09-04-18 14:33:27_SMS Important​.html
output/4869_09-04-18 14:47:52_Brian SMS from Netsential​.html
output/4870_09-05-18 12:57:23_(U--LES) Officer Safety-Welfare Check Bulletin - Wesley Drake
GRIFFIN​.html
--snip--

The output should show a unique filename for each row in the
EmailBuilder.csv spreadsheet. All you need to do now is actually write those
HTML files.

Write the HTML Version of Each Bulk Email
The purpose of saving each row of EmailBuilder.csv as an HTML file is to
more easily read these bulk-email messages by loading the HTML in a
web browser. You’ll obviously want to see the email body, but it would also
be helpful to display some basic metadata about the email: the date it was
sent, the subject, and so on. The following code writes the HTML files,
automatically filling in both the metadata and the email body with data
from the CSV:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

266 Chapter 9

import click
import os
import csv
import html

@click​.command()
@click.argument("emailbuilder_csv_path")
@click.argument("output_folder_path")
def main(emailbuilder_csv_path, output_folder_path):
 """Make bulk emails in BlueLeaks easier to read"""
 os.makedirs(output_folder_path, exist_ok=True)

 important_keys = [
 "EmailBuilderID",
 "EmailFrom",
 "EmailSubject",
 "DateSent",
 "Attachment1",
 "SentEmailList",
]

 with open(emailbuilder_csv_path) as f:
 reader = csv.DictReader(f)
 for row in reader:
 filename = f"{row['EmailBuilderID']}​_{row['DateSent']}​_{row['EmailSubject']}​.html"
 filename = filename.replace("/", "-")
 filename = os.path.join(output_folder_path, filename)

 with open(filename, "w") as html_f:
 html_f.write("<html><body>\n")
 html_f.write("\n")
 for key in important_keys:
 html_f.write(f"{key}: {html.escape(row[key])}\n")
 html_f.write("\n")
 html_f.write(f"{row['EmailBody']}\n")
 html_f.write("</body></html>\n")
 print(f"Saved file: {filename}")

if __name__ == "__main__":
 main()

First, the code imports the html module, which will be used later on to
escape HTML code. The code starts by defining a list, called important_keys,
of all of the important keys to include in the final HTML file. This code is
positioned near the top of the main() function, before the for loop, so that
this variable will be available inside each loop, and therefore every HTML
file will include these same fields.

Inside the for loop, the code stores each row of the spreadsheet in the
dictionary row, so you can access its fields using keys. Then, the code opens
the HTML file for writing with the command with open(filename, "w") as
html_f: (as you saw in “Reading and Writing Files” in Chapter 7). The file
object for the HTML file is the html_f variable. Inside this with statement,

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Blueleaks, Black Lives Matter, and the CSV File Format 267

the code then starts writing the HTML file by calling html_f.write() and
passing in a string containing HTML, first for <html> and <body> tags and
then for a tag to represent a bulleted list.

Next, the code fills in the bulleted list with the important metadata.
Using a for loop, it loops through the keys in important_keys, writing each
piece of metadata to the HTML file in its own tag, in the format

metadata_item: metadata_value

where metadata_item is the name of an important piece of metadata in key,
and metadata_value is the value of that piece of metadata in row[key]. For
example, metadata_item might be EmailBuilderID, and metadata_value might
be 6170, as in the example CSV row in the “Lists of Black Lives Matter
Demonstrations” section.

Instead of displaying the value with row[key], though, this line of code
uses html.escape(row[key]). This is necessary because some of the fields you
want to include use angle brackets (< and >), which indicate tags in HTML.
For example, if the value of the FromEmail field is NCRIC <info@ncric​.net>,
your web browser will interpret <info@ncric​.net> as an HTML tag called
info@ncric​.net, which isn’t a real tag so nothing will display. In Python,
the html.escape() function lets you HTML escape a string. For example,
html.escape("NCRIC <info@ncric​.net>") returns the string NCRIC <info@ncric​
.net> and that’s what gets saved to the HTML file, so that when you later
view that file, the string displays correctly as NCRIC <info@ncric​.net>.

When the for loop finishes running, all of the important metadata will
have been written to the HTML file. The code then writes to close the
bulleted list tag. After displaying the bulleted list of important fields, the
code displays the EmailBody field in a <div> tag. This time, it doesn’t HTML
escape this field, because you want to load the email’s HTML in a browser.
Finally, the <body> and <html> tags are closed with </body></html>.

You can find the complete script at https://github​.com​/micahflee​/hacks​-leaks​
-and​-revelations​/blob​/main​/chapter​-9​/exercise​-9​-2​.py. This is the most compli-
cated Python script you’ve written so far in this book, but it’s about to pay
off. Run it on the NCRIC data, using the filepath appropriate for your oper-
ating system:

micah@trapdoor chapter-9 % python3 exercise-9-2.py /Volumes/datasets/BlueLeaks-extracted/
ncric/EmailBuilder.csv output
Saved file: output/4867_09-04-18 09:13:49_2018 CNOA Training Institute​.html
Saved file: output/4868_09-04-18 14:33:27_SMS Important​.html
Saved file: output/4869_09-04-18 14:47:52_Brian SMS from Netsential​.html
Saved file: output/4870_09-05-18 12:57:23_(U--LES) Officer Safety-Welfare Check Bulletin -
Wesley Drake GRIFFIN​.html
--snip--

This output looks similar to the last time you ran the script, except
now it also creates a folder full of 5,213 new HTML files—one for every row
of NCRIC’s EmailBuilder.csv file—in the output folder you specified. The

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

268 Chapter 9

information now included in the filenames allows you to browse through
the files in your file manager, exploring those that look most interesting.

Figure 9-7 shows the list of files generated when I ran this script.

Figure 9-7: Viewing the HTML files generated by our Python script in macOS Finder

This folder contains the thousands of HTML files that your Python
script just created. The first part of the filename is the EmailBuilderID,
followed by DateSent, followed by EmailSubject. To read one of these bulk
emails, just double-click the HTML file to open it in a web browser. If you
want more information about a specific bulk email, you can always look it
up by EmailBuilderID in the original spreadsheet.

To see what the final HTML output looks like, open one of these files
in your text editor. For example, here’s the final HTML output from the
6098_05-18-20 12/45/12_Chasing Cell Phones presented via Zoom Webinar​.html file:

<html><body>

EmailBuilderID: 6098
EmailFrom: NCRIC <info@ncric​.net>
EmailSubject: Chasing Cell Phones presented via Zoom Webinar
DateSent: 05/18/20 12:45:12
Attachment1:
SentEmailList: EBSE00006\098.csv

<div><base href​="https://ncric​.org​/">
<a style="font: bold 15px Arial" target="_blank" href​="https://ncric​.org​/EBForms​.aspx​?EBID​=5499
&EBType=R">- Click Here To Register -

<div><div style="font-weight: bold">Chasing
Cell Phones</div>
--snip--
</div>
</body></html>

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Blueleaks, Black Lives Matter, and the CSV File Format 269

All of the bolded parts have been filled in automatically by the Python
code. In the bulleted list at the top, EmailBuilderID, EmailFrom, and so on are
keys from the important_keys list, and 6098, NCRIC <info@ncric​.net>, and
so on are HTML-escaped values from the row dictionary. Below the bulleted
list, inside the <div> tag, is the email body—the value of row["EmailBody"].

Figure 9-8 shows what these bulk email messages look like in a web
browser. In this case, I opened a bulk email sent out on May 18, 2020,
advertising a course called Chasing Cell Phones hosted by the Northern
California High Intensity Drug Tracking Area. The class was designed
to teach police how to get valuable evidence directly off of suspects’ cell
phones or from third-party sources like cell phone providers.

Figure 9-8: Viewing a NCRIC bulk email in a web browser

You can use the script from this exercise to make the bulk email from
any BlueLeaks folder more readable; just run the script on the appropriate
EmailBuilder.csv file.

The BlueLeaks folder names alone don’t immediately make clear which
folders belong to which organizations. Let’s fix that by creating a spread-
sheet that associates each BlueLeaks folder with its organization name, web-
site title, and URL.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

270 Chapter 9

Discovering the Names and URLs of BlueLeaks Sites
It’s obvious what organization some BlueLeaks folders belong to based
on the folder name. You can reasonably guess that the alabamafusioncenter
folder has data from the Alabama Fusion Center. But most aren’t so clear.
Can you guess what ciacco is? How about nvhidta or snorca?

After manually looking through the CSV files in various BlueLeaks
folders, I discovered that the file Company.csv contains, hidden among its
108 columns, the name and URL of each site. Some BlueLeaks folders, it
turns out, host more than one site. For example, in Table 9-3, which shows
these columns from NCRIC’s Company.csv file, you can see that the ncric
folder hosts 18 different sites at different URLs.

Table 9-3: Data from ncric/Company.csv

CompanyID CompanyName WebsiteTitle URL

1 NCRIC​.net Northern California Regional
Intelligence Center - NCRIC

ncric​.net

2 NCRIC New Northern California Regional
Intelligence Center - NCRIC

upinsmoke​.ncric​.net

3 NCRIC Northern California Regional
Intelligence Center - NCRIC

ncric​.org

4 NCHIDTA Northern California Regional
Intelligence Center - NCRIC

nchidta​.org

7 NCHIDTA​.net Northern California Regional
Intelligence Center - NCRIC

nchidta​.net

8 NCRTTAC​.org Northern California Regional
Intelligence Center - NCRIC

ncrttac​.org

10 NCRTTAC​.org Northern California Regional
Intelligence Center - NCRIC

www​.ncrttac​.org

11 Northern California
Most Wanted

Northern California Most
Wanted - Serving The Bay
Area and Surrounding
Counties

northerncaliforniamostwanted​.org

12 Northern California
Most Wanted

Northern California Most
Wanted

northerncaliforniamostwanted​.com

14 Northern California
Most Wanted

Northern California Most
Wanted

ncmostwanted​.org

15 NCRIC Private Sector
Mobile Registration

Northern California Regional
Intelligence Center - NCRIC

psp​.ncric​.net

16 NCHIDTA​.com Northern California Regional
Intelligence Center - NCRIC

nchidta​.com

17 NCRIC NCRIC Mobile

19 NCRIC Northern California Regional
Intelligence Center - NCRIC

passwordreset​.ncric​.ca​.gov

20 NCHIDTA NCHIDTA Mobile

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Blueleaks, Black Lives Matter, and the CSV File Format 271

CompanyID CompanyName WebsiteTitle URL

21 NCHIDTA (New) Northern California Regional
Intelligence Center - NCRIC

new​.nchidta​.org

22 NCRIC Northern California Regional
Intelligence Center - NCRIC

ncric​.ca​.gov

23 NCRIC NEW Northern California Regional
Intelligence Center - NCRIC

new​.ncric​.ca​.gov

As you can see here, the ncric folder hosts not only the NCRIC site but
also the sites for the Northern California High Intensity Drug Trafficking
Area (NCHIDTA); the Northern California Most Wanted, which lists
wanted fugitives; and others. However, all these websites share the same
code and databases.

Since almost every BlueLeaks folder contains a Company.csv file listing
all of the sites associated with that folder, we can write a script to automati-
cally extract this information and format it as a CSV file. This will open the
door for you to pick which fusion center you want to research—perhaps
there’s one in a city near you.

Exercise 9-3: Make a CSV of BlueLeaks Sites
The script you write in this exercise will loop through each BlueLeaks
folder, open its Company.csv file, and save information about the
organizations whose websites are hosted in that folder into a CSV file that
you create. For a challenge, you can try programming your own script to do
the following:

•	 Accept two CLI arguments: blueleaks_path, the path to your extracted
BlueLeaks data, and output_csv_path, the path to the new CSV file that
the script will create.

•	 Include these headers: BlueLeaksFolder (the BlueLeaks folder name),
CompanyID, CompanyName, WebsiteTitle, and URL (you’ll find these latter fields
in the various Company.csv files).

•	 Open output_csv_path for writing and create a csv.DictWriter() object
(see “Working with CSV Files in Python” on page XX), passing in the
file object and the headers.

•	 Loop through each folder in BlueLeaks. You can get a list of all the file-
names with os.listdir(blueleaks_path).

•	 Inside each BlueLeaks folder, open the Company.csv file if it exists, and
loop through all of the rows in that CSV. For each row, select the infor-
mation you want to save and then write it to your CSV.

•	 Map out exactly what websites each BlueLeaks folder hosts in your out-
put CSV.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

272 Chapter 9

Otherwise, the rest of this exercise will walk you through the program-
ming process. Start with the usual Python script template in a file called
exercise-9-3.py:

def main():
 pass

if __name__ == "__main__":
 main()

Next, modify your script to accept the blueleaks_path and output_csv_path
command line arguments:

import click

@click​.command()
@click.argument("blueleaks_path")
@click.argument("output_csv_path")
def main(blueleaks_path, output_csv_path):
 """Make a CSV that describes all the BlueLeaks folders"""

if __name__ == "__main__":
 main()

You’ve done this enough times at this point that you can safely assume
the CLI arguments are working properly without testing the script.

Open a CSV for Writing
The simplest way to program this script is to first open a CSV file for writing
and then loop through each folder in BlueLeaks, adding rows to this CSV.
Start by just opening the CSV file for writing, using the following code:

import click
import csv

@click​.command()
@click.argument("blueleaks_path")
@click.argument("output_csv_path")
def main(blueleaks_path, output_csv_path):
 """Make a CSV that describes all the BlueLeaks folders"""
 headers = ["BlueLeaksFolder", "CompanyID", "CompanyName", "WebsiteTitle", "URL"]
 with open(output_csv_path, "w") as output_f:
 writer = csv.DictWriter(output_f, fieldnames=headers)
 writer.writeheader()

if __name__ == "__main__":
 main()

First, the code imports the csv module. It then defines what the head-
ers of the output CSV will be in the variable headers. As noted in “Working

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Blueleaks, Black Lives Matter, and the CSV File Format 273

with CSV Files in Python,” in order to create a csv.DictWriter() object, you’ll
need to pass in this list of headers for your CSV file.

Next, the code opens the output CSV file for writing, this time calling it
output_f, and creates the csv.DictWriter() object, saving it in the writer vari-
able. Finally, the program writes the header row to the CSV. To write the
remaining rows, you’ll need to run writer.writerow(), passing in a dictionary
that represents the row.

Try running the script so far:

micah@trapdoor chapter-9 % python3 exercise-9-3.py /Volumes/datasets/BlueLeaks-extracted sites
.csv

The script itself shouldn’t display any output; it should just create an
output CSV file, sites.csv. Try displaying its contents using cat:

micah@trapdoor chapter-9 % cat sites.csv
BlueLeaksFolder,CompanyID,CompanyName,WebsiteTitle,URL

You should see that the file currently contains only header rows.

Find All the Company.csv Files
Now that you can write rows to your CSV, the next step is to loop through
the BlueLeaks sites, looking for Company.csv files, using the following code:

import click
import csv
import os

@click​.command()
@click.argument("blueleaks_path")
@click.argument("output_csv_path")
def main(blueleaks_path, output_csv_path):
 """Make a CSV that describes all the BlueLeaks folders"""
 headers = ["BlueLeaksFolder", "CompanyID", "CompanyName", "WebsiteTitle", "URL"]
 with open(output_csv_path, "w") as output_f:
 writer = csv.DictWriter(output_f, fieldnames=headers)
 writer.writeheader()

 for folder_name in os.listdir(blueleaks_path):
 company_csv_path = os.path.join(blueleaks_path, folder_name, "Company.csv")
 if os.path.exists(company_csv_path):
 print(company_csv_path)

if __name__ == "__main__":
 main()

This code imports the os module. After creating the CSV writer, it loops
through the return value of the os.listdir() function, which returns a list
of all the files inside the BlueLeaks folder. It then defines a new company_csv
_path variable as the path to the Company.csv file inside that BlueLeaks

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

274 Chapter 9

folder. Finally, the os.path.exists() function makes sure that this specific
Company.csv file actually exists, and if so, the code displays its path.

Try running the code so far:

micah@trapdoor chapter-9 % python3 exercise-9-3.py /Volumes/datasets/BlueLeaks-extracted sites
.csv
/media/micah/datasets/BlueLeaks-extracted/vlnsn/Company.csv
/media/micah/datasets/BlueLeaks-extracted/njuasi/Company.csv
/media/micah/datasets/BlueLeaks-extracted/stopwesttexasgangs/Company.csv
--snip--

As you can see, the script displays paths for all of the Company.csv files
in BlueLeaks. (Yours might display them in a different order than mine.)

Add BlueLeaks Sites to the CSV
The final step is to open all the Company.csv files whose paths you’ve just
listed, loop through their rows, and add new rows to your output CSV file
based on them:

import click
import csv
import os

@click​.command()
@click.argument("blueleaks_path")
@click.argument("output_csv_path")
def main(blueleaks_path, output_csv_path):
 """Make a CSV that describes all the BlueLeaks folders"""
 headers = ["BlueLeaksFolder", "CompanyID", "CompanyName", "WebsiteTitle", "URL"]
 with open(output_csv_path, "w") as output_f:
 writer = csv.DictWriter(output_f, fieldnames=headers)
 writer.writeheader()

 for folder_name in os.listdir(blueleaks_path):
 company_csv_path = os.path.join(blueleaks_path, folder_name, "Company.csv")
 if os.path.exists(company_csv_path):
 with open(company_csv_path, "r") as input_f:
 reader = csv.DictReader(input_f)
 for row in reader:
 output_row = {
 "BlueLeaksFolder": folder_name,
 "CompanyID": row["CompanyID"],
 "CompanyName": row["CompanyName"],
 "WebsiteTitle": row["WebsiteTitle"],
 "URL": row["URL"],
 }
 writer.writerow(output_row)

 print(f"Finished: {folder_name}")

if __name__ == "__main__":
 main()

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Blueleaks, Black Lives Matter, and the CSV File Format 275

The added code opens the company_csv_path, this time for reading instead
of writing, and now calling the file object input_f. It then creates a csv.
DictReader() object to read the data from this CSV and loops through its rows.

For each row, the code creates a new dictionary called output_row that
contains the name of the BlueLeaks folder you’re currently working in, as
well as CompanyID, CompanyName, WebsiteTitle, and URL from Company.csv. It then
uses the CSV writer you created in the previous section to save that row to
your output CSV file. When the code finishes looping through all of the rows
in a Company.csv file, it displays a message to show it’s done with that folder.

You can find the complete script at https://github​.com​/micahflee​/hacks​-leaks​
-and​-revelations​/blob​/main​/chapter​-9​/exercise​-9​-3​.py. Run your final script like so:

micah@trapdoor chapter-9 % python3 exercise-9-3.py /Volumes/datasets/BlueLeaks-extracted sites
.csv
Finished: vlnsn
Finished: njuasi
Finished: stopwesttexasgangs
--snip--

When you run this script, the output displays a line for each BlueLeaks
folder showing that it has finished running. But more importantly, it creates
the file sites.csv. Figure 9-9 shows what that file looks like in LibreOffice Calc.

Figure 9-9: The CSV output created by the final Exercise 9-3 script

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

276 Chapter 9

Once you’ve created the CSV, you can use your graphical spreadsheet
software to freeze the header row at the top and sort the columns however
you’d like. If you live in the US, try finding the fusion center that covers
your region; that might be a good place to start digging. You can use the
skills you’ve learned in this chapter and the Python scripts you’ve written to
make the files for your chosen fusion center easier to work with.

Before you get too deep into your BlueLeaks investigations, though, I
recommend reading Chapter 10, where I’ll introduce you to software that
might save you time and allow you to uncover more interesting revelations.

Summary
In this chapter, you started investigating CSV spreadsheets. You’ve learned
how to open and examine them using spreadsheet software, as well as how
to read and write them using Python code, sharpening your programming
skills along the way. You’ve also learned more about the BlueLeaks dataset
structure and how to find hidden details, such as who posted which SARs
and what documents were sent out as part of which bulk email messages, in
the spreadsheets.

You’ve explored just a few CSVs in BlueLeaks so far, including SARs.
csv and EmailBuilder.csv in NCRIC, and Company.csv in all of the folders, but
there’s still much more to investigate. In the next chapter, you’ll learn how
to research the BlueLeaks dataset in depth using my custom-built software,
BlueLeaks Explorer.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

In some ways, I spent the summer of 2020 like many
other Americans. I mostly stayed at home, avoiding
COVID-19 like the plague it is; I spent far too many
hours doom-scrolling through social media feeds;
and occasionally I put on an N95 mask, grabbed some
hand sanitizer, and hit the streets to protest the police
killings of George Floyd, Breonna Taylor, and count-
less other Black Americans. But I also spent much of
that summer writing code that would make it easier
for me and other journalists at The Intercept to make
sense of the sprawling BlueLeaks dataset.

My efforts culminated in a piece of open source software, which
I released as part of this book, called BlueLeaks Explorer. BlueLeaks
Explorer is a web application that allows you to examine the BlueLeaks data
almost as if you could log in as an admin on the actual websites that were

10
B L U E L E A K S E X P L O R E R

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

278 Chapter 10

hacked. BlueLeaks Explorer is a little like a large Python script that makes
all of the CSVs in BlueLeaks easier to work with, like the scripts you wrote
in Chapter 9.

In this chapter, you’ll continue to investigate the BlueLeaks dataset,
this time using BlueLeaks Explorer. I’ll give you a thorough overview of the
software, including how to set it up on your own computer and how to start
researching BlueLeaks with it. I’ll conclude the chapter by explaining the
technology behind the app and pointing you to its Python source code on
GitHub. If you ever need to develop an app to investigate a specific dataset,
you can use this chapter as inspiration.

Undiscovered Revelations in BlueLeaks
As discussed in the previous chapter, my BlueLeaks investigation focused
on the data from the ncric folder. Even within that folder, I concentrated
on the final two weeks of data, focusing on police surveillance of the Black
Lives Matter movement. Other journalists dug into different parts of the
dataset, investigating fusion centers in places like Maine and Texas.

Notably, journalist Nathan Bernard broke several stories for the local
news-and-arts magazine Mainer based on BlueLeaks documents from the
Maine Information and Analysis Center (MIAC), Maine’s fusion center.
These included stories about MIAC disseminating unverified rumors, some-
times based on satirical social media posts, that were first spread by far-right
activists on social media and then included in FBI and DHS intelligence
reports, similar to the FBI warning discussed in Chapter 9 about a George
Soros−funded group hiring “professional anarchists.” “This bogus intel gives
cops a dangerously distorted sense of what to expect during demonstrations
by portraying peaceful protesters as highly trained, paid and organized
criminal actors intent on causing mayhem,” Bernard wrote in one article.

Additionally, John Anderson and Briant Bingamon wrote a series
of articles for the Austin Chronicle, a local paper in Austin, Texas, based
on BlueLeaks documents from the Austin Regional Intelligence Center
(ARIC), Austin’s fusion center. Anderson wrote about ARIC’s practice of
monitoring for and distributing lists of local Black Lives Matter protests
(just like NCRIC did during the summer of 2020), and about several SARs
posted to ARIC, including one where the “suspicious activity” was someone
mailing a package of toys to Lebanon. Bingamon wrote stories revealing
that ARIC had monitored local leftist groups in Austin, and that some
ARIC courses for law enforcement teach junk science—including a tech-
nique for detecting deception, called Scientific Content Analysis (SCAN),
which a 2016 study concluded has “no empirical support” (https://www​.ncbi​
.nlm​.nih​.gov​/pmc​/articles​/PMC4766305​/).

MIAC, ARIC, and NCRIC are some of the BlueLeaks sites that have
received the most interest, but many more haven’t gotten any attention at
all. By the end of this chapter, you’ll have all the tools you need to do a
deep dive on any BlueLeaks folder you choose and search for newsworthy
revelations. To start, you’ll install BlueLeaks Explorer in Exercise 10-1.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Blueleaks Explorer 279

Exercise 10-1: Install BlueLeaks Explorer
You can find BlueLeaks Explorer’s source code at https://github​.com​/micahflee​
/blueleaks​-explorer. That GitHub page includes instructions on how to get it
up and running locally on your computer, but I’ll explain all the steps in
this exercise as well.

The BlueLeaks Explorer app is packaged as a Docker image and pub-
lished to Docker Hub at https://hub​.docker​.com​/r​/micahflee​/blueleaks​-explorer. You’ll
run it locally on your computer using Docker and point it at your BlueLeaks
folder. Before you begin, make sure you’ve completed the exercises in
Chapter 5 so that you understand how to use Docker and Docker Compose.

Create the Docker Compose Configuration File
Start by creating a new folder called blueleaks-explorer. This folder will
require about 5GB of disk space. Create a new file in that folder called
docker-compose.yaml and open it in your text editor.

N O T E 	 If you’re using Windows, I recommend that you follow this chapter in Ubuntu with
WSL rather than PowerShell (see Appendix A for information about performance
issues you might encounter when using Docker in Windows). You can open an
Ubuntu terminal, create the blueleaks-explorer folder in your Linux filesystem
using mkdir blueleaks-explorer, and edit the docker-compose.yaml file in VS
Code by running code docker-compose.yaml, all from Ubuntu.

Here’s how I created the folder, and made the docker-compose.yaml file,
on my Mac. You can do the same in Linux or Windows with WSL:

micah@trapdoor ~ % mkdir blueleaks-explorer
micah@trapdoor ~ % cd ~/blueleaks-explorer
micah@trapdoor blueleaks-explorer % code docker-compose.yaml

Add the following code to your docker-compose.yaml file, replacing
/Volumes/datasets/BlueLeaks-extracted with the path that maps to /data
/blueleaks in your own BlueLeaks-extracted folder:

version: "3.9"
services:
 app:
 image: micahflee/blueleaks-explorer:latest
 ports:
 - "8000:80"
 volumes:
 - /Volumes/datasets/BlueLeaks-extracted:/data/blueleaks
 - ./databases:/data/databases
 - ./structures:/data/structures

This file describes the settings for the BlueLeaks Explorer Docker
container. The container is called app and is set to use the latest version
of the micahflee/blueleaks-explorer Docker container image, which you’ll

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

280 Chapter 10

download from Docker Hub. The ports section maps port 8000 on your
computer to port 80 inside the container. This means that once the
BlueLeaks Explorer app is running, you can load it on your browser at
http://localhost:8000. The volumes section maps folders on your machine to
folders inside the container.

Save the docker-compose.yaml file.

Bring Up the Containers
In a terminal window, change to the blueleaks-explorer folder that you just
made, then run this command to download the BlueLeaks Explorer Docker
image and start the server:

docker-compose up

The first time you run the command, the output should end with some-
thing like this:

blueleaks-explorer-app-1 | * Serving Flask app 'app'
blueleaks-explorer-app-1 | * Debug mode: off
blueleaks-explorer-app-1 | WARNING: This is a development server. Do not use
 it in a production deployment. Use a production
 WSGI server instead.
blueleaks-explorer-app-1 | * Running on all addresses (0.0.0.0)
blueleaks-explorer-app-1 | * Running on http://127​.0​.0​.1:80
blueleaks-explorer-app-1 | * Running on http://172​.19​.0​.2:80
blueleaks-explorer-app-1 | Press CTRL+C to quit

At this point, BlueLeaks Explorer is running on your computer, but it
hasn’t been initialized. If you load http://localhost:8000 in your browser, you
should get an error telling you as much.

Initialize the Databases
The first time you use BlueLeaks Explorer, you must run a script to convert
the many CSV files in BlueLeaks into SQLite databases. SQLite is light-
weight SQL database software that can store a whole database in a single
file (you’ll learn more about SQL databases in Chapter 12). All of the CSVs
in BlueLeaks were originally formatted as SQL tables, which the hacker
exported into CSV format. Converting these CSV files back into database
tables makes it easier for the Python code that runs BlueLeaks Explorer to
query for and access items within those tables, then display them in the web
app. For example, when searching for SARs that contain a specific string,
BlueLeaks Explorer might search all the BriefSummary fields in the SARs
table, trying to find reports that mention that string.

To initialize BlueLeaks Explorer, open a separate terminal window,
change to your blueleaks-explorer folder, and run this command:

docker-compose exec app poetry run python ./initialize.py

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Blueleaks Explorer 281

This will run poetry run python ./initialize.py in your already running
app container. The initialize.py Python script will take a while to finish
running, since it’s transforming thousands of CSV files into hundreds of
SQLite database; it took my computer about 50 minutes.

N O T E 	 If you’re curious about the details of what the initialization script is doing, take a look
at the source code. BlueLeaks Explorer is open source, meaning you can check out the
initialize.py file in the project’s git repository at https://github​.com​/micahflee​
/blueleaks​-explorer​/blob​/main​/src​/initialize​.py.

When initialize.py finishes running, refresh http://localhost:8000 in your
web browser to pull up BlueLeaks Explorer, as shown in Figure 10-1.

Figure 10-1: The freshly installed BlueLeaks Explorer app

Each fusion center is unique: it’s run by different people, has different
priorities and goals, and keeps track of different data. To make the best use
of BlueLeaks Explorer, you need to spend some time understanding how
the data in your target fusion center is laid out. I call this layout the structure
of a BlueLeaks site. This refers to which tables contain useful information
(some tables are empty or contain irrelevant data about the website layout),
which columns in those tables are useful, and how the various tables are
related.

The top of every page in BlueLeaks Explorer includes three links, as
shown in Figure 10-1: Explore Data, Define Structure, and Browse Files. It
would be difficult to automatically figure out the structure of a BlueLeaks
site, in part because it’s subjective—individual users determine what infor-
mation is interesting or useless for their purposes. Therefore, the Define
Structure page brings you to an editor where you can define your own
structures for BlueLeaks sites. Under Explore Data, you can find struc-
tures you’ve already created for individual BlueLeaks sites. Since you’re
running BlueLeaks Explorer locally on your own computer, you’ll have
access only to structures you’ve made yourself or that are included in the
BlueLeaks Explorer Docker image. Finally, Browse Files lists all of the files
in BlueLeaks, enabling you to link to specific documents or embed images;
it’s simply a web interface to the raw BlueLeaks data, as if you were looking
at it in a file browser.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

282 Chapter 10

N O T E 	 If you set up a VPN to hide your IP address from fusion center websites as described
in “Covering Your Tracks with a VPN Service” in Chapter 9, you may want to use
a VPN for this chapter as well. Though BlueLeaks Explorer is hosted on your own
computer, viewing content within it might load images from fusion center sites, and
clicking links could bring you to those sites.

In the following section, you’ll begin by exploring the data for the
NCRIC site using a structure that I’ve already created.

The Structure of NCRIC
BlueLeaks Explorer allows you to browse and search all of the tables in any
BlueLeaks site that you have a structure for. To demonstrate the features
of the app—including listing the tables in a BlueLeaks site, viewing and
searching the data in those tables, viewing data from related tables, and
viewing images and documents associated with rows of data—you’ll start by
exploring the NCRIC data. This will help you understand how structures
are constructed before you make your own.

Exploring Tables and Relationships
As directed in Exercise 10-1, make sure your BlueLeaks Explorer Docker
container is running and load http://localhost:8000 in your browser. From
the Explore Data section, click Northern California Regional Intelligence
Center. Figure 10-2 shows this page.

Figure 10-2: Viewing the NCRIC tables in BlueLeaks Explorer

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Blueleaks Explorer 283

Here, you can see a list of tables in the ncric folder, as well as the num-
ber of rows of data in each table. The EmailBuilder table has 5,213 rows, for
example. I’ve hidden all of the tables that are empty or contain information
I considered irrelevant so that they don’t show up here.

When I first defined the NCRIC structure, I started by exploring the
data in each table, one at a time (I’ll explain how you can do this for other
parts of BlueLeaks later in the chapter). I found that the following tables
contained the most interesting and potentially newsworthy data:

EmailBuilder ​  ​Contains all of the bulk email NCRIC sends out to its
large list of local police and private industry partners

EventBuilder ​  ​Describes events that NCRIC put on, complete with
their descriptions, PDF flyers, and lists of who attended

FormBuilder ​  ​Contains a list of forms on NCRIC’s website for a variety
of purposes, like submitting SARs, requesting technical help, or even
registering for an account with the fusion center

Requests ​  ​Includes requests from local police for the fusion center’s
assistance with tasks like monitoring social media and breaking into
locked phones

SARs ​  ​Contains suspicious activity reports, which, as you learned in
the previous chapter, are files submitted to NCRIC in which people
report behavior that they believe could be criminal or otherwise
suspicious

SurveyForm ​  ​Includes surveys that NCRIC requests from attendees of
events it has hosted

Different tables within BlueLeaks relate to each other in various
ways. For example, as you know from the previous chapter, many of the
BlueLeaks sites include the tables Documents and DocumentCategory.
Both of these tables contain a field called DocumentCategoryID. One row
in the Documents table in the ncric folder, for instance, describes a docu-
ment titled FBI NSIR Tradecraft Alert Voter Suppression. The DocFilename
field contains the path of a PDF. The DocumentCategoryID is 167. Looking
at the row with that DocumentCategoryID in the DocumentCategory
table, you can see that the CategoryName is Elections. Now you know that
NCRIC put this document in the Elections category. In database-speak,
two tables that are connected via a shared field have a relationship. The
SurveyForm table, which lists surveys for attendees of NCRIC-hosted events
to fill out, is also related to the Survey table, which includes the actual sur-
vey feedback.

BlueLeaks Explorer makes it easy to quickly find related information
within a BlueLeaks site. Click the Documents table from the list of tables
shown in Figure 10-2. You should see a list of documents, each on its own
row in the Documents table. In the Search field, enter Voter Suppression to
bring up the FBI NSIR Tradecraft Alert Voter Suppression document, shown in
Figure 10-3.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

284 Chapter 10

Figure 10-3: Viewing the FBI NSIR Tradecraft Alert Voter Suppression document in
BlueLeaks Explorer

When you view a document row using the NCRIC structure I defined,
BlueLeaks Explorer will show you a link to the file itself, in this case a PDF.
It also shows a preview of the file if it’s available (the path to the preview
image is listed in the PreviewImage field), along with the document cat-
egory, in this case Elections.

If you click the filename link, the PDF will open. Dated October 16,
2018, the document warns, “The FBI assesses threat actors may use social
media, namely Facebook and Twitter, to suppress voter turnout by posting
disinformation on when and how to vote in the 2018 midterm election.” It
points out examples of voter suppression tactics on social media from the
2016 election, such as a Spanish-language meme claiming that you can
vote for Hillary Clinton by texting “Hillary” to a specific phone number—
tricking voters into falsely believing they voted for Clinton.

Next, click Permalink under the Elections category to get to the
category itself. Your URL should now be http://localhost:8000​/ncric​

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Blueleaks Explorer 285

/DocumentCategory​/167, and from here you should see all 11 documents
categorized in Elections. You can click Permalink under any of those docu-
ments to view it. You can easily flip between documents and their catego-
ries in this way because I defined a relationship in the NCRIC structure
between the Document and DocumentCategory tables. The permalink
brings you to a unique URL just for that row. During an investigation, you
can keep track of any interesting items in the dataset using their perma-
links so you can easily refer back to them later on. The Show All link will
show all of the hidden fields for this row. I’ve configured the Documents
table to show only a handful of fields: DocTitle, DateEntered, DocFilename,
URL, PreviewImage, and the DocumentCategory relationship. Clicking
Show All will show you the remaining hidden fields as well.

Searching for Keywords
For a concrete example of how BlueLeaks Explorer makes it easier to
investigate the BlueLeaks documents, let’s revisit the SAR described in
“Investigating a SAR” in Chapter 9 in which a lawyer reported a student
protester. This time, instead of manually grepping CSV files and copying
and pasting big blocks of text from fields in spreadsheets for easier reading,
you’ll do it all in BlueLeaks Explorer.

Go back to the NCRIC list of tables, click SARs, and search for antifa
to find that specific row. Figure 10-4 shows the record. The File1 row should
display a clickable link to the PDF originally attached to the SAR, allowing
you to quickly open the document. If you click it, you’ll immediately be able
to read the PDF in another browser tab.

Figure 10-4: Viewing a SAR in BlueLeaks Explorer

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

286 Chapter 10

Now that you have an idea of how to navigate BlueLeaks Explorer, it’s
your turn to explore other parts of the BlueLeaks dataset beyond NCRIC.

Building Your Own Structure
In this section, you’ll learn how to define your own structure for another
BlueLeaks site, the Los Angeles Joint Regional Intelligence Center (JRIC).
By the end of this section, you’ll have the tools you need to create structures
for all of the BlueLeaks sites.

Building out a BlueLeaks Explorer site structure takes work, but it also
helps you gain a much clearer understanding of the data. Once you’ve
started cleaning up a few of the tables, you can spend time reading them,
looking for newsworthy revelations. As you read, you’ll probably end up
tweaking the structure to help you in your research, and you’ll also likely
start cleaning up new tables as you discover relationships to them.

Defining the JRIC Structure
Some structures, like the one I constructed for NCRIC, are already included
with BlueLeaks Explorer. To either edit existing structures or define new
ones, load BlueLeaks Explorer in your browser and click Define Structure at
the top of the screen. Figure 10-5 shows the page that should pop up.

On the Define Structure page, every structure that is already defined
is listed under Edit Structures. In Figure 10-5, this is just a single structure,
NCRIC. To edit a structure, simply click its name. The BlueLeaks sites that
don’t yet have a structure are listed by their folder name under Define a
New Structure, along with a button to create that new structure. Scroll
down until you see the listing for jric, and click Create.

Figure 10-5: Viewing the Define Structure page in BlueLeaks Explorer

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

Blueleaks Explorer 287

In the page that opens, you can configure exactly how BlueLeaks
Explorer should work when you investigate the JRIC data, as shown in
Figure 10-6. The top of the page displays the name of the site, which
defaults to the BlueLeaks folder name, jric.

Figure 10-6: Editing the JRIC structure in BlueLeaks Explorer

Click Rename next to the site name and enter Los Angeles Joint
Regional Intelligence Center. Every time you make a change like this, you
should see the message “You have unsaved changes,” with a Save button, in
the bottom-right corner. Click Save.

Below the site name, the Edit Structure page lists all of the tables in this
BlueLeaks site. Next to each table name is the Rename button, as well as
buttons to show or hide the table. BlueLeaks Explorer automatically detects
tables that don’t have any rows and hides them by default; this is why the
ASIOptions table starts out hidden. You can also manually hide tables that
you don’t care about to reduce clutter when you’re actually investigating
this site later on.

Now that you’ve created the JRIC structure, open the Explore Data link
at the top in a separate browser tab. You should see that the Los Angeles

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

288 Chapter 10

Joint Regional Intelligence Center site has been added to the list of sites to
explore. Figure 10-7 shows the new Explore Data page.

Figure 10-7: The Explore Data page after you’ve created
the JRIC structure

Any additional structures you create for other BlueLeaks sites will also
appear on this page.

Click the JRIC link to pull up all the tables in this site. As you
work through the rest of the section, and when building a structure in
BlueLeaks Explorer in general, keep two tabs open: the Explore Data
and Define Structure pages. This way, when you save changes in the
Define Structure tab, you can refresh the Explore Data tab to see them
implemented.

Showing Useful Fields
In Exercise 9-3, you wrote a Python script to automatically create a
spreadsheet mapping the names of BlueLeaks folders to their associated
organizations. You found this information in Company.csv, a spreadsheet
with 108 different columns. Only a few fields in this spreadsheet proved to
be relevant, which makes this a good table for practicing showing only use-
ful fields.

In your Explore Data tab, click the Company table. You should see the
page shown in Figure 10-8. There are 7 rows displayed, each containing all
108 different fields, some of which include lots of HTML. Because each row
has so many fields, this figure shows only the fields at the beginning of the
first row of data.

The text in these fields isn’t very readable yet, but that’s easy to fix.
Back in your Define Structure tab, scroll down until you find the Company
table. For each field, you can choose the type from a drop-down menu
and toggle a checkbox to set whether or not you want it to appear in the
Explore Data page. For example, you probably don’t care about the value of
BannerAdHeight, so you’d want to hide that field.

You can also click the checkbox next to Show at the top of the table to
toggle all the checkboxes at once. Click it now to uncheck—that is, hide—
all of the fields in the Company table. From here, you can scroll through
and select only the most useful fields to display.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee ﻿

	Contents
	Acknowledgments����������������������
	Introduction�������������������
	Part I: Sources and Datasets�����������������������������������
	Chapter 1: Protecting Sources and Yourself���
	Chapter 2: Acquiring Datasets������������������������������������

	Part II: Tools of the Trade����������������������������������
	Chapter 3: The Command Line Interface��
	Chapter 4: Exploring Datasets in the Terminal��
	Chapter 5: Docker, Aleph, and Making Datasets Searchable���
	Chapter 6: Reading Other People’s Email

	Part III: Python Programming�����������������������������������
	Chapter 7: An Introduction to Python���
	Chapter 8: Working with Data in Python���

	Part IV: Structured Data�������������������������������
	Chapter 9: BlueLeaks, Black Lives Matter, and the CSV File Format
	Chapter 10: BlueLeaks Explorer�������������������������������������

