
Welcome to 100 Days Of Kubernetes!
100 Days of Kubernetes is the challenge in which we aim to learn something new related to
Kubernetes each day across 100 Days!!!

You Can Learn Anything

A lot of times it is just about finding the right resources and the right learning path.

What can you find in this book

This book provides a list of resources from across the cloud native space to learn about and
master Kubernetes. Whether you are just getting started with Kubernetes or you are already
using Kubernetes, I am sure that you will find a way to use the resources or contribute :)

Just a note of caution

The notes in this book depend on the community to improve and become accurate.
Everything detailed so far is someone's personal understanding at each point in time learning
about the respective topics.

Help us improve the notes.

100 Days Of Kubernetes

So what is this challenge all about? The idea (and credit) goes to two existing communities :

1. 100DaysOfCode
2. 100DaysOfCloud

The idea is that you publicly commit to learning something new. This way, the community can
support and motivate you. Every day that you are doing the challenge, just post a tweet

highlighting what you learned with the #100DaysOfKubernetes hashtag.

Additionally creating your own content based on what you are learning can be highly valuable

https://www.100daysofcode.com/
https://www.100daysofcloud.com/

Additionally, creating your own content based on what you are learning can be highly valuable
to the community. For example, once you wrote a blog post on Kubernetes ReplicaSets or
similar, you could add it to this book.

The goal is to make this a community-driven project.

Where to get started

Fork the example repository
We suggest you to fork the journey repository. Every day that
you work on the challenge, you can make changes to the repository to detail what you have
been up to.
The progress will then be tracked on your GitHub.

Tweet about your progress
Share your learnings and progress with the
#100DaysOfKubernetes on Twitter.

Join the community
We have a channel in this Discord channel -- come say hi, ask questions,
and contribute!

Contribute

You can find more information on contributions in the README of this GitHub repository.

Structure of the book

The book is divided into several higher-level topics. Each topic has several sub-topics that are
individual pages or chapters.

Thos chapters have a similar structure:

Title

The title of the page

100Days Resources

This section highlights a list of community resources specific to the topics that is introduced.
Additionally, this is where you can include your own content, videos and blog articles, from
your 100DaysOfKubernetes challenge.

Learning Resources

A list of related learning resources Different to '100Days Resources' these do not have to be

https://twitter.com/search?q=%23100DaysOfKubernetes&src=typed_query&f=live
https://discord.gg/bs2sy3Ppm7
https://github.com/100daysofkubernetes/100DaysOfKubernetes

A list of related learning resources. Different to 100Days Resources , these do not have to be
specific to 100DaysOfKubernetes.

Example Notes

This section provides an introduction to the topics. The goal is to advance each topics over
time. When you are first time learning about a topic, it is usually best to take your own notes
but sometimes having a starting point and examples is helpful.

List of Example Notes by the Community

Anais Urlichs' public Notion
Rishab Kumar's GitHub repository

About the contributors
If you have contributed to this book, please add yourself to the list :)

Anais Urlichs

GitHub
YouTube
Twitter
DevOps

What is Kubernetes and why do we want it?

100Days Resources
Video by Anais Urlichs
Add your blog posts, videos etc. related to the topic here!

Learning Resources
What is Kubernetes
Kubernetes architecture explained

Container Orchestration Explained

https://devops.anaisurl.com/kubernetes
https://github.com/rishabkumar7/LearningKubernetes
https://github.com/AnaisUrlichs
https://www.youtube.com/c/AnaisUrlichs
https://twitter.com/urlichsanais
https://devops.anaisurl.com/
https://youtu.be/fCpv7xSEyEI
https://youtu.be/VnvRFRk_51k
https://youtu.be/umXEmn3cMWY
https://youtu.be/kBF6Bvth0zw

Example Notes
Kubernetes builds on Borg and the lessons learned by Google for operating Borg for over 15
years.

Borg was used by Google internally to manage its systems.

For more information here is the full paper https://research.google/pubs/pub43438/

What is Kubernetes?

Kubernetes is an open-source container Orchestration Framework.

At its root, it manages containers — to manage applications that are made of of containers-
physical machines, virtual machines, hybrid environments

According to the kubernetes.io website, Kubernetes is:

"an open-source system for automating deployment, scaling, and management of containerized
applications".

What problems does it solve

Following the trend from Monolithic to Microservices — traditionally, an application
would be a Monolithic application — which requires the hardware to scale with the
application. In comparison, Kubernetes deploys a large number of small web servers.
Containers are the perfect host for small self-contained applications
Applications comprised of 100s of containers — managing those with scripts can be
really difficult and even impossible
Kubernetes helps us with the following: connecting containers across multiple hosts,
scaling them, deploying applications without downtime, and service discovery among
several other aspects

The benefits of splitting up your application from Monolithic into Microservices is that they
are easier to maintain. For instance:

Instead of a large Apache web server with many httpd daemons responding to page requests,
there would be many nginx servers, each responding.

Additionally, it allows us to separate matters of concerns within our application i.e. decoupling
the architecture based on responsibilies.

Additionally, Kubernetes is an essential part of

Continuous Integration
Continuous Delivery

https://research.google/pubs/pub43438/
https://kubernetes.io/

Orchestration tools such as Kubernetes offer:

High availability
Scalability: Applications have higher performance e.g. load time
Disaster Recovery: The architecture has to have a way to back-up the data and restore
the state of the application at any point in time

How does the architecture actually look like:

You have a master node: Runs several Kubernetes processes that are necessary to run
the container's processes — e.g. an API server ⇒ the entry point to the Kubernetes
cluster (UI, API, CLI); then it needs to have a Controller Manager ⇒ keeps track of what is
happening e.g. detects when a pod dies ⇒ detects state changes; and lastly, it contains a
Scheduler ⇒ this ensures the Pod placement (more on pods later); etcd database ⇒
key-value storage that holds the state of the Kubernetes cluster at any point in time; and
the last thing that is needed is the Virtual Network that spans across all the nodes in
the cluster
And worker nodes: contains Containers of different applications; here is where the
actual work is happening

Note that worker nodes are usually much bigger because they are running the containers.
The master node will only run a selection of processes.

Each node will have multiple pods with containers running on them. 3 processes have to be
present on all nodes

Container Runtime e.g. Docker
Kubelet; which is a process of Kubernetes itself that interacts with both, the container
runtime and the node — it is responsible for taking our configuration and starting a pod
inside the node

Usually a Kubernetes cluster has several nodes running in parallel.

nodes communicate with services between each other. Thus, the third process that has
to be installed on every node is Kube Proxy that forwards requests between nodes and
pods— the communication works in a performant way with low overhead. Requests are
forwarded to the closest pod.

Kubernetes Concepts — Pods

Pod ⇒ the smallest unit that you, as a Kubernetes user will configure

Pods are a wrapper of a container; on each worker node, we will have multiple
containers

Usually, you would have one application, one container per pod
Each Pod has its own IP address — thus, each pod is its own self-containing server. This
allows pods to communicate with each other — through their internal IP addresses

Note that we don't actually create containers inside the Kubernetes cluster but we work with
the pods that are an abstraction layer over the containers. Pods manage the containers
without our intervention

However pods can die very frequently

Whenever a pod dies, it will be recreated and it will get a new IP address

A service is used as an alternative for a pods IP address. Resulting, there is a service that sits
in front of each pod that abstracts away the dynamic IP address. Resulting, the lifecycle of a
pod and the IP address are not tied to each other-

If a pod behind the service dies, it gets recreated.

A service has two main functions:

Providing an IP address to the pod(s)
It is a Loadbalancer (what the hack is that 😆 — more on this later)

How do we create those components

All configuration goes through the master node — UI, API, CLI, all talk to the APi server
within the master node — they send the configuration request to the API server
The configuration is usually in YAML format ⇒ a blue print for creating pods. The
Kubernetes agents convert the YAML to JSON prior to persistence to the database.
The configuration of the requirements are in a declarative format. This will allow it to
compare the desired state to the actual state (more on this later)

Developer Workflow:

Create Docker images based on your application
Use Docker and Kubernetes
A CI pipeline to build, test, and verify Docker images
"You must be able to perform rolling updates and rollbacks, and eventually tear down
the resource when no longer needed." — the course

This requires flexible and easy to use network storage.

Kubernetes Architecture
100Days Resources

Video by Anais Urlichs
Add your blog posts, videos etc. related to the topic here!

Learning Resources
How Kubernetes deployments work

Example Notes
We can divide the responsibilities within a Kubernetes cluster between a main node and
worker nodes. Note that in small clusters we may have one node that takes the
responsibilities of both.

Main Node

Where does the orchestration from Kubernetes come in? These are some characteristics that
make up Kubernetes as a container orchestration system:

Managed by several operators and controllers — will look at operators and controllers
later one. Operators make use of custom resources to manage an application and their
components.
"Each controller interrogates the kube-apiserver for a particular object state, modifying
the object until the declared state matches the current state." In short, controllers are
used to ensure a process is happening in the desired way.
"The ReplicaSet is a controller which deploys and restarts containers, Docker by default,
until the requested number of containers is running." In short, its purpose is to ensure a
specific number of nodes are running.

Note that those concepts are details in further sections of the book.

There are several other API objects which can be used to deloy pods. A DaemonSet will ensure
that a single pod is deployed on every node. These are often used for logging and metrics. A
StatefulSet can be used to deploy pods in a particular order, such that following pods are only
deployed if previous pods report a ready status.

API objects can be used to know

What containerized applications are running (and on which nodes)

The resources available to those applications

https://youtu.be/oqWgMc9yYcc
https://youtu.be/mNK14yXIZF4
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/architecture/controller/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/

The resources available to those applications

The policies around how those applications behave, such as restart policies, upgrades,
and fault-tolerance

kube-apiserver

Provides the front-end to the cluster's shared state through which all components
interact
Is central to the operation of the Kubernetes cluster.
Handles internal and external traffic
The only agent that connects to the etcd database
Acts as the master process for the entire cluster
Provides the out-wards facing state for the cluster's state
Each API call goes through three steps: authentication, authorization, and several
admission controllers.

kube-scheduler

The Scheduler sees a request for running a container and will run the container in
the best suited node
When a new pod has to be deployed, the kube-scheduler determines through an
algorithm to which node the pod should be deployed
If the pod fails to be deployed, the kube-scheduler will try again based on the
resources available across nodes
A user could also determine which node the pod should be deployed to —this can
be done through a custom scheduler
Nodes that meet scheduling requirements are called feasible nodes.
You can find more details about the scheduler on GitHub.

etcd Database

The state of the cluster, networking, and other persistent information is kept in an
etcd database
etcd is a consistent and highly-available key value store used as Kubernetes'
backing store for all cluster data
Note that this database does not change; previous entries are not modified and
new values are appended at the end.
Once an entry can be deleted, it will be labelled for future removal by a compaction
process. It works with curl and other HTTP libraries and provides reliable watch
queries.
Requests to update the database are all sent through the kube api-server; each
request has its own version number which allows the etcd to distinguish between
requests. If two requests are sent simultaneously, the second request would then
be flagged as invalid with a 409 error and the etcd will only update as per instructed

https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/scheduler.go

by the first request.
Note that it has to be specifically configured

Other Agents

The kube-controller-manager is a core control loop daemon which interacts with
the kube-apiserver to determine the state of the cluster.
If the state does not
match, the manager will contact the necessary controller to match the desired
state. It is also responsible to interact with third-party cluster management and
reporting.
The cluster has several controllers in use, such as endpoints, namespace, and
replication. The full list has expanded as Kubernetes has matured. Remaining in
beta as of v1.16, the cloud-controller-manager interacts with agents outside of the
cloud. It handles tasks once handled by kube-controller-manager. This allows faster
changes without altering the core Kubernetes control process. Each kubelet must
use the --cloud-provider-external settings passed to the binary.

There are several add-ons which have become essential to a typical production cluster,
such as DNS services. Others are third-party solutions where Kubernetes has not yet
developed a local component, such
as cluster-level logging and resource monitoring.

"Each node in the cluster runs two processes: a kubelet and a kube-proxy."

Kubelet: handles requests to the containers, manages resources and looks after the local
nodes

The Kube-proxy creates and manages networking rules — to expose container on the network

kubelet

Each node has a container runtime e.g. the Docker engine installed. The kubelet is used
to interact with the Docker Engine and to ensure that the containers that need to run
are actually running.

Additionally, it does a lot of the work for the worker nodes; such as accepting API calls for
the Pods specifications that are either provided in JSON or YAML.

Once the specifications are received, it will take care of configuring the nodes until the
specifications have been met

Should a Pod require access to storage, Secrets or ConfigMaps, the kubelet will ensure
access or creation. It also sends back status to the kube-apiserver for eventual
persistence.

kube-proxy

The kube proxy is responsible for managing the network connectivity to containers To

The kube-proxy is responsible for managing the network connectivity to containers. To
do that is has iptables.

"iptables is a user-space utility program that allows a system administrator to configure
the IP packet filter rules of the Linux kernel firewall, implemented as different Netfilter
modules."

Additional options are the use of namespaces to monitor services and endpoints, or ipvs
to replace the use of iptables

To easily manage thousands of Pods across hundreds of nodes can be a difficult task to
manage. To make management easier, we can use labels, arbitrary strings which become part
of the object metadata. These can then be used when checking or changing the state of
objects without having to know individual names or UIDs. Nodes can have taints to
discourage Pod assignments, unless the Pod has a toleration in its metadata.

Multi-tenancy

When multiple-users are able to access the same cluster

Additional security measures can be taken through either of the following:

1. Namespaces: Namespaces can be used to "divide the cluster"; additional permissions
can be set on each namespace; note that two objects cannot have the same name in the
same namespace

2. Context: A combination of user, cluster name and namespace; this allows you to restrict
the cluster between permissions and restrictions. This information is referenced by
~/.kube/config

Can be checked with

3. Resource Limits: Provide a way to limit the resources that are provided for a specific
pod

4. Pod Security Policies: "A policy to limit the ability of pods to elevate permissions or
modify the node upon which they are scheduled. This wide-ranging limitation may
prevent a pod from operating properly. The use of PSPs may be replaced by Open Policy
Agent in the future."

5. Network Policies: The ability to have an inside-the-cluster firewall. Ingress and Egress
traffic can be limited according to namespaces and labels as well as typical network

traffic characteristics.

kubectl config view

https://en.wikipedia.org/wiki/Iptables

Kubernetes Pods

100Days Resources
Video by Anais Urlichs
Add your blog posts, videos etc. related to the topic here!

Learning Resources
https://www.vmware.com/topics/glossary/content/kubernetes-pods
https://cloud.google.com/kubernetes-engine/docs/concepts/pod
https://kubernetes.io/docs/concepts/workloads/pods/

Example Notes
Overview

Pods are the smallest unit in a Kubernetes cluster; which encompass one or more application
⇒ it represents processes running on a cluster. Pods are used to manage your application
instance.

Here is a quick summary of what a Pod is and its responsibilities:

In our nodes, and within our Kubernetes cluster, the smallest unit that we can work with
are pods.
Containers are part of a larger object, which is the pod. We can have one or multiple
containers within a pod.
Each container within a pod share an IP address, storage and namespace — each
container usually has a distinct role inside the pod.
Note that pods usually operate on a higher level than containers; there are more of an
abstraction of the processes within a container than the container itself.
A pod can also run multiple containers; all containers are started in parallel ⇒ this
makes it difficult to know which process started before another.
Usually, one pod is used per container process; reasons to run two containers within a
pod might be logging purposes.
nitContainers can be used to ensure some containers are ready before others in a
pod. To support a single process running in a container, you may need logging, a proxy,
or special adapter. These tasks are often handled by other containers in the same Pod.

Usually each pod has one IP address
You may find the term sidecar for a container dedicated to performing a helper task, like

https://youtu.be/fCpv7xSEyEI
https://www.vmware.com/topics/glossary/content/kubernetes-pods
https://cloud.google.com/kubernetes-engine/docs/concepts/pod
https://kubernetes.io/docs/concepts/workloads/pods/

handling logs and responding to requests, as the primary application container may
have this ability.

Running multiple containers in one pod

An example for running multiple containers within a pod would be an app server pod that
contains three separate containers: the app server itself, a monitoring adapter, and a logging
adapter. Resulting, all containers combines will provide one service.

In this case, the logging and monitoring container should be shared across all projects within
the organisation.

Replica sets

Each pod is supposed to run a single instance of an application. If you want to scale your
application horizontally, you can create multiple instance of that pod.

It is usually not recommended to create pods manually but instead use multiple instances of
the same application; these are then identical pods, called replicas.

Such a set of replicated Pods are created and managed by a controller, such as a Deployment.

Connection

All the pods in a cluster are connected. Pods can communicate through their unique IP
address. If there are more containers within one pod, they can communicate over localhost.

Pods are not forever

Pods are not "forever"; instead, they easily die in case of machine failure or have to be
terminated for machine maintenance. When a pod fails, Kubernetes automatically (unless
specified otherwise) spins it up again.

Additionally, a controller can be used to ensure that the pod is "automatically" healing. In this
case, the controlled will monitor the stat of the pod; in case the desired state does not fit the
actual state; it will ensure that the actual state is moved back towards the desired state.

It is considered good practice to have one process per pod; this allows for easier analysis and
debugging.

Each pod has:

a unique IP address (which allows them to communicate with each other)
persistent storage volumes (as required) (more on this later on another day)
configuration information that determine how a container should run

Pod lifecycle

(copied from Google)

(copied from Google)

Each Pod has a PodStatus API object, which is represented by a Pod's status field. Pods
publish their phase to the status: phase field. The phase of a Pod is a high-level summary of
the Pod in its current state.

When you run
 kubectl get pod Link to inspect a Pod running on your cluster, a Pod can be in
one of the following
possible phases:

Pending: Pod has been created and accepted by the cluster, but one or more
of its
containers are not yet running. This phase includes time spent being
scheduled on a
node and downloading images.
Running: Pod has been bound to a node, and all of the containers have been
created. At
least one container is running, is in the process of starting, or
is restarting.
Succeeded: All containers in the Pod have terminated successfully.
Terminated Pods do
not restart.
Failed: All containers in the Pod have terminated, and at least one
container has
terminated in failure. A container "fails" if it exits with a
non-zero status.
Unknown: The state of the Pod cannot be determined.

Limits

Pods by themselves do not have a memory or CPU limit. However, you can set limits to
control the amount of CPU or memory your Pod can use on a node. A limit is the maximum
amount of CPU or memory that Kubernetes guarantees to a Pod.

Termination

Once the process of the pod is completed, it will terminate. Alternatively, you can also delete a
pod.

Setup your first Kubernetes Cluster

100Days Resources
Video by Anais Urlichs
Kubernetes cluster in your local machine using Docker Desktop

Learning Resources

What is Kubernetes: https://youtu.be/VnvRFRk_51k
Kubernetes architecture explained: https://youtu.be/umXEmn3cMWY

https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#get
https://youtu.be/uU-8Zcst5Qk
https://medium.com/backbase/kubernetes-in-local-the-easy-way-f8ef2b98be68?sk=1cf6c2f31d82d836a2a75503b2fb17be
https://youtu.be/VnvRFRk_51k
https://youtu.be/umXEmn3cMWY

Example Notes
Today, I will get started with the book: The DevOps 2.3 Toolkit; and will work my way through
the book.

Chapter 1 provides an introduction to Kubernetes; I will use it to optimise the notes from the
previous day.

Chapter 2 provides a walkthrough on how to set-up a local Kubernetes cluster using minikube
or microk8s. Alternatively, kind could also be used to create a local Kubernetes cluster or if
you have Docker Desktop you could use directly the single node cluster included.

Prerequisites

1. Have Docker installed (if not go ahead and do it): https://docs.docker.com/
2. Install kubectl

Here is how to install kubectl

If you have the Homebrew package manager installed, you can use that:

On Linux, the commands are going to be:

To make sure you have kubectl installed, you can run

Install local cluster

To install minikube, you require a virtualisation technology such as VirtualBox. If you are on
windows, you might want to use hyperv instead. Minikube provides a single node instance
that you can use in combination with kubectl.

It supports DNS, Dashboards, CNI, NodePorts, Config Maps, etc. It also supports multiple
hypervisors, such as Virtualbox, kvm, etc.

brew install kubectl

curl -LO [https://storage.googleapis.com/kubernetes-release/release/$]
(https://storage.googleapis.com/kubernetes-release/release/$)(curl -s https:/\
/storage.googleapis.com/kubernetes-release/release/stable.txt)/bin/linux/amd64/kubec\
tl

chmod +x ./kubectl

sudo mv ./kubectl /usr/local/bin/kubectl

kubectl version --output=yaml

http://leanpub.com/the-devops-2-3-toolkit
https://kind.sigs.k8s.io/docs/user/quick-start/
https://medium.com/backbase/kubernetes-in-local-the-easy-way-f8ef2b98be68?sk=1cf6c2f31d82d836a2a75503b2fb17be
https://docs.docker.com/

In my case I am going to be using microk8s since I had several issues getting started with
minikube. However, please don't let this put you off. Please look for yourself into each tool
and decide which one you like the best.

Microk8s provides a lightweight Kubernetes installation on your local machine. Overall, it is
much easier to install on Linux using snap since it does not require any virtualization tools.

However, also the Windows and Mac installation are quite straightforward so have a look at
those on their website.

Make sure that kubectl has access directly to your

If you have multiple clusters configured, you can switch between them using your kubectl
commands

To show the different clusters available:

to switch to a different cluster:

Once we are connected to the right cluster, we can ask kubectl to show us our nodes

Or you could see the current pods that are running on your cluster — if it is a new cluster, you
likely don't have any pods running.

In the case of minikube and microk8s, we have only one node

Running Pods

100Days Resources

Video by Anais Urlichs
Add your blog posts, videos etc. related to the topic here!

sudo snap install microk8s --classic

kubectl config get-contexts

kubectl config use-context <name of the context>

kubectl get nodes

kubectl get pods

https://microk8s.io/
https://youtu.be/S39JmiFsheM

Learning Resources
How Pods and the Pod Lifecycle work in Kubernetes
Pods and Containers - Kubernetes Networking | Container Communication inside the
Pod

Example Notes

Practical Example

Fork the following repository: https://github.com/vfarcic/k8s-specs

Create a mongo DB database

If you want to confirm that the pod was created do: kubectl get pods

Note that if you do not see any output right away that is ok; the mongo image is really big so it
might take a while to get the pod up and running.

Confirm that the image is running in the cluster

To delete the pod run

Delete the pod above since it was not the best way to run the pod.

Pods should be created in a declarative format. However, in this case, we created it in an
imperative way — BAD!

To look at the pod definition:

git clone https://github.com/vfarcic/k8s-specs.git

cd k8s-specs

kubectl run db --image mongo \
--generator "run-pod/v1"

docker container ls -f ancestor=mongo

kubectl delete pod db

https://youtu.be/wlYESb124xM
https://youtu.be/5cNrTU6o3Fw
https://github.com/vfarcic/k8s-specs

In the case of controllers, the information provided in the metadata has a practical purpose.
However, in this case, it merely provides descriptive information.

All arguments that can be used in pods are defined in
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.17/#pod-v1-core

With the following command, we can create a pod that is defined in the pod.yml file

to view the pods (in json format)

We can see that the pod went through several stages (stages detailed in the video on pods)

In the case of microk8s, both master and worker nodes run on the same machine.

To verify that the database is running, we can go ahead an run

Once we do not need a pod anymore, we should delete it

Kubernetes will first try to stop a pod gracefully; it will have 30s to shut down.
After the "grace period" a kill signal is sent

cat pod/db.yml

apiVersion: v1 // means the version 1 of the Kubernetes pod API; API version and kind
has to be provided -- it is mandatory
kind: Pod
metadata: // the metadata provides information on the pod, it does not specifiy how the
pod behaves
name: db
labels:
type: db
vendor: MongoLabs // I assume, who has created the image
spec:
containers:
- name: db
image: mongo:3.3 // image name and tag
command: ["mongod"]
args: ["--rest", "--httpinterface"] // arguments, defined in an array

kubectl create -f pod/db.yml

kubectl get pods -o json

kubectl exec -it db sh // this will start a terminal inside the running container
echo 'db.stats()'
exit

kubectl delete -f pod/db.yml

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.17/#pod-v1-core

Additional notes

Pods cannot be split across nodes
Storage within a pod (volumes) can be accessed by all the containers within a pod

Run multiple containers with in a pod

Most pods should be made of a single container; multiple containers within one pod is not
common nor necessarily desirable

Look at

of the closed repository (the one cloned at the beginning of these notes)

The yml defines the use of two containers within one pod

To only retrieve the names of the containers running in the pod

Specify the name of the container for which we want to have the logs

livenessProbes are used to check whether a container should be running

Have a look at

within the cloned repository.

Create the pod

cat pod/go-demo-2.yml

kubectl create -f pod/go-demo-2.yml

kubectl get -f pod/go-demo-2.yml

kubectl get -f pod/go-demo-2.yml \
-o jsonpath="{.spec.containers[*].name}"

kubectl logs go-demo-2 -c db

cat pod/go-demo-2-health.yml

kubectl create \
-f pod/go-demo-2-health.yml

wait a minute and look at the output

Kubernetes ReplicaSet

100Days Resources
Video by Anais Urlichs
Add your blog posts, videos etc. related to the topic here!

Learning Resources
Kubernetes ReplicaSet official documentation

Example Notes
ReplicaSets

It is usually not recommended to create pods manually but instead use multiple instances of
the same application; these are then identical pods, called replicas. You can specify the
desired number of replicas within the ReplicaSet.

A ReplicaSet ensures that a certain number of pods are running at any point in time. If there
are more pods running than the number specified by the ReplicaSet, the ReplicaSet will kill the
pods.

Similarly, if any pod dies and the total number of pods is fewer than the defined number of
pods, the ReplicaSet will spin up more pods.

Each pod is supposed to run a single instance of an application. If you want to scale your
application horizontally, you can create multiple instances of that pod.

The pod ReplicaSet is used for scaling pods in your Kubernetes cluster.

Such a set of replicated Pods are created and managed by a controller, such as a
Deployment.

As long as the primary conditions are met: enough CPU and memory is available in the
cluster, the ReplicaSet is self-healing; it provides fault tolerance and high availibility.

kubectl describe \
-f pod/go-demo-2-health.yml

https://youtu.be/TBkZaPDX7Us
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/

It's only purpose is to ensure that the specified number of replicas of a service is running.

All pods are managed through Controllers and Services. They know about the pods that they
have to manage through the in-YAML defined Labels within the pods and the selectors within
the Controllers/Services. Remember the metadata field from one of the previous days — in
the case of ReplicaSets, these labels are used again.

Some Practice

Clone the following repository: https://github.com/vfarcic/k8s-specs and enter into the root
folder

Looking at the following example

The selector is used to specify which pods should be included in the replicaset
ReplicaSets and Pods are decoupled
If the pods that match the replicaset, it does not have to do anything
Similar to how the ReplicaSet would scale pods to match the definition provided in the
yaml, it will also terminate pods if there are too many
the spec.template.spec defines the pod

Next, create the pods

We can see further details of your running pods through the kubectl describe command

To list all the pods, and to compare the labels specified in the pods match the ReplicaSet

You can call the number of replicasets by running

cd k8s-specs

cat rs/go-demo-2.yml

kubectl create -f rs/go-demo-2.yml

kubectl describe -f rs/go-demo-2.yml

kubectl get pods --show-labels

kubectl get replicasets

https://github.com/vfarcic/k8s-specs

ReplicaSets are named using the same naming convention as used for pods.

Difference between ReplicaSet and Replication Controller

They both serve the same purpose — the Replication Controller is being deprecated.

Operating ReplicaSets

You can delete a ReplicaSet without deleting the pods that have been created by the
replicaset

And then the ReplicaSet can be created again

the —save-config flag ensures that our configurations are saved, which allows us to do more
specific tasks later on.

Kubernetes Deployments

100Days Resources
Video by Anais Urlichs
Add your blog posts, videos etc. related to the topic here!

Learning Resources
Kubernetes Deployments official documentation

Example Notes

This little exercise will be based on the following application: https://github.com/anais-
codefresh/react-article-display

kubectl delete -f rs/go-demo-2.yml \
--cascade=false

kubectl create -f rs/go-demo-2.yml \
--save-config

https://youtu.be/qt76R2G4h-0
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://github.com/anais-codefresh/react-article-display

Then we will create a deployment

More information on Kubernetes deployments

A deployment is a Kubernetes object that makes it possible to manage multiple, identical
pods
Using deployments, it is possible to automate the process of creating, modifying and
deleting pods — it basically manages the lifecycle of your application
Whenever a new object is created, Kubernetes will ensure that this object exist
If you try to set-up pods manually, it can lead to human error, using deployments
The difference between a deployment and a service is that a deployment ensures that a
set of pods keeps running by creating pods and replacing broken prods with the
resource defined in the template. In comparison, a service is used to allow a network to
access the running pods.

Deployments allow you to

Deploy a replica set or pod
Update pods and replica sets
Rollback to previous deployment versions
Scale a deployment
Pause or continue a deployment

Create deployment

apiVersion: apps/v1
kind: Deployment
metadata:
 name: react-application
spec:
 replicas: 2
 selector:
 matchLabels:
 run: react-application
 template:
 metadata:
 labels:
 run: react-application
 spec:
 containers:
 - name: react-application
 image: anaisurlichs/react-article-display:master
 ports:
 - containerPort: 80
 imagePullPolicy: Always

kubectl create -f deployment.yaml

https://www.redhat.com/en/topics/containers/what-is-kubernetes-deployment

Access more information on the deployment

Create the service yml

Creating the service with kubectl expose

This will create a service that is highly similar to our in yaml defined service. However, if we
want to create the service based on our yaml instead, we can run:

How is the Service and the Deployment linked?

The targetPort in the service yaml links to the container port in the deployment. Thus, both
have to be, for example, 80.

We can then create the deployment and service based on the yaml, when you look for
"kubectl get service", you will see the created service including the Cluster-IP. Take that cluster
IP and the port that you have defined in the service e.g. 10.152.183.79:8080 basically : and you
should be able to access the application through NodePort. However, note that anyone will be
able to access this connection. You should be deleting these resources afterwards.

Alternatively for more information of the service

kubectl describe deployment <deployment name>

apiVersion: v1
kind: Service
metadata:
 name: react-application
 labels:
 run: react-application
spec:
 type: NodePort
 ports:
 - port: 8080
 targetPort: 80
 protocol: TCP
 name: http
 selector:
 run: react-application

kubectl expose deployment/my-nginx

kubectl create -f my-pod-service.yml

kubectl get service

Alternatively, for more information of the service

-o yaml: the data should be displayed in yaml format

Delete the resources by

Note: replace react-application with the name of your service.

Namespaces

100Days Resources
Video by Anais Urlichs
Add your blog posts, videos etc. related to the topic here!

Learning Resources
TechWorld with Nana explanation on Namespaces

Example Notes
In some cases, you want to divide your resources, provide different access rights to those
resources and more. This is largely driven by the fear that something could happen to your
precious production resources.

However, with every new cluster, the management complexity will scale — the more clusters
you have, the more you have to manage — basically, the resource overhead of many small
clusters is higher than of one big one. Think about this in terms of houses, if you have one big
house, you have to take care of a lot but having several small houses, you have x the number
of everything + they will be affected by different conditions.

Practical

kubectl get svc <service name> -o yaml

kubectl delete service react-application
kubectl delete deployment react-application

// in this case, your pods are still running, so you would have to remove them
individually

https://youtu.be/GD-CweSXsfY
https://youtu.be/K3jNo4z5Jx8

Let's get moving, you only learn by doing.

Clone this repository https://github.com/vfarcic/k8s-specs

and then, we will use this application

Then we do a nasty work-around to specify the image tag used in the pod

When the -f argument is followed with a
dash (-), kubectl uses standard input (stdin) instead of
a file.

To confirm that the deployment was successful

Which will get us the following output

Almost every service are Kubernetes Objects.

Gives us a full list of all the resources that we currently have up and running.

The system-level objects within our cluster are usually not visible, only the objects that we
created.

Within the same namespace, we cannot have twice the same object with exactly the same
name. However, we can have the same object in two different namespaces.

Additionally, you could specify within a cluster permissions, quotas, policies, and more — will
look at those sometimes later within the challenge.

cd k8s-specs

cat ns/go-demo-2.yml

IMG=vfarcic/go-demo-2

TAG=1.0

cat ns/go-demo-2.yml \
| sed -e \
"s@image: $IMG@image: $IMG:$TAG@g" \
| kubectl create -f -

kubectl rollout status \
2 deploy go-demo-2-api

hello, release 1.0!

kubectl get all

https://github.com/vfarcic/k8s-specs

We can list all of our namespaces through

Create a new namespaces

Note that you could also use 'ns' for 'namespace'

Kubernetes puts all the resources needed to execute Kubernetes commands into the kube-
system namespace

Now that we have a namespace testing, we can use it for new deployments — however,
specifying the namespace with each command is annoying. What we can do instead is

In this case, you will have to change the command according to your cluster. The created
context uses the same cluster as before — just a different namespace.

You can view the config with the following command

Once we have a new context, we can switch to that one

Once done, all of our commands will be automatically executed in the testing namespace.

Now we can deploy the same resource as before but specify a different tag.

kubectl get ns

kubectl create namespace testing

kubectl --namespace kube-system get all

kubectl config set-context testing \
 --namespace testing \
 --cluster docker-desktop \
 --user docker-desktop

kubectl config view

kubectl config use-context testing

TAG=2.0

DOM go demo 2 com

to confirm that the rollout has finished

Now we can send requests to the different namespaces

Deleting resources

It can be really annoying to have to delete all objects one by one. What we can do instead is to
delete all resources within a namespace at one

The real magic of namespaces is when we combine those with authorization logic, which we
are going to be looking at in later videos.

ConfigMaps

100Days Resources
Video by Anais Urlichs
Add your blog posts, videos etc. related to the topic here!

Learning Resources
https://matthewpalmer.net/kubernetes-app-developer/articles/ultimate-configmap-
guide-kubernetes.html

Example Notes

DOM=go-demo-2.com

cat ns/go-demo-2.yml \
| sed -e \
"s@image: $IMG@image: $IMG:$TAG@g" \
| sed -e \
"s@host: $DOM@host: $TAG\.$DOM@g" \
| kubectl create -f -

kubectl rollout status \
deployment go-demo-2-api

curl -H "Host: 2.0.go-demo-2.com" \
2 "http://$(minikube ip)/demo/hello"

kubectl delete ns testing

https://youtu.be/gQgGN12hfNY
https://matthewpalmer.net/kubernetes-app-developer/articles/ultimate-configmap-guide-kubernetes.html

ConfigMaps make it possible to keep configurations separately from our application images
by injecting configurations into your container. The content/injection might be configuration
files or variables.

It is a type of Volume.

ConfigMaps=Mount a source to a container

It is a directory or file of configuration settings.

Environment variables can be used to configure new applications. They are great unless our
application is too complex.

If the application configuration is based on a file, it is best to make the file part of our Docker
image.

Additionally, you want to use ConfigMap with caution. If you do not have any variations
between configurations of your app, you do not need a ConfigMap. ConfigMaps let you easily
fall into the trap of making specific configuration — which makes it harder to move the
application and to automate its set-up. Resulting, if you do use ConfigMaps, you would likely
have one for each environment.

So what could you store within a ConfigMap

A ConfigMap stores configuration settings for your code. Store connection strings,
public credentials, hostnames, and URLs in your ConfigMap.

Source

So make sure to not store any sensitive information within ConfigMap.

We first create a ConfigMap with

Taking a look into that resource

ConfigMap is another volume that, like other volumes, need to mount

kubectl create cm my-config \
--from-file=cm/prometheus-conf.yml

kubectl describe cm my-config

cat cm/alpine.yml

https://matthewpalmer.net/kubernetes-app-developer/articles/ultimate-configmap-guide-kubernetes.html

The volume mount section is the same, no matter the type of volume that we want to mount.

We can create a pod and make sure it is running

And then have a look inside the pod

You will then see a single file that is correlated to the file that we stored in the ConfigMap

To make sure the content of both files is indeed the same, you can use the following
command

The —from-file argument in the command at the beginning can be used with files as well as
directories.

In case we want to create a ConfigMap with a directory

and have a look inside

The create a pod that mounts to the ConfigMap

Make sure to delete all the files within your cluster afterwards

kubectl create -f cm/alpine.yml

kubectl get pods

kubectl exec -it alpine -- \
ls /etc/config

kubectl exec -it alpine -- \
cat /etc/config/prometheus-conf.yml

kubectl create cm my-config \
--from-file=cm

kubectl describe cm my-config

kubectl create -f cm/alpine.yml

kubectl exec -it alpine -- \
ls /etc/config

kubectl delete -f cm/alpine.yml

k bectl delete cm m config

Furthermore, like every other Kubernetes resource, you can define ConfigMaps through
Kubernetes YAML files. This actually (probably the easiest way) — write the ConfigMap in YAML
and mount it as a Volume

We can show one of our existing ConfigMaps in YAML

Additionally we can take a look at this file within our repository that has both a Deployment
object and a ConfigMap

And then create the ConfigMap like any other resource

kubectl delete cm my-config

kubectl get cm my-config -o yaml

cat cm/prometheus.yml

kind: ConfigMap
apiVersion: v1
metadata:
 name: example-configmap
data:
 # Configuration values can be set as key-value properties
 database: mongodb
 database_uri: mongodb://localhost:27017

 # Or set as complete file contents (even JSON!)
 keys: |
 image.public.key=771
 rsa.public.key=42

kubectl apply -f config-map.yaml

kind: Pod
apiVersion: v1
metadata:

Kubernetes Service

100Days Resources
Video by Anais Urlichs One and Two
Add your blog posts, videos etc. related to the topic here!

Learning Resources
Official Documentation
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://katacoda.com/courses/kubernetes
Guides and interactive tutorial within the Kubernetes docs
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/
Kubernetes by example https://kubernetesbyexample.com/ created by OpenShift

Example Notes

metadata:
 name: pod-using-configmap

spec:
 # Add the ConfigMap as a volume to the Pod
 volumes:
 # `name` here must match the name
 # specified in the volume mount
 - name: example-configmap-volume
 # Populate the volume with config map data
 configMap:
 # `name` here must match the name
 # specified in the ConfigMap's YAML
 name: example-configmap

 containers:
 - name: container-configmap
 image: nginx:1.7.9
 # Mount the volume that contains the configuration data
 # into your container filesystem
 volumeMounts:
 # `name` here must match the name
 # from the volumes section of this pod
 - name: example-configmap-volume
 mountPath: /etc/config

https://youtu.be/4_felE4hMog
https://youtu.be/vxA4IP3K7Z4
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://katacoda.com/courses/kubernetes
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/
https://kubernetesbyexample.com/

Pods are formed, destroyed and never repaired. You would not repair an existing, running
pod but rather deploy a new, healthy one.

Controllers, along with the Scheduler inside your Kubernetes cluster are making sure that
pods are behaving correctly, they are monitoring the pods.

So far, only containers within the same pod can talk to each other through localhost. This
prevents us from scaling our application. Thus we want to enable communication between
pods. This is done with Kubernetes Services.

Kubernetes Services provide addresses through which associated Pods can be accessed.

A service is usually created on top of an existing deployment.

Follow along

Clone the following repository: https://github.com/vfarcic/k8s-specs

And prepare our minikube, microk8s or whatever you are using as your local cluster 🙂

For this exercise, we are going to create the following ReplicaSet, similar to what we have done
in the previous video. The definition will look as follows:

Now create the ReplicaSet:

Before continuing with the next exercises, make sure that both replicas are ready
With the kubectl expose command, we can tell Kubernetes that we want to expose a resource
as service in our cluster

cd k8s-specs

git pull

minikube start --vm-driver=virtualbox

kubectl config current-context

cat svc/go-demo-2-rs.yml

kubectl create -f svc/go-demo-2-rs.yml

// get the state of it
kubectl get -f svc/go-demo-2-rs.yml

https://github.com/vfarcic/k8s-specs

We can have by default three different types of Services

ClusterIP

ClusterIP is used by default. It exposes the service only within the cluster. By default you want
to be using ClusterIP since that prevents any external communication and makes your cluster
more secure.

NodePort

Allows the outside world to access the node IP

and LoadBalancer

The LoadBalancer is only useful when it is combined with the LoadBalancer of your cloud
provider.

The process when creating a new Service is something like this:

1. First, we tell our API server within the master node in our cluster it should create a new
service — in our case, this is done through kubectl commands.

2. Within our cluster, inside the master node, we have an endpoint controller. This
controller will watch our API server to see whether we want to create a new Service.
Once it knows that we want to create a new API server, it will create an endpoint object.

3. The kube-proxy watches the cluster for services and enpoints that it can use to configure
the access to our cluster. It will then make a new entry in its iptable that takes note of the
new information.

4. The Kube-DNS realises that there is a new service and will add the db’s record to the dns
server (skydns).

Taking a look at our newly created service:

All the pods in the cluster can access the targetPort
The NodePort automatically creates the clusterIP
Note that if you have multiple ports defined within a service, you have to name those
ports

Let’s see whether the Service indeed works.
PORT=$(kubectl get svc go-demo-2-svc
-o jsonpath="{.spec.ports[0].nodePort}")

kubectl expose rs go-demo-2 \
 --name=go-demo-2-svc \
 --target-port=28017 \ // this is the port that the MongoDB interface is listening to
 --type=NodePort

kubectl describe svc go-demo-2-svc

IP=$(minikube ip)

open "http://$IP:$PORT"

Creating Services in a Declarative format

The service is of type NodePort - making it available within the cluster
TCP is used as default protocol
The selector is used by the service to know which pods should receive requests (this
works the same way as the selector within the ReplicaSet)

With the following command, we create the service and then get the sevrice

We can look at our endpoint through

The subset responds to two pods, each pod has its own IP address
Requests are distributed between these two nodes

Make sure to delete the Service and ReplicaSet at the end

Ingress

100Days Resources
Video by Anais Urlichs
Add your blog posts, videos etc. related to the topic here!

Learning Resources

cat svc/go-demo-2-svc.yml

kubectl create -f svc/go-demo-2-svc.yml

kubectl get -f svc/go-demo-2-svc.yml

kubectl get ep go-demo-2 -o yaml

kubectl delete -f svc/go-demo-2-svc.yml

kubectl delete -f svc/go-demo-2-rs.yml

https://youtu.be/rNvFvGVzT5o

Ingress Tutorial by Anais Urlichs

Example Notes
Ingress is responsible for managing the external access to our cluster. Whereby it manages

forwarding rules based on paths and domains
SSl termination
and several other features.

The API provided by Ingress allows us to replace an external proxy with a loadbalancer.

Things we want to resolve using Ingress

Not having to use a fixed port — if we have to manage multiple clusters, we would have a
hard time managing all those ports
We need standard HTTPS(443) or HTTP (80) ports through a predefined path

When we open an application, the request to the application is first received by the service
and LoadBalancer, which is the responsible for forwarding the request to either of the pods it
is responsible for.

To make our application more secure, we need a place to store the application's HTTPS
certificate and forwarding. Once this is implemented, we have a mechanism that accepts
requests on specific ports and forwards them to our Kubernetes Service.

The Ingress Controller can be used for this.

Unlike other Kubernetes Controllers, it is not part of our cluster by default but we have to
install it separately.

If you are using minikube, you can check the available addons through

And enable ingress (in case it is not enabled)

If you are on microk8s, you can enable ingress through

You can check whether it is running through — if the pods are running for nginx-ingress, they
will be listed

minikube addons list

minikube addons enable ingress

microk8s enable ingress

https://github.com/AnaisUrlichs/ingress-example

If you receive an empty output, you might have to wait a little bit longer for Ingress to start.

Here is the YAML definition of our Ingress resource

The annotation section is used to provide additional information to the Ingress
controller.
The path is the path after the

You can find a list of annotations and the controllers that support them on this page:
https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-
configuration/annotations.md

We have to set the ssl redirect to false since we do not have an ssl certificate.

You can create the resource through

If your application's service is set to NodePort, you will want to change it back into ClusterIP
since there is no need anymore for NodePort.

What happens when we create a new Ingress resource?

1. kubectl will send a request to the API Server of our cluster requesting the creation of a
new Ingress resource

2. The ingress controller is consistently checking the cluster to see if there is a new ingress
resource

kubectl get pods --all-namespaces | grep nginx-ingress

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: react-application
 annotations:
 kubernetes.io/ingress.class: "nginx"
 ingress.kubernetes.io/ssl-redirect: "false"
 nginx.ingress.kubernetes.io/ssl-redirect: "false"
spec:
 rules:
 - http:
 paths:
 - path: /demo
 backend:
 serviceName: react-application
 servicePort: 8080

kubectl create \
-f <name of your file>

https://github.com/kubernetes/ingress-nginx/blob/master/docs/user-guide/nginx-configuration/annotations.md

3. Once it sees that there is a new ingress resource, it will configure its loadbalancer

Ingress is a kind of service that runs on all nodes within your cluster. As long as requests
match any of the rules defined within Ingress, Ingress will forward the request to the
respective service.

To view the ingress running inside your cluster, use

Note that it might not work properly on microk8s.

Service Mesh

100Days Resources
Video by Anais Urlichs
Add your blog posts, videos etc. related to the topic here!

Learning Resources
Microsoft Introduction to Service Mesh
Nginx explanation on Service Mesh

Example Notes
The goal is:

1. Higher Portability: Deploy it wherever
2. Higher Agility: Update whenever
3. Lower Operational Management: Invest low cognitive
4. Lower Security Risk

How do Services find each other?

Answering this question allows us to break down the value of Service Mesh — different
Services have to find each other.
If one service fails, the traffic has to be routed to another service so that requests don't
fail

Service-discovery can become the biggest bottleneck.

Open platform independent service mesh

kubectl get ing

https://youtu.be/4LU-XaQ7zzA
https://docs.microsoft.com/en-us/azure/aks/servicemesh-about
https://www.nginx.com/blog/what-is-a-service-mesh/

Open platform, independent service mesh.

In its simplest form a service mesh is a network of your microservices, managing the traffic
between services. This allows it to manage the different interactions between your
microservices.

A lot of the responsibilities that a service mesh has could be managed on an application basis.
However, with the service mesh takes that logic out of the application specific services and
manages those on an infrastructure basis.

Why do you need Service Mesh?

Istio is a popular solution for managing communication between microservices.

When we move from monolithic to microservice application, we run into several issues that
we did not have before. It will need the following setup

1. Each microservice has its own business logic — all service endpoints must be configured
2. Ensure Security standards with firewall rules set-up — every service inside the cluster

can talk to every other service if we do not have any additional security inside — for
more important applications this is not secure enough. This may result in a lot of
complicated configuration.

To better manage the application configuration, everything but the business logic could be
packed into its own Sidecar Proxy, which would then be responsible to

Handle the networking logic
Act as a Proxy
Take care of third-party applications
Allow cluster operators to configure everything easily
Enable developers to focus on the actual business logic

A service mesh will have a control plane that will inject this business logic automatically into
every service. Once done, the microservices can talk to each other through proxies.

Core feature of service mesh: Traffic Splitting:

When you spin up a new service in response to a high number of requests, you only
want to forward about 10% of the traffic to the new Service to make sure that it really
works before distributing the traffic between all services. This may also be referred to as
Canary Deployment

"In a service mesh, requests are routed between microservices through proxies in their own
infrastructure layer.
For this reason, individual proxies that make up a service mesh are

sometimes called “sidecars,” since they run alongside each service, rather than within them.
Taken together, these “sidecar” proxies—decoupled from each service—form a mesh

network."

"A sidecar proxy sits alongside a microservice and routes requests to other proxies. Together,
these sidecars form a mesh network."

Service Mesh is just a paradigm and Istio is one of the implementations

Istio allows Service A and Service B to communicate to each other. Once your microservices
scale, you have more services, the service mesh becomes more complicated — it becomes
more complicated to manage the connection between different services. That's where Istio
comes in.

It runs on

Kubernetes
Nomad
Console

I will focus on Kubernetes.

Features

Load Balancing: Receive some assurance of load handling — enabled some level of
abstraction that enables services to have their own IP addresses.
Fine Grain Control: to make sure to have rules, fail-overs, fault connection
Access Control: Ensure that the policies are correct and enforceable
Visibility: Logging and graphing
Security: It manages your TSL certificates

Additionally, Service Mesh makes it easier to discover problems within your microservice
architecture that would be impossible to discover without.

Components — Connect to the Control Plane API within Kubernetes — note that this is the
logic of Istio up to version 1.5. The latest versions only deal with Istiod.

1. Pilot: Has A/B testing, has the intelligence how everything works, the driver of Istio
2. Cit: Allows Service A and Service B to talk to each other

How do we configure Istio?

1. You do not have to modify any Kubernetes Deployment and Service YAML files
2. Istio is configured separately from application configuration

3. Since Istio is implemented through Kubernetes Custom Resource Definitions (CRD), it
can be easily extended with other Kubernetes-based plug-ins

4. It can be used like any other Kubernetes object

The Istio-Ingress Gateway is an entry-point to our Kubernetes cluster. It runs as a pod in our
cluster and acts as a LoadBalancer.

Service Mesh Interface

With different projects and companies creating their own Service Mesh, the need for
standards and specifications arise. One of those standards is provided by the Service Mesh
Interface (SMI). In its most basic form, SMI provides a list of Service Mesh APIs. Separately SMI
is currently a CNCF sandbox project.

SMI provides a standard interface for Service Mesh on Kubernetes

Provides a basic set of features for the most common use cases
Flexible to support new use case over time

Website with more information

SMI covers the following

Traffic policy – apply policies like identity and transport encryption across services
Traffic telemetry – capture key metrics like error rate and latency between services
Traffic management – shift traffic between different services

Other Service Mesh Examples

1. Gloo Mesh: Enterprise version of Istio Service Mesh but also has a Gloo Mesh open
source version.

2. Linkerd: Its main advantage is that it is lighter than Istio itself. Note that Linkerd was
origially developed by Buoyant. Linkerd specifically, is run through an open governance
model.

3. Nginx service mesh: Focused on the data plane and security policies; platform agnostic;
traffic orchestration and management

Kubernetes Volumes

100Days Resources

https://linkerd.io/
https://linkerd.io/2019/10/03/linkerds-commitment-to-open-governance/
https://www.nginx.com/products/nginx-service-mesh/

Video by Anais Urlichs
Add your blog posts, videos etc. related to the topic here!

Learning Resources
https://kubernetes.io/docs/tasks/configure-pod-container/configure-volume-storage/
https://codeburst.io/kubernetes-storage-by-example-part-1-27f44ae8fb8b
https://youtu.be/0swOh5C3OVM

Example Notes
We cannot store data within our containers — if our pod crashes and restarts another
container based on that container image, all of our state will be lost. Kubernetes does not
give you data-persistence out of the box.

Volumes are references to files and directories made accessible to containers that form a
pod. So, they basically keep track of the state of your application and if one pod dies the next
pod will have access to the Volume and thus, the previously recorded state.

There are over 25 different Volume types within Kubernetes — some of which are specific to
hosting providers e.g. AWS

The difference between volumes is the way that files and directories are created.

Additionally, Volumes can also be used to access other Kubernetes resources such as to
access the Docker socket.

The problem is that the storage has to be available across all nodes. When a pod fails and is
restarted, it might be started on a different node.

Overall, Kubernetes Volumes have to be highly error-resistant — and even survive a crash of
the entire cluster.

Volumes and Persistent Volumes are created like other Kubernetes resources, through YAML
files.

Additionally, we can differentiate between remote and local volumes — each volume type
has its own use case.

Local volumes are tied to a specific node and do not survive cluster disasters. Thus, you want
to use remote volumes whenever possible.

apiVersion: v1
kind: Pod
metadata:

https://youtu.be/qnlgJkntS1k
https://kubernetes.io/docs/tasks/configure-pod-container/configure-volume-storage/
https://codeburst.io/kubernetes-storage-by-example-part-1-27f44ae8fb8b
https://youtu.be/0swOh5C3OVM

Create the resource:

Write to the file:

Read what is within the file

However, to ensure that the data will be saved beyond the creation and deletion of pods, we
need Persistent volumes. Ephemeral volume types only have the lifetime of a pod — thus,
they are not of much use if the pod crashes.

A persistent volume will have to take the same storage as the physical storage.

Storage in Kubernetes is an external plug-in to our cluster. This way, you can also have
multiple different storage resources.

The storage resources is defined within the PersistentVolume YAML

A hostPath volume mounts a file or directory from the host node’s filesystem into your Pod.
This is not something that most Pods will need, but it offers a powerful escape hatch for some

applications.

Kubernetes Volumes

metadata:
 name: empty-dir
spec:
 containers:
 - name: busybox-a
 command: ['tail', '-f', '/dev/null']
 image: busybox
 volumeMounts:
 - name: cache
 mountPath: /cache
 - name: busybox-b
 command: ['tail', '-f', '/dev/null']
 image: busybox
 volumeMounts:
 - name: cache
 mountPath: /cache
 volumes:
 - name: cache
 emptyDir: {}

kubectl apply -f empty-dir

kubectl exec empty-dir --container busybox-a -- sh -c "echo \"Hello World\" >
/cache/hello.txt"

kubectl exec empty-dir --container busybox-b -- cat /cache/hello.txt

https://kubernetes.io/docs/concepts/storage/volumes/

— Kubernetes — Volumes

Create the volume

Read from the volume

KinD

100Days Resources
Video by Anais Urlichs
Add your blog posts, videos etc. related to the topic here!

Learning Resources
Official Documentation

Example Notes

Setting up Kind on Windows and Cluster Comparison

apiVersion: v1
kind: Pod
metadata:
 name: host-path
spec:
 containers:
 - name: busybox
 command: ['tail', '-f', '/dev/null']
 image: busybox
 volumeMounts:
 - name: data
 mountPath: /data
 volumes:
 - name: data
 hostPath:
 path: /data

kubectl apply -f empty-dir

kubectl exec host-path -- cat /data/hello.txt

https://kubernetes.io/docs/concepts/storage/volumes/
https://youtu.be/Bdw5saYQMvY
https://kind.sigs.k8s.io/

These are the docs that I used to set-up all of my resources on Windows:

Setting up the Ubuntu in Windows

https://docs.microsoft.com/en-us/windows/wsl/install-win10#step-4---download-the-
linux-kernel-update-package
https://github.com/microsoft/WSL/issues/4766

Use WSL in Code

https://docs.docker.com/docker-for-windows/wsl/
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-wsl

Kubectl installation

https://devkimchi.com/2018/06/05/running-kubernetes-on-wsl/

Create Kind cluster

https://kubernetes.io/blog/2020/05/21/wsl-docker-kubernetes-on-the-windows-desktop/

If you want to run microk8s on WSL, you have to get a snap workaround described here

https://github.com/microsoft/WSL/issues/5126

Running a local cluster

Especially when you are just getting started, you might want to spin up a local cluster on your
machine. This will allow you to run tests, play around with the resources and more without
having to worry much about messing something up :) — If you watched any of my previous
videos, you will have already a good understand of how much I enjoy trying out different
things — setting things up just to try something out — gain a better understanding — and
then to delete everything in the next moment.

Also, you might have seen that I already have two videos on microk8s —mainly since the
minikube set-up on my Ubuntu did not properly work. Now that I am on Windows, I might
actually have more options. So let's take a look at those and see how they compare.

Kubernetes in Docker
When you install Docker for Desktop (or however you call it) you can enable Kubernetes:

The set up will take a few seconds but then you have access to a local cluster both from the

https://docs.microsoft.com/en-us/windows/wsl/install-win10#step-4---download-the-linux-kernel-update-package
https://github.com/microsoft/WSL/issues/4766
https://docs.docker.com/docker-for-windows/wsl/
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-wsl
https://devkimchi.com/2018/06/05/running-kubernetes-on-wsl/
https://kubernetes.io/blog/2020/05/21/wsl-docker-kubernetes-on-the-windows-desktop/
https://github.com/microsoft/WSL/issues/5126

The set-up will take a few seconds but then you have access to a local cluster both from the
normal Windows terminal (I am still new to Windows, so excuse any terminology that is off) or
through the WSL.

and you will see a display of the different clusters that you have set-up. This will allow you to
switch to a different cluster:

Below are several other options highlighted.

minikube

minikube is probably the best known of the three; maybe because it is the oldest. When you
are using minikube, it will spin up a VM that runs a single Kubernetes node. To do so it needs
hypervisor. Now, if you have never interacted with much virtualisation technology, you might
think of a hypervisor as something like this:

I assure you, it is not. So what is a Hypervisor then? A Hypervisor is basically a form of
software, firmware, or hardware that is used to set-up virtual environments on your machine.

Running minikube, you can spin up multiple nodes as well, each will be running their own VM
(Virtual Machine).

For those of you, who are really into Dashboards, minikube provides a Dashboard, too!
Personally, I am not too much of a fan but that is your choice. If you would like some sort of
Dashboard, I highly recommend you k9s. Here is my introductory video if you are curious.

This is what the minikube Dashboard looks like — just your usual UI 😊

Now how easy is the installation of minikube? Yes, I mentioned that I had some problems
installing minikube on Ubuntu and thus, went with microk8s. At that time, I did not know
about kind yet. Going back to the original question, if you are using straight up Windows it is
quite easy to install, if you are using Linux in Windows however, it might be a bit different —
tbh I am a really impatient person, so don't ask me.

Documentation

What is kind?

kubectl config get-contexts

kubectl config use-context <context name>

https://youtu.be/5Nhbl6LwP2o
https://minikube.sigs.k8s.io/docs/start/

Kind is quite different to minikube, instead of running the nodes in VMs, it will run nodes as
Docker containers. Because of that, it is supposed to start-up faster — I am not sure how to
test this, they are both spinning up the cluster in an instance and that is good enough for me.

However, note that kind requires more space on your machine to run than etiher microk8s or
minikube. In fact, microk8s is actually the smallest of the three.

Like detailed in this article, you can

With 'kind load docker-image my-app:latest' the image is available for use in your cluster

Which is an additional feature.

If you decide to use kind, you will get the most out of it if you are fairly comfortable to use
YAML syntax since that will allow you to define different cluster types.

Documentation

The documentation that I used to install it

microk8s

Microk8s is in particular useful if you want to run a cluster on small devices; it is better tested
in ubuntu than the other tools. Resulting, you can install it with snap super quickly! In this
case, it will basically run the cluster separate from the rest of the stuff on your computer.

It also allows for multi-node clusters, however, I did not try that yet, so I don't know how well
that actually works.

Also note that if you are using microk8s on MacOS or Windows, you will need a hypevisor of
sorts. Running it on Ubuntu, you do not.

Documentation

My video

https://youtu.be/uU-8Zcst5Qk

Direct comparison

This article by Max Brenner offers a really nice comparison between the different tools with a
comparison table https://brennerm.github.io/posts/minikube-vs-kind-vs-k3s.html

https://brennerm.github.io/posts/minikube-vs-kind-vs-k3s.html
https://kind.sigs.k8s.io/docs/user/quick-start/
https://kubernetes.io/blog/2020/05/21/wsl-docker-kubernetes-on-the-windows-desktop/
https://microk8s.io/
https://youtu.be/uU-8Zcst5Qk
https://brennerm.github.io/posts/minikube-vs-kind-vs-k3s.html

K3s and K3sup

100Days Resources
Video by Anais Urlichs
Add your blog posts, videos etc. related to the topic here!

Learning Resources
Overview README
Website
Documentation

Example Notes
When you are choosing a Kubernetes distribution, the most obvious one is going to be K8s,
which is used by major cloud vendors and many more. However, if you just want to play
around on your local machine with Kubernetes, test some tools or learn about Kubernetes
resources, you would likely go with something like minikube, microk8s or kind.

Now we just highlighted two use cases for different types of Kubernetes clusters. What about
use cases where you want to run Kubernetes on really small devices, such as raspberry pis?
What about IoT devices? Generally, devices where you want to run containers effectively
without consuming too much resources.

In those cases, you could go with K3s.

What is K3s?

In short, k3s is half the size in terms of memory footprint than "normal Kubernetes". The
origin of k3s is Rio, which was developed by Rancher. However, they then decided to branch it
out of Rio into its own tool — which became K3s. It was more of a figure it out by doing it.

The important aspect of k3s is that it was oriented around production right from the
beginning.

You want to be able to run Kubernetes in highly resource constraint environments — which is
not always possible with pure Kubernetes.

https://youtu.be/fRcOSqD9p6w
https://github.com/k3s-io/k3s/blob/master/README.md
https://k3s.io/
https://rancher.com/docs/k3s/latest/en/

K3s is currently a CNCF sandbox project — the development is led by Rancher, which provides
Kubernetes as a service (?)

Instead of Docker, it runs Containerd — Note that Kubernetes itself is also moving to
Containerd as its container runtime. This does not mean that you will not be able to run
Docker containers. If I just scared you, please watch this video to clarify.

Designed based on the following goals:

1. Lightweight: Show work on small resource environment
2. Compatibility: You should be able to use most of the tools you can use with "normal k8s"
3. Ethos: Everything you need to use k3s is built right in

Btw: K3s is described as the second most popular Kubernetes distribution (Read in a Medium post,
please don't quote me on this)

How does k3s differ from "normal" Kubernetes?

https://youtu.be/FmLna7tHDRc

Do you have questions? We have answers!

Now I recorded last week an episode with Alex Ellis, who built k3sup, which can be used to
deploy k3s. Here are some of the questions that I had before the live recording that are
answered within the recording itself:

Let's hear a bit about the background of k3sup — how did it come about?
How are both pronounced?
How would you recommend learning about k3s — let's assume you are complete new,
where do you start?
Walking through the k3s architecture https://k3s.io/
What is the difference between k8s and k3s
When would I prefer to use k8s over k3s
What can I NOT do with k3s? Or what would I NOT want to do?
Do I need a VM to run k3s? It is mentioned in some blog posts — let's assume I do not
have a raspberry pi — I have a VM, you can set them up quite easily; why would I run K3s
on a VM?
So we keep discussing that this is great for a Kubernetes homelab or IoT devices — is
that not a bit of an overkills to use Kubernetes with it?
Is the single node k3s similar to microk8s — having one instance that is both worker
node

https://youtu.be/_1kEF-Jd9pw

Use cases for k3s:

https://youtu.be/FmLna7tHDRc
https://k3s.io/
https://youtu.be/_1kEF-Jd9pw

Use cases for k3s:

Single node clusters
Edge
IoT
CI
Development Environments and Test Environments
Experiments, useful for academia
ARM
Embedding K8s
Situations where a PhD in K8s clusterology is infeasible

Install k3s

There are three ways for installing k3s*

The quick way shown below directly with k3s
Supposedly easier way with k3s up
The long way that is detailed over several docs pages
https://rancher.com/docs/k3s/latest/en/installation/

*Actually there are several more ways to install k3s like highlighted in this video:

https://youtu.be/O3s3YoPesKs

This is the installation script:

Note that this might take up to 30 sec. Once done, you should be able to run

What it does

The K3s service will be configured to automatically restart after node reboots or if the
process crashes or is killed
Additional utilities will be installed, including kubectl, crictl,
ctr, k3s-killall.sh, and k3s-uninstall.sh
A kubeconfig file will be written to
/etc/rancher/k3s/k3s.yaml and the kubectl installed by K3s will automatically use it

Once this is done, you have to set-up the worker nodes that are used by k3s

curl -sfL https://get.k3s.io | sh -

k3s kubectl get node

f i |

https://rancher.com/docs/k3s/latest/en/installation/
https://youtu.be/O3s3YoPesKs
http://k3s-killall.sh/
http://k3s-uninstall.sh/

Once installed, access the cluster

Leverage the KUBECONFIG environment variable:

If you do not set KUBECONFIG as an environment variable,

Installing with k3sup

The following is taken from the k3sup README file

There is a lot to unpack... WHAT DOES THIS SENTENCE MEAN?

This tool uses ssh to install k3s to a remote Linux host. You can also use it to join existing
Linux hosts into a k3s cluster as agents.

If you want to get an A to Z overview, watch the following video

https://youtu.be/2LNxGVS81mE

If you are still wondering about what k3s, have a look at this video

https://youtu.be/-HchRyqNtkU

How is Kubernetes modified?

This is not a Kubernetes fork
Added rootless support
Dropped all third-party storage drivers, completely CSI is supported and preferred

Following this tutorial; note that there are many others that you could use — have a look at
their documentation:

curl -sfL https://get.k3s.io | K3S_URL=https://myserver:6443 K3S_TOKEN=mynodetoken sh -

export KUBECONFIG=/etc/rancher/k3s/k3s.yaml
kubectl get pods --all-namespaces
helm ls --all-namespaces

$ curl -sLS https://get.k3sup.dev | sh
$ sudo install k3sup /usr/local/bin/
$ k3sup --help

https://github.com/alexellis/k3sup
https://youtu.be/2LNxGVS81mE
https://youtu.be/-HchRyqNtkU

https://rancher.com/blog/2020/k3s-high-availability

Kustomize

100Days Resources
Video by Anais Urlichs
Add your blog posts, videos etc. related to the topic here!

Learning Resources
Their webiste has lots of amazing videos

Example Notes
Configuration Management for Kubernetes

— "A template free way to customize application configuration that simplifies the use of off-
the-shelf applications"

When I create a YAML, the manifests go into the API server of the main node; the cluster then
aims to create the resources within the cluster to match the desired state defined in the YAML

Different to what we have seen before in the videos, YAML can get super complex!
Additionally, there are several aspects of the state of our deployment that we want to
frequently change. Including:

Namespaces, Labels, Container Registry, Tags and more

Then, we have resources and processes that we want to change a bit less frequently, such as

Management Parameters
Environment-specific processes and resources
Infrastructure mapping

Kustomize allows you to specify different values of your Kubernetes resources for different
situations.

To make your YAML resources more dynamic and to apply variations between environments,
you can use Kustomize.

https://rancher.com/blog/2020/k3s-high-availability
https://youtu.be/Gc-nO3oxxk8
https://kustomize.io/

Let's get started using Kustomize

Install Kustomize — just reading about it is not going to help us.

Here is their official documentation

However, their options did not work for the Linux installation, which I also need on WSL — this
one worked:

https://weaveworks-
gitops.awsworkshop.io/20_weaveworks_prerequisites/15_install_kustomize.html

Kustomize is part of kubectl so it should work without additional installation using 'kubectl -k'
to specify that you want to use kustomize.

Next, scrolling through their documentation, they provide some amazing resources with
examples on how to use kubectl correctly — but I am looking for kustomize example

Have a look at their guides if you are curious https://kubectl.docs.kubernetes.io/guides/

So with kustomize, we want to have our YAML tempalte and then customize the values
provided to that resource manifest. However, each directory that is referenced within
kustomized must have its own kustomization.yaml file.

First, let's set-up a deployment and a service, like we did in one of the previous days.

The Deployment:

apiVersion: apps/v1
kind: Deployment
metadata:

https://kubectl.docs.kubernetes.io/installation/
https://weaveworks-gitops.awsworkshop.io/20_weaveworks_prerequisites/15_install_kustomize.html
https://kubectl.docs.kubernetes.io/guides/

The service

Now we want to customize that deployment with specific values.

Set-up a file called 'kustomization.yaml'

Within this file, we will specify specific values that we will use within our Deployment resource.
From a Kubernetes perspective, this is just another Kuberentes resource.

metadata:
 name: react-application
spec:
 replicas: 2
 selector:
 matchLabels:
 run: react-application
 template:
 metadata:
 labels:
 run: react-application
 spec:
 containers:
 - name: react-application
 image: anaisurlichs/react-article-display:master
 ports:
 - containerPort: 80
 imagePullPolicy: Always
 env:
 - name: CUSTOM_ENV_VARIABLE
 value: Value defined by Kustomize ❤️

apiVersion: v1
kind: Service
metadata:
 name: react-application
 labels:
 run: react-application
spec:
 type: NodePort
 ports:
 - port: 8080
 targetPort: 80
 protocol: TCP
 name: http
 selector:
 run: react-application

**resources:
 - deployment.yaml
 - service.yaml**

One thing worth mentioning here is that Kustomize allows us to combine manifests from
different repositories.

So once you want to apply the kustomize resources, you can have a look at the changed
resources:

this will give you the changed YAML files with whatever you had defined in your resources.

Now you can forward those resources into another file:

Now if you have kubectl running, you could specify the resource that you want to use through
:

-k refers here to - -kustomize, you could use that flag instead if you wanted to.

This will create our Deployment and service — basically all of the resources that have been
defined in your kustomization.yaml file

A different kustomization.yaml

Use this within one environment

And this file for the other environment

kustomize build .

kustomize build . > mydeployment.yaml

kubectl create -k .

kubectl get pods -l <label specifying your resources>

resources:
- ../../base
namePrefix: dev-
namespace: development
commonLabels:
 environment: development

resources:
- ../../base
namePrefi : prod

Create the new file that includes kustomize and the original resources

Check-out the video for more 🙂

Resources

For a comprehensive overview: https://www.youtube.com/watch?v=Twtbg6LFnAg&t=137s

And another hands-on walkthrough: https://youtu.be/ASK6p2r-Yrk

A really good blog post on Kustomize: https://blog.scottlowe.org/2019/09/13/an-introduction-
to-kustomize/

Terraform

100Days Resources
Video by Anais Urlichs
Add your blog posts, videos etc. related to the topic here!

Learning Resources
https://youtu.be/UleogrJkZn0
https://youtu.be/HmxkYNv1ksg
https://youtu.be/l5k1ai_GBDE
https://learn.hashicorp.com/tutorials/terraform/kubernetes-provider?in=terraform/use-
case
https://registry.terraform.io/providers/hashicorp/kubernetes/latest/docs/guides/getting-
started

Example Notes

namePrefix: prod-
namespace: production
commonLabels:
 environment: production
 sre-team: blue

kustomize build . > mydeployment.yaml

https://www.youtube.com/watch?v=Twtbg6LFnAg&t=137s
https://youtu.be/ASK6p2r-Yrk
https://blog.scottlowe.org/2019/09/13/an-introduction-to-kustomize/
https://youtu.be/pbrsrKFhohk
https://youtu.be/UleogrJkZn0
https://youtu.be/HmxkYNv1ksg
https://youtu.be/l5k1ai_GBDE
https://learn.hashicorp.com/tutorials/terraform/kubernetes-provider?in=terraform/use-case
https://registry.terraform.io/providers/hashicorp/kubernetes/latest/docs/guides/getting-started

With Terraform, you have a DevOps first approach. It is an open-source tools, original
developed by HashiCorp

It is an infrastructure provisioning tool that allows you to store your infrastructure set-up as
code.

Normally, you would have:

1. Provisioning the Infrastructure
1. Usually has top be done within a specific order

2. Deploying the application

It has a strong open community and is pluggable by design — meaning that it is used by vast
number of organisations

Allows you to manage your infrastructure as code in a declarative format.

What would be the alternative?

Pressing buttons in a UI — the problem with this is that it is not repeatable across
machines

Especially important in the microservices world! It would otherwise be more time-consuming
and error-prone to set-up all the resources needed for every microservice.

What is a declarative approach?

Current state vs. desired state

Define what the end-result should be.

When you are first defining your resources, this is less needed. However, once you are adding
or changing resources, this is a lot more important. It does not require you to know how
many resources and what resources are currently available but it will just compare what is the
current state and what has to happen to create the desired state.

Different stages of using Terraform:

1. Terraform file that defines our resources e.g. VM, Kubernetes cluster, VPC
2. Plan Phase — Terraform command: Compares the desired state to what currently exists

on our cluster
if everything looks good:
3. Apply Phase: Terraform is using your API token to spin up your resources

When you defined your Terraform resources, you define a provider:

Connects you to a cloud provider/infrastructure provider. A provider can also be used to spin
up platforms and manage SAAS offerings

https://www.hashicorp.com/

So, beyond IAAS, you can also manage other platforms and resources through Terraform.

You can configure your provider in either of the following ways:

1. Use cloud-specific auth plugins (for example, eks get-token , az get-token , gcloud
config)

2. Use oauth2 token
3. Use TLS certificate credentials
4. Use kubeconfig file by setting both [config_path]

(https://registry.terraform.io/providers/hashicorp/kubernetes/latest/docs#config_pat

and [config_context]
(https://registry.terraform.io/providers/hashicorp/kubernetes/latest/docs#config_con

5. Use username and password (HTTP Basic Authorization)

Let's try out Terraform

1. Install Terraform
2. Initialise cloud provider
3. Run "terraform init"
4. Set-up a security group
5. Make sure that you set up the file
6. Try whether or not it works with "terraform plan" . Here we would expect something to

add but not necessarily something to change or to destroy.
7. Don't display your credentials openly, you would probably want to use something like

Ansible vault or similar to store your credentials, do not store in plain text
8. Once we have finished setting up our resources, we want to destroy them "terraform

destroy"

tf is the file extension that Terraform uses

Note that you can find all available information on a data source.

Common question: What is the difference between Ansible and Terraform

1. They are both used for provisioning the infrastructure
2. However, Terraform also has the power to provision the infrastructure
3. Ansible is better for configuring the infrastructure and deploying the application
4. Both could be used in combination

I am doing this example on my local kind cluster — have a look at one of the previous videos
to see how to set-up kind

https://registry.terraform.io/providers/hashicorp/kubernetes/latest/docs/guides/getting-started#provider-setup
https://registry.terraform.io/providers/hashicorp/kubernetes/latest/docs#statically-defined-credentials
https://registry.terraform.io/providers/hashicorp/kubernetes/latest/docs#statically-defined-credentials
https://learn.hashicorp.com/tutorials/terraform/install-cli?in=terraform/aws-get-started

We are using a mixture of the following tutorials

https://registry.terraform.io/providers/hashicorp/kubernetes/latest/docs/guides/getting-
started
https://learn.hashicorp.com/tutorials/terraform/kubernetes-provider?in=terraform/use-
case

Create your cluster e.g. with kind

kind-config.yaml

Then run

For our terraform.tfvar file, we need the following information

[host](https://learn.hashicorp.com/tutorials/terraform/kubernetes-provider?

in=terraform/use-case#host) corresponds with clusters.cluster.server .
[client_certificate](https://learn.hashicorp.com/tutorials/terraform/kubernetes-

provider?in=terraform/use-case#client_certificate) corresponds with
users.user.client-certificate .
[client_key](https://learn.hashicorp.com/tutorials/terraform/kubernetes-provider?

in=terraform/use-case#client_key) corresponds with users.user.client-key .
[cluster_ca_certificate]

(https://learn.hashicorp.com/tutorials/terraform/kubernetes-provider?

in=terraform/use-case#cluster_ca_certificate) corresponds with
clusters.cluster.certificate-authority-data .

To get those, run:
"kubectl config view --minify --flatten --context=kind-terraform-learn"

kind: Cluster
apiVersion: kind.x-k8s.io/v1alpha4
nodes:
- role: control-plane
 extraPortMappings:
 - containerPort: 30201
 hostPort: 30201
 listenAddress: "0.0.0.0"

kind create cluster --name terraform-learn --config kind-config.yaml

terraform.tfvars

host "https://127 0 0 1:32768"

https://registry.terraform.io/providers/hashicorp/kubernetes/latest/docs/guides/getting-started
https://learn.hashicorp.com/tutorials/terraform/kubernetes-provider?in=terraform/use-case

This is our terraform .tf file

host = "https://127.0.0.1:32768"
client_certificate = "LS0tLS1CRUdJTiB..."
client_key = "LS0tLS1CRUdJTiB..."
cluster_ca_certificate = "LS0tLS1CRUdJTiB..."

terraform {
 required_providers {

k bernetes {

 kubernetes = {
 source = "hashicorp/kubernetes"
 }
 }
}

variable "host" {
 type = string
}

variable "client_certificate" {
 type = string
}

variable "client_key" {
 type = string
}

variable "cluster_ca_certificate" {
 type = string
}

provider "kubernetes" {
 host = var.host

 client_certificate = base64decode(var.client_certificate)
 client_key = base64decode(var.client_key)
 cluster_ca_certificate = base64decode(var.cluster_ca_certificate)
}

resource "kubernetes_namespace" "test" {
 metadata {
 name = "nginx"
 }
}
resource "kubernetes_deployment" "test" {
 metadata {
 name = "nginx"
 namespace = kubernetes_namespace.test.metadata.0.name
 }
 spec {
 replicas = 2
 selector {
 match_labels = {
 app = "MyTestApp"
 }
 }
 template {
 metadata {
 labels = {
 app = "MyTestApp"
 }
 }
 spec {
 container {

Now we can run

Make sure that all your resources are within the right path and it should work.

Crossplane

100Days Resources
Video by Anais Urlichs
Add your blog posts, videos etc. related to the topic here!

Learning Resources

co ta e {
 image = "nginx"
 name = "nginx-container"
 port {
 container_port = 80
 }
 }
 }
 }
 }
}
resource "kubernetes_service" "test" {
 metadata {
 name = "nginx"
 namespace = kubernetes_namespace.test.metadata.0.name
 }
 spec {
 selector = {
 app = kubernetes_deployment.test.spec.0.template.0.metadata.0.labels.app
 }
 type = "NodePort"
 port {
 node_port = 30201
 port = 80
 target_port = 80
 }
 }
}

terraform init

terraform plan

terraform apply

https://youtu.be/Dw0SMLHZvXM

The Website https://crossplane.io/
The Docs https://crossplane.io/docs/v1.0/

Example Notes
Some Highlights from their website:

Crossplane is an open source Kubernetes add-on that supercharges your Kubernetes
clusters enabling you to provision and manage infrastructure, services, and applications
from kubectl.

Crossplane is a CNCF sandbox project which extends the Kubernetes API to manage and
compose infrastructure.

Crossplane introduces multiple building blocks that enable you to provision, compose, and
consume infrastructure using the Kubernetes API. These individual concepts work together to
allow for powerful separation of concern between different personas in an organization,
meaning that each member of a team interacts with Crossplane at an appropriate level of
abstraction.

Crossplane uses Kubernetes Custom Resource Definitions to manage your infrastructure and
resources. Basically, all of the resources used are Kubernetes resources themselves, making it
possible for Crossplane to interact with any other Kubernetes Resources.

In short, Crossplane manages all of your resources through a Kubernetes API.

The Benefits:

1. Manage your infrastructure directly through kubectl
2. Supports infrastructure from all major cloud providers + the maintainers are

consistently working on new providers
3. You can build your own infrastructure abstraction on top of Crossplane
4. Crossplane is based on CRD, so you can run it anywhere + it is extensible
5. One place of truth for your infrastructure
6. Use custom APIs to manage policies, hiding infrastructure complexity and safely

customise application
7. Declarative Infrastructure Configuration — infrastructure managed through Crossplane

is accessible via kubectl, configurable with YAML, and self-healing right out of the box.

GitOps best practices

Crossplane can be combined with CI/CD pipelines this allows to implement GitOps best

https://crossplane.io/
https://crossplane.io/docs/v1.0/

Crossplane can be combined with CI/CD pipelines, this allows to implement GitOps best
practices. GitOps is a deployment strategy, whereby everything, the desired state of the
application is defined in git.

infrastructure configuration that can be versioned, managed, and deployed using your
favorite tools and existing processes

To use crossplane you initially need any type of Kubernetes Cluster — it could be Minikube,
where you then install it! Once you have access to the Crossplane Kubernetes resources

On their own, custom resources let you store and retrieve structured data. When you
combine a custom resource with a custom controller, custom resources provide a true
declarative API.

Install Crossplane

Crossplane combines custom resource definitions and custom controllers — those are both
Kubernetes resources. So you install Kubernetes resources that are used to manage
Crossplane.

https://crossplane.io/docs/v1.0/getting-started/install-configure.html#start-with-a-self-
hosted-crossplane

Prerequisites

1. Have kubectl installed
2. Have Helm installed
3. Have a local Kubernetes cluster, or any Kubernetes cluster
4. Have access to the account e.g. Azure or Google where you want to provision your

infrastructure

First, you need to install Corssplane on a Kubernetes cluster. Note that this can be any
cluster, it does not have to be the cluster that you will be using Crossplane on to provision
Infrastructure. This just provides the Corssplane interface for you to be able to use
Corssplane. For instance, in my case, I am going to be using Crossplane on my Docker Cluster
and then povision Infrastructure on Azure.

Note that we are going the self-provisioned route:

https://crossplane.io/docs/v1.0/getting-started/install-configure.html#start-with-a-self-hosted-crossplane

Check that all resources are running properly

Next, we can install the Crossplane CLI that will be used in combination with kubectl:

Depending on the provider that you want to use, you can select Azure, GCP, AWS, or Alibaba
(as of the time of writing)

On the same cluster that you installed the previous resources on:

Now wait until the Provider becomes healthy:

Now it will get a bit tricks. If you are using Azure, make sure that you are logged into your
account. For that, first install the Azure CLI :

And then login with:

Once you are logged in, you can run the following commands

kubectl create namespace crossplane-system

helm repo add crossplane-stable https://charts.crossplane.io/stable
helm repo update

helm install crossplane --namespace crossplane-system crossplane-stable/crossplane

helm list -n crossplane-system

kubectl get all -n crossplane-system

curl -sL https://raw.githubusercontent.com/crossplane/crossplane/release-1.0/install.sh
| sh

kubectl crossplane install provider crossplane/provider-azure:v0.14.0

kubectl get provider.pkg --watch

curl -sL https://aka.ms/InstallAzureCLIDeb | sudo bash

az login

**# create service principal with Owner role
az ad sp create-for-rbac --sdk-auth --role Owner > "creds.json"

Note that some of them might not work if you are not at least an owner within your Azure
account.

Lastly we need to set-up a Provider Secret and our Provider

Now either create the following file ProviderConfig.yaml

And then run

Note that you might have to modify the file path depending on where the file is stored at.

Alternatively, you can run the following command

we need to get the clientId from the json file to add Azure Active Directory
permissions.
if which jq > /dev/null 2>&1; then
 AZURE_CLIENT_ID=$(jq -r ".clientId" < "./creds.json")
else
 AZURE_CLIENT_ID=$(cat creds.json | grep clientId | cut -c 16-51)
fi

RW_ALL_APPS=1cda74f2-2616-4834-b122-5cb1b07f8a59
RW_DIR_DATA=78c8a3c8-a07e-4b9e-af1b-b5ccab50a175
AAD_GRAPH_API=00000002-0000-0000-c000-000000000000

az ad app permission add --id "${AZURE_CLIENT_ID}" --api ${AAD_GRAPH_API} --api-
permissions ${RW_ALL_APPS}=Role ${RW_DIR_DATA}=Role
az ad app permission grant --id "${AZURE_CLIENT_ID}" --api ${AAD_GRAPH_API} --expires
never > /dev/null
az ad app permission admin-consent --id "${AZURE_CLIENT_ID}"**

**kubectl create secret generic azure-creds -n crossplane-system --from-
file=key=./creds.json**

apiVersion: azure.crossplane.io/v1beta1
kind: ProviderConfig
metadata:
 name: default
spec:
 credentials:
 source: Secret
 secretRef:
 namespace: crossplane-system
 name: azure-creds
 key: key

kubectl apply --file ./ProviderConfig.yaml

kubectl apply -f https://raw.githubusercontent.com/crossplane/crossplane/release-
1.0/docs/snippets/configure/azure/providerconfig.yaml

Provision Infrastructure

This step is pretty straight forward — we can set-up a Kubernetes Yaml file that allows us to
create a Kubernetes Service i.e. a Cluster on Azure:

E.g. we will name is aks in our case

Have a look at the Azure documentation on how the YAML has to be defined to create
different services.

Once we apply the YAML

We can go ahead and have a look at the created resources

We can watch the provisioning of our cluster through

apiVersion: azure.crossplane.io/v1alpha3
kind: ResourceGroup
metadata:
 name: CHANGE_ME_RESOURCE_GROUP
spec:
 location: eastus

apiVersion: compute.azure.crossplane.io/v1alpha3
kind: AKSCluster
metadata:
 name: anais-demo
spec:
 location: eastus
 version: "1.19.7"
 nodeVMSize: Standard_D2_v2
 resourceGroupNameRef:
 name: CHANGE_ME_RESOURCE_GROUP
 dnsNamePrefix: dt
 nodeCount: 3

kubectl apply --filename ./aks.yaml

kubectl get resourcegroups

watch kubectl get aksclusters

k bectl describe akscl sters

And connect to our Azure cluster as well

Something that Terraform, Pulumi etc. does not have — this is a feature of Crossplane

1. Correct cluster manually — do what should not be done
2. Crossplane will keep whatever state we defined before, even if we change the state of

our cluster through the UI

Add a node pool to see how crossplane will downscale the pool

The next step is using GitOps to deploy our infrastructure

Install and application

I have already set-up the example Azure voting app. Now I will deploy those resources

And we can get the service resource with

Since this is a service of type LoadBalancer, we can access it through the External-IP

Uninstall Provider

Let’s check whether there are any managed resources before deleting the
provider.

kubectl get managed

If there are any, please delete them first, so you don’t lose the track of them.
Then delete all
the ProviderConfig s you created. An example command if you used
AWS Provider:

kubectl describe aksclusters

az aks get-credentials --resource-group myResourceGroup --name myAKSCluster

az aks get-credentials --resource-group anais-resource --name anais-crossplane-demo

az aks nodepool add \
 --resource-group myResourceGroup \
 --cluster-name myAKSCluster \
 --name mynodepool \
 --node-count 3

kubectl apply -f ./app/voting.yaml

kubectl get service azure-vote-front --watch

kubectl delete providerconfig.aws --all

List installed providers:

kubectl get provider.pkg

Delete the one you want to delete:

kubectl delete provider.pkg <provider-name>

Uninstall Crossplane

`helm delete crossplane --namespace crossplane-system

kubectl delete namespace crossplane-system`

Helm does not delete CRD objects. You can delete the ones Crossplane created with
the
following commands:

kubectl patch lock lock -p '{"metadata":{"finalizers": []}}' --type=merge kubectl get

crd -o name | grep crossplane.io | xargs kubectl delete

Connecting Crossplane with ArgoCD

https://aws.amazon.com/blogs/opensource/connecting-aws-managed-services-to-your-argo-
cd-pipeline-with-open-source-crossplane/

Helm

100Days Resources
Video by Anais Urlichs
Add your blog posts, videos etc. related to the topic here!

Learning Resources
https://codefresh.io/helm-tutorial/getting-started-with-helm-3/
https://helm.sh/docs/intro/install/

https://github.com/cdwv/awesome-helm
Tutorial with Helm example deployments with Mr Podtato Head

https://aws.amazon.com/blogs/opensource/connecting-aws-managed-services-to-your-argo-cd-pipeline-with-open-source-crossplane/
https://youtu.be/hOaA_VYhKV8
https://codefresh.io/helm-tutorial/getting-started-with-helm-3/
https://helm.sh/docs/intro/install/
https://github.com/cdwv/awesome-helm
https://github.com/cncf/podtato-head

Example Notes
In its simplest form, Helm is a package manager for Kubernetes. It is basically used to manage
Kubernetes Applications through Helm templates.

The combination of Helm templates and values is called a Helm Chart

The goal: Make Kubernetes resources more accessible.

Helm 3 is SUPER different from Helm 2 — NO MORE TILLER For more information, please refer
to this guide.

Each release goes through multiple stages, including its installation, upgrade, removal, and
rollback. With Helm, you can group multiple microservices together and treat them as one
entity. You can either create your own chart or use an existing one from Helm Artifact Hub.
Once your application is packaged into a Helm chart, it can easily be shared and deployed on
Kubernetes. Source

Charts make it super easy to:

Create Kubernetes Manifests,
Version your Kubernetes resources
Share your resources
And publish your resources

"Helm is a graduated project in the CNCF and is maintained by the Helm community."

You can also reuse existing charts, there is a separate site for Helm Charts
https://artifacthub.io/

Imagine this to be similar to the Docker Hub — just for Kubernetes in Chart format (don't
quote me on this please)

What you need to use Helm:

1. A machine
2. Kubernetes — kubectl installed
3. A Kubernetes cluster (ANY cluster should be fine for our purposes)
4. Install Helm
5. USE Helm

Who would I recommend to use Helm

1. If you are a completely beginner — you don't have to know Kubernetes — take complex
business knowledge, pack it up so that other people can use it

https://codefresh.io/helm-tutorial/getting-started-with-helm-3/
https://artifacthub.io/

2. If you are going advanced
3. Not necessarily for HUGE applications

We are using Helm

To install Helm, head over to the

Installation Guide: https://helm.sh/docs/intro/install/

Ensure that Helm is actually available on your machine:

Now, you can get started super easy just by running

This will create a basic Helm boiler template. Have a look at the presentation that walked
through the different files that we have within that Helm chart.

The Chart Structure

Now before we actually install our Helm Chart, we want to make sure that it is all set-up
properly

This will populate our templates with Kubernetes manifests and display those within the
console. The benefit is that if you are already familiar with Kubernetes manifests, you will be
able to cross-check the Kubernetes resource — and, if needed, make changes to your
Kubernetes resources.

Once we are happy with what Helm will create, we can run:

Note that in this case, the name of my chart is "example-chart" you can name your chart
however, you want to; just make sure that your are specifying the right path to your Helm

helm version

mkdir charts

cd charts

helm create example-chart

helm install --dry-run --debug example-chart ./example-chart

helm install example-chart ./example-chart

https://helm.sh/docs/intro/install/

chart.

Now we can have a look at the installed chart:

And the history of events of our installed Chart:

If you are using Helm for your deployments, you want to store your Helm charts within a Helm
repository. This will allow you to access your Helm charts over time.

Once you have deployed a Helm Chart, you can also upgrade it with new values

To remove our example chart:

Second Helm Exercise

Helm Commands

Search for all helm repositories on the helm hub: https://artifacthub.io/

Add a repositories

From https://artifacthub.io/packages/helm/bitnami/mysql

List repositories all repositories that you have installed

Search within a repository

helm ls

helm history example-chart

helm upgrade [RELEASE] [CHART] [flags]

helm delete example-chart

helm search hub

helm repo add <name> <repository link>
e.g. helm repo add bitnami https://charts.bitnami.com/bitnami

helm repo list

https://artifacthub.io/
https://artifacthub.io/packages/helm/bitnami/mysql

Instead of using the commands, you can also search the chart repository online.

To upgrade the charts in your repositories

Install a specific chart repository

Note that you can either ask Helm to generate a name with the —generate-name flag,

or you can provide the name that you want to give the chart by defining it after install

Check the entities that got deployed within a specific cluster:

List all the charts that you have deployed with the following command

To remove a chart use

In the next section, we are going to look at ways that you can customize your chart.

Helm Part 2

Setting up and modifying Helm Charts

100Days Resources
Video by Anais Urlichs
Add your blog posts, videos etc. related to the topic here!

Learning Resources

helm search repo <name>

helm repo update

helm install stable/mysql --generate-name

helm install say-my-name stable/mysql

helm ls

helm uninstall <name of the chart>

https://youtu.be/dvQErXPnjtI

https://helm.sh/docs/chart_template_guide/getting_started/

Example Notes
Charts are the packages that Helm works with — these are then turned into Kubernetes
manifests and installed on your cluster.

You can easily go ahead and create a chart template

Chart names must be lower case letters and numbers. Words may be separated with
dashes (-)
YAML files should be indented using two spaces (and never tabs).

This chart is based on the nginx image.

This chart template is especially useful if you are developing a stateless chart — we will cover
other starting points later on.

With the following command, you can go ahead and install the chart

as we have seen in the previous days.

Note that your Kubernetes cluster needs to have access to the Docker Hub to pull the image
from there and use it.

This chart runs Nginx out of the box — the templates within the charts are used to set-up the
Kubernetes manifests.

Helm Template Syntax and creating Templates

Helm uses the Go text template engine provided as part of the Go standard library. The
syntax is used in kubectl (the command-line application for Kubernetes) templates, Hugo
(the static site generator), and numerous other applications built in Go.

Note that you do not have to know Go to create templates.

To pass custom information from the Chart file to the template file you have to use

helm create <name of your choice>

helm install <chart name> <location of your chart>

To pass custom information from the Chart file to the template file, you have to use
annotation.

You can control the flow of the template generation using:

if/else for creating conditional blocks.

The syntax is providing an "if/then" logic — which makes it possible to have default
values if no custom values are provided within the values.yaml file.

with to set a scope to a particular object

while the values.yaml file contains

In this example the scope is changed from the current scope which is . to another
object which is .Values.image .
Hence, my-repo , always and 1.2.3 were
referenced without specifying .Values.images. .

WARNING: Other objects can not be accessed using . from within a
restricted scope. A solution to this scenario will be
using variables $.

range , which provides a "for each"-style loop

{{- if .Values.ingress.enabled -}}
...
{{- else -}}
Ingress not enabled
{{- end }}

containers:
 - name: {{ .Release.name }}
 {{- with .Values.image }}
 image:
 repository: .repo
 pullPolicy: .pullPolicy
 tag: .tag
 {{- end }}

image:
 repo: my-repo
 pullPolicy: always
 tag: 1.2.3

with the values.yaml file contains

Note that range too changes the scope. But to what?
In each loop the scope
becomes a member of the list. In this case, .Values.cars is a list of strings, so each
iteration the
scope becomes a string. In the first iteration . is set to BMW . The
second iteration, it is set to Ford and in the third
it is set to Hyundai . Therefore,
each item is referenced using .

while the values.yaml file contains

In this case, .Values.env is a list of dictonary, so each iteration the scope becomes
a dictionary.
For example, in the first iteration, the . is the first dictionary {name:
envVar1, value: true} .
In the second iteration the scope is the dictionary {name:

envVar2, value: 5} and so on.
In addition, you can perform a pipeline on the value
of .name or .value as shown.

cars: |-
 {{- range .Values.cars }}
 - {{ . }}
 {{- end }}

cars:
 - BMW
 - Ford
 - Hyundai

containers:
 - name: {{ .Release.name }}
 env:
 {{- range .Values.env }}
 - name: {{ .name }}
 value: {{ .value | quote }}
 {{- end }}

env:
 - name: envVar1
 value: true
 - name: envVar2
 value: 5
 - name: envVar3
 value: helmForever

Special Functions

With the include function, objects from one template can be used within another
template; the first argument is the name of the template, the "." that is passed in
refers to the second argument in the root object.

With the required function, you can set a parameter as required. In case it's not
passed a custom error message will be prompted.

You can also add your own variables to tempaltes

The "toYaml" function turns data into YAML syntax

Helm has the ability to build a chart archive. Each chart archive is a gzipped TAR file with
the extension .tgz. Any tool that can create, extract, and otherwise work on gzipped TAR
files will work with Helm’s chart archives. Source. Learning Helm Book

Pipelines

In Helm, a pipeline is a chain of variables, commands and functions which is used to alter a
value before placing it in the values.yaml file.

The value of a variable or the output of a function is used as the input to the next
function in a pipeline. The output of the final element of a pipeline is the output of the
pipeline. The following illustrates a simple pipeline:
character: {{ .Values.character |
default "Sylvester" | quote }}

Writing maintainable templates, here are the suggestions by the maintainers

You may go long periods without making structural changes to the templates in a chart
and then come back to it. Being able to quickly rediscover the layout will make the

metadata:
 name: {{ include "helm-example.fullname" . }}

image:
 repository: {{ required "An image repository is required"
.Values.image.repository }}

{{ $var := .Values.character }}

processes faster.

Other people will look at the templates in charts. This may be team members who create the
chart or those that consume it. Consumers can, and sometimes do, open up a chart to
inspect it prior to installing it or as part of a process to fork it.

When you debug a chart, which is covered in the next section, it is easier to do so with some
structure in the templates.

You can package your Helm chart with the following command.

It is important to think of a Helm chart as a package.
This package can be published to a public
or private repository.
Helm repositories can also be hosted in GitHub, GitLab pages, object
storage and using Chartmuseum.
You can also find charts hosted in many distributed
repositories hosted by numerous people and organizations through Helm Hub (aka Artifact
Hub).

K9s

100Days Resources
Video by Anais Urlichs
Add your blog posts, videos etc. related to the topic here!

Learning Resources
The GitHub repository
Overview Medium Post

Example Notes
Managing your kubernetes cluster through kubectl commands is difficult.

You have to understand how the different components interact, specifically, what
resources is linked to which other resource

Using a UI usually abstracts all the underlying resources, not allowing for the right
learning experience to take place + forcing your to click buttons

helm package <chart name>

https://artifacthub.io/
https://youtu.be/5Nhbl6LwP2o
https://github.com/derailed/k9s
https://medium.com/flant-com/k9s-terminal-ui-for-kubernetes-aeead8b0303f

You do not have full insights on the resources within your cluster.

These are some of the aspects that K9s can help with.

This is a short intro and tutorial with examples on how you can use K9s to navigate your
cluster

What is k9s?

K9s is a terminal-based tool that visualises the resources within your cluster and the
connection between those. It helps you to access, observe, and manage your resources. "K9s
continually watches Kubernetes for changes and offers subsequent commands to interact
with your observed resources." — Taken from their GitHub repository

Installation options:

Homebrew MacOS and Linux
OpenSUSE
Arch Linux
Chocolatey for Windows
Install via Go
Install from source
Run from Docker container

As you can see there are multiple different options and I am sure you will find the right one
for you and your OS.

Some additional features:

1. Customise the color settings
2. Key Bindings
3. Node Shell
4. Command Aliases
5. HotKeySpport
6. Resource Custom Columns
7. Plugins
8. Benchmark your Application

Have a look at their website for more comprehensive information

Getting up and running

https://github.com/derailed/k9s#key-bindings

The configuration for K9s is kept in your home directory under .k9s $HOME/.k9s/config.yml.

You can find a detailed explanation on what the file is here: https://k9scli.io/topics/config/

Note that the definitions may change over time with new releases.

To enter the K9s, just type k9s into your terminal.

Show everything that you can do with K9s, just type

Or press:

Which will show a more comprehensive list.

Search for specific resources type

The name could for instance refer to "pods", "nodes", "rs" (for ReplicaSet) and other
Kubernetes resources that you have already been using. Once you have selected a resource,
for instance, a namespace, you can search for specific namespaces using "/"

Have a look at deployments

To switch between your Kubernetes context type:

You can also add the context name after the command if you want to view your Kubernetes
context and then switch.

To delete a resource type press: ctrl-d

To kill a resource, use the same command but with k: ctrl-k

Change how resourc4es are displayed:

To exist K9s either type

?

ctrl-a

:<name>

:dp

:ctx

:xray RESOURCE

https://k9scli.io/topics/config/

Or press: ctrl-c

k9s interaction with Kubernetes

If you are changing the context or the namespace with kubectl, k9s will automatically know
about it and show you the resources within the namespace.

Alternatively, you can also specify the namespace through K9s like detailed above.

k9s for further debugging and benchmarking

K9s integrates with Hey, which is a CLI tool used to benchmark HTTP endpoints. It currently
supports benchmarking port-forwards and services (Source)

To port forward, you will need to selects a pod and container that exposes a specific port
within the PodView.

With SHIFT-F a dialog will pop up and allows you to select the port to forward to.

Once you have selected that, you can use

to navigate to the PortForward view and list out all active port-forward.

Selecting port-forward + using CTRL-B will run a benchmark on that http endpoint.

You can then view the results of the benchmark through

Keep in mind that once you exit the K9s session, the port-forward will be removed, forwards
only last for the duration of the session.

Each cluster has its own bench-config that can be found at $HOME/.k9s/bench-
<my_context>.yml

You can find further information here.

You can debug processes using

:q

:pf

:be

https://k9scli.io/topics/bench/
https://k9scli.io/topics/bench/

You can debug processes using

Change Look

You can change the look of your K9s by changing the according YAML in your .k9s folder.

Here is where the default skin lives: skin.yml

You can find example skin files in the skins directory:
https://github.com/derailed/k9s/tree/master/skins

View all the color definitions here: https://k9scli.io/topics/skins/

For further information on how to optimise K9s, check-out their video tutorials.

Knative

100Days Resources
Video by Anais Urlichs
Add your blog posts, videos etc. related to the topic here!

Learning Resources
Their documentation

Example Notes
Kubernetes-based platform to deploy and manage modern serverless workloads. Knative's
serving component incorporates Istio, which is an open source tool developed by IBM,
Google, and ridesharing company Lyft to help manage tiny, container-based software services
known as microservices.

Introduce event-driven and serverless capabilities to Kubernetes clusters. Knative combines
two interesting concepts Serverless and Kubernetes Container Orchestration. With

Kubernetes, developers have to set-up a variety of different tools to make everything work
together, this is time consuming and difficult for many. Knative wants to bring the focus back

k9s -l debug

https://github.com/derailed/k9s/tree/master/skins
https://k9scli.io/topics/skins/
https://k9scli.io/topics/video/
https://youtu.be/rZKaju9h7fQ
https://knative.dev/docs/

on writing code instead of managing infrastructure.

Knative allows us to make it super easy to deploy long-running stateless application on top of
Kubernetes.

What is Knative?

A Kubernetes extension consistent of custom controllers and custom resource definitions
that enable new use cases on top of Kubernetes.

A platform installed on top of Kubernetes that brings serverless capabilities to Kubernetes —
with its additional features, it makes it super easy to go serverless on top of Kubernetes.

The Goal: Making microservice deployments on Kubernetes really easy.+

Serverless style user experience that lives on top of Kubernetes.

It consists of three major components:

1. Note that this part has been deprecated but you will still find it in a lot of tutorials. Build:
Every developer has code — then turn it into a container — either one step or consistent
of multiple step. Next, push the image to a cloud registry. These are a lot of steps —
Knative can do all of this within the cluster itself, making iterative development possible.

2. Serve: Knative comes with Istio components, traffic management, automatic scaling. It
consists of the Route and the Config — every revision of our service is managed by the
config

3. Event: You need triggers that are responded to by the platform itself — it allows you to
set-up triggers. Also, you can integrate the eventing with your ci/cd flow to kick off your
build and serve stages.

Note that you can use other Kubernetes management tools together with Knative

Features:

Focused API with higher level abstractions for common app use-cases.
Stand up a scalable, secure, stateless service in seconds.
Loosely coupled features let you use the pieces you need.
Pluggable components let you bring your own logging and monitoring, networking, and
service mesh.
Knative is portable: run it anywhere Kubernetes runs, never worry about vendor lock-in.
Idiomatic developer experience, supporting common patterns such as GitOps,
DockerOps, ManualOps.

Knative can be used with common tools and	frameworks such as Django, Ruby on Rails,
Spring, and many more.

Knative offers several benefits for Kubernetes users wanting to take their use of containers to
the next level:

Faster iterative development: Knative cuts
valuable time out of the container building
process, which enables you
to develop and roll out new container versions more quickly.
This makes
it easier to develop containers in small, iterative steps, which is a
key tenet of
the agile development process.
Focus on code: DevOps may empower developers to administer their own
environments, but at the end of the day, coders want to code. You want to focus on
building
bug-free software and solving development problems, not on configuring
message bus queues for event triggering or managing container
scalability. Knative
enables you to do that.
Quick entry to serverless computing: Serverless
environments can be daunting to set
up and manage manually. Knative
allows you to quickly set up serverless workflows. As
far as the
developers are concerned, they’re just building a container—it’s Knative that
runs it as a service or a serverless function behind the scenes.

There are two core Knative components that can be installed and used together or
independently to provide different functions:

Knative Serving: Provides request-driven compute that can scale to 0. The Serving
component is responsible for running/hosting your application.
Easily manage stateless
services on Kubernetes by reducing the developer effort required for autoscaling,
networking, and rollouts.
Knative Eventing: Management and delivery of events — manage the event
infrastructure of your application.
Easily route events between on-cluster and off-cluster
components by
exposing event routing as configuration rather than embedded in code.

These components are delivered as Kubernetes custom resource definitions (CRDs), which
can be configured by a cluster administrator to provide default settings for developer-created
applications and event
workflow components.

Additionally, knative keeps track of your revisions.

Revisions

1. Revisions of your application are used to scale up the resources once you receive more
requests

2. If you are deploying a change/update, revisions can also be used to gradually move
traffic from revision 1 to revision 2

3. You can also have revisions that are not part of the networking scheme — in which case,
they have a dedicate name and endpoint.

Prerequisites

Kubernetes cluster with v1 17 or newer note that most have 1 18 already by default but

https://www.ibm.com/cloud/learn/devops-a-complete-guide
https://knative.dev/docs/serving/
https://knative.dev/docs/eventing/

Kubernetes cluster with v1.17 or newer, note that most have 1.18 already by default but
you might want to check
Kubectl that is connected to your cluster

The resources that are going to be deployed through Serving

Knative Serving defines a set of objects as Kubernetes Custom Resource
Definitions (CRDs).
These objects are used to define and control how your
serverless workload behaves on the
cluster:

Service:
The service.serving.knative.dev resource automatically manages the whole
lifecycle of your workload. It controls the creation of other objects to
ensure that your
app has a route, a configuration, and a new revision for each
update of the service.
Service can be defined to always route traffic to the
latest revision or to a pinned
revision.
Route:
The route.serving.knative.dev resource maps a network endpoint to one or
more revisions. You can manage the traffic in several ways, including
fractional traffic
and named routes.
Configuration:
The configuration.serving.knative.dev resource maintains the desired
state
for your deployment. It provides a clean separation between code and
configuration and follows the Twelve-Factor App methodology. Modifying a
configuration
creates a new revision.
Revision:
The revision.serving.knative.dev resource is a point-in-time snapshot of the
code and configuration for each modification made to the workload. Revisions
are
immutable objects and can be retained for as long as useful. Knative
Serving Revisions
can be automatically scaled up and down according to
incoming traffic. See
Configuring
the Autoscaler for more
information.

With the Service resource, a deployed service will automatically have a matching route and
configuration created. Each time the Service is updated, a new revision is created.

Configuration creates and tracks snapshots of how to run the user's software called
Revisions. Since it keeps track of revisions, it allows you to roll back to prevision revisions
should you encounter an issue within new deployments.

Data-path/Life of a Request

Installation

Installing the knative serving component

fi

https://knative.dev/docs/serving/spec/knative-api-specification-1.0#service
https://knative.dev/docs/serving/spec/knative-api-specification-1.0#route
https://knative.dev/docs/serving/spec/knative-api-specification-1.0#configuration
https://knative.dev/docs/serving/spec/knative-api-specification-1.0#revision
https://knative.dev/docs/serving/autoscaling

Installing the core serving component

Installing Istio for Knative https://knative.dev/docs/install/installing-istio/

Install the Knative Istio controller:

Fetch the External IP or CNAME:

Issue to delete webhooks

https://github.com/knative/serving/issues/8323

Configure DNS

Head over to the docs

https://knative.dev/docs/install/

Monitor the Knative components until all of the components show a STATUS of Running or
Completed:

You can also use knative with their cli-tool.

Note: Make sure that you have enough resources/capacity of your cluster. If you do receive an
error message, increase the capacity of your cluster and rerun commands.

So the process is now

1. The client opens the application
2. Which will then forward the request to the Loadbalancer that has been created when we

installed Istio (this will only be created on a 'proper cluster')

3. The LoadBalancer will then forward our request to the Istio Gateway — which is
responsible for fulfilling the request connected to our application.

kubectl apply --filename
https://github.com/knative/serving/releases/download/v0.20.0/serving-crds.yaml

kubectl apply --filename
https://github.com/knative/serving/releases/download/v0.20.0/serving-core.yaml

kubectl apply --filename https://github.com/knative/net-
istio/releases/download/v0.20.0/release.yaml

kubectl --namespace istio-system get service istio-ingressgateway

kubectl get pods --namespace knative-serving

https://knative.dev/docs/install/installing-istio/
https://github.com/knative/serving/issues/8323
https://knative.dev/docs/install/

For a stateless application, there should be as a minimum, the following resources:

1. Deployment
2. ReplicaSet
3. Pod
4. Pod Scalar to ensure the adequate number of pods are running
5. We need a Service so that other Pods/Services can access the application
6. If the application should be used outside of the cluster, we need an Ingress or similar

So what makes our application serverless?

When Knative realises that our application is not being used for a while, it will remove the
pods needed to run the application ⇒ Scaling the app to 0 Replicas

Knative is a solution for Serverless workloads, it not only scales our application but also
queues our requests if there are no pods to handle our requests.

Resources

Website https://knative.dev/
Documentation https://knative.dev/docs/
YouTube video https://youtu.be/28CqZZFdwBY

If you set a limit of how many requests one application can serve, you can easier see the
scaling functionality of Knative in your cluster.

GitOps and Argo

100Days Resources
Video by Anais Urlichs on ArgoCD
Video by Anais Urlichs on Argo Workflows
Add your blog posts, videos etc. related to the topic here!

Learning Resources
"Understanding GitOps: The Latest Tools and Philosophies"
The DevOps Toolkit has several great explanations and tutorials around GitOps and

kn service update <nameofservice> --concurrency-limit=1

https://knative.dev/
https://knative.dev/docs/
https://youtu.be/28CqZZFdwBY
https://youtu.be/c4v7wGqKcEY
https://youtu.be/c3qJr6L8nHg
https://thenewstack.io/understanding-gitops-the-latest-tools-and-philosophies/
https://www.youtube.com/c/DevOpsToolkit/videos

ArgoCD

Example Notes
This is the website of Argo https://argoproj.github.io/

Argo is currently a CNCF incubating project. Part of the Argo project family are three different
projects:

1. Continuous Delivery
2. Workflows and Pipelines
3. Events
4. Rollouts

So why would you want to learn about Argo and all of its projects?

Argo follows best-practices for deploying and monitoring your applications as well as any
resources that your application may depend on. Additionally, it is open source, so it will allow
you to become familiar with best practices for deployments without having to pay for an
expensive tool.

A lot of employers want to see your experience with real-world tools and scenarios. If you do
not have access directly to the paid tools that are used in production, your best chance is to
get really familiar with the open source tools that are used and available.

Argo CD

A few months ago, I wrote an article "Understanding GitOps: The Latest Tools and
Philosophies" for the New Stack. In that blog post, I went over the basics of what GitOps is all
about and the key facts as of today.

So what is GitOps and why would we want to use it? In its simplest form, GitOps is the
principle of defining all of our resources in Git. Meaning, anything that we could possibly push
to a Git repository and keep version controlled, we should.

Why do we want to learn about GitOps and implement it in our organisation?

There are different ways to duplicate steps on different machines. We could either go ahead
and press different buttons, and detail the process of us setting everything up, or we could go

ahead and define our Infrastructure as Code, Kubernetes resources through declarative YAML
files and so on.

https://argoproj.github.io/
https://100daysofkubernetes.io/tools/argo.html#argo-cd
https://100daysofkubernetes.io/tools/argo.html#argo-workflows
https://100daysofkubernetes.io/tools/argo.html#argo-events
https://thenewstack.io/understanding-gitops-the-latest-tools-and-philosophies/

Using the declarative way to define our resources makes our infrastructure pro-active rather
than reactive. This about, instead of zipping through different TV channels, you tell your TV
that every Saturday morning at 10 AM you want to watch a cooking show by person x.
Ultimately, your TV is going to take care of making that happen.

The main problem with the imperative approach of setting up our resources is that we cannot
accurately recreate the same steps. UIs change, buttons move, so how can we ensure that we
press the same buttons always.

Additionally, setting up resources the manual way is extremely risky. How do you ensure
people do not break things, that the security is correct and the networking is in place?

So how does GitOps actually work?

The two most popular tools right now for GitOps best practices are Flux CD and Argo CD. In
both cases, you will install an agent inside your cluster. This agent is then responsible for
monitoring your resources.

The desired state of your resources will be defined in Git. Whenever anything changes to your
desired state, the Agent will pull the new resources from Git and deploy them to your
Kubernetes Cluster. You can call it magic or really good engineering work 🙂

Now why is there a pull model instead of a push model?

The pull model makes it possible for the agent to deploy new images from inside the cluster;
they are pulling information into the cluster rather than the cluster having to allow new
information being pushed in from the outside. The latter would open the cluster for new
security risks.

Getting Started

In this example, we are going to be using Argo CD to install resources in our cluster. Why are
we using Argo and not Flux? I am familiar with Argo but not so familiar with Flux. Additionally,
Argo has a really nice UI that will help us understand what is actually happening within our
cluster.

Separately, ArgoCD just launched its version 2.0. Note that I will be trying out their 2.0 version
for the first time. https://www.cncf.io/blog/2021/04/07/argo-cd-2-0-released/

Documentation: https://argoproj.github.io/argo-cd/

So, let's get started.

Create a new cluster

https://www.cncf.io/blog/2021/04/07/argo-cd-2-0-released/
https://argoproj.github.io/argo-cd/

Create a new cluster

Let's create a namespace for agrocd

And install the CRDs that Argo is based on

Argo is installed as CRD inside our cluster

Now that we have that, we want to access the UI.

You can get the password through the following command. Make sure that you port-
forwarded beforehand.

And then log into

This will allow us to update our password — the username is "admin"

We will open localhost next and log into the UI.

Let's deploy an application. First, through the UI and then through the CLI. You can install the
Argo CD CLI through the following commands:

kind create cluster --name argocd

kubectl create namespace argocd

kubectl apply -n argocd -f https://raw.githubusercontent.com/argoproj/argo-cd/v2.0.0-
rc3/manifests/install.yaml

kubectl get all -n argocd

kubectl port-forward svc/argocd-server -n argocd 8080:443

kubectl -n argocd get secret argocd-initial-admin-secret -o jsonpath="{.data.password}"
| base64 -d

argocd login localhost:8080

argocd account update-password

VERSION=$(curl --silent "https://api.github.com/repos/argoproj/argo-cd/releases/latest"
| grep '"tag_name"' | sed -E 's/.*"([^"]+)".*/\1/')
c rl sSL o / sr/local/bin/argocd https://gith b com/argoproj/argo

http://localhost/

Here is the documentation: https://argoproj.github.io/argo-cd/cli_installation/

We are going to be using the following repository

https://github.com/AnaisUrlichs/react-article-display

Now we will go ahead and tell the Argo UI about my Helm Chart. If you already have a
repository with a Helm Chart, YAML files, or any other YAML manifests, you could use that
instead.

Alternatively, you can tell Argo CD about the repository through the following command or
similar:

Once the app has been deployed, we can take a look

We can also ensure that our desired state is synced with the actual state in our cluster

So what happens if we make any manual changes with the resources within our cluster?

Let's go ahead and patch the service into type NodePort

And check the status again

Additional Resources

curl -sSL -o /usr/local/bin/argocd https://github.com/argoproj/argo-
cd/releases/download/$VERSION/argocd-linux-amd64
chmod +x /usr/local/bin/argocd

argocd app create react-app --repo https://github.com/anais-codefresh/react-article-
display.git --path charts/example-chart --dest-server https://kubernetes.default.svc --
dest-namespace default

kubectl get all

argocd app get react-app

argocd app sync react-app

kubectl patch svc react-app-example-chart --type='json' -p
'[{"op":"replace","path":"/spec/type","value":"NodePort"}]'

argocd app get react-app

https://argoproj.github.io/argo-cd/cli_installation/
https://github.com/AnaisUrlichs/react-article-display

If you do not have enough time for all of this, here is a video in which I provide an overview of
GitOps in about 1 min

https://youtu.be/H7wex_SmtrI

Argo Events

Documentation: https://argoproj.github.io/argo-events/

Argo events is an event-driven workflow automation framework. This means that there is a
trigger/event happening that causes a workflow to run and to use or modify K8s objects in
response to the workflow.

Events can come from a variety of sources including webhooks, s3, schedules, messaging
queues, gcp pubsub, sns, sqs — and by now I am lost between what these short forms mean.
The point being, you can set-up a lot of different events to trigger a workflow.

Here are some of the features that are supported by Argo Events

Supports events from 20+ event sources.
Ability to customize business-level constraint logic for workflow automation.
Manage everything from simple, linear, real-time to complex, multi-source events.
Supports Kubernetes Objects, Argo Workflow, AWS Lambda, Serverless, etc. as triggers.
CloudEvents compliant.

Once the event has been registered, it can then trigger either or multiple of the following:

1. Argo Workflows
2. Standard K8s Objects
3. HTTP Requests / Serverless Workloads (OpenFaas, Kubeless, KNative etc.)
4. AWS Lambda
5. NATS Messages
6. Kafka Messages
7. Slack Notifications
8. Argo Rollouts
9. Custom Trigger / Build Your Own Trigger

10. Apache OpenWhisk

Overall, there are 22 different events that can trigger 11 different actions.

Event Source
Listens to an event insides and/or outside of the cluster and once an event has been
recorded, it will send it to an eventbus.

https://youtu.be/H7wex_SmtrI
https://argoproj.github.io/argo-events/
https://cloudevents.io/

Sensor

The sensor listens to the event bus for certain events and conditional triggers actions.

Trigger

What will ultimately happen - the action e.g. our Argo workflow

The eventbus acts as the transport layer of Argo-Events by connecting the event-sources and
sensors.

Event-Sources publish the events while the sensors subscribe to the events to execute
triggers.

The current implementation of the eventbus is powered by NATS streaming.

Argo Workflows

Documentation https://argoproj.github.io/argo-workflows/

You would not want to use Argo Events solely by itself because by itself it does not provide a
lot of functionality. Instead, you want to set-up Argo events with Argo workflows.

Argo Workflows is used to orchestrate parallel jobs on Kubernetes. A workflow in itself is a
series of steps that follow each other but can also put in parallel.

In Argo Workflows, each step of the Workflows is its own container. Meaning, you can put
anything that you can put into a container image into an Argo Workflow.

Additionally, Argo Worklfows makes it possible to model multi-step workflows as a sequence
of tasks and capture dependencies between tasks using a directed acyclic graph (DAG).
Meaning, you can have different steps being dependent on one another and tell Argo
Worklfows the order of steps.

Making it possible to run CI/CD pipelines natively on Kubernetes is definitely a big plus since
that means that everything that we set-up will be placed directly into Kubernetes.

Installation

The installation of Argo events is similar to all other Argo projects. Namely, we will start out by

1 Creating a namespace

https://argoproj.github.io/argo-workflows/

1. Creating a namespace
2. Installing the CRDs and controllers that the specific Argo tool depends on e.g. Argo

events
3. Argo events requires a specific eventbus to be installed

First, we want to set-up Argo Workflows by following the getting started guide.

Note that Argo workflows does not work on all clusters. You can try it out on different clusters
but you might need a cluster of a cloud provider.

Next, we want to create a namespace for Argo Workflows that we can use to set-up our

You can then access the Argo Workflows UI though the following command on localhost:2746

Then we are going to go ahead and set-up Argo events — we are going to go with the cluster
wide installation but you can also choose the namespace specific installation. Please have a
look at the documentation for that.

Then, we will need the eventbus

Before you move to the next step, please make sure to have all the eventbus related pods
running in your argo-events namespace

Now we will set-up an event source for webhooks. Note that you can also set-up other event
sources

Here is the webhook YAML https://raw.githubusercontent.com/argoproj/argo-
events/stable/examples/event-sources/webhook.yaml

kubectl create ns argo
kubectl apply -n argo -f https://raw.githubusercontent.com/argoproj/argo-
workflows/stable/manifests/quick-start-postgres.yaml

kubectl -n argo port-forward deployment/argo-server 2746:2746

kubectl create namespace argo-events
kubectl apply -f https://raw.githubusercontent.com/argoproj/argo-
events/stable/manifests/install.yaml

kubectl apply -n argo-events -f https://raw.githubusercontent.com/argoproj/argo-
events/stable/examples/eventbus/native.yaml

kubectl get all -n argo-events

kubectl apply -n argo-events -f https://raw.githubusercontent.com/argoproj/argo-
events/stable/examples/event-sources/webhook.yaml

https://raw.githubusercontent.com/argoproj/argo-events/stable/examples/event-sources/webhook.yaml

Now create a sensor for the webhook

Have a look at the way the sensor defines the workflow here
https://raw.githubusercontent.com/argoproj/argo-
events/stable/examples/sensors/webhook.yaml

Access the event-source pod via port forward to consumer requests over HTTP

Now send a request to localhost:12000

And verify that an Argo workflows was triggered

Linkerd

100Days Resources
Video by Anais Urlichs
Add your blog posts, videos etc. related to the topic here!

Learning Resources
The Linkerd getting started guide
Video by Saiyam Pathak
Have a look at the intro to Service Mesh

Example Notes

kubectl apply -n argo-events -f https://raw.githubusercontent.com/argoproj/argo-
events/stable/examples/sensors/webhook.yaml

kubectl -n argo-events port-forward $(kubectl -n argo-events get pod -l eventsource-
name=webhook -o name) 12000:12000 &

curl -d '{"message":"this is my first webhook"}' -H "Content-Type: application/json" -X
POST http://localhost:12000/example

kubectl -n argo-events get workflows | grep "webhook"

kubectl -n argo-events get wf

https://raw.githubusercontent.com/argoproj/argo-events/stable/examples/sensors/webhook.yaml
https://youtu.be/4Y6TR-sg0mQ
https://linkerd.io/2.10/getting-started/
https://youtu.be/QGZO2V_N3ts
https://100daysofkubernetes.io/networking/servicemesh.html

If you want to get started with Linkerd, for the most part, just follow their Documentation. :)

In some of the previous videos, we looked as Service Mesh, and specifically at Istio. Since many
people struggle to set-up Istio I thought it would be great to take another look at a different
Service Mesh. In this case, at Linkerd.

Note that Istio is still one of the most popular. Thus, it is always good to still know about that
but as an alternative, let's also take a look at Linkerd.

Benefits of Linkerd

It works as it is — Saiyam

First service mesh project that introduced the term
In production for about 4 years
Open governance model and hosted by the CNCF
Super extensible and easy to install add-ons
Easy to install
It is a community project
Kept small, you should spend the least amount of resources

More information

Control plane written in Go and data plane written in Rust.

Installation

LinkerD has a really neat getting-started documentation that you can follow step-by-step.

First, we are going to follow the onboarding documentation. Once we have everything set-up
and working, we want to see metrics of our application through Prometheus and Grafana.

Usually I would copy paste commands to make sure everyone knows the order but since their
documentation is pretty straight-forward, I am not going to do that this time.

1. Let's follow the steps detailed in the getting-started documentation
https://linkerd.io/2.10/getting-started/

In our case, we are going to try it out on our Docker for Desktop Kubernetes cluster but you
could also use another cluster such as KinD.

https://linkerd.io/2.10/getting-started/
https://linkerd.io/2.10/getting-started/

Small side-note, I absolutely love that they have a checker command to see whether LinkerD
can actually be installed on your cluster

How amazing is that?

And then, they have a separate command to see whether all the resources are ready

I am already in love with them!

We are going to keep following the guide, because we want to have a fancy dashboard with
metrics in the end

Then we are going to check that everything is ready

Access the dashboard

this will give you the localhost port to a beautiful Dashboard

We are going to use the following GitHub respository to install our application

https://github.com/AnaisUrlichs/react-article-display

After clone, cd into react-article-display

Now you want to have Helm istalled since this application relies on a Helm Chart

Once installed, we can port-forward to access our application

linkerd check --pre

linkerd check

linkerd viz install | kubectl apply -f -

linkerd jaeger install | kubectl apply -f -

linkerd check

linkerd viz dashboard &

helm install react-article ./charts/example-chart

kubectl por-forward service/react-article-example-chart 5000:80

http://localhost/
https://github.com/AnaisUrlichs/react-article-display

Now we just have to connect our Service Mesh with the application

Then we can go ahead and run checks again

We can see the live stats of our application through

And see the stream of requests to our services throug

Now let's go ahead and see how we can do traffic splitting for Canary deployments with
Linkerd. For this, we are going to follow the documentation
https://linkerd.io/2.10/tasks/canary-release/

Clone the following repository

Apply the first application

You can access it through kubectl port forwarding

Install Flagger

Deploy the deployment resource

Ensure they are ready

kubectl get deploy -o yaml \
 | linkerd inject - \
 | kubectl apply -f -

linkerd check --proxy

linkerd viz stat deploy

linkerd viz tap deploy/web

kubectl apply -f app-one.yaml

kubectl port-forward service/app-one 3000:80

kubectl apply -k github.com/fluxcd/flagger/kustomize/linkerd

kubectl create ns test && \
 kubectl apply -f https://run.linkerd.io/flagger.yml

kubectl -n test rollout status deploy podinfo

https://linkerd.io/2.10/tasks/canary-release/

Access the service

Prometheus

Prometheus Exporter

100Days Resources
Video by Anais Urlichs
Add your blog posts, videos etc. related to the topic here!

Learning Resources
Setup Prometheus Monitoring on Kubernetes using Helm and Prometheus Operator |
Part 1

Example Notes

Install Prometheus Helm Chart with Operators etc.

First off, we are going to follow the commands provided in the previous day — Day 28 — on
Prometheus to have our Helm Chart with all the Prometheus related resources installed.

Day 28: What is Prometheus

Have a look at the Prometheus Resources to understand
those better

Prometheus uses ServiceMonitors to discover endpoints. You can get a list of all the
ServiceMonitors through:

kubectl -n test port-forward svc/podinfo 9898

kubectl -n test get ev --watch

https://youtu.be/qItg7P1H7uw
https://youtu.be/QoDqxm7ybLc
https://100daysofkubernetes.io/observability/prometheus.html

Now have a look at one of those ServiceMonitors:

This will display the ServiceMonitor definition in pure YAML inside our terminal. Look through
the YAML file and you will find a label called:

"release: prometheus"

This label defines the ServiceMonitors that Prometheus is supposed to scrape.

Like mentioned in the Previous video, operators, such as the Prometheus Operator rely on
CRD. Have a look at the CRDs that Prometheus uses through:

You can take a look at a specific one as follows.

Set-up MongoDB

Now, we want to install a MongoDB image on our cluster and tell Prometheus to monitor it's
endpoint. However, MongoDB is one of those images that relies on an exporter for its service
to be visible to Prometheus. Think about it this way, Prometheus needs the help of and
Exporter to know where MongoDB is in our cluster — like a pointer.

You can learn more about those concepts in my previous videos

1. Prometheus on Kubernetes: Day 28 of #100DaysOfKubernetes
2. Kubernetes Operators: Day 29 of #100DaysOfKubernetes

First off, we are going to install the MongoDB deployment and the MongoDB service; here is
the YAML needed for this:

deployment.yaml

kubectl get servicemonitor

kubectl get servicemonitor prometheus-kube-prometheus-grafana -o yaml

kubectl get crd

kubectl get prometheus.monitoring.coreos.com -o yalm

apiVersion: apps/v1
kind: Deployment
metadata:

https://youtu.be/n4eF8EcgpZQ
https://youtu.be/C_mlWhSrqEY

service.yaml

Use the follow to apply both to your cluster

You can check that both are up and running through

Now we want to tell Prometheus to monitor that endpoint — for this, we are going to use the
following Helm Chart https://github.com/prometheus-community/helm-

metadata:
 name: mongodb-deployment
 labels:
 app: mongodb
spec:
 replicas: 2
 selector:
 matchLabels:
 app: mongodb
 template:
 metadata:
 labels:
 app: mongodb
 spec:
 containers:
 - name: mongodb
 image: mongo
 ports:
 - containerPort: 27017

apiVersion: v1
kind: Service
metadata:
 name: mongodb-service
spec:
 selector:
 app: mongodb
 ports:
 - protocol: TCP
 port: 27017
 targetPort: 27017

kubectl apply -f deployment.yaml
kubectl apply -f service.yaml

kubectl get all
or

kubectl get service
kubectl get pods

https://github.com/prometheus-community/helm-charts/tree/main/charts/prometheus-mongodb-exporter

charts/tree/main/charts/prometheus-mongodb-exporter

You can find a list of Prometheus exporters and integrations here:

https://prometheus.io/docs/instrumenting/exporters/

Next, we are going to add the Helm Mongo DB exporter

We need to mondify the values provided in the values.yaml file as follows:

Basically, replace the values.yaml file created in the helm show command above with this file.
In this case, we are going to tell the helm chart the mongodb endpoint and then the
additional label for the ServiceMonitor.

Next, let's install the Helm Chart and pass in the values.yaml

You can see whether the chart got installed correctly through

Now have a look at the pods and the services again to see whether everything is running
correctly:

Lastly make sure that we have the new ServiceMonitor in our list:

helm repo add prometheus-community https://prometheus-community.github.io/helm-charts

helm show values rometheus-community/prometheus-mongodb-exporter > values.yaml

mongodb:
 uri: "mongodb://mongodb-service:27017"

serviceMonitor:
 additionalLabels:
 release: prometheus

helm install mongodb-exporter prometheus-community/prometheus-mongodb-exporter -f
values.yaml

helm ls

kubectl get all
or

kubectl get service
kubectl get pods

kubectl get servicemonitor

https://github.com/prometheus-community/helm-charts/tree/main/charts/prometheus-mongodb-exporter
https://prometheus.io/docs/instrumenting/exporters/

Have a look at the prometheus label within the ServiceMonitor

Now access the service of the mongodb-exporter to see whether it scrapes the metrics of our
MongoDB properly:

and open the Prometheus service:

On localhost:9090, go to Status - Targets and you can see all of our endpoints that
Prometheus currently knows about.

Kubernetes Operators

100Days Resources
Video by Anais Urlichs
Add your blog posts, videos etc. related to the topic here!

Learning Resources
https://youtu.be/ha3LjlD6g7g
https://www.redhat.com/en/topics/containers/what-is-a-kubernetes-operator
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

Example Notes
There is so much great content around Kubernetes Operators, and I have mentioned it
several times across the previous videos. However, we have not looked at Kubernetes
Operators yet. Today, we are going to explore

What are Kubernetes Operators
How do Operators work
Why are they important

Operators are mainly used for Stateful Applications

Operators are software extensions to Kubernetes that make use of custom resources to

kubectl get servicemonitor mongodb-exporter-prometheus-mongodb-exporter -o yaml

kubectl port-forward service/mongodb-exporter-prometheus-mongodb-exporter 9216

kubectl port-forward service/prometheus-kube-prometheus-prometheus 9090

http://localhost:9090/
https://youtu.be/C_mlWhSrqEY
https://youtu.be/ha3LjlD6g7g
https://www.redhat.com/en/topics/containers/what-is-a-kubernetes-operator
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

Operators are software extensions to Kubernetes that make use of custom resources to
manage applications and their components. Operators follow Kubernetes principles, notably
the control loop — Source

Managing Stateful Applications without an operator vs.
with an operator.

If you are deploying an application, you usually use

Service
Deployment
ConfigMap

Kubernetes knows what the desired state of our cluster is because we told it through our
configuration files. It aims to match the actual state of our cluster to our desired state.

Now for a stateful application the process is a bit more difficult — it does not allow
Kubernetes to automatically scale etc.

E.g. SQL databases are not identical replicas. There has to be a constant communication for
the data to be consistent + other factors.

Each database has its own workaround —> this makes it difficult to use Kubernetes to
automate any workaround.

A lot of times stateful applications will require manual intervention i.e. human operators.
However, having to manually update resources in Kubernetes goes against its

So there is a need for an alternative to manage stateful applications. This alternative is a
Kubernetes Operator.

What is an Operator?

Replace all the manual tasks that the human operator would do. It takes care of

Deploying the app
Creating replicas
Ensuring recovery in case of failure

With this, an Operator is basically an application-specific controller that extends the
functionality of the Kubernetes API to take care of the management of complex applications.

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

This is making tasks automated and reusable.

Operators rely on a control loop mechanism.

If one replica of our database dies, it will create a new one. If the image version of the
database get updated, it will deploy the new version.

Additionally, Operators rely on Kubernetes Custom Resource Definitions (CRDs). CRDs are
custom resources created on top of Kubernetes. CRDs allow Operators to have specific
knowledge of the application that they are supposed to manage.

You can find a list of Kubernetes Operators in the Kubernetes Operator Hub
https://operatorhub.io/

AND you can find several awesome operators in the wild https://github.com/operator-
framework/awesome-operators 😄

Once you have created an operator, it will take high-level inputs and translate them into low
level actions and tasks that are needed to manage the application.

Once the application is deployed, the Operator will continue to monitor the application to
ensure that it is running smoothly.

Who is creating Operators?

Those if the insights and know-how of the application that the operator is supposed to run.

There is an Operator Framework that basically provides the building blocks that can be used
to

The Operator Framework includes:

Operator SDK: Enables developers to build operators based on their expertise without
requiring knowledge of Kubernetes API complexities.
Operator Lifecycle Management: Oversees installation, updates, and management of
the lifecycle of all of the operators running across a Kubernetes cluster.
Operator Metering: Enables usage reporting for operators that provide specialized
services.

Some of the things that you can use an operator to automate include:

deploying an application on demand

taking and restoring backups of that application's state
handling upgrades of the application code alongside related changes such
as database

https://operatorhub.io/
https://github.com/operator-framework/awesome-operators

schemas or extra configuration settings
publishing a Service to applications that don't support Kubernetes APIs to
discover them
simulating failure in all or part of your cluster to test its resilience
choosing a leader for a distributed application without an internal
member election
process

Practical Example

In the case of Prometheus, I would have to deploy several separate components to get
Prometheus up and running, which is quite complex + deploying everything in the right order.

Serverless

100Days Resources
Video by Anais Urlichs
Add your blog posts, videos etc. related to the topic here!

Learning Resources
TODO

Example Notes

There is no such thing as serverless, there is always a server

How do we think about Serverless?

In the cloud, functions written in JavaScript, response to event/triggers ⇒ highly narrowed
view

Why would you want Serverless?

1. You want to try out cool things
2. You want to stop over- or under-provisioning of your infrastructure

3. You want to try out cool things

https://youtu.be/LLqICWKbP5I

Serverless

Serverless: Popular operating model — infrastructure requirements are provisioned just
before the Serverless workload is executed — The infrastructure resources are just needed
during the execution, so there is no need to keep the infrastructure during low to now usage.

The serverless platform will likely run on containers.

1. No Server Management is necessary
2. You only pay for the execution time
3. They can scale to 0 = no costs to keep the infrastructure up
4. Serverless functions are stateless, this promotes scalability
5. Auto-scalability ⇒ usually taken care of by the cloud provider
6. Reduced operational costs

It does not mean that there are no servers involved. Instead it is the process of ensuring that
the infrastructure is provisioned automatically. In this case, the developer is less involved to
managing infrastructure.

FAAS is a compute platform for your service — they are essentially processing your code.
These functions are called by events, events in this case are any trigger.

Within Serverless, cloud providers provision event-driven architecture. When you build your
app, you look for those events and you add them to your code.

Issues with serverless

1. Functions/processes of your code will not finish before the infrastructure downgrades
2. Latency issues i.e. because of cold starts

Moving from IAAS to PAAS to FAAS

Two distinctions

1. Not using Servers
2. FaaS (Function as a Service): Is essentially small pieces of code that are run in the cloud

on stateless containers

One is about hiding operations from us

Serverless options

1. Google: Google Cloud Functions
2. AWS: Lambda

3. For Kubernetes: Knative

What is a cold start?

Serverless functions can be really slow the first time that they start. This can be a problem.
These articles offer some comparisons

1. https://mikhail.io/serverless/coldstarts/aws/
2. https://mikhail.io/serverless/coldstarts/big3/
3. Discussion https://youtu.be/AuMeockiuLs

AWS has something called Provisioned Concurrency that allows you to keep on x functions
that are always on and ready.

When would you not want to use Serverless:

1. When you have a consistent traffic

Be careful,

1. Different serverless resources have different pricing models, meaning it could easily
happen that you accidentally leave your serverless function running and it will eat up
your pocket

2. If you depend on a Serverless feature, it is easy to get vendorlocked.

Resources

1. How to think about Serverless https://youtu.be/_1-5YFfJCqM

I am going to be looking in the next days at

1. Knative: Kubernetes based open source building blocks for serverless
2. Faasd: https://github.com/openfaas/faasd

Ingress from scratch

100Days Resources
Video by Anais Urlichs
Add your blog posts, videos etc. related to the topic here!

Learning Resources

https://mikhail.io/serverless/coldstarts/aws/
https://mikhail.io/serverless/coldstarts/big3/
https://youtu.be/AuMeockiuLs
https://youtu.be/_1-5YFfJCqM
https://github.com/openfaas/faasd
https://youtu.be/13y1tWEK2ZY

TODO

Example Notes
If you are new to 100 Days Of Kubernetes, have a look at the previous days to fill in the gaps
and fundamentals for today:

Day 4: Looking at Services

Day 11: More exercises on Services

Day 13: Ingress

Day 31: Service Mesh

Resources

1. Do I need a service mesh or is Ingress enough? https://www.nginx.com/blog/do-i-need-a-
service-mesh/

2. Check the specific installation guide https://kubernetes.github.io/ingress-nginx/deploy/
3. Tutorial setup https://medium.com/analytics-vidhya/configuration-of-kubernetes-k8-

services-with-nginx-ingress-controller-5e2c5e896582
4. Comprehensive Tutorial by Red Hat https://redhat-scholars.github.io/kubernetes-

tutorial/kubernetes-tutorial/ingress.html
5. Using Ingress on Kind cluster https://kind.sigs.k8s.io/docs/user/ingress/#ingress-nginx
6. More on installing ingress on kind https://dustinspecker.com/posts/test-ingress-in-kind/

Install

The installation will slightly depend on the type of cluster that you are using.

For this tutorial, we are going to be using the docker-desktop cluster

We need two main components

1. Ingress Controller

2. Ingress resources

Note that depending on the Ingress controller that you are using for your Ingress the

https://www.notion.so/Day-4-Looking-at-Services-b0e7a6aa09fc4de39ad107ea133c708f
https://www.notion.so/Day-11-More-exercises-on-Services-0f98b7b9620841e8b26ad3f507849683
https://www.notion.so/Day-13-Ingress-89d34d81c5a549aeba6ad10c3d3d9d9c
https://www.notion.so/Day-31-Service-Mesh-60e08e4d07d6484e92e50457f5c6b31a
https://www.nginx.com/blog/do-i-need-a-service-mesh/
https://kubernetes.github.io/ingress-nginx/deploy/#microk8s
https://medium.com/analytics-vidhya/configuration-of-kubernetes-k8-services-with-nginx-ingress-controller-5e2c5e896582
https://redhat-scholars.github.io/kubernetes-tutorial/kubernetes-tutorial/ingress.html
https://kind.sigs.k8s.io/docs/user/ingress/#ingress-nginx
https://dustinspecker.com/posts/test-ingress-in-kind/

Note that depending on the Ingress controller that you are using for your Ingress, the
Ingress resource that has to be applied to your cluster will be different. In this tutorial, I
am using the Ingress Nginx controller.

Let's set everything up.

We are going to be using the NGINX Ingress Controller. With the NGINX Ingress Controller for
Kubernetes, you get basic load balancing, SSL/TLS termination, support for URI rewrites, and
upstream SSL/TLS encryption

First off, let's clone this repository: https://github.com/AnaisUrlichs/ingress-example

now build your Docker image

You can test it out through

And then we are going to push the image to our Docker Hub

We are going to do the same in our second example application

build the docker image

push it to your Docker Hub

git clone <repository>

cd ingress-example

cd app-one

docker build -t anaisurlichs/flask-one:1.0 .

docker run -p 8080:8080 anaisurlichs/flask-one:1.0

docker push anaisurlichs/flask-one:1.0

cd ..
cd app-two

docker build -t anaisurlichs/flask-two:1.0 .

docker push anaisurlichs/flask-two:1.0

https://github.com/AnaisUrlichs/ingress-example

Now apply the deployment-one.yaml and the deployment-tow.yaml

Make sure they are running correctly

Installing Ingress Controller

Installing Ingress Resource

make sure that everything is running correctly

Making paths happen https://github.com/kubernetes/ingress-nginx/issues/3762

Setup Istio from scratch

100Days Resources
Video by Anais Urlichs
Add your blog posts, videos etc. related to the topic here!

Learning Resources
Istio cli "istioctl" https://istio.io/latest/docs/setup/install/istioctl/

To use kind and ingress together have a look at this blog post
https://mjpitz.com/blog/2020/10/21/local-ingress-domains-kind/

Using the first part of this blog post https://www.arthurkoziel.com/running-knative-with-
istio-in-kind/ (if you want to set-up knative on your kind cluster, be my guest, I also have a

whole video on using kind)

Day 27: Knative

kubectl apply -f deployment-one.yaml
kubectl apply -f deployment-two.yaml

kubectl get all

kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-nginx/controller-
v0.44.0/deploy/static/provider/cloud/deploy.yaml

kubectl apply -f ingress.yaml

kubectl get all -n ingress-nginx

https://github.com/kubernetes/ingress-nginx/issues/3762
https://youtu.be/-X9babxSxK4
https://istio.io/latest/docs/setup/install/istioctl/
https://mjpitz.com/blog/2020/10/21/local-ingress-domains-kind/
https://www.arthurkoziel.com/running-knative-with-istio-in-kind/
https://www.notion.so/Day-27-Knative-edd3b828562f4ce08f42a47393e3b473

Day 27: Knative

However, this is not the focus today.

Have a look at the previous day on Service Mesh

Day 31: Service Mesh

Example Notes

Service Mesh vs Ingress

We would not want to create a LoadBalancer for all of our Services to access each and every
individual Service. This is where Ingress comes in. Ingress allows us to configure the traffic to
all of our microservice applications. This way, we can easier manage the traffic.

Now to manage the connection between services, we would want to configure a Service Mesh
such as Istio. Istio will then take care of the communication between our microservice
applications within our cluster. However, it will not take care of external traffic automatically.
Instead, what Istio will do is to use an Istio Ingress Gateway that will allow users to access
applications from outside the Kubernetes cluster.

The difference here is using the Kubernetes Ingress Resource vs. the Istio Ingress Resource.
Have a look at the following blog post that provides comprehensive detail on the differences:

https://medium.com/@zhaohuabing/which-one-is-the-right-choice-for-the-ingress-gateway-of-
your-service-mesh-21a280d4a29c

Installation

Prerequisites

Docker desktop installed https://www.docker.com/products/docker-desktop
Kind binary installed so that you can run kind commands
https://kind.sigs.k8s.io/docs/user/quick-start/

Set-up the kind cluster for using Ingress

In the previous tutorial on Ingress, we used Docker Desktop as our local cluster. You can also
set-up Ingress with a kind cluster.

https://www.notion.so/Day-27-Knative-edd3b828562f4ce08f42a47393e3b473
https://www.notion.so/Day-31-Service-Mesh-60e08e4d07d6484e92e50457f5c6b31a
https://medium.com/@zhaohuabing/which-one-is-the-right-choice-for-the-ingress-gateway-of-your-service-mesh-21a280d4a29c
https://www.docker.com/products/docker-desktop
https://kind.sigs.k8s.io/docs/user/quick-start/

You can configure your kind cluster through a yaml file. In our case, we want to be able to
expose some ports through the cluster, so we have to specify this within the config.

Before we create a kind cluster, save the following configurations in a kind-config.yaml file.

This file is going to be used in the following command when we create out kind cluster.

Now you should be on your cluster istio-test. In your kubectl config context the cluster will be
called kind-istio-test.

You can then follow the documentation on setting up different Ingress Controllers on top

Install Istio

Install Istio with the following commands if you are on Linux, check out other installation
options.

Now you have to move the package into your usr/bin directory so you can access it through
the command line.

kind: Cluster
apiVersion: kind.x-k8s.io/v1alpha4
nodes:
- role: control-plane
 kubeadmConfigPatches:
 - |
 kind: InitConfiguration
 nodeRegistration:
 kubeletExtraArgs:
 node-labels: "ingress-ready=true"
 extraPortMappings:
 - containerPort: 80
 hostPort: 80
 protocol: TCP
 - containerPort: 443
 hostPort: 443
 protocol: TCP

kind create cluster --config kind-config.yaml --name istio-test

kubectl config get-contexts
kind get clusters

curl -L https://istio.io/downloadIstio | sh -

sudo mv /Downloads/istio-1.9.1/bin/istioctl /usr/local/bin/

When you run now the following, you should see the version of istioctl

Awesome! we are ready to install istio on our kind cluster.

We are going to use the following Istio configurations and then going to use istioctl to install
everything on our kind cluster.

Note that you can use another istio profile, other than the default one.

Let's check that everything is set-up correctly

You should have two pods running right now.

You can check whether everything is working properly through the following command

By default, Istio will set the Ingress type to Loadbalancer. However, on a local kind cluster, we
cannot use Loadbalancer. Instead, we have to use NodePort and set the host configurations.
Create a file called patch-ingressgateway-nodeport.yaml with the following content:

And then apply the patch with

However, in our Docker Desktop cluster, we are connected to localhost automatically so in
that case, we do not have to change anything to NodePort.

Next, we have to allow Istio to communicated with our default namespace:

istioctl version

istioctl install --set profile=demo

kubectl get pods -n istio-system

istioctl manifest generate --set profile=demo | istioctl verify-install -f -

spec:
 type: NodePort
 ports:
 - name: http2
 nodePort: 32000
 port: 80
 protocol: TCP
 targetPort: 80

kubectl patch service istio-ingressgateway -n istio-system --patch "$(cat patch-
ingressgateway-nodeport.yaml)"

f i i i j i

http://localhost/

Set-up Ingress Gateway

From here onwards, we are just following the documentation

Setting-up the example application:

https://istio.io/latest/docs/examples/bookinfo/

Setting-up metrics:

https://istio.io/latest/docs/tasks/observability/metrics/tcp-metrics/

If you feel ready for a challenge, try out canary updates with Istio

https://istio.io/latest/docs/setup/upgrade/canary/

Deploy an app to CIVO k3s cluster from
scratch

100Days Resources
Video by Rajesh Radhakrishnan
Rajesh' Kitchen repo

Learning Resources
1. Video by Rajesh Radhakrishnan
2. CIVO cli essentials
3. CIVO marketplace
4. Part 1 - Full Stack deployment
5. Part 2 - MicroFrontend deployment

CIVO Notes

Ideas to production, CIVO helped me to make it happen...

A rough sketch on the application
I came up with an application that help us create a book
cover and add chapters to it. In order to build this, I thought of having an angular frontend

kubectl label namespace default istio-injection=enabled

https://istio.io/latest/docs/examples/bookinfo/
https://istio.io/latest/docs/tasks/observability/metrics/tcp-metrics/
https://istio.io/latest/docs/setup/upgrade/canary/
https://www.youtube.com/watch?v=HpAlAzOjgpI
https://github.com/rajeshradhakrishnanmvk/kitchen.git
https://www.youtube.com/watch?v=HpAlAzOjgpI
https://github.com/civo/cli
https://www.civo.com/learn/deploying-applications-through-the-civo-kubernetes-marketplace
https://www.civo.com/learn/user_guides/446
https://www.civo.com/learn/user_guides/549

that communicates to three .net core backend services.

Login and Create a K3s cluster in CIVO
I am using my Windows Linux System to learn K8s,
also in CIVO creating a k3s cluster is really fast. Once you have the cluster, using the CIVO cli,
merge the kubconfig to interact with the cluster using 'kubectl' command. Also K9s tools is
also very useful to navigate through the custer. A a few handy commands I will share it to set
it up. Once you download the cli, refer to the Learning resource section with useful links:

Dockerize the microservices

Deploy using openfaas

Deploy using helm

civo apikey add <clustername> <apikey>
civo apikey current <clustername>
civo region current NYC1
civo kubernetes ls
civo kubernetes config "PROJECT"-infra --save --merge

kubectl config get-contexts
kubectl config set-context "PROJECT"-infra
kubectl config use-context "PROJECT"-infra

1. Create a docker file in each microservices.
2. Build & push the images to docker Hub.
3. Create a CI/CD pipeline to deploy to CIVO

docker build . -f Dockerfile -t PROJECT-web:local
docker tag "PROJECT"-web:local <tag>/ "PROJECT"-web:v.0.2
docker push <TAG>/ PROJECT-web:v.0.2

1. Install the Openfaas from the CIVO marketplace.
2. Download the openfaas cli and connect to CIVO repo.
3. Push the image to the openfaas repo.

curl -sLSf https://cli.openfaas.com | sudo sh
export OPENFAAS_PREFIX="<tag>/"
export DNS="<YOUR_CIVO_CLUSTER_ID>.k8s.civo.com" # As per dashboard
export OPENFAAS_URL=http://$DNS:31112
PASSWORD=$(kubectl get secret -n openfaas basic-auth -o jsonpath="{.data.basic-auth-
password}" | base64 --decode; echo)
echo -n $PASSWORD | faas-cli login --username admin --password-stdin

faas-cli new --lang dockerfile api
faas-cli build
faas-cli push -f stack.yml # Contains all the image deployment
faas-cli deploy -f stack.idserver.yml # individual deployment
faas-cli deploy -f stack.web.yml

Setup the SSL certificates us Let's Encrypt

Show off
I used to document the process and steps I have done during the development &
deployment. It will help us to review and refine it as we progress through our development

Rancher Shared Service using Kubernauts & Popeye setup

Get the free life time access to RaaS from https://kubernautic.com/

1. Create a helm chart
2. Mention the docker image for the installation
3. Helm install to the CIVO cluster

helm upgrade --install "PROJECT"-frontend /"PROJECT"-web/conf/charts/"PROJECT"-ui --
namespace PROJECT --set app.image=<TAG>/"PROJECT"-web:latest
helm uninstall "PROJECT"-frontend -n "PROJECT"

1. Create an LetsEncrypt PROD issuer.
2. Deploy the ingress.
3. Troubleshoot and verify the certificated is issued.

kubectl apply -f ./cert-manager/civoissuer.stage.yaml
issuer.cert-manager.io/letsencrypt-stage created
kubectl apply -f ingress-cert-civo.yaml

kubectl get issuer -n kitchen
kubectl get ing -n kitchen
kubectl get certificates -n kitchen
kubectl get certificaterequest -n kitchen
kubectl describe order -n kitchen
kubectl describe challenges -n kitchen

kubectl apply -f https://rancher.kubernautic.com/v3/import/<youraccesskey>.yaml
clusterrole.rbac.authorization.k8s.io/proxy-clusterrole-kubeapiserver created
cl sterrolebinding rbac a thori ation k8s io/pro role binding k bernetes master

Resources

Rancher Shared Service

popeye

CrashLoopBackOff

100Days Resources
Video by Anais Urlichs
Add your blog posts, videos etc. related to the topic here!

Learning Resources
What is Kubernetes: https://youtu.be/VnvRFRk_51k
Kubernetes architecture explained: https://youtu.be/umXEmn3cMWY

Example Notes
Today I actually spent my time first learning about ReplicaSets. However, when looking at my
cluster, I have noticed something strange.

There was one pod still running that I thought I had deleted yesterday.

The status of the pod indicated "CrashLoopBackOff"; meaning the pod would fail every time it

clusterrolebinding.rbac.authorization.k8s.io/proxy-role-binding-kubernetes-master
created
namespace/cattle-system created
serviceaccount/cattle created
clusterrolebinding.rbac.authorization.k8s.io/cattle-admin-binding created
secret/cattle-credentials-c9b86c5 created
clusterrole.rbac.authorization.k8s.io/cattle-admin created
deployment.apps/cattle-cluster-agent created

wget
https://github.com/derailed/popeye/releases/download/v0.9.0/popeye_Linux_x86_64.tar.gz
tar -xvf popeye_Linux_x86_64.tar.gz
mv popeye /usr/local/bin/

POPEYE_REPORT_DIR=/mnt/e/Kubernetes/ popeye --save --out html --output-file report.html

https://kubernautic.com/
https://popeyecli.io/
https://youtu.be/-ypljeZrSgc
https://youtu.be/VnvRFRk_51k
https://youtu.be/umXEmn3cMWY

The status of the pod indicated CrashLoopBackOff ; meaning the pod would fail every time it
was trying to start. It will start, fail, start fail, start f...

This is quite common, and in case the restart policy of the pod is set to always, Kubernetes
will try to restart the pod every time it has an error.

There are several reasons why the pod would end up in this poor state:

1. Something is wrong within our Kubernetes cluster
2. The pod is configured correctly
3. Something is wrong with the application

In this case, it was easier to identify what had gotten wrong that resulted in this misbehaved
pod.

Like mentioned in previous days, there are multiple ways that one can create a pod. This can
be categorized roughly into

Imperative: We have to tell Kubernetes each step that it has to do within our cluster
Declarative: We provide Kubernetes with any resource definition that we want to set-up
within our pod and it will figure out the steps that are needed to make it happen

As part of yesterdays learning, I tried to set-up a container image inside a pod and inside our
cluster with the following command:

kubectl create deployment --image=

this will create a deployment resource, based on which a pod is created, based on which a
container is run within the created pod.

Going back to reasons this might have resulted in a CrashLoopBackOff; I don't have reasons
to believe that something is wrong within our cluster since the same image was created using
a pod definition in a declarative format — that worked.

Next, the pod could be configured correctly. This could have been the case — However, since
we did not tell Kubernetes explicitly how it should create the pod, we don't have much control
over this aspect.

Lastly, the application inside of the container is wrong. I have reason to believe that this is the
case. When parsing the container image into the Kubernetes cluster, we did not provide any
arguments. However, the container image would have needed an argument to know which
image it is actually supposed to run. Thus, I am settling for this explanation.

Now how do we get rid of the pod or correct this?

I first tried to delete the pod with

f

However, this just meant that the current instance of the pod was deleted and a new one
created each time — counting the restarts from 0.

So it must be that there is another resource that tells Kubernetes "create this pod and run
the container inside"

Let's take a look at the original command:

kubectl create deployment --image=

I had literally told Kubernetes to create a deployment. SO let's check for deployment:

and tada, here is the fish.

Since we have already tried to delete the pod, we will now delete the deployment itself.

When we are now looking at our pods

We should not see any more pods listed.

Terminology Primer
This section is intended as a quick primer to get you up to speed with the various terms and
acronyms that you are likely to encounter as you begin your Kubernetes journey. This is by no
means an exhaustive list and it will certainly evolve.

Containers: Containers are a standard package of software that allows you to bundle
(or package) an application's code, dependencies, and configuration into a single object
which can then be deployed in any environment. Containers isolate the software from its
underlying environment.

Container Image: According to Docker, a Container Image "is a lightweight, standalone,
executable package of software that includes everything needed to run an application: code,

runtime, system tools, system libraries, and settings." Container Images become Containers
at runtime.

kubectl delete pod <name of the pod>

kubectl get deployment

kubectl delete deployment <name of the deployment>

kubectl get pods

https://www.docker.com/resources/what-container

Container Registry: A container registry is a repository for storing all of your container
images. Examples of containers registries are: 'Azure Container Registry', 'Docker Hub',
and 'Amazon Elastic Container Registry'.

Docker: Docker is an open-source platform used for automating the deployment of
containerized applications.

Kubernetes: Also know as K8s, Kubernetes is an open-source system for automating the
deployment, scaling, and management of containerized applications. Please see
kubernetes.io for more details. It could also be thought of as a 'Container Orchestrator'.

Control Plane: The control plane is the container orchestration layer. It exposes an API
that allows you to manage your cluster and its resources.

Namespaces: Namespaces are units of the organization. They allow you to group
related resources.

Nodes: Nodes are worker machines in Kubernetes. Nodes can be virtual or physical.
Kubernetes runs workloads by placing containers into Pods that run on Nodes. You will
typically have multiple nodes in your Kubernetes cluster.

Pods: Pods are the smallest deployable unit of computing that you can create and
manage in Kubernetes. A pod is a group of one or more containers.

Service: A Service in Kubernetes is a networking abstraction for Pod access. It handles
the network traffic to a Pod or set of Pods.

Cluster: A Kubernetes Cluster is a set of nodes.

Replica Sets: A Replica Set works to ensure that the defined number of Pods are running
in the Cluster at all times.

Kubectl: Kubectl is a command-line tool for interacting with a Kubernetes API Server to
manage your Cluster.

etcd: Etcd is a key-value store that Kubernetes uses to store Cluster data.

Ingress: An object that manages external access to the services running on the Cluster.

K3s: K3s is a lightweight Kubernetes distribution designed for IoT or Edge computing
scenarios.

GitOps: According to Codefresh, "GitOps is a set of best-practices where the entire code
delivery process is controlled via Git, including infrastructure and application definition as code

and automation to complete updates and rollbacks."

Containerd: Containerd is a container runtime that manages the complete container

https://kubernetes.io/
https://codefresh.io/gitops/

Containerd: Containerd is a container runtime that manages the complete container
lifecycle.

Service Mesh: According to Istio, a Service Mesh describes the network of micro-services
within an application and the communications between them.

AKS: Azure Kubernetes Service (AKS) is a managed, hosted, Kubernetes service provided
by Microsoft Azure. A lot of the management of your Kubernetes cluster is abstracted
away and managed by Azure. Find out more here.

EKS: Elastic Kubernetes Service (EKS), provided by Amazon AWS, is a managed, hosted,
Kubernetes service. Similar to AKS, much of the management is abstracted away and
managed by the cloud provider. Find out more here

GKE: Google Kubernetes Engine (GKE), is another managed Kubernetes service. This
time from Google. Find out more here.

Helm: Helm can be thought of as a Package Manager for Kubernetes.

Helm Chart: Helm Charts are YAML files that define, install and upgrade Kubernetes
applications.

https://istio.io/latest/docs/concepts/what-is-istio/
https://docs.microsoft.com/en-us/azure/aks/intro-kubernetes
https://aws.amazon.com/eks
https://cloud.google.com/kubernetes-engine/docs/concepts/kubernetes-engine-overview

