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INTRODUCTION

Containers and Kubernetes together are changing the way that applications
are architected, developed, and deployed. Containers ensure that software
runs reliably no matter where it’s deployed, and Kubernetes lets you manage
all of your containers from a single control plane.

This book is designed to help you take full advantage of these essential
new technologies, using hands-on examples not only to try out the major
features but also to explore how each feature works. In this way, beyond
simply being ready to deploy an application to Kubernetes, you’ll gain the
skills to architect applications to be performant and reliable in a Kubernetes
cluster, and to quickly diagnose problems when they arise.

The Approach

The biggest advantage of a Kubernetes cluster is that it hides the work of
running containers across multiple hosts behind an abstraction layer. A
Kubernetes cluster is a “black box” that runs what we tell it to run, with
automatic scaling, failover, and upgrades to new versions of our application.

Even though this abstraction makes it easier to deploy and manage
applications, it also makes it difficult to understand what a cluster is doing.
For this reason, this book presents each feature of container runtimes and
Kubernetes clusters from a “debugging” perspective. Every good debugging
session starts by treating the application as a black box and observing its
behavior, but it doesn’t end there. Skilled problem solvers know how to open



the black box, diving below the current abstraction layer to see how the
program runs, how data is stored, and how traffic flows across the network.
Skilled architects use this deep knowledge of a system to avoid performance
and reliability issues. This book provides the detailed understanding of
containers and Kubernetes that only comes from exploring not only what
these technologies do but also how they work.

In Part I, we’ll begin by running a container, but then we’ll dive into the
container runtime to understand what a container is and how we can simulate
a container using normal operating system commands. In Part II, we’ll install
a Kubernetes cluster and deploy containers to it. We’ll also see how the
cluster works, including how it interacts with the container runtime and how
packets flow from container to container across the host network. The
purpose is not to duplicate the reference documentation to show every option
offered by every feature but to demonstrate how each feature is implemented
so that all that documentation will make sense and be useful.

A Kubernetes cluster is complicated, so this book includes extensive
hands-on examples, with enough automation to allow you to explore each
chapter independently. This automation, which is available at
https://github.com/book-of-kubernetes/examples, is published under a
permissive open source license, so you can explore, experiment, and use it in
your own projects.

Running Examples

In many of this book’s example exercises, you’ll be combining multiple hosts
together to make a cluster, or working with low-level features of the Linux
kernel. For this reason, and to help you feel more comfortable with
experimentation, you’ll be running examples entirely on temporary virtual
machines. That way, if you make a mistake, you can quickly delete the
virtual machine and start over.

The example repository for this book is available at
https://github.com/book-of-kubernetes/examples. All of the instructions for
setting up to run examples are provided in a README.md file within the
setup folder of the example repository.

What You Will Need
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Even though you’ll be working in virtual machines, you’ll need a control
machine to start from that can run Windows, macOS, or Linux. It can even be
a Chromebook that supports Linux. If you are running Windows, you’ll need
to use the Windows Subsystem for Linux (WSL) in order to get Ansible
working. See the README.md in the setup folder for instructions.

Run in the Cloud or Local

To make these examples as accessible as possible, I’ve provided automation
to run them either using Vagrant or Amazon Web Services (AWS). If you
have access to a Windows, macOS, or Linux computer with at least eight
cores and 8GB of memory, try installing VirtualBox and Vagrant and work
with local virtual machines. If not, you can set yourself up to work with
AWS.

We use Ansible to perform AWS setup and automate some of the tedious
steps. Each chapter includes a separate Ansible playbook that makes use of
common roles and collections. This means that you can work examples from
chapter to chapter, starting with a fresh installation each time. In some cases,
I’ve also provided an “extra” provisioning playbook that you can optionally
use to skip some of the detailed installation steps and get straight to the
learning. See the README.md in each chapter’s directory for more
information.

Terminal Windows

After you’ve used Ansible to provision your virtual machines, you’ll need to
get at least one terminal window connected to run commands. The
README.md file in each chapter will tell you how to do that. Before running
any examples, you’ll first need to become the root user, as follows:

sudo su -

This will give you a root shell and set up your environment and home
directory to match.

RUNNING AS ROOT



If you’ve worked with Linux before, you probably have a healthy
aversion to working as root on a regular basis, so it might surprise you
that all of the examples in this book are run as the root user. This is a
big advantage of using temporary virtual machines and containers;
when we act as the root user, we are doing so in a temporary, confined
space that can’t reach out and affect anything else.

As you move from learning about containers and Kubernetes to running
applications in production, you’ll be applying security controls to your
cluster that will limit administrative access and will ensure that
containers cannot break out of their isolated environment. This often
includes configuring your containers so that they run as a non-root user.

J

In some examples, you’ll need to open multiple terminal windows in order
to leave one process running while you inspect it from another terminal. How

you do that is up to you; most terminal applications support multiple tabs or
multiple windows. If you need a way to open multiple terminals within a
single tab, try exploring a terminal multiplexer application. All of the
temporary virtual machines used in the examples come with both screen and
mmux installed and ready to use.



PART1
MAKING AND USING CONTAINERS

Containers are essential to modern application architecture. They simplify
packaging, deploying, and scaling application components. They enable
building reliable and resilient applications that handle failure gracefully.
However, containers can also be confusing. They look like completely
different systems, with separate hostnames, networking, and storage, but they
do not have many of the features of a separate system, such as a separate
console or system services. To understand how containers look like separate
systems without really being separate, let’s explore containers, container
engines, and Linux kernel features.



1
WHY CONTAINERS MATTER

It’s a great time to be a software developer. Creating a brand-new application
and making it available to millions of people has never been easier. Modern
programming languages, open source libraries, and application platforms
make it possible to write a small amount of code and end up with lots of
functionality. However, although it’s easy to get started and create a new
application quickly, the best application developers are those who move
beyond treating the application platform as a “black box” and really
understand how it works. Creating a reliable, resilient, and scalable
application requires more than just knowing how to create a Deployment in
the browser or on the command line.

In this chapter, we’ll look at application architecture in a scalable, cloud
native world. We will show why containers are the preferred way to package
and deploy application components, and how container orchestration
addresses key needs for containerized applications. We’ll finish with an
example application deployed to Kubernetes to give you an introductory
glimpse into the power of these technologies.

Modern Application Architecture

The main theme of modern software applications is scale. We live in a world
of applications with millions of simultaneous users. What is remarkable is the



ability of these applications to achieve not only this scale but also a level of
stability such that an outage makes headlines and serves as fodder for weeks
or months of technical analysis.

With so many modern applications running at large scale, it can be easy to
forget that a lot of hard work goes into architecting, building, deploying, and
maintaining applications of this caliber, whether the scale they’re designed
for is thousands, millions, or billions of users. Our job in this chapter is to
identify what we need from our application platform to run a scalable,
reliable application, and to see how containerization and Kubernetes meet
those requirements. We’ll start by looking at three key attributes of modern
application architecture. Then we’ll move on to looking at three key benefits
these attributes bring.

Attribute: Cloud Native

There are lots of ways to define cloud native technologies (and a good place
to start is the Cloud Native Computing Foundation at https://cncf.io). I like to
start with an idea of what “the cloud” is and what it enables so that we can
understand what kind of architecture can make best use of it.

At its heart, the cloud is an abstraction. We talked about abstractions in
the introduction, so you know that abstractions are essential to computing,
but we also need a deep understanding of our abstractions to use them
properly. In the case of the cloud, the provider is abstracting away the real
physical processors, memory, storage, and networking, allowing cloud users
to simply declare a need for these resources and have them provisioned on
demand. To have a “cloud native” application, then, we need an application
that can take advantage of that abstraction. As much as possible, the
application shouldn’t be tied to a specific host or a specific network layout,
because we don’t want to constrain our flexibility in how application
components are divided among hosts.

Attribute: Modular

Modularity is nothing new to application architecture. The goal has always
been high cohesion, where everything within a module relates to a single
purpose, and low coupling, where modules are organized to minimize
intermodule communication. However, even though modularity remains a
key design goal, the definition of what makes a module is different. Rather
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than just treat modularity as a way of organizing the code, modern
application architecture today prefers to carry modularity into the runtime,
providing each module with a separate operating system process and
discouraging the use of a shared filesystem or shared memory for
communication. Because modules are separate processes, communication
between modules is standard network (socket) communication.

This approach seems wasteful of hardware resources. It is more compact
and faster to share memory than it is to copy data over a socket. But there are
two good reasons to prefer separate processes. First, modern hardware is fast
and getting faster, and it would be a form of premature optimization to
imagine that sockets are not fast enough for our application. Second, no
matter how large a server we have, there is going to be a limit to how many
processes we can fit on it, so a shared memory model ultimately limits our
ability to grow.

Attribute: Microservice-Based

Modern application architecture is based on modules in the form of separate
processes—and these individual modules tend to be very small. In theory, a
cloud can provide us with virtual servers that are as powerful as we need;
however, in practice, using a few powerful servers is more expensive and less
flexible than many small servers. If our modules are small enough, they can
be deployed to cheap commodity servers, which means that we can leverage
our cloud provider’s hardware to best advantage. Although there is no single
answer as to how small a module needs to be in order to be a microservice,
“small enough that we can be flexible regarding where it is deployed” is a
good first rule.

A microservice architecture also has practical advantages for organizing
teams. Ever since Fred Brooks wrote The Mythical Man-Month, architects
have understood that organizing people is one of the biggest challenges to
developing large, complex systems. Building a system from many small
pieces reduces the complexity of testing but also makes it possible to
organize a large team of people without everyone getting in everyone else’s
way.

WHAT ABOUT APPLICATION SERVERS?



The idea of modular services has a long history, and one popular way to
implement it was building modules to run in an application server, such
as a Java Enterprise environment. Why not then just continue to follow
that pattern for applications?

Although application servers were successful for many uses, they don’t
have the same degree of isolation that a microservice architecture has.
As a result, there are more issues with interdependency, leading to more
complex testing and reduced team independence. Additionally, the
typical model of having a single application server per host, with many
applications deployed to it and sharing the same process space, is much
less flexible than the containerized approaches you will see in this book.

This is not to say that you should immediately throw away your
application server architecture to use containers. There are lots of
benefits to containerization for any architecture. But as you adopt a
containerized architecture, over time it will make sense for you to move
your code toward a true microservice architecture to take best advantage
of what containers and Kubernetes offer.

We’ve looked at three key attributes of modern architecture. Now, let’s
look at three key benefits that result.

Benefit: Scalability

Let’s begin by envisioning the simplest application possible. We create a
single executable that runs on a single machine and interacts with only a
single user at a time. Now, suppose that we want to grow this application so
that it can interact with thousands or millions of users at once. Obviously, no
matter how powerful a server we use, eventually some computing resource
will become a bottleneck. It doesn’t matter whether the bottleneck is
processing, or memory, or storage, or network bandwidth; the moment we hit
that bottleneck, our application cannot handle any additional users without
hurting performance for others.

The only possible way to solve this issue is to stop sharing the resource
that caused the bottleneck. This means that we need to find a way to
distribute our application across multiple servers. But if we’re really scaling




up, we can’t stop there. We need to distribute across multiple networks as
well, or we’ll hit the limit of what one network switch can do. And
eventually, we will even need to distribute geographically, or we’ll saturate
the broader network.

To build applications with no limit to scalability, we need an architecture
that can run additional application instances at will. And because an
application is only as slow as its slowest component, we need to find a way to
scale everything, including our data stores. It’s obvious that the only way to
do this effectively is to create our application from many independent pieces
that are not tied to specific hardware. In other words, cloud native
microservices.

Benefit: Reliability

Let’s go back to our simplest possible application. In addition to scalability
limits, it has another flaw. It runs on one server, and if that server fails, the
entire application fails. Our application is lacking reliability. As before, the
only possible way to solve this issue is to stop sharing the resource that could
potentially fail. Fortunately, when we start distributing our application across
many servers, we have the opportunity to avoid a single point of failure in the
hardware that would bring down our application. And as an application is
only as reliable as its least reliable component, we need to find a way to
distribute everything, including storage and networks. Again, we need cloud
native microservices that are flexible about where they are run and about how
many instances are running at once.

Benefit: Resilience

There is a third, subtler advantage to cloud native microservice architecture.
This time, imagine an application that runs on a single server, but it can
easily be installed as a single package on as many servers as we like. Each
instance can serve a new user. In theory, this application would have good
scalability, given that we can always install it on another server. And overall,
the application could be said to be reliable because a failure of a single server
is going to affect only that one user, whereas the others can keep running as
normal.

What is missing from this approach is the concept of resilience, or the
ability of an application to respond meaningfully to failure. A truly resilient



application can handle a hardware or software failure somewhere in the
application without an end user noticing at all. And although separate,
unrelated instances of this application keep running when one instance fails,
we can’t really say that the application exhibits resilience, at least not from
the perspective of the unlucky user with the failed system.

On the other hand, if we construct our application out of separate
microservices, each of which has the ability to communicate over a network
with other microservices on any server, the loss of a single server might cost
us several microservice instances, but end users can be moved to other
instances on other servers transparently, such that they don’t even notice the
failure.

Why Containers

I’ve made modern application architecture with its fancy cloud native
microservices sound pretty appealing. Engineering is full of trade-offs,
however, so experienced engineers will suspect that there must be some
pretty significant trade-offs, and, of course, there are.

It’s very difficult to build an application from lots of small pieces.
Organizing teams around microservices so that they can work independently
from one another might be great, but when it comes time to put those together
into a working application, the sheer number of pieces means worrying about
how to package them up, how to deliver them to the runtime environment,
how to configure them, how to provide them with (potentially conflicting)
dependencies, how to update them, and how to monitor them to make sure
they are working.

This problem only grows worse when we consider the need to run
multiple instances of each microservice. Now, we need a microservice to be
able to find a working instance of another microservice, balancing the load
across all of the working instances. We need that load balancing to
reconfigure itself immediately if we have a hardware or software failure. We
need to fail over seamlessly and retry failed work in order to hide that failure
from the end user. And we need to monitor not just each individual service,
but how all of them are working together to get the job done. After all, our
users don’t care if 99 percent of our microservices are working correctly if
the 1 percent failure prevents them from using our application.



We have lots of problems to solve if we want to build an application out
of many individual microservices, and we do not want each of our
microservice teams working those problems, or they would never have time
to write code! We need a common way to manage the packaging,
deployment, configuration, and maintenance of our microservices. Let’s look
at two categories of required attributes: those that apply to a single
microservice, and those that apply to multiple microservices working
together.

Requirements for Containers

For a single microservice, we need the following:

Packaging Bundle the application for delivery, which needs to include
dependencies so that the package is portable and we avoid conflicts between
microservices.

Versioning Uniquely identify a version. We need to update microservices
over time, and we need to know what version is running.

Isolation Keep microservices from interfering with one another. This allows
us to be flexible about what microservices are deployed together.

Fast startup Start new instances rapidly. We need this to scale and respond
to failures.

Low overhead Minimize required resources to run a microservice in order to
avoid limits on how small a microservice can be.

Containers are designed to address exactly these needs. Containers
provide isolation together with low overhead and fast startup. And, as we’ll
see in Chapter 5, a container runs from a container image, which provides a
way to package an application with its dependencies and to uniquely identify
the version of that package.

Requirements for Orchestration
For multiple microservices working together, we need:

Clustering Provide processing, memory, and storage for containers across
multiple servers.



Discovery Provide a way for one microservice to find another. Our
microservices might run anywhere on the cluster, and they might move
around.

Configuration Separate configuration from runtime, allowing us to
reconfigure our application without rebuilding and redeploying our
microservices.

Access control Manage authorization to create containers. This ensures that
the right containers run, and the wrong ones don’t.

Load balancing Spread requests among working instances in order to avoid
the need for end users or other microservices to track all microservice
instances and balance the load themselves.

Monitoring Identify failed microservice instances. Load balancing won’t
work well if traffic is going to failed instances.

Resilience Automatically recover from failures. If we don’t have this ability,
a chain of failures could kill our application.

These requirements come into play only when we are running containers
on multiple servers. It’s a different problem from just packaging up and
running a single container. To address these needs, we require a container
orchestration environment. A container orchestration environment such as
Kubernetes allows us to treat multiple servers as a single set of resources to
run containers, dynamically allocating containers to available servers and
providing distributed communication and storage.

Running Containers

By now, hopefully you’re excited by the possibilities of building an
application using containerized microservices and Kubernetes. Let’s walk
through the basics so that you can see what these ideas look like in practice,
providing a foundation for the deeper dive into container technology that
you’ll find in the rest of this book.

What Containers Look Like

In Chapter 2, we’ll look at the difference between a container platform and a



container runtime, and we’ll run containers using multiple container
runtimes. For now, let’s begin with a simple example running in the most
popular container platform, Docker. Our goal is to learn the basic Docker
commands, which align to universal container concepts.

Running a Container

The first command is run, which creates a container and runs a command
inside it. We will tell Docker the name of the container image to use. We
discuss container images more in Chapter 5; for now, it’s enough to know
that it provides a unique name and version so that Docker knows exactly
what to run. Let’s get started using the example for this chapter.

NOTE

The example repository for this book is at https://github.com/book-of-
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

A key idea for this section is that containers look like a completely
separate system. To illustrate this, before we run a container, let’s look at the
host system:

root@host01:~# cat /etc/os-release
NAME="Ubuntu"

root@host01:~# ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 012:597 00:00:07 /sbin/init

root@host01:~# uname -v
#...-Ubuntu SMP ...
root@host01:~# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 ...
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_lft forever preferred_lft forever

3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel ...
link/ether 08:00:27:bf:63:1f brd ff:ff:ff.ff:ff:ff
inet 192.168.61.11/24 brd 192.168.61.255 scope global enp0s8
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valid_lft forever preferred_lft forever
inet6 fe80::a00:27ff:febf:631f/64 scope link
valid_lft forever preferred_lft forever

The first command looks at a file called /etc/os-release, which has
information about the installed Linux distribution. In this case, our example
virtual machine is running Ubuntu. That matches the output of the next
command, in which we see an Ubuntu-based Linux kernel. Finally, we list
network interfaces and see an IP address of 192.168.61.11.

The example setup steps automatically installed Docker, so we have it
ready to go. First, let’s download and start a Rocky Linux container with a
single command:

root@host01:~# docker run -ti rockylinux:8
Unable to find image 'rockylinux:8' locally
8: Pulling from library/rockylinux

Status: Downloaded newer image for rockylinux:8

We use -ti in our docker run command to tell Docker that we need an
interactive terminal to run commands. The only other parameter to docker run is
the container image, rockylinux:8, which specifies the name rockylinux and the
version 8. Because we don’t provide a command to run, the default bash
command for that container image is used.

Now that we have a shell prompt inside the container, we can run a few
commands and then use exit to leave the shell and stop the container:

© [root@18f20e2d7e49 /1# cat /etc/os-release
@ NAME="Rocky Linux"

© [root@18f20e2d7e49 /1# yum install -y procps iproute

[root@18f20e2d7e49 /1# ps -ef
UID PID PPID C STIME TTY TIME CMD
root 01 0 013:30 pts/0  00:00:00 /bin/bash
root 19 1 013:46 pts/0  00:00:00 ps -ef
[root@18f20e2d7e49 /]# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 ...
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_Ift forever preferred_lft forever

@ 18: eth0@if19: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 ...

link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff.ff:ff link-netnsid 0



inet 172.17.0.2/16 brd 172.17.255.255 scope global eth0Q
valid_Ift forever preferred_lft forever
[root@18f20e2d7e49 /]# uname -v
@® #...-Ubuntu SMP ...
[root@18f20e2d7e49 /1# exit

When we run commands within our container, it looks like we are running
in a Rocky Linux system. Compared to the host system, there are multiple
differences:

e A different hostname in the shell prompt @ (18f20e2d7e49 for mine,
though yours will be different)

e Different filesystem contents @, including basic files like /etc/os-
release

e The use of yum € to install packages, and the need to install packages
even for basic commands

e A limited set of running processes, with no base system services and our
bash shell @ as process ID (PID) 1

e Different network devices @, including a different MAC address and IP
address

Strangely, however, when we run uname -v, we see the exact same Ubuntu
Linux kernel ® as when we were on the host. Clearly, a container is not a
wholly separate system as we might otherwise believe.

Images and Volume Mounts

At first glance, a container looks like a mix between a regular process and a
virtual machine. And the way we interact with Docker only deepens that
impression. Let’s illustrate that by running an Alpine Linux container. We’ll
start by “pulling” the container image, which feels a lot like downloading a
virtual machine image:

root@host01:~# docker pull alpine:3
3: Pulling from library/alpine

docker.io/library/alpine:3

Next, we’ll run a container from the image. We’ll use a volume mount to



see files from the host, a common task with a virtual machine. However,
we’ll also tell Docker to specify an environment variable, which is the kind
of thing we would do when running a regular process:

root@host01:~# docker run -ti -v /:/host -e hello=world alpine:3
/ # hostname
75b51510ab61

We can print the contents of /etc/os-release inside the container, as before
with Rocky Linux:

/ # cat /etc/os-release
NAME="Alpine Linux"
ID=alpine

However, this time we can also print the host’s /etc/os-release file because
the host filesystem is mounted at /host:

/ # cat /host/etc/os-release
NAME="Ubuntu"

And finally, within the container we also have access to the environment
variable we passed in:

/ # echo $hello
world
/ # exit

This mix of ideas from virtual machines and regular processes sometimes
leads new container users to ask questions like, “Why can’t I SSH into my
container?” A major goal of the next few chapters is to make clear what
containers really are.

What Containers Really Are

Despite what a container looks like, with its own hostname, filesystem,
process space, and networking, a container is not a virtual machine. It does
not have a separate kernel, so it cannot have separate kernel modules or
device drivers. A container can have multiple processes, but they must be
started explicitly by the first process (PID 1). So a container will not have an



SSH server in it by default, and most containers do not have any system
services running.

In the next several chapters, we’ll look at how a container manages to
look like a separate system while being a group of processes. For now, let’s
try one more Docker example to see what a container looks like from the host
system.

First, we’ll download and run NGINX with a single command:

root@host01:~# docker run -d -p 8080:80 nginx
Unable to find image 'nginx:latest' locally
latest: Pulling from library/nginx

Status: Downloaded newer image for nginx:latest
€9c5e87020372a23ce31ad10bd87011ed29882f65f97f3af8d32438a8340f936

This example illustrates a couple of additional useful Docker commands.
And again, we are mixing ideas from virtual machines and regular processes.
By using the -d flag, we tell Docker to run this container in daemon mode (in
the background), which is the kind of thing we would do for a regular
process. Using -p 8080:80, however, brings in another concept from virtual
machines, as it instructs Docker to forward port 8080 on the host to port 80 in
the container, letting us connect to NGINX from the host even though the
container has its own network interfaces.

NGINX is now running in the background in a Docker container. To see
it, run the following:

root@host01:~# docker ps
CONTAINER ID IMAGE ... PORTS NAMES
€9c5e8702037 nginx ... 0.0.0.0:8080->80/tcp funny_montalcini

Because of the port forwarding, we can connect to it from our host system
using curl:

root@host01:~# curl http://localhost:8080/
<IDOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

With this example, we’re starting to see how containerization meets some



of the needs we identified earlier in this chapter. Because NGINX is
packaged into a container image, we can download and run it with a single
command, with no concern for any conflict with anything else that might be
installed on our host.

Let’s run one more command to explore our NGINX server:

root@host01:~# ps -ef | grep nginx | grep -v grep
root 35729 35703 0 14:17 ? 00:00:00 nginx: master ...
systemd+ 35796 35729 0 14:17 ? 00:00:00 nginx: worker ...

If NGINX were running in a virtual machine, we would not see it in a ps
listing on the host system. Clearly, NGINX in a container is running as a
regular process. At the same time, we didn’t need to install NGINX onto our
host system to get it working. In other words, we are getting the benefits of a
virtual machine approach without the overhead of a virtual machine.

Deploying Containers to Kubernetes

To have load balancing and resilience in our containerized applications, we
need a container orchestration framework like Kubernetes. Our example
system also has a Kubernetes cluster automatically installed, with a web
application and database deployed to it. As a preparation for our deep dive
into Kubernetes in Part II, let’s look at that application.

There are many different options for installing and configuring a
Kubernetes cluster, with distributions available from many companies. We
discuss multiple options for Kubernetes distributions in Chapter 6. For this
chapter, we’ll use a lightweight distribution called “K3s” from a company
called Rancher.

To use a container orchestration environment like Kubernetes, we have to
give up some control over our containers. Rather than executing commands
directly to run containers, we’ll tell Kubernetes what containers we want it to
run, and it will decide where to run each container. Kubernetes will then
monitor our containers for us and handle automatic restart, failover, updates
to new versions, and even autoscaling based on load. This style of
configuration is called declarative.

Talking to the Kubernetes Cluster



A Kubernetes cluster has an API server that we can use to get status and
change the cluster configuration. We interact with the API server using the
kubectl client application. K3s comes with its own embedded kubectl command
that we’ll use. Let’s begin by getting some basic information about the
Kubernetes cluster:

root@host01:~# k3s kubectl version

Client Version: version.Info{Major:"1", ...

Server Version: version.Info{Major:"1", ...
root@host01:~# k3s kubectl get nodes

NAME STATUS ROLES AGE VERSION
host01 Ready control-plane... 2d vl...

As you can see, we’re working with a single-node Kubernetes cluster. Of
course, this would not meet our needs for high availability. Most Kubernetes
distributions, including K3s, support a multinode, highly available cluster,
and we will look at how that works in detail in Part II.

Application Overview

Our example application provides a “to-do” list with a web interface,
persistent storage, and tracking of item state. It will take several minutes for
this to be running in Kubernetes, even after the automated scripts are
finished. After it’s running, we can access it in a browser and should see
something like Figure 1-1.

What needs to be done?

client connected to: http.//localhost:48080/todo/api

Figure 1-1: An example application in Kubernetes



This application is divided into two types of containers, one for each
application component. A Node.js application serves files to the browser and
provides a REST API. The Node.js application communicates with a
PostgreSQL database. The Node.js component is stateless, so it is easy to
scale up to as many instances as we need based on the number of users. In
this case, our application’s Deployment asked Kubernetes for three Node.js
containers:

root@host01:~# k3s kubectl get pods

NAME READY STATUS RESTARTS AGE
todo-db-7df8b44d65-744mt 1/1 Running 0 2d
todo-655ff549f8-14dxt  1/1 Running 0 2d
todo-655ff549f8-gc7b6  1/1  Running 1 2d
todo-655ff549f8-qq8ff 1/1 Running 1 2d

The command get pods tells Kubernetes to list Pods. A Pod is a group of
one or more containers that Kubernetes treats as a single unit for scheduling
and monitoring. We look at Pods more closely throughout Part 1II.

Here, we have one Pod whose name starts with todo-db, which is our
PostgreSQL database. The other three Pods, with names starting with todo, are
the Node.js containers. (We’ll explain later why the names have random
characters after them; you can ignore that for now.)

According to Kubernetes, our application component containers are
running, so we should be able to access our application in a browser. How
you do this depends on whether you are running in AWS or Vagrant; the
example setup scripts will print out what URL you should use in your
browser. If you visit that URL, you should see something like Figure 1-1.

Kubernetes Features

If our only goal were to run four containers, we could have done that just
using the Docker commands described earlier. Kubernetes is providing a lot
more functionality, though. Let’s take a quick tour of the most important
features.

In addition to running our containers, Kubernetes is also monitoring them.
Because we asked for three instances, Kubernetes will work to keep three
instances running. Let’s destroy one and watch Kubernetes automatically
recover:



root@host01:~# k3s kubectl delete pod todo-655ff549f8-qq8ff
pod "todo-655ff549f8-qq8ff" deleted

root@host01:~# k3s kubectl get pods

NAME READY STATUS RESTARTS AGE
todo-db-7df8b44d65-744mt 1/1 Running 0 2d
todo-655ff549f8-14dxt  1/1 Running 0 2d
todo-655ff549f8-gc7b6  1/1  Running 1 2d
todo-655ff549f8-rm8sh ~ 1/1  Running 0 11s

To run this command, you will need to copy and paste the full name of
one of your three Pods. The name will be a little different from mine. When
you delete a Pod, you should see that Kubernetes immediately creates a new
one. (You can identify which one is brand new by the AGE field.)

Next let’s explore how Kubernetes can automatically scale our
application. Later, we’ll see how to make Kubernetes do this automatically,
but for now, we will do it manually. Suppose that we decide we need five
Pods instead of three. We can do this with one command:

root@host01:~# k3s kubectl scale --replicas=5 deployment todo
deployment.apps/todo scaled

root@host01:~# k3s kubectl get pods

NAME READY STATUS RESTARTS AGE
todo-db-7df8b44d65-744mt 1/1  Running 0 2d
todo-655ff549f8-14dxt  1/1 Running 0 2d
todo-655ff549f8-gc7b6  1/1 Running 1 2d
todo-655ff549f8-rm8sh ~ 1/1  Running 0 5m13s
todo-655ff549f8-g7lxg ~ 1/1 Running 0 6s
todo-655ff549f8-zsqp6  1/1  Running 0 6s

We tell Kubernetes to scale the Deployment that manages our Pods. For
now, you can think of the Deployment as the “owner” of the Pods; it
monitors them and controls how many there are. Here, two extra Pods are
immediately created. We just scaled up our application.

Before we close, let’s look at one more critically important Kubernetes
feature. When you load the application in your web browser, Kubernetes is
sending your browser’s request to one of the available Pods. Each time you
reload, the request might be routed to a different Pod because Kubernetes is
automatically balancing the application’s load. To make this happen, when
we deploy our application to Kubernetes, the application configuration
includes a Service:

root@host01:~# k3s kubectl describe service todo



Name: todo

IPs: 10.43.231.177

Port: <unset> 80/TCP

TargetPort: 5000/TCP

Endpoints: 10.42.0.10:5000,10.42.0.11:5000,10.42.0.14:5000 + 2 more...

A Service has its own IP address and routes traffic to one or more
endpoints. In this case, because we scaled up to five Pods, the Service is
balancing traffic across all five endpoints.

Final Thoughts

Modern applications achieve scalability and reliability through an
architecture based on microservices that can be deployed independently and
dynamically to available hardware, including cloud resources. By using
containers and container orchestration to run our microservices, we achieve a
common approach for packaging, scaling, monitoring, and maintaining
microservices, enabling our development teams to focus on the hard work of
actually building the application.

In this chapter, we saw how containerization can create the appearance of
a separate system while really being a regular process run in an isolated way.
We also saw how we can use Kubernetes to deploy an entire application as a
set of containers, with scalability and self-healing. Of course, Kubernetes has
a lot more important features than what we’ve mentioned here, enough that it
will take the whole book for us to cover them all! With this brief overview, I
hope you are excited to dive more deeply into containers and Kubernetes in
order to understand how to build applications that perform well and are
reliable.

We’ll come back to Kubernetes in Part II of this book. For now, let’s look
closely at how containers create the illusion of a separate system. We’ll start
by looking at process isolation using Linux namespaces.



2
PROCESS ISOLATION

Containers build on a rich history of technologies designed to isolate one
computer program from another while allowing many programs to share the
same CPU, memory, storage, and network resources. Containers use
fundamental capabilities of the Linux kernel, particularly namespaces, which
create separate views of process identifiers, users, the filesystem, and
network interfaces. Container runtimes use multiple types of namespaces to
give each container an isolated view of the system.

In this chapter, we’ll consider some of the reasons for process isolation
and look at how Linux has historically isolated processes. We’ll then
examine how containers use namespaces to provide isolation. We’ll test this
using a couple of different container runtimes. Finally, we will use Linux
commands to create namespaces directly.

Understanding Isolation

Before running some containers and inspecting their isolation, let’s look at
the motivation for process isolation. We’ll also consider traditional process
isolation in Linux and how that has led to the isolation capabilities that
containers use.

Why Processes Need Isolation



The whole idea of a computer is that it is a general-purpose machine that can
run many different kinds of programs. Ever since the beginning of
computing, there has been a need to share a single computer between
multiple programs. It started with people taking turns submitting programs on
punch cards, but as computer multitasking became more sophisticated, people
could start multiple programs, and the computer would make it seem as if
they were all running on the same CPU at once.

Of course, as soon as something needs to be shared, there is a need to
make sure it is shared fairly, and computer programs are no different. So
although we think of a process as an independent program with its own time
on the CPU and its own memory space, there are many ways that one process
can cause trouble for another, including:

Using too much CPU, memory, storage, or network

Overwriting the memory or files of another process

Extracting secret information from another process
Sending another process bad data to cause it to misbehave
Flooding another process with requests so that it stops responding

Bugs can cause processes to do these same things by accident, but a
bigger concern is a security vulnerability that allows a bad actor to use one
process to cause problems for another. It takes only one vulnerability to
create major problems in a system, so we need ways to isolate processes that
limit damage from both accidental and intentional behavior.

Physical isolation is best—air-gapped systems are regularly used to
protect government-classified information and safety-critical systems—but
this approach is also too expensive and inconvenient for many uses. Virtual
machines can give the appearance of separation while sharing physical
hardware, but a virtual machine has the overhead of running its own
operating system, services, and virtual devices, making it slower to start and
less scalable. The solution is to run regular processes, but use process
isolation to reduce the risk of affecting other processes.

File Permissions and Change Root

Most of the effort in process isolation involves preventing one process from
seeing things it shouldn’t. After all, if a process can’t even see another



process, it will be far more difficult to cause trouble, either accidentally or on
purpose. The traditional ways that Linux has controlled what processes can
see and do serve as the foundation for the ideas behind containers.

One of the most basic visibility controls is filesystem permissions. Linux
associates an owner and group with each file and directory, and manages
read, write, and execute permissions. This basic permission scheme works
well to ensure that user files are kept private, that a process cannot overwrite
the files of another process, and that only a privileged user like root can
install new software or modify critical system configuration files.

Of course, this permission scheme relies on us ensuring that each process
is run as the authentic user and that users are in the appropriate groups.
Typically, each new service install creates a user just for running that service.
Even better, this service user can be configured without a real login shell,
which means that the user cannot be exploited to log in to the system. To
make this clear, let’s look at an example.

NOTE

The example repository for this book is at https://github.com/book-of-
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

The Linux rsyslogd service provides logging services, so it needs to write to
files in /var/log, but it should not have permissions to read or write all of the
files in that directory. File permissions are used to control this, as shown in
this example:

root@host01:~# ps -ef | grep rsyslogd | grep -v grep

@ syslog 698 1 0 Mar05? 00:00:04 /usr/sbin/rsyslogd -n -iINONE
root@host01:~# su syslog

@ This account is currently not available.
root@host01:~# Is -1 /var/log/auth.log

© -rw-r-—-- 1 syslog adm 18396 Mar 6 01:27 /var/log/auth.log
root@host01:~# Is -1d /var/log/private

O drwx--—-- 2 root root 4096 Mar 5 21:04 /var/log/private

The syslog user @ exists specifically to run rsyslogd, and that user is
configured with no login shell for security reasons @. Because rsyslogd needs
to be able to write to auth.log, it’s given write permission, as shown in the
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file mode printout €. Members of the admin (adm) group have read-only
access to this file.

An initial d in the file mode @) indicates that this is a directory. The
following rwx indicates that the root user has read, write, and execute
permissions. The remaining dashes indicate that there are no rights for
members of the root group or for other system users, so we can conclude that
the rsyslogd process cannot see the contents of this directory.

Permission control is important, but it doesn’t fully satisfy our goal of
process isolation. One reason is that it is not enough to protect us from
privilege escalation, wherein a vulnerable process and a vulnerable system
allow a bad actor to obtain root privileges. To help deal with this, some Linux
services go a step beyond by running in an isolated part of the filesystem.
This approach is known as chroot for “change root.” Running in a chroot
environment requires quite a bit of setup, as you can see in this example:

root@host01:~# mkdir /tmp/newroot

root@host01:~# @ cp --parents /bin/bash /bin/ls /tmp/newroot
root@host01:~# cp --parents /lib64/1d-linux-x86-64.s0.2 \

@ $(1dd /bin/bash /bin/ls | grep '=>' | awk '{print $3}') /tmp/newroot

root@host01:~# @ chroot /tmp/newroot /bin/bash
bash-5.0# Is -1 /bin
total 1296

O -rwxr-xr-x 1 0 0 1183448 Mar 6 02:15 bash
-rwxr-xr-x 1 00 142144 Mar 6 02:151s
bash-5.0# exit
exit

First, we need to copy in all of the executables that we intend to run @.
We also need to copy in all of the shared libraries these executables use,
which we specify with the 1dd | grep | awk command @. When both binaries and
libraries are copied in, we can use the chroot command € to move into our
isolated environment. Only the files we copied in are visible @.

Container Isolation

For experienced Linux system administrators, file permissions and change
root are basic-level knowledge. However, those concepts also serve as the
foundation for how containers work. Even though a running container
appears like a completely separate system, with its own hostname, network,
processes, and filesystem (as we saw in Chapter 1), it’s really a regular Linux



process using isolation rather than a virtual machine.

A container has multiple kinds of isolation, including several essential
kinds of isolation that we haven’t seen before:

e Mounted filesystems

e Hostname and domain name
¢ [Interprocess communication
e Process identifiers

e Network devices

These separate kinds of isolation work together so that a process or
collection of processes looks like a completely separate system. Although
these processes still share the kernel and physical hardware, this isolation
goes a long way toward ensuring that they cannot cause trouble for other
processes, especially when we configure containers correctly to control the
CPU, memory, storage, and network resources available to them.

Container Platforms and Container Runtimes

Specifying all the binaries, libraries, and configuration files needed to run a
process in an isolated filesystem would be laborious. Fortunately, as we saw
in Chapter 1, container images come prepackaged with the needed
executables and libraries. Using Docker, we were able to easily download
and run NGINX in a container. Docker is an example of a container platform,
providing not only the ability to run containers but also container storage,
networking, and security.

Under the covers, modern versions of Docker are using containerd as the
container runtime, also known as a container engine. A container runtime
provides low-level functionality to run processes in containers.

To explore isolation further, let’s experiment with two different container
runtimes to start containers from preexisting images and then inspect how
processes in containers are isolated from the rest of the system.

Installing containerd

We’ll be using containerd in Part II in support of our Kubernetes clusters, so



let’s begin by installing and interacting with this runtime directly. Interacting
directly with containerd will also benefit our exploration of process isolation.

You can skip install commands by using the extra provisioning script
provided with this chapter’s examples. See the README file for this chapter
for instructions.

Even though containerd is available in the standard Ubuntu package
repository, we’ll install it from the official Docker package registry so that
we get the latest stable version. To do that, we need Apt to support HTTP/S,
so let’s do that first:

root@host01:~# apt update

root@host01:~# apt -y install apt-transport-https

Now let’s add the package registry and install:

root@host01:~# curl -fsSL https://downlead.docker.com/linux/ubuntu/gpg | \
gpg --dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg

root@host01:~# echo "deb [arch=amd64" \
"signed-by=/usr/share/keyrings/docker-archive-keyring.gpg]" \
"https://download.docker.com/linux/ubuntu focal stable" >\
/etc/apt/sources.list.d/docker.list

root@host01:~# apt update & & apt install -y containerd.io

root@host01:~# ctr images ls
REF TYPE DIGEST SIZE PLATFORMS LABELS

The final command just ensures that the package installed correctly, that
the service is running, and that the c¢tr command is working. We don’t see any
images because we haven’t installed any yet.

Container runtimes are low-level libraries. They are typically not used
directly but are used by a higher-level container platform or orchestration
environment such as Docker or Kubernetes. This means that they put a lot of
focus into a quality application programming interface (API) but not as much
effort into user-facing tools we can use from the command line. Fortunately,
command line tools are still needed for testing, and containerd provides the ctr
tool that we’ll use for experimentation.

Using containerd



Our initial containerd command showed that no images have been downloaded
yet. Let’s download a small image with which we can run a container. We
will use BusyBox, a tiny container image that includes a shell and basic Linux
utilities. To download the image, we use the pull command:

root@host01:~# ctr image pull docker.io/library/busybox:latest

root@host01:~# ctr images ls
REF
docker.io/library/busybox:latest ...

Our list of images is no longer empty. Let’s run a container from that
image:

root@host01:~# ctr run -t --rm docker.io/library/busybox:latest v1
/#

This looks similar to using Docker. We use -t to create a TTY for this
container, allowing us to interact with it, and we use --rm to tell containerd to
delete the container when the main process stops. However, there are some
important differences to note. When we used Docker in Chapter 1, we didn’t
worry about pulling the image before running it, and we were able to use
simpler names like nginx or rockylinux:8. The ctr tool requires us to specify
docker.io/library/busybox:latest, the full path to the image, with registry
hostname and tag included. Also, we are required to pull the image first
because the runtime won’t do this for us automatically.

Now that we’re inside this container, we can see that it has an isolated
network stack and process space:

/#ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue glen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_lIft forever preferred_Ift forever
/ # ps -ef
PID USER TIME COMMAND
1root  0:00 sh
8root  0:00 ps -ef
/ #

Inside the container, we see a loopback network interface. We also see our



shell process and the ps command that we ran. As far as the processes in our
container are concerned, we are running on a separate system with no other
processes running or listening on the network.

( )

WHY NO BRIDGE INTERFACE?

If you’ve worked with Docker, you might be surprised to see that this
container has only a loopback interface. Default networking on a
container platform also provides an additional interface that is attached
to a bridge. This allows containers to see one another and also allows
containers to use the host interface to access external networks via
Network Address Translation (NAT).

In this case, we are talking directly to a lower-level container runtime.
This container runtime handles managing images and running
containers only. If we want a bridge interface and a connection to the
internet, we’ll need to provide it ourselves (and we do exactly that in
Chapter 4).

We’ve illustrated that we can talk to the containerd runtime to run a
container, and that inside the container, we’re isolated from the rest of the
system. How does that isolation work? To find out, let’s keep the container
running and investigate it from the host system.

Introducing Linux Namespaces

Like other container runtimes, containerd uses a Linux kernel feature called
namespaces to isolate the processes in the container. As mentioned earlier,
most of the effort in process isolation is to ensure that a process can’t see
things it shouldn’t. A process running in a namespace sees a limited view of a
particular system resource.

Even though containerization seems like new technology, Linux
namespaces have been available for many years. Over time, more types of
namespaces were added. We can find out what namespaces are associated
with our container using the Isns command, but first we need to know the
process ID (PID) on the host for our container’s shell process. While leaving



the container running, open another terminal tab or window. (See “Running
Examples” on page xx for more information.) Then, use ctr to list running
containers:

root@host01:~# ctr task Is
TASK PID STATUS
vl 18088 RUNNING

Let’s use ps to verify that we have the correct PID. When you run these
commands yourself, be sure to use the PID that displays in your listing:

root@host01:~# ps -ef | grep 18088 | grep -v grep

root 18088 18067 0 18:46 pts/0  00:00:00 sh

root@host01:~# ps -ef | grep 18067 | grep -v grep

root 18067 1 018:467? 00:00:00
/usr/bin/containerd-shim-runc-v2 -namespace default -id v1 -address
/run/containerd/containerd.sock

root 18088 18067 0 18:46 pts/0  00:00:00 sh

As expected, the parent of this PID is containerd. Next let’s use Isns to list the
namespaces that containerd has created to isolate this process:

root@host01:~# Isns | grep 18088

4026532180 mnt 1 18088 root sh
4026532181 uts 1 18088 root sh
4026532182 ipc 1 18088 root sh
4026532183 pid 1 18088 root sh
4026532185 net 1 18088 root sh

Here, containerd is using five different types of namespaces in order to fully
isolate the processes running in the busybox container:

mnt Mount points

uts Unix time sharing (hostname and network domain)

ipc Interprocess communication (for example, shared memory)
pid Process identifiers (and list of running processes)

net Network (including interfaces, routing table, and firewall)

Finally, we’ll close out the BusyBox container by running exit from within
that container (first terminal window):



/ # exit

This command returns us to a regular shell prompt so that we can be ready
for the next set of examples.

Containers and Namespaces in CRI-O

In addition to containerd, Kubernetes supports other container runtimes.
Depending on which Kubernetes distribution you use, you might find that the
container runtime is different. For example, Red Hat OpenShift uses CRI-O,
an alternative container runtime. CRI-O is also used by the Podman, Buildah,
and Skopeo suite of tools, which are the standard way to manage containers
on Red Hat 8 and related systems.

Let’s run the same container image using CRI-O to get a better picture of
how container runtimes are different from one another but also to show how
they use the same underlying Linux kernel capabilities for process isolation.

You can skip these install commands by using the extra provisioning
script provided with this chapter’s examples. See the README file for this
chapter for instructions.

The OpenSUSE Kubic project hosts repositories for CRI-O for various
Linux distributions, including Ubuntu, so we will install from there. The
exact URL is dependent on the version of CRI-O we want to install, and the
URLSs are long and challenging to type, so the automation installs a script to
configure some useful environment variables. Before proceeding, we need to
load that script:

root@host01:~# source /opt/crio-ver

We can now use the environment variables to set up the CRI-O
repositories and install CRI-O:

root@host01:~# echo "deb $SREPO/$OS/ /" > /etc/apt/sources.list.d/kubic.list
root@host01:~# echo "deb $SREPO:/cri-0:/$VERSION/$OS/ /" \

> /etc/apt/sources.list.d/kubic.cri-o.list
root@host01:~# curl -L. $SREPO/$0S/Release.key | apt-key add -

OK
root@host01:~# apt update & & apt install -y cri-o cri-o-runc

root@host01:~# systemctl enable crio & & systemctl start crio



root@host01:~# curl -L -o /tmp/crictl.tar.gz $SCRICTL_URL

root@host01:~# tar -C /usr/local/bin -xvzf /tmp/crictl.tar.gz
crictl
root@host01:~# rm -f /tmp/crictl.tar.gz

We first add to the list of repositories for apt by adding files to
/etc/apt/sources.list.d. We then use apt to install CRI-O packages. After CRI-
O is installed, we use systemd to enable and start its service.

Unlike containerd, CRI-O does not ship with any command line tools that we
can use for testing, so the last command installs crictl, which is part of the
Kubernetes project and is designed for testing any container runtime
compatible with the Container Runtime Interface (CRI) standard. CRI is the
programming API that Kubernetes itself uses to communicate with container
runtimes.

Because crictl is compatible with any container runtime that supports CRI,
it needs configuration to connect to CRI-O. CRI-O has installed a
configuration file /etc/crictl.yaml to configure crictl:

crictl.yaml

runtime-endpoint: unix:///var/run/crio/crio.sock
image-endpoint: unix:///var/run/crio/crio.sock

This configuration tells crictl to connect to CRI-O’s socket.

To create and run containers, the crictt command requires us to provide
definition files in the JSON or YAML file format. The automated scripts for
this chapter added two crictl definition files to /opt. The first file, shown in
Listing 2-1, creates a Pod:

pod.yaml

metadata:
name: busybox
namespace: Crio
linux:
security_context:
namespace_options:
network: 2

Listing 2-1: CRI-O Pod definition



Similar to the Kubernetes Pod we saw in Chapter 1, the Pod is a group of
one or more containers that run in the same isolated space. In our case, we
need only one container in the Pod, and the second file, shown in Listing 2-2,
defines the container process that CRI-O should start. We provide a name
(busybox) and namespace (crio) to distinguish this Pod from any others.
Otherwise, we need to provide only network configuration. CRI-O expects to
use a Container Network Interface (CNI) plug-in to configure the network
namespace. We cover CNI plug-ins in Chapter 8, so for now, we’ll use
network: 2 to tell CRI-O not to create a separate network namespace and instead
use the host network:

container.yaml

metadata:

name: busybox
image:

image: docker.io/library/busybox:latest
args:

- "/bin/sleep"

- "36000"

Listing 2-2: CRI-O container definition

Again we are using BusyBox because its small size makes it fast and
lightweight. However, because crictl will create this container in the
background without a terminal, we need to specify /bin/sleep as the command
to be run inside the container; otherwise, the container will immediately
terminate when the shell realizes that it doesn’t have a TTY.

Before we can run the container, we first need to pull the image:

root@host01:~# crictl pull docker.io/library/busybox:latest
Image is up to date for docker.io/library/busybox@sha256....

Then, we provide the pod.yaml and container.yaml files to crictl to create
and start our BusyBox container:

root@host01:~# cd /opt

root@host01:~# POD_ID=$(crictl runp pod.yaml)

root@host01:~# crictl pods

POD ID CREATED STATE ...

3bf297ace44b5  Less than a second ago Ready ...

root@host01:~# CONTAINER_ID=$(crictl create $SPOD_ID container.yaml pod.yaml)



root@host01:~# crictl start SCONTAINER_ID
91394a7f37e3da3a557782ed6d6eb2cf8c23e5b3dd4e2febd415bba071d10734
root@host01:~# crictl ps

CONTAINER ... STATE

91394a7f37e3d ... Running

We capture the Pod’s unique identifier and the container in poD_ID and
CONTAINER_ID variables, so we can use them here and upcoming commands.

Before looking at the Linux namespaces created by CRI-O, let’s look
inside the busybox container by using the crictl exec command to start a new shell
process inside it:

root@host01:~# crictl exec -ti SCONTAINER_ID /bin/sh
/#ipa
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue glen 1000

2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc fq_codel glen 1000
3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel glen 1000

/ # ps -ef

PID USER TIME COMMAND
1root 0:00 /pause
7root  0:00 /bin/sleep 36000
13root  0:00 /bin/sh
20 root  0:00 ps -ef

/ # exit

This BusyBox container running in CRI-O looks a little different from
BusyBox running in containerd. First, because we configured our Pod with
network: 2, the container can see the same network devices that a regular
process would see. Second, we see a couple of additional processes. We look
at the pause process with PID 1 when we discuss container runtimes under
Kubernetes in Chapter 12. The other extra process is sleep, which we created
as the entry point for this container.

CRI-O is also using Linux namespaces for process isolation, as we can see
from examining the container processes and listing namespaces:

root@host01:~# PID=$(crictl inspect SCONTAINER_ID | jq '.info.pid')
root@host01:~# ps -ef | grep $PID | grep -v grep

root 23906 23894 020:15°7? 00:00:00 /bin/sleep 36000
root@host01:/opt# ps -ef | grep 23894 | grep -v grep

root 23894 1 020:157? 00:00:00 /usr/bin/conmon ...

root 23906 23894 0 20:15°7? 00:00:00 /bin/sleep 36000




The crictl inspect command provides a wealth of information about the
container, but for the moment, we need only the PID. Because crictl returns
JSON-formatted output, we can use jq to extract the pid field from the info
structure and save it to an environment variable called pID. Try running crictl
inspect SCONTAINER_ID to see the full information.

Using the PID we discovered, we can see our sleep command. We then can
use its parent PID to verify that it is managed by conmon, a CRI-O utility.
Next, let’s see the namespaces that CRI-O has created. The allocation of
namespaces to processes is more complex in CRI-O, so let’s just list all of the
namespaces on our Linux system and pick out the ones related to the
container:

root@host01:~# Isns

NS TYPE NPROCS PID USER COMMAND
4026532183 uts 2 23867 root /pause
4026532184 ipc 2 23867 root /pause
4026532185 mnt 1 23867 root /pause
4026532186 pid 2 23867 root /pause

4026532187 mnt 1 23906 root /bin/sleep 36000

Here, we see only four types of namespaces. Because we told CRI-O to
give the container access to the host’s network namespace, it didn’t need to
create a net namespace. Also, with CRI-O, most namespaces are associated
with the pause command (although some are shared by multiple processes, as
we can see via the NPROCS column). There are two mnt namespaces because
each separate container in a Pod gets a different set of mount points for
reasons that we cover in Chapter 5.

Running Processes in Namespaces Directly

One of the trickier jobs when running a process in a container is handling the
responsibility that comes with being PID 1. To better understand this, we
won’t have our container runtime create a namespace for us. Instead, we’ll
talk directly to the Linux kernel to run a process in a namespace manually.
We’ll use the command line, although container runtimes use the Linux
kernel API, but the result will be the same.

Because namespaces are a Linux kernel feature, nothing else needs to be



installed or configured. We just use the unshare command when launching the
process:

root@host01:~# unshare -f -p --mount-proc -- /bin/sh -c /bin/bash

The unshare command runs a program with different namespaces from the
parent. By adding -p, we specify that a new PID namespace is needed. The
option --mount-proc goes along with that, adding a new mount namespace and
ensuring /proc is remounted correctly, so that the process sees the correct
process information. Otherwise, the process would still be able to see
information about other processes in the system. Finally, the content after --
indicates the command to run.

Because this is an isolated process namespace, it cannot see a list of
processes outside this namespace:

root@host01:~# ps -ef
UID PID PPID C STIME TTY TIME CMD

root 1 0 022:21 pts/0  00:00:00 /bin/sh -c /bin/bash
root 2 1 022:21 pts/0  00:00:00 /bin/bash
root 9 2 022:22 pts/0  00:00:00 ps -ef

Let’s get the ID of this namespace so that we can recognize it in a list:

root@host01:~# Is -1 /proc/self/ns/pid
Irwxrwxrwx 1 root root 0 Mar 6 22:22 /proc/self/ns/pid -> 'pid:[4026532190]'

Now, from another terminal window, list all of the namespaces and look
for those related to our isolated shell:

root@host01:~# Isns
NS TYPE NPROCS PID USER COMMAND

4026532189 mnt 3 12110 root unshare -f -p ...
4026532190 pid 2 12111 root /bin/sh -c /bin/bash

root@host01:~# exit

We see a pid namespace matching what we saw. In addition, we see a mnt
namespace. This namespace ensures that our shell sees the proper
information in /proc.

Because the pid namespace is owned by the sh command, that command is
PID 1 when we run ps within the namespace. This means that sh has the



responsibility to manage its children properly (such as bash). For example, sh
is responsible for passing signals to its children to ensure that they terminate
correctly. It’s important to keep this in mind as it is a common problem when
running containers that can result in zombie processes or other issues
cleaning up a stopped container.

Fortunately, sh handles its management duties well, as we can see by the
fact that when we pass a kill signal to it, it passes that signal on to its children.
Run this from the second terminal window, outside the namespace:

root@host01:~# kill -9 12111

Inside the first window you will see this output:

root@host01:~# Killed

This indicates that bash received the kill signal and terminated correctly.

Final Thoughts

Although containers create the appearance of a completely separate system,
it’s done in a way that has nothing in common with virtual machines. Instead,
the process is similar to traditional means of process isolation, such as user
permissions and separate filesystems. Container runtimes use namespaces,
which are built in to the Linux kernel and enable various types of process
isolation. In this chapter, we examined how the containerd and CRI-O container
runtimes use multiple types of Linux namespaces to give each container an
independent view of other processes, network devices, and the filesystem.
The use of namespaces prevents processes running in a container from seeing
and interfering with other processes.

At the same time, processes in a container are still sharing the same CPU,
memory, and network. A process that uses too many of those resources will
prevent other processes from running properly. Namespaces can’t solve that
problem, however. To prevent this issue, we’ll need to look at resource
limiting—the topic of our next chapter.



3
RESOURCE LIMITING

The process isolation work we did in Chapter 2 was very important, as a
process cannot generally affect what it cannot “see.” However, our process
can see the host’s CPU, memory, and networking, so it is possible for a
process to prevent other processes from running correctly by using too much
of these resources, not leaving enough room for others. In this chapter, we
will see how to guarantee that a process uses only its allocated CPU,
memory, and network resources, ensuring that we can divide up our resources
accurately. This will help when we move on to container orchestration
because it will provide Kubernetes with certainty about the resources
available on each host when it schedules a container.

CPU, memory, and network are important, but there’s one more really
important shared resource: storage. However, in a container orchestration
environment like Kubernetes, storage is distributed, and limits need to be
applied at the level of the whole cluster. For this reason, our discussion of
storage must wait until we introduce distributed storage in Chapter 15.

CPU Priorities

We’ll need to look at CPU, memory, and network separately, as the effect of
applying limits is different in each case. Let’s begin by looking at how to
control CPU usage. To understand CPU limits, we first need to look at how



the Linux kernel decides which process to run and for how long. In the Linux
kernel, the scheduler keeps a list of all of the processes. It also tracks which
processes are ready to run and how much time each process has received
lately. This allows it to create a prioritized list so that it can choose the
process that will run next. The scheduler is designed to be as fair as possible
(it’s even known as the Completely Fair Scheduler); thus, it tries to give all
processes a chance to run. However, it does accept outside input on which of
these processes are more important than others. This prioritization is made up
of two parts: the scheduling policy, and the priority of each process within
that policy.

Real-Time and Non-Real-Time Policies

The scheduler supports several different policies, but for our purposes we can
group them into real-time policies and non-real-time policies. The term real-
time means that some real-world event is critical to the process that creates a
deadline. The process needs to complete its processing before this deadline
expires, or something bad will happen. For example, the process might be
collecting data from an embedded hardware device. In that case, the process
must read the data before the hardware buffer overflows. A real-time process
is typically not extremely CPU intensive, but when it needs the CPU, it
cannot wait, so all processes under a real-time policy are higher priority than
any process under a non-real-time policy. Let’s explore this on an example
Linux system.

NOTE

The example repository for this book is at https://github.com/book-of-
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

The Linux ps command tells us the specific policy that applies to each
process. Run this command on host01 from this chapter’s examples:

root@host01:~# ps -e -0 pid,class,rtprio,ni,comm
PID CLS RTPRIO NI COMMAND
1TS - 0 systemd

.“6 TS - -20 kworker/0:0H-kblockd


https://github.com/book-of-kubernetes/examples

11FF 99 - migration/0
12FF 50 -idle_inject/0

85FF 99 - watchdogd
484 RR 99 - multipathd

7967 TS - Ops

The -o flag provides ps with a custom list of output fields, including the
scheduling policy class (cLs) and two numeric priority fields: RTPRIO and NI.

Looking at the cLs field first, lots of processes are listed as Ts, which
stands for “time-sharing” and is the default non-real-time policy. This
includes commands we run ourselves (like the ps command we ran) as well as
important Linux system processes like systemd. However, we also see
processes with policy Fr for first in—first out (FIFO) and policy RR for round-
robin. These are real-time processes, and as such, they have priority over all
non-real-time policies in the system. Real-time processes in the list include
watchdog, which detects system lockups and thus might need to preempt other
processes, and multipathd, which watches for device changes and must be able
to configure those devices before other processes get a chance to talk to them.

In addition to the class, the two numeric priority fields tell us how
processes are prioritized within the policy. Not surprisingly, the rRTPRIO field
means “real-time priority” and applies only to real-time processes. The NI
field is the “nice” level of the process and applies only to non-real-time
processes. For historical reasons, the nice level runs from —20 (least nice, or
highest priority) to 19 (nicest, lowest priority).

Setting Process Priorities

Linux allows us to set the priority for processes we start. Let’s try to use
priorities to control CPU usage. We’ll run a program called stress that is
designed to exercise our system. Let’s use a containerized version of stress
using CRI-O.

As before, we need to define YAML files for the Pod and container to tell
crictl what to run. The Pod YAML shown in Listing 3-1 is almost the same as
the BusyBox example in Chapter 2; only the name is different:

po-nolim.yaml



metadata:
name: stress
namespace: crio
linux:
security_context:
namespace_options:
network: 2

Listing 3-1: BusyBox Pod

The container YAML has more changes compared to the BusyBox
example. In addition to using a different container image, one that already has
stress installed, we also need to provide arguments to stress to tell it to exercise
a single CPU:

co-nolim.yaml

metadata:

name: stress
image:

image: docker.io/bookofkubernetes/stress:stable
args:

- "--cpu"

-

CRI-O is already installed on host01, so it just takes a few commands to
start this container. First, we’ll pull the image:

root@host01:/opt# crictl pull docker.io/bookofkubernetes/stress:stable
Image is up to date for docker.io/bookofkubernetes/stress...

Then, we can run a container from the image:

root@host01:~# cd /opt

root@host01:/opt# PUL_ID=$(crictl runp po-nolim.yaml)

root@host01:/opt# CUL_ID=$(crictl create $PUL_ID co-nolim.yaml po-nolim.yaml)
root@host01:/opt# crictl start SCUL_ID

root@host01:/opt# crictl ps
CONTAINER IMAGE
971e83927329¢ docker.io/bookofkubernetes/stress:stable ...

The crictl ps command is just to check that our container is running as



expected.

The stress program is now running on our system, and we can see the

current priority and CPU usage. We want the current CPU usage, so we’ll use
top:

root@host01:/opt# top -b -n 1 -p $(pgrep -d , stress)

top - 18:01:58 up 1:39, 1 user, load average: 1.01, 0.40, 0.16

Tasks: 2total, 1running, 1 sleeping, O stopped, 0 zombie
%Cpu(s): 34.8 us, 0.0 sy, 0.0 ni, 65.2 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
MiB Mem : 1987.5total, 1024.5 free, 195.8 used, 767.3 buff/cache
MiB Swap: 0.0total, 0.0 free, 0.0 used. 1643.7 avail Mem

PID USER PR NI ... %CPU %MEM TIME+ COMMAND
13459 root 20 0 ...100.0 0.2 0:29.78 stress-ng
13435root 20 0 ... 0.0 0.2 0:00.01 stress-ng

The pgrep command looks up the process IDs (PIDs) for stress; there are two
because stress forked a separate process for the CPU exercise we requested.
This CPU worker is using up 100 percent of one CPU; fortunately, our VM
has two CPUs, so it’s not overloaded.

We started this process with default priority, so it has a nice value of o, as

shown in the N1 column. What happens if we change that priority? Let’s find
out using renice:

root@host01:/opt# renice -n 19 -p $(pgrep -d ' ' stress)
13435 (process ID) old priority 0, new priority 19
13459 (process ID) old priority 0, new priority 19

The ps command used previously expected the PIDs to be separated with a
comma, whereas the renice command expects the PIDs to be separated with a
space; fortunately, pgrep can handle both.

We have successfully changed the priority of the process:

root@host01:/opt# top -b -n 1 -p $(pgrep -d , stress)

top - 18:11:04 up 1:48, 1 user, load average: 1.07, 0.95, 0.57

Tasks: 2total, 1running, 1 sleeping, O stopped, 0 zombie
%Cpu(s): 0.0 us, 0.0 sy, 28.6 ni, 71.4 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
MiB Mem : 1987.5 total, 1035.6 free, 182.2 used, 769.7 buff/cache
MiB Swap: 0.0total, 0.0 free, 0.0used. 1657.2 avail Mem

PID USER PR NI ... %CPU %MEM TIME+ COMMAND
13459 root 39 19 ...100.0 0.2 9:35.50 stress-ng
13435 root 39 19 ... 0.0 0.2 0:00.01 stress-ng




The new nice value is 19, meaning that our process is lower priority than
before. However, the stress program is still using 100 percent of one CPU!
What’s going on here? The problem is that priority is only a relative
measurement. If nothing else needs the CPU, as is true in this case, even a
lower-priority process can use as much as it wants.

This arrangement may seem to be what we want. After all, if the CPU is
available, shouldn’t we want our application components to be able to use it?
Unfortunately, even though that sounds reasonable, it’s not suitable for our
containerized applications for two main reasons. First, a container
orchestration environment like Kubernetes works best when a container can
be allocated to any host with enough resources to run it. It’s not reasonable
for us to know the relative priority of every single container in our
Kubernetes cluster, especially when we consider that a single Kubernetes
cluster can be multitenant, meaning multiple separate applications or teams
might be using a single cluster. Second, without some idea of how much CPU
a particular container will use, Kubernetes cannot know which hosts are full
and which ones have more room available. We don’t want to get into a
situation in which multiple containers on the same host all become busy at
the same time, because they will fight for the available CPU cores, and the
whole host will slow down.

Linux Control Groups

As we saw in the last section, process prioritization will not help a container
orchestration environment like Kubernetes know what host to use when
scheduling a new container, because even low-priority processes can get a lot
of CPU time when the CPU is idle. And because our Kubernetes cluster
might be multitenant, the cluster can’t just trust each container to promise to
use only a certain amount of CPU. First, that would allow one process to
affect another negatively, either maliciously or accidentally. Second,
processes don’t really control their own scheduling; they get CPU time when
the Linux kernel decides to give them CPU time. We need a different
solution for controlling CPU utilization.

To find the answer, we can take an approach used by real-time processing.
As we mentioned in the previous section, a real-time process is typically not
compute intensive, but when it needs the CPU, it needs it immediately. To



ensure that all real-time processes get the CPU they need, it is common to
reserve a slice of the CPU time for each process. Even though our container
processes are non-real-time, we can use the same strategy. If we can
configure our containers so that they can use no more than their allocated
slice of the CPU time, Kubernetes will be able to calculate how much space
is available on each host and will be able to schedule containers onto hosts
with sufficient space.

To manage container use of CPU cores, we will use control groups.
Control groups (cgroups) are a feature of the Linux kernel that manage
process resource utilization. Each resource type, such as CPU, memory, or a
block device, can have an entire hierarchy of cgroups associated with it. After
a process is in a cgroup, the kernel automatically applies the controls from
that group.

The creation and configuration of cgroups is handled through a specific
kind of filesystem, similar to the way that Linux reports information on the
system through the /proc filesystem. By default, the filesystem for cgroups is
located at /sys/fs/cgroup:

root@host01:~# lIs /sys/fs/cgroup

blkio cpuacct freezer net_cls perf_event systemd
cpu cpuset hugetlb net_cls,net_prio pids unified
cpu,cpuacct devices memory net_prio rdma

Each of the entries in /sys/fs/cgroup is a different resource that can be
limited. If we look in one of those directories, we can begin to see what
controls can be applied. For example, for cpu:

root@host01:~# cd /sys/fs/cgroup/cpu
root@host01:/sys/fs/cgroup/cpu# Is -F

cgroup.clone_children cpuacct.stat cpuacct.usage_user
Cgroup.procs cpuacct.usage init.scope/
cgroup.sane_behavior cpuacct.usage_all notify_on_release

cpu.cfs_period_us  cpuacct.usage_percpu  release_agent
cpu.cfs_quota_us  cpuacct.usage_percpu_sys system.slice/
cpu.shares cpuacct.usage_percpu_user tasks

cpu.stat cpuacct.usage_sys user.slice/

The -F flag on Is adds a slash character to directories, which enables us to
begin to see the hierarchy. Each of those subdirectories (init.scope,
system.slice, and user.slice) is a separate CPU cgroup, and each has its own
set of configuration files that apply to processes in that cgroup.



CPU Quotas with cgroups

To understand the contents of this directory, let’s see how we can use
cgroups to limit the CPU usage of our stress container. We’ll begin by
checking its CPU usage again:

root@host01:/sys/fs/cgroup/cpu# top -b -n 1 -p $(pgrep -d , stress)

top - 22:40:12 up 12 min, 1 user, load average: 0.81, 0.35, 0.21

Tasks: 2total, 1running, 1 sleeping, O stopped, O zombie
%Cpu(s): 37.0 us, 0.0 sy, 0.0 ni, 63.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
MiB Mem : 1987.5total, 1075.1 free, 179.4used, 733.0 buff/cache
MiB Swap: 0.0total, 0.0 free, 0.0 used. 1646.3 avail Mem

PID USER PR NI.. %CPU %MEM TIME+ COMMAND
5964 root 20 19... 100.0 0.2 1:19.72 stress-ng
5932 root 20 19... 0.0 0.2 0:00.02 stress-ng

If you don’t still see stress running, start it up again using the commands
from earlier in this chapter. Next, let’s explore what CPU cgroup our stress
CPU process is in. We can do this by finding its PID inside a file within the
/sys/fs/cgroup/cpu hierarchy:

root@host01:/sys/fs/cgroup/cpu# grep -R $(pgrep stress-ng-cpu)
system.slice/runc-050c.../cgroup.procs:5964
system.slice/runc-050c.../tasks:5964

The stress process is part of the system.slice hierarchy, and is in a
subdirectory created by runc, which is one of the internal components of CRI-
O. This is really convenient, as it means we don’t need to create our own
cgroup and move this process into it. It is also no accident; as we’ll see in a
moment, CRI-O supports CPU limits on containers, so it naturally needs to
create a cgroup for each container it runs. In fact, the cgroup is named after
the container ID.

Let’s move into the directory for our container’s cgroup:

root@host01:/sys/fs/cgroup/cpu# cd system.slice/runc-${CUL_ID}.scope

We use the container ID variable we saved earlier to change into the
appropriate directory. As soon as we’re in this directory, we can see that it
has the same configuration files as the root of the hierarchy
/sys/fs/cgroup/cpu:



root@host01:/sys/fs/...07.scope# lIs

cgroup.clone_children cpu.uclamp.max cpuacct.usage_percpu_sys
cgroup.procs cpu.uclamp.min cpuacct.usage_percpu_user
cpu.cfs_period_us  cpuacct.stat cpuacct.usage_sys
cpu.cfs_quota_us  cpuacct.usage cpuacct.usage_user
cpu.shares cpuacct.usage_all  notify_on_release

cpu.stat cpuacct.usage_percpu tasks

The cgroup.procs file lists the processes in this control group:

root@host01:/sys/fs/...07.scope# cat cgroup.procs
5932
5964

This directory has many other files, but we are mostly interested in three:

cpu.shares Slice of the CPU relative to this cgroup’s peers
cpu.cfs_period_us Length of a period, in microseconds

cpu.cfs_quota_us CPU time during a period, in microseconds

We’ll look at how Kubernetes uses cpu.shares in Chapter 14. For now, we
need a way to get our instance under control so that it doesn’t overwhelm our
system. To do that, we’ll set an absolute quota on this container. First, let’s
see the value of cpu.cfs_period_us:

root@host01:/sys/fs/...07.scope# cat cpu.cfs_period_us
100000

The period is set to 100,000 ps, or 0.1 seconds. We can use this number to
figure out what quota to set in order to limit the amount of CPU the stress
container can use. At the moment, there is no quota:

root@host01:/sys/fs/...07.scope# cat cpu.cfs_quota_us
-1

We can set a quota by just updating the cpu.cfs_quota_us file:

root@host01:/sys/fs/...07.scope# echo "50000" > cpu.cfs_quota_us

This provides the processes in this cgroup with 50,000 ps of CPU time per
100,000 ps, which averages out to 50 percent of a CPU. The processes are



immediately affected, as we can confirm:

root@host01:/sys/fs/...07.scope# top -b -n 1 -p $(pgrep -d , stress)

top - 23:53:05up 1:24, 1 user, load average: 0.71, 0.93, 0.98

Tasks: 2total, 1running, 1 sleeping, O stopped, O zombie
%Cpu(s): 0.0 us, 3.6 sy, 7.1 ni, 89.3 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
MiB Mem : 1987.5 total, 1064.9 free, 174.6 used, 748.0 buff/cache
MiB Swap: 0.0total, 0.0 free, 0.0 used. 1663.9 avail Mem

PID USER PR NI ... %CPU %MEM TIME+ COMMAND
5964 root 39 19 ... 50.0 0.2 73:45.68 stress-ng-cpu
5932 root 39 19 ... 0.0 0.2 0:00.02 stress-ng

Your listing might not show exactly 50 percent CPU usage, because the
period during which the top command measures CPU usage might not align
perfectly with the kernel’s scheduling period. But on average, our stress
container now cannot use more than 50 percent of one CPU.

Before we move on, let’s stop the stress container:

root@host01:/sys/fs/...07.scope# cd
root@host01:/opt# crictl stop $CUL_ID

root@host01:/opt# crictl rm $CUL_ID

root@host01:/opt# crictl stopp $SPUL_ID
Stopped sandbox ...

root@host01:/opt# crictl rmp $PUL_ID
Removed sandbox ...

CPU Quota with CRI-O and crictl

It would be tiresome to have to go through the process of finding the cgroup
location in the filesystem and updating the CPU quota for every container in
order to control CPU usage. Fortunately, we can specify the quota in our crictl
YAML files, and CRI-O will enforce it for us. Let’s look at an example that
was installed into /opt when we set up this example virtual machine.

The Pod configuration is only slightly different from Listing 3-1. We add
a cgroup_parent setting so that we can control where CRI-O creates the cgroup,
which will make it easier to find the cgroup to see the configuration:

po-clim.yaml

metadata:



name: stress-clim
namespace: crio
linux:
cgroup_parent: pod.slice
security_context:
namespace_options:
network: 2

The container configuration is where we include the CPU limits. Our
stress1 container will be allotted only 10 percent of a CPU:

co-clim.yaml

metadata:

name: stress-clim
image:

image: docker.io/bookofkubernetes/stress:stable
args:

- "--cpu"

-

linux:
resources:
cpu_period: 100000
cpu_quota: 10000

The value for cpu_period corresponds with the file cpu.cfs_period_us and
provides the length of the period during which the quota applies. The value
for cpu_quota corresponds with the file cpu.cfs_quota_us. Dividing the quota by
the period, we can determine that this will set a CPU limit of 10 percent.
Let’s go ahead and launch this stress container with its CPU limit:

root@host01:~# cd /opt

root@host01:/opt# PCL_ID=$(crictl runp po-clim.yaml)

root@host01:/opt# CCL_ID=$(crictl create $PCL_ID co-clim.yaml po-clim.yaml)
root@host01:/opt# crictl start $SCCL_ID

root@host01:/opt# crictl ps
CONTAINER IMAGE
eaBbccd711b86 docker.io/bookofkubernetes/stress:stable ...

Our container is immediately restricted to 10 percent of a CPU:

root@host01:/opt# top -b -n 1 -p $(pgrep -d , stress)
top - 17:26:55 up 19 min, 1 user, load average: 0.27, 0.16, 0.13



Tasks: 4 total, 2 running, 2 sleeping, 0 stopped, 0 zombie
%Cpu(s): 10.3 us, 0.0 sy, 0.0 ni, 89.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
MiB Mem : 1987.5 total, 1053.4 free, 189.3 used, 744.9 buff/cache
MiB Swap: 0.0total, 0.0 free, 0.0 used. 1640.4 avail Mem

PID USER PR NI ... %CPU %MEM TIME+ COMMAND
8349root 20 0...10.0 0.2 0:22.67 stress-ng
8202 root 20 0.. 0.0 0.2 0:00.02 stress-ng

As in our earlier example, the CPU usage shown is a snapshot during the
time that top was running, so it might not match the limit exactly, but over the
long term, this process will use no more than its allocated CPU.

We can inspect the cgroup to confirm that CRI-O put it in the place we
specified and automatically configured the CPU quota:

root@host01:/opt# cd /sys/fs/cgroup/cpu/pod.slice
root@host01:...pod.slice# cat crio-$CCL_ID.scope/cpu.cfs_quota_us
10000

CRI-O created a new cgroup parent pod.slice for our container, created a
cgroup within it specific to the container, and configured its CPU quota
without us having to lift a finger.

We don’t need this container any longer, so let’s remove it:

root@host01:/sys/fs/cgroupcpu/pod.slice# cd
root@host01:~# crictl stop $SCCL_ID

root@host01:~# crictl rm $CCL_ID

root@host01:~# crictl stopp $PCL_ID
Stopped sandbox ...

root@host01:~# crictl rmp $PCL_ID
Removed sandbox ...

With these commands we stop and then delete first the container, then the
Pod.

Memory Limits

Memory is another important resource for a process. If a system doesn’t have
sufficient memory to meet a request, the allocation of memory will fail. This
usually causes the process to behave badly or to fail entirely. Of course, most



Linux systems use swap space to write memory contents to disk temporarily,
which allows the system memory to appear larger than it is but also reduces
system performance. It’s a big enough concern that the Kubernetes team
discourages having swap enabled in a cluster.

Also, even if we could use swap, we don’t want one process grabbing all
the resident memory and making other processes very slow. As a result, we
need to limit the memory usage of our processes so that they cooperate with
one another. We also need to have a clear maximum for memory usage so
that Kubernetes can reliably ensure that a host has enough available memory
before scheduling a new container onto a host.

Linux systems, like other variants of Unix, have traditionally had to deal
with multiple users who are sharing scarce resources. For this reason, the
kernel supports limits on system resources, including CPU, memory, number
of child processes, and number of open files. We can set these limits from the
command line using the ulimit command. For example, one type of limit is a
limit on “virtual memory.” This includes not only the amount of RAM a
process has in resident memory but also any swap space it is using. Here’s an
example of a ulimit command limiting virtual memory:

root@host01:~# ulimit -v 262144

The v switch specifies a limit on virtual memory. The parameter is in
bytes, so 262144 places a virtual memory limit of 256MiB on each additional
process we start from this shell session. Setting a virtual memory limit is a
total limit; it allows us to ensure that a process can’t use swap to get around
the limit. We can verify the limit was applied by pulling some data into
memory:

root@host01:~# cat /dev/zero | head -c 500m | tail
tail: memory exhausted

This command reads from /dev/zero and tries to keep the first 500MiB of
zeros it finds in memory. However, at some point, when the tail command
tries to allocate more space to hold the zeros it is getting from head, it fails
because of the limit.

Thus, Unix limits give us the ability to control memory usage for our

processes, but they won’t provide everything we need for containers, for a
couple of reasons. First, Unix limits can be applied only to individual



processes or to an entire user. Neither of those provide what we need, as a
container is really a group of processes. A container’s initial process might
create many child processes, and all processes in a container need to live
within the same limit. At the same time, applying limits to an entire user
doesn’t really help us in a container orchestration environment like
Kubernetes, because from the perspective of the operating system, all of the
containers belong to the same user. Second, when it comes to CPU limits, the
only thing that regular Unix limits can do is limit the maximum CPU time
our process gets before it is terminated. That isn’t the kind of limit we need
for sharing the CPU between long-running processes.

Instead of using traditional Unix limits, we’ll use cgroups again, this time
to limit the memory available to a process. We’ll use the same stress container
image, this time with a child process that tries to allocate lots of memory.

If we were to try to apply a memory limit to this stress container after
starting it, we would find that the kernel won’t let us, because it will have
already grabbed too much memory. So instead we’ll apply it immediately in
the YAML configuration. As before, we need a Pod:

po-mlim.yaml

metadata:
name: stress?
namespace: Crio

linux:
cgroup_parent: pod.slice
security_context:

namespace_options:
network: 2

This is identical to the Pod we used for CPU limit, but the name is
different to avoid a collision. As we did earlier, we are asking CRI-O to put
the cgroup into pod.slice so that we can find it easily.

We also need a container definition:

co-mlim.yaml

metadata:
name: stress2
image:
image: docker.io/bookofkubernetes/stress:stable



args:
-"--vm"
-
- "--vm-bytes"
Q- s12M”
- ”_V”
linux:
resources:
@ memory_limit_in_bytes: 268435456
cpu_period: 100000
© cpu_quota: 10000

The new resource limit is memory_limit_in_bytes, which we set to 256MiB @.
We keep the CPU quota in there € because continuously trying to allocate
memory is going to use a lot of CPU. Finally, in the args section, we tell stress
to try to allocate 512MB of memory @.

We can run this using similar crictt commands to what we’ve previously
used:

root@host01:~# cd /opt

root@host01:/opt# PML_ID=$(crictl runp po-mlim.yaml)

root@host01:/opt# CML_ID=$(crictl create $PML_ID co-mlim.yaml po-mlim.yaml)
root@host01:/opt# crictl start SCML_ID

If we tell crictl to list containers, everything seems okay:

root@host01:/opt# crictl ps
CONTAINER IMAGE ... STATE ...
31025f098a6¢9 docker.io/bookofkubernetes/stress:stable ... Running ...

This reports that the container is in a Running state. However, behind the
scenes, stress is struggling to allocate memory. We can see this if we print out
the log messages coming from the stress container:

root@host01:/opt# crictl logs $CML_ID
stress-ng: info: [6] dispatching hogs: 1 vin

stress-ng: debug: [11] stress-ng-vm: started [11] (instance 0)

stress-ng: debug: [11] stress-ng-vm using method 'all'

stress-ng: debug: [11] stress-ng-vm: child died: signal 9 'SIGKILL' (instance 0)
stress-ng: debug: [11] stress-ng-vm: assuming killed by OOM killer, restarting again...
stress-ng: debug: [11] stress-ng-vm: child died: signal 9 'SIGKILL' (instance 0)
stress-ng: debug: [11] stress-ng-vm: assuming killed by OOM Kkiller, restarting again...




Stress is reporting that its memory allocation process is being
continuously killed by the “out of memory.”

And we can see the kernel reporting that the oom_reaper is indeed the reason
that the processes are being killed:

root@host01:/opt# dmesg | grep -i oom_reaper | tail -n 1
[ 696.651056] oom_reaper: reaped process 8756 (stress-ng-vm)...

The ooM killer is the same feature Linux uses when the whole system is
low on memory and it needs to kill one or more processes to protect the
system. In this case, it is sending SIGKILL to the process to keep the cgroup
under its memory limit. SIGKILL is a message to the process that it should
immediately terminate without any cleanup.

( )

WHY USE THE OOM KILLER?

When we used regular limits to control memory, an attempt to exceed
our limits caused the memory allocation to fail, but the kernel didn’t use
the OOM Kkiller to kill our process. Why the difference? The answer is
that this is the nature of containers. As we look at architecting reliable
systems using containerized microservices, we’ll see that a container is
supposed to be quick to start and quick to scale. This means that each
individual container in our application is intentionally just not very
important. This further means that the idea that one of our containers
could be killed unexpectedly is not really a concern. Add to that the fact
that not checking for memory allocation errors is one of the most
common bugs, so it’s considered safer simply to kill the process.

That said, it’s worth noting that it is possible to turn off the OOM Kkiller
for a cgroup. However, rather than having the memory allocation fail,
the effect is to just pause the process until other processes in the group
free up memory. That’s actually worse, as now we have a process that
isn’t officially killed but isn’t doing anything useful either.

Before we move on, let’s put this continuously failing stress container out
of its misery:




root@host01:/opt# crictl stop $CML_ID
root@host01:/opt# crictl rm $CML_ID

root@host01:/opt# crictl stopp $SPML_ID
Stopped sandbox ...

root@host01:/opt# crictl rmp $PML_ID
Removed sandbox ...

root@host01:/opt# cd

Stopping and removing the container and Pod prevents the stress container
from wasting CPU by continually trying to restart the memory allocation
process.

Network Bandwidth Limits

In this chapter, we’ve moved from resources that are easy to limit to
resources that are more difficult to limit. We started with CPU, where the
kernel is wholly in charge of which process gets CPU time and how much
time it gets before being preempted. Then we looked at memory, where the
kernel doesn’t have the ability to force a process to give up memory, but at
least the kernel can control whether a memory allocation is successful, or it
can kill a process that requests too much memory.

Now we’re moving on to network bandwidth, for which control is even
more difficult to exert for two important reasons. First, network devices don’t
really “sum up” like CPU or memory, so we’ll need to limit usage at the level
of each individual network device. Second, our system can’t really control
what is sent to it across the network; we can only completely control egress
bandwidth, the traffic that is sent on a given network device.

( B

PROPER NETWORK MANAGEMENT

To have a completely reliable cluster, merely controlling egress traffic
is clearly insufficient. A process that downloads a large file is going to
saturate the available bandwidth just as much as one that uploads lots of
data. However, we really can’t control what comes into our host via a
given network interface, at least not at the host level. If we really want




to manage network bandwidth, we need to handle that kind of thing at a
switch or a router. For example, it is very common to divide up the
physical network into virtual local area networks (VLANSs). One VLAN
might be an administration network used for auditing, logging, and for
administrators to ensure that they can log in. We might also reserve
another VLAN for important container traffic, or use traffic shaping to
ensure that important packets get through. As long as we perform this
kind of configuration at the switch, we can typically allow the
remaining bandwidth to be “best effort.”

Although Linux does provide some cgroup capability for network
interfaces, these would only help us prioritize and classify network traffic.
For this reason, rather than using cgroups to control egress traffic, we’re
going to directly configure the Linux kernel’s traffic control capabilities.
We’ll test network performance using iperf3, apply a limit to outgoing traffic,
and then test again. In this chapter’s examples, host02 with IP address
192.168.61.12 was set up automatically with an iperf3 server running so that we
can send data to it from host01.

Let’s begin by seeing the egress bandwidth we can get on an unlimited
interface:

root@host01:~# iperf3 -c 192.168.61.12
Connecting to host 192.168.61.12, port 5201
[ 5]local 192.168.61.11 port 49044 connected to 192.168.61.12 port 5201

[ ID] Interval Transfer Bitrate Retr
[ 5] 0.00-10.00 sec 2.18 GBytes 1.87 Gbits/sec 13184 sender

[ 5] 0.00-10.00 sec 2.18 GBytes 1.87 Gbits/sec receiver

This example shows gigabit network speeds. Depending on how you’re
running the examples, you might see lower or higher figures. Now that we
have a baseline, we can use tc to set a quota going out. You’ll want to choose

a quota that makes sense given your bandwidth; most likely enforcing a
100Mb cap will work:

root@host01:~# IFACE=$(ip -0 addr | grep 192.168.61.11 | awk '{print $2}")
root@host01:~# tc qdisc add dev $IFACE root tbf rate 100mbit \
burst 256kbit latency 400ms




The name of the network interface may be different on different systems,
so we use ip addr to identify which interface we want to control. Then, we use
tc to actually apply the limit. The token tf in the command stands for token
bucket filter. With a token bucket filter, every packet consumes tokens. The
bucket refills with tokens over time, but if at any point the bucket is empty,
packets are queued until tokens are available. By controlling the size of the
bucket and the rate at which it refills, it is very easy for the kernel to place a
bandwidth limit.

Now that we’ve applied a limit to this interface, let’s see it in action by
running the exact same iperf3 command again:

root@host01:~# iperf3 -c 192.168.61.12
Connecting to host 192.168.61.12, port 5201
[ 5] local 192.168.61.11 port 49048 connected to 192.168.61.12 port 5201

[ ID] Interval Transfer Bitrate Retr
[ 5] 0.00-10.00 sec 114 MBytes 95.7 Mbits/sec 0 sender

[ 5] 0.00-10.01 sec 113 MBytes 94.5 Mbits/sec receiver

As expected, we are now limited to 100Mbps on this interface.

Of course, in this case, we limited the bandwidth available on this network
interface for everyone on the system. To use this ability properly to control
bandwidth usage, we need to target the limits more precisely. However, in
order to do that, we need to isolate a process to its own set of network
interfaces, which is the subject of the next chapter.

Final Thoughts

Ensuring that a process doesn’t cause problems for other processes on the
system includes making sure that it fairly shares system resources such as
CPU, memory, and network bandwidth. In this chapter, we looked at how
Linux provides control groups (cgroups) that manage CPU and memory
limits and traffic control capabilities that manage network interfaces. As we
create a Kubernetes cluster and deploy containers to it, we’ll see how
Kubernetes uses these underlying Linux kernel features to ensure that
containers are scheduled on hosts with sufficient resources and that
containers are well behaved on those hosts.



We’ve now moved through some of the most important elements of
process isolation provided by a container runtime, but there are two types of
isolation that we haven’t explored yet: network isolation and storage
isolation. In the next chapter, we’ll look at how Linux network namespaces
are used to make each container appear to have its own set of network
interfaces, complete with separate IP addresses and ports. We’ll also look at
how traffic from those separate container interfaces flows through our system
so that containers can talk to one another and to the rest of the network.



4
NETWORK NAMESPACES

Understanding container networking is the biggest challenge in building
modern applications based on containerized microservices. First, networking
is complicated even without introducing containers. Multiple levels of
abstraction are involved just in sending a simple ping from one physical server
to another. Second, containers introduce additional complexity because each
has its own set of virtual network devices to make it look like a separate
machine. Not only that, but a container orchestration framework like
Kubernetes then adds another layer of complexity by adding an “overlay”
network through which containers can communicate even when they are
running on different hosts.

In this chapter, we will look in detail at how container networking
operates. We will look at a container’s virtual network devices, including
how each network device is assigned a separate IP address that can reach the
host. We’ll see how containers on the same host are connected to one another
through a bridge device and how container devices are configured to route
traffic. Finally, we’ll examine how address translation is used to enable
containers to connect to other hosts without exposing container networking
internals on the host’s network.

Network Isolation



In Chapter 2, we discussed how isolation is important to system reliability
because processes generally can’t affect something they cannot see. This is
one important reason for network isolation in containers. Another reason is
ease of configuration. To run a process that acts as a server, such as a web
server, we need to choose one or more network interfaces on which that
server will listen, and we need to choose a port number on which it will
listen. We can’t have two processes listening on the same port on the same
interface.

As a result, it’s common for a process that acts as a server to provide a
way to configure which port it should use to listen for connections. However,
that still requires us to know what other servers are out there and what ports
they are using so that we can ensure there are no conflicts. That would be
impossible with a container orchestration framework like Kubernetes because
new processes can show up at any time, from different users, with a need to
listen on any port number.

The way to get around this is to provide separate virtual network
interfaces for each container. That way, a process in a container can choose
any port it wants—it will be listening on a different network interface from a
process in a different container. Let’s see a quick example.

NOTE

The example repository for this book is at https://github.com/book-of-
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

We’ll run two instances of an NGINX web server; each instance will
listen on port 80. As before, we’ll use CRI-O and crictl, but we’ll use a script
to cut down on the typing:

root@host01:~# cd /opt
root@host01:/opt# source nginx.sh

The source before nginx.sh is important; it ensures that the script is run in a
way that makes the environment variables it sets available in our shell for
future commands. Inside nginx.sh are the usual crictl runp, crictl create, and crictl
start commands we’ve used in previous chapters. The YAML files are also


https://github.com/book-of-kubernetes/examples

very similar to examples we’ve seen before; the only difference is that we use
a container image that has NGINX installed.

Let’s verify that we have two NGINX servers running:

root@host01:/opt# crictl ps

CONTAINER IMAGE ... NAME
ae341010886ae .../nginx:latest ... nginx2 ...
6a95800b16f15 .../nginx:latest ... nginx1 ...

We can also verify that both NGINX servers are listening on port 80, the
standard port for web servers:

root@host01:/opt# crictl exec $N1C_ID cat /proc/net/tcp
sl local_address ...
0: 00000000:0050 ...

root@host01:/opt# crictl exec $N2C_ID cat /proc/net/tcp
sl local_address ...
0: 00000000:0050 ...

We look at the open port by printing /proc/net/tcp because we need to run
this command inside the NGINX container, where we don’t have standard
Linux commands like netstat or ss. As we saw in Chapter 2, in a container we
have a separate mnt namespace providing a separate filesystem for each
container, so only the executables available in that separate filesystem can be
run in that namespace.

The port shown in both cases is 0050 in hexadecimal, which is port 80 in
decimal. If these two processes were running together on the same system
without network isolation, they wouldn’t both be able to listen on port 80, but
in this case, the two NGINX instances have separate network interfaces. To
explore this further, let’s start up a new BusyBox container:

root@host01:/opt# source busybox.sh

BusyBox is now running in addition to our two NGINX containers:

root@host01:/opt# crictl ps

CONTAINER IMAGE ... NAME
189dd26766d26 .../busybox:latest ... busybox ...
ae341010886ae .../nginx:latest ... nginx2 ...
6a95800b16f15 .../nginx:latest ... nginx1 ...




Let’s start a shell inside the container:

root@host01:/opt# crictl exec -ti $B1C_ID /bin/sh
/#

Listing 4-1 shows the container’s network devices and addresses.

/ # ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue ...
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_lIft forever preferred_Ift forever
3: ethO@if7: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 gdisc noqueue
link/ether 9a:7c:73:2f:f7:1a brd ff:ff:ff.ff:ff.ff
inet 10.85.0.4/16 brd 10.85.255.255 scope global eth0
valid_lft forever preferred_lft forever
inet6 fe80::987c:73ff:fe2f:f71a/64 scope link
valid_lft forever preferred_lft forever

Listing 4-1: BusyBox network

Ignoring the standard loopback device, we see a network device with
10.85.0.4 for an IP address. This does not correspond at all with the IP address
of the host, which is 192.168.61.11; it is on a different network entirely. Because
our container is on a separate network, we might not expect to be able to ping
the underlying host system from inside the container, but it works, as Listing
4-2 demonstrates.

/ # ping -c¢ 1 192.168.61.11
PING 192.168.61.11 (192.168.61.11): 56 data bytes
64 bytes from 192.168.61.11: seq=0 ttI=64 time=7.471 ms

--- 192.168.61.11 ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 7.471/7.471/7.471 ms

Listing 4-2: BusyBox ping test

For traffic to get from our container to the host network, there must be an
entry in the routing table to make that happen. As Listing 4-3 illustrates, we
can verify this by using the ip command.

/ # ip route



default via 10.85.0.1 dev ethO
10.85.0.0/16 dev ethOQ scope link src 10.85.0.4

Listing 4-3: BusyBox routes

As expected, there is a default route. When we sent the ping, our BusyBox
container reached out to 10.85.0.1, which then had the ability to send the ping
onward until it reached 192.168.61.11.

We’ll leave all three containers running to explore them further, but let’s
exit our BusyBox shell to get back to the host:

/ # exit

The view of the network from inside the container shows why our two
NGINX servers are both able to listen on port 80. As mentioned earlier, only
one process can listen on a port for a particular interface, but of course, if
each NGINX server has a separate network interface, there is no conflict.

Network Namespaces

CRI-O is using Linux network namespaces to create this isolation. We
explored network namespaces briefly in Chapter 2; in this chapter, we’ll look
at them in more detail.

First, let’s use the Isns command to list the network namespaces that CRI-
O has created for our containers:

root@host01:/opt# Isns -t net
NS TYPE NPROCS PID USER NETNSID NSFS COMMAND
4026531992 net 114 1 root unassigned /sbin/init
4026532196 net 4 5801 root 0 /run/netns/ab8bebe6... /pause
4026532272 net 4 5937 root 1 /run/netns/8ffe0394... /pause
4026532334 net 2 6122 root 2 /run/netns/686d71d9... /pause

In addition to the root network namespace that is used for all the processes
that aren’t in a container, we see three network namespaces, one for each Pod
we’ve created.

When we use CRI-O with crictl, the network namespace actually belongs to
the Pod. The pause process that is listed here exists so that the namespaces can
continue to exist even as containers come and go inside the Pod.



In the previous example, there are four network namespaces. The first one
is the root namespace that was created when our host booted. The other three
were created for each of the containers we have started so far: two NGINX
containers and one BusyBox container.

Inspecting Network Namespaces

To learn about how network namespaces work and manipulate them, we’ll
use the ip netns command to list network namespaces:

root@host01:/opt# ip netns list

7c185da0-04e2-4321-b2eb-dal8ceb5fcf6 (id: 2)
d26ca6bc6-d524-4ae2-b9b7-5489¢3db92ce (id: 1)
38bbb724-3420-46f0-bb50-9a150a9f0889 (id: 0)

This command looks in a different configuration location to find network
namespaces, so only the three container namespaces are listed.

We want to capture the network namespace for our BusyBox container.
It’s one of the three listed, and we can guess that it is the one labeled (id: 2)
because we created it last, but we can also use crictl and jq to extract the
information we need:

root@host01:/opt# NETNS_PATH=$(crictl inspectp $B1P_ID |

jq -r ".info.runtimeSpec.linux.namespaces|]|select(.type=="network").path')
root@host01:/opt# echo SNETNS_PATH
/var/run/netns/7c185da0-04e2-4321-b2eb-dal18ceb5fcf6
root@host01:/opt# NETNS=$(basename $NETNS_PATH)
root@host01:/opt# echo $NETNS
7c185da0-04e2-4321-b2eb-dal8ceb5fcf6

If you run crictl inspectp $B1P_ID by itself, you’ll see a wealth of information
about the BusyBox Pod. Out of all that information, we want only the
information about the network namespace, so we use jq to extract that
information in three steps. First, it reaches down into the JSON data to pull
out all of the namespaces associated with this Pod. It then selects only the
namespace that has a type field of network. Finally, it extracts the path field for
that namespace and stores it in the environment variable NETNS_PATH.

The value that crictl returns is the full path to the network namespace under
/var/run. For our upcoming commands, we want only the value of the
namespace, so we use basename to strip off the path. Also, because this
information will be a lot more usable if we assign it to an environment



variable, we do that, and then we use echo to print the value so that we can
confirm it all worked.

Of course, for interactive debugging, you can often just scroll through the
entire contents of crictl inspectp (for Pods) and crictl inspect (for containers) and
pick out the values you want. But this approach of extracting data with jq is
very useful in scripting or in reducing the amount of output to scan through
manually.

Now that we’ve extracted the network namespace for BusyBox from crictl,
let’s see what processes are assigned to that namespace:

root@host01:/opt# ps --pid $(ip netns pids SNETNS)
PIDTTY STAT TIME COMMAND

5800 ? Ss  0:00 /pause

5839 ? Ss  0:00 /bin/sleep 36000

If we just ran ip netns pids $SNETNS, we would get a list of the process IDs
(PIDs), but no extra information. We take that output and send it to ps --pid,
which makes it possible for us to see the name of the commands. As
expected, we see a pause process and the sleep process that we specified when
we ran the BusyBox container.

In the previous section, we used crictl exec to run a shell inside the
container, which enabled us to see what network interfaces were available in
that network namespace. Now that we know the ID of the network
namespace, we can use ip netns exec to run commands individually from within
a network namespace. Running ip netns exec is very powerful in that it is not
limited to just networking commands, but could be any process such as a web
server. However, note that this is not the same as fully running inside the
container, because we are not entering any of the container’s other
namespaces (for example, the pid namespace used for process isolation).

Next, let’s try the ip addr command from within the BusyBox network
namespace:

root@host01:/opt# ip netns exec $NETNS ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue ...
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_lIft forever preferred_Ift forever
3: ethO@if7: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc noqueue ...



link/ether 9a:7c:73:2f:£7:1a brd ff:ff:ff:ff:ff:ff link-netnsid 0
inet 10.85.0.4/16 brd 10.85.255.255 scope global eth0
valid_lft forever preferred_lft forever
inet6 fe80::987c:73ff:fe2f:f71a/64 scope link
valid_lIft forever preferred_Ift forever

The list of network devices and IP addresses that we see here matches
what we saw when we ran commands inside our BusyBox container in
Listing 4-1. CRI-O is creating these network devices and placing them in the
network namespace. (We will see how CRI-O was configured to perform
container networking when we look at Kubernetes networking in Chapter 8.)
For now, let’s look at how we can create our own devices and namespaces for
network isolation. This will also show us how to debug container networking
when something isn’t working correctly.

Creating Network Namespaces

We can create a network namespace with a single command:

root@host01:/opt# ip netns add myns

This new namespace immediately shows up in the list:

root@host01:/opt# ip netns list

myns

7c185da0-04e2-4321-b2eb-dal8ceb5fcf6 (id: 2)
d26ca6c6-d524-4ae2-b9b7-5489¢3db92ce (id: 1)
38bbb724-3420-46f0-bb50-9a150a9f0889 (id: 0)

This namespace isn’t very useful yet; it has a loopback interface but
nothing else:

root@host01:/opt# ip netns exec myns ip addr
1: lo: <LOOPBACK?> mtu 65536 qdisc noop state DOWN group default glen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

In addition, even the loopback interface is down, so it couldn’t be used.
Let’s quickly fix that:

root@host01:/opt# ip netns exec myns ip link set dev lo up

root@host01:/opt# ip netns exec myns ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue ...
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00



inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

The loopback interface is now up, and it has the typical IP address of
127.0.0.1. A basic loopback ping will now work in this network namespace:

root@host01:/opt# ip netns exec myns ping -c 1 127.0.0.1
PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.
64 bytes from 127.0.0.1: icmp_seq=1 ttI=64 time=0.035 ms

--- 127.0.0.1 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time Oms
rtt min/avg/max/mdev = 0.035/0.035/0.035/0.000 ms

The ability to ping the loopback network interface is a useful first test for
any networking stack, as it shows the ability to send and receive packets. So,
we now have a basic working network stack in our new network namespace,
but it still isn’t terribly useful because a loopback interface by itself can’t talk
to anything else on our system. We need to add another network device in
this network namespace in order to establish connectivity to the host and the
rest of the network.

To do this, we’ll create a virtual Ethernet (veth) device. You can think of
a veth as a virtual network cable. Like a network cable, it has two ends, and
whatever goes in one end comes out the other end. For this reason, the term
veth pair is often used.

We start with a command that creates the veth pair:

root@host01:/opt# ip link add myveth-host type veth \
peer myveth-myns netns myns

This command does three things:

1. Creates a veth device called myveth-host
2. Creates a veth device called myveth-myns
3. Places the device myveth-myns in the network namespace myns

The host side of the veth pair appears in the regular list of network devices
on the host:



root@host01:/opt# ip addr

8: myveth-host@if2: <BROADCAST,MULTICAST> mtu 1500 ... state DOWN ...
link/ether fe:7a:5d:86:00:d9 brd ff:ff:ff.ff:ff:ff link-netns myns

This output shows myveth-host and also that it is connected to a device in the
network namespace myns.

If you run this command for yourself and look at the complete list of host
network devices, you will notice additional veth devices connected to each of
the container network namespaces. These were created by CRI-O when we
deployed NGINX and BusyBox.

Similarly, we can see that our myns network namespace has a new network
interface:

root@host01:/opt# ip netns exec myns ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue ...
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_Ift forever preferred_lft forever
2: myveth-myns@if8: <BROADCAST,MULTICAST> mtu 1500 ... state DOWN ...
link/ether 26:0f:64:a8:37:1f brd ff:ff:ff:ff:ff:ff link-netnsid 0

As before, this interface is currently down. We need to bring up both sides
of the veth pair before we can start communicating. We also need to assign
an IP address to the myveth-myns side to enable it to communicate:

root@host01:/opt# ip netns exec myns ip addr add 10.85.0.254/16 \
dev myveth-myns

root@host01:/opt# ip netns exec myns ip link set dev myveth-myns up

root@host01:/opt# ip link set dev myveth-host up

A quick check confirms that we’ve successfully configured an IP address
and brought up the network:

root@host01:/opt# ip netns exec myns ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue ...
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_Ift forever preferred_lft forever
inet6 ::1/128 scope host
valid_lIft forever preferred_lft forever
2: myveth-myns@if8: <BROADCAST,MULTICAST,UP,LOWER_UP> ... state UP ...



link/ether 26:0f:64:a8:37:1f brd ff:ff:ff:ff:ff:ff link-netnsid 0
inet 10.85.0.254/16 scope global myveth-myns

valid_lft forever preferred_lft forever
inet6 fe80::240f:64ff:fea8:371f/64 scope link

valid_Ift forever preferred_lft forever

In addition to the loopback interface, we now see an additional interface
with the IP address 10.85.0.254. What happens if we try to ping this new IP
address? It turns out we can indeed ping it, but only from within the network
namespace:

root@host01:/opt# ip netns exec myns ping -c 1 10.85.0.254
PING 10.85.0.254 (10.85.0.254) 56(84) bytes of data.
64 bytes from 10.85.0.254: icmp_seq=1 ttl=64 time=0.030 ms

--- 10.85.0.254 ping statistics ---

@ 1 packets transmitted, 1 received, 0% packet loss, time Oms
rtt min/avg/max/mdev = 0.030/0.030/0.030/0.000 ms
root@host01:/opt# ping -c 1 10.85.0.254
PING 10.85.0.254 (10.85.0.254) 56(84) bytes of data.

From 10.85.0.1 icmp_seq=1 Destination Host Unreachable

--- 10.85.0.254 ping statistics ---
a1 packets transmitted, 0 received, +1 errors, 100% packet loss, time Oms

The first ping command, run using ip netns exec S0 that it runs within the
network namespace, shows a successful response @. However, the second
ping command, run without ip netns exec, shows that no packets were received
@. The problem is that we have successfully created a network interface
inside our network namespace, and we have the other end of the veth pair on
our host network, but we haven’t connected up a corresponding network
device on the host, so there’s no host network interface that can talk to the
interface in the network namespace.

At the same time, when we ran a ping test from our BusyBox container in
Listing 4-2, we were able to ping the host with no trouble. Clearly, there must
be more configuration that CRI-O did for us when it created our containers.
Let’s explore that in the next section.

Bridge Interfaces

The host side of the veth pair currently isn’t connected to anything, so it isn’t



surprising that our network namespace can’t talk to the outside world yet. To
fix that, let’s look at one of the veth pairs that CRI-O created:

root@host01:/opt# ip addr

7: veth062abfa6@if3: <BROADCAST ,MULTICAST,UP,LOWER_UP> ... master cni0 ...
link/ether fe:6b:21:9b:d0:d2 brd ff:ff:ff:ff:ff:ff link-netns ...
inet6 fe80::fc6b:21ff:fe9b:d0d2/64 scope link
valid_lft forever preferred_lft forever

Unlike the interface we created, this interface specifies master cnio, which
shows that it belongs to a network bridge. A network bridge exists to connect
multiple interfaces together. You can think of it as an Ethernet switch
because it routes traffic from one network interface to another based on the
media access control (MAC) address of the interfaces.

We can see the bridge cnio in the list of network devices on the host:

root@host01:/opt# ip addr

4: cni0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue ...
link/ether 8e:0c:1c:7d:94:75 brd ff:ff.ff.ff:ff.ff
inet 10.85.0.1/16 brd 10.85.255.255 scope global cni0
valid_lIft forever preferred_lft forever
inet6 fe80::8c0c:1cff:fe7d:9475/64 scope link
valid_lft forever preferred_lft forever

The bridge is a little smarter than a typical Ethernet switch in that it
provides some firewall and routing capabilities. It also has an IP address of
10.85.0.1. This IP address is the same as we saw with the default route for our
BusyBox container in Listing 4-3, so we’ve started to solve the mystery of
how our BusyBox container is able to talk to hosts outside of its own
network.

Adding Interfaces to a Bridge

To inspect the bridge and add devices to it, we’ll use the brctt command. Let’s
inspect the bridge first:

root@host01:/opt# brctl show
bridge name  bridge id STP enabled interfaces
cni0 8000.8e0c1c7d9475  no veth062abfa6



veth43ab68cd
vetha251c619

The bridge cnio has three interfaces on it, corresponding to the host side of
the veth pair for each of the three containers we have running (two NGINX
and one BusyBox). Let’s take advantage of this existing bridge to set up
network connectivity to the namespace we created:

root@host01:/opt# bretl addif cni0 myveth-host
root@host01:/opt# brctl show

bridge name bridge id STP enabled interfaces

cni0 8000.8e0c1c7d9475  no myveth-host
veth062abfa6
veth43ab68cd
vetha251¢619

The host side of our veth pair is now connected to the bridge, which
means that we can now ping into the namespace from the host:

root@host01:/opt# ping -c 1 10.85.0.254
PING 10.85.0.254 (10.85.0.254) 56(84) bytes of data.
64 bytes from 10.85.0.254: icmp_seq=1 ttl=64 time=0.194 ms

--- 10.85.0.254 ping statistics ---
© 1 packets transmitted, 1 received, 0% packet loss, time Oms
rtt min/avg/max/mdev = 0.194/0.194/0.194/0.000 ms

The fact that a packet was received @ shows that we set up a working
connection. We should be pleased that it worked, but if we want to really
understand this, we can’t be satisfied with saying that we can ping this
interface “from the host.” We need to be more specific as to exactly how
traffic is flowing.

Tracing Traffic

Let’s actually trace this traffic to see what’s happening when we run the ping
command. We will use tcpdump to print out the traffic. First, let’s start a ping
command in the background to create some traffic to trace:

root@host01:/opt# ping 10.85.0.254 >/dev/null 2>&1 &

We send the output to /dev/null so that it doesn’t clutter up our session.



Now, let’s use tcpdump to see the traffic:

root@host01:/opt# timeout 1s tcpdump -i any -n icmp

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on any, link-type LINUX_SLL (Linux cooked v1), ...
17:37:33.204863 1P 10.85.0.1 > 10.85.0.254: ICMP echo request, ...
17:37:33.204894 1P 10.85.0.1 > 10.85.0.254: ICMP echo request, ...
17:37:33.204936 TP 10.85.0.254 > 10.85.0.1: ICMP echo reply, ...
17:37:33.204936 IP 10.85.0.254 > 10.85.0.1: ICMP echo reply, ...

4 packets captured

4 packets received by filter

0 packets dropped by kernel
root@host01:/opt# killall ping

We use timeout to prevent tcpdump from running indefinitely, and we also use
killall afterward to stop the ping command and discontinue it running in the
background.

The output shows that the ping is originating from the bridge interface,
which has IP address 10.85.0.1. This is because of the host’s routing table:

root@host01:/opt# ip route

10.85.0.0/16 dev cni0 proto kernel scope link src 10.85.0.1
192.168.61.0/24 dev enp0s8 proto kernel scope link src 192.168.61.11

When CRI-O created the bridge and configured its IP address, it also set
up a route so that all traffic destined for the 10.85.0.0/16 network (that is, all
traffic from 10.85.0.0 through 10.85.255.255) would use cnio. This is enough
information for the ping command to know where to send its packet, and the
bridge handles the rest.

The fact that the ping is coming from the bridge interface of 10.85.0.1 rather
than the host interface of 192.168.61.11 actually makes a big difference, as we
can see if we try to run the ping the other way around. Let’s try to ping from
within the namespace to the host network:

root@host01:/opt# ip netns exec myns ping -c¢ 1 192.168.61.11
ping: connect: Network is unreachable

The issue here is that the interface in our network namespace doesn’t
know how to reach the host network. The bridge is available and willing to
route traffic onto the host network, but we haven’t configured the necessary



route to use it. Let’s do that now:

root@host01:/opt# ip netns exec myns ip route add default via 10.85.0.1

And now the ping works:

root@host01:/opt# ip netns exec myns ping -c¢ 1 192.168.61.11
PING 192.168.61.11 (192.168.61.11) 56(84) bytes of data.
64 bytes from 192.168.61.11: icmp_seq=1 ttI=64 time=0.097 ms

--- 192.168.61.11 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time Oms
rtt min/avg/max/mdev = 0.097/0.097/0.097/0.000 ms

This illustrates an important rule to remember when debugging network
problems: it’s very easy to jump to conclusions about what network traffic is
really being sent and received. There is often no substitute for using tracing
to see what the traffic really looks like.

( )

IP ADDRESSES ON THE HOST

This approach is not the only one that results in connectivity from the
host into the network namespace. We also could have assigned an IP
address directly to the host side of the veth pair. However, even though
that would have enabled communication from the host into our network
namespace, it wouldn’t provide a way for multiple network namespaces
to communicate with one another. Using a bridge interface, as CRI-O
does, enables the interconnection of all of the containers on a host,
making them all appear to be on the same network.

This also explains why we didn’t assign an IP address to the host side of
the veth pair. When working with bridges, only the bridge interface gets
an IP address. Interfaces added to the bridge do not.

With that last change, it would seem like we’ve matched the network
configuration of our containers, but we are still missing the ability to
communicate with the broader network outside of host01. We can demonstrate
this by trying to ping from our network namespace to host02, which is on the



same internal network as hosto1 and has the IP address 192.168.61.12. If we try a
ping from our BusyBox container, it works:

root@host01:/opt# crictl exec $B1C_ID ping -c 1 192.168.61.12
PING 192.168.61.12 (192.168.61.12): 56 data bytes
64 bytes from 192.168.61.12: seq=0 ttI=63 time=0.816 ms

--- 192.168.61.12 ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 0.816/0.816/0.816 ms

The ping output reports that a packet was received. However, if we try the
same command using the network namespace we created, it doesn’t work:

root@host01:/opt# ip netns exec myns ping -c¢ 1 192.168.61.12
PING 192.168.61.12 (192.168.61.12) 56(84) bytes of data.

--- 192.168.61.12 ping statistics ---
1 packets transmitted, O received, 100% packet loss, time Oms

This command reports that no packets were received.

Really, we ought to be surprised that the ping from our BusyBox container
worked. After all, hosto2 doesn’t know anything about the BusyBox container,
or the cnio bridge interface, or the 10.85.0.0/16 network that the containers are in.
How is it possible for host02 to exchange a ping with our BusyBox container?
To understand that, we need to look at network masquerade.

Masquerade

Masquerade, also known as Network Address Translation (NAT), is used
every day in networking. For example, most home connections to the internet
are provided with only a single IP address that is addressable from the
internet, but many devices within the home network need an internet
connection. It is the job of a router to make it appear that all traffic from that
network is originating from a single IP address. It does this by rewriting the
source IP address of outgoing traffic while tracking all outgoing connections
so that it can rewrite the destination IP address of any replies.

NOTE



The kind of NAT that we are talking about here is technically known as
Source NAT (SNAT). Don’t get hung up on the name, though; for it to
work correctly, any reply packets must have their destination rewritten.
The term Source in this case just means that the source address is what’s
rewritten when a new connection is initiated.

Masquerading sounds like just what we need to connect our containers
running in the 10.85.0.0/16 network to the host network, 192.168.61.0/24, and in
fact it is exactly how it worked. When we sent a ping from our BusyBox
container, the source IP address was rewritten such that the ping appeared to
come from the hosto1 IP 192.168.61.11. When host02 responded, it sent its reply to
192.168.61.11, but the destination was rewritten so that it was actually sent to the
BusyBox container.

Let’s trace the ping traffic all the way through to demonstrate:

root@host01:/opt# crictl exec $B1C_ID ping 192.168.61.12 >/dev/null 2>&1 &

[1] 6335

root@host01:/opt# timeout 1s tcpdump -i any -n icmp

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on any, link-type LINUX_SLL (Linux cooked v1)...

18:53:44.310789 IP 10.85.0.4 @ > 192.168.61.12: ICMP echo request, id 12, seq 17...
18:53:44.310789 IP 10.85.0.4 > 192.168.61.12: ICMP echo request, id 12, seq 17...
18:53:44.310876 IP 192.168.61.11 @ > 192.168.61.12: ICMP echo request, id 12, seq 17...
18:53:44.311619 IP 192.168.61.12 > 192.168.61.11: ICMP echo reply, © id 12, seq 17...
18:53:44.311648 IP 192.168.61.12 > 10.85.0.4: @) ICMP echo reply, id 12, seq 17...
18:53:44.311656 1P 192.168.61.12 > 10.85.0.4: ICMP echo reply, id 12, seq 17...

6 packets captured

6 packets received by filter

0 packets dropped by kernel
root@host01:/opt# killall ping

When the ping originates from within our BusyBox container, it has a
source IP address of 10.85.0.4 @. This address is rewritten, making the ping
appear to be coming from the host IP 192.168.61.11 @. Of course, host02 knows
how to respond to a ping coming from that address, so the ping is answered ©.
At this point, the other half of the masquerade takes effect, and the
destination is rewritten to 10.85.0.4 @). The result is that the BusyBox container
is able to send a packet to a separate host and get a reply.

To complete the setup for our network namespace, we need a similar rule
to masquerade traffic coming from 10.85.0.254. We can start by using iptables to



look at the rules that CRI-O created when it configured the containers:

root@host01:/opt# iptables -t nat -n -L

Chain POSTROUTING (policy ACCEPT)

target prot opt source destination ...
CNI-f82910b3a7e28baf6aedc0d3 all -- 10.85.0.2 anywhere
CNI-7f8aa3d8a4f621b186149f43 all -- 10.85.0.3 anywhere
CNI-48ad69d30fe932fda9ea71d2 all -- 10.85.0.4 anywhere

Chain CNI-48ad69d30fe932fda9ea71d2 (1 references)

target  prot opt source destination
ACCEPT all -- anywhere 10.85.0.0/16 ...

MASQUERADE all -- anywhere 1224.0.0.0/4 ...

Masquerading starts when the connection is initiated; in this case, when
traffic has a source address in the 10.85.0.0/16 network. For this reason, the
POSTROUTING chain is used, because it sees all outgoing traffic. There is a rule
in the POSTROUTING chain for each container; each rule invokes a cNiI chain for
that container.

For brevity, only one of the three cN1 chains is shown. The other two are
identical. The cni1 chain first does an AcCepT for all traffic that is local to the
container network, so this traffic won’t be masqueraded. It then sets up
masquerade for all traffic (except 224.0.0.0/4, which is multicast traffic that
cannot be masqueraded because there is no way to properly route replies).

What’s missing from this configuration is a matching setup for traffic

from 10.85.0.254, the IP address we assigned to the interface in our network
namespace. Let’s add that. First, create a new chain in the nat table:

root@host01:/opt# iptables -t nat -N chain-myns

Next, add a rule to accept all traffic for the local network:

root@host01:/opt# iptables -t nat -A chain-myns -d 10.85.0.0/16 -j ACCEPT

Now all remaining traffic (except multicast) should be masqueraded:

root@host01:/opt# iptables -t nat -A chain-myns \
!-d 224.0.0.0/4 - MASQUERADE

And finally, tell iptables to use this chain for any traffic coming from



10.85.0.254:

root@host01:/opt# iptables -t nat -A POSTROUTING -s 10.85.0.254 -j chain-myns

We can verify that we did all that correctly by listing the rules again:

root@host01:/opt# iptables -t nat -n -L
Chain POSTROUTING (policy ACCEPT)
target  prot opt source destination

chain-myns all -- 10.85.0.254 anywhere

Chain chain-myns (1 references)

target  prot opt source destination
ACCEPT all -- anywhere 10.85.0.0/16
MASQUERADE all -- anywhere 1224.0.0.0/4

It looks like we have the configuration we need, as this configuration
matches the way the virtual network devices were configured for the
BusyBox container. To make sure, let’s try a ping to host02 again:

root@host01:/opt# ip netns exec myns ping -c¢ 1 192.168.61.12
PING 192.168.61.12 (192.168.61.12) 56(84) bytes of data.
64 bytes from 192.168.61.12: icmp_seq=1 ttI=63 time=0.843 ms

--- 192.168.61.12 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time Oms
rtt min/avg/max/mdev = 0.843/0.843/0.843/0.000 ms

Success! We’ve fully replicated the network isolation and connectivity
that CRI-O is providing our containers.

Final Thoughts

Container networking looks deceptively simple when running containers.
Each container is provided with its own set of network devices, avoiding the
need to worry about port conflicts and reducing the effect that one container
can have on another. However, as we’ve seen in this chapter, this “simple”
network isolation requires some complex configuration to enable not just
isolation, but also connectivity to other containers and other networks. In Part
I1, after we properly introduce Kubernetes, we’ll return to container
networking and show how the complexity only increases when we need to



connect containers running on different hosts and load balance traffic across
multiple container instances.

For now, we have one more key topic to address with containers before
we can move on to Kubernetes. We need to understand how container storage
works, including the container image that is used as the base filesystem when
a new container is started as well as the temporary storage that a running
container uses. In the next chapter, we’ll investigate how container storage
makes application deployment easier and how a layered filesystem is used to
save on storage and improve efficiency.



D
CONTAINER IMAGES AND RUNTIME LAYERS

To run a process, we need storage. One of the great advantages of
containerized software is the ability to bundle an application for delivery
together with its dependencies. As a result, we need to store the executable
for the program and any shared libraries it uses. We also need to store
configuration files, logs, and any data managed by the program. All of this
storage must be isolated so that a container can’t interfere with the host
system or with other containers. Altogether, this represents a large need for
storage, and it means container engines must provide some unique features to
be efficient in the use of disk space and bandwidth. In this chapter, we’ll
explore how the use of a layered filesystem makes container images efficient
to download and containers efficient to start.

Filesystem Isolation

In Chapter 2, we saw how we could use a chroot environment to create a
separate, isolated part of the filesystem that contained only the binaries and
libraries we needed to run a process. Even to run a simple 1s command, we
needed the binary and several libraries. A more fully featured container, such
as one running the NGINX web server, needs quite a bit more—a complete
set of files for a Linux distribution.

In the chroot example, we built the isolated filesystem from the host



system when we were ready to use it. That approach would be impractical for
containers. Instead, the isolated filesystem is packaged in a container image,
which is a ready-to-use bundle that includes all files and metadata, such as
environment variables and the default executable.

Container Image Contents

Let’s take a quick look inside an NGINX container image. For this chapter,
we’ll be running commands using Docker because it’s still the most common
tool for building container images.

NOTE

The example repository for this book is at https://github.com/book-of-
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

Run the following command on host01 from this chapter’s examples to
download the image:

root@host01:~# docker pull nginx
Using default tag: latest
latest: Pulling from library/nginx

Status: Downloaded newer image for nginx:latest
docker.io/library/nginx:latest

The docker pull command downloads an image from an image registry. An
image registry is a web server that implements an API for downloading and
publishing container images. We can see the image we’ve downloaded by
listing images with docker images:

root@host01:~# docker images
REPOSITORY TAG IMAGEID CREATED  SIZE
nginx latest f0b8a9a54136 7 daysago 133MB

This image is 133MB and has a unique identifier of fobgagas4136. (Your
identifier will be different, as new NGINX container images are built every
day.) This image includes not only the NGINX executables and required
libraries but also a Linux distribution based on Debian. We saw this briefly in
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Chapter 1 when we demonstrated a Rocky Linux container on an Ubuntu host
and kernel, but let’s look at it in a little more detail. Start by running an
NGINX container:

root@host01:~# docker run --name nginx -d nginx
516d13e912a55cfc6{73f0dd473661d6b7d3b868d5a07a2bc7253971015b6799

The --name flag gives the container a friendly name that we can use for
future commands, whereas the -d flag sends it to the background.

Now, let’s explore the filesystem of our running container:

root@host01:~# docker exec -ti nginx /bin/bash
root@>516d13e912a5:/#

From here, we can see the various libraries needed for NGINX to work:

root@516d13e912a5:/# 1dd $(which nginx)
linux-vdso.so.1 (0x00007ffe2a1fa000)

libc.s0.6 => /lib/x86_64-linux-gnu/libc.so0.6 (0x00007fe0d6531000)
/1ib64/1d-1inux-x86-64.s0.2 (0x00007fe0d6ed4000)

All of these libraries are part of the container image we downloaded, so
our NGINX container does not need (and cannot see) any files from the host
system.

Not only do we have a healthy number of libraries present, but we have
typical configuration files in /etc that we would expect for a Debian system:

root@516d13e912a5:/#Is -1 /etc
debian_version

deluser.conf

dpkg

systemd/

This listing shows that the filesystem even includes directories that aren’t
really needed for a container, like the /etc/systemd directory. (Remember, a
container is just a set of related processes run under isolation, so a container
almost never runs a system service manager like systemd.) This full
filesystem is included for a couple reasons. First, many processes were



written to expect the usual set of files to be present. Second, it’s just easier to
build container images starting from a typical Linux distribution.

The separate filesystem for our container is writable as well. While we
have this shell open, let’s send some random data to a file in the container so
that we can inspect that storage from the host. We can then exit the shell:

root@516d13e912a5:/# dd if=/dev/urandom of=/tmp/data bs=1M count=10

10485760 bytes (10 MB, 10 MiB) copied, 0.0913977 s, 115 MB/s
root@>516d13e912a5:/# exit

The dd command wrote a 10MB file into the /tmp directory. Even though
we exited the shell, the container is still running, so we can use docker inspect t0
see the amount of disk space this container is using:

root@host01:~# docker inspect -s nginx | jq '.[0].SizeRw'
10487109

The -s flag tells docker inspect to report the size of the container. Because
docker inspect produces a huge JSON output, we use the JSON query tool jq to
choose the field we want.

The reported size is just about 10MB, suggesting that the container is
consuming only the amount of read-write storage required for the file we
wrote, plus any files written by NGINX. We’ll explore this in more detail as
we continue in this chapter.

Image Versions and Layers

The ability to quickly download a prepackaged filesystem to run a process is
only one of the advantages of container images. Another is the ability to tag
different versions of an image to allow for rapid upgrading. Let’s explore this
by pulling and running two different versions of Redis, the popular in-
memory key—value database:

root@host01:~# docker pull redis:6.0.13-alpine
6.0.13-alpine: Pulling from library/redis
@ 540db60ca938: Pull complete
29712d301e8c: Pull complete
8173c12df40f: Pull complete

docker.io/library/redis:6.0.13-alpine



root@host01:~# docker pull redis:6.2.3-alpine
6.2.3-alpine: Pulling from library/redis
@ 540db60ca938: Already exists
29712d301e8c: Already exists
8173c12df40f: Already exists

docker.io/library/redis:6.2.3-alpine

The data after the colon is the image tag and acts as a version identifier.
Previously, when we left this off, Docker defaulted to latest, which is a tag
like any other, but it is used by convention to refer to the latest published
image. By specifying the version, we can ensure that even as newer versions
of Redis are released, we will continue to run the same version until we are
ready to upgrade. The tag can contain any characters, and it is common to
add extra information after a hyphen. In this case, the -alpine at the end of the
tag indicates that this image is based on Alpine Linux, a lightweight Linux
distribution that is popular for making container images because of its small
size.

One other interesting item of note is the fact that when we downloaded the
second version of Redis, some of the content @ was flagged as Already exists.
Looking at the first Redis download, we see the same unique identifiers are
present there @. This is because a container image is made up of layers, and
these identifiers uniquely describe a layer. If a layer we’ve already
downloaded is used by another image, we don’t need to download it again,
saving download time. Additionally, each layer needs to be stored only once
on disk, saving disk space.

We now have two different versions of Redis downloaded:

root@host01:~# docker images | grep redis
redis 6.0.13-alpine a556c77d3dce 2 weeks ago 31.3MB
redis 6.2.3-alpine efb4fa30flcf 2 weeks ago 32.3MB

Although Docker is reporting that each image has a size of about 30MB,
that is the total size of all the layers and doesn’t account for the storage
savings that come from shared layers. The actual storage on disk is less, as
we can see by examining Docker’s use of disk space:

root@host01:~# docker system df -v
Images space usage:

REPOSITORY TAG ..SIZE  SHARED SIZE UNIQUE SIZE ...



redis  6.0.13-alpine ... 31.33MB 6.905MB 24.42MB
redis  6.2.3-alpine ... 32.31MB 6.905MB 25.4MB

The two Redis images are sharing almost 7MB of base layers.
These two versions of Redis can be run separately:

root@host01:~# docker run -d --name redis1 redis:6.0.13-alpine
66dbf56ec0e8db24ca78afc07c68b7d0699d68b4749e0c03310857cfce926366
root@host01:~# docker run -d --name redis2 redis:6.2.3-alpine
9dd3£86a1284171e5ca60f7f8aba13dc517237826a92b3cb256f5ac64a5f5c31

Now that both images are running, we can confirm that our containers
have exactly the version of Redis we want, independent of what version
might be the latest release and independent of the versions available for our
host server:

root@host01:~# docker logs redisl | grep version

1:C 21 May 2021 14:18:24.952 # Redis version=6.0.13, ...
root@host01:~# docker logs redis2 | grep version

1:C 21 May 2021 14:18:36.387 # Redis version=6.2.3, ...

This is a big advantage for building reliable systems. We can test our
application thoroughly with one version of the software and be sure that
version will continue to be used until we choose to upgrade. We can also
easily test our software against a new version without having to upgrade a
host system.

Building Container Images

In the preceding example, we saw how we could reduce the download and
disk requirements for container images by sharing layers. This layer sharing
can be used with any container image, not just two different versions of the
same software.

The layers in a container image come from the way it is built. A container
image build starts with a base image. For example, both of our two Redis
versions started with the same exact Alpine Linux base image, which is why
those layers were shared in that image. Starting from the base image, each
step in the build process can produce a new layer. This new layer contains
only the changes to the filesystem that came from that build step.



A base image must also come from somewhere, and, ultimately, there
must be an initial layer, which is typically a minimal Linux filesystem created
from some Linux distribution, transferred into an empty container image, and
then expanded to become an initial layer.

Using a Dockerfile

There are many different ways to build container images, but the most
popular is to create a file known as a Dockerfile or Containerfile that
specifies the commands and configuration for the image. Here’s a simple
Dockerfile that adds web content to an NGINX image:

Dockerfile

FROM nginx

# Add index.html
RUN echo "<html><body><h1>Hello World!</h1></body></htmI>" \
>/usr/share/nginx/html/index.html

Each line in a Dockerfile starts with a command that is followed by
parameters. Blank lines and content after a # are ignored, and a backslash at
the end of a line continues that command onto the next line. There are many
possible commands; here are the most common:

FROM Specify the base image for this build.

RUN Run a command inside the container.

copry Copy files into the container.

ENV Specify an environment variable.

ENTRYPOINT Configure the initial process for the container.

cMD Set default parameters for the initial process.

Docker provides the docker build command to build an image from a
Dockerfile. The docker build command creates a new image by running each
command in the Dockerfile, one at a time. Listing 5-1 illustrates how to run
docker build.

root@host01:~# cd /opt/hello



root@host01:/opt/hello# docker build -t hello .
@ Sending build context to Docker daemon 2.048kB
Step 1/2 : FROM nginx
@ ---> f0b8a9a54136
Step 2/2 : RUN echo "<html><body><h1>Hello World!</h1></body></html>" ...
© > Running in 77ba9163d0a5
Removing intermediate container 77ba9163d0a5
---> e9ca31d590f9
Successfully built €9ca31d590f9
@ Successfully tagged hello:latest

Listing 5-1: Docker build

The -t switch tells docker build to store the image from the build process
under the name hello.

Examining the steps in this build process will help clarify how container
images are made. First, Docker sends the build context to the Docker daemon
@. The build context is a directory and all of its files and subdirectories. In
this case, we specified the build context as the current directory when we
added . to the end of the docker build command. The actual container image
build happens inside the daemon, so the only files that would be available for
a copy command are those that are in the build context.

Second, Docker identifies our base image, in this case nginx. The unique
identifier it displays @ matches the one displayed earlier for our NGINX
image when we ran docker images. Third, Docker executes the command we
specified in the RUN step. This command is actually run inside a container
based on our NGINX base image €, which means that only the commands
installed in the container image are available to run. If we need other
commands to be available, we might need to create a RUN step that installs
them before we can use them.

After all of the build steps are complete, Docker “tags” the new container
image with the name we provided using the -t flag. As before, we didn’t
specify a version, so latest is used as a default. We now can see this image in
the list of available images:

root@host01:/opt/hello# docker images | grep hello
hello latest €9ca31d590f9 9 minutes ago 133MB

The unique identifier for this image matches the output from the end of
Listing 5-1. This image is shown as 133MB because it has all of the layers
from the NGINX image in addition to the new small HTML file we added.



As before, the shared layers are stored only once, so the extra storage
required to build this image was very small.

NOTE

When you try this example yourself, the unique identifier displayed for
your “hello” image will be different, even though the Dockerfile has the
same content for the HTML file. The identifier for each layer is based not
only on the layer’s file content but also on the identifier for the layer
above it. As a result, if two images have the same identifier, we can be
confident that the contents are exactly the same, even if they were built
separately.

We can run a container based on this new image just as we would any
other image:

root@host01:/opt/hello# docker run -d -p 8080:80 hello
83a23cf2921bb37474bfceftb0da45f9953940febfefd01ebadf35405d88c4396
root@host01:/opt/hello# curl http://localhost:8080/
<html><body><h1>Hello World!</h1></body></html>

As described in Chapter 1, the -p flag forwards a host port into the
container, enabling us to access the NGINX server from the host even though
it is running in a separate network namespace. We then can use curl to see that
our container has the content we provided.

Tagging and Publishing Images

The image is ready to run locally, but we’re not ready yet to publish it to a
registry. To publish to a registry, we need to give it a name that includes the
full host and path for the registry location to ensure that when we refer to an
image, we are getting exactly what we expect.

To demonstrate, let’s pull multiple BusyBox images from different
registries. We’ll start with a BusyBox image from quay.io, an alternative
container image registry:

root@host01:/opt/hello# docker pull quay.io/quay/busybox

quay.io/quay/busybox:latest




This image name specifies both the host quay.io and the location of the
image within that host, quay/busybox. As before, because we didn’t specify a
version, latest is used as a default. We are able to pull a version called latest
because someone has explicitly published a latest version of the image to this
registry.

The BusyBox image we get using this command is different from the one
we get if we just pull busybox:

root@host01:/opt/hello# docker pull busybox

docker.io/library/busybox:latest

root@host01:/opt/hello# docker images | grep busybox

busybox latest d3cd072556c2 3 days ago 1.24MB
quay.io/quay/busybox latest e3121¢769e39 8 months ago 1.22MB

When we use the plain name busybox, Docker defaults to pulling the image
from docker.io/library. This registry is known as Docker Hub, which you can
browse at https://hub.docker.com.

Similarly, when we used the plain name hello to build our image, Docker
sees it as belonging to docker.io/library. That path is for official Docker images,
and, of course, we don’t have the right to publish images there.

The automated setup for this chapter includes running a local container
registry, which means that we can publish this image to that local registry if
we name it correctly:

root@host01:/opt/hello# docker tag hello registry.local/hello
root@host01:/opt/hello# docker images | grep hello

hello latest €9ca31d590f9 52 minutes ago 133MB
registry.local/hello latest €9ca31d590f9 52 minutes ago 133MB

The same image now exists under two different names, providing an extra
advantage of the way images are stored by layer. It’s cheap to add an extra
name for an image. Of course, we could also have used the full name in the
first place when we ran docker build, but it is convenient to use shorter names
when building and using images locally.

Now that we have named the image correctly, we can publish it using
docker push:

root@host01:/opt/hello# docker push registry.local/hello
Using default tag: latest
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The push refers to repository [registry.local/hello]

Our local registry starts out empty, so this command uploads all of the
layers, but if we push any future images that include some of the same layers,
they won’t be uploaded again. Similarly, if we were to delete an image tag
from the registry, that would not remove the layer data.

This ability to publish images is not limited to images that we build
ourselves. We can tag and push the BusyBox image we just downloaded from
Docker Hub:

root@host01:/opt/hello# docker tag busybox registry.local/busybox
root@host01:/opt/hello# docker push registry.local/busybox

Using default tag: latest

The push refers to repository [registry.local/busybox]

root@host01:/opt/hello# cd

Retagging an image so that we can upload it to a private registry is a
common practice that can help an application start faster and avoid being
dependent on an internet registry.

The last command (cd) takes us back to our home directory, given that
we’re finished in /opt/hello.

Image and Container Storage

As mentioned previously, using individual layers to build up a container
image has multiple advantages, including reduced download size, reduced
disk space, and the ability to re-tag an image with a new name without using
any additional space. The additional disk space needed by a running
container is limited to just the files that we write while the container is
running. Finally, all of the examples have shown how fast a new container
starts up. All of these features together demonstrate why layers must be
shared, not only for images but also for new containers. To make the best use
of this layered approach in building efficient images, it helps to understand
how this layered filesystem works.

Overlay Filesystems



When we run a container, we are presented with what looks like a single
filesystem, with all the layers merged together and with the ability to make
changes to any file. If we run multiple containers from the same image, we
see an independent filesystem in each one, so that changes in one do not
affect the other. How does this work without having to copy the entire
filesystem every time we start a container? The answer is an overlay
filesystem.

An overlay filesystem has three main parts. The lower directory is where
the “base” layer exists. (There may be multiple lower directories.) The upper
directory has the “overlay” layer, and the mount directory is where the
unified filesystem is made available for use. A directory listing in the mount
directory reflects all of the files from all of the layers, in priority order. Any
changes made to the mount directory are really written to the upper directory
by copying the changed file to the upper directory from a lower one, and then
updating it—a process known as copy on write. Deletions are also written to
the upper directory as metadata, so the lower directory can remain
unmodified. This means that multiple users can share the lower directory
without conflict because it is only read from, never written to.

An overlay filesystem is useful for more than just container images and
containers. It is also useful for embedded systems, such as a network router,
for which a read-only filesystem is written in firmware, making it possible for
the device to be safely rebooted to a known state every time. It is also useful
for virtual machines, enabling multiple virtual machines to be started from
the same image.

Overlay filesystems are provided by a Linux kernel module, enabling very
high performance. We can easily create an overlay filesystem. The first step
is to create the necessary directories:

root@host01:~# mkdir /tmp/{lower,upper,work,mount}

The mkdir command creates four separate directories in /tmp. We’ve
already discussed the lower directory, upper directory, and mount directory.
The work directory is an extra empty directory that the overlay filesystem
uses as temporary space to ensure that changes in the mount directory appear
atomic—that is, to ensure that they appear all at once.

Let’s put some content into the lower and upper directories:



root@host01:~# echo "hello1" > /tmp/lower/hello1
root@host01:~# echo "hello2" > /tmp/upper/hello2

Next, we just mount the overlay filesystem:

root@host01:~# mount -t overlay \
-0 rw,lowerdir=/tmp/lower,upperdir=/tmp/upper,workdir=/tmp/work \
overlay /tmp/mount

The /tmp/mount directory now contains the merged content of both the
upper and lower directories:

root@host01:~# Is -1 /tmp/mount

total 8

-rw-r--1-- 1 Toot root 7 May 24 23:05 hellol
-rw-r--1-- 1 root root 7 May 24 23:05 hello2
root@host01:/opt/hello# cat /tmp/mount/hellol
hellol

root@host01:/opt/hello# cat /tmp/mount/hello2
hello2

Any changes that we make are shown in the mount location but are
actually made in the upper directory:

root@host01:~# echo "hello3" > /tmp/mount/hello3
root@host01:~# Is -1 /tmp/mount

total 8

-rw-r--1-- 1 Toot root 7 May 24 23:05 hellol
-rw-r--1-- 1 root root 7 May 24 23:10 hello2
-rw-r--r-- 1 root root 7 May 24 23:09 hello3
root@host01:~# Is -1 /tmp/lower

total 4

-rw-1--1-- 1 root root 7 May 24 23:05 hellol
root@host01:~# Is -1 /tmp/upper

total 8

-rw-r--1-- 1 root root 7 May 24 23:10 hello2
-rw-r---- 1 root root 7 May 24 23:09 hello3

Additionally, even deleting files does not affect the lower directory:

root@host01:~# rm /tmp/mount/hellol
root@host01:~# Is -1 /tmp/mount

total 8

-rw-r--1-- 1 root root 7 May 24 23:10 hello2
-rw-r--1-- 1 root root 7 May 24 23:09 hello3
root@host01:~# Is -1 /tmp/lower



total 4
-rw-r--r-- 1 root root 7 May 24 23:05 hello1
root@host01:~# Is -1 /tmp/upper
total 8

Qc——-- 1 root root 0, 0 May 24 23:11 hellol
-rw-r--1-- 1 root root 7 May 24 23:10 hello2
-rw-r--1-- 1 root root 7 May 24 23:09 hello3

The c next to the listing for hello1 in the upper directory @ indicates that
this is a character special file. Its purpose is to indicate that this file was
deleted in the upper directory. As a result, it does not show up in the mounted
filesystem, even though it still exists in the lower directory.

Thanks to this approach, we can reuse the lower directory with an
independent overlay, similar to how we can run multiple independent
containers from the same image:

root@host01:~# mkdir /tmp/{upper2,work2,mount2}

root@host01:~# mount -t overlay \
-0 rw,lowerdir=/tmp/lower,upperdir=/tmp/upper2,workdir=/tmp/work2 \
overlay /tmp/mount2

root@host01:~# lIs -1 /tmp/mount2

total 4

-rw-1--1-- 1 root root 7 May 24 23:05 hellol

Not only does the “deleted” file from the lower directory appear, but none
of the content from the first upper directory shows up because it’s not part of
this new overlay.

Understanding Container Layers

Armed with this information about overlay filesystems, we can explore the
filesystem of our running NGINX container:

root@host01:~# ROOT=$(docker inspect nginx \

| jq -r ".[0].GraphDriver.Data.MergedDir')
root@host01:~# echo SROOT
/var/lib/docker/overlay2/433751e2378f9b11.../merged

As before, we use jq to choose just the field we want; in this case, it’s the
path to the merged directory for the container’s filesystem. This merged
directory is the mount point for an overlay filesystem:

root@host01:~# mount | grep SROOT | tr [:,] "\n'



overlay on /var/lib/docker/overlay2/433751e2378f9b11.../merged ...
lowerdir=/var/lib/docker/overlay2/l/ERVEISTCULK4PCNO2HSWB4MFDB
/var/lib/docker/overlay2/l/RQDO2PYQ30KMKDY3DAYPAJTZHF
/var/lib/docker/overlay2/l/LFSBVPYPODQJXDL5WQTI7ISYNC
/var/lib/docker/overlay2/l/TLZUY V2BFQNPFGU3AZFUHOH27V
/var/lib/docker/overlay2/1/4AM66FKSHDBNUWE7UAF2REQHSB2
/var/lib/docker/overlay2/l/LCTKPRHP6LG7KC7JQHETKIL6TZ
/var/lib/docker/overlay2/1/JOECSCSAQ5CPNHGEURVRT4JRQQ
upperdir=/var/lib/docker/overlay2/433751e2378f9b11.../diff
workdir=/var/lib/docker/overlay2/433751e2378f9b11.../work,xino=off)

The tr command transforms colons and commas to newlines to make the
output more readable.

The mount command shows seven separate entries for lowerdir, one for each
of the layers in the NGINX container image. All seven of these directories,
plus the upperdir, are merged together in the overlay filesystem.

We can see the 10MB data file we created earlier in both the mount
directory and the upper directory:

root@host01:~# Is -1 SROOT/tmp/data

-rw-r--1-- 1 root root 10485760 May 25 00:27 /var/lib/.../merged/tmp/data
root@host01:~# Is -1 SROOT/../diff/tmp/data

-rw-r--1-- 1 root root 10485760 May 25 00:27 /var/lib/.../diff/tmp/data

The actual file is stored in the upper directory diff, whereas the mount
directory merged is just a view generated by the overlay filesystem.

Usually, we don’t need to delve into the container filesystem from the
host, because we can just run commands from within the container to explore
its files. However, this technique can be useful for pulling files from a
container for cases in which the container engine is not behaving correctly.

Practical Image Building Advice

Some important practical implications result from the way that overlay
filesystems are used with container images. First, because an overlay
filesystem can have multiple lower directories, and merging is performant,
breaking our container image into multiple layers causes very little
performance penalty. It allows us to be very modular when building container
images, enabling reuse of layers. For example, we might start with a base
image and then build an image on top that installs some common
dependencies, and then another image that adds specialized dependencies for



some of our application components, and finally yet another image that adds
a specific application. Assembling application container images using a
layered approach can result in very efficient image transfer and storage, as
the base layers are shared between components where possible.

Second, because a deletion in an upper layer does not actually remove the
file from a lower layer, we need to be careful with how we handle large
temporary files and also in how we store secrets while building images. In
both cases, if we finish a layer while the file is still present, it will be there
forever, causing us to waste bandwidth and space, or worse, leak secret
information to anyone who downloads the image. In general, you should
assume that every line of a Dockerfile makes a new layer, and you should
also make the assumption that all of the information associated with each
command is stored in the image metadata. As a result:

e Perform multiple steps in a single RUN line, and make sure every RUN
command cleans up after itself.

e Don’t use copy to transfer large files or secrets into the image, even if
you clean them up in a later RUN step.

e Don’t use ENV to store secrets, because the resulting values become part
of the image metadata.

Open Container Initiative

A container image is more than just the set of layers that make up the overlay
filesystem. It also includes important metadata, such as the initial command
for the container and any environment variables for that command. The Open
Container Initiative (OCI) provides a standard format for storing image
information. It ensures that container images built by one tool can be used by
any other tool and provides a standard way to transfer images layer by layer
or in a complete package.

To demonstrate the OCI format, let’s extract a BusyBox container image
from Docker and store it in OCI format using Skopeo, a program designed to
move container images around between repositories and formats. The first
step is to extract the image:

root@host01:~# skopeo copy docker-daemon:busybox:latest oci:busybox:latest



This command tells Skopeo to fetch the image from the Docker engine’s

storage and write it out in OCI format. We now have a busybox directory that
contains the image:

root@host01:~# Is -1 busybox

total 12

drwxr-xr-x 3 root root 4096 May 24 23:59 blobs
-rw-r--r-- 1 root root 247 May 24 23:59 index.json
-rw-r--1-- 1 root root 31 May 24 23:59 oci-layout

The oci-layout file specifies the OCI version used for this image:

root@host01:~# jq . busybox/oci-layout
{
"imageLayoutVersion": "1.0.0"

}

The index.json file tells us about the image:

root@host01:~# jq . busybox/index.json
{
"schemaVersion": 2,
"manifests": [
{
"mediaType": "application/vnd.oci.image.manifest.v1+json",
"digest": "sha256:9c3c5aeeaa7e1629871808339...",
"size": 347,
"annotations": {
"org.opencontainers.image.ref.name": "latest"

}
}
]
}

The manifests property is an array that allows us to store multiple images in
a single OCI directory or package. The actual filesystem content is stored by
layer in the blobs directory, with each layer as a separate .tar file, so any
shared layers are stored only once.

This BusyBox image has only a single layer. To look at its contents, we’ll

need to work through the index.json and image manifest to find the path to its
.tar file:



root@host01:~# MANIFEST=$(jq -r \

.manifests[0].digest busybox/index.json | sed -e 's/sha256://")
root@host01:~# LAYER=$(jq -r \

Jayers[0].digest busybox/blobs/sha256/$MANIFEST | sed -e 's/sha256://")
root@host01:~# echo $SLAYER
197dfd3345530fd558a64f2a550e8af75a9cb812df5623daf0392aa39e0ce767

The files in the blobs directory are named using the SHA-256 digest
calculated from the file contents. We start by using jq to get the digest for the
BusyBox image’s manifest, stripping off the sha2s6: part at the front to get the
name of the manifest file. We then read the manifest to find the first (and
only) layer. We now can see the content of this layer:

root@host01:~# tar tvf busybox/blobs/sha256/$LAYER

drwxr-xr-x 0/0 0 2021-05-17 19:07 bin/

-rwxr-xr-x 0/0 1149184 2021-05-17 19:07 bin/[
hrwxr-xr-x 0/0 0 2021-05-17 19:07 bin/[[ link to bin/[
drwxr-xr-x 0/0 0 2021-05-17 19:07 dev/

drwxr-xr-x 0/0 0 2021-05-17 19:07 etc/

Passing tvf to the tar command tells it to list a table of contents from the file
we specify, which is the BusyBox image layer in this case. This layer
contains a complete Linux filesystem, with BusyBox acting as the single
executable for most of the standard Linux commands.

Using this busybox directory, we can also package up the container image,
move it to a separate system, and then pull it into another container engine.

Final Thoughts

When we run a container, we get what appears to be a separate, isolated
filesystem that we can modify as desired. Underneath, the container engine is
using the overlay filesystem to merge together multiple container image
layers and a writeable directory that stores all the changes we make. Not only
does the use of an overlay filesystem make a new container fast to start, but it
also means that we can run multiple containers from the same image without
waiting for file copy to complete, and we can reduce the required disk space
by sharing image layers.

Now that we’ve looked at process isolation, resource limits, network



isolation, and container storage, we’ve covered the main features of
containers that make them so valuable for packaging, distributing, updating,
and running application components. It’s time to move on to the critical
features that we can get only from a container orchestration environment like
Kubernetes. We’ll do that in Part II.



PART 11
CONTAINERS IN KUBERNETES

Computers have finite processing, storage, and memory, and are built of parts
that fail, especially at the wrong time. To build a scalable, reliable
application, we can’t be limited by the resources of a single host or dependent
on a single point of failure. At the same time, we don’t want to give up the
modularity and flexibility that containers provide. In Part II, we’ll see how
Kubernetes meets the essential requirements to run containers across a cluster
of machines, with cross-host container networking, scalability, automated
failover, and distributed storage.



6
WHY KUBERNETES MATTERS

Containers enable us to transform the way we package and deploy application
components, but orchestration of containers in a cluster enables the real
advantage of a containerized microservice architecture. As described in
Chapter 1, the main benefits of modern application architecture are
scalability, reliability, and resiliency, and all three of those benefits require a
container orchestration environment like Kubernetes in order to run many
instances of containerized application components across many different
servers and networks.

In this chapter, we’ll begin by looking at some cross-cutting concerns that
exist when running containers across multiple servers in a cluster. We’ll then
describe the core Kubernetes concepts designed to address those concerns.
With that introduction complete, we’ll spend the bulk of the chapter actually
installing a Kubernetes cluster, including important add-on components like
networking and storage.

Running Containers in a Cluster

The need to distribute our application components across multiple servers is
not new to modern application architecture. To build a scalable and reliable
application, we have always needed to take advantage of multiple servers to
handle the application’s load and preclude a single point of failure. The fact



that we are now running these components in containers does not change the
need for multiple servers; we are still ultimately using CPUs and we are still
ultimately dependent on hardware.

At the same time, a container orchestration environment brings challenges
that may not have existed with other kinds of application infrastructure.
When the container is the smallest individual module around which we build
our system, we end up with application components that are much more self-
contained and “opaque” from the perspective of our infrastructure. This
means that instead of having a static application architecture through which
we choose in advance what application components are assigned to specific
servers, with Kubernetes, we try to make it possible for any container to run
anywhere.

Cross-Cutting Concerns

The ability to run any container anywhere maximizes our flexibility, but it
adds complexity to Kubernetes itself. Kubernetes does not know in advance
what containers it will be asked to run, and the container workload is
continuously changing as new applications are deployed or applications
experience changes in load. To rise to this challenge, Kubernetes needs to
account for the following design parameters that apply to all container
orchestration software, no matter what containers are running:

Dynamic scheduling New containers must be allocated to a server, and
allocations can change due to configuration changes or failures.

Distributed state The entire cluster must keep information about what
containers are running and where, even during hardware or network failures.

Multitenancy It should be possible to run multiple applications in a single
cluster, with isolation for security and reliability.

Hardware isolation Clusters must run in cloud environments and on regular
servers of various types, isolating containers from the differences in these
environments.

The best term to use to refer to these design parameters is cross-cutting
concern, because they apply to any kind of containerized software that we
might need to deploy, and even to the Kubernetes infrastructure itself. These
parameters work together with the container orchestration requirements we



saw in Chapter 1 and ultimately drive the Kubernetes architecture and key
design decisions.

Kubernetes Concepts

To address these cross-cutting concerns, the Kubernetes architecture allows
anything to come and go at any time. This includes not only the containerized
applications deployed to Kubernetes, but also the fundamental software
components of Kubernetes itself, and even the underlying hardware such as
servers, network connections, and storage.

Separate Control Plane

Obviously, for Kubernetes to be a container orchestration environment, it
requires the ability to run containers. This ability is provided by a set of
worker machines called nodes. Each node runs a kubelet service that
interfaces with the underlying container runtime to start and monitor
containers.

Kubernetes also has a set of core software components that manage the
worker nodes and their containers, but these software components are
deployed separately from the worker nodes. These core Kubernetes software
components are together referred to as the control plane. Because the control
plane is separate from the worker nodes, the worker nodes can run the control
plane, gaining the benefits of containerization for the Kubernetes core
software components. A separate control plane also means that Kubernetes
itself has a microservice architecture, which allows customization of each
Kubernetes cluster. For example, one control plane component, the cloud
controller manager, is used only when deploying Kubernetes to a cloud
provider, and it’s customized based on the cloud provider used. This design
provides hardware isolation for application containers and the rest of the
Kubernetes control plane, while still allowing us to take advantage of the
specific features of each cloud provider.

Declarative API

One critical component of the Kubernetes control plane is the API server.
The API server provides an interface for cluster control and monitoring that
other cluster users and control plane components use. In defining the API,



Kubernetes could have chosen an imperative style, in which each API
endpoint is a command such as “run a container” or “allocate storage.”
Instead, the API is declarative, providing endpoints such as create, patch,
get, and delete. The effect of these commands is to create, read, update, and
delete resources from the cluster configuration—the specific configuration of
each resource tells Kubernetes what we want the cluster to do.

This declarative API is essential to meet the cross-cutting concerns of
dynamic scheduling and distributed state. Because a declarative API simply
reports or updates cluster configuration, reacting to server or network failures
that might cause a command to be missed is very easy. Consider an example
in which the API server connection is lost just after an apply command is
issued to change the cluster configuration. When the connection is restored,
the client can simply query the cluster configuration and determine whether
the command was received successfully. Or, even easier, the client can just
issue the same apply command again, knowing that as long as the cluster
configuration ends up as desired, Kubernetes will be trying to do the “right
thing” to the actual cluster. This core principle is known as idempotence,
meaning it is safe to issue the same command multiple times because it will
be applied at most once.

Self-Healing

Building on the declarative API, Kubernetes is designed to be self-healing.
This means that the control plane components continually monitor both the
cluster configuration and the actual cluster state and try to bring them into
alignment. Every resource in the cluster configuration has an associated
status and event log reflecting how the configuration has actually caused a
change in the cluster state.

The separation of configuration and state makes Kubernetes very resilient.
For example, a resource representing containers may be in a Running state if
the containers have been scheduled and are actually running. If the
Kubernetes control plane loses connection to the server on which the
containers are running, it can immediately set the status to Unknown and then
work to either reestablish connection or treat the node as failed and
reschedule the containers.

At the same time, using a declarative API and self-healing approach has
important implications. Because the Kubernetes API is declarative, a



“success” response to a command means only that the cluster configuration
was updated. It does not mean that the actual state of the cluster was updated,
as it might take time to achieve the requested state, or there might be issues
that prevent the cluster from achieving that state. As a result, we cannot
assume that just because we created the appropriate resources, the cluster is
running the containers we expect. Instead, we must watch the status of the
resources and explore the event log to diagnose any issues that the
Kubernetes control plane had in making the actual cluster state match the
configuration we specified.

Cluster Deployment

With some core Kubernetes concepts under our belts, we’ll use the kubeadm
Kubernetes administration tool to deploy a highly available Kubernetes
cluster across multiple virtual machines.

( )

CHOOSING A KUBERNETES
DISTRIBUTION

Rather than using a particular Kubernetes distribution as we did in
Chapter 1, we’ll deploy a “vanilla” Kubernetes cluster using the generic
upstream repository. This approach gives us the best opportunity to
follow along with the cluster deployment and will make it easier to
explore the cluster in-depth in the next several chapters. However, when
you’re ready to deploy a Kubernetes cluster of your own, especially for
production work, consider using a prebuilt Kubernetes distribution for
ease of management and built-in security. The Cloud Native Computing
Foundation (CNCF) publishes a set of conformance tests that you can
use to ensure that the Kubernetes distribution you choose is conformant
to the Kubernetes specification.

Our Kubernetes cluster will be split across four virtual machines, labeled
host01 through hosto4. Three of these, hosto1 through hosto3, will run control plane
components, whereas the fourth will act solely as a worker node. We’ll have




three control plane nodes because that is the smallest number required to run
a highly available cluster. Kubernetes uses a voting scheme to provide
failover, and at least three control plane nodes are required; this allows the
cluster to detect which side should keep running in the event of a network
failure. Also, to keep the cluster as small as possible for our examples, we’ll
configure Kubernetes to run regular containers on the control plane nodes
even though we would avoid doing that for a production cluster.

NOTE

The example repository for this book is at https://github.com/book-of-
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

Start by following the instructions for this chapter to get all four virtual
machines up and running, either in Vagrant or AWS. The automated
provisioning will set up all four machines with containerd and crictl, so we don’t
need to do it manually. The automated provisioning script will also set up
either kube-vip or an AWS network load balancer to provide required high-
availability functionality, as discussed below.

NOTE

You can install Kubernetes automatically using the extra provisioning
script provided with this chapter’s examples. See the README file for
this chapter for instructions.

You’ll need to run commands on each of the four virtual machines, so you
might want to open terminal tabs for each one. However, the first series of
commands needs to be run on all of the hosts, so the automation sets up a
command called k8s-all to do that from hosto1. You can explore the content of
this script in /usr/local/bin/k8s-all or by looking at the k8s Ansible role in the
setup directory of the examples.

Prerequisite Packages

The first step is to make sure the br_netfilter kernel module is enabled and set to
load on boot. Kubernetes uses advanced features of the Linux firewall to


https://github.com/book-of-kubernetes/examples

handle networking across the cluster, so we need this module. Run these two
commands:

root@host01:~# k8s-all modprobe br_netfilter

root@host01:~# k8s-all "echo 'br_netfilter' > /etc/modules-load.d/k8s.conf"

The first command ensures that the module is installed for the currently
running kernel, and the second command adds it to the list of modules to run
on boot. The slightly odd quoting in the second command ensures that the
shell redirection happens on the remote hosts.

Next, in Listing 6-1, we’ll set some Linux kernel parameters to enable
advanced network features that are also needed for networking across the
cluster by using the sysctl command:

root@host01:~# k8s-all sysctl -w net.ipv4.ip_forward=1\
net.bridge.bridge-nf-call-ip6tables=1 \
net.bridge.bridge-nf-call-iptables=1

Listing 6-1: Kernel settings
This command enables the following Linux kernel network features:

net.ipv4.ip_forward Transfer packets from one network interface to another (for
example, from an interface inside a container’s network namespace to a host
network).

net.bridge.bridge-nf-call-ip6tables Run IPv6 bridge traffic through the iptables
firewall.

net.bridge.bridge-nf-call-iptables Run IPv4 bridge traffic through the iptables firewall.

The need for the last two items will become clear in Chapter 9 when we
discuss how Kubernetes provides networking for Services.

These sysctl changes in Listing 6-1 do not persist after a reboot. The
automated scripts do handle making the changes persistent, so if you reboot
your virtual machines, either run the extra provisioning script, or run these
commands again.

We’ve now finished configuring the Linux kernel to support our
Kubernetes deployment and are almost ready for the actual install. First we
need to install some prerequisite packages:



root@host01:~# k8s-all apt install -y apt-transport-https \
open-iscsi nfs-common

The apt-transport-https package ensures that apt can support connecting to
repositories via secure HTTP. The other two packages are needed for one of
the cluster add-ons that we’ll install after our cluster is up and running.

Kubernetes Packages

We can now add the Kubernetes repository to install the kubeadm tool that will
set up our cluster. First, add the GPG key used to check the package
signatures:

root@host01:~# k8s-all " curl -fsSL \
https://packages.cloud.google.com/apt/doc/apt-key.gpg | \
gpg --dearmor -o /usr/share/keyrings/google-cloud-keyring.gpg"

This command uses curl to download the GPG key. It then uses gpg to
reformat it, and then it writes the result to /usr/share/keyrings. The command
line flags fsSL put curl in a mode that behaves better for chained commands,
including avoiding unnecessary output, following server redirects, and
terminating with an error if there is a problem.

Next, we add the repository configuration:

root@host01:~# k8s-all "echo 'deb [arch=amd64' \
'signed-by=/usr/share/keyrings/google-cloud-keyring.gpg]' \
'https://apt.kubernetes.io/ kubernetes-xenial main' >\
/etc/apt/sources.list.d/kubernetes.list"

As before, the quoting is essential to ensure that the command is passed
correctly via SSH to all the other hosts in the cluster. The command
configures kubernetes-xenial as the distribution; this distribution is used for any
version of Ubuntu, starting with the older Ubuntu Xenial.

After we have created this new repository, we then need to run apt update on
all hosts to download the list of packages:

root@host01:~# k8s-all apt update

Now we can install the packages we need using apt:



root@host01:~# source /opt/k8sver
root@host01:~# k8s-all apt install -y kubelet=$K8SV kubeadm=$K8SV kubectl=$K8SV

The source command loads a file with a variable to install a specific
Kubernetes version. This file is created by the automated scripts and ensures
that we use a consistent Kubernetes version for all chapters. You can update
the automated scripts to choose which Kubernetes version to install.

The apt command installs the following three packages along with some
dependencies:

kubelet Service for all worker nodes that interfaces with the container engine
to run containers as scheduled by the control plane

kubeadm Administration tool that we’ll use to install Kubernetes and maintain
our cluster

kubectl Command line client that we’ll use to inspect our Kubernetes cluster
and to create and delete resources

The kubelet package starts its service immediately, but because we haven’t
installed the control plane yet, the service will be in a failed state at first:

root@host01:~# systemctl status kubelet
kubelet.service - kubelet: The Kubernetes Node Agent

Main PID: 75368 (code=exited, status=1/FAILURE)

We need to control the version of the packages we just installed because
we want to upgrade all of the components of our cluster together. To protect
ourselves from accidentally updating these packages, we’ll hold them at their
current version:

root@host01:~# k8s-all apt-mark hold kubelet kubeadm kubectl

This command prevents the standard apt full-upgrade command from
updating these packages. Instead, if we upgrade our cluster, we’ll need to
specify the exact version that we want by using apt install.

Cluster Initialization

The next command, kubeadm init, initializes the control plane and provides the



kubelet worker node service configuration for all the nodes. We’ll run kubeadm
init on one node in our cluster and then use kubeadm join on each of the other
nodes so that they join the existing cluster.

To run kubeadm init, we first create a YAML configuration file. This
approach has a few advantages. It greatly shortens the number of command
line flags that we need to remember, and it lets us keep the cluster
configuration in a repository, giving us configuration control over the cluster.
We then can update the YAML file and rerun kubeadm to make cluster
configuration changes.

The automation scripts for this chapter have populated a YAML
configuration file in /etc/kubernetes, so it’s ready to use. The following
shows the contents of that file:

kubeadm-init.yaml

apiVersion: kubeadm.k8s.io/v1beta3
kind: InitConfiguration
bootstrapTokens:
- groups:

- system:bootstrappers:kubeadm:default-node-token

token: 1d8fb1.2875d52d62a3282d

ttl: 2hOmOs

usages:

- signing

- authentication
nodeRegistration:

kubeletExtraArgs:

node-ip: 192.168.61.11

taints: []
local APIEndpoint:

advertiseAddress: 192.168.61.11
certificateKey: "5a7e07816958efb97635e9a66256adb1"
apiVersion: kubeadm.k8s.io/v1beta3
kind: ClusterConfiguration
kubernetesVersion: 1.21.4
apiServer:

extraArgs:

service-node-port-range: 80-32767

networking:

podSubnet: "172.31.0.0/16"
controlPlaneEndpoint: "192.168.61.10:6443"
apiVersion: kubelet.config.k8s.io/v1betal
kind: KubeletConfiguration



serverTLSBootstrap: true

This YAML file has three documents, separated by dashes (---). The first
document is specific to initializing the cluster, the second has more generic
configuration, and the third is used to provide settings for kubelet across all the
nodes. Let’s look at the purpose of each of these configuration items:

apiVersion / kind Tells Kubernetes about the purpose of each YAML document,
so it can validate the contents.

bootstrapTokens Configures a secret that other nodes can use to join the cluster.
The token should be kept secret in a production cluster. It is set to expire
automatically after two hours, so if we want to join more nodes later, we’ll
need to make another one.

nodeRegistration Configuration to pass to the kubelet service running on hosto.
The node-ip field ensures that kubelet registers the correct IP address with the
API server so that the API server can communicate with it. The taints field
ensures that regular containers can be scheduled onto control plane nodes.

localAPIEndpoint The local IP address that the API server should use. Our
virtual machine has multiple IP addresses, and we want the API server
listening on the correct network.

certificateKey Configures a secret that other nodes will use to gain access to the
certificates for the API server. It’s needed so that all of the API server
instances in our highly available cluster can use the same certificate. Keep it
secret in a production cluster.

networking All containers in the cluster will get an IP address from the podSubnet,
no matter what host they run on. Later, we’ll install a network driver that will
ensure that every container on all hosts in the cluster can communicate.

controlPlaneEndpoint The API server’s external address. For a highly available
cluster, this IP address needs to reach any API server instance, not just the
first one.

serverTLSBootstrap INStructs kubelet to use the controller manager’s certificate
authority to request server certificates.

The apiVersion and kind fields will appear in every Kubernetes YAML file.
The apiversion field defines a group of related Kubernetes resources, including



a version number. The kind field then selects the specific resource type within
that group. This not only allows the Kubernetes project and other vendors to
add new groups of resources over time, but it also allows updates to existing
resource specifications while maintaining backward compatibility.

( )

HIGHLY AVAILABLE CLUSTERS

The controlPlaneEndpoint field is used to configure the most important
requirement for a highly available cluster: an IP address that reaches all
of the API servers. We need to establish this [P address immediately
when we initialize the cluster because it is used to generate certificates
with which clients will verify the API server’s identity. The best way to
provide a cluster-wide IP address depends on where the cluster is
running; for example, in a cloud environment, using the provider’s
built-in capability, such as an Elastic L.oad Balancer (ELB) in Amazon
Web Services or an Azure Load Balancer, is best.

Because of the nature of the two different environments, the examples
for this book use kube-vip when running with Vagrant, and ELB when
running in Amazon Web Services. The top-level README.md file in
the example documentation has more details. The installation and
configuration is done automatically so there’s nothing more to
configure. We can just use 192.168.61.10:6443 and expect traffic to get to
any of the API server instances running on hosto1 through hosto3.

L J

Because we have the cluster configuration ready to go in a YAML file, the
kubeadm init command to initialize the cluster is simple. We run this command
solely on host01:

root@host01:~# /usr/bin/kubeadm init \
--config /etc/kubernetes/kubeadm-init.yaml --upload-certs

The --config option points to the YAML configuration file (kubeadm-
init.yaml) that we looked at earlier, and the --upload-certs option tells kubeadm that
it should upload the API server’s certificates to the cluster’s distributed
storage. The other control plane nodes then can download those certificates



when they join the cluster, allowing all API server instances to use the same
certificates so that clients will trust them. The certificates are encrypted using
the certificateKey we provided, which means that the other nodes will need this
key to decrypt them.

The kubeadm init command initializes the control plane’s components on
host01. These components are run in containers and managed by the kubelet
service, which makes them easy to upgrade. Several container images will be
downloaded, so the command might take a while, depending on the speed of
your virtual machines and your internet connection.

Joining Nodes to the Cluster

The kubeadm init command prints out a kubeadm join command that we can use to
join other nodes to the cluster. However, the automation scripts have already
prestaged a configuration file to each of the other nodes to ensure that they
join as the correct type of node. The servers host02 and hosto3 will join as
additional control plane nodes, whereas hosto4 will join solely as a worker
node.

Here’s the YAML configuration file for hosto2 with its specific settings:
kubeadm-join.yaml (host02)

apiVersion: kubeadm.k8s.io/v1beta3
kind: JoinConfiguration
discovery:
bootstrapToken:
apiServerEndpoint: 192.168.61.10:6443
token: 1d8fb1.2875d52d62a3282d
unsafeSkipCAVerification: true
timeout: 5m0s
nodeRegistration:
kubeletExtraArgs:
cgroup-driver: containerd
node-ip: 192.168.61.12
taints: []
ignorePreflightErrors:
- DirAvailable--etc-kubernetes-manifests
controlPlane:
localAPIEndpoint:
advertiseAddress: 192.168.61.12
certificateKey: "5a7e07816958efb97635e9a66256adb1"

This resource has a type of JoinConfiguration, but most of the fields are the



same as the InitConfiguration in the kubeadm-init.yaml file. Most important, the
token and certificateKey match the secret we set up earlier, so this node will be
able to validate itself with the cluster and decrypt the API server certificates.

One difference is the addition of ignorePreflightErrors. This section appears
only when we are installing kube-vip, as in that case we need to prestage the
configuration file for kube-vip to the /etc/kubernetes/manifests directory, and
we need to tell kubeadm that it is okay for that directory to already exist.

Because we have this YAML configuration file, the kubeadm join command
is simple. Run it on host02:

root@host02:~# /usr/bin/kubeadm join --config /etc/kubernetes/kubeadm-join.yaml

As before, this command runs the control plane components as containers
using the kubelet service on this node, so it will take some time to download
the container images and start the containers.

When it finishes, run the exact same command on host03:

root@host03:~# /usr/bin/kubeadm join --config /etc/kubernetes/kubeadm-join.yaml

The automation script set up the YAML file with the correct IP address
for each host, so the differences in configuration between each of the hosts is
already accounted for.

When this command completes, we’ll have created a highly available
Kubernetes cluster, with the control plane components running on three
separate hosts. However, we do not yet have any regular worker nodes. Let’s
fix that issue.

We’ll begin by joining host04 as a regular worker node and running exactly
the same kubeadm join command on host04, but the YAML configuration file will
be a little different. Here’s that file:

kubeadm-join.yaml (host04)

apiVersion: kubeadm.k8s.io/v1beta3
kind: JoinConfiguration
discovery:
bootstrapToken:
apiServerEndpoint: 192.168.61.10:6443
token: 1d8fb1.2875d52d62a3282d
unsafeSkipCAVerification: true
timeout: 5m0s



nodeRegistration:
kubeletExtraArgs:
cgroup-driver: containerd
node-ip: 192.168.61.14
taints: []

This YAML file is missing the controlPlane field, so kubeadm configures it as a
regular worker node rather than a control plane node.

Now let’s join hosto4 to the cluster:

root@host04:~# /usr/bin/kubeadm join --config /etc/kubernetes/kubeadm-join.yaml

This command completes a little faster because it doesn’t need to
download the control plane container images and run them. We now have
four nodes in the cluster, which we can verify by running kubectl back on
host01:

root@host01:~# export KUBECONFIG=/etc/kubernetes/admin.conf
root@host01:~# kubectl get nodes

NAME STATUS ROLES

host01 NotReady control-plane...

host02 NotReady control-plane...

host03 NotReady control-plane...

host04 NotReady <none>

The first command sets an environment variable to tell kubectl what
configuration file to use. The /etc/kubernetes/admin.conf file was created
automatically by kubeadm when it initialized host01 as a control plane node. That
file tells kubectl what address to use for the API server, what certificate to use
to verify the secure connection, and how to authenticate.

The four nodes currently should be reporting a status of NotReady. Let’s run
the kubectl describe command to get the node details:

root@host01:~# kubectl describe node host04
Name: host04

Conditions:
Type Status ... Message

Ready False ... container runtime network not ready...

We haven’t yet installed a network driver for our Kubernetes cluster, and



as a result, all of the nodes are reporting a status of NotReady, which means that
they won’t accept regular application workloads. Kubernetes communicates
this by placing a taint in the node’s configuration. A taint restricts what can
be scheduled on a node. We can list the taints on the nodes using kubectl:

root@host01:~# kubectl get node -o json |\
jq '.items[]|.metadata.name,.spec.taints[]'
"host01"
{
"effect": "NoSchedule",
"key": "node.kubernetes.io/not-ready"

}
"host02"
{
"effect": "NoSchedule",
"key": "node.kubernetes.io/not-ready"
}
"host03"
{
"effect": "NoSchedule",
"key": "node.kubernetes.io/not-ready"
}
"host04"
{
"effect": "NoSchedule",

"key": "node.kubernetes.io/not-ready"

}

We select an output format of json so that we can use jq to print just the
information we need. Because all the nodes have a status of NotReady, they
have a not-ready taint set to NoSchedule, which prevents the Kubernetes scheduler
from scheduling containers onto them.

By specifying taints as an empty array in the kubeadm configuration, we
prevented the three control plane nodes from having an additional control
plane taint. In a production cluster, this taint keeps application containers
separate from the control plane containers for security reasons, so we would
leave it in place. For our example cluster, though, it would mean that we need
multiple extra virtual machines to act as worker nodes, which we don’t want.

The command kubectl taint would allow us to remove the not-ready taint
manually, but the correct approach is to install a network driver as a cluster
add-on so that the nodes will properly report Ready, enabling us to run
containers on them.



Installing Cluster Add-ons

We’ve installed kubelet on four separate nodes and installed the control plane
on three of those nodes and joined them to our cluster. For the rest, we’ll use
the control plane to install cluster add-ons. These add-ons are similar to
regular applications that we would deploy. They consist of Kubernetes
resources and run in containers, but they provide essential services to the
cluster that our applications will use.

To get a basic cluster up and running, we need to install three types of
add-ons: a network driver, a storage driver, and an ingress controller. We
will also install a fourth optional add-on, a metrics server.

Network Driver

Kubernetes networking is based on the Container Network Interface (CNI)
standard. Anyone can build a new network driver for Kubernetes by
implementing this standard, and as a result, several choices are available for
Kubernetes network drivers. We’ll demonstrate different network plug-ins in
Chapter 8, but most of the clusters in this book use the Calico network driver
because it is the default choice for many Kubernetes platforms.

First, download the primary YAML configuration file for Calico:

root@host01:~# cd /etc/kubernetes/components
root@host01:/etc/kubernetes/components# curl -L -O $calico_url

The -L option tells curl to follow any HTTP redirects, whereas the -0 option
tells curl to save the content in a file using the same filename as in the URL.
The value of the calico_url environment variable is set in the k8s-ver script that
also specified the Kubernetes version. This is essential, as Calico is sensitive
to the specific version of Kubernetes we’re running, so it’s important to
choose values that are compatible.

The primary YAML configuration is written to the local file tigera-
operator.yaml. This refers to the fact that the initial installation is a
Kubernetes Operator, which then creates all of the other cluster resources to
install Calico. We’ll explore operators in Chapter 17.

In addition to this primary YAML configuration, the automated scripts for
this chapter have added a file called custom-resources.yaml that provides



necessary configuration for our example cluster. We now can tell the
Kubernetes API server to apply all the resources in these files to the cluster:

root@host01:/etc/kubernetes/components# kubectl apply -f tigera-operator.yaml

root@host01:/etc/kubernetes/components# kubectl apply -f custom-resources.yaml

Kubernetes takes a few minutes to download container images and start
containers, and then Calico will be running in our cluster and our nodes
should report a status of Ready:

root@host01:/etc/kubernetes/components# kubectl get nodes
NAME STATUS ROLES

host01 Ready control-plane,master ...

host02 Ready control-plane,master ...

host03 Ready control-plane,master ...

host04 Ready <none>

Calico works by installing a DaemonSet, a Kubernetes resource that tells
the cluster to run a specific container or set of containers on every node. The
Calico containers then provide network services for any containers running
on that node. However, that raises an important question. When we installed
Calico in our cluster, all of our nodes had a taint that told Kubernetes not to
schedule containers on them. How was Calico able to run its containers on all
the nodes? The answer is tolerations.

A toleration is a configuration setting applied to a resource that instructs
Kubernetes it can be scheduled on a node despite a taint possibly being
present. Calico specifies a toleration when it adds its DaemonSet to the
cluster, as we can see with kubectl:

root@host01:/etc/kubernetes/components# kubectl -n calico-system \
get daemonsets -0 json |\
jq '.items[].spec.template.spec.tolerations[]’
{
"key": "CriticalAddonsOnly",
"operator": "Exists"
}
{
"effect": "NoSchedule",
"operator": "Exists"
}
{

"effect": "NoExecute",



"operator": "Exists"

}

The -n option selects the calico-system Namespace. Namespaces are a way to
keep Kubernetes resources separate from one another on a cluster, for
security reasons as well as to avoid naming collisions. Also, as before, we
request JSON output and use jq to select only the field we’re interested in. If
you want to see the entire configuration for the resource, use -o=json without jq
Or use -o=yaml.

This DaemonSet has three tolerations, and the second one provides the
behavior we need. It tells the Kubernetes scheduler to go ahead and schedule
it even on nodes that have a NoSchedule taint. Calico then can get itself started
before the node is ready, and once it’s running, the node changes its status to
Ready SO that normal application containers can be scheduled. The control
plane components needed a similar toleration in order to run on nodes before
they show Ready.

Installing Storage

The cluster nodes are ready, so if we deployed a regular application, its
containers would run. However, applications that require persistent storage
would fail to start because the cluster doesn’t yet have a storage driver. Like
network drivers, several storage drivers are available for Kubernetes. The
Container Storage Interface (CSI) provides the standard that storage drivers
need to meet to work with Kubernetes. We’ll use Longhorn, a storage driver
from Rancher; it’s easy to install and doesn’t require any underlying
hardware like extra block devices or access to cloud-based storage.
Longhorn makes use of the iSCSI and NFS software we installed earlier.

It expects all of our nodes to have the iscsid service enabled and running, so
let’s make sure that’s true on all our nodes:

root@host01:/etc/kubernetes/components# k8s-all systemctl enable --now iscsid

We now can install Longhorn on the cluster. The process for installing
Longhorn looks a lot like Calico. Start by downloading the Longhorn YAML
configuration:

root@host01:/etc/kubernetes/components# curl -L.O $longhorn_url




The longhorn_url environment variable is also set by the k8s-ver script, which
allows us to ensure compatibility.

Install Longhorn using kubectl:

root@host01:/etc/kubernetes/components# kubectl apply -f longhorn.yaml

As before, kubectl apply ensures that the resources in the YAML file are
applied to the cluster, creating or updating them as necessary. The kubectl apply
command supports URLs as the source of the resource it applies to the
cluster, but for these three installs, we run a separate curl command because
it’s convenient to have a local copy of what was applied to the cluster.

Longhorn is now installed on the cluster, which we’ll verify as we explore
the cluster in the rest of this chapter.

Ingress Controller

We now have networking and storage, but the networking allows access to
containers only from within our cluster. We need another service that exposes
our containerized applications outside the cluster. The easiest way to do that
is to use an ingress controller. As we’ll describe in Chapter 9, an ingress
controller watches the Kubernetes cluster for Ingress resources and routes
network traffic.

We begin by downloading the ingress controller YAML configuration:

root@host01:/etc/kubernetes/components# curl -Lo ingress-controller.yaml
$ingress_url

As in our earlier example, the ingress_url environment variable is set by the
k8s-ver script so that we can ensure compatibility. In this case, the URL ends in
the generic path of deploy.yaml, so we use -o to provide a filename to curl to
make clear the purpose of the downloaded YAML file.

Install the ingress controller using kubectl:

root@host01:/etc/kubernetes/components# kubectl apply -f ingress-controller.yaml

This creates a lot of resources, but there are two main parts: an NGINX
web server that actually performs routing of HTTP traffic, and a component
that watches for changes in Ingress resources in the cluster and configures
NGINX accordingly.



There’s one more step we need. As installed, the ingress controller tries to
request an external IP address to allow traffic to reach it from outside the
cluster. Because we’re running a sample cluster with no access to external IP
addresses, this won’t work. Instead, we’ll be accessing our ingress controller
using port forwarding from our cluster hosts. At the moment, our ingress
controller is set up for this port forwarding, but it’s using a random port. We
would like to select the port to be sure that we know where to find the ingress
controller. At the same time, we’ll also add an annotation so that this ingress
controller will be the default for this cluster.

To apply the port changes, we’re going to provide our Kubernetes cluster
an with extra YAML configuration with just the changes we need. Here’s that
YAML:

ingress-patch.yaml

apiVersion: v1
kind: Service
metadata:
name: ingress-nginx-controller
namespace: ingress-nginx
spec:
ports:
- port: 80
nodePort: 80
- port: 443
nodePort: 443

This file specifies the name and Namespace of the Service to ensure that
Kubernetes knows where to apply these changes. It also specifies the port
configuration we’re updating, along with the nodePort, which is the port on our
cluster nodes that will be used for port forwarding. We’ll look at NodePort
service types and port forwarding in more detail in Chapter 9.

To patch the service, we use the kubectl patch command:

root@host01:/etc/kubernetes/components# kubectl patch -n ingress-nginx \
service/ingress-nginx-controller --patch-file ingress-patch.yaml
service/ingress-nginx-controller patched

To apply the annotation, use the kubectl annotate command:

root@host01:/etc/kubernetes/components# kubectl annotate -n ingress-nginx \
ingressclass/nginx ingressclass.kubernetes.io/is-default-class="true"



ingressclass.networking.k8s.io/nginx annotated

Kubernetes reports the change to each resource as we make it, so we know
that our changes have been applied.

Metrics Server

Our final add-on is a metrics server that collects utilization metrics from our
nodes, enabling the use of autoscaling. To do this, it needs to connect to the
kubelet instances in our cluster. For security, it needs to verify the HTTP/S
certificate when it connects to a kubelet. This is why we configured kubelet to
request a certificate signed by the controller manager rather than allowing the
kubelet to generate self-signed certificates.

During setup, kubelet created a certificate request on each node, but the
requests were not automatically approved. Let’s find these requests:

root@host01:/etc/kubernetes/components# kubectl get csr

NAME ... SIGNERNAME ... CONDITION
csr-sgrwz ... kubernetes.io/kubelet-serving ... Pending

csr-agwbb ... kubernetes.io/kube-apiserver-client-kubelet ... Approved,Issued
csr-2kwwk ... kubernetes.io/kubelet-serving ... Pending

csr-5496d ... kubernetes.io/kube-apiserver-client-kubelet ... Approved,Issued
csr-hmé6lj ... kubernetes.io/kube-apiserver-client-kubelet ... Approved,Issued

csr-jbfmx ... kubernetes.io/kubelet-serving ... Pending
csr-njjr7 ... kubernetes.io/kube-apiserver-client-kubelet ... Approved,Issued
csr-v7tcs ... kubernetes.io/kubelet-serving ... Pending
csr-vr27n ... kubernetes.io/kubelet-serving ... Pending

Each kubelet has a client certificate that it uses to authenticate to the API
server; these were automatically approved during bootstrap. The requests we
need to approve are for kubelet-serving certificates, which are used when clients
such as our metrics server connect to kubelet. As soon as the request is
approved, the controller manager signs the certificate. The kubelet then collects
the certificate and starts using it.

We can approve all of these requests at once by querying for the name of
all of the kubelet-serving requests and then passing those names to kubectl certificate
approve.

root@host01:/etc/kubernetes/components# kubectl certificate approve \$(kubectl
get csr --field-selector spec.signerName=kubernetes.io/kubelet-serving -0 name)
certificatesigningrequest.certificates.k8s.io/csr-sgrwz approved




We now can install our metrics server by downloading and applying its
YAML configuration:

root@host01:/etc/kubernetes/components# curl -Lo metrics-server.yaml \$metrics_url
root@host01:/etc/kubernetes/components# kubectl apply -f metrics-server.yaml

root@host01:/etc/kubernetes/components# cd
root@host01:~#

This component is the last one we need to install, so we can leave this
directory. With these cluster add-ons, we now have a complete, highly
available Kubernetes cluster.

Exploring a Cluster

Before deploying our first application onto this brand-new Kubernetes
cluster, let’s explore what’s running on it. The commands we use here will
come in handy later as we debug our own applications and a cluster that isn’t
working correctly.

We’ll use crictl, the same command we used to explore running containers
in Part I, to see what containers are running on hosto1:

root@host01:~# crictl ps

CONTAINER ... STATE NAME

25c63f29c1442 ... Running longhorn-csi-plugin
2ffdd044a81d8 ... Running node-driver-registrar
94468050de89c ... Running csi-provisioner
119fbf417f1db ... Running csi-attacher

e74cla2a0c422 ... Running kube-scheduler
d1ad93cdbc686 ... Running kube-controller-manager ...
76266a522cc3d ... Running engine-image-ei-611d1496 ...
fc3cd1679e33e ... Running replica-manager
48e792a973105 ... Running engine-manager
e658baebbc295 ... Running longhorn-manager
eb51d9ecOf2fc ... Running calico-kube-controllers
53e7e3e4a3148 ... Running calico-node

772ac45ceb94e ... Running calico-typha

4005370021f5f ... Running kube-proxy

26929cde3a264 ... Running kube-apiserver
9eadc2f5af794 ... Running etcd

The control plane node is very busy, as this list includes Kubernetes
control plane components, Calico components, and Longhorn components.



Running this command on all the nodes and sorting out what containers are
running where and for what purpose would be confusing. Fortunately, kubectl
provides a clearer picture, although knowing that we can get down to these
lower-level details and see exactly what containers are running on a given
node is nice.

To explore the cluster with kubectl, we need to know how the cluster
resources are organized into Namespaces. As mentioned previously,
Kubernetes Namespaces provide security and avoid name collisions. To
ensure idempotence, Kubernetes needs each resource to have a unique name.
By dividing resources into Namespaces, we allow multiple resources to have
the same name while still enabling the API server to know exactly which
resource we mean, which also supports multitenancy, one of our cross-cutting
concerns.

Even though we just set up the cluster, it’s already populated with several
Namespaces:

root@host01:~# kubectl get namespaces

NAME STATUS AGE
calico-system  Active 50m
default Active 150m

kube-node-lease Active 150m
kube-public ~ Active 150m
kube-system  Active 150m
longhorn-system Active 16m
tigera-operator Active 50m

As we run kubectl commands, they will apply to the default Namespace
unless we use the -n option to specify a different Namespace.

To see what containers are running, we ask kubectl to get the list of Pods.
We look at Kubernetes Pods in much more detail in Chapter 7. For now, just
know that a Pod is a group of one or more containers, much like the Pods that
we created with crictl in Part L.

If we try to list Pods in the default Namespace, we can see that there aren’t
any yet:

root@host01:~# kubectl get pods
No resources found in default namespace.

So far, as we installed cluster infrastructure components, they’ve been
created in other Namespaces. That way, when we configure normal user



accounts, we can prevent those users from viewing or editing the cluster
infrastructure. The Kubernetes infrastructure components were all installed
into the kube-system Namespace:

root@host01:~# kubectl -n kube-system get pods
NAME READY STATUS ..
coredns-558bd4d5db-7krwr 1/1  Running ...

kube-apiserver-host01 1/1  Running ...

We cover the control plane components in Chapter 11. For now, let’s
explore just one of the control plane Pods, the API server running on host01.
We can get all of the details for this Pod using kubectl describe:

root@host01:~# kubectl -n kube-system describe pod kube-apiserver-host01
Name: kube-apiserver-host01

Namespace: kube-system
Node: host01/192.168.61.11
Status: Running

Containers:

kube-apiserver:
Container ID: containerd://26929cde3a264e...

The Namespace and name together uniquely identify this Pod. We also
see the node on which the Pod is scheduled, its status, and details about the
actual containers, including a container ID that we can use with crictl to find
the container in the underlying containerd runtime.

Let’s also verify that Calico deployed into our cluster as expected:

root@host01:~# kubectl -n calico-system get pods

NAME READY STATUS
calico-kube-controllers-7f58dbcbbd-ch7zt 1/1  Running ...
calico-node-cp88k 1/1  Running ...
calico-node-dn4rj 1/1  Running ...
calico-node-xnkmg 1/1  Running ...
calico-node-zfscp 1/1  Running ...
calico-typha-68b99cd4bf-7lwss 1/1  Running ...
calico-typha-68b99cd4bf-jjdts 1/1  Running ...
calico-typha-68b99cd4bf-pjr6q 1/1  Running ...

Earlier we saw that Calico installed a DaemonSet resource. Kubernetes



has used the configuration in this DaemonSet to automatically create a calico-
node Pod for each node. Like Kubernetes itself, Calico also uses a separate
control plane to handle overall configuration of the network, and the other
Pods provide that control plane.

Finally, we’ll see the containers that are running for Longhorn:

root@host01:~# kubectl -n longhorn-system get pods

NAME READY STATUS RESTARTS AGE
engine-image-ei-611d1496-8q58f 1/1  Running 0 31m
longhorn-csi-plugin-8vkr6 2/2  Running 0 31m
longhorn-manager-d19sb 1/1  Running 1 32m

Like Calico, Longhorn uses DaemonSets so that it can run containers on
every node. These containers provide storage services to the other containers
on the node. Longhorn also includes a number of other containers that serve
as a control plane, including providing the CSI implementation that
Kubernetes uses to tell Longhorn to create storage when needed.

We put a lot of effort into setting up this cluster, so it would be a shame to
end this chapter without running at least one application on it. In the next
chapter, we will look at many different ways to run containers, but let’s
quickly run a simple NGINX web server in our Kubernetes cluster:

root@host01:~# kubectl run nginx --image=nginx
pod/nginx created

That may look like an imperative command, but under the hood, kubectl is
creating a Pod resource using the name and container image we specified,
and then it’s applying that resource on the cluster. Let’s inspect the default
Namespace again:

root@host01:~# kubectl get pods -0 wide
NAME READY STATUS ..IP NODE ...
nginx 1/1 Running ... 172.31.89.203 host02 ...

We used -o wide to see extra information about the Pod, including its IP
address and where it was scheduled, which can be different each time the Pod
is created. In this case, the Pod was scheduled to host02, showing that we were
successful in allowing regular application containers to be deployed to our



control plane nodes. The IP address comes from the Pod CIDR we
configured, and Calico automatically assigns it.

Calico also handles routing traffic so that we can reach the Pod from any
container in the cluster as well as from the host network. Let’s verify that,
starting with a regular ping:

root@host01:~# ping -c 1 172.31.89.203
PING 172.31.89.203 (172.31.89.203) 56(84) bytes of data.
64 bytes from 172.31.89.203: icmp_seq=1 ttI=63 time=0.848 ms

--- 172.31.89.203 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time Oms
rtt min/avg/max/mdev = 0.848/0.848/0.848/0.000 ms

Use your Pod’s IP address in the place of the one shown here.
We can also use curl to verify that the NGINX web server is working:

root@host01:~# curl http://172.31.89.203

<title>Welcome to nginx!</title>

The Kubernetes cluster is working and ready for us to deploy applications.
Kubernetes will take advantage of all of the nodes in the cluster to load
balance our applications and provide resiliency in the event of any failures.

Final Thoughts

In this chapter, we’ve explored how Kubernetes is architected with the
flexibility to allow cluster components to come and go at any time. This
applies not only to containerized applications but also to the cluster
components, including control plane microservices and the underlying
servers and networks the cluster uses. We were able to bootstrap a cluster and
then dynamically add nodes to it, configure those nodes to accept certain
types of containers, and then dynamically add networking and storage drivers
using the Kubernetes cluster itself to run and monitor them. Finally, we
deployed our first container to a Kubernetes cluster, allowing it to
automatically schedule the container onto an available node, using our
network driver to access the container from the host network.



Now that we have a highly available cluster, we can look at how to deploy
an application to Kubernetes. We’ll explore some key Kubernetes resources
that we need to create a scalable, reliable application. This process will
provide a foundation for exploring Kubernetes in detail, including
understanding what happens when our applications don’t run as expected and
how to debug issues with our application or the Kubernetes cluster.



7
DEPLOYING CONTAINERS TO KUBERNETES

We’re now ready to begin running containers on our working Kubernetes
cluster. Because Kubernetes has a declarative API, we’ll create various kinds
of resources to run them, and we’ll monitor the cluster to see what
Kubernetes does for each type of resource.

Different containers have different use cases. Some might require multiple
identical instances with autoscaling to perform well under load. Other
containers might exist solely to run a one-time command. Still others may
require a fixed ordering to enable selecting a single primary instance and
providing controlled failover to a secondary instance. Kubernetes provides
different controller resource types for each of those use cases. We’ll look at
each in turn, but we’ll begin with the most fundamental of them, the Pod,
which is utilized by all of those use cases.

Pods

A Pod is the most basic resource in Kubernetes and is how we run containers.
Each Pod can have one or more containers within it. The Pod is used to
provide the process isolation we saw in Chapter 2. Linux kernel namespaces
are used at the Pod and the container level:

mnt Mount points: each container has its own root filesystem; other mounts



are available to all containers in the Pod.

uts Unix time sharing: isolated at the Pod level.

ipc Interprocess communication: isolated at the Pod level.
pid Process identifiers: isolated at the container level.

net Network: isolated at the Pod level.

The biggest advantage of this approach is that multiple containers can act
like processes on the same virtual host, using the localhost address to
communicate, while still being based on separate container images.

Deploying a Pod

To get started, let’s create a Pod directly. Unlike the previous chapter, in
which we used kubectl run to have the Pod specification created for us, we’ll
specify it directly using YAML so that we have complete control over the
Pod and to prepare us for using controllers to create Pods, providing
scalability and failover.

NOTE

The example repository for this book is at https://github.com/book-of-
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

The automation script for this chapter does a full cluster install with three
nodes that run the control plane and regular applications, providing the
smallest possible highly available cluster for testing. The automation also
creates some YAML files for Kubernetes resources. Here’s a basic YAML
resource to create a Pod running NGINX:
nginx-pod.yaml

apiVersion: v1
kind: Pod
metadata:
name: nginx
spec:
containers:


https://github.com/book-of-kubernetes/examples

- name: nginx
image: nginx

Pods are part of the core Kubernetes API, so we just specify a version
number of v1 for the apiversion. Specifying Pod as the kind tells Kubernetes
exactly what resource we’re creating in the API group. We will see these
fields in all of our Kubernetes resources.

The metadata field has many uses. For the Pod, we just need to provide the
one required field of name. We don’t specify the namespace in the metadata, so
by default this Pod will end up in the default Namespace.

The remaining field, spec, tells Kubernetes everything it needs to know to
run this Pod. For now we are providing the minimal information, which is a
list of containers to run, but many other options are available. In this case, we
have only one container, so we provide just the name and container image
Kubernetes should use.

Let’s add this Pod to the cluster. The automation added files to /opt, so we
can do it from hosto1 as follows:

root@host01:~# kubectl apply -f /opt/nginx-pod.yaml
pod/nginx created

In Listing 7-1, we can check the Pod’s status.

root@host01:~# kubectl get pods -0 wide
NAME READY STATUS RESTARTS AGE 1IP NODE ...
nginx 1/1 Running 0 2m26s 172.31.25.202 host03 ...

Listing 7-1: Status of NGINX

It can take some time before the Pod shows Running, especially if you just
set up your Kubernetes cluster and it’s still busy deploying core components.
Keep trying this kubectt command to check the status.

Instead of typing the kubectl command multiple times, you can also use
watch. The watch command is a great way to observe changes in your cluster
over time. Just add watch in front of your command, and it will be run for you
every two seconds.

We added -o wide to the command to see the IP address and node
assignment for this Pod. Kubernetes manages that for us. In this case, the Pod
was scheduled on host03, so we need to go there to see the running container:




root@host03:~# crictl pods --name nginx
POD ID CREATED STATE NAME NAMESPACE ...
9f1d6e0207d7e 19 minutes ago Ready nginx default

Run this command on whatever host your NGINX Pod is on.
If we collect the Pod ID, we can see the container as well:

root@host03:~# POD_ID=$(crictl pods -q --name nginx)
root@host03:~# crictl ps --pod $POD_ID

CONTAINER IMAGE CREATED STATE NAME ...
9da09b3671418 4cdc5dd7eaadf 20 minutes ago Running nginx ...

This output looks very similar to the output from kubectl get in Listing 7-1,
which is not surprising given that our cluster gets that information from the
kubelet service running on this node, which in turn uses the same Container
Runtime Interface (CRI) API that crictl is also using to talk to the container
engine.

Pod Details and Logging

The ability to use crictl with the underlying container engine to explore a
container running in the cluster is valuable, but it does require us to connect
to the specific host running the container. Much of the time, we can avoid
that by using kubectl commands to inspect Pods from anywhere by connecting
to our cluster’s API server. Let’s move back to hosto1 and explore the NGINX
Pod further.

In Chapter 6, we saw how we could use kubectl describe to see the status and
event log for a cluster node. We can use the same command to see the status
and configuration details of other Kubernetes resources. Here’s the event log
for our NGINX Pod:

root@host01:~# kubectl describe pod nginx
Name: nginx
Namespace: @ default

Containers:
nginx:
Container ID: containerd://9da09b3671418...

@ Type Reason Age From Message

Normal Scheduled 22m default-scheduler Successfully assigned ...



Normal Pulling 22m kubelet Pulling image "nginx"

Normal Pulled 21m kubelet Successfully pulled image ...
Normal Created 21m kubelet Created container nginx
Normal Started 21m kubelet Started container nginx

We can use kubectl describe with many different Kubernetes resources, so we
first tell kubectl that we are interested in a Pod and provide the name. Because
we didn’t specify a Namespace, Kubernetes will look for this Pod in the default
Namespace @.

NOTE

We use the default Namespace for most of the examples in this book to save
typing, but it’s a good practice to use multiple Namespaces to keep
applications separate, both to avoid naming conflicts and to manage
access control. We look at Namespaces in more detail in Chapter 11.

The kubectl describe command output provides an event log @, which is the
first place to look for issues when we have problems starting a container.

Kubernetes takes a few steps when deploying a container. First, it needs to
schedule it onto a node, which requires that node to be available with
sufficient resources. Then, control passes to kubelet on that node, which has to
interact with the container engine to pull the image, create a container, and
start it.

After the container is started, kubelet collects the standard out and standard
error. We can view this output by using the kubectl logs command:

root@host01:~# kubectl logs nginx

2021/07/13 22:37:03 [notice] 1#1: start worker processes
2021/07/13 22:37:03 [notice] 1#1: start worker process 33
2021/07/13 22:37:03 [notice] 1#1: start worker process 34

The kubectl logs command always refers to a Pod because Pods are the basic
resource used to run containers, and our Pod has only one container, so we
can just specify the name of the Pod as a single parameter to kubectl logs. As
before, Kubernetes will look in the default Namespace because we didn’t
specify the Namespace.

The container output is available even if the container has exited, so the



kubectl logs command is the place to look if a container is pulled and started
successfully but then crashes. Of course, we have to hope that the container
printed a log message explaining why it crashed. In Chapter 10, we look at
what to do if we can’t get a container going and don’t have any log messages.

We’re done with the NGINX Pod, so let’s clean it up:

root@host01:~# kubectl delete -f /opt/nginx-pod.yaml
pod "nginx" deleted

We can use the same YAML configuration file to delete the Pod, which is
convenient when we have multiple Kubernetes resources defined in a single
file, as a single command will delete all of them. The kubectl command uses
the name of each resource defined in the file to perform the delete.

Deployments

To run a container, we need a Pod, but that doesn’t mean we generally want
to create the Pod directly. When we create a Pod directly, we don’t get all of
the scalability and failover that Kubernetes offers, because Kubernetes will
run only one instance of the Pod. This Pod will be allocated to a node only on
creation, with no re-allocation even if the node fails.

To get scalability and failover, we instead need to create a controller to
manage the Pod for us. We’ll look at multiple controllers that can run Pods,
but let’s start with the most common: the Deployment.

Creating a Deployment

A Deployment manages one or more identical Kubernetes Pods. When we
create a Deployment, we provide a Pod template. The Deployment then
creates Pods matching that template with the help of a ReplicaSet.

( )

DEPLOYMENTS AND REPLICASETS

Kubernetes has evolved its controller resources over time. The first type
of controller, the ReplicationController, provided only basic
functionality. It was replaced by the ReplicaSet, which has




improvements in how it identifies which Pods to manage.

Part of the reason to replace ReplicationControllers with ReplicaSets is
that ReplicationControllers were becoming more and more complicated,
making the code difficult to maintain. The new approach splits up
controller responsibility between ReplicaSets and Deployments.
ReplicaSets are responsible for basic Pod management, including
monitoring Pod status and performing failover. Deployments are
responsible for tracking changes to the Pod template caused by
configuration changes or container image updates. Deployments and
ReplicaSets work together, but the Deployment creates its own
ReplicaSet, so we usually need to interact only with Deployments. For
this reason, I use the term Deployment generically to refer to features
provided by the ReplicaSet, such as monitoring Pods to provide the
requested number of replicas.

Here’s the YAML file we’ll use to create an NGINX Deployment:
nginx-deploy.yaml

kind: Deployment
apiVersion: apps/vl
metadata:
@ name: nginx
spec:
replicas: 3
selector:
matchLabels:
app: nginx
template:
metadata:
@ labels:
app: nginx
© spec:
containers:
- name: nginx
image: nginx
O resources:
requests:
cpu: "100m"

Deployments are in the apps API group, so we specify apps/v1 for apiVversion.



Like every Kubernetes resource, we need to provide a unique name @ to
keep this Deployment separate from any others we might create.

The Deployment specification has a few important fields, so let’s look at
them in detail. The replicas field tells Kubernetes how many identical instances
of the Pod we want. Kubernetes will work to keep this many Pods running.
The next field, selector, is used to enable the Deployment to find its Pods. The
content of matchLabels must exactly match the content in the template. metadata.labels
field @, or Kubernetes will reject the Deployment.

Finally, the content of template.spec € will be used as the spec for any Pods
created by this Deployment. The fields here can include any configuration we
can provide for a Pod. This configuration matches nginx-pod.yaml that we
looked at earlier except that we add a CPU resource request @ so that we can
configure autoscaling later on.

Let’s create our Deployment from this YAML resource file:

root@host01:~# kubectl apply -f /opt/nginx-deploy.yaml
deployment.apps/nginx created

We can track the status of the Deployment with kubectl get:

root@host01:~# kubectl get deployment nginx
NAME READY UP-TO-DATE AVAILABLE AGE
nginx 3/3 3 3 4s

When the Deployment is fully up, it will report that it has three replicas
ready and available, which means that we now have three separate NGINX
Pods managed by this Deployment:

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE
nginx-6799fc88d8-6vn44 1/1 Running 0 18s
nginx-6799fc88d8-dcwx5 1/1 Running 0 18s
nginx-6799fc88d8-sh8qs 1/1 Running 0 18s

The name of each Pod begins with the name of the Deployment.
Kubernetes adds some random characters to build the name of the
ReplicaSet, followed by more random characters so that each Pod has a
unique name. We don’t need to create or manage the ReplicaSet directly, but
we can use kubectl get t0 see it:



root@host01:~# kubectl get replicasets
NAME DESIRED CURRENT READY AGE
nginx-6799fc88d8 3 3 3  30s

Although we generally interact only with Deployments, it is important to
know about the ReplicaSet, as some specific errors encountered when
creating Pods are only reported in the ReplicaSet event log.

The nginx prefix on the ReplicaSet and Pod names are purely for
convenience. The Deployment does not use names to match itself to Pods.
Instead, it uses its selector to match the labels on the Pod. We can see these
labels if we run kubectl describe on one of the three Pods:

root@host01:~# kubectl describe pod nginx-6799fc88d8-6vn44
Name: nginx-6799fc88d8-6vn44
Namespace: default

Labels: app=nginx

This matches the Deployment’s selector:

root@host01:~# kubectl describe deployment nginx

Name: nginx
Namespace: default
Selector: app=nginx

The Deployment queries the API server to identify Pods matching its
selector. Whereas the Deployment uses the programmatic API, the kubectl get
command in the following example generates a similar API server query,
giving us an opportunity to see how that works:

root@host01:~# kubectl get all -1 app=nginx

NAME READY STATUS RESTARTS AGE
nginx-6799fc88d8-6vn44 1/1 Running 0 69s
nginx-6799fc88d8-dcwx5 1/1 Running 0 69s
nginx-6799fc88d8-sh8qs 1/1 Running 0 69s

NAME DESIRED CURRENT READY AGE
replicaset.apps/nginx-6799fc88d8 3 3 3 69

Using kubectl get all in this case allows us to list multiple different kinds of



resources as long as they match the selector. As a result, we see not only the
three Pods but also the ReplicaSet that was created by the Deployment to
manage those Pods.

It may seem strange that the Deployment uses a selector rather than just
tracking the Pods it created. However, this design makes it easier for
Kubernetes to be self-healing. At any time, a Kubernetes node might go
offline, or we might have a network split, during which some control nodes
lose their connection to the cluster. If a node comes back online, or the
cluster needs to recombine after a network split, Kubernetes must be able to
look at the current state of all of the running Pods and figure out what
changes are required to achieve the desired state. This might mean that a
Deployment that started an additional Pod as the result of a node
disconnection would need to shut down a Pod when that node reconnects so
that the cluster can maintain the appropriate number of replicas. Using a
selector avoids the need for the Deployment to remember all the Pods it has
ever created, even Pods on failed nodes.

Monitoring and Scaling

Because the Deployment is monitoring its Pods to make sure we have the
correct number of replicas, we can delete a Pod, and it will be automatically
re-created:

root@host01:~# kubectl delete pod nginx-6799fc88d8-6vn44
pod "nginx-6799fc88d8-6vn44" deleted

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE
nginx-6799fc88d8-dcwx5 1/1 Running 0 3mb52s
nginx-6799fc88d8-dtddk 1/1 Running 0 O 14s
nginx-6799fc88d8-sh8qs 1/1 Running 0 3m52s

As soon as the old Pod is deleted, the Deployment created a new Pod @.
Similarly, if we change the number of replicas for the Deployment, Pods are
automatically updated. Let’s add another replica:

root@host01:~# kubectl scale --replicas=4 deployment nginx
deployment.apps/nginx scaled

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE
nginx-6799fc88d8-dcwx5 1/1 Running 0 8m22s
nginx-6799fc88d8-dtddk 1/1 Running 0 4m44s



nginx-6799fc88d8-kk7r6 1/1 Running 0 @ 5s
nginx-6799fc88d8-sh8qs 1/1 Running 0 8m22s

The first command sets the number of replicas to four. As a result,
Kubernetes needs to start a new identical Pod to meet the number we
requested €. We can scale the Deployment by updating the YAML file and
re-running kubectl apply, Or we can use the kubectl scale command to edit the
Deployment directly. Either way, this is a declarative approach; we are
updating the Deployment’s resource declaration; Kubernetes then updates the
actual state of the cluster to match.

Similarly, scaling the Deployment down causes Pods to be automatically
deleted:

root@host01:~# kubectl scale --replicas=2 deployment nginx
deployment.apps/nginx scaled

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE
nginx-6799fc88d8-dcwx5 1/1 Running 0 10m
nginx-6799fc88d8-sh8qs 1/1 Running 0 10m

When we scale down, Kubernetes selects two Pods to terminate. These
Pods take a moment to finish shutting down, at which point we have only two
NGINX Pods running.

Autoscaling

For an application that is receiving real requests from users, we would choose
the number of replicas necessary to provide a quality application, while
scaling down when possible to reduce the amount of resources used by our
application. Of course, the load on our application is constantly changing,
and it would be tedious to monitor each component of our application
continually to scale it independently. Instead, we can have the cluster perform
the monitoring and scaling for us using a HorizontalPodAutoscaler. The term
horizontal in this case just refers to the fact that the autoscaler can update the
number of replicas of the same Pod managed by a controller.

To configure autoscaling, we create a new resource with a reference to our
Deployment. The cluster then monitors resources used by the Pods and
reconfigures the Deployment as needed. We could add a
HorizontalPodAutoscaler to our Deployment using the kubectl autoscale
command, but using a YAML resource file so that we can keep the autoscale



configuration under version control is better. Here’s the YAML file:

nginx-scaler.yaml

© apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: nginx
labels:
app: nginx
spec:
@ scaleTargetRef:
apiVersion: apps/vl
kind: Deployment
name: nginx
© minReplicas: 1
maxReplicas: 10
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: @ 50

In the metadata field, we add the label app: nginx. This does not change the
behavior of the resource; its only purpose is to ensure that this resource
shows up if we use an app=nginx label selector in a kubectl get command. This
style of tagging the components of an application with consistent metadata is
a good practice to help others understand what resources go together and to
make debugging easier.

This YAML configuration uses version 2 of the autoscaler configuration
@. Providing new versions of API resource groups is how Kubernetes
accommodates future capability without losing any of its backward
compatibility. Generally, alpha and beta versions are released for new
resource groups before the final configuration is released, and there is at least
one version of overlap between the beta version and the final release to
enable seamless upgrades.

Version 2 of the autoscaler supports multiple resources. Each resource is
used to calculate a vote on the desired number of Pods, and the largest
number wins. Adding support for multiple resources requires a change in the
YAML layout, which is a common reason for the Kubernetes maintainers to



create a new resource version.

We specify our NGINX Deployment @ as the target for the autoscaler
using its API resource group, kind, and name, which is enough to uniquely
identify any resource in a Kubernetes cluster. We then tell the autoscaler to
monitor the CPU utilization of the Pods that belong to the Deployment @.
The autoscaler will work to keep average CPU utilization by the Pods close
to 50 percent over the long run, scaling up or down as necessary. However,
the number of replicas will never go beyond the range we specify ©.

Let’s create our autoscaler using this configuration:

root@host01:~# kubectl apply -f /opt/nginx-scaler.yaml
horizontalpodautoscaler.autoscaling/nginx created

We can query the cluster to see that it was created:

root@host01:~# kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
nginx Deployment/nginx 0%/50% 1 10 3 96s

The output shows the autoscaler’s target reference, the current and desired
resource utilization, and the maximum, minimum, and current number of
replicas.

We use hpa as an abbreviation for horizontalpodautoscaler. Kubernetes allows us
to use either singular or plural names and provides abbreviations for most of
its resources to save typing. For example, we can type deploy for deployment and
even po for pods. Every extra keystroke counts!

The autoscaler uses CPU utilization data that the kubelet is already
collecting from the container engine. This data is centralized by the metrics
server we installed as a cluster add-on. Without that cluster add-on, there
would be no utilization data, and the autoscaler would not make any changes
to the Deployment. In this case, because we’re not really using our NGINX
server instances, they aren’t consuming any CPU, and the Deployment is
scaled down to a single Pod, the minimum we specified:

root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-6799fc88d8-dcwx5 1/1 Running 0 15m

The autoscaler has calculated that only one Pod is needed and has scaled



the Deployment to match. The Deployment then selected a Pod to terminate
to reach the desired scale.

For accuracy, the autoscaler will not use CPU data from the Pod if it
recently started running, and it has logic to prevent it from scaling up or
down too often, so if you ran through these examples very quickly you might
need to wait a few minutes before you see it scale.

We explore Kubernetes resource utilization metrics in more detail when
we look at limiting resource usage in Chapter 14.

Other Controllers

Deployments are the most generic and commonly used controller, but
Kubernetes has some other useful options. In this section, we explore Jobs
and CronJobs, StatefulSets, and DaemonSets.

Jobs and CronJobs

Deployments are great for application components because we usually want
one or more instances to stay running indefinitely. However, for cases for
which we need to run a command, either once or on a schedule, we can use a
Job. The primary difference is a Deployment ensures that any container that
stops running is restarted, whereas a Job can check the exit code of the main
process and restart only if the exit code is non-zero, indicating failure.

A Job definition looks very similar to a Deployment:
sleep-job.yaml

apiVersion: batch/v1
kind: Job
metadata:
name: sleep
spec:
template:
spec:

containers:

- name: sleep
image: busybox
command:

- "/bin/sleep"
-"30"



restartPolicy: OnFailure

The restartPolicy can be set to OnFailure, in which case the container will be
restarted for a non-zero exit code, or to Never, in which case the Job will be
completed when the container exits regardless of the exit code.

We can create and view the Job and the Pod it has created:

root@host01:~# kubectl apply -f /opt/sleep-job.yaml
job.batch/sleep created

root@host01:~# kubectl get job

NAME COMPLETIONS DURATION AGE

sleep 0/1 3s 3s

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE
sleep-fgcnz 1/1  Running 0 10s

The Job has created a Pod per the specification provided in the YAML
file. The Job reflects 0/1 completions because it is waiting for its Pod to exit
successfully.

When the Pod has been running for 30 seconds, it exits with a code of
zero, indicating success, and the Job and Pod status are updated accordingly:

root@host01:~# kubectl get jobs
NAME COMPLETIONS DURATION AGE

sleep 1/1 31s 40s

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE
nginx-65db7cf9c9-2weng 1/1  Running 0 31m
sleep-fgcnz 0/1 Completed 0 43s

The Pod is still available, which means that we could review its logs if
desired, but it shows a status of Completed, S0 Kubernetes will not try to restart
the exited container.

A CronJob is a controller that creates Jobs on a schedule. For example, we
could set up our sleep Job to run once per day:

sleep-cronjob.yaml

apiVersion: batch/vl
kind: CronJob
metadata:

name: sleep



spec:
@ schedule: "0 3 * * *"
@ jobTemplate:
spec:
template:
spec:
containers:
- name: sleep
image: busybox
command:
- "/bin/sleep"
-"30"
restartPolicy: OnFailure

The entire contents of the Job specification are embedded inside the
jobTemplate field @. To this, we add a schedule @ that follows the standard
format for the Unix cron command. In this case, 03 * * * indicates that a Job
should be created at 3:00 AM every day.

One of Kubernetes’ design principles is that anything could go down at
any time. For a CronJob, if the cluster has an issue during the time the Job
would be scheduled, the Job might not be scheduled, or it might be scheduled
twice, this means that you should take care to write Jobs in an idempotent
way so that they can handle missing or duplicated scheduling.

If we create this CronJob

root@host01:~# kubectl apply -f /opt/sleep-cronjob.yaml
cronjob.batch/sleep created

it now exists in the cluster, but it does not immediately create a Job or a Pod:

root@host01:~# kubectl get jobs
NAME COMPLETIONS DURATION AGE

sleep 1/1 31s 2m32s

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE
nginx-65db7cf9c9-2weng 1/1  Running 0 33m
sleep-fgcnz 0/1 Completed 0 2m23s

Instead, the CronJob will create a new Job each time its schedule is
triggered.

StatefulSets

So far, we’ve been looking at controllers that create identical Pods. With both



Deployments and Jobs, we don’t really care which Pod is which, or where it
is deployed, as long as we run enough instances at the right time. However,
that doesn’t always match the behavior we want. For example, even though a
Deployment can create Pods with persistent storage, the storage must either
be brand new for each new Pod, or the same storage must be shared across all
Pods. That doesn’t align well with a “primary and secondary” architecture
such as a database. For those cases, we want specific storage to be attached to
specific Pods.

At the same time, because Pods can come and go due to hardware failures
or upgrades, we need a way to manage the replacement of a Pod so that each
Pod is attached to the right storage. This is the purpose of a StatefulSet. A
StatefulSet identifies each Pod with a number, starting at zero, and each Pod
receives matching persistent storage. When a Pod must be replaced, the new
Pod is assigned the same numeric identifier and is attached to the same
storage. Pods can look at their hostname to determine their identifier, so a
StatefulSet is useful both for cases with a fixed primary instance as well as
cases for which a primary instance is dynamically chosen.

We’ll explore a lot more details related to Kubernetes StatefulSets in the
next several chapters, including persistent storage and Services. For this
chapter, we’ll look at a basic example of a StatefulSet and then build on it as
we introduce other important concepts.

For this simple example, let’s create two Pods and show how they each
get unique storage that stays in place even if the Pod is replaced. We’ll use
this YAML resource:

sleep-set.yaml

apiVersion: apps/vl

kind: StatefulSet

metadata:
name: sleep

spec:

@ serviceName: sleep
replicas: 2
selector:

matchLabels:
app: sleep
template:
metadata:
labels:
app: sleep



spec:
containers:
- name: sleep
image: busybox
command:
- "/bin/sleep"
- "3600"
@ volumeMounts:
- name: sleep-volume
mountPath: /storagedir
© volumeClaimTemplates:
- metadata:
name: sleep-volume
spec:
storageClassName: longhorn
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 10Mi

There are a few important differences here compared to a Deployment or
a Job. First, we must declare a serviceName to tie this StatefulSet to a
Kubernetes Service @. This connection is used to create a Domain Name
Service (DNS) entry for each Pod. We must also provide a template for the
StatefulSet to use to request persistent storage € and then tell Kubernetes
where to mount that storage in our container @.

The actual sleep-set.yaml file that the automation scripts install includes
the sleep Service definition. We cover Services in detail in Chapter 9.

Let’s create the sleep StatefulSet:

root@host01:~# kubectl apply -f /opt/sleep-set.yaml

The StatefulSet creates two Pods:

root@host01:~# kubectl get statefulsets

NAME READY AGE

sleep 2/2 1ml4s

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

sleep-0 1/1 Running 0 57s
sleep-1 1/1 Running 0 32s

The persistent storage for each Pod is brand new, so it starts empty. Let’s



create some content. The easiest way to do that is from within the container
itself, using kubectl exec, which allows us to run commands inside a container,
similar to crictl. The kubectl exec command works no matter what host the
container is on, even if we’re connecting to our Kubernetes API server from
outside the cluster.

Let’s write each container’s hostname to a file and print it out so that we
can verify it worked:

root@host01:~# kubectl exec sleep-0 -- /bin/sh -c \

'hostname > /storagedir/myhost’
root@host01:~# kubectl exec sleep-0 -- /bin/cat /storagedir/myhost
sleep-0
root@host01:~# kubectl exec sleep-1 -- /bin/sh -c \

'hostname > /storagedir/myhost’
root@host01:~# kubectl exec sleep-1 -- /bin/cat /storagedir/myhost
sleep-1

Each of our Pods now has unique content in its persistent storage. Let’s
delete one of the Pods and verify that its replacement inherits its
predecessor’s storage:

root@host01:~# kubectl delete pod sleep-0

pod "sleep-0" deleted

root@host01:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

sleep-0 1/1 Running 0 28s

sleep-1 1/1 Running 0 8m18s

root@host01:~# kubectl exec sleep-0 -- /bin/cat /storagedir/myhost
sleep-0

After deleting sleep-0, we see a new Pod created with the same name, which
is different from the Deployment for which a random name was generated for
every new Pod. Additionally, for this new Pod, the file we created previously
is still present because the StatefulSet attached the same persistent storage to
the new Pod it created when the old one was deleted.

Daemon Sets

The DaemonSet controller is like a StatefulSet in that the DaemonSet also
runs a specific number of Pods, each with a unique identity. However, the
DaemonSet runs exactly one Pod per node, which is useful primarily for



control plane and add-on components for a cluster, such as a network or
storage plug-in.

Our cluster already has multiple DaemonSets installed, so let’s look at the
calico-node DaemonSet that’s already running, which runs on each node to
provide network configuration for all containers on that node.

The calico-node DaemonSet is in the calico-system Namespace, so we’ll specify
that Namespace to request information about the DaemonSet:

root@host01:~# kubectl -n calico-system get daemonsets
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE ..
calico-node 3 3 3 3 3

Our cluster has three nodes, so the calico-node DaemonSet has created three
instances. Here’s the configuration of this DaemonSet in YAML format:

root@host01:~# kubectl -n calico-system get daemonset calico-node -o yaml
apiVersion: apps/vl

kind: DaemonSet

metadata:

name: calico-node
namespace: calico-system
spec:

selector:
matchLabels:
k8s-app: calico-node

The -0 yaml parameter to kubectl get prints out the configuration and status of
one or more resources in YAML format, allowing us to inspect Kubernetes
resources in detail.

The selector for this DaemonSet expects a label called k8s-app to be set to
calico-node. We can use this to show just the Pods that this DaemonSet creates:

root@host01:~# kubectl -n calico-system get pods \
-1 k8s-app=calico-node -0 wide

NAME READY STATUS .. NODE

calico-node-h9kjh 1/1  Running ... hostO1 ...

calico-node-rcfk7 1/1  Running ... host03 ...

calico-node-wj876 1/1  Running ... host02 ...




The DaemonSet has created three Pods, each of which is assigned to one
of the nodes in our cluster. If we add additional nodes to our cluster, the
DaemonSet will schedule a Pod on the new nodes as well.

Final Thoughts

This chapter explored Kubernetes from the perspective of a regular cluster
user, creating controllers that in turn create Pods with containers. Having this
core knowledge of controller resource types is essential for building our
applications. At the same time, it’s important to remember that Kubernetes is
using the container technology we explored in Part I.

One key aspect of container technology is the ability to isolate containers
in separate network namespaces. Running containers in a Kubernetes cluster
adds additional requirements for networking because we now need to connect
containers running on different cluster nodes. In the next chapter, we consider
multiple approaches to make this work as we look at overlay networks.



8
OVERLAY NETWORKS

Container networking is complex enough when all of the containers are on a
single host, as we saw in Chapter 4. When we scale up to a cluster of nodes,
all of which run containers, the complexity increases substantially. Not only
must we provide each container with its own virtual network devices and
manage [P addresses, dynamically creating new network namespaces and
devices when containers are created, but we also need to ensure that
containers on one node can communicate with containers on all the other
nodes.

In this chapter, we’ll describe how overlay networks are used to provide
the appearance of a single container network across all nodes in a Kubernetes
cluster. We’ll consider two different approaches for routing container traffic
across a host network, examining the network configuration and traffic flows
for each. Finally, we’ll explore how Kubernetes uses the Container Network
Interface (CNI) standard to configure networking as a separate plug-in,
making it easy to shift to new technology as it becomes available and
allowing for custom solutions where needed.

Cluster Networking

The fundamental goal of a Kubernetes cluster is to treat a set of hosts
(physical or virtual machines) as a single computing resource that can be



allocated as needed to run containers. From a networking standpoint, this
means Kubernetes should be able to schedule a Pod onto any node without
worrying about connectivity to Pods on other nodes. It also means that
Kubernetes should have a way to dynamically allocate IP addresses to Pods
in a way that supports that cluster-wide network connectivity.

As we’ll see in this chapter, Kubernetes uses a plug-in design to allow any
compatible network software to allocate IP addresses and provide cross-node
network connectivity. All plug-ins must follow a couple of important rules.
First, Pod IP addresses should come from a single pool of IP addresses,
although this pool can be subdivided by node. This means that we can treat
all Pods as part of a single flat network, no matter where the Pods run.
Second, traffic should be routable such that all Pods can see all other Pods
and the control plane.

CNI Plug-ins

Plug-ins communicate with the Kubernetes cluster, specifically with kubelet,
using the CNI standard. CNI specifies how kubelet finds and invokes CNI
plug-ins. When a new Pod is created, kubelet first allocates the network
namespace. It then invokes the CNI plug-in, providing it a reference to the
network namespace. The CNI plug-in adds network devices to the
namespace, assigns an IP address, and passes that IP address back to kubelet.

Let’s see that process in action. To do so, our examples for this chapter
include two different environments with two different CNI plug-ins: Calico
and WeaveNet. Both of these plug-ins provide networking for Pods but with
different cross-node networking. We’ll begin with the Calico environment.

NOTE

The example repository for this book is at https://github.com/book-of-
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

By default, CNI plug-in information is kept in /etc/cni/net.d. We can see
the Calico configuration in that directory:

root@host01:~# Is /etc/cni/net.d
10-calico.conflist calico-kubeconfig



https://github.com/book-of-kubernetes/examples

The file 10-calico.conflist contains the actual Calico configuration. The
file calico-kubeconfig is used by Calico components to authenticate with the
control plane; it was created based on a service account created during Calico
installation. The configuration filename has the 10- prefix because kubelet sorts
any configuration files it finds and uses the first one.

Listing 8-1 shows the configuration file, which is in JSON format and
identifies the network plug-ins to use.

root@host01:~# cat /etc/cni/net.d/10-calico.conflist
{

"name": "k8s-pod-network",

"cniVersion": "0.3.1",

"plugins": [
{
"type": "calico",
1
{

"type": "bandwidth",
"capabilities": {"bandwidth": true}
b
{"type": "portmap", "snat": true, "capabilities": {"portMappings": true} }
1

}

Listing 8-1: Calico configuration

The most important field is type; it specifies which plug-in to run. In this
case, we’re running three plug-ins: calico, which handles Pod networking;
bandwidth, which we can use to configure network limits; and portmap, which is
used to expose container ports to the host network. These two plug-ins inform
kubelet Of their purposes using the capabilities field; as a result, when kubelet
invokes them, it passes in the relevant bandwidth and port mapping
configuration so that the plug-in can make the necessary network
configuration changes.

To run these plug-ins, kubelet needs to know where they are located. The
default location for the actual plug-in executables is /opt/cni/bin, and the
name of the plug-in matches the type field:

root@host01:~# Is /opt/cni/bin

bandwidth calico-ipam flannel install macvlan sbr vlan
bridge dhcp host-device ipvlan portmap static
calico firewall host-local loopback ptp  tuning




Here, we see a common set of network plug-ins that were installed by
kubeadm along with our Kubernetes cluster. We also see calico, which was

added to this directory by the Calico DaemonSet we installed after cluster
initialization.

Pod Networking

Let’s look at an example Pod to get a glimpse of how the CNI plug-ins
configure the Pod’s network namespace. The behavior is very similar to the
work we did in Chapter 4, adding virtual network devices into network

namespaces to enable communication between containers and with the host
network.

Let’s create a basic Pod:
pod.yaml

apiVersion: vl
kind: Pod
metadata:

name: pod

spec:

containers:

- name: pod
image: busybox
command:

- "sleep"
- "infinity"
nodeName: host01

We’ve added the extra field nodeName to force this Pod to run on host01,
which will make it easier to find and examine how its networking is
configured.

We start the Pod via the usual command:

root@host01:~# kubectl apply -f /opt/pod.yaml
pod/pod created

Next, check to see that it’s running:

root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
pod 1/1 Running 0 2m32s




After it’s running, we can use crictl to capture its unique ID:

root@host01:~# POD_ID=$(crictl pods --name pod -q)
root@host01:~# echo $POD_ID
b7d2391320e07f97add7ccad2ad1a664393348f1dcb6f803f701318999ed0295

At this point, using the Pod ID, we can find its network namespace. In
Listing 8-2, we use jq to extract only the data we want, just as we did in
Chapter 4. We’ll then assign it to a variable.

root@host01:~# NETNS_PATH=$(crictl inspectp $POD_ID |

jq -r ".info.runtimeSpec.linux.namespaces|]|select(.type=="network").path')
root@host01:~# echo SNETNS_PATH
/var/run/netns/cni-7cffed61-fb56-9be1-0548-4813d4a8f996
root@host01:~# NETNS=$(basename $NETNS_PATH)
root@host01:~# echo SNETNS
cni-7cffed61-fb56-9be1-0548-4813d4a8f996

Listing 8-2: Network namespace

We now can explore the network namespace to see how Calico set up the
IP address and network routing for this Pod. First, as expected, this network
namespace is being used for our Pod:

root@host01:~# ps $(ip netns pids SNETNS)
PIDTTY STAT TIME COMMAND
35574 ? Ss  0:00 /pause
35638 ? Ss  0:00 sleep infinity

We see the two processes that we should expect. The first is a pause
container that is always created whenever we create a Pod. This is a
permanent container to hold the network namespace. The second is our
BusyBox container running sleep, as we configured in the Pod YAML file.

Now, let’s see the configured network interfaces:

root@host03:~# ip netns exec $NETNS ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN ...
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_Ift forever preferred_lft forever
3: @ eth0@if16: <BROADCAST MULTICAST,UP,LOWER_UP> mtu 1450 ... state UP ...
link/ether 7a:9e:6c:e2:30:47 brd ff:ff.ff:ff:ff:ff link-netnsid 0
inet @ 172.31.239.205/32 brd 172.31.25.202 scope global eth0



valid_Ift forever preferred_lft forever
inet6 fe80::789e:6cff:fee2:3047/64 scope link
valid_lft forever preferred_lft forever

Calico has created the network device etho@if16 in the network namespace
@ and given it an IP address of 172.31.239.205 @. Note that the network length
for that IP address is /32, which indicates that any traffic must go through a
configured router. This is different from how our bridged container
networking worked in Chapter 4. It is necessary so that Calico can provide
firewall capabilities via network policies.

The choice of IP address for this Pod was ultimately up to Calico. Calico
is configured with 172.31.0.0/16 for use as the IP address space for Pods. Calico
decides how to divide this address space up between nodes and then allocates
IP addresses to each Pod from the range allocated to the node. Calico then
passes this IP address back to kubelet so that it can update the Pod’s status:

root@host01:~# kubectl get pods -0 wide
NAME READY STATUS RESTARTS AGE IP NODE
pod 1/1 Running 0 16m 172.31.239.205 host01 ...

When Calico created the network interface in the Pod, it created it as part
of a virtual Ethernet (veth) pair. The veth pair acts as a virtual network wire
that creates a connection to a network interface in the root namespace,
allowing connections outside the Pod. Listing 8-3 lets us have a look at both
halves of the veth pair.

root@host01:~# ip netns exec SNETNS ip link

3: eth0@if13: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 gdisc noqueue ...
link/ether 6e:4c:3a:41:d0:54 brd ff:ff.ff:ff:ff:ff link-netnsid 0

root@host01:~# ip link | grep -B 1 SNETNS

13: cali9381c30abed@if3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 ...
link/ether ee:ee:ee:ee:ee:ee ... link-netns cni-7cffed61-fb56-9bel1-0548-4813d4a8f996

Listing 8-3: Calico veth pair

The first command prints the network interfaces inside the namespace,
whereas the second prints the interfaces on the host. Each contains the field
link-netns pointing to the corresponding network namespace of the other
interface, showing that these two interfaces create a link between our Pod’s
namespace and the root namespace.



Cross-Node Networking

So far, the configuration of the virtual network devices in the container looks
very similar to the container networking in Chapter 4, where there was no
Kubernetes cluster installed. The difference in this case is that the network
plug-in is configured not just to connect containers on a single node, but to
connect containers running anywhere in the cluster.

( )

WHY NOT NAT?

Regular container networking does, of course, provide connectivity to
the host network. However, as we’ve discussed, it accomplishes this
using Network Address Translation (NAT). This is fine for containers
running individual client applications, as connection tracking enables
Linux to route server responses all the way into the originating
container. It does not work for containers that need to act as servers,
which is a key use case for a Kubernetes cluster.

For most private networks that use NAT to connect to a broader
network, port forwarding is used to expose specific services from within
the private network. That isn’t a good solution for every container in
every Pod, as we would quickly run out of ports to allocate. The
network plug-ins do end up using NAT, but only to connect containers
acting as clients to make connections to networks outside the cluster. In
addition, we will see port forwarding behavior in Chapter 9, where it
will be one possible way to expose Services outside the cluster.

The challenge in cross-node networking is that the Pod network has a
different range of IP addresses from the host network, so the host network
does not know how to route this traffic. There are a couple of different ways
that network plug-ins work around this. We’ll begin by continuing with our
cluster running Calico. Then, we’ll show a different cross-node networking
technology using WeaveNet.

Calico Networking



Calico performs cross-node networking using Layer 3 routing. This means
that it routes based on IP addresses, configuring IP routing tables on each
host and in the Pod to ensure that traffic is sent to the correct host and then to
the correct Pod. Thus, at the host level, we see the Pod IP addresses as the
source and destination. Because Calico relies on the built-in routing
capabilities of Linux, we don’t need to configure our host network switch to
route the traffic, but we do need to configure any security controls on the host
network switch to allow Pod IP addresses to travel across the network.

To explore Calico cross-node networking, it helps to have two Pods: one
on host01 and the other on host02. We’ll use this resource file:

two-pods.yaml

apiVersion: vl
kind: Pod
metadata:

name: pod1

spec:

containers:

- name: pod1
image: busybox
command:

- "sleep"
- "infinity"
nodeName: host01
apiVersion: vl
kind: Pod
metadata:

name: pod?2

spec:

containers:

- name: pod2
image: busybox
command:

- "sleep”
- "infinity"
nodeName: host02

As always, these files have been loaded into the /opt directory by the
automated scripts for this chapter.

The --- separator allows us to put two different Kubernetes resources in the
same file so that we can manage them together. The only difference in
configuration with these two Pods is that they each have a nodeName field to



ensure that they are assigned to the correct node.
Let’s delete our existing Pod and replace it with the two that we need:

root@host01:~# kubectl delete -f /opt/pod.yaml

pod "pod" deleted

root@host01:~# kubectl apply -f /opt/two-pods.yaml
pod/pod1 created

pod/pod?2 created

After these Pods are running, we’ll need to collect their IP addresses:

root@host01:~# IP1=$(kubectl get po pod1 -o json | jq -r '.status.podIP')
root@host01:~# IP2=$(kubectl get po pod2 -o json | jq -r '.status.podIP')
root@host01:~# echo $IP1

172.31.239.216

root@host01:~# echo $IP2

172.31.89.197

We’re able to extract the Pod IP using a simple jq filter because our kubectl
get command is guaranteed to return only one item. If we were running kubectl
get without a filter, or with a filter that might match multiple Pods, the JSON
output would be a list and we would need to change the jq filter accordingly.

Let’s quickly verify that we have connectivity between these two Pods:

root@host01:~# kubectl exec -ti pod1 -- ping -c 3 $IP2
PING 172.31.89.197 (172.31.89.197): 56 data bytes

64 bytes from 172.31.89.197: seq=0 ttI=62 time=2.867 ms
64 bytes from 172.31.89.197: seq=1 ttl=62 time=0.916 ms
64 bytes from 172.31.89.197: seq=2 ttI=62 time=1.463 ms

--- 172.31.89.197 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.916/1.748/2.867 ms

The ping command shows that all three packets arrived successfully, so we
know the Pods can communicate across nodes.

As in our earlier example, each of these Pods has a network interface with
a network length of /32, meaning that all traffic must go through a router. For
example, here is the IP configuration and route table for podi:

root@host01:~# kubectl exec -ti pod1 -- ip addr

3: ethO@if17: <KBROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1450 qdisc noqueue
link/ether £2:ed:e8:04:00:cc brd ff:ff:ff:ff:ff: ff



inet 172.31.239.216/32 brd 172.31.239.216 scope global ethO

root@host01:~# kubectl exec -ti pod1 -- ip route
default via 169.254.1.1 dev eth0
169.254.1.1 dev ethO scope link

Based on this configuration, when we run our ping command, the
networking stack recognizes that the destination IP is not local to any
interface. It therefore looks up 169.254.1.1 in its Address Resolution Protocol
(ARP) table to determine where to send the “next hop.” If we try to find an
interface ei